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SUMMARY 

une of the purposes of the theory of Dynamical Systems is to 

understand the orbit structure of diffeomorphisms. Here we say 

that two diffeomorphisms f and g have the same orbit struc~ 

ture if they are conjugate, that is, if there is a homeomorphism 

h of the arnbi~nt manifold such that hf = gh. Basically the 

only kind of diffeomorphisms whose dynamics are well studied, are 

the class of structurally stable diffeomorphisms. These are diffeo­

morphisms f such that all nearby diffeomorphisms are conjugate 

to f. The well known Structural stability Theorem says that a 

diffeomorphism is structurally stable if it is Axiom A and if all 

invariant manifolds are transversal to each other. 

If these transversality conditions are not satisfied then the 

diffeomorphism not only fails to be stable, but also this gives 

rise to the appearence of moduli. That is, one needs several 

real parameters to parameterise all conjugacy classes of nearby 

diffeomorphisms.(The minimum number of parameters needed is called 

the number of moduli). 

Here we deal with diffeomorphisms on two dimensional manifolds. 

whose asymptotic dynamics are well understood, (the class of Axiom A 

diffeomorphisms). The Main Result characterises those Axiom A 

diffeomorphisms which have a finite number of moduli. This result 

can be regarded as a generalisation of the Structural Stability 

Theorem~.From the proofs it follows that the dynamics of these 

diffeomorphisms can also be well understood. 

In the proof of our Main Theorem we need certain invariant 

foliations to be quite smooth. In an Appendix we piove a differen­

tiable version of the Lambda Lemma. 
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DIFFEOMORPHISMS ON SURFACES WITH A FINITE NUMBER OF MODULI 
" 

.. .,,_ ...... 
,'. 

by' 

w. de Helo & S.J. van Strien 

One of the purposes of the theory of Dynamical Systems is 

to understand the orbit structure of diffeomorphisms. Here we 

say that two diffeomorphisms f and g have the same orbit 

structure if they are conjugate that is, if there is a 

homeomorphism h of the ambient manifold such that hf = gh. 

Clearly this defines an equivalence relation - on the space of 

diffeomorphisms. Since the dynamics of many diffeomorphisms is 

very complicated and sensitive to perturbations (of the 

diffeomorphisms) we cannot hope to understand the space of 

conjugacy classes in general. However this space is very neat 

in neighbourhoods of many conjugacy classes. This paper is.,.in 

the direction of characterising all diffeomorphisms representing 

these conjugacy classes. One may measure the degree of 

complexity of this local structure by looking at the local 

dimensions of this space. This dimension we call the number of 

moduli. This number is defined as follows. If a diffeomorphism 

f is structurally stable or if there are at most a countable 

-number of different conjugacy classes in a neighbourhood U of 

f then we say that the number of moduli is zero. if U contains 

a countable'number of k-parameter Cl families of dif-

feornorphisms such that each diffeomorphism in U is conjugate 
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to at least one diffeomorphism from these families, then f has 

a finite number of moduli. The minimum number k of parameters 

needed is the number of moduli (or the 'modality of f). 

Here we deal with diffeomoruhisms on two dimensional .... 

manifolds whose asymptotic dynamics is well understood. In fact 

we consider the set a of diffeomorphisms satisfying the Axiom 

A aRd the no cycle condition. Such diffeomorphisms are 

O-stable, namely, the dynamics of the non-wandering set does not 

change with small p~rturbations (SmIJ, (Sm2J. However the 

intersection pattern of invariant manifolds is the same for 

conjugate diffeomorphisms. Transversality conditions of stable 

aRd unstable manifolds are needed to have structural stability 

tRJ. If these transversality conditions are not satisfied then 

the diffeomorphism not only fails to be stable but this also 

gives rise to the appearence of moduli CP),tNPTJ,CMPS],CSl],CS2). 

However even in this case the diffeomorphism may still have 

finite modality CMe2), eMFJ, tS2J. The purpose of this paper is 

to characterise the class ~ of diffeomorphisms in a having 

finite modality. 

-
Our results provide a much more precise description of 

the conjugacy classes in a sufficiently small neighbourhood h 

of a diffeomorphism 

union of submanifolds 

f in ~. One has that h is a countable 

:1 i · Each :1. 
~ 

has finite codimensio nand 

contains a finite dimensional submanifold Si. Moreover there 

exists a differentiable fibration "..: ;1. -+ S. ·so that all 
~ ~ ~ 

diffeomorphisms in the same fiber are conjugate. ~rthermore 

each Si contains a dense subset Ti . such that no two distinct 

. diffeomorphis~s in are conjugate to each other . The 

codimension of :1i is uniformily boUnded and the maximum of all 
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the dimensions of S1 is the modal~ty of f. 

§1 statement of Results 
• 

Let M be a compact, two-~mensional manifold 

without boundary and Diff=(M) be the set of em diffeomorphisms 

on 1-1 wi th the 
CD e topology • 

. We denote by a C Diff=(M) the set of diffeomorphisms 

satisfying Axiom A and the no-cycle condition. Recall that 

:f E Diff= (M) satisfies Axiom A if the non-''landering set nCf) 

is hyperbolic and the periodic orbits are dense in nCf), LS~lJ 

If f satisfies Axiom A then n(f) is a union of finitely 

many closed invariant sets ai's, called basic sets, such that 

:£ has an orbit dense in each 0i. Fi~Ally we say that f 

satisfies the no-cycle condition if there are no basic sets 

nl,···,nn' 0n+l = 01 with WU(Oi) n ",S(Oi+l)# ¢. Here .'''~Oi) 

(resp. WS(Oi») in the set of points whose a.-limit set (resp. 

w-lj.mi t set) is contained in °1 . ''Ie recall that if f "~ a 

then.f is O-stable CSm2J. The main result of this paper is 

the characterisation of the set ~ c a of diffeomorphisms having 

finite moduli. Remark that if t has k moduli then f has a 

neighbourhood U such that each g in U has modality at nost 

k. In particular the set of diffeomorphisms in a with finite 

modality is open. 

. Let mEa be the set of diffeomorphisms satisfying the 

conditions below: 



1) if x,y E O(f) are such that WU(x) 1s not transversal to 

~(y) then the basic sets containing x and yare trivial 

(i.e. consist of periodic orb:i,:ts)J 
- ... ~~ 

2) there are only a finite number of orbits of non-transversal 

intersections between stable and unstable manifolds and the 

contact between these manifolds along these orbits are of 

finite order; 

3) if 'p,q E Per(f) are such that ~(p) has an orbit of 

non-transversal intersection with ~r(q) then the number of 

orbits in WS(p) (resp. in WU(q) belonging to some 

unstable (resp. stable) manifolds of periodic saddle points 

of f is finite; 

4) if x is a point of non-transversal intersection of WU(p) 

and "f (q) then there exist an arc 1: transversal to WU(p) 

at x such that no con."'lected component of E - (x) 

contains points of both stable and unstable manifolds of 

saddles; 

5) if lfl(p) has a point of non-transversal intersection -l'li th 

WS(q) and WU(q) has a point of non-transversal intersection 

wi th ,of (r ~ then there is no saddle point of f whose 

unstable manifold (resp. stable ma~ifold) intersects WS(p) 

(resp. WU(r» • 

Remark. It is well kno~m that every diffeocorphism in a which 

satisfies the transversality conditions- on invariant 

ma'nifolds is structurally stable (RbJ. The clas~ frI. relaxes 

these conditions: The fbllowing theorem generalizes this 

" 
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structural st~bility result. 

Main Theorem. If f E Diffm(Mf) is .in a. then f ·has finite 

modality if and only if f E m. 

§2. Existence of Hoduli 

Let M be a compact em manifold of dimension t,.,o and 

f: M-+: M be a em diffeomorphism having a pair of periodic 

points p and q such that the unstable manifold of p has an 

orbit of non-transversal intersection with the stable manifold 

of q. In this section we will construct all conjugacy 

invariants generated by the existence of these tangencies. We 

will use these conjugacy invariants to prove the follO\-:ing. 

Theorem. If f E a has finite modality then f E ~. 

Later in sections 3, 4 and 5 ''Ie will prove that two 

diffeomorphisms in ~, having an equivalent intersection 

pattern of stable and unstable manifolds, are conjugate if they 

have the same conjugacy invariants. 

§2(a) Some technical lemmas 

I~ order to show the existence of moduli we will have to 

compare metrics induced on M by ~o C1 coordinate systems. 

So we start by describing some properties of Cr metrics. By 

this 'VIe mean metrics which are induced by e
r 

Riemannian 

structures. We say that d: HxH -+ R is a Cr metric, 0 ~ 

on M if there exists a e r Riemannian stru~ture g 
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on M such that d(x,y) is given by the infimum of the lengths 

of all paths that connect x and y. In formulas: d(x,y) = 
~ inft~g(Y); y: (O,lJ-+ M is a pie~ew~se C1 curve with 

yeO) = x' and y(l) = y). Here ~g(Y) = f: .!g(y.(t).y.(t» ·dt. 

The distance from a point x to a set S will be denoted by 

d(x,S) = inffd(x,y); y E sl. It will be convenient to use the 

fQ110wing notation~ For sequences Ci , ei of real numbers we 

wi11 write 

if is bounded and bounded a\'ray :from 
zero, 

if converges to 1.-

Lemma 2.1. Let" d: R n x :Rn 
--+ R be a CO metric induced by 

the Riemannian structure g. Let do be the metric 

induced by the constant Riemannian structure go which coincides 

with g at O. -If S C R n contains ° and x. E Rn--S 
~ 

Proof: Since g is continuous, for every p > ° there are 

positive constants such that 

(2.1) 

for every v e]ln and every x ERn with Uxll < p. Clearly we 

can take cp and c; arbitrarily near 1 by taking p 

suf.ficiently small. From (2.1) \-le have that if y is a 

piecewise C1 curve contained in the ball with c~nter 0 and 

radius p then where is 



'. 

-7-

the constant Riemannian structure, i. e • ',. go ( (x, v), (x, w) ) = 
= g({o,v), (o,w)) for all x,v,w ERn. Hence. if p > 0 ·is 

-" -.. 
sufficiently small then c p do(x,y) ~ d{x,y) ~ c~ do(x,y) for 

all x,Y·E Rn with UxU,Uyll ~ p. Therefore for p > 0 suf­

ficiently small we have that cp do(x,S) ~ ~(x,S) ~ c; do(x,S) 

.for all x -: nn wi th UxU ~ P . This proves the le!!lIIla. II 

Lemma 2.2. Let S C::Rn be a codimension one C1 submanifold 

containing 0 and d j , j =1,2 be CO metrics on 

Rn. Then there exists a positive real number )., such that 

d1(xi,S) ~ ~d2(xi'S) 

to 0 E JRn .. 

for any sequence 
·n 

Xi E R -S converging 

Proof. By taking C
l coordinates on :Rn we may assu.me that S 

is a hyperplane. By let1l:la 2.1 "Ie can assume that d1 

and d2 are induced by Riemannian structures "Ihich are constant 

with respect to this ccordinate system. From these observations 

the lemma follO\'ls easily. 11 

- is another ·Cl codimension one submanifold Remark: If S 
n -tangent to S at 0 and Xi E R -S converges to 0 

then d1(xi,S) 2= ). d2 (xi ,s), "/here ~ is the same constant as, . 

for S. This follows from the proof of the lemma and the fact 

that we can find a pair of Cl diffeomorphisms ·Ql,q2:(:R~O)~ 

such that ~l(S) = ~2(S) is a h)~erplane and the derivative of 
-1 _ Qlo~2 at 0 is the i~entity. 

Using CO metrics we can introduce the notion of contact 

of C1 submanifolds. 
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Defini tion. Let. x be a point of -.tangency of two Cl 

submanifolds 81 ,82 C M. vie say that 81 has a 

contact of order n with 82 at x if for some metric d on 

M the limit below exists and is posi ti ve: 

lim 
·w"'X 

wES l 

d (",~, S2) 

(d(w,x) jn 

If this limit is infinite we say that the contact is less than 

If ~he limit is zero for all n we say that the contact is 

infini te. 

Remark. From lemmas 2.1 and 2.2 it follows that the above 

definition is independent of the metric. Notice also 

that the contact may not exist. Ho\"ever if there is a Cl 

coordinate system ~ on a neighbourhood of x such that ~(Sl) 

and ~(S2) are both C~ submanifo1ds of m2 then the contact 

is either defined or it is infinite. 

Definition. Let p be a hyperbolic fixed point of a C~ dif-

feomorphism f: M-+ M. By a 1inearising metric at 

p we mean a CO metric d on a neighbourhood U of wB(p) U 

n 

U WU(p) such that in a Cl coordinate system in U 1inearising 

f, d coincides with the Euclidean metric. 

Remark. If wS(p) n WU(p) = ¢, such a linearising metric always 

exists. In fact by a theorem of Hartman (Ha] (see also 

the Appendix) there is a C1 coordinate system in a neighbourhxri 

of p linearising f. If vf(p) n WU(p) = ¢, this coordinate 

system can be. extended to a full neighbourhood of ~t!)(p) u WU(p). 

Thus we obtain a linearising metric at p. These metrics are 

not unique. However, since any Cl diffeomorphism cO:n!nuting with 

a linear contracti on .{,: JR. --+ R is linear, 
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-it 1s easy to see that if d 1s another linearising metric 

then the restriction of d and d to each connected component 

~f WS(p) U WU(p) - (pl differ only by a multiplicative 

constant. 

The follQwing two lemmas will" be used repeatedly. 

Lemoa 2.3. Let p be a hyperbolic fixed point of saddle type 

of a C2 diffeomorphism f: M ~ M. Let x E WU(p) 

- (pl, d be a CO metric on M and ~ be the contracting 

eigenvalue of dfp • For any sequence x ..... x we have: 
~ 

i) if there exists a sequence n(i) -t" CI) such that f-n(i)(x.) 
~ 

converges to a point z E ~~(p), then 

e: Cd(~,P) Ic:ln(i) for some constant c 

d ( xi' WU (p » ~ 
which depends on 

x,z and d but not on the sequence; if d is a linearising 

.metric then c is independent of x and z; 

ii) if d(Xi,,"U(P» 2:: ~Ic:.ln(i) for some constant c > 0 and 

some sequence n(i)~" (I) then the sequence f-n(i)(x i ) has 

at least one and at most two limit points which are contained 

in yf(p). 

Proof: It is clear that both statements hold for a linearising 

metric. Therefore the lemma follo'(/s from Lemma 2.2. 

Definition. Let x be a one sided tangency (for example a 

quadratic tangency or a tangency of even order) 

. between WU(p) and ,·r(q), where p and q are hyperbolic 
. 

fixed points of f. He say that a sequence 

Xi -+ x is nice with resp::!ct"to the pcHr (x,y) if (1) f i Cx1 ) 

converges to y; (ii) d(xi , ~'lu(p»" 2: d(Xi , ,·r(q». 
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We will now prove that the property OI being a nice 
.. 

sequence is preserved tLDder a topological conjugacy . 

. 
Lemma 2.4. Let h be a conjuga~y benveen I and f. Then 

x. -.' x is a nice sequence ",ith respect to (x,y) if 
l 

and only if h(xi ) is a nice sequence with respect to 

(h(x),h(y)). 

Proof: We have two cases to consider: 

a) y is accumulated by the.iterates of any small 

interval in WU(p) which contains X; (b) (a) does not occur. 

In both cases it is easy to see that we have the following 

characterisation of nice sequences. The sequence x. -+ X is 
l 

nice with respect to (x,y) if (i) fi(xi)~' y; (ii) given 

sequences of integers n(j)-+ ~ and i(j)~ ~ such that 

I-n(j)(xi(j)) converges to z E WS(p) then for ~ny other 

sequence x!~ x such that fi(x!)-+ y we have: 
l l 

d( f-n(j) (' ) p) ~ d(z,p) xi (j) , 

In fact let x. 
l 

be nice with respect to 

in case (a) 

in case (b) 

(x,y). 

~ d(xi,Ws(q)) and 

Lemma 2.3 one has 

fi(Xi )-+ y. If also fi(xi) ~ y, then by 

d(xi,WS(q)) ~ d(xi,WS(q)). Moreover since 

wU(p) and vIs (q) have a one-sided tangences 
. 

d(xl, \'lu(p)) ~ d(x~, WS (q) ) in case (a) , 

d(xl, WU(p)) ~ d(xi, \ltS (q) ) in case (b) 

Hence the limit points of rd(x~, \oJu(p) )/d(xi , W
ll 

(p))) are at most 
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1 in case (a), and at least 1 in case (b). From this and Lemma 

one deduces (*). Similarly (*) implies that x. 
1 

is a nice 

seq~ence. Since WS(p) has dimension one, it follows easily that 

these conditions are preserved under conjugacy. 

§2(b) Construction of Moduli 

Now we will construct all conjugacy invariants arising 

from non transversal intersection of invariant manifolds of 

periodic points. TQ simplify the exposition we will assume that 

all periodic points involved are in fact fixed points. The 

. general case is treated in the same way by looking at appr~iate 

iterates of the diffeomorphism. The next lemma introduces the 

first conjugacy invariant found in (pJ and· shows the rigidity of 

the conjugacy if this invariant is irrational as in CMe2J. 

Lemma 2.5. Let x (resp. x) be a tangency of even order 

between WU(p) and WS(q) (resp. WU(p) and WS(q)) 

where p and q (resp. p and q) are hyperbolic fixed p'Jints of 

the C2 diffeomorphism f (resp. ~). Let ~ (resp~) be the 

contracting eigenvalue of dfp 

the expanding eigenvalue of dfq 

(resp. dip) and 

(resp. dfg:). Let 

(resp. S) be 

h be a 

-
conjugacy between f and f with h(p) = p, h(q) = q and 

hex) = x. Then we have the following ~roperties: 

1) 

2) 

loglal 

logl~1 
= 

logla.1 

logl~ I 

Let ~ be a linearising 
. . 

lincarising metric at q. 

metric at p 
loglul 

If loglSI 

and d . be a 
q 

is irrational then 
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is constant in each conn~cted component of 

vf3 (p) - {p) 

and 
dq(h(w),q) 

is constant in each connected 

component of ,.,u(q) - {ql. 
loglEI 
loglal 

[dq (w, q) J 

Proof: 1) Let xi -t' ~ be e nice sequence with respect to (x,y) 

where y E WU(q). Hence by ~emma 2.~ Xi = h(xi ) is a 

nice sequence with respect to (h(x),h(y». Choose subsequence 

i(j) and n(j) such that f-n(j)(Xi(j» converges to a point 

2 E WS(p). From Lemma 2.3 it follows that c~(z,p)Ia.ln(j) ~ 

~ d(xi(j)'WU(p» ~ d(Xi(j),WS(q» ~ Ctdq(y,q)ISli(j). Hence 

i(j) loglttl 
--~---
n(j) loglS I 

i(j) 

n(j) 

logl£1 e: __ _ 

log Is I • 

Since h is a conjugacy if follows also that 

Thus 
loglal 

loglal 
= 

logltil 

loglS I 

2) l..et x.;; be nice \vi th r~sY\e' ct +0 (..,.. y) From th f" t t ~ c ~ v ~,. e lrs par 

of the :proof follows that -for anyi(j), n{j) 

¥lhel"e Ax = c'/c. It follows that for any z in one component 

of If(p) - {p) there exists i{j), n{j) such that 

x-n(j)(Xi(j» ~ z, since 10glttl/loglSI is irrational. Because 

the same holds for 1. one has 
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, 

log 1;:1 log lsi 
where B =---

loglCtI 
=--~ 

loglSI 
Since the right ha~d side of this 

equation is independent of z, the result follows. 

Remarks. 1) From the second part of Lemma 2.5 it follows that 

the restriction of h to WS(p) - (pJ and to 

fqJ is a Cl diffeomorphism. 

2) The restriction of h to each component of 

WS(p) {p) .and WU(q). - {q} is determined by the image of one 

point. This is the rigidity of the conjugacy we have mentionec 

before. 

Corollary 1. Each orbit of tangency between stable and unstable 

manifolds of periodic orbits gives rise to at least 

one modulus condition. 

Proof: Let - wU(p) and vls(q) have tangencies of even order 

along r orbits o(xl), ... ,O(xr ). Then from the proof 

of Lemma 2.5 (using the same notation) one obtains the 

following r conditions: 
(A )b (A ) 0 

logla.1 loglCtI x. x· 
1 J 

= and = 
loglSI loglSI A_ (A_ ) 

xi x. 
J 

If f has };: orbi ts of 'tangency, then arbi trarily near f th8re 

~S a diffeomorphism f with at least k orbits of tangency of 

even order. From this Corollary 1 follows. 
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Corollary 2. If f E a has finite moduli then f satisfy 

conditions (1), (2), (3) and (5) of §l. 

Proof: If f E a does not satisfy (1),(2),(3) or (5) then 

for any k E l'J there exists a diffeomorphisn: f 

arbitrarily near .f satisfying one of the follovling properties: 

(a) -~ has at least k orbits of tangency between stable and 

unstable manifolds of periodic orbits; 

(b) there exist saddles p, q so that ,.p(p) and WS(q) are 

tangent and so that there exist an infinite number of 

orbits of intersections of invariant manifolds of saddles with 

lf3{p) or ~(q). -In the latter case f has modality at least 

k because of the remark 2 above. In the former case f has 

modality = because of corollary 1. Since this holds for any k 

the modality of f is ~. 

Lemma 2. 6. Let f and f be as in lemma 2.5 with 
loglcl 

10giSI 

irrational. Let r Crespo r) be a hyperbolic 

.fixed point- of f (resp. f) of saddle type , ... hose stable 
. . 

manifold intersects transversally the unstable manifold of q 

-(resp. q). . If h is a conjugacy between f. and f then the 

expanding eigenvalue of df(r) is equal to the expanding 

eigenvalue of df(r). 

.. 

Proof: Let Yi E WU(q) be a sequence 

n WS(r) and such that f1(Yi) 

W E "f ( r ) . S inc e . h I WU 
( q ) - {q) is. 

converging to Y E ''lu(q) n 

converges to ~ point 

Cl , there exist a constant 

c l > 0 such that d(h(Yi),h(y)) ~ cl d(Yi'Y). If y is the 

expanding eigenvalue of df(r) we have, by Le~a 2.3, 
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d(Yi' wB(r)) 2: c2~(w,r) Iv ,-i for some constant c2 > O. Similarly 

d(h(Yi)' w~(r»)~ c2 d(w,r)lvl- i . From these equations we have 

Ivl = Ivl. Clearly this implies Y = v. • 
Remark: Similarly to the above situation ,.,e have that the 

contracting eigenvalue at each saddle point v!hose 

unstable manifold intersect ~(p) transversally is a conjugacy 

invariant. 

Now we will introduce some other conjugacy invariants 

which arise in the following situation: there are three fixed 

"points p, q, r such that WU(p) has a point x of tangency ,.,i th 

wB(q) of order 2n and WU(q) has a point Y of tangency with 

~(r) of order 2m. Take curves ~x, ~y at x, y, 

transversal to wB(q) and WU(q) respectively. 

Take a neighbourhood R of q which contains x and y, and 
-

on which f has a linearising coordinate system. Let L: n,x be 

the component of fn(tx ) n R containing fn(x), and similarly 

~n,y the component of f-n(~ ) n R containing f-n(y). "There are y 

four cases to consider: (see Figure 2.1). 

Case A: '"" n vr (r) L.,n,?, and do not accumulate to y 

respectively x as n--+ CD; 

Case B: does accumulate to y, but 

does not accumulate to x; 

Case C: tn,x n ~(r) does not accumulate to y, but tn,y n 

n \VU(p) does accumulate to x; 

Case D: L n \,/s(r) and t n \'[u(p) 
n,x n,y 

do accumulate to y 

respectively x. 
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~1X +rj Xp~ 
J P 

x t t ... 

~ri iT ~ ;Mx-P- ~.~ 7f . tr 
qt y 

J. B C D 

Fi[,ure' (2.1) 

Lemma 2.7. Let f: M~ M pe a diffeomorphism having the same 

intersection pattern of stable and unstable manifolds 

as f. Consider the following equations: 

(Ml) a. = a. 

(M2) S = S 

(M3) a = a" 
-(M4) b = b 

(M5) 
QXtd (X,q)J 2n 

d(y,q) 
= 

(M6) 
':vtd (y,q)]2m = 

d(x,q) 

C-(- -),2n Qx d x,q J 

d(y,q) 

OyCd(y,q)J2m 

Cl(x,q) 

where a., a are contracting eigenvalues of dfp and df . -" S b q' , 

are expanding eigenvalues of dfq , dfr ; d is a linearising 

metric at q; lim d(w,\vu(p») 

WE\.f(q) Ld(w,x)J
2n 

w-'x 

If 
loglCtI 

loglt3\ 

loglal 
and 

loglbl 
are irrational and h is a conjugacy between 

f and f such that h(p) = p, h(q) = q, her) = r, hex) = x 

and hey) = y then the following conditions are satisfied: 

Case A: 

Case B: 

Case C: 

conditions (Ml) to 

condition (Ml) to 

conditions (Ml) to 

(f.16 ) 

(M4) plus condition (M5) 

(M4) plus conditions (M6) 

Case D: conditions Ml to M4. 
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Proof: From Lemm~ 2.5 we have that" 

and 

loglal 

loglSI 

loglal 

loglbl 

logla.1 
::: 

loglel 

loglal 
::: ---

loglbl 

(1) 

(2 ) 

Furthermore if these numbers are irrational we have that 

hlvr(q)-{q) are maps. We will show now 

that in all cases equalities (Ml) to (H4) are satisfied. 

~ake a sequence 

x and such that 

converging to the point o£ tangency 

converges to some point z E WS(p). 

~ Lemma 2.3 we have that 

where c is a positive constant independent of the sequence .. 

Now ~u(p) andWS(q) have a tangency of order 2n at x. 

!rhere-Iore if 'we consider a co:> metric d 1 induced by a cO) 

~t)o.rdinat-e system' in which W,U(p) is a s-traight line and ,.,s(q) is 

-the graph of a. homogeneous polynomial of degree 2n then 

, d l (xi' WU (p ) ) 

td I (Xi' x)J
2n 

is a positive number~ 

Lemma ~.2 tells us that 

But since 

(4) 

d is a CO metric, 

-to ~ :posi ti ve constant which does not depend on the metric. 

Clc'ar1y the sequence d(xi"x)/d'(xi,x) also converges to a 

positive constant because Xi E ".,s(q). This and (4) implies that 



and Q > O. 
x 
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d(xi , V,u(p» 

Cd(xi ,x»)2n 

is 

(5) 

so that 

(6) 

Equat·ions (3), (5) and (6) imply that IIlI = I~I. Hence c:t = E. 

Similarly we prove that b = band Irom (1) and (2) it 

Iollows that S = S .and a = a. II we are in case D then we 

are finished. So let us show that there are additional moduli 

·in cases A,B,C. Let us prove that M5 is satisfied in cases A 

and B. For that, take a sequence xi ~ x nice with respect 

such that to (x,y). Choose subsequences i(j) 

£-n(j)(xi(j» converges to a point 

and. n(j) 

Z E WS(p). Since we are in 

case A 

that 

or in case B 

f-n ( j) (z .) -+ Z • 
J 

we can take a sequence Zj E WS(q) such 

Since {x. ) 
J. 

is nice with respect to 

(x,y) and d is a linearizing metric we have 

d ( Xi ( j) , WS 
( q» ~ d (y , q ) I S I - i ( j) , 

d ( xi ( j) , W
U 

(p » ~ d ( xi ( j ) , v,s ( q » . 
So vie have 

( u( » "'" ( ) I I-i (j) d xi(j)' W p ~ d Y,q S • 

Since f-n(j)(Xi(j» and f-n(j)(Zj) both converges to z we 

have from Lemma 2.3 that d(Xi(j)'V'U(p» ~ d(Zj'WU(p». Finally 

we have equation (5): d(Zj'WU(p» ~ Qxfd(Zj,x)}2n. This and 

(7) implies: 
d(y,q)' ISI-~(j) ~ Qxtd(Zj,x»)2n i.e. (8) 

Qx {d (x, q )} 2 n =­

d(y,q) 
(9) 
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Since hlvr(q):"'{qJ is linear and d is·~ linearising metric we 

have 

d (h ( Z j ) , h ( x)) 

... -. ... -..... 

d(h(x) ,h(q)) 

From this, ~ =~, and (9) it follows that 

Qx· {d(x, q) r2n 

d(y,q) 

is a topological invariant. 

• 

Similarly, we prove that is cases A and C conditions M6 is 

satisfied. 

Remark. It is not obvious that the numbers which appear in the 

modulus conditions (M5) and (M6) -are independent of 

the choices made for the metric d. That these numbers are 

independent of the metrics is proved in §3(b). (In case A this 

also follows from the conclusion of Lemma (2.6). 

In section 5 we shall show that the equations from Le~~a 

(2.6) are the only obstructions for constructing conjugacies 

between two diffeomorphisms as above. 

• 

Proof of the theorem. It remains to prove that if f E a has 

fini te modality then condition 4 and 5 of §l are 

satisfied. Notice that if f has finite modality then the 

modality of any g sufficiently near f is at most equal to the 
. 

modali ty of f. So we will prove that if f E a does not satisfy 

condition 4 of §l then f can be approximated by diffeomorphisms 

with arbitrarily high modality. So let f E a be a 



diffeomorphism'baving an orbit of non t~ansversal intersection 

between WS(q) and· WU(p). We may assume that all periodic 

poin~s are in fact fixed point by considering a sufficiently high 

1 terate of· f. By taking a small perturbation of f we may 

assume that WU(p) has a point x of quasi-transversal (i.e. 

quadratic contact) intersection with s W (q). Now assume that con-

dition 4 of §1 does not hold. Then any arbitrarily small arc 

r at x transversal to WU(p) contains unstable (stable) 

manifolds of saddles. Then, by taking a small perturbation of f 

one can find a saddle P (Q) such that WU(P) (Ws(Q)) has an 

intersection with WS(p) (Wu(q). We also may assume that WU(P) 

(respectively WS(Q») contains a small interval I (resp. J) 

which intersects transversally WS (p) (resp. ''iu( q)) in a unique 

point (see figure 2.2). Now assume that condition 4 of §l does 

not hold. Then ;e(l) has an intersection with J for any k 

suffiCiently big. 

-------~,~.~------~~ p I 
• 

J 

Figure (2.2) 

From the Appendix it follows that we can construct a Cl 

unstable (resp. stable) foliation 3~ (resp. 3~), with a C1 

tangent line field, having· I (resp. J) as a leaf. 
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. 
Claim: If is irrational then the p~ints of tangency of 

f-k(J) with ~~ accumulate at I n wB(p).· The theorem then 

follows easily from this claim. In fact, if the claim is correct 

then by a small perturbation of f witp support in a small 

neighbourhood of I n WS(q) we can create an arbitrary number of 

orbits of tangen'cy between ,yu(P) and WS(a). Since by 

co~ollary 1 each orbit of tangency gives rise to a conjugacy 

invariant we have that f has infinite modality. So it remains 

to prove the claim. Since x is a point of quasi-transversal 

intersection of WU(p) with WS{q) and the tangent line fields 

Cl it follovlS, from the to the foliations 

~implicit function theorem, that in a neighbourhood of x, ~~. 

is transversal to ~s except along a C1 curve t which is q 

transversal to WU(p) at x (see CNe2.j). Let a = fn(I) n t 
n 

and b = f-n(J) n t. If d is a CO metric on M then we n 

have 

where cl !. c2 are -positive constants. This follows from ler:u:1a 

2.2, the transversality of t with WU(p) and the fact that (~ 

are obviously true for appropriate linearising metrics. Now 

logla.1 
since 

loglSI 

... <Xl such that 

and therefore: 

is irrational we can Iind sequences n(k),m(k) 

-n(k) 
IBI ~ c 1 . From (*) therefore follows 
lal mCk ) c2 

d(am(k)' bn.~k» ---t 0 , 
. lallH(k) 

d(f-m(l<)(b ) r-rn(k)(' .)) 0 
n ( k )' .- am ( k ) ~ . 
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Hence converges to WS(p) n I as k -+=. This 
.,. 

proves the claim. 

§3. A few techniques for constructing conjugacies 

In this section we will develop a few techniques for 

constructing conjugacies. In sections 4 and 5 we will employ 

these techniques in order to construct conjugacies beu~een two 

nearby maps in a which satisfy the relevant moduli conditions. 

Let us start with making a general comment. It is well 

known that every diffeomorphism in a which satisfies certain 

transversallity conditions on invariant manifolds is structurally 

stable, see (RbIJ. In order to prove these results one has to 

construct conjugacies between U'lO nearby diffeomorphisms. 

Basically there are two "lays of doing this. One method is 

functional analytic. Here one defines an operator on an 

appropriate space of homeomorphisms and sho,'!s this operator has 

a hyperbolic fixed point, see (RJ. The other method is a 

geometric proof using invariant foliations, see CPS], (Mel], 

tMe2J. (For Axiom A diffeomorphisms this geometric method has 

only been developed in dimensions two see r: Nel j). In any case 

it is probably difficult to use the functional analytic methods 

since all the operator~ will be non-hyperbolic see CRb2J. Therefore we 

~ill give geometric const~uctions using invariant foliations. 

These methods also enable us to keep tra~~ of all the freedom 

one has in constructing the conjugacies. Let us now define these 

invariant foliations and explain hO'" they are used. 
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Take a nyperbolic periodic point p '(of saddle type) of 

a diffeomorphism f. An unstable foliation ~~ (tubular family) 

for p is a continuous retraction TT~:. vll --+" \of (~ (p» , where 

&(p) is·the orbit of p and VU is a neighbourhood of 

. WU(~{p» with: (i) (nu)-l(p) = WU(p); (ii) the foliation 

whose leaves are fibers of nu is f-invariant. Similarly we 

define the stable foliation ~~ for p. Using the A-Le~a it 

is easy to construct invariant unstable foliations, see CPlJ. The 

'leaves in fact can be chosen d1fferentiably (Ck if f is Ck ) 

but the field of tangent lines to the leaves 1s only continuous 

" in general (however see the Appendix where we prove this 

foliation is sometices more smooth). The use of this foliation 

is explained by the following lemma ,.,hose proof is straightforvrard. 

Lemma. Let p, p be hyperbolic fixed points of f and f 

with ~~stable foliations _u ~~. Let h be a map ~p' p " 
from a neighbourhood h of ",u(p) to a neighbourhood of "lu(P) p 

with the following properties: (i ) hi' = in; i i ) (h I ,of (p ) ) : 

WS (p) -t. Yls(p) is continuous; iii) hi (hp -,.,s (p» is' continuous; 
. 

iv) h preserves the unstable foliations. Then h 1s 

continuous. 

In order to construct global conjugacies it is necessary 

that all unstable foliations fit together nicely. So let p, q 

. be hyperbo"lic periodic points of f 

We say that the unstable foliations 

if each leaf of ~~ contains a leaf 

",i th 
..... U 
cJ" 

P 
of 

"p(p) n Yls(q) ~ 0. 

and .... u are compatible cJ"q 

:tu • 
q In order to 

. construct a conjugacy h between t"/O nearby Horse-Smale 

diffeomorphism. one first constructs conjugacies on the stable 

manifolds of periodic orbits of saddle type preserving the 



,. 

unstable foliations. Here one pr.oceeds inductively using the 

natural dynamical ordering of periodic orbits starting at sources 

and ending up at sinks Then we extend h to £undamental 

domains of the sinks again preserving these foliations. The 

conjugacy equation (hi = fh) gives a uniqUe ext.ensions of h 

to the whole manifold. From the lemma above it follows that h 

is continuous. In this approach the compatibility of the 

foliations is essential. 

In our case we have tangencies of invariant manifolds. 

Therefore some leaves of unstable foliations do not have a unique 

_intersection with stable 'manifolds. Hence it is ~mpossible to 

construct a coopatible system of unstable foliations. So we ,..,ill 

have to use both the unstable and the stable foliations. In the 

Morse-S=ale case these foliations are transversal but here they 

can be tangent. The geometry of their intersection is extremely 

complicated (espe,cially when higher order tangencies are 

involved) . So \'1e are forced to make carefull adjustments of 

these foliatiops in order to get a good control of their 

intersect~on. These modifications near the tangencies must be 

globalised in order to keep the foliations invariant. For that 

we need some carefull estimates which we will make in section 3(a.) 

using a generalised A-Lemma proved in the Appendix. 

There is another difference with the Morse-Smale case. 

Here we will have to define the conjuga~J in a whole 

neighbourhood of the tangency points first. Then we have the 
. 

problem of exte~ding h continuously to the closure of the 

orbit of this neighbourhood. This is done in section 3(b). 

" 
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§3 (a). Const-1"uction 01 foliations 

.... ~ .. 

Let P 
... 

be a hyperbolic fixed point (of saddle type) of a 

Cm di~feomorphism f. Take· a point x E WU(p)-{p) and a small 

neighbourhood Vx of x. 

has a tangency of order 

Let C be a cone like region which x,n· 
n with WU(p) at x: 

Here d is a CO 

Let :;: be a C1 

l'f(p) . For each 

a. 

metric on M 

foliation on 

a E Vx let 

and c 1s a positive constant. 

Vx whose leaf through x is 

La denote the leaf of ~ through 

Lemma 3.1. (Extension of foliations defined on cones). If 

sup [ d ( ,., , 1'lu ( P ) ) ; wE La n Cx) 
lim = 1 
a ... x 1nf(d(w, '_lu(p)) ; w E La n Cx) 

(3 .. 1) 

then there ey~sts an unstable CO foliation aU whose restriction 
p 

to Cx,n coincides "lith -,y.. 

-.~ 

Cx 
V . 

~ 
x 

--La 
.. --

P1 

Figure (3.1) 

Remark: If d is a linearizing metric then Lemma 3.1 remains 

true if we take for Cx a whole neighborhood of x., 

proYided Vx is contained in a fundamental domain. 
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Proof: Take any invariant unstable foliation .!.U 
cJp of _ p. We 

.... u 
will modify 3p so that restricted to Cx it will 

"'-"':-... 
coincide with ~. Let Nx be the co~~ected component containing 

x of a fundamental neighbourhood of WU(p) such that N-C x x 
consists of two components as in Figure 3.2. 

p 

Figure 3.2 

Define the new foliation in by taking this foliation 

identical to on N -C and identical to x x 
Clearly "'u C1 

P 
extends uniquely into an invariant foliation on a 

neighbourhood of WU(p)_{p). We must show that the closure of 

each leaf of ;t~ has exactly one intersection with wB(p). More 

precisely, . we must check that there is a continuous projecti'un 

'lip on v;S(p) along the leaves of a~. In order to show this 

it suffices to prove that for any sequence a(i) E Nx such that 

f-1 (a(i))-+ y E WS(p) as i-+ co one has f-i(La(i») --+ y. 

Here La(i) denotes the leaf of ~~ n Nx through a(i). Now 

if a(i) and xCi) E La(i) are both contained in the same 

component of Nx-Cx - it follows fro:n the fact that .... u is "'p 

identical to the unstable-foliation 
.... u 

(on N -C ) that ~ p x x 
f-i(x(i)) --t y. So it suffices to consider sequences a(i) E 

E Nx n Cx and show that for xCi) E La(i) n C x one has 

f-i(x(i)) --t' y. But from ,J.. • equal-1On (3.1) it follo\'7s that 
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From equation (3.2) and Lemma 2.3 it follows that f-i(a(i)) -+ y 

if and only if f-i(x(i))-+: y. This finishes the proof of the 

lemma. 

It "Ii 11 be conveni ent to give a general way of 

constructing foliations ~ which satisfy equation (3.1), in 

terms of some Cl-coordinate systems near x. In fact take a 

Cl-coordinate system (u,v) near x so that 

{v = oj = WU(p) , {(u,v) = (0,0)1 = {xl. 

In these coordinates the leaves of ~ are in the form 

La = {v = g(u,a)) 

with g(O,a) = a. Write ga(U) = g(u,a). 

Lemma (3.2). (Construction of foliations in cases which can be 

'extended to tubular families). 

Let n be' the order of tangency of the cone C x,n with 

Wu(p) and let g: R2-+ JR be so that: 

(1·) the n":'jet .n 
J ga(u) varies Cl or a: 

a-+ jn ga(u) is Cl • 

(2) . Ceo. l.S 
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Then the conclusion of Lemma (3.1) holds i.e. the foliation ~ 

can be extended to an unstable foliation. 

Proof: According to the theorem of Taylor one has 

with" R(u,a) -+ 0 as (u,a) -+: (0,0), and with ~i C1 so 

that ~i(O) = o. Now for (u,v) E Cx,n one has for sone 

constant c1 ' 

No-w let (u,v) = (u,g(u,.a)). 

one has from
O

(3.3) and (3.4) 

Since ~o 
J. 

that: 

is 1 C and ~O(O) = 0 
J. 

'v, = I g (u, a) I :s: c2 • I a I + cl • I v I · 'R (u, a) I 

for some constant c2 . From this it fo110'\'ls that 

for some constants c3 and c4. Therefore 

g(u,a) 
I :y: - 11 = I - 11 ~ a a 

~2(a) ~n(a) n n 
s I a 1·lul +··.+1 a l·lul + I~ '·IR(u,a)1 

s c5·lul + c4·IR(u,a)~ 

From this it follows that 

g(u,a) 
I:Y:"- 11 = I " - ll~ 0 
a a 

as (x,a) ---+ (0,0). Obviously equati.on (3.6) implies equation 

(3.1) in Lemma 3.1. 
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We will UP~ Lemma 3.2 in order to modify foliations near 

certain parts of the manifold. Let f be a diffeomorphism with 

a non-transversI saddle-connection as in Figures (3.3) and 

(3.4) • 

p 

p 

,.--: 
,/ 

~x , ; 

q 

tangency of even order 

Figure (3.3) 

q 

tangency of odd order 

Figure (3.4) 

Assume that WU(p) and ~(q) have a tangency of order n at 

x. Let .... u 
"p and ;y:~. be respectively the unstable foliation at 

p and the stable foliation at q. According to the Theorem in 

the Appendix one can choose these foliations Cl so that the 

. fields of tangent lines are Cl and so t~at the leaves of these 

foliations are cco. We first show .lchat ~U 
cJ 

P and can only 



be tangent in a certain cone 
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C n. x, ,." 

Lemma (3.3). 
1 

Let ~,~' be C 
'-. 

foliations on a neighbourhood 

f th ." f JR2 o e or~g~n 0 such that the leaves are 

cr +l , r ~ 

:;' (0) of 

T be the 

contact of 

precisely, 

1, the fields of tcngent lines are Cl 

-, through 0 has contact r+l" with .:r 

set of points where ..., 
is. tangent to ;J' • .:r 

T will ~(O) 

either T-tol 

lim 
zET- Lo) 

z-,O 

= 

at 0 is less than r+l, 

¢ or 

d(z, ~(o)) 
:: Q) 

where d is some CO metric. 

and the leaf 

~(o). Let 

Then the 

that is more 

Proof: Choose a Cr +l coordinate system (u,v) in a 

neighbourhood of 0 such that 3'(0,0) = {tu,v) I v = 0) 

and 3"(0,0) = {(u,v)1 v = ur+lJ. Denote by ~(u,v) the 

tangent of the angle of ;]1 (u,v) with the horizontal line 

through (u,v) and by *(u,v) the tangent of the angle between 
"~ 

3'(u,v) and ~I(U,V). Hence ~ and ~ are C1 , V(u,O) = 

= Q(-t'·.:I), Q(u,ur +l ) = (r+l) ·ur and T = {(u, v) I V(u, v) = 0). 

By tl,ie m~an value theorem we have 

~t'J V(u,v) = ¢(u,O) + ~ (u,v)'v , 

and 

-for some v between 0 and v and some v between 0 and 

ur +l . Thus 



and 
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)..~... r..1..1 )..t = (r+l).ur - b; (u,v).u· + bV (u,V).v , 

~ (u, v) = 
ur +l 

r+l --u 
b~ b ,. \T 
bv (u,v) + bv (u,v). r+l· 

u 

II (u,v) E T we have ~(u,v) = 0 and b~ since bv is boundec, 

we have 

Iv I 
lim = +00 

(u,v)ET lul r + l 

u-+O 

This clearly proves the Lemma. 

Now we "'ill put Lemma 3.2 and Lemma 3.3 together and 

show how to modify the foliations 

tangent only along a curve. 

;,ru and ;;s 
p q so that they are 

Consider any CO metric d. Since WU(p) and wB(q) have 

a tangency of order· n 

for some positive number 

one has (as in Lemma (2.6)) that 

d ( w, v,u (p ) ) 
---+Q 

x 

Now let T be the set ",here 

and :;5 
q are tangent, and let as before 

.... u 
c1 p 

Acoording to Lemma 3.3, for any c > 0 there is a neighbourhood 

V of x so that x· 

·So take c > ~, and Vx so small that e n WS(q) = {xl = x,n 

== e n WU(p). 
X,D 

In other words, ou·tside the set ex, n the 



foliations 
_u 
cJ' 

P 
add ;Js 

q 
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have no tap~encies 

t • 

(in 

will modify th€se foliations in Cx,n. We can modify either 

..... s according to whichever is more convenient. Let us or c:t q 

change ..... s In order to do this .take Cl-coordinates (u,v) c:t . 
q 

that tv = 0) =. vlu (p ) , and so that the leaves of .... u 
near x so .:t p 

of the form [v = c), i.e. parallel to the tv = oj line. 

are 

From the Appendix it follows that this is possible. Clearly we can 

wri te vf (q) in the form vf (q) = tv = g( u)) where 'g is some 

Cl function and .g(O) = o. From the remark abov:e Lemma (2.3) 

it follows that g(~) converges to a number 0 ~ 0 as u~: O. 
U 

vie will treat the case that n is even and the case that n 

is odd separately. 

Case 1: n is even 

Consider the foliation tv = g(u,a)), a E R, where 

g(u,a) = Oun + a. According to Lemma 3.2 we can change the 

foliation as so that inside C the q x,n 
foliation are of the form tv = g(u,a)). 

(3.3) it follows that then aU 
p and ;Js 

q 

the line [u = ol~ 

Case 2: n is odd. 

, 

In this case change the foliation 

leaves of this 

From this and Lemma 

are tangent exactly in 

..... s 
cJ' 

q 
so that inside C x,n 

the leaves of this foliation are of the form {v = g(u,a)J, 

where g(u,a) = Qun + a 2 .u + a. From this it follows that then 

.are tangent only at the point x. 

Remark: The set Cx,n \{xl consists of two components. 

Sometimes it will be necessary to modify 

component and :;s 
q 

in the. other component. 

in one 
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§ 3(b). Constru~tion of conjugacies. 

Now we give a Lemma which will show us how to use these 

foliations in the construction of conjugacies. As before let Vx 

b~ a neighbourhood of a point x E WU(p) - tpJ and let, 

(Here d is a CO metric as before). 

We consider the following situation. Let p,p be 

hyperbolic fixed points of C2 diffeomorphisms i,f. Let the 

, contracting eigenvalue of f (resp. i) be ~ (resp. a), and 

let 

Let J'u 
p (resp. 

~ :;:: 

~~) 
p 

logl~1 

logl~1 
, i.e. 

be the unstable foliation for f (resp. 

f). Let d, d be two CO metrics. We have the following. 

Lemma (3.4). Let h: V -. V-x x be a homeomorphism satisfying 

(i) 

. 

the properties: 

'lim 

WECx,n 
, w-+ x 

d(h(w) WU(p)) 

( d ( '\>', WU (p ) ) [) 
exists and is positive. 

(ii) The restriction of h to each connected component of 

v -c maps leaves of the restriction of the foliation x x 

to this connected component into leaves of 

Then h extends to a homeomorphism of a neighbour:-,ood of p, 

conjugating f' and f. 
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Proof: Let d' and be metrics induced by Cl l' " - l.near~s~ng 

coordinates for £ (resp. f). From Lemma (2.2) in 

section 2 it follows that 

lim 
d' (h ( w) , ''Iu (p) ) 

r d ' (w, Wu (p ) J C 
(3.6) 

w -+x 
wEC n x, 

Furthermore since d' and d t are induced 

coordinates one has for sequences 

by linearising 

that f-n(i) (x. ) 
.1 

converges to some point z E WS(p) if and only 

d f (xi' WU 
(p» 2:! d' (p, z) • I ~ In e i) , 

. and a similar statement holds for f. From this, equation (3.6) 

and the fact that I c: I 0 = I c: I, it .follows that h extends to a 
CI) 

homeomorphism of the closure of 

and f. 
U .f- kec ) 

k=O x,n conjugating :f 

Now assume 

n Vx = ¢> • We can 

is su.f.ficiently small so that .f(v ) n 
x 

extend h to Vx by taking any extension of 

hlc n which maps leaves of ;:1 to leaves of ;:1_ It .follows x, p p CI) 

that h extends to the closure o.f U .f-kev
x 

). 
k=O 

Let us now extend h to a neighbourhood o.f WU(p). Take 

a leaf F of 

chosen so that if 

For simplicity we can assume that Vx is 

F intersects Vx ' then F\ evx U .f-Iev
x

» 

consists of three components, see Figure (3.5). Consider the 

component of F \ evx U f-1e vx » with boundary points xl E Vx 

and x2 E f-levx). 

Figure (3.5) 
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not lie on one lea! of ... U 
~- . ~erefore we will modify 

In fact t~ke two curves 

h~Vx) ·am £-l(h(V
x

» 

p " ' 

1:1 , .1:2 transversal to WU(p) 

as in Figure (3-5). The leaf 

need 
.... U 
~- -p 

between' 

of 

u 
3p through h(x i ) has an intersection ,Vi with t i • Take a 

leaf Lv. in the strep b~tween tl ~nd t2 which is piece-wise 
1 

linear with respect to the linearising coordinates for f such 

that LVl n 131 = VI' ~ n E2 = v2 - Do this for every v1 E t 1 -
1 

Now define a new foliation "::ru 
" which is identical to _U 

~-
P P 

outside the.strip between ~ and 1:2 and identical to the 

piecewise linear one inside this strip. It is easy to see that 
If~U II 

P 
i's an honest unstable foliation for p, using Lemma 3.1. 

Now define a conjugacy h on a neighbourhood of WU(p) 

by taking any extension of h!Vx "/hich maps leaves of .... U 
"'p 

onto leaves of ,,~u II - - From the construction above if follows 
P 

that this is possible. 

Now "Ie consider the situation that a homeomorphism h is 

only defined on a cone-like set ex. Hore specifically donsider 

the situation that f has hyperbolic saddle-points p,q such 

that l'lu(p) ar..d "ls (q), has a tangency of (even) order n at 

a -point x. 

q 

.p 

Figure' (3.6) 
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Let Cx be t.ae cone-like set as in FigUre (3.6), and let f be 

a diffeomorphism so that WU(p) and WS(q) also have a 

"tangency of order' n a1 x. Assume h: Cx '" ex is a 

homeomorphism. When can we extend h to a conjugacy on a 

neighbourhood of p? In order to investigate this question take 

a .. CO-metric d: near x and define 

As we have sho\ffl before, ~ is well defined and Ox -! o. 
Define <L similarly. Let .(, be a Ct%> curve through x 

x 
. transversal to \f{p) and take a similar curve :r for f • v;e 

assume that h(.(,) = Z and that the fOllowing.limits exist and are 

positive: 

C1 = lim 
. w-+x 

wEC -t x 

d(h(w), Z) 

d(w,t) 

d {h ( w) , ,.f3 ( q ) ) 
and lim 

w"'x d ( w, ,.f3 ( q) ) 

"IECx- ,vB (q ) 

Also assume the contracting eigenvalue of f at p is equal 

to the contracting eigenvalue of f at p. The numbers ~, 

'ax, Cl , C2 do depend on the choice made for the metrics d,d. 

However ",e have the follm'ling result. 

Lemma 3.5. ·Let h be a homeomorphism as above. Then: 

(1) the equality 

metric d,d; 

(2) if 

Cn 

° =...1 O_ x C2 x 
does not depend on the 

then the homeomorphism h can be 

extended to conjugacy on a neighbourhood of p. 
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Proof: (1) Let d l be another metric instead of d.From 

Lemma 2.2 and the remark below this lemma we have that 

there exist A > 0 so that 

. lim 
w-+x 

wEv,s (q) 

dew, ,.,u(p)) 

d' (w, vtu(p)) 
= ). = lim 

w .... x 
WECx 

d(w,wB(q)) 

d ' (w, \\'s ( q) ) 

Furthermore if w E WS(q) converges to x then from Lemma 2.1 

it follows that d(w,x)/d'(w,x) converges to a positive constant 

J.l. On the other hand one has d(w,t) ~ d(,\,1,x) , d' (,."t) ~d' (w,x) 

for w E WS(q) converging to x since wB(q) and WU(p) are 

tangent to each other and transversal to lv. Hence 

d(w,x) 
lim ---- = I.L = 

wE wB, ( q) d' (w, x) 
W-+X 

It follows immediately that Q = x 

lim 
wEWs(q) 

w-+x 
Cn 

1 
C2 ~ 

does not depend on the 

choice of d. Similarly it does not depend on the choice of d. 

(2) Take C~ coordinates (u,v) at x so that WU(p) = 

- tv = 0), and t = {u = 0). From (1) we 

can taJ{e for d the usual Euclidean metric in this coordinate 

.system. Take ,\,1 E Cx and let w have coordinates (u, v). Then 

Furthermore 

as w-+ x (see the arguments used in" the remark below leP."_ma 2 .2). 

Now we use the follo\.,ing elementary fact. 

of positive numbers such that 

Take sequences 

a. ~ b. + c. 
l. l. l. 

a· , 
l. 

and 
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converges to 1. Then a. ~ b. + d .• 
1. 1. 1. 

It follows that 

and similarly 

Using a similar elementary computation as above one concludes 

that 

converges for w ECx 

d (h ( w ) , Wu (p) ) 

dew, wU(p)) 

converging to x if and only if 

(In this case the limit is C2 ). Using Lemma 3.4 it follows 

that we can extend h to a conjugacy near p. 

-
§4 9onstruction of conjugacies "'hen all invariant manifolds 

except WU(p) and WS(q) intersect each other transversally 

Suppose that p and q are hJ~erbolic saddle-points and 

that WU(p) and WS(q) have k-orbits of non-transversal 

intersection. 

In order to state the next theorem we need some notation. 

Let Ct (resp. S) 'be the contracting {resp. expanding) 

eigenvalue of f at p (resp. q). Choose a fundamental 



domain D~ in wll(p) and let zl' .•• ~·zk be the points in D~ 

where WU(p) and WS(q) are tang~Pt. - Order these points so 

that d(zi~P) < d(z1+l'P). Then take a' C
1 

curve ~i at zi 

transversal to ,~(p) and WS(q) and take linearising metrics 

d - at P 
q 

and q respectively. Define 

~(W,Zi) 

dq(\,I,zi) 

be the saddles ,.,hose 

unstable Crespo stable) manifolds intersect ,.,s(p) (resp. "?(q». 

Denote the contracting (resp. expanding) eigenvalue of f at 

Pi (resp qi) by Ai (resp. Bi ), and the linearising metrics 

by respectively d q. 
1 

Choose fundacental do~ins DS in WS(p) and D
U 

in '~(q). p q 

Let x1, .•• ,xt(p) (resp. Yl' ••• 'Y~(q» be the intersectio~s 

of the unstable (resp. stable) manifolds of the saddles Pi'S 

(resp. qi's) with D~ (resp. D~) ordered as above. 

Let I = ti I ",U(p) and vr(q) have a tangency of even order 

= lim 
'r ...... y j 

\,rE\p( q) 

Define 

d
pi 

(w,X j ) 

~(w,Xj) 
if 

if 
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Figure (4.1) 

q 

q 
1 

Let f,f E ~ be as above and C1 near each other. Assume that 

all invariant manifolds (except ",u(p) and yf3(q» are 

transversal to each other. Furthermore SUppOSE.: that f has 

points 

qi' 

have a tangency of even order at zi if and only if 

WS(q) have a tangency of even order at fi. 

Theorem (4.1). The diffeomorphisms f,f E ~ as"above are 

Here (Mi) is: 

(Ml) 
10gla.1 
10g1131 = 

conjugate if conditions (Ml) (M5) hold. 

loglal , 
10giSI 

i.e.,there exists 6 >.0 such that 



(M2) 

(M3) 

(114) 

(M5) 
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(A 
zi 

)6 (ll )6 
z· 

= A_ 
zi 

-Ai = Ai 

Bj = Bj 

?p(xi,p) 
= 

t),(xj,p) 

d.9(Yi,Q) 
= 

dq(Yj,q) 

loglCtI 
If 

loglf3 f 

J for 'all 1,j E I . , 
A-

. ~:-.. ~ 
" 

Zj 

i = l, ••• ,n(p) , 

j = 1, ••• ,n(q) • , 

[ d,,(xi'p) ( i 1, .•• , .(, (p) , = 
d-(x.,p) q J 

[ da(Yi,q) ]6 
j. l, ••• ,t(q) = . , 

d-(y.,q:) q J 

for all " 

for all 

is irrational these conditions are also 

necessary for the existence of a conjugacy. 

Remark. Only tangcncies of even order lead to conjugacy 

invariants. However the presence of tangencies of odd 
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order .cakes the modality increase because they generate, by 

perturbations of the diffeor.1orpnisI!l, new tangel1cies of even 

order. 

Proof: The necessity of the moduli conditions follows from 

Lemma 2.5 and its corollaries. In order to show-the 

sufficiency of these conditions we have to construct conjugacies. 

We have subdivided the proof in a few cases. 

Case 1. Suppose that there is no periodic saddle point P with 

and similarly no periodic saddle-

point Q ''lith WU(q) n WS(Q) f; ¢. As before let WU(p) and 

\~(q) be tangent at k orbits ~(zl), .•. ,~(zk). It will turn 

out that the number of conjugacy invariants is equal to the 

cardinali ty of I. In particular if "" I = 0 then there are no 

conjugacy invariants. Let us now construct a conjugacy between 

f and f. First we define h: WS(p) --.. WS(p) so that 

(4.1) 

where c is a positive constant and 

(4.2) 
10gla.1 

o = 
10gla.1 

From (4.1), (4.2) and the fact that ~ is a linearising metric 

it follows that ho f = fo h. 

Case lea): All tangencies are of odd order (i.e. *1=0). Take an 

unstable family ~u for p and a stable.family ~s for q. 
p q 

Using the construction at the end of §3(a) one can modify ~~ and 

JS so th· t _U and ~s are tangent only in z .. Define q - a ,near zi ' t1 P q 1 

h: w~(q) --+\\Tu(ci) to be any homeomorphism so that hof = :foh. 
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The h'o' ,:?omorphisms h: WS(p)-+ WS(p) and h: WJ(q)--+ WJ(ci) 

indUc::e maps on the space of leaves of :;~ and ;;:~ • This defines 
. 

h: v., -+V - uniquely, where V z. is a neighbourhood of zi· 
'·i Zi 1 

Now we show how to extend h globally. Take a system of 

invariant foliations Jos., ;;:Uo 
1 i 

for all basic sets in 

so that ;;:s and;;:s (and similarly 
01 OJ 

JU and;;:~ .) are 
°i J 

O(f), 

compatible for all basic sets 0i,Oj except where 0i = {p) 

and OJ = {q). In CPI], CMPJ and CMe2J it is shown how to 

do this when O(f) is finite. If O(f) is infinite then one 

has to use the methods of tMelJ. Remark that f E ~ implies 

that there are no points x which is part of a non-trivial basic 

set (which i~ not a periodic orbit) such that WU(x) or wB(x) 

has intersection with ~(p) or WU(q). As in (Pal] and (Mel] 

we proceed by defining h: WU(Oi) ~ WU(Oi) for any basic set 

0i such that v~(Oi) n WU(p) # ¢. This induces a map on the 

space of leaves of , :;~. and from the transversa Ii ty of wB (x), 
1 

X E 0i' with WU(p) this gives a map h: WU(p) n V--+Wu(p) n'V, 

where V is a neighbourhood of WU(p) n ~(Oi). Extend these 

Since and :;s 
q 

intersect transversally, except at zi' the conjugacies 

h: ~(p)-+~(p) and h: "lu(p)--+'\'!u(p) can be extended to a 

unique conjugacy on a neighbourhood of p which respects all 

invariant foliations. As in (PI], [NP], (Mel] and 

tMe2J one extends h globally. 

Case 1 (b): One even tangency, i. e. :ff 1= 1. 

Let Z = zi be a tangency of WU(p) 'and wB(q) of even 

order. Using the construction of the end of §3(a) one can 



modify ;;:U and 
p 

-44-

~~ so that, near z, ~~ and 
" 

~s are 
q 

tangent along a Cl-curve ~. The homeomorphism h:w.s(p) -+wB(p) 

induces a map on the fibers of c~ ~~d ;;:~, and we get a 

homeomorphi'sm h: ~ -+~. From equation (4.1) we get 

for. v E r . 

Hence 

(4.4) 

Using the conjugacy equation hof = foh we can extend h to 

U fj(~). This set accumulates on WU(q). From 4.4 it follows 
jElL 

that h extends continuously to a homeomorphism h:Wu(q)-+Wu(q) 

defined by 

(4.5) d_(h(v) ,q) = c 
q 

From (Ml) we have that hi WU(q) is a conjugacy. Of course the 

may not map leaves of ;:;:s 
q into 

leaves of .;:;::, but as in the proof of Lemma 3.4 one can modify 
q 

~~ in the complement of a neighbourhood of the orbit of z so 
q 

this is the case. As before vie can use these foliations to 

extend h. 

Case 1 (c): More tangencies of even order; i. e. , .; I > 1. 

As before we can induce homeomorphisms h: I:i -+ ~i for 

i E I and we can define h on L:J fj(Ei ) using h~f = foh . .If 
J _ 

(Ml) holds, then each map h: I:. --+E. induces a conjugacy 
~ ~ 

h: vf(q) -+ wU(q) satisfying: 
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only coincide if (M2) holds. 

~: so that h maps leaves of 
q 

of ;,S • Extend h as before. 
q 

Proof of Theorem (4.1): Case 2 

. 

As before one 

~s into leaves 
q 

Suppose we are in the same situation as before except 

that there is exactly one saddle-point P with WU(P) n WS (P)1¢ 

and exactly one saddle point Q with WS(Q) n WU(q) # ¢. Assume 

also that WU(P) n WS(p) (resp. vf3(Q) n WU(q)) is a unique 

orbit ~(x) (resp. ~(y)). Suppose that all intersections of 

invariant manifolds (except of WU(p) and wB(q)) are transversal, 

see Figure (4.2). 

p 

p 

q 

Q 

Figure (4.2) 

We will now show how to construct conjugacies in this 

case. Take cl-f~liatio~s ~~ and ;,~. According to the 

first theorem in the Appendix one can" construct Cl-foliations 

~u 
p and 

...,.s 
"Q respectively. Now in the constructions we made in 
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. 
Cases l(b) and l(c) had to modify·the foliation 

_s 
But we .:1 

q 

since we de:> not wish to modify ther·' . .foli.ation 
_s 

we will have "Q 

to be careful. In fact we ne~d here the condition 4 in the 
~ 

definition in the class~, see §l. Consider the cone-like 

sets C z i 
as in section §3(a). Let C+ be the component of 

zf' 

Cz '\ £z11 
1 . 

. such that C; '. is" disjoint ':from 
i 

vf1(p) , and C~. be the 
~ 

other component. From condition 4 in § 1 it :follows that 

1s non-empty and 

be the component of 

accumulates and WS_(p) 
z1 

is disjoint· :from ,yS (Q) • 

on to which 

the other component o:f 

Condition 4 implies that WS +(p) 
zi 

does not depend on the 

tangency point Similarly de:fine and 

":- _ Clearly the foliation ~~ is disjoint from and 

the :foliation is disjoint from C;l. So we can modify ~~ 

in c; as in §3(a), without changing ~~ 
i 

s . u or :JQ • In this "lay ,.;e get foliations ~p and _s ,. 

<J'q which 

at zi is are tangent along a curve ~i (if the tangency 

even order) or only at zi (if the tangency of \,/u(p) and 

1s of odd order). Let us now construct conjugacies. 

Case 2(a): * I= o. 

either 

o:f 

\'r (q) 

The construction is basically the same as in case lea). 

We start no,." to define conjugacies h: ,'r(p) --+\'r(p) and 

h: WU(Q) ~Wu(Q). Via the leaves of 

homeomorphisms on subsets of WS(p) 

and ;:;:~ 

vf>(j5) 

this induces 

and on subsets 

of WU(q) into WU(q). Extend these homeomorphisms to 
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conjugacies .h: v;S(p) --+v;S(p).and h: .~(q) -tvf1(q). Now 

proceed as before. 

Case 2 (b): ;. I= 1. 

Let t be the curve of tangency o~' ~~ and ~~, and 

let t_ be the componcn.t of t -: {zl such that fjO:_) accumu­

lates on W~(p) (=~ls_(p)). Now define h: WS(p) -tWS(p) as in 
z - .-

equation (4.1) where we choose c> 0 such that hex) = x , 
where x E WS (p) n WU(P) and x E ,,;; (P) n vf1(p). That is: 

d_(5C,p) 
c = ---:p----~ 

(~(x,p»O 
(4.6 ) 

The map h induces a map on the space of leaves of ~~ and 
-therefore a map h: t -+t • As in case l(b) this induces a 

. map h: ",~(q) -+i'l~(q), which is a conjugacy if and only if 

condition (111) is satisfied. So up to no\-, we have defined h 

on one side only: starting in W:(p) and ending in "l~(q).· 

Similarly one can start in "'~( q) and end in w! (p) • It 

fo110\"s nOi., fron the construction and equation (4,1) tha'~ 

h: WS(p) --+,~s(p) and h: Ylu(q) --+i'lU(q) are c1 
outside p 

and q. Fro:l this it f0110"/s that h extends to h: "ls (P)---+ 

--+y,s(P) and h: "fl(a) --tYiu(O) if and only if 

(M3) 

sec Lemma 3.4. 

the foliations 

maps leaves of 

As 
_u 
.:t_ 

P 

A = A, D = D , 

in the proof of Leoma 3.4 

(resp. poos) 
.:t-

O 
in order to 

(resp. ':1~) into leaves of 

As before one extends h. 

one has to chanGe 

make sure that h 

~U (resp. ;;s) . c1"-
P 
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Ca s e 2 ( c ) : ~ I > 1 • " . 

One can construct conjugacies in this case in the same 

way as in cases 2(b) and·l(c). One needs the additional modulus 

conditions (H2). 

Proof of Theorem (4.1): Remaining cases .. 

Suppose now·that f and f are again as in case 2, but 

that there is more than one saddle-poi"nt Pi with \'PCPi ) n 
n WS(p) ~ ¢. Let us first treat the case that there is no 

. saddle-point Q with wB (Q) n ,.,u(q) I: o. Then one can modify 

_3~ so that ~~ and ~~ are tangent only in curves Ii or at 

the points· zi. Now construct h as in case 2. There is one 

problec left. There are several orbit of intersections G(xi ) C 

C WU(P i) n "f (p) • But in the construction of h': \.,s (p) --+\,;5 (p) 

one has to choose a constant c > 0 as in equation (4.5) so 

(M4) • 

= x. 
~. 

:for all 

~(Xi'P) 
d(~,P) 

i. This is possible if and only it 

Since h r "f (p) is diff'erentiable we need M3 in order to 

extend h to vrf3 (Pi)' As before h I ,r:(P1) must be a linear 

map' (because A. = A.). I:f W1(Pi) n "ls(p) contains ~ore than 
~ ~ 

one orbit we ,,,ill need (M5) because each orbit will induce a 

linear map and these maps must coincide. If 

all these modulus conditions are satisfied on~ can extend h as 

before. 

The gene'ral case goes similarly. If there are also 

saddle-points with then it f011m·:s 
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from f E ~ that W~(q) ~ WU(q), w!(p) # wB(p) and either 

~s on 
q In this case one modifies ~~ on one side of zi and 

the other side, see case 2(b). The construction of a conjugacy 

goes exactly as before. This finishes the proof of Theorem 

(4.1). 

-
§5. Construction of conjugacies:general case 

First we consider the case that: 

§5(a). WU(p),~(q) and WU(q),~(r) - have non-transversal 

intersections. All other invariant manifolds intersect 

transversally. 

Assume that there are three hyperbolic periodic points 

p,q,r so that both WU(p) and WS(q) as well as WU(q) and 

WS(r) have exactly one orbit of non-transversal intersections. 

• 

As in Lemma 2.6 there are exactly four cases A,B,C and D to 

consider. Let (Ml)-(N6) be the modulus conditions from LeI!L'1la 

2.6. We will prove: 

Theorem (5.1). Let f,f E rn d C
eo 

be as above an - near each 

other. Assume that no other invariant manifold 
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o:f saddle point intersects v;S(q) U WI(q). The dif'f'eomorphisms 

:f and :f are conjugate if' and only .. if' the modulus conditions 
" -.... 

(Mi) (i.e 6,5· or 4 conditions depending on the case we are 

looking at·:from Lemma 2.6 are satisfied. 

Proof' of Theorem 5.1. 

In Figure (5.1) we have drawn the situations A,B,C and 

D. The necessity of the modulus conditions (Mi) are proved in 

Lemma 2.6. As bef'ore the numbers a"~, a,b denote the 

eigenvalues at p,q,r as indicated in this Figure. We will 

assume that a,S,a,b are positive. The general case can be 

dealt with similarly. 

Also we can assume that the tangency of WU(p) and 

wB(q) and the tangency o:f WU(q) and WS(r) are of even order, 

because i:f one of these tangencies is o:f odd order, then one can 

construct the conjugacy as in the proo:f of Theorem (4.1). Finally 

we will assume that \'lu(p) n WS(q) and WU(q) n WS(r) both 

consist of' only one orbit. The general case is treated 

similarly. 



• 

p 

p I 

r 

, 
q q 

(B) (D) 

Figure (5.1) 

- Case A: Denote by R the upper right hand quadrant near q, 

bounded by ",u(q) and ",s(q) see Figure (5.2), i.e., 

R is the connected component of Uq - '~(q) u WU(q) having the 

orbits of tangencies in its boundary_ F ' t h C1 . . t ~rs c oose ~nvar~an 

foliations .... s and ..... u baving C1 
.; ';q q tangent line fields. These 

. foliations' ~s and .... u induce a r.1 
q q 

C1 l' ..' t - ~near~slng sys em for 

f. Let d be. the metric induced by this coordinate system. 

(resp. HU(q) and WS(p» have a 
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tangency of order n (resp. m), with nand m even numbers. 

Define 

lim 
zEWS(q) {d(z,x))n 
z "'x 

and define ~ similarly. In Lemma 2.6 it is shown that the 

nUmbers 

~·td(X,q)Jn 

d(y,q) 
, 

Qv • r d ( y , q) ) m 

d(x,q) 

Ct,a,a,b 

are topological invariants. Let us sho,'I that these invariants 

are sufficient. 

(b) So we need to define a conjugacy be"b..,een f and -f. First 

we define a conjugacy h· on the quadrant R. vTe do this so 

that h is linear ''lith respect to the lineariBing coordinates 

and so that hex) = x, hey) = y. Since 

a = a, a = a 

then h indeed defines a conjugacy on R near q. 

(c) Let us no,., show that we can ex:tend h to a neighbourhood 

of P, provided Ct = Ct and the modulus condition on ~ and 

~ is satisfied. 
x 

Let t be the line through x which is horizontal with 

respect to the:lincarfsing coordinates, and let Z be similar. 

Clearly h(t) = t and for Xi ~ x, 
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d(h(xi ), vf>(ci) 

d(x
i

, WS(q» 

d(h(xi),-t-) 

"d(x.,-t) 
~ 

d(y,q) 
--+"---

d"(y,q) 

d(x,q) 
• 

d(x,q) 

, 

, 

where d, d are induced by linearising coordinates. Take any 

unstable invariant foliations .... u and ;;~ We claim that "p • we 
p 

" 

can modify ~u so that ;;~ agrees with h(-:tu ) inside R. In 
is p p 

fact from Lemma 3.5, §3 (b), it follows that h extends to a 

conjugacy near p if and only if 

where CI , C2 are respectively the limits in equations (5.4) 

and (5.3). Clearly this corresponds to two equationsfrom(5.l) 

From Lemma 3.5 it follows that one can extend h to a 

neighbourho9d of p, and after a slight modification of 

the conjugacy h maps leaves of -a:U 
p 

onto .... u 
.:1_ • 

P 

(d) In the same way one can extend h to a conjugacy near r, 

provided b = b and the conjugacy condition on Qy and 

satisfied. 

(e) Now one can extend h as in §4. 

tL 
Y 

is 

Remark: If ther~ are i~variant manifolds intersecting with 

v;S(q) and ~(q) then one has new necessary moduli 

conditions, see §2 and theorem (4.1),. As in §4 one can exte:1d 
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h to M providE'·~. all these addi tibnal moduli conditions are 

satisfied. 

Cases Band C. Cases Band C are dual since one obtains case 

B out of case C by taking -1 :f • Therefore we 

will just treat case B .. In Lemma 2.6 it is sho~m that the 

numbers 
n 

Ox • {d (x, q) ) 

d(y,q) 
, a.,S,a,b 

are topological invariants. Since we do not have any moduli 

conditions on ~ and 0-
y 

the construction of a conjugacy is 

more complicated than in the previous case. 

(a) As in the previous case choose Cl . . t -~nvar~an foliations J:~ 

and aU having Cl 
q 

tangent line fields. Let .t, be the leaf 

of aU through x and m the leaf of ~s through y, see .q q 

Figure (5.2). 

r 

EPt· - x 
1 

R 

q YI 

F ~ 
R 

/" 

~ 
Y 

* D 
Y 

D 
Y 



(b) We want to change ... s 
"r 
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so that as 
r and ~~ have only 

tangencies at m. So consider a cone -like set Cy near y as in 

Lemma 3.3, §3(a). From this Lemma and the first theorem in the 

Appendix it follows that .... s 
" r and ::;~ can only have tangencies 

inside the sets 

~s 
r restricted t . c o y 

Now modify ::;s 
r inside so that 

is given by homogeneous polynomials 

(+ cqnstants) in terms of the coordinates induced by ;;:s 
q and 

~~. It follows that 

f'i(m). 

;;:s 
r and a~ have only tangencies along 

(c) Take a leaf' F of a; as in-Figure (5.2) and let n (resp. 
y 

On;) be the region bounded by F and bR (resp. WS(r) and bR). Take 

F and R so that the setsofi(Dy ) are mutually disjoint. Now let 

as be an invariant foliation on R which is identical to ~s in 
r 

U f'i(Dy ) and identical to a~ away from U fi(Dy ). By Lemma 

(3.3) one can choose the rectangle R and as so that all its 

leaves are transversal to aU outside the cones q 

(d) Now we define the conjugacy on R. First define linear 

conjugacies h: wB(q) ~ WS(q) and h: WU(q) ~ WU(q) so that 

hex) = x and_ hey) = y, see equation (4.2). Since S = S 

and a = a this is possible. These maps induce maps on the 

space of leaves of ..... U 
c.1

q . and of as * outside iterates of Dy . 

Therefore these maps induce homeomorphisms h:m ~ m and 

where and 

Since ;;:U and ;;:s 
q 

are precisely tangent along (iterates of) 

m, the homeomorphism h: m --+m induces also a homeomorphism 

h: .(, n D+ ---. .(, n n+ . , via the leaves of ~s 
c.1 • Hence there is 

a unique homeomorphism h on R which preserves :yu and ::; s . 
q 



" 
In order to do this we-want to apply Lemma 3.5 as in the 

previous case, A. In order to check:: eq~ations similar to (5.3) 

and (5.4)~ we have to make some. estimates. 

Lemma (5.2). Take metrics d, d corresponding to the 

linearising coordinates for f and f near q 

and q. Then one has for a sequenc~ xi ~ x , 

d(h(Xi ), Z) d(i, q) 
... , 

d(xi~.(,) d(x,q) 

(5.5) 

d(h(xi ), WS(q» d(y,qJ ..-. 
d(xi , WS(q» 

• 
d(y,q) 

Proof: The first limit follo, ... s from the fact that h preserves 

... ' ~ :~~ and from the fact that hI1·f3(q) is linear with 

hex) = x. The second limit is proved as follows. If x. ~x 
~ 

and fj(i)(xiy ~ w E WU(q), then 

d(xi,WS(q» ~ Islj(i).d(w,q) 
(5.6) 

, ..... .. , 

Since hIWu(q) is linear and hey) = y the second equation in 

(5.5) follows by taking the ratio of the two equations in(5.6 ). 

Now it follows from equations (5.5) and the modulus 

conditions on a, Ox' that h can be extended to a conjugacy 

near p. This is done exactly as in Case A. 

II 

(f) As before one can eA~end h to M. In fact since h maps 
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. 
into -s a it follows from Lemma 3.4 in §3(b)~ and from . 

that h extends to conjugacy near r. The extension to M 

goes as befo,re. 

Case D: In .Lemma 2.6 it is shown that in this case case the 

numbers 
a.,~,a,b 

are topological invariants. Now we show that there are no 

modulus conditions on Qx and ay in this case. It follows 

that any conjugacy, h between f and f will be highly 

non-linear in this case. We construct the conjugacy in a number 

of steps: 

(a) As before take Cl-unstable and stable foliations 

~s q • 

:;u 
q 

(b) Take a region Dy as in the previous case. Here the 

boundary .of Dy is a leaf ,of :;s 
r (or is a piece of bR) • 

and 

Let Ny be a neighbourhood of Dy . By Lemma (3.3) all the leaves 

are transversal to the leaves of 
.... s 
" q 

and ... u 
"q inside 

Hence, using the implicit function theorem we can take 

a ne\'l invariant foliation s' 
~q 

possibly at y and identical to 

for q (\,lhich is except 

outside iterates of Ny \ Cy ) 
"--~-

so that each leaf of a~ in Dy \Cy 1~ the graph of a homogeneous 

polynomial function' (+ constants) with respect to the coordinates 

induced by ..... s • and aU Take a similar set Dx and a " . q q 

similar foliations u· related to aU ~ q p 

(c) l·1odify the foliations _u and ""5 as before. That is c.1 .0.'1 

P r 
. ..... 5 that the leaves are given . modify 0.'1 ins~de C . so by r y 

homOGeneous polynoLlials with respect to the C1 linearising 

coordinates induced by s' :; . and 
q 

..... u' 
" q Do the corresponding 
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modi~ication ~or 

(d) Now take an invariant ~0Iia~10n -~s as before which is 

identical to ~~ inside Dy and identical to ~~ away ~rom 

iterates of Dy • Take a similar ~oliation ~u. According to 

Lemma 3.3 and the Last Theorem in the Appendix a~l tangencies of 

~s and :;:u are contained in- ~~(Cx) U ~j(Cy). Let us study 

these tangencies. 

(e) First we study the tangencies of :;:s and ...u 
" in 

n ~j(Cy). Since ~s and :;:u are given by polynomial functions 

it s~~ices to prove the ~ollowing Lemma. 

Lemma (5.3). Consider the ~ollowing two ~o1iations in R2: 

{(u,v) lu n = QI·v +a, a E Rl 

{(u,v) I v b E R) , 

where n, m are even. Then: 

(i) _Fs and FU are tangent along a curve c consistip~ o~ two 

(ii) 

Proof: 

components; 

there is a unique point 

tangency of odd order. 

except at co. 

If FS and FU are 

tangency" vector ( 1, 

Co ",here 
FS and FU 

tangent at 

-m Q 2 vIr-I) 

FS and FU have a 

are transversal to 

(u,v) then the 

to F
S 

at (u,v) 

c 

and 

the tangency vector . ( n Q 1 un-I, 1) to F
S 

are proportional. 

FS FU . 
Hence and are tangent a~ong the curve: 

m-l n-l 
n • m • Q1 • 02 • u • v = 1. 
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statement (ii) follows similarly. 

• 
We have drawn the curve c in Figure (5.3). We can also 

make the following 

~--\t--~ ____ ~~D 

c 

Figure (5.3) 

Observations: 

(1) Each leaf of FS and each leaf of FU intersects the 

curve c at least once and at most three times. 

(2) "There is a curve A in c, as drawn in Figure (5.3), so 

that if a leaf in FS or a leaf in FU intersects A then 

this leaf has no other intersections with c. 

Let A,B,C,n,E be the curves in c as is shown in Figure (5.3). 

:JS 

From this Lemma if follows that all the tangencies of ~u 

inside fi(Cx ) n f-j(Cy ) are subsets of (scaled down) c~~ 
cij of the curve c as above. But remark that the leaves of ~u 

(respectively ~s) outside Cy (ex) accumulates in a Cl sense 

Hence the set c ij consists of two 

components, and contains the point Co and the arc A. 



, 
(f) Since :1~ ~ 
r(c

x
} n f-j(D

y
} 

. 
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is equal to in ex it follo\'/s that inside 

the foliations are· polynomial with 

respect to ;;u 
q and 5' 

;; q • Hence inside these sets the t angencies 

of ;;u and ;;5 are as in (e). Furthermore ;;5 is identical 

to·;;~ outside the iterates of a neighbourhood Ny of Dy • 

Hence all tangencies of ;;s with ;;u outside rj(Ny ) are 

contained in the line s r ( t) • Now choose 3'5 on Ny '\Dy 

that ;;5 has only tangencies with ;;u in (Ny\Dy) n fi(Cx } 

along line segments. Similarly inside f-j(C) n fi(D) the 
y x 

so 

foliations are polynomial w.r.t • a:~ r and :;~. Now· 

_choose ... U or Nx \Dx . similarly as above. Since all tangencies c1 

of ... s and :;u are contained in fi ( c ) U f- j ( D ) it fo110\'ls c1 x y 

that :;s and .... u 
c1 are tangent along a curve c (with a countable 

number of components) I as dra"m in Figure (5.4). 

\ 

A •• 
1,J 

-.--

\ I- Ai . 2 
'- , + ..... _---- --~ 
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(g) Now one can decompose the tangency curve c in curves A .. , 
1.J 

as is shown in Figure (5.4). Here 

a.s.o. are contained in fi(C.) n· f-j(C ). The curves x y 

are bounded by vf(r) and WU(p), and the curves 

A .. , Bl.'
J
" C .. , D .. , E .. , l.J l.J 1.J l.J are as in Figure (5 :3). Let 

and Using the. leaves of these foliations we can 

define a diagram of maps between those intervals as is shown is 

Figure (5.5). More precisely: to each point x on the tangency 

curve c we associate a new point ~(x) E c. We do this as 

follows. 

(i) For x EA .. , l.J let ~(x) = x. 

(li) For x E B.. take the leaf F of :1s through x. Follow l.J 
F down-ward and let W(x) be the first intersection of F with 

the curve c in one of the components or 

see the diagram in Figure (5.5). 

(iii) For x E Cij follow a leaf F of FU to the left and let 

V (x) be the first intersection of F wi th c in a componercc 

Bi f , j' H. f ., D. f . or Aif,j' 1. ,J 1. ,J 

(iv) x E D .. : rrhen follow F 
. l.J 

downwards as in case (ii) 

.(v) x E E .. 
l.J as (iii) • 

(vi) x E V .. , l.J then let Vex) be the intersection of the leaf of 

;,u through x with vf(q). 

• 
(vii) x E Hij , then V (x) is the intersection of the leaf of 

:1s through x with WU(q). 
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Clearly if h is a conjugacy between two diffeomorphisms 
,. 

i, i as above and if h preserves the foliations ;;:s,a:u , then 

one must have. h(c) = c and hoW = ... ~ .• 0 h. From this it follows 

that we have very little freedom. in choosing a conjugacy h. 

Figure (5.5) 



-63-

For example W""':'l maps B .. U C .. 
~J ~J 

into C .• U B .•• 
~J ~J ,. 

We will 

show shortly that this map in fact is a contraction. Clearly 

for the point "XECij n Bij where and are tangent with 

c, one has t(x) = x. Since h" must respect all foliations, 

it must map the end-points of Bij U Cij onto end-points of 

B.. U C-:-. since these points belong to stabie and unstable 
~J ~J 

manifolds. Henee h is completely fixed in a sequence of points 

in Bij U Cij ~onverging to the fixed point x of w. 

or Clearly Wk(x) is either contained in wB(q),Wu(q) 

for some sufficiently big k or the sequence £*k(x)} is 

infinite. It this sequence is infinite assign to it a symbol-

-sequence r~l, where ~ is the component 

Eij of c which contains tk(x). 

B .. , C .. , D .. 
~J ~J ~J 

or 

Lemma (5.4).i) If the sequence £tk(x») is infinite then no other 

point x' E c has the same symbol sequence as x. 

ii) If this sequence is finii:e it must end with an interval 

A .. , wB(q) " or WU(q). Moreover is this case there is a sma'll 
lJ 

interval (in the curve c) of points having the same sequence. 

Proof: The second statement is obvious from the definitions and 

by continuity. So suppose the sequence (Vk(x)} is 

infinite. Then for each k E IN Vk(x) is contained in 

intervals B .. , C .. , D .. , E .. for some i,j. Let tT.(, be the 
lJ lJ lJ lJ 

projection from Bij U D .• 
~J 

on fi(,{,) defined as follows. Take 

~s through 
. 

x E B .. U D .. , and the leaf F of x. Let 
lJ lJ 

ti.(,(x) be the intersection of F with fi(.(,) (near x) . 

Similarly define a projection TT: C .. U E .. ~ f-j(m). 
m lJ lJ Then 
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for x E 'IT (C .• U E .. ). m 1J 1J 

Now fi(~) and f-j(m) are all copies of R+ so we can consider 

e as a: map _~ e: R+ ---+' R+ (which is not defined everywhere). 

We claim that a is an expansion: 

lal(x)1 > 1. 

~om this claim the Lemma follows. In fact take a point xt E c 

near x. is an infinite sequence for every x" E c 

between x and Xl, then it follows that the length of Wk 

(segment on c between x and Xl) has finite length. Since 

a is an expansion, this is impossible. 

So let us prove (5.4). From the construction above it 

follows that Aij , Bij , Cij ' Dij , Eij are contained in the set 

(5.5) 

Inside f- j(Dg) n fi(C
x

) the foliations ;Js , aU are 

~u 
' I 

given by polynomials ( + constants) w.r.t. and .... s 
"q • q 

Similarly inside fi'(D
x

) n f-j(Cy ) the foliations .... s .... u are " , c1' 

polynomial w.r.t. 3' u' 
q and ;J~. It follows that it 1s 

su:fficient to prove the following Lemma. 

Lemma (5.5). 
. 

Consider the following -two foliations: 
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\ n F = t (u, v); U = Q1" v + a, a E JR) 

{(u,v); v b E Rl , 

where n,m are even. Let F~ (F~) be the leaf of FU (FS
) 

through (a,O) (resp. (O,b). Let e(b) be the number a E In 

so that is tangent to in the intervals CUE, see 

Figure (5.3). Then e: R .... R is an expans i on, i . e . I e I I > 1. 

A similar result holds in BUD, if we change the role of FU 

and FS
• 

Proof: The foliations FU and FS are tangent in the curve 

c(u) 
1 

v = = 

So 
(n. mo QloQ2)1/n-l oum-1/n-l 

b = c (u) - Q2 ·u
m = B(u) , 

a = u - Ql·(c(u)n = A(u) " 

Now a is related to b by: 

a = A 0 B-l(b) = e (b) • 

Hence since ( ( ) n-l m-l nQ1 " c U .m·Q2u = lone has 

. el(b) = 
AI(U) l-Ql· n·(c(u»)n-l. c(u») 

( ) - ) m-l 
B I U C ' (u - 02 " m • u 

1 

Here the last equality follows by using the definition of c(u) 

explicitly" For the point where the curve c is t~ngent to FU 

and FS one has Since by as~umption 

F~ are tangent in CUE it follo\'ls that \e ' (b) I > : 
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(h) Up to now we have investigated the ~et of tangencies of 

and ;,:s , and a diagram related to these tangencies. Now we 
........... ~, 

can define the conjugacy h as follows. 

Take conjugacies h: wB(q) ~ wS(q), h: WU(q) ~ WU(q) 

which are linear and so that hex) = x. Since 

a :;: a, 13 = j 

this is possible. Then take homeomorphism 

h: A. --+ A. • 
10 10 

Here we have freedom. Extend h to U .. A. . by forcing the 
~J ~J 

conjugacy h 0 f = f 0 h. From Lemma (5.4) it follows that there 

is a unique extension of h to the tangency curve c so that 

f 0 h = h 0 V, i . e. so that h respects the diagram in Figure 

(5.5). It follows that there is a unique extension of h to R 

which respects the foliations ~s and ;,:u. From the way h is 

constructed it follows that h is monotone. By interchanging 

the role of f and f it follows that h has a monotone inverse . 

Hence h: c -+ C is a homeomorphism. Since .... s' a is a q 

foliation, except possibly in y, it follows as in Lemma (512) 

that 
d(h(z),x) 

lim 
z-+x d(z,x) 
zE .t 

converge. Here d, d are cO-metrics. It follows from Lemma 

(3.4) that h extends to a conjugacy near p, since 

a. = a.. 

Similarly h can be extended to a conjugacy near r, since 

b = b. 
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§5(b) Construction of conjugacies: remaining cases. 

Let f,f E m be as in Theorem (5.1) except that there 

are finitely many saddle-points whose invariant manifolds 

intersect ~(q) U WU(q) transversally in a finite number of 

orbits. To define-a conjugacy h in this case we start by 

cons~ructing stable and unstable foliations for these saddle 

points and then we construct the foliations ~s and aU 

compatible with these foliations. We then perform the 

construction of the proof of Theorem (5.1). In order to extend 

.this conjugacy to aneigbourhoodof the saddle points whose 

invariant manifolds intersect WS(q) U WU(p) we need more moduli 

conditions as in §4. If these extra moduli conditions are 

satisfied we extend the conjugacy using the same arguments of 

the proof of Theorem (4.1). 

Another situation that may occur for a diffeomorphism 

f E ~ having a cascade of tangencies is a combination of the 

four cases treated in §5(a). In fact we may have a finite number 

of saddle points PI' · .. ,Pq 
number of orbits of non-transversal intersection with wB(q) and 

also a finite number of saddles ql, ••• ,qs whose stable 

manifolds have orbits of non-transversal intersection with WU(q). 

If f is a nearby diffeomorphism havlng the same intersection 

pattern of stable and unstable manifolds we can construct a 

conjugacy between f and f by putting the previous techniques 

together provided the appropriate moduli conditions are satisfied. 
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§6. A bound for the number of tangencies 

In §4 and §5 we-proved that two nearby diffeomorphisms 

in ~, having the same intersection pattern of stable and 

unstable manifolds, are conjugate provided a finite nQ~ber of 

moduli conditions are satisfied. In order to conclude .the 'proof 

of the main theorem it remains to show that every diffeomorphism 

f E ~ has a neighbourhood n which contains a countable number 

of k-parameter families of diffeomorphisms such that any 

diffeomorphism in h has the same intersection pattern of stable 

and unstable manifolds as some diffeomorphism in one of these 

families. In this section we will achieve this by proving the 

following result. 

Theorem 6.1. If f E ~ then there exist a neighbourhood h of 

f and a number K > 0 such that h c ~ and the 

number of orbits of non-transversal intersection of stable and 

unstable manifolds of every g E h is at most K. 

Proof. Since a is an open set CSmlj,it is easy to see that 

every f E ~ has a neighbourhood n c a such that 

every g E h satisfy conditions (1), (3), (I}) and (5) of 

the definition of TT\ in §l. Now we prove that if h is small 

enpugh then condition (2) is also satisfied and we get a bound 

for the number of orbits of tangencies. Let V c M be a small 

open set such that each orbit of tangency of f has a unique 

point in V. So, in order to prove the theorem it is enough to 
. 

show that for each g E h, the nUJ:1ber of taneencies of g in 

V is at most K and these tangencies are of finite order. Let 

x E V be a point of tangency of order r of WU(p) and ",s(q) 
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where p and q are saddle points of f. For each g E h let 

U(g) = vf1(p(g»" n V and S(g) = WS(q(g» n V where peg) 

(resp. q(g» is the periodic point of g near p (resp. q) . 
. ~~!" ... 

If peg) is a saddle point of g whose unstable manifold 

intersect ~S(p(g» then, by the A-Lemma (PI], WU(P(g» n V is 

a sequence of submanifolds Un(g) which converges to U(g) in 

the c~ topology. Similarly if Q(g) is a" saddle point whose 

stable manifold intersects WU(q(g»·· then WS(Q(g» n V is a 

sequence of submanifolds Sm(g) converging to S(g) in the c~ 

topology. Since f E ~ we have that Sm(f) is transversal to 

Un(f) for all m,n E lli and U(f) n S(f) = {x}. Hence if h 

and V are small enough and z E Un(g) n Sm(g) then the contact 

between Un(g) and Sm(g) at z is at most r. So we need to 

prove that 

ftm E lli; Um(g) is not transversal to Sn(g) for some nEJN) 

is uniformily bounded. 

For each g E h 

at peg) such that each 

:;u 
peg) and the r-jet of 

let :;~(g) 
Un(g) is 

:;~(g) is 

be a Cl unstable foliation 

contained in a leaf of 

Cl and vary eontinuously 

with g (see the Appendix). Similarly we consider a stable 

foliation a~(g) compatible with WS(Q(g». Let (u,v) be a 

C~ coordinate system in a neighbourhood Vx of x such that 

U(f) = {(u,O); u E (-a,a)) and S(f) = {(u,v); v=u r , uE(-a,a»). 

We may take V and h so that for each g E h 

U(g) - {(u,v); 
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S(g) = {(u,v); 

where ~g CPg ¢g \!!g: C-a aJ ~It m' CD' n' "CD , 
satisfying the following properties: 

C
CO 

are fun.ctions 

a) The maps from h to 

cl(C-a,aJ, It) is continuous for. j = O,l, •.• ,r. 

for all U E t-a,aJ 

c) There exists C > 0 such that 

. (ii) ID(~~-~!)(u)1 ~ CI~!(u) - ~:(u)1 

ID(V~- $:)(u)1 ~ cl*~(u) - v:(u)1 

where ag is the contracting eigenvalue of Dg(p(g)) 

is the expanding eigenvalue of Dg(q(g)). 

and 13 g 

d) Each Un(g) (resp. Sm(g)) has at most r-l points of 

tangencies with leaves of the foliation ..... s 
tl'q(g) (resp.J:~(g)). 



. . 
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Conditions (a) and (d) follows' from the continuity of 

the r-jet,of the foliations ~~(g) and :;~(g); (b) follo\'ls 

from condition (4) of the definition of ~ in §l; (c) follows 

from the differentiability of the foliations ~~(g)' ~~(g) and 

its l-jet. vie need some lemmas. 

"Lemma 6.2. If DCf)~(U) ~ Dv~(u)' an"d Q~(u) = ~~(u) for some 

U E (-a, a ) and m, n E IN then 

Proof. From (b) it follows that 

~~(u) = *~Cu) - v!(u) < o. 

-
Hence (using c(ii»: 

, , , 

Therefore using D ~~Cu) = D~~Cu) and the inequalities above: 

I n ~: ( u) - n ~: C u) I < C I C.?: ( u) - V! ( u) I + I D V! ( u) - D ~: ( u) I < 

~ cl~g(u)-*gCu)1 ;Clvg(u)-vgCu)1 s 
m ~ m ~ 

Lemma 6.3., Let J g = (u E ( -a, a) ;" c,'): C u) ~ ~: C u) and 

In v:Cu) - D ~~(u)1 ~ 2clv~Cu) - ~:(u)I). If h 
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is small enough then J g has at most 2r connected components. 

Proof. Consider the functions 
g . 

e :I: : C -a , a J -+ R , 

e;(u) = (D~!(U) - D ~!(u» :: 2C(~~(U) - ~~eu». 

Since the map from n to Cree-a,a), R) is 

continuous and r-l r r u :: 2C u it follows that for 

small enough the ~et 

has at most 2r points. This proves the lemma because the 

b~undary of Jg is contained in this set. 

Lemma 6.4. If h is small enough there exists an integer m 

such that for each g E h and each cO:lnected 
i 

IDo(g,i) component J g of J g there are integers m = and 
0 

n = 0 
no(g,i) such that 

and 

for every 

Proof. Let -g ~g. J g --+R be the maps t;) , n· 

rpg(u) 
. g g 

and = - Log(v~(ur - ~~(u}) 

i~(u) = -Log(~:(u) .... Vg(u». From the defjnition of J n g g 
and from property c(ii) one has ID~ (u)1 ~ c ) and 

n 



In Qg(u) I < 2C for every u E J g • If .. " we take V and l'\ small 

enough so that a < de we have t~at I~g(ul} - ~g(u2)1 < land 

1~~(Ul) -. ~~(u2)1< 1/2., if U1,U~··)E·Ji. MO'reover, from c(i), 
g 

Itn+m(u) - tn(U) I :> 2 for every n E m and ~ E J g if m is 

such that -m LOg a.g - Log C > 2. Hence, if there exist no E ]f 

and Uo E Jg
i such that *g (u ) = ~g(uo)' then . 

. no .0 
. 

tn _m(u) < -1+ ~~ (Uo) = -1+ Qg(uo ) ~ .~g(u). ~ 1+ ~g(uo) = 
'0 0 

= 1 + < 

for every U E J!. If this is not the case then there is an 

integer no such that 

for u E ~ • 

This proves the first inequality of the lemma. 

the seoond one is similar. 

The proof of 

i 
Lemma 6'.5. Let J g be a connected component of J g and" 

n = 
0 

no(g,i) be an integer such that vg 
(u) < n -m 

< ~g(u) < vg +m(u) for every 
co 

0 

i g r1' # {n EJN . :3 U E J ,/" (u) E ( ~ 0 (u ) 
, g "t"'n 'n +2m ' o 

Proof. Sincc 

0 

U E Ji • If 1 - c2 am> 0 then g .g 

-Log(~ c.2m(l_ c2 
Ct

m» 
~g(u)J) < __ ...::c~,· __ g_ -----g-

co Log f3 g 

"'viC have that 
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.... , 
~ . Log(",g(u) - .I,g (u)) - "tog("vg 2 (u) - ,J,g (u)) ~ 

'I' CI) "'n -m 'In + m 'n +m 
o. 0 0 

.. 
Let ~l E]'l be s"uch tha~. ~~l (u) < ~; (u) ~ Q~l-l (u). 

If k E ~ is such that v!(u) > ~; +k(u) > V~ +2m(u) then 
1 0 

~ - Log C + k Log a g • 

_ Log(~ a2m (1 _ c2 ~m)) 

Hence 
C 2 g g ----=--------- . This proves the Lemma. 

fI Log Sg 

Lemma 6.6. Let ~ be a connected co~ponent of J g • 

The cardinality of the set {nE mj the graph of ~nl~ 
,has a t'angency with the graph of *kIJ~ for some k) is'"at 

most (r-l) 5m + C
2 

g . 
. ( -Log(.1... c.

2m
(1 C

2 C.~))). 

are 

the 

tha:t 

some 

Log Sg 

j:: 1, •.. ,.(" be such that 
. k g 

(uj,V k 

all the point~ where the graph of vg /J~' is tangent to 
k ~ 

foliation JS(')" Clearly t ~ r-l. If n > mo+m is such 
q g . 

the graph of ~glji is tangent to the graph of Vkg for n g . 

k 2 tl g (' k) E (' g ( k) e (k) J c: >- n + m len ~n UJ' - V n +2m uJ' '~m +m u J' . a . a 0 

" 
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-Log( 12 c.2m (1- C2 Ct
m
g )) 

. C g 
are at most t such integers. To finish 

Log Sg 

the proof we riotice that for each k · ... -"-·there are at most 
." 

integers n. such that the graph-of ~g 
n has a tangency with the 

graph of ~~ and that I:t?g(u) > Vg(u) 
n k for every u E Ji 

g if 

k ~ n -m and C?g(u) > ~g(u) for every u E .Ji if n~ mo-m. • 0 n t g 

End of the proof of the theorem 6.1. 

If the graph of ~~ has a tangency with the graph of ~~ 

then, by Lemma 6.2, there exist an integer i such that the 

graph of ~~IJ! has a tangency with the graph of *~. Since 

J g has at most 2r connected components we have that the number 

of integers n such that the graph of ~~ is tangent to the 

graph of ,g f t t ~k or some k E lli is amos 

The graph of 

2r. (r-l) '(5ID + 

g 
t:pn has at most 

Log Sg 

r-l points of tangency with the 

foliation -~~(g). Hence the total number of tangencies is at 

most 
-Log(~ Ct

2m(l_ C2 
C " g 

Log Sg 

and this is clearly bounded by some K> 0 in a small 

neighbourhood of f. 



.. 
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§7. Appendix: Smoothness of Invariant Foliations 

In this Appendix we will prove that certain invariant 

foliations are· highly differentiable in some sense. More 

specifi?ally, let f be a em diffeomorphism on a neighbourhood 

of p in En , with f(p) = p and p a hyperbolic saddle-point. 

Take a point x E WS (p), a em disc I: at x transversal to 

Ws(p.) (with dim t = dim wU(p)) and let V be a compact 

neighbourhood of p. According to the ~-Lemma the discs 

~ (t) n V converge in the Cr sense to WU(p) n V as k -+ m. 

Here r E~. For a proof of the ~-Lemma see CPalJ, CP.M.). 

___ -~~o------ ~(p) 
p 

Figure 

WS(p) 

(7.1} 

In this way one can construct invariant foliations. Fill a strip 

N between ~ and f(~) with Cr-discs which are all transversal 

to ~(p). Iterating this foliation on N, one obtains an 

invariant unstable foliation ~ on V. According to the ~-Lemma 

the r-jet along leaves varies continuously, (we shall make this 

statement more precise below). But in many applications this is 

not sufficient. One needs to have that the r-jet along leaves 

vary "in a. Cl sense" • 

In this Appendix we want to extend the h-Lemma in two 

ways. 
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a) Let ~l'· •• '~u (~l,···,As) be the expanding (contracting) 

eigenvalues of Df(p) and order these eigenvalues as 

Yollows: 

Assume that 

Then the r-jet varies Cl along leaves of ~, see Theorem (7.3). 

Here r E ~ is arbitrary. For r = I this result is already 

'contained in CH.P.S., Theorem (6.3)). 

b) Even if the disc E has a tangency with WS(p) of polynomial 

type the result from above still holds under appropriate 

conditions, see Theorem (7.4) below. 

(i.e. all contracting 

eigenvalues of Df(p) have the same norm) then the condition 

I~ll < I~ll· I~sl is automatically satisfied. In particular if 

WU(p) has codimension 1 then this condition can be dropped. 

From this one easily deduces that one can find Cl linearising 

coordinates near a hyperbolic saddle-point p if we are in the 

two-dimensional case. This result is not new, see CHaJ. The 

additional ~othBess we obtain here turns out to be essential in 

the estimates in this paper. 

§(7.1). A fiber-contraction on a jet-bw1rlle 

Take a neighbourhood V of p. Using local coordinatCl3 
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we can assume that V is of the form V = EI(r) x E2 (r), where 

EI(r) (E2 (r» is a u(s) dimensional ball with radius r. 

Ass~e WU(p) n V = EI(r) and ~(p) n- V = E2(r). 

Now let ek(xo'Yo ) be the space of germs of Ck 

k functions (EI,xo ) ~(E2'Yo). We say that gl,g2 E e (xo'Yo) 

are k-equivalent, i-.e., gl .... k g2 if the Taylor-jet of gl and 

g2 at Xo agree up to k-th order (i.e. if jkgl(xo ) = jkg2 (x
O
»· 

Now define 
k -e (x ,y )/,.., o 0 

and 

Jk(V) is a smooth manifold. In fact one has the natural 

identification D
k
: Jkev) --t V x R.(,(l)x ••• x :ntt(k) which 

identifies the k-jet with the coefficients in the Taylor-expansion. 

Here t(j) is the dimension of the space of homogeneous 

polynomials from mU_ to R S of degree j. Similarly one has 

the map TTk , k-l: ~(V) --+- Jk-I(V) which maps the k-jet of 

a function to its (k-l)-jet. In this way one gets the 

commutative diagram 
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Jk(V) Dk ... V x Et (1) x •.• x JRt (k) 

!TTk,k-1 
~ 

Ink,k-l 
• 
• 
• 

J2 (V) 
D2 

.. V x ]{t(1) x ]{t (2) 

11l2,1 

~ 

f2 ,1 

J~(V) D1 • V x mt(l) 

Jill 2: 

[iiI 
id V .. V • 

Here TT •• 1:'V x Rt(l) X ••• x Rt(j) ~ 
J.J-

v x]tt(l) x ••• x]tt(j-l) 

(x,(v1, ••. ,vj _ l ). It is the projection (x,(vl, ••• ,vj » ~ 

will also be usefull to work with jet spaces of functions with 

bounded derivatives. So let Bj = (v E nt(l) x ••• x ]tt(j); 

v = (VI'.'.' vj ), vOi E ]tt (i) and I vii ~ 1, i = I, 2, ••• , j) • 

Define Xj(V) = n-:-l(V x Bj ). As before we have a commutative 
J 

diagram. 

Now assume that m f: V --+0.R is a diffeomorphi~m with 

o as a hyperboli c fixed point. Let AI"" , ~s (U l' • • . , \.1u ) be 

the contracting (expanding) ei~cnvalue~ of Df(O). Assume that 

they are ordered as follows: 

() . -l() one can \'rri to Dr x, Dr x: E1X 

as follows: 



=(A(X) 
Df(x) 

C(x) 

-80-

B(X)J 1 , Df- (x) 
D(x) 

= (~(X) 
e(x) 

Since . wU(p) n V = El(r) and vf (p) n V = E2 (r) the matrices 

B(x),B(x),e(x) and C(x) vanish for x = O. Moreover for each 

B > 0 one can choose r> 0 so small that for x E V, 

!IA(x)" ~ IlJu I + B, \lB(x) n ~ 0, 

(7.1) 
nc(x) II ~ (, , \ID(x) If ~ I hll +& • 

Similarly 

\Ic(x)1I ~ 0 , 

Furthermore take a neighbourhood 

In other words if (xo'Yo) 

f 2
(Xo'Yo)) = (xI'Yl) E V. 

E U, 

U C V such that feU) C V. 

then f(xo'Yo) = (fl(xo;yo)' 

= {g E e k( xo' Yo): I D g( xo ) I 

define for k ~ ?, 

k Furthermore take tl (xo'Yo) = 

< I). Suppose f is· en. Then 

by defining r( y) (g): (E1'XI) -+ (E2 'Yl) to be the germ of 
xo' .0 

the function 

see Figure (7.2). 
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__ -\--(X_O~fY_O_) t = (X,g(X») 

.. 

Figure (7.2) 

Let V be so small that II A(x) II > II B(x) II , for all x in V. Since 

for g E e,k(xo'yo)., I Dg(Xo)I < I., the map t -+ f 1o (id,g)(t) is 

invertible at t=x O ' for (xO'Yo) in V. Hence r ) is a 
(xo'yo 

-well defined map for (xo'YO) in V. (This also follows from the 

A-Lemma). Clearly r induces a map on the k-jet level: This map 

is defined by . 

Presently we will sho", that the map 

" Jk ~. Jk-l. So define for "k k-l: , 

r k contracts the £ibers of 

g E ekeXo'Yo)' 

Lemma (7.1): Let k ~ nand e > 0 be given. Then we can 

choose V so small that for any gl,g2 E Jk(V) with 

. 
(a) 

(b) + e • 

proof: state~cnt (b) is obvious from equations (7.2) so let 



us prove (a). 

1 f t/> , • l. ' t.2 

Here we are going to use. the following formulas: 

are Ck and 1*1~. ~2Ik-1 = 0 then 
....... 

Now clearly the (k-l)-jets of rkgl and rkg2 are equal. 

Therefore Irkgl - rkg21k can be estimated (using the equalities 

from above) by: 

1:r20 (id,g)ll'l(flo (id,gl»-l - (flo (id,g2»-11 + 
. k 

k 
+ If2

0 (id,gl) - ~o ·(id,g2)l k • (I (flo (id,g»-lll) • 

Here we can take for g either gl or g2' For V 

sufficiently small this is majorised by (see equations (7.1 ).~ 

So for V sufficiently small, inequality (a) holds. 

§(7.2). Differentiabilitv of invariant foliations. A dif-

ferent:l.nble version of the f.-Lerruna. 

As be~ore lei V = EI(r) x E2(r) and f be a en 
diffeomorphism with a saddle-point at O. Let U be a 
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neighbourhood of 0 so that I'k(xk(u)) c Xk(V) (and in 

particular feU) c v). Such a neighbourhood exists, see the 

Corollary above. 

Let ~ be some foliation on U, not necessarily 

invariant, ",hose leaves are graphs of Cn functions 

For k ~ n, this ~c.r'ines a section ok: U 

is the k-jet at Xl E El(r) of the function 

whose graph is the leaf of ~ through the point (x1'YI) E U. 

Suppose that the foliation ~ is chosen so that 0k(U) c xk(u). 
In particular this implies that the leaves of ;J are transversal 

to ~(p). This foliation ~ is invariant precisely when the 

following diagram commutes: 

f 
----ott, U. 

Let us now show how to construct such invariant 

foliations. In order to do this take a foliation ~ so that for 

each leaf ~ in U - feU) the image. feE) n u is also a leaf 
-l(­

of ~. We claim that we can find a new invariant foliation ~ 

which coincides with ~ on U - feU). In fact. 

Lemma (7.2). Let ~ be as above and such that for the 

cQrresponding section Ok one has k ~ n. Then 
i( 

there exists an invariant foliation ~ which coincides with 3 

on U - feU). The sections 

3* are CO for k ~ n. 

corresponding to 



-84-

Proof: FolloV1S from the h.-Lemma tPIJ. 

Remark that if we assume that on_I: U·~ Xn-I(U) is 

CIon U-f(U), then the restriction of o~_l: U ~ X~-l(U) is 

also e l on U-Wu(O). Let us show that in fact O~_I:u-+xn-I(U) 

is Cl 'on U. 

Theorem (7.3) (el-version of the A-Lemma). * Let ~ be an 

invariant 'foliation inducing a continuous section 

so that the restriction of a~_l: U -tXn- 1 (U) to 

Cl • Then a~_l: U -+ X n-I(U) is e l , provided 

Proof: Let ~k be the space of sections 

a * . U -+Xn(U) n· 

U-Wu(O) is 

1)..1 1 < I"" 11· I As \ • 

such 

that a k restricted to U-f(U) * coincides with ak (the section 

corresponding to """* c:f ). Endow this space with the supremum norm 

Halik = sup[\a(x) Ik , x E U). qk is a complete metric space. 

Let 4k (1) be the unit ball in Qk. 

Using the graph transformation r k we define 

¢k: qk(l) ~ Qk(l) as follows. Let a E Qk(l). Then 

if x E U-f(U) 

if x E un f(U). 

Since we had chosen U so that rk(xk(u)) c Xk(v) it follows 

that ¢k is 'well define~Remark that a E qk(l) is an 

invariant section precisely when the diagram above commutes, i.e. 

when a = rJa of-I). This is equivalent to 

~-Lemma, see Lemma (7.2), it follows that 

¢k ( a) = 0 From the 

¢k has a unique 

attrac.tingfixed point 0 (for k ~ n). "le will prove that CJ 

'is e l (for k'~ n-l) by induction on k. 



• 

~ 

The .dea will be the following. Suppose we can show 

that for some a E Qk(l) one ha's that 

as m'-" CD. (Here (~k)m is the mth 

(¢K)m(a) converges to the fixed point 

is Cl • So it suffices to sho,", that 

D«¢k)m(o» converges 

iterate of ¢k). Since 
* * ak it follows that ok 

D«¢k)m(o» converges as 

m-+'~. We will do this using the fiber contraction theorem. 

We start by noting that Jk(U) is homeomorphic to 

U x Fib~ x ••• X Fibk., where U=:Rn, Fib{l) ~R'('(i) • Let Pi :~(U)-+Fib(i) 
be the projection on the ith fiber. Now define ~k to be the 

space of continuous maps H: U x JRm--. Fibk wi th H(x, v) = Hx(v), 

_ where Hx: R m 
--+' Fibk ' is linear and Hx coincides with the 

derivative. of Pk 0 a: at x for x in U-f(U) . End 0'" ~k 

with the norm lIH!I = sup IIHx l1. , xeu 
* Let us now pro~e the first induction step that 0 1 1s 

Cl • In order to do this fix a E ql(l). For this ° we define 

a transformation' *1 0: ~l ~'Ul by , 

if x E U-f(U) 

Here w = (dfx)-l(v) and y == f-l(x). Remark that for x E un feU) one 

has y == f-l(x) E U nf-l(U) and hence' (""H (w» E T ( )Xl(U n f-l(U». , y (1 Y 

Therefore for x E u n feU), (t1,0 H)x(V) is the derivative of 

Pl 0 1'l: Xl(U n f-l(u» --t Fibl 

at 'a(y) in ~he direction 

\o{J):y) = D( til~ 0) if 0 is 

. 
(w J ty ("'), and therefore 

Cl • Let us show that Vi (J , 
contraction.' Indeed take 1 H,K E }t ,. Then 

is a 
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for x E U - feU) and otherwise 

<*1 CJ H - * , 1,0-
,. 

r 1 ) CJ ()r..) ( 0, (Hy - ~) ( w ) ) , 
.! .. 

where W = (Dfx)-l(v). From Lemma (7.1) it follows that 

1111 . 
IID(Plo I'1)CJ(y)(O,(Hy-Ky )(w»1l ~ ( + e)·II(~-~)(w)1i ~ 

I", 11· 

~ (1)..1
1 

+ e).IIHy-Kyn.IIDf-l(v)II~(I>"II+e:).( ?- +e).UH -K U.llv/! • 
1~11 x 1"'11. IAsl y y 

1).1 1 1 
A = ( + E:). (-- + e) 

1~11 I).sl 
Hence II WI CJ H-V I CJ KII :S; A ·!JH-K!I , where , , 

can be chosen. smaller than one, by taking e > ° sufficiently 

small. Hence 

t1w H-Vl KlI~A·lIH-Kll, l,a ,a 

i.e VI a is a contraction. Now vie are in the position to , 
prove that CJ~ is Cl • In fact lete1 : q1 x 111 -to ql x 111 be 

defined by 

* Remark that a1 is the unique attracting fixed point of ~l 

and since *1 a is a contraction for every CJ, , 
tbe Fiber Contraction Theorem (see (H.P) that 

* * unique attracting fixed point (01' HI). So let 

it fo110\.,s from 

e I has a 

a be Cl . Then 

91 (CJ,Do-) = (21 (CJ), Vl,o(Da». = (¢1(a),D¢1CJ ) and therefore 

(sl)t(a,na) = (¢tl (o),D ¢iCcr». Hence D(or)(a) converges to 

H~ and ¢i(CJ)" to CJ~. It follows that a~ is Cl and 
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* * D 0'1 = HI. This finishes the first induction step. 

," 

Let us now prove that 0'*: .. U -+ X2 (U) 
2 '."'" 

is Let 

and Define ~ ": }l2 -.:.:; }l2 
2·,0', HI by 

if x E U-f(U), 

*2 a H (H2 ) = , , 1 

As before take 

fa i:f x E U-:f(U) and otherwise 

( t 2 0' H (H2 ) -. * 2 a H (K2 )) x (v) = ) 

, , 1 ' , 1 ~D(P20 r 2 ),,(y)(O, 0, (H2 ,y-K2,y)(W)), 

where y = f-1 (x) and w = (Dfx )-I(v). As befor.e one deduces 

that (7.1). No,.., define 

a map 

As before the Fiber Contraction Theorem implies that 9 2 has a 

* * * 2 unique attracting fixed point (0'2' Hl , H2 ). If a E Q is 

then 

. * * As before it follows that' D(P2 0 0'2) = H2 • From the previous 

induction step D (PI 0 0";) = D( 0";) = H~. Hence 0";' is Cl • 

Similarly one proves by induction that the fixed pOinta~ E Qk 
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of ~k is Cl for k s n-l. • 
Corollary 1: Let f: M -+ M be a diffeomorphism with a saddle­

point p and let cOdim(w(p)) = 1. Then there exists an 

* in¥ariant unstable foliation ~ for p, such that the k-jet 

along leaves is a Cl function. 

Proof: This follows from Theorem (7.3) because in this case the 

in trivially satisfied 
II 

Remark: Let ~ be an invariant foliation on V_Wu(p), where 

V is a neighbourhood of WU(p). If satisfies the 

conclusion of Corollary 1, then the foliation ~* = ~ U WU(p) on 

V also satisfies the conclusion of Corollary 1. In other words 

* the foliation ~ can be found as the extension of a given one 

on V_Wu(p). 

Corollary 2: If the diffeomorphism f and the foliation ~ 

depend CS on parameters, then the corresponding inva~iant 

foliation ~*(fta) also depend CS on this parameter. 

Proof: This can be proved with the same methods as used in 

CH.P.J for showing that the unstable manifolds depend 

continuous lyon . f. 

§(7.3) - Cl-linearisability near saddle-noints in the 

t\..,o-dtmensional case. 

Let f: M -+ M be a diffeomorphism \'lith a hyperbolic 

saddle-point p. Assume dim(M) = 2. From Corollary 1 to 

• 
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Theorem (7.3) one can obtain invariant stable and unstable 

foliations for p, 3s 

one can obtain. a Cl 
and .... u 

r:t , which are 

invariant projection ro s 
ponto WS(p) (Wu(p)) 

c l . From this 

('"'u) from a 

by projecting neighbourhood V of 

alQng the leaves of .... u 
r:t By construction one has 

n 0 f = ·f 0 TT , 
S S TTu o f = fo TTu. 

Then take Cl coordinates on WS(p) and on WU(p) so that 

flwS{p) and flwu(p) are linear with respect to these 

coordinates. (This is not hard to do, since WS(p) and WU(p) 

are I-dimensional). Using these coordinates and ns ' '"'u one 

obtains a cl-linearising coordinate system for f near p. 

This result was already known, see (Haj and CH.P., Theorem 

(6.1)J. The fact that there is additional smoothness i.e. that 

is Cl , is new. 

§(7~4) - Differentiability of invariant foliations with 

polynomial tangencies 

In section (7.2) we have extended foliations which were 

smooth and transversal to ~(p). In this section we will 

consider foliations with leaves which have a tangency of finite 

order with WS(p), see Figure (7.3). 

Fi gure ( 7 • 3 ) 
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More precisely take a neighbourhood V of p. Using 

~ocal coordinates we can assume that, V ~ E1(r) x E2 (r) where 

. ~l (r) (E2 (r» is a u (s) dimensional ball of radius r. 

Assume wU(p) n V =' EI (r), WS(p) n V = E2(r). As before define . 
the space of germs ek(xo'Yo)· For g E ek(xo'Yo) and O~ 6 < I 

define a new norm 

Furthermore let 

. (We could'also introduce extra coefficients ai > 0 and consider 

In! g(xo)I.lxoli-6.ai' but this would have no essential effect 

on the sequel). 

Now consider some foliation ~u on V whose leaves 

are graphs of functions EI(r)~' E2 (r) which are Ck on 

E1(r) - O. This defines a section C'k: V - ''lS(p)-+ Jkev-vfep» 
as before. vle assume now that 

tor some 6 > O. In other words we allow the foliation ~u to 

have tangencies with v1S(p) of order at most 1/6. 'ile have no\'! 

the follo\'ling generalization of the '--Lemma and of Theorem (7.3). 

Theorem (7.4). Assume that crk is as above 'and that for the 

corresponding' 5 one, h(~s I~l' IUul~-~ 1. 
- , "s lUll\. 



a) If k ~ n, where n is the degree of " differentiability of 

f, then ~ can be extended to an invariant foliation 

such that a: V_1ys (p) --+~ xkt 6 (V) is continuous. 

* ~ on V 

b) "If a: v - (Ws(p) U 1"u(p» _ ~6(V) is el , then in fact 

a: V - WS(p) ~~ Xk ,6(V) is CI • 

Proof: One cannot deduce (a) from the ~-Lemma because ~u has 

tangencies with WS(p'). So define as in Theorem (7.3): 

k 6.s - k 5 * Ci' = fa: V \ 1'1 (p) --+~ X ' (V), a = a on U - f(U») • 

For a E 

~k maps 

Xo I:- O. 

and let 

qk define ~k(a) exactly as before. Let us sho,~ that 

Cik,6 into Cik ,6. Let (xo'Yo) E V\,.f(p), i.e. assume 

Then take gi E e.k(x~,yo) '-lith TTk,k-l (gl) = 'rTk,*,-l (g2) 

(XI'YI) = f(~o'Yo)· FrOc. Lemma (7.1) (a) for any e>o 

we can choose V so small that: 

I~ll" k-6 
:: ( k + f:)' gl-g2' k • \I xl n = 

I~ll 

1~11 "Xl" k-6 
-- (11l11 k + c) lel-S2Ik,6.(Uxoll) ,; 



Since 6 > 0 

I). 1 I~ulk:o 
this last number is smaller than one, provided 

__ 1_. -k < 1 and provided we 
1 ).s I /lJ 1.1 . 

'..,. 
tak~ e> 0 small enough.' It follows 

k,o k,o 
that '¢k maps ~ into Q and moreover that this map is a 

contraction. Hence there is a unique fixed point * .. 
ak which 

extends ak • statement (~) follows. 

The proof of statement (b) goes exactly as the proof of 

Theorem (7.3) if we replace 1·l k . by 

estimates from above. 

and use the 

Corolla~r~ Let f: M~~ M be a diffeomorphism with a saddle-point 
-.. 

p and let dim M = 2. Then one can extend a foliation :J ,.,i th 

tangencies along 'rep) .(as above) to an invariant unstable 

* foliation:J for' p, such that the k-jct alQng leaves is a 

Cl function a,.,'ay from ,.f3(p). 

Proof: For the t"lo-dimensional case the condition 
1).1 1 IUu·l

k
-

o 

l}.sl·I~1 Ik < 1 

is trivially satisfied. Therefore apply Theorem (7.4). 

* Remark: As before :J depends continuously on f and :J. 
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