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When Recursion is Better than Iteration: A Linear-Time Algorithm

for Acyclicity with Few Error Vertices*

Daniel Lokshtanov!

Abstract

Planarity, bipartiteness and (directed) acyclicity are basic
graph properties with classic linear time recognition algo-
rithms. However, the problems of testing whether a given
(di)graph has k vertices whose deletion makes it planar, bi-
partite or a directed acyclic graph (DAG) are all fundamental
NP-complete problems when k is part of the input. As a
result, a significant amount of research has been devoted to
understanding whether, for every fized k, these problems ad-
mit a polynomial time algorithm (where the exponent in the
polynomial is independent of k) and in particular, whether
they admit linear time algorithms.

While we now know that for any fixed k, we can test in
linear time whether a graph is k vertices away from being
planar [FOCS 2009, SODA 2014] or bipartite [SODA 2014,
SICOMP 2016], the best known algorithms in the case of
directed acyclicity are the algorithm of Garey and Tarjan
[TPL 78] which runs in time O(n*~*m) and the algorithm of
Chen, Liu, Lu, O’Sullivan and Razgon [JACM 2008] which
runs in time O(k!4*k*nm). In other words, it has remained
open whether it is possible to recognize in linear time, a
graph which is 2 vertices away from being acyclic!

In this paper, we settle this question by giving an
algorithm that decides whether a given graph is k vertices
away from being acyclic, in time O(k!4*k®(n + m)). That is,
for every fixed k, our algorithm runs in time O(m + n), thus
mirroring the case for planarity and bipartiteness.

Our algorithm is designed via a general methodology
that shaves off a factor of n from some algorithms that use
the powerful technique of iterative compression. The two
main features of our methodology are: (i) This is the first
generic technique for designing linear time algorithms for
directed cut-problems and (ii) it can be used in combination
with future improvements in algorithms for the compression
version of other well-studied cut-problems such as MULTICUT
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and DIRECTED SUBSET FEEDBACK VERTEX SET.

1 Introduction

The classes of planar graphs, bipartite graphs and acyclic
graphs are among the fundamental graph classes with
seminal linear time recognition algorithms. However,
the decision problem, that is, deciding whether there
is a vertex set of size k (an outlier set) whose removal
places the input graph in a specific graph class is NP-
complete for numerous basic graph classes, including the
aforementioned three. As a result, a significant amount
of research has been devoted to understanding whether,
for every fized k, these problems admit an algorithm
with running time O(n¢) where ¢ is independent of k
(through the paradigm of fixed-parameter tractability
and parameterized complexity) and if so, what the best
possible value of c is.

In fact, this area of research actually predates the
area of parameterized complexity. The genesis of pa-
rameterized complexity is in the theory of graph minors,
developed by Robertson and Seymour [46, 47, 48]. Some
of the important algorithmic consequences of this the-
ory include O(n?) algorithms for DISJOINT PATHS and
F-DELETION for every fixed value of k. Another early
work on obtaining algorithms with improved dependence
on the input size was the seminal work of Bodlaender
giving a linear time algorithm for TREEWIDTH [2, 3].

However, the advent of parameterized complexity
started to shift the focus away from the running time
dependence on input size to the dependence only on
the parameter. That is, the goal became designing
parameterized algorithms with running time upper
bounded by f(k)n®®, where the function f grows
as slowly as possible, without worrying about the
polynomial dependence on n at all. But the last decade
has witnessed several efforts aimed at obtaining linear
time parameterized algorithms (or algorithms having
the best possible dependence on the input size) that
compromise as little as possible on the dependence of
the running time on the parameter k. The gold standard
for these results are algorithms with linear dependence
on input size as well as provably optimal dependence on
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the parameter under a complexity hypothesis such as
the Exponential Time Hypothesis (ETH).

It was only relatively recently that the first linear
time algorithms were obtained for testing whether a
graph is k vertices away from being planar [33, 25] or
bipartite [31, 43]. Some of the other important results
in this line of research include the linear time algorithms
for SUBGRAPH ISOMORPHISM [12], SUBSET FEEDBACK
VERTEX SET [37], PLANAR F-DELETION [2, 3, 16, 19,
18], CROSSING NUMBER [22, 23, 28], INTERVAL VERTEX
DELETION [6], as well as a single-exponential and
linear time parameterized constant factor approximation
algorithm for TREEWIDTH [4]. In addition, there
are several recent results which provide parameterized
algorithms with improved (but not linear) dependence on
input size for a host of problems [24, 26, 27, 34, 29, 30].

However, in spite of this progress, a linear time
algorithm for testing whether a graph is k& vertices
away from being acyclic (for every fixed k), has still
proved elusive. In fact, even the existence of a O(n°)
algorithm for every fixed k was widely posed as the most
important open problem in parameterized complexity
for well over a decade starting from the first few papers
on fixed-parameter tractability (FPT) [13, 14]. In a
break-through paper, Chen, Liu, Lu, O’Sullivan and
Razgon [7] answered this question in the affirmative by
proving that this problem, formally called DIRECTED
FEEDBACK VERTEX SET (DFVS) and defined below,
is fized-parameter tractable (FPT). That is, it has an
algorithm running in time f(k)n¢ for some computable
function f and a constant ¢ independent of k.

DIRECTED FEEDBACK VERTEX SET (DFVS)

Input: A digraph D on n vertices and m edges
and a positive integer k.

Parameter: k

Problem: Does there exist a vertex subset of size
at most k that intersects every cycle in Df?

The algorithm of Chen et al. runs in time
O(4*k!k*n*) where n is the number of vertices in the in-
put digraph. Subsequently, it was observed that, in fact,
the running time of this algorithm is O(4*k!k*nm) (see
for example, [10]). That is, it runs in time O(mn) for
every fixed k. On the other hand, Garey and Tarjan [21]
gave an elegant algorithm for DFVS running in time
O(nF~'m) (as opposed to the trivial O(n*) algorithm).
This algorithm clearly outperforms the algorithm of
Chen et al. for kK = 1 and runs in linear time. However,
although the techniques used by Chen et al. have found
numerous applications subsequently, it remained open
whether one could detect in linear time, even a vertex

subset of size 2 that intersects every cycle in a given
digraph!

In this paper we resolve this question (for every fixed
k) and obtain the first linear-time FPT algorithm for
DFVS. In particular we prove the following theorem.

THEOREM 1.1. There is an algorithm for DFVS run-
ning in time O(K!48k5 - (n 4+ m)).

Our algorithm achieves the best possible dependence on
the input size while matching the current best-known
parameter-dependence — that of the algorithm of Chen
et al. [7], up to a O(k) factor. Since it is well known
that DFVS cannot be solved in time 2°)n¢ for any
constant ¢ under the Exponential Time Hypothesis
(ETH) [10, 11], our algorithm is in fact nearly-optimal.
Finally, our algorithm only relies on basic algorithmic
and combinatorial tools.

Methodology. At the heart of numerous FPT algo-
rithms lies the fact that, if one could efficiently compute
a sufficiently good approximate solution, it is then suffi-
cient to design an FPT algorithm for the “compression
version” of a problem in order to obtain an FPT algo-
rithm for the general version. In the compression version
of a problem, the input also includes an approximate so-
lution whose size depends only on the parameter. Since
a given approximate solution may be used to infer signifi-
cant structural information about the input, it is usually
much easier to design FPT algorithms for the compres-
sion version than for the original problem. The efficiency
of this approach clearly depends on two factors — (a) the
time required to compute an approximate solution and
(b) the time required to solve the compression version of
the problem when the approximate solution is provided
as input.

This approach has been used mainly in the following
two settings. In the first setting, the objective is
the design of linear-time FPT algorithms. In this
setting, for certain problems, it can be shown that if the
treewidth of the input graph is bounded by a function
of the parameter then the problem can be solved by a
linear-time FPT algorithm (either designed explicitly or
obtained by invocation of an appropriate algorithmic
meta-theorem). On the other hand, if the treewidth of
the input graph exceeds a certain bound, then there is
a sufficiently large (induced) matching which one can
contract and obtain an instance whose size is a constant
fraction of that of the original input. Now, the algorithm
is recursively invoked on the reduced instance and certain
problem-specific steps are used to convert the recursively
computed solution into an approximate solution for the
given instance. Then, a linear-time FPT algorithm for
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the compression version is executed to solve the general
problem on this instance. Some of the results that
fall under this paradigm are Bodlaender’s linear FPT
algorithm for TREEWIDTH [3], the FPT-approximation
algorithms for TREEWIDTH [4, 44], as well as algorithms
for VERTEX PLANARIZATION [25, 33]. Let us call this the
method of recursive compression. This is one of the most
commonly used techniques in designing linear-time FPT-
algorithms on undirected graphs. However, this approach
of recursion combined with a win/win approach based
on the treewidth of the graph, fails when one attempts
to extend it to directed graphs.

On the other hand, when designing FPT algorithms
where the dependence on the input is not required to be
linear, one can use the iterative compression technique,
introduced by Reed, Smith and Vetta [45]. Here the
input instance is gradually built up by simple operations,
such as vertex additions. After each operation, an
optimal solution is re-computed, starting from an
optimal solution to the smaller instance. Though it
is very helpful for problems on directed graphs, by
its very definition, the iterative compression technique
does not lend itself to the design of linear-time FPT
algorithms. Hence, it appears that one has to look
for alternative ways when aiming for linear-time FPT
algorithms. In recent years, some of the problems which
were initially solved using the iterative compression
technique, have seen the development of entirely new
algorithms. Examples include the first linear-time
FPT algorithms for the ODD CYCLE TRANSVERSAL,
ArmosT 2-SAT, EDGE UNIQUE LABEL COVER and
NobpE UNIQUE LABEL COVER problems [31, 43, 32, 38].
All of these algorithms are based on branching and linear
programming techniques.

Another general approach to the design of linear-
time FPT algorithms has been introduced by Marx et
al. [39]. These algorithms are based on the “Treewidth
Reduction Theorem”’ which states that in undirected
graphs, for any pair of vertices s and ¢, all minimal s-t
separators of bounded size are contained in a part of the
graph that has bounded treewidth.

However, this technique is also specifically designed
for undirected graphs and hence fails when addressing
problems on directed graphs. Our main contribution is
a novel approach for ‘lifting’ linear-time FPT algorithms
for the compression version of feedback-set problems
on digraphs to linear-time FPT algorithms for the
general version of the problem. Although our approach
follows the recursive compression paradigm pioneered
by Bodlaender [3] in his celebrated linear time FPT
algorithm for TREEWIDTH, we need to identify highly
non-trivial structure in the given digraph to be even

able to compute the parts of the input digraph which
we want to ‘recursively compress’.

Given a digraph D, we say that S is a directed
feedback vertex set (dfvs) if deleting S from D results in
a DAG. At the core of our algorithm lies the following
new structural lemma regarding digraphs with a small
dfvs.

LEMMA 1.1. Let D be a strongly connected digraph and
p € N. There is an algorithm that, given D and p, runs
in time O(p?>m) (where m is the number of arcs in D)
and either correctly concludes that D has no dfvs of size
at most p or returns a set S with at most 2p + 2 vertices
such that one of the following holds.

e S is a dfus for D.

e D — S has at least 2 non-trivial strongly connected
components (strongly connected components with at
least 2 vertices).

e The number of arcs of D whose head and tail
occur in the same non-trivial strongly connected
component of D — S (arcs participating in a cycle
of D — S) is at most .

o If D has a dfvs of size at most p then D — S has a
dfvs of size at most p — 1.

Our linear-time FPT algorithm for DF'VS is obtained by
a careful interleaving of the algorithm of Lemma 1.1 with
an algorithm solving the compression version of DFVS
(in this case, the compression routine of Chen et al. [7]).
The proof of Lemma 1.1 itself is based on extending
the notion of important sequences [36] to digraphs, and
then analyzing a single such sequence. Furthermore,
the proof of Lemma 1.1 only relies on properties of
DFVS that are shared by several other feedback set
and graph separation problems. Hence, we also prove
a more general version of this lemma and show how it
can be used as a black box to shave off a factor of n
from existing iterative compression based algorithms for
other problems which satisfy certain conditions. This
results in speeding up by a factor of n, the current best
FPT algorithms for MuLTICUT [40, 41, 5] and DIRECTED
SUBSET FEEDBACK VERTEX SET |8, 9].

2 Preliminaries

Parameterized Complexity. Formally, a parameteri-
zation of a problem is the assignment of an integer k
to each input instance and we say that a parameterized
problem is fized-parameter tractable (FPT) if there is an
algorithm that solves the problem in time f(k) - [I|9M),
where |I| is the size of the input instance and f is an
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arbitrary computable function depending only on the pa-
rameter k. For more background, the reader is referred
to the monographs [15, 17, 42, 10].

Digraphs. For a digraph D and vertex set X C V(D),
we say that X is a dfvs of D if X intersects every cycle
in D. We say that X is a minimal dfvs of D if no proper
subset of X is also a dfvs of D. We call X a minimum
dfvs of D if there is no smaller dfvs of D. For an arc
(u,v) € A(D), we refer to u as the tail of the arc and
v as the head. D is a bidirectional digraph if for every
(u,v) € A(D), there is an arc (v,u) € A(D). For a
subset X of vertices, we use NT(X) to denote the set
of out-neighbors of X and N~ (X) to denote the set
of in-neighbors of X. We use N?[X] to denote the set
X UN¥(X) where i € {+,—}. We denote by A[X] the
subset of A(D) with both endpoints in X. A strongly
connected component of D is a maximal subgraph in
which every vertex has a directed path to every other
vertex. We say that a strongly connected component
is mon-trivial if it has at least 2 vertices and trivial
otherwise. For disjoint vertex sets X and Y, Y is said to
be reachable from X if for every vertex y € Y, there is a
vertex x € X such that the digraph contains a directed
path from x to y.

Structures. For n € N, an n-structure is a tuple
where the first element of the tuple is a digraph D with
the remaining elements of the tuple being relations of
arity at most i over V(D). Formally, an 7-structure is a
tuple (D, Ry, ..., Ry) where D is a digraph and for every
i € [¢], R; CV(D)P for some p € [n].

Two n-structures ()1 and (2 are said to have
the same type if they both have the same number
of elements and the corresponding relations have the
same arity when non-empty. Formally, we say that @,
and @2 have the same type if Q1 = (D1, Ry,...,Ry),
Q2 = (D', Ry,...,R)) and for each ¢ € [{], there exists
p € [n] such that, if R;, R, # () then R;, R, C V(D)? and
R;,R; ¢ V(D)P~1.

The size of an n-structure @ = (D, Ry,...,Ry) is
denoted as |Q| and is defined as m +n +n - ¢ | Ry,
where m and n are the number of arcs and vertices in
D respectively and |R;| is the number of tuples in R;.
In this paper, whenever we talk about a family O of
n-structures, it is to be understood that Q only contains
n-structures which are pairwise of the same type and
this type is also called the type of Q.

DEFINITION 1. Let @ = (D,Ry,...,Ry) be an n-
structure. For a set X C V(D), we define the induced
substructure Q[X| = (D[X],Rilx,...,Relx) where

R;|x is the restriction of the relation R; to the set X,

that is, Ri|x = R O (Upepy XP)- For any X C V(D),
we denote by Q — X the substructure Q[V (D) \ X].

DEFINITION 2. Let Q be a family of n-structures. We
say that Q is hereditary if for every Q € Q, every induced
substructure of Q is also in Q. We say that a family
Q of n-structures is linear-time recognizable if there is
an algorithm that, given an n-structure Q, runs in time
O(|Q]) and correctly decides whether Q € Q. Finally,
we say that Q is rigid if the following two properties
hold:

o [or every n-structure Q@ = (D, Ry, ..., Ry), if D has
no arcs then Q € Q and

e Q= (D,Ry,...,Ry) € Q if and only if for every
strongly conmected component C' in the digraph D,
the induced substructure Q[C] € Q.

The Q-DELETION(7) problem is formally defined as
follows.

Q-DELETION(7)
Input: An n-structure Q = (D, Ry, ...
a positive integer k.

Parameter: k&
Problem: Does there exist a set X C V(D) of size
at most k such that Q@ — X € Q7

, Ry) and

Our main contribution is a theorem (Theorem 3.1)
that, under certain conditions which are fulfilled by
several well-studied special cases of Q-DELETION(7),
guarantees an FPT algorithm for Q-DELETION(7) whose
running time has a specific form.

A set X C V(D) such that Q@ — X € Q is called
a deletion set of @ into Q. In the Q-DELETION(7)
COMPRESSION problem, the input is a triple (Q, k, W)
where (Q, k) is an instance of Q-DELETION(7) and W
is a vertex set such that Q) — W € Q. The question
remains the same as for Q-DELETION(7n). However, the
parameter for this problem is k + |W| and for the input
to be interesting, [W| > k (otherwise the instance is
trivially a YES instance). We say that an algorithm A is
an algorithm for the Q-DELETION(7) COMPRESSION
problem if, on input @Q,k, W the algorithm either
correctly concludes that (@, k) is a NO instance of Q-
DELETION(7) or computes a smallest set X of size
at most k£ such that Q — X € Q. Note that the
requirement that the set X is a smallest such set, does
not affect generality for the following reason. Let A’
be an algorithm that, on input Q, k, W either correctly
concludes that (@, k) is a No instance of Q-DELETION(7)
or computes a (not necessarily smallest) set X of size at
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most k such that Q@ — X € ©. We can then set W' =X
and run A’ with input Q, k —1, W’ to compute a smaller
solution if one exists and repeat this procedure (at most
k times) until we find a smallest such set. In this case,
the running time of A is bounded by k times that of
A’. However, for all specific problems we address in
this paper, we will not be required to take this route
because the existing compression algorithms for DFVS,
MurTicUT, and DIRECTED SUBSET FEEDBACK VERTEX
SET which we invoke can already be seen to output a
smallest set of size at most k which is a solution.

3 The FPT algorithm for Q-DELETION(7)

In this section, we formally state our main theorem and
demonstrate how a direct application of this theorem
speeds up by a factor of n, existing FPT algorithms for
certain well-studied feedback set and graph separation
problems. We then prove this theorem assuming a
generalization of Lemma 1.1 as a black box.

THEOREM 3.1. Let n € N and let Q be a linear-time
recognizable, hereditary and rigid family of n-structures.
Let v € N;d € Ryq and f : N — N such that f(t) >t
and f(t—1) < @ for every t € N.

o Let A be an algorithm for Q-DELETION(n) COM-
PRESSION that, on input Q = (D, Ry,...,Re), k
and W, runs in time O(f(k)-|Q|" - [W|), where W
is a deletion set of @ into Q,

e Let B be an algorithm that, on input Q =
(D,R1,...,Re) & Q, runs in time O(|Q|) and re-
turns a pair of vertices u,v such that every deletion
set of Q into Q which is disjoint from u and v is a
u-v separator in D.

Then, there is an algorithm that, given an instance
(Q = (D,Ry,...,R), k) of Q-DELETION(7) and the
algorithms A and B, runs in time O(f(k) - k- Q]7)
and either computes a set X of size at most k such that
Q — X € Q or correctly concludes that no such set exists.

Before we proceed, we make a few remarks regarding
the conditions in the premise of the theorem. Note
that we require the running time of Algorithm A to
be of the form O(f(k) - |Q|” - |[W]) in spite of the Q-
DELETION(77) COMPRESSION problem being formally
parameterized by |W| + k. At first glance, it may appear
that this is a requirement that is much stronger than
simply asking for an FPT algorithm for Q-DELETION(7)
COMPRESSION. However, we point out that as long as Q
is hereditary, this requirement is in fact no stronger than
simply asking for an FPT algorithm for Q-DELETION(7)
COMPRESSION. Precisely, if there is an FPT algorithm

for Q-DELETION(7)) COMPRESSION, that is an algorithm
that runs in time O(g(k + [W|) - |Q|°) for some function
g and constant §, then we can obtain an algorithm
for Q-DELETION(7) COMPRESSION that runs in time
O(g(2k 4+ 1) - |Q|° - [W|) by using the folklore trick of
running the compression step for the special case of
|W| = k+ 1, |[W| times. This clearly suffices. We now
illustrate the power of our theorem by applying it to a
few well-studied problems.

3.1 Applications We describe how Theorem 3.1 can
be invoked to shave off a factor of n from existing it-
erative compression based algorithms for DFVS, Di-
RECTED FEEDBACK ARC SET (DFAS), DIRECTED SUB-
SET FEEDBACK VERTEX SET and MULTICUT. Here,
DFAS is the arc deletion version of DE'VS where the ob-
jective is to delete at most k arcs from the given digraph
to make it acyclic.

1. Application to DFVS. We set n = 1 and define
Q to be the set of all directed acyclic graphs. That is,
Q = {(D,0) | D is acyclic}. Clearly, Q is linear-time
recognizable, hereditary and rigid. The algorithm B is
defined to be an algorithm that, given as input a digraph
D which is not acyclic, simply picks an arc (a,b) which
is part of a directed cycle in D and returns u, v where
u = b and v = a. The algorithm A can be chosen to be
any compression routine for DFVS. In particular, we
choose the compression routine of Chen et al. [7] which
runs in time O(f(k)(n +m) - [W|) where f(k) = 4*klk*.
Invoking Theorem 3.1 for Q-DELETION (1), we obtain
our linear-time algorithm for DFVS.

THEOREM 3.2. There is an algorithm for DFVS run-
ning in time O(K!48kS - (n 4+ m)).

It is easy to see that DFAS can be reduced to
DFVS in the following way. For an instance (D, k)
of DFAS, subdivide each arc, and make k + 1 copies
of the original vertices to obtain a graph D’. It is
straightforward to see that (D, k) is a YES instance of
DFVS if and only if (D', k) is a YES instance of DFAS.
Since |D'| < 2(k + 1)|D|, we also obtain a linear-time
FPT algorithm for DFAS.

COROLLARY 3.1. There is an algorithm for DFAS
running in time O(k!4FkS - (n +m)).

2. Application to MULTICUT. In the MuLTICUT
problem, the input is an undirected graph G, integer k
and pairs of vertices (s1,t1), ..., (S, t) and the objective
is to check whether there is a set X of at most k
vertices such that for every i € [r], s; and t; are
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in different connected components of G — X. The
parameterized complexity of this problem was open for a
long time until Marx and Razgon [41] and Bousquet,
Daligault and Thomassé [5] showed it to be FPT.
Marx and Razgon obtained their FPT algorithm via
the iterative compression technique. They gave an
algorithm for the compression version of MULTICUT that,
on input D, (s1,t1),...,(sp, t), k and W, runs in time
20(K%) . pY . || for some 7. As a result, they were
able to obtain an algorithm for MULTICUT that runs
in time 29" . p7*+1 Since the objective of Marx and
Razgon in their paper was to show the fixed-parameter
tractability of MULTICUT, they did not try to optimize
~. However, going through the algorithm of Marx and
Razgon and making careful (but standard) modifications
of the derandomization step in their algorithm using
Theorem 5.16 [10] (see also [1]) as well as the more
recent linear time FPT algorithms for the ALMOST
2-SAT problem [43, 31] instead of the algorithm in
[35], it is possible to bound the running time of their
compression routine by 2Q(k3)mn logn and hence that
of their algorithm by 20(k*) 2 logn. We now show by
an application of Theorem 3.1 that we can improve this
running time by a factor of n.

Set 7 = 2 and define Q to be the set of
all pairs (D,S) where D is a bidirectional di-
graph and S is the relation capturing the pairs
to be separated. Formally, Q@ = {(D,S) |
D is bidirectional, S C V(D)?, if S # () then V(u,v) €
S, u and v are in distinct strongly connected
components of D }. Clearly, Q is linear-time recog-
nizable, hereditary and rigid. We define A to be the
compression routine of Marx and Razgon [41] and B to
be an algorithm that computes the strongly connected
components of D and simply returns a pair (u,v) € S
(if it exists) such that u and v are in the same strongly
connected component of D. By invoking Theorem 3.1
for Q-DELETION(2) with these parameters, we obtain
the following corollary.

COROLLARY 3.2. Tféere is an algorithm for MULTICUT
running in time 29 ) mnlogn.

3. Application to DIRECTED SUBSET FEEDBACK
VERTEX SET. In the DIRECTED SUBSET FEEDBACK
VERTEX SET (DSFVS) problem, the input is a digraph
D, a set S of vertices in D and the objective is to check
whether D contains a vertex set X of size at most k
such that D — X has no cycles passing through S, also
called S-cycles. This problem is a clear generalization of
DFVS and was shown to be FPT by Chitnis et al. [9]
via the iterative compression technique.

They also observed that this problem is equivalent
to the ARC DIRECTED SUBSET FEEDBACK VERTEX SET
(ADSFVS) where the input is a digraph D and a set S
of arcs in D and the objective is to check whether D
contains a vertex set X of size at most k such that D — X
has no cycles passing through S. Chitnis et al. gave an
algorithm for the compression version of ADSFVS that,
on input D, S,k and W, runs in time 20K . 7. \VAV|
for some «. As a result, they were able to obtain an
algorithm for ADSFVS that runs in time 20(k%) . pr+1,
We show by an application of Theorem 3.1 that we can
directly shave off a factor of n from this running time.

We first argue that ADSFVS is a special case of Q-
DELETION (2). We define by Q the set of all pairs (D, S)
where S C A(D) and D has no cycle passing through
an arc in S. Clearly, Q is linear-time recognizable,
hereditary and rigid. We define A to be the compression
routine of Chitnis et al. [9] and B to be an algorithm that,
given as input the pair (D, S), computes the strongly
connected components of D and simply returns an arc in
S which is contained in a strongly connected component
of D. By invoking Theorem 3.1 for Q-DELETION (2)
with these parameters, we obtain the following corollary.

COROLLARY 3.3. There is an algorithm for ARC Di-
RECTED SUBSET FEEDBACK VERTEX SET running in
time 20 . 7.

Due to the aforementioned observation of Chitnis
et al., we also get an algorithm with the same running
time for DIRECTED SUBSET FEEDBACK VERTEX SET.
Having described the main applications of our theorem,
we now proceed to its proof.

3.2 Proof of Theorem 3.1 The main technical
component of the proof of this theorem is a generalization
of Lemma 1.1. The proof of this lemma (Lemma 3.1),
is fairly technical and requires the introduction of more
notation. For readers who are interested in a quick
look at the central ideas behind the proof of Lemma 3.1
without having to deal with the technical complications
brought about by dealing with structures, we direct them
to Section 4 (for the relevant structural lemmas) and
Section 5 for a separate proof of Lemma 1.1. We only
state Lemma 3.1 here and omit the proof due to space
constraints.

LEMMA 3.1. Let n € N and let Q be a linear-time
recognizable, hereditary and rigid family of m-structures.
There is an algorithm that, given an n-structure QQ =
(D,Ry,...,Ry) ¢ Q where D is strongly connected,
vertices u,v € V(D), and p € N, runs in time
O(p%|Q|) and either correctly concludes that D has no
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u-v separator of size at most p or returns a set S with at
most 2p + 2 vertices such that one of the following holds.

e Q—SeQ.

e D — S has at least 2 strongly connected components
each of which induces a substructure of Q not in Q.

e The strongly connected components of D — S can
be partitioned into 2 sets inducing substructures of
Q, say Q1 and Q2 such that Q1 ¢ Q, Q2 € Q and
@1l < 31QI-

e If QQ has a deletion set of size at most p into Q then
Q — S has a deletion set of size at most p — 1 into

Q.

We now return to Theorem 3.1 and proceed to prove
it assuming this lemma as a black-box. We describe our
algorithm for Q-DELETION(7) using the algorithms A,
B and the algorithm of Lemma 3.1 as subroutines. The
input to the algorithm in Theorem 3.1 is an instance
(Q = (D,Ry,...,Ry),k) of O-DELETION(7) and the
output is NO if @ has no deletion set into Q of size
at most k£ and otherwise, the output is a set X which is
a minimum size deletion set of () into Q of size at most

k.

Description of the Algorithm of Theorem 3.1 and
Correctness. We now give a formal description of the
algorithm. The algorithm is recursive, each call takes
as input an n-structure Q = (D, Ry, ..., Ry) and integer
k. In the course of describing the algorithm we will also
prove by induction on k + |Q| that the algorithm either
correctly concludes that @ has no deletion set into @ of
size at most k, or finds a minimum size deletion set of @
into Q, say X of size at most k. The algorithm proceeds
as follows.

In time linear in the size of the digraph D, the
algorithm computes the decomposition of D into strongly
connected components. Let D’ be the digraph obtained
from D by removing from D all strongly connected
components which induce a substructure of ) that is
already in Q. This operation is safe because the class Q
is rigid and hereditary. That is, if @' = (D', R, ..., R})
is the substructure of @ induced on V(D’) then any
deletion set of @ into Q is a deletion set of Q' into Q
and vice versa. So the algorithm proceeds by working on
Q' instead. For ease of description, we now revert back
to the input n-structure Q = (D, Ry, ..., Ry) and assume
without loss of generality that D does not contain any
trivial strongly connected components.

If D is the empty graph or more generally, if Q € Q,
then the algorithm correctly returns the empty set as a
minimum size deletion set of @) into @. From now on we
assume that D is non-empty. Since D does not contain

any trivial strongly connected components this implies
that m > n > 2 and hence |Q| > 2.

If £ = 0 the algorithm correctly returns NO, since
@ ¢ Q. From now on we assume that & > 1. For
k > 1, we determine from the computed decomposition
of D into strongly connected components whether D
is strongly connected. If it is not, then let C' be the
vertex set of an arbitrarily chosen strongly connected
component of D. The algorithm calls itself recursively
on the instances (Q[C],k — 1) and (Q — C,k —1). If
either of the recursive calls return NO the algorithm
returns NoO as well since, both Q[C] and @ — C need to
contain at least one vertex from any deletion set of @
into Q. Otherwise the recursive calls return sets X; and
X, such that X is a deletion set of Q[C] into Q, X,
is a deletion set of () — C' into Q and both X; and X,
have size at most k — 1 each. The algorithm executes
Algorithm A on (Q, k) with W = X, U X5, and returns
the same answer as the Algorithm A. From now on we
assume that D is strongly connected.

For £ > 1 and strongly connected graph D the
algorithm proceeds as follows. It starts by running the
algorithm B on @ to compute in time O(|Q]) a pair of
vertices u,v € V(D) such that every deletion set of @
into @ which is disjoint from u and v hits all u-v paths
in D. Clearly, Q,u,v satisfy the premise of Lemma 3.1.
Hence we execute the subroutine described in Lemma 3.1
on @Q,u,v with p = k. Recall that the execution of this
subroutine will have one of two possible outcomes. In
the first case, the subroutine returns a set S C V(D) of
size at most 2k 4 2 < 3k satisfying one of the properties
in the statement of Lemma 3.1. In the second case, the
subroutine concludes that D has no u-v separator of
size at most p. But in this case, we infer that @ has
no deletion set into Q of size at most k disjoint from
{u,v} and hence we define S to be the set {u,v}. Now,
observe that this set S trivially satisfies the last property
in the statement of Lemma 3.1. Hence, irrespective of
the outcome of the subroutine, we will have computed a
set S of size at most 3k which satisfies one of the four
properties in the statement of Lemma 3.1.

Observe that it is straightforward to check in linear
time whether S satisfies any of the first 3 properties.
Therefore, if none of these properties are satisfied,
then we assume that S satisfies the last property.
Furthermore, we work with the earliest property that
S satisfies. That is, if S satisfies Property ¢ and
Property j where 1 < ¢ < j < 4 then we execute the
steps corresponding to Case i. Subsequent steps of our
algorithm will depend on the output of this check on S.

Case 1: Q—S5 € Q. In this case, we execute Algorithm
A on Q, k, with W = § to either conclude that @ has
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no deletion set into Q of size at most k, in which case
we return NO, or obtain a minimum size set X which
has size at most k£ and is a deletion set of () into Q. In
this case we return X.

Case 2: D — S has at least 2 non-trivial strongly con-
nected components each of which induces a substructure
of Q not in Q. Let C be one such non-trivial strongly
connected component of D —.S. We know that any dele-
tion set of () into @ must contain at least one vertex in
C and at least one vertex in D — (S U (). Hence any
deletion set of ) into Q of size at most k£ must contain
at most k — 1 vertices in C' and at most k — 1 vertices
in D — (SUC). Thus, the algorithm solves recursively
the instances (Q[C],k — 1) and (Q — (CUS),k —1). If
either of the the recursive calls return NoO the algorithm
returns NO as well. Otherwise the recursive calls return
vertex sets X7 and X, such that X; is a deletion set of
Q[C] into Q, X, is a deletion set of @ — (C'U S) into
Q, and both X; and X5 have size at most & — 1 each.
The algorithm then calls the Algorithm A on @, k with
W =X, UX,U S, and returns the same answer as the
Algorithm A.

Case 3: The strongly connected components of D — .S
can be partitioned into 2 sets inducing substructures of
Q, say Q1 and Q2 such that Q1 ¢ Q, Q2 € Q and
|Q1] < 3]Q|. Observe that since S did not fall into the
earlier cases, we may assume that S is not a deletion set
of @ into Q and D — S has at most 1 non-trivial strongly
connected component. Thus D — S has exactly one non-
trivial strongly connected component C' which induces
a structure not in @, and this component induces a
structure of size at most %|Q| We recursively invoke the
algorithm on input (Q[C], k). If the recursive invocation
returned NO, then it follows that ) does not have a
deletion set into Q of size at most k, so we can return
No as well. On the other hand, if the recursive call
returned a set X which is a deletion set of Q[C] into Q
of size at most k then S U X is a deletion set of () into
Q of size at most 4k. Now, we execute Algorithm A on
Q, k with W = S U X and return the same answer as
the output of this algorithm

Case 4: If Q has a deletion set into Q of size at most
k then Q@ — S has a deletion set into Q of size at most
k — 1. Recall that we arrive at this case only if the other
cases do not occur. We recursively invoke the algorithm
on the instance (Q — S, k—1). If the recursion concluded
that Q — S does not have a deletion set into Q of size
at most k — 1, then we return that @ has no deletion
set into Q of size at most k. Otherwise, suppose that
the recursive call returns a set X which is a deletion set
of @ — S into Q of size at most kK — 1. Now, S U X is

a deletion set of @ into Q of size at most 4k. Hence,
we execute Algorithm A on @,k with W =SU X and
return the same answer the output of this algorithm.

Whenever the algorithm makes a recursive call,
either the parameter k is reduced to k — 1 or the size
of the substructure the algorithm is called on is smaller
than Q. Thus the correctness of the algorithm and the
fact that the algorithm terminates follows from induction
on k+|Q|.

Running Time analysis. We now analyse the running
time of the above algorithm when run on an instance
(D, k) in terms of the parameters k, n and m. Before
proceeding with the analysis, let us fix some notation.
In the remainder of this section, we set

e « to be a constant such that Algorithm A on input
Q, k, W runs in time of (k) - |Q|" - |[W],

e 3 be a constant so that computing the decompo-
sition of D into strongly connected components,
removing all trivial strongly connected components,
running the algorithm of Lemma 3.1, then deter-
mining which of the four cases apply, and then
outputting the substructure induced by a strongly
connected component of D — S such that this sub-
structure is not in Q, takes time 8- k2 - |Q].

Based on « and g we pick a constant p such that u >

max{205,%} and such that u > maX{QOa, %}.

Let T(|Q|, k) be the maximum running time of the
algorithm on an instance with size || and parameter k.
To complete the running time analysis we will prove the
following claim.

Crant L. QI k) < - f(k) - k-|QI".

Proof. We prove the claim by induction on |Q| + k. We
will regularly make use of the facts that f(k—1) < @
and that f(k) > k. We consider the execution of the
algorithm on an instance (Q = (D, Ry,..., R¢), k). We
need to prove that the running time of the algorithm is
upper bounded by - f(k) - k- |Q|". For the base cases
if every strongly connected component in D induces a
substructure of @ that is already in Q or k = 0, then
the statement of the claim is satisfied by the choice of
. We now proceed to prove the inductive step. We will
assume throughout the argument that £ > 1 and that

Q¢

If D is not strongly connected then the algorithm
makes two recursive calls; one to @1 = (Q[C],k — 1)
and one to Q2 = (Q — C,k — 1). Observe that
|Q1] + Q2] < |Q]. In this case the total time of the
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algorithm can be upper bounded by

BEQI+T(|Q1],k — 1) + T(|1Q2], k — 1)+
af(R)|QY -2k < p- f(k)-k-|Q

We will now assume in the rest of the argument that
D is strongly connected. For £ > 1 and strongly con-
nected D the algorithm invokes Lemma 3.1. Following
the execution of the algorithm of Lemma 3.1, we execute
the steps corresponding to exactly one of the 4 cases.
We show that in each of the four cases, the algorithm
runs within the claimed time bound. Let S be the set
output by the algorithm of Lemma 3.1. We now proceed
with the case analysis.

Case 1: In this case the algorithm terminates after one
execution of Algorithm A with a set W of size
at most 3k. Thus the total running time of the
algorithm is upper bounded by Bk?|Q|+a.f (k)|Q]|" -
3k, which is

< g ) k1@ + oo f(R) - QP

<p-fk)-k-QP

Case 2: In this case the algorithm makes two recursive
calls, one to (Q[C],k— 1) and one to (Q — C,k—1).
After this, the algorithm executes Algorithm A with
a set W of size at most 5k and terminates. Let
Q1 =QI[C] and Q2 = Q — C. In this case the total
time of the algorithm is upper bounded as follows.

BE|QI + T(1Q1], k — 1) + T(|Q2l, k — 1)
+af(k)|Q[” - 5k

< f) kel

Fpf (k= 1)< (k= 1) QI
d—

+ b )k 1Qp

= f() k- 1QP

Case 3: In this case the algorithm makes a single
recursive call on the instance (Q[C], k), where Q[C]
has size at most 3|Q|. After the recursive call the
algorithm executes Algorithm A with a set W of
size at most 4k and terminates. Hence, in this case
the total time of the algorithm is upper bounded as

follows.
521D + 7 (5101 k) +ar®iQr -

1

< o f) -k 1QP

g wf k) k- QP
4

b £ k- 1QP

<p-f)-k-JQP

Case 4: Here the algorithm makes a single recursive
call on (@ — S,k — 1). Following the recursive call,
there is a single call to Algorithm A with a set 144
of size at most 4k. This yields the following bound
on the running time in this case.

BEAQI+T(1Ql,k — 1) + af (k)|Q| - 4k

< e )k Qr
el k=1 (k= 1)-1QP
Bt N R

<p-fk)-k-QP

In each of the four cases the running time of the
algorithm, and hence T'(|Q|, k) is upper bounded by
w- f(k)-k-|Q|7. This completes the proof of the claim.
U

The algorithm and its correctness proof, together
with Claim 1 completes the proof of Theorem 3.1.

4 Setting up common machinery

Before we proceed to the proof of Lemma 1.1 in Section 5,
we need to set up some notation and recall known results
on separators in digraphs. We use this section to describe
the notations and lemmas common to the special case of
DFVS as well as the general Q-DELETION(7) problem.

DEFINITION 3. Let D be a digraph and X and Y be
disjoint vertex sets. A wvertex set S disjoint from X UY
is called an X-Y separator if there is no X-Y path in
D—S. We denote by R(X, S) the set of vertices of D—S
reachable from vertices of X wvia directed paths and by
NR(X,S) the set of vertices of D — S not reachable
from vertices of X. We denote by Ap(X,Y) the size of
a smallest X-Y separator in D with the subscript ignored
if the digraph is clear from the context.

We remark that it is not necessary that Y and
NT[X] be disjoint in the above definition. If these
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sets do intersect, then there is no X-Y separator in
the digraph and we define \(X,Y") to be oco.

DEFINITION 4. Let D be a digraph and X and Y be
disjoint vertex sets. Let S1 and So be X-Y separators.
We say that Sa covers Sy if R(X,S3) 2 R(X, S1).

Note that for a set S C V(D) which is an X-Y
separator in D for some X, Y C V(D) the sets R(X,5),
NR(X,S) and S form a partition of the vertex set of D.

4.1 Finding useful separators We begin with a
lemma which gives a polynomial time procedure to
compute, for every pair of vertices s and ¢ in a digraph, a
sequence of vertex sets each containing s and excluding ¢
such that every minimum s-t separator is contained in the
union of the out-neighborhoods of these sets. Moreover,
for each set, the out-neighborhood is in fact a minimum
s-t separator. The statement of this lemma is almost
identical to the statements of Lemma 2.4 in [39] and
Lemma 3.2 in [43]. However, the statement of Lemma
2.4 in [39] deals with undirected graphs while that of
Lemma 3.2 in [43] deals with arc-separators instead of
vertex separators. Furthermore, the second property in
the statement of the following lemma is not part of the
latter, although a closer inspection of the proof shows
that this property is indeed guaranteed. Note that this
proof closely follows that in [39]. We give a full proof
here for the sake of completeness.

LEMMA 4.1. Let s,t be two vertices in a digraph D such
that the minimum size of an s-t separator is { > 0. Then,
there is an ordered collection X = {X1,...,X,} of vertex
sets where {s} C X; CV(D)\ ({t} UN—(t)) such that

1. X1 C X C---C Xy,
2. X, is reachable from s in D|X;] and every vertex in
NT(X;) can reach t in D — X,
3. INT(X;)| =2 for every 1 < i < q and
4. every s-t separator of size £ is fully contained in
;‘1:1 N+(Xz)

Furthermore, there is an algorithm that, given k €
N, runs in time O(k(|V(D)| + |A(D)|)) and either
correctly concludes that ¢ > k or produces the sets
X1, X0\ Xq,..., Xy \ Xq—1 corresponding to such a
collection X.

Proof. We denote by D’ the directed network obtained
from D by performing the following operation. Let
v € V(D) \ {s,t}. We remove v and add 2 vertices v
and v~. For every u € N~ (v), we add an arc (u,v™) of

infinite capacity and for every u € Nt (v), we add an
arc (vt u) of infinite capacity and finally we add the arc
(v™,vT) with capacity 1. We now make an observation
relating s-t arc-separators in D’ to s-t separators in
D. But before we do so, we need to formally define
arc-separators.

DEFINITION 5. Let D be a digraph and s and t be
distinct vertices. An arc-set S is called an s-t arc-
separator if there is no s-t path in D — S. We denote
by R(s,S) the set of vertices of D — S reachable from s
via directed paths and by NR(s,S) the set of vertices of
D — S not reachable from s.

The following observation is a consequence of the
definition of arc-separators and the construction of D’.

OBSERVATION 1. If S C {(v—,v")|v € V(D) \ {s,t}}
is an s-t arc-separator in D', then the set S™1 =
{v|(v=,v") € S} is an s-t separator in D. Conversely
for every s-t separator X in D, the set {(v—,v")jv € X}
s an s-t arc-separator in D’.

We now proceed to the proof of the lemma statement.
We first run min{k + 1,¢} iterations of the Ford-
Fulkerson algorithm [20] on the network D’. Since we do
not know £ to begin with, we simply try to execute k + 1
iterations. If we are able to execute k+ 1 iterations, then
it must be the case that ¢ > k and hence we return that
¢ > k. Otherwise, we stop after at most ¢ < k iterations
with a maximum s-t flow. Let D; be the residual graph.
Let C4,...,Cy be a topological ordering of the strongly
connected components of Dy such that ¢ < j if there is a
path from C; to C;. Recall that there is a t-s path in D;.
Let C; and Cy be the strongly connected components
of D; containing ¢ and s respectively. Since there is a
path from ¢ to s in Dy, it must be the case that x < y.
Foreach x <i <y, let Y; = szi C; (see Figure 1). We
first show that |67, (Y;)| = £ for every x < i < y. Since
no arcs leave Y; in the graph D7, no flow enters Y; and
every arc in 85, (Y;) is saturated by the maximum flow.
Therefore, |05, (Y;)| = ¢.

We now show that every arc which is part of a
minimum s-¢ arc-separator is contained in (J?_, 67, (V).
Consider a minimum s-t arc-separator S and an arc
(a,b) € S. Let Y be the set of vertices reachable from
sin D' — S. Since F is a minimum s-t arc-separator,
it must be the case that §5,(Y) = F and therefore,
85, (Y) is saturated by the maximum flow. Therefore,
we have that (b,a) is an arc in D;. Since no flow enters
the set Y, there is no cycle in D; containing the arc
(b, a) and therefore, if the strongly connected component
containing b is C;, and that containing a is C;,_, then
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Figure 1: An illustration of the sets in the proof of Lemma 4.1. The chain of circles in the middle are the strongly

connected components of Dy and a(s) =5 and a(t) = 2.

iy < iq. Furthermore, since there is flow from s to a
from b to t, it must be the case that z < i, < i, < ¥y
and hence the arc (a, b) appears in the set 55, (Y;,).

Finally, we define the set R(Y;) to be the set of
vertices of Y; which are reachable from s in the graph
D'[Y;]. For each set R(Y;) we define the set R™1(Y;)
as {v[{vt,v~} C R(Y;)}. Due to the correspondence
between s-t separators in D and s-t arc-separators in
D’ (Observation 1), the sets R7*(Y,) C R™*(Y,_1) C
-+ C R7Y(Y,41) indeed form a collection of the kind
described in the statement of the lemma. It remains to
describe the computation of these sets.

In order to compute these sets, we first need to run
the Ford-Fulkerson algorithm for £ iterations and perform
a topological sort of the strongly connected components
of D;. This takes time O(¢(|]V(D)| + |A(D)])). During
this procedure, we also assign indices to the strongly
connected components in the manner described above,
that is, ¢ < j if C; occurs before C; in the topological
ordering.

In O(U(|V(D)|+]A(D)])) time, we can assign indices
to vertices such that the index of a vertex v (denoted by
a(v)) is the index of the strongly connected component
containing v. We then perform a modified (directed)
breadth first search (BFS) starting from s by using only
out-going arcs. The only difference between our BFS
and the standard BFS algorithm is that we need to visit
vertices in the order dictated by the function «. The
details are straightforward and we omit them. O

We also require the following well known property
of minimum separators. This is a simple consequence of

Property 4 in Lemma 4.1.

LEMMA 4.2. Let D be a digraph and s,t be two ver-
tices. Let X = {X1,..., X} be the collection given by
Lemma 4.1 and ¢ = |[NT(X;)| for each i € [q]. De-
fine Xo =0 and X,41 = V(D). Let Z; denote the set
Xi11 \ NT[X;] for each 0 <i < q. Then, any minimal
s-t separator in D that intersects Z; for any 0 <i <gq
has size at least £+ 1.

Proof. Let Q = Jj_, N*(X;). We claim that for any
0 <i < g, the set Z; is disjoint from @. Fix an index ¢
and consider a vertex u € Z;. By definition, v € X;41
and u ¢ NT[X;]. Since u € X, 1, it must be the case
that v € X, and hence not in N*[X,] for every r > i (by
Property 1 in Lemma 4.1). Similarly, since u ¢ N1[X;],
it must be the case that uw ¢ NT[X,] for any r < i.
Therefore, u ¢ @ and we conclude that Z; is disjoint
from Q.

The lemma now follows from the fact that Z; is
disjoint from ) and Property 4 in Lemma 4.1 which
guarantees that every s-t separator of size £ is contained
in Q. This completes the proof of the lemma. O

We now recall the notion of a tight separator
sequence. This was first defined in [36] for undirected
graphs. Here we define a similar notion for directed
graphs.

DEFINITION 6. Let s,t be two wvertices in a digraph D
and let k € N. A tight s-t separator sequence of order
k is an ordered collection H = {Hy,...,H,} of sets in
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V(D) where {s} C H; CV(D)\ ({t} UN~(t)) for any
1 <1 < q such that,

.H1CH2C"'CHQ,

e H; is reachable from s in D[H;] and every vertex in
N*(H;) can reach t in D — H;
(implying that N*(H;) is a minimal s-t separator
inD)

o [INT(H;)| <k for every 1 <i <gq,

o forany 1 < i < q—1, there is no s-t separator
S of size at most k where S C H;y1 \ NT[H;] or
SNN*t[H,)=0.

We have the following obvious but useful conse-
quence of the definition of tight separator sequences.

LEMMA 4.3. Let s,t be two vertices in a digraph D and
let k € N. Let u € V(D) be a vertex which is part of
every minimal s-t separator of size at most k. Then, H
is a tight s-t separator sequence of order k in D if and
only if it is a tight s-t separator sequence of order k — 1
in D — {u}. Furthermore, w € N*(H) for every H € H.

The following lemma gives a linear-time FPT al-
gorithm to compute a tight separator sequence for a
given parameter k. In fact, it is a polynomial time al-
gorithm which depends linearly on the input size while
the dependence on the parameter is a polynomial. This
subroutine plays a major role in the proofs of Lemma 1.1
and Lemma 3.1.

LEMMA 4.4. There is an algorithm that, given a digraph
D with no isolated vertices, vertices s,t € V(D) and k €
N, runs in time O(k*m) and either correctly concludes
that there is no s-t separator of size at most k in D or
returns the sets Hy, Ho\ H1, ..., Hy\ Hy_1 corresponding
to a tight s-t separator sequence H = {Hx,...,Hy} of
order k.

Proof. The algorithm we present executes the algorithm
of Lemma 4.1 on various carefully chosen subdigraphs
of the given graph and Lemma 4.2 allows us to prove
a bound on the number of times any single arc of D
participates in these computations.

Suppose that A(s,t) = ¢ < k and consider the
output of the algorithm of Lemma 4.1 on input D, s
and t. By definition, this invocation returns the sets
X1, X2\ X1, X, \ X4—1 corresponding to the collection
X = {Xi1,...,X,}. We define X 41 to be the set
R(s,0)\ {t}. We set Xg =0 and for each 1 <i < g+ 1,
we define the following sets (see Figure 2) :

Yi=X;\ Xi1

e PL=Y;,NNT(X;_1)

Qi = N*T(X;) \ N*(X;-1)

W; = N*(X;)\ Qi

with P, = {s}. That is, P; is defined to be those
vertices in Y; (which is non-empty due to Property 1 in
Lemma 4.1) which are out-neighbors of vertices in X;_1,
Q; is the set of those vertices in the out-neighborhood of
X, which are not in the out-neighborhood of X;_; and
W; is the set of vertices in the out-neighborhood of X;
which are not already in @;. Observe that @); can also
be written as Q; = (V(D)\ X;) N (NT(Y;) \ NT(X;_1)).
Also note that P; and @; are by definition disjoint.
Furthermore, it is important to note that P; and @; are
non-empty. The set P; is non-empty because Property 1
of Lemma 4.1 guarantees that the set Y; is non-empty
and Property 2 of Lemma 4.1 ensures that every vertex
in X; (and hence in Y;) is reachable from s in D[X]
implying that there is at least one vertex in Y; which has
a vertex in X;_; as an in-neighbor. On the other hand,
if Q; is empty then NT(X;) =W, and N*(X;,_1) D W;
(strict superset since P; is non-empty). This contradicts
Property 3 of Lemma 4.1. Finally, note that P, = {s},
Q(H'l = {t}, W1 = Wq+1 = @ and Pq+1 = N+(Xq) For
each 1 <i < g+ 1 we define the digraph D, as follows:

V(D;) = (Yi\ P) U {si, ti} UW;

A(D;) = A(D)[Y; \ P
U{Gsip)lp € (NT(P) N (Vi \ P)) U W}
UL ta)lp € N™(Qi) u W3}

Finally, if Q; N N*(P;) # 0, then we add an arc
(8, t;). That is, the digraph D; is defined as the digraph
obtained from D[Y; U Q;] by adding the vertices in W,
identifying the vertices of P; into a single vertex called
s; (removing self-loops and parallel arcs), identifying the
vertices of Q; into a single vertex called t; and adding
arcs from s; to all vertices in W; and from all vertices
in W; to t;. Since P; and @); are disjoint and non-empty,
this digraph is well-defined. Also note that there is no
isolated vertex in D;. This is because every vertex in
D, is reachable from s; by definition. We now make the
following claim regarding the connectivity from s; to t;
in the digraph D,.

CLAIM 2. For each 1 <i<gq+1, Ap,(s;,t;) > £.
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OR

w;

Figure 2: An illustration of the various sets defined in the proof of Lemma 4.4. The dotted arrows denote directed

paths while the solid ones denote arcs.

The claim above allows us to recursively apply our
algorithm to compute tight separator sequences on each
graph D; while Claim 2 guarantees a bound on the
depth of this recursion. The next claim shows that once
we recursively compute a tight separator sequence in
each of these digraphs, there is a linear time procedure
to combine these sequences to obtain a tight separator
sequence in the original graph.

CLAIM 3. For each 1 <i<q+1, let L' denote a tight
si-t; separator sequence {L{, L5, ... L.} of order k in
the digraph D;. For each 1 <i<g+1and1<j <y,
let H} denote the set (L% \ {si}) U P;. Then, the ordered
collection H defined as XoUH{,..., XoUH} , X1, X1 U
H},... . X\UHZ, ..., X¢, X UHTT . X UHZ s
a tight s-t separator sequence of order k in D.

We now use the claims above to complete the proof
of the lemma.

Description of the algorithm. We begin by running
the algorithm of Lemma 4.1 on the graph D with s and
t the same as those in the premise of the lemma. If this
subroutine concludes that there is no s-t separator of size
at most k in D then we return the same. Otherwise, the
subroutine returns the sets X1, Xo \ X1,..., X3\ Xq-1
corresponding to the collection X = {X7,...,X,}. We
define X,41 to be the set R(s,0) \ {t}.

Having computed the sets Xi,..., X441, for each
1 < i < g+ 1 we compute the graph D;, and

recursively compute the sets L, L5\ L}, ..., L. \ L. _;
corresponding to a tight s;-t; separator sequence £ =
{L4,LY,... L.} of order k in the graph D;. At this
point, we note a subtle computational simplification
we use. In order to compute £?, for those D's where
W; # 0, we can invoke Lemma 4.3 and compute a tight
s;-t; separator sequence of order k — |[W;| in the graph
D; —W,;. As a result, we never actually need to construct
the entire graph D; as defined earlier. Instead it suffices
to construct D; — W;. The reason behind this is that we
can now consider the arcs in the graphs Di,..., Dg4q
to be a partition of a subset of the arcs in D.

For each 1 < ¢ < g+ 1and 1 < 5 < 17y let

H} denote the set (L! \ {s;}) U P;.. We output
the sets H{,Hy \ H{,...,H} \ H} _,, X1\ H} _,,
H? H3\H?,...,H2\H? |, X;\H?2 _,, ... which cor-

respond (by Claim 3) to a tight s-¢ separator sequence
H = H{,..., H ,X,,X1 UH{,.... X1 UH?,...,
Xg, Xg UHT™, .. X, U HI* or order k. Since the
correctness is a direct consequence of Claim 3, we now

proceed to the running time analysis.

Running time. We analyse the running time of
this algorithm in terms of k,m and Ap(s,t). We let
T(k,\,m) denote the running time of the algorithm
when A = Ap(s,t). If A > k, then T'(k, A\,m) = O(km).
This is because in this case, we only require a single
execution of the algorithm of Lemma 4.1 to conclude
that k£ < A. Otherwise, the description of the algorithm
clearly implies the following recurrence.
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q+1
T(k,A,m) = O(Am) + > T(k, Ai,m;)

=1

where \; = Ap, (s;,t;) and m; denotes the number
of arcs in D;. Note that m > S %*lm;. The O(Am)
term includes the time required to execute the algorithm
of Lemma 4.1 as well as the time required to compute
the graphs Dy, ..., Dgy1. Now, due to Claim 2, we have
that A; > X for each i € [¢+1]. Unrolling the recurrence
with A > k being the base case, the claimed running
time follows. This completes the proof of the lemma. [J

5 Proving Lemma 1.1

DEFINITION 7. Let D be a strongly connected digraph
and let u,v € V(D). Let S C V(D) be a u-v separator
in D. Then, we say that S is

e an l-good u-v separator if D[R(u,S)] is acyclic but
DINR(u, S)] contains a cycle.

e an r-good u-v separator if D[R(u,S)] contains a
cycle but D[N R(u, S)| is acyclic.

e a dual-good u-v separator if both D[R(u,S)] and
DINR(u, S)] contain cycles.

e a completely-good u-v separator if D[R(u, S)] and
D[NR(u,S)] are both acyclic.

e an |-light u-v separator if |A[R(u, S)]| < $|A(D)|.

an r-light u-v separator if |[A[INR(u, S)]| < 1| A(D)|.

See Figure 3 for an illustration of separators of
various types. The next lemma shows that a pair of
separators in D with one covering the other have a
certain monotonic dependency between them regarding
their (I/r)-goodness and (I/r)-lightness.

LEMMA 5.1. (Monotonicity Lemma (DFVS)) Let
D be a strongly connected digraph. Let u,v € V(D) and
let S1 and Sy be a pair of u-v separators in D such that
So covers Sy. Furthermore, suppose that neither S1 nor
So is dual-good or completely-good. Then the following
statements hold.

e If Sy is r-good then Sy is also r-good.
e If Sy is |-good then Sy is also |-good.
o If Sy is r-light then Ss is also r-light.
o If Sy is |-light then Sy is also |-light.

Figure 3: An illustration of the various u-v separator
types. Here, S; is l-good, S5 is r-good, S5 is dual-good
and Sy is completely-good.

Proof. We begin by proving the first statement of the
lemma. Suppose to the contrary that S; is r-good and
Sy is l-good. By definition, the graph Dy = D[R(u, S1)]
is not acyclic and Dy = D[R(u, S2)] is acyclic. However,
since Sy covers S7, we know that R(u,S2) 2 R(u,S1).
This implies that Dy is a subgraph of Ds. However, since
D1 has a cycle, Dy cannot be acyclic, a contradiction.
This completes the proof of the first statement. The
proofs of the remaining statements are all analogous. [

We now prove the following lemma which provides
a linear time-testable sufficient condition for a separator
to reduce the size of the solution upon deletion.

LEMMA 5.2. Let D be a strongly connected digraph. Let
u,v € V(D), k € N and suppose that every dfvs of D of
size at most k hits all u-v paths in D. Let Z be an r-good
(1-good) u-v separator of size at most k such that there
s mo u-v separator of size at most k contained entirely
in the set R(u,Z) (respectively NR(u,Z)). If D has a
dfvs of size at most k disjoint from {u,v} then D — Z
has a dfvs of size at most k — 1.

Proof. Let X be a dfvs of D. Consider the case when Z
is an r-good separator. The argument for the other case is
analogous. Since Z is r-good, we know that the subgraph
DINR(u,Z)] is acyclic. Therefore, any non-trivial
strongly connected component in the digraph D — Z
lies in the set R(u, Z). Also, the set X' = X N R(u, Z)
is by definition a dfvs of D[R(u, Z)]. Since every non-
trivial strongly connected component of D — Z lies in
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the digraph D[R(u, Z)], it follows that X' is in fact a
dfvs for D — Z. We now claim that X’ C X.

Suppose to the contrary that X’ = X. By the
premise of the lemma, we have that X is a u-v separator
of size at most k. Since X’ = X, we conclude that X
is a u-v separator of size at most k£ which is contained
in the set R(u, Z), a contradiction to the premise of the
lemma, implying that X’ C X. This completes the proof
of the lemma. O

Having set up the definitions and certain properties
of the separators we are interested in, we now describe
our linear time subroutines that perform certain compu-
tations on separator sequences that will then be used in
the linear time implementation of our algorithm.

In this lemma, we argue that given the output
of Lemma 4.4, one can, in linear time find a pair of
consecutive separators in the sequence where the first
is I-light and the second one is not. The output of this
lemma will form an ‘extremal’ point of interest in the
algorithm of Lemma 1.1.

LEMMA 5.3. Let D be a strongly connected graph. Let
w,v € V(D), ke N. Let H ={H,...,Hy} be a tight u-
v separator sequence of order k in D with the algorithm
of Lemma 4.4 returning the sets Hy, Ho \ Hy,...,H,\
Hy_1. There is an algorithm that, given D,u,v,k and
these sets, runs in time O(km) and computes the least
i for which the separator NT(H;) is |-light and the
separator NV(H;) is nmot |-light (and consequently is
r-light) or correctly concludes that there is no such
1<1<q.

The next lemma provides a linear time subroutine
that checks whether the subgraph induced by the set
Hy \ Nt[Hy] is acyclic, for a pair Hy, Ha of consecutive
sets in the tight separator sequence computed by the
algorithm of Lemma 4.4.

LEMMA 5.4. Let D be a strongly connected digraph. Let
u,v € V(D) andk € N. Let H ={H,...,H,} be a tight
u-v separator sequence of order k in D with the algorithm
of Lemma 4.4 returning the sets Hy, Ho \ Hy,...,H,\
Hy_1. There is an algorithm that, given D,u,v,k and
these sets, runs in time O(km) and computes the least i
for which the subgraph D[H; 1 \ NT[H;]] is not acyclic
or correctly concludes that there is no such 1 <1 < qg—1.

Proof. The proof of this lemma is similar to that of the
previous lemma. Given the sets Hy, Ho \ Hy,...,Hy\
H,_1 we label the vertices of V(D) in the following
way with elements from {1,...,q}. We set Hy = {u},
H,11 = V(D) and for each i € {0,...,q}, we label the

vertices of H;1 \ H; with the label ¢ + 1. For each
0 <i < g, we do a directed bfs/dfs on the set of vertices
which are labeled ¢ but not marked as being part of the
set N (H;) for some j < i. Since each arc is examined
O(k) times, the time bound follows. O

Having set up all the required definitions as well as
the subroutines tailored to Lemma 1.1, we now proceed
to its proof.

LEMMA 1.1. Let D be a strongly connected digraph and
p € N. There is an algorithm that, given D and p, runs
in time O(p?>m) (where m is the number of arcs in D)
and either correctly concludes that D has no dfvs of size
at most p or returns a set S with at most 2p + 2 vertices
such that one of the following holds.

e S is a dfvs for D.

e D — S has at least 2 non-trivial strongly connected
components (strongly connected components with at
least 2 vertices).

e The number of arcs of D whose head and tail
occur in the same non-trivial strongly connected
component of D — S (arcs participating in a cycle
of D — S) is at most .

o If D has a dfvs of size at most p then D — S has a
dfvs of size at most p — 1.

Proof. We execute the algorithm of Lemma 4.4 to either
conclude that there is no u-v separator of size at most
p or compute a tight u-v separator sequence of order
p. If this algorithm concludes that there is no u-v
separator of size at most p in D, then we return the same.
Hence, we may assume that the subroutine returns sets
Hy,Hy\ Hy,...,H,\ Hy_q corresponding to a tight u-v
separator sequence H = {Hq, ..., H,} of order p.

We let Z; denote the set N1 (H;) for each 1 <14 < ¢
and focus our attention on the sets Z; and Z, (which
are not necessarily distinct). We begin by examining the
set Zy. If Zy is dual-good then setting S = Z; satisfies
Property 2. This is because we started with a strongly
connected digraph and by the definition of dual-goodness
both subgraphs D[R(u, Z1)] and D[N R(u, Z;)] contain
cycles and hence D—Z; has at least 2 non-trivial strongly
connected components. Similarly, if Z; is completely-
good, then setting S = Z; satisfies Property 1. Now,
suppose that Z; is r-good. It follows from Definition 6
that there is no u-v separator of size at most p contained
entirely in the set R(u,Z;). Then, by Lemma 5.2, if
D has dfvs of size at most p disjoint from {u,v}, then
D — Z; has a dfvs of size at most p — 1 and hence we set
S = Z1 U{u,v} and we satisfy Property 4. Therefore,
going forward, we assume that Z; is l-good. That is,
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the subgraph D[H;] is acyclic. Note that given Z;, this
check can be performed in time O(m).

We have a symmetric argument for Z,. That is, if
Zq4 is dual-good or completely-good then setting S = Z,
satisfies Properties 2 or 1 respectively. Otherwise, if Z,
is I-good, then by Definition 6 we know that there is no
u-v separator of size at most p contained entirely in the
set NR(u, Z,) and by Lemma 5.2, if D has a dfvs of size
at most p disjoint from {u,v} then D — Z, has a dfvs of
size at most p — 1 and hence we set S = Z, U {v, u} and
we are done. Therefore, from this point on, we assume
that Z, is r-good. That is, the subgraph induced on
NR(u, Z,) is acyclic. Again checking which one of these
cases hold can be done in time O(m).

We now examine each of the sets Hp, Ha \
Hy,...,H,\ H,_1 and check if for any i, the digraph
D[H;;1 \ NT[H;]] has a cycle. This procedure can be
performed in time O(km) due to Lemma 5.4. We now
have 2 cases.

In the first case, suppose that the subroutine
returned an index 1 < i < ¢ — 1 such that D[H;41 \
N*[H;]] has a cycle. We now examine the sets Z; and
Zi+1. By definition, it cannot be the case that Z; is
r-good or Z;;1 is l-good. Also, if either Z; or Z;,; is
dual-good or completely-good (which can be checked in
linear time) then we are done in a manner similar to that
discussed earlier by setting S = Z; or S = Z; 1. Hence,
we may assume that Z; is l-good and Z;1; is r-good.
Now, let S = Z; U Z;11 U{u,v}. Clearly, |S| < 2p+ 2.
It remains to prove that S satisfies one of the properties
in the statement of the lemma. Precisely, we will prove
that if D has a dfvs of size at most p then D — S has a
dfvs of size at most p — 1, that is, S satisfies Property 4.

Let X be a dfvs for D of size at most p. If u € X
or v € X, then we are already done. Therefore, assume
that u,v ¢ X. We claim that X’ = X N (H; 11\ NT[H;])
is in fact a dfvs for D — S. This is because, any non-
trivial strongly connected component in D — S must be
contained entirely within R(u, Z;) or H;+1 \ NT[H;] or
NR(u,Z;+1). Since Z; is l-good and Z; 11 is r-good, the
subgraphs induced by the first and third sets are acylic.
Therefore, any non-trivial strongly connected component
in D — S lies entirely in the set H;11 \ N*T[H;]. Since
X is a dfvs for D, it follows that X’ is a dfvs for D — S.
We now claim that X’ C X and hence has size at most
|X| — 1. Suppose that this is not the case and X' = X.
By the premise of the lemma, we know that X is a
u-v separator and hence we obtain a contradiction to
our assumption that H is a tight-separator sequence
(violates condition 4 in Definition 6). This is because
X itself will be a u-v separator of size at most p which
is contained in the set H;y1 \ NT[H;]. This completes

the argument for the case when the subroutine returns
an 1 <4 < ¢ — 1 for which the graph D[H; 1 \ N*[H;]]
contains a cycle. Henceforth, we will assume that for
every 1 < ¢ < q — 1, the subgraph D[H; 1 \ NT[H;]],
denoted by D; is acyclic.

We now revisit the separators Z; and Z,. Recall
that Z; is I-good and Z, is r-good. Now, suppose that Z;
is r-light. That is, the number of arcs in the subgraph
of D induced by the set V(D) \ Hi is at most gm.
Then, we set S = Z;. Observe that since D[H;] is
acyclic, every non-trivial strongly connected component
of D — S must lie in the set V(D) \ H; and hence setting
D, = D|V(D)\ Hy] and Dy = D[H,] satisfies Property 3.
A symmetric argument holds if Z; is I-light. Therefore,
we conclude that Z; is not r-light and Z, is not I-light.
Therefore, Z; is I-light and Zs is r-light.

Due to the monotonicity lemma (Lemma 5.1), we
know that there is an ¢ > 1 such that Z; is I-light, Z; 1
is not -light (and so is r-light), and for all j <4, Z; is
I-light and for all j > i, Z; is not |-light. We examine
the sets in ‘H and find this index 4. That is, Z; is |-light
and Z;11 is r-light. This can be done in linear time due
to Lemma 5.3.

If either of Z; or Z;11 is dual-good or completely-
good then we are done as argued earlier. So, we assume
that each of Z; and Z;; is either I-good or r-good.

If Z; 14 is l-good then setting S = Z; 11 U{v} satisfies
Property 3. Similarly, if Z; is r-good then setting
S = Z; U {v} satisfies Property 3. It remains to handle
the case when Z; is |-good and Z;; is r-good. However,
in this case, we claim that Z; U Z;;1 is in fact a dfvs
of D. Observe that any non-trivial strongly connected
component of D — (Z; U Z;41) lies entirely in one of the
sets H; or Hyy1 \ NT[H;] or V(D)\ N*[H;41]. The first
and third sets induce acyclic subgraphs because Z; is
I-good and Z; is r-good. The second set induces an
acyclic digraph because we have already argued that for
every 1 < j < ¢ — 1, the graph D[H;4, \ NT[H;]] is
acyclic.

Therefore, we conclude that Z; U Z;; is a dfvs of
D and setting S = Z; U Z;11 U {u, v} satisfies Property
1. This completes the proof of the lemma. O

6 Conclusions

We have presented the first linear-time FPT algorithm
for the classic DIRECTED FEEDBACK VERTEX SET
problem. For this, we introduced a new separator based
‘recursive compression’ approach that either reduces
the parameter or reduces the size of the instance by
a constant fraction and showed that our approach can
be extended to the directed version of the SUBSET
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FEEDBACK VERTEX SET (SUBSET FVS) problem as
well as to the MULTICUT problem.

One of the central features of our technique is that
any linear-time FPT algorithm for the compression
version of these problems can be converted to a linear
time FPT algorithm for the general problem as well. In
other words, any further improvements in the running
time of the compression routine for these problems can
be directly lifted to the general problem.

An interesting problem for future work in this
direction is determining whether there is an algorithm
that, for every fixed k, runs in linear time and decides
whether a given graph is k vertices away from a Chordal
graph.

Acknowledgements. The authors thank Daniel Marx
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