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ABSTRACT.  We describe an Ir(III)-based small molecule, multi-modal probe for use in both 

light and electron microscopy.  Direct correlation of data between light-based and electron 

microscopy-based imaging to investigate cellular process at the ultrastructure level is a current 

challenge, requiring dyes which must be both brightly emissive for luminescence imaging, and 

scatter electrons to give contrast for EM, at a single working concentration suitable for both 

methods.  Here we describe the use of Ir(III) complexes as probes that provide excellent image 

contrast and quality for both luminescence and electron microscopy imaging, at the same 

working concentration. Significant contrast enhancement of cellular mitochondria was observed 

in transmission electron imaging (TEM), with and without the use of typical contrast agents.  

The specificity for cellular mitochondria was also confirmed with MitoTracker® using confocal 

and 3D structured illumination microscopy (3D-SIM). These phosphorescent dyes are part of a 

very exclusive group of transition metal complexes that enable imaging beyond the diffraction 

limit. Triplet excited state phosphorescence was also utilized to probe O2 concentration at the 

mitochondria in-vitro, using lifetime mapping techniques. 
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Introduction 

Mitochondria play a pivotal role in mammalian cells, controlling a number of cellular 

processes such as metabolism, ATP generation, production of reactive oxygen species (ROS), 

cell death and Ca2+ homeostasis.1  Mitochondrial function or “dysfunction” is also known to 

affect communication between cells and tissues, hence its emerging role in a number of 

neurodegenerative and metabolic diseases.1 The microenvironment of mitochondria is closely 

related to their function, therefore the ability to measure local parameters such as pH, ROS 

concentration and O2 concentration is essential to obtain a measure of cell health or disease 

progression.  In particular the ability to monitor O2 concentrations in mitochondria non-

invasively and in real time is a significant target for the cell biology and microscopy 

communities, as O2 is a key metabolite in the production of energy, as well as an important bio-

marker for hypoxia and cancer detection. 

 Oxygen electrodes do offer a way of obtaining real-time measurements of [O2], however, 

this method is invasive and is not well suited to cell monolayers.2-3 Immunostaining using 

Hypoxyprobe™, an oxygen marker that binds only to cells that have oxygen saturation less than 

pO2 of 10mm Hg at 37°C,4 can also provide information on oxygen concentrations; but this is a 

static, end-point method of limited quantitative value.  Electron paramagnetic resonance (EPR) 

spectroscopy has proved successful for monitoring [O2] in vitro,5 however this requires more 

specialised user knowledge and equipment than other available techniques.  A more user-friendly 

approach which has gained in popularity for O2 monitoring (and pH sensing) is the use of 

luminescent probes which allow emission imaging.  This approach provides a real-time, non-

invasive method that can be conducted using a standard confocal microscope.  For [O2] 

quantification, probes must undergo a change in emission intensity and lifetime on collision with 
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molecular O2 which has a triplet ground state; this requires that the probe excited state also be a 

triplet, i.e. that the emission is phosphorescence.  This provides that added advantage that 

lifetimes of phosphorescence are much longer than those of fluorescence, which makes changes 

in them potentially easier to detect. 

 Examples of such phosphorescent probes that have demonstrated promise for in-situ O2 

quantification are porphyrins [6-10] and transition metal complexes.11-13 Their excited states are 

long-lived (τ = hundreds of nanoseconds to microseconds) due to the forbidden nature of the T1 

→S0 transition, which provides a large time window for collision with and quantification of O2. 

As such, there have been a growing number of reports demonstrating in vitro O2 sensing using 

single and two-photon lifetime imaging techniques (PLIM, PLM).14-16  For example, these 

lifetime mapping techniques have been utilised in quantification of O2 in 2D cell cultures, 3D 

spheroids and neurospheres using Pt(II) porphyrins.8,17  Large dendritic Pt(II) porphyrins, which 

do not cross cellular membranes, have also been used to monitor O2 levels in cerebral blood 

vessels of a living animal, using a bespoke two-photon phosphorescence lifetime imaging set-

up.9,18  Ratiometric probes, in which a dual emissive species acts as both calibrant and O2 

detector, have also been investigated for O2 quantification.19-20  These systems tend to utilize 

simpler instrumentation replying on emission intensity measurements, rather than lifetime 

mapping. 

 The challenge now is to utilize accumulated knowledge about how transition metal 

complex design affects cellular localisation and photophysical attributes, in order to create new 

probes that demonstrate organelle specificity and monitor O2 concentration quantitatively. To do 

this we need probes that:   

 (i) can cross cellular membranes, without the use of permeabilisation detergents;  
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 (ii) localise specifically at the cellular mitochondria, without perturbing their function;  

 (iii) have a luminescent triplet excited state with a high quantum yield and a long lifetime 

(~ 10-7 to 10-6 sec); 

 (iv) exhibit high sensitivity (high Stern-Volmer quenching constants) to O2 at 

physiological concentrations.  

 

 O2 detection with transition-metal complex probes via phosphorescence quenching and 

lifetime mapping is ideal for measuring dynamic O2 concentrations, as the luminescence changes 

are reversible (the excited state can be generated over and over again for repeat measurements), 

conducted in real-time, are non-invasive, and the probes have the long-term photostability 

required for large numbers of repeat measurements.  However, to truly understand the workings 

of mitochondria, the ability to perform quantitative [O2] measurements needs to be combined 

with high-resolution spatial imaging.  Mitochondria exist as a complex network of tubules with 

elaborate inner folded membranes that are intricately interconnected with other cellular 

organelles.1,21 Therefore, comparisons across imaging techniques that can break the diffraction 

limit, as sub-cellular structures are small in comparison to the resolution limit available using 

visible light (ca. 200 nm), are necessary to help interpret quantitative measurements.  

 A number of emission-based super-resolution techniques have already proved successful 

in imaging mitochondria beyond the diffraction limit.  For example, dSTORM (direct stochastic 

optical reconstruction microscopy) has been used to extract detailed information about inner 

membrane protein locality and density in mitochondria,22 and STED (stimulated emission 

depletion microscopy) has been used to investigate clustering of outer membrane proteins23 and 

to determine the co-localisation of anion channel hVDAC and cytosolic protein hexokinase-I.24  
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Despite the advances in super-resolution imaging over recent years, there are still very few 

examples of imaging beyond the diffraction limit25 using transition metal based dyes or probes.26  

Combining the power of such imaging techniques with an O2 sensor would be a significant step 

forward.   

 In this report, we present the use of two mononuclear Ir(III) complexes as some of the 

first examples of organelle-specific probes that are compatible with both super-resolution and 

Transmission Electron Microscopy (TEM) at the same concentration (50 µM). The excellent 

photostability and low toxicity exhibited by our complexes has enabled them to be utilised in 

detailed co-staining studies using steady-state confocal and 3D-SIM microscopy, and their long 

lived triplet emissive states permit O2 detection in-vitro, using two-photon PLIM and lifetime 

mapping. 

 

Results and Discussion 

Synthesis. Octahedral complexes of Ir(III) with a basic ligand framework comprised of 

two cyclometalating phenyl-pyridine (C^N), ligands and an aromatic N^N ligand such as 2,2-

bipyridine, have become some of the most highly studied phosphorescent metal complexes due 

to the combination of ease of synthesis, ability to tune properties over a wide range with ligand 

substituents, and outstanding emission lifetime and quantum yield characteristics. As such, 

complexes of the general formula [Ir(C^N)2(N^N)]+ X- have demonstrated promise across a range 

of applications based on their photophysical properties such as live cell imaging,27-30 OLEDs,31 

dye sensitised solar cells32,33 and sensors;34,35 in addition the presence of a third-row metal ion 

would makes such complexes useful as TEM stains. 
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 Here we report two mono-nuclear Ir(III) complexes, Ir-Lpytz and Ir-Ltol (Scheme 1), which 

feature this [Ir(C^N)2(N^N)]+ motif in which the N^N unit is a pyridyl-triazole chelate.36 The two 

complexes have the same ligand core but differ in the nature of the group pendant from the C5 

position of the triazole ring ligand, which is a pyridyl group in Lpytz and a tolyl group Ltol as 

shown in Scheme 1. The phenyl-pyridine (C^N) co-ligand in both complexes is substituted with 

a polyethylene glycol chain to enhance water solubility.  We found that preparing the C^N ligand 

with a pendant formyl group, incorporating this into the mononuclear Ir(III) complexes, and then 

reducing the aldehyde to an alcohol and PEG-ylation as the final steps, provided the highest 

yielding route to the target complexes. 

Steady-state and time resolved photophysical studies.  UV-Vis absorption and emission 

parameters (wavelength, lifetime and quantum yield) for both complexes Ir-Lpytz and Ir-Ltol are 

presented in Table 1. Both complexes exhibited moderate solubility in water at low 

concentrations. However, to ensure that complex precipitation was not affecting photophysical 

characterisation, working concentrations of aqueous solutions (typically 50 µM) were prepared 

by dilution of a 20 mM DMSO stock solution of each complex, to give final solutions containing 

< 0.5% DMSO.  Similar dilutions were used with cell media for cell imaging investigations.   

 Both complexes displayed broad transitions in the UV-Vis (> 350 nm) region consistent 

with the expected spin-allowed and spin-forbidden transitions which are generally assigned to a 

combination of MLCT [dπ(Ir) → π(N^N and C^N)] and intra-ligand (C^N-based) excited states.  

The more intense absorption bands below 300 nm are assigned to ligand-centred π-π* 

transitions.  At neutral pH, both complexes exhibit a structured emission profile typical of an 

excited state containing some intra-ligand character, with moderate quantum yields of 5 – 9% 

(Table 1). 
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 Emission lifetimes in air-equilibrated water were best fit to a single exponential decay 

and were found to be similar for both complexes at neutral pH at > 500 ns.  However, upon 

switching to organic solvents (MeCN, toluene or CH2Cl2), the emission quantum yield decreased 

significantly and the emission lifetime also substantially decreased.  In all three cases two 

luminescence decay components could be detected, with a dominant short-lived component 

having τ < 100 ns and a minor long-lived component having a lifetime in the 100 – 300 ns range:  

fitting of the time-resolved emission profile to a double exponential decay was necessary in order 

to obtain acceptable residual fitting and chi-squared values.  

The significant differences in emission quantum yields and lifetimes between water and non-

polar organic solvents might, in part, arise from the known conformational flexibility of the 

peripheral PEG chains between different solvent systems,37,38 which has been shown by Lo and 

co-workers to result in solvent-dependent luminescence behaviour in Ir(III) complexes with long 

pendant PEG units.39 However the PEG chains in the new complexes that we report in this paper 

are rather short.  An additional factor responsible for the solvent-dependence could be the 

externally-directed basic N4 atom at position 4 of the triazole ring which is likely to participate in 

hydrogen-bonding interactions with solvent molecules,40 accounting for the difference between 

the luminescence behaviour in water on the one hand, and MeCN / CH2Cl2 / toluene on the other; 

we note that other types of complex with externally-directed lone pairs from cyanide ligands are 

well known to display strong solvent dependence of their photophysical properties due to 

changes in hydrogen-bonding with the solvent.41 

pH sensitivity of Ir-Lpytz.  The emission properties of Ir-Lpytz were monitored over the pH 

range 1 – 12 to assess the effect of protonation on the pendant pyridyl unit.  Under basic 

conditions (pH > 8) the emission of Ir-Lpytz remained similar to that observed under neutral 
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conditions (see Fig. 1).  However, upon lowering the pH the emission intensity was quenched 

significantly. The largest decrease in emission intensity (63%) was observed between pH 7 and 

pH 4, as shown by Fig. S9, which is the pH range where protonation of the pendant pyridyl 

group should be expected. The partial quenching of emission intensity was also accompanied by 

a reduction in emission lifetime from 520 ns to 350 ns, and is believed to be due to photoinduced 

electron transfer between the metal centre and the protonated pyridinium unit.45,46  Although Ir-

Lpytz does show a clear response across physiological pH, it is often more desirable for a pH 

probe to exhibit an increase in intensity (or a shift in λmax) upon protonation.  No change in 

emission intensity was expected or observed for Ir-Ltol in the same pH window as this complex 

lacks a pendant pyridyl unit. 

Confocal microscopy and co-localisation studies.  Both complexes were screened for 

cellular uptake and toxicity using live HeLa cells.  Time-dose experiments across the 10-75 µM 

concentration range at 15 min, 1 h, 4 h, 18 h and 24 h were carried out to establish optimal 

staining conditions.  Ir-Ltol was observed to be slightly less soluble in aqueous media than Ir-

Lpytz, occasionally leading to small amounts of precipitated complex in the incubation media.  

Short incubation times of ≤1 h did not provide a suitable level of cellular emission for confocal 

imaging, implying that these complexes enter the cell via an energy dependent pathway.47  

Extending the incubation period to 4 h led to clear cellular emission for both complexes, which 

could be observed using 405 nm excitation.  As expected, emission intensity increased with 

incubation time, however as images obtained after 4 h were of good quality, this was selected as 

the optimal incubation time for further studies.  The optimal loading concentration for a 4 h 

incubation period was 50 µM, which provided a good level of emission intensity and contrast, 
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without overloading the cells with complex or requiring high gain settings.  A typical confocal 

image showing the staining pattern of both complexes can be seen in Fig. S11. 

 Cell morphology and number remained consistent across all incubations with respect to 

control cells containing no Ir complex, including those at much longer times with high doses 

(>18 h, 75 µM).  This suggests that both Ir-Lpytz and Ir-Ltol exhibit insignificant cytotoxic effects 

on living cells.  This observation was confirmed by MTT toxicity assays, which measures cell 

metabolic activity.  Fig. S10 shows that there was no significant change in cell metabolic activity 

in comparison to control cells, after treatment with either complex for 4 h at 10 – 75 µM, 

confirming that cells remained viable after incubation with either Ir-Lpytz or Ir-Ltol.   

 Once internalised by the cells under optimal conditions (50 µM, 4 h) both Ir-Lpytz and Ir-

Ltol exhibit very similar staining patterns (Fig. 2, left), appearing as a structured network within 

the cell cytoplasm. No nuclear staining was observed implying that neither complex can cross 

the nuclear membrane, a feature commonly observed for these types of cyclometalated Ir(III) 

complex.48 To confirm cellular localisation of the complexes in HeLa cells, co-staining studies 

were carried out with MitoTracker® Orange and CellLight® ER-RFP.  Mitochondria and 

endoplasmic reticulum organelles both resemble a network of membranes when stained and 

imaged under confocal microscopy.  Therefore, these co-stains were considered the most 

appropriate starting point to investigate localisation of Ir-Lpytz and Ir-Ltol.  The degree of co-

localisation was evaluated by quantitative (Manders and Pearson’s coefficients)49 and qualitative 

(image overlay) methods.  Co-occurrence and co-localisation coefficients are given for each co-

stain in Table 2. 

Co-localisation experiments with MitoTracker ® Orange.  A small degree of off-target 

nucleoli staining was observed when using MitoTracker ® Orange (Fig. 2, middle).  Despite this, 
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the Pearson’s coefficients for Ir-Lpytz and Ir-Ltol with MitoTracker® Orange were 0.72 and 0.73, 

suggesting there is a large degree of co-localisation between the probes and the commercial 

mitochondrial stain.  This is supported by the high degree of co-occurrence demonstrated by the 

excellent Manders coefficents of 0.91 and 0.96, respectively, as well as the qualitative data in 

Fig. 2 (where white pixels depict co-occurrence between green and red channels).  The co-

localisation and co-occurrence data strongly suggest that Ir-Lpytz and Ir-Ltol accumulate in the 

mitochondria of living cells.  It is also likely that the true amount of co-localisation is slightly 

higher than the Pearsons coefficient implies, as this measurement also takes into account the off-

target emission observed for MitoTracker® Orange.  Manders values were calculated using 

emission from the green channel as a starting point (‘if there is a green, is there a red?’), 

therefore these values are not skewed by off target MitoTracker® staining. 

To ensure that there was no cross-talk between MitoTracker® Orange and the probe 

complexes, and that quantitative measurements were robust, control experiments were also 

carried out.  HeLa cells treated solely with MitoTracker® Orange were imaged using 405 and 

561 nm excitation and emission filters 525/50 nm (green) and >590 nm (red).  MitoTracker® 

should ideally only exhibit emission in the red channel under 561 nm excitation.  However, Fig. 

S13 also shows that a small amount of MitoTracker® emission is observed in the red channel 

under 405 nm excitation.  As all emission from MitoTracker® Orange is confined to the red 

channel, it does not interfere with iridium-based emission collected from dual-stained samples 

(Ir-based emission is collected from the green channel only under 405 nm excitation, and neither 

Ir-Lpytz or Ir-Ltol are emissive under 561 nm excitation).  This confirms that there is no-cross talk 

between Ir-based and MitoTracker® emission, giving a high degree of confidence in the co-
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localisation analysis and the conclusion that Ir-Lpytz and Ir-Ltol accumulate at the mitochondria of 

living cells. 

 The fact that both complexes exhibited a very similar staining pattern was initially 

surprising, as the pH sensitive pyridyl moiety on Ir-Lpytz might be expected to have some 

influence on directing cellular localisation.  As Ir-Lpytz becomes protonated in the pH 4-6 region, 

it was expected to localise in the lysosomes where the local acidic pH would protonate and 

subsequently trap the complex.51,52  The staining observed (Fig. 2) is clearly not indicative of 

lysosomal staining, which typically appears as bright punctate pattern throughout the cell 

cytoplasm (as indicated by Fig. S14), suggesting that the pendant pyridyl unit is not actually 

directing the cellular localisation in this way.   It is possible that Ir-Lpytz accumulates in the 

lysosomes in addition to the mitochondria, however the extent of this is difficult to ascertain via 

steady-state confocal imaging, especially as the emission intensity of Ir-Lpytz
 is partly quenched 

upon protonation. 

Super-resolution imaging: 3D-SIM.  Very few transition metal complexes have been 

used in conjunction with emission imaging that goes beyond the diffraction limit,25,26 though their 

excellent photostability makes them good candidates.  In order to generate a good quality 

reconstructed SIM image, the emissive molecule / probe must demonstrate a high emission 

intensity and specific organelle binding.  Although quantum yield values for Ir-Lpytz and Ir-Ltol 

are relatively modest, they performed well in confocal imaging in terms of emission intensity 

and stability under prolonged irradiation.  They also exhibit specific organelle staining, as 

demonstrated by the colocalisation studies with MitoTracker® Orange.  Therefore, Ir-Lpytz and 

Ir-Ltol were investigated as 3D-SIM probes. 
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 HeLa cells incubated with either Ir-Lpytz or Ir-Ltol (50 µM, 4 h) were washed and fixed, 

before mounting with prolong™ gold antifade mountant for 3D-SIM.  The emission intensity 

from both Ir-Lpytz and Ir-Ltol under 405 nm irradiation was sufficient for image reconstruction. 

However, the poorer solubility observed for Ir-Ltol was found to be problematic.  Unlike 

confocal microscopy, where only one focal plane is required to record an image, 3D-SIM 

requires an array of images taken across the Z plane.  Hence, out-of-focus light from a small 

amount of complex precipitate that would be rejected in a confocal microscopy measurement 

becomes a significant problem for image reconstruction (see Fig. S16).  Although some clear 

mitochondrial staining can be observed for Ir-Ltol in Fig. S16, this solubility issue led us to 

concentrate on Ir-Lpytz for further 3D-SIM studies. 

 HeLa cells stained with Ir-Lpytz clearly show that the complex is staining a network of 

tubular membranes across the cell cytoplasm.  Co-stained HeLa cells, incubated with Ir-Lpytz 

followed by MitoTracker® Orange (100 nM, 20 mins) show that the staining patterns of Ir-Lpytz 

and MitoTracker® Orange overlap throughout the cell cytoplasm. The additional resolution 

afforded by 3D-SIM reveals that (i) Ir-Lpytz also accumulates at the nuclear membrane (Fig. S17, 

blue arrows); and (ii) some regions of the cell cytoplasm exhibit emission from the green channel 

only.  These regions (see Fig. S17) could be due to additional lysosomal staining of Ir-Lpytz, 

however, due to extremely rapid photobleaching of the commercial LysoTracker® Red it was 

not possible to obtain high resolution 3D-SIM, co-stained images.  It is also a possibility that 

these regions of green emission are a product of imaging processing, as the modulation contrast-

to-noise ratio is only moderate for Ir-Lpytz (6-10) in comparison to MitoTracker® Orange (18-

24).  3D-SIM image analysis was carried out using SIMcheck;53 the modulation contrast-to-noise 

ratio (MCNR) is a measure of how many photons are being detected and is a key metric for the 
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strength of a SIM reconstruction.  Values of < 3 are considered to be inadequate for 

reconstruction, 6-11 are rated as adequate and 12-24 are good-to-excellent. 

It is clear that Ir-Lpytz and MitoTracker® are very well correlated within the cell 

cytoplasm.  Line profiles (Fig. 3, C & D) show that the distribution of MitoTracker® emission is 

slightly narrower with respect to Ir-Lpytz per mitochondrial cross section; and that the profile of 

Ir-Lpytz has two maxima per cross section whereas MitoTracker® only has one.  This data 

suggests that Ir-Lpytz tends to stain the mitochondrial membrane, whereas MitoTracker® 

accumulates within the mitochondria. 

 Line profiles taken from HeLa cells stained with Ir-Lpytz only exhibit the same 

distribution of emission intensity (Fig. S15), with two maxima per mitochondrion arising from 

staining at the mitochondrial membranes (edges) and a slight reduction in emission intensity at 

the centre.  The fact that the edge-to-centre ratio of Ir-Lpytz emission intensity is not reduced in 

the presence of MitoTracker® Orange also suggests that these two species are not competing for 

exactly the same binding site at the mitochondria. 

 The photostability of Ir-Lpytz was also assessed against MitoTracker® Orange, using 

SIMcheck (ImageJ plug-in), as this is a key factor in producing high-quality SIM reconstruction.  

After acquisition of 700 raw images, Ir-Lpytz was found to exhibit a small intensity decay of 

2.6%, whereas MitoTracker® Orange had decayed by 32.1%. This clearly demonstrates that Ir-

Lpytz has much greater photostability than the commercial MitoTracker® dye (see Fig. S18). 

Intensity fluctuations observed between and within angles appear to be a systematic issue with 

metal complexes, based on our recent investigations of several transition metal complex probes 

for 3D-SIM.54  We currently tentatively attribute these fluctuations to intrinsic properties of 
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luminescent metal complexes, for example their long emission lifetimes in comparison to 

commercial organic fluorophores. 

TEM imaging studies.  There is currently only a handful of studies in which transition 

metal complexes have demonstrated contrast enhancement in TEM,55-58 despite the excellent 

ability of such complexes to scatter electrons.  Of these, very few are mono-nuclear species.58-59  

With the recent developments and growth in correlative microscopy60-62 it would be 

advantageous to design a single probe that is compatible with both emission and electron 

microscopy techniques.  As Ir-based complexes combine excellent photophysical properties with 

the high electron density needed for use as TEM stains, and Ir-Lpytz and Ir-Ltol demonstrate good 

specificity for cellular mitochondria, these complexes were further investigated in TEM with and 

without the use of typical contrast agents. 

Live HeLa cells treated with Ir-Lpytz and Ir-Ltol (50 µM, 4 hours) were fixed using 

glutaraldehyde (3%) in PBS, dehydrated, and embedded in araldite resin before being sectioned 

and imaged using TEM.  When stained with one of the Ir complexes only (Fig. S19), obvious 

contrast enhancement was observed throughout the cytoplasm in comparison to untreated control 

cells.  A number of tubular structures that make up a larger network appeared to show enhanced 

contrast when compared to the surrounding cytoplasm.  These organelles were expected to be the 

mitochondria based on the emission microscopy studies.  However, very little cytoplasmic 

structure is visible in untreated cells under TEM, making it difficult to confirm the nature of the 

enhancement brought about by the addition of Ir-Lpytz or Ir-Ltol.  Therefore, cells containing both 

an Ir complex and typical contrast agents, osmium tetroxide (OsO4), lead citrate (LC) and uranyl 

acetate (UA), were investigated.   
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 Upon addition of OsO4, LC and UA to control cells (containing no Ir complex), organelle 

membranes and mitochondrial cristae become visible (Fig. 4, bottom-centre), revealing the shape 

and distribution of the mitochondria thought the cell cytoplasm.  Where cells have additionally 

been pre-treated with either Ir-Lpytz or Ir-Ltol (Fig. 4, left & right) the mitochondria appear as 

dark (filled) vesicles with sharp, distinct edges, while the rest of the cells appears similar to the 

control sample.  Thus, accumulation of the Ir complex at the mitochondria before fixation 

enhances the contrast of this organelle drastically, so much so that that the mitochondrial cristae 

become obscured in some cases. 

Rather than just relying on qualitative interpretation of TEM data, we attempted to 

quantify the amount of contrast enhancement brought about by the addition of Ir-Lpytz and Ir-Ltol
, 

using equation 1 to calculate the relative contrast (RC).  To implement this, an internal reference 

(area containing no cells) was necessary in each TEM image under investigation.  The internal 

reference is an area of resin where the intensity of electrons passing through the sample is 

assumed to be the same as that entering the sample (Ein), as there is no cellular material to scatter 

the electron beam.  Ein was therefore calculated as an average from a large area of resin (~ 3.72 

µm in diameter) typically comprising around 8.0 x 104 pixels (Fig. 5).  Variation in Ein across a 

sample is generally limited to a few percent, as the thickness of a 85 nm section only varies by a 

maximum of +/- 2 nm, giving an overall worst-case error of ca. 5%.[63]  Ein values are not 

transferable between images, as sample thickness and image acquisition parameters affect 

intensity histograms extracted using imageJ. 

 

RC = 1 – (Eout / Ein)     (Eq. 1) 
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RC is the relative contrast between a region of interest (containing cellular material) and 

the internal reference (resin only). Eout is calculated by the intensity of electrons per pixel leaving 

the sample after passing though the region of interest. (Note that RC is measured on a scale of 0 

to 1: a value of 0 would mean that none of the electrons are scattered by the sample, with respect 

to the resin, therefore Eout and Ein would be the same.  A value of 1 would mean that all of the 

electrons hitting the sample were scatteredand Eout would therefore be 0.  The greater the electron 

density of the nuclei present, the greater the scattering will be).    

 The primary region of interest in this study is the mitochondria.  However, qualitative 

analysis of TEM images in the absence of an Ir complex showed that addition of OsO4, LC and 

UA generally increased the contrast of the cell cytoplasm, in comparison to completely untreated 

cells.  Therefore, it was important to calculate and compare the RC values for a region of the 

cytoplasm without mitochondria present, as well as the mitochondria themselves.  

 Fig. 5 depicts the images that were used for this analysis. Three different mitochondria 

were selected (green boxes) and their mean signal intensities averaged to give organelle Eout 

values. Areas of cytoplasm (blue boxes) containing no obvious membranes or organelles were 

selected and histograms of these areas (extracted using imageJ) were calculated to obtain 

cytoplasm-only Eout values for each cell.  For cells that had not been pre-treated with Ir-Lpytz or 

Ir-Ltol the difference in relative contrast between the cytoplasm and the mitochondria was 3.4%. 

This difference is attributed to the large volume of mitochondrial membrane which make up the 

cristae.  The differences in RC between cytoplasm and mitochondria in cells treated with Ir-Lpytz 

and Ir-Ltol are significantly higher at 6.3% and 10%, respectively.  Interestingly, Ir-Ltol appears 

to provide marginally better contrast enhancement than Ir-Lpytz, suggesting that although the 
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complex does display solubility problems, it may actually target the mitochondria more 

efficiently than Ir-Lpytz. 

One of the most interesting observations arising from this TEM work is the fact that these 

complexes provide excellent contrast under the same loading concentration (50 µM) as used for 

emission microscopy.  Previously, transition metal complexes that have been successfully 

applied to TEM imaging have required loading concentrations of ≥100 µM59 to achieve sufficient 

image contrast, which is typically much higher than usually required for luminescence imaging. 

 

Oxygen sensing using two-photon PLIM.  Time-resolved imaging methods, such as 

Phosphorescence Lifetime Imaging Microscopy (PLIM), provide the ability to acquire additional 

detail about the cellular microenvironment9,12,17,64-66 in a real-time and relatively non-invasive way.  

The long-lived triplet excited states of Ir-Lpytz and Ir-Ltol, combined with their specific 

mitochondrial localisation, make them excellent candidates for time resolved in-vitro studies.  

The microenvironment at the mitochondria, in particular the local concentration of O2, can be 

investigated via Stern-Volmer quenching of the triplet excited state of the Ir-based probe 

complex.  Some progress has been made in this area recently,12 however the use of super-

resolution imaging and TEM to identify cellular localisation with such certainty, coupled with 

quantitative and real-time O2 measurements, is a relatively unexplored partnership of substantial 

current interest. 

 In order to understand the emission response of our iridium complexes to a change in O2 

concentration, PLIM investigations were initially carried out in both water and cell media 

(DMEM, see ESI for full details) solutions.  As the lifetime and quantum yield of Ir-Lpytz and Ir-

Ltol were similar to one another in aqueous solvents, Ir-Lpytz was selected as the lead compound 
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for these oxygen sensing studies due to its better solubility.  Solution PLIM measurements were 

carried out using the same instrument set-up used for in-vitro measurements, with solutions 

placed in a MatTek glass-bottomed culture dishes.  This was to ensure that solution data could be 

closely compared with in-vitro studies.  Emission decays were best fit to a single exponential 

decay model, using Becker & Hickl SPCImage (version 5). 

Stern-Volmer plots (Fig. 6) show the emission lifetime response of Ir-Lpytz
 in water and 

cell media under varying concentrations of O2.  Gas mixtures of N2 and O2 were applied by a 

positive stream of controlled gas delivered to a sealed chamber.  Samples were equilibrated for 

20 minutes on the microscope stage before data collection. Stern-Volmer quenching constants in 

water and DMEM media were concluded to be Ksv = 2.08x10-3 µM-1 and Ksv = 3.02x10-3 µM-1, 

respectively.  Although these quenching constants are not as large as some large porphyrin-based 

O2 sensors,8 they are similar to those published by Keyes and co-workers, who reported on the 

mitochondrial response to Antimycin A (a mitochondrial uncoupler which changes the local 

oxygen concentration and affects ATP production),67,68 using a Ru(II) complex.12 

 The slight difference between the quenching constants of Ir-Lpytz in water and media 

solutions stems from the different emission lifetimes in the absence of O2.  Lifetimes measured at 

elevated levels of oxygen (345 to 1387 µM) were very similar across both solvent systems, i.e. 

the values were within experimental error of one another.  However, at 0 µM of O2, when the 

incoming stream of gas is 100% N2, the emission lifetime for Ir-Lpytz is longer in cell media 

(1100 ns) than in water (750 ns).  This is attributed to the high proportion of protein molecules 

present in cell media to which Ir-Lpytz can bind, protecting it from quenching effects of the bulk 

solution.  This rationale is supported by previous studies that also demonstrate how binding to a 

protein can lead to an increase in emission intensity in transition metal complexes.69-71 This 
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protection offered by protein binding may only be noticeable in the absence of O2, as lifetime 

shortening by collisional quenching with O2 masks the subtle solvent effects as [O2] increases. 

Using the same incubation conditions as established for the imaging studies, HeLa cells 

were loaded with Ir-Lpytz (50 µM, 4h), washed with PBS, and covered with fresh media before 

imaging the cells by PLIM without fixation. Emission decay profiles, per-pixel, were best fit to a 

double exponential decay model. The major component (τ1, contributing 75-80% of total 

emission intensity) was used to plot rainbow colour maps and distribution histograms.  Fig. 7 

depicts the progression of emission lifetime in vitro upon altering the O2 concentration 

surrounding the cell.  Shorter lifetimes are represented by warm colours (red-orange) and longer 

lifetimes are represented by cool colours (blue).  The histogram shows the lifetime distribution of 

the major lifetime component across the entire cell located in the centre of the field-of-view. Fig. 

7 clearly demonstrates that Ir-Lpytz retains sensitivity in detecting changes to local concentrations 

of O2, even when bound within cellular mitochondria. 

 Emission lifetimes in live cells appear to be longer than those recorded in cell media 

under the same externally applied O2 concentration.  We attribute this difference to the fact that 

Ir-Lpytz is closely associated with the mitochondria inside the cell.  Elongated lifetimes with 

respect to cell media could be due to the nature of the binding site at the mitochondria, or local 

O2 concentration being lower due to its consumption in cell respiration and production of ATP, 

or a combination of both.  In addition to whole cell field-of-view analysis presented in Fig. 7, 

more specific mitochondrial regions of interest (ROI) were also investigated.  Mitochondrial 

lifetimes were compared across two sample sets: Sample A comprised several different cultured 

cell samples, all incubated with the same concentration of Ir-Lpytz.  Sample B was a single cell 

FOV. Each sample set was investigated across the same set of O2 concentrations.  This was to 



 21 

establish reproducibility and to ensure that prolonged irradiation of a single FOV was not having 

adverse effects on the emission properties of the internalized Ir-Lpytz. 

 Fig. 8, left, shows the superimposed data from both sample sets.  Average τ1 values were 

calculated from 10 mitochondrial ROI’s across a FOV, where errors bars depict the standard 

deviation about the average.  Orange data points represent sample set A, in which a different cell 

FOV was analysed at each O2 concentration, whereas blue data points represent sample set B, 

where the same individual cell was irradiated across all O2 concentrations.  This data shows 

excellent correlation between the two sample sets indicating that either method could be used to 

probe the emission lifetime of the probe in the cell.  Fig. 8 also shows that repeated atmosphere 

equilibration, and prolonged photo-excitation of a single sample dose, provided robust and 

repeatable emission lifetime data.  The emission spectrum (Fig. 8, right) taken from a live cell 

after PLIM imaging also implies that the emissive complex remains intact under prolonged two-

photon irradiation. 

 

Conclusions 

These [Ir(N^C)2(N^N)] complexes are amongst the first examples of transition metal 

probes that demonstrate compatibility with both super-resolution emission imaging (3D-SIM) 

and transmission electron microscopy (TEM) imaging.72  The fact that Ir-Lpytz and Ir-Ltol are 

compatible with both techniques at the same moderate loading concentration (50 µM), is a 

significant improvement compared to other transition metal TEM probes. This also opens the 

possibility for these Ir(III) complexes to be applied to the emerging techniques of Correlative 

Light and Electron Microscopy (CLEM).62  CLEM offers the potential to truly compare imaging 

data from the precisely the same field of view, within the same cell sample, thereby enabling the 
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dynamics of complex processes to be investigated and rare events to be explored at a cell 

ultrastructure level. The combination of CLEM plus quantitative O2 sensing would be potentially 

very powerful for extracting information concerning cellular processes. 

 The specific mitochondrial localization observed for Ir-Lpytz and Ir-Ltol was corroborated 

by detailed co-localisation studies using MitoTracker® Orange, and TEM microscopy with the 

traditional contrast agents OsO4, lead citrate and uranyl acetate.  The fact that contrast 

enhancement was observed only at the mitochondria in the presence of an Ir complex, suggests 

that the additional ‘green’ emission, which did not match MitoTracker® Orange in the 3D-SIM 

images, is most likely due to image processing rather than lysosomal staining. To improve image 

reconstruction, the complex would need to exhibit a higher MCNR, which can only be achieved 

by increasing the quantum yield.  Although the MCNR was modest for Ir-Lpytz
, it was sufficient 

to clearly observe the interconnecting tubular structure of the mitochondria.  In addition, the 

superior performance of Ir-Lpytz in terms of photostability in 3D-SIM with respect to commercial 

stains is also worth noting. 

 The O2 sensing ability of Ir-Lpytz was observed to be moderate in aqueous solution, yet 

this level of sensitivity was not reproducible in vitro.  However, the fact that Ir-Lpytz retained 

some sensitivity towards external changes in O2 concentrations whilst bound at the mitochondria, 

is promising.  

 Overall, the specific organelle staining coupled with excellent photostability make these 

Ir(III) complexes very promising starting points from which to develop CLEM probes.  

Moreover, their promising ability to detect O2 changes whilst bound at the mitochondria make 

them excellent candidates to develop a organelle specific multi-modal imaging probe. 
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Experimental Section 

See ESI for full synthesis and characterisation details of all compounds listed in Scheme 

1 and corresponding NMR spectra. General cell culture and staining protocols can also be found 

in the EDI, along with oxygen sensing parameters and PLIM data analysis. 

3D SIM imaging.  For 3D SIM, cells were seeded in 6-well plates on high precision 

coverslips and grown to ~60% confluency. After the growth media was removed, the cells were 

washed with PBS (1 x 1 mL) and then treated with 50 µM Ir-Lpytz or Ir-Ltol  in full DMEM (<1% 

DMSO) at 37 °C for 2 h.  The media was then removed, the cells washed with PBS (1 x 1 mL) 

and then fixed using 4% paraformaldehyde in PBS for 10 minutes.  Finally, the cover slips were 

dipped in deionised water to remove any salts on the cover slip, mounted on microscope slides 

using Slowfade® gold antifade reagent and then imaged. All 3D SIM imaging was performed on 

a GE Deltavision OMX blaze in structured illumination mode using fixed HeLa cells.  Ir 

complexes were excited using 405 nm with a filter set of 528/20 nm. MitoTracker® Orange was 

imaged using 561 nm excitation with a filter set of 600/37 nm, imaging was performed 

sequentially and channels were corrected using the provided software tool. All SIM 

reconstructions were performed on Softworx version 6.5.2 (GE healthcare) using OTFs 

optimised for the specific wavelength and oil used.  Images were run through the Image J plugin 

SIM check.  Further image analysis was performed on Imaris 7.1 (Bitplane AG, Switzerland). 

TEM imaging. Cells were cultured in T-25 flasks to 90% confluency.  After the growth 

media was removed, the cells were washed with PBS and the stained with 50 µM Ir-Lpytz or Ir-Ltol 

in full DMEM(<2% DMSO) at 37 °C for 4 h, washed with PBS (5 mL) and fixed using 

glutaraldehyde (2.5% in PBS) overnight at 4 °C.  Cells were then dehydrated using ethanol, 

embedded in Araldite resin and sectioned by microtome before imaging by TEM.  All TEM was 
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carried out using a FEI Tecnai 120Kv G2 Biotwin TEM operating at 80 kV equipped with an 

Orius SC100 bottom-mounted camera using Gatan Digital Micrograph software. 

 

Acknowledgements  

We thank the University of Sheffield for PhD studentships (JRS, AJC, LKM and BJC) 

and access to the Wolfson Light Microscopy Facility.  The Central Laser Facility at the 

Rutherford Appleton Laboratory received funding from the European Union's Horizon 2020 

research and innovation programme under grant agreement no. 654148 (Laserlab-Europe). 

Supporting Information. The following file is available free of charge as a PDF file: Full 

experimental details including synthesis and characterisation details of new complexes; details of 

cell culture and imaging methods and MTT toxicity data; additional steady-state confocal 

microscopy, 3D-SIM and TEM images; PLIM analysis of HeLa cells under atmosphoeric 

conditions; additional references (PDF). 

Author Contributions.  The manuscript was written through contributions of all authors. All 

authors have given approval to the final version of the manuscript. 

 

 

  



 25 

References 

(1)    Nunnari, J.; Suomalainen, A. Mitochondria: in sickness and in health. Cell 2012, 148, 

1145-1159. 

(2)    Yotter, R. A.; Wilson, D. M.  Sensor technologies for monitoring metabolic activity in 

single cells-part II: nonoptical methods and applications. IEEE Sens. J. 2004, 4, 412-429. 

(3)    Dewhirst, M. W.; Secomb, T. W.; Ong, E. T.; Hsu, R.; Gross, J. F. Determination of 

Local Oxygen Consumption Rates in Tumors.  Cancer Res. 1994, 54, 3333-3336. 

(4)    Arteel, G. E.; Thurman, R. G.; Yates, J. M.; Raleigh, J. A. Evidence that hypoxia markers 

detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Brit. J. 

Cancer 1995, 72, 889-895. 

(5)    Diepart, C.; Verrax, J.; Calderon, P. B.; Feron, O.; Jordan, B. F.; Gallez, B. Comparison 

of methods for measuring oxygen consumption in tumor cells in vitro. Anal. Biochem. 2010, 396, 

250-256. 

(6)    Dmitriev, R. I.; Zhdanov, A. V.; Ponomarev, G. V.; Yashunski, D. V.; Papkovsky, D. B. 

Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides.  Anal. 

Biochem. 2010, 398, 24-33. 

(7)    Fercher, A.; Borisov, S. M.; Zhdanov, A. V.; Klimant, I.; Papkovsky, D. B. Intracellular 

O2 Sensing Probe Based on Cell-Penetrating Phosphorescent Nanoparticles. ACS Nano 2011, 5, 

5499-5508. 



 26 

(8)    Papkovsky, D.; Zhdanov, A. V.; Fercher, A.; Dmitriev, R. I.; Hynes, J. Phosphorescent 

oxygen-sensitive probes (Springer, Basel) 2012. 

(9) Sakadžić, S.; Roussakis, E.; Yaseen, M. A.; Mandeville, E. T.; Srinivasan, V. J.; Arai, K.; 

Ruvinskaya, S.; Devor, A.; Lo, E. H.; Vinogradov, S. A.; Boas, D. A. Two-photon high-

resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat. 

Meth. 2010, 7, 755-759. 

(10) Kazmi, S. M. S.; Salvaggio, A. J.; Estrada, A. D.; Hemati, M. A.; Shaydyuk, N. K.; 

Roussakis, E.; Jones, T. A.; Vinogradov, S. A.; Dunn, A. K. Three-dimensional mapping of 

oxygen tension in cortical arterioles before and after occlusion. Biomed. Opt. Express 2013, 4, 

1061-1073. 

(11) Khan, A. A.; Fullerton-Shirey, S. K.; Howard, S. S. Easily prepared ruthenium-complex 

nanomicelle probes for two-photon quantitative imaging of oxygen in aqueous media. RSC Adv. 

2015, 5, 291-300. 

(12) Martin, A.; Byrne, A.; Burke, C. S.; Forster, R. J.; Keyes, T. E. Peptide-Bridged 

Dinuclear Ru(II) Complex for Mitochondrial Targeted Monitoring of Dynamic Changes to 

Oxygen Concentration and ROS Generation in Live Mammalian Cells. J. Am. Chem. Soc. 2014, 

136, 15300-15309. 

(13) Lv, W.; Yang, T.; Yu, Q.; Zhao, Q.; Zhang, K. Y.; Liang, H.; Liu, S.; Li, F.; Huang, W. 

A Phosphorescent Iridium(III) Complex-Modified Nanoprobe for Hypoxia Bioimaging via 

Time-Resolved Luminescence Microscopy. Adv. Sci. 2015, 2, 1500107. 



 27 

(14)   Baggaley, E.; Weinstein, J.; Williams, J. A. G. Time-Resolved Emission Imaging 

Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. 

Struct. Bonding (Springer, Berlin) 2014, 165, 205–256. 

(15) Yoshihara, T.; Hirakawa, Y.; Hosaka, M.; Nangaku, M.; Tobita, S. Oxygen imaging of 

living cells and tissues using luminescent molecular probes. J. Photochem. Photobiol. C: 

Photochem. Rev. 2017, 30, 71-95. 

(16)   Dmitriev, R. I.; Papkovsky, D. B. Intracellular probes for imaging oxygen concentration: 

how good are they? Methods Appl. Fluoresc. 2015, 3, 034001. 

(17) Dmitriev, R. I.; Kondrashina, A. V.; Koren, K.; Klimant, I.; Zhdanov, A. V.; Pakan, J. M. 

P.; McDermott, K. W.; Papkovsky, D. B. Small molecule phosphorescent probes for O2 imaging 

in 3D tissue models. Biomat. Sci. 2014, 2, 853-866. 

(18) Lecoq, J.; Parpaleix, A.; Roussakis, E.; Ducros, M.; Houssen, Y. G.; Vinogradov, S. A.; 

Charpak, S. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral 

vessels. Nat. Med. 2011, 17, 893-898. 

(19) Yu, Q.; Huang, T.; Li, Y.; Wei, H.; Liu, S.; Huang, W.; Du, J.; Zhao, Q. Rational design 

of a luminescent nanoprobe for hypoxia imaging in vivo via ratiometric and photoluminescence 

lifetime imaging microscopy.  Chem. Commun. 2017, 53, 4144-4147. 

(20) Lu, S.; Xu, W.; Zhang, J.; Chen, Y.; Xie, L.; Yao, Q.; Jiang, Y.; Wang, Y.; Chen, X. 

Facile synthesis of a ratiometric oxygen nanosensor for cellular imaging. Biosens. Bioelectron. 

2016, 86, 176-184. 



 28 

(21) Jakobs, S.; Wurm, C. A. Super-resolution microscopy of mitochondria. Curr. Opin. 

Chem. Biol. 2014, 20, 9-15. 

(22) van de Linde, S.; Sauer, M.; Heilemann, M. Subdiffraction-resolution fluorescence 

imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J. 

Struct. Biol. 2008, 164, 250-254. 

(23) Wurm, C. A.; Neumann, D.; Lauterbach, M. A.; Harke, B.; Egner, A.; Hell, S. W.; Jakobs, 

S. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular 

conditions and exhibits an inner-cellular gradient. Proc. Nat. Acad. Sci. 2011, 108, 13546-13551. 

(24) Neumann, D.; Bückers, J.; Kastrup, L.; Hell, S. W.; Jakobs, S. Two-color STED 

microscopy reveals different degrees of colocalization between hexokinase-I and the three 

human VDAC isoforms. PMC Biophysics 2010, 3, 4. 

(25) Huang, B.; Babcock, H.; Zhuang, X. Breaking the Diffraction Barrier: Super-Resolution 

Imaging of Cells. Cell 2010, 143, 1047-1058. 

(26) Byrne, A.; Burke, C. S.; Keyes, T. E. Precision targeted ruthenium(II) luminophores; 

highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. 

Chem. Sci. 2016, 7, 6551-6562. 

 (27)  Baggaley, E.; Weinstein, J. A.; Williams, J. A. G. Lighting the way to see inside the live 

cell with luminescent transition metal complexes. Coord. Chem. Rev. 2012, 256, 1762-1785. 

(28) Thorp-Greenwood, F. L.; Balasingham, R. G.; Coogan, M. P. Organometallic complexes 

of transition metals in luminescent cell imaging applications. J. Organomet. Chem. 2012, 714, 

12-21. 



 29 

(29) Coogan, M. P.; Fernandez-Moreira, V. Progress with, and prospects for, metal complexes 

in cell imaging.  Chem. Commun. 2014, 50, 384-399. 

(30) Lo, K. K.-W. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as 

Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc. Chem. Res. 2015, 48, 

2985-2995. 

(31)    Gildea, L. F.; Williams, J. A. G. Iridium and platinum complexes for OLEDs: Chapter 3 

in Organic Light-Emitting Diodes (OLEDs) – Materials, devices and applications (Ed. Buckley, 

A.), Woodhead, UK, 2013. 

(32) Erten-Ela, S.; Ocakoglu, K.  Iridium dimer complex for dye sensitized solar cells using 

electrolyte combinations with different ionic liquids. Mater. Sci. Semicond. Process. 2014, 27, 

532-540. 

(33) Baranoff, E.; Kumar, P. Iridium Complexes as Photoactive Center for Light Harvesting 

and Solar Cell Applications: Chapter 14 in Iridium(III) in Optoelectronic and Photonics 

Applications (Ed. Zysman-Colman, E.), Wiley, Chichester (UK), 2017  

(34) Zhang, K. Y.; Zhang, J.; Liu, Y.; Liu, S.; Zhang, P.; Zhao, Q.; Tang, Y.; Huang, W. 

Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous 

hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging 

microscopy. Chem. Sci. 2015, 6, 301-307. 

(35) Liu, S.; Liang, H.; Zhang, K. Y.; Zhao, Q.; Zhou, X.; Xu, W.; Huang, W. A 

multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia 

monitoring. Chem. Commun. 2015, 51, 7943-7946. 



 30 

(36) Park, H. J.; Kim, J. N.; Yoo, H.-J.; Wee, K.-R.; Kang, S. O.; Cho, D. W.; Yoon, U. C. 

Rational Design, Synthesis, and Characterization of Deep Blue Phosphorescent Ir(III) 

Complexes Containing (4′-Substituted-2′-pyridyl)-1,2,4-triazole Ancillary Ligands. J. Org. 

Chem. 2013, 78, 8054-8064. 

(37)   Li, S. P.-Y.; Lau, C. T.-S.; Louie, M.-W.; Lam, Y.-W.; Cheng, S. H.; Lo, K. K.-W. 

Mitochondria-targeting cyclometalated iridium(III)–PEG complexes with tunable photodynamic 

activity.  Biomaterials 2013, 34, 7519-7532. 

(38) Pope, S. J. A.; Rice, C. R.; Ward, M. D.; Morales, A. F.; Accorsi, G.; Armaroli, N.; 

Barigelletti, F. Folding of a poly(oxyethylene) chain as probed by photoinduced energy transfer 

between Ru- and Os-polypyridine termini. J. Chem. Soc., Dalton Trans. 2001, 2228-2231. 

(39) Li, S. P.-Y.; Liu, H.-W.; Zhang, K. Y.; Lo, K. K.-W. Modification of luminescent 

iridium(III) polypyridine complexes with discrete poly(ethylene glycol) (PEG) pendants: 

synthesis, emissive behaviour, intracellular uptake, and PEGylation properties. Chem. Eur. J. 

2010, 16, 8329-8339. 

(40) Haasnoot, J. G. Mononuclear, oligonuclear and polynuclear metal coordination 

compounds with 1,2,4-triazole derivatives as ligands.  Coord. Chem. Rev. 2000, 200-202, 131–

185. 

(41) Ward, M. D. [Ru(bipy)(CN)4]2– and its derivatives: photophysical properties and its use in 

photoactive supramolecular assemblies. Coord. Chem. Rev. 2006, 250, 3128–3141. 

 

 



 31 

(42) King, K. A.; Spellane, P. J.; Watts, R. J. Excited-state properties of a triply ortho-

metalated iridium(III) complex. J. Am. Chem. Soc. 1985, 107, 1431-1432. 

(43) Namdas, E. B.; Ruseckas, A.; Samuel, I. D. W.; Lo, S.-C.; Burn, P. L. Photophysics of 

Fac-Tris(2-Phenylpyridine) Iridium(III) Cored Electroluminescent Dendrimers in Solution and 

Films J. Phys. Chem. B 2004, 108, 1570-1577. 

(44) Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, 

Y.; Oishi, S.; Tobita, S. Reevaluation of absolute luminescence quantum yields of standard 

solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. 

PCCP 2009, 11, 9850-9860. 

(45) Guardigli, M.; Flamigni, L.; Barigelletti, F.; Richards, C. S. W.; Ward, M. D. Proton 

Sensitivity of Luminescent [M(bpy)2(AB)]2+ Complexes and Their Monomethylated 

Counterparts [M(bpy)2(ABMe)]3+ Where AB Is an Asymmetric Quaterpyridine with a Pendant 

Bipyridyl Site [M = RuII, OsII]. J. Phys. Chem. 1996, 100, 10620-10628. 

(46) Cargill Thompson, A. M. W.; Bardwell, D. A.; Jeffery, J. C.; Rees, L. H.; Ward, M. D. 

Syntheses, crystal structures, and electrochemical and spectroscopic properties of ruthenium 

complexes of the N,S-bidentate ligand 2-(2-pyridyl)benzenethiol. J. Chem. Soc., Dalton Trans. 

1997, 721-726. 

(47) Puckett, C. A.; Ernst, R. J.; Barton, J. K. Exploring the cellular accumulation of metal 

complexes. Dalton Trans. 2010, 39, 1159-1170. 

(48) You, Y. Phosphorescence bioimaging using cyclometalated Ir(III) complexes. Curr. 

Opin. Chem. Biol. 2013, 17, 699-707. 



 32 

(49) Dunn, K. W.; Kamocka, M. M.; McDonald, J. H. A practical guide to evaluating 

colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011, 300, C723-C742. 

(50) Bolte, S.; Cordelières, F. P. A guided tour into subcellular colocalization analysis in light 

microscopy. J. Microsc. 2006, 224, 213-232. 

(51) Sansee, A.; Meksawangwong, S.; Chainok, K.; Franz, K. J.; Gál, M.; Pålsson, L. O.; 

Puniyan, W.; Traiphol, R.; Pal, R.; Kielar, F. Novel aminoalkyl tris-cyclometalated iridium 

complexes as cellular stains. Dalton Trans. 2016, 45, 17420-17430. 

(52) He, L.; Li, Y.; Tan, C.-P.; Ye, R.-R.; Chen, M.-H.; Cao, J.-J.; Ji, L.-N.; Mao, Z.-W. 

Cyclometalated iridium(III) complexes as lysosome-targeted photodynamic anticancer and real-

time tracking agents. Chem. Sci. 2015, 6, 5409-5418. 

(53)  Ball, G.; Demmerle, J.; Kaufmann, R.; Davis, I.; Dobbie, I. M.; Schermelleh, L. 

SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy Sci. 

Rep. 2015, 5, 15915. 

(54) Shewring, J. R. PhD Thesis, University of Sheffield (UK), 2017. 

(55) Wragg, A.; Gill, M. R.; Hill, C. J.; Su, X.; Meijer, A. J. H. M.; Smythe, C.; Thomas, J. A. 

Dinuclear osmium(II) probes for high-resolution visualisation of cellular DNA structure using 

electron microscopy. Chem. Commun. 2014, 50, 14494-14497. 

(56)   Tian, X.; Gill, M. R.; Cantón, I.; Thomas, J. A.; Battaglia, G. Live cell luminescence 

imaging as a function of delivery mechanism. ChemBioChem 2011, 12, 548-551. 



 33 

(57) Gill, M. R.; Garcia-Lara, J.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, J. A. A 

ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat. 

Chem. 2009, 1, 662-667. 

(58) Zhang, Q.; Tian, X.; Hu, G.; Shi, P.; Wu, J.; Li, S.; Zhou, H.; Jin, B.-K.; Yang, J.; Zhang, 

S.; Tian, Y.  Dual-Functional Analogous cis-Platinum Complex with High Antitumor Activities 

and Two-Photon Bioimaging. Biochem. 2015, 54, 2177-2180. 

(59) Gill, M. R.; Derrat, H.; Smythe, C. G. W.; Battaglia, G.; Thomas, J. A. Ruthenium(II) 

Metallo-intercalators: DNA Imaging and Cytotoxicity. ChemBioChem 2011, 12, 877-880. 

(60) de Boer, P.; Hoogenboom, J. P.; Giepmans, B. N. Correlated light and electron 

microscopy: ultrastructure lights up! Nat. Meth. 2015, 12, 503-513. 

(61) Karreman, M. A.; Hyenne, V.; Schwab, Y.; Goetz, J. G. Intravital Correlative 

Microscopy: Imaging Life at the Nanoscale. Trends Cell Biol. 2016, 26, 848-863. 

(62) Brown, E.; Verkade, P. The use of markers for correlative light electron microscopy 

Protoplasma 2010, 244, 91-97. 

(63) De Groot, D. M. D. Comparison of methods for the estimation of the thickness of 

ultrathin tissue sections. J. Microsc. 1988, 151, 23-42. 

(64) Baggaley, E.; Sazanovich, I. V.; Williams, J. A. G.; Haycock, J. W.; Botchway, S. W.; 

Weinstein, J. A. Two-photon phosphorescence lifetime imaging of cells and tissues using a long-

lived cyclometallated Npyridyl^Cphenyl^Npyridyl Pt(II) complex. RSC Adv. 2014, 4, 35003-35008. 



 34 

(65) Baggaley, E.; Gill, M. R.; Green, N. H.; Turton, D.; Sazanovich, I. V.; Botchway, S. W.; 

Smythe, C.; Haycock, J. W.; Weinstein, J. A.; Thomas, J. A. Dinuclear ruthenium(II) complexes 

as two-photon, time-resolved emission microscopy probes for cellular DNA. Angew. Chem. Int. 

Ed. 2014, 53, 3367-3371. 

(66)   Baggaley, E.; Botchway, S. W.; Haycock, J. W.; Morris, H.; Sazanovich, I. V.; Williams, 

J. A. G.; Weinstein, J. A. Long-lived metal complexes open up microsecond lifetime imaging 

microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chem. Sci. 2014, 5, 

879-886. 

(67) Ma, X.; Jin, M.; Cai, Y.; Xia, H.; Long, K.; Liu, J.; Yu, Q.; Yuan, J. Mitochondrial 

electron transport chain complex III is required for antimycin A to inhibit autophagy. Chem. & 

Biol. 2011, 18, 1474-1481. 

(68)   Han, Y. H.; Kim, S. H.; Kim, S. Z.; Park, W. H. Antimycin A as a mitochondria damage 

agent induces an S phase arrest of the cell cycle in HeLa cells. Life Sci. 2008, 83, 346-355. 

(69) Wragg, A.; Gill, M. R.; McKenzie, L.; Glover, C.; Mowll, R.; Weinstein, J. A.; Su, X.; 

Smythe, C.; Thomas, J. A. Serum albumin binding inhibits nuclear uptake of luminescent metal-

complex-based DNA imaging probes.  Chem. Eur. J. 2015, 21, 11865-11871. 

(70) Lo, K. K.-W.; Hui, W.-K.; Chung, C.-K.; Tsang, K. H.-K.; Lee, T. K.-M.; Li, C.-K.; Lau, 

J. S.-Y.; Ng, D. C.-M. Luminescent transition metal complex biotin conjugates. Coord. Chem. 

Rev. 2006, 250, 1724–1736. 



 35 

(71) Lo, K. K.-W.; Lee, T. K.-M.; Lau, J. S.-Y.; Poon, W.-L.; Cheng, S.-H. Luminescent 

biological probes derived from ruthenium(II) estradiol polypyridine complexes. Inorg. Chem. 

2008, 47, 200–208. 

(72) Sreedharan, S.; Gill, M. R.; Garcia, E.; Saeed, H. K.; Robinson, D.; Byrne, A.; Cadby, 

A.; Keyes, T. E.; Smythe, C.; Pellett, P.; de la Serna, J. B.; Thomas, J. A.  Multimodal super-

resolution optical microscopy using a transition-metal based probe provides unprecedented 

capabilities for imaging both nuclear chromatin and mitochondria.  J. Am. Chem. Soc. 2017, 139, 

15907–15913. 

  



 36 

Table 1. Photophysical properties of Ir-Lpytz and Ir-Ltol in different solvents 

Complex Solvent Absorption 
λmax / nm  
(10-3ε / M-1cm-1)a 

Emission 
λmax / nm 

φb τ  / ns (%) 

IrLpytz H2O/dmsoc 385 (6.1), 415 (3.6) 487, 516, 

555 (sh) 

0.088 550 

 CH2Cl2 352 (9.9), 390 (5.3),  

426 (2.9) 

490, 521, 

564 (sh) 

0.027 290 (15) 

99 (85) d 

 toluene 356 (9.5), 395 (4.4), 

431 (2.4) 

493, 522, 

566 (sh) 

0.015 173 (8) 

47 (92) d 

 MeCN 354 (9.5), 392 (5.3), 

426 (2.9) 

492, 521, 

561 (sh) 

0.011 157 (10) 

45 (90) d 

Ir-Ltol H2O/dmsoc 388 (5.4), 416 (3.3) 484, 515, 

555 (sh) 

0.055 530 

 CH2Cl2 359 (10), 395 (5.8), 

432 (2.5) 

489, 521, 

564 (sh) 

0.025 186 (11)  

89 (89) d 

 toluene 367 (9.6), 397 (6.1), 

433 (2.8) 

492, 524, 

566 (sh) 

0.012 194 (4) 

46 (96) d 

 MeCN 355 (9.7), 394 (5.2), 

433 (2.1) 

487, 519, 

564 (sh) 

0.010 188 (4) 

46 (96) d 
 
a None of the absorption features are clearly-resolved maxima, but rather appear as shoulders on an 
absorption profile that steadily decreases in intensity at lower energies.  Wavelengths and extinction 
coefficients are therefore approximate. 
 
b Standards used for QY measurements: [Ir(ppy)3] in aerated Toluene (φ = 0.04) (refs. 42, 43); and 
[Ru(bpy)3]Cl2 in aerated water (φ = 0.042) (ref. 44). 
 
c Complex very poorly soluble in water; solution made by dissolving sample in dmso (0.1 cm3) and 
diluting to 100 cm3 with water. 
 
d Two luminescence lifetime components: see main text. 
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Table 2. Co-localisation and co-occurrence parameters for Ir-L complexesa 

Complex MitoTracker® Orange CellLight® ER-RFP 

 M P M P 

Ir-Lpytz 0.91 0.72 0.66 0.38 

Ir-Ltol 0.96 0.73 0.59 0.29 

a  M = Manders co-occurrence coefficients, P = Pearson’s co-localisation coefficients; see main 
text 
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Scheme 1. Synthetic scheme showing preparation of PEG-ylated complexes (Ir-Ltol and Ir-Lpytz. 

(i) 2-Ethoxyethanol/H2O (3:1), N2(g); (ii) Ln, MeOH/CH2Cl2 (2:1), N2(g); (iii) NaBH4, Na2CO3, 

EtOH; (iv) TosylPEG, NaH, THF/DMF (1:1), N2(g). 
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Figure 1. UV-vis (―) and emission (– • –) spectra of Ir-Ltol (blue) Ir-Lpytz (black) in H2O at 5.0 

x 10-5 M (diluted from a 20 mM stock, 0.3% DMSO). 

 

Figure 2. Steady-state confocal images of live HeLa cells co-stained with Ir-Lpytz (top, 50 µM, 4 

hours) and Ir-Ltol (bottom, 50 µM, 4 hours) and MitoTracker® Orange (200 nM, 35 min).  Left: 

image obtained with Ir(III) emission (λex = 405 nm,  λem = 475-575 nm). Middle: image obtained 

with MitoTracker® orange emission (λex = 561 nm, λem > 590 nm). Right: Overlay image, white 

pixels depicting co-occurrence of Ir(III) and MitoTracker® emission. 
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Figure 3. 3D SIM images of HeLa cells treated with Ir-Lpytz (50 µM, 4 h, green) and 

MitoTracker® Orange (100 nM, 20 mins, magenta). (A) A single Z-slice displaying emission 

from Ir-Lpytz; (B) a single Z-slice displaying emission from MitoTracker® Orange; (C) a single 

Z-slice displaying overlay of both channels; (D) Emission line profiles along yellow line in (C) 

overlaid, demonstrating full colocalisation of Ir complex and MitoTracker® Orange; (E) 3D-

rendered image of whole cell with emission from both probes (Ir-Lpytz = green, MitoTracker® 

Orange = magenta).  Scale bars = 3 µm. 
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Figure 4. TEM images showing mitochondrial staining of Ir-Lpytz (left) and Ir-Ltol (right) at 50 

µm compared to an unstained cell (centre).  All cells were also treated with contrast agents OsO4, 

uranyl acetate (UA) and lead citrate (LC). 

 

Figure 5. TEM micrographs of HeLa cells showing regions of analysis for relative contrast 

measurements. Purple box: internal reference (resin only), blue box: cytoplasm, green boxes: 

mitochondria.  Top: control cells (without Ir complex), bottom left: Ir-Lpytz (50 µm, 4 hr), 

bottom-right: Ir-Ltol (50 µm, 4 hr).  All cells additionally treated with typical contrast agent 

OsO4, LC, UA. 
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Figure 6. Left: Stern-Volmer plots showing response of Ir-Lpytz emission lifetime to varying 

concentrations of O2 in full cell media (green, Ksv = 3.02 x 10-3 µM-1) and water (black, Ksv = 2.08 

x 10-3 µM-1). Right: Luminescence decay traces of Ir-Lpytz in water (1.0 x 10-4 M) at varying 

concentrations of O2 under two-photon excitation (λex = 780 nm). 

 

Figure 7. Response of Ir-Lpytz in vitro (50 µM, 4 h) to changing O2 concentrations using two-

photon PLIM (λex 760 nm).  τ1 (major component) distributions taken from single cell ROI at 

each oxygen concentration and plotted on identical rainbow colour chart for comparison. τ1 

distribution maxima: 1387 µM O2 = 450 ns, 289 µM O2 = 775 ns, 0 µM O2 = 1180 ns. Scale bar 

= 10 µm. 
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Figure 8. Left: Average emission lifetimes of Ir-Lpytz in HeLa cells under varying concentrations 

of O2.  Average mitochondrial lifetimes were calculated from 10 individual data points taken 

from a FOV.  Error bars represent the standard deviation of those 10 data points.  Blue circles 

represent data obtained from one FOV (same cell sample). Orange circles represent data obtained 

from multiple FOVs (different cell samples).  Right: Emission spectra obtained from Ir-Lpytz in 

water (black line) under single photon excitation (λex = 380 nm) and live cells (grey line) under 

two-photon excitation (λex 760 nm). 
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SYNOPSIS  

A phosphorescent mononuclear Ir(III) complex allows combined confocal microscopy, 3-D 

superresolution, and transmission electron microscopy imaging of mitochondria – spanning two 

orders of magnitude in length scales – at the same working concentration, as well as allowing O2 

sensing by lifetime mapping. 

 

 


