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Abstract 

This thesis is concerned with the development and application of novel theoretical and 
experimental methodologies to study crystal dissolution processes across multiple 
lengthscales. In particular, it presents a versatile in situ multimicroscopy approach, 
comprising atomic force microscopy (AFM), scanning ion-conductance microscopy 
(SICM), and optical microscopy (OM) that is readily combined with finite element 
method (FEM) simulations. The methodology permits the quantitative 3D 
visualization of microcrystal morphology during dissolution with well-defined, high 
mass transport rates, enabling both the measurement of face-dependent dissolution 
rates and the elucidation of the dissolution mechanism. The approach also allows the 
determination of interfacial concentrations and concentration gradients, as well as the 
separation of kinetic and mass transport limiting regimes. The high resolving power 
and versatility of this new methodology is demonstrated on four different crystalline 
compounds with very different characteristics. 

First, the dissolution kinetics of individual faces of single furosemide microcrystals 
are investigated by OM-SICM and FEM modeling. It is found that the (001) face is 
strongly influenced by surface kinetics, while the (010) and (101̄) faces are dominated 
by mass transport. Dissolution rates are shown to vary greatly between crystals, with a 
strong dependence on crystal morphology and surface properties.  

A similar approach is then used to investigate changes in both crystal morphology and 
surface processes during the dissolution of bicalutamide single crystals, achieving 
high resolution with in situ AFM. It is shown that dissolution involves roughening 
and pit formation on all dissolving surfaces, and that this has a strong influence on the 
overall dissolution rate. FEM simulations determine that mass transport contributions 
increase as dissolution proceeds due to a continuous increase of the intrinsic 
dissolution rate constant, promoted by the exposure of high index microfacets. 

The methodology is further developed to show that kinetic data obtained from OM-
SICM and AFM, which provide differing measures of kinetic parameters, are in good 
agreement when the different mass transport regimes of the two experimental 
configurations are accounted for. The robustness of the methodology is verified via 
studies of L-cystine crystals, while also providing insights into the dissolution 
mechanism by visualizing hexagonal spirals descending along screw dislocations. 

Finally, the ability of the methodology to characterize processes with fast surface 
kinetics is demonstrated by the study of the proton-promoted dissolution of calcite 
single crystals. The approach allows the accurate determination of the near-interface 
concentration of all species during dissolution, as well as the intrinsic dissolution rate 
constant of the {104} faces, showing that surface kinetics play an important role in 
the dissolution process. Overall, this methodology provides a significant advance in 
the analysis and understanding of dissolution processes at a single crystal level, 
revealing the intrinsic properties of crystal faces and providing a powerful platform 
from which future studies can be developed. 
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Chapter I Introduction 

 

1. Introduction to Crystals  

1.1 Importance 

The crystalline form is the most common state of solid matter on Earth,1 defined by a 

regular arrangement of atoms, ions or molecules held together by covalent or non-

covalent interactions. Bounded faces characterized by periodicity and anisotropy 

construct the crystal morphology, with the specific periodic structure at each face 

determining its fundamental physical and chemical properties. Crystalline materials 

appear in a diverse variety of systems, including elemental metals, rocks, 

pharmaceuticals, and even bones, playing a vital role in human lives.1,2 Thus a 

fundamental understanding of crystal growth and dissolution processes is essential for 

advancing many areas of science and technology.3,4 

In the pharmaceutical industry, crystallization is an important separation and 

purification method and often serves as the final step in the manufacture of active 

pharmaceutical ingredients (APIs). The resulting crystal form, shape and size 

influences many of the physicochemical properties of the API, such as stability, 

permeability and dissolution rate, which in turn affects the bioavailability of the drug. 

Consequently, significant time and effort is invested in the design of crystals with 

suitable dissolution rates that enhance dose-release properties and bioavailability 

whilst maintaining appropriate physical and chemical stability.5-8 However, the 

pharmaceutical industry predominantly employs classical dissolution tests that stir 

crystal particles in a liquid and obtain the dissolution rate from changes in the 

chemical composition of the bulk solution as a function of time.9,10 This approach 

allows the measurement of average rates of crystallization and dissolution, but cannot 

provide information about what specific relationship exists between the crystal form, 

shape, or size and the crystal reactivity; information crucial for crystal engineering in 

drug development.4 In chapters II and III, this thesis introduces a novel approach to 

study the dissolution kinetics of single crystals of an API by directly visualizing the 
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evolution of crystal morphology in real time and in three dimensions. This method 

can be used to tailor crystal design to develop stable and efficient pharmaceutical 

products. 

Crystalline materials are also widespread in biological systems. Teeth and bones are 

composed of inorganic crystals of hydroxyapatite (calcium phosphate, 

Ca10(PO4)6(OH)2),11 and the main component of shells is calcium carbonate in the 

crystal forms aragonite or calcite.12 These crystals grow in conjunction with proteins 

in a process known as biomineralization, and often exhibit intricate patterns that 

reflect complex mechanisms of formation.13 Biominerals are optimally adapted to 

their function and possess unique combinations of mechanical properties such as 

stiffness, strength and toughness, while being lightweight, that scientists frequently 

attempt to replicate synthetically.14 In contrast to these crystalline structures formed to 

maintain life, crystallization in biological systems can also be associated with various 

diseases. Cholesterol, for example, can crystallize in the arteries or within the 

gallbladder, leading to atherosclerotic plaques and gallstones respectively.15,16 Gout is 

a consequence of the precipitation of needle-like crystals of monosodium urate on the 

articular cartilage of joints when the levels of uric acid in blood serum exceed the 

critical solubility level.17 High levels of uric acid can also lead to crystals precipitating 

in the kidneys or bladder, forming uric acid kidney stones.18 Another kind of kidney 

stones, the dissolution of which is studied in chapter IV, are L-cystine kidney stones, 

aggregates of hexagonal plates of L-cystine crystals caused by the genetic disorder 

cystinuria.19 The increasing number of pathological crystals being identified has 

prompted the investigation of new therapeutic agents focused on inhibition and 

dissolution strategies to replace the inefficient existing treatments.20-25  

Minerals are naturally occurring crystals of abiogenic origin. The majority of minerals 

are found in the Earth’s crust, with their abundance and diversity controlled by the 

availability of their elemental components. The dissolution of minerals in water is a 

crucial process involved in many geochemical phenomena, including transport and 

sequestration of contaminants, soil fertility and rock porosity in both aquifers and oil 

reservoirs, and the global cycle of CO2, influencing the chemical and physical 

characteristics of our landscape.26 A quantitative description and understanding of 

these processes is imperative for earth and material scientists, and mineral dissolution 



Chapter	I.	Introduction	to	Crystals	

	 3	

has been studied both in nature and in the lab for more than a century.3,27 However, 

the complexity of geochemical processes and the inconsistencies in experimental 

results make difficult the establishment of reliable rate laws. Chapter V considers the 

dissolution of calcite crystals in acidic water, a process of great environmental and 

industrial significance, though one in which there are conflicting schools of thought 

about the kinetic regime.28,29 

 

1.2 Fundamental Concepts  

Single crystals are those without distortions in the structure or changes in the 

orientation of the crystal lattice throughout the whole crystal. Single crystals are 

characterized not only by the internal structure, but also by the external morphology 

and the perfection of the crystal faces that define it. The variety of single-crystal 

morphologies is demonstrated by dendritic snow crystals and polyhedral minerals, as 

well as sophisticated biominerals such as the spine of the sea urchin, described by a 

hierarchical structure of curved surfaces.1,13 In this section, the fundamental concepts 

of polymorphism, external morphology, surface microtopography of crystal faces and 

lattice defects of single crystals are summarized.  

1.2.1 Polymorphism  

Numerous inorganic and organic compounds can crystallize into several crystal 

structures, known as polymorphs. Polymorphs are characterized by differences either 

in the packing of ions or molecules in the crystal lattice, or in the orientation or 

conformation of molecules at the lattice sites, producing a different X-ray diffraction 

pattern. Consequently, different polymorphs exhibit different physical and chemical 

properties such as thermodynamic stability, external morphology, melting point, and 

dissolution rates.7,30 Only the most stable polymorph will remain over long periods of 

time; the others are defined as metastable polymorphs that will eventually transform 

into it. The Ostwald rule of stages describes that in general the polymorph that 

crystallizes first is the one which has the lowest energy barrier (least stable, highest 

energy, kinetically favorable) and that when polymorphic transformations occur, the 

transformation proceeds indirectly to the most stable phase via those of intermediate 
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stability.31 Figure 1.1 shows a simple hypothetical free energy diagram of the 

thermodynamic and kinetic crystal transitions.  

 

Figure	1.1.	 Illustration	of	the	Ostwald	rule	of	stages.	The	direct	crystallization	from	solution	
to	 the	 stable	 form	 involves	 a	 large	 activation	 energy,	 ΔG,	 and	 may	 be	 very	 sluggish	
(thermodynamic	path).	Transformation	via	a	sequence	of	steps	(through	metastable	forms)	
involves	smaller	activation	energies	and	may	be	kinetically	more	favorable.32	

This phenomenon is of great industrial importance as different polymorphisms could 

severely affect the properties of the manufactured material. For example, 

polymorphism is very common in pharmaceutical compounds and may cause 

problems in the formulation, analysis and bioavailability of a compound, particularly 

when the drug is only sparingly soluble.5,6 The API furosemide, for example, is a loop 

diuretic drug with low solubility and bioavailability. It exhibits three polymorphic 

forms33 (Figure 1.2), but only the most stable polymorph (polymorph I) is present in 

the commercial drug.34 The most stable polymorph usually has the lowest solubility 

and the slowest dissolution rate, leading to a lower bioavailability than the metastable 

polymorphs.35 
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Figure	 1.2.	 Unit	 cell	 molecular	 packing	 of	 the	 three	 polymorphs	 of	 the	 API	 furosemide	
obtained	from	the	CCDC	database.	

1.2.2 Crystal Morphology  

The crystal morphology, more commonly known as the crystal habit, describes the 

external shape of a crystal and the type of the crystallographic faces. Most organic 

and inorganic crystals exhibit polyhedral habits, in which faces (crystallographic faces 

determined by Miller indices (hkl)) are demarcated by edges. The final polyhedral 

shape is determined by the symmetry elements of the crystal group, the form and size 

of the unit cell, intermolecular bonds, and the density of lattice points per unit area, 

but most importantly, by the crystal growth conditions and the growth process.1,36,37 

Examples of two different crystal habits of furosemide polymorph I are shown in 

Figure 1.3. 
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Figure	1.3.	Optical	micrographs	of	two	different	crystal	habits	of	furosemide	polymorph	I.	(a)	
Crystals	grown	in	a	methanol	solution	and	(b)	crystals	grown	in	a	water/ethanol	mixture	

Different crystallographic directions have different bonding properties that define and 

rule the character of the (hkl) faces. The crystal faces can be classified as flat (F), 

stepped (S) or kinked (K) depending on the number of strong interactions among 

molecules running uninterrupted along their plane, known as periodic bond chains 

(PBC). F faces contain more than one strong PBC running along their planes, S faces 

contain exactly one PBC and K faces do not contain any PBCs.38 Consequently, 

different crystal faces have different molecular structures and surface free energies, 

affecting their interaction with both solute and solvent molecules and leading to 

different growth (and dissolution) rates at different faces. These differences are the 

basis for the establishment of the crystal habit. The faces with the slowest 

perpendicular growth rate are the largest (generally low Miller index (hkl) faces) and 

the most morphologically important, dominating the crystal habit.38,39  

The surface properties of the crystal depend upon which crystal faces are exposed and 

the relative size of those faces. In turn, these surface properties influence material 

properties such as mechanical strength, agglomeration, bulk density, wettability and 

subsequent dissolution kinetics.5 The crystal habit is also important from a 

technological point of view as it affects the efficiency of downstream processes such 

as filtering, washing, and drying, which all play a major role in the manufacture of 

crystalline materials,40 and receives particular attention in the product and process 

design of pharmaceutical, agricultural, optoelectronic, catalytic and semiconductor 

constituents.35,41,42 
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Several methods for predicting crystal morphology based on crystal structure are used 

routinely to yield crystal morphologies consistent with experimental morphologies for 

a wide range of molecular crystals, despite a lack of consideration for the external 

growth environment.43-45 These methods include (i) the Bravais−Friedel-

Donnay−Harker (BFDH) method,46-48 a geometric calculation based on crystal lattice 

and symmetry; (ii) the equilibrium method, based on the surface free energies of 

relevant crystal faces; and (iii) the growth (or “attachment energy”) method, based on 

attachment energies corresponding to relevant crystal faces. Slightly different 

morphologies are often predicted by the different methods. Such discrepancies could 

be due to differences in the interpretation of molecular structure, bond anisotropies, 

and symmetry operators, as the influence of each factor varies from method to 

method.45 The growth method (iii) is most effective when considering only the 

internal interactions of the crystal structure.49,50 The method, developed by Hartmann 

and Perdok, uses the bond energy released when one building unit is attached to the 

surface of a crystal face to predict crystal morphology.38,39 The growth rate normal to 

a particular face is proportional to the attachment energy for that surface; large 

attachment energies for a specific face correspond to strong out-of-plane 

intermolecular interactions, corresponding to faster growth normal to the plane and a 

lower morphological significance for the face. 

One advantage of the studies presented in this thesis is the analysis of individual 

single crystals with a well-defined morphology using both experimental and 

computational methods. It becomes possible to measure face-specific dissolution 

kinetics that can be directly correlated with the surface chemical composition and 

molecular topography of the individual faces of the crystal habit and their particular 

interaction with the surrounding solvent molecules. This approach establishes a 

powerful method to quantitatively evaluate the dissolution properties of faceted 

crystals under certain conditions, with practical applications in the design of 

crystalline materials.  

In addition, the surfaces of crystal faces generally exhibit stepped patterns or 

striations in certain crystallographic directions depending on the nature of the face. 

These features are directly related to the process of crystal growth and dissolution at 

the molecular level and the presence of defects in the crystal lattice. The 
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topographical features present on crystal faces are referred as the surface morphology 

or microtopography and receive special attention when studying dissolution 

processes.27,28,51-53 

1.2.3 Crystal Defects and Surface Topography 

Real single crystals are never perfect; the crystal lattice generally exhibits regions that 

show a discontinuity or distortion from the ideal alignment of units within the crystal, 

known as lattice defects. Lattice defects include: (i) point defects, such as vacancies, 

interstitial atoms and incorporated impurities; (ii) line defects, such as edge and screw 

dislocations; and (iii) surface defects, defined as surface microtopography. The 

number of defects depends on the growth rate of the crystal; the faster and more 

uncontrolled the growth, the greater the number of defects. Edge and screw 

dislocations are the most relevant kind of defects as they can significantly affect the 

thermodynamic and kinetic properties of a crystal. 51,52  

Edge dislocations can be described as a section of the crystal lattice in which the 

lower half has been stretched with respect to the upper half, causing the upper half to 

slip by a distance of one or more lattice units without losing adhesive force. Screw 

dislocations can be described as the displacement of a portion of the crystal lattice, 

creating a localized step on the surface that can propagate to form a helicoid structure. 

The Burgers vector of the dislocation, b, represents the magnitude and the direction of 

the lattice distortion. The Burgers vector of an edge dislocation is at right angles to the 

dislocation line, but that of a screw dislocation is parallel to the dislocation line.27 A 

schematic representation of edge and screw dislocations in a simple cubic crystal 

lattice is shown in Figure 1.4. 
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Figure	1.4.	Schematic	representation	of	edge	and	screw	dislocations	in	a	simple	cubic	crystal	
lattice.	Red	arrows	depict	the	direction	of	the	Burgers	vector.	

The presence of dislocations can affect both the kinetics and mechanism of crystal 

dissolution. Dislocations are thermodynamically unstable as the lattice plane around 

the dislocation line is distorted, introducing elastic strain energy into the crystal. This 

additional energy increases the free energy of the crystal above that of the defect-free 

state and reduces the activation energy for dissolution on the region of the surface 

around the dislocation core, allowing molecules to be easily removed from the surface 

to form a small hole. Once the hole is formed and reaches a critical size, the energy 

gained by the molecules going into bulk solution is higher than the increase in surface 

free energy from expanding the hole. Dissolution becomes thermodynamically 

favorable and etch pits are formed.52,54 At the same time, when a screw dislocation is 

exposed to the crystal surface, it creates a step that will dissolve forming a large spiral 

staircase descending along the dislocation line. These spirals usually cover the entire 

crystal surface, providing a continuous source of steps for dissolution (vide infra). 

This dissolution mechanism is known as spiral dissolution and derives from the spiral 

growth mechanism of the theory described by Burton, Cabrera and Frank (BCF) in 

1951.55 Figure 1.5 illustrates both a hexagonal spiral hillock and a hexagonal spiral 

etch pit formed during the spiral growth and dissolution of the (0001) face of L-

cystine single crystals. 
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Figure	1.5.	In	situ	atomic	force	microscopy	(AFM)	deflection	images	revealing	the	hexagonal	
spiral	morphology	of	 the	 (0001)	 face	of	L-cystine	crystals	during	growth	(spiral	hillock)	and	
dissolution	(spiral	etch	pit).	More	information	can	be	found	in	Chapter	IV.	

Crystal faces are also far from perfect; the surface microtopography consists of a set 

of steps, kink sites and vacancies separated by flat terraces.56 A detailed 

representation of the microtopography of a simple cubic crystal lattice is shown in 

Figure 1.6. Detachment of molecules from the crystal surface during dissolution 

occurs preferentially from the most weakly bonded sites (high free energy sites). 

Steps, edges, dislocations and particularly kinks dissolve much more readily than flat 

surfaces. Each site contributes to the dissolution process in a different manner, and the 

overall kinetics and mechanism of the dissolution will depend on their relative 

abundance on the surface. Thus, many studies focus on visualizing changes in the 

crystal microtopography during dissolution in order to obtain insights into both the 

kinetics and the mechanism of the process.52,57-62 Scanning probe microscopy (SPM) 

techniques are by far the most extensively used tools for imaging the dynamic 

processes occurring on crystal surfaces,4 and thus the role of SPM techniques in the 

qualitative and quantitative analysis of crystal dissolution processes is reviewed in 

section 2 of this introduction.  
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Figure	1.6	Detail	of	corner	and	monolayer	pits	of	a	3-D	Kossel-Stranski	cubic	crystal,	showing	
terrace	 atoms	 in	 brown,	 step-edge	 (s)	 sites	 in	 tan,	 kink	 (k)	 sites	 in	 yellow,	 and	 2-bonded	
chain	 atoms	 (c)	 in	 red.	 Reproduced	 with	 permission	 from	 reference	 53.	 Copyright	 (2013)	
Mineralogical	Society	of	America.	

In general, dissolution occurs by the formation of etch pits and the retreat of steps on 

the crystal surface. The anisotropic morphology of the etch pits developed during 

dissolution, either from flat areas or dislocations, depends on several factors including 

the type of defect, symmetry of the crystal lattice, impurities, solvent, and driving 

force.27,63,64 The formation of etch pits on the surface is generally accepted as an 

indication of surface processes controlling the dissolution regime, while smooth 

rounded surfaces result from dissolution being controlled by diffusion.65 Figure 1.7 

illustrates the etch pits formed on the (010) surface of acetaminophen single crystals 

after their partial dissolution in different solvents. It can be seen that the etch pits 

exhibit different morphologies depending on the solvent used.63 Understanding the 

microtopographic changes of a crystal during dissolution and their effect on the 

dissolution kinetics is one of the main aims of this thesis.  

 

Figure	 1.7.	AFM	 images	of	 the	 (010)	 face	of	acetaminophen	single	crystals	dissolved	 in	 (a)	
dichloroethane,	(b)	pyridine/CCl4,	(c)	ethyl	acetate/CCl4,	and	(d)	acetone/CCl4.	The	scale	bar	
represents	15	µm.	Adapted	with	permission	from	reference	62.	Copyright	(2000)	American	
Chemical	Society.		
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1.3 Dissolution of Crystals  

Crystal dissolution is a complex reaction that involves several elementary events 

occurring in series. These events comprise (i) those occurring at the crystal surface, 

such as detachment of molecules from active sites, surface diffusion, and surface 

desorption; and (ii) the mass transport of detached solvated species away from the 

crystal to the undersaturated bulk solution. The slowest process will limit the overall 

dissolution rate and the dissolution kinetics can be described as surface-kinetics-

controlled (mass transport comparatively fast), mass-transport-controlled (mass 

transport comparatively slow), or in a mixed regime (comparable surface and mass 

transport contributions). As such, it is necessary to differentiate surface processes 

from mass transport processes in order to determine which (if any) controls the rate of 

crystal dissolution. There is some experimental evidence that can be used to 

qualitatively interpret the dominant regime. For example, if the dissolution rate of a 

crystal stirred in a solution is independent of stirring rate, the process could be 

surface-kinetics-controlled because mass transport is strongly affected by convection. 

Another strategy is to monitor the morphology of the crystal; surface-kinetics-

controlled dissolution rates are very sensitive to the surface properties as it reflects the 

energetics imposed by both the crystal structure and the surface microtopography. As 

a result, anisotropic dissolution and formation of etch pits can be observed. On the 

other hand, mass-transport-controlled processes are characterized by the formation of 

smooth spherical structures.3 Additionally, under purely diffusion-controlled 

conditions, the radius of the resulting sphere depends on the square root of dissolution 

time as deduced from the solution of Fick’s second law for spherical isotropic 

diffusion3 (vide infra), which translates to an increase of dissolution rate over time. 

Thus, measurements of constant dissolution rates could be associated to surface-

kinetics-controlled dissolution processes. However, these are extreme cases that are 

not always valid, since the overall dissolution rate is a complex combination of both 

the transport and the surface kinetics. Successful elucidation of the kinetic regime and 

the measurement of intrinsic dissolution rate constants requires that surface kinetics 

and mass transport contributions are quantified.66  

The rate-limiting process (either mass transport or surface kinetics) typically occurs at 

a rate that allows the dissolution to be considered at steady state.3 At steady state, 
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mass transport rates of reacting species diffusing away from the crystal surface are 

necessarily equal to the surface reaction rate. The concentration of species in the fluid 

near the crystal-solution interface will adjust itself until the rates are equal. This 

equality is always true, independent of the kinetic regime, but the concentration of 

species near the crystal-solution interface and concentration profiles will depend on 

whether diffusion or surface reactions control the dissolution process. In the case of 

slow surface kinetics, the concentration of species near the crystal-solution interface is 

close to that in bulk solution, and consequently the concentration gradient between the 

crystal surface and bulk solution is small (Figure 1.8a). On the other hand, when the 

surface kinetics are fast, the concentration of species near the crystal-solution 

interface will quickly approach the equilibrium concentration (saturation 

concentration), so that the concentration gradient is steeper (Figure 1.8c). In an 

intermediate situation, i.e. the kinetics are under mixed control, the near-interface 

concentration of species acquires an intermediate value (Figure 1.8b). In the 

subsequent sections, the phenomenological treatment of surface reaction and mass 

transport rates in terms of concentration of species is individually described. 

 

Figure	 1.8.	 Schematic	 representation	 of	 steady	 state	 concentration	 profiles	 during	 crystal	
dissolution	 under	 (A)	 surface	 kinetics	 control,	 (B)	 mixed	 kinetics	 and	 (C)	 mass	 transport	
control	regime.	

1.3.1 Surface Reaction ⎯Diffusion Theory 

Surface processes occurring during the dissolution of a one component crystal (A) in 

aqueous solution can be treated as a heterogeneous reaction occurring at the crystal-

solution interface that can be written as: 
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A(s)
kgrowth

kdiss

→← A(aq)   (1.1) 

where kdiss is the dissolution rate constant and kgrowth is the rate constant for crystal 

growth. Dissolution occurs because there is a concentration difference between the 

crystal surface and bulk solution. The rate of surface reaction can be expressed as: 

JSK = kint Csat −Cint( )n  (1.2) 

where JSK represents the detachment rate of molecules from the surface, kint is the 

intrinsic dissolution rate constant, which depends on the intrinsic characteristics of the 

crystal, Csat is the concentration at the interface, Cint is the concentration near the 

crystal-solution interface and n is the order of the surface reaction. The order of the 

surface reaction with respect to the interfacial driving force (concentration gradient) 

depends on the mechanism of the reaction. BCF theory establishes that close to 

equilibrium conditions, n = 2, and that n = 1 for conditions far from equilibrium (high 

undersaturation).55 For simplicity and because all the dissolution studies presented in 

this thesis have been done at sink conditions, we adopt n = 1. Once the molecules 

have detached from the crystal, they diffuse to bulk solution at a rate: 

JMT = kT Cint −Cbulk( )  (1.3) 

where JMT is the diffusive mass transport rate, kT is the transport rate constant, which 

depends on the crystal size and the mass transport properties of the system (described 

in more detail in the next section) and Cbulk is the concentration in bulk solution. At 

the interface the concentration value is the saturation concentration, Csat, because the 

solution in contact with the crystal is always in equilibrium with the solid. In the 

region near the interface, the concentration reaches a steady state, Cint, the value of 

which depends on the relative magnitude of kint and kT because at steady state:  

Jobserved = kint Csat −Cint( ) = kT Cint −Cbulk( )  (1.4) 

Cint =
kTCbulk + kintCsat

kint + kT  (1.5)
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where Jobserved is the overall dissolution rate. When dissolution is surface-kinetics-

controlled, kint << kT and Cint is close to that in bulk solution (Cint ≈ Cbulk): 

Cint =
kTCbulk + kintCsat

kint + kT
≈
kTCbulk + kintCsat

kT
≈ Cbulk +

kintCsat
kT

≈ Cbulk
 (1.6)

 

and the overall dissolution rate measured is: 

Jobserved ≈ JSK = kint Csat −Cbulk( )  (1.7) 

On the other hand, when dissolution is controlled by the diffusion of material away 

from the surface, kint >> kT and Cint will quickly approach to the equilibrium 

concentration (Cint ≈ Csat): 

Cint =
kTCbulk + kintCsat

kint + kT
≈
kTCbulk + kintCsat

kint
≈
kTCbulk
kint

+Csat ≈ Csat
 (1.8)

 

and the overall dissolution rate is: 

Jobserved ≈ JMT = kT Csat −Cbulk( )  (1.9) 

When dissolution kinetics is under mixed control, kint ≈ kT and the overall dissolution 

rate is described by the equation: 

Jobserved =
kintkT
kint + kT

Csat −Cbulk( ) = kapp Csat −Cbulk( )
 (1.10)

 

where kapp is the apparent rate constant for dissolution.  

1.3.2 Mass Transport  

Assuming that the mass transport of species during crystal dissolution is governed 

exclusively by isotropic diffusion, the diffusion equation that describes the diffusive 

flux will depend on the crystal dimensions. For macroscopic crystals, semi-infinite 

linear diffusion propagates in one dimension perpendicular to the crystal surface 

(Figure 1.9a). In this case, the diffusion can be defined by Fick’s second law, which 

for 1D is: 
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∂C
∂t

= D ∂
2C
∂x2  (1.11)

 

where C is the concentration of species, t depicts time, x denotes the distance 

measured perpendicular to the crystal surface and D is the diffusion coefficient. 

Solutions to the diffusion equation depend on both the initial and boundary 

conditions. For dissolution, where the initial concentration is C = Cbulk for x > 0 and 

the boundary at x = 0 is maintained at Cint, thus the concentration profile of species 

follows:67 

C(x, t) =Cbulk + (Cint −Cbulk )erf
x

2 Dt
⎛

⎝
⎜

⎞

⎠
⎟   (1.12) 

indicating a continuous growth of the diffusion layer thickness with time. As the 

diffusion layer grows, the overall dissolution rate will slow down with time. The 

diffusive flux at the crystal surface is obtained from solution of Fick’s first law, which 

for 1D gives: 

JMT = −D
∂C
∂x
⎛

⎝
⎜

⎞

⎠
⎟
x=0

=
D
πDt

Cint −Cbulk( )
 (1.13)

 

 

Figure	 1.9.	 Schematic	 representation	 of	 (a)	 linear	 and	 (b)	 hemispherical	 diffusion	 of	 the	
crystal	components	during	dissolution.	

However, if the dissolving crystal is a few tens of micrometers in its largest 

dimension (i.e. a microcrystal), and the diffusion layer thickness becomes greater than 

that dimension, the diffusive flux changes drastically as the diffusion profile moves 
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from a linear profile to a well-defined spherical shape of finite size (Figure 1.9b).68,69 

If one considers the spherical diffusion equation and assumes that the establishment of 

steady state is faster than the time scale for a significant change in the crystal 

dimensions then: 

∂C
∂t

= D ∂2C
∂r2

+
2
r
∂C
∂r

⎛

⎝
⎜

⎞

⎠
⎟= 0

 (1.14)
 

where r is the radial distance. For the case in which the composition of the solution 

immediately adjacent to the surface of the dissolving crystal is fixed at some 

equilibrium value, Cint, then C (r = rint) = Cint, and C (r = ∞) = Cbulk. Solving Fick’s 

second law gives the concentration profile: 

C(r) =Cbulk +
rint
r
Cint −Cbulk( )

 (1.15)
 

Solving Fick’s first law gives the flux of crystal components diffusing away from the 

crystal surface in moles per unit area of the sphere per unit time (mol m-2 s-1), 

described by: 

JMT = −D
∂C
∂r

⎛

⎝
⎜

⎞

⎠
⎟
r=rint

=
D
rint

Cint −Cbulk( )
 (1.16)

 

Multiplying the flux by the molar volume of the crystal, V , converts the flux to units 

of volume added per unit area of sphere per unit time, which is the displacement in 

the radius of the sphere, which in our case is the variation of the crystal size during 

dissolution: 

drint
dt

=
DV
rint

Cint −Cbulk( )
 (1.17)

 

Integrating equation 1.17 provides the size of the crystal versus time: 

rint = − 2DV (Cint −Cbulk )t  (1.18) 

This dependence of rint on the square root of time is the typical parabolic behavior of a 
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kinetic process dominated by diffusion.3 

Usually, in systems under forced convection (stirring or pumping the fluid), the 

section of the fluid near the crystal-solution interface has limited mobility. This 

restricts the ability of the fluid to maintain homogeneity by convection, and the main 

mode of mass transport through the stagnant liquid layer in contact with the solid 

becomes only diffusion. The stagnant layer is known as the diffusion boundary layer, 

δ, the structure of which is strongly dependent on the hydrodynamic conditions. The 

diffusive flux at the inner boundary of the layer becomes 

JMT =
D
δ
Cint −Cbulk( ) = kT Cint −Cbulk( )

 (1.19)
 

Equation 1.19 is the general expression for the mass transport rate in crystal 

dissolution. As highlighted above, pure mass-transport-controlled dissolution assumes 

that the surface kinetics are fast enough to ensure that the concentration of species in 

the solution immediately adjacent to the surface of the dissolving crystal is in 

equilibrium with the solid, such that Cint = Csat, and the expression of the overall 

dissolution rate (measured) is: 

Jobserved = JMT = kT Csat −Cbulk( )  (1.20)
 

In this thesis, overall dissolution rates of a variety of microcrystals are measured by a 

combination of near-field microscopy techniques including optical microscopy, 

scanning ion conductance microscopy and atomic force microscopy, such that the 

overall dissolution rate of the individual crystal faces exposed to the solvent can be 

obtained. The data permit the quantification of the contributions of diffusion and 

surface kinetics to the dissolution process via numerical simulations. 
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2. Scanning Probe Microscopy Techniques 

Scanning probe microscopy (SPM) techniques have become an essential tool for the 

investigation of crystalline materials as they provide localized information about the 

physical and chemical characteristics of the surface at a resolution ranging from several 

100 µm to individual atoms.70 SPM has been used for the characterization of crystal 

surface energies, intermolecular interactions, aggregation and adhesion properties, as 

well as visualization of dislocations and topographical heterogeneities of 

crystallographic faces, local dissolution rates, and the intentional introduction of 

surface defects. The development of SPM techniques began with the scanning 

tunneling microscope (STM), invented by Binnig and Rohrer in 1982, in which a sharp 

metallic needle (probe) is scanned over an electrically conductive surface at a distance 

of less than 1 nm, creating a tunneling current between the tip and the surface when a 

bias voltage is applied. The tunneling current across the surface is then used by the 

feedback system to adjust the Z-position of the probe with piezoelectric positioners, 

keeping a constant tip-surface interaction. A record of the Z-position during a scan is 

then converted into a topographical image with tip-radius resolution by a computer 

system.71 The operative principle of all SPMs is very similar; a physical probe scans a 

surface in a precise controlled manner at a very short surface-probe distance, reading 

the surface properties that depend on the nature of the probe-surface interaction. For 

example, electrical current, capacitance or force can be measured to build 

electrochemical and topographical images at a high resolution.70 The resolution limit 

depends on the type and size of the probe. Each SPM requires the use of a specialized 

probe that can take many forms, including a tungsten wire with a single atom in the tip 

(atomic resolution),72 a silicon nitride cantilever with a tip of a few nm radius,73 

ultramicroelectrodes (UMEs) of radius < 25 µm,74 or borosilicate nanopipettes with 

one, two or four channels and an opening ranging from several nanometers to a few 

microns.75 Figure 1.10 shows examples of different SPM probes. 
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Figure	 1.10.	 Examples	 of	 SPM	 probes.	 (A)	 Tungsten	 needle	 used	 in	 STM.	 (B)	 Typical	 silicon	
nitride	AFM	cantilever	used	for	topographical	imaging.	(C)	Gold-coated	AFM	tip	functionalized	
with	 self-assembled	 monolayers	 (SAMs)	 for	 characterization	 of	 the	 physicochemical	
properties	of	the	sample.	(D)	Silicon	nitride	cantilever	with	a	platinum	electrode	at	the	end	of	
the	 tip	 for	 electrochemical	 and	 topographical	 imaging	 (SECM-AFM).	 (E)	 Typical	 one-barrel	
nanopipette	 probe	 used	 in	 SICM.	 (F)	 Double-barrel	 nanopipette	 probe	 used	 in	 SECCM.	 (G)	
Ultramicroelectrode	used	in	SECM.	(H)	Double-barrel	nanopipette	probe	where	one	barrel	 is	
filled	 with	 pyrolitic	 carbon	 and	 the	 other	 with	 electrolyte	 solution	 for	 simultaneous	 SECM-
SICM.	(I)	Quad-barrel	nanopipette	probe	for	simultaneous	SECM-SECCM.	

In the field of crystal dissolution, atomic force microscopy (AFM) and electrochemical 

probe microscopy (SEPM) represent powerful tools for the direct in situ visualization 

of the dynamic processes occurring at the crystal-solution interface. For instance, 

scanning electrochemical microscopy (SECM) employs an amperometric or 

potentiometric UME as scanning probe to induce and monitor dissolution from a 

specific region of the crystal surface. This approach permits the quantitative 

measurement of interfacial fluxes associated with specific features of the interface, 

enabling the construction of three-dimensional maps of the local surface kinetics and 

topography of the crystal surface. SECM has been used to characterize very fast surface 

kinetics of highly soluble ionic single crystals,76-78 dissolution of biominerals,79 and 

acid-induced dissolution reactions among others.80-82 However, the spatial resolution of 

SECM is comparable to the diameter of the UME used, typically several micrometers.  
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In order to improve spatial resolution, the hybrid SECM-AFM technique was 

developed using electroactive AFM tips.83 The tip functions as an electrode as well as a 

high-resolution topographical sensor. This approach has been used to monitor the 

surface processes from cleaved single crystals under electrochemical control, and to 

observe the first real-time in situ operation of the spiral dissolution mechanism 

described by BCF theory.55,60 Point defects, etch pits, variations in the dissolution 

mechanism84 and corrosion of metals have been also characterized by SECM-AFM.84-87 

The most critical aspect of this technique is the design and development of reliable 

probes, as the analytical functionality is directly integrated into the AFM tip and 

mounting and establishing a suitable electrical contact has proven to be challenging.88 

Another powerful combination of individual SPM techniques to generate high-

resolution topographical images with complementary chemical information is SECM-

scanning ion microscopy (SECM-SICM). SECM-SICM probes consist of a double-

channel nanopipette in which one barrel is filled with electrolyte and is open to the bulk 

solution and the other is equipped with an electrode for SECM detection. These probes 

have been employed for simultaneous interfacial pH and topography mapping of calcite 

microcrystals during dissolution in aqueous solution, also determining the dissolution 

kinetics.89 A clear advantage of this technique is that nanopipette-based probes are 

made easily, quickly, and cheaply with reproducible, tunable characteristics.75,90 

Nanopipette-based probes can also be used for the introduction of localized dissolution 

features on a crystal surface without immersing the crystal in solution.91,92 For example, 

double-channel nanopipettes filled with electrolyte solution used in a scanning droplet 

cell regime known as scanning electrochemical cell microscopy (SECCM)93 have been 

used to measure rapid dissolution kinetics of NaCl crystals in pure water via meniscus 

contact.91 The acid-induced process of dental enamel dissolution and the effect of 

various protective treatments has also been studied by SECCM.92 This technique 

permits multiple and rapid measurements (sub-millisecond resolution) of the 

conductance current across a crystal surface that is sensitive to the interfacial flux of 

ions, enabling the elucidation of the intrinsic dissolution rate constant. However, it does 

not allow the simultaneous characterization of the induced features at the crystal 

surface, failing to provide mechanistic information of the dissolution process.  
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SICM and AFM are the most widely used and versatile SPM techniques for in situ 

topography-functional mapping.94-96 Fast imaging,94 high spatial resolution97 and 

extensive environmental versatility98 are some of the advantages of these techniques. 

Despite this, no articles have been found in the literature describing the study of crystal 

dissolution by means of SICM alone, whereas crystal dissolution studies by AFM are 

abundant.99-104  

 

2.1 Scanning Ion Conductance Microscopy 

2.1.1 Principles 

A single-channel nanopipette (typically 10’s nm opening) filled with electrolyte and 

equipped with a Ag/AgCl quasi-reference counter electrode (QRCE) is approached 

towards a surface in a bath of electrolyte solution containing a second QRCE. Then, an 

ion current is generated between both electrodes when a bias voltage is applied. The 

magnitude of the ion current is sensitive to the probe-surface distance, the nature of the 

surface and the voltage applied between both QRCEs, changing from the bulk value 

when the probe-surface distance is less than one tip diameter.105-107 This change in the 

ion current is used as the feedback signal to detect the surface, such that topographical 

and functional maps can be obtained without establishing physical probe-surface 

contact.94,95,108,109  

2.1.2 Feedback Types and Scanning Modes 

SICM can operate in various modes that use different feedback signals to probe a 

surface. SICM feedback modes include: (i) direct current (DC) mode,105 in which a 

constant bias is applied between both QRCEs. The ion current decreases rapidly as a 

function of probe-surface distance as a result of the increased resistance in the region at 

the end of the nanopipette. This current drop is used as a feedback signal. (ii) Distance 

modulation (DM) mode,110 which involves vertically oscillating the probe whilst 

applying a fixed bias, generating an alternating current (AC) signal upon approach to 

the surface. The AC signal is more stable than the DC signal and can be described by 

both its amplitude and phase angle component, with respect to the applied oscillation of 

the voltage. In this mode, an increase in the AC amplitude is used as feedback. (iii) 
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Bias modulation (BM) mode,111 in which a harmonically oscillating bias between both 

QRCEs is applied to induce an AC signal. In this case, both a decrease in the AC 

amplitude and an increase in the AC phase can be used for feedback. A schematic 

illustration of the different feedback types used in SICM is shown in Figure 1.11. BM-

SICM was first demonstrated relatively recent and has several advantages over the 

traditional DC-SICM and DM-SICM modes that make it more suitable for 

multifunctional imaging.75,94,111 

 

Figure	1.11	Comparison	between	different	modes	of	SICM	feedback.	(a)	Direct	current	mode	
in	which	the	surface	is	detected	via	a	drop	in	ionic	current.	(b)	Distance	modulation	mode,	in	
which	 the	 probe	 is	 oscillated	 in	 the	 vertical	 direction	 to	 produce	 an	 AC	 signal	 at	 small	 tip–
substrate	separation.	(c)	Bias	modulation	mode,	in	which	a	sinusoidal	bias	is	applied	between	
the	two	electrodes	and	the	AC	phase	is	monitored	for	feedback.	 Illustrative	approach	curves	
are	shown	in	the	 insets	on	the	 images,	revealing	the	feedback	response	as	a	function	of	the	
relative	 probe-to-substrate	 distance	 d/r	 (physical	 probe–substrate	 separation,	 d,	 and	 probe	
opening	radius,	r).	In	b	and	c,	“set”	indicates	a	set-point	value	for	a	particular	quantity	that	is	
used	to	stop	the	tip	moving	closer	to	the	surface	and	can	be	used	for	feedback	during	imaging.	
Reproduced	with	permission	from	reference	72.	Copyright	(2016)	American	Chemical	Society.	 

SICM maps can also be acquired using different scanning modes. Constant distance 

and hopping mode are the most commonly used in SICM imaging. In constant distance 

mode, a constant DC or AC signal is maintained by a feedback loop that moves the 

probe vertically while it scans laterally.105,112 By maintaining a constant DC or AC 

signal, a constant probe-surface distance is maintained and a topographical image is 

formed by tracking the Z-position throughout the scan (Figure 1.12a). Although 

constant distance mode has proven useful for a wide range of applications, it is difficult 

to image complex surface features of high aspect ratio.113  
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On the other hand, hopping mode consist of a series of approach curves to determine 

the surface topography. The probe approaches the surface to a certain probe-surface 

distance determined by the value of the DC or AC feedback threshold and the Z-

position is recorded.114 Then, the probe is withdrawn and moved to a new location 

before starting a new approach (Figure 1.12b). The number of data points and the 

retraction distance determines the image resolution and the imaging time. Generally, 

constant distance enables faster scan rates than hopping mode, but hopping mode 

allows high-resolution imaging of more complex features.  

 

Figure	 1.12.	 Trajectory	 of	 the	 SICM	 probe	 during	 (a)	 a	 constant	 distance	 scan	 and	 (b)	 a	
hopping	mode	scan.	

2.1.3 Applications 

Since SICM was introduced in 1989 by Hansma et al.,105 it has been used primarily in 

molecular biology and materials science for high resolution topographical imaging of 

soft samples such as living cells.113-115 An important aspect of this technique is that 

allows the characterization of mechanical responses or morphological transformations 

of cells caused by external stimuli.110 SICM is sensitive to local heterogeneities in the 

ionic atmosphere, and has been used to study the transport properties of ion channels in 

cells and porous membranes via conductance measurements.116 Moreover, the 

nanopipette probe has been used as a delivery system to introduce materials to localized 

areas of a substrate such as DNA117 and fluorescent dyes118 for further analysis. 
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In the last five years, the technique has gone beyond these applications as a result of a 

better understanding of the ion flux processes and electric effects that constitute the 

current response,106,107,119 enabling the simultaneous topographical and functional 

analysis of surfaces.95 This new capability has been used to establish relationships 

between surface structure and surface charge in cells108,109 and obtain topography-

reactivity maps of UMEs.94  

Although it has not been practically applied to the crystal growth and dissolution field, 

only one study has been found in the literature,89 there are significant prospects for this 

technique to constitute a suitable tool for the investigation of the mechanism and 

kinetics of crystal dissolution. SICM constitutes a powerful means of probing dynamic 

processes at interfaces, particularly when correlating changes in the local ion 

concentration with variations in the surface topography.  

2.2. Atomic Force Microscopy  

2.2.1 Principles 

In AFM, a sharp tip (from a few nm to tens of nm radius), typically composed of 

silicon, is mounted on the end of a flexible silicon nitride cantilever, characterized by a 

distinct spring constant k, and scanned in a raster pattern across a defined area of a 

surface in either an air or a fluid environment. When the tip is brought into close 

proximity of the surface (below 10 nm), attractive and repulsive forces between the tip 

and the surface lead to the deflection of the cantilever. A laser beam reflected from the 

back of the cantilever into a position sensitive photodiode detector measures the 

cantilever deflection.120 Depending on the imaging mode, either the cantilever 

deflection or the oscillation amplitude or frequency is used as the feedback signal to 

keep a constant tip-surface force, with the Z-position of the tip adjusting to maintain the 

feedback. The vertical movements of the tip trace the local height of the sample, which 

is plotted against the tip position in the XY-plane to create three-dimensional 

topographical maps at sub-nanometer resolution. A schematic of the major components 

of an AFM is shown in Figure 1.13a.  
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Figure	1.13.	(A)	Schematic	of	the	AFM	detection	method.	A	laser	is	reflected	from	the	back	of	
the	 cantilever	 into	 a	 position	 sensitive	 photodiode	 detector,	 measuring	 the	 cantilever	
deflection.	(B)	Force	curves	obtained	upon	approach	(blue	line)	and	retraction	(red	line)	of	a	
cantilever	from	the	sample	surface.	The	appearance	of	the	force	curves	(slope	and	deflection	
distance)	provides	an	insight	into	the	nature	of	the	tip-surface	interaction.	

In addition to topographical imaging, AFM can also be used to investigate local 

chemical and mechanical properties of surfaces, such as elasticity and adhesion, by 

quantifying the force felt by the cantilever as a function of the tip-surface distance.121 A 

force curve plots the deflection of the cantilever as the tip is extended toward the 

surface (approach curve) and retracted from the surface (retraction curve) as shown in 

Figure 1.13b. The hysteresis between the two force curves is due to adhesive forces 

arising from the contact of the tip with the surface, only noticeable during retraction. 

The appearance of the force curves (slope and deflection distance) provides an insight 

into the nature of the tip-surface interaction. Furthermore, the AFM tip can be 

chemically modified with molecules or biomolecules to investigate interactions 

between specific functional groups and the surface of interest.122 The force between the 

tip and the surface (F) can be calculated according to Hooke’s law (eq 1.21), where d is 

the measured deflection displacement.  

F = −kd  (1.21) 

2.2.2 Feedback Types and Scanning Modes  

There are three main modes of AFM imaging: (i) contact mode (CM), in which the tip 

is brought into continuous contact with the surface. The feedback system maintains a 

constant cantilever deflection (deflection set point), adjusting the height of the 

cantilever relative to the surface, which is then translated into a topographical map.  
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However, usually it is not possible to have the feedback signal responding 

instantaneously, and the deflection of the cantilever will actually vary during imaging. 

The amount it varies depends on the topography of the sample (higher in the regions 

with a great range of slope with distance) and the imaging parameters. The deflection 

signal represents the error signal, namely, how much the cantilever is deflecting before 

the deflection is corrected by the feedback system via height adjustment by the 

piezoelectric positioner. Generally, the AFM software can display the deflection signal 

as an image, with opposite contrast on regions of changing slope. Deflection images are 

commonly used, as it chapter IV, to provide a more photorealistic image of the sample 

since it shows the shape of the sample, but at the expense of height information.121 (ii) 

Tapping mode (TM), in which the cantilever oscillates near the surface at its resonant 

frequency, establishing intermittent tip-surface contact. The feedback system maintains 

a constant amplitude of oscillation (amplitude set point) to report topographical 

information. (iii) Non-contact mode (NCM), in which the tip does not contact the 

surface. The cantilever oscillates at its resonant frequency, which is affected by the van 

der Waals and capillary forces within a 10 nm tip-surface separation. The feedback 

system maintains a constant oscillation amplitude or frequency (frequency set point) 

adjusting the average tip-surface distance. 

CM-AFM is advantageous in that it is the easiest mode to operate, as the feedback is 

directly controlling the tip-surface interaction force, and it allows faster scan rates than 

TM-AFM and NCM-AFM. However, the lateral shear forces exerted by the tip on the 

surface can be quite high, resulting in mechanical damage, making it sometimes 

unsuitable for imaging soft surfaces (e.g. biomolecular crystals).123 This is particularly 

problematic when imaging in air because van der Waals and capillary forces between 

the tip and the surface enhance attractive interactions, which aggravates mechanical 

damaging.124 On the other hand, TM-AFM and NCM-AFM minimize the lateral force 

applied to the surface while preserving high lateral resolution (limited by the tip 

curvature). When imaging under solution, CM-AFM offers superior resolution as the 

solution eliminates capillary forces and reduces tip-surface forces, reducing any 

mechanical damage of the surface.124 Thus, in situ CM-AFM studies of biological 

samples and crystal growth and dissolution processes are abundant.4,124-126 
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2.2.3 Applications 

The applications of AFM span numerous disciplines including chemistry, physics, 

biology, materials science, and nanotechnology. The flexibility of AFM as a tool to 

image, probe and manipulate materials makes it one of the most widely used 

instruments for the characterization of surface properties and visualization of dynamic 

interfacial processes.127-130 Consequently, AFM has proven very useful for the 

characterization of crystal interfaces and the investigation of crystal growth and 

dissolution processes.124,125,129,131 For example, AFM has been used for the real time in 

situ visualization of growth and dissolution spirals developing from screw 

dislocations,60,132 and for the elucidation of crystal structures when X-ray diffraction is 

not accessible via the identification of lattice parameters of biomolecular crystals in air 

and liquid environments.133,134  

Both, the kinetics and the mechanism of crystal growth have been extensively 

investigated by in situ AFM.135-139 Visualization of polygonal growth hillocks from 

dislocations and steps dynamics as a function of the solution supersaturation under 

surface-kinetics-controlled conditions enabled the determination of step edge free 

energies, and free energy barriers for nucleation.140 It has also allowed near molecular-

scale identification of the growth events occurring at specific crystallographic planes in 

the presence of additives, such that the growth mechanism and individual molecular 

recognition events can be deduced.140,141 TM-AFM has been used to study the growth 

mechanism of different protein polymorphs and obtain insights into the origin of crystal 

defects.123 Investigating the inhibition and control of crystal growth by additives or 

tailor-made auxiliaries using AFM has been an active area of research. Crystal habit 

modifications,36,141-143 polymorphism selectivity,37 and growth inhibition21 could lead to 

the design of crystalline materials with specific functionality, a key aspect in a diversity 

of fields, such as geology, biomineralization, catalysis and pharmaceuticals. 

On the other hand, despite its industrial and environmental importance, crystal 

dissolution has received relatively little attention. Examples of the most relevant AFM 

studies on crystal dissolution over the last two decades include: (i) the visualization of 

etching patterns resulting from different solvent-crystal interactions by ex situ CM-

AFM;63 (ii) the determination of kinetic and thermodynamic models of the dissolution 

process of minerals by in situ AFM;144-150 and (iii) the comparison of the dissolution 
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rates of two different facets of aspirin crystals by measuring retreating step velocities 

using in situ AFM.103 Additionally, dissolution mechanisms and the effect of surface 

adsorbates on the process have also been investigated by in situ CM-AFM.98,100,151 

However, as with any imaging technique, AFM suffers from certain limitations. Tip-

surface interactions can promote crystal dissolution (and growth), creating defects on 

the crystal surface and affecting the measurement of the intrinsic dissolution kinetics 

and the determination of the dissolution mechanism. The presence and the movement 

of the cantilever can disturb the diffusion boundary layer developed at the crystal 

interface, creating interfacial concentration heterogeneities across the surface, which in 

turns affects the dissolution kinetics. This is particularly problematic when the crystal 

dissolves in either the diffusion-controlled or mixed regime.152 A solution to this 

problem is to force convection, by creating a laminar flow through a fluid cell; at a rate 

high enough to induce surface-kinetics-controlled dissolution, which is generally 

assumed when step velocities are independent of flow rate. However, some authors 

have demonstrated that this assumption is inadequate, as diffusion effects under the 

cantilever (i.e. the formation of a diffusion boundary layer) cannot be completely 

eliminated. Thus, a detailed analysis of the hydrodynamics and mass transport inside 

the cell is necessary for the correct determination of the crystal dissolution 

kinetics.102,152,153  

A second drawback is that the maximum scan area for most AFMs is approximately 

120 × 120 µm, but when imaging dynamic processes the scan area is generally reduced 

to 1 × 1 – 5 × 5 µm. This small region of investigation may not be representative of the 

overall surface and important information about the interface during dissolution may be 

lost. For in situ measurements, the lateral scan rate and thus the image acquisition rate 

recording fast step velocities is challenging, and in situ AFM remains limited to 

reasonably slow dissolution processes. 
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3. Finite Element Method Modeling 

With multiple variables (crystal geometry, hydrodynamics, temperature, chemical 

reactions, experimental setup, etc.) influencing overall dissolution rates, it becomes 

almost impossible to obtain insights into the kinetics and mechanism of dissolution 

from experimental data alone. Thus, mathematical modeling of chemical and physical 

phenomena is a fundamental tool for the analysis and quantification of dissolution 

processes. In this thesis, finite element method (FEM) modeling is used to solve the 

partial differential equations (PDEs) that describe mass transport processes during 

crystal dissolution from a phenomenological point of view (vide supra). FEM modeling 

is a numerical procedure for obtaining approximate solutions (by transforming PDEs in 

ordinary differential equations) with high accuracy. To solve the problem, the domain 

in which the numerical problem is formulated is discretized into a finite number of 

small regions called elements and approximated as an assembly of them. Tuning the 

convergence parameters allows approximations of arbitrary precision, even on 

geometrically complicated boundaries.154  

A typical FEM model first involves defining the geometry that best describes the 

experimental system. The model geometry can be defined in one, two or three 

dimensions, with the higher dimensions requiring more computational effort. Despite 

this, through this thesis, only three-dimensional simulations are used due to the 

anisotropy of crystal dissolution systems. The crystal size and morphology determined 

experimentally are replicated in the model. Additionally, when studying dissolution in 

an AFM environment (chapter IV), the exact geometry and dimensions of the flow cell 

and components such as the AFM cantilever and tip are also simulated in order to 

investigate the fluid hydrodynamics and the influence of the components on the mass 

transport of species during dissolution. The physicochemical properties of the system 

such as number of species, chemical reactions occurring in bulk solution, diffusion 

coefficients or equilibrium constants are also defined. Finally, in order to solve the 

PDEs, the initial and boundary conditions must be specified, including the initial 

concentration and flux of individual species (overall dissolution rate measured 

experimentally). For steady-state problems, the model sets initial conditions as a first 

approximation and then estimates subsequent solutions until the calculated error is 

below the desired threshold.  
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The model simulates mass transport by diffusion and convection based on Fick’s 

second law of diffusion, implementing the mass balance equation: 

 (1.22)  

where C is the concentration of species, t depicts time, u is the velocity vector, D 

denotes the diffusion coefficient, and R is a reaction rate expression for the species. u 

can be calculated by solving the PDEs that describe fluid flow, namely the momentum 

balance (eq 1.23) and continuity (eq. 1.24) Navier-Stokes equations for an 

incompressible fluid using a FEM model. 

ρv ⋅∇v =η∇2v−∇p  (1.23) 

ρ∇v = 0  (1.24) 

where ρ and η are the solution density and dynamic viscosity respectively, and p is the 

pressure. Using the above equations, the model calculates the concentration of species 

around the dissolving crystal, most importantly near the crystal-solution interface, as 

Cint provides an insight into the kinetic regime of dissolution and allows the calculation 

of the intrinsic dissolution rate constant. 

 

4. Thesis Aims 

The main aim of this thesis is to develop new theoretical and experimental 

methodologies for the study of crystal dissolution across multiple lengthscales in order 

to obtain quantitative information about the relationship between crystal surface 

structure and reactivity, the role of mass transport, the influence of interfacial solute 

concentration on both the kinetics and mechanism of dissolution, and changes in the 

dissolution kinetics attributed to changes in crystal morphology. Each chapter is self-

contained and based on submitted or published articles in scientific journals. 

Chapter II focuses on the development of a multimicroscopy approach in which SICM 

and optical microscopy are combined with FEM simulations to study the dissolution 

kinetics of individual faces of furosemide single microcrystals. The dissolution rate and 

∂C
∂t

+ v ⋅∇C =∇ D∇C( )+ R
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the kinetic regime are obtained for all crystal faces that are exposed to the solvent, and 

related to the chemical composition and molecular topography of the surface. 

Chapter III highlights the importance of understanding the crystal surface 

characteristics and the surface processes accompanying crystal dissolution when 

studying dissolution kinetics. The visualization of both the morphological and 

topographical changes during the dissolution of bicalutamide single microcrystals via 

in situ AFM, and the incorporation of experimental data into FEM models, reveal that 

surface effects can impact the dissolution kinetics, increasing the mass transport 

contribution to the overall dissolution rate.  

Chapter IV directly compares in situ nanoscale and macroscale measurements to obtain 

insights into the mechanism and kinetics of the dissolution of hexagonal L-cystine 

single crystals. Experimental results from both OM-SICM and AFM are used to 

produce detailed FEM simulations that examine mass transport in both setups. 

Simulations demonstrate an essential link between microscopic and macroscopic 

behavior, as measured by in situ AFM and OM-SICM, respectively. 

Chapter V further explores the capabilities of the methodology by studying fast 

dissolution kinetics. It is shown that the approach introduced in this thesis also permits 

the determination of the intrinsic dissolution rate constant of very fast surface processes 

such as the proton-promoted dissolution of rhombohedral calcite, demonstrating that 

surface kinetics play an important role in the dissolution of microcrystals. 

Finally, chapter VI considers the significant contributions of this thesis to the field of 

crystal dissolution in the form of concluding remarks. 
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Chapter II 
Face-Discriminating Dissolution Kinetics of 
Furosemide Single Crystals: In Situ Three-
Dimensional Multi-Microscopy and Modeling 
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Abstract 

A versatile in situ multi-microscopy approach to study the dissolution kinetics of 

single crystals is described, using the loop diuretic drug furosemide as a testbed 

to demonstrate the utility of the approach. Using optical microscopy and scanning 

ion-conductance microscopy in combination, the dissolution rate of individual 

crystallo- graphically independent crystal faces can be measured quantitatively while 

providing a direct visualization of the evolution of crystal morphology in real time in 

three dimensions. Finite element method models using experimental data enables 

quantitative analysis of dissolution fluxes for individual faces and determination of 

the limiting process ⎯mass transport or interfacial kinetics⎯ that regulates dis-

 solution. A key feature of the approach is that isolated crystals (typically <60 µm 

largest characteristic dimension) in solution during dissolution experience high and 

well-defined diffusion rates. The ability to obtain this quantitative information for 

individual crystal faces suggests a pathway to understanding crystal dissolution at the 

molecular level and regulating bioavailability, for example, through manipulation of 

crystal morphology.  
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1. Introduction 

The majority of active pharmaceutical ingredients (APIs) are small-molecule organic 

crystals.1,2 Crystallization is an essential step in their production, wherein the form 

(i.e. polymorph), crystal morphology, and crystal size impacts processing as well as 

other important physicochemical properties, including solubility and dissolution rate.3-

5 Dissolution is the first step in drug absorption from the solid form, and it plays a 

critical role in drug bioavailability.6,7 Crystals are bounded by faces that are 

truncations of the three-dimensional lattice along specific crystallographic directions. 

As such, crystallographically unique faces are expected to exhibit different growth 

and dissolution behavior. Growth morphologies and kinetics of well-defined crystal 

faces have been explored using methods such as in situ scanning probe and 

interferometric microscopies,8-13 often providing more insightful and accurate 

measurements of crystal growth than statistical sampling of bulk crystal 

morphologies.14 Likewise, measurements of the dissolution kinetics of crystal 

suspensions that provide average rates of a population of crystals are common,15-17 but 

measurements of dissolution of individual crystal faces of single crystals are rare. 

Mass transport conditions in such systems depend on several parameters that are not 

easily quantified, including type and speed of the stirrer, vessel and baffle 

geometry,18,19 solution density and viscosity, diffusion, crystal morphology, and the 

quantity and size distribution of the solid particles.18,20 Mass transport typically is not 

well defined, to the extent that deducing the kinetic regime can be difficult. Ideally, 

experimental studies should be configured to allow quantitative local mass transport, 

from which local undersaturation at the solid/liquid interface and the relationship 

between surface structure and reactivity can be obtained. Flow cell techniques 

overcome some of the limitations,21,22 but typically these are limited to large 

macroscopic sample areas and particular crystal faces.  

These approaches often are not ideal for the dissymmetric character of organic crystal 

surfaces, which typically are decorated with various crystallographically unique faces, 

edges, corners and defects that contribute differently to the dissolution process 

(mechanism and rate). In this respect, near-field microscopies are proving valuable for 

the study of the dissolution of individual crystals, including atomic force microscopy 

(AFM),23-26 optical microscopy,27,28 and scanning electrochemical microscopy 
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(SECM).29 Rapid interfacial dissolution kinetics of crystals have been determined by 

SECM30 and scanning electrochemical cell microscopy (SECCM).31 In situ 

interferometry32 can be useful for determining concentration gradients at 

crystal/solution interfaces by monitoring changes in the refractive index of the 

solution, although the minimum detectable concentration difference depends on the 

minimum fringe shift (ca. 10% of the total concentration change in solution)33 and 

interferometric data tend to represent the average across the studied area. As such, 

they usually are not suitable for high resolution measurements of heterogeneous 

reactivity or concentration gradients.  

New approaches for assessing dissolution kinetics are essential for the optimization of 

drug formulations, particular methodologies that permit facile and quantitative 

characterization of dissolution at a microscopic level that will fill knowledge gaps at 

the molecular level. Herein we describe a comprehensive approach to real-time 

characterization of the dissolution of individual faces of single crystals using optical 

microscopy, scanning ion-conductance microscopy (SICM) and finite element method 

modeling. SICM is a powerful non-contact method that makes use of a nanopipette 

for high resolution topographical imaging,34-36 with the potential to map the 

dissolution behavior of individual topographical features on crystal surfaces. 

Collectively, these enable determination of concentration gradients, interfacial 

concentrations, and separation of kinetic and mass transport limiting regimes. This 

approach is demonstrated here for the API furosemide (Scheme 2.1), a loop diuretic 

drug marketed under the brand name Lasix.37 Furosemide is a weak acid, classified as 

a BCS Class IV drug because of its low permeability and poor solubility.38 

Consequently, the bioavailability of furosemide from oral dosage is low (60%) and 

the rate and extent of absorption varies between and within individuals.39 It is 

reasonable to suggest that understanding the dissolution kinetics of furosemide 

crystals at the microscopic level could lead to strategies for improving its 

bioavailability and its optimum solid-state form.3,40-43 
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Scheme	2.1.	The	molecular	structure	of	furosemide	

2. Experimental 

2.1 Samples and Solutions 

 Furosemide was purchased from Sigma-Aldrich (>98%, St. Louis, MO) and used as 

obtained without further purification. Crystals of furosemide were prepared by mixing 

0.5 mL of a 10 mM solution of furosemide in ethanol (Sigma-Aldrich, >99.5%) with 

3.5 mL deionized (DI) water produced by Purite Select HP with resistivity 18.2 MΩ 

cm (25 °C) to create a supersaturated solution. The mixture was added by pipette to a 

47 mm diameter circular glass microscope slide (Thermo Scientific, Inc., Waltham, 

MA) previously mounted into a 47 mm diameter Petri dish (Willco Wells, 

Netherlands) with a Plexiglas rim, covered, and allowed to stand at room temperature 

for 15 minutes. The supernatant solution was then removed to reveal small raft-

shaped crystals of furosemide, typically < 60 µm long, attached to the glass slide, 

which was then rinsed with water and dried with a nitrogen stream. All dissolution 

studies were performed at 25 °C and pH 6.5 in 50 mM KCl (Sigma-Aldrich, AR 

grade) in ultrapure water. Solution pH was measured with a pH meter (Metler Toledo, 

Switzerland)). 

2.2 X-ray Characterization 

Single crystal X-ray diffraction analysis of furosemide was performed using a suitably 

large crystal of furosemide (>100 µm) that was mounted on a Mitegen loop with 

silicon oil and placed on an Oxford Diffraction Xcalibur Gemini diffractometer 

equipped with a Ruby CCD area detector. The crystal temperature was maintained at 

150(2) K during data collection. The crystal structure was solved using Olex244 with 

the ShelXS-201345 structure solution program using Direct Methods and refined with 

the XL refinement package using Least Squares minimization. Powder X-ray 

diffraction measurements were performed using a Panalytical X'Pert Pro MRD 
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equipped with a hybrid monochromator for CuKα1 radiation (l = 1.541 Å). The glass 

slide on which the furosemide crystals were grown was mounted on the sample 

holder. A Pixcel detector was used in scanning mode over the range 5° < 2θ < 30°, 

stepping 0.025° over a period of 45 minutes. 

2.3 Morphology Prediction 

 To identify the exposed crystal faces, the furosemide crystal morphology was 

calculated based on the growth morphology method using the Morphology module in 

Materials Studio (Materials Studio 8.0.100.21, Accelrys, San Diego, CA). The growth 

morphology method takes into account the energetics of the system and requires the 

selection of an appropriate forcefield. The geometry of the furosemide unit cell 

obtained from single crystal CCD X-ray diffraction experiments was optimized using 

the COMPASS, consistent-valence forcefield (cvff), and Dreiding forcefields and the 

optimized unit cell with lowest lattice energy and lattice parameters best matching the 

experimental unit cell was selected for morphology predictions. Geometry 

optimizations were conducted using the Forcite molecular mechanics tool. The Quasi-

Newtown algorithm was used with a convergence tolerance of 2.0 × 10-5 kcal/mol for 

the energy, 0.001 kcal/mol/Å for the force, and 1.0 × 10-5 Å for the displacement. The 

Ewald summation method was chosen for the evaluation of van der Waals and 

electrostatic terms to an accuracy of 0.0001 kcal/mol with a buffer width of 0.5 Å. 

Forcefield-assigned partial charges were used with the COMPASS and cvff 

forcefields and the QEq method was used to calculate and assign partial charges with 

the Dreiding forcefield. The furosemide unit cell optimized with COMPASS was used 

for the morphology predictions, conducted with a minimum interplanar distance dhkl 

of 1.300 Å and a maximum Miller Index value (hkl) of (333). The maximum number 

of faces was limited to 200.  

2.4 Scanning Ion-Conductance Microscopy  

 Dissolution investigations were performed by combining optical microscopy and 

SICM by mounting an SICM system on an inverted optical microscope (Axiovert 40 

CFL, Zeiss, Germany). The optical microscope was equipped with an LED light 

source to reduce sample heating and a video camera (B700, PixeLINK) to assist the 

selection and monitoring of the crystal. SICM probes (ca. 100 nm diameter) were 
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fabricated from borosilicate glass capillaries (1.2 mm o.d., 0.69 mm i.d., Harvard 

Apparatus, Holliston, MA) using a laser puller (P-2000, Sutter Instruments, Novato, 

CA) and optimized pulling parameters (Line 1: Heat 350, Fil 3, Vel 30, Del 220, Line 

2: Heat 350, Fil 3, Vel 40, Del 180, Pul 120). The nanopipettes were filled with the 

same electrolyte solution (50 mM KCl) as the aforementioned solution used for 

dissolution studies. An Ag/AgCl quasi-reference counter electrode (QRCE) was 

inserted into the nanopipette and another was submerged in the petri dish bulk 

solution. The nanopipettes were mounted on a 38 µm – travel range single axis (Z) 

piezoelectric positioner (P-753-3CD, PhysikInstrumente, Germany) to control the 

height of the probe and oriented normal to the surface of interest, as previously 

described.46 The petri dish containing the furosemide crystals was mounted on a two-

axis (XY) piezoelectric positioner system (Nano-BioS300, Mad City Labs Inc., 

Madison, WI) for lateral positioning. The SICM was operated in bias modulated (BM) 

mode,47 in which there was zero net bias between the two QRCEs. A lock-in amplifier 

(SR830, Stanford Research Systems, Sunnyvale, CA) was used to generate an 

oscillating bias (38 mV amplitude, 357 Hz frequency) applied to the bulk QRCE, and 

the resulting current was measured at the QRCE in the nanopipette using a custom-

built wideband current-to-voltage converter. The instrument was controlled and data 

collected with a programmed FPGA card (7852R, National Instruments, Austin, TX) 

using LabVIEW (2013, National Instruments, Austin TX). 

The experimental configuration for optical and SICM dissolution measurements is 

illustrated in Figure 2.1. Furosemide crystals, typically with the longest dimension 

ranging from 30 - 60 µm and various length-width-height ratios, were selected. Some 

crystals were removed to create separations greater than 40× times their largest 

dimension to ensure high undersaturation (sink conditions) and avoid overlap of 

diffusion profiles among neighboring crystals. Following addition of 4 mL of a 50 

mM aqueous solution of KCl to the Petri dish, time-lapse sequence of optical images 

(400× magnification, every 30 s) and line traces along the crystal in an SICM hopping 

mode48,49 were acquired. The nanopipette probe was lowered toward the surface at a 

rate of 1 µm s-1 at each position. When the surface was detected by the probe as a 

change in the phase of the AC current to a defined set point (typically 0.1° change 

from the bulk phase value), the Z position was recorded and the nanopipette was 

retracted 5 µm at a rate of 10 µm s-1, after which it was moved laterally to a new 
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location, typically 3-6 µm from the previous position. This process was then repeated 

at a minimum of 10 lateral positions, which enabled acquisition of line profile and 

measurement of crystal height in approximately 60 seconds. Crystal dimensions were 

determined from the optical microscope images using ImageJ (version 1.45, NIH). 

 

Figure	 2.1.	Optical	microscopy–SICM	 configuration.	 The	 SICM	 system	was	mounted	 on	 an	
inverted	 optical	 microscope	 for	 the	 simultaneous	 tracing	 of	 the	 dissolution	 process	 by	
optical	microscopy	and	SICM.	The	petri	dish	 containing	 the	 crystals	was	positioned	on	 the	
microscope	stage	and	the	nanopipette	for	SICM	scans	was	submerged	normal	to	the	surface.	
Line	traces	of	the	local	height	along	the	crystal	were	generated	in	hopping	mode	BM-SICM,	
with	the	probe	scanned	forward	and	backward	over	the	same	line	along	the	crystal	(right).	

2.5 Atomic Force Microscopy  

AFM images of furosemide crystals mounted on the glass slide in the Petri 

crystallization dish were acquired in air before and after partial dissolution using a 

BioScope Catalyst microscope (Bruker, Billerica, MA). Crystals separated by >10 

times the largest crystal dimension were allowed to dissolve partially after addition of 

4 mL of 50 mM aqueous solution of KCl to the petri dish for 10 minutes. The 

electrolyte solution was then removed and the partially dissolved crystals were rinsed 

quickly with DI water and dried with a nitrogen stream. AFM images were acquired 

in the ScanAsyst mode using triangular-shaped silicon nitride cantilevers (SNL-10, 

Bruker, Billerica, MA) with a resonant frequency of ~65 kHz and ~0.35 N/m spring 
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constant and a data collection resolution of 512 points per raster line. The images 

were analyzed with SPIP software (6.0.14, Image Metrology, Denmark). 

2.6 Simulations 

Numerical simulations were performed using the commercial finite element method 

package Comsol Multiphysics 4.4 (Comsol AB, Sweden) installed on a Dell Intel 

Core 7i Quad 2.93 GHz computer equipped with 16 GB of RAM running Windows 7 

Professional 64 bit. The “mass transport of diluted species” module was used in the 

3D domain illustrated in Figure 2.2.  

 

Figure	 2.2.	Three-dimensional	domain	used	 for	 FEM	simulations	 (not	drawn	 to	 scale).	 The	
numbers	correspond	to	the	boundaries	described	in	Table	2.1.	

The maximum characteristic diffusional time for mass transport from microscopic 

surfaces to bulk solution can be estimated using a semi-infinite diffusion model 

according to equation 2.1, where tdiff is the steady-state diffusion time, d is crystal 

largest dimension size and D denotes diffusion coefficient. 

 (2.1) 

The diffusion coefficient of furosemide (6.15 × 10-6 cm2/s) was estimated from the 

Wilke-Chang correlation50 (equation 2.2): 

D = 7.4×10−8
xM( )1/2T
ηV

0.6  (2.2) 

where D is the diffusion coefficient, x is the association parameter of the solvent, M is 

the molecular weight of the solvent, T is temperature, η denotes the viscosity of the 

Ddtdiff /2≈
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solution and V is the molar volume of solute at normal boiling point. The diffusion 

coefficient was assumed constant over the entire domain. The diffusion time for a 

dissolving crystal of d ~ 45 µm is about 3 seconds, three orders of magnitude faster 

than the duration of a typical crystal dissolution experiment (30 minutes for the 

complete dissolution of a crystal). The influence of convection was neglected due to 

the small nature of the studied crystals (largest dimension < 60 µm).51 Mass transport 

by diffusion was therefore assumed to be effectively at a steady-state, such that the 

flux conservation relation in equation 2.3 was valid, where J is the flux and c is the 

concentration of the furosemide solute  

  (2.3) 

The model, denoted here M1, was developed by applying a flux (per unit area) for  

each crystal face (observed dissolution rate, Obs
hklJ )( ) measured experimentally. Using 

the appropriate boundary conditions (Table 2.1) the concentration of furosemide in 

the solution around the dissolving crystal could be simulated, from which it was 

possible to distinguish the dissolution regime, i.e., mass transport vs. kinetic control; 

vide infra. In order to deduce the relative importance of mass transport and surface 

kinetics, a model (M2) with the same geometry but different boundary conditions was 

employed (Table 2.1), such that dissolution was controlled by diffusion 

(crystal/solution interface saturated). Solution of the partial differential equations for 

both models (M1 and M2) was achieved using the direct solver MUMPS in the 

COMSOL environment, with a relative error tolerance of 10-6. Simulations were 

carried out with >7,500,000 tetrahedral mesh elements. The mesh resolution was 

refined to be the finest, down to a value of 0.1 nm, at the surfaces of the crystal. 

	  

02 =∇−=∇ cDJ
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Table	2.1.	Boundary	conditions	for	numerical	simulations	of	furosemide	crystal	dissolution	

Boundary Characteristics Boundary conditions 
M1 

Boundary conditions 
M2 

1, 2 Crystal faces {010} )()( cDJ Obshkl ∇⋅−= n   

3, 4 Crystal faces {101} )()( cDJ Obshkl ∇⋅−= n   

5 Crystal face (001) )()( cDJ Obshkl ∇⋅−= n   

6, 7, 8, 9, 10 Bulk solution   

11 Glass slide   

The boundary numbers are for the planes labeled in Figure 2.2 
n denotes the vector normal to the surface 
cs is the solubility concentration of furosemide (0.2 mM) 

 

3. Results and Discussion 

3.1 Furosemide Crystals 

Four polymorphic forms and two solvates of furosemide have been reported 

previously.37,52,53 The investigation described herein focused on Polymorph I, which is 

the only polymorph present in the commercial drug.53 Single crystal CCD X-ray 

diffraction confirmed that recrystallized furosemide crystals were polymorph I, which 

crystallizes in the triclinic P-1 space group (see Supporting Information Table 2.5).37 

Powder X-ray diffraction of furosemide crystals grown on a glass slide from 

ethanol/water solutions supersaturated with furosemide revealed only peaks 

corresponding to the (00l) reflections (l = 1 - 3), confirming that the crystals were 

oriented with the (001) face parallel to the glass slide (Supporting Information, Figure 

2.8). Optical microscopy revealed a raft-like habit with a triclinic morphology (Figure 

2.3A, B).  

scc =

scc =

scc =

00 == cc 00 == cc

)(0 cD∇⋅−= n )(0 cD∇⋅−= n
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Figure	 2.3.	Morphology	 of	 a	 typical	 recrystallized	 furosemide	 crystal	 (Polymorph	 I).	 The	
different	faces	that	can	be	seen	are	labeled.	(A)	Image	acquired	with	an	optical	microscope,	

normal	 to	 the	 (001̄)	 face.	 (B)	Optical	 image	 acquired	with	 a	magnifying	CCD	 camera	 in	 an	
SICM	experiment	(the	lighter	image	is	the	reflection	of	the	actual	crystal	 in	the	glass	slide).	
(C)	 Habit	 of	 furosemide	 Polymorph	 I	 calculated	 using	 the	 growth	 morphology	 method,	

viewed	normal	to	the	(001̄)	face.	(D)	Calculated	habit	of	furosemide	Polymorph	I	oriented	to	
reveal	other	major	crystal	faces.	

Crystal morphology prediction can serve as a useful aid in identifying relevant crystal 

faces when crystal dimensions are less than those required for indexing by X-ray 

diffraction. Methods for predicting crystal morphology based on crystal structure have 

become routine and yield crystal morphologies that are consistent with experimental 

morphologies for a wide range of molecular crystals despite a lack of consideration 

for the external growth environment.54 These methods include (i) the Bravais-Friedel 

Donnay-Harker (BFDH), a geometric calculation based on crystal lattice and 

symmetry; (ii) the equilibrium method, based on the surface free energies of relevant 

crystal faces; and (iii) the growth (or “attachment energy”) method, based on 

attachment energies corresponding to relevant crystal faces. The growth method (iii) 

is most effective when considering only the internal interactions of the crystal 

structure.55-56 The growth method, developed by Hartmann and Perdok, relies on the 

bond energy released when one building unit is attached to the surface of a crystal 

face to predict crystal morphology.57,58 The growth rate normal to a particular face is 

proportional to the attachment energy for that surface — large attachment energies 

(i.e. more negative values) for a specific face correspond to strong out-of-plane 

intermolecular interactions, corresponding to faster growth normal to the plane and a 

lower morphological significance for the face.  
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Three force fields that have been used often for the prediction of organic crystals 

habits59-61 were evaluated for predicting the morphology of furosemide Polymorph I. 

The molecular geometries and lattice parameters of the furosemide unit cell were 

optimized using the COMPASS, Dreiding, and cvff forcefields (see Supporting 

Information Table 2.6). The COMPASS forcefield was chosen for morphology 

calculations because it provided the lowest lattice energy and the lattice parameters 

best matched those of the experimental unit cell. The furosemide morphology 

predicted from the COMPASS forcefield reveals that three crystal faces — (001), 

(010) and (101̄) — contribute to 90% of the predicted total area of the crystal (Figure 

2.3C, D; Table 2.2). Crystal faces with a calculated area of <5% were not observed in 

the experimental morphology, which is not surprising given that experimental crystal 

habit is strongly affected by many environmental factors, including solvent, 

supersaturation, pH, and temperature,59,62 which are not captured in the morphology 

prediction calculations. These crystal faces, if present, cannot be studied by the 

measurements conducted in our experiments and are not addressed here. 

Table	2.2.	Morphology	predictions	for	the	optimized	structure	of	furosemide	(Polymorph	I)	

by	growth	morphology	calculations	using	COMPASS	force	field.		

Face (hkl) dhkl (Å) Eatt (kcal mol-1) Total facet area (%) 

(0 0 1) 13.854 -33.917 53.16 

(0 1 0) 9.021 -78.355 18.15 

(1 0 1̄) 8.613 -79.740 18.82 

(0 1 1̄) 8.469 -87.333 3.44 

(1 0 0) 8.411 -94.402 1.81 

(1 1̄ 0) 8.365 -124.774 4.02 

(1 1̄ 1̄) 7.626 -124.298 0.59 
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3.2 Determination of Dissolution Rates and Interfacial Concentrations 

Since the introduction of SICM,34 different modes such as constant distance,35 

hopping approach,49 and hybrid63 have been used to acquire images of the topography 

of soft surfaces36, 64 and for local ion current measurements.65-67 Most recently, a new 

method based on the application of an oscillating bias between both QRCEs to 

generate an alternating ion current (AC) feedback signal, bias modulated SICM 

(BM─SICM),47 has been introduced. This approach has several advantages over the 

traditional nanopipette oscillation SICM method, including minimization of 

perturbations of the local ionic atmosphere  and from effects of convection (stirring) 

and electro-osmosis. Moreover, it offers opportunities for faster imaging.67 

The dissolution rate is expected to be determined by a combination of (i) interfacial 

(intrinsic) dissolution kinetics, which are governed by energetics of the surface and 

solvation effects, and (ii) mass transport of dissolved species from the crystal surface 

to the bulk solution.18 Consequently, dissolution kinetics reflects a competition 

between these two processes, with the slowest governing the overall rate, leading to 

either kinetic (interfacial) control, mass transport (diffusion) control, or a mixed 

regime where both contributions are comparable. The measurement of intrinsic 

dissolution kinetics requires the mass transport rates to be comparable to or greater 

than surface kinetics, which in turn requires that mass transport is well defined and 

calculable.  

The temporal change in the lateral dimensions of furosemide crystals (i.e. the size of 

the (001) face) was recorded by measurement of the retreat of the {010} and {101} 

faces using optical microscopy (Figure 2.4A). The changes in crystal height (normal 

to the (001) face) were obtained by BM-SICM for the (001) face (Figure 2.4B, D). 

Collectively, these measurements identify the change in crystal size for all three 

dimensions. The dissolution rate was effectively constant for all three faces during the 

first ten minutes, but at longer times the dissolution rate increased. The faster 

dissolution rate was accompanied by surface roughening and the formation of pits on 

the (001) surface (vide infra), which were evident even in optical images. It is 

reasonable to suggest that the roughened surfaces and pits would result in higher 

index microfacets in the crystal surface, leading to enhanced dissolution kinetics 

(Figure 2.4A). Under these conditions, it is anticipated that crystal dissolution 
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becomes increasingly limited by mass transport.28,68-70 This is consistent with our 

recent observation of the dissolution kinetics of the (110) face of salicylic acid in 

aqueous solution using hopping intermittent contact-scanning electrochemical 

microscopy,70 where we found a strong influence of surface roughness on the 

dissolution kinetics. 

 

 

Figure	2.4.	 (A)	Representative	time-lapse	optical	microscopy	 images	of	the	dissolution	of	a	
furosemide	crystal.	(B)	BM-SICM	line	scans	recorded	at:	4	(■),	10	(•),	15	(♦),	20	(Þ),	23	(ì)	
and	 26	 (Ñ)	minutes	 after	 the	 beginning	 of	 dissolution.	 (C)	 Retreat	 of	 the	 {010}	 and	 {101}	
faces	 (length	 and	width	 dimensions)	 over	 time.	 (D)	 Reduction	 of	 the	 crystal	 height	 during	
dissolution,	 plotted	 as	 an	 average	 value	 of	 all	 the	 hops	 landed	on	 the	 crystal	 surface	 in	 a	
SICM	line	scan.	

The early stage of dissolution, where the rate was constant, was investigated for nine 

furosemide crystals in order to compare the initial dissolution rates for the three 

crystallographically unique crystal faces. In this regime the dissolution rates likely 

correspond to the kinetic processes at the low index faces rather than the higher index 

microfacets that define the pitted surface. The rates of dissolution ( Obs
hklJ )( ) were 

determined using equation 2.4, where v(hkl) is the dissolution velocity of face hkl and 

Vcrystal  is the molar volume of furosemide (200.692 cm3/mol, calculated from the 
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density of polymorph I, 1.648 g/cm3). The standard deviation of the Obs
hklJ )(  values is 

rather large, which can be attributed to the small sample size, the use of crystals with 

slightly different dimensions, and mixed kinetic-mass transport control (vide infra). 

Nonetheless, it is evident that the different faces exhibit different dissolution rates, 

with Obs
hklJ )(  increasing in the order (001) < (010) < (101̄), inversely proportional to the 

areas of the faces.  

J(hkl)
Obs = v(hkl) /Vcrystal  (2.4) 

Table	2.3.	Average	face-resolved	initial	dissolution	rates	of	9	furosemide	crystals.	

Crystallographically unique faces of a molecular crystal will have different chemical 

compositions and molecular topography. Consequently, different interactions with the 

external environment can be expected for these faces,71 as well as different step/kink 

energetics. The dissolution rates of crystal faces depend on the energetics associated 

with each surface. The lowest energy surfaces are those in which the weakest bonds 

are truncated. In the furosemide crystal, each molecule participates in six hydrogen 

bonds with five neighboring furosemide molecules — one O⋅⋅⋅HO, one OH⋅⋅⋅O, two 

NH⋅⋅⋅O, and two O⋅⋅⋅HN (Scheme 2.2), forming a complex hydrogen-bonding 

network that is truncated differently at each of the morphologically significant (001), 

(010), and (101̄) faces (Figure 2.5). The (001) face presents furanyl rings, which do 

not form hydrogen bonds with other furosemide molecules, to the external 

environment. Moreover, the hydrogen bonding network is contained within the (001) 

plane such that hydrogen bonds are not truncated at the surface and in-plane 

interactions are strong, characteristic of a face with low surface energy, slow growth, 

and a large morphological importance (Figure 2.5A). In contrast, the (010) and (101̄) 

surfaces expose aminosulfonyl and carboxyl groups at the surface, thereby truncating 

Face (hkl) JObs (mol m-2 s-1) 

(101̄) (16.1± 6.7) × 10-6 

(010) (12.6 ± 6.9) × 10-6 

(001) (2.8 ± 1.4) × 10-6 
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the hydrogen-bonding network (Figure 2.5B, C). Based on this structural inspection 

alone, the (001) face would be expected to have a lower attachment energy than the 

(010) and (101̄) faces and should have the slowest growth rate normal to the surface, 

and be the slowest dissolving crystal face as well. This is consistent with the observed 

and calculated crystal morphology (Figure 2.3 and Table 2.2), as well as the measured 

dissolution rates (Table 2.3). The comparable morphological significance of (010) and 

(101̄) suggests that these surfaces have comparable growth and dissolution rates. The 

(101̄) face, however, exhibits a somewhat higher dissolution rate compared to (010), 

although the two are comparable within error. The corrugation of the (010) face 

suggests that solvent ordering or surface reconstruction may be likely, which would 

stabilize this face and slow its dissolution rate compared to the relatively flat (101̄) 

face.72 Nonetheless, the order of the observed dissolution rates of the different 

furosemide crystal faces (001) < (010) < (101̄) agrees with the hydrogen bonding 

model as well as the attachment energy calculations. This trend becomes even clearer 

when mass-transport corrections are introduced (vide infra). 

 

Scheme	2.2.	The	molecular	structure	of	furosemide	(black)	and	hydrogen	bonds	formed	by	
each	molecule	with	neighboring	furosemide	molecules	(grey)	in	the	crystal	structure.		
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Figure	 2.5.	 Structure	 of	 furosemide	 crystal	 faces:	 (A)	 (001),	 (B)	 (010),	 and	 (C)	 (101̄).	 Black	
dotted	lines	represent	hydrogen	bonds.	

3.3 Mass Transport-Corrected Intrinsic Dissolution Kinetics 

FEM models were formulated for each of the nine crystals studied to obtain more 

insight into the dissolution kinetics, particularly the role of mass transport. These 

computations accounted for the experimental dissolution rate ( Obs
hklJ )( ) obtained for 

each individual crystal face, crystal size and crystal morphology, thereby producing 

the concentration distribution and diffusive flux of furosemide. The results from FEM 

modeling of the dissolution of four representative furosemide crystals are provided in 

Figure 2.6. The calculations reveal that the concentration of furosemide at the 

solid/liquid interface is higher than in the bulk solution (0 mM), with large 

concentration gradients (diffusion layer) between the crystal and the bulk solution, 

consistent with significant contributions from mass transport. Notably, the calculated 
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concentration in the vicinity of each crystal face differs, demonstrating that the 

balance between mass transport and surface kinetics for each crystal face during the 

dissolution process is different. The calculated surface concentrations increase in the 

order C(001) = 0.12 ± 0.04 mM < C(010) = 0.15 ± 0.04 mM < C(101̄) = 0.17 ± 0.03 mM, 

consistent with the order of faster kinetics expected and a trend towards an increased 

degree of mass transport control. The contribution of surface kinetics is important on 

those faces where the interfacial concentration is less than the solubility of furosemide 

(0.2 mM),73 a value that was confirmed by UV‒Vis absorption (Supporting 

Information, Figure 2.9). The interfacial concentration alone, however, is not 

indicative of dissolution kinetics due to the possible redistribution of the solute 

between the different crystal faces, which depends on the direction and magnitude of 

the diffusive flux of material, crystal size and morphology. A more accurate 

quantitative determination of the contribution of the surface kinetics ( SK
hklJ )( ) can be 

obtained for each crystal face by comparing the experimental flux ( Obs
hklJ )( ) determined 

in model M1 (see Experimental Section), with the value of the theoretical diffusive 

flux on each crystal face predicted from simulations for a pure mass transport 

controlled system ( MT
hklJ )( ) parameterized with the same crystal geometry (model M2). 

The overall flux involves mass transport and surface kinetics in series, according to 

equation 2.5,  

SK
hkl

MT
hkl

Obs
hkl JJJ )()()(

111
+=  (2.5) 

Obs
hklJ )(  for (010) and (101̄) was very close to MT

hklJ )(  ( Obs
hklJ )(  ≈ MT

hklJ )( ), consistent with 

fast surface dissolution kinetics ( SK
hklJ )(  >> MT

hklJ )( ). Conversely, for the (001) face, 

except for one crystal (among the nine) that could not be distinguished from mass-

transport control, Obs
hklJ )(  was always much smaller than MT

hklJ )(  ( Obs
hklJ )(  << MT

hklJ )( ), 

consistent with mixed kinetic control ( SK
hklJ )(  ≈ MT

hklJ )( ). For the (001) face, the average 

value of MT
hklJ )(  for the range of crystals shown (7.35 × 10-6 mol m-2 s-1) is about twice 

the size of the average value of SK
hklJ )(  (4.39 × 10-6 mol m-2 s-1). It is important to note, 
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however, that a range in values was obtained for Obs
hklJ )(  , MT

hklJ )(  and SK
hklJ )(  across the 

different crystals studied. This is attributed to the different numbers of defects in each 

crystal and the different crystal sizes. The average values for each flux contribution 

for each crystal face are provided in Table 2.4 (more detail is provided in Supporting 

Information, Table 2.7). 

 

Figure	 2.6.	 (A)	Optical	microscopy	 images	of	single	 furosemide	crystals.	 (B)	Results	of	FEM	
simulations	(M1)	for	the	concentration	distribution	of	furosemide	during	the	dissolution.	(C)	
Concentration	 distribution	 of	 furosemide	 in	 the	 solid/liquid	 interface	 in	 a	 mass	 transport	
controlled	dissolution	process	(M2).		

Table	2.4.	Average	diffusive	fluxes	per	unit	area	for	each	crystal	face	calculated	from	FEM	

simulations	of	eight	furosemide	crystals.	

Face (hkl) JObs (mol m-2 s-1) JMT (mol m-2 s-1) JSK (mol m-2 s-1) 

(101̄) (16.1 ± 6.7) × 10-6 (15.0 ± 4.9) × 10-6 Near diffusion control 

(010) (12.6 ± 6.9) × 10-6 (11.7± 3.6) × 10-6 Near diffusion control 

(001) (2.8 ± 1.4) × 10-6 (7.4 ± 1.8) × 10-6 (4.4 ± 2.7) × 10-6 

 

Dislocations are recognized to be important for etch pit formation during 

dissolution.74 Pitting leads to both an increase in the specific surface area and the 

formation of microdomains (pit walls) of higher surface energy that produces an 

increased dissolution rate.70 In the case of furosemide crystals, a collection of crystals 
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was examined by AFM before and after their immersion in aqueous solution for 10 

minutes (Figure 2.7).  

 

Figure	 2.7.	 AFM	 images	 of	 single	 furosemide	 crystals	 before	 dissolution	 and	 after	 partial	
dissolution	for	10	minutes.	The	dashed	red	and	black	 lines	 indicate	the	 line	profile	used	to	
measure	 the	 surface	 roughness	 before	 and	 after	 dissolution	 respectively	 (left).	 Surface	
roughness	 (right)	of	 the	(001)	 face	 in	each	of	 the	four	crystals	before	dissolution	(red)	and	
after	partial	dissolution	(black).	

Prior to dissolution the (001) surfaces are largely free of defects, except for crystal C, 

which appears to be somewhat rough based on an AFM line profile (red line in Figure 

2.7C). After simultaneous immersion for 10 minutes, the crystals have dissolved, 

although to different extents. Moreover, the number and depth of pits on the (001) 

face differ for each crystal. It can be appreciated in the images that the extent of 

dissolution depends on the initial crystal size, the ratio of the size of the (010) and 

(101̄) faces, and the initial surface roughness. Overall, the smaller the crystal, and the 

smaller the size of the (101̄) face in relation to the (010) face, and the rougher the 

crystal surface, the faster the dissolution. All these characteristics are united in crystal 

C which is the smallest crystal (37 µm length), has a small (101̄) face and the clear 

presence of a defect on the (001) surface (surface roughness profile in red in Figure 

2.7) prior to dissolution. After 10 minutes, crystal C has dissolved by ca. 70 % from 

its initial volume, while the other crystals have dissolved by between 45 % and 60 %. 

Differences in the pitting density (surface area and roughness) are evident in the 
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images after dissolution and the surface roughness plot in Figure 2.7. The (001) 

surface of the dissolved crystals A and B is characterized by a smaller proportion of 

pits than crystals C and D. After the 10 minute dissolution period, the decrease in 

crystal size, as well as the roughening of the crystal faces exposed to the solvent by 

the formation of pits and exposure of high index faces, explains the increased 

dissolution kinetics at longer times (Figure 2.4).  

 

4. Conclusions 

The dissolution kinetics of the individual faces of single furosemide crystals 

(polymorph I) have been investigated by a versatile in situ multimicroscopy approach, 

comprising SICM and optical microscopy combined with finite element method 

(FEM) modeling. The experimental approach allowed 3D visualization of crystal 

morphology during dissolution, from which a numerical model was developed to 

calculate the concentration distribution around the crystal and dissolution flux of 

furosemide at the solid/liquid interface. This allowed the quantitative comparison of 

mass transport and surface kinetics. It has been shown that the (001) face is strongly 

influenced by surface kinetics (mixed kinetic control), while the (010) and (101̄) faces 

are dominated by mass transport. Our findings have important consequences for the 

reporting of dissolution kinetics: dissolution rates vary considerably from crystal to 

crystal and are time dependent at large dissolution times (>10 minutes). This is due to 

the impact of a range of factors, including subtle effects from crystal size, shape and 

the apparent number of defects (pits) in a particular crystal, and as shown by 

complementary AFM measurements. By studying individual microscale crystals 

within a population, we have been able to identify kinetic distributions for individual 

faces and rationalize the results in terms of crystal structure and surface properties. 

The ability to obtain this quantitative information for individual crystal faces suggests 

a pathway to understanding crystal dissolution at the molecular level that can be used 

to tailor crystal morphology to enhance dose-release properties and regulating 

bioavailability. More generally, the proposed approach should be widely applicable to 

a range of crystal types, encompassing organic and ionic crystals.  
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5. Supporting Information 

Table	 2.5.	 Crystallographic	 parameters	 for	 furosemide	 Polymorph	 I	 compared	 with	

literature.	

 This study  Babu et al.37 

Empirical formula  C12H11ClN2O5S  C12H11ClN2O5S  

Formula weight  330.74  330.74  

Temperature/K  150(2)  100(2)  

Crystal system  triclinic  triclinic  

Space group  P1   P1   

a/Å  9.5355(5)  9.5150(9) 

b/Å  10.4627(5)  10.4476(10) 

c/Å  15.6209(7)  15.5826(16) 

α/°  92.936(4)  92.839(2) 

β/°  107.105(5)  107.088(2)  

γ/°  116.498(5)  116.7470(10) 

Volume/Å3 1302.36(10)  1291.9(2) 

Z  4  4  

ρcalc g/cm3 1.648  1.700 

m/mm-1 0.425  0.482 

Reflections collected  9208  13411 

Independent reflections  5166  5061 

Goodness-of-fit on F2 1.045  1.050 

Final R indexes [I>=2σ (I)]  R1 = 0.0502 R1 = 0.0668 

Final R indexes [all data]  wR2 = 0.1069 wR2 = 0.1258 
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Figure	 2.8.	 Calculated	 powder	 X-ray	 diffraction	 pattern	 of	 furosemide	 form	 I	 (black)	 and	
experimental	 (red)	 obtained	 for	 furosemide	 crystals	mounted	 on	 a	 glass	 slide	 (λ	 =	 Cu-Kα,	
0.1541	nm).	The	experimentally	observed	peaks	at	2θ	=	6.04°,	12.15°	and	18.17°	correspond	
to	 the	 (001),	 (002)	 and	 (003)	 reflections	 of	 polymorph	 I	 respectively,	 confirming	 the	
orientation	of	the	raft-like	crystals	parallel	to	the	glass	slide.	

	

Table	2.6.	Comparison	of	the	optimized	furosemide	unit	cell	parameters	calculated	using	

the	COMPASS,	Dreiding	and	cvff	force	fields	and	the	experimental	data	obtained	by	single	

crystal	CCD	X-ray	diffraction.	

 Energy Unit cell parameters 

 (kcal mol-1) a (Å) b (Å) c (Å) A (º) β (º) γ (º) 

Experimental  9.5355 10.4627 15.6209 92.9360 107.1050 116.4980 

COMPASS -508.1135 9.8589 10.1926 14.7867 94.4689 106.0592 114.7914 

Dreiding -222.3405 9.7441 10.6284 15.6670 96.8028 108.2709 114.6225 

cvff -8.6023 10.3754 10.9100 15.8328 85.1591 110.7729 127.0457 
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Figure	 2.9.	 UV–Vis	 spectra	 of	 furosemide	 dissolved	 in	 water	 at	 different	 concentrations.	
Black	 lines	 show	 the	UV‒Vis	 spectra	of	 furosemide	 in	water	at	0	mM,	0.0034	mM,	0.0068	
mM,	0.014	mM,	0.027	mM	and	0.055	mM	used	for	calibration.	The	red	line	shows	the	UV‒
Vis	spectra	of	a	saturated	solution	of	furosemide	in	water	diluted	5	times.	The	inset	shows	
the	linear	relationship	between	the	absorbance	and	the	concentration	of	furosemide	at	277	
nm.	 Black	 squares	 correspond	 to	 the	 calibration	 data	 and	 the	 red	 circle	 to	 the	 5	 times	
diluted	saturated	solution	of	furosemide	in	water.		
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Table	2.7.	Diffusive	fluxes	per	unit	area	for	each	crystal	face	calculated	from	finite	element	

simulation	of	each	studied	crystal.	

Face (hkl) JObs (mol m-2s-1) JMT (mol m-2s-1) JSK (mol m-2s-1) 

(101̄) 5.2 × 10-6 6.3 × 10-6 Close to diffusion control 

(010) 1.5 × 10-6 5.1 × 10-6 2.1 × 10-6 

(001) 0.6 × 10-6 4.1 × 10-6 0.7 × 10-6 

(101̄) 9.2 × 10-6 8.9 × 10-6 Close to diffusion control 

(010) 7.7 × 10-6 7.3 x10-6 Close to diffusion control 

(001) 4.4 x10-6 5.7 × 10-6 Close to diffusion control 

(101̄) 13.6 × 10-6 15.9 × 10-6 Close to diffusion control 

(010) 8.9 × 10-6 12.3 × 10-6 32.2 x10-6 

(001) 0.9 × 10-6 7.3 × 10-6 1.0 × 10-6 

(101̄) 14.5 × 10-6 12.7 × 10-6 Close to diffusion control 

(010) 9.7 × 10-6 10.6 × 10-6 Close to diffusion control 

(001) 2.1 × 10-6 8.3 × 10-6 2.8 × 10-6 

(101̄) 20.3 × 10-6 15.2 × 10-6 Close to diffusion control 

(010) 6.5 × 10-6 10.8 × 10-6 16.3 × 10-6 

(001) 3.6 × 10-6 7.7 × 10-6 6.7 × 10-6 

(101̄)  15.3 × 10-6 17.3 × 10-6 Close to diffusion control  

(010) 22.2 × 10-6 14.3 × 10-6 Close to diffusion control 

(001) 3.7 × 10-6 8.4 × 10-6 6.6 × 10-6 
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(101̄)  18.8 × 10-6 16.4 × 10-6 Close to diffusion control 

(010) 16.6 × 10-6 12.0 × 10-6 Close to diffusion control 

(001) 2.4 × 10-6 6.7 × 10-6 3.7 × 10-6 

(101̄) 17.4 × 10-6 19.2 × 10-6 Close to diffusion control 

(010) 17.9 × 10-6 15.5 × 10-6 Close to diffusion control 

(001) 2.8 × 10-6 6.8 × 10-6 4.8 × 10-6 

(101̄) 30.2 × 10-6 23.3 × 10-6 Close to diffusion control 

(010) 22.4 × 10-6 17.0 × 10-6 Close to diffusion control 

(001) 4.9 × 10-6 11.0 × 10-6 8.8 × 10-6 
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Chapter III 
Dissolution of Bicalutamide Single 
Crystals in Aqueous Solution: Significance 
of Evolving Topography in Accelerating 
Face-Specific Kinetics 

 

 

Submitted as an article to Crystal Growth and Design 

 

Abstract 

The dissolution kinetics of individual microscale bicalutamide (BIC) form-I crystals 

are tracked over time using in situ atomic force microscopy (AFM), with the 

evolution of crystal morphology used to obtain quantitative data on dissolution 

kinetics via finite element method (FEM) modeling of the dissolution reaction-

diffusion problem. Dissolution is found to involve pit formation, and roughening on 

all dissolving surfaces of the BIC crystal and this has a strong influence on the overall 

dissolution process and kinetics. While all of the exposed faces {100}, {051} and {1̄

02} show dissolution kinetics that are largely surface-kinetic controlled, each face has 

an intrinsic dissolution characteristic that depends on the degree of hydrogen bonding 

with aqueous solution, with hydrogen bonding promoting faster dissolution. 

Moreover, as dissolution proceeds with pitting and roughening, the rate accelerates 

considerably, so that there is an increasing diffusion contribution. Such insight is 

important in understanding the oral administration of poorly soluble active 

pharmaceutical ingredients (APIs) in crystal form. Evidently, surface roughening and 

defects greatly enhances dissolution kinetics, but the evolving crystal topography 

during dissolution leads to complex time-dependent kinetics that are important for 

modeling and understanding API release rates. 
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1. Introduction 

Many active pharmaceutical ingredients (APIs) are administered as solid oral 

formulations,1 and the resulting in vivo bioavailability is governed by properties such 

as solubility, permeability, and formulation components, as well as physiological 

variables. As formulations often include APIs in microcrystalline format, strong 

dependency of API bioavailability on the dissolution rates of the API crystals has 

been recognized2-4 and, consequently, dissolution measurements are a key procedure 

in drug testing and quality control of pharmaceutical products.5,6 Interestingly, there is 

an increasing trend towards the use of poorly water soluble compounds as candidates 

for the development of new drugs,7 and a comprehensive understanding of the 

dissolution process of these crystalline APIs is thus of fundamental importance.  

The dissolution of a crystal is a complex physicochemical process driven by local 

undersaturation at the crystal/solution interface, and consisting of a series of 

elementary steps involving various surface reactions and mass transport.8 The slowest 

step(s) governs the overall rate and at the simplest level dissolution kinetics can be 

classified as either surface-controlled (surface processes limit the rate), mass 

transport-controlled (surface processes are faster compared to diffusion of API 

molecules from the crystal to bulk solution) or under a mixed regime system, where 

surface processes and mass transport contributions to the kinetics are comparable. The 

dissolution process is further complicated when the nature of a molecular crystal 

surface is considered in more detail. The different arrangement of molecules at 

different exposed crystal faces and the surface microstructure of those faces (steps, 

terraces and kinks) make crystal surfaces energetically heterogeneous.9,10 The 

dissolution rate will depend on the energetics associated with each type of site on each 

surface,11-14 and their contributions and interactions greatly complicate the 

understanding of the dissolution processes (kinetics and mechanism).13,15 

Experimental studies need to provide an holistic view of the impact of surface 

morphology, surface reactivity, driving force and mass transport on dissolution 

kinetics.16 

Traditional dissolution testing methodologies for APIs are based solely on measuring 

bulk solution concentration of a dissolving suspension of a particulates as a function 

of time.17,18 These approaches give average dissolution rates of a population of 
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crystals but do not provide any information about the contribution of the individual 

crystal faces or the micromorphology changes during the dissolution process.19-21 

Furthermore, difficulties in the quantification of mass transport in such systems 

impedes the elucidation of the driving force for dissolution (undersaturation at the 

crystal/solution interface). 

The use of scanning probe microscopy methods such as atomic force microscopy 

(AFM),8,22-24 or scanning ion conductance microscopy (SICM),25 among others,26,27,28 

has provided detailed kinetic and structural information of dissolution processes. The 

study of microcrystals by these techniques is particularly advantageous, as this 

configuration offers high diffusional mass transport rates between the crystal and bulk 

solution and the possibility of mapping the behavior of entire crystals and the 

different faces exposed.25 Furthermore, this approach allows the ready combination of 

experimental data with numerical simulations of mass transport and surface kinetics, 

making it possible to determine concentration gradients and interfacial concentrations, 

so as to quantify the dissolution kinetic regime.  

The microcrystal approach is adopted herein, using a combination of in situ AFM 

imaging data and finite element method (FEM) simulations, to probe face-specific 

dissolution of bicalutamide (BIC) (Scheme 3.1) crystals as a function of time. BIC is 

the API in AstraZeneca’s product CASODEX®29 and belongs to class II of the 

biopharmaceutics classification system (BCS) (low solubility and high permeability). 

It is used to prevent the growth of prostate cancer by blocking the action of androgens 

on the cancer cells.29-31 The low solubility/dissolution rate of BIC is a major limiting 

factor for its bioavailability and clinical applications. Accordingly, an in-depth 

understanding of the microscopic dissolution process in aqueous solution at the single 

crystal level is expected to be important in leading to new formulation strategies that 

would enhance its bioavailability. The approach we outline herein could be generally 

powerful for revealing the dissolution kinetics of class II API crystals.   

 

Scheme	3.1.	Molecular	structure	of	bicalutamide. 
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2. Experimental 

2.1 Samples and Solutions 

All chemicals were used as received. Aqueous solutions were prepared using high 

purity water (Purite, Select HP) with a resistivity of 18.2 MΩ cm at 25 °C. BIC was 

supplied by AstraZeneca. BIC crystals were grown by mixing 200 µL of a 10 mM 

solution of BIC dissolved in a mixture of ethanol (≥ 99.5%) and dimethyl sulfoxide (≥ 

99.9 %) in 5:1 v/v ratio (solvent) with 400 µL of water (antisolvent) in a plastic petri 

dish (Willco Well) to create a supersaturated solution. The solution was allowed to 

stand under a closed environment for 15 min. The supernatant was then removed to 

reveal plate-like crystals, with the largest dimension in the range 10-60 µm, attached 

to the petri dish base. The crystals were then rinsed briefly with ultra-pure water and 

dried using nitrogen (BOC).  

2.2 X-ray Characterization 

Single crystal X-ray analysis was used to determine the unit cell of the grown crystals. 

A large crystal (100 µm in length, grown for ~1 hour) was mounted on a Mitegen 

loop with silicone oil and placed on an Oxford Diffraction Xcalibur Gemini 

diffractometer fitted with a Ruby CCD area detector. The crystal was kept at 293(2) K 

during data collection. Using Olex2,32 the structure was solved with the ShelXS-

201333 structure solution program using Direct Methods and refined with the 

ShelXL34 refinement package using least squares minimization. The face indexing 

was performed using CrysAlis PRO (Agilent Technologies UK Ltd.). Powder X-ray 

diffraction analysis was executed at room temperature using Panalytical X’Pert Pro 

MPD with hybrid monochromator to give pure CuKα1 radiation (1.541 Å). The 

bottom of the petri dish containing the crystals was cut and placed on the sample 

holder. A Pixcel detector was used in scanning mode over the range 5° < 2θ < 30°, 

stepping 0.02° over a period of 45 min.   

2.3 In situ Atomic Force Microscopy 

Dissolution investigations were performed in 2 mL of unstirred pure water (sink 

conditions) directly in the petri dish containing the crystals, as grown, using a 

Bioscope Catalyst microscope with a Nanoscope V controller (Veeco). AFM images 
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of selected diffusionally isolated crystals (∼ 35 µm in length; separated from 

neighboring crystals by >20 times this distance) were acquired in ScanAsyst mode 

using silicon-tips on a silicon nitride lever with a spring constant of 0.35 Nm-1 

according to manufacturer (SNL-10, Bruker). The images were obtained at a scan rate 

of 0.45 Hz and the temperature was ca. 20 °C. Dissolution rates were measured from 

consecutive frames acquired at ~10 min per frame with a resolution of 256 lines and 

512 samples per line. Images acquired were analyzed using SPP 6.0.14 software, 

where a first order plane correction was applied making sure the crystal was masked 

out to correct any background tilt.  

2.4 Simulations 

Numerical simulations were performed on a Dell Intel core 7i Quad 2.93 GHz 

computer, equipped with 16 GB of RAM running Windows 7 Professional x64 bit 

edition using the commercial FEM modelling package Comsol Multiphysics 4.2a 

(COMSOL AB, Sweden). The “mass transport of diluted species” module was used in 

the 3D domain illustrated in Figure 3.1 to simulate the mass transport of BIC 

dissolution during the in situ AFM experiments. The models were defined using 

experimental data that included changes in both the crystal morphology and 

dissolution rates at specific dissolution times. Calculations employed >12000 

tetrahedral mesh elements and resolution was defined to be finest near the surface of 

the crystal. Solution of the partial differential equations for each model was achieved 

using the direct solver MUMPS in the COMSOL environment with a relative error 

tolerance of 10–6. 

 

Figure	 3.1.	 Three-dimensional	 domain	 (not	 to	 scale)	 used	 for	 FEM	 simulations	 of	 BIC	
dissolution.	The	numbers	correspond	to	the	boundaries	described	in	Table	3.1.		
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For the experimental length scale, mass transport is predominantly by diffusion. The 

diffusion time can be estimated using a semi-infinite diffusion model according to 

equation 3.1, where tdiff is the steady-state diffusion time, d is crystal largest 

dimension length and D denotes diffusion coefficient.  

Ddtdiff /2≈   (3.1) 

The diffusion coefficient of BIC molecules in aqueous solution  (D = 4.5 × 10-6 cm2 s-

1) was calculated using the Wilke-Chang equation (eq. 2.2) which provides 

diffusivities with an absolute error no bigger than 11%, 35 a level that did not have a 

major impact on our final results. FEM simulations taking into account the upper and 

lower limit of the diffusion coefficient calculated from the Wilke-Chang correlation 

showed that the absolute error in the calculation of the solute concentration near the 

crystal/solution interface and the flux of solute from each individual crystal face was 

< 11%, a precision that was sufficient not to affect our conclusions about the kinetic 

regime. For the dilute solutions during dissolution, D was assumed constant over the 

entire domain. The characteristic diffusion time for a dissolving crystal (∼35 µm in 

length) is about 3 s, which is about 4 orders of magnitude faster than the duration of a 

typical dissolution experiment (6 h). Mass transport by diffusion was therefore 

assumed to be at a steady-state, for particular AFM snapshots, and the flux 

conservation equation (eq 3.2) was solved, where J is the flux and C is the 

concentration of the BIC solute. 

∇J = −D∇2C = 0   (3.2) 

Four different geometric models were developed that mimicked the main crystal 

morphologies found during dissolution. For each model, the experimental data of face 

displacement velocity allowed the flux (per unit area) for each crystal face, J{hkl},13
 to 

be defined. These form the boundary conditions on the crystal surface which, together 

with the remaining boundary conditions (Table 3.1), allowed equation 3.1 to be 

solved to obtain the concentration of BIC in the solution around the dissolving crystal. 

These simulation data allowed evaluation of the dissolution regime, i.e., mass 

transport vs. kinetic control, as a function of time. In order to deduce the relative 

importance of mass transport and surface kinetics, two additional sets of models with 

the same geometry but different boundary conditions were employed (Table 3.1), 
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such that dissolution of all the crystal faces was controlled by diffusion 

(crystal/solution interface saturated with soluble BIC), denoted MT1 models, or where 

only the small and fast dissolving crystal faces {051} and {1̄02} were controlled by 

diffusion, denoted MT2 models 

Table	3.1.	Boundary	conditions	applied	to	the	numerical	models	as	defined	in	Figure	3.1,	

where	n	denotes	the	outward	vector	normal	to	the	boundary,	t	denotes	dissolution	time,	

Cbulk	is	the	bulk	concentration	(0	µM)	and	Csat	is	the	saturation	solubility	of	11.6	µM	

Boundary Experimental 
conditions MT1 conditions MT2 conditions 

1-5 C =Cbulk  C =Cbulk  C =Cbulk  
6 n ⋅ (D∇C) = 0  n ⋅ (D∇C) = 0  n ⋅ (D∇C) = 0  

7, 8, 10, 11 n ⋅ (D∇C) = −J{051},t  C =Csat  C =Csat  
9, 12 n ⋅ (D∇C) = −J{102},t  C =Csat  C =Csat  
13 n ⋅ (D∇C) = −J{100},t  C =Csat  n ⋅ (D∇C) = −J{100},t  

    

3. Results and Discussion 

3.1 Bicalutamide Crystals 

The solid form of BIC presents polymorphism, which has been thoroughly 

characterized by Vega et al.29 Two crystalline forms (I and II) and an amorphous 

phase of solid BIC have been reported. Single crystal CCD X-ray diffraction 

determined that the crystallization method described herein produced polymorph I, 

which is the most stable form, characterized by the monoclinic P21/c space group 

(Supporting Information, Table 3.2). Optical microscopy revealed the crystals had a 

plate-like crystal habit, as shown in Figure 3.2a. The orientation of the crystals grown 

in the plastic petri dish was determined by powder X-ray diffraction. Only peaks 

corresponding to the (h00) reflections (h=1-4) were observed, indicating that the 

crystals were oriented with the {100} faces parallel to the surface (Supporting 

information, Figure 3.8). The remaining faces were determined by single crystal X-

ray diffraction taking into account the specific angles of the crystal faces. The (hkl) 

indexes assigned to each crystal face are presented in Figure 3.2b. 
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Figure	3.2.	Crystal	morphology	of	BIC	(Form	I).	(a)	Bright	field	microscopy	image	of	a	typical	
grown	crystal	acquired	normal	to	the	(100)	face.	 (b)	Representation	of	the	single	crystal	X-
ray	diffraction	of	BIC	with	crystal	faces	assigned.	Red	line	represents	the	2D	crystal	outline.		

3.2 Dissolution Rates and Surface Dynamics 

Herein, the aqueous dissolution kinetics of microscopic BIC single crystals has been 

studied by AFM imaging in quiescent conditions. Only a few crystals were present in 

the petri dish (< 20). Considering the volume of the crystals and the molar volume of 

bicalutamide (Vm(BIC) = 3601.572 mol m-3), the bulk concentration would only reaches 

ca. 0.003 µM after all the crystals had been dissolved. As such, we consider pure sink 

conditions during the time course of our experiment.. As discussed in the 

introduction, visualization of the morphology changes of an entire single crystal 

during dissolution allows the assessment of the dissolution rates of individual crystal 

faces, providing information on the evolution of surface structure and dissolution 

activity.36 Additionally, the use of microcrystals generates fast and well-defined mass 

transport that can be modeled, enabling the quantification of the relative contributions 

of mass transport and surface kinetics to observed dissolution rates. ScanAsyst mode37 

was chosen to operate at very low forces, which minimized tip/sample interactions 

while enabling high resolution images to be obtained. Additionally, in order to 

determine if the AFM probe had an effect on dissolution kinetics, dissolution studies 

of diffusionally isolated BIC single crystals of similar size were performed by optical 

microscopy (optical data not shown due to the resolution limits of optical 

microscopy). The total dissolution time measured by optical microscopy was broadly 

comparable to that determined by AFM such that it was possible to discard AFM tip 
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effects promoting the dissolution of the crystals. Other possible effects of the AFM 

probe on the mass transport of species diffusing from the crystal surface to bulk 

solution were also considered. As shown in previous work,38-40 the AFM tip can block 

the diffusion of solute and affect the elucidation of the kinetic regime, especially 

when the crystal dissolves under a mixed kinetic regime and a very small area of the 

crystal surface is imaged. However, in the case reported in this work, FEM results 

show that the dissolution of BIC crystals, in particular the (100) face, is strongly 

controlled by surface kinetics and small changes in the mass transport of BIC due to 

the AFM probe can be neglected. Moreover, the whole crystal is imaged by the AFM 

probe, allowing the natural mass transport behavior of the system to be quickly 

recovered when the tip moves laterally a few microns, as shown in other works that 

studied the influence of AFM probe position and geometry on diffusion to 

ultramicroelectrodes in an in-situ AFM environment.41 

Measurements were made on different crystals, and although there were some subtle 

differences between them, the phenomena observed and the time course of dissolution 

was broadly similar. We thus describe the data in detail for one crystal and provide 

example data for three additional crystals in Supporting Information, Figures 3.9-3.11.  

Figure 3.3 (a) presents time-dependent 3D AFM images of a dissolving BIC 

microcrystal in aqueous solution. In the early stages, AFM measurements show the 

formation of pits on the top surfaces, as well as roughening of the side faces. The 

dissolution velocity of the {100} faces was followed by tracking the changes in the 

average crystal height over the entire crystal area as a function of time, whereas the 

dissolution velocities of the {051} and {1̄02} faces were determined from the 

perpendicular retreat of the faces as referenced in Figure 3.3b. The mean of the 2 

cross-sectional lines, forming right angles between parallel {051} faces, as shown in 

Figure 3.3b, was used as the average width. The mean of 9 cross-sectional lines along 

the direction labeled as length in Figure 3.3b was used to extract the average length of 

the crystal at each frame. Measurements were extracted for all dimensions until the 

dissolution time reached 240 min. Within this time range, measurements could be 

made with good certainty, since the crystal showed a well-defined morphology. 

Figure 3.3c plots the displacement behavior in the length and width dimensions. The 

displacement slope of the {1̄02} faces (length) is steeper than the {051} faces (width), 
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indicating faster dissolution rate. The increase in rate with time can be understood 

from visual analysis of the AFM images, showing that the initiation and propagation 

of pits, and face roughening, over time have a great impact on the rate at which the 

BIC crystal faces dissolve.  

 

Figure	3.3.	(a)	AFM	images	of	a	single	BIC	microcrystal	(initially	36	µm	in	length	and	10.5	µm	
in	width)	 during	 dissolution	 in	 aqueous	 solution.	 (b)	 2D	 BIC	 crystal	morphology	 indicating	
how	displacement	 data	were	 extracted.	 (c)	 Plot	 showing	 the	 changes	 in	width	 and	 length	
over	time	of	the	dissolving	BIC	crystal	shown	in	(a).			

The overall displacement of the {100}, {051} and {1̄02} faces with time fit well to an 

exponential function (Figure 3.4a). Data were fitted empirically to such a function (eq 

3.3) to yield the best R2 value included in the software OriginPro 9.1.0. 

y = A(1− exp−Bx )  (3.3) 

The best linear fits in the early and late time period are shown by the blue dotted lines. 

Molar dissolution rates of the individual crystal faces, J(hkl)
obs , were determined directly 
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from the data in Figure 3.4a using equation 3.4, where v(hkl) is the dissolution velocity 

of the {hkl} face and V BIC  is the molar volume of BIC calculated from the density of 

the BIC polymorph (1.55 g cm-3). 

J(hkl)
obs = v(hkl) ⋅V BIC  (3.4) 

 

Figure	 3.4.	 (a)	 Plots	 showing	 changes	 in	 crystal	 dimensions	over	 time:	 (i)	Height	 {100},	 (ii)	

Width	 {051}	 and	 (iii)	 Length	 {1̄02}.	 (b)	 Corresponding	 dissolution	 rates	 (flux)	 over	 time:	 (i)	

Height	{100},	(ii)	Width	{051}	and	(iii)	Length	{1̄02}.	Data	are	fitted	to	an	exponential	function	
(solid	red	curves)	and	the	blue	linear	portions	highlight	the	change	in	the	rate	for	the	basal	
surface	and	roughened	surfaces	are	at	early	and	advanced	dissolution	times	(c)	Plot	showing	
the	change	in	surface	roughness	of	{100}	face	normalized	by	the	geometric	surface	area	as	a	
function	of	time.		

The slowest dissolution rate was found to be for the {100} face. The dissolution rates 

of the {051} and {1̄02} faces were faster, but both increased markedly with time 

(Figure 3.4b (ii-iii)). As alluded to above, these changes are mainly associated with 



	 Chapter	III.	Results	and	Discussion	

	
	

82	

changes of the crystal surface energy, due to the evolving face topography, although a 

decrease in crystal size also leads to higher diffusion rates which serves to increase 

the dissolution rate of this mixed surface kinetic-diffusion dissolution system (vide 

infra).  

Further insight into the dissolution process was obtained by conducting an analysis of 

the relationship between dissolution rate and surface roughness, as determined by 

AFM, normalized by the changes in geometric surface area as a function of time 

(Figure 3.4c). This procedure is most accurate for the top {100} face because full 

images of the surface are obtained in detail. It can be seen that surface area-

normalized roughness increases by less than a factor of two, yet the rate of reaction 

over this time period increases by a factor of six. Although AFM may not provide a 

view of atomic-scale defects, it appears that the rate is not simply proportional to 

surface roughness. Rather as dissolution proceeds, sites of higher reactivity, including 

high-index nanofacets, are produced which accelerate the reaction.    

The roughness of the {051} and {1̄02} faces is more difficult to quantify, but it can be 

seen from Figure 3.4a (ii) and (iii) and 3.4b (ii) and (iii) that the dramatic increase in 

rate is far more extensive than could be explained from the roughening of the crystal 

side faces (Figure 3.3a) Indeed, these images highlight the formation of high index 

faces (manifested as indents) around the crystal perimeter.  

Initially, the crystal faces are relatively flat (low step edge and kink density), so the 

overall activation energy for dissolution tends to be larger.42 The data presented 

indicate that as dissolution proceeds, the crystal surface roughens, the edges become 

rounded and new crystal faces of higher crystallographic indexes are exposed to the 

solvent (Supporting Information, Figure 3.12). Etch-pits produced on the {100} face, 

imaged directly by AFM (Figure 3.3a), show that the distribution is non-uniform and 

etch-pits do not present a particular crystallographic orientation. All the crystal faces 

present high-degree of surface etch-pitting at long dissolution times, which explains 

the slope difference in the two linear regions of all plotted dissolution rates versus 

time, in Figure 3.4b, and the newly exposed reactive sites cause the increase in the 

dissolution rate.43, 44 As further shown in the Supporting Information, Figures 3.9-3.11 

all examined BIC crystals dissolved at different rates despite their similarity in size 

(∼50-60 µm in length). This is attributed to the different crystal surface 
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characteristics, such as the number and type of defects in each crystal, which 

increasingly lead to the emergence of high index faces on dissolution kinetics at 

longer times. The creation of reactive dissolution sites is considered to be an indicator 

of surface-controlled dissolution,9,10,13 but to confirm the kinetic regime, the 

determination of the solute concentration near the crystal/solution interface and the 

quantification of the surface reactivity and diffusion contributions to the dissolution 

process is necessary (vide infra). These observations build on recent dissolution 

kinetics measurements of salicylic acid in aqueous solution using hopping intermittent 

contact scanning electrochemical microscopy27 and the aqueous dissolution of the 

organic crystal furosemide, studied in chapter II, using the combination of scanning 

ion conductance microscopy and optical microscopy.25 Both studies highlight the 

strong influence of evolving surface roughness on the overall dissolution kinetics 

time-course.   

The face-specific dissolution rates at the beginning of the dissolution process 

corresponds to the dissolution of the {100}, {051} and {1̄02} faces presented in the 

initial crystal habit. As highlighted above, crystal surface energy has a huge impact on 

the overall dissolution rate, and this was examined, as shown in Figure 3.5 (generated 

using the unit cell parameters of the crystal structure JAYCES29 available in the 

CCDC and using the commercial package Mercury 3.8, CCDC Cambridge45). 

Considering the (100) face presented in Figure 3.5a, the hydrogen bonding network is 

contained within the (100) plane with the exposure of fluorobenzene rings at the 

surface. This is the characteristic of a face with a low surface energy and slow 

growth.46 In contrast, the (1̄02) face structure (Figure 3.5b) exposes a sulphonyl group 

at the surface and results in a hydrogen bonding network perpendicular to the (1̄02) 

plane, making the (1̄02) face a high energy surface. This behavior is also seen in the 

(051) face, although to a smaller extent compared to the (1̄02) face, highlighted by the 

exposure of trifluoromethyl benzonitrile groups at the surface and the zig zag 

arrangement of the hydrogen bonds along the structure shown in Figure 3.5c. The 

order of the measured dissolution rates (Figure 3.4b) of the different faces: {100} < 

{051} < {1̄02}, agrees with the hydrogen bonding model, i.e. the greater the degree of 

hydrogen bonding between the surfaces and adjacent solution, the faster the 

dissolution kinetics. It is reasonable to assume that the relative dissolution rates of the 
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different faces for this period of time would mirror the order of the attachment 

energies of BIC molecules to the surface, as would occur during crystal growth, and 

as found in our previous work on furosemide.25  

 

Figure	3.5.	Stucture	of	BIC	crystal	faces:	(a)	(100),	(b)	(1̄02)	and	(c)	(051).	Black	dotted	lines	
highlight	hydrogen	bonds.	

3.3 Determination of Interfacial Concentrations and Kinetic Regime 

In the case of a mixed surface kinetic-diffusion regime, the concentration of solute 

molecules near the crystal surface has an intermediate value between close to bulk 

concentration (pure kinetic control) and equilibrium (saturated) value (diffusion 

control). The actual value depends on the relative contributions of mass transport and 

surface kinetics.40 To elucidate how the kinetic regime during the dissolution of BIC 

crystals evolves with time, the concentration of BIC solute near the crystal/solution 
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interface during dissolution was calculated by FEM simulations formulated directly 

from AFM experimental data.  

Because the crystal size, morphology and dissolution rates of the individual crystal 

faces are time-dependent, four different steady-state FEM models at different 

dissolution times were formulated to evaluate the evolution of the kinetic regime with 

time. The computations used the experimental dissolution rates determined for each 

crystal face and the crystal size and morphology determined from AFM images at 

each dissolution time (20 min, 80 min, 170 min and 240 min). The crystal 

morphology was approximated to smooth surfaces, i.e. to the underlying basal 

surface, considering the difficulty of constructing and assigning overall dissolution 

rates to rough surfaces in the FEM modeling package. The results of the FEM 

calculations (Figure 3.6a) revealed that Cint {1̄02} > Cint {051} > Cint {100} during the whole 

dissolution process, and that all the Cint {hkl} values increase with time consistent with 

the kinetic coefficient for dissolution increasing as dissolution proceeds. At the 

beginning, Cint {hkl} is very similar to the bulk concentration. This is consistent with a 

dissolution process controlled by surface kinetics in which the rate of the surface 

reaction is much slower than the rate of surface to bulk diffusion. As dissolution 

proceeds, AFM imaging indicates that more reactive sites are formed and surface 

dissolution kinetics increase, leading to higher Cint {hkl}. Consequently, concentration 

gradients from the crystal to bulk solution become steeper, indicating an increasing 

contribution from diffusion. However, surface kinetics still dominate, since Cint {hkl} is 

well below the equilibrium concentration value (11.62 µM, at 20 °C)47 during the 

entire dissolution process (Supporting Information, Table 3.4).  

To evaluate the relative contributions of mass transport and surface kinetics on 

dissolution, these results were compared to those obtained from FEM calculations 

parameterized for the same crystal size and geometry at each dissolution time, but 

where a pure mass transport controlled dissolution regime was imposed at specific 

crystal faces, Cint {hkl} = Csat, (Figure 3.6b-c). It can be seen that the surface 

concentration is much larger when dissolution is diffusion controlled. A first 

comparison of Figure 3.6a and Figure 3.6b indicates how the experimental system 

evolves towards increasing diffusion control with time. This is also highlighted in 

Figure 3.7, which shows plots of the ratio of diffusion to experimental fluxes (JMT/ 
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Jobs) for the different faces versus time. JMT1 is the predicted flux for a process where 

the dissolution of all the crystal faces is purely diffusion-limited and Jobs is the 

measured flux. During the early stages, the dissolution rates of the BIC crystal would 

be at least two orders of magnitude higher if dissolution of all the crystal faces was 

limited by diffusion (MT1 model). Whereas at later stages, the magnitude of the 

experimentally obtained fluxes tend towards those calculated for a pure diffusion-

limited system (Supporting Information, Table 3.4), particularly for the {1̄02} faces, 

which are those that dissolve the fastest. It is important to note, that the flux 

magnitude is strongly influenced by the crystal morphology and size, and under 

mixed kinetic control, the crystal geometry and the BIC concentration at adjacent 

crystal faces. In the MT1 model, the concentration of BIC near all the crystal faces is 

csat, an extreme situation that does not take into account the acute anisotropic kinetic 

character for dissolution of the different (hkl) crystal faces observed experimentally 

(different balance between mass transport and surface kinetics for each family of 

faces, vide supra). Under mixed kinetic control, the flux of solute molecules arising 

from the most morphologically important face, the (100) face, affect the apparent 

behavior of the very small adjacent faces. To illustrate this point, a third set of models 

where only the dissolution of the {051} and {1̄02} faces was forced to be diffusion-

limited and the slow dissolving large basal (100) face behaved as observed 

experimentally, were formulated (MT2). In this situation, the calculated molar flux of 

BIC, JMT2 at the {051} and {1̄02} faces is much higher than that calculated by MT1 

for each dissolution time (Figure 7). The kinetic regime of these smaller faces is then 

in good agreement when comparing either concentrations near the crystal/solution 

interface or flux of material (JMT2/ Jobs) (Supporting Information, Table 3.4. Further, 

through this model, one can even appreciate the effect of the influence of the 

concentration near the {051} and {1̄02} faces on the calculation of csurf, (100). This is 

observed to be enhanced compared to that calculated in the experimental model, 

despite the fact that the flux applied was the same in each case, Jobs,(100) = JMT2,(100) 

(Supporting Information, Table 3.4).  
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Figure	 3.6.	 FEM	simulation	 for	 the	dissolution	of	BIC	 in	bulk	aqueous	 solution	at	different	
time	 points:	 (a)	 model	 formulated	 from	 experimental	 data.	 (b)	 MT1	 model	 where	 the	
dissolution	 of	 all	 faces	 is	 purely	 diffusion-controlled,	 and	 (c)	 MT2	 model	 where	 only	 the	

{051}	 and	 {1̄02}	 faces	 are	 diffusion-controlled	 and	 the	 (100)	 face	 dissolves	 as	 observed	
experimentally.	Note	the	difference	in	the	concentration	ranges	for	(a)	and	(b-c).	
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	Figure	3.7.	Comparative	plots	of	JMT/Jobs	versus	time	for	the	(100)	faces	(black),	{051}	faces	

(red)	 and	 {1̄02}	 faces	 (blue),	 showing	 the	 extent	 to	 which	 each	 face	 evolves	 towards	
increasing	mass	 transport	 contribution	during	 dissolution	 in	 the	 case	where	 all	 the	 crystal	

faces	 are	 diffusion-limited	 (MT1)	 and	where	 only	 the	 {051}	 and	 {1̄02}	 faces	 are	 diffusion-
limited	(MT2).	
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4. Conclusions 

In this study, the combined use of in situ AFM measurements and FEM modeling has 

allowed the surface processes that accompany dissolution to be monitored 

quantitatively in real-time to obtain dissolution kinetics for individual faces of a single 

BIC microcrystal. Morphological changes and the formation of pits associated with 

surface-controlled dissolution were observed. At longer dissolution times the 

roughening of individual crystal faces and the exposure of high index faces result in 

greatly increased dissolution kinetics. Incorporating AFM experimental data into a 

FEM model of a dissolving BIC microcrystal has provided direct concentration 

distributions at individual crystal faces. As a result, we were able to determine the 

importance of surface kinetics compared to mass transport for each crystal face. All 

BIC crystal faces showed significant surface kinetic-controlled dissolution behavior, 

being far from the mass transport limited regime, but with increasing mass transport 

(diffusion) contribution to the kinetics as the reaction proceeded.  

The study of single microcrystals provides considerable understanding of API crystal 

dissolution kinetics and could provide strategic insight for the future engineering of 

drug crystals with appropriate dissolution characteristics whilst maintaining suitable 

physical and chemical stability. For example, these studies have shown that 

roughened and defect-rich surfaces have greatly enhanced dissolution kinetics. 

Further, the significant time-dependence of the dissolution kinetics is important for 

improved pharmacokinetic modeling.   
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5. Supporting Information  

Table	3.2.	Crystal	data	and	structure	refinement	for	BIC	

Parameter Value 

Identification code BIC 
Empirical formula C18H14F4N2O4S 
Formula weight 430.37 
Temperature/K 296(2) 
Crystal system monoclinic 
Space group P21/c 
a/Å 14.9237(5) 
b/Å 12.2149(3) 
c/Å 10.4612(3) 
α/° 90 
β/° 104.668(3) 
γ/° 90 
Volume/Å3 1844.84(10) 
Z 4 
ρcalcmg/mm3 1.550 
m/mm‑1 2.201 
F(000) 880.0 
Crystal size/mm3 0.4 × 0.18 × 0.05 
Radiation CuKα (λ = 1.54184) 
2Θ range for data collection 6.122 to 155.976° 

Index ranges 
-18 ≤ h ≤ 15, -7 ≤ k ≤ 15, -11 ≤ 
l ≤ 12 

Reflections collected 7177 

Independent reflections 
3820 [Rint = 0.0233, Rsigma = 
0.0310] 

Data/restraints/parameters 3820/11/282 
Goodness-of-fit on F2 1.038 
Final R indexes [I>=2σ (I)] R1 = 0.0478, wR2 = 0.1344 
Final R indexes [all data] R1 = 0.0547, wR2 = 0.1418 
Largest diff. peak/hole / e Å-3 0.52/-0.33 
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Figure	 3.8.	 Calculated	 powder	 X-ray	 diffraction	 pattern	 of	 bicalutamide	 form	 I	 (blue)	 and	
experimental	 (red)	obtained	 for	bicalutamide	 crystals	mounted	on	a	plastic	Petri	 dish	 (λ	 =	
Cu-Kα,	0.1541	nm).	The	experimentally	observed	peaks	correspond	to	the	(100),	(200),	(300)	
and	(400)	reflections	of	polymorph	I	respectively,	confirming	the	orientation	of	the	crystals	
parallel	to	the	plastic	Petri	dish.	
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Figure	3.9.	AFM	topography	images	of	aqueous	dissolution	sequence	of	3	different	single	BIC	
crystals.	
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Figure	3.10. Plots	showing	changes	in	crystal	dimensions	over	time	of	the	crystals	shown	in	
Figure	3.9.	

	

 

Figure	 3.11. Corresponding	 dissolution	 rates	 (flux	 per	 unit	 area)	 over	 time	 of	 the	 crystals	
shown	in	Figure	3.9.	Plots	illustrate	that	as	the	crystal	starts	to	roughen	the	dissolution	rate	
increases	significantly.	The	order	of	the	measured	dissolution	rates	for	all	three	crystals	was	

found	to	be:	(100)	<	{051}	<	{1̄02}.		
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Table	3.3.	Parameters	achieved	of	the	functions	used	to	fit	the	displacement	curves	shown	

in	the	Figure	3.9.	

Crystal 1 
R2 

Exponential fit 

y = A(1− exp−Bx )  
A B 

R2 
Linear fit 
y = A+Bx  

A B 

(100) 0.937 -1.34 -0.011 0.917 -9.48 0.13 
    0.906 2nd -266.23 0.90 

{051} 0.945 -2.49 -0.024 0.947 1st 57.49 8.25 
    0.991 2nd -129743.74 402.29 

{1̄02} 0.933 -8.72 -0.022 0.954 1st -123.06 25.88 

    0.966 2nd -249519.60 776.19 

Crystal 2       

(100) 0.933 -10.48 -0.003 0.973 1st -5.07 0.07 
    0.907 2nd 0.98 0.05 

{051} 0.963 -5559.38 -0.006 0.970 1st -8157.47 101.55 
    0.984 2nd -19269.55 154.12 

{1̄02} 0.959 -2858.31 -0.009 0.989 1st -3407.23 64.76 

    0.978 2nd -54758.57 321.41 

Crystal 3       

(100)    0.976 -86.81 0.67 
{051}    0.970 -12918.79 94.39 

{1̄02}    0.975 -29912.09 217.30 
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Figure	3.12.	Graphs	showing	cross-sections	of	the	above	crystals	at	various	time	points.	
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Table	3.4.	Concentration	(× 10-4 
mM)	near	the	crystal/solution	interface	and	normal	total	

fluxes	 (×	10-7 
mol	m

-2
	 s

-1
) at	 various	 times	 for	 the	different	 crystal	 faces	 calculated	 from	

FEM	simulations		

Tim
e 

(min) 

Faces 
{hkl} 

Csurf  
Experiment

al 

Csurf 
MT1 

Csurf 
MT2 

Jobs JMT1 JMT2 

20 100 2.38 116.2 70.2 0.0994 6.63 0.0994 

20 051 2.68 116.2 116.2 0.927 20.9 75.2 

20 1̄02 2.04 116.2  116.2 0.687 32.1 84.7 

80 100 3.93 116.2  70.3 0.169 6.98 0.169 

80 051 4.45 116.2  116.2 1.80 23.4  88.4 

80 1̄02 4.01 116.2  116.2 2.19 36.0 99.5 

170 100 9.45 116.2  72.1 0.377 7.24 0.377 

170 051 11.1 116.2  116.2 4.88 24.2 88.8  

170 1̄02 14.5 116.2  116.2 12.5 38.5 101.0 

230 100 15.5 116.2  74.6  0.643 8.62 0.643 

230 051 19.0 116.2  116.2 9.48 27.2 93.5 

230 1̄02 34.2  116.2 116.2 39.7 45.5 110.1 

JMT1 = Theoretical flux obtained for when all crystal faces are purely diffusion 
controlled. 
JMT2 = Flux obtained when only the {051} and {1̄02} faces are purely diffusion 
controlled	and the (100) face dissolves as observed experimentally. 
Jobs = Experimental flux. 
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Chapter IV Multiscale Visualization and Quantitative 
Analysis of L-Cystine Crystal Dissolution  

 

 

As published in Adobes-Vidal et al. Cryst. Growth Des. 2017, 17, 1766–1774 

 

Abstract 

There is considerable interest in the growth and dissolution of the hexagonal form of 

L-cystine crystals, not least because L-cystine kidney stones - aggregates of single 

crystals of L-cystine - are a consequence of the genetic disorder cystinuria. While 

recent investigations have revealed the growth mechanism and kinetics of L-cystine 

crystals at the molecular level, the dissolution process has not yet been considered. 

Dissolution involves coupled surface and diffusion processes at different crystal faces 

exposed to solution, presenting a significant challenge for quantitative 

physicochemical measurements. The multi-microscopy approach herein uses a range 

of complementary in situ microscopy techniques – atomic force microscopy (AFM), 

scanning ion conductance microscopy (SICM) and optical microscopy – combined 

with finite element method (FEM) analysis, to reveal the mechanism of face-specific 

dissolution and the associated kinetics. Dissolution from the {0001} face involves the 

formation of funnel-shaped hexagonal pits, centered at single screw dislocation cores, 

but the handedness of the dissolution spirals is opposite to that found for steps in 

growth spirals. Significantly, step velocities measured by AFM quantitatively scale up 

to capture the overall dissolution kinetics of this face, and the measurements further 

serve as a roadmap for the quantitative analysis of single crystal dissolution and 

growth. 
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1. Introduction 

Kidney stones comprising L-cystine account for nearly 2% of all stones, affecting 

more than 20,000 U.S. patients annually. Unlike calcium oxalate monohydrate (COM) 

stones, cystine stones are caused by a genetic disorder and tend to be larger, recur 

more frequently, and are more likely to cause chronic kidney disease.1 The formation 

of L-cystine stones is a consequence of excessive levels of L-cystine in the urine due 

to excess excretion of cystine.2 Exacerbated further by the low solubility of L-

cystine,3 which provokes the formation of crystals that aggregate into millimeter-sized 

stones. This has prompted recent investigations of the growth and inhibition of L-

cystine crystallization at the microscopic level,4-8 and the discovery of molecular 

inhibitors that arrest L-cystine growth. These inhibitors show promise as therapeutic 

agents,9,10 possibly serving as replacements for existing treatments11,12 that often are 

not effective in the prevention of L-cystine stones.5,7 It is reasonable to suggest that 

agents that promote dissolution of existing L-cystine crystals may represent an 

alternative strategy for interrupting stone formation, especially in light of recent work 

on COM,13 but to our knowledge the microscopic mechanisms of L-cystine crystal 

dissolution have not been explored.  

 

Scheme	4.1.	Molecular	Structure	of	L-Cystine	

L-cystine crystallizes in the P6122 space group, forming hexagonal crystals with large 

{0001} faces confined by six equivalent {101̄0} faces.14 The micromorphology of 

{0001} faces during crystal growth from aqueous solution revealed the formation of 

hexagonal hillocks emerging from screw dislocations with a Burger vector normal to 

{0001} at concentrations below 3.5 mM7 (the equilibrium solubility, Csat, is 0.7 mM 

at 25°C).15,16 The growth mechanism, kinetic coefficient of the {101̄0} steps, critical 

length and step spacing of grown spirals at dislocations, at different supersaturations, 

were determined using real-time in situ atomic force microscopy (AFM),6,7 which has 

become an exceptionally powerful technique to study crystal growth and dissolution 
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at the nanoscale.17-24 This method, however, typically is used for examining a 

particular crystal face and is limited to processes that are slow compared to the image 

acquisition rate.25,26 

Herein, we describe an investigation of the dissolution of hexagonal L-cystine 

crystals, with the aim of obtaining quantitative information about the relationship 

between surface structure and reactivity, the role of mass transport in dissolution, the 

influence of interfacial solute concentration on the dissolution kinetics and 

mechanism,25 and changes in dissolution kinetics accompanying changes in crystal 

morphology. Furthermore, our studies reveal critical information on the relationship 

between crystal growth and dissolution under equivalent interfacial driving force, an 

important consideration of general interest in the crystal growth/dissolution field that 

has proved difficult to address.  

Using a recently introduced approach27 (introduced in chapter II) that combines 

optical microscopy (OM) and scanning ion-conductance microscopy28 (SICM), 

quantitative 3D visualization of crystal morphology during the dissolution of micro-

crystals can be realized under conditions of well-defined and high mass transport 

rates, enabling determination of face-dependent dissolution rates. The experimental 

data permit the determination of interfacial concentrations, concentration gradients, 

and separation of kinetic and mass transport limiting regimes with finite element 

method (FEM) simulations.27,29,30 Specifically, the dissolution rates of the {0001} and 

{101̄0} faces of L-cystine crystals have been determined. Imaging of the {0001} face 

of L-cystine crystals during dissolution by real-time in situ AFM at various cystine 

concentrations provides substantial insights into the dissolution mechanism through 

measurement of step velocities on hexagonal spirals descending along screw 

dislocations on the {0001} face. Kinetic data obtained from OM-SICM and AFM, 

which measure kinetics in different ways, are in good agreement when the different 

mass transport regimes of the two experimental configurations are accounted for. 

These measurements thus provide a rare example of dissolution kinetics that are 

quantitatively self-consistent from the nanoscale to the macroscopic (whole crystal) 

level and underpinned by a detailed mechanistic view of the dissolution process. 
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2. Experimental 

2.1 Crystallization of L-Cystine 

Hexagonal L-cystine crystals were crystallized from an aqueous solution (18.2 MΩ 

cm, Direct-Q 3 Millipore) containing 2 mM L-cystine (Sigma-Aldrich, St. Louis, 

MO), prepared by heating under reflux at 100 °C for 30 min with stirring. The 

solution was cooled slowly to room temperature with mild stirring for 70 min and 

transferred to a glass container that was sealed to prevent evaporation. The resulting 

solution (pH = 6.5) corresponded to a relative supersaturation C/Csat ≈ 3, based on the 

L-cystine solubility (Csat = 0.7 mM at pH = 7; 25 °C).15,16 Crystals for AFM 

measurements were obtained by storing this solution at room temperature without 

stirring for 10 days, after which large (> 100 µm across) hexagonal single crystals 

were collected by vacuum filtration (Whatman grade 1 filters, >11 µm pores) and air-

dried. Crystals for OM-SICM studies were harvested by transferring 4 mL aliquots to 

separate 47 mm diameter circular glass microscope slides (Thermo Scientific, Inc. 

Waltham, MA), each mounted into a 47 mm diameter Petri dish (Willco Wells, 

Netherlands) with a Plexiglas rim. The Petri dish was covered and allowed to stand at 

room temperature until single crystals with {0001} faces having ca. 20 µm cross 

section were observed attached to the glass slide. The supernatant solution was then 

removed, the crystals rinsed with water, and dried with a nitrogen stream.  

2.2 Optical Microscopy-Scanning Ion-Conductance Microscopy (OM-SICM) 

Measurements 

 Dissolution studies were performed at 25 °C and pH 6.5 in 100 mM KCl electrolyte 

solution (Sigma-Aldrich, AR grade). Note that the solubility of L-cystine is relatively 

insensitive to ionic strength from pure water (as used for AFM, see below) to this 

concentration of electrolyte,15 so that the driving force for AFM and OM-SICM 

experiments was the same. The combined OM-SICM system comprised a homebuilt 

SICM mounted on an inverted optical microscope (Axiovert 40 CFL, Zeiss, 

Germany) as previously described.27,31 The optical microscope was equipped with an 

LED light source (BXRA-56C1600-B-00, Bridgelux Inc. Livermore, CA) to reduce 

sample heating and a video camera (B700, PixeLINK). SICM probes were fabricated 

from quartz capillaries (1.2 mm o.d., 0.69 mm i.d., Harvard Apparatus, Holliston, 
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MA) using a laser puller (P-2000, Sutter Instruments, Novato, CA) and optimized 

pulling parameters to produce tips with an opening diameter ca. 80 nm. The 

nanopipettes were filled with the same electrolyte solution (100 mM KCl) used for the 

bathing solution and mounted on a single axis (Z) piezoelectric positioner (P-753-

3CD, PhysikInstrumente, Germany) with a 38 µm travel range to control the height of 

the probe, here oriented normal to the {0001} face of an L-cystine crystal. The petri 

dish containing the crystals was mounted on a two-axis (XY) piezoelectric positioner 

system (Nano-BioS300, Mad City Labs Inc., Madison, WI) for lateral positioning. 

The SICM was operated in bias modulated (BM) mode,32 in which there was an 

oscillating (sinusoidal) bias between a Ag/AgCl quasi-reference counter electrode in 

the tip and one in the bath (38 mV amplitude, 358 Hz frequency), generated by a lock-

in amplifier (SR830, Stanford Research Systems, Sunnyvale, CA) with zero net (time-

averaged) bias. The resulting current response was measured using a custom-built 

wideband current-to-voltage converter. The SICM setup was controlled with a 

programmed FPGA card (7852R, National Instruments, Austin, TX) using LabVIEW 

(2013, National Instruments, Austin TX). 

L-cystine single crystals, with ca. 20 µm wide {0001} faces and diffusionally isolated 

(separated by at least 800 µm) from neighboring crystals were selected for study. 

Following addition of 4 mL of the electrolyte solution to the Petri dish, time-lapse 

sequences of optical images (40X objective, every 30 s) and line traces along the 

crystal in a BM-SICM hopping mode32-34 were acquired. The nanopipette probe was 

lowered toward the surface at a rate of 1 µm/s at each position. When the near-surface 

was detected by the probe as a change of 0.5° in the phase of the AC current, the Z 

position was recorded and the nanopipette was retracted ca. 10 µm at a speed of 10 

µm/s. It was then moved laterally to a new position, typically 3-6 µm from the 

previous point. This process was repeated at a minimum of 10 lateral positions, which 

led to the acquisition of a height profile every 2 min. The dissolution velocity of the 

{0001} face was determined by measuring the height displacements as a function of 

time. The acquisition time of the SICM data was slower than previously reported for 

other dissolution studies27 due to the height of L-cystine crystals (∼ 8 µm) at the 

beginning of the experiment, but the time resolution was sufficient for the dissolution 

kinetics measured. The dissolution velocities of the {101̄0} faces were determined 
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from time-lapse optical microscope images, by measuring the edge to center distance 

using ImageJ (version 1.45, NIH). 

2.3 Real-Time in Situ Atomic Force Microscopy 

AFM crystal growth and dissolution experiments were performed as described 

previously.5-8 L-cystine crystals, ca. 100 µm across, were sprinkled onto an AFM 

sample mounting disk coated with Norland optical adhesive (type 81) partially cured 

by UV exposure (λ = 365 nm, 1 min), and then pressed gently against the disk using 

weighing paper. The {0001} faces of the plate-like hexagonal crystals naturally 

aligned parallel to the disk surface. The crystals were then fixed permanently by 

curing the adhesive completely (15 min). Dissolution and growth studies were 

performed in a fluid cell at room temperature with a Nanoscope IIIa Multimode 

system (Digital Instruments, Santa Barbara, CA) in contact mode using Veeco NP-

BSi3N4 tips on silicon nitride cantilevers with a spring constant of 0.12 N/m. Prior to 

measurements, the crystals were etched slightly by flushing the fluid cell with 0.5 mL 

of deionized water at a rate of 15 mL/h to remove any impurities or amorphous 

deposits on the surface. This flow rate corresponds to a Reynolds number of Re = 

11.5, consistent with laminar flow (Re = rUL/m, where r = 0.997 g/cm3 and m = 

0.00954 g/cm⋅s are the fluid density and viscosity, respectively, U = 1.1 cm/s is the 

centerline velocity at the fluid cell inlet, and L = 0.1 cm is the thickness of the fluid 

cell). The velocity of the major steps, vstep, on the {0001} face was measured at 

various L-cystine concentrations (2 mM for growth and 0-0.6 mM for dissolution) 

under a continuous flow of solution, at a rate of Vf = 15 mL/h, by measuring the 

distance of the steps from the dislocation core in consecutive deflection images. 

Images with the same scan direction, acquired at periodic intervals of 10 s, were 

analyzed using ImageJ (version 1.45, NIH). 

2.4 Numerical Simulations  

All simulations were performed using the commercial finite element method (FEM) 

modeling package Comsol Multiphysics 4.4 (Comsol AB, Sweden) installed on a Dell 

Intel Core 7i Quad 3.40 GHz computer equipped with 32 GB of RAM running 

Windows 7 Professional 64 bit edition. Three-dimensional models were formulated to 

simulate and evaluate the fluid flow and mass transport of L-cystine dissolution 
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during the OM-SICM and AFM experiments. The models were defined using 

geometrical parameters and morphological changes in the crystal over time obtained 

from experimental data. Calculations employed optimized triangular and tetrahedral 

mesh elements. More details about the 3D domains used are provided in Supporting 

Information, Figures 4.12 and 4.13.  

For the OM-SICM models, the mass transport of L-cystine away from the crystal 

during dissolution was described by the steady-state diffusion equation (eq. 4.1) 

where J is the flux, c is the concentration of the L-cystine solute, and D is the L-

cystine diffusion coefficient. 

 (4.1) 

The characteristic diffusional time tdiff for mass transport from microscopic surfaces to 

bulk solution can be estimated using equation 4.2, where d is the size of the crystal.  

 (4.2) 

The diffusion coefficient of L-cystine (7.5 × 10-6 cm2/s), was estimated from the 

Wilke-Chang correlation35 (eq. 2.2.) and was assumed constant over the entire 

domain. The absolute error in the diffusivities (pure water) determined with this 

correlation have been reported to be no more than 11%,36 which would have a minor 

impact on the results presented here. The characteristic time for a diffusion front to 

travel a distance equal to the crystal size of d ~ 20 mm size (a reasonable estimate for 

the time to steady-state) is approximately 0.2 s, which is four orders of magnitude 

faster than the duration of a typical OM-SICM dissolution experiment (30 minutes for 

the complete dissolution of a crystal), justifying the use of a steady-state model. 

The models denoted here as EXP1, EXP2 and EXP3 simulate the mass transport of L-

cystine during the dissolution of a particular crystal at different times in an OM-SICM 

experiment. Three models were used due to the change in the crystal morphology over 

time. The parameters used to define the models, specifically the crystal dimensions, 

geometry and flux of material (per unit area) for each crystal face (observed 

dissolution rate, ) at a given time were determined experimentally (vide infra). 

Using appropriate boundary conditions (Table 4.4, Supporting Information) the 

∇J = −D∇2c = 0

tdiff ≈ d
2 /D

J{hkil}
obs
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concentration of L-cystine near the crystal-solution interface and in the solution 

around the dissolving crystal was simulated, from which it was possible to distinguish 

the dissolution regime, i.e. the balance between mass transport and surface kinetics 

control (vide infra). In order to deduce the relative importance of mass transport and 

surface kinetics, models (MTM1, MTM2 and MTM3) with the same geometry as the 

corresponding EXP models were employed, but with the dissolution regime 

completely controlled by diffusion (L-cystine concentration at the crystal-solution 

interface Cint = Csat) (Table 4.4, Supporting Information). Solution of the partial 

differential equations for both types of models (EXP and MTM) was achieved using 

the direct solver MUMPS in the Comsol environment, with a relative error tolerance 

of 10-6. Simulations were carried out with >24,000,000 tetrahedral mesh elements. 

The mesh resolution was refined to be the finest, down to a value of 0.1 nm, at the 

surfaces of the crystal. 

The steady-state approach to mass transport is also applicable for the in situ AFM 

model, in which L-cystine crystal dissolution occurs in a continuous solution flow. 

Mass transport around the dissolving crystal is described by equation 4.3, 

 (4.3) 

where v is the velocity vector calculated from the momentum conservation (eq. 4.4) 

and continuity (eq. 4.5) Navier-Stokes equations for an incompressible fluid, 

 (4.4) 

 (4.5) 

where ρ and η are the solution density (1.00 g/cm3) and dynamic viscosity (1.00 

mPa·s), respectively, and p is the pressure. Boundary conditions applied for the 

calculation of fluid flow and convective-diffusion mass-transport in the AFM cell are 

supplied in Table 4.5, Supporting Information. The AFM model examined the 

crystal−solution interfacial concentration of an L-cystine crystal ca. 100 mm across 

and 10 mm height, dissolving in a fluid cell flushed with solution at a rate of Vf = 15 

mL/h. For comparison with experimental AFM data, dissolution rates of each crystal 

face were defined by an intrinsic dissolution rate constant (kinetic coefficient) 

D∇2c− v ⋅∇c = 0

ρv ⋅∇v =η∇2v−∇p

ρ∇v = 0
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determined from OM-SICM dissolution experiments and the corresponding mass 

transport-kinetic simulations. 

3. Results and Discussion 

3.1 Dissolution Rates and Intrinsic Rate Constants: OM-SICM and FEM 

Modeling 

When studying dissolution kinetics, it is essential to consider the series of events that 

constitute the dissolution process. These events comprise (i) those occurring at the 

crystal surface, such as detachment of molecules from active sites, surface diffusion 

and desorption and (ii) the mass transport of detached solvated species away from the 

crystal to the undersaturated bulk solution. The slowest process will limit the overall 

dissolution rate and the dissolution kinetics can be described as surface−kinetic 

controlled (mass transport comparatively fast), mass−transport controlled (mass 

transport comparatively slow), or in a mixed regime (comparable surface and mass 

transport contributions). Only a few techniques can reliably differentiate between 

mass transport and surface kinetic contributions,37,38 and the deduction of the growth 

regime often can be difficult.25 Microscale single crystals can be advantageous for 

separating mass transport from surface kinetic effects in dissolution studies, as they 

provide for mass transport rates that are high and well-defined (i.e., can be modeled), 

to the extent that surface kinetics can be obtained.27,30 L-cystine single crystals with 

well-defined facets no larger than 20 µm across were used here to ensure rapid 

diffusion of L-cystine from dissolving crystal surfaces to the surrounding solution.  

OM-SICM enables tracking of time-dependent changes in the crystal 3D morphology. 

The retreat of the {101̄0} faces (edge-to-center distance) was recorded by time-lapse 

images acquired with optical microscopy (Figure 4.1). The changes in crystal height 

(thickness) were determined from the retreat of the {0001} face, as measured by BM-

SICM.32 This scanning mode was chosen because it minimizes the perturbations of 

the local ionic atmosphere, so that convective and electro-osmotic effects can be 

neglected.39  
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Figure	4.1.	Time-lapse	optical	micrographs	of	the	dissolution	of	two	L-cystine	single	crystals	
in	an	aqueous	solution	containing	only	100	mM	KCl,	as	viewed	normal	to	the	{0001}	face.	

Linear dissolution rates, v{hkil}, measured separately for three different crystals in 100 

mM KCl aqueous solutions behave similarly. The dissolution rate of each crystal face 

increased monotonically, although the dissolution behavior could be parsed into three 

stages distinguished by different dissolution rates and morphology (Figure 4.2). 

Crystals in stage 1 are polygonal with sharp edges and corners. The edges and corners 

become more rounded in stage 2, and crystals in stage 3 tend toward a disc-like 

morphology, although precise characterization of the shape of these small crystals is 

difficult due to the resolution limits of optical microscopy. This is consistent with the 

formation of higher index microfacets, which would be expected to result in higher 

dissolution kinetic coefficients.40-43 A decrease in crystal size, however, also results in 

higher mass transport rates.27 Measurement of the crystal height in stage 1 was not 

feasible due to the time required for tip engagement near the (0001) face. The {0001} 

face is the largest crystal face exhibited by as-grown crystals, consistent with a lower 

surface energy and slower growth rate perpendicular to the face44,45 than the {101̄0} 

faces on the perimeter. Accordingly, the difference between the {101̄0} dissolution 

rates in stages 1 and 2 is much less pronounced than between stages 2 and 3. 

Therefore, it is reasonable to suggest that during stage 1 the dissolution rate of the 

{0001} face, which dissolves more slowly than {101̄0}, would not differ substantially 

from that of stage 2. Hence, we assume that the {0001} dissolution rates in stages 1 

and 2 are the same. 
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Figure	4.2.	Size	evolution	of	a	representative	L-cystine	crystal	during	dissolution	in	100	mM	

KCl.	 Retreat	 of	 the	 {101̄0}	 faces,	 as	 measured	 edge-to-center,	 is	 denoted	 by	 black	 dots.	
Retreat	 of	 the	 {0001}	 face,	 as	 measured	 from	 crystal	 height	 change,	 is	 denoted	 by	 red	
squares.	 The	 dashed	 red	 line	 denotes	 extrapolation	 of	 the	 crystal	 height	 to	 t	 =	 0	 s.	 Three	
different	stages	of	the	dissolution	process,	each	with	a	unique	dissolution	rate,	are	denoted	
by	regions	1,	2	and	3.	The	crystal	morphology	in	each	region	stage	is	depicted	schematically.	

The molar dissolution rates for each {hkil} face, tantamount to the L-cystine flux 

from the surface, , were calculated from their linear dissolution rates (v{hkil}) 

using equation 4.6, where Vm is the molar volume of hexagonal L-cystine (1.42 ×10-4 

m3 mol-1).7 The average value of for the {101̄0} and {0001} faces at each stage, 

determined from data acquired for three crystals, were combined with the crystal 

shapes to formulate FEM models corresponding to each of the three stages (Table 4.1; 

EXP1, EXP2 and EXP3). This enabled calculation of the L-cystine concentration at 

the crystal-solution interface, Cint, as well as the concentration gradients at the 

interface (Figures 4.3B1-B3 and Table 4.2). The FEM calculations revealed that Cint 

{101̄0} > Cint {0001}, both values increasing with time, i.e., Cint (EXP1) < Cint (EXP2) < Cint 

(EXP3) (Figures 4.3B1-B3). During stage 1, dissolution at both faces is slow, Cint is not 

appreciably different from the bulk concentration, and the concentration gradient is 

shallow (Figure 4.3B1). This is consistent with dissolution essentially limited by 

surface kinetics.46 As crystal dissolution continues, Cint at both the {101̄0} and 

{0001} crystal faces increases (Figures 4.3B2-B3), indicating that the kinetic 

coefficient for dissolution increases. The increase in Cint causes the concentration 

gradient to become steeper, leading to increase in mass flux of L-cystine from the 

J{hkil}
obs

J{hkil}
obs
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surface. Notably, Cint never reaches Csat, such that the system is always in a mixed 

regime with comparable mass transport and surface kinetic contributions. A simple 

schematic illustrating the effects of kinetic control on diffusion profiles at each 

dissolution stage is presented in Figure 4.14 of the Supporting Information.  

  (4.6) 

Table	4.1.	Comparison	of	experimental	average	dissolution	fluxes	( )	and	dissolution	

fluxes	 calculated	 for	 a	 pure	mass-transport	 limited	 condition	 ( )	 for	 the	 {101
¯
0}	 and	

{0001}	faces	of	L-cystine	crystals	at	the	three	stages	in	Figure	4.2.	Flux	units	are	10
-5
	mol⋅m-

2⋅s-1.	The	standard	deviation	for	 during	stage	3	is	larger	than	for	the	other	two	stages	

due	to	the	rapid	change	in	crystal	size,	which	reduces	the	measurement	precision.	

Faces 
Stage 1 Stage 2 Stage 3 
      

{101̄0} 2.0 ± 0.1 4.5 ± 0.3 3.5 ± 0.1 5.6 ± 0.5 4.7 ± 0.5 9.1 ± 0.3 

{0001} 1.0 ± 0.2 3.6 ± 0.3 1.0 ± 0.2 4.7 ± 0.5 6.5 ± 1.9 9.2 ± 0.4 

 

Table	 4.2.	 Average	 interfacial	 concentration	 at	 the	 {101
¯
0}	 and	 {0001}	 faces	 of	 L-cystine	

crystals	calculated	from	FEM	simulations	(EXP	models).	

Faces 
 Cint, mM  

Stage 1 Stage 2 Stage 3 

{101 0} 0.28 ± 0.04  0.37 ± 0.03 0.39 ± 0.05 
{0001} 0.25 ± 0.05 0.28 ± 0.04 0.44 ± 0.08 

 

The contributions of mass transport and surface kinetics to dissolution were evaluated 

further by comparison of experimental dissolution rates with models that invoked 

pure mass transport-limiting behavior, for which Cint = Csat, during each of the three 

stages (models MTM1, MTM2 and MTM3, Figures 4.3C1-C3). The mass transport-

limited flux at each crystal face, defined as , increases with time due to an 

increasing contribution from hemispherical diffusion as a consequence of the 

rounding of the crystal and its reduction in size (Table 4.1). Notably,  is always 

J{hkil}
obs = v{hkil} /Vm

J{hkil}
obs

J{hkil}
MTM

J{hkil}
obs

J{hkil}
obs J{hkil}

MTM J{hkil}
obs J{hkil}

MTM J{hkil}
obs J{hkil}

MTM

J{hkil}
MTM

J{hkil}
MTM
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larger than the experimental flux , consistent with persistent kinetic limitations 

and a mixed kinetic regime.  

 

Figure	 4.3.	 (A)	 Crystal	 geometries	 used	 in	 FEM	models	 for	 the	 three	 dissolution	 stages	 in	
Figure	 4.2.	 (B)	 Results	 of	 FEM	 simulations	 EXP1,	 EXP2	 and	 EXP3	 for	 the	 interfacial	
concentration	and	concentration	profiles	of	a	particular	L-cystine	crystal	during	dissolution.	
(C)	 Interfacial	 concentrations	 and	 concentration	 profiles	 in	 a	 mass	 transport−controlled	
process	 obtained	 from	 simulations	MTM1,	MTM2	 and	MTM3	 for	 the	 same	 crystal.	C/Csat	
denotes	the	saturation	ratio	around	the	crystal.	

The surface kinetics generally obeys a power law described by the empirical 

relationship in equation 4.7, where represents a detachment rate from an {hkil} 

face, is the corresponding intrinsic dissolution rate constant, and n is the order of 

the surface reaction.47 Conversely, the diffusive mass transport rate depends linearly 

on the concentration gradient, as described by Equation 4.8, where δ is the thickness 

of the diffusion boundary layer.47 At steady-state,  (which corresponds to the 

experimental ) is equal to  (equation 4.9), allowing determination of  

for each crystal face during each dissolution stage from the and Cint values, the 

latter determined from the EXP models. The order of the surface reaction with respect 

to interfacial driving force depends on the mechanism of the reaction.47-51 For the 

analysis here, we use n ≈ 1, which is most appropriate for high interfacial driving 

force49 and is a value which is corroborated by AFM measurements under similar 

J{hkil}
obs

J{hkil}
SK

k{hkil}
int

J{hkil}
SK

J{hkil}
obs J{hkil}

MT k{hkil}
int

J{hkil}
obs
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conditions (vide infra). This allows for each crystal face to be calculated (Table 

4.3). 

 (4.7) 

 (4.8) 

 (4.9) 

Table	4.3.	Intrinsic	rate	constants	calculated	for	the	{101
¯
0}	and	{0001}	faces	(10

-5
	m⋅s-1).	

Faces 
   

Stage 1 Stage 2 Stage 3 

{101̄0} 4.7 ± 0.7 10.7 ± 1.0 15.2 ± 4.2 

{0001} 2.3 ± 0.6* 2.4 ± 0.6 25.2 ± 16.2 

* J{0001}
obs in stage 1 was assumed to be constant and similar to that in stage 2 

(vide supra).  
 

The entries in Table 4.3 reveal that  increases as the L-cystine crystal dissolves, 

mirroring the increase in the experimental . During stage 1, when the crystal is 

polygonal with well-defined facets, the crystal faces are expected to have low step 

edge and kink density52 compared with stages 2 and 3, when the crystal surface is 

more rounded (Figure 4.1), tantamount to higher step density and the formation of 

steps with higher Miller indices. It is reasonable to expect that the formation of these 

steps would be accompanied by an acceleration in the dissolution rate, as clearly 

observed in stage 3.41 This is not unlike the behavior observed for other molecular 

crystals.27,30,53 The crystal morphology of L-cystine is consistent with a lower surface 

energy for the {0001} face compared with {101̄0}. Therefore, it is expected that 

<  is consistent with the values. Collectively, these results reveal that 

the intrinsic rate constant for L-cystine detachment from the crystal surfaces increases 

as the crystal dissolves owing to the change of morphology. 

	 	

k{hkil}
int

J{hkil}
SK = k{hkil}

int (Csat −Cint )
n

J{hkil}
MT =

D
δ
(Cint −Cbulk )

J{hkil}
obs = J{hkil}

SK = J{hkil}
MT = k{hkil}

int (Csat −Cint )

k{hkil}
int

k{hkil}
int

J{hkil}
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k{0001}
int k{1010}

int J{hkil}
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3.2 In situ AFM of {0001} Dissolution 

As reported previously for L-cystine growth,5-7 the hexagonal spirals can be attributed 

to the coincidence of a screw dislocation, with a Burger’s vector equal to the lattice 

parameter c = 5.6275 nm, with the crystallographic 61 screw axis. For growth, each 

spiral consists of a single molecular layer of L-cystine (∼ 1 nm height) with six 

crystallographically identical 〈101̄0〉 directions (white lines at the dislocation core in 

Figure 4.4A and 4.4D) that advance across the terrace from the dislocation.6 The 

spirals rotate clockwise and synchronously about the c axis, spinning out to form six 

interlacing spirals, which then bunch due to in-plane growth rate anisotropy along the 

six different directions of each spiral. This results in a micromorphology that 

resembles islands of with ca. 5.6 nm height (major steps), as illustrated in Figure 

4.4A-D. The handedness of the spiral growth hillocks on the {0001} faces of L- and 

D-cystine reflects the chirality at the molecular level; the spirals spin 

counterclockwise on L-cystine {0001} but clockwise on D-cystine {0001}.7  
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Figure	4.4.	A	series	of	AFM	deflection	images	depicting	the	evolution	of	the	hexagonal	spiral	
morphology	 on	 the	 (0001)	 face	 of	 L-cystine	 during	 (A-D)	 growth	 (Cbulk	 =	 2	 mM)	 and	 (F-I)	
dissolution	(Cbulk	=	0.2	mM).	The	six	minor	steps	and	the	bunched	steps	of	each	hillock	are	
traced	in	white	or	black	lines	as	a	visual	guide.	The	corresponding	AFM	images	at	large	scan	
area	are	on	the	left	and	right,	respectively.	The	panels	at	the	bottom	(E	and	J)	illustrate	the	
direction	 of	 minor	 step	 motion	 during	 growth	 and	 dissolution,	 revealing	 the	 opposite	
handedness	of	the	dissolution	spirals	about	the	pinning	point	at	the	core.	Arrows	denote	the	
directions	of	step	motion,	and	numbers	denote	six	crystallography	unique	step	edges.	 

Dissolution of hexagonal L-cystine crystals was observed at Cbulk ≤ 0.5 mM, below 

the equilibrium solubility of Csat = 0.7 mM, accompanied by the formation of terraced 

hexagonal etch pits on the {0001} surface, each pit containing a single dislocation 

spiral (Figure 4.4F-I). Like the spirals observed during growth, the etch pits exhibit a 

pinwheel of six minor steps, each with a height of ca. 1 nm, radiating from a 
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dislocation hollow core (white and black traces in Figure 4.4F-I). The handedness of 

the dissolution spiral on L-cystine {0001}, however, is opposite to that of the growth 

spiral (Figure 4.4A-D). This corresponds to a direction of step motion during 

dissolution that is opposite to that during growth, leading to the observed reversal in 

handedness (Figure 4.4E and 4.4J). The retreating minor steps bunch to create a 

funnel-shaped pit with terraces defined by 6 nm-high major steps. Given the larger 

size of the crystals used for AFM measurement (ca. 100 µm wide vs. 20 µm for 

SICM), the time required for AFM measurements (2-3 hours), and the associated 

lower overall mass transport rates, the measurements most closely correspond to stage 

2, as further confirmed below. 

The molar dissolution rate of the {0001} crystal surface can be described as a flux (J⊥) 

according to equation 4.10, wherein vstep is the retreating step velocity, L the step 

spacing, and h the bunched step height (h ≈ 6 nm).37,38 Figure 4.5 illustrates that vstep 

decreases linearly with increasing Cbulk. During growth, the value of L can be assumed 

to be constant for a given Cbulk
54 and to fall within a narrow range, from 250 to 350 

nm, for 1 ≤ Cbulk ≤ 2 mM.7 However, for dissolution, values of L often were not 

uniform within the same pit over time (Figure 4.6), most likely due to transient 

changes in local mass transport, which contributes more significantly to the overall 

kinetics than for crystal growth (vide supra). Variations in L with time during 

dissolution are evident in Movies S1-S4. For the range of Cbulk investigated the step 

spacing varied from 100 to 400 nm during dissolution, giving rise to a spread of the 

dissolution rates of the {0001} face calculated with equation 4.10, and reflected in the 

rather large error bars in Figure 4.7. Nonetheless, there appears to be a linear 

dependence of the dissolution rate of the {0001} face on Cbulk (Figure 4.7).  

  (4.10) J⊥ = (vstep ⋅
h
L
) /Vm
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Figure	4.5.	Dependence	of	the	retreat	velocities,	vstep,	of	the	{101̄0}	major	steps	on	L-cystine	
concentration,	illustrating	the	linear	increase	of	vstep	with	decreasing	Cbulk.	No	dissolution	was	
observed	near	the	equilibrium	solubility,	Csat	=	0.7	mM.	

 

Figure	4.6.	Real-time	in	situ	AFM	deflection	images	revealing	non-uniform	step	spacing	and	
step	bunching	on	the	(0001)	L-cystine	surface	during	dissolution	(top	and	bottom)	at	various	
undersaturated	 L-cystine	 concentrations,	 as	 indicated	 above	 the	 top	 panels.	 The	 pair	 of	
images	were	obtained	for	the	same	etch	pit,	and	selected	to	 illustrate	the	most	significant	
differences	 in	 step	 spacing	 observed	 at	 each	 concentration.	 Images	 were	 acquired	 from	
movies	S1-S4.	
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Figure	4.7.	Dissolution	rates	of	{0001}	face	calculated	using	eq.	4.10	measured	at	different	L-
cystine	 concentrations,	 as	 deduced	 from	 real	 time	 in	 situ	 AFM	 measurements	 of	 step	
velocities,	 step	 spacings,	 and	 step	 heights.	 The	 data	 reveal	 a	 linear	 relationship	 between	
dissolution	rate	and	Cbulk.	

3.3 Analysis of AFM Dissolution Kinetics and Mass Transport 

FEM analysis has been used to examine mass transport in an AFM fluid cell for the 

growth of COM crystals55 and for the dissolution of gypsum single crystals.56 Both 

simulations revealed spatial heterogeneities in mass transport, with the AFM 

cantilever and tip blocking diffusion of solute molecules to the crystal during growth55 

and from the crystal during crystal dissolution (Figure 4.8).56 The Reynolds number in 

the flow cell (Re = 11.5) was consistent with laminar flow and found to be similar to 

that reported earlier.55 The gypsum investigation highlighted the importance of 

dissolution processes occurring outside the AFM scan area, denoted here as the region 

of interest (ROI). Dissolution can flood the ROI with solute molecules and increase 

Cint significantly. Ignoring this contribution can lead to the incorrect determination of 

the dissolution kinetics in the ROI.  
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Figure	4.8.	A	typical	experimental	 in	situ	AFM	setup	revealing	an	L-cystine	crystal	and	AFM	
cantilever	(A),	and	the	computational	geometry	(B).	The	colors	in	panel	B	correspond	to	Cint	
calculated	for	a	dissolution	simulation	at	a	flow	rate	of	15	mL/h,	with	 =	1.1	×10-4	m/s	

and	 =	2.4	×10-5	m/s,	and	Cbulk	=	0	mM.		

FEM simulations were performed using the experimental flow rates of 15 mL/h, and 

Cbulk values of 0, 0.2, 0.3, 0.4, 0.5, and 0.6 mM. Dissolution rate laws for the exposed 

crystal faces, as deduced from the OM-SICM data, , with = 

1.1 ×10-4 m/s and = 2.4 ×10-5 m/s, as obtained for stage 2, were applied. This 

stage was most relevant to the in situ AFM studies because the AFM images were 

acquired when the {0001} faces were decorated with etch pits and the {101̄0} faces 

were rounded (Figure 4.15, Supporting Information). Figure 4.9 illustrates the case of 

Cbulk = 0 mM; Cint is relatively high, signaling contributions from both mass transport 

and surface kinetics. 

The model also reveals spatial heterogeneities in Cint at the {0001} face (Figure 4.9B), 

particularly at the AFM ROI, a 3 µm × 3 µm scanned area (Figure 4.9C). The 

interfacial L-cystine concentration is not uniform owing to the direction and 

magnitude of the solution flow and the presence of the AFM probe. Notably, 

advection from the flowing fluid decreases in areas near the cantilever, and the AFM 

cantilever and tip block the diffusion of L-cystine molecules from the crystal to the 

bulk solution. Therefore, compared with the area outside the ROI, the upstream region 

of the crystal, in contact with fresh solution, is characterized by a lower Cint, and the 

region under the AFM cantilever a higher Cint (lower mass transport rate) (Figure 

4.9B). Furthermore, as the tip is scanning during an AFM experiment the non-uniform 

interfacial concentration would be expected to change with time, which may explain 

some of the variance in step density in consecutive images at constant bulk 

undersaturation (Figure 4.6). 

k{1010}
int

k{0001}
int

J⊥ = k{hkil}
int (Csat −Cint ) k{1010}

int

k{0001}
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Figure	 4.9.	Simulations	of	 the	 interfacial	 concentration	and	distribution	of	L-cystine	during	

an	 in	 situ	AFM	dissolution	experiment	 at	different	 scales.	 (A)	 {101̄0}	 and	 {0001}	 faces	 and	
bulk	solution;	(B)	the	{0001}	face	and	(C)	the	scanned	area	(i.e.	the	ROI)	on	the	{0001}	face.	
Kinetic	parameters	and	flow	rate	are	defined	in	the	text.	

This model provides the values of Cint within the AFM ROI simulated for each Cbulk, 

while taking into account the dissolution kinetics of the entire crystal (OM-SICM 

data). This permits the interfacial fluxes (Figure 4.7, y-ordinate) to be plotted against 

Cint at the AFM ROI (Figure 4.10). The value of  determined from the slope is 

3.1 (± 0.9) ×10-5 m/s, in good agreement with obtained from OM-SICM data, 

2.4 (± 0.6) ×10-5 m/s. It is worth reiterating that the intrinsic dissolution flux normal to 

the {0001} face is deduced from AFM measurements of step velocities (and 

height/spacing) , whereas SICM measures the dissolution flux on a larger lengthscale 

k{0001}
int

k{0001}
int
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by recession of an entire surface. The similarity of the  values determined by the 

two methods is evidence that the step motion observed by AFM –- on a scale of few 

microns –- quantitatively captures the overall dissolution kinetics of this face when 

measured at a length scale of few hundred microns, revealing an essential link 

between microscopic and macroscopic behavior. 

 

4.10.	L-cystine	{0001}	dissolution	rate	(J⊥)	vs.	L-cystine	 interfacial	concentration	at	the	AFM	
ROI,	 Cint,	 calculated	 from	 FEM	 simulations	 (blue	 triangles),	 and	 bulk	 concentration,	 Cbulk	
(black	squares).	

The calculated values of Cint range from 0.48 to 0.35 mM for solution flow rates 

increasing from 0 to 100 mL/h (Cbulk = 0 mM, and = 2.4 ×10-5 m/s and = 

1.1 ×10-4 m/s, crystal size of 92 µm across and 10 µm crystal height, Figure 4.11) 

meaning that entirely surface kinetics limited dissolution can never be achieved in the 

AFM ROI for this system for any practically accessible flow rates. The dissolution 

process will always be in a mixed kinetic regime, Cbulk < Cint < Csat, and mass 

transport cannot be ignored. Notably, Cint calculated from the FEM analysis exhibited 

a weak dependence on the flow rate (Figure 4.11), corresponding to small changes of 

vstep with increasing flow rate. A weak dependence of step velocity on flow rate has 

been used as an indicator of a kinetically controlled regime,57,58 but this alone is not a 

sufficient criterion for proving the establishment of a kinetically-controlled regime.  

k{0001}
int

k{0001}
int k{1010}

int
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Figure	4.11.	Dependence	of	the	average	L-cystine	interfacial	concentration,	Cint,	at	the	ROI	
on	the	flow	rate,	using	the	kinetic	parameters	and	crystal	size	defined	in	the	text.	The	arrow	
labeled	 ‘Experiment’	 signifies	 the	 condition	 under	 which	 measurements	 were	 made.	 L-
cystine	 solubility	 concentration,	 Csat,	 and	 bulk	 concentration,	 Cbulk,	 values	 have	 been	
indicated	in	the	graph,	illustrating	that	the	dissolution	process will always be in a mixed 
kinetic regime, Cbulk < Cint < Csat. 

Notably, the kinetic coefficient for dissolution of the {101̄0} major steps, based on the 

vstep values measured by AFM and the driving force (Csat - Cbulk), was βstep, 

dissolution = 3 ×10-4 m/s (eq 4.11a). This value is roughly four times larger than that 

measured under growth conditions, βstep, growth = 7 ×10-5 m/s (eq 4.11b).7 This 

comparison, however, does not account for the actual concentration at the dissolution 

or growth interfaces. This can be corrected for dissolution by replacing Cbulk in eq 

4.11a with Cint calculated from the FEM analysis described above, resulting in a 

kinetic coefficient for dissolution of 6.7 ± 0.4 ×10-4 m/s. An equivalent analysis is not 

possible for growth, however, as Cint under growth conditions has not yet been 

determined.7 

vstep,dissolution = βstep,dissolutionVm(Csat −Cbulk )  (4.11a) 

vstep,growth = βstep,growthVm (Cbulk −Csat )  (4.11b) 
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4. Conclusions 

An in situ multi-microscopy approach (AFM and OM-SICM), coupled with FEM 

simulations, provides substantial insight into the mechanism and kinetics of the 

dissolution of hexagonal L-cystine crystals, in which mass transport and surface 

kinetic contributions can be separated, while demonstrating an essential link between 

microscopic and macroscopic behavior measured by AFM and SICM, respectively. 

This approach provides an accurate determination of the actual interfacial 

concentration during dissolution and a rare holistic view of crystal reactivity. 

Specifically, the dissolution of the {0001} and {10 1̄ 0} faces of L-cystine is 

characterized by a mixed regime with comparable contributions from surface kinetics 

and mass transport. The reduction in crystal size during dissolution is accompanied by 

the appearance of high index crystal faces, concomitant with an increase in the kinetic 

coefficient for detachment of L-cystine molecules from crystal sites and increasing 

mass transport control. Collectively, these results suggest a roadmap for the 

quantitative analysis of single crystal dissolution across multiple lengthscales. 
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5. Supporting Information  

 

Figure	4.12.	Three-dimensional	domains	used	for	FEM	simulations	of	L-cystine	dissolution	in	
the	OM-SICM	experimental	environment	(A)	EXP1	and	MTM	1	models,	(B)	EXP2	and	MTM2	
models	 and	 (C)	 EXP3	 and	 MTM3	 models	 (not	 to	 scale).	 The	 numbers	 correspond	 to	 the	
boundaries	described	in	Table	4.4.	

Table	4.4.	Boundary	Conditions	for	Numerical	Simulations	of	L-Cystine	Dissolution	Studies	

by	OM-SICM.		

Boundary Characteristics 
Boundary conditions 

EXP1-3 
Boundary conditions 

MTM1-3 

1, 2, 3, 4, 5, 6 {101̄0} faces  c = Csat
 

7 {0001} face  c = Csat
 

8, 9, 10, 11, 12 Bulk solution c =Cbulk=0 c = Cbulk=0 

13 Glass slide   

The boundary numbers correspond to those depicted in Figure 4.12. 
n = the vector normal to the surface 
Csat = solubility concentration of L-cystine (0.7 mM) 
Cbulk = concentration of L-cystine in bulk solution 

J(hkl ) = −n ⋅ (D∇c)

J(hkl ) = −n ⋅ (D∇c)

0 = −n ⋅ (D∇c) 0 = −n ⋅ (D∇c)
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Figure	4.13.	Three-dimensional	representation	of	the	AFM	flow	cell.	The	numbers	represent	
the	boundary	conditions	applied	to	numerical	simulations	described	in	Table	S2.	

Table	4.5.	Boundary	Conditions	for	Numerical	Simulations	of	L-Cystine	Dissolution	Studies	

in	the	AFM	flow	cell		

Boundary Characteristics Boundary conditions Boundary conditions 

  Convection 
Convective-diffusion 

mass transport 

1, 2, 3, 4, 5, 6 {101̄0} faces v = 0  

7 {0001} face v = 0  

8 Flow cell walls v = 0  

9 Flow cell inlet  c = Cbulk 

10 Flow cell outlet   

The boundary numbers correspond to those depicted in Figure 4.13. 
n = the vector normal to the surface 
r0 = the inlet tube radius and r the radial coordinate with respect to the tube axis 
Cbulk = the concentration of L-cystine in bulk solution 

J(hkl ) = −n ⋅ (D∇c)

J(hkl ) = −n ⋅ (D∇c)

J(hkl ) = −n ⋅ (D∇c)

vr =
Vf

πr0
2 (1−

r2

r0
2 )

p = 0
n ⋅η∇2v = 0

0 = −n ⋅ (D∇c)
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Figure	4.14.	Schematic	illustrating	the	effects	of	kinetic	control	on	diffusion	profiles.	As	the	
rate	 of	 detachment	 of	 L-cystine	 molecules	 from	 the	 crystal	 surface	 increases,	 the	
concentration	 at	 the	 interface	 (Cint)	 becomes	 higher	 and	 the	 diffusion	 profile	 becomes	
steeper,	 indicating	 a	 process	 increasingly	 limited	by	mass	 transport.	Cint	can	 approach,	 but	
never	reach	Csat.	

 

Figure	4.15.	Optical	micrographs	of	L-cystine	crystals	before	and	after	in	situ	AFM	dissolution	
experiments.	During	dissolution,	 crystal	 faces	become	 rounded	and	 the	 {0001}	 face	 shows	
the	presence	of	etch	pits.	

Movies S1-S4 can be found in the enclosed CD 
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Tracking the Dissolution of Calcite Single 
Crystals in Acid Waters: A Simple Method 
for Measuring Fast Surface Kinetics 
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Abstract 

Although the dissolution kinetics of calcite in acid waters has been studied for more 

than a century, the process is not fully understood, and for particles and microcrystals 

the process is often assumed to be diffusion-controlled. Herein, the dissolution 

kinetics of calcite single microcrystals in aqueous solution (pH ca. 3) has been 

investigated for the first time by a combination of real-time optical microscopy 

coupled with numerical simulations. The small size and well-defined geometry of 

rhombohedral calcite single crystals enables the measurement of the dissolution rates 

of the individual crystal faces exposed to the solvent and an assessment of the relative 

importance of corners and edges compared to the {104} faces. Data are used to 

parameterize finite element method (FEM) models for the quantitative analysis of 

dissolution kinetics. The simulations provide an accurate determination of the near-

interface concentration of solution species during dissolution, as well as concentration 

gradients. The intrinsic first-order dissolution rate constant for the attack of protons 

on the exposed {104} faces, ksurf = 6.4 (± 2.8) ×10-4 m s-1, is in good agreement with 

previous microscopic and macroscopic measurements, corroborating the method. This 

study is a further demonstration of the power of simple in-situ optical microscopy for 

quantitative interfacial (dissolution/growth) kinetic measurements, using a 

configuration of practical relevance for processes as diverse as the remediation of acid 

water and scale removal.  
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1. Introduction 

Calcite crystal dissolution and growth have been extensively studied for more than a 

century,1 since they are crucial processes involved in many important geochemical 

phenomena, such as the formation of karst in limestone terrains, the neutralization of 

acidic lakes, and the global cycling of CO2. Calcite is also very relevant in industrial 

processes as it is the main component in scaling corrosion of pipes, among others.2 

However, despite the environmental and industrial significance, calcite dissolution 

and growth are still not fully comprehended because these are complex 

physicochemical processes involving mass transport and coupled chemical reactions 

in solution.3  

The dissolution process is recognized to be strongly dependent on pH4, 5 and has been 

investigated in many experimental formats, ranging from bulk suspensions of 

powders5-7 to cleaved single crystals surfaces8-12 and monitoring step velocities and 

etch pit formation on cleaved surfaces by in situ atomic force microscopy (AFM).13-18 

For pH < 4, most techniques find that calcite dissolution rates are controlled by the 

diffusion of protons to the surface.4, 5, 11 Indeed, the process is so fast, that measuring 

the intrinsic surface dissolution kinetics has proved to be rather challenging8, 9, 19, 20 

and only a few techniques, namely the channel flow method with electrochemical 

detection (CFMED),1, 21 in-situ AFM using a specially designed fast-flow cell22 and 

scanning electrochemical microscopy (SECM),23 have been capable of measuring the 

intrinsic dissolution rate constant of calcite in acid water. The results obtained by 

these three different techniques are in broad agreement, but require rather 

sophisticated setups with flow systems and specialized sensors,1, 21 detailed analysis 

of the hydrodynamics22 or even ex-situ characterization of the topographical changes 

on the crystal surface in order to deduce surface kinetics.23 Moreover, these methods 

focus on individual crystal faces, but for a number of applications (vide infra) it 

would be more appropriate to track the behaviour of an entire microcrystal (faces and 

edges), which is the motivation for the studies herein. 

Very recently, we have demonstrated that studying the morphological changes of 

microscale single crystals using in-situ microscopy techniques in combination with 

finite element method (FEM) simulations is a very powerful approach for measuring 

interfacial dissolution/growth kinetics.24-26 This approach: (i) provides the possibility 
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of generating high mass transport (diffusion) rates, much higher than achievable with 

fast flow systems1, 21, 22 or the rotating disc method;9, 12, 19, 20 (ii) results in chemostatic 

control of the reaction conditions; (iii) tracks all of the individual crystal faces and 

edges exposed to the solvent simultaneously; and (iv) quantifies interfacial fluxes and 

concentration distributions to elucidate the kinetic regime.  

Herein, we demonstrate the versatility of the method and its capabilities for studying 

fast kinetic processes, investigating the dissolution of rhombohedral calcite single 

microcrystals at pH = 3.1. This configuration is directly relevant to practical 

applications, such as the treatment of acid water with calcite particulates,27, 28 or the 

removal of scale from surfaces.29-31 The results herein show that in this configuration, 

surface kinetics contribute significantly to the dissolution kinetics, i.e. calcite 

microcrystals dissolve at slower rates than predicted by these models. This work is 

important because recent studies and analyses of proton-promoted calcite dissolution 

in such systems still consider the process to be diffusion-controlled.9, 19, 32-34

2. Experimental 

2.1 Samples and Solutions 

All solutions were prepared fresh on the day of use, with ultrapure water produced by 

a Purite Select HP system with a typical resistivity of 18.2 MΩ cm  (25 ˚C). Calcite 

microcrystals were prepared by mixing equal volumes of 5 mM CaCl2 (Sigma-

Aldrich, AR grade) and 10 mM NaHCO3 (Sigma-Aldrich, AR grade) solutions in a 35 

mm diameter polystyrene Petri dish (Greiner Bio-One International GmbH, Austria) 

to create a supersaturated solution. The dish was then covered, and allowed to stand at 

room temperature for 24 hours. The supernatant solution was subsequently removed 

to reveal small transparent calcite rhombohedrons, with sides typically <40 µm, 

attached to the bottom of the Petri dish.  

2.2 Dissolution Studies 

After careful rinsing with ultrapure water and drying with a nitrogen stream, the Petri 

dish containing the calcite crystals was placed on an inverted optical microscope 

(Axiovert 40 CFL, Zeiss, Germany) equipped with an LED light source to reduce 

sample heating and a video camera (B700, PixeLINK) to assist the selection and 
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monitoring of a particular crystal. All dissolution studies were performed in 0.8 mM 

HCl (made from Sigma-Aldrich, 37% reagent grade) and 50 mM KCl (Sigma-

Aldrich, AR grade) as background electrolyte at 25 °C. Solution pH (3.1) was 

measured with a pH meter (Metler Toledo, Switzerland). This simplified the modeling 

(spatially invariant activity coefficients for all reactive species), and allowed direct 

comparison of the results with previous studies on individual crystal faces. 1, 21-23 

The approach described requires that the height of the crystal is known at the start of 

the experiment. For the crystal sizes herein, simply focusing on the top microcrystal 

face and Petri dish base would give this dimension with sufficient accuracy (± 1 µm), 

but for higher accuracy, we used home-built scanning ion-conductance microscopy, as 

a system was installed on the stage of the optical microscope. This provided a 

measure of the crystal height at the start of the experiment as previously described.24, 

26, 35 Diffusionally isolated calcite crystals (separated more than 40× times their 

largest dimension from neighbouring crystals) with the longest side of 36 ± 4 µm and 

height of 21 ± 2 µm were studied (total of 10 individual crystals in separate 

experiments). Following the addition of 4 mL of the acidic solution, a time-lapse 

sequence of optical images (40× lens magnification, every 30 s) was acquired and the 

dissolution velocities of the characteristic {104} faces of rhombohedral calcite were 

determined by measuring the crystal dimensions using ImageJ (version 1.45, NIH). In 

addition, the optical approach obviously revealed any change in morphology.  

2.3 FEM Simulations 

Numerical simulations were performed using the transport of diluted species module 

of the commercial finite element method (FEM) modeling package Comsol 

Multiphysics 5.2 (Comsol AB, Sweden). Three-dimensional models were formulated 

using inputs from experimental data to estimate the interfacial concentration of 

species during the dissolution process and determine the dissolution rate constant of 

the first-order heterogeneous reaction in terms of interfacial proton concentration.1, 22, 

23  

The models simulate the mass transport of species during the dissolution of a calcite 

crystal in a quiescent solution at pH 3.1. At this pH, the proton-promoted dissolution 

process at the crystal surface can be described by (eq. 5.1 and 5.2):1, 5 
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CaCO3 + H+  Ca2+ + HCO3
- (5.1) 

HCO3
- + H+ →← H2CO3 →CO2 (aq) + H2O (5.2) 

The models also take account of chemical equilibria in the solution that are relevant 

under the conditions of our experiment35, 36 (Table 5.1). These reactions are expressed 

in the simulations by activity corrected mass action rate equations23, 37 and the rate 

constants are defined to be fast enough to maintain the solution processes at 

equilibrium at a particular point in space. The mass transport of species is governed 

exclusively by diffusion and assumed to be effectively at a steady-state, for which the 

following is solved (eq. 5.3): 

 (5.3) 

where Ji is the flux, Di is the diffusion coefficient, ci is the concentration of species i, 

and Ri is the reaction rate expression for the species i. The use of a steady-state model 

is appropriate because the characteristic diffusional time for the mass transport of 

protons from bulk solution to the microscopic crystal surface, estimated using a semi-

infinite diffusion model according to eq. 5.4, is about 0.14 s, which is 4 orders of 

magnitude faster than the duration of a typical crystal dissolution experiment (30 min 

for the complete dissolution of a crystal). tdiff, i denotes the steady-state diffusion time 

and d is crystal largest dimension size. 

 (5.4) 

The diffusion coefficients of the individual species at infinite dilution were obtained 

from the literature36 and corrected for the ionic concentration in bulk solution. 

Diffusion coefficients were assumed to be constant over the entire domain (Table 

5.2).  

  

→
←

∇Ji =∇⋅ (Di∇ci )+ Ri = 0

tdiff , i ≈
d 2

Di
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Table	5.1.	Equilibrium	Reactions	for	the	Calcite-Water	System	open	to	the	Atmosphere.	

Reaction pKeq
* 36 

H2O  H+ + OH- 14 

CO2 (aq) + H2O  H2CO3 1.446 

CO3
2- + H+  HCO3

- -10.33 

HCO3
- + H+  H2CO3

° -6.35 

Ca2+ + CO3
2-  CaCO3 (aq) -3.20 

Ca2+ + HCO3
- CaHCO3

+ -1.00 

* Value before activity correction 

H2CO3
° signifies the total concentration of dissolved carbonate in the form CO2 and H2CO3 

 
Table	5.2.	Diffusion	Coefficients	of	the	Species	Considered	in	the	FEM	Model.	

Species Ca2+ CO3
2- HCO3

- H2CO3 CaCO3 CaHCO3
+ H+ OH- 

D (×10-9 m2 s-1) 0.760 0.886 1.137 1.137 0.818 1.039 8.939 5.062 

The three-dimensional domain used in the simulations is shown in Figure 5.1 and was 

parameterized with the average crystal dimensions and geometry of ten independent 

crystals determined by optical microscopy and scanning ion conductance microscopy. 

The models simulated the dissolution process described in eq. 5.1-5.2 and were 

developed by applying a flux of protons into the calcite surface that causes a release 

of calcium and bicarbonate ions, representing the flux of species leaving the 

dissolving crystal faces. The model, denoted here as Model 1, used as the flux value 

for each individual crystal face, the experimental dissolution rate of the {104} face, 

Jobs, obtained from the time-lapse optical images. The model designated Model 2, 

defined the flux of species to and from the crystal surface as a result of a first-order 

process in near-surface (surf) proton concentration,1, 22, 23 applying eq. 5.5, where ksurf 

is the intrinsic dissolution rate constant. 

Ji = ksurf [H
+ ]surf  (5.5) 

→
←

→
←

→
←

→
←

→
←

→
←
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Using appropriate boundary conditions (Table 5.3), the concentrations of species near 

the calcite-solution interface and in the solution around the dissolving crystal were 

simulated and the results obtained from each model were compared. The solutions of 

the partial differential equations for both models were acquired using the direct solver 

MUMPS in the Comsol environment, with a relative error tolerance of 10-6. 

Simulations were carried out with optimized tetrahedral mesh elements.  

 

 

Figure	5.1.	Three-dimensional	domain	used	for	FEM	simulations	(not	to	scale).	The	numbers	
correspond	to	the	boundaries	described	in	Table	5.3.	

	
Table	5.3.	Boundary	Conditions	used	in	the	FEM	Simulations	

Boundary Characteristics Conditions Model 1 Conditions Model 2 

1-5 
Calcite {104} 

face 

 

 

 

 

 

 

6 
Petri dish 
surface 

  

7-11 Bulk solution   

The boundary numbers are in accordance with the boundaries defined in Figure 5.1 
n denotes the vector normal to the surface 
ci,bulk is the bulk concentration of the species i governed by the equilibrium reactions in Table 
5.1 

 

n ⋅D
H +∇cH + = Jobs

−n ⋅D
Ca2+

∇c
Ca2+

= Jobs

−n ⋅D
HCO3

−∇cHCO3− = Jobs

n ⋅D
H +∇cH + = ksurf [H

+ ]surf

−n ⋅D
Ca2+

∇c
Ca2+

= ksurf [H
+ ]surf

−n ⋅D
HCO3

−∇cHCO3− = ksurf [H
+ ]surf

n ⋅Di∇ci = 0 n ⋅Di∇ci = 0

ci = ci,bulk ci = ci,bulk
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2.4 Speciation Computations 

The initial concentration of species in bulk solution, ci, bulk, was calculated using the 

speciation software MINEQL+38, 39 (version 4.6, Environmental Research Software). 

The simulations considered a system open to the atmosphere where PCO2 = 10-3.5 

atm;40 the temperature was fixed at 25 ºC, the ionic strength was calculated by the 

software and the pH was computed satisfying electroneutrality conditions. The 

simulated pH (pH = 3.1) was in agreement with the experimental data, confirming the 

validity of the speciation calculations. The concentrations of the relevant species are 

listed in Table 5.4. 

 
Table	5.4.	Concentration	of	Species	in	Bulk	Solution	

Species Concentration (mM) 

H+ 0.808 

OH- 1.87 ×10-8 

Ca2+ 0 

Cl- 50.8 

K+ 50 

CO3
2- 1.16 ×10-12 

HCO3
- 9.03 ×10-6 

H2CO3 0.011 

CaCO3 0 

CaHCO3
+ 0 

pH 3.1 
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3. Results and Discussion 

3.1 Dissolution Rates of Rhombohedral Calcite Crystals 

Crystals grown by the precipitation method described in the experimental section 

were inspected by optical microscopy. As mentioned above, the calcite crystals 

studied were of 36 ± 4 µm side length and 21 ± 2 µm in height. The similarity of the 

sizes of the ten crystals allowed data to be pooled to improve the statistics. It can be 

seen from Figure 5.2 that the crystal habit forms a rhombohedron with angles 78° and 

102°, representative of the intersection of {104} faces. The {104} faces are the most 

stable facets of calcite crystals due to the neutrality and flat ion arrangement and are 

kinetically favoured from pure aqueous solutions as they are the slowest growing 

faces.41, 42  

 

Figure	 5.2.	 Typical	 morphology	 of	 a	 grown	 calcite	 crystal	 for	 dissolution	 studies.	 The	
intersection	 of	 the	 crystal	 faces	 produces	 angles	 of	 102°	 and	 78°	 confirming	 that	 the	
dominant	crystal	faces	are	the	{104}	faces.		

The crystal dimensions prior to the dissolution studies were acquired as described in 

our previous work24, 26 by the combination of optical and scanning ion conductance 

microscopy. Since all the facets of the exposed crystal habit are equivalent, it is 

reasonable to assume that all faces will exhibit the same dissolution rate, a fact that 

could be confirmed for opposite pairs of side faces. Thus, it is possible to extrapolate 

the results obtained by 2D optical microscopy to all the crystal faces exposed to the 

solvent and identify the 3D changes in crystal size. Time-lapse images acquired 
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during the dissolution of a typical calcite crystal are shown in Figure 5.3A. Initially, 

the rhombohedral calcite crystals have sharp edges and corners. However, as the 

crystal dissolves, the edges and corners start rounding, and rounding increases with 

dissolution time until the crystals become spherical towards the end of the process. 

Figure 5.3D shows the evolution of the crystal circularity (2D projection) as a 

function of dissolution time calculated by eq. 5.6. The maximum circularity value of 

one indicated a perfect circle.  

Circularity = 4π Area
Perimeter

 (5.6) 

This observation indicates that during dissolution the crystal units are preferably 

removed from the edges and corners because the step and kink density is higher 

relative to the smooth terraces characterizing the faces,43, 44 while at the same time 

such features experience a higher diffusive flux of material (if the faces are not 

diffusive sink/sources). 

Figure 5.3B shows plots of the average displacement of the {104} faces (edge to 

centre distance) as a function of time, determined from data acquired for the ten 

crystals studied. Under purely diffusion control conditions, the displacement of the 

{104} face would depend on the square root of dissolution time as described by eq. 

5.7, deduced from the solution of Fick’s second law for spherical isotropic diffusion 

at steady-state, where r denotes the radius of the sphere (calcite microcrystal) and t 

specifies time. The constant parameter, a, depends on the values of the concentration 

and diffusion coefficient of the reacting species and the molar volume of calcite.45 
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Figure	5.3.	 (A)	Representative	time-lapse	optical	microscopy	 images	of	the	dissolution	of	a	
calcite	microcrystal	in	aqueous	solution	at	pH	=	3.1.	(B)	Plot	of	the	average	displacement	of	
the	{104}	faces	over	time.	(C)	Plot	of	the	average	displacement	of	the	{104}	faces	during	the	
first	 510	 s	 of	 dissolution.	 (D)	 Plot	 showing	 the	 average	 changes	 in	 circularity	 of	 calcite	
crystals	during	the	first	510	s	of	dissolution.		

In contrast, there is a strong linear dependence of the {104}-face displacement on the 

dissolution time, suggesting significant surface control,45 although the accuracy of the 

data is degraded towards the end of the process due to the resolution limits of the 

optical microscope. Only the early stage of dissolution (Figure 5.3C), where the 

crystal morphology and dissolution rate was most accurate, was analysed to obtain 

insights into the dissolution kinetics by FEM simulations since the linear dependence 

on the {104}-face displacement on the dissolution time alone is not always an 

indicative of surface control, especially when focusing in short periods of time. A 

quantitative determination of the dissolution kinetics is shown below by FEM 

simulations, which highlight a mixed kinetic regime.  

r = 2a ⋅ t  (5.7) 

The molar dissolution rate of the {104} faces, Jobs, was determined using eq. 5.8, 

where v{104} is the retreat velocity of the lateral faces during the first 510 s of the 

dissolution process (determined from the slope of the displacement vs. time plots), 

and V  is the molar volume of calcite (36.9 cm3 mol-1).45 The calculated value of Jobs 

was 1.77 (± 0.38) ×10-4 mol m-2 s-1 , in agreement with the dissolution fluxes (> 10-4 

mol m-2 s-1) reported from SECM experiments of individual calcite crystal faces 
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(natural Iceland Spar crystals), where a very high flux of protons produced at an 

ultramicroelectrode (UME) induced the dissolution of a calcite surface.23 This 

exhibits the key feature of our approach, which is that isolated microcrystals in 

solution generate high mass transport (diffusion) rates during dissolution to enable the 

kinetics of rapid surface processes to be accessed. 

Jobs = v{104} /V  (5.8) 

3.2 Determination of Interfacial Concentrations and the Intrinsic Dissolution 

Rate Constant 

Three-dimensional FEM models were formulated using experimental data (interfacial 

dissolution flux) as an input to obtain the near-interface concentration of species 

during the dissolution process and determine the dissolution rate constant of the first-

order heterogeneous reaction in terms of interfacial proton concentration.  

Model 1 was parameterized using the initial rhombohedral geometry with the average 

size and initial dissolution rate (first 510 s) obtained for the ten different crystals. The 

simulation produced the concentration distribution of all the chemical species around 

the dissolving crystal, such that concentration profiles of any species from the crystal 

surface to bulk solution could be analysed. The concentration profiles of the most 

relevant species involved in the dissolution of calcite in acidic aqueous solution in the 

vertical direction from the centre of the crystal surface are plotted in Figure 5.4. It is 

evident that the near-interface proton concentration is lower than in bulk solution, 

which is consistent with the protons being consumed in the dissolution process. On 

the other hand, the concentration of calcium ions and dissolved inorganic carbon 

(DIC), defined as the sum of H2CO3, HCO3
- and CO3

2- species, is higher at the 

crystal/solution interface, since Ca2+ and HCO3
- are liberated from the crystal surface 

due to proton attack, and the release of HCO3
- produces an increment of H2CO3 and 

CO3
2- in order to maintain equilibrium conditions. The average concentration of 

protons simulated at the crystal/solution interface is 0.27 mM, a clear illustration that 

the process is not simply diffusion-controlled, as still widely adopted in the 

literature,9, 19, 32-34 for which [H+]surf ≈ 0 mM would be observed.4  
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Figure	5.4.	Concentration	profiles	of	H+	(blue),	DIC	(black)	and	Ca2+	(red)	species	during	the	
dissolution	 of	 a	 rhombohedral	 calcite	 single	 microcrystal	 in	 aqueous	 solution	 at	 pH	 =3.1.	
Solid	 lines	 correspond	 to	 the	 results	 obtained	 from	Model	 1,	where	 Ji	 =	 Jobs,	 and	 symbols	
correspond	to	the	simulations	from	Model	2,	for	which	Ji	=	ksurf	[H+]surf,	where	ksurf		=	6.4	×10-4	
m	s-1.	

Hence, considering that the dissolution of calcite at pH < 4 is a heterogeneous 

reaction that depends on the concentration of protons at the crystal/solution interface 

(vide supra), ksurf can easily be determined solving eq. 5.5, where Ji = Jobs and [H+]surf 

is the interfacial proton concentration simulated in Model 1. Nevertheless, in order to 

explore surface fluxes and concentration profiles of the relevant species as a function 

of ksurf (Figure 5.5), and confirm the validity of first-order heterogeneous kinetics, a 

second model with the same geometry was employed. Model 2 simulated a series of 

surface fluxes described as Ji = ksurf [H+]surf, and ksurf was then evaluated to obtain the 

interfacial concentration and concentration profiles of species equivalent to those 

simulated in Model 1, accounting for the experimental dissolution rate and crystal 

geometry.35 It can be seen from Figure 5.5, that ksurf  = 6.4 ×10-5 m s-1 and 6.4 ×10-3 m 

s-1 approximate to the lower (surface kinetic control) and upper (diffusion-controlled) 

kinetic limits of this technique. The value of ksurf determined herein is 6.4 (± 2.8) ×10-

4 m s-1 (Figure 5.4), in agreement with SECM experiments of single crystal faces, 6.3 

(± 1.3) ×10-4 m s-1,23 and similar to that from fast-flow hydrodynamic systems.1, 21, 22  
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Figure	 5.5.	 Concentration	 profiles	 of	 H+	 (blue),	 DIC	 (black)	 and	 Ca2+	 (red)	 species	 and	
interfacial	pH	during	the	dissolution	of	a	rhombohedral	calcite	single	microcrystal	in	aqueous	
solution	at	pH	=3.1	simulated	for	a	surface	flux,	Ji	=	ksurf	[H+]surf,	where	ksurf		is	(A,	D)	6.4×10-5	m	
s-1,	(B,	E)	6.4	×10-4	m	s-1	and	(C,	F)	6.4	×10-3	m	s-1.		

At steady-state, mass transport rates of reacting species diffusing towards or away 

from the crystal surface (eq. 5.9, where δ is the characteristic diffusion layer size) are 

necessarily equal to the surface reaction rate (eq. 5.10). This equality (eq. 5.11) is 

always true, independent of the kinetic regime, but the concentration of species near 

the crystal/solution interface and concentration profiles will depend on whether 

diffusion or surface reactions control the dissolution process.45, 46  

JMT =
D
δ
([H+ ]surf −[H

+ ]bulk )
 

(5.9) 

JSK = ksurf [H
+ ]surf  (5.10) 

Jobs = JMT = JSK = ksurf [H
+ ]surf  (5.11) 
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In eq. 5.9-5.11, JMT is the transport flux, JSK is the surface kinetic flux and Jobs is the 

experimentally observed (measured) flux. In the case of slow surface kinetic rates 

(small ksurf, larger contribution of surface kinetics to the dissolution process) the 

concentration of protons at the crystal/solution interface is close to that in bulk 

solutions (Figure 5.5D) and consequently the concentration gradient is small (Figure 

5.5A). On the other hand, when the surface rates are fast (large ksurf) the concentration 

of protons at the crystal/solution interface is depleted significantly (Figure 5.5F) and 

approaches to zero,4 so that the concentration gradient is steeper (Figure 5.5C). In an 

intermediate situation, (experimentally determined ksurf), the interfacial proton 

concentration acquires an intermediate value (Figure 5.5E), i.e. the kinetics is under 

mixed control and this should be used in models for the dissolution process in various 

applications highlighted earlier in the chapter. 

 
4. Conclusions 

The proton-promoted dissolution kinetics of rhombohedral calcite in aqueous solution 

has been investigated by optical microscopy coupled with numerical simulations. The 

experimental methodology, focused on monitoring the dissolution of isolated single 

microcrystal, enables the measurement of rapid surface processes via FEM models 

parameterized with experimental data. The simulations provide an accurate 

determination of the near-interface concentration of species during dissolution, as 

well as the intrinsic dissolution rate constant of the {104} faces.  

In general, we have demonstrated that the approach described herein is an easy and 

versatile strategy to study the dissolution kinetics of entire single crystals. The 

methodology enables decoupling of mass transport and surface kinetic effects, such 

that the surface reaction rates can be measured for a system that is applicable to 

various natural systems and practical situations.  
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This thesis provides a detailed analysis of face-specific dissolution kinetics of single 

microcrystals using an innovative, yet simple, combination of microscopy techniques 

and FEM simulations. A key feature of the approach is the consideration of isolated 

crystals no larger than 50  µm across, in order to: (i) generate much higher diffusion 

rates than with any other technique available, including fast flow systems, thus 

allowing fast surface kinetics to be measured; (ii) maintain chemostatic control of the 

reaction conditions; (iii) simultaneously study all of the individual crystal faces and 

edges exposed to the solvent; and (iv) analyze interfacial fluxes and concentration 

distributions to elucidate the kinetic regime. Other advantages of this approach are 

that it does not require a flow system, supplementary sensors or additional ex-situ 

characterization of the crystal surface, and that the well-defined morphology of the 

microcrystal permits the rationalization of the results in terms of crystal structure and 

surface properties. In general, the approach presented in this thesis establishes a 

powerful and widely applicable method for studying dissolution processes; one that is 

demonstrated and validated with studies of a variety of different crystal structures 

herein. 

Chapter II presented the first study of real-time dissolution kinetics at all of the 

individual faces of single crystals. An in situ multimicroscopy approach, in which 

SICM and optical microscopy are combined with FEM modeling to study dissolution 

processes, is described. The experimental approach allowed 3D visualization of 

crystal morphology during dissolution, from which a numerical model was developed 

to calculate the concentration distribution around the crystal, as well as the dissolution 

flux of solute molecules at the solid/liquid interface. This allowed the quantitative 

comparison of mass transport and surface kinetics. Results show that the (001) face of 

furosemide crystals is strongly influenced by surface kinetics and presents a mixed 

kinetic control, while the (010) and (101 ) faces are dominated by mass transport. 

However, dissolution rates were found to vary considerably from crystal to crystal 

and were time dependent at large dissolution times. This is due to the impact of a 

number of factors, including subtle effects from the size, shape, and apparent number 

Chapter VI Conclusions 
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of defects (etch pits) in a particular crystal, as shown by complementary ex situ AFM 

measurements of partially dissolved microcrystals.  

Informed by the results in chapter II, the impact of surface topography on dissolution 

kinetics was studied in more detail in chapter III. It was shown that in situ AFM can 

be used to visualize changes in the crystal morphology during dissolution, also 

allowing the surface processes that accompany dissolution to be monitored in real-

time. Similar to the furosemide crystals studied in chapter II, different bicalutamide 

crystal faces exhibit different dissolution rates. Dissolution involves roughening and 

pit formation on all dissolving surfaces, and this has a strong influence on the overall 

dissolution rate. By incorporating AFM experimental data into four different steady 

state FEM models, each simulating the dissolution of the microcrystal at different 

dissolution times, it was possible to determine the relative contributions of surface 

kinetics and mass transport for each crystal face during the dissolution time-course. 

Simulations showed that the dissolution kinetics of all crystal faces are largely 

surface-kinetics-controlled, but the mass transport contribution increased as 

dissolution proceeded. This was attributed to the formation of microdomains of higher 

surface energy (higher dissolution rate constant, kint) during surface pitting, though 

this value was not quantified.  

The quantification of interfacial kinetics, and the intrinsic dissolution rate constant, 

kint as a function of the crystal morphology during the dissolution time-course was 

addressed in chapter IV. Using the in situ multimicroscopy approach introduced in 

chapter II, the dissolution rates of the {0001} and {101
−

0} faces of L-cystine crystals 

were determined. The experimental data allowed the elucidation of interfacial 

concentrations and concentration gradients, as well as the separation of kinetic and 

mass transport limiting regimes using FEM simulations, which in turn permitted the 

determination of kint. Results revealed that kint increased as the L-cystine crystal 

dissolved, concomitant with the reduction in crystal size and the formation of high 

index crystal faces, significantly impacting the kinetic regime and causing a change 

from a surface-kinetics-controlled dissolution to a mixed regime. 

Chapter IV also described the investigation of the dissolution mechanism of the 

{0001} surface of hexagonal L-cystine macrocrystals by in situ AFM in a flow cell 

system. The visualization of hexagonal spirals emerging from screw dislocations on 
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the {0001} face permitted the measurement of the dependence of step velocities on L-

cystine concentration, from which kinetic information could be derived. Kinetic data 

obtained from OM-SICM and AFM, which provide alternative methods of measuring 

kinetics, were in good agreement when the different mass transport regimes of the two 

experimental configurations are accounted for. Collectively, these results suggest a 

roadmap for the quantitative analysis of single crystal dissolution across multiple 

lengthscales. 

All of the crystals studied in the first three chapters were characterized by relatively 

slow or very slow dissolution rates, allowing the use of scanning probe microscopy to 

probe the dissolution. Chapter V aimed to prove that the approach developed in this 

thesis was also suitable for studying fast dissolution kinetics. Most techniques have 

shown that proton-promoted calcite dissolution rates are controlled by the diffusion of 

protons to the surface. The process is so fast that measuring the intrinsic surface 

dissolution kinetics has proved challenging, with only a few techniques having been 

able to measure the intrinsic dissolution rate constant of calcite in acid water. In this 

chapter, the investigation of the proton-promoted dissolution kinetics of rhombohedral 

calcite in aqueous solution, using optical microscopy coupled with numerical 

simulations, was described. The simulations allowed the accurate determination of the 

near-interface concentration of species during dissolution, as well as the intrinsic 

dissolution rate constant of the {104} faces, showing that surface kinetics play an 

important role in the dissolution of microcrystals. 

In summary, the work presented in this thesis provides a significant advance in the 

analysis and understanding of crystal dissolution, with quantitative results that are 

consistent across different techniques from the nanoscale to macroscale. The proposed 

approach is widely applicable to a range of crystal types, encompassing organic and 

ionic crystals (see Appendix for a guide of the most adequate experimental approach 

depending on the crystal characteristics). The approach is attractive not only for the 

methodological reasons outlined at the start of this chapter, but also in revealing 

differences between different crystals in a population, which remain hidden in 

ensemble measurements. In this manner, the work herein expands the current growing 

trend in the physical sciences towards single entity measurements, which are valuable 

in revealing the distribution of activity in reactive systems. 
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t o
f t

he
 c

ry
st

al
 h

ei
gh

t c
an

 b
e 

do
ne

 
by

 a
dj

us
tin

g 
th

e 
fo

cu
s 

of
 t

he
 O

M
, o

r 
m

or
e 

ac
cu

ra
te

ly
 b

y 
SI

C
M

.  

≥ 
12

0 
In

 si
tu

 A
FM

 in
 

qu
ie

sc
en

t s
ol

ut
io

n 
•  

Im
ag

e 
th

e 
en

tir
e 

cr
ys

ta
l. 

 
•  

U
se

 o
f T

M
-A

FM
 to

 m
in

im
iz

e 
tip

-c
ry

st
al

 in
te

ra
ct

io
ns

. 

N
an

os
ca

le
: 

 D
is

so
lu

tio
n 

ki
ne

tic
s a

nd
 

m
ec

ha
ni

sm
 o

f a
 

pa
rt

ic
ul

ar
 c

ry
st

al
 fa

ce
 

>2
00

 µ
m

 
≥ 

12
0 

In
 si

tu
 A

FM
 in

 
flo

w
 c

el
l 

• 
C

ry
st

al
 m

us
t 

be
 b

ig
 e

no
ug

h 
to

 a
llo

w
 i

m
ag

in
g 

du
rin

g 
at

 
le

as
t 

a 
co

up
le

 o
f 

ho
ur

s 
an

d 
a 

fe
w

 r
eg

io
ns

 h
av

e 
to

 b
e 

im
ag

ed
 t

o 
be

 s
ur

e 
th

e 
ob

ta
in

ed
 d

at
a 

ar
e 

re
pr

es
en

ta
tiv

e 
of

 
th

e 
en

tir
e 

fa
ce

.  
• 

O
pt

im
iz

e 
flo

w
 r

at
e 

(v
st

ep
 =

 c
on

st
an

t) 
an

d 
sc

an
 r

at
e 

 (v
st

ep
 

ca
n 

be
 m

ea
su

re
d)

. 
• N

ee
d 

fo
r a

na
ly

si
s o

f m
as

s t
ra

ns
po

rt 
in

si
de

 th
e 

ce
ll.

 

* 
Th

e 
cr

ys
ta

l l
ar

ge
st

 d
im

en
si

on
 (d

) m
us

t b
e 

sm
al

le
r t

ha
n 

th
e 

di
ff

us
io

n 
la

ye
r t

hi
ck

ne
ss

 (δ
), 

ge
ne

ra
lly

 d
 ≤

 5
0 
µm

. T
he

 d
iff

us
io

n 
la

ye
r t

hi
ck

ne
ss

 
de

pe
nd

s o
n 

th
e 

cr
ys

ta
l s

iz
e 

an
d 

th
e 

di
ff

us
io

n 
co

ef
fic

ie
nt

 o
f t

he
 so

lu
te

 in
 th

e 
so

lv
en

t (
D

). 


