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Filter Based Methods For
Statistical Linear Inverse Problems

Marco A. Iglesias∗ Kui Lin † Shuai Lu‡

Andrew M. Stuart §

December 8, 2015

Abstract

Ill-posed inverse problems are ubiquitous in applications. Under-
standing of algorithms for their solution has been greatly enhanced
by a deep understanding of the linear inverse problem. In the applied
communities ensemble-based filtering methods have recently been used
to solve inverse problems by introducing an artificial dynamical sys-
tem. This opens up the possibility of using a range of other filtering
methods, such as 3DVAR and Kalman based methods, to solve inverse
problems, again by introducing an artificial dynamical system. The
aim of this paper is to analyze such methods in the context of the
ill-posed linear inverse problem.

Statistical linear inverse problems are studied in the sense that
the observational noise is assumed to be derived via realization of a
Gaussian random variable. We investigate the asymptotic behavior of
filter based methods for these inverse problems. Rigorous convergence
rates are established for 3DVAR and for the Kalman filters, including
minimax rates in some instances. Blowup of 3DVAR and a variant of
its basic form is also presented, and optimality of the Kalman filter
is discussed. These analyses reveal a close connection between (it-
erative) regularization schemes in deterministic inverse problems and
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filter based methods in data assimilation. Numerical experiments are
presented to illustrate the theory.

1 Introduction

In many geophysical applications, in particular in the petroleum industry and
in hydrology, distributed parameter estimation problems are often solved by
means of iterative ensemble Kalman filters [15]. The basic methodology is to
introduce an artificial dynamical system, to supplement this with observa-
tions, and to apply the ensemble Kalman filter. The methodology is described
in a basic, abstract form, applicable to a general, possibly nonlinear, inverse
problem in [9]. In this basic form of the algorithm regularization is present
due to dynamical preservation of a subspace spanned by the ensemble dur-
ing the iteration. The paper [10] gives further insight into the development
of regularization for these ensemble Kalman inversion methods, drawing on
links with the Levenberg-Marquardt scheme [7]. In this paper our aim is to
further the study of filters for the solution of inverse problems, going beyond
the ensemble Kalman filter to encompass the study of other filters such as
3DVAR and the Kalman filter itself – see [13] for an overview of these filter-
ing methods. A key issue will be the implementation of regularization with
the aim of deriving optimal error estimates.

We focus on the linear inverse problem

y = Au† + η, (1)

where A is a compact operator acting between Hilbert spaces X and Y .
The exact solution is denoted by u† ∈ X and η is a noise polluting the
observations. We will consider two situations: Data Model 1 where multiple
observations are made in the form 1; and Data Model 2 where a single
observation is made. For modelling purposes we will assume that the noise η
is generated by the Gaussian N (0, γ2I), independently in the case of multiple
observations. In each case we create a sequence {yn}n≥0; for Data Model 1
the elements of this sequence are i.i.d. N (Au†, γ2I) whilst for Data Model
2 they are yn ≡ y, with y a single draw from N (Au†, γ2I). The case where
multiple independent observations are made is not uncommon in applications
(for example in electrical impedance tomography (EIT, [4]) and, although
we do not pursue it here, our methodology also opens up the possibility of
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considering multiple instances with correlated observational noise, by means
of similar filtering-based techniques.

The artificial, partially observed linear dynamical system that underlies
our methodology is as follows:

un = un−1,

yn = Aun + ηn.
(2)

In deriving the filters we apply to this dynamical system, it is assumed that
the {ηn}n≥0 are i.i.d. from N (0, γ2I). Note, however, that whilst the data
sequence {yn}n≥0 we use in Data Model 1 is of this form, the assumption is
not compatible with Data Model 2; thus for Data Model 2 we have a form
of model error or model mis-specification [13].

By studying the application of filtering methods to the solution of the
linear inverse problem our aim is to open up the possibility of employing
the filtering methodology to (static) inverse problems of the form 1, and
nonlinear generalizations. We confine our analysis to the linear setting as
experience has shown that a deep understanding of this case is helpful both
because there are many linear inverse problems which arise in applications,
and because knowledge of the linear case guide methodologies for the more
general nonlinear problem [6]. The last few decades have seen a comprehen-
sive development of the theory of linear inverse problems, both classically and
statistically – see [2, 6] and the references therein. Consider the Tikhonov-
Phillips regularization method

argminu

( 1

2γ2
‖y − Au‖2

Y +
α

2
‖u− u0‖2

E

)
.

This can be reformulated from a probabilistic perspective as the MAP esti-
mator for Bayesian inversion given a Gaussian smoothness prior, with mean
u0 and Cameron-Martin space E compactly embedded into X, and a Gaus-
sian noise model as defined above; this connection is eludicated in [11, 5].
We note that from the point of view of Tikhonov-Phillips regularization only
the parameter αγ2 is relevant, but that each of α and γ have separate inter-
pretations in the overarching Bayesian picture, the first as a scaling of the
prior precision and the second as observational noise variance. In this paper
we deepen the connection between the Bayesian methodology and classical
methods.
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The recent paper [9] opens up the prospect for a statistical explanation
of iterative regularization methods in the form of

un = un−1 +Kn(y − Aun−1)

with a general Kalman gain operator Kn. In this paper, we establish the con-
nection between iterative regularization methods (c.f. [6, 8]) and filter based
methods [13] with respect to an artificial dynamic system. More precisely, for
a linear inverse problem, we verify that the iterative Tikhonov regularization
method

un = un−1 + A∗(AA∗ + αI)−1(y − Aun−1) (3)

is closely related to filtering methods such as 3DVAR and the Kalman fil-
ter when applied to the partially observed linear dynamical system 2. The
similarity between both schemes provides a probabilistic interpretation of
iterative regularization methods, and allows the possibility of quantifying
uncertainty via the variance. On the other hand, we will employ techniques
from the convergence analysis arising in regularization theories [6] to shed
light on the convergence of filter based methods, especially when the linear
observation operator is ill-posed.

The paper is organized as follows. We first introduce filter based methods
for the artificial dynamics 2 in Section 2. Section 3 describes some general
useful formulae which are relevant to all the filters we study, and lists our
main assumptions on the inverse problem of interest. In Sections 4 and 5
respectively, detailed asymptotic analyses are given for the Kalman filter
method and 3DVAR, for both data models. The final Section 6 presents
numerical illustrations confirming the theoretical predictions.

2 Filters For The Artificial Dynamics

2.1 Filter Definitions

Recall the artificial dynamics (2), where the observation operator A also
defines the inverse problem (1), and {ηn}n≥0 is an i.i.d. sequence with η1 ∼
N (0, γ2I). The aim of filters is to estimate un given the data {yj}nj=1. In
particular, probabilistic filtering aims to estimate the probability distribution
of the conditional random variable un|{yj}nj=1.

If we assume that u0 ∼ N (m0, C0) then the desired conditional random
variable is Gaussian, because of the linearity inherent in (2), together with the
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assumed Gaussian structure of the noise sequence {ηn}n≥0. Furthermore the
independence of the elements of the noise sequence means that the Gaussian
can be updated sequentially in a Markovian fashion. If we denote by mn the
mean, and by Cn the covariance, then we obtain the Kalman filter updates
for these two quantities:

Kn = Cn−1A
∗ (ACn−1A

∗ + γ2I
)−1

(4a)

mn = mn−1 +Kn(yn − Amn−1) (4b)

Cn = (I −KnA)Cn−1. (4c)

The operator Kn is known as the Kalman gain and the inverse of the covari-
ance, the precision operator C−1

n , may be shown to satisfy

C−1
n = C−1

n−1 +
1

γ2
A∗A. (5)

All of these facts concerning the Kalman filter may be found in Chapter 4
of [13]. Expression (5) requires careful justification in infinite dimensions,
and this is provided in [1] in certain settings. However we will only use (5)
as a quick method for deriving useful formulae, not expressed in terms of
precision operators, which can be justified directly under the assumptions
we make.

A simplification of the Kalman filter method is the 3DVAR algorithm
[13] which is not, strictly speaking, a probabilistic filter because it does not
attempt to accurately track covariance information. Instead the covariance
is fixed in time at

Cn−1 =
γ2

α
Σ0 (6)

for some fixed positive and self-adjoint operator Σ0. The parameter α is a
scaling constant the inverse of which measures the relative size of the fixed co-
variance of the filter relative to that of the data. Imposing this simplification
on equations (4a), (4b) gives

Kn ≡ K := Σ0A
∗ (AΣ0A

∗ + αI)−1 (7a)

ζn = ζn−1 +K(yn − Aζn−1). (7b)

It is also helpful to define, from (4c),

C ≡ γ2

α
(I −KA)Σ0. (8)
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Notice [6, 14] that the iteration (7b) looks like a stationary iterative Tikhonov

method (3) with A replaced by AΣ
1
2
0 .

Throughout the paper (Kn,mn, Cn) stands for Kalman gain, updated
mean and updated covariance for the Kalman filter method and (K, ζn, C) is
the related sequence of quantities for 3DVAR.

2.2 Asymptotic Behaviour of Filters

We will view the filters as methods for reconstructing the truth u†; in par-
ticular we will study the proximity of mn (for the Kalman filter) and ζn (for
3DVAR) to u† for various large n asymptotics. Although the assumption
in the derivation of the filters is that yn is an i.i.d. sequence of the form
N (Au†, γ2I), we will not always assume that the data available is of this
form; to be precise Data Model 1 is compatible with this assumption whilst
Data Model 2 is not.

Recall that Data Model 1 refers to the situation where the data used in
the Kalman and 3DVAR filters has the form yn = Au†+ηn, where the ηn are
i.i.d. N (0, γ2I). Given such a data sequence we can generate an auxiliary
element

ȳ =
1

n

n∑
j=1

yj = Au† +
1

n

n∑
j=1

ηj

with η̄ = 1
n

∑n
j=1 ηj and η̄ ∼ N (0, γ

2
√
n
I). The law of large numbers and central

limit theorem thus allows us to consider an inverse problem of the form (1)
with noise level reduced by a factor of

√
n. We will study, in the sequel,

whether the Kalman or 3DVAR filters are able to automatically exploit the
decreased uncertainty inherent in an i.i.d. data set of this form.

For Data Model 2 we simply assume that the data used in the filters
is of the form yn ≡ y where y is given by (1) with η ∼ N (0, γ2I). From
the discussion in the preceding paragraph, we clearly expect less accurate
reconstruction in this case. For this data model we may view 3DVAR as
a stationary iterative Tikhonov regularization, whilst the Kalman filter is
an alternative iterative non-stationary regularization scheme, since Kn is
updated in each step. In addition, the statistical perspective not only allows
us to obtain an estimator (the mean (4b) or (7b)), but also in the case of the
Kalman filter method, to quantify the uncertainty (via the covariance (4c)).
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This uncertainty quantification perspective provides additional motivation
for the filtering approaches considered herein.

In this paper our primary focus is the asymptotic large n behavior of the
Kalman filter method and 3DVAR. More precisely, we are interested in the
accurate recovery of the true state u† when the noise variance vanishes, i.e.
γ2 → 0 for Data Models 1 and 2, or as n→∞ for Data Model 1 (by the law
of large numbers/central limit theorem discussion above).

To highlight the difficulties inherent in ill-posed inverse problems in this
regard, we note the following which is a straightforward consequence of The-
orem 4.10 in [13] when specialized to linear problems. Here, and in what
follows, ‖ · ‖ denotes both the norm on X and the operator norm from X
into itself.

Proposition 2.1. Consider the 3DVAR algorithm with {yn}n≥1. Assume
that there exists a constant L such that ‖I−KA‖ ≤ L < 1 and that ‖K‖ <∞.
Then, for Data Model 2, it yields

lim sup
n→∞

‖ζn − u†‖ ≤
‖K‖‖η‖
1− L

.

Note however, that if the observation operator A is compact or the inversion
is ill-posed, the assumption L < 1 in the preceding proposition cannot hold.
More precisely, the operator I −KA is no longer contractive since the spec-
trum of the operator KA clusters at the origin. Our focus in the remainder
of the paper will be on such ill-posed inverse problems.

3 Main Assumptions and General Properties

of Filters

3.1 Assumptions

Recall that ‖ · ‖ denotes both the norm on X and the operator norm from
X into itself. Throughout C will denote a generic constant, independent of
the key limiting quantities γ and n. Our main assumption is:

Assumption 1. For both the Kalman filter and the 3DVAR filter, we assume

(i) the variance C0 = γ2

α
Σ0 and R(Σ

1/2
0 ) ⊂ D (A), where α is a positive

constant and Σ0 is positive self-adjoint, and Σ−1
0 is a densely defined

unbounded self-adjoint strictly positive operator;
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(ii) the forward operator A satisfies

C−1‖Σ
a
2
0 x‖ ≤ ‖Ax‖ ≤ C‖Σ

a
2
0 x‖ (9)

on X for some constants a > 0 and 1 ≤ C <∞;

(iii) the initial mean satisfies m0 − u† ∈ D
(

Σ
− s

2
0

)
(or ζ0 − u† ∈ D

(
Σ
− s

2
0

)
)

with 0 ≤ s ≤ a+ 2;

(iv) the operator Σ0 in item (i) is trace class on X.

We briefly comment on these items. Item (i) allows a well defined operator

B0 := AΣ
1/2
0 (10)

which is essential in carrying out our analysis. Item (ii) is often called the
link condition and it connects both operators A and Σ0 (or C0). The third
item (iii) is the source condition (regularity) of the true solution [6]. The
final item (iv) makes C0 a well-defined covariance operator on X [3].

Item (ii) in the preceding assumption is automatically satisfied if A∗A and
Σ0 have the same eigenfunctions and certain decaying singular values. Item
(iii) can then be expressed in this eigenbasis. When studying the Kalman
filter we will, in some instances, employ the following specific form of items
(ii), (iii). Comparison of Assumptions 1 and 2 we see that they are identical
if a = 2p

1+2ε
and s = 2β

1+2ε
.

Assumption 2. Let the variance C0 = γ2

α
Σ0. The operators Σ0 and A∗A

have the same eigenfunctions {ei} with their eigenvalues {λi} and {κ2
i } sat-

isfying
λi = i−1−2ε, C−1i−p ≤ κi ≤ Ci−p

for some ε > 0, p > 0 and C ≥ 1. Furthermore, by choosing the initial mean
m0 = 0, the true solution u† with its coordinates {u†,i} in the basis {ei} obeys∑∞

i=1(u†,i)2i2β <∞.

3.2 Filter Properties

We start by deriving properties of the Kalman filter method under Data
Model 1. Other cases can be simply derived from minor variants of this
setting. Recall from (4b)

mn = (I −KnA)mn−1 +Knyn

8



and note that
u† = (I −KnA)u† +KnAu

†.

Under Data Model 1 we have yn = Au† + ηn and hence the total error
en := mn − u† satisfies

en = (I −KnA)en−1 +Knηn

=
n∏
j=1

(I −KjA)e0 +
n−1∑
j=1

(
n−1∏
i=n−j

(I −Ki+1A)

)
Kn−jηn−j +Knηn (11)

:= J1 + J2.

Here

J1 =
n∏
j=1

(I −KjA)e0 and

J2 =
n−1∑
j=1

(
n−1∏
i=n−j

(I −Ki+1A)

)
Kn−jηn−j +Knηn.

To establish a rigorous convergence analysis, the mean squared error
(MSE) E‖mn − u†‖2 is of particular interest. Since u† is deterministic and
each ηn is i.i.d Gaussian we obtain a bias-variance decomposition of the MSE:

E‖mn − u†‖2 = ‖J1‖2 + E‖J2‖2. (12)

To proceed further, both terms J1 and J2 need to be calibrated more carefully.
We consider the operator I−KnA which appears in both terms. By (4c),

we obtain

Cn = (I −KnA)Cn−1 =
n∏
j=1

(I −KjA)C0,

which is equivalent to

n∏
j=1

(I −KjA) = CnC
−1
0 . (13)

Notice that (5) yields

C−1
n = C−1

n−1 +
1

γ2
A∗A = C−1

0 +
n

γ2
A∗A. (14)
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By (13) and (14) we obtain

n∏
j=1

(I −KjA) = CnC
−1
0 = (C−1

0 + nA∗A/γ2)−1C−1
0

= C
1
2
0 γ

2(γ2I + nC
1
2
0 A
∗AC

1
2
0 )−1C

− 1
2

0 . (15)

We will use this expression (which is well-defined in view of Assumption 1
(i)) and the labelled equations preceding it in this subsection, frequently in
what follows.

4 Asymptotic Analysis of the Kalman Filter

In this section we investigate the asymptotic behaviour of the Kalman filter
(4a)-(4c), under Assumption 1. In particular, we are interested in whether we
can reproduce the minimax convergence rate. This minimax rate is achieved
by adopting Assumption 1 in the diagonal form of Assumption 2.

4.1 Kalman Filter and Data Model 1

We present the main results in current subsection.

Theorem 1. Let Assumption 1 hold. Then the Kalman filter method (4a)-
(4c) yields a bias-variance decomposition of the MSE

E‖mn − u†‖2 ≤ C
(α
n

) s
a+1

+
γ2

α
tr(Σ0)

for the Data Model 1. Setting α = N
s

s+a+1 and stopping the iteration when
n = N then gives

E‖mN − u†‖2 ≤
(
C + γ2tr(Σ0)

)
N−

s
s+a+1 . (16)

Theorem 2. Let Assumption 2 hold. Then the Kalman filter method (4a)-
(4c) yields a bias-variance decomposition of the MSE

E‖mn − u†‖2 ≤ C
(α
n

) 2β
1+2ε+2p

+ γ2n−
2ε

1+2ε+2pα−
1+2p

1+2ε+2p

10



for the Data Model 1. Setting α = N
2(β−ε)

1+2β+2p and stopping the iteration when
n = N then gives the following minimax convergence rate:

E‖mN − u†‖2 ≤ CN−
2β

1+2β+2p .

Remark 4.1. • (i) Under the Assumption 2 we prove unconditional con-
vergence of the Kalman filter method for any fixed α > 0 and γ > 0,
noticing that both the bias and variance vanish when n goes to infinity.
The key ingredient which leads to this unconditional convergence, in
comparison with Assumption 1, is that the rate of decay of the eigen-
values of the variance operator Σ0 is made explicit under Assumption
2; this is to be contrasted with the weaker assumption tr(Σ0) <∞ made
in Assumption 1 (iv).

• (ii) By choosing α depending on the update step N , again with fixed
γ, both Theorems 1 and 2 yield convergence rates in the MSE sense.
Indeed in the second case, where we use Assumption 2, the minimax

rate of N−
2β

1+2β+2p is achieved. This minimax rate may also be achieved
from the Bayesian posterior distribution with appropriate tuning of the
prior in terms of the (effective) noise size

√
N [12]; the tuning of the

prior is identical to the tuning of the initial condition for the covariance
C0, via choice of α. ♦

Proof of Theorems 1 and 2 is straightforward by means of a bias-variance
decomposition. Let Assumption 1 (i) hold, noting that then B0 := AΣ

1/2
0 is

well-defined. We thus obtain, by (15),

n∏
i=1

(I −KiA) = Σ
1
2
0 α(αI + nB∗0B0)−1Σ

− 1
2

0 = Σ
1
2
0 r1,α

n
(B∗0B0)Σ

− 1
2

0 , (17)

where

r1,α
n
(λ) :=

α
n

α
n

+ λ
=

α

α + nλ
. (18)

The operator-valued function r1,α
n

(18) has been verified to be powerful in
the convergence analysis of deterministic regularization schemes – see [14,
Ch.2]. In that context the following inequality is useful:

|λtr1,α
n
(λ)| ≤

(α
n

)t
, λ ∈ (0, ‖B∗0B0‖], 0 ≤ t ≤ 1. (19)
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Following these ideas we obtain the next two lemmas describing the bias
and variance error bounds. We leave the proofs of both lemmas to the Ap-
pendix. Theorems 1 and 2 are consequences, by choosing the parameter α
appropriately.

Lemma 1 (Bias for Kalman filter). Let Assumption 1 (i)-(iii) hold. Then
the Kalman filter method (4a)-(4c) yields

‖J1‖2 ≤ C
(α
n

) s
a+1

.

Furthermore, if Assumption 2 is valid, the bias obeys

‖J1‖2 ≤ C
(α
n

) 2β
1+2ε+2p

.

Lemma 2 (Variance for Kalman filter – Data Model 1). Let Assumption 1
(i), (iv) hold and {ηn} in (2) be an i.i.d sequence with η1 ∼ N (0, γ2I). Then
the Kalman filter method (4a)-(4c) yields

E‖J2‖2 ≤ γ2

α
tr(Σ0).

Furthermore, if Assumption 2 is valid, the variance obeys

E‖J2‖2 ≤ γ2n−
2ε

1+2ε+2pα−
1+2p

1+2ε+2p .

4.2 Kalman Filter and Data Model 2

The key difference between Data Model 2 and Data Model 1 is that, in the
case 2, the noises ηn appearing in the expression for the term J2 are identical,
rather than i.i.d. mean zero as in case 1. This results in a reduced rate of
convergence in case 2 over case 1, as seen in the following two theorems:

Theorem 3. Let Assumption 1 hold. Then the Kalman filter method (4a)-
(4c) yields a bias-variance decomposition of the MSE

E‖mn − u†‖2 ≤ C
(α
n

) s
a+1

+
nγ2

α
tr(Σ0)

for the Data Model 2. Fix α = 1 and assume that the noise variance γ2 =

N−
a+s+1
a+1 . If the iteration is stopped at n = N then the following convergence

rate is valid:

E‖mN − u†‖2 ≤ (C + tr(Σ0))N−
s
a+1 . (20)
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Theorem 4. Let Assumption 2 hold. Then the Kalman filter method (4a)-
(4c) yields a bias-variance decomposition of the MSE

E‖mn − u†‖2 ≤ C
(α
n

) 2β
1+2ε+2p

+ γ2
(n
α

) 1+2p
1+2ε+2p

for the Data Model 2. Fix α = 1 and assume that the noise variance γ2 =

N−
1+2β+2p
1+2ε+2p . If the iteration is stopped at n = N then the following convergence

rate is valid:

E‖mN − u†‖2 ≤ CN−
2β

1+2ε+2p .

Both convergence rates in Theorems 3 and 4 are of the same order since
the variance has been tuned to scale in the same way as the bias by choosing
to stop the iteration at N , depending on γ � 1, appropriately. In comparison
with the convergence rates in Theorems 1 and 2, the ones in this section under
Data Model 2 require small noise γ; those in the preceding subsection do not
because multiple observations, with additive independent noise, are made of
Au†. Proof of the two preceding theorems is straightforward: the J1 terms is
analyzed as in the preceding subsection and the J2 term must be carefully
analyzed under the assumptions of Data Model 2. The key new result is
stated in the following lemma, whose proof may be found in the Appendix.

Lemma 3 (Variance for Kalman filter method – Data Model 2). Let As-
sumption 1 hold and each observation yn ≡ y be fixed. Then the Kalman
filter method (4a)-(4c) yields

E‖J2‖2 ≤ nγ2

α
tr(Σ0).

Furthermore, if Assumption 2 is valid, the variance obeys

E‖J2‖2 ≤ γ2
(n
α

) 1+2p
1+2ε+2p

.

5 Asymptotic Analysis of 3DVAR

5.1 Classical 3DVAR

The mean of the 3DVAR algorithm is given by (7b) and has the form

ζn = (I −KA)ζn−1 +Kyn.
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Furthermore
u† = (I −KA)u† +KAu†.

If we define εn = ζn − u† then we obtain, since yn = Au† + ηn,

εn = (I −KA)εn−1 +Kηn

= (I −KA)nε0 +
n−1∑
j=0

(I −KA)jKηn−j

with ε0 := ζ0 − u†. We further derive

(I −KA)n = Σ
1
2
0 (α(αI +B∗0B0)−1)nΣ

− 1
2

0 = Σ
1
2
0 rn,α(B∗0B0)Σ

− 1
2

0 ,

by inserting the definition of the Kalman gain (7a), and by assuming As-
sumption 1 (i). The operator-valued function rn,α(·) is defined

rn,α(λ) :=

(
α

α + λ

)n
.

Similarly to the analysis of the Kalman filter, we derive

εn = (I −KA)nε0 +
n−1∑
j=0

(I −KA)jKηn−j (21)

= Σ
1
2
0 rn,α(B∗0B0)Σ

− 1
2

0 ε0 +
n−1∑
j=0

(I −KA)jKηn−j

:= I1 + I2.

Thus, the MSE takes the bias-variance decomposition form

E‖ζn − u†‖2 = E‖εn‖2 = ‖I1‖2 + E‖I2‖2.

This leads to the following two theorems:

Theorem 5. Let Assumption 1 hold. Then 3DVAR filter (7a)-(7b) yields a
bias-variance decomposition of the MSE

E‖ζn − u†‖2 ≤ C
(α
n

) s
a+1

+ C
γ2 lnn

α
tr(Σ0)

for the Data Model 1. Setting α = N
s

s+a+1 and stopping the iteration when
n = N then gives

E‖ζn − u†‖2 ≤ C
(
1 + γ2tr(Σ0)

)
N−

s
s+a+1 lnN. (22)
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Theorem 6. Let Assumption 2 hold. Then 3DVAR filter (7a)-(7b) yields a
bias-variance decomposition of the MSE

E‖ζn − u†‖2 ≤ C
(α
n

) 2β
1+2ε+2p

+ Cγ2α−
1+2p

1+2ε+2p

for the Data Model 1. Setting α = N
2β

1+2ε+2β+2p and stopping the iteration
when n = N then gives

E‖ζN − u†‖2 ≤ C
(
1 + γ2

)
N−

2β
1+2ε+2β+2p lnN.

Remark 5.1. The decay rate at the end of the preceding Theorem is the
same as that in Theorem 5 if a = 2p

1+2ε
and s = 2β

1+2ε
. This is the setting in

which Assumptions 1 and 2 are identical.
The preceding two theorems show that, under Data Model 1 and for any

fixed α, the (bound on the) MSE of the 3DVAR filter blows up logarithmically
as n→∞ under Assumption 1, and is asymptotically bounded for Assump-
tion 2. In contrast, for the Kalman filter method the MSE is asymptotically
bounded or unconditionally converges in n under the same assumptions – see
Theorems 1 and 2.

With optimal choice of α in terms of the stopping time of the iteration
at n = N , comparison of the convergence rates in Theorems 1 and 5 (or
Theorems 2 and 6) shows that the Kalman filter outperforms 3DVAR, but
only by a logarithmic factor (or a Hölder factor). For simplicity we only
analyze and discuss Data Model 1 for 3DVAR filter under the additional
Assumption 2; as for Data Model 2 one can derive consequences similar to
those in the preceding section in an analogous manner. ♦

We now study Data Model 2 and 3DVAR. We consider only Assumption
1; however the reader may readily extend the analysis to include Assumption
2. In the case of Data Model 2, both the Kalman and 3DVAR filters have
the same error bounds:

Theorem 7. Let Assumption 1 hold. Then the 3DVAR algorithm (7a)-(7b)
yields a bias-variance decomposition of the MSE

E‖ζn − u†‖2 ≤ C
(α
n

) s
a+1

+
nγ2

α
tr(Σ0)
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for the Data Model 2. Fix α = 1 and assume that the noise variance γ2 =

N−
a+s+1
a+1 . If the iteration is stopped at n = N then the following convergence

rate is valid:

E‖ζn − u†‖2 ≤ (C + tr(Σ0))N−
s
a+1 . (23)

The preceding three theorems can be proved by the bias-variance decom-
position and application of the following three lemmas, whose proofs are left
to the Appendix. However the proof of Theorem 6 is not as straightforward
as the others and we present details in the Appendix.

Lemma 4 (Bias for 3DVAR). Let Assumption 1 (i)-(iii) hold. Then 3DVAR
(7) yields

‖I1‖2 ≤ C
(α
n

) s
a+1

.

Furthermore, if Assumption 2 is valid, the bias obeys

‖I1‖2 ≤ C
(α
n

) 2β
1+2ε+2p

.

Lemma 5 (Variance for 3DVAR - Data Model 1). Let Assumption 1 (i), (iv)
hold and each noise ηn in (2) i.i.d. generated by N (0, γ2I). Then 3DVAR
(7) yields

E‖I2‖2 ≤ C
γ2 lnn

α
tr(Σ0)

for Data Model 1. Furthermore, if Assumption 2 is valid, the variance obeys

E‖I2‖2 ≤ Cγ2α−
1+2p

1+2ε+2p

and simultaneously

E‖I2‖2 ≤ C
γ2 lnn

α
.

Lemma 6 (Variance for 3DVAR - Data Model 2). Let Assumption 1 hold
and each observation yn ≡ y be fixed. Then 3DVAR (7) yields

E‖I2‖2 ≤ nγ2

α
tr(Σ0)

for Data Model 2.
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5.2 Variant of 3DVAR for Data Model 1

Recall that the 3DVAR iteration (7b) looks like a stationary iterative Tikhonov

method (3) [6, 14], with A replaced by AΣ
1
2
0 and with a fixed parameter α.

The non-stationary iterative Tikhonov regularization, with varying α, has
been proven to be powerful in deterministic inverse problems [8]. We gen-
eralize this method to the 3DVAR setting. Furthermore we demonstrate
that, for Data Model 1, it is possible to see blow-up phenomena with this
algorithm.

Starting from the classical form of the 3DVAR filter as given in (7a), (7b),
(8) we propose a variant method in which α varies with n. We obtain

Kn := Σ0A
∗ (AΣ0A

∗ + αnI)−1 (24a)

vn := vn−1 +Kn(yn − Avn−1) (24b)

Cn :=
γ2

αn
(I −KnA)Σ0. (24c)

If we define εn = vn− u† then we obtain, analogously to the derivation of
(11) and (21), the bias-variance decomposition as follows:

εn = (I −KnA) εn−1 +Knηn

=
n∏
j=1

(I −KjA) ε0 +
n−1∑
j=1

(
n−1∏
i=n−j

(I −Ki+1A)

)
Kn−jηn−j +Knηn

:= I1 + I2

with

ε0 = v0 − u†;

I1 =
n∏
j=1

(I −KjA) ε0;

I2 =
n−1∑
j=1

(
n−1∏
i=n−j

(I −Ki+1A)

)
Kn−jηn−j +Knηn.

By calibrating both terms I1, I2 carefully, we obtain the following blow-
up result, proved in the Appendix. Although the result only provides an
upper bound, numerical evidence does indeed show blow-up in this regime.
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Theorem 8. Let Assumption 1 hold and let αn be a sequence satisfying
1
αn
≤ c̃σn−1, with constant c̃, for σn :=

∑n
j=1

1
αj
. Then the variant EnKF

method (24a)-(24c) yields a bias-variance decomposition of the MSE

E‖vn − u†‖2 ≤ C
(
σ
− s
a+1

n + γ2tr(Σ0)σn

)
for Data Model 1. In particular, the geometric sequence αn := αqn−1 with
α > 0 and 0 < q < 1 yields

E‖vn − u†‖2 ≤ C
(
q

s
a+1

n + γ2tr(Σ0)q−n
)
.

6 Numerical Illustrations

In this section we provide numerical results which display the capabilities
of 3DVAR and Kalman filter for solving linear inverse problems of the type
described in Section 1. In addition, we verify numerically some of the theo-
retical results from Section 4 and Section 5.

6.1 Set-Up

We consider the two-dimensional domain Ω = [0, 1]2 and define the operators

A = (−4)−1, Σ0 = A2 (25)

with

D(4) =
{
v ∈ H2(Ω) | ∇v · n = 0 on ∂Ω,

∫
Ω

v = 0
}
.

With this domain −4 is positive, self-adjoint and invertible.Note that (9)
from Assumption 1 is satisfied with a = 1 and C = 1. In the following sub-
sections we produce synthetic data from a true function u† that we generate
as a two-dimensional random field drawn from the Gaussian measure N(0,Σ)
with covariance

Σ =
(
−4+

1

10
I
)−(2s+1)

(26)

with domain of definition D(Σ) = D(4) and where s > 0 is selected as
described below. The shift of −4 by a constant introduces a correlation
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length into the true function. Furthermore, for simplicity we consider m0 = 0
and note [5] that the given selection of u† yields u† ∈ Ht for all 0 < t < 2s.
Therefore, for discussion of the present experiments we simply assume that
u† −m0 ∈ D(Σ

−s/2
0 ) = H2s. Consequently, in order to satisfy Assumption 1

(iii) we need s such that 0 < s ≤ a + 2 = 3. Note that operator Σ0 in (25)
satisfies Assumption 1 (iv).

The numerical generation of u† is carried out by means of the Karhunen-
Loeve decomposition of u† in terms of the eigenfunctions of Σ which, from the
definition of D(Σ), are cosine functions. We recall that for the application
of the Kalman Filter and 3DVAR with Data Model 1 we need to generate
N instances of synthetic data {yn}Nn=1 where N is the maximum number of
iterations of the scheme. Below we discuss the selection of such N . The
aforementioned synthetic data are generated by means of yn ≡ Au† + ηn
with ηn ∼ N(0, γ2I) and γ specified below. For Data Model 2 we produce
synthetic data simply by setting yn ≡ y = Au† + η with η ∼ N(0, γ2I). In
order to avoid inverse crimes [11], all synthetic data used in our experiments
are generated on a finer grid (120× 120 cells) than the one (of 60× 60 cells)
used for the inversion. We use splines to interpolate synthetic data on the
coarser grid that we use for the application of the filters.

For both 3DVAR and Kalman filter with Data Model 1, we fix the number
of iterations N for the scheme and consider the selection α = N

s
s+1+a stated in

Theorem 1 and Theorem 5. Provided that the filters are stopped according to
n = N , these theorems ensure the convergence rates in (16) and (22) that we
verify numerically in the following subsection. For Data Model 2, Theorem
3 and Theorem 7 suggest that convergence rates (20) and (23) are satisfied

for α = 1 and provided that γ2 = N−
a+s+1
a+1 . The latter equality provides

an expression for the number of iterations N = N(γ) that we may use as
stopping criteria for these filtering algorithms applied to Data Model 2. In
Algorithm 1 we summarize the Kalman filter and 3DVAR schemes applied
to both data models.

Algorithm 1. Kalman Filter/3DVAR (Data Model 1/Data Model 2)
Let

N =

{
fix integer selected a priori for Data Model 1

round(γ−
2(a+1)
a+s+1 ) for Data Model 2
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and

α =

{
N

s
s+1+a for Data Model 1
1 for Data Model 2

For n = 1, . . . , N , update mn−1 and Cn−1 as follows

mn = mn−1 +Kn(yn − Amn−1)

Cn =

{
(I −KnA)Cn−1, for Kalman Filter

Cn−1, for 3DVAR

where

Kn = Cn−1A
∗ (ACn−1A

∗ + γ2I
)−1

.

and where we recall that

yn =

{
Au† + ηn for Data Model 1

y for Data Model 2

Note that for Data Model 1 we need at least N independent instances of data.

6.2 Using Kalman Filter and 3DVAR for solving linear
inverse problems

In this subsection we demonstrate how the filters under consideration in the
iterative framework described in Algorithm 1 can be used, with Data Model
1 and Data Model 2, to solve the linear inverse problem presented in Section
1. Let us consider the truth u† displayed in Figure 1 (top) generated, as
described in subsection 6.1, from a Gaussian measure with covariance (26)
and s = 1. Synthetic data are generated as described above with three
different choices of γ that yield noise levels of approximately 1%, 2.5%, and
5% of the norm of the noise free data (i.e. Au†).

We apply Algorithm 1 to this synthetic data generated both for the ap-
plication of Data Model 1 and Data Model 2. For Data Model 1 we consider
a selection of N = 25. Algorithm 1 states that the these schemes should
be stopped at iteration level n = N . However, in order to observe the per-
formance of these schemes, in these experiments we allowed for a few more
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iterations. In the left column of Figure 2 we display the plots of the error
w.r.t the truth of the estimator mn as a function of the iterations, i.e.

E(mn) ≡ ‖mn − Pu†‖

where Pu† denotes the interpolation of u† on the coarse grid used for the
inversion. Note that the error w.r.t. the truth of the estimates produced by
both schemes decreases monotonically. Interestingly, the value at the final
iteration displayed in these figures is approximately the same for all these
experiments independently of the noise level. Moreover, the stability of the
scheme does not seem to depend on the early termination of the scheme. In
addition, we note that both Kalman filter and 3DVAR exhibit very similar
performance in terms of reducing the error w.r.t the truth. However, for
larger noise levels we observe small fluctuations in the error obtained with
3DVAR.

In Figure 1 we display the estimates mn obtained with 3DVAR with
Data Model 1 at iterations n = 1, 10, 20, 30 for noise levels (determined by
the choice of γ) of 1% (top-middle), 2.5% (middle-bottom) and 5% (bottom).
We can visually appreciate from Figure 1 that the estimates obtained at the
final iteration n = 30 are indeed similar one to another even though the one
in the bottom row was computed by inverting data five times noisier than
the one in the first row. Similar estimates (not shown) were obtained with
the Kalman filter for Data Model 1.

For Data Model 2, the selection of γ corresponding to noise levels of
1%, 2.5%, and 5% yields a maximum number of iterations N = 20, 6, 3
respectively. Clearly, for Data Model 2, smaller observational noise results
in schemes that can be iterated longer, presumably achieving more accurate
estimates. Similarly to Data Model 1, we are required to stop the algorithm
at the iteration n = N . However, for the purpose of this study we iterate
until n = 30. In the right column of Figure 2 we display the plots of the
error w.r.t the truth of mn. In contrast to Data Model 1, we observe that the
error w.r.t the truth increases for n > N . In other words, the Kalman filter
and 3DVAR, when applied to Data Model 2, need to be stopped at n = N
in order to stabilize the scheme and obtain accurate estimates of the truth.
Moreover, stopping the scheme at n = N results in estimates whose accuracy
increases with smaller noise levels. Clearly, in the small noise limit, both
data models tend to exhibit similar behaviour. In Figure 3 we display mn

obtained from 3DVAR applied to Data Model 2 at iterations n = 1, 10, 20, 30
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for data with noise levels of 1% (top-middle), 2.5% (middle-bottom) and 5%
(bottom). Similar estimates (not shown) were obtained with the Kalman
Filter for Data Model 2.

It is clear indeed, that for Data Model 1, the application of Kalman filter
and 3DVAR results in more accurate and stable estimates when the noise
level in the data is not sufficiently small. The results from this subsection
show that the reduction in the variance of the noise due to the law of large
numbers and central limit theorem effect in Data Model 1 produces more
accurate algorithms. Although Data Model 1 requires multiple instances of
the data, in some applications such as in EIT [4], the data collection can be
repeated multiple times in order to obtain these data.

6.3 Numerical verification of convergence rates

In this subsection we test the convergence rates from Theorems 1, 5, 3, and 7.
For the verification of each of these rates we let Σ := Σs denote the covariance
from (26), and we consider 20 experiments corresponding to different truths
u† generated from N(0,Σs) with the four selections of s = 1, 2, 3, 4. Note that
Assumption 1 (iii) is satisfied only for s ≤ 3. Again, for Data Model 1 we
generate synthetic data for each of the truths and for as many iterations used
for the application of both schemes. Inverse crimes are avoided as described
in subsection 6.1.

The verification of Theorem 1 and Theorem 5 by means of Algorithm 1 in
the case of Data Model 1 is straightforward. For each of the set of synthetic
data associated to each of the 20 truths u† previously mentioned, we fix
γ = 5× 10−4. For each N (with N = {100, . . . , 3000}) we run Algorithm 1,
stop the schemes at n = N and record the value of ‖ζN − u†‖2. In the right
(resp. left) Figure 4 we display a plot of ‖ζN − u†‖2 vs logN for the Kalman
filter (resp. 3DVAR) for each of the set of 20 experiments associated to
different truths (red solid lines) generated as described above with (from top
to bottom) s = 1, 2, 3, 4. From Theorem 1 we note that the corresponding
slopes of the convergence rates should be approximately given by − s

s+1+a
.

For Theorem 5 there is an additional term of logN , but this is of course
negligible compared to the algebraic decay and we ignore it for the purposes
of this discussion. For comparison, a line (black dotted) with slope − s

s+1+a

is displayed in Figure 4.
We now verify the convergence rates of Theorem 3 and Theorem 7. Note

first that in Algorithm 1 for Data Model 2 we define N in terms of the given
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Figure 1. Top: truth u†. Top-middle, bottom-middle and bottom: Estimates
obtained with 3DVAR and Data Model 1 at iterations (from left to right) 1, 10, 20,
30) for noise levels of 1% (top-middle), 2.5% (bottom-middle) and 5% (bottom) .
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Figure 2. log Error with respect to the truth vs iterations of 3DVAR and Kalman
filter applied to Data Model 1 (left) and Data Model 2 (right) for different noise
levels
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obtained with 3DVAR and Data Model 2 at iterations (from left to right) 1, 10, 20,
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small noise γ, in order to obtain convergence. However, for the purpose
of the verification of the aforementioned convergence rates we define γ in
terms of N by means of the same expressions. In other words, for each N
(N = {100, . . . , 3000}) we produce synthetic data (or each of the 20 truths)

with η ∼ N(0, γ2) and γ = N−
a+s+1
2(a+1) . We then run Algorithm 1 and stop the

schemes at n = N . In the right (resp. left) Figure 5 we display a plot of
‖ζN − u†‖2 vs logN for the Kalman filter (resp. 3DVAR) for each of the set
of 20 experiments associated to different truths (red solid lines) generated as
before with (from top to bottom) s = 1, 2, 3, 4. We again include a line (black
dotted) with slope of − s

a+1
which is the asymptotic behavior predicted by

Theorems 3 and 7.
We can clearly appreciate that, for s satisfying Assumption 1 (iii) (i.e.

0 < s ≤ 3), the numerical convergence rates fit very well the ones predicted
by the theory. Note that the higher the regularity of the truth (i.e. the larger
the s), the smaller the error. w.r.t the truth in the estimates. We note that
for s = 4, the aforementioned assumption is violated and, in the case of Data
Model 1, the slopes of the numerical convergence rates are slightly smaller
than the theoretical ones. In this case (s = 4) there are also fluctuations
of the error w.r.t. the truth obtained with 3DVAR. These fluctuations may
be associated with the fact that since for the error w.r.t. the truth is very
small for sufficiently large iterations and for Data Model 1 the noise level is
fixed a priori (recall γ = 5 × 10−4). However, for the Kalman filter these
fluctuations are not so evident; presumably updating the covariance has a
stabilizing effect. For Data Model 2, as N increases, the corresponding γ
decreases and so these fluctuations in the error are non existent.

7 Conclusions

• We have presented filter based algorithms for the linear inverse problem,
based on introduction of an artificial dynamic. This results in meth-
ods which are closely related to iterative Tikhonov-type regularization.
Two data scenarios are considered, one (Data Model 1) involving mul-
tiple realizations of the data, with independent noise; the other (Data
Model 1) involving a single realization of the data; both are relevant in
applications.

• We present theoretical results demonstrating convergence of the algo-
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rithms in the two data scenarios. For multiple realizations of the noisy
the convergence is induced by the inherent averaging present in the
iterative method, and the link to the law of large numbers and central
limit theorem. For the single instance of data the small observational
noise limit must be considered.

• For both Data Model 1 and Data Model 2 the Kalman Filter and
3DVAR produced very similar results for relatively small N (N < 100).
In practice it is clear that 3DVAR is preferable as the Kalman filter
requires covariance updates which may be impractical for large scale
models. However, updating the covariance in the Kalman filter seems
to have an stabilizing effect in the error w.r.t the truth.

• For Data Model 1 the level of accuracy of the estimator is independent
of the noise level. Moreover, the stability of the scheme is not condi-
tioned to the early termination of the scheme. In contrast, for Data
Model 2 we need to stop at n = N to avoid an increase in the error w.r.t
the truth. Again, this illustrates that, whenever multiple instances of
the data are available, Data Model 1 offers a more stable and accurate
framework for solving the inverse problems under consideration.

• The theoretical results from this work are verified numerically whenever
the assumptions of the theory are satisfied.
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Figure 4. Convergence rates for 3DVAR (Left) and Kalman Filter (Right) with
Data Model 1 and synthetic data generated from 20 different truths with regularity
H2s with s (from top to bottom) 1,2,3 and 4.
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Figure 5. Convergence rates for 3DVAR (left) and Kalman Filter (right) with
Data Model 2 and synthetic data generated from 20 different truths with regularity
H2s with s (from top to bottom) 1,2,3 and 4.
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Appendix:

Proof of Lemma 1. The proof follows the classic arguments on Tikhonov
regularization with Hilbert scales, c.f. [6, Ch8.4]. We recall (9) in Assumption
1 (ii) and rewrite it in the form

c1‖Σ
a+1
2

0 x‖ ≤ ‖AΣ
1
2
0 x‖ ≤ c2‖Σ

a+1
2

0 x‖.

Notice that the definition of B0 in (10) gives, since X is a Hilbert space, and
using Assumption 1 (i) to ensure that B0 and B∗0 are well-defined bounded
linear operators,

‖AΣ
1
2
0 x‖ = ‖B0x‖ = ‖(B∗0B0)

1
2x‖.

Combining the two preceding displays we obtain

c1‖Σ
a+1
2

0 x‖ ≤ ‖(B∗0B0)
1
2x‖ ≤ c2‖Σ

a+1
2

0 x‖

and a duality argument yield

c−1
2 ‖Σ

−a+1
2

0 x‖ ≤ ‖(B∗0B0)−
1
2x‖ ≤ c−1

1 ‖Σ
−a+1

2
0 x‖

for any x ∈ R(Σ
a+1
2

0 ). Let θ ∈ [−1, 1]. Then the inequality of Heinz [6,
Ch.8.4, pp. 213] and an additional duality argument gives

c1‖Σ
θ(a+1)

2
0 x‖ ≤ ‖(B∗0B0)

θ
2x‖ ≤ c2‖Σ

θ(a+1)
2

0 x‖, (27)
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which yields R
(

(B∗0B0)
θ
2

)
= D

(
Σ
− θ(a+1)

2
0

)
.

Let Assumption 1 (iii) be valid with m0−u† ∈ D
(

Σ
− s

2
0

)
, and define z† :=

Σ
− 1

2
0 (m0− u†) ∈ D

(
Σ
− s−1

2
0

)
. Since s− 1 ∈ [−1, a+ 1], and consequently θ =

s−1
a+1
∈ (−1, 1], we obtain from (27) that z† ∈ R((B∗0B0)

s−1
2(a+1) ). Furthermore

there exists a υ ∈ X such that

z† = (B∗0B0)
s−1

2(a+1)υ.

Noting that 1
a+1
∈ (0, 1), and employing (27) with θ = 1

a+1
, together with

(17) and (19), we have

‖J1‖2 = ‖Σ
1
2
0 r1,α

n
(B∗0B0)Σ

− 1
2

0 (m0 − u†)‖2

= ‖(B∗0B0)
1

2(a+1) r1,α
n
(B∗0B0)z†‖2

= ‖(B∗0B0)
1

2(a+1) r1,α
n
(B∗0B0)(B∗0B0)

s−1
2(a+1)υ‖2

= ‖(B∗0B0)
s

2(a+1) r1,α
n
(B∗0B0)υ‖2

≤
(α
n

) s
a+1 ‖υ‖2.

In case of Assumption 2 we insert a = 2p
1+2ε

and s = 2β
1+2ε

.
�

Proof of Lemma 2. Notice that

Kn = Cn−1A
∗(ACn−1A

∗ + γ2I)−1

= C
1
2
n−1C

1
2
n−1A

∗(AC
1
2
n−1C

1
2
n−1A

∗ + γ2I)−1

= C
1
2
n−1(C

1
2
n−1A

∗AC
1
2
n−1 + γ2I)−1C

1
2
n−1A

∗

and

Cn = (I −KnA)Cn−1 = γ2C
1
2
n−1(C

1
2
n−1A

∗AC
1
2
n−1 + γ2I)−1C

1
2
n−1.

Thus we obtain

CnA
∗ = γ2Kn. (28)
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By virtue of (13) and (28) we derive

J2 =
n−1∑
j=1

(
n−1∏
i=n−j

(I −Ki+1A)

)
Kn−jηn−j +Knηn

=
n−1∑
j=0

(
CnC

−1
n−jKn−j

)
ηn−j

=
n−1∑
j=0

(
CnA

∗/γ2
)
ηn−j

=
n−1∑
j=0

((
C−1

0 + n
A∗A

γ2

)−1

A∗/γ2

)
ηn−j.

We denote F :=
(
C−1

0 + nA
∗A
γ2

)−1

A∗/γ2 and obtain

E‖J2‖2 =
n−1∑
j=0

E‖Fηn−j‖2 = nγ2tr(FF ∗).

By the definition of F and Assumption 1 (i), (iv) we obtain

F =

(
C−1

0 + n
A∗A

γ2

)−1

A∗/γ2

= Σ
1
2
0 (αI + nB∗0B0)−1B∗0

and consequently derive

tr(FF ∗) = tr
((

Σ
1
2
0 (αI + nB∗0B0)−1B∗0

)(
B0(αI + nB∗0B0)−1Σ

1
2
0

))
= tr((αI + nB∗0B0)−2B∗0B0Σ0)

≤ ‖(αI + nB∗0B0)−2B∗0B0‖tr(Σ0)

=
1

α2
‖r2,α

n
(B∗0B0)B∗0B0‖tr(Σ0)

≤ 1

α2

α

n
tr(Σ0) =

1

αn
tr(Σ0).
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with the operator-valued function r2,α
n
(λ) :=

(
α
n

α
n

+λ

)2

=
(

α
α+nλ

)2
. Such an

observation then yields

E‖J2‖2 = nγ2tr(FF ∗) ≤ γ2

α
tr(Σ0).

Concerning Assumption 2, we further estimate, by exploiting [12, Lemma
8.2],

tr(FF ∗) =
1

α2

∞∑
i=1

i−(1+2ε+2p)−(1+2ε)(
1 + n

α
i−(1+2ε+2p)

)2

=
1

n

∞∑
i=1

n
α2 i
−4ε−2p−2(

1 + n
α
i−2ε−2p−1

)2

� 1

nα

(n
α

)− 2ε
1+2ε+2p

and

E‖J2‖2 � γ2n−
2ε

1+2ε+2pα−
1+2p

1+2ε+2p .

�

Proof of Lemma 3. Notice that for Data Model 2, we derive

J2 =
n−1∑
j=1

(
n−1∏
i=n−j

(I −Ki+1A)

)
Kn−jηn−j +Knηn

=
n−1∑
j=0

((
C−1

0 + n
A∗A

γ2

)−1

A∗/γ2

)
ηn−j

= nFη

which yields

E‖J2‖2 = n2γ2tr(FF ∗).

The remainder of the proof follows Lemma 2.
�
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Proof of Theorem 6. As for the other theorems, the proof rests, of course,
on the bias variance decomposition, and then use of Lemmas 4 and 5. This
yields

E‖ζn − u†‖2 ≤ C
(α
n

) 2β
1+2ε+2p

+ Cγ2α−
1+2p

1+2ε+2p

and simultaneously

E‖ζn − u†‖2 ≤ C
(α
n

) 2β
1+2ε+2p

+ C
γ2 lnn

α
.

Choosing α = N
2β

1+2β+2p for the former inequality and α = N
2β

1+2ε+2β+2p for the
latter inequality, we conclude that, by stopping the iteration when n = N ,

E‖ζN − u†‖2 ≤ CN−
2p

1+2ε+2β+2p lnN.

�

Proof of Lemma 4. Analogously to the proof of Lemma 1, it may be
shown that

‖I1‖2 = ‖Σ
1
2
0 rn,α(B∗0B0)Σ

− 1
2

0 (u† −m0)‖2

≤ ‖(B∗0B0)
1

2(a+1) rn,α(B∗0B0)z†‖2

= ‖(B∗0B0)
1

2(a+1) rn,α(B∗0B0)(B∗0B0)
s−1

2(a+1)υ‖2

= ‖(B∗0B0)
s

2(a+1) rn,α(B∗0B0)υ‖2

≤
(α
n

) s
a+1 ‖υ‖2.

The final inequality follows from the asymptotic behavior of rn,α(λ), estab-
lished, for example. in [14, Ch.2, pp. 63]. In the case of Assumption 2 we
insert a = 2p

1+2ε
and s = 2β

1+2ε
.

�

Proof of Lemma 5. We denote Fj = (I −KA)jK and obtain

I2 =
n−1∑
j=0

Fjηn−j.
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Furthermore, we derive

E‖I2‖2 =
n−1∑
j=0

E‖Fjηn−j‖2 = γ2

n−1∑
j=0

tr(FjF
∗
j )

and
n−1∑
j=0

tr
(
FjF

∗
j

)
=

n−1∑
j=0

tr
(

(I −KA)jKK∗
(
(I −KA)∗

)j)
=

1

α2

n−1∑
j=0

tr
(

Σ
1
2
0 r2j+2,α(B∗0B0)B∗0B0Σ

1
2
0

)
≤ 1

α2

n−1∑
j=0

‖r2j+2,α(B∗0B0)B∗0B0‖tr(Σ0)

≤ tr(Σ0)

α2

n−1∑
j=0

α

2j + 2

� C ln(n)
tr(Σ0)

α
.

Thus,

E‖I2‖2 ≤ C
ln(n)γ2

α
tr(Σ0).

For Assumption 2 we need to estimate tr(FjF
∗
j ) carefully. We substitute the

given decay rate of the different eigenvalues, to obtain

tr(FjF
∗
j ) =

1

α2
tr
(

Σ
1
2
0 r2j+2,α(B∗0B0)B∗0B0Σ

1
2
0

)
=

1

α2

∞∑
i=1

i−2−4ε−2p(
1 + 1

α
i−1−2ε−2p

)2j+2

≤ 1

α2

∞∑
i=1

i−2−4ε−2p(
1 + j+1

α
i−1−2ε−2p

)2 .

By arguments similar to those used in the proof of Lemma 2 (or [12, Lemma
8.2]), we further estimate

1

α2

∞∑
i=1

i−2−4ε−2p(
1 + j+1

α
i−1−2ε−2p

)2 �
(

1

j + 1

)1+ 2ε
1+2ε+2p

α−
1+2p

1+2ε+2p
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and

E‖I2‖ ≤ Cγ2α−
1+2p

1+2ε+2p

n−1∑
j=0

(
1

j + 1

)1+ 2ε
1+2ε+2p

where the summation term in the right-hand side is bounded.
On the other hand, we can also estimate

tr(FjF
∗
j ) =

1

α2
tr
(

Σ
1
2
0 r2j+2,α(B∗0B0)B∗0B0Σ

1
2
0

)
=

1

α2

∞∑
i=1

i−2−4ε−2p(
1 + 1

α
i−1−2ε−2p

)2j+2

≤ 1

α2

∞∑
i=1

i−2−4ε−2p(
1 + 2(j+1)

α
i−1−2ε−2p

)
<

1

2(j + 1)α

∞∑
i=1

i−1−2ε

≤ C
1

(j + 1)α

and

E‖I2‖ ≤ C
γ2 lnn

α
.

�

Proof of Lemma 6. Since ηn = η in this case, we derive

I2 =
n−1∑
j=0

(I −KA)jKη

and by operator-valued calculation we obtain

n−1∑
j=0

(I −KA)jK =
1

α
Σ

1
2
0

n−1∑
j=0

(
α(αI +B∗0B0)−1

)j+1
B∗0

= Σ
1
2
0 qn,α(B∗0B0)B∗0
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where qn,α(λ) := 1
λ

(
1− αn

(α+λ)n

)
. Thus we obtain, by the asymptotic behav-

ior of qn,α(λ) derived in [14, Ch.2, pp. 64],

E‖I2‖2 = γ2tr
(
Σ

1
2
0 qn,α(B∗0B0)B∗0B0qn,α(B∗0B0)Σ

1
2
0

)
≤ γ2‖qn,α(B∗0B0)(B∗0B0)

1
2‖2tr(Σ0)

≤ nγ2

α
tr(Σ0).

�

Proof of Theorem 8. Similar to the Kalman filter method and 3DVAR,
by Assumption 1 (i)-(iii), we obtain the bias error estimate

‖I1‖ ≤

∥∥∥∥∥Σ
1/2
0

n∏
j=1

αjI

B∗0B0 + αjI
Σ

1/2
0 ε0

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∏
j=1

(
αjI

B∗0B0 + αjI

)
(B∗0B0)

s
2(a+1) υ

∥∥∥∥∥
2

.

Now we need upper bounds of the following operator-valued function

fn,v(λ) = λv
n∏
j=1

αj
λ+ αj

, λ ∈ (0,∞), n > v > 0. (29)

Define σn :=
∑n

j=1
1
αj

and assume the sequence {αj}nj=1 satisfying

1

αn
≤ c̃σn−1 (30)

with a constant c̃. Then the results in [8] yield

‖I1‖ ≤ Cσ
− s
a+1

n , n > 1.

It remains to estimate the I2 term. Define

Fj : =
n−1∏
i=n−j

(I −Ki+1A)Kn−j

= Σ
1/2
0

n−1∏
i=n−j

(
αi+1I

B∗0B0 + αi+1I

)
1

B∗0B0 + αn−jI
B∗0 .
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Then we obtain

I2 =
n−1∑
j=1

Fjηn−j +Knηn

which yields

E‖I2‖2 = γ2

n−1∑
j=1

tr(FjF∗j ) + γ2tr(KnK
∗
n).

Notice that for any j ≥ 1

FjF∗j =
1

α2
n−j

Σ
1/2
0

n−1∏
i=n−j

(
αi+1

B∗0B0 + αi+1I

)2(
αn−j

B∗0B0 + αn−jI

)2

B∗0B0Σ
1/2
0

we derive,

tr(FjF∗j ) ≤ tr(Σ0)

α2
n−j

∥∥∥∥∥
n−1∏
i=n−j

(
αi+1

B∗0B0 + αi+1I

)2(
αn−j

B∗0B0 + αn−jI

)2

B∗0B0

∥∥∥∥∥
≤ tr(Σ0)

α2
n−j

∥∥∥∥∥
(

αn−j
B∗0B0 + αn−jI

)2

B∗0B0

∥∥∥∥∥
≤ 1

2αn−j
tr(Σ0)

and

tr(KnK
∗
n) ≤ 1

2αn
tr(Σ0).

A rough variance estimate for the variant method is

E‖vn − u†‖2 = ‖I1‖2 + E‖I2‖2

≤ C
(
σ
− s
a+1

n + γ2tr(Σ0)σn

)
.

The first term vanishes but the second term blows up when n → ∞ and
σn →∞.
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To further investigate the blow up, we consider a special geometric se-
quence αn = αqn−1 with 0 < q < 1. Thus, we have

σn = α−1q1−n1− qn

1− q
≥ α−1q1−n = q/αn+1

and (30) is satisfied with c̃ = 1/q. Actually, we derive

1

αn−j
+ σn − σn−j =

1

αn−j
+

1

αn−j+1

+ . . .+
1

αn
= α−1q1−n1− qj+1

1− q
≥ α−1q1−n = q/αn+1.

Thus the results in [8] refine, by the asymptotic behavior of (29),

tr(FjF∗j ) ≤ tr(Σ0)

α2
n−j

∥∥∥∥∥
n−1∏
i=n−j

(
αi+1

B∗0B0 + αi+1I

)2(
αn−j

B∗0B0 + αn−jI

)2

B∗0B0

∥∥∥∥∥
≤ 1

α2
n−j

( 1

αn−j
+ σn − σn−j

)−1

tr(Σ0)

= α−1q1+j−n
(

1 + q−j
1− qj

1− q

)−1

tr(Σ0)

≤ α−1q1+2j−ntr(Σ0)

and we derive

E‖I2‖2 ≤ qγ2tr(Σ0)

α
q−n

(
n−1∑
j=1

q2j + 1

)
.

Summing up, for the geometric sequence, we obtain

E‖vn − u†‖2 ≤ C
(
q

s
a+1

n + γ2tr(Σ0)q−n
)
.

The second term blows up exponentially when n goes to infinity.
�
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