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Abstract 

The main purpose of this thesis is on one hand to enhance the current predictive 

capabilities of the stability of soil slopes and on the other hand, to improve the design 

practice to stabilise natural slopes showing signs of distress and make the design of 

engineered slopes more affordable. To achieve the first objective an analytical method 

achieved by the upper bound theorem of limit analysis and the pseudo-static approach 

is derived for the assessment of the stability of slopes manifesting vertical cracks and 

subject to seismic action. The method is validated by numerical limit analyses and 

displacement-based finite-element analyses with strength reduction technique. 

Employing this method slope stability charts to assess the stability factor for fissured 

slopes subject to both horizontal and vertical accelerations for any combination of c, 

 , and slope inclination are produced.  

To achieve the second objective limit analysis was employed to derive a semi-

analytical method to extend the applicability of current method to design the slope 

reinforcement for frictional backfills to cohesive frictional backfills. Design charts 

providing the amount of reinforcement needed as a function of cohesion, tensile 

strength, angle of shearing resistance and slope inclination are obtained. From the 

results, it emerges that accounting for the presence of cohesion allows significant 

savings to be made, and that cracks are often significantly detrimental to slope stability 

so they cannot be overlooked in the design calculations of the reinforcement. Also, a 

new numerical method to determine multi-linear profiles of optimal shapes for 

reinforced slopes in frictional backfills is presented. The method is based on the limit 

analysis upper bound method together with genetic algorithms and provides an 
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optimal profile for a prescribed average slope inclination, backfill strength properties 

and desired number of layers to be used. Several stability charts illustrating the savings 

on the required amount of reinforcement are provided for the benefit of designers. 
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Symbols 

A: area of the failing part. 

1 2 6, ,...,A A A : areas utilised in the calculation of the external work. 

c: soil cohesion  

C:seismic displacement coefficient. 

D : total energy dissipation rate.  

rD : energy dissipation rate within the reinforcement. 

sD : energy dissipation rate within the soil  

rdD : infinitesimal dissipated energy within reinforcement.  

bf : bond coefficient between the soil and geosynthetic-reinforcement.  

df : function for the dissipated energy. 

wf : function to evaluate the external work rate done by the pore water pressure. 

PShf : horizontal pseudo-static force. 

PSvf : vertical pseudo-static force. 

1 2 6, ,...,f f f : function for the external work rate done by the soil weight. 

1 2 6, ,...,v v vf f f : function for the external work rate done by the soil weight and vertical 

seismic load. 
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1 2 6, ,...,h h hf f f : function for the external work rate done by the horizontal seismic 

acceleration. 

g: gravitational acceleration. 

1 2 3, ,g g g and 4g : function for the internal dissipated energy done by the soil and 

reinforcement along the log-spiral failure surface and along the crack. 

G: weight of the failing part. 

h : height of crack. 

wh : height of water within the crack measured from the tip of the crack. 

ih : height of the slope that may fail above the toe measured from the slope crest. 

minh : the crack depth that provides minimum stability factor /H c . 

H: slope height. 

crH : critical height of slope. 

i: counter usually denotes ith layer of reinforcement but it could also denotes ith point 

on the slope profile. 

j: number of reinforcement layers that pull-out. 

K : generic average tensile strength of reinforcement. 

hK :horizontal seismic acceleration coefficient. 

tK :average tensile strength of a uniformly distributed reinforcement. 
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vK  : vertical seismic acceleration coefficient. 

yK : yield acceleration. 

l : arm length of G. 

cL : part of the anchorage length of the reinforcement spared because of the crack see 

Figure 7.1. 

eL : effective length of reinforcement layers to resist pull-out failure. 

sL : part of the length of reinforcement to be saved using linearly decreasing length, 

see Figure 7.1. 

rL : total length of reinforcement layer. 

1l and 2l  lengths defined in Figure 3.1. 

m: number of points used to discretise the slope profile. 

M: mass of the failing part. 

n: number of reinforcement layers. 

n : number of reinforcement layers involved in the above the toe failure.  

N : stability factor upper bound. 

sN : stability factor 

N  : stability factor upper bound associated with upward vertical acceleration. 

0N : stability factor upper bound associated with nil vertical acceleration 
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N  : stability factor upper bound associated with downward vertical acceleration. 

r : generic radius for the log-spiral part. 

ur  :dimensionless coefficient of pore pressure (see (Bishop & Morgenstern, 1960)) 

r : reference radius of the log-spiral part. 

r : distance from centre of rotation for the log-spiral to the crack tip. 

r : distance from centre of rotation for the log-spiral to the slope toe. 

S: spacing between consecutive layers of reinforcement. 

T: tensile strength of a reinforcement layer. 

t: dimensionless coefficient denoting tensile strength of soil. 

u : displacement rate along the log-spiral part. 

cu : displacement rate along the crack. 

w: width of discontinuity layer along the log-spiral part 

W : total external work rate. 

extW : rate of external work. 

dW : rate of dissipated energy. 

sW : external work rate made by the soil weight. 

wW : external work rate made by the pore water pressure. 

1 2 3 6,  ,  , , W W W W  : external work rate for different regions. 
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x: horizontal distance measured from the slope toe. 

1x : horizontal distance measured from slope toe to the point at which the crack starts 

to affect the slope stability. 

2x : horizontal distance measured from slope toe at which the crack is no longer 

affecting the slope stability because it is far inward. 

cx : horizontal distance measured from the slope toe to the location of the critical crack. 

ix : horizontal distance measured from the slope toe to the location of the point i on 

the slope profile. 

y: vertical distance measured from slope toe. 

iz : the depth of the reinforcement below the slope crest. 

 : slope face inclination. 

  : angle in which the length ofreinforcement layers decreasing with depth. 

 : unit weight of soil. 

  : infinitesimal increment. 

x : strain rate in the direction of reinforcement. 

 : angle made by the crack with the reinforcement layer. 

 : angular velocity. 

i : angle related to the intersection of the failure surface with the i-layer. 
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 : generic angle of the failure surface along the log-spiral part. 

 : the ratio between vK  and hK  

 : angle made between the ground velocity vector and the crack. 

 : normal stress. 

t : ground tensile strength  

M C

t


: uniaxial tensile strength consistent with Mohr Coulomb failure criterion 

M C

c


: uniaxial compressive strength consistent with Mohr Coulomb failure criterion 

 : shear stress 

 : angle of shearing resistance. 

 : angle of dilatancy. 

, ,    : angles identifying log-spiral failure surface and crack position and depth. 

Я : vector of plastic modes making a convex domain in the stress space. 

ю :plastic multiplier. 
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Abbreviations 

2D: Two-dimensional. 

3D: Three-dimensional. 

FE: Finite element. 

FELA: Finite element limit analysis. 

FESR: Finite element strength reduction. 

LA: Limit analysis. 

LEM: Limit equilibrium method 

LID: Linearly increasing distribution of reinforcement. 

UD: Uniform distribution of reinforcement. 
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1 Chapter 1: Introduction 

1.1 Background and motivation 

The need for research on landslides cannot be overestimated. The increase in 

settlement density in hazardous regions and in the value of assets in those areas has 

caused the amount of financial damages that are due to natural catastrophes to rise 

continuously over the last 50 years. According to the claim statistics provided by 

(Munich_Re, 2012), in 2011 alone the economic losses due to geohazards (classified 

as landslides, earthquakes and floods in the report) amounted to 275,000 € million 

which is about 40 times as much as the total losses due to the 9/11 terrorist attack on 

the World Trade Centre in 2001. A slowing or reversal of the upward trend of the 

financial costs due to geohazards is not predicted by insurance experts unless 

fundamental improvements in the understanding and modelling of geohazards are 

achieved by the scientific community (Munich_Re, 2012).  

In the last century, Europe has experienced the second highest number of fatalities 

and the highest economic losses caused by landslides compared to other continents: 

16,000 people have lost their lives because of landslides (SafeLand, 2012). In the 

period 1998-2009, 70 major landslides claimed a total of 312 lives and damaged or 

destroyed an extensive amount of infrastructure, including roads and houses. Among 

the largest events in terms of fatalities and destruction caused were the debris flows in 

Sarno in 1998 (Italy), claiming 160 lives, and the mudslides in Messina in 2009 (Italy), 

killing 31 people (EEA, 2010). These major events represent only a glimpse of the real 

impact of landslides, as the enquiry carried out by Eurogeosurvey yielded a total of 
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712,089 recognised mass movements recorded in Europe since World War II 

(Eurogeosurvey, 2010). To give an idea of the expenditure on landslides for single 

European member states: Spain spends 170 € million per year (Schuster & Kockelman, 

1996) and Italy spent approximately 146,000 € million between 1957 and 2000 as a 

result of damage caused by landslides and floods. On one hand better understanding 

of the physical mechanisms leading to the onset of slope failures are urgently needed. 

On the other hand, engineering measures to prevent slope failure need to become 

cheaper. Moreover, the need for a more affordable design for soil slopes is exacerbated 

by the progressive urbanisation taking place all over the world, which implies less 

space available for excavations of cutting and the construction of embankments 

leading to the use of steeper engineered slopes. The thesis works towards both 

objectives.  

1.2 Aim and Objectives 

The main aim of this thesis is to provide semi-analytical solutions for the stability of 

geosynthetic-reinforced and unreinforced soil slops accounting for the presence soil 

cohesion, cracks and/or seismic action. The first objective is to account for cracks in 

the seismic analysis of unreinforced soil slopes. The effect of the presence of cracks 

on both seismic stability (chapter 3) and seismic-induced displacement (chapter 6) are 

considered. The second objective is to make the design of geosynthetic reinforcement 

more affordable to stabilise slopes. This is addressed by 1) introducing for the first 

time a design method for cohesive backfills since until now the positive contribution 

of cohesion to slope stability has been neglected (chapter 4, 5, 6 and 7), 2) introducing 
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a mathematical framework for the calculation of non-straight profiles of optimal shape 

for slopes reinforced with geosynthetics and tiered walls (chapter 8).   

1.3 Outline of the thesis  

This thesis is divided into eight chapters, which are briefly illustrated in Figure 1.1 

and summarised as follows: 

In chapter 1 background and motivation to the thesis together with thesis aim, 

objectives and outline are illustrated. In chapter 2, a literature review of the numerical 

and analytical methods employed in the thesis together with an overview on previous 

works on the stability assessment for slopes exhibiting cracks, geosynthetic-reinforced 

cohesive slopes and reinforced slopes of non-straight profile is provided. 

In chapter 3, an analytical method achieved by the upper bound theorem of limit 

analysis and the pseudo-static approach is derived for the assessment of the stability 

of slopes manifesting vertical cracks and subject to seismic action. The method is 

validated by numerical limit analyses and displacement-based finite-element analyses 

with strength reduction technique. Employing this method slope stability charts to 

assess the stability factor for fissured slopes subject to both horizontal and vertical 

accelerations for any combination of c,  and slope inclination are produced. Charts 

of displacement coefficients as a function of the slope characteristics are also provided. 

For the first time the effect of the direction of the vertical acceleration on slope stability 

is systematically investigated.  

In chapter 4, limit analysis was employed to derive a semi-analytical method to 

extend the applicability of current method to design the slope reinforcement for 
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frictional backfills to cohesive frictional backfills. Design charts providing the amount 

of reinforcement needed as a function of cohesion, tensile strength, angle of shearing 

resistance and slope inclination are obtained. From the results, it emerges that 

accounting for the presence of cohesion allows significant savings to be made, and 

that cracks are often significantly detrimental to slope stability so they cannot be 

overlooked in the design calculations of the reinforcement. In chapter 5, the semi-

analytical method of chapter 4 is extended to design the reinforcement of cohesive 

backfills subject to seismic action. 

In chapter 6, a new technique is proposed to estimate the horizontal displacement 

at the slope toe due to a given earthquake under some simplifying assumptions about 

the earthquake induced crack formation. Seismic-induced displacement are calculated 

by Newmark’s method incorporating a time varying yield acceleration accounting for 

cracks generated in the slope by the seismic action taking place. In chapter 7, the effect 

of cracks on the design length and distribution of geosynthetic layers in reinforced 

slopes is investigated.  

In chapter 8 a new numerical method to determine multi-linear profiles of optimal 

shapes for reinforced slopes in frictional backfills is presented. The method is based 

on the limit analysis upper bound method together with genetic algorithms and 

provides an optimal profile for a prescribed average slope inclination, backfill strength 

properties and desired number of layers to be used. Several stability charts illustrating 

the savings on the required amount of reinforcement are provided for the benefit of 

designers. In chapter 9, the main conclusions of the thesis and recommendations for 

future studies are provided. 
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Figure 1.1 Research map showing how each objective is being addressed.

Geosynthetic-Reinforced and 
Unreinforced Soil Slopes Subject to 
Cracks and Seismic Action: Stability 
Assessment and Engineered Slopes

Objective (1): Account for 
cracks in the seismic stability 
of unreinforced soil slopes.

Chapter 3: Presents the effect of 
cracks on stability factor and 

seismic displacement.

Chapter 6: Provides a time 
varying yield acceleration to 
simulate the crack formation 

during earthquake.

Objective (2): Introduce 
design method for 

geosynthetic-reinforced 
slopes in cohesive backfills.

Chapter 4: Presents the impact 
of cohesion on the design 

parameters for geosynthetic-
reinforced slopes.  

Chapter 5: Provides an extension 
of chapter 4 to include seismic 

effect.

Chapter 7: Includes the effect of 
crack and the reinforcement 

layout on the design length of 
reinforcement layers.

Objective (3): Seek the 
optimal profile shape for 

slopes reinforced with 
geosynthetics.

Chapter 8: Presents a 
mathematical framework for the 

calculation of non-straight 
profiles of optimal shape

Chapter 1: 
Introduction

Chapter 2: Literature 
review
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2 Chapter 2: Literature Review 

2.1 Introduction 

The first section of this chapter briefly reviews the numerical and analytical methods 

used for slope stability analysis. The second section summarises current knowledge 

on the influence of cracks on slope stability. The third one provides an overview on 

the use of cohesive backfills for reinforced slopes while the last one is an overview on 

the current literature on non-straight profiles for reinforced slopes. 

2.2 Analytical and numerical methods for Slope Stability Analysis 

There are several methods to study slope stability, and they can be categorised into 

three main groups: analytical, numerical and experimental. Given the content of the 

thesis, only analytical and numerical methods are reviewed herein. 

2.2.1 Limit Equilibrium Methods  

From a historical point of view, the first methods employed to analyse slope stability 

(and nowadays still the one most used in practice for the assessment of the stability of 

slopes) are the so-called limit equilibrium methods (LEM: (Fellenius, 1927)). Usually, 

they are used to assess the stability of a slope in terms of a factor of safety, which is 

then defined as the ratio of the shear strength of the soil over the actual shear stress 

along the failure surface. All limit equilibrium methods are based on subdividing the 

mass of potentially unstable ground to be analysed into (often) vertical slices of finite 

size (if the slices are not vertical they are sometimes called wedges), imposing the 
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equations of (global) equilibrium on each slice, and assuming reaction forces along 

the boundaries of the slices according to some physical assumptions concerning both 

the inter-slice forces (forces exchanged between slices) and the forces at the base of 

each slide which stem from the reaction offered by the ground underneath the failing 

mass and the water pressure. In some methods, some of the equations of equilibrium 

may not be satisfied and the methods are called non-rigorous; whereas if all the 

equations are satisfied the methods are called rigorous. These methods provide no 

information on the stress state inside the failing mass, the deformations or the 

displacements.  

2.2.2 Limit Analysis  

Limit analysis (LA) is a method that has been applied in many fields of engineering. 

One of them is slope stability. The limit analysis methods, kinematic (or upper bound) 

and static (or lower bound), are much more versatile than limit equilibrium methods 

and above all, supply solutions which are rigorously upper and lower bounds on the 

true collapse load. In the literature, lower bound solutions for slope stability problems 

are a few (Pastor, 1978 ) as the determination of a statically admissible stress field is 

rarely achievable. On the contrary, the determination of a kinematic admissible 

velocity field for homogeneous slopes allow the determination of analytical solutions. 

For this reason, the LA upper bound method has been extensively employed in the 

thesis and an in-depth treatment of its theoretical underpinning will be provided in the 

following section.  

In this method, a failure mechanism has to be assumed as in the LEM, but with the 

additional constraint of being kinematically compatible. This means that the failure 
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mechanism has to satisfy equations imposing the constraint that the body can deform 

but remains a continuum at all times, i.e. if we consider two adjacent points with an 

infinitesimal distance between them, neither detachment nor penetration between them 

are allowed. Then an energy balance between the rate of external work done by the 

load applied on the failing mass and the rate of internal energy dissipation, i.e. the 

energy dissipated by the deforming soil, is imposed for all the potential failure 

mechanisms considered. The critical failure mechanism is identified as the mechanism 

giving rise to the minimum (lowest) stability number. The energy balance equation 

translates the well-known principle of virtual work. Both methods assume that the 

materials constituting the slope behave as an elasto-perfectly plastic body, i.e. they 

assume the validity of the normality rule according to which plastic deformations 

occur proportionally to the incremental stresses applied according to a so-called 

associate constitutive law. Considering a linear failure criterion like the Mohr-

Coulomb criterion, it means that the so-called dilation angle is assumed equal to the 

angle of shearing resistance. However, real frictional-cohesive soils do not obey the 

normality rule. In fact, overconsolidated clays, cemented sands are usually 

characterised by a dilation angle smaller than the friction angle. Unfortunately, the 

limit theorems are not applicable to materials obeying a non-associated flow rule in 

all cases apart from translational failure (Drescher & Detournay, 1993), which is in 

general far less critical than rotational mechanisms. According to the limit analysis 

upper bound theorem (Chen, 1975), the collapse load for a material with a non-

associated flow rule is smaller than those obtained for the same material when an 

associated flow rule is assumed. (Manzari & Nour, 2000) were the first to examine the 

effect of soil dilatancy on homogeneous slopes, performing nonlinear finite-element 
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analyses of slopes by the strength reduction technique. They showed that the stability 

numbers obtained from limit analysis are not conservative (i.e. higher than the real 

value) for soils exhibiting dilation angles smaller than friction angles. Recently, 

(Crosta, Utili, De Blasio, & Castellanza, 2014) ran FEM analyses on straight 

homogeneous c   slopes with both the associative flow rule as assumed in limit 

analysis    and with a dilation angle / 4  , typical for materials with little 

dilatancy, for a range of slope inclinations of 20  to 30 , with   values ranging from 

8  to 28 . It emerged that the influence of the dilation angle on the volume of the 

sliding mass is negligible. This is due to the fact that the soil is little constrained from 

a kinematic point of view in a slope (or in other words the level of confinement on the 

material is small) whereas dilatancy may have a very important effect in case of high 

confinement (e.g. tunnelling). 

Considering a three-dimensional solid, a virtual rate of displacement, which 

satisfies the following relations: 

0
F

ext j j j j
V S

W F u dV f u dS        and  0iu   on uS  (2.1) 

  , ,

1

2
ij i j j iu u     (2.2) 

ij

ij

Я
ю







 and 0ю    (2.3) 

with extW : external work rate, V  and FS  are the loaded boundary volume and surface 

respectively. ju : vector of the distributed forces, ij :strain rate in the kinematically 

admissible velocity field, Я : vector of plastic modes making a convex domain in the 

stress space, gives rise to a kinematically admissible act of motion, and ю :plastic 
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multiplier. Assuming such an act of motion, the upper bound limit analysis theorem 

states that: the loads determined by equating the rate at which the external forces do 

work:  

extW
F

j j j j
V S

F u dV f u dS       (2.4) 

to the rate of internal dissipation: 

V
W Vd ij ijd     (2.5) 

will be either higher than or equal to the actual limit load. Therefore, it can be inferred 

that the lowest load among all the loads relative to admissible failure mechanisms, 

determined by equating the rate of external work to the rate of energy dissipation, is 

the best approximation to the limit load. This load is an upper bound on the limit load. 

In our problem, the only force present is the weight force (a body force) and no 

tractions are present on the solid boundary. Eq. (2.3) are satisfied since a c-  soil type 

has been assumed. Further, the problem is two dimensional: equations (2.4) and (2.5) 

become:  

extW j j j j
V A

F u dV F u dA        (2.6) 

V A
W V Ad ij ij ij ijd d        (2.7). 

A further assumption about kinematics has been made: rigid body motions are 

considered. This means that strains only develop along a narrow separation layer 

(discontinuity surface) between a sliding rigid body and a fixed one (see Figure 2.1a) 

where all energy dissipation occurs. According to the assumptions made, the rate of 

energy dissipation is given by:  

 W ld d 


    (2.8) 
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Strains develop according to an associated flow rule (see Figure 2.1b). 

 

 

 

 

 

 

 

Figure 2.1 a) strains along the separation layer. b) stresses and strains according to the associated 

flow rule. 

The slope self-weight is given by: AF Mg g  . Since the area A is proportional 

to the slope height H, the load is proportional to H as well. Finally, the energy balance 

equation: 

ext dW W  (2.9) 

makes it possible to determine a function by which the most critical mechanism can 

be determined. The minimum of this function gives an upper bound on the limit value. 

For slope stability problem, kinematically admissible mechanisms can be either 

translational in which rigid block are separated by velocity discontinuities or rotational 

in which the potential failing mass is assumed to rotate as a rigid body around the 

centre of rotation. This rotational failure mechanism is found to be log-spiral rather 

than circular unless 0  (Michalowski, 1998). Also, it is found to be more critical 

than the translational failure mechanism for both unreinforced slopes (Chen, 1975; 

Utili, 2013) and geosynthetic-reinforced soil slopes (Zhao, 1996). 

  



 

 

Chapter 2: Literature Review                                                                                      (2) 

 

12 

 

Limit analysis has also been successfully utilised to seismically analyse soil slope 

incorporating pseudo-static approach (Chang, Chen, & Yao, 1984; Chen & Liu, 1990) 

as the upper bound to the horizontal seismic acceleration were sought. Consequently, 

this has led to estimate the earthquake-induced displacement in soil slopes based on 

Newmark’s method (Newmark, 1965). 

Finally, limit analysis method has been developed to overlap with finite element 

method creating what is known as Finite Element Limit Analysis (FELA) see for 

example (Anderheggen & Knöpfel, 1972; Makrodimopoulos & Martin, 2007; Sloan, 

1989). FELA provides a combination between the bounding theorems and the 

discretization technique of finite element rendering a powerful approach to analyse 

soil slopes. In case of FELA upper bound, a finite element discretisation of the slope 

the velocity field is optimised to find the lowest upper bound and while in case of 

FELA lower bound the stress field is optimised to obtain the highest lower bound. 

Unlike traditional displacement based finite elements, each node of the finite elements 

used in limit analysis is unique to a given element. The FELA code Opt+umCE 

produced by University of Newcastle (Australia) was used in the thesis for validation 

of the analytical solution in chapter 3 and 4. 

2.2.3 Finite element method 

The displacement based finite element method (perhaps the most world-wide 

known method in engineering) has been used for slope stability analysis since 1975 

(Zienkiewicz O.C., Humpheson C., & Lewis RW., 1975). Several books have been 

written about it, a few cornerstone textbooks are worth of mention:(Zienkiewicz & 

Taylor, 2005) and the several previous editions, and specifically dedicated 
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geotechnical engineering (D.M. Potts & Zdravkovic, 1999; David M. Potts & 

Zdravkovic, 2001). Unlike limit equilibrium method and limit analysis, any 

constitutive law can be considered, so there are no restrictions on the type of 

mechanical behaviour that can be considered for the soil/rock of the slope analysed. 

This is a continuum mechanics approach since the materials constituting the slope are 

assumed to be one continuum or several continua separated by known boundaries (e.g. 

between different strata of geomaterial) along which a mechanical law ruling the 

interaction has to be specified. The differential equations of classical solid mechanics 

are applied, i.e. equations imposing equilibrium on the stress field, equations imposing 

kinematic compatibility on the deformation or strain field, and constitutive equations 

imposing the law of material behaviour linking stresses to strains.   

In order to find the potential failure surface, usually the so-called strength reduction 

technique is employed. First, a solution is found for the whole slope in its current 

stable state, and then the strength parameters of the slope are decreased by steps, with 

a new solution being sought after each step of strength decrease has been applied. 

After each step the slope suffers extra deformations, which typically tend to localise 

in a narrow band called a shear band that identifies the failure surface in the slope.  

Finite element method with strength reduction technique analyses of slope stability 

have been run to validate results from semi-analytical solutions derived from LA (e.g. 

chapter 3 and 4). Obviously, validation by a numerical method is not as strong as a 

validation against experimental data. However, the fact that two independent methods 

provide results in agreement does constitute a form of validation. 
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2.3 Cracks in Slopes 

Since the time of (Terzaghi, 1943), the presence of cracks has been recognised as an 

important factor affecting the stability of slopes made of cohesive soils (e.g. clayey 

soils) and/or rock. The presence of cracks poses significant challenges to the 

assessment of slope stability because they introduce one or a few discontinuities that 

may substantially reduce the stability of the slope. In the case of a small number of 

discontinuities, homogenisation techniques work badly because the slope behaviour 

tends to be heavily affected by the specific features of each discontinuity that therefore 

has to be considered explicitly in the stability analysis of the slope. This implies a 

significant extra computational effort for the numerical methods typically used in 

continuum mechanics (e.g. finite element (FE) method, finite difference method, etc.) 

that struggle to include discrete discontinuities. Furthermore, if a comprehensive 

parametric analysis is to be run to explore how slope stability is affected by the 

presence of cracks for a variety of geometrical and mechanical parameters of the slope, 

the computational effort required appears prohibitive. Hence, the appeal of an 

analytical solution is apparent. 

Cracks can either exist prior to slope failure or they could form simultaneously as 

part of the failure mechanisms due to the tensile strength of the soil being exceeded 

(Michalowski, 2013). Usually when limit analysis is employed, the Mohr-Coulomb 

(M-C) function is adopted as failure criterion. But experimental evidence shows that 

the tensile tf   strength associated with the Mohr-Coulomb (M-C) criterion 

/ tantf c   is a significant overestimation of the true tensile strength (Bishop, Webb, 

& Lewin, 1965), here called   t , of most soils. To partially remedy this shortcoming 
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but still use the simple linear M-C criterion, a tensile cut off is commonly adopted. 

(Michalowski, 2013) instead proposed to modify the M-C criterion by adopting a non-

linear function in the stress range where cracks are expected to form. This non-linear 

function is made by a stress circle defined as being tangent to the M-C linear function 

tanc    , and having the minor principal stress 3  equal to the soil tensile 

strength, 3 t   , with tensile stresses assumed negative according to the soil 

mechanics sign convention. (Michalowski, 2013) in his work, accounts for the non-

linearity of soil shear strength in the stress range where cracks are expected to form. 

2.4 Geosynthetic-Reinforced Cohesive Slopes 

Since the 1980s, the use of geosynthetics with the aim of increasing the shear strength 

of cohesive soils has been investigated (Fourie & Fabian, 1987; T. S. Ingold, 1981; 

Terence S. Ingold & Miller, 1983; Hoe I. Ling & Tatsuoka, 1994). In the 1990’s 

Zornberg and Mitchell in their review papers on cohesive backfills (Mitchell, 1995; J. 

G. Zornberg & Mitchell, 1994) state that the use of cohesive backfills has led to 

substantial savings in areas where granular materials are not locally available. More 

recently, substantial experimentation has been performed to investigate the behaviour 

of geotextile reinforced cohesive slopes (Hu, Zhang, Zhang, & Lee, 2010; R. Noorzad 

& Mirmoradi, 2010; Wang, Zhang, & Zhang, 2011). In particular non-woven 

geotextiles and geogrids of sufficient tensile strength have shown to be effective at 

increasing the strength of cohesive soils and providing effective drainage (e.g. (Reza 

Noorzad & Omidvar, 2010; Portelinha, Bueno, & Zornberg, 2013; Portelinha, 

Zornberg, & Pimentel, 2014; Sukmak et al., 2015). However, in the methods currently 
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available in the literature, reinforcements are still calculated assuming soils to be 

cohesionless (de Buhan, Mangiavacchi, Nova, Pellegrini, & Salençon, 1989; Richard 

A. Jewell, 1991; Dov Leshchinsky & Boedeker, 1989; D. Leshchinsky, Ling, & 

Hanks, 1995; Michalowski, 1997).  

This conservative assumption is due to the fact that geosynthetics were initially 

conceived for cohesionless granular soils and that the first design guidelines published 

for geosynthetic reinforced earth structures disregard the beneficial effect of cohesion 

(e.g. (AASHTO, 2012; R. A. Jewell, 1996)). However, the recent edition of AASHTO 

LRFD bridge design specifications (AASHTO, 2012), allows for the inclusion of 

cohesion in the design of geo-reinforced slopes although unfortunately no formulae 

are provided for this purpose. The AASHTO revisit was prompted by the work of 

(Anderson, Geoffrey, Ignatius, & (Joe), 2008) which, for example, shows that an 

amount of cohesion as small as 10 kPa can reduce the thrust against an earth structure 

of up to 50-75% for typical design conditions. In light of these findings, (Vahedifard, 

Leshchinsky, Sehat, & Leshchinsky, 2014) have investigated the beneficial effect of 

cohesion on geosynthetic reinforced earth structures based on limit equilibrium 

concluding that ‘the results clearly demonstrate the significant impact of cohesion on 

the 
aeK  value’ (

aeK  being the design seismic active earth pressure coefficient). Unlike 

(Vahedifard et al., 2014), this study is concerned with the stability of geo-reinforced 

slopes in the absence of any retaining structure. One of the objectives of this study is 

to provide a method for the design of slope reinforcements where the effect of 

cohesion is accounted for that may feed into future new guidelines.  
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2.5 Non-straight optimal profiles for geo-reinforced slopes 

Currently geosynthetic-reinforced slopes are designed according to a straight profile 

in elevation. However, in nature slope profiles exhibit all sorts of different shapes, 

ranging from concave to convex or partly convex and partly concave. The literature 

on the mechanical stability of non-straight slope profiles is very limited: presented 

slope stability analyses in axial symmetry based on the slip-line theory formulated by 

Sokolovskiĭ (1960). Hoek and Bray (1981) argued that concave slopes in rock are 

more stable than convex slopes but they did not produce any systematic investigation 

to underpin their claim.  

With regard to geosynthetic reinforced slopes, recent research on multi-tiered 

reinforced walls seem to indicate that reinforced slopes of non-straight profile can be 

more stable than the traditional straight ones (Dov Leshchinsky & Han, 2004; Liu, 

Yang, & Ling, 2014; G.-Q. Yang, Liu, Zhou, & Xiong, 2014), but the geometric 

configuration considered are limited to a maximum of four walls (Stuedlein, Bailey, 

Lindquist, Sankey, & Neely, 2010) and more importantly the studies do not compare 

the mechanical performance of non-straight profiles with the performance of straight 

profiles of the same average inclination so no firm conclusions can be drawn. In case 

of unreinforced slopes instead, better performance of concave profiles over straight 

profiles of the same average inclination has been systematically proved by (Utili & 

Nova, 2007) for concave profiles of log-spiral shape for cohesive frictional 

geomaterials. Then, (Jeldes, Drumm, & Yoder, 2014; Vahedifard, Shahrokhabadi, & 

Leshchinsky, 2016b)) considered concave profiles whose shape is derived from 

Sokolovski’s theory of slip-lines and (Vahedifard, Shahrokhabadi, & Leshchinsky, 
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2016a) concave circular profiles both showing superior properties to straight profiles 

in terms of mechanical stability. In (Vahedifard et al., 2016a) the performance of non-

straight (circular) concave profiles is systematically compared to the performance of 

reinforced slopes of the same average inclination made of frictional backfills. They 

show that circular concave profiles are always better from a stability point of view and 

conclude that saving of up to 30% on the required tensile strength of the reinforcement 

can be achieved. Unlike previous studies in this thesis, the search for the optimal 

profile will not be restricted to a particular category of shapes, i.e. circular or log-spiral 

or from Sokolovski’s slip lines, but any possible shape will be considered to achieve 

the most economical possible design. 
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3 Chapter 3: On the stability of fissured slopes 

subject to seismic action1 

SUMMARY 

A set of analytical solutions achieved by the upper bound theorem of limit analysis 

and the pseudo-static approach is presented for the assessment of the stability of 

homogeneous ,c   slopes manifesting vertical cracks and subject to seismic action. 

Rotational failure mechanisms are considered for slopes with cracks of both known or 

unknown depth and location. A validation exercise was carried out based on numerical 

limit analyses and displacement-based finite-element analyses with strength reduction 

technique. Charts providing the stability factor for fissured slopes subject to both 

horizontal and vertical accelerations for any combination of ,c   and slope inclination 

are provided. The effect of the direction of the vertical acceleration on slope stability 

is specifically analysed. Yield seismic coefficients are also provided. When the 

presence of cracks within the slope can be ascertained with reasonable confidence, 

maps showing the zones within the slope where they have no destabilising effect are 

provided. Finally, Newmark’s method was employed to assess the effect of cracks on 

earthquake-induced displacements. To this end, displacement coefficients are 

                                                 

 

1 This chapter has been published in International Journal for Numerical and Analytical Methods in 

Geomechanics (see Utili and Abd 2016). 



 

 

Chapter 3: On the Stability of Fissured Slopes Subject to Seismic Action                         (3) 

 

20 

 

provided in chart form as a function of the slope characteristics. Two examples of 

slopes subjected to known earthquakes are illustrated. 

3.1 Introduction 

The presence of cracks or fissures in slopes made of cohesive soils (e.g. clayey soils) 

and/or rock because of the development of tension for instance has long been 

recognised as an important factor affecting their stability since the time of Terzaghi 

(Terzaghi, 1943). The presence of cracks poses significant challenges to the 

assessment of slope stability because they introduce one or a few discontinuities that 

may substantially reduce the stability of the slope. In the case of a small number of 

discontinuities, homogenisation techniques work badly because the slope behaviour 

tends to be heavily affected by the specific features of each discontinuity that therefore 

has to be considered explicitly in the stability analysis of the slope. This implies a 

significant extra computational effort for the numerical methods typically used in 

continuum mechanics (e.g. finite element (FE) method, finite difference method, etc.) 

that struggle to include discrete discontinuities. Furthermore, if a comprehensive 

parametric analysis is to be run to explore how slope stability is affected by the 

presence of cracks for a variety of geometrical and mechanical parameters of the slope, 

the computational effort required appears prohibitive. Hence, the appeal of an 

analytical solution is apparent. 

In the large body of literature on limit analysis applied to slopes subject to seismic 

excitation (e.g. (Cao & Zaman, 1999; Chang et al., 1984; Chen & Liu, 1990; 

Crespellani, Madiai, & Vannucchi, 1998; Gao et al., 2013; Loukidis, Bandini, & 

Salgado, 2003; X.-g. Yang & Chi, 2014; You & Michalowski, 1999) ), there is no 
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provision to take into account the presence of cracks. In this chapter, an analytical 

method based on the upper bound theorem of limit analysis and on the so-called 

pseudo-static approach (Terzaghi, 1950) is presented for the assessment of the stability 

of uniform c,  slopes manifesting vertical cracks and subject to seismic action. Three 

situations are considered in this chapter: i) the most unfavourable scenario of cracks 

present in the slope, (practitioners may assume such a scenario in the absence of 

reliable information on the presence of cracks); ii) slopes subject to cracks of known 

depth; iii) slopes subject to cracks of known location. With regard to the first problem, 

i), the assumption of the most unfavourable scenario reflects the fact that often neither 

the position nor the depth of a crack are known. In this case, all possible failure 

mechanisms involving any crack that may be present in the slope must be considered 

in the analysis. Assuming the terminology of Terzaghi (Terzaghi, 1943), Taylor 

(Taylor, 1948) and Chen (Chen, 1975), the ‘stability factor’ for a slope at impending 

failure is defined as /s crN H c , with   being the ground unit weight, crH  the 

critical slope height and c the ground cohesion (note that in some references the 

stability factor may be called stability number).  

On the basis of the obtained solutions, charts of (least upper bound) stability factor 

versus inclination of the slope face,  , are presented in this chapter for all values of 

engineering interest of angle of shearing resistance,  , and horizontal and vertical 

seismic coefficients, hK and vK respectively. These charts, together with the values 

reported in tabular form in the ‘Supporting Information’ (see Appendix A), can be 

used by practitioners to get an immediate estimate of the destabilising influence of the 

presence of cracks on the slope of interest for a wide range of prescribed seismic 
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action. However, if reliable information on the cracks existing in the slope is available, 

the conservative assumption of the most unfavourable scenario is no longer justified. 

In this eventuality, either the depths of the cracks (problem ii) or their locations 

(problem iii) can be prescribed reducing the number of potential failure mechanisms 

to be considered in the search for the least upper bound. With regard to crack depth, 

according to some lower bound analyses (e.g. (Antao, Guerra, Matos Fernandes, & 

Cardoso, 2008; R. Baker, 2003; Terzaghi, 1943)), it can be determined as a function 

of the tensile strength of the ground and its stress state. However, exceedance of the 

ground tensile strength is only one of the possible causes for the formation of cracks, 

because there is experimental evidence about cracks caused and/or deepened by 

processes such as the occurrence of differential settlements (Vanicek & Vanicek, 

2008), desiccation (Dyer, Utili, & Zielinski, 2009; Konrad & Ayad, 1997; Tang, Cui, 

Tang, & Shi, 2009; Utili, Castellanza, Galli, & Sentenac, 2015) and freezing (Hales & 

Roering, 2007). In the large majority of cases, accurate estimates of crack depths are 

not available to the practitioner; therefore, the stability of a slope needs to be analysed 

for a range of possible crack depths rather than a single value. Accordingly, in this 

chapter, the yield horizontal acceleration is calculated for various prescribed crack 

depths.  

Numerical simulations with other methods, namely FE limit analysis (numerical 

upper and lower bounds) and FE displacement based method with strength reduction 

technique, were run to validate the obtained results. A very good agreement in terms 

of both geometry of the predicted failure mechanism and yield seismic coefficient was 

found. Then, an analysis of the influence of the vertical seismic acceleration on slope 

stability is presented for both cases of intact and fissured slopes. Dimensionless charts 
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showing which case is more critical for the stability of slopes between no vertical 

acceleration, upward acceleration and downward acceleration are provided for any 

combination of  ,   and hK . In addition, maps showing zones where cracks have 

no detrimental effect on slope stability are provided for various combinations of 

horizontal and vertical accelerations.  

To this end, the locations of the cracks (problem iii) are prescribed in the search for 

the most unfavourable failure mechanism. These maps can be employed for two 

purposes: (i) in the case of earth structures prone to fissuring, as for instance flood 

defence embankments (Allsop W., 2007; Dyer et al., 2009; Environment_Agency, 

2006; Utili et al., 2015), they may help inspection engineers to reduce significantly the 

extent of the zones to be inspected by excluding the zones where cracks have no 

detrimental effect on slope stability; (ii) when the presence of one or more cracks in a 

slope is known, the maps tell the geotechnical engineer whether the crack may be 

discarded from the stability analysis of the slope. 

Finally, Newmark’s approach (Newmark, 1965), also called ‘block sliding 

procedure’, was used to calculate seismic induced displacements. Horizontal yield 

accelerations were calculated for any combination of values of  ,  ,   and of the 

normalised cohesion, /c H , of engineering interest, having assumed the presence of 

the most unfavourable crack in the slope. In the analysis here presented, unlike 

Newmark’s original formulation that assumes translational failure mechanisms, 

rotational mechanisms were used instead because they are more critical for the 

stability of slopes. Seismic displacement coefficients were calculated as a function of 
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slope characteristics (  and   values). Finally, the influence of crack depth on 

earthquake-induced displacements was investigated. 

3.2 Derivation of the analytical solution 

The failure mechanisms assumed in our analysis are 2D single wedge rigid rotational 

mechanisms (see Figure 3.1). The failing wedge E-D-C-B rigidly rotates around point 

P with the ground lying on the right of the log-spiral D-C and of the vertical crack C-

B remaining at rest. The equation of the log-spiral D-C is:  

 exp tan  r r        (3.1) 

with r  being the distance of a generic point of the spiral to its centre,   being the 

angle formed by r  with the horizontal axis, r  identifying the distance of point F of 

the spiral to its centre and   being the angle made by segment P-F with the horizontal 

(see Figure 3.1). The upper bound is derived by imposing energy balance for the 

failing wedge E-D-C-B:  

  d extW W  (3.2) 

where 
dW  and 

extW  are the rate of dissipated energy and of external work respectively.  

The calculation of 
dW  accounting for the energy dissipated along the log-spiral 

segment D-C is reported in (Utili, 2013). Note that in this formulation cracks are 

treated as no-tension non-cohesive perfectly smooth (no friction) interfaces, therefore 

no energy is ever dissipated along a crack and the angle   is 0°< <180°. 
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Figure 3.1 Failure mechanism. Note that   . The wedge of soil enclosed by black lines D-C 

(logarithmic spiral failure line), B-C (pre-existing crack), B-E (upper surface of the slope) and E-D 

(slope face) rotates around point P.  

 

(Michalowski, 2013) has provided a limit analysis upper bound formulation for 

vertical cracks that form simultaneously with the onset of the failure mechanism in an 

intact slope. These cracks assumed to form due to the soil tensile strength being 

exceeded at the same time as the log-spiral surface D-C is formed due to the shear 

strength being exceeded. However, these cracks generated as part of the failure 

mechanism taking place are always less detrimental (critical) to slope stability than 

cracks pre-existing the formation of the slope failure mechanism, since they require 

energy to be dissipated for their formation which is not the case for pre-existing cracks 

(Michalowski, 2013). Therefore, in this chapter only the presence of (more critical) 

pre-existing cracks is considered. 
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The rate of external work for the sliding wedge E-B-C-D, 
extW , is calculated as the 

work of block E-D-F minus the work of block B-C-F. The work of block E-D-F is 

calculated by algebraic summation of the work of blocks P-D-F, P-E-F and P-D-E 

(Chen, 1975). The work of block B-C-F is calculated by algebraic summation of the 

work of blocks P-C-F, P-B-F and P-C-B (Utili, 2013; Utili & Crosta, 2011; Utili & 

Nova, 2007). Note that here, in addition to the weight force, a horizontal pseudo-static 

force, h h h.. gPSF M K K A   , with g being the gravitational acceleration and M  the 

mass of the wedge, and a vertical one, v v v.. gPSF M K K A  , are added to account 

for the seismic action (Chang et al., 1984; Chen & Liu, 1990).  

The calculation of the expression 
extW  for each block is provided in Appendix B. 

Substituting them into Eq. (3.2), the following is obtained: 

  

 
v 1v 2v 3v 4v 5v 6v2 3

h 1h 2h 3h 4h 5h 6h

1
d

K f f f f f f
c r f r

K f f f f f f
  

       
  

     
 (3.3) 

with 1vf , 2vf , 3vf , …, 6hf  are functions provided in Appendix B. Dividing all terms 

in Eq. (3.3) by   and 2r , and rearranging, the stability factor, /H c , is obtained: 

 

 

  

 
h 1v 2v 3v 4v 5v 6v

h 1h 2h 3h 4h 5h 6h

, , , , , ,

exp tan sin sin
 

1

h

d

H
N f K

c

f

K f f f f f f

K f f f f f f


     

    



 

     
       

 
     

 (3.4) 

With h/vK K   (consistently with Figure 3.1, the + sign indicates vertical downward 

acceleration, whereas the – sign indicates vertical upward acceleration). The global 

minimum of  , , , , , ,hf K       over the three geometrical variables , ,  



 

 

Chapter 3: On the Stability of Fissured Slopes Subject to Seismic Action                         (3) 

 

27 

 

provides the least (best) upper bound on the stability factor having assumed that the 

most unfavourable crack for the slope is present. By solving Eq. (3.3) with respect to 

hK  instead, the upper bound on the yield seismic coefficient,
yK , is obtained: 

 

   

 

   
1v 2v 3v 4v 5v 6v

1v 2v 3v 4v 5v 6v 1h 2h 3h 4h 5h 6h

, , , , , / ,  

/ exp tan sin sin

 

y y

d

K f c H

c H f

f f f f f f

f f f f f f f f f f f f

      

     





      

    


          

 (3.5) 

The global minimum of  , , , , , / ,  yf c H       over the three geometrical 

variables , ,   provides the least upper bound on
yK .  

Note that unlike the case of intact slopes, failure mechanisms may in principle 

daylight on the slope face above the slope toe. So potential failure mechanisms passing 

above the toe were considered in the current analysis by discretising the slope face in 

several points and calculating the stability factor associated to each potential 

mechanism (see  

Figure 3.2a). In all the cases considered here no potential mechanism passing above 

the slope toe turned out to be a critical failure mechanism. In the case of intact slopes 

with a low value of  , (You & Michalowski, 1999) found that for high values of hK

, the failure mechanism passes below the slope toe (see  

Figure 3.2b). The results reported here in this chapter include both types of failures. 

Failure mechanisms passing below the toe were found for slopes with low friction (e.g. 

20   ) and high /c H . 
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Figure 3.2 a) Potential failure mechanism passing above the slope toe (wedge E-R-N-M) and the one 

taking place (wedge E-D-C-B),(after Utili, 2013). b) Failure mechanism passing below the slope toe 

(wedge E-D-Q-C-B). 

 

3.3 Stability factor 

The global unconstrained minimization of  , , , , , ,hf K       in Eq. (3.4) provides 

the stability factor when the most unfavourable crack is present. The stability factors 

obtained are plotted in Figure 3.3 against the inclination of the slope face,  , for  = 

20°, 30° and 40°, with hK  ranging from 0.1 to 0.4, and for   ranging from -1 to +1. 

For sake of completeness, the largest range of   reported in the literature ( ranging 

from -1 to +1) was chosen (see (Hoe I. Ling, Leshchinsky, & Mohri, 1997; Shukha & 

Baker, 2008)). The four charts of Figure 3.3 are useful to practitioners in order to get 

an immediate estimate, erring on the safe side, of the stability of a fissured slope 

subject to seismic excitation when no data on either the depth or the position of the 

existing cracks are known. For some combinations of the slope parameters, a 

translational failure mechanism, indicated by grey lines in the figures, occurs instead 
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of the rotational one. Note that translational mechanisms are always particular cases 

of rotational ones, obtained when the radius of the spiral,  r  approaches infinity.  

A key question from a practitioner’s viewpoint is how much the presence of cracks 

may affect slope stability and when they may be safely neglected in a stability analysis. 

The answer to this is provided in Figure 3.4, where the difference in percent between 

the obtained stability factors and the corresponding factors for a slope of the same 

characteristics but intact is plotted for all the parameter combinations of engineering 

interest. From the figure is apparent that the presence of cracks can cause substantial 

reduction of stability (up to 30%), with the reduction being more significant for steep 

slopes. This result is explained by the fact that steep slopes are subject to failure 

mechanisms that involve deeper cracks than gentle slopes. The depth, ch  and location,

xc  of the crack associated to the failure mechanism found as a result of the analysis 

for various levels of hK are plotted in Figure 3.5a and b respectively. The subscript ‘c’ 

stands for critical since the crack here considered is the most critical that may exist for 

the stability of the slope. From the figure emerges that ch  increases with hK whatever 

the slope inclination. Also for 90   , 0cx   independently of the value of hK . 
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Figure 3.3 Stability factor against slope inclination for the most unfavourable crack scenario, i.e. 

the most critical mechanism among all the potential mechanisms involving cracks of any depth and 

location is sought, with /v hK K  . a) 
hK =0.1 ;b) 

hK =0.2; c) 
hK =0.3 

In Figure 3.5b, the horizontal distance of the crack from the slope crest, cx  is plotted 

against  . It turns out that the higher the intensity of the seismic excitation, the more 

xc shifts inwards. When 90   , x 0c  independently of the level of hK  with the 

failing wedge becoming an infinitesimal slice. As observed in (Utili, 2013) in the 

absence of seismic action, 90   is a singular case with the failure mechanism 
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involving a vertical slice of infinitesimal width and of finite height H , translating 

away r  .  

Finally comparing the curves plotted in Figure 3.4 for different levels of hK , it can 

be inferred that the stronger the earthquake is, the larger the reduction of slope stability 

caused by the presence of cracks. On the other hand when   is close to   and hK  is 

small, the reduction of N is less than 5%. Therefore, it can be concluded that the 

presence of cracks cannot be neglected except in the case of gentle slopes of high angle 

of shearing resistance subject to moderate earthquakes.  

In previous limit analysis works accounting for the presence of a vertical pseudo-

static acceleration, this is always assumed to be downward (e.g. (Chen & Liu, 1990; 

Hoe I. Ling et al., 1997)) implying that downward acceleration is always detrimental 

to slope stability whereas upward acceleration is beneficial or, at least less detrimental 

than the downward one. Here instead, it will be shown that both downward and upward 

directions can be detrimental (or beneficial) depending on the geometrical and 

mechanical characteristics of the slope. As shown in Figure 3.3, in general the stability 

factor, N, increases with the value of   (with the lowest line being for  =+1 and the 

highest one for  =-1), so for low values of  , downward vertical acceleration is 

detrimental to stability whereas upward acceleration is beneficial. 
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Figure 3.4 Reduction in percent of the stability factor due to the most unfavourable crack versus 

slope inclination, for various combinations of 
hK , and  . 
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Figure 3.5 a) Depth of the most unfavourable crack versus slope inclination for various
hK with

=20º and  =0. b) Location of the most unfavourable crack, measured from the slope toe, versus 

slope inclination for various
hK with  =20º and  =0. Black curves indicate a rotational failure 

mechanism whilst grey curves indicate a translational failure mechanism. 

This is in agreement with the assumption routinely made in the literature. However, 

examining the charts of Figure 3.3 more closely, there are several instances where 

curves for the same   and hK  but different   value intersect. For instance all the 

lines obtained for hK  =0.2 and  =40° intersect at 47    (see Figure 3.3b): on the 

right side of the intersection point, N decreases with   increasing, but on the left side 

of the point, the trend is the opposite with N increasing for   increasing. So on the 

left side of 47   , upward vertical acceleration is detrimental to slope stability 
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whereas downward acceleration is beneficial. This trend becomes increasingly more 

marked for higher hK . The results here illustrated are in agreement with the analysis 

recently carried out by Shuka and Baker (Shukha & Baker, 2008) employing limit 

equilibrium on intact slopes; however, the results here illustrated were obtained for 

slopes subject to cracks and are based on the rigorous framework of limit analysis.    

At high values of hK  (see chart 3c and 3d), there are several intersection points 

between the curves obtained for the same   and hK  values rather than one. This 

makes it difficult to establish which case is more critical. To address this question, the 

maps of Figure 3.6 are provided. In the maps, four zones exist. In zone 1, the stability 

factor for vertical downward acceleration, N


, is lower than the factor for the case of 

no vertical acceleration, 0 N , that in turn is lower than the factor for the case of vertical 

upward acceleration, N


. In zone 2
0     N N N

 
   , in zone 3 

0   N N N
 
    and in 

zone 4 
0 N N N

 
   . The four zones exist for intact slopes as well (see Figure 3.6b 

and d). Comparing the maps obtained for fissured slopes with the ones obtained for 

the corresponding intact slopes subject to the same   values (i.e. Figure 3.6a with b 

and Figure 3.6c with d), it turns out that the presence of cracks makes zones 2 and 3 

larger. Another observation can be made about the influence of the magnitude of vK  

on the extent of those zones.    
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Figure 3.6 Charts illustrating which case is more critical for various combinations of   and  with 

hK =0.4. N  ,
0N  and N   represent the stability numbers /H c  calculated considering upward 

vertical acceleration, zero vertical acceleration and downward vertical acceleration respectively. 

In Figure 3.7a, the boundary between the zone where N N
 
  and where N N

 
  

is plotted for various levels of hK  and  . This figure provides the key information 

needed by practitioners to decide whether to assume upward or downward vertical 

acceleration for the stability analysis of a given slope. For sake of completeness also 

the boundary between the zone where 
0  N N


 and 

0N N

  is plotted in Figure 3.7b 

and the boundary between the zone where 
0N N


  and 

0N N


  in Figure 3.7c.  
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 Figure 3.7 Black lines are for fissured slopes (most unfavourable crack scenario), green lines for 

intact slopes. Solid lines are for  =1, whilst dashed lines are for  =0.5: a) in the region above the 

lines, N N  ; the opposite holds true in the region below; b) in the region above the lines,

0N N  ; the opposite holds true in the region below; c) in the region above the lines, 0N N

;the opposite holds true in the region below. 
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3.4 Yield acceleration  

The yield (in some references also called critical) horizontal acceleration, . yg K , is a 

key parameter informing practitioners of the level of seismic acceleration for which a 

given slope, stable under static conditions, becomes unstable. Also, it is needed to 

calculate earthquake induced permanent displacements via the Newmark’s approach 

(Newmark, 1965).  

The global minimum of  , , , , , / ,yf c H       over the three geometrical 

variables , ,    (see Eq.(3.5)) Provides the least upper bound on the yield seismic 

coefficient,
yK  assuming that the most unfavourable crack for the slope is present. In 

Figure 3.8, the 
yK  values obtained are plotted for slopes of various characteristics 

, ,  and /c H  together with the values of 
yK obtained for intact slopes. In 

Figure 3.9 the difference in percent between the obtained yield seismic coefficients 

and the corresponding coefficients for a slope of the same characteristics but intact is 

plotted. It can be seen that the presence of cracks causes substantial reduction of the 

yield seismic coefficient, especially for steep slopes of low  . This result is in 

agreement with the trend observed in Figure 3.4 for the reduction of the stability factor 

under a prescribed . hg K . Figure 3.9 is useful to investigate the relative influence 

between the two strength parameters (c and  ) on the yield seismic coefficient. 

Looking at the charts for  =60° and  =75° (see Figure 3.9b and c respectively) it 

can be noticed that the reduction of 
yK due to the presence of cracks becomes less 

significant for c increasing. However, in case of gentle slopes (see Figure 3.9a), there 
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is an inversion of the trend at  =30°: for slopes with   >30° the reduction in 
yK due 

to the presence of cracks becomes more significant for c increasing.  

 

 

 

Figure 3.8 Coefficient of yield acceleration versus slope inclination for intact slopes (solid lines) and 

for fissured slopes for the most unfavourable crack scenario (dotted lines). Vertical acceleration is 

absent (  =0): a))   =20º; b))   =30º; c))   =40º . Grey lines indicate a translational failure 

mechanism. Dashed and dashed-dotted lines indicate a below the slope toe mechanism occurring for 

intact and fissured slopes respectively. 
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Figure 3.9 Percentage of reduction in the yield acceleration due to the presence of the most 

unfavourable crack for the stability of the slope with  =0. a)   =45º , b)   =60º , and c)   =75º. 

As noted in the investigation of the stability factor under prescribed seismic 

excitation, assuming the presence of the most unfavourable crack can be overly 

conservative. When the maximum depth of cracks in a slope can be inferred by either 

a stress analysis or in-situ measurements, this information can be included in the 
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search for the least upper bound on 
yK  (problem ii) listed in the Introduction). 

Mathematically, this is done by imposing the following constraint (Utili, 2013): 

     exp tan . sin exp tan . sin 1 exp tan . sin
h h

H H
      

  
    

  
 (3.6) 

into the maximisation of  , , , , , / ,yf c H        in Eq.(3.5). In Figure 3.10, the 

function  h

yK h  obtained from the maximisation of  , , , , , / ,yf c H         

constrained by Eq. (3.6), is plotted against the prescribed   values for  =0,  =0.5 

and  =1.  h

yK h gradually decreases for h  increasing until a minimum at minh h  is 

reached and then increases for h  increasing (see the grey curves in Figure 3.10). Note 

that the results represented by the grey curves are obtained assuming the log-spiral 

failure surface C-D constrained to depart from the crack bottom end (see Eq. (3.6)). 

When / 1h H  , the function  h

yK h  tends to infinity because the volume of the 

wedge E-B-C-D sliding away becomes infinitesimal. However, physics dictates that 

the failure mechanism taking place may involve only one part of the total crack depth, 

i.e. the log-spiral C-D may depart from the crack above its bottom end. This possibility 

is not reflected by the mathematical function  h

yK h  since Eq. (3.6)constrains the 

failure log-spiral C-D to depart from the crack bottom end. For minh h , the least upper 

bound on the yield acceleration coefficient is provided by  min

h

yK h h   which is 

represented by black horizontal lines in Figure 3.10.  

Finally from Figure 3.10 emerges that for steep slopes (Figure 3.10d and e), the 

presence of a vertical downward acceleration reduces the yield seismic coefficient 

(hence it is detrimental to slope stability) whereas for gentle slopes with high   
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(Figure 3.10c) the opposite is true. This trend is in agreement with the results of the 

investigation, carried out in the previous section, on the influence of vK  on the 

stability factor for prescribed values of hK . 

 

  

  

Figure 3.10 a) Visualisation of a slope subject to cracks of known depth but unspecified location. In 

figures b), c), d) and e) yK is plotted against the prescribed crack depth for slopes of various  , 

and   values with /c H  =0.15: b)  =20º,  =45º; c)  =40º,  =45º; d)  =20º,  =70º; e) 

=40º,  =70º. The grey lines represent the mathematical function  h

yK h , whilst the black lines 

represent the yield seismic coefficient of the slope. 
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3.5 Validation 

The validation exercise consisted of performing finite element (FE) displacement 

based analyses with strength reduction method assuming an associated flow rule             

(  ) and FE upper and lower bound limit analyses to determine the yield seismic 

coefficient for a prescribed crack depth (problem ii in ‘Introduction’) and in the 

presence of the most unfavourable crack for the slope (problem i). The software 

package Opt+umCE (OptumG2, 2014) was used for this purpose since it allows 

running both types of analyses. Mesh dependency of the numerical results was 

checked by running simulations for different mesh sizes. The results here reported 

refer to simulations with a sufficient large number of elements (minimum of 8000 

elements) and using mesh adaptivity so that mesh dependency is negligible. The 

boundaries dimensions were chosen such that they do not affect the calculations and 

normal fixities were applied for these boundaries. Triangular element of three stress 

node and one displacement node is used for the finite element lower bound analysis , 

triangular element with 3 stress node and 3 displacement node is used for the finite 

element upper bound analysis while 15- displacement node triangular Gauss element 

type is used for the finite element displacement based analysis. The crack is 

implemented as joints of negligible strength, i.e. no-tension non-cohesive perfectly 

smooth interface, consistent with LA assumptions. In Figure 3.11a, the yield seismic 

coefficient obtained for various values of prescribed crack depth is plotted. It can be 

noted that the current analytical LA upper bound is significantly lower (i.e. better) than 

the FE upper bound. Also the gap between the numerical upper and lower bounds 

remains within ±9%, for any value of prescribed crack depth (the largest gap being at 

high depths). These results are consistent with the findings of (Loukidis et al., 2003) 
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for intact slopes subject to seismic actions. Finally note that the analytical upper 

bounds here found are quite close to the numerical lower bounds so that true collapse 

values can be determined, by taking the average of the two bounds, with an accuracy 

of ±3%.  

In Figure 3.11b, the failure mechanism obtained from FE displacement based 

analyses with strength reduction technique and the mechanism obtained from our 

analytical upper bound are plotted for the case of /h H  =0.1. A very good agreement 

is apparent. This implies that the failure mechanism assumed in the analyses presented 

in this chapter, rigid rotation of block E-B-C-D, is not only a kinematically admissible 

mechanism but it can also be considered a proxy of the true collapse mechanism. 

Therefore, the failure mechanisms determined in the presented analyses can be used 

to obtain an estimate of the volume of the failed material especially for the central part 

of a 3D landslide where plane strain conditions apply. For this reason, the areas of the 

failure mechanisms determined in this chapter are provided in the ‘Supplementary 

material’. Furthermore, several numerical analyses in the last decade for both 

associated and non-associated geomaterials, via the finite difference method  

(Dawson, Roth, & Drescher, 1999), via the finite element method (Conte, Silvestri, & 

Troncone, 2010; Crosta et al., 2014; Loukidis et al., 2003; Zheng, Liu, & Li, 2005) 

and via the discrete element method (Utili & Nova, 2008) have shown that a log-spiral 

rigid rotational mechanism is a realistic failure mechanism for uniform c-  intact 

slopes under static or seismic conditions. The validation exercise here presented 

extends this knowledge to slopes manifesting cracks.  
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Figure 3.11 Comparison between the current analytical results and those obtained using finite element 

method (FE-limit analysis and FE- displacement-based method using strength reduction technique), 
 =60º and  =0. (a) & (b) refer to the case of a slope subject to cracks of any possible location with 

a prescribed depth of /h H =0.1 for =20º. (c) & (d) refer to the same slope subject to the most 

unfavourable crack for its stability. 

 

In Figure 3.11c, the yield seismic coefficient obtained for the case of the most 

unfavourable crack being present is plotted for various values of  . To find the yield 

seismic coefficient associated to the most detrimental crack scenario by the finite 
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element method is not a straightforward exercise. In fact, in principle the depth and 

position of the most unfavourable (critical) crack may differ from the one determined 

by minimisation of  , , , , , / ,yf c H         in Eq. (3.5). To find the critical crack, 

several analyses need to be run for the same slope, each analysis for a crack of a 

different prescribed depth and position. The crack associated to the mechanism giving 

rise to the minimum value of the yield seismic coefficient is the critical one. According 

to Figure 3.11d, the most unfavourable crack is slightly deeper but almost in the same 

location as the one determined by our analytical LA. Analogous results, not reported 

for sake of space, were obtained when the stability factor is sought rather than the yield 

seismic coefficient. 

3.6 Extent of the slope zones unaffected by the presence of cracks  

In (Utili, 2013), it is shown that the presence of cracks reduces the stability of a slope 

only if they are located in a region inside the slope, depicted in Figure 3.12a as 

extending between the horizontal coordinate 1x  and 2x . The effect of seismic 

acceleration on the extension of this zone is here investigated. The location of the 

crack needs to be prescribed by imposing the following constraint (Utili, 2013): 

 

 

   

exp tan . sin

exp tan . cos exp tan . cos
exp tan . sin

/x H

 

    
  

 
 

    
(3.7) 

into the minimisation of  , , , , , ,hf K       in Eq. (3.5) (problem iii in 

‘Introduction’). Once the stability factors associated to failure mechanisms involving 

cracks of prescribed location, x, are found, i.e. the function N(x), then the limits, 1x  
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and 2x , are determined as the values of x where N(x)= intN  with intN  being the stability 

factor for the intact (un-cracked) slope. The obtained results are shown in 

Figure 3.12b, where the distance of the innermost limit of the ‘unaffected’ zone from 

the slope toe, 2x , is plotted for various levels of hK . In the figure, slopes of various 

inclinations are considered for both cases of low and high   (20° and 40° 

respectively). It can be observed that for a sufficiently high value of hK , the curves 

relative to various slope inclinations (e.g. 45    ; 60   ; 75   ) tend to intersect 

at a common point in all the cases analysed. This means that for a sufficiently high 

value of hK , the extent of the zone where the presence of cracks affects slope stability 

is no longer a function of the slope inclination, but of   and vK  solely. This result can 

be explained by looking at the geometry of the failure mechanisms taking place: for 

increasing hK . The failing wedge involves an increasingly larger inward portion of 

slope especially along the horizontal direction, to the extent that both the area of the 

failing wedge (governing the amount of external work) and the length of the failure 

log-spiral (governing the amount of energy dissipated) become very little affected by 

the inclination of the slope face.  

Moreover, the influence of vK  on the extent of the zone is important: comparing 

the curves for the case of no vertical acceleration ( =0) with the curves for the case 

of vertical acceleration present, 1    a marked difference between the trends can be 

observed. The direction of the vertical acceleration is also important: upward 

acceleration 1    makes the zone where the presence of cracks affects slope 

stability larger (see the dotted lines in Figure 3.12b) whereas downward acceleration 

1    reduces the extent of the zone (see the dashed lines in Figure 3.12b). With 
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regard to  , when friction is low (so cohesion tends to contribute more to the shear 

resistance against sliding) the zone where the presence of cracks affects slope stability 

is larger than when friction is high (so friction tends to contribute more to shear 

resistance against sliding).  

 

 

 

 

Figure 3.12 a) Illustration of the zones where cracks do and do not affect slope stability. b) The 

distance ( 2 / cotx H  ) is plotted against 
hK  for various values of   and  . Black lines are for 

 =20º and grey lines for =40º. 
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3.7 Influence of cracks on earthquake induced displacements 

The derivation of an analytical expression to calculate permanent seismic induced 

displacements for intact slopes, was carried out by (Chang et al., 1984) based on 

Newmark’s method (Newmark, 1965). The presence of cracks makes the geometry of 

the failing wedge rotating away substantially different (see Figure 3.1) and, 

consequently, makes the analytical expression needed to calculate the induced 

displacements different too. Defining xu , as the horizontal displacement of the slope 

toe, its rate can be calculated as (Chang et al., 1984):  

 
   

   

sin   sin   C g     x i y

t t t t

u r r dt dt K K dt dt 

   

      ∬ ∬  (3.8) 

with   being the angular acceleration of the failing wedge and C a dimensionless 

coefficient relating the displacement of the slope toe to the integral of the recorded 

earthquake acceleration above . yg K . iK  is the applied earthquake acceleration. The 

seismic induced displacements can be calculated from Eq. (3.8). Assuming the most 

unfavourable crack being present in the slope, the following expression for C is found 

(calculations given in Appendix C):  

 
 

 
1v 2v 3v 4v 5v 6v4

1h 2h 3h 4h 5h 6h

2

exp tan sin  

C  

f f f f f f
r

f f f f f f

Gl




    

      
              

(3.9) 

According to Eq. (3.9), C depends on both the slope geometrical features and the 

ground strength parameters. C values are plotted in Figure 3.13 for various 

combinations of
yK ,   and  . It is convenient to plot C as a function of 

yK ,    and 

  since 
yK appears explicitly in the double integral in Eq. (3.8), i.e. out of the four 
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parameters /H c ,   and  , and
yK , only three are independent. In Figure 3.13, 

values of C calculated for intact slopes are reported as well for sake of comparison.  

To assess the influence of the presence of cracks on seismic induced displacements 

an example is here considered. The records of two well-monitored earthquakes, the 

Northridge earthquake in 1994 (California, USA) and the Loma Prieta earthquake in 

1989 (California, USA), whose features are provided in Table 3.1, are applied to a 

slope with  =20°, /c H =0.1,  =55° and  =0.  

The horizontal displacement of the slope toe accumulating over time is plotted in 

Figure 3.14a whilst the final accumulated displacement is plotted against   values in 

Figure 3.14b for both cases of intact slope and slope subjected to the most 

unfavourable (critical) crack. By comparing the two curves for the same given 

earthquake, it turns out that the presence of cracks increases the amount of 

displacement significantly: for instance, in the case of the Northridge earthquake, 

cracks make the total accumulated displacement 5 times larger than the displacement 

occurring if the slope is un-fissured. With regard to the influence of the angle of 

shearing resistance  , it can be observed that the difference between displacements 

undergone in case of intact slope and in case of fissured slope is strongly affected by 

the value of   with the difference decreasing for increasing   and becoming 

negligible at high value of  .  
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Figure 3.13 Seismic displacement coefficient versus slope inclination for intact slopes (solid lines) and 

for slopes subject to the most unfavourable crack (dashed lines) for various values of  ,  and yK . 
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Figure 3.14 a) Horizontal displacement of the slope toe, 
xu , versus time ( =20º,  =55º,  =0, 

and /c H =0.1). b) Relationship between the final accumulated displacement 
xu  and the angle of 

shearing resistance (  =55º,  =0, and /c H =0.1). Black lines represent the displacements 

induced by the Northridge earthquake while green lines the displacements induced by the Loma 

Prieta earthquake. Solid lines refer to the case of intact slope whilst dashed lines to the case of slope 

subject to the most unfavourable crack. 

Finally, the relationship between crack depth and final accumulated displacements 

was investigated by analysing an example case. Final accumulated displacements were 

calculated for various prescribed crack depths (h) assuming as input the accelerogram 

of the Northridge earthquake and for various level of vertical acceleration (Eq. (3.5), 

(3.6) and (3.9).  

The final accumulated displacements are plotted in Figure 3.15 against /h H . From 

the figure a highly non-linear dependence of the displacements on crack depth is 

apparent implying that limiting the maximum crack depth (e.g. by using geosynthetics 

to increase the ground tensile strength) can have a substantial beneficial effect in 
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reducing displacements. Furthermore, Figure 3.15 is useful to investigate the influence 

of the vertical acceleration on accumulated displacements. In the case here considered, 

it turns out that the vertical acceleration has a significant influence with downward 

vertical acceleration being detrimental to slope stability and upward vertical 

acceleration being beneficial. However, according to the results reported in previous 

sections of this chapter, depending on the geometrical and mechanical features of the 

slope (i.e. the values of   and  ), the opposite may also be true. 

Table 3.1 Main characteristics of the earthquakes considered in the example cases. 

Earthquake Northridge  Loma Prieta  

Date 17/1/1994 9/2/1989 

Station 24283 Moorpark - Fire Sta. 57476 Gilroy – Historic Bldg. 

Magnitude 6.7 6.9 

Direction 180º 180º 

Peak accel. (g) 0.292 0.241 

Epicentre distance (km) 23 28.1 

 

 

Figure 3.15 Horizontal final displacement at the slope toe versus normalised crack depth for a slope 

of given characteristic ( =20º,  =55º and /c H =0.1) subject to the Northridge earthquake for 

various values of  . 
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3.8 Conclusions 

A comprehensive parametric analysis was carried out to investigate the effect of 

seismic action on fissured slopes employing the upper bound limit analysis method 

together with the pseudo static approach. An analytical solution was derived assuming 

uniform c,   slopes with vertical cracks of either known or unknown geometry. Charts 

providing the stability factor for fissured slopes subject to both horizontal and vertical 

accelerations and charts providing the slope yield acceleration for any combination of 

c,   and slope face inclination were produced assuming the existence in the slope of 

the most unfavourable crack.  

It was found that fissures may substantially reduce slope stability, i.e. lower both 

stability factor and yield acceleration up to 30% in comparison with the case of intact 

slope. The amount of reduction depends on both the geometrical characteristics of the 

slope and the ground strength parameters: the reduction is higher for steep slopes of 

low friction angle subject to high accelerations, whereas for gentle slopes of high   

subject to moderate earthquakes it is negligible. In addition, the effect of vertical 

seismic acceleration on slope stability was analysed for both cases of intact and 

fissured slopes. Maps showing which case is more critical for slope stability between 

no vertical acceleration, upward acceleration, and downward acceleration were 

provided for any combination of  ,  , and hK .  

Maps showing zones within the slope where cracks have no detrimental effect on 

its stability were provided for various combinations of horizontal and vertical 

acceleration. To produce the maps, the location of the cracks was prescribed in the 

search for the most critical failure mechanism. When the presence of one or more 
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cracks in a slope is known, the maps tell the geotechnical engineer whether the crack 

may be discarded from the stability analysis and may help inspection engineers to 

reduce significantly the extent of the zones in a slope or embankment to be inspected. 

Finally, Newmark’s approach was employed to calculate seismic induced 

displacements. Horizontal yield accelerations were calculated for any combination of 

 ,  , and hK of engineering interest, having assumed the most unfavourable crack 

for the stability of the slope to be present. Unlike Newmark’s original formulation, 

rotational failure mechanisms, which are more critical than translational ones, were 

considered in the presented analysis. Seismic displacement coefficients were 

calculated as a function of the slope characteristics. Then, the relationship between 

crack depth and final accumulated displacements was investigated for an example 

slope subjected to the accelerograms of two past earthquakes. It emerges that the 

displacements induced for a fissured slope can be significantly larger, up to five times, 

than the case of intact slope depending on the slope characteristics. 
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4 Chapter 4: Geosynthetic-Reinforced Slopes in 

Cohesive Backfills2 

SUMMARY  

Currently, geosynthetics for reinforced slopes are calculated assuming the ground 

strength to be purely frictional, i.e. without any cohesion. However, accounting for the 

presence of even a modest amount of cohesion could allow the use of locally available 

cohesive soils as backfills to a greater extent and less overall reinforcement. But 

cohesive soils are subject to the formation of cracks that tend to reduce slope stability 

so their presence has to be accounted for in any slope stability assessment. Although 

many cracks may be present in a slope, the failure mechanism typically involves one 

crack only, which is the one that has the most adverse influence on the stability of the 

slope. In this chapter, limit analysis was employed to derive a semi-analytical method 

for uniform c   slopes that provides the amount of reinforcement needed as a 

function of cohesion, tensile strength, angle of shearing resistance and slope 

inclination. Design charts providing the value of the required reinforcement are plotted 

for both uniform and linearly increasing reinforcement distributions.  From the results, 

it emerges that accounting for the presence of cohesion allows significant savings to 

                                                 

 

2 This chapter has been published in Geotextiles and Geomembranes, (see Abd and Utili 2017a). 
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be made, and that cracks are often significantly detrimental to slope stability so they 

cannot be overlooked in the design calculations of the reinforcement. 

4.1 Introduction 

Since the 1980s, the use of geosynthetics with the aim of increasing the shear strength 

of cohesive soils has been investigated (Fourie & Fabian, 1987; T. S. Ingold, 1981; 

Terence S. Ingold & Miller, 1983; Hoe I. Ling & Tatsuoka, 1994). In the 1990’s 

Zornberg and Mitchell in their review papers on cohesive backfills (Mitchell, 1995; J. 

G. Zornberg & Mitchell, 1994) state that the use of cohesive backfills has led to 

substantial savings in areas where granular materials are not locally available. More 

recently, substantial experimentation has been performed to investigate the behaviour 

of geotextile reinforced cohesive slopes (Hu et al., 2010; R. Noorzad & Mirmoradi, 

2010; Wang et al., 2011). In particular non-woven geotextiles and geogrids of 

sufficient tensile strength have shown to be effective at increasing the strength of 

cohesive soils and providing effective drainage (e.g. (Reza Noorzad & Omidvar, 2010; 

Portelinha et al., 2013; Portelinha et al., 2014; Sukmak et al., 2015). However, in the 

methods currently available in the literature, reinforcements are still calculated 

assuming soils to be cohesionless (de Buhan et al., 1989; Richard A. Jewell, 1991; 

Dov Leshchinsky & Boedeker, 1989; D. Leshchinsky et al., 1995; Michalowski, 

1997). This conservative assumption is due to the fact that geosynthetics were initially 

conceived for cohesionless granular soils and that the first design guidelines published 

for geosynthetic reinforced earth structures disregard the beneficial effect of cohesion 

(e.g. (AASHTO, 2012; R. A. Jewell, 1996)). However, the recent edition of AASHTO 

LRFD bridge design specifications (AASHTO, 2012), allows for the inclusion of 
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cohesion in the design of geo-reinforced slopes although unfortunately no formulae 

are provided for this purpose. The AASHTO revisit was prompted by the work of 

Anderson (Anderson et al., 2008) which, for example, shows that an amount of 

cohesion as small as 10 kPa can reduce the thrust against an earth structure of up to 

50-75% for typical design conditions. In light of these findings, (Vahedifard et al., 

2014) have investigated the beneficial effect of cohesion on geosynthetic reinforced 

earth structures based on limit equilibrium concluding that ‘the results clearly 

demonstrate the significant impact of cohesion on the 
aeK  value’ (

aeK  being the 

design seismic active earth pressure coefficient). Unlike (Vahedifard et al., 2014), this 

study is concerned with the stability of geo-reinforced slopes in the absence of any 

retaining structure. One of the objectives of this study is to provide a method for the 

design of slope reinforcements where the effect of cohesion is accounted for that may 

feed into future new guidelines.  

In general, cohesive soils manifest limited, if not negligible, tensile strength so they 

are subject to the formation of cracks. The development of cracks in c   geo-

reinforced slopes leading to slope instability has also been observed in post-earthquake 

deformations (e.g. (Hoe I. Ling, Leshchinsky, & Chou, 2001)) as well as in 

experiments in geotechnical centrifuge e.g. (Porbaha & Goodings, 1996). Moreover, 

(Rafael Baker, 1981; Michalowski, 2013; Utili, 2013)  investigating unreinforced 

slopes conclude that when the presence of cracks is neglected, slope stability may be 

significantly overestimated. In this chapter, it will be shown that in order to safely 

design the geosynthetic-reinforcement of a slope accounting for the beneficial effect 

of cohesion. The possibility of the onset of a single crack forming as part of the slope 
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failure mechanism as well as the presence of multiple cracks generated over time by 

climate actions, e.g. cycles of drying – wetting (Dyer et al., 2009; Utili et al., 2015) 

and / or freezing – thawing (Hales & Roering, 2007), need to be accounted for. 

In summary, this chapter will 1) provide an analytical approach to derive lower bounds 

to the required reinforcement for c   slopes; 2) quantitatively investigate the 

beneficial effect of cohesion on slope stability; 3) quantitatively investigate the 

influence of soil tensile strength and the presence of climate-induced cracks on the 

required level of reinforcement. In addition, the influence of water pore pressures will 

be investigated. 

There are two main approaches to investigate the stability of geosynthetics-

reinforced slopes: one where the local equations of equilibrium for an equivalent 

continuum formed by ground and reinforcement together are derived via 

homogenization techniques (e.g. (de Buhan et al., 1989; Sawicki, 1983)), called 

continuum approach by (Michalowski & Zhao, 1995). Another one, to be used here, 

where ground and geosynthetic-reinforcement are considered as two separate 

structural components, called structural approach (Michalowski & Zhao, 1995). Limit 

analysis (LA) can be used with both approaches. (Sawicki & Lesniewska, 1989; 

Sawicki & Leśniewska, 1991) employed the continuum approach together with the 

static (lower bound) method of LA to provide upper bounds on the required 

reinforcement for c   slopes using the slip line method. However, their solutions do 

not account for the presence of cracks, which may significantly reduce slope stability, 

so these bounds cannot be relied upon to design the reinforcement.  
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In this study the structural approach is employed together with the kinematic (upper 

bound) method of LA to obtain lower bounds on the required level of reinforcement 

extending the LA formulation of (Michalowski, 1997) for purely frictional slopes to 

cohesive frictional ( c  )  geo-reinforced slopes. (Dov Leshchinsky & Reinschmidt, 

1985) have already used the structural approach for c   slopes employing limit 

equilibrium, but for the case of a single reinforcement layer only and neglecting the 

presence of cracks. 

Note that LA assumes a simplified constitutive behaviour for both ground and 

reinforcement, i.e. rigid – perfectly plastic, and the validity of the normality rule, i.e. 

associated plastic flow, which might not hold true for most soils. A comprehensive 

treatment of limit analysis assumptions and limitations and their implications for slope 

stability can be found in (Chen, 1975). 

4.2 Formulation of the Problem 

Geosynthetic-reinforced slopes are subject to three main possible failure modes: 

reinforcement rupture, pull out failure, and direct sliding. In this study, a rupture 

failure will be assumed in order to design the minimum amount of geosynthetic-

reinforcement whereas a combined failure (rupture and pullout) will be assumed in 

order to calculate the required length of reinforcement. 

Traction-free uniform c   slopes with an inclination angle  , ranging from 40° to 

90° and reinforced with geosynthetics layers are here considered. A common choice 

for the distribution of reinforcement with depth is to employ reinforcement layers of 

equal strength laid at equal spacing or at a spacing decreasing linearly with depth. The 
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former case gives rise to a uniform distribution (UD) of tensile strength over depth 

(see Figure 4.1a) which can be determined as: 

t

nT
K

H
  (4.1) 

with 
tK  being the average strength of reinforcement in the slope,  n  the number of 

reinforcement layers, T the strength of a single layer at yielding point and 𝐻 the slope 

height. Note that the influence of the overburden stress on the strength of the 

geosynthetics has been neglected for sake of simplicity (Michalowski, 1997). The 

second case instead, gives rise to a linearly increasing distribution (LID) of strength 

over depth (see Figure 4.1b): 

 
2 t

H y
K K

H


  (4.2) 

with K  representing the local reinforcement strength in the slope, and y the vertical 

upward coordinate departing from the slope toe (see Figure 4.2a). Note that there is 

plenty of evidence from field observations and experimental tests showing that the 

load distribution in the reinforcements for slopes under working stress conditions is 

non-linear (Allen & Bathurst, 2015; Viswanadham & Mahajan, 2007; K. H. Yang, 

Zornberg, Liu, & Lin, 2012; Jorge G. Zornberg & Arriaga, 2003) so neither a UD nor 

a LID. However, the assumption of UD or LID is consistent with the LA assumption 

of the geosynthetic-reinforced slope being at impending failure and of rigid – perfectly 

plastic behaviour for the materials of the system (ground and reinforcement) which 

possess infinite ductility. These two assumptions imply that the distribution of forces 

in the reinforcement must coincide with the distribution of reinforcement strength 

(Michalowski, 1997).  
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Figure 4.1 Geosynthetic-reinforcement layouts: (a) Uniform distribution, and (b) Linearly 

increasing distribution with depth. 

Experimental tests in the centrifuge provide clear evidence that geosynthetic-

reinforced slopes fail because of a rotational mechanism (Viswanadham & Mahajan, 

2007; K. H. Yang et al., 2012; Jorge G. Zornberg, Sitar, & Mitchell, 1998) which is 

the mechanism here assumed: the block E-B-C-D rotating around point P whose 

location is yet to be determined (see Figure 4.2a). In this mechanism, all deformations 

occur along the log-spiral D-C whose mathematical expression is: 

 exp tanr r        (4.3) 

where   and   are the angles made by r  and r  respectively with the horizontal axis, 

r  is the distance between the spiral centre, point P, and a generic point on the log-

spiral slip surface, and r  is the length of the chord P-F. The deformations undergone 

by the reinforcement layers along the log-spiral slip surface and along crack B-C are 

illustrated in Figure 4.2(b) and Figure 4.2(c) respectively. The analysis here performed 

is a two dimensional analysis, i.e. plane strain conditions are assumed. Recently (F. 

Zhang, Leshchinsky, Gao, & Leshchinsky, 2014) and (Gao, Yang, Zhang, & 

Leshchinsky, 2016) considered three dimensional failure mechanisms for reinforced 

slopes, the former employing limit equilibrium while the latter LA. Their analyses 

confirm that the most critical mechanisms are found for plane strain conditions. 
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Although from a physical viewpoint, the formation of cracks in cohesive slopes is 

due to the same ultimate mechanical cause, i.e. the presence of tensile stresses 

exceeding the ground tensile strength, here cracks will be grouped into two types 

according to the way they are dealt with by limit analysis. First type, climate induced 

multiple cracks existing in the slope prior to the formation of any failure mechanism, 

here termed ‘pre-existing’ cracks, and second type; cracks forming as part of a slope 

failure mechanism, here termed ‘forming’ cracks. A formation crack forms as part of 

a failure mechanism which is made of a log-spiral surface (D-C in Figure 4.2a) where 

soil fails in shear and of a crack (B-C in Figure 4.2a) where soil fails in tension.  

Climate induced cracks need to be considered for reinforced slopes in regions 

subject to high annual temperature fluctuations, e.g. regions subject to a continental 

climate with rigid cold winters and arid summers as in central Asia and North America, 

whereas in regions with a temperate climate cracks are much less likely to occur. So 

in regions subject to high temperature fluctuations, the presence of climate induced 

cracks cannot be overlooked since these cracks can make the slope significantly less 

stable (Michalowski, 2013; Utili, 2013) while in regions with a temperate climate, the 

geo reinforced slope may be assumed to be intact. In both cases, the possibility of 

cracks forming as part of the failure mechanism will be accounted for. 
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Figure 4.2 (a) Rigid rotational failure mechanism in a reinforced slope with a crack (B-C). The mass 

of soil enclosed by (E-B-C-D) rotates clockwise around point P. (b) Rupture of the reinforcement 

layer across the slip surface (after (Zhao, 1996)). (c) Rupture of the layer across the vertical crack. 
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4.3 Derivation of the semi-analytical solution 

According to the kinematic theorem of LA, the highest (best) lower bound to the 

required reinforcement can be derived from the following energy balance equation: 

D W  (4.4) 

where  D  and W  are the internal energy dissipation rate and the external work rate 

respectively.  D  is here calculated as follows: 

       B C B C C D C D
D Ds Dr Ds Dr

   
     (4.5) 

with 
 B C

Ds


and 
 B C

Dr


being the energy rates dissipated along B-C by ground and 

reinforcement respectively and 
 

 
C D

Ds


and 
 C D

Dr


the energy rates dissipated along 

the log-spiral C-D  (see Figure 4.2a) by ground and reinforcement respectively.  

With regard to 
 B C

Ds


, if the crack B-C is a pre-existing crack, no energy is dissipated 

by the ground since the crack is already formed hence
 

0
B C

Ds


 ; conversely if the 

crack B-C forms as part of the failure mechanism, energy is dissipated for the crack to 

form hence 
 

0
B C

Ds


  with the value of 
 B C

Ds


to be calculated as a function of the 

ground tensile strength (Michalowski, 2013). Usually when limit analysis is 

employed, the Mohr-Coulomb (M-C) function is adopted as failure criterion. But 

experimental evidence shows that the tensile tf  strength associated with the Mohr-

Coulomb (M-C) criterion / tantf c   is a significant overestimation of the tensile 

strength (Bishop et al., 1965), here called t , of most soils. To partially remedy this 

shortcoming but still use the simple linear M-C criterion, a tensile cut off is commonly 
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adopted. (Michalowski, 2013) instead proposed to modify the M-C criterion by 

adopting a non-linear function in the stress range where cracks are expected to form 

(see Figure 4.3). This non-linear function is made by a stress circle defined as being 

tangent to the M-C linear function tanc    , and having the minor principal 

stress 3  equal to the soil tensile strength, 3 t   , with tensile stresses assumed 

negative according to the soil mechanics sign convention. The adopted failure 

criterion, indicated by the solid curve in Figure 4.4, lends itself to simple LA 

calculations (see (Michalowski, 2013)) and on the other hand, accounts for the non-

linearity of soil shear strength in the stress range where cracks are expected to form. 

The energy expended for the formation of a crack D s(B-C)turns out to be (Michalowski, 

2013): 

 

2  
2

3 3

   sin 1 sin sin sin

tan 2 cos   1 sin cos

M C

c t

B C
Ds r d d

 



 

    
  

   





    
        

   (4.6) 

With   being the angle made by the segment P-B with the horizontal (see 

Figure 4.2a), 
M C

c


 being the uniaxial compressive strength consistent with the M-C 

criterion (see Figure 4.3). The two surfaces of the formed crack B-C are considered 

no-tension non-cohesive perfectly smooth (no friction) surfaces, therefore the angle 

between the velocity vector of the mass of soil sliding away and the crack surface is 

0 180     (see B-C in Figure 4.2a). 
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  Figure 4.3 Modified Mohr-Coulomb failure envelope for: (a) soil with t=1; (b) soil with 0 1t   ; 

(c) soil with t=0 (i.e. tension cut-off), based on (Michalowski, 2013) 
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Figure 4.4 shear strength of London clay inferred from drained compressive triaxial tests: non-

linear envelope (dashed curve) to the stress circles at failure (after (Bishop et al., 1965)); linear 

c    best fit with tension cut-off (solid curve). 

It is convenient to introduce a dimensionless coefficient, t, defined as the ratio of the 

ground tensile strength, t  to be measured experimentally, tf   over the maximum 

unconfined tensile strength consistent with the M-C criterion, 
M C

t


(see Figure 4.3): 

t

M C

t

t


 
  

(4.7) 

It is straightforward to observe that 0 1t   . Both 
M C

c


and 
M C

t


 are uniquely 

related to c and : 

cos
2   

1 sin

M C

c c





  
  

 
 (4.8) 

cos
2   

1 sin

M C

t c





  
  

 
 (4.9) 

The amount of cohesion and tensile strength that can be relied upon in the design of 

slopes made of soils depends on several factors that vary over time. To name a few: 
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the ground water content, the level of the phreatic line and presence of suction, the 

design lifespan for the reinforced slope since this has implications on the number of 

wetting–drying cycles and therefore the deterioration that the soil strength is likely to 

experience over time, etc. Moreover, lime or cement is often added to soils to provide 

a reliable amount of true cohesion. Several publications have been dedicated to choice 

of the shear strength parameters of clayey soils in the mechanics literature with the use 

of peak strength, residual strength, operational strength (D. M. Potts, Kovacevic, & 

Vaughan, 2009) and critical state strength advocated depending on the different 

geotechnical problem tackled. The choice of the strength parameters is outside the 

scope of this chapter. Here it is enough to recall that the designer must design the slope 

reinforcement considering the worst-case scenario for the slope in terms of soil 

strength and of hydraulic conditions that can occur over the entire lifetime of the slope 

and adopting caution.  

It is key to note that even in case of soils possessing no true cohesion, i.e. exhibiting 

zero shear strength at zero confinement, their shear strength can still be suitably 

described by the failure criterion here adopted with t = 0 and 0c   (see Figure 4.4). In 

this case, c is to be interpreted as an apparent cohesion with the strength envelope 

intercepting the   axis at the origin. From a mathematical point of view, the presence 

of this apparent cohesion means that the straight part of the failure criterion is above 

the tan   line and therefore reinforcement can be saved. The lack of true cohesion 

(and of any tensile strength) for these soils will be reflected in the solution (and in the 

results obtained) by the onset of deep cracks.  
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Now substituting equations (4.7), (4.8), and (4.9) into Eq. (4.6), the following 

expression is obtained for the energy dissipated in the ground due to the formation of 

a crack: 

 

2

2

3 2 3

sin cos 1 sin 2 cos sin sin

tan 1 sin cos   1 sin cos
B C

t
Ds c r d d

 



 

     
  

    


    
         

 

 2

1               , , , ,c r g t      

(4.10) 

The energy dissipated by the reinforcement along the crack is unaffected by the type 

of crack, ‘pre-existing’ or ‘formation’, and can be written here as:  

 

 

  sincB C

B C

Dr K u dh




   (4.11) 

where cu  represents the velocity vector along B-C (see Figure 4.2a) and dh  an 

infinitesimal length of the crack. They can be expressed as: 

cos

cos
c c

r
u r

 
 



 
   

 
 (4.12) 

 
d

cos

cr d
h




  (4.13) 

with  cr  being the distance between point P and a generic point along the crack. 

Substituting equations (4.12), and (4.13) into Eq. (4.11) and after integration, the 

following expression is obtained: 

   2 2 21
exp 2 tan sin sin

2
tB C

Dr K r     


      

 2

2               , , ,tK r g      

(4.14) 
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The expression for the energy dissipated in the ground along the log-spiral part of the 

failure mechanism (log-spiral C-D in Figure 4.2a), 
 

 
C D

Ds


, is provided by (Chen, 

1975):  

   
 

 

2

3

2

exp 2 tan
  exp 2 tan

2 tan

  , , ,

C D
Ds c r

c r g





  
   



    



     



 (4.15) 

where   is the angular velocity of the sliding wedge,   and   are the angles made 

by r  and r  with the horizontal line respectively.  

The energy dissipated by the reinforcement along the log-spiral part of the failure 

mechanism, 
 C D

Dr


, is calculated by integrating the product of the infinitesimal 

increment of reinforcement strain rate with the reinforcement tensile strength, T, 

averaged over the slope height. The infinitesimal increment is (Zhao, 1996):  

   
/sin

0

sin   sin   cos

w

xr C D
dD K dx K u



   


    (4.16) 

with w being the width of the discontinuity band (see Figure 4.2b),   the angle made 

by the reinforcement layer with the discontinuity surface, x  the strain rate in the 

longitudinal direction of the reinforcement layer, and u  the velocity vector of the 

sliding ground. For sake of space, calculations are here reported only for the case of 

UD of reinforcement (i.e. tK K ), while calculations for LID reinforcements are 

reported in Appendix D. The energy dissipated by the reinforcement over the log-

spiral part (C-D) is (Zhao, 1996): 
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   
   

 
sin   cos

cos
tC D

C D C D

r d
Dr dDr K u


  



 

     (4.17) 

After integration, the following expression is obtained: 

      2 2 21
exp 2tan sin exp 2tan sin

2
tC D

Dr K r        


         

 2

4              , , ,tK r g      

(4.18) 

Note that the reinforcement layers lying above the centre of rotation P, are subject to 

compressive stresses and therefore buckling, hence they are discarded in the 

calculation of Dr  (Michalowski, 1997). 

From Eq. (4.14) and Eq. (4.18) it emerges that the energy dissipated by the 

reinforcement along the spiral part F-C for the case of intact (un-fissured) slope is the 

same as the energy dissipated by the reinforcement along the crack (B-C), i.e.

   F C B C
Dr Dr

 
 . This means that the energy dissipated by the reinforcement is not 

affected by the presence, or absence, of cracks.  

External work (  W ) is done by the weight of the sliding wedge E-D-C-B ( sW ) and 

any pore water pressure in the ground ( wW ):   s wW W W  . The term sW  is here 

calculated as the work of block E-D-F minus the work of block B-C-F (Figure 4.2a). 

The work of block E-D-F and of block B-C-F are calculated by the algebraic 

summation of the work of blocks P-D-F, P-E-F and P-D-E (Chen, 1975) and of blocks 

P-C-F, P-B-F and P-C-B (Utili, 2013; Utili & Nova, 2007) respectively. So  
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 1 2 3 4 5 6 wW W W W W W W W      

 3

1 2 3 4 5 6              x wr f f f f f f f        

(4.19) 

The analytical expressions for 1 2 3 4 5 6,   ,   ,   ,   ,and  f f f f f f   are given in Appendix B 

while for wf   see Appendix E. Note that here only static forces are considered for sake 

of simplicity. However, in case of seismic excitation, the formulation here presented 

can be straightforwardly extended to include seismic loads by adding the contribution 

of the seismic pseudo-static forces to the external work as shown in (Utili & Abd, 

2016). 

Substitution of the various energy rate contributions calculated into the energy 

balance equation (Eq. (4.4)), provides the objective function to be optimised to 

determine the required geosynthetic-reinforcement. Substituting Eq. (4.5) and Eq. 

(4.9) with their components into Eq. (4.4) and rearranging, 
tK  is determined as: 

 

 

 

1 2 3 4 5 6 1 3

42
42

, , , , / , , / ,

wt

w

f f f f f f fK g gc

HH H g g
g g

r

f c H t



 

       

       
   

 



 (4.20) 

Eq. (4.20) provides an expression of general validity covering both types of cracks: 

pre-existing and forming cracks. In the following, first the case of geo-reinforced 

intact slope is treated followed by the case of slopes exhibiting cracks.  

4.3.1 Intact slopes 

The unconstrained maximisation of deep pre existingf   over the three geometrical variables 

, ,    provides the least (best) lower bound on the required level of reinforcement, 
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/tK H . The failure mechanism is identified by the values of , ,   associated with 

the found least lower bound. Length and location of the crack, which forms as part of 

the failure mechanism, are found as a result of the maximisation. In Figure 4.5, the 

level of reinforcement required is plotted for various slope features. The results are 

commented in section4.4. 

4.3.2 Slopes manifesting (pre-existing) cracks 

As observed earlier on, several cracks may develop over time in a geosynthetic-

reinforced slope due to climate actions. Among these cracks, the failure mechanism 

will always engage the one crack that has the most adverse effect on stability. There 

may also be the situation of the failure mechanism not engaging any existing crack. 

This can happen depending on the location and depth of the cracks. (Utili, 2013) 

analysing unreinforced slopes shows that only cracks in a (central) zone of the slope 

will be engaged by the slope failure mechanism. The worst-case scenario for the 

stability of the slope is found by setting
 

0
B C

Ds


  in Eq. (4.20), to reflect the fact 

that no energy is dissipated by crack formation: 

 

 

 

31 2 3 4

2 4
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, , , , / , , /
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f f f f f f fK gc

HH H g g
g g

r

f c H



 

       

       
   

 



 (4.21) 

and minimising    , , , , / , , /deep pre existing wf c H         over the three angles , ,   . 

   , , , , / , , /deep pre existing wf c H         is a particular case of 

 , , , , / , , / ,wf c H t         in Eq. (4.20), and is independent of the ground tensile 
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strength. The values of , ,   provide the geometry of the most adverse failure 

mechanism for the slope with the angle   identifying the crack most adverse for the 

stability of the slope. Among all the possible climate induced cracks, it is very unlikely 

that the most adverse crack will be present, so in general the slope will need less 

amount of reinforcement than the amount predicted by the maximisation of

   , , , , / , , /deep pre existing wf c H        . However, assuming the existence of the most 

adverse crack in the slope implies that the worst-case scenario in terms of climate-

induced cracks is assumed which can be a desirable choice for the designer of the 

reinforcement especially when no long term monitoring of the reinforced slope is 

planned. If the slope designer wishes to make a less conservative and more realistic 

assumption on the climate induced cracks, an equality constraint prescribing either 

depth or location of the cracks or both can be added into the search of the least lower 

bound in Eq. (4.21). This type of constraints will also be used to prescribe values of 

pre-existing crack depths in the section ‘Pre-existing cracks deepened by the failure 

process’ to investigate the stability of slopes subject to ‘shallow’ pre-existing cracks. 

In that section, it will also become clear why the function in Eq. (4.21) has been named 

 deep pre existingf   . 

4.3.3 Maximum depth of cracks 

The maximum depth for a crack, which is part of a failure mechanism, has to be limited 

due to the requirement that the new slope profile left after failure has occurred has to 

be stable (the new vertical slope on the right of B-C in Figure 4.2). In theory cracks 

deeper than this maximum depth may form, but if they become part of a slope failure 
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mechanism, the mechanism will engage them above their bottom tip so that the 

engaged crack depth will be less than or equal to the maximum depth. Lower and 

upper bounds obtained by LA to the maximum crack depth,  ℎ𝑚𝑎𝑥, were first proposed 

by (E. Spencer, 1967; Terzaghi, 1943) and (Michalowski, 2013; Eric Spencer, 1968) 

respectively. Here, to stay on the side of caution, an upper bound rather than a lower 

bound was prescribed. This in case of a dry crack takes the following expression hmax 

(Michalowski, 2013): 

3.83
tan

4 2
max

c
h

 



 
  

 
 (4.22) 

 

  

Figure 4.5 Normalized required reinforcement versus normalised soil cohesion for a slope with 

20   : (a) uniform distribution of reinforcement, (b) linearly increasing distribution. Grey lines 

indicate that the constraint of maximum crack depth is active, while black lines indicate the 

constraint is inactive. The mark + indicates the boundary between the two. 
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4.3.4 Mechanisms passing above the slope toe 

Failure mechanisms may in principle daylight on the slope face above the slope toe 

(Utili, 2013). So potential mechanisms passing above the toe were considered in our 

analysis for both types of reinforcement distribution by discretising the slope face in 

several points and calculating the stability factor associated to each potential 

mechanism. In all the cases considered no potential mechanism passing above the 

slope toe turned out to be a critical failure mechanism. 

4.4 The minimum required reinforcement  

The lower bounds on the required reinforcement expressed in dimensionless form, 

/tK H , obtained by the maximisation of  , , , , , / , , /wf c H t         and of 

   , , , , , / , /  deep pre existing wf c H         subject to the physical constraint of the crack 

depth not exceeding the maximum crack depth, are plotted in Figure 4.5 against an 

assigned level of soil cohesion for the case of intact slopes and of slopes manifesting 

pre-existing cracks respectively. The charts obtained for 20   cover the whole 

spectrum of cohesive geomaterials ranging from c=0, for cohesion-less materials (e.g. 

a granular fill), to values of cohesion so high that no reinforcement is needed (where 

the lines intersect the horizontal axis). Note that at c = 0 all the three lines depart from 

the same point since in case of zero cohesion, no cracks can form and the obtained 

/tK H  values coincide with the values already published in the literature for purely 

frictional fills as it can be expected (e.g. (Michalowski, 1997)). Grey lines indicate 

that the constraint on the maximum crack depth was active, whereas black lines 

indicate that the constraint was inactive.  
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From the charts emerges that the three lines tend to diverge for increasing cohesion. 

This trend can be explained by considering the term for the energy dissipated by the 

ground along the crack,
 B C

Ds


: the higher the value of cohesion, the higher is the 

influence of 
 B C

Ds


 in the energy balance equation (see Eq.(4.20)) so the larger is the 

difference between the case of slopes subject to the most adverse pre-existing crack (

 
0

B C
Ds


 ) and of intact slopes subject to crack formation (

 
0

B C
Ds


 ). In the latter 

case, higher values of cohesion also imply a larger influence of the ground tensile 

strength on slope stability (see the lines for 1t   and 0t   in Figure 4.5) due to the 

term 

2

2

2 3

sin 2 cos sin sin

tan 1 sin cos

t
r d







   
 

  

  
 

 
  in the analytical expression of 

 B C
Ds


 

(see Eq. (4.10)). Slopes subject to the most adverse pre-existing crack require 

significant more reinforcement (because they are less stable) than intact slopes 

especially in case of steep slopes with a UD of reinforcement and low  . Also note 

that whatever the crack scenario is, LID reinforcements are more effective (i.e. lower 

required overall reinforcement) than UDs of reinforcement because more 

reinforcement layers are concentrated in the lower part of the slope.  

4.4.1  Numerical validation  

The validation exercise undertaken entailed finite element displacement-based 

analyses with strength reduction technique (FESR), where the validity of the normality 

rule     consistently with the theory of limit analysis was assumed and Finite 

Element Limit Analyses (FELA) of slopes of various inclinations reinforced with UD 

of reinforcement and subject to the presence of the most adverse pre-existing crack. 
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All the simulations in this validation were performed using the software package 

Opt+umCE (OptumG2, 2014). The location and depth of the most critical pre-existing 

cracks found by maximisation of Eq. (4.20) for various values of /c H  were given 

as input into both the FESR and FELA simulations. The pre-existing cracks were 

mimicked by joints of negligible strength, i.e. as no-tension non-cohesive perfectly 

smooth interfaces, consistent with LA assumptions. The geosynthetics were modelled 

using truss element with interface reduction factor equals to unity. The length of the 

reinforcement layers where chosen to be equal to slope height to avoid pull-out failure. 

Any mesh dependency of the obtained results was investigated by running the same 

simulation for different mesh sizes. The results reported here are from simulations 

performed with a sufficiently large number of elements, 8000 (see Figure 4.6a), so that 

mesh dependency is negligible. The dimensions of the boundaries were chosen such 

that they do not affect the calculations and normal fixities were applied for these 

boundaries. Triangular element of three stress node and one displacement node is used 

for the finite element lower bound analysis , triangular element with 3 stress node and 

3 displacement node is used for the finite element upper bound analysis while 15- 

displacement node triangular Gauss element type is used for the finite element 

displacement based analysis. 

The obtained values of /tK H  are plotted in Figure 4.6b against /c H . It can be 

noted that the semi-analytical LA lower bounds found by maximisation of Eq. (4.20) 

are slightly better than the FELA upper bounds. This finding is consistent with 

previous literature (Loukidis et al., 2003; Utili & Abd, 2016) showing that the 

analytical upper bound found assuming a rigid rotational mechanism is lower (better) 
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than the FELA upper bound. Also the difference between the analytical upper bound 

and the FELA lower bounds is lower than 14% for any value of cohesion considered. 

Therefore, true collapse values can be determined by considering the average of the 

two bounds with an accuracy of ± 7%. Finally, the values of /tK H  determined by 

FESR simulations are very close to the semi-analytical lower bounds. Therefore, the 

results of the validation exercise performed provide confidence to adopt the upper 

bounds determined by the semi-analytical method here presented as a design tool. 

4.4.2 Charts for dry slopes 

In Figure 4.7, four design charts have been produced where /tK H  is plotted against 

slope inclinations ranging from 40° to 90° for various combinations of the shearing 

resistance angle, cohesion and tensile strength of engineering interest as well as the 

case of the most adverse pre-existing crack being present. Considering the case of 

intact slopes, it can be observed that for relatively low values of cohesion, 

/ 0.05c H  , the tensile strength, t, possesses a negligible effect on the required 

reinforcement level. But for higher levels of cohesion ( / 0.1c H  ), the tensile 

strength becomes important: for instance for t=0, 0.2, and 0.5 an extra reinforcement 

amount of 32%, 15%, and 5% respectively is required over what needed in case of 

1t  . Since a reliable determination of in situ soil tensile strength may be difficult to 

achieve, the charts in Figure 4.7 can be used to decide whether it is worth the 

investment. For instance, if the material exhibits a low cohesion, determining t  is 

not worthwhile since its value makes very little difference to the required 

reinforcement; vice-versa for soils exhibiting a high cohesion, proving some tensile 
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strength would allow making important savings on the reinforcement. Finally, it is 

observed that the beneficial influence of some tensile strength is larger in slopes of 

high   and reinforced with a LID of reinforcement. 

 

 

 

 

 

 

 

 

Figure 4.6 slope with a pre-existing crack employed for validation purposes ( 20   , 60   and 

uniform distribution of reinforcement). a) Illustration of the boundary conditions and mesh used in 

the software (OptumeCE). The size of the crack is exaggerated for visualisation purposes b) 
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Comparison among the analytical upper bounds (current study) and those obtained using FE 

analyses. 

 

 

  

  

Figure 4.7 Required reinforcement for intact slopes subject to crack formation (limited tensile 

strength of t=0.5, t=0.2 and t=0) and cracked slopes. (a) & (b) are for / 0.05c H   while (c) & 

(d) are for / 0.1c H  . Grey lines indicate that the constraint of maximum crack depth is active, 

while black lines indicate the constraint is inactive. The mark + indicates the boundary between the 

two. 
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Considering now the case of the most adverse pre-existing crack being present in 

the slope, from the figure it can be noted that /tK H  becomes significantly larger 

for soils manifesting high values of cohesion and  . To put this result in context, let 

us recall that this is a worst-case scenario to be assumed when no other information 

about climate-induced cracks is available and a conservative design is desired. If depth 

or location of the cracks can be ascertained, a less conservative estimate of the required 

reinforcement will be obtained by imposing a crack depth or location as an equality 

constraint to be added into the search for the minimum of 

     , , , , , / , /deep dep pre existing wf c H        .  

4.4.3 Illustrative examples 

To highlight quantitatively the beneficial effect that accounting for cohesion may have 

in the design of geosynthetic-reinforcements, two design examples are here provided.  

Example (1): A slope of 8m height and 75˚ inclination in clayey ground to be stabilised 

employing geosynthetics. The soil exhibiting a shearing resistance angle of 20   , 

a modest cohesion of 7.5 kPa and unit weight of 18.5 kN/m3.  

Example (2): Consider the realisation of a 5m high embankment of 45  inclination 

in a cohesive soil weighing 20 kN/m3 exhibiting a shearing resistance angle of 20  

and 5 kPa of apparent cohesion but no tensile strength in a continental climate 

(presence of pre-existing cracks). Results of the two examples are obtained from 

Figure 4.5 and listed in Table 4.1 Examples of the savings on the reinforcement that 

can be achieved by accounting for the presence of cohesion and tensile strength.. From 
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the table it emerges that accounting for cohesion without considering cracks or limited 

tensile strength allows saving up to 82% and 81.3% on reinforcement for UD and LID 

respectively. These two percentiles are 33.9% and 35.3% respectively when the worst 

crack scenario is assumed. 

Table 4.1 Examples of the savings on the reinforcement that can be achieved by accounting for the 

presence of cohesion and tensile strength. 

 Uniform distribution Linearly increasing distribution 

Normalised cohesion 
Case (1) 

𝑐 𝛾𝐻⁄ = 0 

Case (2) 

𝑐 𝛾𝐻⁄ = 0.05 

Case (1) 

𝑐 𝛾𝐻⁄ = 0 

Case (2) 

𝑐 𝛾𝐻⁄ = 0.05 

Soil tensile strength 

and crack scenario 
- t=1 

Tension 

cut-off 

(t=0) 

Presence 

of  crack* 
- t=1 

Tension 

cut-off 

(t=0) 

Presence 

of  crack* 

Example 1, Required 

reinforcement 𝐾𝑡 𝛾𝐻⁄  
0.2211 0.1307 0.1307 0.1460 0.1800 0.1123 0.1129 0.1163 

Savings for Example 

1= 

(
𝑐𝑎𝑠𝑒(1) − 𝑐𝑎𝑠𝑒(2)

𝑐𝑎𝑠𝑒(1)
)

× 100% 

- 40.8% 40.8% 33.9% - 37.6% 37.2% 35.3% 

Example 2, Required 

reinforcement 𝐾𝑡 𝛾𝐻⁄  
0.1288 0.0231 0.0241 0.0273 0.1084 0.0202 0.0210 0.0235 

Savings for Example 

2= 

(
𝑐𝑎𝑠𝑒(1) − 𝑐𝑎𝑠𝑒(2)

𝑐𝑎𝑠𝑒(1)
)

× 100% 

- 82% 81.2% 78.8% - 81.3% 80.6% 78.3% 

* The most unfavourable crack scenario is assumed. 

 

4.4.4 Influence of pore water pressure 

The effect of various hydraulic conditions on the required level of reinforcement is 

here analysed by employing the so called ur  method (Bishop & Morgenstern, 1960) 

with ur  defined as: /ur u z  with u being the pore water pressure and z  being the 

overburden depth of the point on the slip surface below the soil surface. In this method, 

a uniform value of ur  is assumed throughout the entire slope and an effective stress 

analysis is carried out. This is an approximate method to account for the presence of 

pore water pressure in partially saturated slopes, the higher the water table in the slope 



 

 

Chapter 4: Geosynthetic-Reinforced Slopes in Cohesive Backfills                            (4) 

 

84 

 

and/or the excess pore pressure due to slow drainage in the ground and or 

geosynthetic-reinforcement, the higher the value of ur . The depth of water within the 

crack is calculated to be consistent with the assumed value of ur .  

The maximum depth of crack was chosen consistently with the seepage scenario 

examined according to table 2 of (Michalowski, 2013). In Figure 4.8 values of 

/tK H  are plotted against slope inclinations ranging from 40  to 90  for ur =0, 0.25 

and 0.5. Looking at the charts two important observations can be made: the effect of 

the presence of cracks is higher in UD of reinforcements especially for steep slopes 

and the destabilising influence of pore water pressure is significantly higher in UDs of 

reinforcement than in LIDs. The reason for this is that in case of a LID, more 

reinforcement layers are laid in the lower part of the slope the pore water pressure is 

higher.  

 

Figure 4.8 Required reinforcement for slopes (with  20    and / 0.1c H  ); (a) for uniform 

distribution of reinforcement and (b) for linearly increasing distribution. Grey lines indicate that the 

constraint of maximum crack depth is active, while black lines indicate the constraint is inactive. The 

mark + indicates the boundary between the two. 

  

Fig. 8. Comparison of the required reinforcement between intact and cracked slopes (with 20   and /c H

=0.1): (a) UD of reinforcement; and (b) LID. Grey lines indicate the constraint of maximum crack depth is 

active, while black lines indicate the constraint is inactive. The mark + signals the boundary between the two. 

 

(b) (a) 
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4.4.5  Shallow (pre-existing) cracks deepened by the failure process 

In this section we consider the possibility of a failure mechanism entailing the extent 

of a pre-existing crack underneath its bottom tip (point I in Figure 4.9a) as part of the 

failure process. This implies that energy is dissipated underneath the crack tip, i.e. 

 
0

I C
Ds


 . The maximisation of  , , , , , / , , /wf c H t         (see Eq. (4.20)) over

, ,    constrained by the following additional equation prescribing the pre-existing 

crack depth, pre existingh  : 

 
 

 

exp tan . sin 1

exp tan . sin

exp tan . sin

pre existing

pre existing

h

H

h

H

  

  

  





  
   

  
 
 
 

 (4.23) 

specifies the amount of reinforcement needed having assumed the presence in the 

slope of the most adverse crack. The horizontal position of the crack engaged by the 

failure mechanism is provided as a result of the optimisation process.  

In Figure 4.9b, values of  /tK H  are plotted against the prescribed pre-existing crack 

depth for different values of /c H . The red lines refer to failure mechanisms 

involving further crack formation (
 

0
I C

Ds


 ), whereas the black lines refer to failure 

mechanisms not involving further crack formation (
 

0
I C

Ds


  and I C  ). For 

shallow pre-existing crack depths (small values of /pre existingh H ) the red lines are 

distinct from the black lines lying above them. This means that if crack formation due 

to the exceedance of the tensile strength is accounted for in the calculations, the failure 

mechanism is more critical than the failure mechanism found by disregarding it. So 
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the possibility of further crack formation cannot be overlooked and the reinforcement 

design should be based on the red lines. Instead at high values of /pre existingh H , red 

lines and black lines coincide, so the critical failure mechanism does not entail the 

deepening of pre-existing cracks which are therefore called deep cracks to indicate 

that no deepening occurs as result of the slope failure mechanism taking place. The 

boundary between shallow and deep pre-existing cracks can now be unambiguously 

identified as the point where the red and black lines no longer coincide (see the square 

symbols in Figure 4.9b).  

Another important observation is about the fact that the required reinforcement 

increases with the depth of the pre-existing cracks, but only until a certain threshold 

value beyond which it remains constant (see the horizontal parts of the lines in 

Figure 4.9b). For values of /pre existingh H smaller than the threshold, the log-spiral part 

of the failure mechanism (D-C) joins the pre-existing crack at its tip whereas for values 

larger than the threshold, the log-spiral part of the failure mechanism joins the pre-

existing crack above its tip. Importantly observing Figure 4.9b, we can conclude that 

the most adverse situation for the stability of slopes subject to climate-induced cracks 

occurs for the failure mechanism found by the maximisation of the function 

   , , , , , / , /deep pre existing wf c H         in Eq. (4.21) which also provides the most 

adverse crack for the slope as a result of the maximisation. This failure mechanism 

does not entail any further crack formation. 
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Figure 4.9 (a) Sketch of a failure mechanism involving the deepening of an existing crack. (b) 

Required reinforcement versus depth of existing cracks for 90   , 20   , 0ur   and both UD 

and LID. Grey lines refer to failure mechanisms involving further crack formation  I C
Ds 0


 , 

whereas black lines refer to failure mechanisms not involving further crack formation  I C
Ds 0


 .  
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4.5 Length of reinforcement 

In this section, the way in which the design of the length of reinforcement layers is 

affected by the presence of cracks is investigated. To calculate the minimum length of 

the reinforcement layers, a combined failure mode consisting of pull-out in some 

layers and rupture (tensile failure) in others, needs to be considered. This means that 

all possible combinations involving: rupture in some layers, layer(s) that may 

bypassed by the failure surface and layer(s) being pull-out are covered. The normalised 

length of reinforcement, /rL H , is calculated following the procedure set by 

(Michalowski, 1997) extended to the case of c   soil slopes and accounting for the 

presence of cracks. Assuming all layers are of the same length, it turns out to be: 

   

   

cos sin cot exp[tan ]

  

cos sin cot exp tan

ei

r

ci
i i i

rL

L H H

rH L

H H





     

     

 
    

 
 

      

 (4.24) 

with /eiL H   being the effective (or anchorage) length of reinforcement (see 

Figure 4.2a) yet to be calculated, i  being the angle related to the intersection between 

the failure surface and the layer i, and ciL  being part of the length of reinforcement as 

illustrated in Figure 4.2a.  

Trigonometry dictates that for a reinforcement layer crossing the crack: 

   exp tan cos exp tan cosci
i i

rL

H H


                  (4.25) 

whereas for any reinforcement layer below the crack tip ciL  = 0. /eiL H is determined 

from the following equation (Michalowski, 1997): 
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*
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    
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  

 
  

 





 

(4.26) 

with /tK H  determined from the semi-analytical method expounded in the previous 

sections; j being the number of layers pulled out; 
*

iz  being the overburden depth of 

reinforcement layer i which for gentle slopes it can be less that the depth iz  of the 

reinforcement layer below the slope crest, bf  the bond coefficient between soil and 

reinforcement and n, the number of reinforcement layers.  

An optimization procedure was carried out to find the maximum value of  rL over 

the variables  , ,    for an example slope with n = 6. bf   was taken as 0.6 according 

to the latest report from the U.S. Federal Highway Administration (Berg, Christopher, 

& Samtani, 2009). The results, presented in Figure 4.10, show that in case of the most 

adverse pre-existing crack being present the largest anchorage length is required and 

the higher the soil tensile strength the shorter the required reinforcement length (i.e. 

the case of 1t    requires less anchorage length than 0t  ). This is true for both 

reinforcement distributions considered. This finding is not surprising recalling from 

previous sections of the study the fact that the case of the most adverse pre-existing 

crack being present is the most critical one for slope stability and the higher the soil 

tensile strength is the less a slope is prone to tension cracking.  
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Figure 4.10 (a) Length of reinforcement versus slope inclination for a slope with 20   , 

/ 0.05c H  and 0ur  . (b) Failure mechanisms for a slope with 65   and uniform distribution 

of reinforcement: 1) case of intact slope not subject to crack formation (high tensile strength); 2) 

case of intact slope subject to crack formation (limited tensile strength); and 3) case of slope with a 

pre-existing crack. 

4.6 Conclusions 

A new semi-analytical method for the design of geosynthetic-reinforcement in 

cohesive backfills was presented. Since the presence of cohesion is accounted for, 

significant savings on the amount of reinforcement to be used can be made. The 

method, derived using the kinematic approach of limit analysis, provides the amount 
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of required reinforcement as a function of slope inclination and of three soil strength 

parameters: angle of shearing resistance, cohesion, and tensile strength. In addition, 

cracks are often significantly detrimental to slope stability so they cannot be 

overlooked in the design calculations of the reinforcement. Also the method takes into 

account the presence of cracks, which are a very common occurrence in cohesive soils. 

Cracks cannot be overlooked since may have a significant detrimental effect on the 

stability of the slopes. Lower bounds on the required level of reinforcement were 

determined and presented in the form of design charts. Various hydraulic scenarios 

were investigated as well. A formula is also provided to calculate reinforcement 

anchorage lengths. 

In the chapter it is shown that 1) accounting for the presence of cohesion allows 

achieving a less conservative design so that significant savings on the overall level of 

reinforcement can be made. 2) there are several situations where the presence of cracks 

reduces significantly the stability of the reinforced slopes so that in general they cannot 

be neglected in the stability analysis performed to design the amount of reinforcement 

required. 3) there are situations where the tensile strength of the ground, which rules 

the depth of the tension cracks forming in the reinforced slope, has a significant 

influence on slope stability, for instance with high levels of cohesion and angle of 

shearing resistance. 

A validation exercise was undertaken by means of both finite element lower bound 

analyses and finite element with strength-reduction technique analyses showing 

results very close to the ones obtained by the semi-analytical method here introduced. 

This provides confidence in the use of the method for design purposes.  



 

 

Chapter 5: Geosynthetic-Reinforced Slopes Subject to Seismic Action                     (5) 

 

92 

 

5 Chapter 5: Geosynthetic-Reinforced Slopes in 

Cohesive Soils Subject to Seismic Action3 

SUMMARY (Abd & Utili, 2017b) 

Currently, geosynthetic reinforcements are calculated assuming the backfill purely 

frictional. However, accounting for the presence of even a modest amount of cohesion 

may allow using locally available cohesive backfills to a greater extent and less overall 

reinforcement. Unlike purely frictional backfills, cohesive soils present are subject to 

the formation of cracks that tend to reduce slope stability which therefore need to be 

properly accounted for in any slope stability assessment. 

In the previous chapter, a semi-analytical method is derived for uniform c   slopes 

accounting for the presence of cracks that provides the amount of reinforcement 

needed as a function of soil cohesion, tensile strength, angle of shearing resistance and 

slope inclination employing the limit analysis upper bound method.  

In this chapter, the formulation is extended to the seismic case, accounting for 

earthquake action by employing the pseudo-static approach. Ready to use design 

charts providing the value of the required reinforcement are plotted for both uniform 

and linearly increasing reinforcement distributions. From the results, it emerges that 

                                                 

 

3 This chapter has been published in Procedia Engineering, see (Abd and Utili, 2017b) 
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accounting for the presence of cohesion allows significant savings to be made, but the 

presence of seismic action may require considerable additional reinforcement. 

5.1 Introduction 

The use of geosynthetics with the aim of increasing the shear strength of cohesive soils 

has been investigated by several authors (Fourie & Fabian, 1987; T. S. Ingold, 1981; 

Terence S. Ingold & Miller, 1983; Hoe I. Ling & Tatsuoka, 1994). Also, substantial 

experimentation has been performed during the last decade to investigate the 

behaviour of geotextile reinforced cohesive slopes (Hu et al., 2010; R. Noorzad & 

Mirmoradi, 2010; Wang et al., 2011). In particular non-woven geotextiles and 

geogrids of sufficient tensile strength have been proved to be effective at increasing 

the strength of cohesive soils (Reza Noorzad & Omidvar, 2010; Sukmak et al., 2015). 

However, in the methods currently available in the literature, reinforcements are still 

calculated assuming soils to be cohesionless (de Buhan et al., 1989; Richard A. Jewell, 

1991; Michalowski, 1997). This conservative assumption is due to the fact that 

geosynthetics were initially conceived for cohesionless granular soils and that the first 

design guidelines published for geosynthetic reinforced earth structures disregard the 

beneficial effect of cohesion (e.g. (R. A. Jewell, 1996)). However, the recent edition 

of AASHTO LRFD bridge design specifications (AASHTO, 2012), allows for the 

inclusion of cohesion in the design of geo-reinforced slopes although unfortunately no 

formulae are provided for this purpose. However, (Anderson et al., 2008) show that 

an amount of cohesion as small as 10 kPa can reduce the thrust against an earth 

structure of up to 50-75% for typical design conditions.  
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Prompted by these findings (Abd & Utili, 2017a) derived a semi-analytical method 

for uniform c   slopes accounting for the presence of cracks that provides the 

amount of reinforcement needed as a function of soil cohesion, tensile strength, angle 

of shearing resistance and slope inclination employing the limit analysis upper bound 

method. In this chapter the formulation is extended to the seismic case, accounting for 

earthquake action by employing the so called pseudo-static approach (Terzaghi, 1950). 

5.2 Problem formulation 

There are two main approaches to investigate the stability of geosynthetics-reinforced 

slopes: one where the local equations of equilibrium for an equivalent continuum 

formed by ground and reinforcement together are derived via homogenization 

techniques (e.g. (de Buhan et al., 1989)), called continuum approach by (Michalowski 

& Zhao, 1995), and another one, to be used here, where ground and geosynthetic-

reinforcement are considered as two separate structural components, called structural 

approach (Michalowski & Zhao, 1995). Limit analysis can be used with both 

approaches. In this chapter, the structural approach is employed together with the 

kinematic (upper bound) method of limit analysis to obtain lower bounds on the 

required strength of reinforcement. 

Limit state analyses are based on considering mechanisms in which the material 

reaches the limit state and the collapse is imminent. Such mechanisms are then 

kinematically admissible only when the forces in the reinforcement layers reach their 

limit (equal to tensile strength or the pullout force). Therefore, the reinforcement force 

distribution coincides with the distribution of reinforcement strength (Michalowski, 
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1997). A common choice is to employ reinforcement layers of equal strength laid at 

equal spacing or at a spacing decreasing linearly with depth. The former case gives 

rise to a uniform load distribution (UD) while the second one to a load distribution 

increasing with depth (LID) (see Figure 4.1 in chapter 4). Another scenario is the 

adoption of reinforcements laid at equal spacing whose strength increases (linearly) 

with depth, which also gives rise to LID. Neglecting the (little) influence of the 

overburden stress on the strength of the geosynthetics for sake of simplicity 

(Michalowski, 1997) in case of UD, the reinforcement tensile strength, K, can be 

determined as: 

t

nT
K K

H
   (5.1) 

with n  being the number of reinforcement layers, T  the strength of a single layer at 

yielding point and H  the slope height. 

In case of a LID reinforcement instead: 

 
2 t

H y
K K

H


  (5.2) 

with y is the vertical upward coordinate departing from the slope toe. 

Geosynthetics in reinforced slopes are subject to three main possible failure modes: 

reinforcement rupture, pull out failure, and direct sliding. In this chapter, a rupture 

failure will be assumed in order to design the amount of geosynthetic-reinforcement. 

Traction-free uniform c   slopes with an inclination angle  , ranging from 45° to 

90° and reinforced with geosynthetic layers are here considered. Note that any 

surcharge loads could be accounted for by a slight extension of the formulation 
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presented. Following (Michalowski, 2013) , two types of cracks will be considered: 

cracks existing in the slope before the formation of any failure mechanism, here called 

pre-existing cracks, and cracks forming as part of the failure mechanism due to the 

exceedance of ground tensile strength, here called tension cracks. Cracks will be 

treated as no-tension non-cohesive perfectly smooth (no friction) interfaces; therefore 

the angle η between the velocity vector of the mass of soil sliding away and the crack 

surface is 0 180    . The wedge E-B-C-D is assumed to rotate as a rigid body 

around point P whose location is yet to be determined. Experimental tests in the 

centrifuge provide clear evidence that this is the failure mechanism taking place in 

geosynthetic-reinforced slopes (Viswanadham & Mahajan, 2007; K. H. Yang et al., 

2012; Jorge G. Zornberg et al., 1998). The log-spiral D-C is described by the following 

expression: 

 exp tanr r        (5.3) 

where   and   are the angles made by r and r  respectively with the horizontal axis, 

r is the distance between the spiral centre, point P, and a generic point on the log-

spiral slip surface, and r  is the length of the chord P-F. 

5.3 Derivation of the semi-analytical solution 

According to the kinematic theorem of LA, the highest (best) lower bound to the 

required reinforcement can be derived from the following energy balance equation:  

D W  (5.4) 
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Where D and W are the internal energy dissipation rate and the external work rate 

respectively. D is here calculated as follows: 

       B C B C C D C D
D Ds Dr Ds Dr

   
     (5.5) 

with 
 B C

Ds


 and 
 B C

Dr


 being the energy rates dissipated along the crack by ground 

and reinforcement respectively and 
 C D

Ds


 and 
 C D

Dr


 the energy rates dissipated 

along the log-spiral part C-D  (see Figure 5.1 ) by ground and reinforcement 

respectively. With regard to
 B C

Ds


: if the crack is pre-existing  the formation of the 

failure mechanism, no energy is dissipated by the ground so
 

0
B C

Ds


 ; conversely if 

the (tension) crack opens up because the ground tensile strength is exceeded, energy 

is dissipated: 
 

0
B C

Ds


 (Michalowski, 2013). 

 

Figure 5.1 Rigid rotational failure mechanism in a reinforced slope subject to a crack (B-C). The 

mass of soil enclosed by (E-B-C-D) rotates clockwise around point P. 
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Considering tension cracks, it is known that the uniaxial tensile strength, predicted 

by the Mohr-Coulomb (M-C) failure criterion for cohesive soils, represents a 

significant overestimation of the real soil tensile strength. In fact, experimental 

evidence (e.g. (Bishop et al., 1965)) shows that a linear failure envelope is unsuitable 

to describe the tensile strength of cohesive soils because it is highly non-linear. To 

partially remedy this shortcoming yet using the linear M-C criterion, a tensile limit is 

commonly added. (Michalowski, 2013) proposed to limit the M-C envelope with the 

stress circle obtained from an unconfined uniaxial tensile strength test (see Figure 5.2). 

This composite failure criterion (circle plus M-C straight line) is sufficiently 

realistically non-linear in the tension zone and on the other hand lends itself to LA 

calculations. Accordingly, the energy expended for the formation of a tension crack, 

 B C
Ds


 turns out to be (Michalowski, 2013):  

 

2

2

3 3

sin 1 sin sin sin

tan 2 cos 1 sin cos

M C

t

B C

cDs r d d
 


 

   
  

   

 



    
   

   
   (5.6) 

with 𝜇 being the angle made by the segment P-B with the horizontal (see Figure 5.1), 

M C

c


 being the uniaxial compressive strength consistent with the M-C criterion and 

t the unconfined tensile strength as measured from laboratory experiments. It is 

convenient to introduce a dimensionless coefficient, t, defined as the ratio of the 

unconfined tensile strength measured in laboratory experiments, t over the maximum 

unconfined tensile strength according to the M-C envelope, 
C

t

M 
 (see Figure 5.2a): 

M C

t

tt


 
  (5.7) 
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It is straightforward to observe that 0 1t  . Both 
M C

c


and 
M C

t


 are related to c and 

: 

cos
2   

1 sin

M C

c c





  
  

 
 (5.8) 

cos
2   

1 sin

M C

t c





  
  

 
 (5.9) 

Now substituting equations (5.7), (5.8), and (5.9) into Eq. (5.6), the following 

expression is obtained for the energy dissipated in the ground due to the formation of 

a tension crack:  

 

 

2

2

3

2

2 3

3

sin cos 1 sin 2 cos sin

, ,

sin

tan 1 sin cos 1 sin co

,

s

,

B C

t
Ds

g

d

r

c d

c t

r
 








    




  

 

   

  


    
    

   




   (5.10) 

To calculate the energy dissipated by the reinforcement along the crack, it does not 

matter whether the crack is pre-existing or tension induced. The energy dissipated 

turns out to be (Abd & Utili, 2017a):  

     2 2 2 2

4

1
exp 2tan sin sin , , ,

2
t tB C

Dr K r K r g           


         (5.11) 

The expression for the energy dissipated in the ground along the log-spiral part of the 

failure mechanism (see log-spiral C-D in Figure 5.1), 
 C D

Ds


, is provided by (Chen, 

1975):  

   
 

 2 2

1

exp 2tan
  exp 2tan   , , ,

2tan
C D

Ds c r c r g 

  
        



  
      (5.12) 
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where   is the angular velocity of the sliding wedge,  and  are the angles made by 

r  and r   with the horizontal line respectively. 

The energy dissipated by the reinforcement over the log-spiral part of the failure 

mechanism (C-D) is calculated by integrating the product of the infinitesimal 

increment of reinforcement strain rate with the reinforcement tensile strength, T, 

averaged over the slope height. The following expression is obtained (Zhao, 1996): 

      

 

2 2 2

2

2

1
exp 2tan sin exp 2tan sin

2

, , ,

tC D

t

Dr K r

K r g





        

    


         



 (5.13) 

 

  

Figure 5.2 Modified Mohr-Coulomb failure envelope for: (a) soil of full unconfined tensile strength; 

(b) soil of zero tensile strength (tension cut-off), based on (Michalowski, 2013). 

Note that the reinforcement layers lying above the centre of rotation P, are subject 

to compressive stresses and therefore buckling, hence they are discarded in the 

calculation of rD   (Michalowski, 1997).  

The rate of external work for the sliding wedge E-B-C-D, extW , is calculated as the 

work of block E-D-F minus the work of block B-C-F. The work of block E-D-F is 
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calculated by algebraic summation of the work of blocks P-D-F, P-E-F and P-D-E 

(Chen, 1975). The work of block B-C-F is calculated by algebraic summation of the 

work of blocks P-C-F, P-B-F and P-C-B (Utili, 2013; Utili & Nova, 2007). To account 

for the seismic action, in addition to the weight force, a horizontal pseudo-static force, 

h h h.. g ..PSF M K K A   , with M  being the mass of the wedge, hK  the coefficient 

of horizontal seismic acceleration and g the gravitational acceleration, and a vertical 

one, h .. g . .PS v vF M K K A  , with vK  being the coefficient of vertical seismic 

acceleration need to be considered (Chang et al., 1984). The calculation of the 

expression extW  for each block is provided in (Utili & Abd, 2016). Here the final 

expression is recalled: 

  

 
v 1v 2v 3v 4v 5v 6v

h 1h 2h 3h 4h

3

5h 6h

1
ext

K f f f f f f

K f f f f
W r

f f


      
  

 



   
 (5.14) 

with 1v 2v 6v,, ...,f f f  and 1 2 6,...,,h h hf f f  accounting for the external work done by the 

vertical and horizontal forces respectively. Their expression is given in Appendix B. 

Substitution of the various energy rate contributions calculated into the energy balance 

equation (Eq. (5.4)), provides the objective function to be optimised to design the 

geosynthetic-reinforcement. Substituting Eq. (5.5) and Eq. (5.14) with their 

components into Eq. (5.4) and rearranging, leads to determine tK : 

  

 

 

 

v 1v 2v 3v 4v 5v 6v

h 1h 2h 3h 4h 5h 6h 1 2

3 4
3 4

1

, , , , , / , , ,

t

h v

K f f f f f f

K f f f f f fK g gc

HH H g g
g g

r

f c H t K K



 

     

 
 


      

      
   

 




 (5.15) 
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Note that  , , , , , / , , ,h vf c H t K K      , depends on three ground parameters: angle 

of shearing resistance,  , cohesion, c  , and tensile strength, t . 

5.4 Reinforcement Design 

The lower bounds on the required reinforcement expressed in dimensionless form,

tK H   , obtained by the maximisation of  v, , , , , / , , ,hf c H t K K        subject 

to the physical constraint of the crack depth not exceeding the maximum crack depth, 

are plotted in Figure 5.3 against an assigned level of soil cohesion for the case of 

initially intact slopes subject to tension crack formation and slopes with deep pre-

existing cracks respectively. The constraint on the maximum crack depth stems from 

the fact that crack depth is limited because for a crack to exist, its faces need to be a 

stable slope in itself (see B-C in Figure 5.1). Lower and upper bounds on the maximum 

depth admissible for a stable vertical crack were calculated by (Terzaghi, 1943) and 

(Michalowski, 2013) using the static and kinematic methods of limit analysis 

respectively. In the search of the failure mechanism, the following upper bound to the 

maximum crack depth, maxh   is prescribed: 

3.83
tan

4 2
max

c
h

 



 
  

 
 (5.16) 

Note that assuming an upper (rather than a lower) bound on the maximum crack depth 

is a conservative assumption. The charts in Figure 5.3 obtained for 20    cover the 

whole spectrum of cohesive geomaterials ranging from 0c  , for cohesion-less 

materials, e.g. a granular fill, to values of cohesion so high that reinforcement is not 

needed (where the lines intersect the horizontal axis). Although the general 
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formulation here provided covers the case of both vertical and horizontal 

accelerations, all design charts here presented were obtained assuming no vertical 

acceleration ( 0vK  ) for sake of simplicity. Note that at 0c   all the three lines depart 

from the same point since in case of zero cohesion, no cracks can form. The three 

lines, dotted line for the case of pre-existing cracks being present, dashed lines for 

intact slopes undergo crack formation and solid lines for intact slopessubject to but do 

not undergo crack formation, these three lines tend to diverge for increasing cohesion. 

This is because at higher values of cohesion, the influence of 
 B C

Ds


  in the energy 

balance equation (see Eq. (5.4)) is larger, which in turn makes the difference between 

the case of slopes subject to pre-existing crack (
 

0
B C

Ds


 ) and of initially intact slopes 

subject to the formation of tension cracks (
 

0
B C

Ds


 ) larger. In the latter case, higher 

values of cohesion also imply a larger influence of the ground tensile strength on slope 

stability (see the lines for t=1 and t=0 in Figure 5.3).  

From the charts emerges that seismic action affects gentler slopes to a much greater 

extent than steep slopes so that even for high levels of cohesions the reinforcement 

required for stability tend be significantly higher. For instance considering the case of 

a slope with 45  with a modest amount of cohesion, 0.05c H  , the 

reinforcement required in the static case is 0.02tK H   but in the presence of a 

seismic action of  0.3hK  , 0.21tK H   so ten times higher. 
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Figure 5.3 Normalized required reinforcement versus normalised soil cohesion for a slope with 

20  and uniform distribution of reinforcement: (a) for 45   , (b) for 60   , (c) for 75  

, and (d) for 90   . 

Another aspect emerging from the charts is the effect of the presence of pre-existing 

cracks. Looking at Figure 5.3d, emerges that the seismic action tends to reduce the 

influence of pre-existing cracks on the stability of the slopes, since the distance of the 

curve for the case of pre-existing crack (dotted line) and the one for intact slope subject 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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to crack formation (dashed line) and intact slope not subject to the formation of cracks 

(solid line) tend to become closer with increasing seismic intensity. The interpretation 

proposed here for this finding is that seismic action makes the slope less stable overall 

(so more reinforcement is required overall) but also the higher the intensity of the 

seismic action the higher its contribution to slope instability in comparison with the 

instability due to the presence of cracks. Therefore, the performance of slopes subject 

to strong earthquakes tends to be dominated by the intensity of the seismic acceleration 

rather than the presence or absence of cracks.  

In Figure 5.4 the design charts are provided for the case of LID reinforcement. The 

general trend of the lines is similar to the case of UD reinforcement. However, 

comparing Figure 5.3 with Figure 5.4, it can be seen that LID reinforced slopes is more 

vulnerable to cracks than UD reinforced slopes and it is more clear for high seismic 

intensities, so it can be concluded that the presence of cracks has higher detrimental 

impact on LID reinforced slopes than on UD reinforced ones especially when 

subjected to seismic action. 
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Figure 5.4 Normalized required reinforcement versus normalised soil cohesion for a slope with 

20    and linearly increasing distribution of reinforcement: (a) for 45   , (b) for 60   , (c) 

for 75   , and (d) for 90   . 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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5.5 Conclusions 

A semi-analytical method for the design of geosynthetic-reinforcement in uniform c-

 slopes subject to seismic action was presented. The method accounts for the presence 

of cracks which are a very common occurrence in cohesive soils and may have a 

significant detrimental effect on the stability of slopes. Design charts were presented 

which provide lower bounds on the required level of geosynthetic reinforcement as a 

function of slope inclination, soil strength parameters (angle of shearing resistance, 

cohesion, and tensile strength) and level of seismic pseudostatic acceleration. 

The main findings emerging from the design charts are that i) seismic action affects 

gentler slopes to a much greater extent than steep slopes so that even for high levels 

of cohesions the reinforcement required for stability may be significantly higher. ii) 

seismic action tends to reduce the influence of pre-existing cracks on slope stability 

since the performance of slopes subject to strong earthquakes tends to be dominated 

by the intensity of the seismic acceleration rather than the presence or absence of 

cracks . iii) The presence of cracks has higher detrimental impact on LID reinforced 

slopes than on UD reinforced ones especially when subjected to seismic action. 
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6 Chapter 6: Earthquake-Induced Displacement of 

Soil Slopes Subject to Cracks4 

SUMARRY (Abd, 2015a, 2015b) 

The upper bound theorem of limit analysis together with Newmark’s method are 

employed to evaluate the displacement of both unreinforced and geosynthetic-

reinforced soil slopes subject to cracks. The pseudo static approach has been routinely 

used in the literature to estimate the seismic displacement of soil slopes. However, the 

effect of cracks on the slope displacement has yet to be tackled. In this chapter, a new 

technique is proposed to estimate the horizontal displacement at the slope toe due to a 

given earthquake postulating rough estimation of real time crack formation. Rotational 

failure mechanisms for intact slopes exhibiting the formation of cracks as part of the 

failure process and pre-existing cracks were considered. On the basis of Newmark’s 

method, the seismic-induced displacement is calculated by incorporating a stepwise 

yield acceleration corresponding to the cracks occurring in the slope. Results of the 

proposed technique can reasonably bridge the gap between the conservatism of 

assuming the slopes subject to the most detrimental cracks, and the overestimation of 

slope stability resulted from the neglect of crack formation. Two examples illustrating 

                                                 

 

4 This chapter consists of two papers have been published in IOP Conf. Series: Earth and Environmental 

Science, see (Abd 2015a &b).  
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the procedure for a given earthquake is presented. Also, charts providing the values 

needed to calculate the stepwise yield accelerations are proposed. 

6.1 Introduction 

Cracks can be found in soil slopes and embankments due to tensile stresses such as 

seismic action or external static loading, and/or due to desiccation and cycles of 

wetting and drying. Pre-existing cracks can cause significant reduction in the stability 

of soil slopes (Rafael Baker, 1981; Nadukuru & Michalowski, 2013; Utili, 2013), 

especially if these slopes are subjected to seismic action (Utili et al., 2015). The 

presence of a vertical crack can reduce the safety factor of the slope depending mainly 

on its location and depth. Not only form potential part of the slip surface, cracks can 

also be an easy flow channel for rainfall water, which reduces the soil strength and 

exerts a lateral stress, inducing the failure when the crack is filled with water. 

As a stabilizing material, geosynthetics have been used successfully and effectively 

during the last thirty years (Ausilio, Conte, & Dente, 2000; Michalowski, 1998). 

However, cracks can cause significant reduction in the stability of unreinforced soil 

slopes (Rafael Baker, 1981; Utili, 2013), especially if these slopes are subjected to 

seismic action (Utili & Abd, 2016). Pre-existing cracks can be detrimental for 

geosynthetically-reinforced slopes (Abd & Utili, 2017a). The presence of a vertical 

crack can reduce the safety factor of the slope depending mainly on its location and 

depth. The presence of cracks form not only potential parts of the slip surface, but also 

they form easy flow channels for rainfall water which reduces the soil strength and 

exerts a lateral stress inducing the failure when these cracks are filled with water. 
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Cracks can be found in soil slopes and embankments due to tensile stresses such as 

seismic action or external static loading, and/or due to desiccation and cycles of 

wetting and drying. 

Methods for assessing the seismic stability of slopes have been developed during 

the last century. The Mononobe-Okabe methods are one of the first published works 

that address the stability of retaining walls and dams during earthquake incorporating 

dynamic earth pressure (Mononobe, 1929; Okabe, 1924). Thereafter, several limit 

equilibrium methods were developed for this purpose (e.g. (Janbu, 1954; Little & 

Price, 1958; Morgenstern & Price, 1965)) which remain the most commonly used by 

practitioners.  

More recently, numerical methods for continuum mechanics, such as the finite 

element method with strength reduction technique (e.g. (Conte et al., 2010; Dawson 

et al., 1999)) have provided the capability to reliably detect the onset of failure in 

slopes according to the approach of continuum mechanics. However, if cracks are 

present, a continuum approach no longer works since the onset of instability is ruled 

by the behaviour of single fractures. In this case, the Discrete Element Method can 

nowadays be employed for 3D analyses of slopes with cracks (Boon, Houlsby, & Utili, 

2014). Recent algorithmic advances in terms of contact detection algorithms (Boon, 

Houlsby, & Utili, 2012, 2013) have substantially reduced the runtime of these 

analyses. However, when little information on the presence of cracks is available, 

extensive parametric analyses requiring large computational times are necessary. In 

this case, an analytical approach is very desirable so that numerical analyses would be 

run only for the case(s) identified by the analytical approach as the most critical.  
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Newmark’s analytical method (Newmark, 1965) is popular among practitioners 

where a pseudo-static force is used instead of the dynamic excitation to calculate 

earthquake-induced displacements. The analytical solution for earthquake-induced 

displacements undergone by intact slopes subject to a rotational failure mechanism is 

presented by (Chang et al., 1984). One of the main limitations of using Newmark’s 

method to estimate slope displacement is the neglect of the earthquake induced 

degradation of the soil strength, i.e. it assumes a constant yield acceleration throughout 

the analysis (Jibson, 2011). In this chapter, however, earthquake induced crack 

occurrence and the consequent reduction of yield acceleration are accounted for. 

Seismic induced displacements are calculated based on a stepwise time varying yield 

acceleration. 

6.2 Formulation of the Problem 

The kinematic approach of limit analysis is used to calculate the least upper bound on 

the yield (critical) coefficient of acceleration yK for a given uniform c- slope. The 

yield acceleration can be defined as the minimum level of horizontal acceleration 

(vertical acceleration being proportional to the horizontal acceleration) that brings the 

slope to the verge of failure (i.e. safety factor =1). According to Newmark’s method 

(Newmark, 1965), slope displacements start to accumulate whenever the seismic 

induced acceleration exceeds the yield acceleration. Then, displacements occurring 

during the earthquake can be obtained by double integrating the differences between 

the applied accelerations and the yield one during the time intervals when the ground 

velocity is larger than zero.  
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Pre-existing cracks, i.e. cracks existing in the slope before any seismic excitation 

occurs, can significantly reduce the yield acceleration for a given slope, depending on 

their locations and depths (Utili et al., 2015). Here, an initially intact slope subject to 

the formation of tension cracks as a result of the earthquake is considered. In this case, 

the cracks are formed as part of the failure process at the first time the slope yield 

acceleration is exceeded. Then, in order to calculate the slope displacements generated 

by the earthquake, a new yield acceleration, accounting for the presence of the cracks 

formed the first time the yield acceleration of the intact slope was exceeded, needs to 

be calculated for all the subsequent steps.  Four cases are considered in this chapter: 

I. Slopes made of rocks / cohesive soils of unlimited tensile strength, hence not 

subject to tension cracks. 

II. Slopes made of rocks / cohesive soils of limited tensile strength.  

III. Slopes made of rocks / cohesive soils of zero tensile strength. 

IV. Slopes subject to the most unfavourable crack from a stability point of view 

pre-existing the onset of the earthquake. 

The procedure for calculating the stepwise time varying yield acceleration is outlined 

as follows: 

1. Determine the yield acceleration for an initially intact slope subject to the 

formation of tension cracks
( )

1

y c
K . Vertical tension cracks are formed as part of 

the occurring failure mechanism since energy is needed to form any crack 

(Michalowski, 2013). Therefore, the yield acceleration of a slope subject to the 

formation of tension cracks is lower than the yield acceleration of a slope of 
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sufficient tensile strength to resist crack formation 
( )

int

y c
K , i.e.

( ) ( )

1 int

y c y c
K K . This 

acceleration is used to calculate the displacements at the first time that the 

seismic acceleration exceeds the yield acceleration
( )

1 .
y c

K  

2. Determine the yield acceleration for the same slope but accounting for the 

presence of the crack generated in step 1, treated now as a pre-existing crack 

(i.e. the crack is already present so that no energy is dissipated for crack 

formation). This new value of yield acceleration,
( )

2

y c
K  is used to calculate the 

displacements in all subsequent steps.  

3. Determine the accumulated wedge displacement 
iD  with respect to the ground 

surface, at each time step (i) when the seismic acceleration exceeds
( )

2

y c
K .  

4. Calculate the dimensionless coefficient C that relates the displacement of the 

slope toe to the integral of the earthquake acceleration record above the level 

of yield acceleration. 

5. Determine the accumulated horizontal displacement at the slope toe
xiD , where

xi iD C D  , and then the total horizontal displacement 
tD  is to be found. 

It should be noted that, although several tension cracks at different locations in the 

slope may form during an earthquake, only the crack which has the worst detrimental 

effect on slope stability needs to be considered in the calculation. According to the 

kinematic approach of limit analysis, the failure mechanism taking place is the most 

critical mechanism for the stability of the slope among all the kinematically feasible 

mechanisms.  
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6.3 Calculations of the Yield Acceleration 

The upper bound theorem of limit analysis is employed here to calculate the yield 

acceleration for both intact and cracked slopes. The analytical expressions for the 

calculation of the external work done by soil masses sliding along composite log-spiral 

failure surfaces, which requires the use of fictitious wedges bordered by a log-spiral, 

were first presented in (Utili, 2005; Utili & Nova, 2008) for the case of slopes with 

horizontal upper part subject to a sequence of landslides, and for more general case of 

slopes with an inclined upper part, see (Utili & Crosta, 2011). Note that these 

calculations apply to slopes made of bonded granulates (Jiang, Zhu, Liu, & Utili, 2014; 

Utili & Crosta, 2011) as well. In (Utili & Nova, 2007), the calculation of the work 

done by a wedge enclosed by two log-spirals was first presented. The analytical 

solution is derived here for the case of a horizontal upper slope surface and vertical 

pre-existing cracks from the upper slope (see Figure 6.1). However, the solution can 

be straightforwardly extended to the case of a non-horizontal upper slope and that of 

cracks departing from the slope face, such an extension is reported in (Utili, 2013).  
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Figure 6.1 Failure mechanism. Note that   . The wedge of soil enclosed by black lines D-C 

(logarithmic spiral failure line), B-C (pre-existing crack), B-E (upper surface of the slope) and E-D 

(slope face) rotates around point P. 

According to the upper bound theorem of limit analysis, the failing wedge E-D-C-

B rotates rigidly  and log-spirally around the centre of rotation P, as yet undefined, 

with the ground lying on the right of the log-spiral piece D-C and of the vertical crack 

C-B remaining at rest. The equation of log-spiral D-C is:  

 exp tan ( )r r      (6.1) 

with r being the distance of a generic point of the spiral to its centre,   being the angle 

of shearing resistance,  r  identifying the distance of point F of the spiral to its centre, 

and  ,   being the angles made by segment P-F and segment P-D  with the horizontal, 

respectively (see Figure 6.1).  

For reinforced soil slopes, two different distributions of reinforcement will be 

considered, namely uniform distribution (UD) and linearly increasing distribution with 
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depth (LID), both illustrated in Figure 6.2. Let us introduce the dimensionless variable 

tK  as the average tensile strength of reinforcement per unit height of the slope. 
tK  is 

a function of the tensile strength of the reinforcement layer per unit width, T, and of 

the spacing between reinforcement layers, S, and can be written as: 

tK
nT

H
  (6.2) 

the two cases of reinforcement distributions have been analysed by assigning the 

corresponding value of K, for uniform distribution (UD): 

tK K  (6.3) 

and for linearly increasing distribution (LID):   

 
 

exp tan ( ) sin sin
2

exp tan ( ) sin sin
tK K

    

    

 


 
 (6.4) 

where  ,   and  are the angles made by r (or
cr ), r and r  respectively with a 

reference axis, (see Figure 6.1), r  is the distance between point P and any point on 

the log-spiral slip surface, 
cr is the distance between point P and any point on the crack, 

r  and r are the lengths of the chords P-F and P-D respectively, and   is the angle of 

shearing resistance of the soil. 

 

Figure 6.2 Geosynthetic-reinforcement layouts. (a) Uniformly distribution (UD), and (b) Linearly 

increasing distribution (LID). 
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The upper bound on the yield acceleration yK  will be derived imposing energy 

balance for the failing wedge E-D-C-B:  

D W  (6.5) 

 where D  and W  are the rate of dissipated energy and of external work respectively. 

In this chapter D  has four terms as follow: 

C D B C C D B C
D Ds Ds Dr Dr

   
      (6.6) 

where 
C DDs 

 and 
B CDs 

 are the rates of dissipated energy within the soil along the 

log-spiral segment (D-C) and along the crack (B-C) respectively. While 
C DDr 

 and 

B CDr 
 are the rates of dissipated energy within the geosynthetic reinforcement along 

the log-spiral segment (D-C) and the crack (B-C) respectively. The energy dissipated 

within the soil, 
C DDs  , along the log-spiral segment (D-C) is (Utili, 2013): 

 
 

2
exp 2 tan 1

exp 2 tan
2 tan

C DDs c r
  

   




      

 2 , , ,C D C DDs c r f       

(6.7) 

the dissipated energy within the soil 
B CDs 

 along the crack can be written as: 

 

2  
2

3 3

   sin 1 sin sin sin

tan 2 cos   1 sin cos

M C

c t

B C
Ds r d d

 



 

    
  

   





    
        

   (6.8) 

with  : angle made by the segment P-B with the horizontal (see Figure 6.1), 
M C

c


 

and 
C

t

M 
being the uniaxial compressive and tensile strength consistent with the M-

C criterion respectively, see Figure 5.2 in the previous chapter. According to the Mohr-

Coulomb failure criteria, they can be expressed as: 
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cos
2   

1 sin

M C

c c





  
  

 
 (6.9) 

 
cos

2   
1 sin

M C

t c





  
  

 
 (6.10) 

 

It is convenient to introduce a dimensionless coefficient, t, defined as the ratio of the 

ground tensile strength, t  to be measured experimentally, tf  over the maximum 

unconfined tensile strength consistent with the M-C criterion, 
M C

t


 

t

M C

t

t


 
  (6.11) 

It is straightforward to observe that 0 1t  . Now substituting Eq. (6.9) and Eq. (6.10) 

into Eq. (6.8), the following expression is obtained: 

2

2

3 2 3

sin cos 1 sin 2 cos sin sin
d d

tan 1 sin cos 1 sin cos
c c

B C

c

t
Ds c r

 



 

     
  

    


    
   

     
 

 2 , , , ,B C B CDs c r f t       

(6.12) 

the third term of the dissipated energy is the one that occurs within the geosynthetic 

reinforcement along the log-spiral part, (C-D)Dr . This can be calculated by integrating 

the product of the infinitesimal increment of strain rate undergone by the 

reinforcement and the tensile strength of the reinforcement T averaged over the 

spacing S between consecutive layers of reinforcement (Michalowski and Zhao, 

1995). For sake of space, the calculations are herein reported for uniform distribution 

(UD) of reinforcement (i.e. K=
tK ) only: 
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/sin

0

sin d sin cos( )

t

xdr K x K u



        (6.13) 

with
x : strain rate in the direction of reinforcement, t : thickness of the discontinuity 

layer, and  : angle made by the reinforcement layer with discontinuity surface, which 

can be written as: 

2


      (6.14) 

now, by integrating Eq. (6.13) over the log-spiral part (C-D), 

(C-D)

C-D

d
sin cos( )

cos

r
Dr K u


  


   (6.15) 

 

after substituting and simplifying, the following expression is obtained:  

 

 
2

(C-D) 2

sin cosexp 2tan ( )

exp 2tan (
d

in t n )s a
Dr r K







  



 


 




 
  

 
 




  (6.16) 

for uniform distribution of reinforcement (UD), 
tK K , then: 

   2 2 2

(C-D) exp 2tan (
1

sin s) exp 2tan ( ) in
2

tDr K r          

2

(C-D) 2( , , , )tDr K r g      

(6.17) 

the dissipated energy by the reinforcement along the crack B-C has been reported by 

(Abd & Utili, 2017a). An analytical formula similar to that one presented by 

(Michalowski, 1997) to calculate the energy dissipated along the log-spiral part C-D 

is employed. Note that here the angle made by the velocity vector of the ground mass 

slipping away and the crack,   is different from the soil friction angle,  (see 
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Figure 6.1). Now using Eq. (6.15), but with vertical crack (i.e.
2


   )   the following 

expression can be obtained: 

( - )

-

sinB C c

B C

Dr K u dh   
(6.18) 

With 

cos

cos
c c

r
u r

 
 



 
   

 
 (6.19) 

 
cos

cr d
dh




  (6.20) 

with 
cu the velocity vector along the crack B-C, 

cr the distance between point P and 

any point along the crack B-C, then, 

(B-C)

d
sin

cos

c
c

r
Dr Kr






 


   (6.21) 

with   is the angle made by the line P-B and a horizontal reference. 

 2 2

(B-C) 3
exp 2 tan

sin
cos d

c
(

os
)Dr r K







 


  


   (6.22) 

for uniform distribution of reinforcement (UD), 
tK K , then, integration leads to 

  2 2 2

(B-C) exp 2t
1

sian n sin(
2

)tDr K r     

2

(B-C) 3( , , , )tDr K r g      

(6.23) 

The rate of external work for the sliding wedge E-B-C-D, (i.e. W ), will be calculated 

as the work of block E-D-F minus the work of block B-C-F. The work of block E-D-

F will be calculated by algebraic summation of the work of blocks P-D-F, P-E-F and 
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P-D-E (Chen, 1975) that are here called 
1W , 

2W  and 
3W  respectively. The work of 

block B-C-F will be calculated by algebraic summation of the work of blocks P-C-F, 

P-B-F and P-C-B that are here called 
4W , 

5W  and 
6W  respectively. So, W  can be 

calculated from the following summation: 

 1 2 3 4 5 6 1 2 3 4 5 6W W W W W W W W W W W W W             (6.24) 

In (Utili, 2013), the expressions for 
1W , 

2W , …, etc. are derived for each block by 

calculation of the vectorial product of the displacement rate, u , of the block (see 

Figure 6.1) times its weight force. Here instead, in addition to the weight force, a 

horizontal pseudo-static force,
h h hF MK g K A   , with g being the gravitational 

acceleration and M the mass of the wedge, and a vertical one, 
v v vF MK g K A  , are 

added to account for seismic action. For sake of space, only the final expressions are 

reported here: 

     3

1 v 1v h 1h1 , , , ,W r k f k f          

 
   

 
   

 

3

exp 3 tan 3 tan cos sin 3 tan cos sin
1 v 2

3 1 9 tan

exp 3 tan 3 tan sin cos 3 tan sin cos

h 2
3 1 9 tan

K

K

r

        



        





   
 





   



   
 
 
 

   
 
 

 
(6.25) 

with being the rate of angular displacement of the failing, wedge E-B-C-D. For 

block P-E-F instead:  

     3

2 v 2v h 2h1 , , , ,W r K f K f          

 3 21 1 1

   v  h1   2cos    sin  
6 3

L L L
K sin K

r r
r

r  

   
  

     



  

 

(6.26) 
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for block P-D-E: 

     3

3 v 3v h 3h1 , , , ,W r K f K f          

 
    

  

    

   

v

3

h

1

 

1

 

1

 

1
sin

6

  sin
6

exp tan

exp tan

exp tan

esin sxp ta in  n

K L
sin

r

L
cos cos

r

L
si

r

K
n

r









  

  


  

  

  

 

  

 


 

 






 









 
 
 
 
  
 
 
 
 
  
  
   
 
 


 
 

 

(6.27) 

for block P-C-F: 

     3

4 v 4v h 4h1 , , , ,W r K f K f          

 
   

 

   

 

2v

3

h 2

3 3
1

3 1 9

3 sin cos 3 sin cos
 

3 1

exp 3tan

exp 3tan

9

r

K

tan cos sin tan cos sin
K

tan

tan tan

tan



 


 

      



      



  


 

   
  

 
 

   
 
 



 

(6.28) 

 

for block P-B-F: 

     3

5 v 5v h 5h1 , , , ,W r K f K f          

  22 2 2
v h   

3

 
1 2    sin  

6 3

L L L
K sin co

r
r s K

r r  

   
 

   
 

  
 

 
 

 

(6.29) 

for block P-C-B: 
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     3

6 v 6v h 6h1 , , , ,W r K f K f          

 
    

    

v

2 2h

2

3

exp 2 tan cos exp tan

e

1
sin

3

  cxp tan exp 2os sta in sin  
6

n

K
sin

K
r

   

    

    



   

       


 

 
  

 
 


  

     

 

(6.30) 

substituting Eq. (6.6) and Eq. (6.24) with their components into Eq. (6.5), the 

following expression is obtained: 

   

  

 

2 2

2 3

v 1v 2v 3v 4v 5v 6v3

h 1h 2h 3h 4h 5h 6h

1

B C C D tc r f f K r g g

K f f f f f f
r

K f f f f f f

 



 



   

      
  

       

 (6.31) 

Now, let us introduce the ratio of vertical to horizontal acceleration,   as
v hK K  . 

Consistently with Figure 6.1, the + sign indicates vertical downward acceleration, 

while the – sign indicates vertical upward acceleration. An upper bound on the 

coefficient of yield acceleration, yK , is obtained by solving Eq. (6.31) with respect to 

hK : 

     

 

 

2 3 1v 2v 3v 4v 5v 6v

y

1v 2v 3v 4v 5v 6v

1h 2h 3h 4h 5h 6h

t
B C C D

rc K
f f g g f f f f f f

H H H
K

f f f f f fr

H f f f f f f





 



 

 
         

 
     

 
       

, , , , , , , ,t
y y

Kc
K f t

H H
     

 

 
  

 
 

(6.32) 

The global minimum of  , , , , / , , ,yf c H t        over the three geometrical 

variables , ,    provides the least upper bound on the coefficient of yield acceleration 

assuming that the most unfavourable crack for the slope is present. Results obtained 

using Eq. (6.32) are presented in Figure 6.3 and Figure 6.4 for geosynthetic-reinforced 
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and unreinforced cases respectively, providing the two terms needed to find the 

proposed stepwise yield acceleration for soil slopes with either zero tensile strength 

(i.e. 0t  ) or half the maximum unconfined tensile strength of the Mohr-Coulomb 

criterion (i.e. 0.5t  ). The solid lines in Figure 6.3 and Figure 6.4 refer to slopes that 

are initially intact but they can exhibit cracks forming as part of the incipient failure 

mechanism, while the dashed lines are for slopes with earthquake induced cracks (i.e. 

the formed crack is treated here as an open crack).  

The stepwise yield acceleration, proposed in this chapter, can be found using these 

two lines (i.e. solid and dashed), where for a given soil slope properties, two values of 

yield acceleration are obtained. The one obtained from the solid line represents the 

starting value of the yield acceleration, which steps down to the value obtained from 

the dashed line as soon as exceeded for the first time by the applied acceleration, given 

by the earthquake record. It can be seen that the two lines (solid and dashed) in 

Figure 6.4 are close to each other, that is because the depth of the formed crack within 

reinforced soil is relatively shallow, especially for gentle slopes.  The definition of the 

stepwise yield acceleration is detailed by an illustrative example later in this chapter. 

It also should be noted that failure passes below the slope toe was not permitted during 

the calculations for these charts. This type of failure might occur for gentle slope with 

low angle of shearing resistance (You & Michalowski, 1999). 

6.4 Calculations of the Seismic Displacement 

The maximum horizontal displacement of the slope face occurs at the slope toe (Chang 

et al., 1984). This displacement is denoted here as 
xu  (see Figure 6.5). Based on 
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Newmark’s method, the rate of 
xu  can be calculated as follow (You & Michalowski, 

1999):  

 sin sinx i y

t t t t

u r r dt dt C K K g dt dt 

   

           (6.33) 

where  is the angular displacement  is the angular acceleration
iK is the applied 

horizontal coefficient of acceleration at step i, and C is a dimensionless coefficient that 

relates the displacement of the slope toe to the integral of the earthquake acceleration 

record above the level of yield acceleration. Performing the calculations, this 

coefficient can be expressed as: 

 
 

 

1 2 3 4 5 64

1 2 3 4 5 6

2

exp tan sin
v v v v v v

h h h h h h

f f f f f f
r

f f f f f f
C

Gl




    

      
    

        
(6.34) 

with G being the weight of the potential sliding mass and l is the distance from point 

P to the centre of gravity of that mass. The calculations for G and l are listed in 

Appendix C. To this end, the seismic induced displacements can be calculated using 

Eq. (6.33) by assigning an earthquake record and calculating the yield acceleration for 

the slope of interest.  
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Figure 6.3 Yield horizontal acceleration for 20   , / 0.05c H   and 0  . (a and b) for uniform 

distribution of reinforcement and (c and d) for linearly increasing distribution. Left hand side charts 

are for soil slopes with zero tensile strength while the right hand side are for soil slopes with limited 

tensile strength (i.e. half of Mohr-Coulomb’s tensile strength). 
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(b) 

  



 

 

Chapter 6: Earthquake-Induced Displacement of Slopes Subject to Cracks            (6) 

 

127 

 

   

  

  

Figure 6.4 Yield horizontal acceleration for uniform distribution of reinforcement with zero vertical 

acceleration. Left hand side charts (a), (b) and (c) are for soil slopes with zero tensile strength while 

(d), (e) and (f) are for soil slopes with limited tensile strength (i.e. half of Mohr-Coulomb’s tensile 

strength). 
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Figure 6.5 Illustration of the horizontal displacement at the slope toe and the angular displacement 

  . 

 

6.5 Illustrative Examples 

First, unreinforced soil slope with 70   , 20    0   and 0.15c H   and second, 

geosynthetic-reinforced soil slope with 75   , 20   , 0.1c H  , 0  , and

0.1tK H  . Both subjected to the Northridge earthquake (1994), whose main 

characteristics are listed in table 1. Four cases are analysed: case (I) soil slope with 

full tensile strength, (i.e. 1t  ), therefore not subject to tension cracks, case (II) soil 

slope of limited tensile strength, in this case 0.5t  , case (III) soil slope of zero tensile 

strength, (i.e. 0t  ), and case (IV) soil slope subjected to the most adverse pre-existing 

crack. 
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For unreinforced case, and according to the procedure mentioned earlier in this 

chapter, the stepwise yield acceleration for soil with limited or zero tensile strength is 

illustrated in Figure 6.6a. It can be noticed that the yield acceleration for a soil slope 

with limited tensile strength is reduced significantly when it is exceeded for the first 

time by the applied acceleration. This is because the crack formed as part of the failure 

at that instance, is then treated as a pre-existing one. Consequently, this could increase 

the estimated displacement as shown in Figure 6.6b.  

As the displacement corresponding to a slope with the most detrimental pre-

existing crack seems over conservative, at the same time, assuming an intact slope that 

remains intact during the earthquake may underestimate the displacement. However, 

assuming limited tensile strength for the soil slope can be adopted to bridge the gap 

between the conservatism, corresponding to a slope with the most detrimental pre-

existing crack, and the underestimation of the displacement when ignoring the crack 

formation (i.e. intact slope). Figure 6.6c provides an insight as to the way the limited 

tensile strength could change the crack properties and the orientation of the failure 

mechanism. 

For geosynthetic-reinforced case, Figure 6.7 compares yield acceleration, 

displacement and failure mechanism between slope with UD of reinforcement, and 

with LID of reinforcement. It is noticed that slope with LID has better performance 

than the same slope with UD. The yield acceleration seems less affected by the 

presence of crack, whether earthquake-induced or pre-existing crack. Consequently, 

the total horizontal displacement of the slope reinforced with LID less than UD’s one. 
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Figure 6.6 Slope with 70 , 20    and / 0.15c H  . (a) Illustration of the calculated yield for 

the four cases considered employing the Northridge earthquake (1994) as seismic input. (b)  

Accumulated horizontal displacement at the slope toe, for the four cases considered. (c) Failure 

mechanisms associated with the calculated yield accelerations. 
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Figure 6.7 Yield accelerations, horizontal displacement (δux) and failure mechanisms for a slope 

with 75 , 20    and / 0.1c H  and / 0.1tK H  . Left hand side is for uniform distribution 

of reinforcement while the right hand side is for linearly increasing distribution of reinforcement. (a 

and a’) Yield accelerations corresponding to the four cases explained earlier employing Northridge 

earthquake (1994). (b and b’) Comparison of the accumulated horizontal displacement of the slope 

toe. (c and c’) Failure mechanisms related to the yield accelerations illustrated in (a and a’). 
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Table 6.1 Main characteristics of the earthquakes considered in the example case.  

Date 17/1/1994 

Station 

Magnitude 

Direction 

Peak acceleration (g) 

24283 Moorpark - Fire Sta. 

6.7 

180º 

0.292 

23 Epicentre distance (km) 

 

6.6 Conclusions 

The upper bound theorem of limit analysis together with the pseudo static approach 

were employed to evaluate the displacements of cohesive frictional slopes subject to 

the formation of tension cracks. The formation of earthquake-induced tension cracks 

and their effect on the displacements were considered. The assumption of the stepwise 

yield acceleration can be used to reasonably bridge the gap between the conservatism 

corresponding to a slope with the most detrimental pre-existing crack, and the 

underestimation of the displacement when ignoring the crack formation throughout 

the analysis. Four cases were considered here: intact slopes of the highest unconfined 

tensile strength, intact slopes of limited tensile strength, intact slopes with no tensile 

strength, and slopes subject to cracks pre-existing the seismic event. Charts providing 

the values needed to calculate the stepwise yield acceleration are presented. It is 

noticed that slope with LID has better performance than the same slope with UD. The 

yield acceleration seems less affected by the presence of crack, whether earthquake-

induced or pre-existing crack. Consequently, the total horizontal displacement of the 

slope reinforced with LID less than UD’s one. 
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7 Chapter 7: Geosynthetics Layout Optimization 

for Reinforced Soil Slopes Subject to Cracks5 

SUMMARY (Abd & Utili, 2016) 

The upper bound theorem of limit analysis is employed to investigate the effect of pre-

existing cracks on the design length and distribution of geosynthetic layers in 

reinforced soil slopes. Two reinforcement layouts are used: uniform and linearly 

increasing distribution along the slope height. Compound failure mode involving pull-

out in some layers and tension failure (rupture) in others are considered. Results show 

that slopes with pre-existing cracks require longer reinforcement layers than intact 

ones. It emerges that for both intact and fissured slopes, a linearly increasing 

distribution of reinforcement yields better results than a uniform one. 

7.1 Introduction 

The use of geosynthetics has been proven by many researchers to be a cost-effective 

method to stabilize soil structures, e.g. (Richard A. Jewell, 1991; D. Leshchinsky et 

al., 1995; Michalowski, 2002). The design guidelines for reinforced earth structures 

conservatively assume cohesion-less soil, see e.g. (Berg et al., 2009).  However, fine-

grained soils exhibiting non-negligible cohesion might be used as fill material. On one 

                                                 

 

5 This chapter has been published in the Procedings of the 12th International Symbosium on Landslides, 

Napoli, Italy, (see Abd and Utili 2016) 
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hand, cohesion contributes to slope stability, but at the same time, cracks can develop 

in cohesive soils decreasing the beneficial effect of cohesion on slope stability. Cracks 

develop in cohesive slopes for different reasons, such as exceedance of the ground 

tensile strength (Rafael Baker, 1981), occurrence of differential settlements, 

desiccation and freezing (Hales & Roering, 2007). For unreinforced c- (cohesive-

frictional) slopes, it has been shown that the presence of cracks can significantly 

reduce the stability of a slope subjected to seismic action (Abd, 2015a; Utili & Abd, 

2016) as well as slopes under static conditions (Rafael Baker, 1981; Michalowski, 

2013; Utili, 2013; G. Zhang, Wang, Qian, Zhang, & Qian, 2012). For geosynthetic 

reinforced slopes, the presence of cracks requires increased reinforcement as presented 

in previous chapters and leads to increased seismic displacements (Abd, 2015b).  

Here, cracks are treated as no-tension non-cohesive perfectly smooth (no friction) 

interfaces; therefore, no energy is ever dissipated along a crack and the angle θ is 0°< 

θ < 180°. (Michalowski, 2013) has provided a limit analysis upper bound formulation 

for vertical cracks that are absent prior to the formation of the failure mechanism but 

instead form simultaneously with the onset of the failure mechanism in an initially 

intact slope because of the soil tensile strength being exceeded at the same time as the 

log-spiral surface D-C is formed (see Figure 7.1). However, cracks generated as part 

of the failure mechanism taking place are always less detrimental (critical) to slope 

stability than cracks pre-existing the formation of the slope failure mechanism, 

because they require energy to be dissipated for their formation which instead is not 

the case for pre-existing cracks (Michalowski, 2013). Therefore, in this chapter, only 

the presence of (more critical) pre-existing cracks is considered. Also, it will be 
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assumed that the most adverse scenario in terms of presence of cracks in the slope 

takes place, i.e. the most adverse possible crack for the stability of the slope will be 

assumed to exist. This conservative assumption reflects the fact that often neither the 

position nor the depth of the cracks present in the slope are known.  

 

 
Figure 7.1 Log-spiral failure mechanism for reinforced slope with pre-existing crack and linearly 

decreasing length of reinforcement. 

The length of geosynthetics layers can be calculated according to (Gao et al., 2016; 

H. I. Ling & Leshchinsky, 1998; Michalowski, 1997, 1998). All these studies assume 

cohesion-less soil and reinforcement of equal length. In this chapter, however, 

cohesive soil is examined and the possibility of a linearly decreasing length of 

reinforcement along the slope height is considered, in the search for a more 

economical design.  

Geosynthetics layers within reinforced slopes are subject to three main possible 

failure modes (Michalowski, 1997): reinforcement rupture, pull out failure, and direct 
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sliding. Reinforcement rupture occurs when the tensile stress within geosynthetic layer 

exceeds its tensile strength. Pull-out failure happens when the effective length of 

reinforcement behind the slip surface (see eL  in Figure 7.1) is insufficient to resist the 

axial stresses acting within the reinforcement layer. Finally, direct sliding occurs when 

the reinforced mass slides along the lowest layer of geosynthetic reinforcement (not 

considered in this study). In this chapter, rupture failure is assumed to calculate the 

required reinforcement, while a combined (rupture and pull-out) failure is assumed to 

assess the effect of the cracks on the design length of reinforcement. 

7.2 Length of reinforcement 

The effect of pre-existing (i.e. open) cracks and cracks that form as part of the failure 

mechanism on the length of reinforcement layers is investigated. To calculate the 

minimum length of the reinforcement layers, a combined failure mode consisting of 

pull-out in some layers and rupture (tensile failure) in others, needs to be considered. 

The normalised length of reinforcement, /rL H , is calculated following the procedure 

set by (Michalowski, 1997) extended to the case of c   soil slopes and accounting 

for the presence of cracks. Assuming all layers are of the same length, it turns out to 

be: 

   

   

cos sin cot exp[tan ]

  

cos sin cot exp tan

ei

r

si ci
i i i

rL

L H H

rH L L

H H H





     

     

 
    

 
 

       

 (7.1) 
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with /eiL H   being the effective (i.e. anchorage) length of reinforcement (see 

Figure 7.1) yet to be calculated, i  being the angle related to the intersection between 

the failure surface and the layer i, and siL  the length of reinforcement to be saved (see 

Figure 7.1).  siL is calculated as: 

 
 1
  cot cot

isi
z zL

H H
 


   (7.2) 

 

with 1z = depth of the uppermost reinforcement layer measured from slope crest, 𝛽 = 

slope inclination angle,  = angle defining how the length of reinforcement decreases 

with depth. 

 ciL  being part of the length of reinforcement as illustrated in Figure 7.1a. 

Trigonometry dictates that for a reinforcement layer crossing the crack: 

   exp tan cos exp tan cosci
i i

rL

H H


                  (7.3) 

whereas for any reinforcement layer below the crack tip ciL  = 0. /eiL H is determined 

from the following equation (Michalowski, 1997): 

   
2

1 2 3 4 5 6 1 2

*

1

1

2 tan sin

1
sin

w

j
i ei i

b i

t

n
i

i j

r r c
f f f f f f f g g

H H H

z L z
f

H H rK

H z

n r

 







 






 

    
            

    
 

     
  

 
  

 





 

(7.4) 
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with /tK H  determined from the semi-analytical method expounded in the previous 

chapter, and recalled in Eq. (7.5) below, and; j being the number of layers pulled out; 

*

iz  being the overburden depth of reinforcement layer i which for gentle slopes it can 

be less that the depth iz  of the reinforcement layer below the slope crest, bf  the bond 

coefficient between soil and reinforcement and n, the number of reinforcement layers.  

 

 
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   

 
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 (7.5) 

 

7.2.1 Reinforcement layers of equal length 

An optimization procedure is carried out to find the maximum value of  rL over the 

variables  , ,    for an example slope with n = 6. bf  
 
 was taken as 0.6 according 

to the latest report from the U.S. Federal Highway Administration (Berg et al., 2009). 

The results, presented in Figure 4.10, show that in case of the most adverse pre-

existing crack being present the largest anchorage length is required and the higher the 

soil tensile strength the shorter the required reinforcement length (i.e. the case of 1t    

requires less anchorage length than 0t  ). This is true for both reinforcement 

distributions considered. This finding is not surprising recalling from previous 

sections of the chapter the fact that the case of the most adverse pre-existing crack 

being present is the most critical one for slope stability and the higher the soil tensile 

strength is the less a slope is prone to tension cracking.  
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Figure 7.2 (a) Length of reinforcement versus slope inclination for a slope with 20   , 

/ 0.05c H  and 0ur  . (b) Failure mechanisms for a slope with 65   and uniform distribution 

of reinforcement: 1) case of intact slope not subject to crack formation (high tensile strength); 2) 

case of intact slope subject to crack formation (limited tensile strength); and 3) case of slope with a 

pre-existing crack. 

7.2.2 Reinforcement layers of varied length 

Let us now consider a linearly decreasing length of reinforcement along the slope 

height. The length of the upper layer is assumed to be the same as that found in the 

case of uniform length of reinforcement (i.e.  the case in which all layers have the 

same length).  The length of reinforcement layers that obtained earlier (see the 
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previous section) is assigned for the first upper most layer and kept constant, then the 

minimum angle 𝛽′ (see Figure 7.1) reducing the length of all subsequent layers is 

sought accounting for all possible failure mechanisms (i.e., pull-out and/or rupture). 

For example, the failure mechanism may involve the first layer(s) to be pulled out or 

by passed by the failure mechanism while the rest of the layers fail in tension.  The 

results are illustrated in Figure 7.3: it emerges that the adoption of a uniform 

distribution of reinforcement leads to larger savings on the length of reinforcement 

than the case of linearly increasing reinforcement distribution.  

 

Figure 7.3 Slope inclination angle β versus β' for ϕ=20˚, c⁄γH=0.05, comparing intact slopes and 

slopes subjected to the most adverse pre-existing crack. UD and LID mean uniform distribution and 

linearly increasing distribution of reinforcement respectively. 

 

7.3 Conclusions 

The effect of the design length and distribution of geosynthetics on the stability of 

reinforced soil slopes exhibiting cracks which either pre-existing the onset of the slope 

failure mechanism or forming as part of the failure mechanism was investigated. The 

results here presented are preliminary and further study is required to check the lengths 
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of reinforcement here determined against failure for direct sliding which has not been 

considered in the study. The results show that the presence of cracks leads to larger 

lengths of reinforcement, and for steep slopes. The linearly decreasing length with 

depth can be implemented regardless of the presence of cracks providing more 

economical design. Moreover, comparing a uniform distribution of reinforcement with 

a linearly increasing distribution in case of fissured slopes, it is found that longer 

reinforcement layers are required when a uniform distribution is adopted.
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8 Chapter 8: Optimal Shape Profiles for the Design 

of Geosynthetic-Reinforced Slopes6 

SUMMARY (Abd & Utili, 2017c) 

Currently geosynthetic-reinforced slopes are designed as straight profiles and a 

maximum of three tiers (and benches) is employed for multi-tiered walls. In this study, 

a numerical procedure based on the limit analysis upper bound method together with 

optimisation genetic algorithm is proposed to determine multi-linear profiles of 

optimal shapes for geosynthetic-reinforced slopes. Optimal shapes are here defined as 

those associated to the least possible amount of reinforcement required to keep the 

slope stable. The method provides an optimal profile for a prescribed average slope 

inclination, backfill strength properties and desired number of layers to be used. Two 

configurations for reinforcement layout are considered: uniform distribution and 

linearly increasing distribution with depth.  

Second the potential saving from the use of the optimal profiles are investigated 

first for static then for seismic conditions with seismic action being accounted by 

employing pseudo-static forces. Results show saving on the level of reinforcement of 

up to 50% on the traditional straight profiles and 37% on concave circular profiles 

recently proposed by  (Vahedifard et al., 2016a) for the same average slope inclination, 

                                                 

 

6 This chapter has been submitted to Geotechnical and Geoenvironmental Engineering ASCE, see Abd 

and Utili 2017c. 
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i.e. the same slope height and distance from toe to crest. Several stability charts 

illustrating the savings on the required amount of reinforcement are provided for the 

benefit of designers. Also it is shown that less volume of excavation is required when 

the optimal profiles are adopted.  

8.1 Introduction 

Currently georeinfroced slopes are designed according to a straight profile in 

elevation. However, in nature slope profiles exhibit all sorts of different shapes, 

ranging from concave to convex or partly convex and partly concave, see Figure 8.1. 

The literature on the mechanical stability of non-straight slope profiles is very limited: 

A.W. Jenike and B.C. Yen (1962) presented slope stability analyses in axial symmetry 

based on the slip-line theory formulated by Sokolovskiĭ (1960). Hoek and Bray (1981) 

argued that concave slopes in rock are more stable than convex slopes but they did not 

produce any systematic investigation to underpin their claim. 

 

Figure 8.1 Photo taken north of Iraq shows the natural concave-convex profile. 
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With regard to geosynthetic reinforced slopes, recent research on multi-tiered 

reinforced walls seem to indicate that reinforced slopes of non-straight profile can be 

more stable than the traditional straight ones (Dov Leshchinsky & Han, 2004; Liu et 

al., 2014; G.-Q. Yang et al., 2014), but the geometric configuration considered are 

limited to a maximum of four walls (Stuedlein et al., 2010) and more importantly the 

studies do not compare the mechanical performance of non-straight profiles with the 

performance of straight profiles of the same average inclination so no firm conclusions 

can be drawn. In case of unreinforced slopes instead, better performance of concave 

profiles over straight profiles of the same average inclination has been systematically 

proved by (Utili & Nova, 2007) for concave profiles of log-spiral shape for cohesive 

frictional geomaterials. Then, (Jeldes et al., 2014; Vahedifard et al., 2016b)) 

considered concave profiles whose shape is derived from Sokolovski’s theory of slip-

lines and (Vahedifard et al., 2016b) concave circular profiles both showing superior 

properties to straight profiles in terms of mechanical stability. In (Vahedifard et al., 

2016a) the performance of non straight (circular) concave profiles is systematically 

compared to the performance of reinforced slopes of the same average inclination 

made of frictional backfills. They show that circular concave profiles are always better 

from a stability point of view and conclude that saving of up to 30% on the required 

tensile strength of the reinforcement can be achieved. Unlike previous studies in this 

study, the search for the optimal profile will not be restricted to a particular category 

of shapes, i.e. circular or log-spiral or from Sokolovski’s slip lines, but any possible 

shape will be considered to achieve the most economical possible design. The 

theoretical formulation adopted and the optimisation numerical algorithms employed 

are described in detail in (Utili & Wu, 2017). 
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8.2 Problem formulation  

Aim of the formulation is to find the minimum required strength/amount of 

reinforcement for a load-free cohesion-less soil structure with horizontal upper surface 

and resting on a firm foundation. Two reinforcement layouts are included: uniform 

and linearly increasing distribution with depth, as illustrated in Figure 8.2. The tensile 

strength and amount of geosynthetic reinforcement is encapsulated as tK  which can 

be written as: 

t

nT
K

H


 
(8.1) 

with n  the number of reinforcement layers, T  the strength of a single layer at yielding 

point and H  the height of the soil structure.  

 

Figure 8.2 Geosynthetic-reinforcement layouts. (a) Uniformly distribution (UD), and (b) Linearly 

increasing distribution (LID) with depth. 

A generic profile is discretized into m+1 segments using m points with each point 

  iP  has a constant height measured from the slope toe equal to (i).H/ (m+1) where H 

is the height of the soil structure. For each point   iP   (see Figure 8.3), the x-coordinate 

ix  is allowed to vary between pre-defined lower and upper limits as shown in 

Figure 8.4. The crest and toe points are specified. By fixing these two points, the 
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average slope inclination 
H

arctan
L

   is prescribed. No other geometrical constraint 

on the slope profile is imposed. Another constraint is applied to avoid highly unlikely 

profiles (e.g. profiles with overhanging parts). Given the possible configurations of 

these points, numerous profiles can be generated. By increasing m the discretization 

of the slope profile becomes more refined. In order to seek the optimal profile, under 

the constraint of fixed crest and toe, by changing ix   on each horizontal line, slopes 

with different shapes are to be examined. Among all candidate profiles, the optimal 

one provides the highest stability, which corresponds to the minimum amount of 

reinforcement to maintain the slope stable.  

 

Figure 8.3 Failure mechanism for multi-linear face profile. 

According to the limit analysis upper bound theorem, the minimum amount of 

reinforcement to keep the slope stable can be found by equating the external energy 
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rate done by the soil weight and external loads to the internal dissipation rate due to 

reinforcement strength.  The potential failing part  ( 0  1 2 1)mQ P P P P       (see 

Figure 8.3) is assumed to rotate around point O in a log-spiral failure surface, which 

has the following equation: 

 exp tanr r        
(8.2) 

where   and   are the angles made by r  and r   respectively with the horizontal 

axis, r  is the distance between the spiral centre, point O , and a generic point on the 

log-spiral slip surface, and  r  is the length of the chord O R . It should be noted that 

the log-spiral failure mechanism might no longer be the most critical failure 

mechanism for the current problem. However, this is beyond the scope of this study. 

 

Figure 8.4 Illustration of the lower and upper boundaries used for horizontal distance ix   which 

measured from the structure’s toe. 

The (best) lower bound to the required reinforcement can be derived from the 

following energy balance equation:  

D W  (8.3) 
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where  D   and W  are the internal energy dissipation rate and the external work rate 

respectively. The only component for D  is 
 0P Q

Dr


being the energy rates dissipated 

along the log-spiral part 0P Q  by the reinforcement (see Figure 8.3). This energy rate 

can be calculated by integrating the product of the infinitesimal increment of 

reinforcement strain rate with the reinforcement tensile strength, T, averaged over the 

slope height. The following expression is obtained (Zhao, 1996): 

   

 

0

2 2

2

1
2 tan  

2

, ,

tP Q

t r

Dr K r exp sin

K r f





    

   


     



 (8.4) 

where   is the angular velocity of the sliding part,    is the angle made by r  with a 

horizontal reference. 

The rate of external work  extW  for the sliding part 0  1 2 1( )mQ P P P P      is 

calculated as the work of block   0O Q P   minus the work of block 1  mO Q P   minus 

the algebraic summation of the work of blocks  
1

1  
1

m

i i

i

O P P






  .  

To account for the seismic action, in addition to the weight force, a horizontal 

pseudo-static force is added, h ghPS hF MK K A   , with M being the mass of the 

wedge, hK  the coefficient of horizontal seismic acceleration and g the gravitational 

acceleration. The calculation of the expressions for extW  for each block is provided in 

(Utili & Abd, 2016) except for blocks  
1

1  
1

m

i i

i

O P P






  . Here the final expression is 

recalled: 
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 

 

1 2 3 4 5 63

1 2 3 4 5 6

v v v v v v

ext

h h h h h h h

f f f f f f
W r

K f f f f f f


      
  

      
 (8.5) 

with 1 2 6,  ,  ,v v vf f f   and 1 2 6,  ,  ,h h hf f f  are functions accounting for the external work 

done by the vertical (i.e. soil weight) and horizontal (i.e. seismic) forces respectively. 

The final expressions can be found in Appendix A of (Utili & Abd, 2016) except for

3vf  and 3hf . As it can be seen in Figure 8.3, the work done by the block 

 0 1 2 1mO P P P P      can be obtained from the summation of the work done by the 

blocks  
1

1  
1

m

i i

i

O P P






  , this can be expressed as follow: 

 
1

3 31 1
3      33  

1

cos cos
, , , ,

3

m
i i i i i

v v i

i

C C A
W r r f m x

r
 



 
    


 



 
   

 
  (8.6) 

  
1

3 31 1
3     33  

1

sin sin
, , , ,

3

m
i i i i i

h h i

i

C C A
W r r f m x

r
 



 
    


 



 
   

 
  (8.7) 

with m: number of points used to discretize the profile, iC  is the length of the chord 

iOP   (see Figure 8.3) and can be expressed as: 

 

  

2

2

exp tan  sin
1

exp tan  cos

i

i

i
r H

mC

r x





   

   

 
       

   

 (8.8) 

 
 exp tan  cos i

i

i

r x

C

    


   
  (8.9) 

iA : Area of the segment 1i iO P P   can be expressed as: 
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 1 1

1
. .sin

2
i i i i iA C C      

 
(8.10) 

Substitution of the various energy rate contributions calculated into the energy 

balance Eq. (8.3), provides the “fitness” function to be optimized which leads to 

determine the required reinforcement   /tK H : 

 

 

 

1 2 3 4 5 6

1 2 3 4 5 6

v v v v v v

h h h h h h ht

r

f f f f f f

K f f f f f fK

HH
f

r



     
 
      

   , , , , , ,t
h i

K
f K m x

H
   


  

(8.11) 

The minimum of the right hand side of Eq. (8.11) provides lower bound to the 

required reinforcement for a given profile shape. 

For the current problem, it is also necessary to check the possibility of failure 

mechanism passing above the structure’s toe because the failing mass for the failure 

mechanism passing above the  toe is no longer similar in shape to the one passing 

through the toe. Hence, a constrained is applied such that the obtained “optimal” 

profile has no above the toe failure more critical than the toe one. It should be noted 

that it is very likely to have some above the toe failure mechanisms require exactly the 

same amount/tensile strength of reinforcement to the one corresponding to the toe 

failure. The required reinforcement for every possible failure surface i iP Q  (see 

Figure 8.5) are compared to the required reinforcement corresponding to the failure 

mechanism passing through the toe point oP . This constraint can be expressed as:  
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.t i t

i

K h K

h H H 

 
 

 
 (8.12) 

with 
i

n T
K

h


  , n : number of reinforcement layers involved in the failure, and ih  : 

the depth of the point 𝑖 measured from the crest point 1mP   (see Figure 8.5).  

 

Figure 8.5 . Failure mechanisms passing above the structure’s toe. 

 

8.3 Optimisation algorithms 

Genetic algorithms (GA) are optimization tools based on the evolution theory of 

natural selection that can solve both constrained and unconstrained problems. Genetic 

algorithms have become increasingly popular in the geotechnical community in the 

last two decades (Andrab, Hekmat, & Yusop, 2017). With regard to slope stability GA 

are mainly used to find the critical failure surface in soil slopes (e.g. (Goh, 1999; 

Sengupta & Upadhyay, 2009; Sun, Li, & Liu, 2008; Zolfaghari, Heath, & McCombie, 
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2005). (Utili & Wu, 2017) used genetic algorithm and pattern search, another 

optimization tool, to find the optimal profiles for slopes made of frictional cohesive 

geomaterials. 

Genetic algorithm simply defines a population size; randomly choose individuals 

to be parents to form children for the next generation then applying crossover and 

mutation to produce subsequent generations until the fittest individual is found, 

Figure 8.6 presents a simplified flowchart of the algorithm.  

 

Figure 8.6 Simplified flowchart for genetic algorithm. 
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8.4 Results 

Results of the obtained multi-linear profile and the corresponding required 

reinforcement are presented for a range of toe-crest line inclination  , discretising the 

height of the reinforced soil structures into 11 segments (i.e. 10 points). The results 

are obtained for soil structures reinforced with either uniform distribution (UD) or 

linearly increasing distribution (LID) of reinforcement. It should be noted that 

secondary reinforcement are assumed sufficient to prevent local failure at the face. In 

other words, to avoid shallow collapse between any of the two consecutive main 

reinforcement layers, secondary reinforcement has been reported by (Michalowski, 

2000). 

The difference in required reinforcement among planar, concave, and the current 

multi-linear profile is presented in Figure 8.7. It can be seen that using multi-linear 

profile instead of the conventional planar can make significant savings (e.g. up to 50%) 

on the required reinforcement. The dashed line in Figure 8.7a represents the results 

obtained from (Vahedifard et al., 2016a) for concave (i.e. circular arc) profile for 

30    and 40 . It emerges that the current multi-linear profile is clearly better than 

the concave profile. For example, if 50 , 40      concave profile can decrease the 

required reinforcement by 22.1% while the current multi-linear profile can decrease it 

by 50%. This means that for static case, the current multi-linear profile can decrease 

the required reinforcement obtained for concave profile by up to 36%. 
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Figure 8.7 Difference in required reinforcement among planar, multi-linear and concave profile. (a) 

For uniform distribution of reinforcement. (b) For linearly increasing distribution of reinforcement.  

The multi-linear profile is more effective (i.e. requires relatively less 

reinforcement) than the planar profile especially for gentle inclination and high angle 

of internal friction. This might be because gentle slopes allow more flexibility to shape 

the multi-linear profile besides gentle slope with high   already require very little 

reinforcement that can be redundant when applying the multi-linear profile.  

The shape of obtained multi-linear profile are presented in Figure 8.8, and 

Figure 8.9. It can be seen that the obtained profiles are smooth which can contribute 

to the aesthetic of the structure when completed. Also, it can be noticed that the 

obtained profiles are generally concave-convex rather than pure concave. This make 

sense because the active stress represented by the potential driving mass is minimized 

while the passive pressure generated by the convex near the structure’s toe is 

maximized, bearing in mind the applied constraints. 

The higher the angle of internal friction   the less the degree of curvature and the 

more the similarity between profiles obtained from (UD) and (LID). However, profiles 

with LID seem to be less dependent on the passive pressure that comes from the 

(b) (a) 
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convex near the structure’s toe because it has more reinforcement localized there 

providing the required support.  

It can be seen that profiles with 20   have higher curvature for the upper part of 

the slope, especially for uniform distribution of reinforcement. This can be attributed 

to fact that soil with low friction angle requires more reinforcement, which in turn 

provides lateral support leading to a steeper upper part of the structure.  

 

 

Figure 8.8 The obtained multi-linear profiles using 10 points (i.e. 11 segments) with the 

corresponding critical failure surfaces for 20    . (a), (b), and (c) are for uniform distribution of 

reinforcement with 45 , 60 , and 75      respectively. similarly for (d), (e), and (f) but for linearly 

increasing distribution. 
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Figure 8.9 The obtained multi-linear profiles using 10 points (i.e. 11 segments) with the 

corresponding critical failure surfaces for 40    . (a), (b), and (c) are for uniform distribution of 

reinforcement with 45 , 60 , and 75      respectively. Similarly for (d), (e), and (f) but for linearly 

increasing distribution. 

By calculating the failing area corresponding to multi-linear and planar profile, it 

can be concluded that potential failing volume associated with the multi-linear profile 

(see Figure 8.8 and Figure 8.9) is generally less than that for planar (apart from the 

case of 45   and 40   ). This might implie shorter embedding length of 

reinforcement layers and consequently less excavation works during construction. 

However, the length of the reinforcement for multi-linear profiles is beyond the scope 

of this study. The reason behind the unusual failure surface in Figure 8.8c is that the 

centre of rotation (i.e. point O) lies below the structure’s crest. Consequently, the 

contribution of the reinforcement layers that lie above the centre of rotation is 

neglected, as they cannot sustain compressive stresses (Michalowski, 1997).  

The normalised coordinates for the obtained profiles are listed in Appendix (F) as 

for uniform and linearly increasing distribution of reinforcement respectively. 
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40     

60  

40     

75  

40     



 

 

Chapter 8: Profiles of Optimal Shape for Reinforced Slopes                                      (8) 

 

157 

 

Geotechnical designers can use these profiles as a benchmark to perform further 

numerical investigation depending on the problem at hand. 

8.5 Seismic acceleration 

Pseudo-static approach is employed here to model the effect of seismicity on the 

required reinforcement corresponding to either the multi-linear profile obtained earlier 

for static case or corresponding to a tailored profile obtained for the given seismic 

level. Figure 8.10 compares the required reinforcement between planar, and multi-

linear profiles for different values of the horizontal seismic coefficient hK  and two 

values of toe-crest line inclination  . The figure also compares the required 

reinforcement between uniform and linearly increasing distribution of reinforcement. 

It can be easily seen from Figure 8.10a that the higher the level of horizontal 

acceleration the more the savings in required reinforcement when the seismic-tailored 

multi-linear profile is used. It also can be seen that the multi-linear profile 

corresponding to static case performs steadily when increasing the horizontal seismic 

acceleration by keeping the same difference in the required reinforcement from that of 

the conventional planar profile. Similar trend can be seen for soil structures with 

linearly increasing distribution of reinforcement Figure 8.10b but for less overall 

required reinforcement.  
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Figure 8.10 Planar versus multi-linear profile when subjected to pseudo static horizontal 

acceleration, for 30   . (a) For uniform distribution of reinforcement and (b) for linearly 

increasing distribution. 

Results of the concave (i.e. circular arc) profile (Vahedifard et al., 2016a) that 

tailored for a given level of seismic action is compared in terms of the required 

reinforcement with the current multi-linear profile obtained for either static case and 

then subjected to seismic action or tailored specifically for a given seismic 

acceleration, see Figure 8.11. It can be seen that the multi-linear profile for static case 

and the one tailored for a given seismic level can decrease the required reinforcement 

obtained using circular-concave profile by up to 26% and 37% respectively. It should 

be noted that the value of 0.5hK   is extremely high, but for the sake of comparison 

it is included here. 
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Figure 8.11  Multi-linear profile versus concave profile when subject to pseudo static horizontal 

acceleration, for and uniform distribution of reinforcement. 

8.6 Conclusions 

The potential for savings from the adoption of non-straight profiles for georeinforced 

slopes under both static and seismic conditions is investigated. Results show saving 

on the level of reinforcement of up to 50% on the traditional straight profiles and 37% 

on concave circular profiles recently proposed by (Vahedifard et al., 2016a) for the 

same average slope inclination, i.e. the same slope height and distance from toe to 

crest. Several stability charts illustrating the savings on the required amount of 

reinforcement are provided for the benefit of designers. Also tables containing the 

normalised coordinates for multi-linear profiles are provided.  

In the presence of seismic action, the non-straight profile optimised under static 

(gravity) load and the one obtained for a given level of seismicity are both found better 

than the straight profile as they can decrease the required reinforcement obtained from 

concave profile by up to 14.5% and 37% respectively. Profiles of optimal performance 
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for a prescribed level of seismic action are found to be particularly effective for the 

case of gentle profiles and high seismic excitation. Optimisation under seismic action 

is recommended  for average inclination less than 60   (i.e. 60  ) otherwise, the 

optimal profile obtained for the static case performs similarly.  

The optimal non-straight slope profiles proposed here provide an ideal optimum 

but construction constraints may present the realisation of such optimum.  However, 

the value of these profiles and more in general of a formulation allowing to calculate 

the optimal profiles for any given number of geosynthetic layers or tier wall as input 

is to provide a benchmark case against which the performance of various less optimal 

solutions can be measured. Finally it is worth noting that the optimal profiles not only 

require less reinforcement in comparison with straight profiles but it can improve the 

aesthetic of the structure too. 
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9  Chapter 9: Conclusions and Recommendations 

9.1 Conclusions 

This thesis has covered several points, among them: 1) Investigating the effect of pre-

existing and forming cracks on the stability and displacement of unreinforced and 

geosynthetically-reinforced soil slopes subject to seismic action.2) Presenting a new 

semi-analytical method for the design of geosynthetic-reinforcement in cohesive 

backfills 3) Introducing the “step-wise” yield acceleration to account for cracks during 

estimating the earthquake-induced displacement. 3) Coming up with linearly 

decreasing length of reinforcement that can reduce the earth works during slope 

construction. Finally, 4) Enhancing the current methods for engineered slopes by 

obtaining the “optimal” shape of profile for geosynthetic-reinforced soil structure 

subject to seismic action.  

From the analysis of unreinforced soil slopes that subject to seismic action, it can 

be concluded that the presence of cracks can reduce stability and yield acceleration by 

up to 30% in comparison with the case of intact slope. The amount of reduction 

depends on both the geometrical characteristics of the slope and the ground strength 

parameters: the reduction is higher for steep slopes of low friction angle   subject to 

high accelerations, whereas for gentle slopes of high angle of shearing resistance   

subject to moderate earthquakes it is negligible.  Vertical seismic acceleration is found 

to be as important as the horizontal one. Upward vertical acceleration can be 

detrimental and maps showing in which case this can happen is provided.  
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A new semi-analytical method for the design of geosynthetic-reinforcement in 

cohesive backfills was presented. The method, derived using the kinematic approach 

of limit analysis, provides the amount of required reinforcement as a function of slope 

inclination and of three soil strength parameters: angle of shearing resistance, 

cohesion, and tensile strength. and that cracks are often significantly detrimental to 

slope stability so they cannot be overlooked in the design calculations of the 

reinforcement. Also the method takes into account the presence of cracks which are a 

very common occurrence in cohesive soils. Cracks cannot be overlooked since may 

have a significant detrimental effect on the stability of the slopes. Lower bounds on 

the required level of reinforcement were determined and presented in the form of 

design charts. Various hydraulic scenarios were investigated as well. 

It is shown that: I) the presence of cohesion allows achieving a less conservative 

design so that significant savings on the overall level of reinforcement can be made; 

II) there are several situations where the presence of cracks reduces significantly the 

stability of the reinforced slopes so that in general they cannot be neglected in the 

stability analysis performed to design the amount of reinforcement required; III) there 

are situations where the tensile strength of the ground, which rules the depth of the 

tension cracks forming in the reinforced slope, has a significant influence on slope 

stability, for instance with high levels of cohesion and angle of shearing resistance. 

Design charts were presented which provide lower bounds on the required level of 

geosynthetic reinforcement as a function of slope inclination, soil strength parameters 

(angle of shearing resistance, cohesion, and tensile strength) and level of seismic 

pseudostatic acceleration. 
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The main findings emerging from these design charts are that i) seismic action 

affects gentler slopes to a much greater extent than steep slopes so that even for high 

levels of cohesions the reinforcement required for stability may be significantly 

higher; ii) seismic action tends to reduce the influence of pre-existing cracks on slope 

stability since the performance of slopes subject to strong earthquakes tends to be 

dominated by the intensity of the seismic acceleration rather than the presence or 

absence of cracks ; iii) the effect of seismic action is larger on LID reinforced slopes 

than on UD reinforced ones. 

The assumption of the stepwise yield acceleration can be used to reasonably bridge 

the gap between the conservatism corresponding to a slope with the most detrimental 

pre-existing crack, and the underestimation of the displacement when ignoring the 

crack formation throughout the analysis. Charts providing the values needed to 

calculate the stepwise yield acceleration are presented. It is noticed that slope with 

LID has better performance than the same slope with UD. The yield acceleration 

seems less affected by the presence of crack, whether earthquake-induced or pre-

existing crack. Consequently, the total horizontal displacement of the slope reinforced 

with LID less than UD’s one. 

The effect of the design length and distribution of geosynthetics on the stability of 

reinforced soil slopes exhibiting cracks which either pre-existing the onset of the slope 

failure mechanism or forming as part of the failure mechanism, was investigated. The 

results show that the presence of cracks leads to larger lengths of reinforcement, and 

for steep slopes, this amount of the extra required reinforcement length is independent 

of slope inclination. The linearly decreasing length with depth can be implemented 
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regardless the presence of cracks providing more economical design.  Moreover, 

comparing a uniform distribution of reinforcement with a linearly increasing 

distribution in case of fissured slopes, it is found that longer reinforcement layers are 

required when a uniform distribution is adopted. 

Finally, the upper bound theorem of limit analysis along with genetic algorithm 

(GA) are used to seek the optimal multi-linear profile for geosynthetic-reinforced soil 

structures using log-spiral failure mechanism. Results of the proposed method show 

that the obtained profile can decrease the required reinforcement by up to 37% and 

50% in comparison with the concave and conventional planar profiles respectively. 

As expected, the required reinforcement of soil structures with multi-linear profile and 

linearly increasing distribution of reinforcement is found to be less than that of the 

corresponding uniform distribution of reinforcement. Tables contain the normalised 

coordinates for multi-linear profiles are provided. Geotechnical designers can use 

these profiles as a benchmark to conduct further numerical investigation. To sum up, 

multi-linear profile can be used to increase the stability of reinforced structure under 

static and pseudo static loading. The obtained multi-linear profile is compared with 

circular concave profiles and found to be more effective as it requires less 

reinforcement. Seismically customised profiles are recommended  for toe-crest line 

inclination less than 60   (i.e. 60  ) otherwise, the corresponding multi-linear 

profile obtained for static case would perform similarly. The application of multi linear 

profile could reduce the volume of excavation works during construction, and finally, 

it can add aesthetic touch to the structures when completed. 

 



 

 

Chapter 9: Conclusions and Recommendations                                                          (9) 

 

165 

 

9.2  Recommendations 

Here, a list of suggestions for future research is presented: 

1- Conduct experimental work to validate further the new semi-analytical and 

numerical methodologies presented in chapters 3, 4 and 8. This work is likely 

to involve tests in geotechnical centrifuge, shaking table and 1g tests on down-

scaled models.  

2- Another future direction of research would be to perform 3D LA upper bound 

analyses accounting for the effect of cracks fissured unreinforced and 

geosynthetic-reinforced slopes subject to seismic action. However, it is worth 

recalling that the 2D upper bounds provided in the thesis are the most critical 

values since according to the theory plane strain failure mechanisms tend to be 

more critical than 3D ones. 

3- There are several experimental studies in the literature about the load 

distribution among reinforcement layers. However, they only cover few 

parameters such as slope geometry, type of soil, and reinforcement layout. 

Genetic algorithm can be used to investigate all the possible configurations so 

that the optimal profile is found as the optimal against the most critical 

condition.  

4-  The study on the optimal profiles of reinforced slopes could be extended to 

investigate the performance of the obtained profiles under various 

environmental loads and erosive processes.  
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A Appendix A 

Table A.1 Stability number /H c  for different values of horizontal acceleration and / 0v hK K  . 

hK    
Angle of shearing resistance   

20 25 30 35 40 

0 

40 19.21862 30.49934 57.33376 165.1141 241.25 

45 15.28391 21.97215 34.55451 64.41562 184.0293 

50 12.6501 17.06628 24.32426 37.94947 70.19797 

55 10.72062 13.82772 18.50155 26.16767 40.52332 

60 9.212862 11.48608 14.69653 19.51605 27.40269 

65 7.974787 9.677732 11.9706 15.20153 20.04001 

70 6.915384 8.206805 9.880773 12.12864 15.28723 

75 5.973302 6.954292 8.186404 9.778181 11.90816 

80 5.097961 5.834455 6.734445 7.859755 9.30668 

85 4.223692 4.755381 5.38861 6.157108 7.110998 

90 2.901954 3.192025 3.525185 3.913376 4.481378 

0.1 

40 13.26825 18.8787 29.17833 52.57406 136.28 

45 11.25902 15.07934 21.25508 32.56642 58.18624 

50 9.749614 12.5062 16.60096 23.20517 35.26662 

55 8.544286 10.60673 13.4897 17.76212 24.63304 

60 7.53591 9.114089 11.22059 14.15765 18.49708 

65 6.659684 7.882636 9.456122 11.55026 14.4604 

70 5.872113 6.823714 8.011423 9.534297 11.55326 

75 5.139068 5.875704 6.771305 7.884293 9.304545 

80 4.42415 4.983231 5.646905 6.448989 7.439203 

85 3.709231 4.090759 4.711434 5.013685 5.805354 

90 2.994312 3.198286 3.727424 3.578381 4.307242 

0.2 

40 9.754395 13.01412 18.2117 27.54606 47.98322 

45 8.630443 11.04133 14.58487 20.22308 30.31972 

50 7.707033 9.549053 12.10168 15.8452 21.78384 

55 6.91502 8.351273 10.25414 12.88456 16.72996 

60 6.211838 7.344663 8.792777 10.70587 13.34118 

65 5.568458 6.465727 7.579224 8.997636 10.86388 

70 4.961967 5.670294 6.527068 7.585583 8.92716 

75 4.36878 4.92026 5.571955 6.355431 7.316665 

80 3.878797 4.319526 4.83066 5.432456 5.706171 

85 3.388815 3.718792 4.089365 4.509481 4.56824 

90 2.898833 3.118057 3.348071 3.586506 3.654224 

0.3 

40 7.455683 9.549624 12.60165 17.41281 25.92009 

45 6.789319 8.42204 10.66866 13.93902 19.08058 

50 6.197845 7.493382 9.199284 11.54265 14.94398 

55 5.657307 6.695403 8.015179 9.749116 12.12315 

60 5.150798 5.985497 7.016229 8.322686 10.03226 

65 4.664405 5.333652 6.139541 7.130546 8.380125 

70 4.183455 4.714171 5.338779 6.086402 6.999152 

75 3.685599 4.095861 4.568027 5.042258 5.764624 

80 3.187743 3.477552 3.807555 3.998114 4.645224 

85 2.689888 2.859243 3.104541 2.953978 3.754617 

90 2.192032 2.240933 2.531047 1.909826 2.946548 
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Table A.2 Stability number /H c  for different values of horizontal acceleration and / 0.5v hK K   . 

hK    
Angle of shearing resistance   

20 25 30 35 40 

0 

40 19.21862 30.49934 57.33376 165.1141 -- 

45 15.28391 21.97215 34.55451 64.41562 184.0293 

50 12.6501 17.06628 24.32426 37.94947 70.19797 

55 10.72062 13.82772 18.50155 26.16767 40.52332 

60 9.212862 11.48608 14.69653 19.51605 27.40269 

65 7.974787 9.677732 11.9706 15.20153 20.04001 

70 6.915384 8.206805 9.880773 12.12864 15.28723 

75 5.973302 6.954292 8.186404 9.778181 11.90816 

80 5.097961 5.834455 6.734445 7.859755 9.30668 

85 4.223692 4.755381 5.38861 6.157108 7.110998 

90 2.901954 3.192025 3.525185 3.913376 4.481378 

0.1 

40 12.8398 18.34097 28.52938 52.04656 132.8018 

45 10.86878 14.59606 20.65521 31.85161 57.62027 

50 9.395049 12.07541 16.07253 22.55592 34.50183 

55 8.222574 10.22319 13.02799 17.20121 23.95039 

60 7.244641 8.772763 10.8172 13.67635 17.91741 

65 6.39702 7.579641 9.104108 11.13791 13.97268 

70 5.636956 6.556288 7.705585 9.18208 11.14445 

75 4.931097 5.642327 6.508273 7.586265 8.964671 

80 4.244531 4.784327 5.425913 6.20253 7.163043 

85 3.509711 3.896872 4.545645 4.818795 5.5645 

90 2.77489 3.009417 3.545631 3.43506 4.145587 

0.2 

40 9.345778 12.5887 17.86762 27.65752 50.37088 

45 8.216266 10.58524 14.11962 19.85753 30.47202 

50 7.301712 9.096089 11.61012 15.35112 21.40955 

55 6.527068 7.917312 9.775281 12.37196 16.22389 

60 5.846349 6.937866 8.343126 10.21582 12.82415 

65 5.229145 6.090938 7.166856 8.547372 10.3799 

70 4.652296 5.331352 6.157123 7.183723 8.494651 

75 4.093407 4.622042 5.249855 6.008966 6.946649 

80 3.577828 3.988765 4.466746 5.030967 5.708579 

85 3.062249 3.355488 3.683636 4.052968 4.470508 

90 2.54667 2.722212 2.900527 3.074969 3.232438 

0.3 

40 7.176542 9.320804 12.54414 17.8548 27.90121 

45 6.469042 8.11111 10.42354 13.89459 19.59542 

50 5.859422 7.145386 8.870581 11.29505 14.9243 

55 5.315456 6.336445 7.654056 9.41754 11.88711 

60 4.81631 5.631993 6.652143 7.9649 9.714547 

65 4.345817 4.99741 5.790852 6.779425 8.045391 

70 3.889379 4.405744 5.01982 5.763612 6.684537 

75 3.427538 3.828369 4.294383 4.844229 5.504161 

80 2.952382 3.250993 3.568945 3.924845 4.4513 

85 2.477226 2.673617 2.843508 3.005462 3.56456 

90 2.00207 2.096241 2.345045 2.086078 2.718702 
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Table A.3 Stability number /H c  for different values of horizontal acceleration and / 0.5v hK K    . 

hK    
Angle of shearing resistance   

20 25 30 35 40 

0 

40 19.21862 30.49934 57.33376 165.1141 - 

45 15.28391 21.97215 34.55451 64.41562 184.0293 

50 12.6501 17.06628 24.32426 37.94947 70.19797 

55 10.72062 13.82772 18.50155 26.16767 40.52332 

60 9.212862 11.48608 14.69653 19.51605 27.40269 

65 7.974787 9.677732 11.9706 15.20153 20.04001 

70 6.915384 8.206805 9.880773 12.12864 15.28723 

75 5.973302 6.954292 8.186404 9.778181 11.90816 

80 5.097961 5.834455 6.734445 7.859755 9.30668 

85 4.223692 4.755381 5.38861 6.157108 7.110998 

90 2.901954 3.192025 3.525185 3.913376 4.481378 

0.1 

40 13.7246 19.4454 29.84992 53.08334 132.8178 

45 11.67746 15.59431 21.88915 33.30876 58.74403 

50 10.13136 12.96771 17.16388 23.8895 36.06119 

55 8.891597 11.01964 13.98459 18.35893 25.35307 

60 7.851268 9.482797 11.65468 14.67262 19.11431 

65 6.944504 8.210232 9.835942 11.99345 14.98239 

70 6.127329 7.113428 8.34218 9.913752 11.9921 

75 5.364924 6.128774 7.055826 8.206051 9.670293 

80 4.619311 5.198872 5.885931 6.715297 7.73702 

85 3.81808 4.26897 4.716037 5.224544 5.803746 

90 3.066848 3.339068 3.546142 3.73379 3.870472 

0.2 

40 10.18195 13.44051 18.51788 27.32444 45.46605 

45 9.074433 11.5179 15.05052 20.54343 30.04183 

50 8.148514 10.03374 12.61367 16.33523 22.10433 

55 7.342 8.822593 10.76485 13.41548 17.22717 

60 6.617563 7.791177 9.279426 11.22542 13.87284 

65 5.947242 6.880227 8.029568 9.481637 11.37251 

70 5.308827 6.046442 6.933579 8.021188 9.38708 

75 4.676724 5.251035 5.925652 6.730843 7.710944 

80 4.044621 4.455627 4.859017 5.440499 6.034808 

85 3.412519 3.66022 3.807059 4.150154 4.358673 

90 2.780416 2.864812 2.755101 2.85981 2.682537 

0.3 

40 7.691206 9.700195 12.52512 16.76795 23.75449 

45 7.088293 8.686588 10.8258 13.83252 18.33591 

50 6.531667 7.818615 9.475678 11.6902 14.7952 

55 6.006845 7.048095 8.348065 10.01862 12.2447 

60 5.501058 6.343889 7.368636 8.642916 10.2748 

65 5.003003 5.680845 6.485424 7.459201 8.663078 

70 4.496674 5.033538 5.656787 6.391353 7.271979 

75 3.971572 4.388401 4.853255 5.323505 5.880879 

80 3.446471 3.743264 4.049722 4.255657 4.48978 

85 2.92137 3.098127 3.24619 3.187809 3.098681 

90 2.396268 2.45299 2.442658 2.119961 1.707582 
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Table A.4 Stability number /H c  for different values of horizontal acceleration and / 1v hK K   . 

hK    
Angle of shearing resistance   

20 25 30 35 40 

0 

40 19.21862 30.49934 57.33376 165.1141 - 

45 15.28391 21.97215 34.55451 64.41562 184.0293 

50 12.6501 17.06628 24.32426 37.94947 70.19797 

55 10.72062 13.82772 18.50155 26.16767 40.52332 

60 9.212862 11.48608 14.69653 19.51605 27.40269 

65 7.974787 9.677732 11.9706 15.20153 20.04001 

70 6.915384 8.206805 9.880773 12.12864 15.28723 

75 5.973302 6.954292 8.186404 9.778181 11.90816 

80 5.097961 5.834455 6.734445 7.859755 9.30668 

85 4.223692 4.755381 5.38861 6.157108 7.110998 

90 2.901954 3.192025 3.525185 3.913376 4.481378 

0.1 

40 12.43692 17.83052 27.90225 51.5054 142.9898 

45 10.5039 14.14166 20.08654 31.16081 57.04626 

50 9.065084 11.67284 15.57549 21.93953 33.76237 

55 7.923767 9.865981 12.596 16.67247 23.30265 

60 6.974727 8.455913 10.44156 13.2258 17.37133 

65 6.154158 7.298605 8.77713 10.75317 13.51523 

70 5.419646 6.308793 7.421909 8.854317 10.7624 

75 4.739083 5.426421 6.264498 7.309253 8.648045 

80 4.078595 4.600371 5.221146 5.973711 6.905902 

85 3.418107 3.774322 4.177793 4.63817 5.163759 

90 2.757618 2.948272 3.134441 3.302629 3.421616 

0.2 

40 8.959617 12.1735 17.50194 27.68582 52.67131 

45 7.831891 10.15341 13.66097 19.46672 30.5253 

50 6.930781 8.675547 11.14359 14.86455 21.0035 

55 6.175443 7.51959 9.329509 11.88367 15.7236 

60 5.517296 6.568205 7.930051 9.758155 12.32882 

65 4.924943 5.752444 6.790888 8.131571 9.924549 

70 4.375507 5.026424 5.821373 6.815219 8.091996 

75 3.847315 4.353623 4.957467 5.691253 6.60299 

80 3.309156 3.691762 4.13763 4.665049 5.300413 

85 2.770997 3.029902 3.317793 3.638845 3.997836 

90 2.232838 2.368041 2.497955 2.61264 2.69526 

0.3 

40 6.884714 9.054008 12.4044 18.14297 29.72696 

45 6.152232 7.786673 10.13482 13.75583 19.94223 

50 5.535421 6.800948 8.524306 10.99597 14.79651 

55 4.995553 5.991867 7.293777 9.063214 11.59186 

60 4.508057 5.299379 6.299369 7.602723 9.366982 

65 4.055311 4.684905 5.458755 6.433462 7.697412 

70 3.622053 4.12046 4.717985 5.448503 6.363519 

75 3.191561 3.579425 4.033393 4.574403 5.230621 

80 2.761069 3.038391 3.3488 3.700304 4.097724 

85 2.330577 2.497357 2.664208 2.826204 2.964826 

90 1.900085 1.956322 1.979616 1.952105 1.831928 
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Table A.5 Stability number /H c  for different values of horizontal acceleration and / 1v hK K   . 

hK    
Angle of shearing resistance   

20 25 30 35 40 

0 

40 19.21862 30.49934 57.33376 165.1141 - 

45 15.28391 21.97215 34.55451 64.41562 184.0293 

50 12.6501 17.06628 24.32426 37.94947 70.19797 

55 10.72062 13.82772 18.50155 26.16767 40.52332 

60 9.212862 11.48608 14.69653 19.51605 27.40269 

65 7.974787 9.677732 11.9706 15.20153 20.04001 

70 6.915384 8.206805 9.880773 12.12864 15.28723 

75 5.973302 6.954292 8.186404 9.778181 11.90816 

80 5.097961 5.834455 6.734445 7.859755 9.30668 

85 4.223692 4.755381 5.38861 6.157108 7.110998 

90 2.901954 3.192025 3.525185 3.913376 4.481378 

0.1 

40 14.2109 20.04292 30.54149 53.56603 129.2311 

45 12.12658 16.1423 22.55379 34.07092 59.24721 

50 10.54252 13.46246 17.76262 24.60791 36.87386 

55 9.267337 11.46394 14.51446 18.99436 26.10895 

60 8.193041 9.880814 12.12118 15.22419 19.76719 

65 7.253724 8.565536 10.24598 12.46977 15.53996 

70 6.40501 7.42776 8.699873 10.32305 12.46344 

75 5.610883 6.403805 7.364187 8.553374 10.0641 

80 4.831398 5.43307 6.144975 7.002606 8.057049 

85 3.992679 4.462336 4.925763 5.451838 6.049998 

90 3.153959 3.491601 3.706552 3.901071 4.042947 

0.2 

40 10.61937 13.85188 18.75827 26.94644 42.78066 

45 9.543714 12.00489 15.49674 20.78665 29.5912 

50 8.623904 10.54395 13.13347 16.79928 22.33494 

55 7.809173 9.329339 11.29945 13.95001 17.68991 

60 7.065699 8.277757 9.79958 11.76605 14.40134 

65 6.368754 7.335512 8.516802 9.994616 11.89504 

70 5.696016 6.46178 7.375526 8.485988 9.866086 

75 5.019991 5.614674 6.309551 7.12975 8.120159 

80 4.343965 4.767567 5.243575 5.773512 6.54562 

85 3.667939 3.920461 4.17761 4.417275 5.2054 

90 3.104237 3.073355 3.111624 3.061037 4.1054 

0.3 

40 7.812575 9.69275 12.2231 15.82056 21.31349 

45 7.307534 8.835712 10.81139 13.47519 17.25654 

50 6.813921 8.06289 9.626243 11.64808 14.36856 

55 6.325642 7.346924 8.590876 10.14643 12.1525 

60 5.836263 6.667227 7.656413 8.857606 10.35296 

65 5.335345 6.004129 6.782951 7.704578 8.816336 

70 4.80608 5.332854 5.909489 6.55155 7.422454 

75 4.276816 4.661579 5.036028 5.398522 6.023664 

80 3.747552 3.990304 4.162566 4.245494 4.627328 

85 3.218287 3.319029 3.289104 3.092466 3.230992 

90 - - - - - 
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B Appendix B 

The rate of external work for the sliding wedge E-B-C-D, extW  , is calculated from the 

following summation:  

 1 2 3 4 5 6extW W W W W W W       (B.1) 

Where 1 2 3 4 5, , , ,  W W W W W  and 6W  are the external work rates, done by soil weight as 

well as seismic action, corresponding to blocks P-D-F, P-E-F, P-D-E, P-C-F, P-B-F 

and P-C-B respectively (see Figure 3.1) and their final expression are listed as follow:  
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 (B.2) 

with 𝜃  being the rate of angular displacement of the failing wedge E-B-C-D. 

 

 

3

2 2 2

21 1 1

3

1

1 sin 2cos sin
6 3

 

v v h h

v h

W r K f K f

l l l
K K

r r r r



   



  


    

  
        

 
 

 (B.3) 

 



 

Appendix B 

 

180 

 

 

 
   

 

   

  

3

3 3 3

1

1

3

1

1

1
exp tan sin sin

6

cos exp tan cos

exp tan sin sin
6

sin exp tan sin

v v h h

v

h

W r K f K f

K l

r

l

rr

K l

r











     

    


     

    

    

  
        

  
 
  

       
   

  
            

     




 (B.4) 

 

 

 
   

 

   

 

3

4 4 4

2  

3

2  

1

exp 3tan 3tan cos sin 3tan cos sin
1

3 1 9 tan

exp 3tan 3tan sin cos 3tan sin cos

3 1 9 tan

v v h h

v

h

W r K f K f

K

r

K







        




        



     

       
  

 
  

       
 

  

 (B.5) 

 

 

 

3

5 5 5

22 2 2

3

1

1 sin 2cos sin
6 3

 

v v h h

v h

W r K f K f

l l l
K K

r r r r



   



  


    

  
        

 
 

 (B.6) 

 

 

 
    

    

3

6 6 6

2

3

2 2

1

1
exp 2tan cos exp tan sin sin

3

exp tan cos exp 2tan sin sin
6

v v h h

v

h

W r K f K f

K

r
K







        



        

     

 
           

 
 

           

 (B.7) 

 

 



 

Appendix C 

 

181 

 

C Appendix C 

Calculation for the weight of the sliding mass B-C-E-D and its arm length, mentioned 

in Chapter 3, called G  and l , respectively. 

G A  (C.1) 
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The arm length of the weight, l , is given by: 
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D Appendix D 

For linearly increasing distribution (LID), the expression for the energy dissipated by 

the geosynthetics along the log-spiral part C-D can be expressed as follow: 
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Analogously, the energy dissipated by geosynthetics along the crack B-C can be 

written: 
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E Appendix E 

Calculations for the external work rate function due to pore water pressure.  

 3 , , ,w x wW r f      (E.1) 
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where cz   1z  and 2  z  are illustrated in Figure E.1, and their mathematical expressions 

can be found geometrically as follow: 
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the angle 1   can be found from this equation: 
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Figure E.1 Illustration of the geometrical parameters used for the calculation of the work due to 

pore water pressures.  
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F Appendix F 

Table F.1 Normalised coordinates /ix L and /iy H (see Figure 8.3) of the multi-linear profile and the 

corresponding required reinforcement for 0hK  , cohesion-less soil, and uniform distribution of 

reinforcement. The toe point 
0P  has the coordinates (0,0) and the crest point 

11P has (1,1). 

    tK H  

iy H  (Normalised height of the point
iP measured from the toe) 

0.09 0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 

ix H  (Normalised horizontal distance of the point
iP measured from the toe) 

1P  
2P  

3P  
4P  

5P  
6P  

7P  
8P  

9P  
10P  

45 

20 0.075648 0.0020 0.0252 0.1750 0.3550 0.5327 0.6843 0.8551 0.9940 0.9997 0.9998 

30 0.022193 0.0005 0.1182 0.2547 0.3822 0.5123 0.6264 0.7475 0.8586 0.9590 0.9947 

40 0.002864 0.0000 0.0004 0.1999 0.3503 0.4447 0.5502 0.6501 0.7396 0.8253 0.9100 

50 

20 0.090828 0.0033 0.0285 0.2379 0.4397 0.6124 0.8197 0.9581 0.9998 0.9999 0.9999 

30 0.032881 0.0015 0.1026 0.2768 0.4153 0.5519 0.6867 0.8215 0.9338 0.9968 0.9999 

40 0.007625 0.0034 0.1724 0.2435 0.3752 0.4965 0.5935 0.7068 0.8084 0.9052 0.9812 

55 

20 0.109859 0.0033 0.0353 0.1690 0.4607 0.7557 0.8803 0.9802 0.9928 0.9985 0.9993 

30 0.045326 0.0011 0.1032 0.3116 0.4635 0.6035 0.7796 0.8938 0.9803 0.9982 0.9982 

40 0.014172 0.0045 0.1644 0.2944 0.4069 0.5373 0.6558 0.7697 0.8765 0.9619 0.9999 

60 

20 0.128288 0.0054 0.0505 0.1439 0.5262 0.8764 0.9706 0.9999 0.9999 0.9999 1.0000 

30 0.058226 0.0040 0.1551 0.3291 0.5483 0.7315 0.8682 0.9658 0.9991 0.9993 0.9996 

40 0.02219 0.0054 0.1878 0.3222 0.4687 0.6053 0.7301 0.8505 0.9440 0.9999 1.0000 

65 

20 0.148059 0.0067 0.0291 0.2829 0.8061 0.9413 0.9995 0.9996 0.9999 0.9998 1.0000 

30 0.072403 0.0064 0.2460 0.4760 0.6755 0.8325 0.9476 0.9997 0.9998 0.9988 0.9992 

40 0.03177 0.0068 0.2358 0.3966 0.5353 0.7009 0.8280 0.9304 0.9999 0.9999 1.0000 

70 

20 0.167701 0.0086 0.0801 0.7184 0.9009 0.9995 0.9999 0.9999 0.9999 0.9999 1.0000 

30 0.088565 0.0085 0.3333 0.4999 0.6666 0.8333 0.9995 0.9995 0.9999 0.9999 1.0000 

40 0.042992 0.0050 0.3182 0.5012 0.6653 0.8064 0.9224 0.9977 0.9991 0.9991 1.0000 

75 

20 0.191783 0.0103 0.6036 0.8419 0.9799 0.9890 0.9911 0.9948 0.9972 0.9996 1.0000 

30 0.106601 0.0115 0.5333 0.7529 0.9119 0.9907 0.9932 0.9933 0.9992 0.9997 0.9997 

40 0.056061 0.0104 0.4271 0.6229 0.7907 0.9235 0.9897 0.9997 0.9997 0.9994 0.9994 

80 

20 0.221727 0.4698 0.7962 0.9525 0.9790 0.9824 0.9843 0.9946 0.9977 0.9988 1.0000 

30 0.12507 0.3691 0.6564 0.8885 0.9831 0.9880 0.9969 0.9962 0.9982 0.9989 1.0000 

40 0.069986 0.2843 0.5417 0.764 0.9409 0.9860 0.9869 0.9889 0.9996 0.9996 1.0000 

85 

20 0.249993 0.6074 0.9456 0.9566 0.9664 0.9752 0.9756 0.9883 0.9942 0.9966 0.9961 

30 0.147369 0.4999 0.9148 0.9645 0.9664 0.9812 0.9843 0.9932 0.9974 0.9983 0.9977 

40 0.087855 0.4283 0.7918 0.9678 0.9840 0.9843 0.9864 0.9885 0.9891 0.9912 0.9961 
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Table F.2 Normalised coordinates /ix L and /iy H (see Figure 8.3) of the multi-linear profile and the 

corresponding required reinforcement for 0hK  , cohesion-less soil, and linearly increasing 

distribution of reinforcement. The toe point 
0P  has the coordinates (0,0) and the crest point 

11P has 

(1,1). 

    tK H  

iy H  (Normalised height of the point 
iP  measured from the toe) 

0.09 0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 

ix H  (Normalised horizontal distance of the point 
iP  measured from the toe) 

1P  
2P  

3P  
4P  

5P  
6P  

7P  
8P  

9P  
10P  

45 

20 0.068093 0.0031 0.0091 0.2271 0.3985 0.5595 0.7781 0.9517 0.9999 1.0000 1.0000 

30 0.020486 0.0031 0.1324 0.2642 0.4041 0.5101 0.6558 0.747 0.8824 0.9654 0.9942 

40 0.002525 0.0565 0.1177 0.2389 0.3503 0.4647 0.5702 0.6601 0.7546 0.8553 0.9299 

50 

20 0.082921 0.0034 0.0341 0.2395 0.4251 0.7075 0.9181 0.9868 0.9999 1.0000 1.0000 

30 0.030297 0.0038 0.0748 0.1773 0.4428 0.5862 0.7227 0.8561 0.9478 0.9999 0.9999 

40 0.007086 0.0033 0.1594 0.2798 0.3780 0.4983 0.6066 0.7124 0.8159 0.9118 0.9815 

55 

20 0.098253 0.0029 0.0379 0.2448 0.6462 0.8288 0.9595 0.9893 0.9967 0.9967 1.0000 

30 0.040836 0.0019 0.1943 0.3370 0.4667 0.6791 0.8169 0.9188 0.985 1.0000 1.0000 

40 0.013323 0.0003 0.1743 0.3050 0.4186 0.5495 0.6669 0.7806 0.8823 0.9581 0.9867 

60 

20 0.112429 0.0050 0.0173 0.5172 0.8074 0.928 0.9996 0.9999 0.9999 0.9999 1.0000 

30 0.052176 0.0053 0.2369 0.4388 0.6193 0.7719 0.8867 0.9675 1.0000 1.0000 1.0000 

40 0.020327 0.0044 0.2078 0.3516 0.4931 0.6284 0.7531 0.8607 0.9449 0.9965 0.9956 

65 

20 0.127992 0.0000 0.3718 0.6913 0.8788 0.9794 0.9998 1.0000 1.0000 1.0000 1.0000 

30 0.065492 0.0066 0.3332 0.5000 0.6667 0.8333 0.9526 1.0000 1.0000 1.0000 1.0000 

40 0.028752 0.0067 0.2724 0.4343 0.5837 0.7206 0.8371 0.9299 0.9948 1.0000 1.0000 

70 

20 0.143884 0.0069 0.6036 0.8044 0.9423 0.9995 0.9997 0.9996 0.9999 0.9999 0.9999 

30 0.078072 0.0084 0.4578 0.6491 0.8049 0.9244 0.9996 0.9996 0.9996 1.0000 1.0000 

40 0.038545 0.0080 0.3589 0.5285 0.6806 0.8107 0.9158 0.9930 0.9997 0.9998 0.9998 

75 

20 0.159751 0.3330 0.6663 0.8789 0.9964 0.9982 0.9994 0.9999 0.9995 0.9998 1.0000 

30 0.091306 0.2854 0.5268 0.726 0.8841 0.9997 0.9993 1.0000 1.0000 1.0000 1.0000 

40 0.04903 0.2255 0.4311 0.6138 0.7704 0.8984 0.9962 0.9997 0.9998 0.9998 0.9999 

80 

20 0.175604 0.4292 0.7465 0.9786 0.9979 0.9985 0.9982 0.9997 0.9999 0.9999 0.9999 

30 0.106976 0.3326 0.6102 0.8355 0.9996 0.9995 0.9996 0.9999 0.9999 0.9999 0.9999 

40 0.061469 0.2718 0.5127 0.7193 0.8917 0.9999 0.9998 0.9997 0.9998 0.9999 0.9999 

85 

20 0.201316 0.4990 0.9905 0.9919 0.9952 0.9947 0.9972 0.9972 0.9983 0.9979 0.9995 

30 0.130626 0.3331 0.6664 0.9968 0.9989 0.9986 0.9996 0.9997 0.9999 0.9999 0.9999 

40 0.079198 0.3926 0.7286 0.9975 0.9969 0.9987 0.9996 0.9998 0.9999 0.9999 0.9999 
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G Appendix G: Program Scripts (Matlab R2016a) 

G.1 Scripts used in Chapter 3: Fissured slopes subject to earthquake 

% Main program 

% ------------------------------------------------------------------------- 

clear 

  

% Input data 

% ------------------------------------------------------------------------- 

% slope inclination [deg] 

beta_grad_high=65; 

beta_grad_low=65; 

deltabeta_grad=1; 

% friction angle [deg] 

phi_grad=20 

%-------------------------------------------------------------------------- 

% seismic coefficients 

K_h=0.0; 

lambda=0;     % ratio of Kv/Kh 

    

   

%-------------------------------------------------------------------------- 

% guess values 

x_guess_grad_ini=40 

y_guess_grad_ini=91 

z_guess_grad_ini=55 

x_delta_grad=4; 

y_delta_grad=4; 

z_delta_grad=4; 

  

% unit weights 

gamma=20; 

gamma_w=10; 

gammarat=gamma_w/gamma; 

  

% derived variables 

n1=fix((beta_grad_high-beta_grad_low)/deltabeta_grad)+1 %round the decimal number to 

lower integer 

  

beta_grad=beta_grad_low:deltabeta_grad:beta_grad_high 

b=tan(phi_grad/180*pi); 

K_v=K_h*lambda; 

% determination of angles in radians 

beta=beta_grad/180*pi; 

  

X0=[x_guess_grad_ini/180*pi;y_guess_grad_ini/180*pi;z_guess_grad_ini/180*pi]; 

Xdelta=[x_delta_grad/180*pi,y_delta_grad/180*pi,z_delta_grad/180*pi]; 

  

for i=1:n1 

    if flag==1 

        % 

    else 

        [X,M_]=funxyz_seismic(X0,Xdelta,b,beta(i),K_h,lambda); 

    end 

    if M_==-1 

        string='minimum not found' 

        break 

    elseif M_==-2 

        string='found minimum is not absolute' 

        break 

    end 

    M(i)=M_ 

    x(i)=X(1); 

    y(i)=X(2); 
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    z(i)=X(3); 

    X0=X; 

      

    d_norm=(exp(b*(z(i)-x(i)))*sin(z(i))-sin(x(i)))/(exp(b*(y(i)-x(i)))*sin(y(i))-

sin(x(i))); 

    Lrx=sin(y(i)-x(i))/sin(y(i))-

sin(y(i)+beta(i))/(sin(y(i))*sin(beta(i)))*(exp(b*(y(i)-x(i)))*sin(y(i))-sin(x(i))); 

    lrx=-exp(b*(z(i)-x(i)))*cos(z(i))+cos(x(i)); 

    rx_norm=1/(exp(b*(y(i)-x(i)))*sin(y(i))-sin(x(i))); 

    hx_norm(i)=(Lrx-lrx)*rx_norm; 

    Xcir=-rx_norm.*exp(b.*(y(i)-x(i))).*cos(y(i)); 

    Ycir=rx_norm.*exp(b.*(y(i)-x(i))).*sin(y(i)); 

     

     

    % normalized area of failure af/h^2 

  

area1_norm=rx_norm^2*(exp(2*b*(y(i)-x(i)))-1)/(4*b); 

area2_norm=1/2*rx_norm^2*sin(x(i))*(-exp(b*(y(i)-x(i)))*cos(y(i))+cos(x(i))); 

area3_norm=1/2*rx_norm*exp(b*(y(i)-x(i)))*cos(y(i)); 

area4_norm=cot (beta(i))/2; 

area5_norm=rx_norm^2*(exp(2*b*(z(i)-x(i)))-1)/(4*b); 

area6_norm=1/2*rx_norm^2*sin(x(i))*(cos(x(i))-exp(b*(z(i)-x(i)))*cos(z(i)));           

area7_norm=1/2*rx_norm^2*(exp(b*(z(i)-x(i)))*sin(z(i))-sin(x(i)))*exp(b*(z(i)-

x(i)))*cos(z(i)); 

af(i)=area1_norm-area2_norm-area3_norm-area4_norm-area5_norm+area6_norm+area7_norm; 

  

  

end 

  

c_norm=1./M; 

x_grad=x.*180./pi; 

y_grad=y.*180./pi; 

z_grad=z.*180./pi; 

  

%Plotting 

H_ini=1; 

plot_line(H_ini,beta,'k') 

axis equal 

plot_line(H_ini,phi,'g') 

% Spiral plotting 

for j=1:n1 

    plot_spiral_tenscrack 

end 

hold off 

  

  

figure(1) 

hold on 

plot(phi_grad,c_norm,'LineStyle','-','LineWidth',1,'Color','k'); 

% lambda=1 dashed; lambda=0.5 solid; lambda=0 dashed-dotted 

xlabel('\phi_m [deg]'); 

ylabel('N_m'); 

  

figure(2) 

hold on 

plot(phi_grad,d_norm,'LineStyle','-','LineWidth',1,'Color','k'); 

xlabel('\phi_m [deg]'); 

ylabel('\delta/H'); 

  

figure(3) 

hold on 

plot(phi_grad,lrx,'LineWidth',1,'Color','g'); 

xlabel('\phi_m [deg]'); 

ylabel('horizontal distance of crack from slope crest'); 

plot(phi_grad,Lrx,'LineWidth',1,'Color','r'); 

plot(phi_grad,hx_norm,'LineWidth',1,'Color','k'); 

hold off 

------  

function [X,M_] = funxyz(X0,Xdelta,b,beta,K_h,lambda); 
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K_v=lambda*K_h; 

x_guess=X0(1); 

y_guess=X0(2); 

z_guess=X0(3); 

x_delta=Xdelta(1); 

y_delta=Xdelta(2); 

z_delta=Xdelta(3); 

x_range=(-x_delta+x_guess):(0.1/180*pi):(x_delta+x_guess); 

y_range=(-y_delta+y_guess):(0.1/180*pi):(y_delta+y_guess); 

z_range=(-z_delta+z_guess):(0.1/180*pi):(z_delta+z_guess); 

x_range_grad=x_range*180/pi; 

y_range_grad=y_range*180/pi; 

z_range_grad=z_range*180/pi; 

  

m=size(x_range); 

n3=m(2); 

m=size(y_range); 

n4=m(2); 

m=size(z_range); 

n5=m(2); 

for k=1:n3 

    for l=1:n4 

        for j=1:n5 

            if (x_range(k)>y_range(l)-10e-6) | (x_range(k)>z_range(j)-10e-6) | 

(z_range(j)>y_range(l)-10e-6) 

                funM(k,l,j)=NaN; 

            else 

                fHrx=exp(b*(y_range(l)-x_range(k)))*sin(y_range(l))-sin(x_range(k)); 

                fd=exp(2*b*(z_range(j)-x_range(k)))*(exp(2*b*(y_range(l)-

z_range(j)))-1)/(2*b); 

                f1_v=(exp(3*b*(y_range(l)-

x_range(k)))*(sin(y_range(l))+3*b*cos(y_range(l)))-3*b*cos(x_range(k))-

sin(x_range(k)))/(3*(1+9*b^2)); 

                fLrx=sin(y_range(l)-x_range(k))/sin(y_range(l))-

sin(y_range(l)+beta)/(sin(y_range(l))*sin(beta))*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 

                f2_v=1/6*fLrx*sin(x_range(k))*(2*cos(x_range(k))-fLrx); 

                f3_v=1/6*exp(b*(y_range(l)-x_range(k)))*(sin(y_range(l)-x_range(k))-

fLrx*sin(y_range(l)))*(cos(x_range(k))-fLrx+cos(y_range(l))*exp(b*(y_range(l)-

x_range(k)))); 

                f4_v=(exp(3*b*(z_range(j)-

x_range(k)))*(sin(z_range(j))+3*b*cos(z_range(j)))-3*b*cos(x_range(k))-

sin(x_range(k)))/(3*(1+9*b^2)); 

                f5_v=1/6*sin(x_range(k))*((cos(x_range(k)))^2-exp(2*b*(z_range(j)-

x_range(k)))*(cos(z_range(j)))^2); 

                f6_v=1/3*exp(2*b*(z_range(j)-

x_range(k)))*(cos(z_range(j)))^2*(sin(z_range(j))*exp(b*(z_range(j)-x_range(k)))-

sin(x_range(k))); 

                flrx=cos(x_range(k))-exp(b*(z_range(j)-x_range(k)))*cos(z_range(j)); 

                f1_h=(exp(3*b*(y_range(l)-x_range(k)))*(-

cos(y_range(l))+3*b*sin(y_range(l)))-

3*b*sin(x_range(k))+cos(x_range(k)))/(3*(1+9*b^2)); 

                f2_h=1/3*fLrx*(sin(x_range(k)))^2; 

                f3_h=1/6*exp(b*(y_range(l)-x_range(k)))*(sin(y_range(l)-x_range(k))-

fLrx*sin(y_range(l)))*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))+sin(x_range(k))); 

                f4_h=(exp(3*b*(z_range(j)-x_range(k)))*(3*b*sin(z_range(j))-

cos(z_range(j)))-3*b*sin(x_range(k))+cos(x_range(k)))/(3*(1+9*b^2)); 

                f5_h=1/3*flrx*(sin(x_range(k)))^2; 

                f6_h=1/6*exp(b*(z_range(j)-

x_range(k)))*cos(z_range(j))*(exp(2*b*(z_range(j)-x_range(k)))*sin(z_range(j))^2-

sin(x_range(k))^2); 

                % no need for function p4 since most critical mechanism 

                % never involves a crack from the slope face 

                funM(k,l,j)=(fHrx*fd)/((f1_v-f2_v-f3_v-f4_v+f5_v+f6_v)*(1+K_v)+(f1_h-

f2_h-f3_h-f4_h+f5_h+f6_h)*K_h); 

            end 

            if (funM(k,l,j) < 1.0) | (funM(k,l,j) > 10e8) 

                funM(k,l,j)=NaN; 

            end 

        end 
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    end 

end 

i=1; 

for k=2:(n3-1) 

    for l=2:(n4-1) 

        for j=2:(n5-1) 

            if (funM(k,l,j)<Inf) 

                if (funM(k-1,l,j)>funM(k,l,j)) && (funM(k+1,l,j)>funM(k,l,j)) && 

(funM(k,l-1,j)>funM(k,l,j)) && (funM(k,l+1,j)>funM(k,l,j)) && (funM(k,l,j-

1)>funM(k,l,j)) && (funM(k,l,j+1)>funM(k,l,j)) &&(funM(k-1,l-1,j)>funM(k,l,j)) && 

(funM(k-1,l+1,j)>funM(k,l,j)) && (funM(k+1,l-1,j)>funM(k,l,j)) && 

(funM(k+1,l+1,j)>funM(k,l,j)) &&(funM(k-1,l,j-1)>funM(k,l,j)) && (funM(k-

1,l,j+1)>funM(k,l,j)) && (funM(k+1,l,j-1)>funM(k,l,j)) && 

(funM(k+1,l,j+1)>funM(k,l,j)) &&(funM(k,l-1,j-1)>funM(k,l,j)) && (funM(k,l-

1,j+1)>funM(k,l,j)) && (funM(k,l+1,j-1)>funM(k,l,j)) && (funM(k,l+1,j+1)>funM(k,l,j)) 

&& (funM(k-1,l-1,j-1)>funM(k,l,j)) && (funM(k+1,l+1,j+1)>funM(k,l,j)) 

                    potminima(i)=funM(k,l,j); 

                    potx(i)=k; 

                    poty(i)=l; 

                    potz(i)=j; 

                    i=i+1; 

                end 

            end 

        end 

    end 

end 

[M_,II]=min(potminima); 

% test to check that the found minimum is an absolute minimum in the 

% assigned domain 

test=min(min(min(funM))); 

if M_==test 

    k=potx(II); 

    l=poty(II); 

    j=potz(II); 

    X(1)=x_range(k); 

    X(2)=y_range(l); 

    X(3)=z_range(j); 

else 

    M_=-1; 

    X(1)=NaN; 

    X(2)=NaN; 

    X(3)=NaN; 

end 

  

 

G.2 Scripts used in Chapter 4 and 5: Reinforcement for cohesive 

backfills 

% Main program 

% ------------------------------------------------------------------------- 

clear 

clc 

% Input data 

% ------------------------------------------------------------------------- 

% c/gamma.H : cogh is the normalized cohesion 

cogh=0.0%:0.01:0.1; 

%n1=max(size(cogh)); 

  

% Kh horizontal seismic coefficient 

Kh=0:0.05:0.3; 

n1=max(size(Kh)); 

  

% friction angle [deg] 
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phi_grad=30; 

phi=phi_grad/180*pi; 

b=tan(phi); 

  

%  slope inclination [deg] 

beta_grad=45:5:45; 

beta=beta_grad/180*pi; 

%n1=max(size(beta_grad)); 

  

% imaginary slope inclination for the below the toe failure 

beta_prime_grad=beta_grad; 

beta_prime=beta_prime_grad*pi/180; 

  

% pore pressure coefficient ru 

ru=0.0; 

% reinforcement layout RL, for uniform Rl=1 and for LID, RL=2 

RL=1; 

N=6 ; % number of layers (for plotting only) 

% unit weights 

gamma=20; 

gamma_w=10; 

gammarat=gamma_w/gamma; 

% Crack scenario: (for nil tensile strength of soil, t=0), (for half of Mohr-Coulomb 

% unconfined tensile strength t=0.5), (for  whole Mohr-Coulomb unconfined tensile 

strength t=1) 

% and (for pre-existing crack, t=-1), for intact slope i.e. no crack t=2 

t=2; 

  

  

% range of the angles 

x_range_grad=-40:1:80; 

y_range_grad=60:1:120; 

z_range_grad=0:1:80; 

  

x_range=x_range_grad*pi/180; 

y_range=y_range_grad*pi/180; 

z_range=z_range_grad*pi/180; 

  

n3=max(size(x_range)); 

n4=max(size(y_range)); 

n5=max(size(z_range)); 

  

  

  

d=0; 

for i=1:n1 

    for k=1:n3 

        for l=1:n4 

            for j=1:n5 

                if (x_range(k)>y_range(l)-10e-6) || (x_range(k)>z_range(j)-10e-6) || 

(z_range(j)>y_range(l)-10e-6) 

                    K_req_(k,l,j)=NaN; 

                    Z(k,l,j)=NaN; 

                    F(k,l,j)=NaN; 

                else 

                    

[X,Kreq_,Flag]=funxyz_n(x_range(k),y_range(l),z_range(j),b,beta,cogh,Kh(i),t,ru,gamma

rat,RL); 

                     

                    K_req_(k,l,j)=Kreq_; 

                    Z(k,l,j)=X; 

                    F(k,l,j)=Flag; 

                end 

            end 

        end 

    end 

     

    [Kreq(i), I]=max(K_req_(:)) 

    [I2,I3,I4] = ind2sub(size(K_req_),I); 

     

    ZZ=Z(:); 

    z_(i)=ZZ(I); 
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    FF=F(:); 

    flag(i)=FF(I); 

     

    beta_prime_=beta_prime; 

    x_(i)=x_range(I2); 

    y_(i)=y_range(I3); 

    %z_(i)=z_range(I4); 

    if  (I2==n3) 

        d=d+1 

        kreq=NaN; 

        string='Increase x_range' 

    elseif (I2==1) 

        d=d+1 

        kreq=NaN; 

        string='Decrease x_range' 

    elseif (I3==n4) 

        d=d+1 

        kreq=NaN; 

        string='Increase y_range' 

    elseif (I3==1) 

        d=d+1 

        kreq=NaN; 

        string='Decrease y_range' 

    end 

    if flag(i)>0 

        string='Active constraint' 

    end 

     

end 

  

K_req=Kreq; 

flag_=flag; 

betaprime_grad=beta_prime_*180/pi; 

x_grad=x_.*180./pi; 

y_grad=y_.*180./pi; 

z_grad=z_.*180./pi; 

betaprime=beta_prime_; 

dd=d; 

  

d_norm=(exp(b*(z_-x_)).*sin(z_)-sin(x_))./(exp(b.*(y_-x_)).*sin(y_)-sin(x_)); 

Lrx=-exp(b.*(y_-

x_)).*sin(betaprime+y_)./sin(betaprime)+sin(betaprime+x_)./sin(betaprime); 

lrx=-exp(b.*(z_-x_)).*cos(z_)+cos(x_); 

rx_norm=1./(exp(b.*(y_-x_)).*sin(y_)-sin(x_)); 

hx_norm=(Lrx-lrx).*rx_norm; 

Xcir=-rx_norm.*exp(b.*(y_-x_)).*cos(y_); 

Ycir=rx_norm.*exp(b.*(y_-x_)).*sin(y_); 

  

figure(2) 

hold on 

% Plotting 

H_ini=1; 

% Spiral plotting 

for j=1:i 

    plot_line(H_ini,beta,'k') 

    axis equal 

    plot_line_toe(H_ini,0,'k') 

    plot_crack(H_ini,beta,'g',d_norm(j),hx_norm(i)) 

    plot_line_slopesurface(H_ini,beta,'k') 

    plot_line_reinforcement(H_ini,beta,N,RL,'b') 

    plot_spiral_tenscrack_betaprime 

    plot_line_white(H_ini,beta,'w') 

end 

hold off 

  

if RL==1 

    string='using Uniform Distribution of reinforcement' 

else 

    string='using Linearly Increasing Distribution of reinforcement' 

end 

------   
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function [X,Kreq_,Flag] = 

funxyz_n(x_range,y_range,z_range,b,beta,cogh,Kh,t,ru,gammarat,RL) 

  

x=x_range; 

y=y_range; 

z=z_range; 

  

beta_prime=beta; 

  

Hrx=(exp(b*(y-x)))*sin(y)-sin(x);  %  H/rx 

phi=atan(b); 

  

c_d=(1/Hrx)*exp(b*(z-x))*sin(z)-sin(x);% current depth of the crack 

if ru==0 

    m_d=3.83*cogh*tan(pi/4+phi/2) ; %maximum dry crack depth 

else 

    m_d=(2*cogh*tan(pi/4+phi/2))/(1-ru);   %maximum wet crack depth 

end 

if c_d > m_d 

    F=1; 

    if cogh==0 

        z=x; 

    else 

        x0=x; 

        % fun=@(th_1)exp(b*(th_1-x_range(k)))*cos(th_1)-cos(x_range(k))+fLrx; 

        options = optimset('TolX',1e-10); 

        [z, ~, ~, output] = fzero(@(z)exp(b*(z-x))*sin(z)-sin(x)-m_d,x0,options); 

    end 

else 

    z=z_range; 

    F=0; 

end 

  

  

% calculations of the dissipated enrgey function for the crack formation 

tan_theta_c=sin(x)/((exp(b*(z-x)))*cos(z)); 

theta_c=atan(tan_theta_c); 

if t==2 

    z=x; 

    gc=0; 

     

elseif t==0 

    ft=0; 

    int_ft=0; 

    int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

    fc=2*cos(phi)/(1-sin(phi)); 

    gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

elseif t==0.5 

    int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

    int_ft = integral(@(theta) (sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z); 

    fc=2*cos(phi)/(1-sin(phi)); 

    ft=cos(phi)/(1+sin(phi)); 

    gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

elseif t==1 

    int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

    int_ft = integral(@(theta) (sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z); 

    fc=2*cos(phi)/(1-sin(phi)); 

    ft=2*cos(phi)/(1+sin(phi)); 

    gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

else 

    gc=0; 

end 

  

g1=((exp(2*b*(z-x)))*(exp(2*b*(y-z))-1))/(2*b); 

  

  

if RL==1 

    %  for uniformly distributed mode: 

    if  x<0 

        g23=(exp(2*b*(y-x))*(sin(y))^2)/2; 

    else 

        g23=(exp(2*b*(y-x))*(sin(y))^2-(sin(x))^2)/2; 
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    end 

else 

    %  for linearly increasing density mode: 

    if  x<0 

        g23=(2/Hrx)*((1/3)*(exp(3*b*(y-x))*(sin(y))^3)-(sin(x)/2)*(exp(2*b*(y-

x))*(sin(y))^2)); 

    else 

        g23=(2/Hrx)*((1/3)*(exp(3*b*(y-x))*(sin(y))^3-(sin(x))^3)-

(sin(x)/2)*(exp(2*b*(y-x))*(sin(y))^2-(sin(x))^2)); 

    end 

end 

  

f1=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

Lrx=-exp(b*(y-

x))*sin(beta_prime+y)/sin(beta_prime)+sin(beta_prime+x)/sin(beta_prime); 

f2=1/6*Lrx*sin(x)*(2*cos(x)-Lrx); 

f3=1/6*exp(b*(y-x))*(sin(y-x)-Lrx*sin(y))*(cos(x)-Lrx+cos(y)*exp(b*(y-x))); 

%f4=1/2*Hrx^2*(cot(beta_prime)-cot(beta))*(cos(x)-Lrx-

1/3*Hrx*(cot(beta_prime)+cot(beta))) ;% for below the toe failure 

p1=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

p2=1/6*sin(x)*((cos(x))^2-exp(2*b*(z-x))*(cos(z))^2); 

p3=1/3*exp(2*b*(z-x))*(cos(z))^2*(sin(z)*exp(b*(z-x))-sin(x)); 

lrx=cos(x)-exp(b*(z-x))*cos(z); 

f1_h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 

f2_h=1/3*Lrx*(sin(x))^2; 

f3_h=1/6*exp(b*(y-x))*(sin(y-x)-Lrx*sin(y))*(exp(b*(y-x))*sin(y)+sin(x)); 

p1_h=(exp(3*b*(z-x))*(3*b*sin(z)-cos(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 

p2_h=1/3*lrx*(sin(x))^2; 

p3_h=1/6*exp(b*(z-x))*cos(z)*(exp(2*b*(z-x))*sin(z)^2-sin(x)^2); 

  

% Calculation of external work rate done by pore pressure along the log-spiral part 

using ru 

if ru==0 

    pu=0; 

else 

    % first: calculation of the angle Th_1 (the angle made by the line between point 

P and the point of vertical projection of the crest point on the log-spiral surface 

    x0=0.5; 

    % fun=@(th_1)exp(b*(th_1-x_range(k)))*cos(th_1)-cos(x_range(k))+fLrx; 

    options = optimset('TolX',1e-10); 

    [Th_1, ~, ~, output] = fzero(@(Th_1)exp(b*(Th_1-x))*cos(Th_1)-

cos(x)+Lrx,x0,options); 

    if (Th_1>y-10e-6)  || (Th_1<x) 

        funK=NaN; 

    end 

    if beta_prime<beta 

        x1=y; %(Th_1+y)/2; 

        options = optimset('TolX',1e-10); 

        [Th_2, ~, ~, output2] = fzero(@(Th_2)exp(b*(Th_2-x))*cos(Th_2)-

cos(x)+Lrx+Hrx*cot(beta),x1,options); 

        if (Th_2>y-10e-6)  || (Th_2<Th_1) 

            funK=NaN; 

        end 

        u_3=@(Th)(exp(b.*(Th-x)).*sin(Th)-exp(b.*(y-x))*sin(y)).*b.*(exp(2.*b.*(Th-

x))); 

        u3=integral(u_3,Th_2,y); 

    else 

        u3=0; 

    end 

    % second: calculation of the angle th_w (which is the angle betwen the hoizontal 

and the chord between the point p and the water level within the crack. 

    d_= exp(b*(z-x))*sin(z)-sin(x);  % the depth of the crack 

     

    th_w=atan((exp(b*(z-x))*sin(z)-ru*(1/gammarat)*d_)/(exp(b*(z-x))*cos(z))); 

     

    % third calculations of uc, u1 and u2 

    u_c=@(Th)(exp(b.*(z-x)).*cos(z).*tan(Th)-sin(x)).*tan(Th).*(exp(2.*b.*(z-

x)).*(cos(z)).^2)./(cos(Th)).^2; 

    u_1=@(Th)(exp(b.*(Th-x)).*sin(Th)-sin(x)).*b.*(exp(2.*b.*(Th-x))); 

    u_2=@(Th)(exp(b.*(Th-x)).*sin(Th)-(exp(b.*(Th_1-x)).*cos(Th_1)-exp(b.*(Th-

x)).*cos(Th)).*tan(beta)-sin(x)).*b.*(exp(2.*b.*(Th-x))); 
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    % forth: integration of uc, u1 and u2 

    uc=integral(u_c,th_w,z); 

    u1=integral(u_1,z,Th_1); 

    u2=integral(u_2,Th_1,y); 

    pu=ru*(uc+u1+u2+u3); 

end 

  

if ((exp(b*(z-x))*cos(z))>= (exp(b*(y-x))*cos(y)+Hrx*cot(beta))) %tension crack is 

from the slope crest 

    funK=(((f1-f2-f3-p1+p2+p3)+Kh*(f1_h-f2_h-f3_h-p1_h+p2_h+p3_h))/(Hrx*g23))-

cogh*((g1+gc)/g23); 

else 

    funK=(((f1-f2-f3-p1+p2+p3)+Kh*(f1_h-f2_h-f3_h-p1_h+p2_h+p3_h))/(Hrx*g23))-

cogh*((g1+gc)/g23); 

end 

if Lrx< 0 

    funK=-2; 

end 

% end 

if  funK>3 || funK<-1 

    Kreq_=NaN; 

else 

    Kreq_=funK; 

end 

X=z; 

  

Flag=F; 

end 

 

G.3 Scripts used in Chapter 6: Earthquake-induced displacement 

% Main program 

% ------------------------------------------------------------------------- 

clear 

clc 

% Input data 

% ------------------------------------------------------------------------- 

% friction angle [deg] 

phi_grad=20; 

phi=phi_grad/180*pi; 

b=tan(phi); 

  

%  slope inclination [deg] 

beta_grad=60; 

beta=beta_grad/180*pi; 

n1=max(size(beta_grad)); 

% imaginary slope inclination for the below the toe failure 

beta_prime_grad=beta_grad 

beta_prime=beta_prime_grad*pi/180; 

  

% c/gamma*H cogh 

cogh=0; 

  

% lambda=Kv/Kh ratio 

lambda=0; 

  

acc=load('Northridge Moorpark.txt'); % importing earthquake acceleration data. 

z1=acc'; 

c1=z1(:); 

L=c1'; 

K=L(1:1000); 

d=size(K); 

m1=d(2) 

t_interval= 0.02; % the time interval (sec), given with the earthquake data. 

t=0:t_interval:(m1-1)*(t_interval); 

Kmax=max(K); 

% soil tensile strength (for tension cut-off, T=0), (for limited tensile 

% strength T=0.5) and (for pre-existing crack, T=1),and (for intact, T=1.5) 
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T=1.5; 

  

% pore pressure coefficient ru 

ru=0; 

  

gamma=20; 

gamma_w=10; 

gammarat=gamma_w/gamma; 

  

% range of the angles 

x_range_grad=0:1:80; 

y_range_grad=50:1:130; 

z_range_grad=0:1:80; 

  

x_range=x_range_grad*pi/180; 

y_range=y_range_grad*pi/180; 

z_range=z_range_grad*pi/180; 

  

n3=max(size(x_range)); 

n4=max(size(y_range)); 

n5=max(size(z_range)); 

c=0; 

d=0; 

for i=1:n1 

    beta_prime_grad=(beta_grad):(-2):(beta_grad-0); 

    beta_prime=beta_prime_grad*pi/180; 

    n2=max(size(beta_prime)); 

    for h=1:n2 

        for k=1:n3 

            for l=1:n4 

                for j=1:n5 

                    if (x_range(k)>y_range(l)-10e-6) || (x_range(k)>z_range(j)-10e-6) 

|| (z_range(j)>y_range(l)-10e-6)|| (z_range(j)<0) 

                        M_(k,l,j)=NaN; 

                    elseif (h>1) && (y_range(l)*180/pi)< (90+phi_grad) 

                        M_(k,l,j)=NaN; 

                    else 

                        

[N]=funxyz(x_range(k),y_range(l),z_range(j),b,beta,beta_prime(h),cogh,ru,gammarat,T(i

),lambda); 

                         

                        M_(k,l,j)=N; 

                    end 

                end 

            end 

        end 

    end 

     

    [Ya(i), I]=min(M_(:)) 

    [I2,I3,I4] = ind2sub(size(M_),I); 

     

    beta_prime_=beta_prime; 

    x(i)=x_range(I2); 

    y(i)=y_range(I3); 

    z(i)=z_range(I4); 

     

    if (I2==n3) |(I2==1) 

        d=d+1 

        Ya(i)=NaN; 

        string='increase x_range' 

    elseif (I3==n4) |(I3==1) 

        d=d+1 

        Ya(i)=NaN; 

        string='increase y_range' 

    elseif (I4==n5) |(I4==1) 

        d=d+1 

        Ya(i)=NaN; 

        string='increase z_range' 

    end 

     

end 
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for i=1:n1 

    % Calculation of the yield acceleration considering pre-existing crack instead of 

the formed one. 

    if T(i)==1.5 

        Ya_p(i)=Ya(i); 

        x_range=x(i); 

        y_range=y(i); 

        z_range=x(i); 

    else 

        T(i)=1; % that means pre-existing crack 

        x_range=x(i); 

        y_range=y(i); 

        z_range=z(i); 

        

[N]=funxyz(x_range,y_range,z_range,b,beta,beta_prime,cogh,ru,gammarat,T(i),lambda); 

        Ya_p(i)=N 

    end 

     

     

    %calculation of the dimensionless coefficient C (following Michalowski 99), 

useful parameters: 

    Lrx(i)=sin(y(i)-x(i))./sin(y(i))-(exp(b.*(y(i)-x(i))).*sin(y(i))-

sin(x(i))).*sin(y(i)+beta)./(sin(y(i)).*sin(beta)); 

    lrx(i)=-exp(b.*(z(i)-x(i))).*cos(z(i))+cos(x(i)); 

    rx_norm(i)=1./(exp(b.*(y(i)-x(i))).*sin(y(i))-sin(x(i))); 

    hx_norm(i)=(Lrx(i)-lrx(i)).*rx_norm(i); 

    fHrx(i)= (exp(b.*(y(i)-x(i)))).*sin(y(i))-sin(x(i));  % H/rx 

    delta(i)=exp(b.*(z(i)-x(i))).*sin(z(i))-sin(x(i));  % crack depth/rx 

    f1_v(i)=(exp(3.*b.*(y(i)-x(i))).*(sin(y(i))+3.*b.*cos(y(i)))-3.*b.*cos(x(i))-

sin(x(i)))./(3.*(1+9*b.^2)); 

    f2_v(i)=1./6.*Lrx(i).*sin(x(i)).*(2.*cos(x(i))-Lrx(i)); 

    f3_v(i)=1./6.*exp(b.*(y(i)-x(i))).*(sin(y(i)-x(i))-

Lrx(i).*sin(y(i))).*(cos(x(i))-Lrx(i)+cos(y(i)).*exp(b.*(y(i)-x(i)))); 

    f4_v(i)=(exp(3.*b.*(z(i)-x(i))).*(sin(z(i))+3.*b.*cos(z(i)))-3.*b.*cos(x(i))-

sin(x(i)))./(3.*(1+9.*b.^2)); 

    f5_v(i)=1./6.*sin(x(i)).*((cos(x(i))).^2-exp(2.*b.*(z(i)-x(i))).*(cos(z(i))).^2); 

    f6_v(i)=1./3.*exp(2.*b.*(z(i)-x(i))).*(cos(z(i))).^2.*(sin(z(i)).*exp(b.*(z(i)-

x(i)))-sin(x(i))); 

    f1_h(i)=(exp(3.*b.*(y(i)-x(i))).*(-cos(y(i))+3.*b.*sin(y(i)))-

3.*b.*sin(x(i))+cos(x(i)))./(3.*(1+9.*b.^2)); 

    f2_h(i)=1./3.*Lrx(i).*(sin(x(i))).^2; 

    f3_h(i)=1./6.*exp(b.*(y(i)-x(i))).*(sin(y(i)-x(i))-

Lrx(i).*sin(y(i))).*(exp(b.*(y(i)-x(i))).*sin(y(i))+sin(x(i))); 

    f4_h(i)=(exp(3.*b.*(z(i)-x(i))).*(3.*b.*sin(z(i))-cos(z(i)))-

3.*b.*sin(x(i))+cos(x(i)))./(3.*(1+9*b.^2)); 

    f5_h(i)=1./3.*lrx(i).*(sin(x(i))).^2; 

    f6_h(i)=1./6.*exp(b.*(z(i)-x(i))).*cos(z(i)).*(exp(2.*b.*(z(i)-

x(i))).*sin(z(i)).^2-sin(x(i)).^2); 

    % Calculation of (C) 

     

    C_1(i)=(sin(y(i)).*exp(b.*(y(i)-x(i)))).*(lambda*(f1_v(i)-f2_v(i)-f3_v(i)-

f4_v(i)+f5_v(i)+f6_v(i))+(f1_h(i)-f2_h(i)-f3_h(i)-f4_h(i)+f5_h(i)+f6_h(i))); 

    C_2(i)=(1/2).*((exp(2.*b.*(y(i)-x(i)))-1)./(2.*b)-Lrx(i).*sin(x(i))-

fHrx(i).*exp(b.*(y(i)-x(i))).*sin(beta+y(i))./(sin(beta))-(exp(2.*b.*(z(i)-x(i)))-

1)./(2.*b)+lrx(i).*sin(x(i))+delta(i).*(exp(b.*(z(i)-x(i))).*cos(z(i)))); 

    C_3(i)=(f1_v(i)-f2_v(i)-f3_v(i)-f4_v(i)+f5_v(i)+f6_v(i)).^2+(f1_h(i)-f2_h(i)-

f3_h(i)-f4_h(i)+f5_h(i)+f6_h(i)).^2; 

    C_(i)=C_1(i).*C_2(i)/C_3(i); 

     

    E=0; 

    F=0; 

    K(m1+1)=0; 

    for jj=1:m1 

        V(jj)=(((K(jj)-Ya(i))+(K(jj+1)-Ya(i)))./2).*100.*9.806.*(t_interval);         

% where V is the velocity (cm/sec) (+ and -). 

        e(jj)= V(jj)+E(jj);                                    % to extract only 

positive accumlated velocity where E(jj) is the previous velocity. 

        if e(jj)<0 

            e(jj)=0; 

            D(jj)=F(jj);                                    % F(jj) is the previous 

displacment. 

        else 
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            D(jj)=F(jj)+e(jj).*t_interval ;        % D is the accumulated block 

displacement (cm) with respect to the ground surface (independent on the slope). 

        end 

        E(jj+1)=e(jj); 

        F(jj+1)=D(jj); 

    end 

    Dx_f=C_(i).*D;    % the horizontal accumulated displacemnt (cm)due to the 

formation of the crack. 

    % finding the point at which the yield acceleration should drop (that is the 

first time at which displacment occurs and completed). 

    if Ya(i)<Kmax && Ya(i)> 0 && Ya_p(i)> 0 

         

        for jj=1:m1 

            if  ((e(jj)>0) && (e(jj+1)==0)) 

                dp(jj)=jj+1; 

            end 

        end 

        vv=min(nonzeros(dp)); 

        D1=D(1:vv);   % dispalcement due to the initail yield acceleration. 

         

        E(vv)=0; 

        F(vv)=D(vv); 

        for jj=vv:m1   % after the yield acceleration drop 

            V(jj)=(((K(jj)-Ya_p(i))+(K(jj+1)-Ya_p(i)))./2).*100.*9.806.*(t_interval);         

% where V is the velocity (cm/sec) (+ and -). 

            e(jj)= V(jj)+E(jj);                                    % to extract only 

positive accumlated velocity where E(jj) is the previous velocity. 

            if e(jj)<0 

                e(jj)=0; 

                Ds(jj)=F(jj);                                    % F(jj) is the 

previous displacment. 

            else 

                Ds(jj)=F(jj)+e(jj).*t_interval ;        % D is the accumulated block 

displacement (cm) with respect to the ground surface (independent on the slope). 

            end 

            E(jj+1)=e(jj); 

            F(jj+1)=Ds(jj); 

        end 

        D2=Ds((vv):m1-1); 

         

        DD=horzcat(D1,D2); 

         

    else 

        if Ya(i)>Kmax 

            DD(1:m1)=0; 

        else 

            DD(1:m1)=NaN; 

        end 

    end 

     

    K=K(1:m1); 

     

    Dx_s=C_(i).*DD;    % Dx_int is the horizontal accumulated displacemnt (cm) 

    Dmax(i)=(max(Dx_s)); 

    figure (3) 

    hold on 

    %     if i==n1 

    %         plot (t,Dx_s,'k') 

    %     elseif i==n1-1 

    %         plot (t,Dx_s,'r') 

    %     else 

    %         plot (t,Dx_s,'b') 

    %         plot (t,Dx_f,'g') 

    %     end 

    plot (t,Dx_s,'k') 

    xlabel('time[sec]'); 

    ylabel('Displacement [cm]'); 

    title('Time-Displacement relationship') 

    hold off 

    if Ya(i)<Kmax && Ya(i)> 0 && Ya_p(i)> 0 

        for jj=1:m1 

            if jj<vv 
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                Kys(jj)=Ya(i); 

            else 

                Kys(jj)=Ya_p(i) ; 

            end 

        end 

    else 

        Kys(1:m1)=Ya(i); 

    end 

    K=K(1:m1); 

    figure (4) 

    hold on 

    plot (t,K); 

    plot (t,Kys,'r'); 

    title('earthquake acc. with intact and cracked yield acc.') 

    hold off 

     

end 

Dmax=Dmax'; 

Ky=Ya 

Ky_p=Ya_p 

C=C_; 

betaprime_grad=beta_prime_*180/pi 

x_grad=x.*180./pi 

y_grad=y.*180./pi 

z_grad=z.*180./pi 

betaprime=beta_prime_; 

cc=c 

dd=d 

z=x; 

d_norm=(exp(b*(z-x)).*sin(z)-sin(x))./(exp(b.*(y-x)).*sin(y)-sin(x)); 

Lrx=-exp(b.*(y-

x)).*sin(betaprime+y)./sin(betaprime)+sin(betaprime+x)./sin(betaprime); 

lrx=-exp(b.*(z-x)).*cos(z)+cos(x); 

rx_norm=1./(exp(b.*(y-x)).*sin(y)-sin(x)); 

hx_norm=(Lrx-lrx).*rx_norm; 

Xcir=-rx_norm.*exp(b.*(y-x)).*cos(y); 

Ycir=rx_norm.*exp(b.*(y-x)).*sin(y); 

  

% figure(1) 

% hold on 

% plot(T,Ky); 

% xlabel('Tensile Strength'); 

% ylabel('Yield Acceleration'); 

% hold off 

  

figure(2) 

hold on 

% Plotting 

H_ini=1; 

% Spiral plotting 

for j=1:i 

    plot_line(H_ini,beta,'k') 

    axis equal 

    plot_line_toe(H_ini,0,'k') 

    plot_crack(H_ini,beta,'g',d_norm(j),hx_norm(j)) 

    plot_line_slopesurface(H_ini,beta,'k') 

    plot_spiral_tenscrack_betaprime 

end 

hold off 

------  

function [N] = 

funxyz(x_range,y_range,z_range,b,beta,beta_prime,cogh,ru,gammarat,T,lambda) 

  

x=x_range; 

y=y_range; 

z=z_range; 

  

phi=atan(b); 
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% calculations of the dissipated enrgey function for the crack formation 

tan_theta_c=sin(x)/((exp(b*(z-x)))*cos(z)); 

theta_c=atan(tan_theta_c); 

if T==1.5 

    z=x; 

    gc=0; 

else 

    if T==0 

        ft=0; 

        int_ft=0; 

        int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

        fc=2*cos(phi)/(1-sin(phi)); 

        gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

    elseif T==0.5 

        int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

        int_ft = integral(@(theta) (sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z); 

        fc=2*cos(phi)/(1-sin(phi)); 

        ft=cos(phi)/(1+sin(phi)); 

        gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

    else 

        gc=0; 

    end 

end 

  

g=exp(b*(y-x))*sin(y)-sin(x);    % H/rx 

g1=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)/(2*b);           % function of the dissipated 

energy 

f1_v=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

Lrx=sin(y-x)/sin(y)-sin(y+beta)/(sin(y)*sin(beta))*(exp(b*(y-x))*sin(y)-sin(x));  % 

L1/rx 

f2_v=1/6*Lrx*sin(x)*(2*cos(x)-Lrx); 

f3_v=1/6*exp(b*(y-x))*(sin(y-x)-Lrx*sin(y))*(cos(x)-Lrx+cos(y)*exp(b*(y-x))); 

f4_v=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

f5_v=1/6*sin(x)*((cos(x))^2-exp(2*b*(z-x))*(cos(z))^2); 

f6_v=1/3*exp(2*b*(z-x))*(cos(z))^2*(sin(z)*exp(b*(z-x))-sin(x)); 

lrx=cos(x)-exp(b*(z-x))*cos(z);      % L2/rx 

f1_h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 

f2_h=1/3*Lrx*(sin(x))^2; 

f3_h=1/6*exp(b*(y-x))*(sin(y-x)-Lrx*sin(y))*(exp(b*(y-x))*sin(y)+sin(x)); 

f4_h=(exp(3*b*(z-x))*(3*b*sin(z)-cos(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 

f5_h=1/3*lrx*(sin(x))^2; 

f6_h=1/6*exp(b*(z-x))*cos(z)*(exp(2*b*(z-x))*sin(z)^2-sin(x)^2); 

% Calculation of external work rate done by pore pressure along the log-spiral part 

using ru 

if ru==0 

    pu=0; 

else 

    % first: calculation of the angle Th_1 (the angle made by the line between point 

P and the point of vertical projection of the crest point on the log-spiral surface 

    x0=0.5; 

    % fun=@(th_1)exp(b*(th_1-x_range(k)))*cos(th_1)-cos(x_range(k))+fLrx; 

    options = optimset('TolX',1e-10); 

    [Th_1, ~, ~, output] = fzero(@(Th_1)exp(b*(Th_1-x))*cos(Th_1)-

cos(x)+Lrx,x0,options); 

    if (Th_1>y-10e-6)  || (Th_1<x) 

        Ky=NaN; 

    end 

    if beta_prime<beta 

        x1=y; %(Th_1+y)/2; 

        options = optimset('TolX',1e-10); 

        [Th_2, ~, ~, output2] = fzero(@(Th_2)exp(b*(Th_2-x))*cos(Th_2)-

cos(x)+Lrx+g*cot(beta),x1,options); 

        if (Th_2>y-10e-6)  || (Th_2<Th_1) 

            Ky=NaN; 

        end 

        u_3=@(Th)(exp(b.*(Th-x)).*sin(Th)-exp(b.*(y-x))*sin(y)).*b.*(exp(2.*b.*(Th-

x))); 

        u3=integral(u_3,Th_2,y); 

    else 

        u3=0; 

    end 
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    % second: calculation of the angle th_w (which is the angle betwen the hoizontal 

and the chord between the point p and the water level within the crack. 

    d_= exp(b*(z-x))*sin(z)-sin(x);  % the depth of the crack 

     

    th_w=atan((exp(b*(z-x))*sin(z)-ru*(1/gammarat)*d_)/(exp(b*(z-x))*cos(z))); 

     

    % third calculations of uc, u1 and u2 

    u_c=@(Th)(exp(b.*(z-x)).*cos(z).*tan(Th)-sin(x)).*tan(Th).*(exp(2.*b.*(z-

x)).*(cos(z)).^2)./(cos(Th)).^2; 

    u_1=@(Th)(exp(b.*(Th-x)).*sin(Th)-sin(x)).*b.*(exp(2.*b.*(Th-x))); 

    u_2=@(Th)(exp(b.*(Th-x)).*sin(Th)-(exp(b.*(Th_1-x)).*cos(Th_1)-exp(b.*(Th-

x)).*cos(Th)).*tan(beta)-sin(x)).*b.*(exp(2.*b.*(Th-x))); 

     

    % forth: integration of uc, u1 and u2 

    uc=integral(u_c,th_w,z); 

    u1=integral(u_1,z,Th_1); 

    u2=integral(u_2,Th_1,y); 

    pu=ru*(uc+u1+u2+u3); 

end 

  

Ky=(cogh*(g1+gc)-(f1_v-f2_v-f3_v-f4_v+f5_v+f6_v)/g)/(((f1_v-f2_v-f3_v-

f4_v+f5_v+f6_v)*lambda+(f1_h-f2_h-f3_h-f4_h+f5_h+f6_h))/g); 

  

if Lrx-lrx < 0 || Ky>3 || Ky<-1 

    Ky=NaN; 

end 

N=Ky; 

end 

 

 

G.4 Scripts used in Chapter 7: Length of reinforcement 

% Main program 

% ------------------------------------------------------------------------- 

clear 

clc 

% Input data 

% ------------------------------------------------------------------------- 

% c/gamma.H : cogh is the normalized cohesion 

cogh=0.05; 

  

% friction angle [deg] 

phi_grad=20; 

phi=phi_grad/180*pi; 

b=tan(phi); 

  

%  slope inclination [deg] 

beta_grad=40:5:90; 

beta=beta_grad/180*pi; 

n1=max(size(beta_grad)); 

% imaginary slope inclination for the below the toe failure 

beta_prime_grad=beta_grad 

beta_prime=beta_prime_grad*pi/180; 

  

% pore pressure coefficient ru 

ru=0; 

  

% unit weights 

gamma=20; 

gamma_w=10; 

gammarat=gamma_w/gamma; 

  

% number of reinforcement layers N 

N=6; 

% bonding coefficient fb 

fb=0.5; 

% reinforcement layout RL, for uniform Rl=1 and for LID, RL=2 

RL=1; 
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% range of the angles 

x_range_grad=-20:1:80; 

y_range_grad=60:1:130; 

z_range_grad=0:1:80;  

  

x_range=x_range_grad*pi/180; 

y_range=y_range_grad*pi/180; 

z_range=z_range_grad*pi/180; 

  

n3=max(size(x_range)); 

n4=max(size(y_range)); 

n5=max(size(z_range)); 

d=0; 

c=0; 

for i=1:n1 

    beta_prime_grad=(beta_grad(i)):(-2):(beta_grad(i)-0); 

    beta_prime=beta_prime_grad*pi/180; 

    n2=max(size(beta_prime)); 

    for h=1:n2 

        for k=1:n3 

            for l=1:n4 

                for j=1:n5 

                    if (x_range(k)>y_range(l)-10e-6) | (x_range(k)>z_range(j)-10e-6) 

| (z_range(j)>y_range(l)-10e-6) 

                        K_req_(h,k,l,j)=NaN; 

                    elseif (h>1) && (y_range(l)*180/pi)< (90+phi_grad) 

                        K_req_(h,k,l,j)=NaN; 

                    else 

                        

[X,Kreq_]=funxyz(x_range(k),y_range(l),z_range(j),b,beta(i),beta_prime(h),cogh,ru,gam

marat,RL); 

                         

                        K_req_(h,k,l,j)=Kreq_; 

                    end 

                end 

            end 

        end 

    end 

    [Kreq(i), I]=max(K_req_(:)) 

    [I1,I2,I3,I4] = ind2sub(size(K_req_),I); 

     

    beta_prime_(i)=beta_prime(I1); 

    x_(i)=x_range(I2); 

    y_(i)=y_range(I3); 

    z_(i)=z_range(I4); 

    if I1==n2 && n2>1 

        c=c+1 

        string='larger beta_prime required' 

    elseif (I2==n3) |(I2==1) 

        d=d+1 

        string='increase x_range' 

    elseif (I3==n4) |(I3==1) 

        d=d+1 

        string='increase y_range' 

    elseif (I4==n5) |(I4==1) 

        d=d+1 

        string='increase z_range' 

    end 

end 

  

betaprime_grad=beta_prime_*180/pi; 

x_grad=x_.*180./pi 

y_grad=y_.*180./pi 

z_grad=z_.*180./pi 

betaprime=beta_prime_; 

cc=c 

dd=d 

  

d_norm=(exp(b*(z_-x_)).*sin(z_)-sin(x_))./(exp(b.*(y_-x_)).*sin(y_)-sin(x_)); 

Lrx=-exp(b.*(y_-

x_)).*sin(betaprime+y_)./sin(betaprime)+sin(betaprime+x_)./sin(betaprime); 
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lrx=-exp(b.*(z_-x_)).*cos(z_)+cos(x_); 

rx_norm=1./(exp(b.*(y_-x_)).*sin(y_)-sin(x_)); 

hx_norm=(Lrx-lrx).*rx_norm; 

Xcir=-rx_norm.*exp(b.*(y_-x_)).*cos(y_); 

Ycir=rx_norm.*exp(b.*(y_-x_)).*sin(y_); 

  

% Calculation of the length of reinforcement 

  

x_range_grad=40:2:60; 

y_range_grad=55:2:80; 

z_range_grad=40:2:60; 

  

x_range=x_range_grad*pi/180; 

y_range=y_range_grad*pi/180; 

z_range=z_range_grad*pi/180; 

  

  

n3=max(size(x_range)); 

n4=max(size(y_range)); 

n5=max(size(z_range)); 

cL=0; 

dL=0; 

  

for i=1:n1 

    beta_prime_grad_L=(beta_grad(i)):(-2):(beta_grad(i)-0); 

    beta_prime_L=beta_prime_grad_L*pi/180; 

    n2=max(size(beta_prime_L)); 

    for h=1:n2 

        for k=1:n3 

            for l=1:n4 

                for j=1:n5 

                    if (x_range(k)>y_range(l)-10e-6) || (x_range(k)>z_range(j)-10e-6) 

|| (z_range(j)>y_range(l)-10e-6) 

                        L(h,k,l,j)=NaN; 

                         

                    elseif (h>1) && (y_range(l)*180/pi)< (90+phi_grad) 

                        L(h,k,l,j)=NaN; 

                    else 

                        

[L,X1]=funxyz_length(Kreq(i),x_range(k),y_range(l),z_range(j),b,beta(i),beta_prime_L(

h),ru,cogh,gammarat,fb,N,RL,x_(i)); 

                         

                        L_(h,k,l,j)=L; 

                        XX(h,k,l,j)=X1; 

                    end 

                end 

            end 

        end 

         

        [LoH(i), I]=max(L_(:)) 

        [I1,I2,I3,I4] = ind2sub(size(L_),I); 

         

        X=(XX(:)); 

        FM=X(I);   % this provides which scenario has happened. 

         

        beta_prime_L(i)=beta_prime_L(I1); 

        x_L(i)=x_range(I2); 

        y_L(i)=y_range(I3); 

        z_L(i)=z_range(I4); 

        if I1==n2 && n2>1 

            string='larger beta_prime required' 

            cL=cL+1 

        elseif (I2==n3) |(I2==1) 

            dL=dL+1 

            string='increase x_range' 

        elseif (I3==n4) |(I3==1) 

            dL=dL+1 

            string='increase y_range' 

        elseif (I4==n5) |(I4==1) 

            dL=dL+1 

            string='increase z_range' 

        end 
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    end 

end 

%parameters for the Length of reinforcement 

beta_prime_grad=(beta_grad-28); 

beta_prime=beta_prime_grad*pi/180; 

  

for i=1:n1 

    beta_prime_grad_L=(beta_grad(i)):(-1):(beta_grad(i)-0); 

    beta_prime_L=beta_prime_grad_L*pi/180; 

    n2=max(size(beta_prime)); 

    for h=1:n2 

        for k=1:n3 

            for l=1:n4 

                for j=1:n5 

                if (x_range(k)>y_range(l)-10e-6) 

                    B(h,k,l,j)=NaN; 

                     

                elseif (h>1) && (y_range(l)*180/pi)< (90+phi_grad) 

                    B(h,k,l,j)=NaN; 

                else 

                    

[B]=fun_xyz_LD_length(Kreq,LoH,x_range(k),y_range(l),z_range(j),b,beta(i),beta_prime,

ru,gammarat,fb,N,RL,x_(i),cogh);   

                    B_(h,k,l,j)=B;  

                end 

                end  

            end 

        end 

        Beta(i)=max(B_(:)) 

         

    end 

end 

  

beta_prime=Beta*pi/180; 

g=(exp(b*(y_L-x_L)))*sin(y_L)-sin(x_L);  %  H/rx 

  

  

betaprime_grad_L=beta_prime_L*180/pi 

x_grad_L=x_L.*180./pi 

y_grad_L=y_L.*180./pi 

z_grad_L=z_L.*180./pi 

betaprime_L=beta_prime_L; 

ccL=cL 

ddL=dL 

d_norm_L=(exp(b*(z_L-x_L)).*sin(z_L)-sin(x_L))./(exp(b.*(y_L-x_L)).*sin(y_L)-

sin(x_L)); 

Lrx_L=-exp(b.*(y_L-

x_L)).*sin(betaprime_L+y_L)./sin(betaprime_L)+sin(betaprime_L+x_L)./sin(betaprime_L); 

lrx_L=-exp(b.*(z_L-x_L)).*cos(z_L)+cos(x_L); 

rx_norm_L=1./(exp(b.*(y_L-x_L)).*sin(y_L)-sin(x_L)); 

hx_norm_L=(Lrx_L-lrx_L).*rx_norm_L; 

Xcir_L=-rx_norm_L.*exp(b.*(y_L-x_L)).*cos(y_L); 

Ycir_L=rx_norm_L.*exp(b.*(y_L-x_L)).*sin(y_L); 

  

  

for i=1:N 

        if RL==1 

            Z(i)=(i-0.5)*g/N ;% where Z(i) the depth of the i layer measured from the 

upper slope surface. 

        else 

            Z(i)=(2/3)*g*N*(sqrt((i/N)^3)-sqrt(((i-1)/N)^3)); 

        end 

        L_prime(i)=((Z(i)-Z(1))*(cot(beta_prime)-cot(beta))); 

        L(i)=LoH-L_prime(i); 

end  

  

figure(7) 

hold on 

H_ini=1; 

% Spiral plotting 

for j=1 

    plot_line(H_ini,beta,'k') 
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    plot_crack(H_ini,beta(j),'r',d_norm_L,hx_norm_L) 

    axis equal 

    plot_line_L(H_ini,beta_prime,'g') 

    %plot_line(H_ini,phi,'g') 

    plot_line_toe(H_ini,0,'k') 

    plot_line_slopesurface(H_ini,beta(j),'k') 

     

    %plot_spiral_tenscrack_betaprime 

    plot_spiral_tenscrack_betaprime_L 

    plot_line_reinforcement(H_ini,beta,beta_prime,N,LoH,'b',RL,g) 

end 

hold off 

if RL==1 

     string='using Uniform Distribution of reinforcement' 

else 

    string='using Linearly Increasing Distribution of reinforcement' 

end  

  

% save all variables 

str1=num2str(beta_grad); 

str2=num2str(phi_grad); 

str3=num2str(cogh*100); 

str4=int2str(ru*100); 

str5=num2str(RL); 

filename=['Beta',str1,'Phi',str2,'cogh',str3,'ru',str4,'RL',str5,'.mat']; 

save (filename) 

 

----- 

function [L,X1]= 

funxyz_length(Kreq,x_range,y_range,z_range,b,beta,beta_prime_L,ru,cogh,gammarat,fb,N,

RL,x_) 

  

x=x_range; 

y=y_range; 

z=z_range; 

   g=(exp(b*(y-x)))*sin(y)-sin(x);  %  H/rx 

    g1=((exp(2*b*(z-x)))*(exp(2*b*(y-z))-1))/(2*b); 

    f1=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

    Lrx=-exp(b*(y-

x))*sin(beta_prime_L+y)/sin(beta_prime_L)+sin(beta_prime_L+x)/sin(beta_prime_L); 

    f2=1/6*Lrx*sin(x)*(2*cos(x)-Lrx); 

    f3=1/6*exp(b*(y-x))*(sin(y-x)-Lrx*sin(y))*(cos(x)-Lrx+cos(y)*exp(b*(y-x))); 

    f4=1/2*g^2*(cot(beta_prime_L)-cot(beta))*(cos(x)-Lrx-

1/3*g*(cot(beta_prime_L)+cot(beta))) ;% for below the toe failure 

    p1=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

    p2=1/6*sin(x)*((cos(x))^2-exp(2*b*(z-x))*(cos(z))^2); 

    p3=1/3*exp(2*b*(z-x))*(cos(z))^2*(sin(z)*exp(b*(z-x))-sin(x)); 

     

     

    %  calculation of the angle Th_1 (the angle made by the line between point P and 

the point of vertical projection of the crest point on the log-spiral surface 

    % it is out of the loop becuase it is needed later for the calculations of length 

of rienforcement. 

    x0=(x+y)/2; 

    options = optimset('TolX',1e-10); 

    [Th_1, ~, ~, output] = fzero(@(Th_1)exp(b*(Th_1-x))*cos(Th_1)-

cos(x)+Lrx,x0,options); 

     

    % calculation of the angle Th_2 

    if beta_prime_L<beta 

        x1=y; %(Th_1+y)/2; 

        options = optimset('TolX',1e-10); 

        [Th_2, ~, ~, output1] = fzero(@(Th_2)exp(b*(Th_2-x))*cos(Th_2)-

cos(x)+Lrx+g*cot(beta),x1,options); 

    end 

     

    if (Th_1>y-10e-6)  || (Th_1<x) 

        string='Th_1 not found'; 

        L=NaN; 
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        X1=NaN; 

        X2=NaN; 

    elseif (beta_prime_L<beta) && ((Th_2>y-10e-10) || (Th_2<Th_1)) 

        string='Th_2 not found'; 

        L=NaN; 

        X1=NaN; 

        X2=NaN; 

    else 

        % Calculation of external work rate done by pore pressure along the log-

spiral part using ru 

        if ru==0 

            pu=0; 

        else 

            if beta_prime_L<beta 

                u_3=@(Th)(exp(b.*(Th-x)).*sin(Th)-exp(b.*(y-

x))*sin(y)).*b.*(exp(2.*b.*(Th-x))); 

                u3=integral(u_3,Th_2,y); 

            else 

                u3=0; 

            end 

             

            % second: calculation of the angle th_w (which is the angle betwen the 

hoizontal and the chord between the point p and the water level within the crack. 

            d_= exp(b*(z-x))*sin(z)-sin(x);  % the depth of the crack 

             

            th_w=atan((exp(b*(z-x))*sin(z)-ru*(1/gammarat)*d_)/(exp(b*(z-

x))*cos(z))); 

             

            % third calculations of uc, u1 and u2 

            u_c=@(Th)(exp(b.*(z-x)).*cos(z).*tan(Th)-sin(x)).*tan(Th).*(exp(2.*b.*(z-

x)).*(cos(z)).^2)./(cos(Th)).^2; 

            u_1=@(Th)(exp(b.*(Th-x)).*sin(Th)-sin(x)).*b.*(exp(2.*b.*(Th-x))); 

            u_2=@(Th)(exp(b.*(Th-x)).*sin(Th)-(exp(b.*(Th_1-x)).*cos(Th_1)-

exp(b.*(Th-x)).*cos(Th)).*tan(beta)-sin(x)).*b.*(exp(2.*b.*(Th-x))); 

             

            % forth: integration of uc, u1 and u2 

            uc=integral(u_c,th_w,z); 

            u1=integral(u_1,z,Th_1); 

            u2=integral(u_2,Th_1,y); 

            pu=ru*(uc+u1+u2+u3); 

        end 

         

        for i=1:N 

            if RL==1 

                Z(i)=(i-0.5)*g/N; % where Z(i) the depth of the i layer measured from 

the upper slope surface. 

            else 

                Z(i)=(2/3)*g*N*(sqrt((i/N)^3)-sqrt(((i-1)/N)^3)); 

            end 

            % Calculating the angle Th_i (intersection of failure surface with the 

layer in question. 

            x2=x+y/2; 

            options = optimset('TolX',1e-10); 

            [Th_i, ~, ~, output2] = fzero(@(Th_i)exp(b*(Th_i-x))*sin(Th_i)-sin(x)-

Z(i),x2,options); 

             

             

            if (Th_i>y-10e-6)  || (Th_i<x) 

                string='Th_i not found'; 

                Th_i=NaN; 

                Kreq=NaN; 

            end 

            if Th_i<z  

                le1(i)=(1/g)*((cos(y)+sin(y)*cot(beta))*exp(b*(y-x))-

(cos(Th_i)+sin(Th_i)*cot(beta))*exp(b*(Th_i-x))-exp(b*(Th_i-x))*cos(Th_i)+exp(b*(z-

x))*cos(z)); 

            else   

                le1(i)=(1/g)*((cos(y)+sin(y)*cot(beta))*exp(b*(y-x))-

(cos(Th_i)+sin(Th_i)*cot(beta))*exp(b*(Th_i-x)));     

            end 
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            if Th_i<=Th_1 % that is the case when the failure surface intersects the 

reinforcement under the slope upper slope surface (the horizontal line). 

                 

                Z_(i)=(1/g)*(exp(b*(Th_i-x))*sin(Th_i)-sin(x)); % where Z_(i) is the 

depth of the i layer measured either from slope face or from the upper slope surface.  

            else 

                % if beta_prime_L==beta 

                Th_2=y; 

                % end 

                Z_(i)=(1/g)*(exp(b.*(Th_i-x)).*sin(Th_i)-exp(b.*(y-

x)).*sin(y)+(exp(b.*(Th_i-x)).* cos(Th_i)-exp(b.*(Th_2-x)).*cos(Th_2)).*tan(beta)); 

            end 

              

            le(i)=Kreq./(N*2*Z_(i)*fb*b*(1-ru)); 

            LL(i)=le(i)+(cos(Th_i)+sin(Th_i)*cot(beta))*(1/g)*exp(b.*(Th_i-x))-

(cos(y)+sin(y)*cot(beta))*(1/g)*exp(b.*(y-x)); 

           

            if (x<0) && ((sin(x)+Z(1))<0) || (x_<0) && ((sin(x_)+Z(1))<0) 

                Z(1)=0; 

            end 

        end 

        if Kreq<10 

            x3=0.5; 

            options = optimset('TolX',1e-4); 

           %--------------------------------------- if one layer only is pulled-out -

--------------------------------------. 

        %(1)% if the first layer is pulled-out and the rest fail in tension 

        if  (sin(x_)+Z(1)>0) && (sin(x)+Z(1)>0) 

            [L1, ~, ~, output3] = fzero(@(L1)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(1)*(le1(1)+L1)*(sin(x)+Z(1))))/((1/N)*(sin(x)+Z(2)+sin(x)+Z(3)+sin(x)+Z(4)+si

n(x)+Z(5)+sin(x)+Z(6)))),x3,options); 

            if (L1<0) || (L1>10) || ((le1(1)+L1)<0) 

                L1=NaN; 

            elseif L1>LL(1) 

                L1=LL(1); 

            end 

        else 

            L1=NaN; 

        end 

         

        %(2)% if the first layer is bypassed and the second layer is pulled-out while 

the rest fail in tension 

        [L2, ~, ~, output4] = fzero(@(L2)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(2)*(le1(2)+L2)*(sin(x)+Z(2))))/((1/N)*(sin(x)+Z(3)+sin(x)+Z(4)+sin(x)+Z(5)+si

n(x)+Z(6)))),x3,options); 

        if (L2<0)|| (L2>10)|| ((le1(1)+L2)>0) || ((le1(2)+L2)<0) 

            L2=NaN; 

        elseif L2>LL(2) 

            L2=LL(2); 

        end 

        %(3)% if 1&2 are bypassed and the third layer is pulled-out while the rest 

fail in tension 

        [L3, ~, ~, output5] = fzero(@(L3)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(3)*(le1(3)+L3)*(sin(x)+Z(3))))/((1/N)*(sin(x)+Z(4)+sin(x)+Z(5)+sin(x)+Z(6))))

,x3,options); 

        if (L3<0)|| (L3>10)|| ((le1(1)+L3)>0)|| ((le1(2)+L3)>0) || ((le1(3)+L3)<0) 

            L3=NaN; 

        elseif L3>LL(3) 

            L3=LL(3); 

        end 

        %(4)% if 1,2&3 are bypassed and the fourth layer is pulled-out while the rest 

fail in tension 

        [L4, ~, ~, output6] = fzero(@(L4)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(4)*(le1(4)+L4)*(sin(x)+Z(4))))/((1/N)*(sin(x)+Z(5)+sin(x)+Z(6)))),x3,options)

; 

        if (L4<0)|| (L4>10)|| ((le1(1)+L4)>0)|| ((le1(2)+L4)>0)||((le1(3)+L4)>0) || 

((le1(4)+L4)<0) 

            L4=NaN; 
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        elseif L4>LL(4) 

            L4=LL(4); 

        end 

        %(5)% if 1,2,3&4 are bypassed and the fifth layer is pulled-out while the 

sixth fails in tension 

        [L5, ~, ~, output7] = fzero(@(L5)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(5)*(le1(5)+L5)*(sin(x)+Z(5))))/((1/N)*(sin(x)+Z(6)))),x3,options); 

        if (L5<0)|| (L5>10)|| ((le1(1)+L5)>0)|| ((le1(2)+L5)>0)|| ((le1(3)+L5)>0)|| 

((le1(4)+L5)>0) || ((le1(5)+L5)<0) 

            L5=NaN; 

        elseif L5>LL(5) 

            L5=LL(5); 

        end 

        %--------------------------------------- if two layers only are pulled-out --

-------------------------------------. 

        if  (sin(x_)+Z(1)>0) && (sin(x)+Z(1)>0) % this to avoid getting relatively 

long reinforcement, because all layers will depends on length of the topmost layer! 

            %(6)% if 1&2 are pulled-out while the rest fail in tension 

            [L6, ~, ~, output8] = fzero(@(L6)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(1)*(le1(1)+L6)*(sin(x)+Z(1))+Z_(2)*(le1(2)+L6)*(sin(x)+Z(2))))/((1/N)*(sin(x)

+Z(3)+sin(x)+Z(4)+sin(x)+Z(5)+sin(x)+Z(6)))),x3,options); 

            if (L6<0)|| (L6>10)|| ((le1(1)+L6)<0) || ((le1(2)+L6)<0) 

                L6=NaN; 

            elseif L6>LL(1) 

                L6=LL(1); 

            end 

        else 

            L6=NaN; 

        end 

        %(7)% if 1 is bypassed and 2&3 are pulled-out while the rest fail in tension 

        [L7, ~, ~, output9] = fzero(@(L7)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(2)*(le1(2)+L7)*(sin(x)+Z(2))+Z_(3)*(le1(3)+L7)*(sin(x)+Z(3))))/((1/N)*(sin(x)

+Z(4)+sin(x)+Z(5)+sin(x)+Z(6)))),x3,options); 

        if (L7<0)|| (L7>10)|| ((le1(1)+L7)>0) || ((le1(2)+L7)<0) 

            L7=NaN; 

        elseif L7>LL(2) 

            L7=LL(2); 

        end 

         

        %(8)% if 1&2 are bypassed and 3&4 are pulled-out while the rest fail in 

tension 

        [L8, ~, ~, output10] = fzero(@(L8)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(3)*(le1(3)+L8)*(sin(x)+Z(3))+Z_(4)*(le1(4)+L8)*(sin(x)+Z(4))))/((1/N)*(sin(x)

+Z(5)+sin(x)+Z(6)))),x3,options); 

        if (L8<0)|| (L8>10)|| ((le1(1)+L8)>0) || ((le1(2)+L8)>0)|| ((le1(3)+L8)<0) 

            L8=NaN; 

        elseif L8>LL(3) 

            L8=LL(3); 

        end 

        %(9)% if 1,2&3 are bypassed and 4&5 are pulled-out while the 6th fails in 

tension 

        [L9, ~, ~, output11] = fzero(@(L9)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(4)*(le1(4)+L9)*(sin(x)+Z(4))+Z_(5)*(le1(5)+L9)*(sin(x)+Z(5))))/((1/N)*(sin(x)

+Z(6)))),x3,options); 

        if (L9<0)|| (L9>10)|| ((le1(1)+L9)>0) || ((le1(2)+L9)>0)|| ((le1(3)+L9)>0)|| 

((le1(4)+L9)<0) 

            L9=NaN; 

        elseif L9>LL(4) 

            L9=LL(4); 

        end 

        %--------------------------------------- if three layers are pulled-out -----

----------------------------------. 

        if (sin(x_)+Z(1)>0) && (sin(x)+Z(1)>0) 

            %(10)% if 1,2&3 are pulled-out while the rest fail in tension 

            [L10, ~, ~, output12] = fzero(@(L10)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-
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ru)*(Z_(1)*(le1(1)+L10)*(sin(x)+Z(1))+Z_(2)*(le1(2)+L10)*(sin(x)+Z(2))+Z_(3)*(le1(3)+

L10)*(sin(x)+Z(3))))/((1/N)*(sin(x)+Z(4)+sin(x)+Z(5)+sin(x)+Z(6)))),x3,options); 

            if (L10<0)|| (L10>10)|| ((le1(1)+L10)<0) || ((le1(2)+L10)<0)|| 

((le1(3)+L10)<0) 

                L10=NaN; 

            elseif L10>LL(1) 

                L10=LL(1); 

            end 

        else 

            L10=NaN; 

        end 

        %(11)% if the 1st is bypassed and 2,3&4 are pulled-out while the rest fail in 

tension 

        [L11, ~, ~, output13] = fzero(@(L11)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(2)*(le1(2)+L11)*(sin(x)+Z(2))+Z_(3)*(le1(3)+L11)*(sin(x)+Z(3))+Z_(4)*(le1(4)+

L11)*(sin(x)+Z(4))))/((1/N)*(sin(x)+Z(5)+sin(x)+Z(6)))),x3,options); 

        if (L11<0)|| (L11>10)|| ((le1(1)+L11)>0) || ((le1(2)+L11)<0)|| 

((le1(3)+L11)<0)||((le1(4)+L11)<0) 

            L11=NaN; 

        elseif L11>LL(2) 

            L11=LL(2); 

        end 

        %(12)% if the 1&2 are bypassed and 3,4&5 are pulled-out while the 6th fails 

in tension 

        [L12, ~, ~, output14] = fzero(@(L12)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(3)*(le1(3)+L12)*(sin(x)+Z(3))+Z_(4)*(le1(4)+L12)*(sin(x)+Z(4))+Z_(5)*(le1(5)+

L12)*(sin(x)+Z(5))))/((1/N)*(sin(x)+Z(6)))),x3,options); 

        if (L12<0)|| (L12>3)|| ((le1(1)+L12)>0) || ((le1(2)+L12)>0)|| 

((le1(3)+L12)<0)|| ((le1(4)+L12)<0)|| ((le1(5)+L12)<0) 

            L12=NaN; 

        elseif L12>LL(3) 

            L12=LL(3); 

        end 

        if (sin(x_)+Z(1)>0) && (sin(x)+Z(1)>0) 

            %(13)% if the 3&4 are bypassed and 1,2&5 are pulled-out while the 6th 

fails in tension, this might be the case for gentle slope (i.e Beta less than 45). 

            [L13, ~, ~, output15] = fzero(@(L13)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(1)*(le1(1)+L13)*(sin(x)+Z(1))+Z_(2)*(le1(2)+L13)*(sin(x)+Z(2))+Z_(5)*(le1(5)+

L13)*(sin(x)+Z(5))))/((1/N)*(sin(x)+Z(6)))),x3,options); 

            if (L13<0)|| (L13>10)|| ((le1(1)+L13)<0) || ((le1(2)+L13)<0)|| 

((le1(3)+L13)>0)|| ((le1(4)+L13)>0)|| ((le1(5)+L13)<0) 

                L13=NaN; 

            elseif L13>LL(1) 

                L13=LL(1); 

            end 

            %(14)% if the 2&3 are bypassed and 1,4&5 are pulled-out while the 6th 

fails in tension, this might be the case for gentle slope (i.e Beta less than 45). 

            [L14, ~,~, output16] = fzero(@(L14)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(1)*(le1(1)+L14)*(sin(x)+Z(1))+Z_(4)*(le1(4)+L14)*(sin(x)+Z(4))+Z_(5)*(le1(5)+

L14)*(sin(x)+Z(5))))/((1/N)*(sin(x)+Z(6)))),x3,options); 

            if (L14<0)|| (L14>10)|| ((le1(1)+L14)<0) || ((le1(2)+L14)>0)|| 

((le1(3)+L14)>0)|| ((le1(4)+L14)<0)|| ((le1(5)+L14)<0) 

                L14=NaN; 

            elseif L14>LL(1) 

                L14=LL(1); 

            end 

             

            %--------------------------------------- if four layers are pulled-out --

-------------------------------------. 

            %(15)% if 1,2,3&4 are pulled-out while the rest fail in tension 

            [L15, ~,~, output17] = fzero(@(L15)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(1)*(le1(1)+L15)*(sin(x)+Z(1))+Z_(2)*(le1(2)+L15)*(sin(x)+Z(2))+Z_(3)*(le1(3)+

L15)*(sin(x)+Z(3))+Z_(4)*(le1(4)+L15)*(sin(x)+Z(4))))/((1/N)*(sin(x)+Z(5)+sin(x)+Z(6)

))),x3,options); 

            if (L15<0)|| (L15>10)|| ((le1(1)+L15)<0) || ((le1(2)+L15)<0)|| 

((le1(3)+L15)<0)|| ((le1(4)+L15)<0) 

                L15=NaN; 
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            elseif L15>LL(1) 

                L15=LL(1); 

            end 

        else 

            L13=NaN; 

            L14=NaN; 

            L15=NaN; 

        end 

        %(16)% if the 1st is bypassed and  2,3,4&5 are pulled-out while the 6th fails 

in tension 

        [L16, ~,~, output18] = fzero(@(L16)(-Kreq+((1/g)^2*(f1-f2-f3-f4-p1+p2+p3+pu)-

(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(1)*(le1(1)+L16)*(sin(x)+Z(1))+Z_(2)*(le1(2)+L16)*(sin(x)+Z(2))+Z_(3)*(le1(3)+

L16)*(sin(x)+Z(3))+Z_(4)*(le1(4)+L16)*(sin(x)+Z(4))))/((1/N)*(sin(x)+Z(5)+sin(x)+Z(6)

))),x3,options); 

        if (L16<0)|| (L16>10)|| ((le1(1)+L16)>0) || ((le1(2)+L16)<0)|| 

((le1(3)+L16)<0)|| ((le1(4)+L16)<0)|| ((le1(4)+L16)<0) 

            L16=NaN; 

        elseif L16>LL(2) 

            L16=LL(2); 

        end 

        %---------------------------------------  Other cases to be considered  -----

----------------------------------. 

         

        %(17% if 3&4 are bypassed and 2&5 are pulled-out while the rest fail in 

tension 

        [L17, ~, ~, output21] = fzero(@(L17)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(2)*(le1(2)+L17)*(sin(x)+Z(2))+Z_(5)*(le1(5)+L17)*(sin(x)+Z(5))))/((1/N)*(sin(

x)+Z(1)+sin(x)+Z(6)))),x3,options); 

        if (L17<0)|| (L17>10)|| ((le1(1)+L17)<0) || ((le1(2)+L17)<0)|| 

((le1(3)+L17)>0)|| ((le1(4)+L17)>0)|| ((le1(5)+L17)<0) 

            L17=NaN; 

        elseif L17>LL(2) 

            L17=LL(2); 

        end 

        %(18)% if 1,2&6 fail in tension, and 3&5 are pulled-out while the fourth is 

bypassed 

        [L18, ~, ~, output22] = fzero(@(L18)(-Kreq+((1/g)^2*(f1-f2-f3-f4-

p1+p2+p3+pu)-(1/g)*g1*cogh-2*fb*b*(1-

ru)*(Z_(3)*(le1(3)+L18)*(sin(x)+Z(3))+Z_(5)*(le1(5)+L18)*(sin(x)+Z(5))))/((1/N)*(sin(

x)+Z(1)+sin(x)+Z(2)+sin(x)+Z(6)))),x3,options); 

        if (L18<0)|| (L18>10)|| ((le1(1)+L18)<0) || ((le1(2)+L18)<0)|| 

((le1(6)+L18)<0)|| ((le1(4)+L18)>0)||  ((le1(3)+L18)<0) || ((le1(5)+L18)<0) 

            L18=NaN; 

        elseif L18>LL(3) 

            L18=LL(3); 

        end 

         

        L_=[L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18]; 

        [L,I]=max(L_); 

        X1=I; 

    else 

        L=NaN; 

        X1=NaN; 

         

    end 

end 

  

end 

  

 

 

G.5 Scripts used in Chapter 8: Optimal profile 

% Main program: Genetic Algorithm 
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% ------------------------------------------------------------------------- 

clear; 

clc; 

n_points =10; 

  

beta_g=75; 

phi_g=30; 

  

ObjectiveFunction = @Fun_MC;    % objective function to maximize 

% Number of variables 

LB = zeros(1,n_points); % Lower bound 

UB = ones(1,n_points);  % Upper bound 

  

beta=beta_g/180*pi; 

phi=phi_g/180*pi; 

  

for j=1:n_points   % constraints on the upper and lower bounds to eliminate the zones 

that are highly unlikely to be involved. 

    Y(j)=j/n_points; 

    if Y(j) <=0.4 

        UB(j)=Y(j); 

         

    else 

        UB(j)=1; 

    end 

    if Y(j) <=0.3 

        Temp(j)=Y(j)/0.3; 

         

    else 

        Temp(j)=1; 

    end 

    LB(j)=(1-Temp(j)); 

end 

LB=fliplr(LB); 

UB=(UB); 

figure (12) 

hold on 

plot (-LB,-Y) 

plot(-UB,-Y) 

hold off 

  

opts = gaoptimset('PopulationSize',500, 'StallGenLimit',100, 'Generations',2000, 

'UseParallel', 'always'); 

  

ConstraintFunction = @ConstraintR; 

[R,Fval,exitFlag,Output] = 

ga(ObjectiveFunction,n_points,[],[],[],[],LB,UB,ConstraintFunction,opts); 

  

N=-1/Fval; 

L_array=[0 (1-fliplr(R)) 1]; 

H_array=zeros(1,n_points+2); 

for i=1:(n_points+2) 

    H_array(i)=(i-1)/(n_points+1)*tan(beta); 

end 

  

[N_,X]=Fun_MC2(R,n_points,beta,phi);  % to extract the values of x,y, and z. 

N1=-1/N_; 

  

x_grad=X(1)*180/pi; 

y_grad=X(2)*180/pi; 

z_grad=X(1)*180/pi; 

  

betaprime=beta; 

b=tan(phi); 

x=X(1); 

y=X(2); 

z=X(1); 

  

d_norm=(exp(b*(z-x)).*sin(z)-sin(x))./(exp(b.*(y-x)).*sin(y)-sin(x)); 

Lrx=-exp(b.*(y-

x)).*sin(betaprime+y)./sin(betaprime)+sin(betaprime+x)./sin(betaprime); 

lrx=-exp(b.*(z-x)).*cos(z)+cos(x); 
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rx_norm=tan(beta)./(exp(b.*(y-x)).*sin(y)-sin(x)); 

hx_norm=(Lrx-lrx).*rx_norm; 

Xcir=-rx_norm.*exp(b.*(y-x)).*cos(y); 

Ycir=rx_norm.*exp(b.*(y-x)).*sin(y); 

  

figure(4) 

hold on 

L_array=[0 (1-fliplr(R)) 1]; 

H_array=zeros(1,n_points+2); 

for i=1:(n_points+2) 

    H_array(i)=(i-1)/(n_points+1)*tan(beta); 

end 

plot(L_array, H_array,'k','LineWidth',2) 

H_ini=tan(beta); 

% Spiral plotting 

for j=1 

    plot_line(H_ini,beta,'--k') 

    axis equal 

    plot_line_toe(H_ini,0,'k') 

    plot_line_slopesurface(H_ini,beta,'k') 

    plot_spiral_tenscrack_betaprime 

    plot_spiral 

    plot_crack(H_ini,beta,'k',d_norm,hx_norm) 

end 

hold off 

  

  

filename = '10points,Kh=0.2,beta75,phi=30,LID.mat'; 

save(filename) 

---------- 

% Constraint function 

 

function [c, ceq] = ConstraintR(R) 

  

n_points=10; 

c=ones(1,n_points-1); 

for i=1:(n_points-1) 

    c(i)=R(i)-R(i+1); 

end 

c=c'; 

ceq = []; 

-------- 

% function to be maximized  

function N_=Fun_MC(R) 

  

n_points=10; 

  

% slope inclination [deg] 

beta_grad=75; 

% friction angle [deg] 

phi_grad=30; 

  

% c/gamma.H : cogh is the normalized cohesion 

cogh=0.0; 

% Kh horizontal seismic coefficient 

Kh=0.2; 

% reinforcement layout RL, for uniform Rl=1 and for LID, RL=2 

RL=2; 

% Crack scenario: (for nil tensile strength of soil, t=0), (for half of unconfined 

% tensile strength t=0.5), (for  whole unconfined Mohr-Coulomb tensile strength t=1) 

% and (for pre-existing crack, t=-1), for intact slope i.e. no crack t=2 

t=2; 

  

% derived variables in radian 

beta=beta_grad/180*pi; 

phi=phi_grad/180*pi; 
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b=tan(phi); 

  

% initial values 

x_range_grad=-21:2:89; 

y_range_grad=60:2:120; 

z_range_grad=0:2:0; 

  

x_range=x_range_grad/180*pi; 

y_range=y_range_grad/180*pi; 

z_range=z_range_grad/180*pi; 

  

n1=max(size(x_range)); 

n2=max(size(y_range)); 

n3=max(size(z_range)); 

  

MatrixN=zeros(n1,n2,n3); 

N_all=zeros(1,n_points+1); 

X_all=zeros(3,n_points+1); 

  

H_R=zeros(1,n_points+1); 

for k=1:(n_points+1) 

    H_R(k)=(n_points+1)/(n_points+2-k); 

end 

  

R_new=R; 

beta_new=beta; 

  

for loop=1:(n_points+1) 

    for i=1:n1 

        for j=1:n2 

            for k=1:n3 

                x=x_range(i); 

                y=y_range(j);  

                z=z_range(k);  

                if (x>y-10e-6) %|| (x>z-10e-6) || (z>y-10e-6)  

                    MatrixN(i,j,k)=NaN; 

                else 

                    MatrixN(i,j,k)=funXY_Crack(x,y,z,beta_new,b,(n_points+1-

loop),R_new,t,cogh,RL,Kh); 

                end            

            end 

        end             

    end 

     

    [N_all(loop),BiI]=min(MatrixN(:)); 

    [x_f,y_f,z_f]=ind2sub(size(MatrixN),BiI); 

    X_all(1,loop)=x_range(x_f); 

    X_all(2,loop)=y_range(y_f); 

    X_all(3,loop)=z_range(z_f);  

     

    R_temp=R_new; 

    if (n_points+1-loop)==0 

        R_new=NaN; 

        beta_new=NaN;  

    else       

        if (n_points-loop)==0 

            R_new=NaN; 

        else 

            R_new=zeros(1,n_points-loop); 

            for k=1:(n_points-loop) 

                R_new(k)=R_temp(k)/R_temp(n_points+1-loop); 

            end 

        end 

        beta_new=atan(tan(beta_new)*(n_points+1-loop)/(n_points+2-

loop)/R_temp(n_points+1-loop));  

    end           

end 

  

N_all=H_R.*N_all; 

[N_, toe]=min(N_all); 

if toe==1       

    flag=1; 
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    for i=1:(n_points+1) 

        if isnan(N_all(i)) 

            flag=0; 

        end 

    end    

    if flag==0; 

        N_=1; 

    else 

        X(1)=X_all(1,toe); 

        X(2)=X_all(2,toe); 

        X(3)=X_all(3,toe); 

        N_=-N_; 

    end       

else 

    N_=1; 

end 

 

------- 

% function to calculate the required reinforcement 

function N=funXY_Crack(x,y,z,beta,b,n_points,R,t,cogh,RL,Kh) 

z=x; 

flag=1; 

  

H=exp(b*(y-x))*sin(y)-sin(x); 

L=H/tan(beta); 

Lrx=sin(x+beta)/sin(beta)-exp(b*(y-x))*sin(y+beta)/sin(beta); 

rc=sqrt(sin(x)*sin(x)+(cos(x)-Lrx)^2); 

sc=acos((cos(x)-Lrx)/rc); 

ry=exp(b*(y-x)); 

  

H_points=zeros(1,n_points); 

L_points=zeros(1,n_points); 

ss=zeros(1,n_points); 

rr=zeros(1,n_points); 

  

for i=1:n_points 

    H_points(i)=sin(x)+H*i/(n_points+1); 

    L_points(i)=cos(x)-Lrx-R(i)*L; 

    rr(i)=sqrt(H_points(i)*H_points(i)+L_points(i)*L_points(i)); 

    ss(i)=acos(L_points(i)/rr(i)); 

    if rr(i)>exp(b*(ss(i)-x)) 

        flag=0; 

    end 

    if ss(i)>y 

        flag=0; 

    end 

end 

  

if flag==1 

    if t==2 

        z=x; 

        gc=0; 

         

    elseif t==0 

        ft=0; 

        int_ft=0; 

        int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

        fc=2*cos(phi)/(1-sin(phi)); 

        gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

    elseif t==0.5 

        int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

        int_ft = integral(@(theta) (sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z); 

        fc=2*cos(phi)/(1-sin(phi)); 

        ft=cos(phi)/(1+sin(phi)); 

        gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

    elseif t==1 

        int_fc = integral(@(theta) (1-sin(theta))./(cos(theta)).^3,theta_c,z); 

        int_ft = integral(@(theta) (sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z); 

        fc=2*cos(phi)/(1-sin(phi)); 
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        ft=2*cos(phi)/(1+sin(phi)); 

        gc=(sin(x)/tan_theta_c)^2*(fc/2*int_fc+ft/(1-sin(phi))*int_ft); 

    else 

        gc=0; 

    end 

     

     

     

    if RL==1 

        %  for uniformly distributed mode: 

        if  x<0 

            g23=(exp(2*b*(y-x))*(sin(y))^2)/2; 

        else 

            g23=(exp(2*b*(y-x))*(sin(y))^2-(sin(x))^2)/2; 

        end 

    else 

        %  for linearly increasing density mode: 

        if  x<0 

            g23=(2/H)*((1/3)*(exp(3*b*(y-x))*(sin(y))^3)-(sin(x)/2)*(exp(2*b*(y-

x))*(sin(y))^2)); 

        else 

            g23=(2/H)*((1/3)*(exp(3*b*(y-x))*(sin(y))^3-(sin(x))^3)-

(sin(x)/2)*(exp(2*b*(y-x))*(sin(y))^2-(sin(x))^2)); 

        end 

    end 

     

    g1=((exp(2*b*(z-x)))*(exp(2*b*(y-z))-1))/(2*b); 

    %g=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)*(exp(b*(y-x))*sin(y)-sin(x))/(2*b); 

    f1=(exp(3*b*(y-x))*(sin(y)+3*b*cos(y))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

    f2=1/6*Lrx*sin(x)*(2*cos(x)-Lrx); 

    f3=0; 

     

    if z==x 

        p1=0; 

        p2=0; 

        p3=0; 

    else 

        p1=(exp(3*b*(z-x))*(sin(z)+3*b*cos(z))-3*b*cos(x)-sin(x))/(3*(1+9*b^2)); 

        p2=1/6*sin(x)*((cos(x))^2-exp(2*b*(z-x))*(cos(z))^2); 

        p3=1/3*exp(2*b*(z-x))*(cos(z))^2*(sin(z)*exp(b*(z-x))-sin(x)); 

    end 

     

    if Kh==0 

        f1_h=0; 

        f2_h=0; 

        f3_h=0; 

        p1_h=0; 

        p2_h=0; 

        p3_h=0; 

    else 

        lrx=cos(x)-exp(b*(z-x))*cos(z); 

        f1_h=(exp(3*b*(y-x))*(-cos(y)+3*b*sin(y))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 

        f2_h=1/3*Lrx*(sin(x))^2; 

         

        p1_h=(exp(3*b*(z-x))*(3*b*sin(z)-cos(z))-3*b*sin(x)+cos(x))/(3*(1+9*b^2)); 

        p2_h=1/3*lrx*(sin(x))^2; 

        p3_h=1/6*exp(b*(z-x))*cos(z)*(exp(2*b*(z-x))*sin(z)^2-sin(x)^2); 

    end 

     

    if n_points==0 

        f3=fun3(rc,sc,ry,y); 

        f3_h=fun3h(rc,sc,ry,y); 

    end 

    if n_points==1 

        f3=fun3(rc,sc,rr(1),ss(1))+fun3(rr(1),ss(1),ry,y); 

        f3_h=fun3h(rc,sc,rr(1),ss(1))+fun3h(rr(1),ss(1),ry,y); 

    end 

    if n_points>1 

        f3=fun3(rc,sc,rr(1),ss(1)); 

        if Kh>0 

            f3_h= fun3h(rc,sc,rr(1),ss(1)); 

        end 
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        for i=1:(n_points-1) 

            f3=f3+fun3(rr(i),ss(i),rr(i+1),ss(i+1)); 

            if Kh>0 

                f3_h= f3_h+fun3h(rr(i),ss(i),rr(i+1),ss(i+1)); 

            end 

        end 

        f3=f3+fun3(rr(n_points),ss(n_points),ry,y); 

        if Kh>0 

            f3_h= f3_h+fun3h(rr(n_points),ss(n_points),ry,y); 

        end 

    end 

     

    %g=exp(2*b*(z-x))*(exp(2*b*(y-z))-1)*(exp(b*(y-x))*sin(y)-sin(x))/(2*b); 

    %N=g/(f1-f2-f3-p1+p2+p3); 

    N=1/((((f1-f2-f3-p1+p2+p3)+Kh*(f1_h-f2_h-f3_h-p1_h+p2_h+p3_h))/(H*g23))-

cogh*((g1+gc)/g23)); 

    if N<-1 || N>500 

        N=NaN; 

    end 

else 

    N=NaN; 

end 

------ 

function F=fun3(r1,s1,r2,s2)  

         

    x1=r1*cos(s1); 

    y1=r1*sin(s1); 

    x2=r2*cos(s2); 

    y2=r2*sin(s2); 

    S=1/2*abs(x1*y2-x2*y1); 

    F=(x1+x2)/3*S; 

 

 

 

 

 

 

 

 

 

 


