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ABSTRACT  

Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe 

microscopy technique that utilizes the ionic current flowing between an electrode inserted 

inside a nanopipette probe containing electrolyte solution, and a second electrode placed in a 

bulk electrolyte bath, to inform on a substrate of interest. For most applications to date, the 

composition and concentration of the electrolyte inside and outside the nanopipette is identical, 

but it is shown herein that it can be very beneficial to lift this restriction. In particular, an ionic 

concentration gradient at the end of the nanopipette, generates an ionic current with a greatly 

reduced electric field strength, with particular benefits for live cell imaging. This differential 

concentration mode of SICM (ΔC-SICM) also enhances surface charge measurements and 

provides a new way to carry out reaction mapping measurements at surfaces using the tip for 

simultaneous delivery and sensing of the reaction rate. Comprehensive finite element method 

(FEM) modeling has been undertaken to enhance understanding of SICM as an electrochemical 

cell, and to enable the interpretation and optimization of experiments. It is shown that 

electroosmotic flow (EOF) has much more influence on the nanopipette response in the ΔC-

SICM configuration compared to standard SICM modes. The general model presented 

advances previous treatments, and provides a framework for quantitative SICM studies. 

 

KEYWORDS Scanning ion conductance microscopy, electrochemical imaging, localized 

delivery, electroosmotic flow, finite element method. 
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INTRODUCTION 

Scanning ion conductance microscopy (SICM) is a powerful non-contact imaging technique 

capable of high-resolution topographical measurements.1,2 In particular, SICM has found wide 

application in visualizing living cells,3–6 at probe distances (separations) of tens of nanometers 

from the cell surface.7,8 SICM experiments utilize a glass or quartz nanopipette filled with 

electrolyte solution as the scanning probe. A quasi-reference counter electrode (QRCE) is 

placed in the nanopipette probe and, typically, a bias is applied between the probe electrode 

and another electrode in bulk solution, that bathes a sample, to drive an ionic current through 

the end of the nanopipette between the 2 electrodes.2 As the nanopipette approaches an 

interface, the ionic current often decreases as the gap resistance between the probe and surface 

increases.2 Thus, the ionic current can be used as feedback to position the nanopipette near a 

substrate, and obtain topographical information by moving the nanopipette.2 

 Since its inception,1 there have been several key developments in both the feedback 

types and scan regimes that can be used for SICM.2,9,10 These include the introduction of 

modulated feedback types11–13 and hopping scan regimes5,14–16 which have improved both the 

stability and versatility of the technique. There has been a recent drive to develop SICM for 

multifunctional imaging,10 begetting more complex scan regimes and probes to obtain a wealth 

of information on  interfaces and interfacial processes. These capabilities include the detection 

of electrochemical reactions,17,18 the surface charge of cellular membranes,7,8,19,20 and 

quantitative monitoring of cellular uptake of electroactive molecules.21 Several of these studies 

have demonstrated the importance of minimizing the applied bias in SICM experiments.7,8,19 

For example, it has been demonstrated that the larger the applied bias between the 2 electrodes, 

the greater is the convolution of topographical information with other surface properties, 

particularly surface charge, with important implications for the precision of SICM 

topographical measurements.19,22 
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 The tip and bathing solutions usually have the same composition, but some SICM and 

nanopipette studies have used different electrolyte solutions in the nanopipette and the bulk 

solution.21,23,24 There are several advantages of such conditions, including the local delivery of 

molecules for printing and patterning24–27 or in studies of cellular uptake.21 Hitherto, however, 

the effect of different electrolyte solutions on the potential distribution between the tip and bulk 

electrodes, and mass transport in SICM, has largely been ignored.  

 In this contribution, we analyze this differential concentration (ΔC)-SICM mode and 

demonstrate practically how it can be used to map topography and improve the sensitivity and 

versatility of functional measurements with SICM. In particular, ΔC-SICM can be used to 

probe cellular surface charge using a dilute electrolyte solution in the tip and physiological 

conditions in the bathing solution. The precision is better (wider dynamic range of the SICM 

current to surface charge) than previous SICM methods. Further, ΔC-SICM can be used with 

a higher electrolyte in the tip compared to the bathing solution, as a new approach to image 

electrochemical reactions at an electrode surface purely via the SICM response, as exemplified 

with a study of dopamine oxidation at a carbon fiber electrode.  

The work herein develops a comprehensive understanding of the potential distribution 

and mass transport in ΔC-SICM, highlighting the importance of the liquid junction potential at 

the nanopipette end and electroosmotic flow (EOF), compared to conventional SICM. 

Significant outcomes of this work are that interfaces can be studied by SICM with minimal 

electric field effects and that topography and other physicochemical phenomena can be 

separated in a robust manner through the rational design of experiments. 

 

EXPERIMENTAL SECTION 

Solutions 
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Milli-Q reagent grade water (resistivity ca. 18.2 MΩ cm at 25°C) was used for all solutions. 

PC-12 cells were cultured and imaged in RPMI 1640 media containing 15% horse serum, 2.5% 

fetal calf serum, 5 mM glutamine, 100 U/mL penicillin and 100 g/mL streptomycin (all Sigma 

Aldrich). The nanopipette tip, for topographical and surface charge measurements of living 

cells, contained a 100-fold dilution of the full cell culture media. This environment allowed the 

cells to function normally, as the composition of the solution at the cellular interface was 

largely maintained, with the local environment near the end of the nanopipette only transiently 

perturbed while making an SICM measurement. For reaction mapping experiments, a 10 mM 

KCl solution was used as the bulk electrolyte whilst the nanopipette contained either 80 mM 

KCl (for control experiments) or 50 mM KCl and 30 mM dopamine hydrochloride (unbuffered, 

pH 6.7).  

Nanopipettes and Electrodes 

Nanopipettes were pulled from borosilicate glass capillaries (o.d. 1.2 mm, i.d. 0.69 mm, 

Harvard Apparatus) using a laser puller (P-2000, Sutter Instruments; pulling parameters: Line 

1: Heat 330, Fil 3, Vel 30, Del 220, Pul -; Line 2: Heat 330, Fil 3, Vel 40, Del 180, Pul 120). 

The inner radius of probes was measured using a JEOL 2000FX transmission electron 

microscope (TEM) to be 90 nm ± 5 nm. Two Ag/AgCl quasi-reference counter electrodes 

(QRCEs), one in the nanopipette and a second in bulk solution, were used for both 

topographical and charge mapping. These were AgCl-coated wires prepared as described 

previously.28 For reaction mapping experiments, a carbon fiber (CF) was used as a substrate 

working electrode and was electrically connected to allow a potential offset to be applied with 

respect to the bulk QRCE (see ‘Substrate Preparation’). The potential of the Ag/AgCl wires in 

each of the above solutions measured vs. a saturated calomel electrode (SCE) were determined 

as in Supporting Information, Section (SI-)1, Table S1, to yield the potential of the nanopipette 

electrode with respect to the electrode in bulk, 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒. With this knowledge, it was also 



 6 

possible to estimate the liquid junction potential, 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, at the end of the nanopipette, for a 

given set up, as reported in SI, Table S2.  

Cell Culturing Procedure 

Adherent PC-12 cells (ATCC-CRL-1721.1) were cultured in tissue culture flasks in the above-

specified media until confluent, before trypsinization and transfer to Petri dishes. They were 

allowed 72 hours to adhere to the glass substrate before imaging in fresh media. 

Substrate Preparation 

The PC-12 cells used were adherent to glass-bottomed petri dishes (3512, WillcoWells) and 

these were used as a support. Individual CFs (diameter 7 μm) were adhered to a glass 

microscope slide using a piece of Kapton tape to mask most of the carbon fiber. The bias 

applied to the carbon fiber was via copper wire connected to one end of the fiber with 

conductive silver paint.  

Instrumentation 

The lateral movement of the sample was controlled using a two-axis piezoelectric positioning 

system with a range of 300 μm (Nano-BioS300, Mad City Labs, Inc.), while movement of the 

nanopipette probe normal to the substrate was controlled using a piezoelectric positioning stage 

of range 38 μm (P-753-3CD, Physik Instrumente), to which the probe was mounted. The 

current-voltage converter used was made in-house, while user control of probe position, 

voltage output and data collection was via custom made programs in LabVIEW (2013, National 

Instruments) through an FPGA card (7852R, National Instruments). 

ΔC-SICM Mapping 

For approach curve measurements, the nanopipette was approached towards the glass substrate 

(z direction) at a speed of 2 m/s (with the position of the probe in the x-y plane of the substrate 

fixed). Topographical scans were performed in a scan hopping regime that generated pixel-by-

pixel maps, with full details and example topographical maps shown in SI-2, Figure S1. FEM 
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simulations, which demonstrate the insensitivity to surface charge under topographical 

mapping conditions, are shown in Figure S2.  

All functional measurements were made in a scan hopping regime. A full description 

of the surface charge mapping experimental protocol can be found in SI-3 (Figure S3) along 

with the data normalization procedure. Full details of the reaction mapping experimental 

protocol can be found in SI-4, along with a schematic (Figure S4), and bulk substrate 

voltammetry (Figure S5). 

FEM Simulations 

A 2D axisymmetric cylindrical model of the nanopipette at different distances from a substrate 

was constructed in COMSOL Multiphysics (version 5.2a) with the Transport of Diluted 

Species, Laminar Flow and Electrostatics modules. Full simulation details, including a 

schematic of the simulation domain and boundary conditions are presented in SI-5 (Figure S6). 

The dimensions of the nanopipettes used experimentally were determined from TEM images 

to ensure that simulations faithfully modeled experiments.  

 

RESULTS AND DISCUSSION 

General Considerations 

In ΔC-SICM, there is a potential difference between the two Ag/AgCl QRCEs because of the 

different solution environments: 

𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,𝑡𝑖𝑝 − 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,𝑏𝑢𝑙𝑘  (1) 

in which 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,𝑡𝑖𝑝 is the potential of the QRCE in the environment pertinent to the inside 

of the nanopipette, and 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,𝑏𝑢𝑙𝑘 is the potential of the QRCE in the bathing solution 

(values in SI-1, Table S1). The difference in concentration internally and externally, near the 

end of the nanopipette, also gives rise to a junction, or diffusion potential. Further, an external 
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potential, 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, can be applied across the two electrodes. Thus, the total potential between 

the 2 electrodes in the ΔC-SICM configuration (Figure 1) is: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 + 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  (2) 

ΔC-SICM can be used flexibly, with the higher concentration electrolyte solution in the probe 

or the bulk solution (vide infra). For each experimental configuration used, the values of 

𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 and 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are stated in SI-1, Table S2. 

 

 

Figure 1. Schematic of the potential differences in ΔC-SICM. A difference in electrolyte 

concentration (composition) inside and outside the nanopipette leads to different equilibrium 

potentials, 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,𝑡𝑖𝑝 and 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒,𝑏𝑢𝑙𝑘, of the two QRCEs and a diffuse junction potential, 

𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, at the end of the nanopipette where the two solutions of potential S2 (in the tip) and  

S1 (in the bathing solution) meet. An external bias, 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, may also be applied. 

 

FEM simulations allowed the electric field at the end of the nanopipette to be readily 

calculated. It is informative to compare the case for ΔC-SICM live cell imaging herein, where 

𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = −𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒, so that 𝐸𝑡𝑜𝑡𝑎𝑙 ≈ 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛  to conventional SICM imaging 

parameters e.g. a 100 mV tip bias, within the normal range of values applied,3–5,14,15,20,29 and 

the same concentration (physiological conditions) in the bath and tip. These cases are presented 
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and compared in Figure 2, with the tip in bulk solution. Under the conventional SICM 

conditions (a), an electric field of up to 40 kV/m is established at the end of the nanopipette. It 

can be seen that with only the liquid junction potential (b), the only significant electric field 

arises from the double layer due to the negative charge on the walls of the charged nanopipette 

(tip=-30 mC/m2, considered as typical for these conditions30). In the region at the nanopipette 

opening, the electric field is at least two orders of magnitude less than when a bias of 100 mV 

is applied between the inside and outside of the nanopipette, with the effect of 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 spread 

over a long distance (Figure 2c). In cases where the applied SICM bias is greater than 100 mV, 

the electric field strength would be significantly greater. Consequently, for delicate substrates 

such as living cells, which can be perturbed/stimulated by the presence of an electric field,31–

33 ΔC-SICM will be much less perturbing and less invasive. Example topographical maps of 

PC12 cells using ΔC-SICM with an approach bias of 𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are shown in SI-2, 

Figure S1, together with a simulated and experimental approach curve, which match well. 

 

 

Figure 2. a) Electric field magnitude at the end of a 90 nm radius nanopipette in conventional 

SICM, with a 100 mV bias applied to the bulk electrode and the same electrolyte (103 mM 
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NaCl, 24 mM NaHCO3 and 5 mM KCl) throughout. b) Electric field magnitude at the end of 

a 90 nm radius nanopipette under ΔC-SICM conditions (𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and the same bath 

solution as for (a) but with a 100-fold dilution in the tip). c) Line profiles of the electric field 

strength in the z-direction at the axis of symmetry of the pipette with the peak (highlighted by 

the vertical green dashed line marked P.O.) corresponding to the nanopipette opening. Profile 

for typical SICM shown in black and ΔC-SICM in red, with the inset showing a zoom of the 

ΔC-SICM profile. 

 

The different ionic conductivity between the inside and outside of the nanopipette in 

ΔC-SICM influences the shape of approach curves. For the surface charge and reaction 

mapping experiments that are discussed in the following sections, simulated approach curves 

for sensing the surface are shown in SI-5, Figure S7. Where a lower electrolyte concentration 

is present in the bulk solution compared to the nanopipette (as used for charge mapping of 

cells), the gap resistance accounts for a higher proportion of the total resistance, and a much 

shallower approach curve of ionic current vs. distance is seen, with the ionic current sensitive 

to the substrate from much greater distances. Where the concentration difference is reversed 

(as for reaction mapping/delivery), a sharper approach curve is seen, as the nanopipette 

resistance dominates, and the gap needs to be very small to have any influence on the current. 

 

Surface Charge Mapping with ΔC-SICM 

We have previously shown that it is possible to use SICM to map charge heterogeneities in cell 

membranes under physiological conditions (high ionic strength) even though the electrical 

double layer is compressed to a high degree.20,22 Our approach is to use a self-referencing 

pulsed potential program, in which the nanopipette current response is measured near the 

surface and in bulk solution at each and every pixel, so that subtle differences in the nanopipette 
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electrochemical response can be determined.8 Although under physiological conditions (ionic 

strength ~130 mM), the Debye length is less than 1 nm, the diffuse layer extends beyond this.34 

Most importantly, when the SICM tip is stationed beyond this nominal distance, e.g. herein at 

an approximate separation of 20 nm or more, the double layer at the substrate is perturbed (and 

sensed) by the electric field (and current) from the nanopipette orifice (vide infra). It is for 

precisely this reason that we have advocated the use of either bias modulation19 (with zero net 

bias) or a small DC current8 in conventional SICM to minimize perturbation of the double layer 

and obtain more faithful topographical information. In the same vain, as shown in SI-2, Figure 

S2, the nanopipette current response of ΔC-SICM with a small bias, such as 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

as used in Figure S1, is relatively insensitive to surface charge and can be used for quantitative 

topographical mapping.   

In order to assess the application of ΔC-SICM for charge mapping, FEM simulations 

were performed with a nanopipette both in bulk solution and near a charged interface (27 nm 

separation, within the typical range of approach distances achieved). As part of these 

simulations, we also assess the importance of EOF in the SICM response. Previous studies 

have considered EOF to not significantly influence the response of nanopipettes and the SICM 

response, under a range of conditions,22,35,36 and it can be advantageous to ignore due to 

computational expense. 

The data in Figure 3 compare the normalized current response of typical conventional 

SICM to ΔC-SICM (𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛), with and without EOF, for a range of negative surface 

charges (as typically predominant on cell membranes7); see SI-3 for experimental protocol and 

current normalization procedure. Note that as well as the solution compositions being different 

for the two techniques, the approach bias is different, but the applied potential for surface 

charge sensing in both cases is -0.4V applied to the nanopipette electrode. It is immediately 

apparent that EOF is an important consideration for ΔC-SICM and cannot be ignored. In the 
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case of conventional SICM, at the lower surface charge densities applied to the substrate, EOF 

has very little effect on calculated ionic currents, in line with previously reported studies.10,22,35 

However, as the surface charge increases beyond about -30 mC/m2, EOF can be seen to be an 

important consideration.  

It can be seen from Figure 3, that ΔC-SICM is more sensitive to surface charge (wider 

dynamic range of normalized current to surface charge) than conventional SICM, over a range 

of 80 mC/m2 (considering EOF, full model). Thechanges in the normalized current signal with 

surface charge in Figure 3 may appear small, but are easily detected because of the pixel-level 

self-referencing implemented in the hopping mode protocol, as shown practically below. 

 

Figure 3. Normalized nanopipette current versus substrate surface charge density for a 

nanopipette with identical geometric (90 nm radius) and glass surface charge (-30 mC/m2) for 

different modes and mass transport situations in SICM. Normalized currents were calculated 

20 ms into a current-time (I-t) curve after applying an external bias of -400 mV to the 

nanopipette QRCE, jumped from the approach bias (𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙=−𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 in the case of ΔC-

SICM, and from 100 mV for conventional SICM). The red lines are for conventional SICM 

(103 mM NaCl, 24 mM NaHCO3 and 5 mM KCl in both the nanopipette and bath) and the blue 

lines are for ΔC-SICM (100-fold dilution of the bath solution present in the nanopipette). The 

dashed lines are simulations solving only the Nernst-Planck and Poisson equations, while the 
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solid lines also included EOF. The raw simulated ionic currents underlying these data are 

shown in SI-6, Figure S8. 

 

Differences between ΔC-SICM (Figure 4a) and conventional SICM (Figure 4b), in terms of 

concentration profiles, electric field strength, and velocity profiles (from EOF) at the end of a 

nanopipette, near the most extreme negatively charged substrate (-80 mC/m2), 20 ms after 

applying a bias of – 400 mV to the nanopipette electrode, are evident from in Figure 4. These 

data further highlight how it is possible to sense the double layer, with conventional SICM, at 

large distances from the interface, compared to the double layer dimension, because the double 

layer at the interface becomes perturbed by the applied electric field from the tip (Figure 4b(i)).  

For ΔC-SICM, the double layer region is not perturbed in the same way (Figure 4a(i)) 

due to the greatly diminished electric field at the end of the nanopipette (Figure 4a(ii)). This 

diminished electric field can be explained by considering the electrolyte concentrations present 

in the nanopipette and bulk domains. In ΔC-SICM, where a lower electrolyte concentration is 

present in the nanopipette domain, the end of the nanopipette becomes more concentrated as 

solution from the bath moves into the nanopipette. Consequently, the region at the end of the 

nanopipette becomes less resistive, and the region of maximum electric field strength moves 

up into the nanopipette where the ionic strength is still low. However, ΔC-SICM is sensitive 

to surface charge, and the sensitivity is due to EOF.  

Figure 4a(iii) shows a fluid velocity profile in ΔC-SICM with 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =  −0.4 V. It 

can be seen that between the charged nanopipette wall and the substrate there is a significant 

radial velocity bringing solution from outside the nanopipette into the narrow gap and up into 

the nanopipette domain. Under ΔC-SICM conditions, this movement of fluid is from an area 

of higher concentration (external to the nanopipette) to lower (in the nanopipette), greatly 

changing the ionic composition in the lower region of the nanopipette. For conventional SICM 
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(Figure 4b(iii)), EOF brings solution between two regions of similar concentration. Thus, 

although the fluid velocity tends to be higher in conventional SICM, compared to ΔC-SICM, 

(compare Fig 5a(iii) and Figure 4b(iii)), due to the higher electric field in the case of 

conventional SICM, the overall effect on mass transport, compared to ion migration is less. 

The velocity profiles also give an indication as to the resolution of ΔC-SICM for surface charge 

mapping. It can be seen that the region of greatest velocity, driven by surface charge and EOF, 

is between the walls of the pipette and the substrate, with the velocity dropping off to bulk by 

around 3/2 times the pipette diameter. This is similar to conventional SICM.28 Future work 

could consider optimizing the nanopipette geometry, including the wall/lumen ratio, for 

enhancing surface charge sensitivity and resolution. 

 

Figure 4. Cation concentration (i), Electric field strength (ii), and velocity profiles (iii) at the 

end of the nanopipette near a substrate with surface charge -80 mC/m2 shown for: (a) ΔC-SICM 

with a 100-fold dilution in the nanopipette domain; and (b) conventional SICM with identical 

(physiological) concentrations in the nanopipette and bulk. All profiles are taken at t = 20 ms 

after jumping the potential of the nanopipette electrode to -400 mV from either 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =

−𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒, for ΔC-SICM (a), or from +100 mV for conventional SICM (b). 
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ΔC-SICM Surface Charge Mapping  

ΔC-SICM measurements of surface charge and topography considered PC12 cells as the 

substrate. To minimize convolution between topography and other surface properties, an 

external bias, 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, of 109 mV was applied to counter 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒, so that 𝐸𝑡𝑜𝑡𝑎𝑙 ≈

𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (≈20 mV) was used for topographical imaging.  
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Figure 5. Topography and surface charge mapping of PC12 cells using ΔC-SICM. a) Optical 

micrograph of PC12 cells on a glass substrate, with the SICM scan area denoted by the white 

dashed rectangle. b) Topographical map collected with a ~90 nm radius nanopipette using ΔC-

SICM and a driving potential of 𝐸𝑡𝑜𝑡𝑎𝑙 ≈  𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛. A decrease of 5% in the ionic current 
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between the tip in bulk and near the surface was used as the set point, corresponding to a 

distance of 22 nm. c) Corresponding surface charge map (see SI-3 for normalization procedure) 

using a FEM-simulated calibration curve. Normalized current maps underpinning these data 

and the calibration curve are shown in SI-7, Figure S9.  

 

Figure 5a shows an optical micrograph of a cluster of differentiated PC12 cells. The 

area denoted by the white dashed rectangle indicates the SICM scan area mapped with the 

pulsed potential regime described above. 𝐸𝑡𝑜𝑡𝑎𝑙 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 was used to map the topography of 

the cellular surface (Figure 5b). For comparison, SI-8, Figure S10b, presents the case where 

𝐸𝑡𝑜𝑡𝑎𝑙 ≈ 𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +  𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒  was the bias for topography imaging.  

The simultaneously collected normalized current map (SI-7, Figure S9a) obtained 

during the chronoamperometric step, where the tip electrode potential was pulsed to -0.4 V for 

20 ms, reveals heterogeneities that can be attributed to surface charge. A calibration curve of 

normalized current to surface charge density was calculated by the FEM model (SI-7, Figure 

S9b) from which Figure 5c was generated. It can be seen that the PC12 cell exhibited surface 

charge values of around -50 to -70 mC/m2 with the glass having surface charge of around -20 

to -40 mC/m2, broadly in agreement with our previous measurements with conventional 

SICM,8 that used the simplified model without EOF. The accuracy of the previous work could 

be improved by applying the new model herein, but the deductions would be similar. 

 

Reaction Mapping at a Carbon Fiber Electrode 

Although previous studies have considered using nanopipettes for molecular delivery,17,24 there 

have been few attempts to quantify the effect of concentration gradients on electric potentials 

in SICM.37 We now describe the use of ΔC-SICM to deliver reagent to a substrate electrode 

and map the resulting local electrochemical reaction purely from the nanopipette response. As 
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an exemplar system, we consider dopamine oxidation (unbuffered, pH 6.7) on a CF electrode 

(SI-4, Figure S4a for an optical micrograph of the substrate).  CFs are widely used for studies 

of single neurons,38 and other applications, but there is little information on the electrochemical 

response of these electrodes at the local level. 

 During the scan hopping CV regime implemented, the SICM bias between the two 

QRCEs was held constant at 𝐸𝑡𝑜𝑡𝑎𝑙 ≈ 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 +  𝐸𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛  ≈  26 mV, a small positive 

value suitable for topographical imaging which also drives the migration of protonated 

dopamine (Dop+),38,39 out of the nanopipette, throughout the entire imaging process. Thus Dop+ 

is pushed out the nanopipette by the applied bias but the efflux rate depends on the local 

environment (e.g. substrate reactions) and this is reflected in the nanopipette current (vide 

infra). During the approach of the nanopipette to the CF surface, the CF was held at a potential 

of -0.1 V vs. the Ag/AgCl QRCE in bulk so that no substrate electrode reaction occurred. When 

the nanopipette reached the near-surface (ca. 35 nm based on a set point of 3%), its position 

was fixed and the potential at the CF was swept from -0.1 V to 0.4 V and back again to -0.1 V 

in a CV at 1 V/s vs. the Ag/AgCl QRCE in bulk. The CF was then held at -0.1 V while the 

probe was retracted at a speed of 20 μm/s (retract distance 10 μm), and the same CV at the 

substrate was run with the probe now effectively in bulk solution. The tip ionic current response 

at the surface was normalized by that in bulk and is a measure of the relative conductance of 

the probe near the surface, with respect to the bulk during the substrate electrochemical reaction 

(see SI-4 for full details of the experimental setup and scanning regime).  

An important consideration of these measurements is the spatial resolution of SICM for 

reaction mapping and delivery. This was explored using FEM simulations, with example 

results presented in Figure 6. For the conditions outlined above, Figure 6a shows a snapshot of 

the Dop+ concentration around the pipette opening when the nanopipette was positioned 35 nm 

from the surface, before the reaction was driven. From this profile, we see that at these 
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separation distances, the high Dop+ concentration is confined to the region directly beneath the 

pipette, suggesting the resolution of the technique is similar to the pipette dimensions. A profile 

of the Dop+ concentration laterally along the substrate (z=0) is shown in Figure 6b for the cases 

where the nanopipette was at this approach distance (35 nm), and at the retract distance (~10 

m from the surface). It can be seen that the region of the substrate underneath the pipette has 

the greatest Dop+ concentration and so this is where there would be the greatest change in ionic 

concentration owing to the substrate electrochemical reaction. By contrast, the profile with the 

tip at 10 m from the substrate reveals a much smaller concentration of Dop+ (max 

concentration of 0.01 mM) at the substrate surface and thus 10 m can be reasonably 

considered to be bulk solution. These profiles of surface Dop+ concentration are beneficial for 

determining the lateral hopping distance that should be used in ΔC-SICM delivery experiments 

in order to ensure that each pixel has not been exposed to significant amounts of dopamine 

from the prior approach that may lead to fouling of the substrate during oxidation.40  

 

Figure 6. a) Simulated dopamine (Dop+) concentration profile around the end of the 

nanopipette, positioned 35 nm away from a CF substrate. b) Near-surface concentrations of 

Dop+ in the radial direction with the nanopipette 35 nm away from the surface (black line) and 

10 μm away (red line), with the inset showing a zoom of data for the 10 μm distance case. Two 



 20 

sets of example maps from electrode reaction mapping using ΔC-SICM with a nanopipette 

containing (c-d) 80 mM KCl (control case) and (e-f) 50 mM KCl and 30 mM dopamine 

hydrochloride (pH 6.7). (c,e) Topographical maps of two regions of the CF. (c,e) Individual 

frames taken from two videos of normalized nanopipette ionic current (in x,y as a function of 

substrate potential), at the substrate potential for dopamine oxidation (0.4 V: d,f). See SI-9, for 

the full movies. 

 

This protocol was repeated at a series of pixels to create a spatial array of nanopipette 

current-substrate potential data sets that were used to make movies of normalized nanopipette 

current in x-y space as a function of applied substrate potential. These map the progress of the 

substrate reaction both spatially and with potential resolution. Scans were taken: with the probe 

containing only 80 mM KCl (control case); and 50 mM KCl and 30 mM dopamine 

hydrochloride. In both cases, the bulk solution contained 10 mM KCl (more dilute than the 

tip). Full videos of the voltammetric response in each case are shown in SI-9, SI_Control.avi 

and SI_Dopamine.avi. 

Snapshots from the 2 movies at the most extreme (diffusion-limited) potential of +0.4 

V vs. Ag/AgCl QRE are shown in Figure 6, together with the topographical maps obtained 

simultaneously. The topographical maps (Figure 6c,e) are closely similar, clearly resolving the 

7 µm diameter CF. When a potential of +0.4 V was applied to the CF, dopamine oxidation 

occurred at a diffusion-controlled rate (bulk voltammetry shown in SI-4, Figure S5), and there 

is a clear difference between the scan in which dopamine is absent (Figure 6d) and the scan in 

which it is present in the nanopipette (Figure 6f). With dopamine present, the ionic current 

drops by a consistent 7-8% at each pixel across the surface of the CF. This is because the 

substrate acts as a sink for Dop+.40 Whilst protons are released in Dop+ electrooxidation,29  

which should enhance the conductivity of the gap, the majority of the resistance in SICM 
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experiments comes from the nanopipette itself, and Dop+ consumption at the CF depletes the 

concentration in the end part of the tip, while substrate-generated protons are excluded by the 

direction of the applied electric field at the tip. The result is an increase in resistance and hence 

decrease in the overall ionic current. This change in ionic current is also seen at the pixels 

surrounding the CF, a “diffusional broadening”, caused by the sink-like nature of the CF. A 

small decrease in the ionic current (1-2%) can also be seen over the surface of the CF for the 

control (Figure 6d), suggesting that a small current is driven between the CF electrode and the 

QRCE in the probe. This is an interesting observation that might have future applications, but 

the effect is far less than with dopamine present (Figure 6f).  

The movie SI_Dopamine.avi shows that there is considerable heterogeneity in the 

spatial current (substrate reactivity) for Dop+ delivery, in the region of the CF, at potentials less 

than the diffusion-limit, indicating spatial variation in reaction rate. In the future, coupling such 

movies with data from other microscopy techniques in a multimicroscopy approach, as we have 

advocated elsewhere for other electrochemical probe techniques,9,10 could be particularly 

illuminating of surface reactivity.    

 

CONCLUSIONS 

In this paper we have provided a full analysis of the electrochemical potentials and mass 

transport in SICM, particularly pertinent to the case where different concentrations, or solution 

compositions, are employed in the nanopipette and bulk solutions, but also of value for 

conventional SICM. Through this analysis, we have demonstrated the versatility and 

advantages of using different ionic strength media in the SICM tip and bulk solution, in a mode 

termed C-SICM. Notably, topographical imaging with much reduced electric field than in 

conventional (applied bias SICM) becomes possible by driving the ionic current purely through 

the junction (diffusion) potential, due to the concentration gradient at the end of the 
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nanopipette. Functional applications, such as charge mapping with C-SICM, are more 

sensitive than conventional SICM, with the charge sensitivity arising from significant EOF 

effects in this configuration. The model developed, which solves the Poisson, Nernst-Planck 

and Navier-Stokes equations with EOF, can also be applied to conventional SICM charge 

mapping measurements and allows for a more accurate determination of high surface charge 

densities than our previous approach. 

 This work has expanded on the use of SICM for the delivery of charged molecules to a 

surface. One can envisage many applications, spanning cell biology, electrochemistry and 

catalysis, where a nanopipette could be used for delivery and to measure spatial variations in 

efflux rate simply through the nanopipette current.  

 

SUPPORTING INFORMATION 

Supporting Information includes: determined QRCE potentials in different media, example 

topographical maps with ΔC-SICM, details of the surface charge mapping protocol and FEM 
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schematic and optical data of the carbon fiber device and a full image sequence (movies) of the 

voltammetric data presented in Figure 6. 
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