Supporting Information

Lysophosphatidylcholine modulates the aggregation of human islet amyloid polypeptide

Yanting Xing,[†] Emily H. Pilkington,[‡] Miaoyi Wang,[‡] Cameron J. Nowell, ¶Aleksandr Kakinen,[‡] Yunxiang Sun, † Bo Wang, † Thomas P. Davis, ‡§* Feng Ding†* and Pu Chun $Ke^{\ddagger*}$

[†]Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

[‡]ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia

[¶]Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia

§Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom

Supplementary Figures

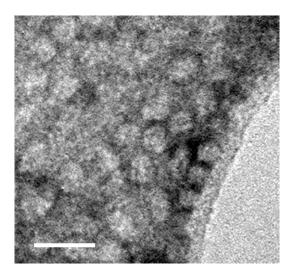


Fig. S1 TEM image of LPC micelles at 2 mM (>CMC). Scale: 10 nm.

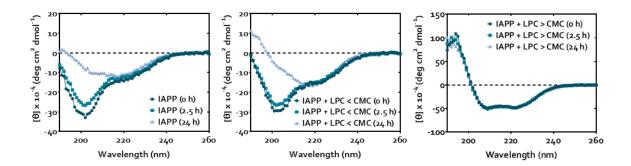
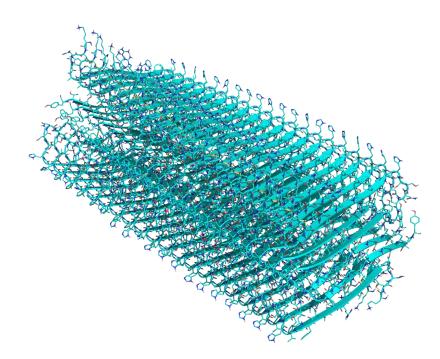



Fig. S2 Normalized far UV circular dichroism spectra of IAPP (25 μ M) in the presence of LPC above and below its critical micelle point (CMC) over 24 h.

Fig. S3 IAPP amyloid fibril structure with a 1.5-degree twist between consecutive IAPP beta-sheets.