
1

Supplementary Material: Loop Tiling in
Large-Scale Stencil Codes at Run-time with

OPS
I.Z. Reguly, G.R. Mudalige, M.B. Giles

Abstract—This document serves as an appendix to the paper ”Loop Tiling in Large-Scale Stencil Codes at Run-time with OPS” by
Reguly et. al. and provides further performance breakdowns and analysis of the applications being studied.

F

if(dir == g_xdir) {
if(sweep_number == 1) {

ops_par_loop(advec_cell_kernel1_xdir, "advec_cell_kernel1_xdir",
clover_grid, 2, rangexy,

ops_arg_dat(work_array1, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(work_array2, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(volume, 1, S2D_00, "double", OPS_READ),
ops_arg_dat(vol_flux_x, 1, S2D_00_P10, "double", OPS_READ),
ops_arg_dat(vol_flux_y, 1, S2D_00_0P1, "double", OPS_READ));

}
else {
ops_par_loop(advec_cell_kernel2_xdir, "advec_cell_kernel2_xdir",

clover_grid, 2, rangexy,
ops_arg_dat(work_array1, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(work_array2, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(volume, 1, S2D_00, "double", OPS_READ),
ops_arg_dat(vol_flux_x, 1, S2D_00_P10, "double", OPS_READ));

}
ops_par_loop(advec_cell_kernel3_xdir, "advec_cell_kernel3_xdir",

clover_grid, 2, rangexy_inner_plus2x,
ops_arg_dat(vol_flux_x, 1, S2D_00, "double", OPS_READ),
ops_arg_dat(work_array1, 1, S2D_00_M10, "double", OPS_READ),
ops_arg_dat(xx, 1, S2D_00_P10_STRID2D_X, "int", OPS_READ),
ops_arg_dat(vertexdx, 1, S2D_00_P10_M10_STX, "double", OPS_READ),
ops_arg_dat(density1, 1, S2D_00_P10_M10_M20, "double", OPS_READ),
ops_arg_dat(energy1, 1, S2D_00_P10_M10_M20, "double", OPS_READ),
ops_arg_dat(mass_flux_x, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(work_array7, 1, S2D_00, "double", OPS_WRITE));

...

Fig. 1: Example of CloverLeaf’s high-level source

APPENDIX A
CODE SNIPPETS

CloverLeafis a substantially more complex application than
the polyhedral compiler benchmark codes in several re-
spects: it consists of multiple compilation units, there are
many code paths even in a single source file that affects the
sequence of loops as shown in Figure ??, and the stencils are
sometimes data-dependent, as shown in Figure ??

APPENDIX B
TILE SIZES

In the main paper, we refer to exhaustively searching for
the tile size that gives the best performance - there we only
report on the best one as well as the tile size determined
automatically by OPS.

Figure ?? shows performance achieved by Pluto, our
hand-coded benchmark and OPS at different tile sizes and
heights. In Figure ??(a) for Pluto, we show a slide of the
optimisation space where the X tile size is fixed at 112,
and we vary the Y tile size as well as the tile height (the

inline void advec_mom_kernel1_x_nonvector(
const double *node_flux, const double *node_mass_pre,
double *mom_flux, const double *celldx, const double *vel1) {

double sigma, wind, width;
double vdiffuw, vdiffdw, auw, adw, limiter;
int upwind, donor, downwind, dif;
double advec_vel_temp;
if((node_flux[OPS_ACC0(0,0)]) < 0.0) {

upwind = 2;
donor =1;
downwind = 0;
dif = donor;

}
else {

upwind=-1;
donor=0;
downwind=1;
dif=upwind;

}
sigma = fabs(node_flux[OPS_ACC0(0,0)])/

node_mass_pre[OPS_ACC1(donor,0)];
width = celldx[OPS_ACC3(0,0)];
vdiffuw = vel1[OPS_ACC4(donor,0)] - vel1[OPS_ACC4(upwind,0)];
vdiffdw = vel1[OPS_ACC4(downwind,0)] - vel1[OPS_ACC4(donor,0)];
limiter=0.0;
if(vdiffuw*vdiffdw > 0.0) {

auw = fabs(vdiffuw);
adw = fabs(vdiffdw);
wind = 1.0;
if(vdiffdw <= 0.0) wind = -1.0;
limiter=wind*MIN(width*((2.0-sigma)*adw/width+(1.0+sigma)*

auw/celldx[OPS_ACC3(dif,0)])/6.0, MIN(auw, adw));
}
advec_vel_temp = vel1[OPS_ACC4(donor,0)] + (1.0 - sigma) * limiter;
mom_flux[OPS_ACC2(0,0)] = advec_vel_temp * node_flux[OPS_ACC0(0,0)];

}

Fig. 2: Example of CloverLeaf’s kernel code

number of time iterations timed over) - the best performance
is achieved at 112×32 and a height of 32. In Figure ??(b) for
the hand-coded benchmark the tile size in the X direction is
always 8192, and we show performance achieved at various
Y tile sizes and tile heights, the best performance is achieved
at a Y size of 120 and a tile height of 50. Finally, in Figure
??(c) for OPS, we also show a slice of the optimisations space
where the X tile size is fixed at 8192, the best performance is
achieved at a Y tile size of 100, and a height of 30.

We carried out a similar exhaustive search over possible
X and Y tile sizes for CloverLeaf 2D and 3D, however here
we do not change the tile height - it is always as “tall” as all
the loops in a single time iteration, which is 153 in 2D and
603 in 3D. Figure ?? shows the performance on CloverLeaf
2D: while the best performance is achieved at a tile size of

2

	 	 	
	 (a)	 (b)	 (c)	
	

2

15

2.5

20

3

Y tile size

25

R
u
n
tim

e
 (

s)

30

3.5

10

T tile size (height)

2030405035 60

4

70 Y tile size

520
380

240
1202

80 1

2.8

T tile size (height)

5 10 15 20 40

4

30 40 50

Ru
nt

im
e

(s
)

60 70

5.6

8

11.3

3
400

4

5

50

R
u
n
tim

e
 (

s)

6

40

Y tile size

7

200

T tile size (height)

8

30
20

0 10

Fig. 3: Performance of tiling approaches on a 81922 2D Jacobi problem over 250 iterations, varying Y tile size and number of
iteration tiled. (a) Pluto, (b) handcoded, (c) OPS.

2048

768

X tile size

512

384

300

128
400

320
260

Y tile size

220
160

100
40

10

11.3

8

16

22.6

32

R
u

n
ti
m

e
 (

s
)

Fig. 4: Performance of OPS on CloverLeaf 2D with a 61442

mesh over 10 iterations

640×160, there are a large number of possible size combina-
tions (32) that are within 2% of the best performance. Figure
?? shows performance at different tile sizes on CloverLeaf
3D, when the X tile size is fixed at 330: here due to the
restriction that the product of the Y and the Z tile sizes has
to be an integer multiple of the number of OpenMP threads,
the number of possible combinations is lower than in the
2D case. The best performance is achieved at a tile size of
330×20×20, but 6 other possible combinations were within
2% of the best, and 18 within 10%.

APPENDIX C
TILE “HEIGHT” - LOOPS TILED OVER

Due to the diversity of loops in the applications being
studied, setting the number of loops to tile across to a fixed
value does not make sense - instead we choose boundaries
between computational stages. For CloverLeaf 2D and 3D
the code structure is illustrated in Figure ?? - we mark
the natural boundary, due to a reduction, between time
iterations with red, and we introduce additional boundaries
marked by points 1-5. In the code, these are simply API
calls that trigger the tiled execution of loops queued up to
that point. We ran a series of tests enabling and disabling

80
40

Z tile size

36
24

20
16

8
4

120
80

40
25

Y tile size

20
15

10
5

64

45.2

16

22.6

32

R
u

n
ti
m

e
 (

s
)

Fig. 5: Performance of OPS on CloverLeaf 3D with a 3303

mesh over 10 iterations

Hydro Loop:
Timestep
Ideal Gas
Viscosity
Calc dt

PdV
Accelerate
PdV
Flux calc
Advection
Advec cell #1
Advec mom X-Y-Z
Advec cell #2
Advec mom X-Y-Z
Advec cell #3
Advec mom X-Y-Z

Reset Field
Field Summary

reduction

point 1

point 2
point 3
point 4

point 5
point 6

Fig. 6: Code structures of CloverLeaf 2D and 3D

these boundaries in all possible permutations (26), yielding
different tile “heights”, that is the number of loops to be
tiled across. Performance at different permutations listed
lexicographically (i.e. 0 is none, 1 is point 1, 2 is point 2,
3 is points 1 and 2, etc.) is shown in Figures ?? and ??.

3

7

8

9

10

11

12

1 4 7 10131619222528313437404346495255586164

Ru
nt
im

e	
(s
)

Tile	height	point	permutations

CloverLeaf	 2D	tile	height

Fig. 7: Performance when tiling across different numbers of
loops in CloverLeaf 2D

15
15.5
16

16.5
17

17.5
18

18.5
19

0 3 6 9 121518212427303336394245485154576063

Ru
nt
im

e	
(s
)

Tile	height	point	permutations

CloverLeaf	 3D	tile	height

Fig. 8: Performance when tiling across different numbers of
loops in CloverLeaf 3D

11.5

12

12.5

13

13.5

1 2 3 6 9 15

Ru
nt
im

e	
(s
)

Runge-Kutta	steps

OpenSBLI	 - number	 of	Runge-Kutta	iterations	
tiled	across

Fig. 9: Performance when tiling across different numbers of
loops in OpenSBLI

Performance close to the best is also achieved when point
4 and point 5 are both enabled. Performance on OpenSBLI
when tiling across increasing number of Runge-Kutta steps
(one timestep is 3 RK steps) is shown in Figure ?? - best
performance is achieved when tiling over all loops in two
time steps.

APPENDIX D
OPENMP SCALING

We also carried out a standard benchmark when using
multi-threading, OpenMP in our case: thread scaling. Figure
?? shows performance of the baseline and tiled versions of
CloverLeaf 2D. As expected, performance scales up to the
number of physical cores, and there is a little improvement

0

20

40

60

80

1 2 4 6 8 10 12 14 16 18 20

Ru
nt
im

e	
(s
ec
on
ds
)

Number	of	OpenMP	threads

Fig. 10: Performance of CloverLeaf 2D with a 61443 mesh
with different numbers of OpenMP threads

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32 64 128

CloverLeaf 2D Weak Scaling

0.0078
0.0156
0.0313
0.0625
0.1250
0.2500
0.5000
1.0000
2.0000
4.0000
8.0000

1 2 4 8 16 32 64 128
R

un
tim

e
(s

ec
on

ds
)

CloverLeaf 2D Strong Scaling

Base
Tiled
Base Comms
Tiled Comms

Fig. 11: Scaling CloverLeaf 2D to multiple nodes on Marconi

0
2
4
6
8

10
12
14
16
18

1 2 4 8 16 32 64 128

OpenSBLI Weak Scaling

0.0313
0.0625
0.1250
0.2500
0.5000
1.0000
2.0000
4.0000
8.0000

16.0000

1 2 4 8 16 32 64 128

R
un

tim
e

(s
ec

on
ds

)

OpenSBLI Strong Scaling

Base
Tiled
Base Comms
Tiled Comms

Fig. 12: Scaling OpenSBLI on Marconi

by using Hyper-Threading. As it commonly happens with
bandwidth-bound applications, the performance improve-
ment slows down as the number of threads is increased,
because even a smaller number of threads can saturate the
available bandwidth.

APPENDIX E
MPI SCALING ON CPUS

Here we present and discuss the scalability of our baseline
(MPI+OpenMP) and tiled versions on the applications not
shown in the main paper. Figure ?? shows strong and weak
scaling of CloverLeaf 2D on a 61442 mesh. In both cases the
2.2× performance improvement is maintained up to high
core counts, and particularly on strong scaling we can see
the benefit of our improved communications scheme. Figure
?? shows similar results on OpenSBLI, when scaling a 2573

mesh; the tiled version maintains a 1.7× speedup over the
baseline

4

APPENDIX F
MPI SCALING ON KNL
Figure ?? shows MPI scaling on the Knights Landing plat-
form, with CloverLeaf 2D and the 61442 mesh, which does
fit in the 16GB cache, and a 143362 mesh, which does
not fit in the 16GB cache. When strong scaling the 143362

mesh, there is initially a 1.45× speedup on a single node,
but moving to 2 or more nodes, the problem does fit in
the 16GB cache, and there is no improvement in terms of
computational time, however, there is a significant benefit
from the improved communications scheme. Similar effects
can be observed when weak scaling - on the larger mesh,
we maintain a 1.5× improvement due to the cache opti-
misation, but for both meshes, the communication times
are improved with the tiled version. During weak scaling,
unlike for CloverLeaf 3D, the cost of communications does
not increase as much, due to a better ratio of boundary to
full volume.

Figure ?? shows MPI scaling on KNL and OpenSBLI,
using a 3903 mesh (fitting in 16GB) and a 5403 mesh (which
does not fit in 16GB). Scaling is very similar to that of
CloverLeaf 3D, with the tiled version scaling much better
than the baseline, largely due to improved communications,
as well as cache efficiency in the 5403 weak scaling case.

5

0.06

0.25

1.00

4.00

16.00

1 2 4 8 16 32 64 128

Ru
nt
im

e	
(s
ec
on
ds
)

Number	of	nodes

CloverLeaf	 2D	Strong	 Scaling

Baseline
Tiled
Baseline	Comms
Tiled	Comms

0.125
0.25
0.5
1
2
4
8
16
32
64

1 2 4 8 16 32 64 128

Ru
nt
im

e	
(s
ec
on
ds
)

Number	of	nodes

CloverLeaf	 2D	Weak	 Scaling
6144	Baseline

6144	Comms

6144	Tiled

6144	Tiled	Comms

14336	Baseline

14336	Comms

14336	Tiled

14336	Tiled	Comms

Fig. 13: Scaling CloverLeaf 2D on Marconi-A2 (KNL)

0.25
0.5
1
2
4
8
16
32
64
128

1 2 4 8 16 32 64 128
Number	of	nodes

OpenSBLI	Weak	Scaling

390^3	Baseline

390^3	Comms

390^3	Tiled

390^3	Tiled	Comms

540^3	Baseline

540^3	Comms

540^3	Tiled

540^3	Tiled	Comms
0.125

0.5

2

8

32

1 2 4 8 16 32 64 128

Ru
nt
im

e	
(s
ec
on
ds
)

Number	of	nodes

OpenSBLI	 Strong	 Scaling	540^3

Baseline	Comms
Tiled	Comms
540^3	Baseline

Fig. 14: Scaling OpenSBLI on Marconi-A2 (KNL)

