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Abstract

Let G be a finite group and F a field, then to any finite G-set X we may associate

a F [G]-permutation module whose F -basis is indexed by elements of X. We seek to

describe when two non-isomorphic G-sets give rise isomorphic permutation modules.

This amounts to describing the kernel KF (G) of a map between the Burnside Ring of

G and the ring of representation ring of F [G]-representations of G. Elements of this

kernel are known as Brauer Relations and have extensive applications in Number

Theory, for example giving relationships between class numbers of the intermediate

number fields of a Galois extension. In characteristic 0, the generators of KF (G)

have been classified in [2]. We extend this classification to characteristic p > 0 for

all finite groups G save for groups which admit a subquotient which is an extension

of a non-elementary p-quasi-elementary group by a p-group. Our approach initially

mimics that in characteristic 0, and so we give a much more general description of

these steps in terms of Green functors.
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Notation and conventions

• The letters G and H will always denote finite groups.

• For a finite group G and subgroups H,K 6 G the symbol K\G/H denotes a

set of (K,H)-double coset representatives {gi} where gi ∈ G, KgiH∩KgjH =

∅ for i 6= j, and
∐
gi
KgiH = G.

• We adopt the convention that the statement H 6 G means H is a subgroup

of G while H < G will mean that H is a proper subgroup. A subscript G

on a containment will mean that we are concerned with objects up to G-

conjugacy for instance H 6G G means a representative H of a G-conjugacy

class of subgroups of G, similarly g ∈G G will mean a representative g of a

G-conjugacy class of elements.

• We will write hg = g−1hg and Hg = g−1Hg for the right action by conjuga-

tion on elements and subgroups respectively. We will use gh and gH for the

corresponding left actions.

• If M is an R[H]-module for some H 6 G we write Mg for the corresponding

R[Hg]-module with multiplication hg(m)g = (hm)g for h ∈ H and (m)g ∈Mg.

Similarly we write gM for the corresponding R[gH]-module.

• For a finite set S we will use #S to denote its size.

• The letters R, and S will denote unital associative rings.

• The letters p, q, and l will denote rational primes.

• Gothic letters such as p, q, and l will denote primes in an arbitrary ring different

from Z. When Z is a subring we will adopt the convention that the gothic

letter divides the corresponding rational prime e.g. p | p.

• The symbol IndG/H(−), will denote the induction map.
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• The symbol ResG/H(−) will denote the restriction map.

• The symbol InfG/N (−) will denote the inflation map.

• We will use a(R[G]) to denote the representation ring associated to R[G] see

definition 2.2.2. We will write a(G, triv) for the subring of trivial source mod-

ules see definition 2.2.14. Furthermore we will use the following shorthands:

aS(−) = S ⊗Z a(−) and ap(−) = Z[1/p]⊗Z a(−).

• The Grothendieck ring associated to R[G] will be denoted by G0(R[G]) see

definition 2.2.18.

• Unless otherwise stated, a script letter will denote a Mackey functor. The

letters F and G will always denote a Mackey functor.

• Let G be a finite group, and let U,H 6 G be subgroups such that H 6

NG(U). Then we denote by [U,H] the commutator subgroup generated by

commutators [u.h] for u ∈ U, h ∈ H.

• Let S be a set of primes and G a finite group. An S-Hall subgroup is a

subgroup of G whose order is divisible only by primes in S and whose index is

coprime to every prime in S. When S is equal to the set of all primes dividing

the order of G that are coprime to p we will call a S-Hall subgroup a (−p)-Hall

subgroup, and denote it by Gp′ .

• Given a finite group G and a prime number p, we denote the largest normal

p-subgroup of G by Op(G), and the smallest normal subgroup of p-power index

by Op(G). We also define O0(G) to be G. If π is a set of prime numbers, and

n is an integer, then we denote by nπ′ the largest positive integer dividing n

that is coprime to all p ∈ π.

• For a Mackey functor F , C(F ) will denote the family of coprimordial groups for

F and P(F) will denote the family of primordial groups for F . See definition

3.3.2.
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Chapter 1

Introduction

1.1 Motivation and Introduction to the Problem

Given a finite set X together with an action by some finite group G, and a ring R

we may form a permutation R[G]-module R[X]. As an R-module, R[X] is free with

basis indexed by x ∈ X, the action of G on R[X] is then by permuting this basis.

A natural question to ask is to what extent does R[X] determine X? For instance

one may ask, for a fixed G and R, does the isomorphism class of R[X] uniquely

determine X? If not, can we describe all X which give isomorphic permutation

modules? How does this change as we vary R?

It turns out that the answer to first question is negative, and that non-isomorphic

G-sets which give rise to isomorphic Q[G]-permutation modules can be used to prove

rich results. A nice result exploiting this is due to Brauer in 1951.

Theorem 1.1.1. [12, Satz 5] Let K/F be a Galois extension of number fields with

Galois group S3, let L1, L2, L3 denote the three Galois conjugate degree 3 subfields

and let J denote the unique degree 2 subextension. Then writing h(−) for the class

number the ratio:

h(K)2h(F )/h(L1)2h(J),

takes finitely many values as K varies.

It important to note that this theorem is explicitly dependent upon the Galois

group of the extension but otherwise there are no restrictions on the extensions of F

considered. While this result requires some use of number theory we can retrieve a

weaker result, which says that the valuation of this ratio is only non-trivial at p = 3,

using strictly algebraic methods. Such results are not only common in Galois theory.

Another example comes from manifold theory, where one may ask the question: are
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there 2-manifolds which are non-isometric but have the same spectrum? In the case

of bounded two manifolds this question is more colloquially phrased as ‘Can one

hear the shape of a drum?’ and was posed in [25]. The following result due to

Sunada, gives a construction of isospectral manifolds.

Theorem 1.1.2. [32, Theorem 1] Let M1 be a finite Riemannian covering of M0

with covering group G, suppose that there are two non-conjugate subgroups H,K <

G such that as complex representations C[G/H] ∼= C[G/K] then their associated

coverings MH and MK are isospectral.

This construction is however not strong enough to ensure that the two man-

ifolds MH and MK are isometric, although it is possible, and Sunada [32, Corollary

1] proves that for any Riemann surface of genus at least 2 there exists isospectral

covers MH and MK which are not isometric.

In both these theorems, while significant amount of specialist theory is used

to get the strongest possible result, the first step amounts to describing a pair of

non-isomorphic G-sets for some finite group G whose associated permutation repre-

sentations are isomorphic. We will see in the later sections of chapter 2 that there

are a plethora of examples where such pairs of G-sets give non-obvious structure.

Our aim is to compute and classify which G-sets give rise to isomorphic

Fp[G]-permutation modules. We will see that such a classification with Fp replaced

by a general field F is only dependent upon its characteristic and thus this is the

natural extension of the work in [2] in characteristic 0.

1.2 Structure of the Thesis and Statement of the Main

Results

This thesis is divided into chapters of independent interest, which are not necessarily

independent mathematically. The basic outline is as follows:

1. In the Background chapter we present the necessary theory of G-sets, represen-

tations, and Mackey functors which underpins the results of the later sections.

In particular in this section we formally define Brauer relations and discuss the

results already known. In addition we introduce an algebraic frame work, that

of the cohomological Mackey functor, which describes the situations these re-

lations are most useful in. This chapter contains material which is well known.

We do not always include proof although we have provided proofs when we

feel that they are in the spirit of the thesis as a whole.
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2. The third chapter ‘Mackey and Green Functors with Inflation’ is used to de-

velop abstract machinery, which will formalise our approach to problems con-

sidered in chapters 4 and 5.

3. Chapter 4 ‘Brauer Relations in Positive Characteristic Semisimplified’ is our

first attempt at a classification of Brauer relations in positive characteristic,

but we consider when two G sets give rise to the same modular representation

up to semisimplification. This is a much weaker requirement and our analysis

is similarly much easier in this situation than in the modular non-semisimple

case. Despite the simplification this chapter establishes the blueprint for the

method we will use when tackling the full problem.

4. In chapter 5 ‘Brauer Relations in Positive Characteristic’, we put all of these

techniques together and tackle our main problem with substantial success. We

are able to describe all primitive relations save for one class of groups and at

the end of the chapter we summarise what is known and what we conjecture

in this remaining case.

5. The final chapter, chapter 6, is devoted towards giving some brief applications

of our results.

The main result of this thesis is a classification of Brauer relations in positive char-

acteristic and appears as Theorem 5.3.3. Along the way, particularly in chapter 3,

we prove several important results which may be used to tackle problems of this

type in great generality. Our main results are summarised in the following theorem:

Theorem 1.2.1. Let G be a finite group and let k be a field of characteristic p > 0.

Then all Brauer relations over k, and over k after semisimplification, are linear

combinations of those inflated or induced from a finite, explicit, list of families of

subquotients of G in each case.

We are able to give a very precise description of these families, and in the

case that G is soluble give ‘generating’ relations in most cases.
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Chapter 2

Background Material

This section is intended to develop theory which is already present in the literature,

and known to specialists, but which will be required in the subsequent chapters.

The reader is invited to skip this section entirely, and treat it instead as a reference

when reading the later chapters. In the first three sections we will roughly follow

[15, Chapter 11] and [5, Chapter 5].

2.1 G-Sets and the Burnside Ring

We hope to give a concise introductory account of the theory of G-sets and the

Burnside ring. These objects are an integral part of the problem we consider in this

thesis. Throughout we shall assume, for convenience, that G is finite.

Definition 2.1.1 (G-sets). Let G be a finite group. A left G-set is a finite set X

on which G acts on the left by permutations. Thus a G-set is a pair (X,φ) where

φ : G ×X → X satisfies φ(1, x) = x for all x ∈ X and φ(g2, φ(g1, x)) = φ(g2g1, x)

for all g1, g2 ∈ G and x ∈ X.

A morphism of left G-sets (X1, φ1) and (X2, φ2) is a map f : X1 → X2 such that

f(φ1(g, x)) = φ2(g)(f(x)) for all (g, x) ∈ G×X1.

Throughout this thesis all G-sets will be left G sets unless otherwise specified

so we will omit the left. Where the action is clear, we will suppress φ and write

φ(g, x) as gx. A G-set X is called transitive if for each any two elements x, y ∈ X
there exists a g ∈ G such that x = gy.

Example 2.1.2. Let G be a finite group and H 6 G be a subgroup. Then the set

of left cosets G/H = {g1H, · · · , gnH} carries a left action of G by g(g1H) = g2H

where gg1 = g2h for some h ∈ H. It is easy to verify that this is a group action.
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We shall now show that every transitive G-set is isomorphic to G/H for an

appropriate choice of subgroup H.

Lemma 2.1.3. There exists a bijection between isomorphism classes transitive G-

sets and conjugacy classes of subgroups H 6 G. This bijection is given by φx : X 7→
G/ StabG(x) for any choice of basepoint x ∈ X.

Proof. Let X be a transitive G-set, and for x ∈ X let Hx = StabG(x). The action

of G is transitive so Hx and Hy are conjugate for any x, y ∈ X. Furthemore Hg
x

stabilises z = gx and so all conjugates of Hx occur as point stabilisers. Thus we may

assign to X a well defined conjugacy class of subgroup [Hx]. The map f : gx 7→ gHx

gives a morphism of G-sets from X to G/Hx which is clearly bijective. Thus it is

an isomorphism of G-sets. By the previous argument this choice is unique up to

conjugacy. As G/K is itself a transitive G-set we have the stated bijection.

Example 2.1.4. Consider G = S3, there are four conjugacy classes of subgroups

namely [{e}], [〈(1, 2)〉], [〈(123)〉], [S3]. These correspond to the isomorphism classes

of transitive S3-sets, for instance S3/〈(1, 2)〉 = {e〈(1, 2)〉, (123)〈(1, 2)〉, (132)〈(1, 2)〉}
is a transitive left S3-set.

Example 2.1.5. Let X and Y be G-sets and let Z = X
∐
Y be their disjoint union

as sets. Then Z is canonically G-set determined uniquely up to isomorphism.

Any G-set X is isomorphic to a disjoint union of transitive G-sets, X =∐
x∈G\X OrbG(x) where OrbG(x) = {gx : g ∈ G} has transitive G-action.

Example 2.1.6. Let S and T be G-sets. The cartesian product S × T with a

G-action g(s, t) = (gs, gt) giving it the structure of a G-set.

The two operations, disjoint union and cartesian product, are analogues of

addition and multiplication for G-sets and allow us to form a ring.

Definition 2.1.7. The Burnside ring b(G) of a finite group G is, as a group, the

free abelian group generated by isomorphism classes of G-sets modulo expressions

of the form [S
∐
T ]− [S]− [T ]. Multiplication is given by [S][T ] = [S × T ].

The additive identity in this ring is the empty set and the multiplicative

identity is given by the trivial G-set 1 = [G/G]. The ring is commutative as S×T ∼=
T × S. The following lemma checks that b(G) is no smaller than we expected.

Lemma 2.1.8. [S] = [T ] in b(G) if and only if S ∼= T as G-sets.
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Proof. Suppose that S ∼= T then it follows from the definition of b(G) that they give

rise to the same class in b(G). Otherwise suppose that [S] = [T ] then either S and

T are isomorphic or there exists a G-set X such that S
∐
X ∼= T

∐
X. Now since

every G-set uniquely decomposes into transitive G-sets decomposing both sides gives

S ∼= T .

Remark 2.1.9. The previous lemma may seem trivial, however we explicitly had

to use unique decomposition. This assumption is not always true, for instance

Z[G]-modules need not have unique decomposition and so when we perform a sim-

ilar construction in defining the representation ring the classes may be larger than

expected.

Example 2.1.10. Again returning to our example of S3 we see that

b(S3) = 〈[S3/{e}], [S3/〈(1, 2)〉], [S3/〈(123)〉], [S3/S3]〉Z.

To save on notation, when G is clear from the context we will write [H] for

the class in b(G) corresponding to the transitive G-set G/H.

We would like to fined a way to determine when two G-sets are isomorphic.

We study the ring homomorphisms from b(G) to Z and show that any element

of b(G) determined by its image under all of these homomorphisms. The next

theorem says that any element X ∈ b(G) is determine by the values of the functions

fH(X) := #XH as H ranges over representatives of conjugacy classes of subgroups

of G.

Theorem 2.1.11. There exists ring homomorphisms from b(G) 7→ C of the form

fH(X) = #(X)H . After tensoring with C we have an isomorphism of rings:

∑
H6GG

fH : C⊗ b(G)
∼−→

⊕
H6GG

C

where the sum runs over conjugacy classes of subgroups.

Proof. First note that fHi = fHj if and only if Hi and Hj are conjugate, so the fH

in the sum are linearly independent (see [5] lemma 5.2.2). Since there is no linear

dependence the image must have full rank thus the map is surjective. Counting the

C-dimension of both sides gives injectivity. It remains to show that fH is a ring

homomorphism but this is clear.

We finish this section by defining induction, restriction, inflation and defla-

tion for G-sets.

6



Definition 2.1.12. Let G be a finite group H 6 G a subgroup and N 6 G a

normal subgroup. We define induction, restriction, and inflation of H-sets, G-sets

and G/N -sets respectively.

• Let X be a H-set we define the induction of X to G by; IndG/H(X) = G ×H
X := G×X/{(gh−1, hx) ∼ (g, x)|g ∈ G, h ∈ H,x ∈ X} with a G-action given by

g[(g1, x1)] = [(gg1, x1)].

• Let α : H ↪→ G be the inclusion of H into G then given a G-set Y we define the

restriction to H, ResG/H(Y ) = Y where H acts by first embedding in G by α.

• Let φ : G � G/N and let Z be a G/N -set, we define the inflation of Z to G by

InfG/N (Z) = Z where G acts by first applying φ.

2.2 Representation Rings

We now move on to the second important object needed to define Brauer relations,

the representation ring.

Definition 2.2.1. Let R be a commutative ring and let G be a finite group then

an R[G]-lattice is an R[G]-module which is finitely generated and projective as an

R-module.

Definition 2.2.2. Let R be a commutative ring, and let G be a finite group then we

define the representation ring (also Green Ring) a(G) = a(R[G]) to be, as a group,

the free abelian group on isomorphism classes of finitely generated R-projective

R[G]-modules (R[G]-lattices) modulo relations of the form [M ⊕ N ] − [M ] − [N ].

We equip this with multiplication defined by [M ] · [N ] = [M ⊗N ].

We follow [5] and [15] and denote various rings of coefficients by: A(R[G]) =

C⊗Za(R[G]), a(G)Q = Q ⊗Z a(R[G]), a(G)p = Z[1
p ] ⊗Z a(G) and finally a(R[G])(S)

where S is a set of primes and we allow denominators coprime to those primes. There

is an important thing to note here, these coefficient rings control the coefficients with

which the R[G]-lattices can appear, they do not affect R.

This ring is in general very hard to work with. We will restrict our attention

to the trivial source ring, a proper subring of the representation ring. Before pro-

ceeding we define maps on R[G]-modules which are analogues of those for G-sets

defined in definition 2.1.12.

Definition 2.2.3. Let R be a commutative ring, G be a finite group, H 6 G a

subgroup, and Q = G/L a quotient of G. Furthermore let M , N , S be R[G], R[H],

and R[Q]-modules respectively. We define the following maps:

7



• The induction map IndG/H(N) = R[G] ⊗R[H] N , where G acts by left multi-

plication. This defines a group homomorphism from a(H) to a(G).

• The restriction map ResG/H(M) = M viewed as a R(H)-module. This defines

a ring homomorphism from a(G) to a(H).

• The inflation map InfG/L(S) = S viewed as a R[G]-module where the action

factors through Q. This defines a ring homomorphism from a(Q) to a(G).

• Let g ∈ G then the conjugation by g map cg(N) = Ng which is an R[Hg]-

module. This gives a ring isomorphism between a(H) and a(Hg)

Lemma 2.2.4. The above maps satisfy the following properties:

• Transitivity: ResG/H ResH/K = ResG/K , IndG/H IndH/K = IndG/K and

InfG/N=Q InfQ/N2
= InfGφ−1(N2) where φ : Q→ Q/N2.

• Commutativity of induction and inflation IndG/H InfH/(N∩H) = InfG/N Ind(G/N)/(H/(N∩H))

where N / G.

• The Mackey decomposition formula:

ResG/H IndG/K =
∑

g∈K\G/H

IndH/(H∩Kg) ResKg/(H∩Kg) cg.

• Frobenius reciprocity: HomR[G](IndG/H(−),−) = HomR[H](−,ResG/H(−)) and

HomR[G](−, IndG/H(−)) = HomR[H](ResG/H(−),−).

Proof. These results are standard. See for instance [16, Chapter 1 Section 10].

2.2.1 Trivial Source Modules

When R is not a field of characteristic zero, there may exist non-projective R[G]-

lattices and as a result the representation theory need not be semisimple, that is not

every R[G]-lattice decomposes into a direct sum of simple R[G]-lattices. To help

understand this situation better we introduce relative projectivity.

Definition 2.2.5. Let R be a ring, G a finite group an R[G]-module M is indecom-

posable if it has no proper direct summands.

Remark 2.2.6. When the representation theory of R[G] is semisimple indecompos-

able modules are simple.
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Definition 2.2.7. AnR[G]-moduleM is relativelyH-projective (also (G,H)-projective)

if any short exact sequence 0→ A→ B →M → 0 which splits on restriction to H

also splits for G. We will write a(R[G], H) for the ideal of relatively H-projective

R[G]-lattices.

Remark 2.2.8. To show that a(R[G], H) is an ideal one needs to prove that if A

is K-projective and B is H-projective then A ⊗R B is H-projective, this is proven

in [5, Corollary 3.6.7] .

Remark 2.2.9. Clearly every R[G]-module is relatively G-projective and the mod-

ules which are {e}-projective are precisely those which are projective.

Assumption 2.2.10. For the rest of section 2.2 we fix a prime p and will adopt

the following restrictions on R:

1. R is a commutative ring,

2. for all finite groups G, the prime to p part |G|p′ is invertible in R, and

3. any finitely generated R[G] module decomposes uniquely into indecomposable

modules.

This third assumption is satisfied for instance if R[G] is Artinian, or R = Zp the

p-adic integers [5, Theorems 1.4.6, 1.9.3].

We now use relative projectivity to define the concepts of the source and

vertex of an R[G]-module:

Definition 2.2.11. A vertex of an indecomposable R[G]-module M is a subgroup

D of G such that M is projective relative to D but not to any proper subgroup of

D. A source of M is then an indecomposable R[D]-module M0 such that M is a

summand of IndG/D(M0).

Proposition 2.2.12. Let M be an indecomposable R[G]-module. Then:

1. All vertices of M are conjugate in G.

2. Let D be a vertex of M and let M1,M2 be two R[D]-modules which are both

sources of M . Then there exists an element g ∈ NG(D) such that M1
∼= Mg

2 .

3. If the p′ part of G is invertible in R, then the vertices of M are p-subgroups.

Proof. The first two parts follow from the Mackey decomposition formula:
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1. Suppose thatM has verticesH andK. ThenM is a summand of IndG/H ResG/HM

and of IndG/K ResG/KM . It follows that M is a summand of

IndG/K(ResG/K IndG/H) ResG/KM . We apply the Mackey decomposition for-

mula to the bracketed part and use transitivity of restriction and induction M

is a summand of∑
g∈H\G/K(IndG/(K∩Hg) ResG/(K∩Hg) cgM). Thus any vertex of M is con-

tained in K ∩ Hg for some g, from the minimality of H it follows H and K

are conjugate.

2. Suppose that M1 and M2 are both sources for M it follows that Mi are sum-

mands of ResG/D(M). Now as M is a summand of IndG/D(M1) it follows that

M2 is a summand of ResG/D IndG/D(M1) =
∑

D\G/D IndG/(D∩Dg) ResDg/(D∩Dg)(M
g
1 ).

Since M2 is a source it must be an indecomposable summand of Mg
1 for some

g ∈ NG(D), otherwise D would not be a vertex. Since M1 and thus Mg
1 is

indecomposable we have an isomorphism.

3. Higman’s criterion [5, Proposition 3.6.4] and [5, Corollary 3.6.9] show that

that if [G : H] is invertible in R then every R[G]-module is projective relative

to H. The result follows.

Lemma 2.2.13. Let G be a finite group, and let R be a field of characteristic p.

Then the trivial R[G]-module 1 has vertex Sylp(G).

Proof. By the previous Lemma the vertex D of 1 is contained in a Sylow subgroup.

Now suppose that D is not a Sylow subgroup of G. Then restricting to a Sylow

subgroup P containing D it follows that 1P is a summand of M = IndP/(P∩Dg)(1)

for some g ∈ G. Now we claim that there only exists one simple R[P ]-module 1

and by Frobenius reciprocity HomR[P ](IndP/(P∩Dg)(1), 1) = HomR[(P∩Dg)](1, 1) = 1

so there is only one trivial quotient and M is indecomposable of dimension greater

than 1 by assumption a contradiction. It remains to show that the only simple

R[P ]-module is R. Suppose that M is a simple R[P ]-module, then #M = pn for

some n, P fixes the zero element and all orbits are of p-power size so it follows that

P fixes some non-zero x. Then the subgroup generated by x is a trivial submodule

of M and thus as M is simple M = 1.

We now define the trivial source modules

Definition 2.2.14. An R[G]-module is a trivial source module if each indecompos-

able summand has the trivial module R = 1 as its source. A trivial source module

of the form
∑

H6G IndG/H(1)⊕ah will be called a permutation module.
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Lemma 2.2.15. An indecomposable R[G]-module has trivial source if and only if it

is a direct summand of a permutation module.

Proof. Any trivial source module is a summand of a permutation module by def-

inition. Assume that M has vertex P and is a summand of IndG/H(1), then

ResG/P IndG/H(1) =
∑

H\G/P IndP/(P∩Hg) ResHg/(P∩Hg)(1) so the only indecom-

posable summand with vertex P is M0 = 1.

Definition 2.2.16. The trivial source ring a(R[G], triv) is the sub-ring of a(R[G])

spanned by Z-linear combinations of trivial source modules.

Remark 2.2.17. One may easily verify that the product of two trivial source mod-

ules is again trivial source so the a(R[G], triv) is genuinely a ring.

Definition 2.2.18. For any subgroup H 6 G let a0(R[G], H) be the ideal generated

by elements of the form M3 −M1 −M2 where the short exact sequence 1→M1 →
M3 → M2 → 1 splits on restriction to H. Similarly for a0(G,H) where H is

some family of subgroups. We define the Grothendieck ring to be G0(R[G]) =

a(R[G])/a0(R[G], 1).

Remark 2.2.19. The image of an R[G]-module in the Grothendieck ring is often

called its semisimplification.

Both the trivial source ring and the Grothendieck ring are easier to work

with than a(R[G]) when R is a field of positive characteristic.

Definition 2.2.20. A p-modular system is a triple (K,O, k) where O is a complete

rank 1 discrete valuation ring (d.v.r) with field of fractions K , maximal ideal p and

quotient field k = O/p of characteristic p.

Lemma 2.2.21. Let (K,O, k) be a p-modular system then the reduction mod p map

gives an isomorphism:

a(O[G], triv) ∼= a(k[G], triv)

Proof. We first note that given any M ∈ a((O)[G], triv) then M/pM is a trivial

source k[G]-module. It remains to exhibit a unique lift of each k[G]-module. Let

O[X] be a permutation module. Then HomO[G](O[X],O[X])→ Homk[G](k[X], k[X])

is a surjection. To see this note that by definition HomR[G](R[G/H], R[G/H]) =

HomR[G](IndG/H(1), IndG/H(1)). Applying Frobenius reciprocity and the Mackey

decomposition formula on each side yields HomR[G](R[G/H], R[G/H]) =
∑

g∈H\G/H 1H .

11



Let N be a trivial source k[G]-module then it is a direct summand of some permuta-

tion module k[X]. Then there is a surjection of endomorphism rings End(O[X])→
End(k[X]).

Let eN be the idempotent of End(k[X]) corresponding to N then we may lift this

idempotent to End(O[X]) by the idempotent refinement theorem [5, Theorem 1.9.4].

This then gives a lift of N to O[G] which is again trivial source.

We now show this lift is unique. Suppose otherwise. Then there are two pos-

sible lifts M1 and M2. Since HomO[G](O[X],O[X]) → Homk[G](k[X], k[X]) is a

surjection the identity automorphism of N lifts a pair of maps φ1 : M1 → M2

and φ2 : M2 → M1 whose composite reduces to the identity. Their composition

differs from the identity by something in the kernel of reduction modulo p say a

so End(Mi) = (1 − ai) End(Mi) + ai End(Mi). If 1 − ai is not invertible, then

(1− ai) End(Mi) ( End(Mi). But then (1− ai) End(Mi) is contained in a maximal

ideal, which does not contain ai End(Mi). But ai ∈ pEnd(Mi) which is equal to

the Jacobson radical (since End(Mi) is local). This is a contradiction, so 1 − ai is

invertible and the maps φi are isomorphisms

2.2.2 Species

We describe ring homomorphisms from the various rings introduced into C and the

degree to which they separate out elements. Recall that in the previous section

we defined fixed points maps on the Burnside ring and these exactly separated the

elements of b(G).

Definition 2.2.22. Let A be a sub-algebra or ideal of a(R[G]) then an element of

Hom(A,C) (as rings) is called a species of A.

Remark 2.2.23. We will primarily be interested in the study of species of the

trivial source ring, and we will simply refer to these as species.

Definition 2.2.24 (The Character). Let G be a finite group and let k be a field

containing all |G|th roots of unity, by which we mean all roots of unity in the

algebraic closure of k, k̄ whose order divides |G| lie in k. Fix an embedding α of

µ(k) into C then for a k[G]-moduleM we define Tr(g,M) to be the sum of the images

of the eigenvalues of g acting on M under this embedding, T (g,M) =
∑

i α(λg,i).

The tuple (T (g,M))g∈GG is called the character of M .

Remark 2.2.25. Over fields k of characteristic p there are no non-trivial pth roots

of unity in k̄. In this case our definition will only require that the |G|p′th primitive

roots of unity are in k.
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Theorem 2.2.26. Let G be a finite group and let k be a field of characteristic 0

containing the |G|th roots of unity. For each g ∈ G let tg : a(k[G]) → Z denote

the trace function. Then summing over conjugacy class representatives of g ∈ G we

have the following isomorphism:∑
g∈GG

tg : C⊗ a(k[G])
∼−→

∑
g∈GG

C.

Proof. Clearly the tg are ring homomorphisms. We claim that
∑

g∈GG tg is injective,

since the tg are distinct they are linearly independent by [5, Lemma 5.2.2] and so

the map is surjective. The map
∑

g∈GG tg is represented by (
∑

g∈GG tg)i,j = tgi(Sj),

with respect to the basis of C⊗ a(k[G]) consisting of the classes of simple modules

B = {[Si]}, and the standard basis of
∑

g∈GGC indexed by gj ∈G G.

We show that the pairing 1/|G|
∑

g∈GG tg(Si)tg−1(Sj) = δi,j , and thus
∑

g∈GG tg is

injective. If T : S1 → S2 is a map of k-vector spaces then A = 1/|G|
∑

g∈G gTg
−1

is a k[G]-homomorphism. If the Si are distinct then this must be zero for all T by

Schur’s lemma, and so, after choosing a basis, the entry Ai,j = gi,ktk,lg
−1
l,j must be

zero for all T . In particular we may choose T so that T(i,j) = 1 if i = a, j = b and 0

otherwise this then implies 1/|G|
∑

g∈G tg(S1)tg−1(S2) = 0 and similarly if S1 = S2

then 1/|G|
∑

g∈G tg(S1)tg−1(S1) = 1.

An immediate consequence of this theorem is that the species of a(k[G])

uniquely determine an element of a(k[G]) when k has characteristic zero. This

phenomenon is fortunately repeated in several important cases. It is easy to see

that an element of any finite dimensional commutative semisimple complex algebra

is determined by its species.

In general a(k[G]) need not be finite dimensional when k is a field of positive

characteristic, and so it is clear that taking traces can’t possibly identify elements

of a(k[G]) up to isomorphism. There are two approaches to this problem. The first,

and most versatile, is to identify species of a(k[G]) which determine elements of

a finite dimensional semisimple quotient of a(k[G]) for instance the set of species

which vanish on a0(k[G]) determine the images of elements in G0(k[G]). The second

is only to consider modules in a semisimple finite dimensional subalgebra such as

a(G, triv).

Definition 2.2.27. Let G be a finite group and let n be an integer such that p | |G|
then let Gn′ = {g ∈ G : gcd(ord(g), n) = 1}. We adopt the convention that G0′ = G.

Note that G acts on Gn′ by conjugation.
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Theorem 2.2.28. Let G be a finite group and let k be a field containing the |G|th
roots of unity. For each g ∈ G let tg : a(k[G])→ Z denote the function Tr(g,−). Let

p be the characteristic of k. Then summing over G-conjugacy class representatives

of g ∈ Gp′. We have the following isomorphism:∑
g∈GGp′

tg : C⊗G0(k[G])
∼−→

∑
g∈GGp′

C.

Proof. If k has characteristic 0 we are done by Theorem 2.2.26. So assume k has

characteristic p > 0. We know that tg is a species of a(k[G]).

We wish to show that these species vanish on a0(k[G], 1). Let α = [M ]−[N ]−
[L] be any element of a0(G, 1) and let g ∈ G. Then the restriction to a(k[〈g〉]) is split

for all such sequences if g ∈ Gp′ . It follows that tg(α) = 0 for any α ∈ a0(k[G], 1)

and g ∈ Gp′ . For g /∈ Gp′ we have tg(M) = te(M) = dimk(M) as all (generalised)

eigenvalues of g are equal to 1 as this is the only p-power root of unity. So these

species factor to the quotient.

As in the proof of Theorem 2.2.26
∑

g∈G tg is injective. It follows that∑
g∈GGp′

tg is also injective. It remains to show surjectivity; since the tg for g ∈G Gp′
are distinct it follows from [5, Lemma 5.2.2 ] that they are linearly independent and

hence the map is surjective.

Remark 2.2.29. The above isomorphism is usually denoted by the Brauer character

table. The Brauer character table is a table whose columns are labelled by conjugacy

classes of p′ elements and whose rows are labelled by simple k[G]-modules. The

theorem is then equivalent to saying that the columns in the Brauer character table

are linearly independent and the table is square.

Theorem 2.2.30 ( The Green Correspondence ). [5, Theorem 3.12.2] Let G be a

finite group, p be a fixed prime and let R be a ring satisfying assumption 2.2.10.

Let P be a p-subgroup of G, suppose that NG(P ) 6 H 6 G. Then there is a

one to one correspondence between indecomposable R[G]-modules with vertex P and

indecomposable R[H]-modules with vertex P given as follows:

1. If M is an indecomposable R[G]-module with vertex P , then ResG/H(M) has a

unique indecomposable summand f(M) with vertex P with all other summands

having vertex strictly less than P .

2. If N is an indecomposable R[H]-module with vertex P then IndG/H(N) has a

unique indecomposable summand g(N) with vertex P and the remaining terms
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have vertex which are contained in the intersection of P and a conjugate.

3. f(g(N)) = N and g(f(M)) = M .

4. This correspondence takes trivial source modules to trivial source modules.

Proof. 1. Suppose that M is an indecomposable R[G]-module with vertex P and

source S then IndH/P (S) = S1 ⊕ S2 with S1 indecomposable such that M

is a summand of IndG/H(S1) and consequently ResG/H(M) is a summand of

ResG/H IndG/H(S1).

Now ResG/H IndG/H(S1) =
∑

g∈H\G/H IndH/H∩Hg ResHg/H∩Hg(Sg1) but since

H > NG(P ) exactly one of these summands, S1 when g = e, has vertex P .

But the restriction of M to H has an indecomposable summand of vertex P

(as M is a summand of IndG/H ResG/H(M)). We therefore take f(M) = S1.

2. Let N be an indecomposable R[H]-module with vertex P then letting L be

any indecomposable summand of IndG/H(N), and restricting, gives ResG/H(L)

is a summand of
∑

g∈H\G/H IndH/H∩Hg ResHg/H∩Hg(Ng). This shows that

the vertex of L is contained in P ∩ P g for some g. Now there exists some

indecomposable summand L1 of IndG/H(N) such that N is a summand of

ResG/H(L1) and it follows L1 has vertex containing and thus equal to P . Since

N only occurs once in ResG/H IndG/H N showing uniqueness. Let g(N) = L1.

3. Is clear from the definitions of f and g, and Mackey’s decomposition formula.

4. Is clear from the construction, since the restriction and induction of a trivial

source module is again trivial source.

Corollary 2.2.31. There is a one to one correspondence between isomorphism

classes of indecomposable trivial source R[G]-modules of vertex D 6 G and iso-

morphism classes of projective indecomposable R[NG(D)/D]-modules.

Proof. The Green correspondence, Theorem 2.2.30, states that we have a bijection

between isomorphism classes of indecomposable trivial source modules with vertex

D and isomorphism classes of indecomposable NG(D) trivial source modules with

vertex D. But D / NG(D) must act trivially so all such modules are inflated from

projective indecomposable NG(D)/D-modules, and similarly inflating such a module

gives an indecomposable trivial source module with vertex D.
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Definition 2.2.32. Let G be a finite group and let R be a discrete valuation ring

of residue characteristic p > 0 or a field of characteristic p > 0. Then for ev-

ery p-subgroup P of G and every g ∈ NG(P ) of order coprime to p we may de-

fine a ring homomorphism SP,g : a(G, triv) → C, as follows. Let M be a trivial

source module and let N be its vertex P summand, and let N ′ be the projective

R[NG(P )/P ]-module corresponding to N by the correspondence in Corollary 2.2.31.

Then SP,g(M) := tg(N
′).

Lemma 2.2.33. Let G be a finite group and R be a field of characteristic p > 0 or a

d.v.r of residue characteristic p then for all pairs P, g SP,g is a ring homomorphism

C ⊗Z a(R[G], triv) → C. Furthermore SP1,g1 = SP2,g2 if and only if there exists

h ∈ G such that P1 = P h2 , g1 = gh2 . Finally let M1 and M2 be trivial source modules

then SP,g(M1) = SP,g(M2) for all pairs (P, g) if and only if M1
∼= M2.

Proof. The fact that SP,g are ring homomorphisms is clear; the correspondence in

Corollary 2.2.31 is a ring homomorphism and tg is again a ring homomorphism.

Now we wish to show that SP1,g1 = SP2,g2 if and only if there exists h ∈ G such that

P1 = P h2 , g1 = gh2 .

First suppose P1 = P h2 , g1 = gh2 for some h in G. Suppose that a trivial source

module has vertex P then by proposition 2.2.12 any two vertices are conjugate, that

any conjugate is a vertex follows from the isomorphism IndG/HM ∼= IndG/Hg Mg.

Conjugation by h then gives an isomorphism between the submodule with vertex P

and the submodule with vertex P h. We have that SP,g(M) = tg(N) = tgh(Nh) =

SPh,gh(M) for all M .

Now suppose that SP1,g1 = SP2,g2 , then letting N be an indecomposable module with

vertex P1 we see that P1 = P h2 for some h ∈ G as P2 must also be a vertex for N .

Now by Corollary 2.2.31 these modules are in bijection with projective NG(Pi)/Pi

modules. These modules are determined by their Brauer characters tg, and the

conjugation isomorphism P1 = P h2 takes the column of the Brauer character table

corresponding to g to the one corresponding to gh. Thus tgh2
must agree with tg2 as

they both determine the same column of the Brauer character table.

Finally it is clear that if two trivial source modules are isomorphic then species agree

on them. For the converse assume that we have two trivial source modules M1 and

M2 with no common summands and let P be the maximal vertex among all vertices

of M1 and M2. Since SP,g agrees for all G the vertex P part of Mi define the same

projective R[NG(P )/P ]-module and hence by Corollary 2.2.31 the same vertex P

summand of Mi a contradiction.

Definition 2.2.34. Let p and q be prime numbers.
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• A finite group is called p-quasi-elementary if it has a normal cyclic subgroup

of p-power index, equivalently if it is a split extension of a p-group by a cyclic

group of order co-prime to p.

• A finite group G is called p-hypo-elementary if G/Op(G) is cyclic, equivalently

if G is a split extension of a cyclic group of order co prime to p by a p-group.

• Let q be a prime. A group G is called a (p, q)-Dress group if G/Op(G) is

q-quasi-elementary.

Lemma 2.2.35. Let G be a finite group. If G is p-quasi-elementary, or p-hypo-

elementary, or (p, q)-Dress then all its subquotients are p-quasi-elementary, p-hypo-

elementary, or (p, q)-Dress respectively.

Proof. Consider the case of a proper subgroup and proper quotient separately The

proof then follows immediately by combining these cases.

Lemma 2.2.36. Let G be a finite group and H = P o C 6 G where P is a p-

group and C is cyclic. Let SH,g for g ∈ C a generator, denote the map which

restricts a trivial source module to H, takes the summand N with vertex exactly P

and computes tg(N). Then SH.g coincides with SP,g.

Proof. This amounts to the check that the vertex of an indecomposable trivial source

NG(P )-module of vertex P remains the same when we restrict it to P and thus to any

intermediate subgroup P 6 H 6 NG(P ). But this is immediate since its restriction

to P is a direct sum of trivial modules, by Mackey’s formula, which all have vertex

P by Lemma 2.2.13.

Remark 2.2.37. This lemma provides an easy classification of the species of the

trivial source ring.

Theorem 2.2.38. Let G be a finite group and let k be a field of characteristic p > 0

then after summing over pairs H, g up to conjugacy we have an isomorphism:∑
(H,g)G

SH,g : C⊗Z a(k[G], triv)
∼−→

∑
(H,g)G

C

Proof. That this map is an injective ring homomorphism and the SH,g are distinct

follows from Lemmas 2.2.36 and 2.2.33. Surjectivity then follows from [5, Lemma

5.2.2].

Lemma 2.2.39. Let M = IndG/H(1) then SK,g(M) = fK(H).
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Proof. We simply evaluate the species on M . Suppose K = PoC. When we restrict

to K by Mackey the restriction splits into a direct sum of terms IndK/K∩Hg(1). Only

terms where P 6 K∩Hg can possibly have summands of vertex P , and furthermore

by restricting to P we see that each such summand does have vertex P by Clifford’s

theorem [16, Theorem 11.1] and 2.2.13. The vertex P part of ResG/K(M) is a direct

sum of terms of the form IndK/PoC′ for some C ′ 6 C. We have IndK/PoC′ =

InfH/P (IndC/C′(1)), and as 〈g〉 = C we have tg(IndC/C′(1)) = δC,C′ . It follows that

SK,g is equal to the number of times K ∩ Hg = K in the Mackey decomposition,

but this is exactly fK(H).

2.3 Induction Theorems

The study of induction maps is of interest in representation theory because the

induction map IndG/H : a(R[H]) → a(R[G]) is not, in general, a unital ring homo-

morphism. By Frobenius reciprocity the image of induction is an ideal in a(R[G])

and thus is equal to all of a(R[G]) if and only if it contains 1G. The purpose of

induction theorems, is to classify when
∑

H<G IndG/H is surjective. Our study of

induction theorems will follow the following pattern, fix R and a sub-ring or quotient

of a(R[G]) say a and try to prove an induction theorem for Q ⊗Z a and then use

this result as a stepping stone for an induction theorem for a. We will restrict our-

selves to induction theorems concerning permutation modules as this leads into the

study of Brauer relations later. The prototypical example of an induction theorem

is Artin’s induction theorem.

Theorem 2.3.1 (Artin’s Induction Theorem). [5, Theorem 5.6.1]. Let G be a finite

group, k a field, then there exists unique αH ∈ Q such that:

1G =
∑

H=C6GG

αH IndG/H(1)

in Q⊗Z G0(k[G]) where the sum runs over conjugacy classes of cyclic subgroups of

order coprime to p if k has characteristic p > 0 or all cyclic subgroups otherwise.

Furthermore we have an equality:

Q⊗Z G0(k[G]) =
∑

H=C6GG

IndG/H(Q⊗Z G0(k[H])),

where we sum over the same set as previously.
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Proof. If G is an element of the set we sum over then the statement is a tautology,

so we assume only proper subgroups of G appear on this list. Since the image of

induction is an ideal the second statement is an immediate consequence of the first.

To prove the first statement consider the natural map Q⊗Z b(G)→ Q⊗Z G0(k[G]),

given by [H] 7→ IndG/H(1). Two elements of the image are isomorphic if and

only if the species of G0(k[G]) identified in 2.2.28 vanish on them. The image is

spanned by IndG/H(1) and we have tg(IndG/H(1)) = tg(ResG/〈g〉(IndG/H(1))) =

f〈g〉(H). It follows that a Q-basis for the image is IndG/〈g〉(1) where 〈g〉 ranges

over representatives of conjugacy classes of cyclic subgroups of order coprime to

the characteristic. Since by assumption G is not of this form the claim follows by

writing 1G in this basis.

Remark 2.3.2. Note that if k has characteristic 0 then G0(k[G]) = a(k[G]).

Remark 2.3.3. Since fH(G) = 1 for all H 6 G and fC(H) = [NG(H) : H] we see

the denominators of αH divide [NG(H) : H].

We now state Solomon’s induction theorem.

Theorem 2.3.4. [5, Proposition 5.6.3]. Let G be a finite group and k be a field of

characteristic 0, then there exist βH ∈ Z(q) such that:

1G =
∑
H6GG

βH IndG/H(1)

in Z(q)⊗Z a(k[G]) where the sum runs over conjugacy classes of q-quasi-elementary

groups. Furthermore we have an equality:

Z(q) ⊗Z a(k[G]) =
∑
H6G

IndG/H(Z(q) ⊗Z a(k[H])),

where the indexing set is as above.

Proof. See [5, Proposition 5.6.3.] an the discussion preceding it. In particular note

that the image of the natural map from the Burnside ring to the representation ring

is contained in the subring generated by permutation modules.

Applying the Chinese remainder theorem we have the usual phrasing of

Solomon’s theorem.
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Corollary 2.3.5 (Solomon’s Induction Theorem). [22, Theorem 8.10]. Let G be a

finite group and k a field of characteristic 0 then we have there exist γH ∈ Z such

that:

1G =
∑
H6GG

γH IndG/H(1)

in a(k[G]) where the sum runs over conjugacy classes of subgroups of G q-quasi-

elementary subgroups for at least one prime q. We have the corresponding equality:

a(k[G]) =
∑
H6GG

IndG/H(a(k[H])).

Remark 2.3.6. The proof in [5, section 5.6] uses a classification of idempotents in

the Burnside ring which we have not discussed here. There are several other proofs

for instance in [22] of this theorem, one may retrieve it from Artin’s Induction

theorem and the claim, that there exists an isomorphism q1 =
∑

H<G aH IndG/H(1)

with aH ∈ Z but not with coefficient 1 whenever G is q-quasi-elementary which is

shown in [18, Theorem 1].

Theorem 2.3.7. [18, Theorem 1] Let k be a field of characteristic 0, and let G be

a non-cyclic q-quasi-elementary group. Then there exist integers aH such that:

q1 =
∑
H<G

aH IndG/H(1).

Furthermore if c1G =
∑

H<G cH IndG/H(1) for some integers cH then q | c.

When k has characteristic p, the first result is the characteristic p analogue

of Artin’s induction theorem due to Conlon.

Theorem 2.3.8 (Conlon’s Induction Theorem). [15, Theorem 80.51]. Let G be a

finite group and let k be a field of characteristic p then there exist αH ∈ Q such that:

1G =
∑
H6GG

αH IndG/H(1),

in Q ⊗Z a(G, triv) ⊆ Q ⊗Z a(k[G]) where the sum runs over conjugacy classes of

p-hypo-elementary subgroups. We have the corresponding equality:

Q⊗Z a(k[G]) =
∑
H6GG

IndG/H(Q⊗Z a(k[H])),

where the sum runs over the same set. This remains an isomorphism upon restric-

tion to the trivial source ring.
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Proof. The second two statements are immediate consequences of the first. Con-

sider the natural map mk ⊗ Q : Q ⊗Z b(G) → Q ⊗Z a(k[G], triv) which is the

Q-linear extension of [H] 7→ IndG/H(1). The elements of the kernel of this map

by lemma 2.2.39, are precisely those elements for which the fixed points under p-

hypo-elementary subgroups of G vanish. It follows therefore that if S = {H 6G
G|H is p-hypo-elementary} then {IndG/H(1)|H ∈ S} gives a Q-basis of the im-

age.

Remark 2.3.9. By comparing ranks we see that the kernel of mk ⊗ Q is of rank

equal to the number of conjugacy classes of subgroups of G which are not p-hypo-

elementary. Since both b(G) and its image in a(k[G]) are free abelian groups of

finite rank it follows that the Z-rank of the kernel of the map restricted to b(G) is

also the number of conjugacy classes of non-p-hypo-elementary subgroups of G.

We now present the characteristic p analogue of Solomon’s induction theorem

due to Dress.

Theorem 2.3.10 (Dress’ Induction Theorem). [2, Theorem 9.4]. Let G be a finite

group and k a field of characteristic p, then there exist βH ∈ Z(q) such that:

1G =
∑

H∈Dp,q(G)

βH IndG/H(1),

where Dp,q(G) is a set of conjugacy class representatives of (p, q)-Dress subgroups

of G. Furthermore there exist γH ∈ Z such that:

1G =
∑

H∈Dp(G)

γH IndG/H(1),

where Dp(G) is a set of conjugacy class representatives of subgroups of G which

are (p, q)-Dress for at least one prime q. Finally we have isomorphisms: Z(q) ⊗Z
a(k[G]) ∼=

∑
H∈Dp,q(G) IndG/H(Z(q)⊗Za(k[H])) and a(k[G]) ∼=

∑
H∈Dp(G) IndG/H(a(k[H])).

These isomorphisms remain isomorphism when restricted to trivial source rings.

Proof. The proof of the first statement is given [2, Theorem 9.4]. The subsequent

claims are a consequence of the first.

Remark 2.3.11. In Theorem 2.3.8 one can show that the denominator of αH divides

[NG(H) : H] This combined with Theorem 3.5.1 gives an alternative proof of Dress’

induction theorem.
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Remark 2.3.12. The reader may suspect that there is some hidden machinery here

which allows us to translate an induction theorem with rational coefficients to one

with integral ones by first passing to local coefficients. It follows from proposition

3.3.4 in the next chapter that given a rational induction theorem we can prove an

integral induction theorem.

2.4 Some Group Theory

We will have cause to make regular use of Frattini subgroups and Hall l subgroups,

in the sequel so for convenience we recall their definitions and properties. We do

not provide proofs but a good reference is [23].

Definition 2.4.1. Let G be a finite group, the Frattini subgroup of G is the inter-

section of the maximal subgroups of G. Recall that a subgroup of G is maximal if

it is a proper subgroup which is contained in no other proper subgroup of G.

Lemma 2.4.2. The Frattini subgroup has the following properties

• The Frattini subgroup is a characteristic subgroup of G, that is it is invariant

under all automorphisms of G.

• The Frattini subgroup of a finite p-group is the minimal subgroup such that

the resulting quotient group is elementary abelian, in particular this quotient

group is cyclic if and only if the original p-group is cyclic.

• The Frattini subgroup is the set of non-generators for G, i.e. elements which

may be excluded from any generating set.

We will need to use the second property, a proof of which can be found in

[23, Lemma 4.5]. We now define Hall subgroups which are a generalisation of the

Sylow subgroups.

Definition 2.4.3. Let π be an arbitrary set of primes, a π-Hall subgroup H of G

is a subgroup whose order is a product of primes in π and such that [G : H] is not

divisible by any prime in π.

Remark 2.4.4. When we want π to be the set of all prime divisors of G save for a

fixed l we will call this a Hall l′ or (−l)-Hall subgroup.

Hall subgroups are a vast generalisation of the Sylow subgroups, the downside

to this is that we can’t always guarantee existence. The following theorem gives us

existence in the cases we will need.
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Theorem 2.4.5 (Hall’s Theorem). [23, Theorem 3.13]. If G is soluble then for

every possible choice of π, π-Hall subgroups exist, and are conjugate in G.

Finally we state the Schur-Zassenhaus theorem concerning the splitting of

group extensions.

Theorem 2.4.6 (Schur-Zassenhaus). Let G be a finite groups and let N / G be a

normal subgroup whose order is coprime to it’s index then G = N o H for some

subgroup H 6 G such that H ∼= G/N . Moreover H is unique up to G-conjugacy.

For a proof see [23, Chapter 3B] specifically Theorems 3.8 and 3.12.

2.5 Brauer Relations

In this section we will define Brauer relations and describe the steps which have

already been taken in their classification.

2.5.1 Brauer Relations: Definition and Motivation

Earlier in section 2.3 we showed that we could use the map between the Burnside

ring of a finite group and it’s representation ring over some field to prove induction

theorems. In fact these theorems were really descriptions of an element of the kernel

of the canonical map from the Burnside ring to the representation ring. This map

takes a representative X of a class in the Burnside ring to the class of the k[G]-

permutation module k[X] in the representation ring over k. Here we denote by k[X]

the k-vector space whose basis is indexed by elements of X on which G acts by

permuting the basis elements as it would elements of X.

Definition 2.5.1. A Brauer relation for a finite group G over a ring R is an element

of the kernel of the canonical map b(G)→ a(R[G]) given by X 7→ R[X]. When R is

a field, since this kernel is only dependent on the characteristic p of R, we will call

elements of this kernel Brauer relations for G in characteristic p.

Remark 2.5.2. In later chapters, starting with chapter 3 we will find it useful to

generalise this definition to include the elements of any kernel of the canonical map

b(−)→ G(−) where we consider both objects as Green functors which we will define

in the next chapter.

The primary motivation to study Brauer relations is their applications to

various number theoretic problems. Brauer relations have been heavily exploited in

the works of [11], [19], [1] and [3] for example.
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2.5.2 Brauer Relations over Q

Brauer relations in characteristic 0 have been completely classified in [2]. This

paper has been the starting point for formulating for our attempts to classify Brauer

relations in positive characteristic and we will recall its main result here.

Theorem 2.5.3. [2, Theorem A] Let G be a finite group and let k be a field of

characteristic 0 then all Brauer relations for G over k are linear combinations of

those inflated then induced from subquotients of the following types:

1. A dihedral group of order 2n > 8, or

2. a Heisenberg group of order p3 with p > 3, or

3. an extension of the form 1 → Sd → H → Q → 1 with S simple, Q quasi-

elementary and Q ↪→ Out(Sd) and either:

(a) Sd a minimal normal subgroup of H or,

(b) H = (CloP1)× (CloP2) with cyclic p-groups acting faithfully and l 6= p,

or

4. H = C o P is a quasi-elementary group |C| =
∏

[1,t] li > 1 with the li distinct

primes li 6= p and the kernel K of the action of P on C is trivial, D8 or has

normal p rank one. Furthermore writing Kj = ∩i 6=j ker(P → Aut(Cli)) either:

(a) K = {1} and t > 1 and all Kj have the same image in the Frattini

quotient of P ,or

(b) K = Cp, P ∼= K × (P/K), and all Kj have the same two dimensional

image in the Frattini quotient of P , or

(c) |K| > p or P is not a direct product by K and the graph Γ associated to

G by [2, Theorem 7.30] is disconnected.

2.6 Mackey and Green Functors

In this section we will review the common formulation of Mackey and Green functors

in the literature, we will revisit this with a slightly more specialised definition, more

suited to our goals in the next chapter. We will start with some motivational

examples of Mackey and Green functors before giving a formal definition. We will

follow [34].
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2.6.1 Mackey and Green Functors: Motivating Examples

In this section we describe some examples whose structure we will later axiomatise as

Mackey functors. Our first examples will be familiar from earlier in the Background

and will be our main object of study.

Example 2.6.1. Let G be a finite group. The following are our motivating examples

of Mackey functors. The important data we wish to convey is that each subgroup

has a module attached to it with induction and restriction maps between them.

1. We may assign to every subgroup H 6 G its Burnside ring b(H), and for all

K 6 H 6 G we have maps IndH/K : b(K)→ b(H) and ResH/K : b(H)→ b(K)

between them.

2. We can assign to each H 6 G its representation ring a(R[G]) for some ring R.

Between each of these rings we have the usual induction and restriction maps.

Other more interesting examples, with wide applications to number theory

and elsewhere include.

Example 2.6.2. Let G be a finite group.

1. Let R be a ring and M be a R[G]-module then to each subgroup H 6 G we

can associate the R-module MH = {m ∈ M : hm = m∀h ∈ h}. For any

K 6 H 6 G we have an inclusion ResH/K : MH ↪→MK . We also have a map

IndH/K : MK →MH which is given by IndH/K(m) =
∑

g∈H/K gm.

2. Let K/F be a Galois extension of number fields and let E/F be an elliptic

curve defined over F . Then to each subgroup H 6 G we may associate the

abelian group E(KH). Here the induction map is the trace map and the

restriction map is just inclusion.

3. We have an identical situation whenever we have a Galois extension K/F and

an Abelian variety A defined over the base field.

4. Let M/M0 be a finite Galois covering of Riemannian manifolds with covering

group G and let Hi(M(H)) be the ith homology of the intermediate manifold

associated to H 6 G. For K 6 H 6 G we have maps IndH/K : Hi(M(K))→
Hi(M(H)) given by corestriction of homology and ResH/K : Hi(M(H)) →
Hi(M(K)) given by restriction of homology.

All of the previous examples in example 2.6.2 are special cases of a coho-

mological Mackey functor and we will see later in Yoshida’s thereom that Brauer

relations give non-obvious isomorphisms for these functors.
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2.6.2 Mackey and Green Functors: Formal Definitions and Basic

Results

We begin by giving a definition of a (local) Mackey functor for a finite group G over

a ring R. There are many equivalent definitions of Mackey functors, we shall follow

[34] a detailed treatment can also be found in [10].

Definition 2.6.3. A Mackey functor for a finite group G over a ring R is a function

M : {H 6 G} → R-mod with R-module morphisms:

1. For all H 6 K 6 G we have induction IndK/H : M(H) → M(K) and

restriction ResK/H :M(K)→M(H).

2. For all g ∈ G and H 6 G we have cg :M(H)→M(Hg) which are the identity

if h ∈ H.

3. We have the following relations:

(a) Transitivity of restriction and induction; for all H 6 K 6 L 6 G we have

ResK/H(ResL/K) = ResL/H and IndH/K(IndK/L) = IndH/L.

(b) Decomposition of conjugation; cgh = cgch.

(c) Commutativity of conjugation; for all H 6 K 6 G and for all g ∈ G

ResKg/Hg cg = cg ResK/H , IndKg/Hg cg = cg IndK/H .

(d) The Mackey axiom; for all H,K 6 L 6 G we have ResL/H IndL/K =∑
g∈K\L/H IndH/H∩Kg ResKg/H∩Kg cg.

Remark 2.6.4. If a Mackey functor M satisfies IndK/H ResK/H = [K : H] for all

H 6 K 6 G, then we call M cohomological.

Now we define a Green functor, which is essentially a Mackey functor taking

values in R-algebras.

Definition 2.6.5. A Green functor G for a finite group G over an algebra A is a

Mackey functor over A for G satisfying:

1. The morphisms ResK/H and cg are unitary A-algebra homomorphisms for all

H 6 K 6 G and g ∈ G.

2. The Frobenius axiom. The image of IndK/H is a two sided ideal of G(K) for

all H 6 K 6 G. Moreover we have a IndK/H(b) = IndK/H(ResK/H(a)b) and

IndK/H(b)a = IndK/H(bResK/H(a)) for all H 6 K 6 G and a ∈ G(K) and

b ∈ G(H).
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Remark 2.6.6. Mackey and Green functors generalise properties we are already

familiar with from representation rings. From this point of view these are simply an

precise abstraction of the statement X ‘looks’ representation theoretic. Similarly a

functor being cohomological can be taken to mean that it ‘looks like’ cohomology.

We now give an important example of a Green functor:

Example 2.6.7. The Burnside functor b(−) which takes a finite group to its Burn-

side ring is a Green functor with the usual induction and restriction of G-sets.

This functor takes values in Z-algebras but after extending scalars we retrieve an

A-algebra valued functor bA(−).

Definition 2.6.8. A morphism of Mackey (resp. Green) functors is a natural

transformation, that is R-module (resp. A-algebra homomorphisms) for each H 6

G which commute with the morphisms in the definition.We may form categories

MackR(G) (resp GreenA(G) )whose objects are R Mackey functors for a finite group

G (resp. Green functors over R and A for G). Furthermore cohomological Mackey

functors overR forG denoted by MackR,coh(G) form a full subcategory of MackR(G).

Lemma 2.6.9. The Burnside functor bA is the initial object in GreenA(G).

Proof. For each H 6 G and each G ∈ GreenA(G) there is an A algebra ho-

momorphism mG(H) : b(H) → G(H) defined on transitive H-sets by [H/K] 7→
IndH/K(1G(K)). One readily sees that the mG(H) are compatible with induction,

restriction and conjugation. It is also clear that this morphism is unique, sup-

pose not and we have some other ηH : b(H) → G(H) then since in b(H) we have

H/K = IndH/K ResH/K(H/H), it follows that ηH(H/K) = IndH/K ResH/K(1G(K))

which uniquely determines η.

Definition 2.6.10. A (left) module over a Green functor G is a Mackey functor M

such that for all H 6 G, M(H) is a G(H)-module and that this multiplication is

compatible with induction, restriction and conjugation in the obvious way. If M
is a Green functor then we call M an algebra over a Green functor G if there is a

ring homomorphism G(H)→ Z(M(H)) for each H 6 G compatible with induction,

restriction and conjugation.

Remark 2.6.11. This makes every Green functor for G over A into an algebra over

bA. In particular, one may show that;

H(M,M)(H) := HomMackR(H)(M(IndG/H),M(IndG/H)),
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is a Green functor for any Mackey functor M. Thus any M is a b-module (see for

instance [10, Section 3.4.3]). This means that idempotents of the Burnside ring play

an important role in the theory of Mackey functors.

2.6.3 The Mackey and Yoshida Algebras

An alternative perspective on Mackey functors is to view them as modules over the

Mackey algebra which we define below. Again our main reference for this section is

[34].

Definition 2.6.12. Let R be a commutative unital ring and let G be a finite group

then we define the Mackey algebra µR(G) to be the quotient of the free algebra

on symbols ResH/K , IndH/K and cg,H for all subgroups K 6 H 6 G and elements

g ∈ G by the relations:

1. IndH/H = ResH/H = ch,H for all subgroups H 6 G and elements h ∈ H.

2. Transitivity of restriction and induction; for all H 6 K 6 L 6 G we have

ResK/H(ResL/K) = ResL/H and IndH/K(IndK/L) = IndH/L.

3. Decomposition of conjugation; cgh,K = cg,Khch,K for all g, h ∈ G and K 6 G.

4. Commutativity of conjugation; for all H 6 K 6 G and for all g ∈ G

ResKg/Hg cg,H = cg,K ResK/H , IndKg/Hg cg,H = cg,K IndK/H .

5. The Mackey axiom; for all H,K 6 L 6 G we have: ResL/H IndL/K =∑
g∈K\L/H IndH/H∩Kg ResKg/H∩Kg cg,K .

6.
∑

H6G IndH/H = 1.

7. all other products are zero.

We may identify a Mackey functor M for G over R with the µR(G)-module∑
H6GM(H) with the obvious action of µR(G). From this perspective one can

develop the representation theory of the Mackey functors and we have analogues of

all of the major concepts and results described in the previous background chapter.

Of particular interest to us will be the Yoshida algebra, and Yoshida’s theorem as

this result gives the most immediate source of applications for Brauer relations.

Definition 2.6.13. Let R be a commutative unital ring and let G be a finite group.

The Yoshida algebra γR(G) is defined analogously to the Mackey algebra except we

impose the additional relation IndH/K ResH/K = [H : K] IndH/H .
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The modules over the Yoshida algebra are precisely the cohomological Mackey

functors. The following theorem due to Yoshida is key to our applications.

Theorem 2.6.14 (Yoshida’s Theorem). [36, Theorem 4.3]. The Yoshida Algebra

γR(G) is isomorphic to the Hecke algebra E = EndR[G](
∑

H6G IndG/H(1)).

Corollary 2.6.15. [6, Theorem 3.1]. Let M be a cohomological Mackey func-

tor over R for G. An isomorphism of permutation modules
∑

i∈I R[G/Hi]
ni ∼=∑

j∈J R[G/Kj ]
mj induces an isomorphism

∑
i∈IM(Hi)

ni ∼=
∑

j∈JM(Kj)
mj .

29



Chapter 3

Mackey and Green Functors

with Inflation

3.1 Introduction

This chapter is a modified version of my paper, joint with Alex Bartel [4]. The

later chapters will depend heavily on the techniques developed in this chapter. The

purpose of this chapter therefore, is to develop these tools in full generality, but

we keep in mind our ultimate goal. This is, informally, to describe the kernel of

the map from the Burnside ring to a representation ring or similar object. To do

this we define global Green functors with inflation maps, which are an analogue of

the local Green functors described in the background but defined on all groups and

with additional maps. Once we set up this structure we shall develop techniques

to describe the kernel of maps between two such functors. We will do this in as

general a setting as we can to get the desired results, but the reader should always

think of our motivation and view the maps as maps from the Burnside functor to

the representation ring functor.

Let k be a field of positive characteristic. For every finite group G there

is a natural homomorphism b(G) → a(k[G]), which sends the isomorphism class

represented by a G-set X to the isomorphism class of the k[G]-module k[X] with a

canonical k-basis given by the elements of X, and with G acting by permutations

on this basis. Let Kk(G) denote the kernel of this homomorphism. It is easy to see,

for instance using the theory of species in Chapter 2, that Kk(G), as a subgroup of

b(G), only depends on the characteristic p of k, and we refer to elements of Kk(G)

as Brauer relations of G in characteristic p.
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We would like to determine the structure of Kk(G), not just as an abstract

group, but with an explicit description of generators. In order to arrive at such a

description we will find it useful to view Kk(G) as a Mackey functor with inflation.

We will give an informal definition here, and refer to Section 3.2 for the formal

discussion.

If H is a subgroup of a finite group G, then Brauer relations of H can

be induced to Brauer relations of G. Moreover, if Ḡ is a quotient of a finite

group G, then Brauer relations of Ḡ can be lifted to Brauer relations of G. Let

ImprimKk
(G) be the subgroup of Kk(G) generated by all relations that are induced

from proper subgroups or lifted from proper quotients, and let PrimKk
(G) be the

quotient Kk(G)/ ImprimKk
(G). If we can give, for every finite group G, generators

of PrimKk
(G), then we obtain a list of Brauer relations with the property that all

Brauer relations in all finite groups are Z-linear combinations of inductions and lifts

of relations in this list.

In [2] the structure of PrimKk
(G) has been completely determined, in the

above sense, in the case when k has characteristic 0. In the process of classifying

this kernel Theorem 3.1.1 was a crucial step and is a special case of the result we

prove in this chapter.

Theorem 3.1.1. [2, Theorem 4.3] Let G be a finite group that is not quasi-elementary.

Then:

(a) if all proper quotients of G are cyclic, then PrimKQ(G) ∼= Z;

(b) if q is a prime number such that all proper quotients of G are q-quasi-elementary,

and at least one of them is not cyclic, then PrimKQ(G) ∼= Z/qZ;

(c) if there exists a proper quotient of G that is not quasi-elementary, or if there

exist distinct prime numbers q1 and q2 and, for i = 1 and 2, a proper quotient

of G that is non-cyclic qi-quasi-elementary, then PrimKQ(G) is trivial.

Moreover, in all cases, PrimKQ(G) is generated by any element of KQ(G) ⊆ b(G) of

the form [G/G] +
∑

H�G aH [G/H], aH ∈ Z.

The main motivation for this chapter is to understand PrimKk
(G) when k has

positive characteristic. To that end, we prove the following characteristic p analogue

of Theorem 3.1.1, which will be used in the next chapter to give a characterisation

of PrimFp(G).

Theorem 3.1.2. Let G be a finite group that is not a (p, q)-Dress group for any

prime number q. Then:
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(a) if all proper quotients of G are p-hypo-elementary, then PrimKFp (G) ∼= Z;

(b) if q is a prime number such that all proper quotients of G are (p, q)-Dress

groups, and at least one of them is not p-hypo-elementary, then PrimKFp (G) ∼=
Z/qZ;

(c) if there exists a proper quotient of G that is not a (p, q)-Dress group for any

prime number q, or if there exist distinct prime numbers q1 and q2 and, for

i = 1 and 2, a proper quotient of G that is a non-p-hypo-elementary (p, qi)-

Dress group, then PrimKFp (G) is trivial.

Moreover, in all cases, PrimKFp
(G) is generated by any element of KFp(G) ⊆ b(G)

of the form [G/G] +
∑

H�G aH [G/H], aH ∈ Z.

To prove parts (b) and (c) of Theorem 3.1.2, we prove an induction theorem

for (p, q)-Dress groups, which we believe to be of independent interest. It is a

characteristic p analogue of Theorem 2.3.7.

Theorem 3.1.3. Let p and q be prime numbers, let G be a (p, q)-Dress group that

is not p-hypo-elementary, and let a be an integer. Then there exists an element in

KFp(G) of the form a[G/G] +
∑

H�G aH [G/H], aH ∈ Z if and only if q|a.

In fact, we deduce Theorems 3.1.1 and 3.1.2, as special cases of a general re-

sult on kernels of morphisms between Green functors with inflation. This formalism,

which is a mix of axiomatisations that have appeared in the literature many times

before, see e.g. [34] , [8] and chapter 2 of this thesis, will be introduced in Section

3.2. In Section 3.3 we recall the concept of primordial groups for a Mackey functor.

Our main theorems on kernels of morphisms of Green functors will be proven in

Section 3.4. Section 3.5 is devoted to concrete applications, and it is there that we

prove Theorems 3.1.1, 3.1.2, and 3.1.3.

Our rings are always assumed to be associative, with a unit element. In

particular this means all homomorphisms of rings are unital, and so the 0-map is

not a homomorphism. Let R be a commutative ring. By an R-algebra we mean a

ring A equipped with a map R → Z(A), where Z(A) denotes the centre of A. If p

is a prime ideal of R, then Rp denotes the localisation of R at p. In this chapter, R

will always denote a domain.

3.2 Mackey and Green Functors with Inflation

As noted in the background section there are several different formulations of Mackey

and Green functors in the literature. For our purposes it is much more helpful to
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consider global Mackey functors rather than the more commonly used local Mackey

functors defined previously. We will use an axiomatisation that is very similar to

those of [8, 34] except that we will introduce an additional morphism, inflation.

Definition 3.2.1. A global Mackey functor with inflation (MFI) over R is a collec-

tion F of the following data.

• For every finite group G, F(G) is an R-module;

• for every injection α : H ↪→ G of finite groups, F∗(α) : F(H) → F(G) is a

covariant R-module homomorphism (which we think of as induction and will

write as IndG/H);

• for every homomorphism ε : H → G of finite groups, F∗(ε) : F(G) → F(H)

is a contravariant R-module homomorphism (which we think of as restriction

when ε is a injection which we will denote by ResG/H , and as inflation when

ε is an surjection which we will write as InfG/N );

with the following structure.

(MFI 1) Transitivity of induction: for all group injections U
β
↪→ H

α
↪→ G, we have

F∗(αβ) = F∗(α)F∗(β).

(MFI 2) Transitivity of restriction/inflation: for all group homomorphisms U
β→ H

α→
G, we have F∗(αβ) = F∗(β)F∗(α).

(MFI 3) For all inner automorphisms α : G→ G, we have F∗(α) = F∗(α) = 1.

(MFI 4) For all automorphisms α, we have F∗(α) = F∗(α−1).

(MFI 5) The Mackey condition: for all pairs of injections α : H ↪→ G and β : K ↪→ G,

we have

F∗(β)F∗(α) =
∑

g∈α(H)\G/β(K)

F∗(φg)F∗(ψg),

where φg is the composition

φg : β(K)g ∩ α(H)
cg→ β(K) ∩ gα(H) ↪→ β(K)

β−1

→ K,

cg denoting conjugation by g, and ψg is the composition

ψg : α(H) ∩ β(K)g ↪→ α(H)
α−1

→ H.
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(MFI 6) Commutativity of induction and inflation: whenever there is a commutative

diagram

H

ε
��

α // G

δ
��

H̄
β // Ḡ,

where ε, δ are surjections, and α, β are injections, we have F∗(δ)F∗(β) =

F∗(α)F∗(ε).

We will often use the following more intuitive notation: if F is an MFI, and

α : H ↪→ G is a injection, we will write ResG/H for F∗(α), and IndG/H for F∗(α).

The suppressed dependence on α and F will not cause any confusion. Similarly, if

ε : G→ Ḡ is a surjection with kernel N , we will write InfG/N for F∗(ε).

Definition 3.2.2. A Green functor with inflation (GFI) over R is an MFI F over

R, satisfying the following additional conditions.

(GFI 1) For every finite group G, F(G) is an R-algebra.

(GFI 2) For every homomorphism α : H → G of finite groups, F∗(α) is a homomor-

phism of R-algebras.

(GFI 3) Frobenius reciprocity: for every injection α : H ↪→ G and for all x ∈ F(H),

y ∈ F(G), we have

IndG/H(x) · y = IndG/H(x · ResG/H(y)),

y · IndG/H(x) = IndG/H(ResG/H(y) · x).

Many of the examples of Green functors we have already seen in Chapter 2,

are in fact GFIs.

Example 3.2.3. The following are examples of GFIs over Z.

(a) The Burnside ring functor b: recall that for a finite group G, b(G) is the free

abelian group on isomorphism classes [X] of finite G-sets, modulo the relations

[X t Y ] − [X] − [Y ] for all G-sets X, Y , and with multiplication defined by

[X] · [Y ] = [X × Y ]. Here, b∗ is the usual induction of G-sets, and b∗ is

inflation/restriction of G-sets.

(b) The representation ring functor a(F [−]) over a given field F : for a finite group

G, recall that a(F [G]) is the free abelian group on isomorphism classes [V ] of

finitely generated F [G]-modules, modulo the relations [U ⊕V ]− [V ]− [U ], and
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with multiplication defined by [U ] · [V ] = [U ⊗F V ], with diagonal G-action

on the tensor product. As in the previous example, (a(F [−]))∗ is induction of

modules, and (a(F [−]))∗ is inflation/restriction.

(c) The Grothendieck ring functor G0(F [−]) over a field F . For a field F and finite

group G, G0(F [G]) is the free abelian group on isomorphism classes of finitely

generated F [G]-modules modulo relations [L]− [M ]− [N ] for every short exact

sequence [M ]→ [L]→ [N ] and with multiplication given by [U ]·[V ] = [U⊗F V ].

Induction, restriction and inflation are defined as in the previous example.

(d) The monomial ring functor M: for a finite group G, M(G) is the free abelian

group on conjugacy classes of symbols [H,λ], where H runs over subgroups

of G, and λ runs over complex 1-dimensional representations of H, and with

multiplication defined by

[H,λ] · [K,χ] =∑
g∈H\G/K [Hg ∩K,ResHg/(Hg∩K) λ

g · ResK/(Hg∩K) χ].

If α : U ↪→ G is a injection, [H,λ] ∈ M(U), and [K,χ] ∈ M(G), then

M∗(α)([H,λ]) = [α(H), λ ◦ α−1],

M∗(α)([K,χ]) =∑
g∈α(U)\G/K

[α−1(α(U) ∩Kg),ResKg/(α(U)∩Kg) χ
g ◦ α].

We will now define morphisms, kernels, images and quotients of these functors

and in Lemma 3.2.8 we show that these satisfy the expected properties.

Definition 3.2.4. A morphism from an MFI (respectively GFI) F to an MFI

(respectively GFI) G is a collection r of R-module (respectively R-algebra) homo-

morphisms rG : F(G) → G(G) for each finite group G, commuting in the obvious

way with F∗,F∗,G∗,G∗.

Definition 3.2.5. Let F be a GFI over R. A (left) module under F is an MFI M
over R, satisfying the following conditions.

(MOD 1) For every group G, M(G) is an R-linear (left) F(G)-module, i.e. there is a

map F(G)×M(G)→M(G) factoring through F(G)⊗RM(G).

(MOD 2) For every homomorphism ε : H → G, and for all x ∈ F(G), y ∈ M(G), we

have

M∗(ε)(x · y) = F∗(ε)(x) · M∗(ε)(y).
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(MOD 3) For every injection α : H ↪→ G and for all x ∈ F(H), y ∈M(G), we have

F∗(α)(x) · y = F∗(α)(x · M∗(α)(y)).

Every GFI is a module under itself, called the (left) regular module. We also

have the obvious notions of sub-MFIs, sub-GFIs, and submodules. We will wish to

form quotient GFIs and so we will define ideals of GFIs.

Definition 3.2.6. A left ideal of a GFI is a sub-MFI that is also a submodule of

the left regular module.

Definition 3.2.7. Let r : F → G be a morphism of MFIs over R. Its kernel K is

defined as follows: for every finite group G, we define K(G) = ker(r(G) : F(G) →
G(G)); for every homomorphism ε : H → G of groups, we define K∗(ε) = F∗(ε)|F(G);

and for every injection α : H → G of groups, we define K∗(α) = F∗(α)|F(H). The

image of a morphism is defined analogously. Let F be a sub-MFI (respectively an

ideal) of the MFI (respectively GFI) G. The quotient Q = G/F is defined as follows:

for every finite group G, we define Q(G) = G(G)/F(G); for every homomorphism

ε : H → G, we defineQ∗(ε) = G∗(ε) (mod F(H)); and for every injection α : H → G,

we define Q∗(α) = G∗(α) (mod F(G)).

Lemma 3.2.8. (a) Let r : F → G be a morphism of MFIs over R. Then its kernel

is a sub-MFI of F , and its image is a sub-MFI of G.

(b) Let r : F → G be a morphism of GFIs over R. Then its kernel is an ideal of

F , and its image is a sub-GFI of G.

(c) Let F be a sub-MFI of an MFI G. Then the quotient G/F is an MFI.

(d) Let F be an ideal of a GFI G. Then G/F is a GFI.

Proof. The first two statements are an easy consequence of morphisms of MFIs

(resp GFIs) commuting with induction, restriction and inflation maps. The final

two statements follow from first two.

Example 3.2.9. The following are some motivating examples for this work.

(a) There is a GFI morphism m′C : M → a(C[−]), sending, for every finite group

G, a symbol [H,λ] ∈ M(G) to IndG/H λ ∈ a(C[G]). The kernel of m′C was

investigated by, among many others, Langlands [27], Deligne [17], Snaith [30],

Boltje [7], and Boltje–Snaith–Symonds [9].
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(b) Let F be a field. There is a GFI morphism mF : b→ a(F [−]), which maps, for

every finite group G, a G-set X to the permutation module F [X] over F . Its

kernel KF is the MFI of Brauer relations over F . In [2], an explicit description

of generators of this MFI is given in the case when F is a field of characteristic

0. The primary motivation here is to give a similarly explicit description when

F is a field of positive characteristic.

3.3 Primordial Groups and Coprimordial Groups

Recall that R denotes a domain. If S is a commutative R-algebra, and F an MFI

(respectively GFI) over R, then S ⊗R F , defined in the obvious way, is an MFI

(respectively GFI) over S. If R = Z, then we will suppress any mention of R, and

will just say “F is a MFI (respectively GFI)”. From here onwards, Q will denote

the field of fractions of R. For a prime ideal p of R, we will write Fp for Rp ⊗R F ,

and FQ for Q⊗R F .

Notation 3.3.1. Let F be an MFI, and let X be a class of groups closed under

isomorphisms. For every finite group G, we define the following R-submodules

of F(G):

IF ,X (G) =
∑

H≤G, H∈X
IndG/H F(H),

IF (G) =
∑
H�G

IndG/H F(H),

KF ,X (G) =
⋂

H≤G, H∈X
ker(ResG/H F(G)),

KF (G) =
⋂
H�G

ker(ResG/H F(G)).

Definition 3.3.2. Let F be an MFI and let G be a finite group. We say that G is

primordial for F if either G is trivial, or F(G) 6= IF (G). We denote the class of all

primordial groups for F by P(F).

We say that G is coprimordial for F if either G is trivial, or KF (G) 6= 0. We

denote the class of all coprimordial groups for F by C(F).

Remark 3.3.3. Let F be an MFI.

(a) Suppose that X is a class of finite groups that is closed under isomorphisms and

under taking subgroups, with the property that for every finite group G, we

have F(G) = IF ,X (G). Then it is shown in [33, Theorem 2.1] that X contains

the closure of P(F) under taking all subgroups.
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(b) Suppose that F is a GFI. Then it follows from axiom (GFI 3) that G is pri-

mordial for F if and only if 1F(G) 6∈ IF (G). It easily follows from this and from

axioms (GFI 2) and (MFI 6) that P(F) is closed under quotients.

We will make use of the following straightforward result, which follows from

the work of Yoshida [35] and Boltje [8].

Proposition 3.3.4. Let F be a GFI over a Euclidean domain R, and assume that

F(G) is R-torsion free for all finite groups G. Let Q denote the field of fractions of

R. Then:

1. if Q has characteristic 0, then P(F ⊗Q) = C(F ⊗Q);

2. for any prime ideal p of R, we have C(F) = C(F ⊗ Rp), and in particular

C(F) = C(F ⊗Q);

3. we have P(F) ⊆ ∪pP(F ⊗Rp);

4. if Q has characteristic 0, then for any prime ideal p of R, we have P(F⊗Rp) ⊆
{H : Op(H) ∈ C(F)}, where (p) = p ∩ Z.

Proof. 1. If Q has characteristic 0, then by [8, Proposition 6.2], we have a de-

composition of Q-modules F(G) ⊗ Q = KF⊗Q(G) ⊕ IF⊗Q(G). The result

follows.

2. Since F(G) is R-torsion free for all finite groups G, F(G) naturally injects into

F(G)⊗Rp and generates F(G)⊗Rp over Rp and similarly over Q. Moreover,

this inclusion is functorial with respect to restriction. It follows that we have a

natural isomorphism KF⊗Rp(G) = KF (G)⊗Rp, and in particular one of these

kernels is non-trivial if and only if both are, as claimed.

3. Suppose that G /∈ ∪pP(F ⊗ Rp) then in particular 1F⊗Rp(G)
∈ IF⊗Rp(G) for

all p. Since R is Euclidean it follows that 1F(G) ∈ IF (G) and as IF (G) is an

ideal in F(G) they coincide so G /∈ P(F).

4. Let G be a finite group, and let p ∈ Z be such that p | p. Let Hp(C(F)) =

{H : Op(H) ∈ C(F)}. Let (#G)p′ denote the maximal divisor of #G which is

coprime to p. Since (#G)p′ is invertible in Rp, [35, Theorem 4.1] applied with

X = {H ≤ G : H ∈ C(F)} implies that F(G) ⊗ Rp = IF⊗Rp,Hp(C(F))(G) +

KF⊗Rp,C(F)(G). By part (2) of the present lemma, we have C(F) = C(F ⊗
Rp). It then follows that KFp,C(F)(G) = KFp,C(Fp)(G) = 0 by definition, and

therefore that

Fp(G) = IFp,Hp(C(F))(G). So P(F ⊗Rp) ⊆ Hp(C(F)), as claimed.
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Example 3.3.5. (a) Every finite group is primordial for the Burnside ring functor

b, and also for bQ. Indeed, no non-zero multiple of the identity element of b(G)

can be contained in the image of induction from proper subgroups. Similarly,

every finite group is primordial for the monomial ring functor M, and also for

MQ.

(b) Recall from Example 3.2.3 (b) the representation ring functor a(C[−]). It

follows from Brauer’s induction Theorem [5, Theorem 5.6.4] that P(a(C[−]))

is contained in the class of elementary groups, i.e. of direct products of finite

cyclic groups by p-groups. Moreover, it is a theorem of Green [20] that in fact

P(a(C[−])) consists precisely of the elementary groups.

(c) Recall from Example 3.2.9 (a) the GFI morphism m′C : M→ a(C[−]) from the

monomial ring functor to the complex representation ring functor. It follows

from Brauer’s induction theorem that (m′C)G is surjective for every finite group

G, so by the previous example, P(Imm′C) consists precisely of the elementary

groups.

(d) Recall from Example 3.2.9 (b) the GFI morphism mQ : b → a(Q[−]). Let

q be a prime number. Solomon’s induction theorem (corollary 2.3.5) implies

that P(Im(mQ)q) is contained in the class of q-quasi-elementary groups, i.e. of

semidirect products C oU , with C finite cyclic and U a q-group. Moreover, it

is a theorem of Dokchitser [18, Theorem 1] that if G is q-quasi-elementary, then

the trivial character of G is not in the image of induction of trivial characters

from proper subgroups, so P(Im(mQ)q) is precisely the class of all q-quasi-

elementary groups.

(e) Let mQ be as above. It follows from Artin’s induction Theorem [5, Theorem

5.6.1] that P(Im(mQ)Q) is the class of finite cyclic groups.

(f) Let p be a prime number, and let mFp : b→ a(Fp[−]) be as in Example 3.2.9 (b).

Dress’ induction theorem (Theorem 2.3.10) implies that P(ImmFp) is contained

in the class of all groups that are (p, q)-Dress groups for some prime number q.

We will show in Theorem 3.5.1 that the trivial representation of a (p, q)-Dress

group is not in the image of induction of trivial representations from proper

subgroups, so in fact, P(ImmFp) is precisely the class of all finite groups that

are (p, q)-Dress groups for some prime number q.
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3.4 The Primitive Quotient

In this section, we prove our main theorems on kernels of morphisms of GFIs.

The main results of the section are Theorem 3.4.6, 3.4.7, and 3.4.9. Recall that

throughout R denotes a domain.

Lemma 3.4.1. Let m : F → G be a morphism of GFIs over a ring R with kernel

K, and let G be a finite group. Then the following are equivalent:

(i) the group G is not primordial for Imm;

(ii) for each proper subgroup H of G, there exists an element xH ∈ F(H) such

that x = 1F(G) +
∑

H�G IndG/H(xH) ∈ K(G).

Proof. By Remark 3.3.3 (b), G is not primordial for Imm if and only if

mG(1F(G)) ∈
∑
H�G

IndG/H(mH(F(H))) = mG

∑
H�G

IndG/H(F(H)).

This is equivalent to the existence of elements xH ∈ F(H) for H � G such that

x = 1F(G) +
∑

H�G IndG/H(xH) ∈ K(G).

Definition 3.4.2. Let G be a finite group, let F be a GFI over R, and let M be a

module under F . Let D(G) be an R-subalgebra of the centre of F(G). Define the

set of D-imprimitive elements of M(G) by

ImprimM,D(G) = D(G) ·

∑
H�G

IndG/HM(H) +
∑

16=N/G
InfG/NM(G/N)

 .

This is an R-submodule of M(G). Define the D-primitive quotient of M(G) to be

the quotient of R-modules

PrimM,D(G) =M(G)/ ImprimM,D(G).

When D(G) is generated by 1F(G) over R, we will drop it from the notation.

Notation 3.4.3. For the rest of the section, we put ourselves in the following

situation. We fix a morphism m : F → G of GFIs over a domain R with the

property that F(H) is R-torsion free for all finite groups H, and we let K denote

its kernel. Recall from Lemma 3.2.8 that K is an ideal of F . Further, we fix a finite

group G, and an R-subalgebra D(G) of the centre of F(G). Assume for the rest of

the section that the R-module F(G) is generated by IF (G) and D(G).
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Lemma 3.4.4. Under the hypotheses of Notation 3.4.3, letM be any module under

F , and let x be any element of M(G). Then the R-submodule of M(G) generated

by D(G) · IM(G) and D(G) · x is an F(G)-submodule.

Proof. Let Θ be an element of the R-module D(G) · IM(G) + D(G) · x, and let

α ∈ F(G). If α = IndG/H y for some y ∈ F(H), where H is a proper subgroup

of G, then by property (MOD 3), α · Θ = IndG/H(y · ResG/H Θ) ∈ IM(G). If, on

the other hand, α ∈ D(G), then α · Θ ∈ D(G) · IM(G) + D(G) · x by definition.

Since F(G) is assumed to be generated by IF (G) and by D(G), it follows that

α ·Θ ∈ D(G) · IM(G) +D(G) · x for all α ∈ F(G).

Lemma 3.4.5. Under the hypotheses of Notation 3.4.3, suppose that the equivalent

conditions of Lemma 3.4.1 are satisfied for m and G, and let x ∈ K(G) be an element

of the form x = 1F(G) +
∑

H�G IndG/H(xH), where xH ∈ F(H). Then

K(G) = D(G) · IK(G) +D(G) · x.

Proof. Let I = D(G) · IK(G) + D(G) · x ⊆ K(G). We claim that K(G) ⊆ I.

Let y ∈ K(G). Lemma 3.4.4 implies that I is an ideal of F(G). Since we have

x ∈ D(G) · x ⊆ I, it follows that y · x ∈ I. Also,

y · x− y =
∑
H�G

y · IndG/H(xH) =
∑
H�G

IndG/H(ResG/H(y) · xH)

is in IK(G), and therefore in I. It follows that y = y · x + (y − y · x) ∈ I. Thus

K(G) ⊆ I, and the proof is complete.

Theorem 3.4.6. Under the hypotheses of Notation 3.4.3, suppose that there is a

non-trivial normal subgroup N of G such that G/N is not primordial for Imm.

Then PrimK,D(G) is trivial.

Proof. By Lemma 3.4.1, applied to the quotient G/N , there exists an element z =

1F(G/N) +
∑

H/N�G/N Ind(G/N)/(H/N)(xH) ∈ K(G/N). Since N is non-trivial, the

inflation x = InfG/N z is contained in ImprimK,D(G). It follows from Lemma 3.4.5

that K(G) = D(G) · IK(G) +D(G) · x ⊆ ImprimK,D(G), as claimed.

Theorem 3.4.7. Under the hypotheses of Notation 3.4.3, suppose that G is non-

trivial, and that PrimK,D(G) is non-trivial. Then G is an extension of the form

1 → Sd → G → H → 1, where S is a finite simple group, and H is primordial for

Imm.
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Proof. By the existence of chief series, there exists a normal subgroup of G that is

isomorphic to Sd, where S is a finite simple group, and d ≥ 1 is an integer. By

Theorem 3.4.6, the quotient G/Sd is primordial for Imm.

Assumption 3.4.8. In addition to the assumptions of Notation 3.4.3, we now

assume that:

• the ring R is a Notherian domain;

• for every normal subgroup N of G, the inflation map InfG/N : F(G/N) → F(G)

is injective;

• for every quotient G/N , the R-module F(G/N) is generated by IF (G/N) and 1.

In particular, the subalgebra D(G) will be assumed to be generated by 1F(G) over

R, and will now be dropped from the notation.

Theorem 3.4.9. Under the hypotheses of Notation 3.4.3 and Assumption 3.4.8,

suppose that G is primordial for FQ and not primordial for Imm. Let a be the

ideal of R generated by all those a ∈ R for which there exists a proper quotient

G/N and an element a1F(G/N) + y ∈ K(G/N) with y ∈ IF (G/N). Then PrimK(G)

is isomorphic to R/a and is generated by the image of any element of the form

x = 1F(G) +
∑

H�G IndG/H xH ∈ K(G).

Proof. By Lemma 3.4.5, the quotient PrimK(G) is generated by any x ∈ K(G) of

the form x = 1F(G) +
∑

H�G IndG/H xH , where xH ∈ F(H). Since by assumption

G is primordial for FQ, Remark 3.3.3 (b) implies that ax 6∈ IK(G) for any non-zero

a ∈ R. It also follows from the same remark and from the assumptions 3.4.3 and 3.4.8

that any element of K(G) can be uniquely written as a1F(G) + y, where a ∈ R and

y ∈ IF (G), and analogously for any element of K(G/N) for every normal subgroup

N of G. We deduce that the annihilator a ⊆ R of x + ImprimK(G) ∈ PrimK(G)

is generated, as an R-module, by all those a ∈ R for which there exists a non-

trivial normal subgroup N of G and an element a1F(G/N) + y ∈ K(G/N), where

y ∈ IF (G/N). Moreover, we then have PrimK(G) ∼= R/a, as claimed.

Corollary 3.4.10. Under the hypotheses of Theorem 3.4.9, if all proper quotients

of G are primordial for (Imm)Q, then PrimK(G) is isomorphic to R.

Proof. Since all proper quotients G/N are primordial for (Imm)Q, Remark 3.3.3

(b) implies that the ideal a of Theorem 3.4.9 is zero.

Corollary 3.4.11. Under the hypotheses of Theorem 3.4.9, suppose that there exists

a prime ideal p of R such that for every prime ideal q 6= p there exists a proper

42



quotient of G that is not primordial for (Imm)q. Then PrimK(G) ∼= R/I, where I

is a p-primary ideal.

Proof. Let q 6= p be a prime ideal of R. By Lemma 3.4.1, applied to the map

Fq → Gq and to a proper quotient G/N 6∈ P((Imm)q), there exists a ∈ a that is not

in q, where a is the ideal of Theorem 3.4.9. Since R is a Notherean domain, this

implies that a = I for some primary ideal I.

Remark 3.4.12. In the case that R is Dedekind all p-primary ideals are of the

form pn. In this case corollary 3.4.11 states that PrimK(G) ∼= R/pn where n is the

smallest non-negative integer for which there exists a proper quotient G/N and an

element a1F(G/N) + y ∈ K(G/N) with a ∈ pn \ {0} and InfG/N y ∈ IF (G).

Corollary 3.4.13. Under the hypotheses of Theorem 3.4.9, suppose that for every

non-zero prime ideal p of R there exists a proper quotient of G that is not primordial

for (Imm)p. Then PrimK(G) is trivial.

Proof. Let p be any non-zero prime ideal. By Lemma 3.4.1, applied to the map

Fp → Gp and to a proper quotient G/N 6∈ P((Imm)p), there exists a ∈ a that is not

in p, where a is the ideal of Theorem 3.4.9. Since R is a Notherean domain, either

1 ∈ a or a is contained in some maximal hence prime ideal, a contradiction.

3.5 Applications

Throughout this section we fix a prime p and consider the map mFp as in example

3.2.9 (b).

Theorem 3.5.1. Let q be a prime number, let G be a (p, q)-Dress group that is not

p-hypo-elementary, and let a be an integer. Then a[G/G] ∈ IImmFp (G) if and only

if q|a.

Proof. Since G is a (p, q)-Dress group, it is an extension of a q-group U by a normal

p-hypo-elementary subgroup N = P o C, where P is a p-group and C is cyclic of

order coprime to pq.

First we prove that if a[G/G] ∈ IImmFp (G), then q|a. Suppose that there

exist integers aH for H � G such that

aFp[G/G] =
∑
H�G

aHFp[G/H] ∈ a(Fp[G]),

where the sum runs over representatives of conjugacy classes of subgroups of G, and

where Fp[G/H] ∈ a(Fp[G]) denotes the linear permutation module IndG/H 1H over
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Fp. By restricting to the normal p-hypo-elementary subgroup N , we find that

aFp[N/N ] =
∑
H�G

aH
∑

g∈G/HN

Fp[N/N ∩ gHg−1]. (3.5.2)

By Conlon’s Induction (Theorem 2.3.8), p-hypo-elementary groups are primordial

for ImmFp , so the coefficient of Fp[N/N ] on the right hand side of equation 3.5.2

must be equal to a:

a =
∑

N≤H�G
aH ·#(G/H).

But for every H ≤ G that contains N , the quantity #(G/H) is divisible by q, so a

is divisible by q, as claimed.

Now we show that q[G/G] ∈ IImmFp (G). First, we treat a special case:

assume that P is the trivial group, so that G ∼= C o U is non-cyclic q-quasi-

elementary, where C is cyclic of order coprime to pq. Assume further that ei-

ther p 6= q, or U acts faithfully on C. By Theorem 2.3.7, there exists an element

x = q[G/G] +
∑

H�G aH [G/H] ∈ KQ(G). By Artin’s Induction Theorem (The-

orem 2.3.1), this is equivalent to the statement that there exists an x ∈ KQ(G)

as above such that for all cyclic subgroups H ≤ G, we have fH(x) = 0, where

fH : b(G) → Z is defined on a G-set X as the number of fixed points #XH .

But under the hypotheses on G, the cyclic subgroups of G are precisely the p-

hypo-elementary subgroups of G. By Conlon’s Induction Theorem [15, Lemma

81.2], the above statements are therefore equivalent to the existence of an element

x = q[G/G] +
∑

H�G aH [G/H] ∈ KFp(G), as required.

Now, we deduce the general case. Given a non-p-hypo-elementary (p, q)-Dress

group G, let G̃ = G/P . This is a non-cyclic q-quasi-elementary group, G̃ = C o U ,

where U is a q-group, and C is cyclic of order coprime to pq. Let K be the kernel

of the action of U on C. If K = U and p = q, then G̃ ∼= C × U , and G is p-hypo-

elementary, contradicting the assumptions. Otherwise, Ḡ = G̃/K is as in the special

case above, so there exists an element x = q[Ḡ/Ḡ] +
∑

H�Ḡ aH [Ḡ/H] ∈ KFp(Ḡ).

Taking the inflation of x to G yields the desired element of KFp(G), and the proof

is complete.

Corollary 3.5.3. Let q be a prime number. Then P((ImmFp)q) is the class of

(p, q)-Dress groups.

Proof. By Dress’ Induction Theorem in the version as stated in [2, Theorem 9.4],

and by Remark 3.3.3 (a), all primordial groups for (ImmFp)q are (p, q)-Dress groups.

The reverse inclusion follows from Theorem 3.5.1.
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Theorem 3.5.4. Let G be a finite group that is not a (p, q)-Dress group for any

prime number q. Then:

(a) if all proper quotients of G are p-hypo-elementary, then PrimKFp (G) ∼= Z;

(b) if q is a prime number such that all proper quotients of G are (p, q)-Dress

groups, and at least one of them is not p-hypo-elementary, then PrimKFp (G) ∼=
Z/qZ;

(c) if there exists a proper quotient of G that is not a (p, q)-Dress group for any

prime number q, or if there exist distinct prime numbers q1 and q2 and, for

i = 1 and 2, a proper quotient of G that is a non-p-hypo-elementary (p, qi)-

Dress group, then PrimKFp (G) is trivial.

Moreover, in all cases, PrimKFp
(G) is generated by any element of KFp(G) ⊆ b(G)

of the form [G/G] +
∑

H�G aH [G/H], aH ∈ Z.

Proof. By Conlon’s Induction Theorem 2.3.8, P((ImmFp)Q) is the class of p-hypo-

elementary groups. Let q be a prime number. By Corollary 3.5.3, P((ImmFp)q)

is the class of (p, q)-Dress groups, and P(ImmFp) is the class of all groups that

are (p, q′)-Dress groups for some prime number q′. Moreover, if U is a non-p-hypo-

elementary (p, q)-Dress group, then by Theorem 3.5.1, there exists an element of

KFp(U) ⊆ b(U) of the form q[U/U ] +
∑

H�U aH [U/H]. Part (a) of the theorem

follows from Corollary 3.4.10. Finally, note that if q1 and q2 are distinct prime

numbers, then a finite group is both a (p, q1)-Dress group and a (p, q2)-Dress group

if and only if it is p-hypo-elementary. Parts (b) and (c) of the theorem therefore

follow from Corollaries 3.4.11 and 3.4.13, respectively.
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Chapter 4

Brauer Relations, in Positive

Characteristic Semisimplified

4.1 Introduction

In this chapter we consider a simplified version of our main problem; the question of

when two G sets give rise to two Fp[G]-permutation modules which are not necessar-

ily isomorphic, but have the same composition factors. It is strictly weaker for two

Fp[G]-permutation modules to have the same composition factors than be isomorphic

as Fp[G]-modules, this is made precise in Corollary 4.2.3 below. In fact this require-

ment is also strictly weaker than requiring that the associated Q[G]-permutation

modules are isomorphic see Remark 4.2.5. To study this we will consider the kernel

between the map of GFIs mFp,ss : b(−) → G0(Fp[−]) and we will refer to elements

of this kernel as Brauer relations in positive characteristic semisimplified.

The main goal of this chapter is to prove Theorem 4.3.1 in Section 4.3.

This will provide a template for our analysis on the final case considered next chap-

ter.

4.2 Primordial and Coprimordial Groups for Im(mFp,ss)

As stated in the introduction, our approach will be to view b(−) and G0(Fp[−])

as Green functors with inflation with a GFI map mFp,ss between them, and to

utilise the machinery developed in the previous chapter to describe the elements of

ker(mFp,ss)(−) = KFp,ss(−) and its structure as an MFI.

The functors taking a finite group G to b(G) and to G0(Fp[G]) for any prime
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p are both GFIs over Z, furthermore the map mFp,ss defined by:

mFp,ss(G) : b(G) −→ G0(Fp[G])

[H] 7−→ IndG/H(1)

is a morphism of GFIs over Z. By Lemma 3.2.8 the kernel of this map KFp,ss(−)

is an ideal of b(−). We will refer to elements of KFp,ss(G) as Brauer relations for

G over Fp semisimplified. We now hope to exploit the machinery of chapter 3 to

classify elements of the kernel. We note that in our situation the assumptions of

3.4.3 with D(G) = 1 and 3.4.8 are satisfied so we may proceed to use the results

of the previous chapter. That is to say that the Burnside ring of a finite group is

a free Z-module and is generated by the image of induction plus the trivial G-set,

and the inflation map is injective. We fix the following notation in line with that of

chapter 3.

Notation 4.2.1. Let G be a finite group, and let KFp,ss(G) denote the kernel of

the map mFp,ss : b(G)→ G0(Fp[G]). Let Imprim(G) = {
∑

H<G IndG/H(KFp,ss(H))+∑
16=N/G InfG/N (KFp,ss(G/N))} and finally let PrimKFp,ss(G) = KFp,ss(G)/ Imprim(G).

Lemma 4.2.2. The coprimordial groups for Im(mFp,ss) ⊆ G0(Fp[−]) are precisely

the cyclic groups of order coprime to p.

Proof. Theorem 2.3.1 combined with Proposition 3.3.4 show that C(G0(Fp[−])) =

P(G0(Fp[−]) ⊗ Q) is contained in the class of cyclic groups of order coprime to p.

It remains to show the reverse inclusion. Let Cm be a cyclic group of order coprime

to p, we will exhibit an element in Im(mFp,ss) which is in the kernel of every proper

restriction map. One may check that the element m(Fp,ss)(
∑

n|m µ(n)n[Cn]), where

µ is the Möbius function, is a non-zero element of Im(m(Fp,ss))(Cm) which restricts

to zero on every proper subgroup. It follows that Cm is coprimordial.

Corollary 4.2.3. For cyclic groups C of order coprime to p the map mFp,ss(C) is

injective.

Remark 4.2.4. The previous Corollary and preceding lemma follow immediately

from Theorem 2.3.1 and the observation that the rank of Im(mFp,ss) is precisely the

number of conjugacy classes of subgroups which are not cyclic of order coprime to

p.

Remark 4.2.5. Corollary 4.2.3 combined with the analogous statement for mQ (see

[2], [5]) shows that ker(mQ)(G) ⊂ ker(mFp,ss)(G) for all G with equality if p - |G|.
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We will make extensive use of this later. We will refer to elements of ker(mQ) as

Brauer relations over Q.

Example 4.2.6. The inclusion in Remark 4.2.5 is in general strict. Over fields of

characteristic 0 cyclic groups admit no Brauer relations, but the kernel of mFp,ss

need not be trivial. For example we have a relation we have 2[C2]− [e] ∈ KF2,ss(C2)

for C2 over G0(F2[C2]). Indeed the regular representation of C2 is indecomposable

as an F2[C2]-module, and has as its composition factors two copies of the trivial

representation.

Lemma 4.2.7. Let p be a prime, and let Cp be the cyclic group of order p then

KFp,ss(Cp) is generated by the relation p[Cp]− [{e}].

Proof. It is easy to verify that the claimed element of b(Cp) is in

KFp,ss(Cp). Furthermore since Im(mFp,ss) ⊇ 〈1〉Z the kernel has rank 1. Clearly no

integral relation divides p[Cp]− [{e}] so we are finished.

Having identified the coprimordial groups for Im(mFp,ss) Proposition 3.3.4

states that the primordial groups for Im(mFp,ss) are a subclass of q-quasi-elementary

groups with cyclic part of order coprime to p. Note that we must allow p = q.

Lemma 4.2.8. The primordial groups for Im(mFp,ss), are precisely the groups H

such that for some prime q, Oq(H) is cyclic of order prime to p.

Proof. As previously stated it is a consequence of Lemma 4.2.2 and Proposition

3.3.4 that every primordial group is of this form. In the case p - #H the observation

in Remark 4.2.5 shows that H is primordial for Im(mFp,ss) if and only if it is for

Im(mQ). Theorem 4.3.6 and Theorem 2.3.7 show that the quasi-elementary groups

are primordial for Im(mQ).

So we may assume H is p-quasi-elementary. If H were not primordial for Im(mFp,ss),

then in particular 1G0(Fp[H]) = 1Im(mFp,ss)(H) ∈ IIm(mFp,ss)
(H). It follows that for non-

primordial groups there is a non-zero element [H] +
∑

K<H [K] in

KFp,ss(H). We split into two cases, that where H is not a p-group and the case

where it is.

1. If H has a non-trivial coprime to p cyclic subgroup C then restriction of any

element of KFp,ss(H) to this subgroup must vanish by Corollary 4.2.3. Since

p | [H : C] it follows from direct calculation that any relation must have

coefficient of 1G0(Fp[H]) divisible by p. It follows that in this case H must be

primordial.
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2. Otherwise H is a p-group and upon restriction to a central cyclic subgroup of

order p any relation must be of the form a(p[Cp]− [e]) by Lemma 4.2.7. Direct

calculation shows that for any K such that Cp < K < H the restriction of

[K] to b(Cp) is [K : Cp][Cp]. By an identical argument to the previous case, it

follows the coefficient of 1G0(Fp[H]) is divisible by p. This completes the proof.

Thus we have identified the primordial groups for Im(mFp,ss) as the set of

quasi-elementary groups, for which the cyclic part C is coprime to p.

We can phrase this as an induction theorem.

Corollary 4.2.9. Let G be a finite group and let p be a prime. Let T be the set

of conjugacy classes of primordial for Im(mFp,ss) subgroups of G, that is subgroups

which are quasi-elementary with cyclic part coprime to p then:

1G0(Fp[G]) =
∑
H∈T

aH IndG/H(1G0(Fp[H]))

where aH are integers.

Proof. This follows immediately from having identified the primordial groups for

Im(mFp,ss) in Lemma 4.2.8.

4.3 Classification of PrimKFp,ss(G) for Soluble G

Our aim in this section is to prove the following theorem which gives a necessary

condition on a soluble group G for PrimKFp,ss(G) to be non-trivial.

Theorem 4.3.1. Let p be a prime, and G be a finite group of order divisible by p.

All Brauer relations for G0(Fp[G]) are linear combinations of relations induced and

inflated from subquotients of the following forms:

1. A cyclic group Cp of order p,

2. non-cyclic q-quasi-elementary groups with order coprime to p,

3. (Cl o Cqr)× (Cl o Cqs) for primes q, l with l 6= p and the action faithful,

4. an extension 1 → Sd → E → H → 1 with S simple, d a positive integer,

H = CoQ is a quasi-elementary group whose cyclic part C is of order coprime

to p, and Sd is a unique minimal normal subgroup of E.
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We now characterise which finite groupsGmay have non-trivial PrimKFp,ss(G),

and explicitly write down all such groups in the soluble case.

Lemma 4.3.2. Let G be a finite group which admits primitive relations over Fp,ss
then G is an extension of the following form:

1→ Sd → G→ H → 1 (4.3.3)

where S is a finite simple group, H is quasi-elementary with cyclic part coprime

to p. Furthermore if G is not primordial for Im(mFp , ss) then we may describe

PrimKFp,ss(G) as follows:

1. If all quotients of G are cyclic of order coprime to p then PrimKFp,ss(G) is

isomorphic to Z,

2. if all quotients of G are q-quasi-elementary with cyclic part coprime to p and

at least one of them is not cyclic then PrimKFp,ss(G) = Z/qZ and,

3. otherwise it is trivial.

Furthermore in all cases Prim(G) is generated by any Brauer relation of the form

[G] +
∑

H<G nH [H].

Proof. Theorem 3.4.7 along with the identification of the primordial groups for

Im(mFp,ss) in Lemma 4.2.8 shows that G is an extension of the claimed form and

that the generator of PrimKFp,ss(G) is as claimed if it exists. The existence of such

an element follows from Corollary 4.2.9.

If all proper quotients are cyclic of order coprime to p then they are coprimordial for

Im(mFp,ss) and so primordial for Im(mFp,ss)Q by Proposition 3.3.4. Corollary 3.4.10

then shows that PrimKFp,ss(G) = Z in this case.

It remains to consider the case where there exists a quotient which is q-quasi-

elementary with cyclic part prime to p but not cyclic of order prime to p. First

we note that for non-cyclic q-quasi-elementary groups [18, Theorem 1] shows that

there exists a relation over Q of the form qG+
∑

H�G aH IndG/H(1) with the aH in

Z and hence by Remark 4.2.5 over G0(Fp[−]). It follows from Lemma 4.2.8 that G

can’t appear with coefficient 1. Furthermore Lemma 4.2.7, combined with inflation

shows that there is a relation p[Cpr ] − [Cpr−1 ] for any Cpr . Corollaries 3.4.11 and

3.4.13 of Theorem 3.4.9 then give the claimed result.

We now classify which groups G of the form (4.3.3) have PrimKFp,ss(G) non-

trivial.
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Corollary 4.3.4. Let G be a finite non-soluble group which admits a primitive

relation over Fp,ss. Then G is of the form described in Lemma 4.3.2 with S non-

cyclic, H injects into Out(Sd) and no proper non-trivial subgroup of Sd is normal

in G. Furthermore every such group admits a primitive relation.

Proof. The Corollary follows immediately from Lemma 4.3.2 upon noting that for

non-soluble G in such an extension every quotient is quasi-elementary with cyclic

part coprime to p if and only if the action of G on Sd is faithful and no proper non-

trivial subgroup of Sd is normal in G. Since the centre of Sd is trivial the action of

G is faithful if and only if G/(Sd) = H ↪→ Out(Sd).

Since the inclusion in Remark 4.2.5 is an equality when we restrict to groups

of order coprime to p and since there is a full classification of Brauer relations in

characteristic zero in [2] we now need only consider G whose order is divisible by

p. Furthermore, in light of Corollary 4.3.4 we restrict to the soluble case. We will

make repeated use of the following result.

Lemma 4.3.5. Let G be a finite group, and let W an abelian normal subgroup

with quotient H. Suppose that there exists a normal subgroup K of H such that

gcd(#K,#W ) = 1 and such that no non-identity element of W is fixed under the

natural conjugation action of K on W . Then G ∼= W oH.

Proof. We may view W as a module under H. Since K and W have coprime orders,

the cohomology group H i(K,W ) vanishes for i > 0, so the Hochschild–Serre spectral

sequence [13, Theorem 6.3] gives an exact sequence

H2(H/K,WK)→ H2(H,W )→ H2(K,W ).

The last term in this sequence also vanishes by the coprimality assumption, while

the first term vanishes, since WK is assumed to be trivial. So H2(H,W ) = 0, and

so the extension G of H by W splits.

Theorem 4.3.6. Suppose that G is a soluble group, of order divisible by p, and

PrimKFp,ss(G) is non-trivial. Then G is of one of the following forms:

1. a p-group or,

2. a p-quasi-elementary group or,

3. (Cl)
d oH with l a prime, H quasi-elementary, with cyclic part coprime to p,

acting faithfully and irreducibly on (Cl)
d or,
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4. (Cl o Cpr)× (Cl o Cps) with faithful action and l a prime.

Proof. The first two parts follow from taking trivial extensions of p-groups and

quasi-elementary groups respectively in Lemma 4.3.2 since p must divide the order

of G trivial extensions of cyclic groups are not included. Note that for G as in

Lemma 4.3.2 to be soluble is equivalent to taking S = Cl. By Lemma 4.3.2 G is

therefore an extension of the form:

1→W := (Cl)
d → G→ H := C oQ→ 1.

Where H is quasi-elementary with cyclic part coprime to p. We wish to show that

under our assumptions G is a split extension or lies in case 1 or 2 of the theorem. If

l - #H then by Schur-Zassenhaus the result follows. Suppose that that l | #H, we

split into the following cases C is trivial, Q is trivial, and neither C nor Q is trivial.

1. C is trivial. In this case G is a q-group.

2. Q is trivial. Either G is an l group or C admits a subgroup Cl′ of order

coprime to l. Either WCl′ is trivial, in which case Lemma 4.3.5 with K = Cl′

allows us to conclude G is split or {e} 6= V := WCl′ / G. Now G/V must be

quasi-elementary and (W/V )Cl′ = {e}. Since this quotient must be l-quasi-

elementary, in fact W = V and G was l-quasi-elementary with cyclic part

coprime to p. We must have l = p as p | #G by assumption.

3. Both Q and C are non trivial. If C is an l group then let L denote the

l-sylow subgroup of G, clearly L /G. Let Φ(L) be the Frattini subgroup of L,

if it is trivial then L = Cnl and G = Cnl o Q and so G is a split extension as

claimed. Otherwise Φ(L) / G and G/Φ(L) must be q-quasi-elementary with

cyclic part prime to p as PrimKFp,ss(G) is non-trivial. Thus L/Φ(L) must be

cyclic and we see that l 6= p. As L/Φ(L) is cyclic, L is also cyclic. It follows

that in this case that G is p-quasi-elementary.

If C is not an l group then let K = Cl′ as before, if WK is trivial we are

done by Lemma 4.3.5, if not then letting V = WK we see that G/V must be

q-quasi-elementary with cyclic part coprime to p, if l = p this forces q = p

and WK = W so G is p-quasi-elementary. In the remaining case l 6= p and

we have that, in particular, (W/V )K must be trivial, it follows that this G/V

and thus G must be l-quasi-elementary with cyclic part coprime to p, but we

assumed p | #G a contradiction.
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It remains to consider the split sequence

1→ (Cl)
d → G→ H → 1.

We subdivide into three cases; in the first l = p, and H is q 6= p-quasi-

elementary, in the second l 6= p and H is p-quasi-elementary, and finally l = p and

H is p-quasi-elementary, in all cases the cyclic part of H is coprime in order to p.

1. In the first case G = (Cp)
d o (C o Q) where Q is a q-group and p - #C.

Faithfulness: Suppose C o Q acts with kernel K 6= {e} then the quotient

G/K must be q-quasi-elementary with cyclic part prime to p, but this is not

possible since p 6= q. Irreducibility: Suppose that the action were reducible

so there exists V = (Cp)
d1 / G with d1 < d. The corresponding quotient must

be q-quasi-elementary of order coprime to p a contradiction. We conclude that

the action is faithful and irreducible.

2. In the second case G = (Cl)
d o (C o P ) where l 6= p and P is a p-group.

Faithfulness: Suppose that CoP acts with kernel K 6= {e} then the quotient

G/K must be p-quasi-elementary. In particular, this forces d = 1 and K > C

so G was p-quasi-elementary. Irreducibility: Assuming that the action is

faithful, either it is irreducible in which case we find ourselves in case 3 of

the theorem or it is reducible. If the action on W := Cdl were reducible, then

there exists V < W a normal subgroup of G, the quotient group G/V must

then be p-quasi-elementary. By assumption l 6= p so the l-Sylow of G/V must

be cyclic, if G = (Cl)
d o (C o P ) with l | #C then this would be impossible.

We conclude that if the action is reducible then G = ((Cl) × V ) o (C o P )

with l - #(C o P ) with semisimple action, now quotienting by Cl shows via

an identical argument that V ∼= Cl and so we find ourselves in part 4 of the

theorem.

3. Finally G = (Cp)
d o (C o P ). Faithfulness: We claim either this group

is p-quasi-elementary or the action is faithful. If the action had a kernel K

the quotient by the kernel must be p-quasi-elementary, and so C 6 K and

G was already p-quasi-elementary. Irreducibility: If the action is faithful

then we claim that it must be irreducible. Assume otherwise then there exists

V = (Cp)
d1 / G such that G/V is p-quasi-elementary, this forces C to act

trivially on (Cp)
d/V and so ((Cp)

d)C 6= 0 as C has order coprime to p and

thus the action is semisimple. We now require G/((Cp)
d)C to be p-quasi-

elementary, now we may assume that the complement of ((Cp)
d)C in (Cp)

d is
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non-trivial (else C is normal and G quasi-elementary) and thus the quotient

can’t be p-quasi-elementary. Thus either the action is faithful and irreducible

or G is quasi-elementary.

Theorem 4.3.7. Let G be a p-quasi-elementary group which is not cyclic of order

p, then PrimKFp,ss(G) is trivial.

Proof. The rank of the space of relations of G is the number of conjugacy classes

of subgroups of G which are not cyclic of order coprime to p. We will construct a

sublattice of imprimitive relations which has full rank, then proceed to show it is

saturated.

Let G = Cm o P with P a p-group and p - m, then subgroups which are not cyclic

of order coprime to p are determined up to conjugacy by their intersection with Cm

and the selection of a non-trivial subgroup of the normaliser of this intersection with

P . Since the intersection with Cm is characteristic in G describing these subgroups

up to conjugacy amounts to picking a subgroup of Cm and a non-trivial subgroup

of P . Fix a labelling on the subgroup lattice of P up to G-conjugacy let Pi,j be the

jth subgroup of size pi these subgroups are then characterised up to conjugacy as

CsoPi,j where s | m and i 6= 0. Each such subgroup admits an imprimitive relation

inflated from any quotient Cp namely p[CsoPi,j ]− [CsoPi−1,k] where Pi,j > Pi−1,k.

Note that as every maximal subgroup of a p-group has index p we may use these

relations to create the relation [Cs o Pi,j ]− [Cs o Pi,k] for any Pi,k.

The sublattice:

We now exhibit a full rank sublattice of imprimitive relations. Take the span of

p[Cs o Pi,0] − [Cs o Pi−1,0] as we range over s | m and i > 1 along with relations

[CsoPi,0]− [CsoPi,j ] for s | m, and i, j > 0. Clearly this set is linearly independent

and of the correct size, so we have a full rank sublattice;

L = 〈p[Cs o Pi,0]− [Cs o Pi−1,0], [Cs o Pi,0]− [Cs o Pi,j ]|i ∈ I, j ∈ J〉Z.

Saturation:

The sublattice L is in fact, saturated, suppose that there exists a relation θ such that

nθ =
∑

s|m(
∑

i>0 as,i(p[CsoPi,0]−[CsoPi−1,0])+
∑

j>0 bs,i,j([CsoPi,0]−[CsoPi,j ]))
for a relation θ we seek to show that n | as,i, bs,i,j for all s, i, j in the indexing sets.

Since the coefficient of [Cs o Pi,j ] on the right hand side is bs,i,j we may conclude

that n | bs,i,j , subtracting all terms in the second sum from both sides we then

have nθ′ =
∑

s|m
∑

i>0 as,i(p[Cs o Pi,0]− [Cs o Pi−1,0]), the coefficient of [Cs o P0,0]
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on the right hand side is −as,1 and so n | as,1. Now the coefficient of [Cs o Pi,0] is

pas,i − as,i+1 and so if n | as,i then n | as,i+1 and we may proceed inductively to

show n | as,i for all s, i in the indexing set.

Thus we have a full rank saturated sublattice of imprimitive relations, it follows

that every relation is imprimitive.

Theorems 4.3.6 and 4.3.7 allow us to conclude the following.

Theorem 4.3.8. Let G be a finite soluble group, p a prime, PrimKFp,ss(G) is non-

trivial if and only if:

1. G ∼= Cp, then PrimKFp,ss(G) ∼= Z or,

2. G ∼= (Cl)
d oH with H q-quasi-elementary acting faithfully and irreducibly on

(Cl)
d, then PrimKFp,ss(G) ∼= Z/qZ or,

3. for l 6= p a prime G = (Cl o Cqr)× (Cl o Cqs), PrimKFp,ss(G) ∼= Z/qZ or,

4. G is quasi-elementary of order coprime to p with PrimKFp,ss(G) as over Q.

Combining this with Corollary 4.3.4 gives Theorem 4.3.1.

4.4 Some Explicit Relations

We now establish generators of PrimKFp,ss(G) for the soluble groups of order divisible

by p admitting primitive relations. Since the inclusion in Remark 4.2.5 becomes an

equality when p - #G, this combined with the classification in [2, Theorem A]

completely determines all Brauer relations for soluble groups over G0(Fp[G]).

Lemma 4.4.1. PrimKFp,ss(Cp) is generated by p[Cp]− [{e}]. PrimKFp,ss((Cl)
d oH)

with H quasi-elementary acting faithfully is generated by the same relation as over

Q for d > 1.

Proof. The first claim is identical to Lemma 4.2.7.

For the second, note that the Brauer relation overQ for d > 2 given in [2, Proposition

6.4] has coefficient of [G] equal to 1 and, as its still a relation in this setting (see

Remark 4.2.5) it must generate PrimKFp,ss(G) by Lemma 4.3.2, this gives the second

statement.

Note that a quasi-elementary group acting faithfully on a cyclic group must

be cyclic so the only remaining case (corresponding to d = 1) we need to calculate

is the case of a coprime to p cyclic group acting faithfully on a cyclic group of order

p.
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Lemma 4.4.2. Let G = CpoCmqr with faithful action then PrimKFp,ss(G) is gener-

ated by the same relation as presented in [2] over Q unless m = 1 then its generated

by the following relation −[Cqr ] + (p− 1)/qr[Cp] + [Cp o Crq ].

Proof. We explicitly construct such a relation and since the coefficient of [G] is

1 it must generate PrimKFp,ss(G). In the case m is non-trivial we simply apply

Remark 4.2.5 and use the Brauer relation over Q in [2, Proposition 6.5]. Otherwise

G = CpoCqr we have the following relations, p[Cp]− [e] induced from the subgroup

Cp, and the primitive relation over Q, [Cqr−1 ]− q[Cqr ]− [Cp oCqr−1 ] + q[Cp oCqr ].

Using a linear combination of the two identified relations we can produce a third

which is a multiple of the relation in the statement. We proceed by induction on r.

If r = 1 then taking a linear combination α([{e}] − q[Cq] − [Cp] + q[Cp o
Cq]) − β((p[Cp] − [e])). and setting α = 1, β = −1 gives q times the relation

−[Cq] + (p − 1)/q[Cp] + [Cp o Cq]. If r > 1 we assume that statement holds for

r − 1 < r. Taking the relation [Cqr−1 ] − q[Cqr ] − [Cp o Cqr−1 ] + q[Cp o Cqr ] and

adding the induced relation from Cp oCqr−1 gives q times the claimed relation.
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Chapter 5

Brauer Relations in Positive

Characteristic

5.1 Introduction

In this chapter we finally classify Brauer Relations in positive characteristic. Our

approach will mimic the structure of the previous chapter, first we will study the

induction theorems and primordial groups in this setting, this along with the theory

developed in Chapter 3 will allow us to describe the structure of the primitive

quotient, and in the soluble case we will give explicit generators. The final section

will concern (p, p) Dress groups, these groups are the least amenable to analysis

in the characteristic p setting and we only have partial results concerning their

relations.

5.2 Basic Properties and Induction Theorems

We want to study the kernel KFp of the map of GFI’s:

mFp : b(−)→ a(Fp[−]),

first described in Chapter 3. Note that this map of GFI’s satisfies the hypothesis

of assumption 3.4.8 and of notation 3.4.3, so we were able to apply the results of

Chapter 3. Recall the following main results from Chapter 3 concerning this map.

Theorem 5.2.1. Let q be a prime number, and let G be a (p, q)-Dress group

that is not p-hypo-elementary. Then there exists an F -relation of the form qG +∑
U�G aUU ∈ KF (G). Conversely, if

∑
U≤G aUU is an F -relation, then q|aG.
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We also recall Theorem 3.5.4, a consequence of Theorem 3.5.1 and the main

result of chapter 3, which is the basic structure result on PrimKFp .

Theorem 5.2.2. Let G be a finite group that is not (p, q)-Dress for any prime q.

Then the following holds:

1. if all proper quotients of G are p-hypo-elementary, then PrimKFp (G) ∼= Z;

2. if there exists a prime q such that all proper quotients of G are (p, q)-Dress, and

at least one of them is not p-hypo-elementary, then PrimKFp (G) ∼= Z/qZ;

3. if there exists a proper quotient of G that is not (p, q)-Dress for any prime q,

or if there exist two quotients that are not p-hypo-elementary, and one of which

is (p, q)-Dress and the other is (p, q′)-Dress for distinct primes q and q′, then

PrimKFp (G) = 0.

In cases (1) and (2), PrimKFp (G) is generated by any relation in which G has coef-

ficient 1.

Corollary 5.2.3. Let G be a finite group, and suppose that PrimKFp (G) is non-

trivial. Then G is an extension of the form

1→ Sd → G→ D → 1,

where S is a finite simple group, d > 1, and D is a (p, q)-Dress group for some

prime number q. Moreover, if S is not cyclic, then the canonical map D → Out(Sd)

is injective, and Sd has no proper non-trivial subgroups that are normal in G. In

this case, PrimKFp (G) ∼= Z if D is p-hypo-elementary, and PrimKFp (G) ∼= Z/qZ
otherwise.

Proof. The group G has a chief series, so there exists a normal subgroup W ∼= Sd,

where S is a simple group and d ≥ 1. By Theorem 5.2.2, the quotient G/W is

(p, q)-Dress for some prime number q.

Now suppose that S is not cyclic. Let K be the kernel of the map G →
Aut(Sd) given by conjugation. The centre of Sd is trivial, so K ∩ Sd = {1}. If K

is non-trivial, then G/K is a proper quotient that is not soluble, and in particular

not (p, q)-Dress, contradicting Theorem 5.2.2. So G injects into Aut(Sd), and thus

G/Sd = D injects into Out(Sd). Similarly, if N /G is a proper subgroup of Sd, then

G/N is not soluble, and in particular not (p, q)-Dress, contradicting 5.2.2. Finally,

the description of PrimKFp (G) is given by Theorem 5.2.2.
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5.3 Classification of PrimKFp(G) for Soluble G

In this section, we derive necessary conditions on a soluble group G for PrimKFp (G)

to be non-trivial.

Lemma 5.3.1. Let q be a prime number different from p, and let G = P o (C oQ)

be a (p, q)-Dress group, where P is a p-group, Q is a q-group, and C is a cyclic group

of order coprime to pq. Let S be a full set of G-conjugacy class representatives of

subgroups of P . For each U ∈ S, let NU be a (−p)-Hall subgroup of NG(U), and let

TU be a full set of NU -conjugacy class representatives of subgroups of NU . Then,

1. for every U ∈ S, two subgroups of NU are NU -conjugate if and only if they are

NG(U)-conjugate;

2. for every subgroup H of G, there exists a unique U ∈ S and a unique V ∈ TU
such that H is G-conjugate to U o V .

Proof. To prove the first part, let U ∈ S, and V1, V2 ≤ NU . Suppose that there

exists an element g of NG(U) such that V g
1 = V2. Since NG(U) = NP (U)oNU , we

may write g = un, where u ∈ NP (U) and n ∈ NU . Let v ∈ V1. By assumption,

vg ∈ V2 ⊆ NU , so vu ∈ NU , so [v, u] = v(uv−1u−1) ∈ NU . On the other hand,

NP (U) = NG(U) ∩ P is normal in NG(U), so [v, u] = (vuv−1)u−1 ∈ NP (U). Since

NP (U) ∩NU = {1}, this implies that u and v commute. Since v was arbitrary, we

deduce that u centralises V1, so that V g
1 = V n

1 = V2, as claimed.

Now, we prove the existence statement of part (2). Let H be a subgroup

of G, and let U = H ∩ P . After replacing H with a subgroup that is G-conjugate

to it if necessary, we may assume that U ∈ S. We then have H ≤ NG(U). Let

V be a (−p)-Hall subgroup of H, which is contained in a (−p)-Hall subgroup of

NG(U). Since all (−p)-Hall subgroups of NG(U) are conjugate to each other, we

may assume, after possibly replacing H with a subgroup that is NG(U)-conjugate

to it, that V is contained in NU , so that after possibly replacing H by a subgroup

that is NU -conjugate to it, we may assume that V ∈ TU .

Finally, we prove uniqueness. Let U1, U2 ∈ S, and let Vi ∈ TUi for i = 1, 2

be such that H1 = U1 o V1 is G-conjugate to H2 = U2 o V2. Since Ui is the unique

subgroup of Hi for i = 1 and 2, this implies that U1 and U2 are G-conjugate; and

since both are contained in P , and S is assumed to be a complete set of distinct

conjugacy class representatives, this implies that U1 = U2 = U . It follows that H1

and H2 are NG(U)-conjugate. Since Vi is a (−p)-Hall subgroup of Hi for i = 1 and

2, it follows that V1 and V2 are also NG(U)-conjugate, so by the first part, they are

NU -conjugate.
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Theorem 5.3.2. Let q be a prime number different from p, and let G be a (p, q)-

Dress group with non-trivial p-core. Then PrimKFp (G) is trivial.

Proof. Keep the notation of Lemma 5.3.1. In particular, write G = P o (C o Q),

where P is a non-trivial p-group, Q is a q-group, and C a cyclic group of order

coprime to pq.

For each U ∈ S, identify NU with UNU/U via the quotient map, and consider

the map

fU = IndG/UNU
InfUNU/U : B(NU )→ B(G).

Let IU = fU (KF (NU )). Note that all Θ ∈ IU are imprimitive, since either U is

non-trivial, so that UNU/U is a proper quotient, or NU is a (−p)-Hall subgroup of

G, which is proper since the p-core of G is assumed to be non-trivial. We will now

show that
∑

U∈S IU = KF (G).

First, we claim that each fU is injective. Inflation is always an injective

map of Burnside rings, so it suffices to show that the induction map IndG/UNU
is

injective on the image of InfUNU/U . Let H1 and H2 be subgroups of UNU containing

U that are G-conjugate. Since their common p-core is U , they are then NG(U)-

conjugate. Since each of their respective (−p)-Hall subgroups is contained in a

(−p)-Hall subgroup of UNU , and all (−p)-Hall subgroups of UNU are conjugate, we

may assume, replacing H1 and H2 by UNU -conjugate subgroups if necessary, that

Hi = UVi, where Vi ≤ NU for i = 1, 2, and where V1 is NG(U)-conjugate to V2.

But then, by Lemma 5.3.1 (1), V1 and V2 are also NU -conjugate, so H1 and H2 are

UNU -conjugate, proving injectivity.

Next, we claim that the IU for U ∈ S are linearly independent. Indeed,

suppose that
∑

U∈S ΘU = 0, where ΘU ∈ fU . Let U be maximal with respect to

inclusion subject to the property that ΘU 6= 0. Then all terms in ΘU contain U ,

while for all U ′ 6= U , all terms are contained in U ′NU ′ , which does not contain U .

So for the sum to vanish, we must have ΘU = 0 – a contradiction.

A similar argument shows that
∑

U∈S IU is saturated in KF (G), and it re-

mains to compare the ranks. By linear independence and by Remark 2.3.9, we

have

rank

(∑
U∈S

IU

)
=
∑
U∈S

rank IU

=
∑
U

#{conjugacy classes of non-cyclic subgroups of NU},

and by Lemma 5.3.1 (2), this is equal to the rank of KF (G), which completes the
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proof.

Recall Lemma 4.3.5, we will make extensive use of it in the proof of the

following theorem.

Theorem 5.3.3. Let G be a finite soluble group that admits a primitive F -relation.

Then G is one of the following:

(i) a (p, p)-Dress group,

(ii) a q-quasi-elementary group for some prime number q 6= p,

(iii) a semidirect product G = W oD, where W = (Cl)
d for a prime number l 6= p,

d ≥ 1, and D is a (p, q)-Dress group acting faithfully and irreducibly on W ,

where q is a prime number,

(iv) G = (CloD1)× (CloD2) where D1, D2 are cyclic q-groups that act faithfully

on Cl × Cl, where q is a prime number.

Proof. By Corollary 5.2.3, G is an extension of the form

1→W = (Cl)
d → G→ D → 1, (5.3.4)

where D a (p, q)-Dress group. If p = l, then G is a (p, q)-Dress group, and by

Theorem 5.3.2, it is either q-quasi-elementary for q 6= p or (p, p)-Dress. For the rest

of the proof, assume that p 6= l. We now consider several cases:

Case 1: l - #D. By the Schur-Zassenhaus theorem, the short exact sequence

(5.3.4) splits. So we have G ∼= W oD, and we may view D as a subgroup of G. Let

N / G be the centraliser of W in D.

Case 1(a): N 6= {1} and D is p-hypo-elementary. The subgroup WN/N

is normal in G/N . By Theorem 5.2.2, G/N is a (p, q)-Dress group for some prime

q. Since p 6= l, D/N is also normal in G/N , so G/N ∼= WN/N × D/N . So the

commutator [W,D] is contained in N ≤ D. But also, since W is normal in G, this

commutator is contained in W , so it is trivial. It follows that W commutes with D,

and G is a (p, l)-Dress group, so by Theorem 5.3.2 it is either l-quasi-elementary or

(p, p)-Dress.

Case 1(b): N 6= {1} and D is not p-hypo-elementary. By Theorem

5.2.2, G/N is (p, q)-Dress. Since l 6= p, q, this implies that W must be cyclic, and,

by the same argument as in case 1(a), it must commute with Oq(D). It follows that

G is a (p, q)-Dress group, so by Theorem 5.3.2 it is either q-quasi-elementary for

q 6= p, or (p, p)-Dress.
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Case 1(c): N = {1} and D acts reducibly on W . Let U be a proper

non-trivial subgroup of W that is normal in G. Since l - #D, the Fl[D]-module W

is semisimple, so there exists a subgroup V of W that is normal in G and such that

UV = W and U ∩ V = {1}. By Theorem 5.2.2, both G/U and G/V are (p, q)-

Dress. Since l - pq, this implies that V ∼= W/U ∼= Cl and U ∼= W/V ∼= Cl. Thus,

G ∼= (U oD1)× (V oD2), where D1 acts faithfully on U , and D2 acts faithfully on

V , and in particular both are cyclic. It follows that Op(G/U) is of the form NU/U

for a p-subgroup N of D1. For G/U to be (p, q)-Dress, the (−q)-Hall subgroup of

G/UN must be cyclic, which forces D2 to be a q-group, and similarly for D1. This

is case (iv) of the theorem.

Case 1(d): N = {1} and D acts irreducibly on W . This is either case

(i) , (ii) or (iii) of the theorem according to the structure of D if d = 1 and (iii)

otherwise.

Case 2: l|#D and G = W o D. In this case, N = ker(D → AutW ) is

again a normal subgroup of G.

Case 2(a): N 6= {1}. By Theorem 5.2.2, the quotient G/N is (p, q)-Dress.

Since D/N acts faithfully on W , no non-trivial subgroup of D/N can be normal in

G/N . In particular, Op(G/N) must be trivial, so N contains Op(D), and G/N is

in fact quasi-elementary, G/N ∼= C oQ, where C is cyclic and Q is a q-group. By

the same argument, C is an l-group. Now, if q = l, then G/N is an l-group, and G

is an extension of an l-group by the (p, l)-Dress group N , hence is itself (p, l)-Dress,

so by Theorem 5.3.2, it is must be l-quasi-elementary. If q 6= l, then W must be

cyclic, and must commute with Op(D). So Op(D) is normal in G, and G/Op(D)

is q-quasi-elementary, whence G is a (p, q)-Dress group, so by Theorem 5.3.2 it is

either q-quasi-elementary for q 6= p, or (p, p)-Dress.

Case 2(b): N = {1} and D acts reducibly on W . Let U ≤ W be a

non-zero proper Fl[D]-sub-representation of W . By Theorem 5.2.2, the quotient

G/U is (p, q)-Dress.

Case 2(b)(i): l 6= q. Then the l-Sylow subgroups of G/U must be cyclic.

In particular, any l-Sylow subgroup C of D, which is non-trivial by assumption, acts

trivially by conjugation on W/U . Since G is assumed to be a semi-direct product,

the l-Sylow subgroup of G/U is a direct product of W/U and C, and therefore

cannot be cyclic – a contradiction.

Case 2(b)(ii): l = q. Either G/U is an l-group, in which case so is G,

and we are in case (ii) of the theorem; or there exists a subgroup C ≤ D of order

coprime to l such that CU/U is normal in G/U , and in particular C is normal in

D. The Fl[C]-module W is then semisimple, so there exists a subgroup V ≤ W
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that is normalised by C, and such that V U = W and V ∩ U = {1}. Since CU/U is

normal in G/U . Since W/U is also normal in G/U , CU/U and W/U commute, so

we have [C, V ] ≤ U . But since V is normalised by C, we also have [C, V ] ≤ V , so

C in fact centralises V . Thus, V is contained in WC , which is a normal subgroup

of G. If WC = W , then C ≤ N , contradicting the assumption that N = {1}. So

WC is a proper non-trivial subgroup of W . Moreover, since C is normal in D, WC

is normal in G. Since l - #C, there exists a non-trivial subgroup U ′ ≤W such that

W = U ′WC and U ′∩WC = {1}. In particular, (U ′)C = {1}. By Theorem 5.2.2, the

quotient G/WC is (p, l)-Dress, so CWC/WC is contained in the normal subgroup

Ol(G/WC) = Ol(D)WC/WC . It follows that [C,U ′] ≤ WCOl(D). But since U ′

is normalised by C, we also have [C,U ′] ≤ U ′. Since U ′ ∩WCOl(D) is trivial, we

deduce that C centralises U ′ – a contradiction.

Case 2(c): N = {1}, and D acts irreducibly on W . This is either case

(i) or (ii) of the theorem if d ≤ 1, and case (iii) otherwise.

Case 3: l|#D and the extension of D by W is not split. The extension

of Op(D) by W is split, so there exists a subgroup P of G that intersects W trivially

and maps isomorphically onto Op(D) under the quotient map G→ G/W .

Case 3(a): P = {1} and l 6= q. Then the l-Sylow subgroup S of G is

normal in G. If it is elementary abelian, then the extension of D by S splits by

the Schur-Zassenhaus theorem, and we are in Case 2 of the proof. Otherwise, the

Frattini subgroup Φ = [S, S]Sl of S is non-trivial, and since it is a characteristic

subgroup of S, it is normal in G. By Theorem 5.2.2, the quotient G/Φ is (p, q)-

Dress, so the l-Sylow subgroup of G/Φ is cyclic. But since Φ consists of precisely the

“non-generators” of S, this implies that S itself is cyclic, so G is q-quasi-elementary.

Case 3(b): P = {1} and p 6= l = q. Let C be a (−l)-Hall subgroup of G.

The assumptions on G imply that C is cyclic, and that D is of the form C o Q,

where Q is a q-group. If WC = W , then C is a normal subgroup of G, and G is

q-quasi-elementary. If WC = {1}, then Lemma 4.3.5 implies that the extension of

D by W splits - a contradiction. So WC is a non-trivial proper subgroup of W ,

which is normal in G, since C is normal in D. Since the order of C is coprime

to l, the Fl[C]-representation W is semisimple, so there exists a subgroup U of W

that is normalised by C, and such that UWC = W , U ∩WC = {1}. By Theorem

5.2.2, the quotient G/WC is (p, q)-Dress. But it has trivial p-Sylow, so it is q-quasi-

elementary, and CWC/WC is normal in G/WC . Thus [C,U ] ≤WC . But also, U is

a C-sub-representation, so [C,U ] ≤ U , whence we deduce that C centralises U , so

that WC = W , a contradiction.

Case 3(c): P 6= {1} and WP = W . In this case, P is a non-trivial normal
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p-subgroup of G. By Theorem 5.2.2, the quotient G/P is (p, q)-Dress, therefore so

is G itself, so by Theorem 5.3.2 it is either quasi-elementary or (p, p)-Dress.

Case 3(d): P 6= {1} and WP 6= W . By Lemma 4.3.5, the subgroup WP is

non-trivial. Moreover, since P is a normal subgroup of D, WP is a normal subgroup

of G. The Fl-representation W of P is semisimple, so there exists a subgroup U ≤W
that is normalised by P and such that UWP = W , U ∩WP = {1}. By Theorem

5.2.2, the quotient G/WP is (p, q)-Dress. We claim that Op(G/W
P ) must be trivial.

Indeed, Op(G/W
P ) is necessarily of the form NWP /WP where N is a subgroup of

P that is normal in D. But then we have [N,U ] ≤ WP , and also [N,U ] ≤ U ,

since U is a P -sub-representation of W . Thus N centralises U , whence WN = W .

By Lemma 4.3.5, the assumption that the extension of D by W is non-split forces

N = {1}.
Case 3(d)(i): l 6= q. Then the l-Sylow subgroup of G/WP must be cyclic

and normal in G/WP . Since WP 6= W , and since we assume that l|#D, this implies

that the l-Sylow subgroup S of G is normal in G and has an element of order strictly

greater than l. Thus, the Frattini subgroup Φ = [S, S]Sl of S is non-trivial, and

since it is a characteristic subgroup of S, it is normal in G. By Theorem 5.2.2,

the quotient G/Φ is (p, q)-Dress, so the l-Sylow subgroup of G/Φ is cyclic. But

that implies that the l-Sylow subgroup of G is also cyclic, and therefore W ∼= Cl,

contradicting the assumptions that {1} 6= WP 6= W .

Case 3(d)(ii): l = q. Then p 6= q, so the p-Sylow subgroup of the (p, q)-

Dress group G/WP must be normal in G/WP , contradicting the observation that

Op(G/W
P ) is trivial.

This covers all possible cases, and concludes the proof of the theorem.

5.4 Some Explicit Relations

Proposition 5.4.1. Let l be a prime that is distinct from p, and let G = Cl o C,

where C is a non-trivial cyclic group, acting faithfully on Cl. Then PrimKFp G
∼= Z,

and is generated by the following relation Θ:

1. if C ∼= CmCn, where m, n > 1 are coprime integers, then

Θ = [G]− [C] + α([Cn]− [Cl o Cn]) + β([Cm]− [Cl o Cm]),

where α, β are any integers satisfying αm+ βn = 1;
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2. if C ∼= Cqk+1, where q is a prime, and k ≥ 0, then

Θ = [Cqk ]− q[C]− [Cl o Cqk ] + q[G].

Proof. The hypotheses on G imply that all non-cyclic subquotients of G have trivial

p-core, so a subquotient of G is cyclic if and only if it is p-hypo-elementary. It there-

fore follows from Artin’s and Conlon’s Induction Theorems (Theorems 2.3.1 and

2.3.8), that BF (G) = BQ(G), and PrimKFp (G) = PrimQ(G). The result therefore

follows from [2, Theorem A, case 3a].

The remainder of the section is devoted to the proof of the following result.

Theorem 5.4.2. Let l be a prime distinct from p, let G = W oQ, where W = (Cl)
d

with d > 1, and Q is a (p, q)-Dress group acting faithfully on W . Assume that either

1. Q acts irreducibly on W , or

2. d = 2, and G = (CloP1)× (CloP2), where the Pi are p-groups acting faithfully

on the respective factor of W .

Then PrimG is generated by the relation

Θ = [G]− [Q] +
∑

U≤GW

[W :U ]=l

([UNQ(U)]− [WNQ(U)]),

where the sum runs over a full set of G-conjugacy class representatives of index l

subgroups of W .

Lemma 5.4.3. Let G be a finite group, let l be a prime, and let k be a field of

characteristic l. Suppose that there exists a normal subgroup N of G such that

l - #N and G/N is a cyclic l-group. Then for every k[G]-module M , we have

dimkM
G = dimkMG. Moreover, if M is an indecomposable k[G]-module, then this

dimension is 0 or 1.

Proof. Let M be a k[G]-module. We may, without loss of generality, assume that

M is indecomposable. If MG = MG = 0, then there is nothing to prove, so suppose

otherwise. The element e = (1/#N)
∑

n∈N n ∈ k[G] is a central idempotent, and

we have MN = eM 6= 0. Since M = eM ⊕ (1− e)M , and M is indecomposable, it

follows that eM = M , so that M is an indecomposable k[G/N ]-module. Since G/N

is a cyclic l-group, it follows from [24, 26] that the maximal semisimple submodule

and the maximal semisimple quotient module of M are both simple. But the only

simple k[G/N ]-module is the trivial one, which completes the proof.
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Lemma 5.4.4. Let G = W oQ be a soluble group where W = (Cl)
d for some prime

l 6= p and let K 6 G be a p-hypoelementary subgroup. Then after replacing K with

a conjugate we may write K = Kl′ · 〈γ〉 where Kl′ is a normal subgroup of K with

order coprime to l, Kl′ 6 Q and 〈γ〉 is a cyclic group of l-power order.

Proof. As G is soluble there exists a (−l)-Hall subgroup of G, unique up to con-

jugation, which may be chosen to lie in Q. After replacing K with a conjugate

we may therefore assume that its (−l)-Hall subgroup Kl′ lay in Q. Since K is p-

hypoelementary, and p 6= l it follows that K ′l must be a normal subgroup of K and

that the l-Sylow subgroup of K is cyclic. This completes the proof.

Lemma 5.4.5. Let G, and K 6 G be as in 5.4.4 then writing γ = yh with y ∈ W
and h ∈ Q and viewing W as an Fl[K]-module of K under the natural conjugation

action, there exists a codimension 1 submodule U not containing y. Furthermore

W/U is the trivial Fl[K]-module.

Proof. We restrict W to Kl′ , the resulting module is semisimple and the trivial

isotypical component W1 is a summand of W as an Fl[Kl′ ]-module. Since Kl′ is a

normal subgroup of order coprime to l and index a power of l then Lemma 5.4.3

shows that W1 is a submodule of W as an Fl[K]-module.

We now show that dim(W1) > 1 and that y ∈ W1. Since Kl′ / K we have for all

k ∈ Kl′ that yhkh−1y−1 = [y, hkh−1]hkh−1 ∈ Kl′ ⊂ Q. Since Kh
l′ 6 Q it follows

that [y, hkh−1] ∈ W ∩Q = {e}, and so yh ∈ W1. Furthermore we have y = γyhγ−1

is in W1 as claimed.

If K acts semisimply on W , as is the case when h = {e}, then 〈y〉 is a summand of W

and we are done. Otherwise let N 6W1 be an indecomposable summand containing

y. Since Kl′ acts trivially on N we may view it as an Fl[〈γ〉]-module, all composition

factors of which are trivial. Let {e1, `, ek} be a basis of N such that γ acts in Jordan

normal form. Now suppose that y is contained in the proper submodule L generated

by {e1, `ek−1} so that y = eα1
1 `e

αk−1

k−1 then the element β = e−α1
2 `e

−αk−1

k conjugates

yh to h and commutes with kl′ a contradiction. Taking L direct sum the complement

of N gives an Fl[K] submodule of W of codimension 1 not containing y. Since K

acts trivially on y, W/U is the trivial module.

Recall from Theorem 2.1.11 that if X is a G-set, and U is a subgroup of G,

then fU (X) denotes the number of fixed points in X under U , and that this extends

linearly to a ring homomorphism fU : B(G)→ Z.

Lemma 5.4.6. Let G be a finite group, and let H and K be subgroups. Then

fK(H) = #{g ∈ G/H : gK ⊆ H}.
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Proof. By Mackey’s formula for G-sets, we have

ResK(G/H) =
⊔

g∈K\G/H

H/H ∩ gK.

By definition, fK(H) is the number of singleton orbits under the action of K on

G/H, so fK(H) = #{g ∈ K\G/H : gK ⊆ H}. An explicit calculation shows that

the map G/H → K\G/H, gH 7→ KgH defines a bijection between {g ∈ G/H :
gK ⊆ H} and {g ∈ K\G/H : gK ⊆ H}.

Lemma 5.4.7. Let l be a prime number, let d ≥ 1 be an integer, let G = W o Q,

where W = (Cl)
d, and where Q is regarded as a subgroup of G. Let Θ be the element

of b(G) given by

Θ = [G]− [Q] +
∑

U≤GW

[W :U ]=l

([UNQ(U)]− [WNQ(U)]),

where the sum runs over a full set of G-conjugacy class representatives of index l

subgroups of W . Then for every subgroup K of Q, we have fK(Θ) = #(WK) −
#(WK).

Proof. For w ∈ W , we have that wK ≤ Q if and only if (wkw−1k−1)k ∈ Q for all

k ∈ K. Since the bracketed term is in W , this is equivalent to wkw−1k−1 = 1 for all

k ∈ K, i.e. to w ∈WK . Since W forms a transversal for G/Q, it follows by Lemma

5.4.6 that

fK(G) = 1, (5.4.8)

fK(Q) = #{w ∈W : wK 6 Q} = #(WK). (5.4.9)

We now calculate the remaining terms in fK(Θ). Let U ≤ W be a subgroup of

index l. Let T ⊆ Q be a transversal for G/WNQ(U), so that

fK(WNQ(U)) = #{t ∈ T : tK 6 NQ(U)}. (5.4.10)

Let x ∈ W \ U . Then a transversal for G/UNQ(U) is given by {xmt : t ∈ T, 0 ≤
m ≤ l − 1}.

To count the number of elements y = xmt in this transversal for which
yK 6 UNQ(U), we note that for all k ∈ K, and for y = xmt as above, we have
yk = (xmtkt−1x−mtk−1t−1)(tkt−1), and of the two bracketed terms the first is in

W , and is equal to [xm, tk], while the second is in Q. It follows that we have
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yK 6 UNQ(U) if and only if [xm, tK] 6 U and tK 6 NQ(U). If m 6= 0, then these

conditions are equivalent to [〈x〉, tK] 6 U and tK 6 NQ(U), and in particular are

independent of m. Partitioning the transversal {xmt : t ∈ T, 0 ≤ m ≤ l − 1} =

T t {xmt : t ∈ T, 1 ≤ m ≤ l − 1}, we find that

fK(UNQ(U)−WNQ(U))

= (l − 1)#{t ∈ T : tK 6 NQ(U), [〈x〉, tK] 6 U}

= (l − 1)#{t ∈ T : K ≤ NQ(tU),K acts trivially on W/tU}.

As t runs over T , tU runs once over the G-orbit of U , since T is a transversal for

G/WNQ(U). It follows that if we take the sum of the above expression over a full

set of representatives U of G-conjugacy classes of index l subgroups of W , we obtain∑
U≤GW

[W :U ]=l

fK(UNQ(U)−WNQ(U)) = (l − 1)#{quotients of WK of order l}

= #(WK)− 1. (5.4.11)

The result follows by combining equations (5.4.8), (5.4.9), and (5.4.11).

We now prove our main theorem.

Theorem 5.4.12. Let l be a prime distinct from p, let G = WoQ, where W = (Cl)
d

with d > 1, and Q is a (p, q)-Dress group acting faithfully on W . Assume that either

1. Q acts irreducibly on W , or

2. d = 2, and G = (CloP1)× (CloP2), where the Pi are p-groups acting faithfully

on the respective factor of W .

Then PrimG is generated by the relation

Θ = [G]− [Q] +
∑

U≤GW

[W :U ]=l

([UNQ(U)]− [WNQ(U)]),

where the sum runs over a full set of G-conjugacy class representatives of index l

subgroups of W .

Proof. We prove the proposition by counting the fixed points under p-hypo-elementary

subgroups K of G. The case where these subgroups are cyclic follows from simply

taking inner products with the irreducible characters of G which are easily described,

for instance see [29], the calculation proceeds identically as in [2] so we omit it here.
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We split the remaining subgroups into two classes, those K for which after conju-

gation may be chosen to lie in Q and those which cannot. In the reducible case Q

is the unique complement of W in G by Schur-Zassenhaus. Otherwise Q is soluble,

and it also acts faithfully and irreducibly on W , so it follows from [31, Theorem A]

that Q is the unique complement of W in G up to conjugacy.

1. Let K be a p-hypo-elementary subgroup of Q then by Lemma 5.4.6 we see that

fK(θ) = #WK −#WK . By Lemma 5.4.3 this number is zero.

2. Now assume that K � Q. By Lemma 5.4.4 we may write, possibly after replacing

K by a conjugate, K = Kl′ · 〈γ〉, where Kl′ 6 Q is the (−l)-Hall subgroup of K

and γ = 〈yh〉 with y ∈ W and h ∈ Q. We now calculate fK(θ) termwise. We have,

using the notation of Lemma 5.4.6,

fK(G) = 1,

fK(Q) = 0,

fK(WNQ(U)) = #{t ∈ T : tK 6WNQ(U)},

fK(UNQ(U)) = #{t ∈ T : tK 6 UNQ(U)}

+ #{xmt ∈ T, 1 6 m 6 l − 1 : x
mtK 6 UNQ(U)}.

Suppose that for some t ∈ T we have tK ⊆ WNQ(U) but tK * UNQ(U). Since
tK 6 H if and only if tKl′ 6 H and tγ ∈ H it follows that ty /∈ U . With this

observation we have,

fK(θ) = 1+∑
U6GW

[W :U ]=l

(#{xmt ∈ T, 1 6 m 6 l − 1 : x
mtK 6 UNQ(U)}

−#{t ∈ T : tK 6 NG(U), ty /∈ U}).

We see that xmtK 6 UNQ(U) if and only if [〈x〉, tK] 6 U and tK 6 UNQ(U). The

second condition is then equivalent to tK 6 NG(U) and ty ∈ U as before. We now
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have,

fK(θ) = 1+∑
U6GW

[W :U ]=l

((l − 1)#{t ∈ T : tK 6 NG(U), ty ∈ U, [〈x〉, tK] 6 U}

−#{t ∈ T : tK 6 NG(U), ty /∈ U})

= 1 + (l − 1)#{U < W, [W : U ] = l : y ∈ U,K 6 NG(U), (W/U)K = W/U}

−#{U < W, [W : U ] = l : y /∈ U K 6 NG(U)}.

By Lemma 5.4.5 there exists a U1 < W of index l which is normalised by K and

does not contain y. We now wish to show that for each index l subgroup U of W

normalised by K, containing y, and for which the quotient W/U is the trivial rep-

resentation there are (l− 1) distinct index l subgroups not containing y determined

uniquely by U and different form U1.

Suppose we have such a U then, let A = U ∩ U1, this is a codimension 1 subrep-

resentation of both U and U1 so there exists v ∈ U1, such that v /∈ A. Since K

acts trivially on W/U and v /∈ U any element of K acts on v by k : v → vuk for

some uk ∈ U . We must also have vuk ∈ U1 so in particular uk ∈ U ∩ U1 = A.

The corresponding argument also holds swapping y for v and exchanging U and U1.

Thus 〈vyα〉A is a hyperplane normalised by K not containing y which is distinct

from U1 provided α 6= 0. So for each hyperplane U containing y with W/U trivial,

there are (l − 1) distinct hyperplanes uniquely determined by U , not containing y

normalised by K, and different from U1.

Now assume we have a hyperplane normalised by K not containing y and different

from U1; let A be their intersection. Now, A is codimension 2 in W and W = 〈y〉〈v〉A
where v ∈ U1 /∈ A. The hyperplane 〈y〉A contains y and is normalised by K; since

v ∈ U1 its quotient W/U is trivial. Since 〈vα〉 = 〈v〉, there are (l − 1) hyperplanes

not containing y normalised by K and distinct from U1, each of which gives the

same A.

We have established an (l − 1) : 1 correspondence between {U < W, [W : U ] = l :

y ∈ U,K 6 NG(U), (W/U)K = W/U} and #{U < W, [W : U ] = l : y /∈ U K 6

NG(U)}\U1, it follows that fK(θ) = 0 completing the proof.

Theorem 5.4.13. Let G be a finite group which is not (p, q)-Dress G admits a

primitive F -relation if and only if:
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1. G is not soluble and is an extension of the form:

1→ Sd → G→ Q→ 1

where Q is a (p, q)-Dress group, no non-trivial subgroup of Sd is normal in G

and also Q ↪→ Out(Sd).

2. G = W oQ where W = Cdl and Q is a (p, q)-Dress group acting faithfully and

irreducibly on W .

3. G = (Cl oQ1)× (Cl oQ2) where the Qi are abelian q-groups acting faithfully

on the cyclic groups.

In the final two cases we have that the previous relations generate Prim(G) and we

can describe its shape: in case ii)Prim(G) = Z/qZ unless Q is p-Hypo-Elementary

then Prim(G) = Z, in case iii) Prim(G) = Z/qZ in all cases.

5.5 Dress Groups

We have already seen in Theorem 5.3.2 that (p, q)-Dress groups which are not quasi-

elementary admit no primitive relations for p 6= q. The case where p = q is much

harder to analyse as the subgroup structure of a (p, p)-Dress group is much harder to

understand and describe. A key step of Theorem 5.3.2 was an explicit construction

of enough subquotients to contribute a full rank imprimitive sublattice of relations.

Through direct computations in the computer package MAGMA we have some evidence

to suggest the following conjecture.

Conjecture 5.5.1. Let G be a (p, p)-Dress group. Then G admits a primitive

relation only if G is quasi-elementary.

This conjecture is the strongest possible, we know that there exist relations

for p-quasi-elementary groups in characteristic p as we shall establish there existence

in the following proposition.

Proposition 5.5.2. Let G = CloCpr with Cpr acting faithfully. Then PrimKFp (G)

is isomorphic to Z.

Proof. This is a special case of Proposition 5.4.1.
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Chapter 6

Applications

6.1 Introduction

The purpose of this chapter is to present some easy applications of the work in

this thesis. The first section is devoted to investigating the application of Brauer

relations in positive characteristic to arithmetic problems. There are many such

applications as cohomological Mackey functors arise frequently in Number theory

when one studies Galois extensions. The second, more algebraic application is to

use the results of chapter three to try to describe when a group has a Brauer relation

modulo p for all primes p.

6.2 Cohomological Mackey Functors in Number Theory

This was the topic of a very nice article by Bley and Boltje [6], in which they

give examples of Cohomological Mackey functors which occur naturally in number

theory. Using Corollary 2.6.15 of Yoshida’s Theorem along with explicit induction

formulae such as those appearing in [7] and [8] they give relations between the

evaluations of these Mackey functors. In light of the results of Chapter 5 we have

a supply of Brauer Relations in positive characteristic and equivalently by Lemma

2.2.21 over Zp. We will recall some examples from [6] for which our relations may

give interesting results.

Example 6.2.1. The following are examples of cohomological Zp Mackey functors.

1. Elliptic Curves. Let K/F be a Galois extension of Number fields with Galois

group G and let E be an elliptic curve defined over the base field F . Then E

may be viewed as a cohomological Mackey functor in the following sense, for
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each subgroup H 6 G let E(H) := E(KH) be the abelian group of the KH -

points of E. Now we have induction maps corresponding to the trace map,

and restriction given by the inclusion E(K) ↪→ E(H) for H 6 K. This data

describes a cohomological Z-Mackey functor for G. Tensoring the torsion-part

by Zp gives a Zp cohomological Mackey functor for G.

2. Abelian varieties. The p-power torsion of any Abelian variety is also a

Zp-cohomological Mackey functor by an identical construction.

3. Class Groups Let K/F be a Galois extension of number fields with Galois

group G. Then the group of fractional ideals I(H) := I(KH), and the sub-

group of principal fractional ideals P (H) = P (KH). may both be viewed as

Cohomological Z Mackey functors for G. The for H 6 J the restriction map

takes a prime ideal P of OKH to the ideal POKJ . The induction map is

then the norm map NKH/KJ . Taking the quotient we have the Z cohomo-

logical Mackey functor Cl(H). The p-part of the class group is then a Zp
cohomological Mackey functor for G.

The relations of chapter 5 can be used to prove more theorems similar to

Theorem 1.1.1 by exploiting example 2 above.

Theorem 6.2.2. Let K/F be a Galois extension of number fields with Galois group

S4. Let H1 = C4, H2 = D8, then, writing Cl3(KH) for the 3-part of the class group

of KH we have:

Cl3(KS4)⊕ Cl3(KH1) = Cl3(KS3)⊕ Cl3(KH2).

Proof. This follows from the previous example, Corollary 2.6.15 and Lemma 5.4.5.

Remark 6.2.3. It follows that for such K/F the ratio of class numbers

h(F )h(KH1)/h(KS3)h(KH2),

can only have non-trivial valuation at 2. Indeed since S4 is (2, 2)-Dress and hence

primordial for Im(mF2) the relation in Theorem 5.4.12 can’t hold at 2.

6.3 Everywhere Local Brauer Relations

It would be useful, where possible, to have relations for Z-cohomological Mackey

functors, but integral Brauer relations are hard to study. Integral Brauer relations
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have been investigated in [14], [21] and [28]. It is in general very hard to show when

two Z[G]-permutation lattices are isomorphic, it is remarked in [21] that one may

show that if for some finite group G and H1, H2 6 G we have Zp[G/H1] = Zp[G/H2]

for all p then we may conclude that there is an integer n such that Z[G/H1]⊕n =

Z[G/H2]⊕n but that this need not hold for n = 1. One way around this is to note

that the evaluations of a Z-Mackey functor M which only takes values in finitely

generated abelian groups are entirely determined by the completed functors Mp =

Mp⊗Zp as p ranges over all primes. Instead of Brauer relations over Z therefore, it

is sensible to consider everywhere local Brauer relations. More formally let Kp(−)

denote the kernel of the map from the Burnside functor to the Zp Representation

ring functor then an everywhere local Brauer relation for G is an element θ ∈
∩pKp(G). Such relations will result in non-trivial isomorphisms on the evaluations

of Z-cohomological Mackey functors such as the fixed point functor for a Z[G]-

module M .

We will show that using the results of the previous chapters one may rapidly get

results describing this kernel.

To begin to describe everywhere local relations we will rephrase the problem in

terms of Green functors with inflation and use the results of chapter three. To that

end we will require the following definition

Definition 6.3.1. Let G be a finite group, and let a(Z[G]) be the ring of integral

representations, we will define the genus ring Γ(G) of G to be the quotient of a(Z[G])

by the ideal generated by formal differences of isomorphism classes [A]−[B] whenever

A and B are in the same genus, that is Zp ⊗Z A ∼= Zp ⊗Z B for all primes p.

Let g(M) denote the genus containing a Z[G]-module M in Γ(G), then equip-

ping Γ(−) with the maps IndG/H : g(M) 7→ g(IndG/H(M)), ResG/H : g(N) 7→
g(ResG/H(N)) and InfG/N : g(L) 7→ g(InfG/N (L)) makes it into a GFI. Our aim is

then to describe the kernel GFI KΓ of the map of GFIs:

mΓ(G) :b(G)→ Γ(G)

[H] 7→ g(IndG/H(1))

Lemma 6.3.2. The class of coprimordial groups C(Im(mΓ)) is precisely the class

of groups which are p-hypo-elementary for some prime p.

Proof. The kernel of restriction functor KIm(mΓ)(−) is equal to
∏′
pKIm(mp)(−) whose

evaluation is non-trivial whenever a group is p-hypo-elementary for some prime

p.
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Lemma 6.3.3. Let q be a prime. The class of primordial groups P(Im(mΓ)q) is the

class of groups which are (p, q)-Dress for at least one prime p.

Proof. We have the containment P(Im(mΓ)q) ⊆ ∪pDp,q by Lemma 3.3.4. Now we

note that if G is not primordial of Im(mΓ)q then it is not primordial for Im(mp)q

for any prime p. The result follows.

Now we may apply the results of Chapter three to describe for which non-

primordial finite groups G the primitive quotient PrimKΓ
(G) is non-trivial.

Theorem 6.3.4. Let G be a finite group that is not a (p, q)-Dress group for any

prime numbers p and q. Then:

(a) if every proper quotient Q of G is pQ-hypo-elementary for some prime pQ, then

PrimKΓ
(G) ∼= Z;

(b) if there exists a fixed prime number q such that the following statements hold:

• any proper quotient Q of G is a (pQ, q)-Dress group for at least one prime

pQ, and

• any Q which is (pH , q)-Dress and (p2, l)-Dress for l 6= q is pH-hypo-

elementary, and

• at least one proper quotient Q them is not hypo-elementary.

Then PrimKΓ
(G) ∼= Z/qnZ for some natural number n > 1;

(c) if there exists a proper quotient of G that is not a (p, q)-Dress group for any

prime numbers p and q, or if there exist pairs of prime numbers p1, q1 and

p2, q2 with the qi distinct and, for i = 1 and 2, a proper quotient of G that is a

non-pi-hypo-elementary (pi, qi)-Dress group, then PrimKΓ
(G) is trivial.

Moreover, in all cases, PrimKΓ
(G) is generated by any element of KΓ(G) ⊆ b(G) of

the form [G/G] +
∑

H�G aH [G/H], aH ∈ Z.
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