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SUMMARY

[

B Qne of the purposes of the theory of Dynamical Systems is to
understand the orbit structure of diffeomorphisms. Here we say
that two diffeomorphiéms_ f and g have the same orbit strucs
tﬁre if they are conjugate, that is, if there is a homeomorphism
h of the ambient manifold such that hf = gh., Basically the

only kind of diffeomorphisms whose dynamics are well studied, are
the class of structurally stable diffeomorphisms. These are diffeo-
morphisms £ such that all nearby diffeomorphisms are conjugate
to f. The well known Structural Stability Theorem says that a
diffeomorphism is structurally stable if it is Axiom A and if all
invariant manifolds are transversal to each other,

If these transversality conditions are not satisfied then the
diffeomorphism not only fails to be stable, but also this gives
rise to the appearence of moduli. That is, one needs several
real parameters to parameterise all conjugacy classes of nearby'
diffeomorphisms, (The minimum number of parameters needed is called
the number of moduli}.

Here we deal with diffeomorphisms on two dimensional manifolds.
whose asymptotic dynamics are well understood, (the class of Axiom A
diffeomorphisms). The Main Result characterises those Axiom A
diffeomorphisms which have a finite number of moduli. This result
can Se regarded as a generalisation of the Structural Stability
Theorem, .From the proofs it follows that the dynamics of these
diffeomorphisms can also be well understood.

In the proof of our Main Theorem we need certain invariant

foliations to be quite smooth. In an Appendix we pfove a differen-

‘tiable version of the Lambda Lemma.
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DIFFEOMORPHISMS ON SURFACES WITH A FINITE NUMBER OF. MODULI

.___’\

by

W. de Melo & S.J. van Strien

One of the purposes of the theory of Dynamical Systems is
to understand the orbit structure of diffeomorphisms. Here we
say that two diffeomorphisms £ apd g have the same orbit
structure if they are conjugate that is, if there is a
homeomorphisﬁ h of the ambient manifold such that hf = gh.
Clearly this defines an equivalence relation ~ on the space of
diffeomorphisms. Since the dynamics of many diffeomorphisms is
very complicated and sensitive to perturbations (&f the
diffeomorphisms) we cannot hope to understand the space of
conjugacy classes in general. However this space is very neat
in neighbourhoods of many conjugacy classes. This paper is in
the direction of characterising all diffeomorphisms representing
these conjugacy classes. One may measure the degree of
complexity of this local structure By looking at the local
dimensions of this space. This dimension we call the number of
moduli. This number is defined as follows. If a diffeomorphism
f is structurally stable or if there are at most a countable
-number of different conjugacy classes in a neighbourhood U of
f then we say that the number of moduli is zero. If U contains
a countable number of k-parameter C1 families of dif-

feomorphisms such that each diffeomorphism in U is conjugate
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to at least one diffeomorphism from these families, then f has
a finite number of moduli. The minimum number k of parameters

needed is the number of moduli (or the modality of f).

Here we deal with diffeomorphisms on two dimensional
manifolds whose asymptotic dynamics is well understood. In fact
we consider the set G of diffeomorphisms satisfying the Axiom
A and the no cycle condition. Such diffeomorphisms are
(I-stable, namely, the dynamics of the non—wéndering set does not
change with small perturbations [Sml], meZ]. However the
intersection pattern of invariant manifolds is the same for
- conjugate diffeomorphisms. Transversality conditions of stable
and unstable manifolds are needed to have structural stability
fR]. If these transversality conditions are not satisfied then
the diffeomorphism not only fails to be stable but this also
gives rise to the appearence of moduli [PJ,[NPT],(MPS],[s1],[s2].
However even in this case the diffeomorphism may still have
finite modality [Me2], [MP], [S2]. The purpose of this paper is
to characterise the class M of diffeomorphisms in @ having

finite modality.

Our results provide a much more precise description of
the conjugacy classes in a sufficiently small neighbourhood nh
of a diffeomorphism f in M. One has that Nh 1is a countable
union of submanifolds &;. Each §; ‘has finite codimension and
contains a finite dimensional submanifold Si' Moreover there
exists a differentiable fibration T 31'* S; -so that all
diffeomorphisms in the same fiber are conjugate. Fprthermore
each Si contains a dense subset Ti such that no two distinct
.diffeomorphisms in Ti are conjugate to eéch other. The
.codimension of Si is uniformily bounded and the maximum of all
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the dimensions of Si is the modality of f.

N
.
»

§1 Statement of Results

Let M be a compact, C°, two-dimensional manifold
without boundary and Diff"(M) “be the set of c® diffeomorphisas

. on M with the C® <topology.

.We denote by G € Diff”(M) the set of diffeomorphisms
satisfying Axiom A and the no-éycle condition. Recall that
£ € Diff™ (M) s,atisfiés Axiom A if the non-wandering set Q(f)
is hyperbolic and the periodic orbits are- dense in Q(f), [S=2l1]
If f satisfies Axiom A then Q(f) is a union of finitely

t
i

f has an orbit dense in each Q- Finally we say that f

many closed invariant sets 0Q,'s, called basic sets, such that
satisfies the no-cycle condition if there are no basic sets

u 45
0 Q with W5(Q;) n wS(0; 1)# ¢. Here j.vu(ni)

1rece0fp Opyy =0y
(resp. WS(Oi)) in the set of points whose c-limit set (resp.
w-limit set) is contained in Q;. We recall that if fega
then f is Q-stable {sSm2]. The main result of this paper is

the characterisation of the set M € G of diffeomorphisms having
finite moduli. Reﬁark that if f has k moduli then f has a
neighbourhood U such that each g in U has modality at nost

k. In particular the set of diffeomorphisms in G with finite
modality is open.
Let M€ G be the set of diffeomorphisms satisfying the

. conditions below:
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1) if x,y € O(f) are such that W'(x) is not transversal to

ws(y) then the basic sets containing x and y are trivial

(1.e. consist of periodic orbits);

2) +there are only a finite number of orbits of non-transversal
intersections between stable and unstable manifolds and the

contact between these manifolds along these orbits are of

finite order;

3) if 'p,q € Per(f) are such that WY(p) has an orbit of
non-transversal intersection with Ws(q) then the number of
orbits in W (p) (resp. in Wu(q) belonging to some

unstable (resp. stable) manifolds of periodic saddle points

of f is finite;

"4) if x is a point of non-transversal intersection of WY(p)
and W5(q) then there exist an arc I transversal to W“(p)
at x such that no connected component of I - {x]

contains points of both stable and unstable manifolds of

saddles;

5) if WY(p) has a point of non-transversal intersection with
w(q) and wl(q) has a point of non-transversal intersection
with WS(r) then there is no saddle point of f whose

unstable manifold (resp. stable manifold) intersects W (p)

(resp. w“(r))g\

Remark. It is well known that every diffeomorphism in € which
satisfies the transversality conditions on invariant

manifolds is structurally stable (Rb]. The class M. relaxes

these conditions. The following theorem generalizes this



structural st bility result.

Main Theorem. If f € Diff°(M2) is in @ . then f has finite
modality if and only if £ € h.

§2. Existence of Moduli

Let M be a compact C® manifold of dimension two and

"f: M= M bea C” diffeomorphism having a pair of periodic

points p and q such that the unstable manifold of p has an
orbit of non-transversal intersection with the stable manifold
of q. In this section we will construct all conjugacy
invariants generated by the existence of these tangencies. We

will use these conjugacy invariants to prove the following.

Theorem. If £ € @ has finite modality then £ € M.

Later in sections 3, &4 and 5 we will prove that two
diffeomorphisms in M, having an equivalent intersection

pattern of stable and unstable manifolds, are conjugéte if they

have the same conjugacy invariants.

§2(a) Ssome technical lemmas

In order to show the existence of moduli we will have to

compare metrics induced on M by two C1 coordinate systemns.

So we start by describing some properties of .Cr metrics. By

* this we mean metrics which are induced by c’ R}emannian

structures. We say that d: MxM=R is a ¢’ metric, O =

£ r < e, on M if there exists a ¢’ Riemannian struecture g
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on M such that d(x,y) is given by the infimum of the lengths
of all paths that connect x and y. In formulas: d(x,y) =
= inf{Lg(y); y: {(0,1]—+ M is avpieqewise C1 curve with

. 1 "
 ¥(0) =x and y(1) =y}. Here ,(y) = jo »/g(Y'(‘t),y'(t)) dat.

The distance from a point x to a set S will be denoted by
d(x,S) = inf{d(x,y); v € S}. It will be convenient to use the

following notation. For sequences &;, B; of real numbers we

will write
. - Gi .
¢, ~ By if I‘E_" is bounded and bounded away from
i zero, ‘
. gi ‘
c; = Bi if EI converges to 1. -

Lemma 2.1. Let d: RP xRP— R be a C° metric induced by

the Riemannian structure g. Let do be the metric
induced by the constant Riemannian structure 8o which coincides
with g at 0. -If Sc<R" contains O and x; € R°-S

converges to zero, then d(xi,S) e do(xi,s).

Proof:.Since g 1is continuous, for every p > O there are

c' such that

positive constants Chr Cq

(2.1) cp«/g((o,V), (o,V))‘ < /g((x,V> L (x,v) = c“,/g((é,\r) , (o,V))‘

for every v e R? and every Xx €R® with Ixl < p. Clearly we

can take o and c; arbitrarily near 1 by taking »p

sufficiently small. From (2.1) we have that if y is a
plecewise C1 curve contained in the ball with center 0 and

L ——
radius p  then cp.cgo(v)scg(Y)Scp Lgo(v), where g is
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the constant Riemannian structure, i.e., go((x,v),(x,w))=

= g((o,v), (o,w)) for all x,v,w ilfl.‘ Hence, if 7 > 0 .is
sufficientl? small then c, do(x,y)fé d{x,y) = c; do(x,y) for
all x,y'€¢ R® with [x],lyl < . Therefore for 5 > O suf-

ficiently small we have that ¢ '

g p
for all x = R™ with [x|| =F. This proves the lemma.

do(x,s) < q(x,s) <c do(x,s)

=
1

Lemma 2.2. Llet S ©€R® be a codimension one CT submanifold

containing O and dj,' J =1,2 be C° metrics on
R® . Then there exists a positive real number A such that
dl(xi,S) £= hdz(xi,s) for any sequence x; € R® -5 converging

to 0 ¢ R™.

Proof. By taking ¢! coordinates on R® we may assume that S

is a hyperplane. By lemma 2.1 we can assume that d1
and d2 are induced by Riemannian structures which are constant
with respect tp this ccordinate system. From these observations
the lemma follows easily. o
‘Remark: If S is another C* codimension one submanifold

tangent to S at O and x; € RP%-8 converges to O
then ~dl(xi,§) = ) dz(xi,é), wheré A 1is the same constant asw
for S. This follows from the proof of the lemma and the fact

1

that we can find a pair of C~ diffeomorphisms -$1,¢2=(I¥30)‘3

such that ¢l(s) = 32(5) is a2 hyperplane and the derivative of

3 ¢19¢51 at O 1is the identity.
Using C% metrics we can introduce the notion of contact
of C1 submanifolds.
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Definition. Let., x be a point of -tangency of two Cl_

submanifolds Sl,S2 c M. Ve say that Sq has a
contact of order n with S2 at x if for some metric d on

M the limit below exists and is positive:

d(w, SZ)
lim a0
T WX {d(w,x)]
wéS1

If this limit is infinite we say that the contact is less than n
If the limit is zero for all n we say that the contact is

infinite.

Remark. From lemmas 2.1 and 2.2 it follows that the above

definition is independent of the metric. Notice also

that the contact may not exist. However if there is a C1

coordinate system ©® on a neighbourhood of x such that u(Sl)

2

and u(SZ) are both C° submanifolds of R then the contact

is €ither defined or it is infinite.

Definition. Let p be a hyperbolic fixed point of a €° dif-

feomorphism f: M— M. By a linearising metric at
p Wwe mean a C® metric 4 on a neighbowhood U of W (p) U
U w¥(p) such that in a ct coordinate system in U 1linearising

I, d coincides with the Euclidean metric.

Remark. If W°(p) N W!(p) = ¢, such a linearising metric always
exists. In\fact by a theorem of Hartman [Hal] (see also

the Appendix) there is a C1 coordinate system in a neighbourhoad

of p 1linearising f£. If Wo(p) n w(p) = ¢, this coordinate
system can be. extended to a full neighbourhood of WS (p) U wH(p).

Thus we obtain a linearising metric at p. These metrics are

1

not unique. However, since any C diffeomorphism commuting with

a linear contraction 4: R— R is linear,
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it is easy to see that if d is another linearising metric
then the restriction of d and 4 to each connected component
of Wi(p) U Wi(p) - {p}] differ only by a multiplicative

constant.

The following two lemmas will be used repeatedly.

Lemma 2.3. Let p be a hyperbolic fixed point of saddle type
' of a C? diffeomorphism f: M— M. Let x € W(p) -
- {p}, d bea. C° metric on M and & be the contracting

eigenvalue of dfp. For any sequence X; = x we have:

i) if there exists a sequence n(i) + « such that f"n(i)(xi)
converges to a point z € W°(p), then ‘d(xi,wu(p)) o
e cd(é,p)]m]n(i) for some constant ¢ which depends on
X,Z ahd d but not on the sequence; if @ is & linearising

metric then ¢ is independent of x and 2z;

ii) if d(xi,wu(p)) = clcln(l) for some constant ¢ > 0 and
some sequence n(i) + o then the sequence f-n(i)(xi) has

at least one and at most two limit points which are contained

in W(p).

Proof: It is clear that both statements hold for a linearising

metric. Therefore the lemma follows from Lemma 2.2. ' o

Definition. Let x be a one sided tangency (fof example a

quadfatic tangency or a tangency‘pf even order)
. between W'(p) and W°(q), where p and q are hyperbolic
fixed points of f. Let y € w“(q). Ve say that a sequence
x; =+ x 1is nice with resp=ct to thé'pair (x,y) 1if (i) fi(xi)

converges to y; (ii) d(xi,‘.'u(p)),2 d(xi,ws(q)).
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We will now prove that the property of being a nice

sequence is preserved under a topological conjugacy.

5&

e,

Lemma 2.4. Let h be a conjugacy between f and f. Then

-

x; + x is a nice sequence with respect to (x,y) if
and only if h(xi) is a nice seguence with respect to

(h(x),h(y)).

Proof: We have two cases to consider:

a) y is accumulated by the iterates of any small
interval in WY(p) which contains x; (b) (a) does not occur.
In both cases it is easy to see that we have the following
characterisation of nice sequences. The sequence X; X is
nice with respect to (x,y) 4if (i) fi(xi)—*'y; (ii) given
sequences of integers n(j)— = and i(Jj)— = such that
f—n(j)(xi(j)) converges to z € W (p) then for any other

sequence xj— x  such that fl(xi)—4'y we have:

lim sup d(f-n(j)(x;(j)),p) < d(z,p) in case (a)

(*)
lim inf d(f’n(j)(xi(j)),p) z d(z,p) in case (b)

In fact let x; be nice with respect to (x,y). Then d(xi,Wu(p))a
o . .

=d(x;,¥(q)) and £ (x;)— y. If also f1(x]) + y, then by

Lemma 2.3 one has d(xi,ws(q)) = d(xi,ws(q)). Moreover since

w(p) and Ww5(q) have a one-sided tangences

d(xi, wukp))s d(xi, w3 (q)) in case (a) ,
d(Xi, WY (p)) = d(xi, w2 (q)) in case ‘(b)

Hence the limit points of {d(xi,wu(p))/d(xi,wu(p))3 are at most
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{ in case (a), and at least ! in case (b). From this and Lemma
2.3 one deduces (¥). Similarly (*) implies that Xx; 1s a nice
sequence. Since Ww>(p) has dimension one, it follows easily that

these conditions are preserved under conjugacy. "

§2(b) Construction of Moduli

Now we will construct all conjugacy invariants arising
from non transversal intersection of invariant manifolds of
periodic points. To simplify the exposition we will assume that
all periodic points involved are in fact fixed points. The
- general case is treated in the same way by looking at appropriate
iterates of the diffeomorphism. The next lemma introduces the
first conjugdcy invariant found in [P] and. shows the rigidity of

the conjugacy if this invariant is irrational as in [Me2].

Lemma 2.5. Let x (resp. X) be a tangency of even order

between wH(p) and Wo(q) (resp. WH(P) and w5(g))
where p and q (resp. D and g) are hyperbolic fixed points of
the 2 diffeomorphism f (resp. f). Let &« (resp &) be the
contracting eigenvalue of dfp (resp. dfﬁ) and B (resp. B) be
the expanding eigenvalue of dfq (resp. dfé). Let h be a
conjugacy between f and f with h(p) =P, h(g) =§ and
h(x) = X. Then we have the following properties:

logla| logla|

1) = =
log|8 | log|8|

2) ‘ Let dp be a linearising metric at p and 4 * be a
loglal

linecarisi métric af . If ———
ne e Tog |3 |

is irrational then
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d5(h(z),5)
= — is constant in each connected component of
logle] i
Togla] W (p) - {pl
CNERI *
dg(n(w),q) |
and — = is constant in each connected
log| 8| u
Tog |8 | component of W-(g) - {q}.
[dq(w,q)l

Proof: 1) Let X; = x be a nice sequence with respect to (x,y)

where Yy € wu(q). Hence by lemma 2.« ’ii = h(xi) is a

nice sequence with respect to (h(x),h(y)). Choose subsequence

i(3j) and =n(J) such that f'n(a)(xi(j)) converges to a point

2 € W(p). From Lemma 2.3 it follows that cdp(z,p)laln(j) o~

B d(xi(j),wu(p)) = d(xi(j),ws(q)) = c‘dq(y,q)IBIi(j). Hence

1(3) = loglal Since h is = . if follo.

- conjugsa i
n(3) log|B | Jugacy ollows also that
i(j)' log|&| _ log|a| log|a|

=

- —— + Thus = —_—
n(j) logl8] log|8| logl|B|

2) let Xy ‘be nice with respect to  (x,y). From the first part

ol the proof follows that for any 1(3), n{3j) — =

QP(f‘n(j)(xi(j)’p) = 4X~dq(y,q)-ISIi(j)-lal—n(j)’

where b, = c'/c. It follows that for any =z in one component

of W3(p) - {p) there exists i{J), n(j) such that

£n(3) : i '
I (xi (J)) — 2z, since loglgl/loglﬁl is irrational. Because

the same holds for T one has
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g, (=), & 4,G,8)
(ay(z2))° ()7 (40,0

log|e| log|B |

where 5 = =
log|al| log|8 |

. Since the right hand side of this

equation is independent of 2z, the result follows.

Remarks. 1) From the second part of Lemma 2.5 it follows that
the restriction of h to WS(p) - {p} and to
W (q) - {q} is a ct diffeomorphism.

2) The restriction of h to each component of

wo(p) - {p} .and W' (q) - {q} is determined by the image of one

point. This is the rigidity of the conjugacy we have mentionec

before.

Corollary 1. Each orbit of tangency between stable and unstable

manifolds of periodic orbits gives rise to at least

one modulus condition.

Proof: Let WY(p) and wS(q) have tangencies of even order
along r orbits o(xl),...,O(xr). Then from the proof
of Lemma 2.5 (using the same notation) one obtains the

following 1r conditions:

log|la| logla| i *3

= — a = -
log|8| log|8 | Ai. (Ai.)
1 J

If £ has % orbits of tangency, then arbitrarily near f there
is a diffeomorphism T with at least k orbits of tangency of

even order. From this Corollary 1 Tollows. 5
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Corollary 2. If f € @ has finite moduli then f satisiy
conditions (1), (2), (3) and (5) of §1.

Proof: If f € G does not satisfy (1),(2),(3) or (5) then

for any k € N there exists a diffeomorphism £

arbitrarily near .f satisfying one of the following properties:

(a) 'f has at least k orbits of tangency. between stable and

unstable manifolds of periodic orbits;

(b) there exist saddles P, § so that w“(§5 and ws(a) %re
tangent and so that there exist an infinite number of |

orbits of intersections of invariant manifolds of saddles with

w(p) or Wp(a). In the latter case f has modality at least

k Dbecause of the remark 2 above. In the-former case f has

modality « Dbecause of corollary 1. Since this holds for any k
the modality of f is .

- ]
- . loglal
Lemma 2.6. Let f and f be as in lemma 2.5 with ——
log|s |

irrational. Let r (resp. F) be a hyperbolic
fixed point-of f (resp. ) of saddle type whose stable
manifold intersects trénsversally the unstable manifold of gq
-(resp. @). .If h 4is a conjugacy between £ and I then the
expanding eigenvalue of df(r) is equal to the expanding

eigenvalue of df(Tr).

Proof: Let y; € WY(q) be a sequence converging to y € Ww(q) n
‘ A W3(r) and such that fi(yi) converges to a point

we W(r). sincé: h|w(q) - {qa) is. cl, there exist a constant

¢y > 0 such that d(h(y;),h(y)) = ¢y d(ys,y). If ¥ 1is the

expanding eigenvalue of df(r) we have, by Lemma 2.3,
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d(yi,ws(r)) ™ czd(w,r)lyl—l for some constant c, > 0. Similarly

d(h(yi), W (7)) = c, a(w,7)|¥|™%. From these eguations we have

lyl = |¥|. Clearly this implies ¥ = V. @

Remark: Similarly to the above situation we have that the
contracting eigenvalue at each saddle point whose
unstable manifold intersect W-(p) transversally is a conjugacy

invariant.

Now we will introduce some other conjugacy invariants
which arise in the following situation: there are three fixed
points p,q,r such that w“(p) has a point x of tangency with
W5(q) of order 2n and WY'(q) has a point y of tangency with
w°(r) of order 2m. Take ¢t curves T Zy at x, y,

x 9
transversal to W°(q) and WY(q) respectively. -
Take a neighbourhood R of q which contains x and y, and
on wvhich f has a linearising coordinate system. Let in x be
: H

the component of fn(?x) N R containing fn(x), and similarly

T,y the component of f—n(zy) N R containing £ 2(y). ' There are
’

four cases to consider: (see Figure 2.1).

u .
En’x n w2(r) and En,y N W (p) do not accumulate to y

respectively X as n-— e;

Case A

. S u
Case B: I, N w(r) does accumulate to y, but Tp,y MW (p)

does not accumulate to x;

Case C: %, n w3(r) does not accumulate to vy, th n,y n

n wt(p) does accumulate to x;

Case D: £ N wS(r) and Z, y N w'(p) do accumulate to y
—e ’

]
respectively X.



Lemma 2.7.

c
: ip
—x { Y lp L oxpTY T
PT ——n x -— t
q4 t -
[ YA y y
—_ y —
q‘gu +%.;Dx ! e b
: > P r r . }
’ . r -— —t
.- ’ RS q y

y A B c D
Figure'(Z.l)

Let f: M= M be a diffeomorphism having the same

intersection pattern of stable and unstable manifolds

as f. Consider the following equations:
(M) e==&
(M2) B =8
(M3) a=a
(M) D=0
5) o, ld(x,a)1%" o [d(X,§)1%"
dly,q)  4(3,d)
o laly, )"  old(7,3)1%"
(M6) = —
d(x,q) d(x,q)
where a, a are contracting eigenvalues of dfp and dfq;V*B,b
are expanding eigenvalues of dfq, dfr; d is a linearising
. i3] S
metric a_t q; Qx — lim d(w,W (P%)n : = 1lim dQWJ‘V (I"%gl.
wewS(q) [a(w,x)] wewt(q)Faw, )]
WX w Yy
loglal loglal
If —— and ———— are irrational and h is a conjugacy between
log|8]| log| ]

f and f such that h(p) =P, h(q) =q, h(r) =7, h(x) =x

and h(y) = § then the following conditions are satisfied:

Case A:

conditions

(M1) to (M6)

Case B: condition (M1) to (M4) plus condition (M5)

Case C:

Case D:

conditions (1M1)

conditions

to (M4) plus conditions (M6)

Ml to M&4.
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Proof: From Lemm’ 2.5 we have that-

logla| loglTl (1)
log|B| loglBl

and

logla] logla| (2)
log|b| log|b]

Furthermore if these numbers are irrational we have that
h|wS(q)-{q)} and h|W(a)-{q)} are C' maps. We will show now
‘that in all cases equalities (Ml) to (M4) are satisfied.
Take a sequence X; € W2(q) converging to the point of tangency
x and such ‘that fhn(i)(xi) converges to some point =z € Wo(p).

By Lemma 2.3 we have that

a(x;, W (p)) = cd(z,p) o | (3)

wﬁere t dis a positive constant independent of the seguence.
Now Wu(p) and 'Ws(q) have a tangency of order 2n af X.
Therefore if we consider a C€° metric &' induced by a ¢~
coordinate system in which WY(p) is a straight line and Wo(g) is

the graph of a homogeneous polynomial of degree 2n then

A We) )
Ta (g0 % “

where Q; is a positive number. But since d is a c° metric,
Lemma 2.2 tells us that d(xi,Wn(p))/d’(Xi,Wu(P)) converges
to a positive constant which does not depend on the metric.
Clearly the sequence d(x;,x)/d"'(x;,x) also converges to a

positive constant because Xx; € wo(q). This and (4) implies that



-18~

e e
fa(x;, )% %
and Q> 0. Now h|wS(q)-{p} is cl so that
a(x;,%) ~ d(%;,h(x)) (6)
Equations (3), (5) and (6) imply that |a| = |&]. Hence @a=g&.

Similarly we prove that b = Db and from (1) and (2) it
follows that B = B .and a = &. If we.are in case D then we
are finished. So let us show that there are additional moduli
‘in cases A,B,C. Llet us prove that M5 is satisfied in cases A
and B. For that, take a sequence x; — x nice with respect
to (x,y). Choose subsequences i(j) and. n(3j) such that
f-n(j)(xi(j)) converges to a point 2z € W¥(p). Since we are in
case A or in case B we can take a sequence 25 € W3(q) such
that f_n(j)(zj) — z. Since {Xi} is nice with respect to

(x,y) and 4 is a linearizing metric we have

alxg(5)» W(@)) = aly,q) 187D,

-dlxy gy, WD) = dlxy(4y,%5(a)) .

So we have

alx; 5y, W) = dly,a) s 1720, (7)

Since f_n(j)(xi(j)) and f_n(j)(zj) béth converges to z we
have from Lemma 2.3 that d(xi(j),wu(p)) = d(zj,Wu(p)). Finally
we have eguation (5): d(zj,wu(p)) == Qx{d(zj,x)32n. This and
(7) implies:

aly,q)-1817303) = Qx{d(zﬁ,x)32n i.e. (8)

}2n

O

Qo™ a06a) o o-i(5) .
d(y,q) d(ijx)

(9)
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Since hlws(q);{q} is linear and d 1is a linearising metric we

have

.

d(Zj,X) _ d(qu)

a(n(zy),h(x)  d(n(x),h(@))

-

From this, 8 = F, and (9) it follows that

o -1a(x,q))2"
d(y,q)

is a topological invariant.

Similarly, we prove that is cases A and C conditions M6 is

satisfied. a

Remark. It is not ob#ious that the numbers which appear in the
modulus conditions (M5) and (M6) -are independent of

the choices made for the metric d. That these numbers are

independent of the metrics is proved in §3(b). (In case A this

also follows from the conclusion of Lemma (2.6).

In section 5 we shall show that the equations from Lemma
(2.6) are the only obstructions for constructing conjugacies

between twodiffeomorphisms as above.

Proof of the theorem. It remains to prove that if f € G has

- finite modality then condition 4 and 5 of §1 are
satisfied. Notice that if f has finite modality then the
modality of any g sufficiently near f is at most equal to the
méﬁality of f. So we wili prove that if f € G does not satisfy
condition &4 of §1 then f can be approximated by diffeomorphiéms

with arbitrarily high modality. So let f € @ be a
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diffeomorphism'having an orbit of non transversal intersection
between Wsﬂq) and  WY(p). We may assume that all periodic
points are in fact fixed point by considering a sufficiently high
_iterate of f. By taking a small perturbation of f we may

assume that w(p) has a point x of quasi-transversal (i.e.

quadratic contact) intersection with ws(q). Now assume that con-
dition 4 of §1 does not hold. Then.any arbitrarily small arc
I at x transversal to wu(p) contains unstable (stable)
manifolds of saddles. Then, by taking a small perturbation of f
one can find a saddle P (Q) such that W(P) (W®(Q)) has an
intersection with ws(p) (W(q)). We also may assume that wa(p)

(respectively W3(Q)) contains a small interval I (resp. J)

which intersects transversally W°(p) (resp. W'(q)) in a unique
point (see figure 2.2). Now assume that condition 4 of §1 does
not hold. Then fk(I) has an intersection with J for any k
sufficiently big.

A,
P

A
y

Pl /7\

Y

4
e

QA

Figure (2.2)

~

From the Appéndix it follows that we can constrdct a C1

: o 4 }
unstable (resp. stable) foliation 3 (resp. 5%), ywitha ¢

tangent line field, having"I (resp. J) as a leaf.
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Claim: If I__TET is irrational then the points of tangency of
0g .

£%(3) with 33 accumulate at I N WS(p).- The theorem then
follows easily from this claim. In fact, if the claim is correct
then by a small perturbation of £ with support in a small
neighbourhood of I N ws(q) we can create an arbitrary number of
orbits of tangency between WZ(P) and WwS(Q). Since by
corollary 1 each orbit of tangency gives rise to a conjugacy
invariant we have that f has infinite mbdality. So it remains

to prove the claim. Since x is a point 6f quasi~transversal

intersection of WY(p) with WS(q) and the tangent line fields

S 1

to the foliations 3; and aq are C
-1

.implicit function theorem, that in a neighbourhood of x, °p

is transversal fo 3; except along a Cl curve T which is

it follows, from the

transversal to WY(p) at x (see [MeZJ). Let a = (1) n s
and b =f(J)NE. If d isa C° metric on M then we
have

d(an,x) = cllaln
~ (*)
d(b,x) = c,|B|™"

~.

where c¢,, c, are positive constants. This follows from lemma
2.2, the transversality of £ with W'(p) and the fact that (¥

are obviously true for appropriate linearising metrics. Now

loglal . .
since ———TgT is irrational we can find sequences n(k),m(k)

lo

& -n(k) c

+ » such that |[B8] + 1 . From (*) therefere follows

- |alm(k5 5 :

d(am(k)’ bn(k)) — 0
Ialm(K) !

and therefore: . d(f”m(k)(b ) Y_T(k)(a ))) + 0.

n(k) m(k
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Hence f-m(k)(bn(k)) converges to Ws(p) NI as k— =. This

proves the claim. ,
"'a,_ P ﬂ

§3. A few technigues for constructing conjugacies

In this section we will develbp a few techniques for
constructing conjugacies. In sections 4 and 5 we will employ
these techniques in order to construct conjugacies between two

nearby maps in € which satisfy the relevant moduli conditions.

Let us start with making a general comment. It is well
known that every diffeomorphism in € which satisfies certain
transversallity conditions on invariant manifolds is structurally
stable, see [Rbl). In order to prove these results one has to
construct conjugacies between two nearby diffeomofphisms.
Basically there are two ways of doing this. One method is
functional analytic. Here one defines an operator on an
appropriate space of homeomorphisms and shows this operator‘has ’
a hyperbolic fixed point, see [R]. The other method is a
geometric proof using invariant foliations, see [PS], ([Mel],
[Me2]. (For Axiom A diffeomorphisms this geometric method has
only been developed in dimensions two see [Mell). In any case
it is probably difficult to use the functional analytic methods
since all the operators will be non-hyperbolic see[Rb2]. Therefore we
. vill give geometric constructions using invariant foliations.
These methods also enable us to keep track of all the freedom
one has in constructing the conjugacies. Let us now define thése

invariant foliations and explain how they are used.
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Take a hyperbolic periodic point p -(of saddle type) of

a diffeomorphism f. An unstable foliation oy (tubular family)

for p is a continuous retraction T Vi -4'§s(®(p)), where
6(p) is-the orbit of p and V" is a neighbourhood of
wi(s(p)) with: (1) (m))™H(p) = wH(p); (ii) the foliation
whose leaves are fibers of 7, is f-invariant. Similarly we

define the stable foliation ¢ for p. Using the A-Lemma it

s
p
is easy to construct invariant unstable foliations, see [Pl]. The
leaves in fact can be chosen differentiably (Ck if £ is Ck)
but the field of tangent lines to the leaves is only continuous

- in general (however see the Appendix where we prove this

foliation is sometimes more smooth). The use of this foliation

is explained by'the following lemma whose proof is straightforward.

Lemma. Let p, P be hyperbolic fixed points of f and £
‘ with unstable foliations 3; , 3;. Let h be‘a map
from a neighbourhood np of WY (p) +to a neighbourhood of W (F)
with the following properties: (i) hf = Fh; ii) (h|Ww (p)):
Ws(p)-*'ws(ﬁ) is continuous; iii) hl(hp-ws(p)) is- continuous;

iv) h vpreserves the unstable foliations. Then h is

continuous.

In order to construct global conjugacies it 1s necessary
that all unstable foliations fit together nicely. So let p, q
. be hyperbolic periodic points of f with W'(p) 0 WS(q) # ¢.

We say that the unstable foliations 5; and F% are compatible

q
if each leaf of 3; contains a leaf of 32._ In order to
"construct a conjugacy h between two nearby Morse-Smale
diffeomorphism one first constructg conjugacies on the stable

manifolds of periodic orbits of saddle type preserving the
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unstable foliations. Here one prpceedsﬂinductively using the
natural dynamical ordering of periodic orbits starting at sources
and endingup at sinks . Then we extend h +to fundamental
domains of the sinks again preserving these foliations. The
conjugacy equation (hf = fh) gives a unique extensions of h
to_the'whole manifold. From the lemma above it follows that h
is continuous. In this approach the compatibility of the

foliations is essential.

In our case we have tangencies of invariant manifolds.
Therefore soﬁe leaves of unstable foliations do not have a unique
.intersection with stable manifolds. Hence it is impossible to
construct a comﬁatible system of unstable foliations. So we will
have to use both the unstable and the stable foliations. In the
Morse-Smale case these foliations are transversal but here they
cgn.be tangent. The geometry of their intersection is extremely
complicated (especially when higher order fahgencies are
involved). So we are forced to make‘carefull adjustments of
these foliations in order to get a good control of their
.intersection. These modifications near the tangencies must be
globalised in order to keep the foliations invariant. For that
we need some carefull estimates which we will make in section 3(e)

using a generalised A-Lemma proved in the Appendix.

There is ahbther difference with the Morse-Smale case.
Here we will have to define the conjugacy in a'whole
neighbourhood of the tangency points first. Then we have the
problen of extending h continuously to the closure of the

orbit of this neighbourhood. This is done in section 3(b).
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83 (a). Construction of foliations

Let p be a hyperbolic fixéd point (of saddle type) of a

o diffeomorphism f. Take a point x € Wu(p)-{p] and a small

neighbourhood Vx of x. Let CX n. be a cone like region which
H

has a tangency of order n with WY(p) at x:

C, ='Cx,n = {w E.fo d(ﬁ;wu(f)) 2 e(d(w,x))™.

Here d is a C° metricon M and ¢ is a positive constant.

let & Dbe a Cl

foliation on Vx whose leaf through x is
Wu(p). For each a ¢ Vo let L, denote the leaf of & through

a.

Lemma 3.1. (Extension of foliations defined on cones). If

sup{d(w, W' (p)); we L n C)

lim = -
(P)); we L, N cx)

‘1 (3.1)
a»x inf{da(w,V

. o '
then there exists an unstable € foliation 8; whose restriction

e

to C coincides with .
- TXsn

Figure (3.1)

Remark: If d is a linearizing metric then Lemma 3.1 remains

_ true if we take for Cx a whole neighborhood of 2,

provided V_  is contained in a fundamental domain.
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Proof: Take any invariant unstable foliation ﬁ; of p. We

u
P

coincide with &. Let Nx be the connecied component containing

will modify 32 so that restricted to C, it will

s,

x of a fundamental neighbourhood of W (p) such that N_-C_

consists of two components as in Figure 3.2.

Cy. Nx

Lo
»

Figure 3.2

. . . u
Define the new foliation Ep in Nx by taking this foliation

. . 2u . . -
identical to 3p on Nx—cx and identical to & on Cx’

Clearly §; extends uniquely into an invariant foliation on a
neighbourhood of WY(p)-{p}. We must show that the closure of -
each leaf of 3; has exactly one intersection with W°(p). More
precisely, we must check that there is a continuous projection
ﬂp on Ws(p) along the leaves of 3; . In order to show this

it suffices to prove that for any sequence a(i) € N such that

£Ha(1)) =y € wS(p) as i— = onme has £ (L,5)) — V.

u
p

if a(i) and x(i) € Lé(i) are both contained in the same

Here Lh(i) denotes the leaf of & N N, through a(i). Now

component of N_-C_ it follows from the fact that 3; is

identical to the unstable foliation 3; (on N -C ) that

r~3(x(i)) = y. So it suffices to consider sequenoés a(i) €
nd s . .y N

€ Nx n CX and show that for x(l) € La(l) Cx one has

£ 3 (x(i)) = y. But from equation (3.1) it follows that
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d(agsy,Wi(p)) = da(x(1),w (p)) - (3.2)

From equation (3.2) and Lemma 2.3 it follows that f (a(i)) = vy
if and only if £ “(x(i))— y. This finishes the proof of the

lemma.
il

It will be convenient to give a general way of
constructing foliations & which satisfy equation (3.1), in
terms of some Cl-coordinate systems near x. In fact take a
Cl—coordinate system (u,v) near x so that

{V = O} = wu(p) ) {(U,V) = (0,0)} = {X}-
In these coordinates the leaves of & are in the form
. La = {V = g(uya)}

with g(0,2) = a. Write g,(u) = g(u,a).
Lemma (3.2). (Construction of foliations in cases which can be

extended to tubular families).

Let n ©be the order of tangency of the cone Cx n with

1
W (p) and let g: R°P— R Dbe so that:

(1) the n-=jet 3" ga(u) varies CY or a:

a — j° ga(u) is C~.

(2) u — g (u) is C7.

(3) 5™ gy(w) = o.
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Then the conclusion of Lemma (3.1) holds i.e. +the foliation 3

on Cx n can be extended to an unstable foliation.
v .

Proof: According to the theorem of Taylor one has

glu,a) = a + wz(a)'u Feeot wn(a)-un + R(u,a)-u? , (3.3)

with R(u,a) — 0 as (u,a) — (0,0), and with ®5 ¢l so

that wi(O) = 0. Now for (u,v) € Cx,n one has for some

constant Cq

lul® s cq-lv]. (3.4)

1

Now let (u,v) = (u,g(u,a)). Since ¢; is C° and @i(O) =0

one has from (3.3) and (3.4) that:
vl = lg(u,a)] = c,-lal + cq-|v]-|R(u,a)]

for some constant C, - From this it follows that

lv] = c5 la] and |ul® =< ¢, lal (3.5)

for some constants c3 and cy - Therefore

g(u,a)
v
RS Yy A Y
@, (a) v _(a) n
s | S - lul s =2 Jul™ + 12 |R(u,a) |

< cs-lul + CAJR(u,a)L

From this it follows that
g(u,a) ‘
V.
R (5.6)

as (x,a) — (0,0). Obviously equation (3.6) implies equation

(3.1) in Lemma 3.1. ‘ , e
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We will ufs Lemma 3.2 in order to modify foliations near
certain partis of the manifold. Let f be a diffeomorphism with

a non-transversl saddle-connection as in Figures (3.3) and

(3.4).

c'é‘
'C;x

tangency of even order

Figure (3.3)

N\

"d/»

3>
L g

qu

\

tangency of odd order

Figure (3.4)

Assume that WY(p) and W°(q) have a tangency of order n at

x. Let 3; and 33' be respectively the unstable foliation at

p and the stable foliation at gq. According to the Theorem in

the Appendix one can ghoose these foliations C1 so that the
fields of tangeht lines are ¢t ang so that the leaves of these

s 3 ® 1T y - ~U S
foliations are C . Ve flrst show that dp and % can only
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be tangent in a certain cone CX n°
9

",

} 1 ~. -
Lemma (3.3). Let &, ' be C folijations on a neighbourhood

- .of the origin of IR2 such that the leaves are
Cr+l, r 2 1, the fields of tangent lines are C1 and the leaf
%'(0) of &' +through O has contact r+1 with &(0). Let
T be the set of points where T is tangent to &'. Then the
contact of T will &(0) at O is less than r+l1, that is more

precisely, either T-{0} = ¢ or

d(Z, F(0))

1im T
zeT-{0}  (d(z,0))T*
z-0

where d 1is some c® nmetric.

r+l

Proof: Choose a C coordinate system (u,v) in a

neighbourhood of O such that &(0,0) = {{u,v) | v = 0}

and ¥'(0,0) = {(u, V)] v = utly,

Denote by ¢(u,v) the
tangent of the angle of &'(u,v) with the horizontal line
through (u,v) and by ¢(u,v) the tangent of the angle between
3 (u,v) and F'(u,v). Hence ©® and ¢ are C', ¢(u,0) -

= @(v:.0), Q(u,ur+1) = (r+1)-uF¥ and T = {(u,v) | ¥(u,v) = 0}.

By tlie mean value theorem we have

¢, v) = 4(u,0) + 2 (0,D-v ,

and

r+l d +1
) - d

¥ (u,0) = £(u,0) = #(y,u —% (u,v).u' ",

for some Vv between O and v and some Vv between 0 and

ur+1. Thus



t(u,v) = (r+1) 0" - &2 (0, %) -u"t o 2L (u,¥)v ,

and

t(u,v) _ r+l1 e
ur+1 T oou DV

-~ -b_'!"_ - v
(u’V) + >V (u,V)' ;FIT .

if (u,v) €T we have ¢{¢(u,v) = 0 and since (-] is bounded,

we have
v | -
im —_— = 4o,
(u,v)ET |u]T+t
u*0

‘This clearly proves the Lemma.
. ’ B

Now we will put Lemma 3.2 and Lemma 3.3 together and

show how to modify the foliations *g and 3° so that they are
q

tangent only along a curve.

. o ,
Consider any C° metric d. Since WY(p) and WS(q) have

a tangency of order n one has (as in Lemma (2.6)) that

lim d(w,wu(p)) —
wewS(q)  (d(w,x)? X
W+ X

for some positive number Qx' Now let T ©be the set where S;

and 3; are tangent, and let as before

Cx,n = {w |d(w,Wu(P)) 2 C-(d(w,x))n}

Acoording to Lemma 3.3, for any c¢ > O there is a neighbourhood

Vx _of x so that

TNV, SCyy

So take c¢ > Qs and Vx so small that Cx,n n ws(q) = {x} =

= Cx,n n Wu(p). In other words, outside the éet Cx,n the
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r .

foliations 3; a.d 3: have no tangencies (in Vy),'so we

will modify these foliations in Cx n°
?

We can modify either Sg
or 3: according to whichever is more convenient. Let us

change 33. In order to do this take Cl-coordinates (u,v)

near X ;o that {v=0} =w*(p), and so that the leaves of E; are
of the form {v =c¢)}, i.e. parallel to the {v = 0} 1line.

From the Appendix it follows that this is possible. Clearly we can
write wS(q) in the form W°(q) = {v = g(u)} where g is some

1

C~ function and g&0) = 0. From the remark above Lemma (2.3)

it follows that 51%1 converges to a number Q # O as u—+ O.
u

Ve will treat the case that n 1is even and the case that n

is odd separately.

Case 1l: n 1is even

Consider the foliation {v = g(u,a)}, a € R, where
g(u,a) = Qu® + a. According to Lemma 3.2 we can change the
foliation 33 so that inside Cx,n the leaves of this
foliation are of the form {v = g(u,a)]. From this and Lemma
(3.3) it follows that then 5; and 32 are tangent exactly in

the line {u = 0}.

Case 2: n 1is odd.

In this case bhange the foliation 32 so that inside Cx n

’
the leaves of this foliation are of the form {v = g(u,a)l,

where g(u,a) = Qu™ + a2.u + a. From this it follows that then

3; and 52 .are tangent only at the point x.
“Remark: The set C, ﬁ\\{x} consists of two components.
- ’

Sometimes it will be necessary to modify 5; in one

component and 32 in the other component.
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§ 3(b). Construction of conjugacies.

Now we.give a Lemma which will show us how to use these
foliations in the construction of conjugacies. As before let Vy

be a neighbourhood of a voint x € W'(p) - {p} and let,

Con = v € Vys an,W3(p)) = o fd(w, 2017} .

(Here d is a C° metric as before).

We consider the following situation. Let p,p Dbe

hyperbolic fixed points of 02

diffeomorphisms f,f. Let the
_contracting eigenvalue of f (resp. f) be & (resp. @), and
let

log|a]

8 = ———— , i.e. |al® =g .
logla|

Let 3; (resp. 3;) be the unstable foliation for f (resp.

). Let d, d be two C° metrics. We have the following.

Lemma (3.4). Let h: VX — Vi be a homeomorphism satisfying

the properties:

, _ d(h(w) wW'(p)
(1) 1im = )6 exists and is positive.
dlw,W
wer’n ( ( ) (P)
w— X

(ii) The restriction of h +to each connected component of

Vx—Cx maps leaves of the restriction of the foliation

3; to this connected component into leaves of 3; .

Then h extends to a homeomorphism of a neighbourixod of p,

conjugating f  and f.
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Proof: Let d' and d' be metrics induced by Cl—linearising
coordinates for f (resp. f). From Lemma (2.2) in

section 2 it follows that

d'(h(w),w(p))
(@ G, i(py)s - PO - (3.6)

lim
W oX
weC

Xy
Furthermore since d' and d!' are induced by linearising
coordinates one has for sequences x; — X that f_n(i)(xi)
converges to some point z € W (p) if and only

at(x;,W(p)) = ar(p, 2)-|o|R(1)

.and a similar statement holds for f. From this, equation (3.6)
and the fact that |al® = |&], it follows that h extends to a
homeomorphism of the closure of kgg f-k(Cx’n) conjugating
and f.

Now assume V, 1is sufficiently small so that (v, n

n Vx =9. We can extend h +to Vy by taking any extension of
h|C which maps leaves of 3J_ +to leaves of 3 . Tt follows
X, P . 5
that h extends to the closure of U f‘k(v ).
k=0 X

Let us now extend h to a neighbourhood of WY(p). Take
a leaf F of F;. For simplicity we can assume that vV, is
chosen so that if F intersects V., » then F‘\(Vk U f-l(Vk))
consists of three components, see Figure (3.5). Consider the

component of F‘\(Vi U f-l(Vx)) with boundary points Xp €V,

-1
and x, € f (Vx). )

-1 B .
T =(v,) v,
1. //\\ 22\ (21
p‘ - .
v X
x> Vo 1 1

Figure (3.5)
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Consider h(xl) and h(xz). In general" h(xi) and 'h(xz) need
not lie on one leaf of 3; . Therefore we will modify EB .
In fact take two curves fi, 52 tranSVersal to Wu(p) between’

h(V*) ‘and f—l(h(vx)) as in Figure (3.5). The leaf Fi of

u -
35 through h(x.) has an intersection .v; with I;. Take a
leaf Lv in the strep between 21 and zz which is piece-wise
linear w1th respect to the linearising coordinates for f such

that LV NE, =vy, Lﬁ,ln g, = v,. Do this for every v, € -

1
Now define a new foliation "EB" which is identical to &;
P

outside the . strip between 21 and 22 and identical to the

Piecewise linear one inside this strip. It is easy to see that
"3_1_1 "t
P

is an honest unstable foliation for P, using Lemma 3.1.

Now defiﬁe a conjugacy h on a neighbourhood of Wu(p)

'by taking any extension of hIVx vhich maps leaves of Su

p
onto leaves of "55 " ., From the construction above if follows

that this is possible. B

Now we consider the situation that a homeomorphism h is
only defined on a cone-like set Cx. More specifically cdonsider
the situation that f has hyperbolic saddle-points p,q such
that WY(p) ard WS(q), has a tangency of (even) order n at

a-point X.

Figure'(}.6)
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Let Cx' be ine Cone-like set as in Figure (3.6), and let f be
a diffeomorphism so that WX(F) and WwWS(g) also have a
“tangency of order n al X. Assume h: C, = Ex is a
homeomorphism. When can we extend h to a conjugacy on a
neighbourhood of p? In order to investigate this question take

a:~C°fmetric 'd: near x and define

d(w, ¥ (p))

lim
weWs (q) {a(w,x)1"
W= x

As we have shown before, Q is well defined and Q, £ O.
Define Q_ similarly. let 4 be a C° curve through x
transversal to WY(p) and take a similar curve % for TF. Ve

assume that h(4) = ¥ and that the following limits exist and are

positive: _ _ _
- d(h(w),?) d(h(w), v (T))
. €= lin ~———— and C,= lin —.
WX d(w,L) WX d(W;ws(Q))
wecx-L o wECx-Ws(q)

Also assume the contracting eigenvalue of f at p 1is equal
to the contracting eigenvalue of f at Pp. The numbers Q.
'Qf » C;, C, do depend on the choice made for the metrics d,d.

However we have the following result.

Lemma 3.5. let h be a homeomorphism as above. Then:

. Cn
(1) the equality Q_ = e Q_ does not depend on the
_ x C, "%
metric d,d; : '
ch . |
(2) if Q, =.E§ Qf then the homeomorphism‘ h can be

extended to conJjugacy on a heighbourhood of p.
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Proof: (1) Let a:

be another metric instead of d.

From

Lemma 2.2 and the remark below this lemma we have that

theré exist 3> 0 so that

a(w,w(p))

*lim 5 =) = lim
wex  d'(w, %W (p)) WX
weW" (q) weC,,

d(w,w*(q))
ar(w,%w"(q))

Furthermore if w € W°(g) converges to x ‘then from Lemma 2.1

it follows that d(w,x)/d!'(w,x)

converges to a positive constant

M. On the other hand one has d(w,2) = d(w,x), d'(w,L)=ad'(w,x)
for w € w>(q) converging to x since W°(q) and W2(p) are
tangent to each other and transversal to 1. Hence
d(W, x) d(w,2)
lim ————— = = lim —,
1 1 s
weWs(q) ar(w,x) weWS (q) ar(w,1)
WX wtx
Cn
It follows immediately that Qx = El Qi does not depend on the
2

choice of d.

(2) Take €~ coordinates

= {v=0}, ¥(a) ={v=0_u"} and 1

Similarly it does not depend on the choice of

(u,v)

d.

at x so that W(p) =

{u = 0}.

From (1) we

can take for d the usual Fuclidean metric in this coordinate

system. Take w € C,

alw,Wi(p)) = v

Furthermore

and let w have coordinates

O (a(w, )" +

(u,v). Then

‘v -‘Qx(d(w,a))n.

v - Q (a(w,2))" = a(w,w(q))

as w— x (see the arguments used in'the remark below lemma 2.2).

P}

Now we use the following elementary fact. ays

d;

Take sequences

of positive numbers such that a.

b, i

ijr Ci» and

e bi + ci



~38-

Ci’/di converges to 1. Then a; = bi + di' It follows that

a(w, W (p)) = Q (d(w,2))" + d(w, W (a))

and similarly
E(h(w),wu(ﬁ))3=Qi(&(h(w),1))n + d(h(w), W (T))

Using a similar elementary computation as above one concludes

that

d(h(w),wH(p))
d(w, W (p))

converges for w G‘Cx converging to x if and only if

(In this case the limit is CZ)‘ Using Lemma 3.4 it follows

that we can extend h to a conjugacy near p.

§4 Construcéion of conjugacies vhen all invariant manifolds

except W7 (p) and W°(q) intersect each other transversally

Suppose that p and q are hyperbolic saddle-points and
that WY(p) and W°(q) have k-orbits of non-transversal

intersection.

In order to state the next theorem we need some notation.
Let o« (resp. B) 'be the contracting {resp. expanding)

eigenvalue of f at p (resp. gq). Choose a fundamental
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domain D) in Wi(p) and let 2)y++.;2, be the points in o}
where WY(p) and V¥°(q) are tangént.. Order these points so
that d(zi;p) < d(zi+1,p). Then take a- CTt curve I; at z;
transversal to W3(p) and WwS(q) and take linearising metrics

dp, dq "at p and q respectively. Define

b, = 1m %)
i Vl”zi dq(“'r’zi)
W€Ei
Let Plg-oo,Pn(p) (resp. ql”"’qm(q)) be the saddles whose
‘unstable (resp. stable) manifolds intersect W' (p) (resp. W (a)).

Denote the contracting (resp. expanding) eigenvalue of f at

Api (resp qi) by Ay (resp. Bi)’ and the linearising metrics

by respectively d and d
Py 93

Choose fundamental dormains D; in W(p) and Dg in W(q).

Let Xp,.-s%y(p) (resp. yl,...,yL(q)) be the intersections
of the unstable (resp. stable) manifolds of the saddles p;'s

(resp. 'qi's) with Dg (resp. Dz) ordered as above.

Let I = {i]|w(p) and w°(q) have a tangency of even order

)

] u s
at z;1, Ipi = {J; x5 €W (py) N Dp) and
-— 2. u .
Iqi = {Js vy € w(q;) N Dq]. Define

| : dp, (Wix5) |
A, L, = lim —2——  if xj€ Wi(py) N DJ
pi' ‘j W”XJ * dp(w’xd)

wel® (p)
dq.(w’yj) ‘

A = 1lim 1 if  y. € vw(g.)n d¢
U5 wy d, (v,y4) J i q

wéwu(q)
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Figure (4.1)

1

Let f,f € M be as above and C~ near each other. Assume that

all invariant manifolds (except WY(p) and wS(q)) are

transversal to each other. Furthermore suppose that £ has

points E}, Ei, ;i’ ﬁi, ai corresponding to z;, X, Yj» Pys
q;» which are ordered in the same way, such that wi(p), v (q)
have a tangency of even order at z; if and only if wi(p),

w5(g) have a tangency of even order at Z5 -

Theorem (4.1). The diffeomorphisms f,f € M as above are
. conjugate if conditions (M1) - (M5) hold.
Here (Mi) is:

loglal loglz]
= —
logl8| log|8]

i.e.,there exists & >.0 such that

la]® = |a] ana |[8]% = |B];
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(6, )% (s, )° :

(M2) e for'all 1,3j€ I;
Ai.i Azd : E .

(M3) Ay =& 1=1,...,n(p),
Bd = Eﬁ . J = 1:"':2(q) ;

(M4) EE(xi:p)

[.fﬁffiLgl ]6 i=1,...,2(p),

dp(xj’p) dq(ij,ﬁ)
a_(y;,q) d.(¥,,a) 18
qQ Yqu d YJ’Q
Aﬁi’ 6~1 pi’ik 5-1
I o et L) M e (25 G2
Pl: PyaXp
for all J,k € Ipi ’

-34-11515_1{ (yj,q)] . Aal’yk RE <yk»q>]6”1
! qi’ Jb_

i’)d
for all Jj,k € I 3
qy
loglal
- is irrational these conditions are also
logls|

necessary for the existence of a conjugacy.

Remark. Only tangencies of even order lead to conjugacy

invariants. However the presence of tangencies of odd
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order makes the modality increase because they generate, by
perturcations of the diffeomorpnism, new tangelicies of even

order.

Proof: The necessity of the moduli conditions follows from

Lemma 2.5 and its corollaries. In order to show-the
sufficiency of these conditions we have to construct conjugacies.

We have subdivided the proof in a few cases.

Case 1. Supﬁose that there is no periodic saddle point P with
Wi (P) N Wo(p) # ¢ and similarly no periodic saddle-

point Q with W'(q) N wW5(Q) # ¢. As before let wi(p) and

W (q) be tangent at k orbits 6(zq),...,0(2z,). It will turn

out that the number of conjugacy invariants is equal to the

cardinality of I. 1In particular if %I = 0O +then there are no

conjugacy invariants. Let us now construct a conjugacy between

f and f. First we define h: W (p) — W () so that
(4.1) d:(h(v),p) = c[dp(v,p)]6

where ¢ 1is a positive constant and

loglz]
(4.2) § =

loglel

From (4.1), (4.2) and the fact that dp is a linearising metric
it follows that hef = Toh. '

Case 1(a): All tangencies are of odd order (i.e. #I=0). Take an

unstable family 3; for p and a stable family Ez for q.
Using the construction at the end of §3(a) one can modify 32 and

, P
33 so that,near 23 5; and EZ are tangent only in z; - Define

h: w'(q) —w*(g) to be any homeomorphism so that hof = foh.
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The h- :2omorphisms h: Wo(p)— WS(P) and h: Wi(q)— Ww(3)

induce maps on the space of leaves of 3; and 3:. This defines
h: V?.~4V§ uniquely, where V, is a neighbourhood of z;.

i i i
Now we show how to extend h globally. Take a system of

invariant foliations 3; , 33 for all basic sets Qi in Q(f),
: i i
so that 35 and 32 (and similarly 3% and 52 ) are
Oi 0. Q. 0.
. J h | J
compatible for all basic sets Qi’nj except where Qi = {p}

and ﬂj = {q}. In [P1], [MP] and [Me2] it is shown how to
do this when Q(f) is finite. If Q(f) is infinite then one
.has to use the methods of [Mel). Remark that f € h implies
that there are no points x which is part of a non-trivial basic
set (which is not a periodic orbit)such that W%(x) or WS(x)
has intersection with W°(p) or W%(q). As in [Pal] and [Mell
we proceed by defining h: wu(ﬂi) — wu(ﬁi) for any basic set
0, such that WS(Qi) N w(p) # 6. This induces a map on the

space of leaves of .33 and from the transversality of wo(x),

x € 0; , with w(p) lthis gives a map h: WX(p) N V-WH{P) NV,
where V is a neighbourhood of W3(p) N WS(Di). Extend these
maps to a conjugacy h: wu(p)—*wu(ﬁ). Since 3; and 33
intersect transversally, except at z; , ‘the conJjugacies

h: W (p)—Ww(P) and h: w¥(p) =W () can be extended to a
unique conjugacy on a neighbourhood of p which respects all
invariant foliations. As in [P1], [MP], ([Mell] and

[Me2] one extends h globally.

case 1 (b): One even tangency, i.e. #I=1.

Let z = z; be a tangency of Ww(p) and W°(g) of even

order. Using the construction of the end of §3(a) one can
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modify 3; and 3: so that, near z, 3; and 33 are

tangent along a cl-curve T. The homeomorphism h:%WS(p) —wS(P)

induces a map on the fibers of 8; ard 3;,, and we get a

homeomorphism h: £T—T . From equation (4.1) we get

(4.3) dﬁ(h(v),i) = c[dp(v,z)_]6 for. véeT.
Hence
_ (62)5 5
(4.4) d_(n(v),z) = ¢ = [a_(v,2)] .
q 3 q

Using the conjugacy equation hef = foh we can extend h to

U fY(I). This set accumulates on W9(g). From 4.4 it follows
JEZ .

that h extends continuously to a homeomorphism h:W3(q)—WwY(g)
defined by

L (8,)° 5 .
(4.5) dg(B(v),@) =c 5 [a4(v,2)]" ©

From (M1) we have that h| W%(q) is a conjugacy. Of course the
map h: T U W(q) —E U W(T) may not map leaves of 33 into
leaves of '32 , but as in the proof of Lemma 3.4 one can modify

3% in the complement of a neighbourhood of the orbit of 2z so
q

this is the case. As before we can use these foliations to

extend h.

Case 1 (c): More tangencies of even order; i.e., % I>1,

As before we can induce homeomorphisms h: Zi — Ei for

i¢ 1 and we can define h on U £J(S,) using héf = foh. If
(M1) holds, then each map h: E; —*fi induces a conjugacy

h: W(q) — W) satisfying:
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&
(8, )

a_(h(v),q) = cr —E—.{a_(v,)}° .
q A_ P

2.
1

These conJjugacies only coincide if (M2) holds. As before one

needs to modify 3; so that h maps leaves of EZ into leaves

of 3% . Extend h as before.

Proof of Theorem (4.1): Case 2

Suppose we are in the same situation as before except
that there is exactly one saddle-point P with WY(P) n wS(p)#¢
-and exactly one saddle point Q with W°(Q) n wW¥(q) # ¢. Assume
also that W?(P) n wS(p) (resp. W°(Q) N Wu(q)) is a unique
orbit 6(x) (resp. 6(y)). Suppose that all intersections of
invariant manifolds (except of W%(p) and wo(q)) are transversal,

see Figure (4.2).

BN 2
—

P + 2
P‘ 3 ’ 2

4 ‘2'

. =

+

C2 ~iq

R\

¥ L a

Figure (4.2)

We will now show how to construct conjugacies in this
case. Take Cl—fqliations 5; and 38 . Accordiﬁg to the
first theorem in the Appendix one can construct Cl—foliations

- S s . . .
3; and 34 respectively. Now in the constructions we made in



Cases 1(b) and 1(c) we had to modify the foliation':?; . But

e

since we do not wish to modify the~foliation og we will have
to be careful. In fact we need here the condition 4 in the
definition in the class M, see §1l. Consider the cone-like

sets C, as in section §3(a). Let C;,. be the component of
i i

¢, \'{z;} such that C} = is-disjoint from W!(P), and C, be the
i . i i

other component. From condition 4 in § 1 it follows that C;i
is ﬁ;n-empty and C;i is disjoint from W5(Q). Let Wiz(p)
be the component of W (p)-{p] on to which fn(C;;)
accumulates and Wi_(p) the other compohent of WS(p) -{pl}.
Condition'h impliésithat Wi+(p) éoes not depend on thé |

i

tangency point 2z;. Similarly define wu+(q) and W _(q)
: : z z

- Clearly the foliation 3? is disjoint from C: and

v . _ i

the foliation 38 is disjoint from C; . So we can modify 3;
, . i

in C; and 55 in €. as in §3(a), without changing 3;
i Q 23

or 38.' In this way we get foliations 5;

are fangent along a curve Zi (if the tangency at z; is of

even order) or only at zj (if the tangency of WY(p) and ¥W°(q)

and Sg vhich eizther

is of 0dd order). Let us now construct conjugaciés.

Case 2(a): & I:O:

The construction is basically the same as in case 1(a).
Ve sfart now to define conjugacies h: W (P) —wS(P) and
h: w(Q) —w*(Q@). Via the leaves of Sg and SS this indﬁces
homeomorphisms on subsets of W-(p) into W (P) andAon subsets
of WY(q) into W¥(3). Extend these homeomorphisms to
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conjugacies .h: W>(p) —VW°(P) and h:fwu(Q) —w(g). Now

proceed as before.

Case 2(b): ¢ I=1.

u
p
let I_ be the component of T f,{Z)_ such that fj(z_) accumu-

lates on W>(p) (=%° (p)). Now define h: w3 (p) —W>(P) as in
,

equation (4.1) where we choose ¢>0 such that h(x) =X ,

where x € W(p) N W(P) and Xe€ W) n w(F). That is:

Let T be the curve of tangency of 3  and 5; , and

a_(x,p)
(4.6) c = —7L -
. (dp(x,p))
The map h induces a map on the space of leaves of 3; and

therefore a map h: I_ -*E; . As in case 1(b) +this indﬁces a
_map h: Wﬁ(q) -*vz(a), vhich is a conjugacy if and only if
condition (M1l) is satisfied. So up to now we have defined h
on one side only: starting in W°(p) and ending in wﬁ(q).
Similarly one can start in WB(q) and end in Wi(p). It

. follows now from the construction and equation (4.1) thav

h: ws(p)-—+w§(§) and h: W(q) —W(T) are C1 outside p
and q. From this it follows that h extends to h: W5(P)—
=3 (F) and h: w(Q) —w*(Q) if and only if |

(M3) - A=X% B=3,

see Lemma 3.4. As in the proof of Lemma 3.4 one has to change

the foliations Gg (resp. 3%) in order to make sure that h
‘.

maps lcaves of 3; (resp..ﬁz) into leaves of dg (resp. 58).

As before one extends h.
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Case 2(c): #$#Is1.

One can construct conjugacies in this case in the same
way as in cases 2(b) and 1(c). One needs the additional modulus

conditions (M2).

Proof of Theorem (4.1): Remaining cases.

Suppose now-that £ and f are again as in case 2, but
that there is more than one saddle-point P, with Wu(Pi) n
N w(p) # ¢. Let us first treat the case that there is no
_saddle-point Q with Ww°(Q) n W*(q) # ¢. Then one can modify '
_33 so that 3; and 33 are tangent only in curves I; or at
the points- z4. Now construct h as in case 2. There is one
problen left. There are several orbit of intersections G(xi) c
c Wu(Pi) N W (p). But in the construction of h}ws(p)-*ws(ﬁ)
one has to choose a constant ¢ > O as in equation (4.5) so

that h(xi) = X; . for all i. This is possible if and only if

' = =y 08
(1) e Ritd ={ig?£2 , Wi
d(x;,p) a(x;,P) -

Since h| ¥ (p) is differentiable we need M3 in order to
extend h to wS(Pi). As before h | Ws(Pi) must be a linear

map- (because A; = Ai). If wu(Pi) n wS(p) contains more than
one orbit we will need (M5) becausé each orbit will induce a
linear map WS(Pi) —~w5(F£) and these maps must coincide. If
all these modulus conditions are satisfied one can extend h as

before.

The general case goes similarly. If there are also

saddle-points Q, with WS(QJ) N w(q) # ¢ then it follows

J
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from f € W that W)(q) # W'(a), W, (p) # wS(p) and either

(1) WP nWi(P) £ ¢ and WS(Qy) N Wi(a) £6, oor

(11) .Wi(R;) n Wi(p) #¢ and W(Qy) N wl(q) # ¢.

In this case one modifies 3; on one side of z. and 55 on

1 q
the other side, see case 2(b). The construgtion of a conjugacy

goes exactly as before. This finishes the proof of Theorem

(4.1).

8§5. Construction of conjugacies: general case

First we consider the case that:

§5(a). Wu(P),WS(Q). and W%(q),w (r) have non-transversal

intersections. A1l other invariant manifolds intersect

transversally.

Assume that there are three hyperbolic periodic points
P,q,r so that both w(p) and w2(q) as well as w*(q) and
WS (r) have exactly one orbit of non-transversal intersections.
As in Lemma 2.6 there are exactly four cases A,B,C and D to
consider. Let (M1)-(M6) be the modulus conditions from Lemma

2.6. We will prove:

Theorem (5.1). lLet f,f e M be as above and C° near each

other. Assume that no other invariant manifold
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of saddle point intersects Wo(gq) U W2(q). The diffeomorphisms
f and f are conjugate if and only}if the modulus conditions
(Mi) (i.e 6,5 or 4 conditions depéndihg on the case we are

looking at from Lemma 2.6 are satisfied.

Proof of Theorem 5.1.

In Figure (5.1) we have drawn the situations A,B,C and
D. The necessity of the modulus conditions (Mi) are proved in
Lemma 2.6. As before the numbers &,B, a,b denaote the
eigenvalues at p,q,r as indicated in this Figure. We will
assume that «,B8,a,b are positive. The general case can be

dealt with similarly.

Also we can assume that the tangency of Wu(p) and
w>(q) and the tangency of w(q) and Ww°(r) are of even order,
because if one of these tangencies is of odd order, then one can
construct the conjugacy as in the proof of Theorem (4.1). Finally
we will assume that W3(p) N WS(q) and W%(g) N W(r) both
consist of only one orbit. The general case is treated

similarly.
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“Case A: Denote by R the upper right hand quadrant near g,
bounded by W%(q) and W°(q) see Figure (5.2), i.e.,
R 1is the connected component of Uq - wS(q) U W¥(q) having the

orbits of tangencies in its boundary. First choose C1 invariant

foliations %5 and 59 having ct tahgcnt line fields. These

Q q
u

‘foliations 33 and Sq induce a Clmlinearising system for

f. Let d be the metric induced by this coordinate system.

() Let wY(p), ws(é) (resp. WY(q) and WS(r)) have a
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tangency of order n (resp. m), with n and m even numbers.

Define -
d(z, W (o))
= lim
ZEWS(Q_) {d(z,x)}n
Z X

and define Qy similarly. In Lemma 2.6 it is shown that the

numbers

Q -talx,q)1" QV'{d(y,q)lm

(5.1) ,
d(y,q) d(x,q)

‘a,B,a,b

are topological invariants. Let us show that these invariants

are sufficient.

(b) So we need to define a conjugacy between f and f. First
we define a conjugacy h on the quadrant R. We do this so
that h is 1ineér with respect to the linearising coordinates

and so that h(x) = X, h(y) = 7. Since
(5.2) . a=38, B=28
then h indeed defines a conjugacvy on R near q.

(¢) Let us now show that we can extend h to a neighbourhood
of p, provided ‘c = & and the modulus condition on Qx and

Qz is satisfied.

Let ¢ ©be the line through x which is horizontal with
respect to the:lincarising coordinates, and let T be similar.

Clearly h(4¢) =1 and for X; X,
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d(h(x;), w°(q) d(7,3)

(5.3) ~ ’
) d(Xi, WS(Q)) d'(Y9 Q)
. 3(h (. , = %,q
(5.5) .( (%;),4) . a(x, )
d(x;,4) a(x,q)

where d, d are induced by linearising coordinates. Take any

unstable invariant foliations 3% and _33 . We claim that we

b
can modify 3> so that E; agrees with h(Eg) inside R. 1In
p

~fact from Lemma 3.5, §3(b), it follows that h extends to a

conjugacy near p if and only if

o =&

n
Cy

QX:EE.Q}-C-’

where Cl’ Cé are respectively the limits in equations (5.4)
and (5.3). Clearly this corresponds to two equations from(5.1)
From Lemma 3.5 it follows that one can extend h to a

neighbourhood of p, and after a slight modification of 3
P

the conjugacy h maps leaves of 3; onto T2

(@) In the same way one can extend h to a conjugacy near r,

provided b = b and the conjugacy condition on Qy and Q? is

satisfied.
(e) Now one can extend h as in §i4.

Remark: If there are invariant manifolds intersecting with
w>(q) and wu(q) then one has new necessary moduli

conditions, see §2 and theorem (4.1). As in §4 one can exteng
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h to M provided all these additional moduli conditions are

satisfied.

Cases B and C. Cases B and C are dual since one obtains case

B out of case C by taking 1. Therefore we
will Just treat case B.. In Lemma 2.6 it is shown that the
numbers

Q- {d(x,q)}"
d(y,q)

sy &,B,a,b

are topological invariants. Since we do not have any moduli
conditions on Qy and Q37 the construction of a conjugacy is

more complicated than in the previous case.

(a) As in the previous case choose cl-invariant foliations 33
and 3, having cl tangent 1line fields. Let & be the leaf
of ?g through x and m the leaf of 5: through vy, see

Figure (5.2).

A
—ee
¥
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(b) We want to change 35 so that 3? and 32 have only
tangencies at m. So consider a cone-like set Cy near y as in
Lemma 3.3, §3(a). From this Lemma and fﬁe first theorem in the
Appendix it follows that 3i and 39 can only have tangencies

q

inside the sets fl(Cy). Now modify 3? inside Cy so that

35 restricted to’ Cy is given by homogeneous polynomials
(+ constants) in terms of the coordinates induced by 3; and

3; . It follows that 85 and 32 have only tangencies along

£ (m).

(¢) Take a leaf F of 3 as in Flgure (5.2) and let D (resp.
'D ) be the region bounded by F and dR (resp. W>(r) and dR). Take
F and R so that the sets_f (Dy) are mutually disjoint. Now let

3 be an invériant foliation on R which is identical to 5? in

U fi(Dy) and identical to 83 away from U fi(Dy). By Lemma
(3.3) one can choose the rectangle R and %° so that all its

u .
leaves are transversal to 3q outside the cones fl(Cy).

(d) Now we define the conjugacy on R. First define linear

conjugacies h: Wo(q) — MS(Q) and h: W(q) — w*(g) so that

—

h(x) = ¥ and. h(y) = ¥, see equation (4.2). Since B = B
and a =3 this is possible. These maps induce maps on the

*
space of leaves of 33 ~and of 3° outside iterates of ])y.

Therefore these maps induce homeomorphisms h:m — m and
h: +\D* — T\B" , where D'=U fi(D;) and B'=v £ (D))
Since 32 and 3° are precisely tangent along (iterates of)

m, the homeomorphism h: m — m induces also a homeomorphism

h: ¢ h ot — ¢ ﬂib+_, via the leaves of 35. Hence there is

on R which preserves 39 and 3S.

a unique homeomorphism h q
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In order to do this we -want to apply Lemﬁa 3.5 as in the
previous case, A. In order to che¢k equations similar to (5.3)

and (5.4)_. we have to make some estimates.

Lemma (5.2). Take metrics d, d corresponding to the

linearising coordinates for ¥ and.E near q

and q. Then one has for a sequence X~ X,

A, D AED
a(x;,) L alxe)
4
(5.5) -
Antx), ¥@) _ 3G,8)
\ a-(xit WS(Q)) d(y,q)

Proof: The first limit follows from the fact that h preserves

._.:;3 and from the fact that h|WwS(q) is linear with

h(x) = X. The second limit is proved as follows. If x; —x

. and fj(i)(xi)'—* w € W(q), then

alx,w5(a)) = 119 aqw,q) -
(5.6)

aln(x;)v8(@) = (8P .dw), D.

Since h|w(q) is linear and h(y) = ¥ the second equation in

(5.5) follows by taking the ratio of the two equations in(5.5).
'  +

Now it follows from equations (5.5) and the modulus
conditions on a, Qx , that h can be extended to a conjugacy

near p. This is done exactly as in Case A.

(f) As before one can extend h to M. In fact since h maps
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5 into 3° it follows from Lemma 3.4 in §3(b), and from b=%
that h extends to conjugacy near 7. The extension to M

goes as before.

Case D: In lemma 2.6 it is shown that in this case case the

numbers
c,f,a,b
are topological invariants. Now we show that there are no
modulus conditions on Qx and Qy in this case. It follows
that any conjugacy h between f and f will be highly

non~linear in this case. We construct the conjugacy in a number

. of steps:

(a) As before take Cl—unstable and stable foliations ¥ and

35,
q

Q

(b) Take a region Dy as in the previous case. Here the

bouhdaryvof Dy

Let N, be a neighbourhood of D,- By Lemma (3.3) all the leaves

of 3? are transversal to the leaves of c: and e: inside
Ny \ Cy' Hence, using the im?licit function theorem we can take
a new invariant foliation ¥ for q (which is ¢l except
p?ssibly at y and identical to..sz

is a leaf of 3? (or is a piece of DdR).

outside iterates of Ny\\Cy)

so that each leaf of Sﬁ in Dy\cy is the graph of a homogeneous

polynomial function (+ constants) with respect to the coordinates

1
induced by 53 and 32 . Take a similar set Dx and a

1
similar foliations 33 related to 3§ .

u "S
P and xe
inside Cy' so that the leaves are given by
1

(c) Modify the foliations 7 as before. That is

L3 b ”s
modify &,

homogeneous polynomials with rcspect'to the C linearising
! t : '
coordinates induced by 33 ‘and 33 . Do the corresponding



-58=

S

modification for Er .

(d) Now take an invariant foliation 55 as before which is

identiéal to 3? inside Qy' and identical to 53 away from
iterates of D_ . Take a similar foliation 34, According to

y
Lemma 3.3 and the last Theorem in the Appendix all tangencies of

5 and 3% are contained in f?(cx) U fJ(Cy). Let us study

these tangencies.

(e) First we study the tangencies of 35 and " in fi(cx) n

n fd(Cy). Since F5 and 3% are given by polynomial functions
it suffices to prove the following Lemnma.

Lemma (5.3). Consider the following two foliations in R?:

¥ = {(u,v) | u Ql-vn+ a, a € R}

FS

il

{(u,v) | v = Qz-um+ b, b € R} ,
where n, m are even. Then:

(1) FS and FY are tangent along a curve c¢ consistirg of two

- components;

(ii) there is a unique point ¢, vhere FS and FY have a
tangency of odd order. F® and F! are transversal to c¢

except at ¢

o
Proof: If FS and FY are tangent at (u,v) then the

tangency vector (1, maQ, vm'l) to F° at (u,v) and

n-1
1)

the tangency vector '(lel u to F° are proportional.

Hence F° and FY  are tangent along the curve;_

n’m‘Ql°02'um—l‘vn-l=1o
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Statement (ii) follows similarly.

We have drawn the curve c¢ in Figure (5.3). We can also

make the follbwing

& leaf fromp FS

Figure (5.3)

Observations:

(1) Each leaf of F® and each leaf of FY intersects the

curve ¢ at least once and at most three times.

(2) "There is a curve A in c¢, as drawn in Figure (5.3), so |

that if a leaf in F° or a leaf in F" intersects A then

this leaf has no other intersections with c.

Let A,B,C,D,E be the curves in ¢ as is shown in Figure (5.3).
From this Lemma if follows that all the tangencies of 3FY

3° inside fi(CX) n f-j(Cy) are subsets of (scaled down) copies

i3 of the durve c as above. But remark that the leaves of "

(reépectively F5) outside C (C.) accumulates in a C1 sense

y b'e

to W3(q) (W(q)). Hence the set Cy 5 consists of two

components, and contains the point ¢, and the arc A.
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o .
(£f) Since sg . 1s equal to 33 in €, it follows that inside

fi(Cx) n f-j(gy) the foliations 3S%3u are polynomial with

réspect to 3: and 33'. Hence inside these sets the tangencies
of 3% and 3° are as in (e). Furthermore %° 1is identical
to’ 3: outside the iterates of a neighbourhood Ny of Dy‘

Hence all tangencies of 3% with 3Y outside fj(Ny) are
confained in the lines fi(L). wa choose %° on Ny\Dy so
that 3° has only tangencies with 3" in (N \ D)) n £1(c,)
along line segmenté. Similarly inside f-j(cy) n fi(Dx) the

foliations SS, s  are polynomial w.r.t. 3¢’ and 32. Now

q
choose 3% or Nx\Dx "similarly as above. Since all tangencies
of 3% and 3% are contained in fi(Cx) U f"J(Dy) it follows
that 3° and 5% are tangent along a curve c¢ (with a countable

- number of componenfs), as drawﬁ in Figure (5.4).

E ‘ i .
[ |
] "] i Ai J
o ' -....i'.].-oxi..,
NN i
F\\%\\\\; \
o L\

=

+

2

CJ.
"]
/

”

i
//” :
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(g) Now one can decompose the tangency curve c in curves Aij’
Y Hij’ Vij as is shown in Figure (5.4): Here

a.s.o. are contained in fi(Cx) ﬂ'f-J(Cy). The curves

B, s, Cisp Dy

130 Ci3 F.

ij’
Aij

Hig Vig are bounded by WS(r) and W%(p), and the curves

A. B

iy’ ¢

s . i
ij* Cig Dij’ Eij’ are as in Figure(5.3). let &, =1 (1)

and my = £f79(m). Using the leaves of these foliations we can

define a diagram of maps between those intervals as is shown is
Figure (5.5). More precisely: to each point x on the tangency
curve ¢ we associate a new point ka) € ¢c. We do this as

follows.

(i) For x € Aij , let ¢(x) = x.

(i) For x € Bjy take the leaf F of 3° through x. Follow

F down-ward and let ¢(x) be the first intersection of F with

the curve c¢ 1in one of the components C

A2 or

1,3 Vi, 500 By ge
Aij" see the diagram in Figure (5.5).

(iii) For x € Ciy follow a leaf F of FY +to the left and let

{(x) Dbe the first intersection of F with ¢ in a componerrc

B D. or A

ir, 5 Bir, 50 Dirg; i,y

(iv) x € Dij: Then follow F  downwards as in case (ii)

(v) x € Eij as (iii).

(vi) x € vy then let ¢(x) be the intersection of the leaf of

J’ _
31 through x with W°(q).

-

(vii) x € H then ¢(x) is the intersection of the leaf of

i3
¥5  through x with WwY(q).
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Clearly if h 1is a conjugacy between two diffeomorphisms

£, T as above and if h preserves thé foliations 3°,5%, then

e

one must have. h(c) =c¢ and ho§ ="¢4o h. From this it follows

that we have wery little freedom in choosing a conjugacy h.

Figure (5.5)
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-1 . ' .
For example ¢ maps Bij U Cij into qij U Bij' We will
show shortly that this map in fact is a contraction. Clearly
for the point'xecij n Bij where ﬁ% and 3° are tangént with

c, one has @(x) = X. Since h’' must respect all foliations,

it must map the end-points of Bi U Ci' onto end-points of

J J
EZB U dzs since these points belong to stable and unstable

manifolds. Hence h is completely fixed in a sequence of points

in Bij U Cij eonverging to the fixed point x of {.

Clearly wk(x) is either contained in W°(q),W%(qg) or
Aij for some sufficiently big k or the sequence {vk(x)] is
infinite. If this sequence is infinite assign to it a symbol-

-sequence {Sk], where S, is the component B;., C;i, D;j. or

J’ Tig J

Eij of ¢ which contains Wk(x).

Lemma (5.4).i) If the sequence {Wk(x)} is infinite then no other

point x' € ¢ has the same symbol sequence as x.

ii) If this sequence is finite it must end with an interval
Aij’ wS(q) - or WY(q). Moreover is this case there is a small

interval (in the curve c¢) of points having the same sequence.

Proof: The second statement is abvious from the definitions and

by continuity. So suppose the sequence {Wk(x)} is

infinite. Then for each k ¢ W v¥(x) is contained in
intervals Bij’ Cij’ Dij’ Eij for some i,Jj. let m, be the
projection from By U D;j4 on f1(4) defined as follows. Take

X € By UD;s, and the leaf F of 35 through x. lLet

J .
ﬂL(x) be the intersection of F with f*(4) (near x).

Similarly define a projection' M Cij U Eij — f79(m). Then
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define

mpe Yoy (x)  for  x € my(Byy U D)
6(x) =
-1
mpo Yo m ~(x) for xE€ rrm(Cij U Eij)’
Now .fi(L) and £ 9(m) are all copies of R* so we can consider
6 & & map 6: R — R* (which is not defined everywhere).

We claim that 8 is an expansion:
(5.4) le'(x)| > 1.

From this claim the Lemma follows. In fact take a point x' € c
near x. If. wk(i") is an infinite sequence for every x" € ¢
between x and x', then it follows that.the length of Wk

(segment on ¢ between x and x') has finite length. Since

§ 1is an expansion, this is impossible.

So let us prove (5.4). From the construction above it

follows that Aij’ Bij’ Cij’ Dij' Eij are contained in the set

(5.5) - eR(Cy) n I} U LeH(D,) 1o £T(C)d

Inside f—j(Dg) n fi(Cx) the foliations 35, 3% are

ot
given by polynomials ( + constants) w.r.t. 33 and 'GZ .
Similarly inside £'(D) n £79(C,) the foliations 3°, 3" are

polynomial w.r.t. 3u' and 32. It follows that it is

sufficient to prove the following Lemma.

Lemma (5.5). Consider the following two foliations:
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F' = {(u,v); u = Ql.vna-a, a € R}

FS {(uyv); v Qz}uma-b, b €ER} ,

wvhere n,m are even. Let F: (Fg) be the leaf of FY (F%)
through (a,0) (resp. (0,b). Let o8(b) be the number a € R
so that Fg is tangent to Fg in the intervals C U E, see
Figure (5.3). Then 6: R =R is an expansion, i.e. |8'|>1.
A similar result holds in BUD, if we change the role of FY
and FS,

Proof: The foliations FU and F® are tangent in the curve

l

v = c(u) = ; ;
1/n-1 m-1/n-1
So (n-m-Ql-QZ) .

b = c(u)-—Qz'um = B(u) ,

o
"

u - Ql-(c(u))n =.A(u).

Now a 1is related to b by:

a = Ao BN(b) = 6 (b).
Hence since an.(c(u))n-:'“-m-QZum"l = 1 one has
A' (u) 1-0Q 'n°(c(u))n-1- c(u)) 1
"9t (b) = = m—1 = m-1 '
B! (u) c‘(u)-—Q2 .M. u m-.Q,-u

Here the last equality follows by using the definition of c(u)

explicitly. For the point where the curve c¢ is tangent to FY

and FS one has m.QZ.um"l = 1, Since by assumption FZ and
Fp ere tangent in CUE it follows that lo' (b)]| > -
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(h) Up to now we have investigated the set of tangencies of U
and 35, and a diagram related to these tangencies. Now we

can define the conjugacy h as follows.'

Take conjugacies h: Wo(q) — W°(q), h: Wu(q) — Wu(q)

which are linear and so that h(x) = x. Since

azayB:E
rthis‘is possible. Then take homeomorphism
- h: Aio - Aiq y
Here we have freedom. Extend h to U,. A by forcing the

ij 713
conjugacy ho f = foh. From Lemma (5.4) it follows that there
is a unique extension of h to the tangency curve c¢ so that
Yoh=hoey{, i.e. so that h respects the diagram in Figure
(5.5). It follows that there is a unique extension of h to R
vhich respects the foliations F° and ¥ . From the way h is

constructed it follows that h is monotone. By interchanging

the role of f and T it follows that h has a monotone inverse.

St 1

Hence h: ¢ + ¢ is a homeomorphism. Since dq is a C

foliation, except possibly in y, it follows as in Lemma (5,2)

that

d(h(z),x)
lim :
Z"'X d(Z,X)
z€L

converge. Here d, d are C°-metrics. It follows from Lemma

(3.4) that h extends to a conjugacy near P, since
0.=E-
Similarly h can be extended to a conjugacy near T, since

b=:6.
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§5(b) Construction of conjugacies: remaining cases.

Let f,f € ™ be as in Theorem (5.1) except that there
are finitely many saddle-points whose invariant manifolds
intersect W(q) U WY(q) transversally in a finite number of
orbits. To define a conjugacy h 1in this case we start by
constructing stable and unstable foliations for these saddle
points and then we construct the foliations 3%° and e
compatible with thesg foliations. We then perform the
construction of the proof of Theorem (5.1). In order to extend
.this conjugacy to a neigbourhood of the saddle points whose
invariant manifolds intersect ws(q) U w“(p) we need more moduli
conditions as in §4. If these extra moduli conditions are
satisfied we extend the conjugacy using thé same arguments of

the proof of Theorem (4.1).

Another situation that may occur for a diffeomorphism
f € m having a cascade of tangencies is a combination of the
four cases treated in §5(a). In fact we may have a finite number
of saddle points P1s - 5Py such that wu(pi) has a finite
number of orbits of non-transversal intersection with W°(q) and
also é finite number of saddles QyseeeyQg whose stable
manifolds have orbits of non-transversal intersection with wu(q).
If f is a nearby diffeomorphism having the same intersection
pattern of stable and unstable manifolds we can construct a

conjugacy between f and f by putting the previous techniques

together provided the appropriate moduli conditions are satisfied.



68—

§6. A bound for the number of tangencies

In &4 and §5 we-proved that two nearby diffeomofphisms
in M, having the same interéection pattern of stable and
uﬂstable manifolds, are conjugate provided a finite number of
moduli conditions are satisfied. In order to concludé.the‘proof
of the main theorem it remains to show that every diffeomorphism
f € M has a neighbourhood " which contains a countable number
of k-parameter families of diffeomorphisms such that any
diffeomorphism in " has the same intersection pattern of stable
~and unstable manifolds as some diffeomorphism in one of these
families. In this section we will achieve this by proving the

following result.

Theorem 6.1. If f € M +then there exist a neighbourhood N of

f and a number K > 0 such that N el and the
number of orbits of non-transversal intersection of stable and

unstable manifolds of every g€ N  is at most K.

Proof. Since @ is an open set [Sml]l,it is easy to see that

every f € M has a neighbourhood nh & & such that

every g ¢ N safisfy conditions (1), (3), (4#) and (5) of
the definition of M in §l. Now we prove that if N is small
enough then condition (2) is also satisfied and we get a bound
for the number of orbits of tangencies. Let VS M be a small
open set such that each orbit of tangency of f has a unique
point in V. So, in order to prove the theorem it is enough to
show that for each g € N, the nunber of tangencies of g in
V is at most K and these tangencies are of finite order. Iet

x € V be a point of tangency of order r of W (p) and W°(q)
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where p and q are saddle points of f. For-gach geNn let
U(g) = Wi(p(g)) NV and S(g) = W(alg)) NV where p(g)
(resp. q(g)) is the periodic point of é near p (resp. q).
If P(g) is é saddle point of g wﬂz%e unstable manifold
intersect 'Ws<p(g)) then, by the A-lemma {P1], Wu(P(g)) nNvVv is
a sequence of submanifolds U (g) which converges to U(g) in
the C° topology. Similarly if Q(g) is a saddle point whose
stable manifold intersects W(a(g)) then WwS(Q(g)) NV is a
sequence of submanifolds Sm(g) converging to S(g) in the C~
topology. Since f € B we have that S (f) is transversal to
U (f) for all myn € N and U(f) N S(f) = {x}. Hence if N
and V are small enough and 2z ¢ Un(g) n Sm(g) then the contact

between Un(g) and Sm(g) at z 1is at most r. So we need to

prove that

#{m € I; Um(g) is not transversal to Sn(g) for some n€NN}

is uniformily bounded.

u

For each ge N let 3 be a cl unstable foliation

r(g)
at p(g) such that each Un(g) is contained in a leaf of
u ' . u . 1 . .
- 3
Ep(g) and the r-jet of p(g) is C and vary continuously

with g (see the Appendix).Similarly we consider a stable

s
alg)

c® coordinate system in a neighbourhood Vx of x such that

foliation & compatible with WwS(Q(g)). et (u,v) be a

U(f) = {(u,0); u € (-a,a)} and S(£) = {(u,v); v=u', uc{-a,a)l.
We may take V and .M so that for each g€ N

1l

U (g) = {(u,v); v =yE(w)]

Ulg) = {(u,v); v = ¢E(w)]
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Sp(g) = {(u,v); v = &g(u)l

.‘,\

s(g) = [(u,v); v = 8(w)

o ?

where &i ’ mg Vg g (-a,al =R are C° functions

satisfying the following properties:

a) The maps g H*'Daﬁﬁ , Dawf, Dawg, pYy6 from N to

o !

cl(f-a,al, R) is continuous for. j = 0,1,...,r.
b) ep(u) - s5) > 0

WE(u) - &) <o for all u € [-a,a]
c) There exists C > O such that

(1) g B 1eB(w) - B = |98, (w)-wf (w)] = co o lop(u)-sE )

Q=

aplvs () = 45 () = 148, (w) - 42 (w)] = caglvE(w)-vE(w)

(i1)  In(eB-eE) ()| < clos(u) - vi(w)|
D& - 45 w) | < clvBu) - v2(w|

where ag is the contracting eigenvalue of Dg(p(g)) and B8

is the expanding eigenvalue of Dg(a(g)).

d) Each Un(g) (resp. Sm(g)) has at most r-1 points of

. o 5
tangencies with leaves of the foliation Fq(g) (resp,gg(g)).
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Conditions (a) and (d) follows from the continuity of
. Y s .
the r-jet of the foliations T (e) and Sq(g)’ (b) follows
from condition (4) of the definition of M in §1; (c) follows
: s s u S
from the differentiability of the foliations 3p(g)’ "q(g) and

its 1-jet. Ve need some lemmas.

. Lemma 6.2. 1If D@i(u) = in(u)' and cp%(u) = {;g(u) for some

u< (-a,a) and m,n€ N then
ID 45(u) - D oBu)| = 2c]¢E(u) - o2 (W)].
 Proof. From (b) it follows that
0 < vﬁ(u) -¢%(u) = &?g(u) -8 (u)< 18(u) - 0B (u),
9B(u) - (8 (1) < 0B(u) - 48(w) = ¢E(w) - ¢E(u) < 0.
Heh.ce (using ) c(ii)):
|D vﬁ(u.) - D 95w = cleb(u) - eE(u)| < Clcﬁf(uj -~y (w) |
Therefore using D tngl(u) = D\’;Ign(u) and the inequalities a‘bove:
1D ¢B(w) - D ¢Eu)] <clefu) - 48wl + Ip 45w - D ()] <

= clefw) - &) + clifw - B =

< 2cle8(u) - &)

Lemma 6.3.. Let Jg = {u ¢ (-—a,a);‘ cpf(u) < qi(u) and

1D ¢E(w) - D o(w] = 2cl4B(w) - (W), 12 N
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is small enougﬂ then Jg has at most 2r connected components.

Proof. Consider the functions ei: {-a,a] =R,

85(u) = (Di5(w) - D wB(u)) = 2c(38(n) - v&(u)).

Since the map g —*-ei from n to CF(l-a,al, R) is

continuous and ei(u) = rur"1 £ 2c u¥ it follows that for N

small enough the set
{ue C-a,al; |D ¢E(w) =D oB(u)| = 2¢c]¥E(u) - eE(u) |}

has at most 2r points. This proves the lemma because the

boundary of J, 1is contained in this set.
: . _ |

Lemma 6.4. If Nh is small enough there exists an integer m

such that for each g € N and each connected

i .
component Jg of Jg there are integers m, = mo(g,i) and
n, = no(g,i) such that
o w <el) < 4B, (u)
n,-n © Yn_+m
o o
and
g g g
mmo+m(u) <y (u) < wmo_m(u)

for every u € Jé.

Proof. Let &5, §&: J, @R be the maps

§8(u) = - Log(4B(u) - 9 (u)) ena.

3i(u) = -Log(vi(u) - Wg(u)). From the definition of JE

. g .
and from property c(ii) onec has lDwn (W] ¢« €, and
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|D sg(u)l < 2C for every u € Jg' If we take V and N small
enough so that a < fﬁ we have that Iwg(ul) - ¢g(u2)| <1 and

|y§(u1) - ?ﬁ(uz)l < 1/2°., if 1,u2 ‘e Jg. Moreover, from c(i),
|¢n+m(u) - ?n(u)l >2 for every n €W and u € Jg if m is

such that -m Log ag - Log C>2 . Hence,if there exist noelN

and u, € J1 such that 78 (u) = ég(uo)' then

g n ‘o
1438 = -1+ 38 8 ” -
.o_m(u) < -1+ vno(uo) = -1+ @°(u ) = @°%(u). = 1+ §g(uo)
=1+ Vg (u)) < Vo on(u)
0 no-l-m
for every u € Ji. If this is not the case then there is an

integer n, such that

'\?gam (u) < go(u) < &5(u) < is l(u) < ;-rglom(u) for ue€ J‘; .

This proves the first inequality of the lemma. The proof of

the seoond one is similar.

i “o
Lemma 6.5. Let Jg be a connected component of Jg and

n, = np(g,i) be an integer such that vgo_m(u) <

g : e i - 2 Lo
< 92 (u) < vno+m(u) for every u € Jg . If 1-2C qg>~0 then

~

~Log(=}; a2"(1~ €2 a}))

Y C
° +Zm(u), ¢8(u)1} < = og 5

# {n€N;3ued ,tpg(u)C[ y
g

Proof. Since rﬁi _m(u) > ~Q§(u) s._-g
' o

tha
Vno+m(u) we héve at
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Log(y2(w) - #5(w)) - Log(i§ 5p(w) - eZlw)) <

e

N,

= Log(t5(w) - 4§ (W) - Lo (¥§ ,on(u) - & () =

1l 2m 2 .m
< -L - 1 - .
og(Z e, (1 -C e;)) |
Let m) €N be such that ¢§ (u) < ¢8(u) < ¢g ().

If k €N 1is such that ?f(u) > le+k(u) > 05 +2m(u) then
)

~Log(% «2™(1-c? a3)) = Log(+E(w) - 98(u)) - Log(vﬁo+2m(u) - 98(u)) 2
- .

2 Log(r:gl(u) - g8(w) - Log(¢,gnl+k(u)-e:§(u)) >

2 - Log C + k Log Bg -

- Log(; «5™(1 - ¢ e}))
Hence k < < . This proves the Lemmra.

.Log Bg £ |

Lemma 6.6. Let Jé be a connected component of Jg.

The cardinality of the set {neIN; the graph of onlJ;
has a tangency with the graph of ?liz for some k) is at
- ~Log(L5 ¢2™(1 - ¢2 &)
C g 4
most (r-1l)( 5m + : .
4 . Log Bg

-k ,E Kk
y, J=12,...,4, Dbe such that (uj,v y (uj))

Proof. Ilet ufe Ji

J
are all the points where the graph of vgk /Jf " is tangent to

the foliation 53{g)’ Clearly ¢ = r-l1l. If n > m +m is such

that the graph of leJé is tangent to the graph of vi for

: gr.ky - ru8 K g ¥
some k = n_+2m then wn(uj) € [vn°+2m(uj),@mo+m(uj)] c

C[ng+2m(u§),¢§(u§)] for some J = 1l,...,4. By Lemma €.5 there
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_Log(l§ aém (1-C? ag))

are at most 4 - such integers. To finish
Log Bg o

the proof we rotice that for each k “there are at most r-1

integers n. such that the graph of £ has a tangency with the

E

graph of ¢, and that ¢§(u) > ¢§(u) for every u € J if

g
k <n-m and ?ﬁ(u) > wf(u) for every u €'J§ if n<nm-m. g

End of the proof of the theorem 6.1.

If the graph of wg has a tangency with the graph of ¢§

then, by Lemma 6.2, there exist an integer i such that the
graph of @ﬁIJé has a tangency with the graph of wﬁ. Since

Jg has at most 2r connected components we have that the number
of integers n such-that the graph of ai is tangent to the

graph of wi for some k € N is at most

1l 2m 2 _myy
-L —= 1~
og(c3 ag ( c ag))

2r.(r-1).[5m +
Log Bg

The graph of mi has at most r-1 points of tangency with the
foliation 'Sg(g)' Hence the total number of tangencies is at
most S
-Log(i% e2M(1 -2 gly) .
¢’ & g
(r-1)-2r.(r-1).{5m +

Log Bg

and this is clearly bounded by some K> O in a small

neighbourhood of f.
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§7. Appendix: Smoothness of Invariant Foliations

In tﬁis Appendix we will prove that certain in&ariant
fo}iations are -highly differentiable in some sense. More
specifically, let f be a C° diffeomorphism on a neighbourhood
of p in R%, with f(p) =p and p a hyperbolic saddle-point.
Take a point x € W¥(p), a C° disc T at x transversal to
wi(p) (with dim T = dim w(p)) and let V be a compact
neighbourhood of p. According to the A-Lemma the discs
fk(z) NV converge in the C* sense to WHp) N V as k — .
Here r € N. For a proof of the \-Lemma see [Pal], [P.M.].

JN S

= W' (p)
we (p)

Figure (7.1)

—_— e —

<
e
P’

In this way one can construct invariant foliations. Fill a strip
N between T and f£(£) with CT-discs which are all transversal
to W' (p). TIterating this foliation on N, one obtains an
invariant unstable foliation & on V. According to the A-Lemma
the r-jet along leaves varies continuously, (we shall make this
statement more precise below). But in many applications this is
not sufficient. One needs to have that the.r—jet along leaves
vary "in a. C1 sense'. ‘

In this Appéndix we want to extend the A-Lemma in two

ways.
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a) Let HyseeesHy (11,...,XS) be the expanding (contracting)
eigenvalues of Df(p) and order these eigenvalues as

follows:

gl 2oz lugl> 1> IAg] 2.0z |

| .

s

Assume that

gl < Jugl-Ia | .

Then the r-jet varies cl along leaves of ¥, see Theorem (7.3).
Here r € IN is arbitrary. For r = 1 +this result is already

contained in [H.P.S., Theorem (6.3)1].

b) Even if the disc £ has a tangency with W°(p) of polynomial
type the result from above still holds under appropriate

conditions, see Theorem (7.4) below.

Clearly if Ikll = |XS| (i.e. all contracting
eigenvalues of Df(b) have the same norm) then the condition
llll < lull-lksl is automatically satisfied. In particular if
AWu(p) has codimension 1 then this condition can be dropped.
From this oﬁé easily deduces that one can find C1 linearising
coordinates near a hyperbolic saddle-~point p 1if we are in the
two~dimensional case. This result is not new, see (Hal. The
additional smoothmess we obtain here turns out to be essential in

the estimates in this paper.

§(7.1). A fiber-tontraction on a jet-bundle

Take a neighbourhood V of p. Using local coordinates
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we can assume that V 4is of the form V = El(r) X EZ(r), where
El(r) (Ez(r)) is a u(s) dimensional ball with radius r.
Assyme WY(p) N V = E,(r) and W°(p) N'V = E,(r).

Now let Ck(xo,yo) be the space of germs of ck

. Kk
functions (El,xo) **(Ez,yo). We say that gy,8, € € (xo,yo)
are k-equivalent, i.e., 81 ~x 8> if the Taylor-jet of g1 and
g, at x, agree up to k-th order (i.e. if jkgl(xo)==jkg2(xo)).
Now define

Jk(xo,yo) = ﬁk(xo,yo)/~. and
k

JY(V) = U JK sV )
(V) (%3 )e (%557,

-

Jk(V) is a smooth manifold. In fact one has the natural
identification Dy JNV) — V x r* Dy, . .x g (K) which
identifies the k-Jjet with the coefficients in the Taylor-expansion.
Here 4(j) 4is the dimension of the space of homogeneous
polynomials from RY to R® of degree J. Similarly one has

the map m 1 ,: J(v) — 3*1(V)  which maps the k-jet of

a function to its (k-1)-jet. In this way one gets the

commutative diagram
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D
vy —2— v x v*H)
"1 ﬂl
v id
Here T 4 13V X rRY D)« x®YI) Ly mP D) L xmA(-D)
?

is the projection (x,(vl,...,vj)) — (x’(vl"’°’vj-1)' It
will also be usefull to work with Jet spaces of functions with
bounded derivatives. So let Bd = {v e:mé(l) x...x:RL(j);
1(1)

V= (vi,,,,,vh), vV, € R

and |Vi| g 1, i=1,2,...,3).
Define XJ(V) = DSI(V x BY), As before we have a commutative

diagram.

Now assume that f£: V —R®™ is a diffeomorphism with

O as a hyperbolic fixed point. Let Xy,...,M (ul,...,uu) be

s
the contracting (expanding) eigenvalues of Df(0). Assume that

they are ordered as follows:

gl 2oz Jugl > 1> 3] 2.2 |2

!

For xc¢ V = El(r) X Ez(r) one can write Df(x), 'Df“l(x):ﬂlx

X E2 -+‘El X E2 as follows:
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A(x)  B(x) Ax)  B(x)\

, D Y(x) = -
c(x) D(x) C(x) D(x)

Df(x) =
Since WXp)N V = El(r) and W(p) N V= Ez(r) the matrices
B(x),B(x),C(x) and C(x) vanish for x = O. Moreover for each

6§ > 0 one can choose r > O so small that for x € V,

MAGOI = lu,l + 6, B s 8,
(7.1)
Gl = s, DG = [a;1+8.
Similarly
1A = (lugl-8)"1, 1BG s 5
(7.2)

€GO = 5, 1BGOl = (I l-6)7t.

Furthermore take a neighbourhood U € V  such that f(U) < V.
N 1 .
In other words if (x,,v,) € U, then f£(x,,y,) = (£7(x.,v,),
k
f2(xo,yo» = (x1,¥7) € V.  Furthermore take &y (x,,v,) =
= {g ¢ ek(xo,yo)= |Dg(xo)| < 1)}. Suppose f is ch, Then

define for k < n,

k k
P(xo,yo)’ e (x5s¥,) T €7(xg,Y,)

by defining;l“(X v )(g): (El,xl) —4'(E2,y1) to be the germ of
o'’o

the function

t — (£2(id,8)) o (£3(id, )" (),

see Figure (7.2).
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I (xq’yo)

|

£ = ((x,8(x)))

Gy T = (=P (@) ()

- ‘%

Figure (7.2)

Let V be so small that || A(x)]| > || B(x)]] , for all x in V. Since
for g € Bk(xo,yo), |Dg(xo)l < 1, the map t - flo(id,g)(t) is
invertible at t=x, , for (xo,yo) in V. Hence P(

< ) is a
0°Y0

-well defined map for (xo,yo) in V. (This also follows from the

A-Lemma). Clearly T induces a map on the k-jet level: This map

X ;
Tt X (V) — J5(V)  is defined by

TR(3" elx)) = @,y 8)lxy) -

Presehtly we will show that the map T) contracts the fibers of
k -1 . k ‘
“k,k-l’ J —+:Jk . So define for ge € (xo,yo),

i
lgl, = max |[Dg*(x.)] .
k™ jcisx °

Lemma (7.1): Let ks<n and € >0 Ybe given. Then we can

choose V so small that for any gl,gz € Jk(V) with

M, k-1(81) = M y-1(6,)  one has

: - [Aq ] '
(a) - IRy () - Ty sy S(-'—u—l—i—;g + e) - ley-gply
| 1
. 1 1
(b) | D‘f V) = Iﬁsl + € .

Proof: Statement (b) 1is obvious from equations (7.2) so let
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us prove (a). Here we are going to use the following formulas:

k : _
if ¢, ¥, ¥, are C and lvl‘iﬂyzlk—l =0 then

- |¢°vl-¢°v2|k.= I¢'1'“’1"_¢’2‘k ’
lgo 6 = 1o ¢l = Ity = 4ply- LBl

-1 k+1
C v 111 ) .

-1 -1
CZP IR PO N A3 R PR 2% N
Now cléarly the (k-1)-jets of rkgl and rkgz are equal.
Therefore Il“kgl - g2|k can be estimated (using the equalities

from above) by:
1£%0 (1d,8) 151 (2o (ia,80)7T - (£%o (1a,e07H
| | _ )
+ [£20 (1d,8)) - 20 (id,g,) 1, - L1 (£o (1d,8))721) .

Here we can take for g either gy or g,. For v
sufficiently small this is majorised by (see equations (7.1),
(7.2)).

(In,] + 8)
(Ir. ] + 8) 1

1 lgq - g1, +

(ugl - &) 270 22T (uo |~ e)

g lep - g2|k .

So for V sufficiently small, inequality (a) holds. -

Corollarv: T, (x¥(U)) = X¥(v).

§(7.2). Differentiability of invariant foliations, A dif-

ferentiable version of the \A-Lemma,

As before let V = El(r) x E, (r) and £ bea B
diffcomorphl m with a saddle-point at 0. Let U be a



neighbourhood of O so that Tk(Xk(U)) c Xk(V) (and in
particular f(U) € V). Such a neighbourhood exists, see the
Corollary above. ’

-

Let & Dbe some foliation on U, not necessarily
invariant, whose leaves are graphs of c? functions El(r) —

— Ez(r)._ For k < n, this ¢erines a section 0y :U *Jk(U)

where ok(xl,yl) is the k-Jet at x; € El(r) of the function
whose graph is the leaf of ¥ through the point (x4,y,) € U.
Suppose that the foliation & is chosen so that ck(U) c Xk(U).
In particular this implies that the leaves of & are transversal
to W°(p). This foliation & is invariant precisely when the
following diagram commutes:

r
x5 L) 0 v) —¥a x5w)

f

iy nuy —2— v,

o]

k

Let us now show how to construct such invariant
foliations. In order to do this take a foliation & so that for
each leaf T in U - f(U) +the image f(Z) N U is also a leaf
.x.

of ¥. We claim that we can find a new invariant foliation &

which coincides with ¥ on U - f(U). 1In fact.

Lemma (7.2). Let & be as above and such that for the

corresponding section o, one has ck(U) c Xk(U), k < n. Then
there exists an invariant foliation 3* which coincides with &

on U -~ f£(U). The sections c;: U — Xk(U) corresponding to

* o
& are C for k < n.
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Proof: Follows from the MLemma [P1].

Remark that if we assume that o__;: U X7N(U)  is

¢! on U-£(U), then the restriction of o, iz U — x""}U) is
also C' on U-W'(0). Let us show that in fact o, ,:U—X""1(U)
is C1 -on U.

Theorem (7.3) (Cl—version of the A-Lemma). Let 3° be an
invariant foliation inducing a continuous section c;:U—*Xn(U)

so that the restriction of c;_lz U -*Xn-l(U) to U-W2(0) is
cl. fThen 02_1: U — x" () is Cl, provided |X1|<|u1|-|ksl.
Proof: Let Qk be the space of sections o: U—*-Jk(U) such
that ¥ restricted to U-f(U) coincides with o; (the section
corresponding to 3*). Endow this space with the supremum norm
“ouk = supﬂc(x)!k , x € U}. Qk is a complete metric space.

Let Qk(l) be the unit ball in Qk.

_ Using the graph transformation Fk we define
g (1) = ¢¥(1) as follows. Let o ¢ G¥(1). Then
op(x) if x € U-£(U)

¢k(°)(x) =
- ro(o (£7Hx)) if  x € un£(u).

Since we had chosen U so that Fk(Xk(U)) < Xk(V) it follows
that ¢, is well defined Remark that o € G(1) is an
invariant section precisely when the diagram above commutes, i.e.
wvhen o = Hécoiqu. This is equivalent to ¢k(o):<r From the
A-Lemma, see Lemma (7.2), it follows that ¢, has a unique
attraqting-fixéd point o (for k s n). We will prove that o

is ¢t (for k's n-1) by induction on k.
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The .dea will be the following. Suppose we can show

that for some ¢ € Qk(l) one has that D((¢k)m(c)) converges

as m— =, (Here (¢k)m is the n® iterate of ¢k). Since

(¢K)m(a) converges to the fixed point 0; it follows that ar

k
1s  cl. so it suffices to show that D((¢k)m(o)) converges as

m— », We will do this using the fiber contraction theoremn.

We start by noting that Jk(U) vis homeonorphic to

U x Fiblx...xFib¥, vhere U=R%, rib{®) 2t (i) 1o pi:Jk(U)--tFib(i)

th fiber. Now define uk

k

be the projection on the 1 to be the

space of continuous maps H: U x R%—+ Fib with H(x,vy==Hx(v),

k-

. where HX:IRP — Fid is linear and Hx coincides with the

derivative. of Py o °1: at x for x in U-f(U). Endow Bk

with the norm |[Hl] = sup ”Hx”°
xeU

Let us now prove the first inductioh step that c; is

Cl. In order to do this fix o ¢ Ql(l). For this ¢ we define

1

a transformation-'q1 ot H —*'Hl by
? .

D(pye 07),(v) if x € U-£(U)

H) (v) =
(vl,o x\V D(P1°r1)g(y)(w’Hy(W)) if xeUnsf(u)

Here w==(dfx)-l(v) and y==f-1(x). Remark that for xe UN £(U) one
1 -1
n .
c(y)X (un £ -(U))
Therafore for x € U N £(U), (V1 o H)x(v) is the derivative of
?
X _

has y= f"l(x) €V nf"l(U) and hence’ (w,Hy(w)) €T

pyo Ty: XI(U n £71(U)) — Fib

at " o(y) in the direction (w, Hy(w)), and therefore

4, (D9) = D(1:0) if o is C'. Let us show that §) , 1isa
o} ’

contraction.  Indeced take H,K ¢ ﬁl. Then
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_ Jo for x € U~ £(U) and otherwise
(¢1,c H - ?1’0 K)X(V)= ’

D(plo Pl)oﬁy?(O{(Hy—Ky)(w))’

11e

where w (Dfx)—l(v). From Lemma (7.1) it follows that

LA
ID(eye T)g(y) (0 (K ()] = (1ui|~+ &)l (H-K) ()] =

14, | oyl )
< (lul + )« [H =K [l ID£2 " (v) [= ( ull--r.e)-<——s~l-+e)-tu—Kyu-llvH :
lel 1
Hence [y H-y; , Kl = Ae[H-K[], where X = ( +e)e( +¢)
' ’ lull SI

can be chosen smaller than one, by taking € > 0 sufficiently

small., Hence
¢y, o H-¥1 o Kl = A-[H-K],

i.e Wl o is a contraction. Now we are in the position to
’

1 1 1l 1 1

prove that O; is C7. 1In fact let 67: G~ x H —4-Q1><H be

defined by

el(U,H) = (¢l(o)’ ?1’°(H))-

*
Remark that 04 is the unique attracting fixed point of @1
and since ¢1 o is a contraction for every o, it follows from
?

the Fiber Contraction Theorem (see [H.PJ]) +that 6, has a

unique attracting fixed point (o;, H;). So let o be Cl. Then

el(o,Dc) = (él(o),vl’c(DO))-z (¢1(c),D¢lo) and ther?fore

(el)L(U,DG) = (¢L1(0),D ¢§(0)). Hence D(¢§)(o) converges to

* 1 : * * . i
H, and ¢1(c) to o4 It follows that o, is C~ and
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* * .
D oy = Hl' This finishes the first induction step.

*_ 2 . 1
Let us now prove that o,: U — X (U) is C7. Let

2 1 . , T y2 342
c € G- and Hy € H". Define tz,c,Hl' HE — ¥ by

-

D(p, ° GZ)x (v) if x € U-£(U),

D(p, ° Pz)c(ﬂ (w,Hl’};(w),' Hy y(W)) if xeUN£(0).

Here w = (Dfx)-l(v) and y = f-l(x). As before take
Hyr K,y €¥2. Then
So if x € U-f(U) and otherwise
(W2’0.’H1(H2)"°w2,o-’H1_(K2))X(V)= I‘
l?(pzo 2o(y) (00 (B, Ky (),

where y = f-l(x) and w = (Dfx)—l(v). As before one deduces

that ¢2,0,H1 is a contraction, using Lemma (7.1). Now define

a map 92:(Q2 X ﬁl)x H2 <o by
((o,Hy),Hy) = ((8,(0), 4y o (H))), Y2,0,1, (H2))-

As before the Fiber Contraction Theorem implies that 6, has a
1

14

. . . * * * 2 .
unique attracting fixed point (02, Hy, H2). If o¢ G is C
then

92(09 D(P1° 0), D(p2° 0’)) = (¢2(°), D(P1° §2° O'), D(P2° §’2° 0)).

*

As before it follows that ' D(p2o c;) = H, . From the previous

induction st ( *y = D(o* X H s ot
induction step D(pqe 02) = D(ol) = Hy. ence 0, is .

Similarly one proves by induction that the fixed point o; € G
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. 1
of Qk is C fq? k < n-1. 3

Corollarv 1l: let f: M —+M be a diffeomorphism with a saddle-

point p and let codim(w%p)) = 1. Then there exists an
invariant unstable foliation & for p, such that the k-jet

along leaves is a C1 function.

Proof: This follows from Theorem (7.3) because in this case the

condition |M | < luqleld_] is trivially satisfied
: 1 1 s

Remark: Let & be an invariant foliation on V-Ww'(p), where

V is a neighbourhood of Wwp). If 3F satisfies the
conclusion of Corollary 1, then the foliation ¥ =3 U w(p) on
V also satisfies the conclusion of Corollary 1. 1In other words
the foliation 3* can be found as the extension of a given one

on eru(p).

Corollary 2: If the diffeomorphism f and the foliation g

depend ¢S on parameters, then the corresponding invariant

foliation 3*(f,3) also depend C°® on this parameter.

Proof: This can be proved with the same methods as used in
[H.P.] for showing that the unstable manifolds depend

continuously on - f.

§(7.3) - Cl—linearisability near saddle—noints in the

two-dimensional case.

Let f: M — M be a diffeomorphism with a hyperbolic
saddle-point p. Assume dim(M) = 2. From Corollary 1 to
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Theorem (7.3) one can obtain invariant stable and unstable

foliations for p; 35 ana 3¢ s which are Cl. From this

s (nu) from a

neighbourhood V of p onto W°(p) (WwH(p)) by projecting

. 1 . . . .
one can obtain.a C invariant projection w

along the leaves of %% (3°). By construction one has

‘n’sofz-foﬂs, ﬂ‘uof=foﬂu.

Then take cl coordinates on wo(p) and on WY(p) so that

£lwS(p) and f£|WY(p) are linear with respect to these
coordinates. (This is not hard to do, since WS(p) and W%(p)
are 1l-dimensional). Using these coordinates and g, T, One
obtains a Cl—linearising coordinate system for f near p.
This result was already known, see [Hal and [H.P., Theorem
(6.1)]. The fact that there is additional smoothness i.e. that

c;_lz V-—;@Vn_l(v) is ¢l , 1is new.

§(7.4) - Differentiability of invariant foliations with

polvnomial tangencies

In section (7.2) we have extended foliations which were
smooth and transversal to Wo(p). In this section we will
consider foliations with leaves which have a tangency of finite

order with W°(p), see Figure (7.3).
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More preciéely take a neighbourhood V of p. Using
local coordinates we can assume that V = El(r) X Ez(r) where
Ei(r)  (Ex(r)) isa u (s) dimensional ball of radius r.
‘A;§ume Wip) NV = E(r), W(p) N V=Eyr). As before define

the space of ge;ins 8k(x ). For ge¢ &k(xo,yo) and 0=<5<1

0o
define a new norm

l8ly,5 = ,_, max LD &lxp)1+ 1%, 1170,

i=, '...,

Furthermore let
X 8(v) = (g€ 3°(N); laly , < 1).
. ’

"(We could also introduce extra coefficients a; > 0O and consider

i 1-8
ID* g(x )%, 177" ay

i ‘but this would have no essential effect

on the sequel).

Now consider some foliation e on V whose leaves

are graphs of functions El(r) —4'Eé(r) which are cX on

El(r) - 0. This defines a section ¢ : V - W3 (p) — Jk(V;wS(p))

-

as before. VWe assume now that

0, (V-15(p)) & X8 (v-wS(p)),

for soﬁe 5> 0. In other words we allow the foliation 3% to

have tangencies with WS(p) of order at most 1/5. We have now

the following generalization of the A-Lemma and of Theorem (7.3).

_Theorem (7.4). Assume that o, 1is as above and that for the

et IR
X-S_ lul-l‘

corresvonding - & one- has,
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a) If k s<n, where n is the degree of differentiability of

f, then JF can be extended to an invariant foliation 5 on V

such that o: V-wS(p) -*5x3’5(v) is continuous.

bp) If o: V - (Ws(p) U wi(p)) — Xk’B(V) is Cl, then in fact

o: V- W(p) — X ’G(V) is cl.

Proof: One cannot deduce (a) from the A-Lemma because 5> has

tangencies with Ws(b). So define as in Theorem (7.3):
G50 = f{o: V\WS(p) — X0(V), o =0¢" on U-£(U)].

For o € Qk define §k(o) exactly as before. Let us show that
Qk maps Qk’b into Qk’é. Let (xo,yo) e v\W(p), i.e. assume
: k, - " _

X, # 0. Then take g; € 8.(xo,yo) with “k,k-l(gl) = “k,k&l(gz)
and let (xl,yl) = f(xo,yo). Fron Lemma (7.1) (a) for any £€>0

we can choose V so small that:

IT, (81) = Tylex)ly 5 = IPy(E)) = Tyley) e llxllk“
|2 |
S(T—-TE + e)lgl-gzlk ”Xluk-6 =
Iy x| k-8
PR ) tergle G
l"1' k-6
< (|u1|E+ e)eCuy + € e lgg-gply, 5 -

- 1 :
Furthermore “Dfxlﬂ = ( + €). Now cne can estimate the Lipschitz

expansion: S

. /s | )
L(s,) = LT )l DTt = :-1—:K " > Cluy |+ )5 (TTT” :
"1 s
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Since & > O this last number is smaller than one, provided

k-6

Ay Iyl ™3 —~

—L.—% " <1 and provided we take €>0 small enough. It follows

I)'SI ,ul'l . :
k,$ K, S

that'¢k maps G into G and moreover that this map is a

contraction. Hence there is a unique fixed point c:'. which

extends o0y. Statement (g) follows.

The proof of statement (b) goes exactly as the proof of
Theorem (7.3) if we replace |-|k_ by IoIk s and use the
. [ 2

estimates from above.
o |

Corollarv: Let f£f: M~+M be a diffeomorphism with g;saddle—point
p and let dim M = 2. Then one can extend a foliation ¥ with
tangencies along W°(p) .(as above) to an invariant unstable
foliation ¥ for p, such that the k-jet alang leaves is a
cl function away from V°(p).

lel‘luu'l
a1 fug |

Proof: For fhe two~-dinensional case the condition
is trivially satisfied. Therefore apply Theorem (7.4).

¥*
Remark: As before ¥ depends continuously on f and J.
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