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SUMMARY

Transcription in eukaryotic cells occurs in gene-
specific bursts or pulses of activity. Recent studies
identified a spectrum of transcriptionally active
‘‘on-states,’’ interspersed with periods of inactivity,
but these ‘‘off-states’’ and the process of tran-
scriptional deactivation are poorly understood. To
examine what occurs during deactivation, we inves-
tigate the dynamics of switching between variable
rates. We measured live single-cell expression of
luciferase reporters from human growth hormone or
human prolactin promoters in a pituitary cell line.
Subsequently, we applied a statistical variable-rate
model of transcription, validated by single-molecule
FISH, to estimate switching between transcriptional
rates. Under the assumption that transcription can
switch to any rate at any time, we found that tran-
scriptional activation occurs predominantly as a
single switch, whereas deactivation occurs with
graded, stepwise decreases in transcription rate.
Experimentally altering cAMP signalling with
forskolin or chromatin remodelling with histone de-
acetylase inhibitor modifies the duration of defined
transcriptional states. Our findings reveal transcrip-
tional activation and deactivation as mechanistically
independent, asymmetrical processes.

INTRODUCTION

The expression of many genes has been shown to be highly

dynamic and heterogeneous in individual living cells (Raj et al.,

2006; Harper et al., 2011). Transcription is an inherently noisy

process contributing to intercellular variation, where low molec-

ular numbers amplify this variation (Becskei et al., 2005). An indi-

vidual cell is subject to both intrinsic noise, which arises from
Cell Systems 5, 1–8, Dec
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probabilistic interactions between low numbers of intracellular

molecules, and extrinsic noise, which is due to more global var-

iations in cell states (Elowitz et al., 2002; Carey et al., 2013;

Dadiani et al., 2013). Production of mRNA transcripts occurs in

gene-specific bursts, reliant on promoter architecture (Zoller

et al., 2015; Suter et al., 2011; Hocine et al., 2015), chromatin sta-

tus (Bintu et al., 2016; Noordermeer et al., 2011), and exogenous

stimuli (Harper et al., 2011; Molina et al., 2013; Featherstone

et al., 2016). These bursts of activity are separated by intermit-

tent ‘‘off’’ periods of transcriptional inactivity (Chubb et al.,

2006; Zenklusen et al., 2008; Noordermeer et al., 2011). It has

been suggested that this inactive phase comprises multiple

independent states (Zoller et al., 2015). This phase includes a

refractory period, during which a new round of transcriptional

activation cannot be initiated (Harper et al., 2011; Suter et al.,

2011). The rate-limiting duration of this state is assumed to be

a result of a combination of processes including signaling, chro-

matin remodeling, transcription factor complex formation, and

the recruitment and activation of RNA polymerase II (Larson

et al., 2011; Sorre et al., 2014: Bintu et al., 2016).

Quantitative analysis of optical reporter genes, such as the

firefly luciferase gene, provides real-time measurements of tran-

scription dynamics from individual living cells. This enables the

development of mathematical models and the formulation of

subsequent hypotheses regarding the nature of bursts of pro-

moter activity in a noisy molecular system. Previously applied

‘‘random telegraph’’ models assumed that transcription oper-

ated as a binary function, identifying defined on/off states of

activity (Raj and Oudenaarden, 2009; Harper et al., 2011; Suter

et al., 2011). However, observation of transcription profiles

from large numbers of individual cells in either a basal or stimu-

lated state suggested that variable rates may in fact occur

(Harper et al., 2011; Molina et al., 2013; Corrigan and Chubb,

2014), and therefore an on/off model is too simplistic to describe

dynamic transcription. While several studies have applied multi-

state models of transcription, many categorize transcriptional

phases into only a few discrete states (Neuert et al., 2013; Zhang

and Zhou, 2014; Zoller et al., 2015; Bintu et al., 2016). Hey et al.

(2015) developed a stochastic switch model (SSM) assuming
ember 27, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Heterogeneous Promoter-Specific Activity in Single Cells

(A and B) Example images of single-cell bioluminescence in GH3 pituitary cells expressing either an�840/+1 bp (A) or�3,348/+1 bp (B) hGH-luciferase transgene

in serum-starved conditions (BSA) for 0–48 hr.

(C and E) Real-time luminescence plots demonstrate heterogeneous expression dynamics (shades of green/blue) but an overall stable population output (black).

(D and F) Mean population luminescence following stimulation shows promoter-specific responses. While the luminescence of both promoters is tripled within

4 hr upon cAMP stimulation with forskolin (Fsk), only the larger�3,348/+1 bp construct responds with increased output following HDAC inhibition by trichostatin

A (TSA). The combination of Fsk and TSA has a synergistic effect, further increasing �3,348/+1 bp luminescence production. (�840/+1 bp: BSA, n=75; Fsk,

n = 41; TSA, n=33; Fsk + TSA, n=46; �3,348/+1 bp: BSA, n = 97; Fsk, n = 59; TSA, n = 42; Fsk + TSA, n = 40).
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that transcription could occur at any rate, and could switch in any

direction at any time.When applied to the transcription dynamics

of the human prolactin (hPrl) gene within the pituitary gland, the

model provided a more graded or analog view of transcription

(Featherstone et al., 2016). By not limiting the process to discrete

transcriptional on-states, the model also provides a more

quantitative insight into dynamic and complex transcriptional

states, supporting recent work suggesting the occurrence of

transcription along a continuum of rates (Corrigan et al., 2016;

Sepúlveda et al., 2016).

Previous single-cell bioluminescence analysis of luciferase ac-

tivity driven by a short human growth hormone (hGH) proximal

promoter (�496/+1 bp) has highlighted the pulsatile dynamics

of this gene (Norris et al., 2003). The cell-type-specific expression

of this pituitary hormone is controlled by an extensive sequence

that regulates chromatin remodeling and proximal promoter ac-

cess (Ho et al., 2002, 2011, 2015; Shewchuk et al., 2002, 2006;

Bodner et al., 1988; Lipkin et al., 1993; Cohen et al., 1999; Alonso

et al., 1998). We have taken advantage of the pulsatile nature of

hGH gene expression to assess the influence of different types

of regulatory element on gene transcription dynamics. Further-

more, we compared these dynamics with those of the hPrl

gene, an independently regulated pituitary hormone gene (Niall

et al., 1971). The statistical modeling approach was validated

by single-molecule fluorescence in situ hybridization (smFISH),

quantitatively confirming the modeled estimates of the distribu-

tion of numbers of mRNA molecules. These data indicate that
2 Cell Systems 5, 1–8, December 27, 2017
for each promoter there is an all-or-nothing ‘‘on-switch’’ in

transcriptional activation, whereas transcriptional inactivation

involves a decaying series of ‘‘off-switches.’’ Our data suggest

mechanistic hypotheses for theway inwhich promotersmay fully

engage with transcriptional machinery and then may switch off

through a series of distinct states.

RESULTS

Promoter Structure and Associated Chromatin
Remodeling Confer Expression Dynamics
To test the importance of promoter complexity on the pattern

of pulsatile expression, we created two reporter cell lines by

stably transfecting one copy of a �840/+1 bp or �3,348/+1 bp

hGH proximal promoter-luciferase construct into the GH-

expressing GH3 rat pituitary cell line (Figures 1A, 1B, S1A, and

S1B). Both stable transfectant cell lines exhibited dynamic and

heterogeneous luminescence activity in the presence or

absence of serum or stimuli (Figures 1A–1F and S2). The lumi-

nescence produced by either hGH construct was approximately

tripled following stimulation of the cyclic AMP (cAMP) signaling

pathway with forskolin (Fsk) (Figures 1D and 1F). However, while

the �840/+1 bp promoter showed no response to the inhibition

of histone deacetylase (HDAC) by trichostatin A (TSA), the

larger �3,348/+1 bp promoter greatly increased luminescence

output. The combination of Fsk with TSA produced a synergistic

response, further increasing population luminescence. The



Figure 2. Estimation of Variable Transcription States Using a Stochastic Switch Model

(A–D) Schematic representation of the stochastic switch model (SSM) estimating transcription rate switches from single-cell bioluminescence traces (A) (green).

(B) A reversible jumpMarkov chainMonte Carlo (RJ-MCMC) algorithmutilized knownprotein andmRNA half-life distributions (Table S2) and estimated translation

rate distributions to back-calculate from observed luminescence to unobserved transcription rate switch events. (C) For a given luminescence profile (green),

30,000 iterations of the model estimated the location (red) and credible intervals (red dashes) of changes in transcription rate (blue), estimating several switch

profiles with varying probability. (D) The probability of different switch profiles inferred a single likely transcriptional switch profile with quantified transcription

phase duration (tx, y, z.).

(E and F) smFISH analysis of luciferase mRNA transcript level in unstimulated reporter cell lines. Images are maximum-intensity projections of deconvolved

z stacks, with luciferase transcript staining in white and DAPI counterstaining in blue. Scale bars, 10 mm.

(G) Numbers of mRNAmolecules at t = 4 hr in unstimulated hGH3000 cells counted in smFISH experiments (green) and two separate estimates (n = 200 iterations)

of mRNA molecules using estimated posterior distributions of the parameters of mRNA equation from the SSM (blue). Vertical bar represents 95% normal

confidence interval of the mean over 549 cells.

(H–J) Plotting the ln-transformed SSM-estimated rate and duration of individual transcription phases (t) (gray crosses) identified a significant inverse

correlation (black line, with 95% confidence interval indicated by red dashed lines), with the duration of higher transcriptional rates being shorter than lower rates

(Pearson’s r, p < 0.03).
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correlation of luminescence patterns between individual cells

(Figures S1C and S1D) suggests that this synergistic increase

was not due to increased activity of an already active subpopu-

lation but to a reduction in cell-cell heterogeneity. We and others

(Harper et al., 2011; Suter et al., 2011) have proposed that the

‘‘off-state’’ involves a refractory period that originates from a

period of chromatin remodeling, during which a new round of

transcription cannot be initiated. For the larger promoter this
chromatin-remodeling step may promote population heteroge-

neity, and therefore protect against noisy activation.

Estimation of Transcriptional States Using a Stochastic
Switch Model Suggests a Continuum of Rates
An SSM was previously developed and used here for inference

on switches in transcription rate from the observed reporter

gene activity (Figure 2A) through the fitting of various parameter
Cell Systems 5, 1–8, December 27, 2017 3



Figure 3. Quantification of Switch Charac-

teristics

(A) The mean number and SEM of estimated

switches increasing (Up) or decreasing (Down)

transcription rate when cell lines are serum starved

for a 48-hr time course. All promoters, including the

5-kb Prl promoter, produce significantly more

Down switches (ANOVA *p < 0.05, **p < 0.001).

(B) The effect of stimulation on the mean number

and SEM of Down switches produced by the

hGH-luciferase constructs, compared with the

serum-starved (BSA) response (chequered) repli-

cated from (A). The inhibition of an HDAC chro-

matin-remodeling mechanism by TSA treatment

significantly reduces the number of Down switches

produced by the �3,348/+1 bp construct (ANOVA

*p < 0.05).

(C) By comparing the amplitude of a current

transcription rate switch with the amplitude of a

previous switch (black crosses), we identified four

switch-pair scenarios (Up-Down, Down-Down,

Down-Up, and Up-Up). The amplitudes of

consecutive Up-Down and Down-Down switch

pairs strongly correlate (respective colored lines

represent correlation calculated in Figure S4),

suggesting a mechanistic memory controlling the

activation and sequential deactivation of tran-

scription (�840/+1 bp, n=76; �3,348/+1 bp,

n=100; Prl, n = 71; from three experimental

repeats).

(D) The percentage of cells in a population ex-

hibiting either a binary or graded transcriptional

profile. Cell profiles are characterized by the

estimation of a binary-like switch, a graded in-

crease, or a graded decrease within a 48-hr time

course. Over 50% of each cell line exhibited

graded regulation of transcriptional activity.
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prior distributions (Figure 2B) (Hey et al., 2015). Through 30,000

iterations of this reverse jump-Markov chain Monte Carlo-based

algorithm, the locations of significant changes in transcription

rate were identified. These estimations produced several poten-

tial switch profiles for each single-cell luminescence trace, each

with varying probability (Figure 2C). These probable scenarios

inform the generation of a single likely transcription profile

(Figure 2D).

The SSM was evaluated using smFISH (Figures 2E and 2F) as

an independent and directly quantitative assay to measure to

distribution of mRNA molecule numbers. This showed close

agreement between observed and modeled mRNA numbers

(Figure 2G). Starting with the assumption that any transcription

rate is possible, and that switching between variable rates is

independent of the previous rate, we observed a significant

inverse relationship between the rate and duration (t) of a tran-

scriptional phase when fitted to the single-cell luminescence

data produced by each hGH- and hPrl-luciferase promoter con-

structs (Figures 2H–2J). High rates of transcriptional activity

lasted for the shortest periods of time, while low rates of

transcription could be maintained for longer. The continuous

distribution of rates asmodeled by the SSMapproach supported

the view that rather than this being a discrete binary on/off

system, transcription occurs along a spectrum of possible rates
4 Cell Systems 5, 1–8, December 27, 2017
(Molina et al., 2013; Zhang and Zhou, 2014; Featherstone et al.,

2016; Corrigan et al., 2016; McNamara et al., 2016).

Asymmetrical Transcriptional Control
Unlike previous binarymodels of transcriptional activity, the SSM

used here estimates a switch in rate in any direction, independent

of any previous switch direction or rate. Using such assumptions,

we observed an unequal number of rate-increasing and rate-

decreasing switches, with approximately twice as many

‘‘down-switches’’ identified per cell for all hGH- and hPrl pro-

moter constructs throughout a 48-hr period (Figure 3A). Despite

this asymmetry in the number of these deactivating switches,

the overall transcription rate across the entire cell population

was maintained (Figures S3A and S3B), indicating a constant

and stable population output. Therefore the greater number of

down-switches was not due to a general systematic reduction

in transcriptional activity throughout the experimental period,

but instead indicates the nature of the underlying process. A

slight increase in the number of deactivating switches is

observed following Fsk stimulation of the �840/+1 bp fragment

(Figure 3B), but the number of down-switches remains unaf-

fected by TSA treatment. A significant decrease in the number

of these deactivating steps is seen of the�3,348/+1 bp promoter

whenHDAC is inhibited, reducing the number of switches by half.



Figure 4. Identification and Quantification of

Low Transcriptional States

(A–C) The cumulative distribution of the duration of

decreased periods of transcription, as estimated

by the SSM. HDAC inhibition (TSA) variably effects

the inactivity of the different promoter fragments,

with the most significant effect observed in the

increased probability of a longer duration gener-

ated by the extended promoters (Kolmogorov-

Smirnov, *p < 0.05).

(D) A three-state model was produced to quantify

these inactive periods as two independent phases,

OFF and Primed.

(E–G) The durations shown in (A) to (C) were applied

to the iterative three-state model (D) identifying

the median, interquartile range (box), and full

range (whiskers), of the duration of the refractory

(Off) period. The most notable modification to

this refractory period is following HDAC inhibition

(TSA), reducing the refractory period of the

GH �3,348/+1 bp promoter (F), but not of the

smaller GH �840/+1 bp promoter (E) (Mann-

Whitney, *p < 0.001).
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Figure 3C plots the amplitude of two consecutive switches

allowing for the identification of any consistent switch patterns.

We identify predictable patterns for each scenario when a

Down switch is the secondary switch, with Up-Down and

Down-Down switch amplitudes being highly correlated (Table

S3). This predictability suggests a system memory controlling

the transcription-deactivating mechanism. Over 50% of each

cell line consistently exhibits a graded pattern of transcriptional

switching, with more cells containing the larger constructs pro-

ducing the asymmetrical graded deactivation pattern (Figures

3D, S3C, and S3D).

While previous research has suggested a transcriptional pulse

to be either binary or graded (Biggar and Crabtree, 2001; Gior-

getti et al., 2010; Bintu et al., 2016; Ochab-Marcinek and Tabaka,

2015), we propose that a single transcriptional burst is predom-

inantly a combination of an all-or-nothing activation, followed by
a graded reduction, tuning transcriptional

output along a continuum to the post-

stimulatory environment.

Quantifying Mechanistic Influences
on Transcription Phase Duration
Noting the characteristic differences

between the regulation of transcriptional

activation and deactivation (Figures 2

and 3), we investigated a modification to

the duration of phases following a deacti-

vating switch (Figure 4). Observing the

duration distribution of such phases

(Figures 4A–4C), we identified promoter-

specific variations in response to treat-

ment. While the short hGH promoter-

produced periods remain unchanged

when treated, the durations produced by

the larger hGH promoter are significantly

altered. The median phase duration of
both the �3,348/+1 bp hGH and hPrl promoter is increased by

HDAC inhibition. Interestingly, all three promoters produce an

absolute minimum deactivated phase duration of 3 hr when

unstimulated in BSA medium, suggesting a state during which

transcription cannot be activated (Figure S4). For the larger

hGH and hPrl promoter constructs, this period is reduced upon

removal of HDAC activity. To statistically quantify this observa-

tion we developed a three-state model of transcription, refrac-

tory model (Figure 4D). This model infers the duration of two

independent states (‘‘off’’ and ‘‘primed’’), which comprise the

duration of the phase following a deactivating switch (Figures

4A–4C). Statistical modeling identified significant reductions in

the duration of the refractory state for each promoter following

specific treatments (Figures 4E–4G). Most notably, the median

refractory phase of the shorter hGH promoter is reduced

from 4.3 hr (in BSA) to 1.9 hr with Fsk treatment, while the larger
Cell Systems 5, 1–8, December 27, 2017 5
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hGH promoter requires HDAC inhibition to reduce this period

from 3.2 hr (in BSA) to 1.9 hr with a combination of Fsk and

TSA. Therefore, we suggest that a property of the larger

fragments is the increased regulation of transcriptional burst

duration and frequency through the increased degree of chro-

matin remodeling. Interestingly, we also observe a system

memory related to the duration of phases of increased activity,

with a minimum period of sustained activation of approximately

50 min required for each promoter (Figure S4).

DISCUSSION

The timing of gene expression in individual cells has emerged as

a fundamental aspect of physiological regulation (Chubb et al.,

2006; Piras et al., 2014; Featherstone et al., 2016). Recent

work describing transcription dynamics in living cells and tissues

has shown that at all levels from signaling to protein synthesis,

gene expression control is far more dynamic than was once

thought (Harper et al., 2011; Molina et al., 2013). The general

view has been that these dynamics arise from stochastic switch-

ing between on- and off-states of transcription. The observation

of the importance of a refractory phase in the pulsatility of gene

expression (Harper et al., 2011; Suter et al., 2011; Cesbron et al.,

2015; Zoller et al., 2015) has suggested the idea that the timing

may involve a key period of chromatin remodeling that deter-

mines characteristic transcription dynamics for a given gene.

Here, we show the non-intuitive result that there is a consistent

asymmetry between the probability of switching between activa-

tion and deactivation of transcription for different promoters,

with different integration sites. While the occasional stepwise

increase in transcriptional rates is possible, we predominantly

observe a single, all-or-nothing activating switch followed by

several steps of graded reductions of decreasing amplitude.

These results arise from unbiased statistical analysis of time-

lapse reporter gene expression. The picture that emerges is

that genes tend to achieve the highest transcriptional state of

the current cycle within a single switch, but then switch down

through a series of different levels of transcription with the first

switch often being the largest (Figure 2). Thus in a given period

we observe more down-switches than up-switches, even in a

population of cells that are maintaining a stable level of gene

expression. This phenomenon was observed for two different

hGH promoter constructs (Figure S1), and also for the prolactin

promoter. Although these genes are evolutionarily related and

are both regulated by the Pit-1 transcription factor, they display

different structural characteristics and organization, and cell-

type and development-specific expression.

Transitions between binary and graded processes may allow

for the tuning of transcriptional output according to the initial

activating stimulus. The binary-like activating switch is likely to

be a function of several cumulative transcription-initiating inter-

actions breaching a threshold of activation. Above this threshold,

the increasing promoter and transcription factor interaction may

increase the probability and opportunity of establishing a stable

transcription complex, inhibiting further graded increases and

recruiting polymerase II (Pol II) to its current maximal capability.

Following activation, these promoter interactions may degrade

and dissociate at varying rates, along with Pol II pausing, which

will therefore gradually reduce the overall rate of transcription in
6 Cell Systems 5, 1–8, December 27, 2017
a stepwise manner until a level of activity is met that reflects the

new cell state (Saccani et al., 2004; Seila et al., 2009; Hammar

et al., 2014; Jonkers and Lis, 2015). Larger promoter fragments

driving the luciferase reporter appeared to direct an increased

number of down-switches during the stepwise decay, likely

due to more extensive and maintained chromatin status and a

greater number of promoter-protein interactions.

The stochastic bursting of transcriptional activity is believed to

be a general phenomenon, with temporal dynamics being highly

promoter specific (Raj and Oudenaarden, 2009; Suter et al.,

2011; Coulon et al., 2013), and individual transcription events

for specific mRNAs occurring on a time scale of minutes (Mura-

moto et al., 2012). We show here that longer-scale maintenance

of chromatin status is associated with defined characteristics of

timing in the transcriptional cycles that we observe. Gene-

specific phases of transcription and refractory periods are

thought to contribute to the cyclic bursts, and their variability re-

sults in heterogeneous transcriptional states across a population

of cells or tissue (Harper et al., 2010; Featherstone et al., 2011,

2016). In the present study, removal of chromatin-remodeling

processes through HDAC inhibition removes this heterogeneity

and alters the defined bursting pattern. Evidence here suggests

that simpler promoters may be more subject to fluctuations in

extrinsic noise through modification of transcriptional phases

upon stimulation of signaling pathways. It is important to

note that differing promoters with different architecture and

complexity here display essentially the same patterns of activa-

tion and inactivation. In the same way that bursting behavior has

been seen as a common feature for multiple regulated promoters

(Suter et al., 2011), it may therefore be true that binary activation

and graded inactivation are a common transcriptional pheno-

type. The potential transcription factor binding sites in the two

GH promoters are shown in Figure S1, but the exact role of

specific response elements and factor binding sites remains to

be evaluated in detail.

Unbiased variable-rate modeling provides a robust inference

of the underlying dynamics of transcription. This modeling

approach has previously been evaluated using biological and

synthetic data (Hey et al., 2015). Here we have tested its infer-

ences regarding mRNA molecule number by direct assay using

smFISH. Our statistical analysis has shown that transcription is

likely to occupy a distribution of active rates. Although we still

categorize transcription into discrete phases, these phases

display a spectrum of rates (Molina et al., 2013; Featherstone

et al., 2016; Corrigan et al., 2016). In addition to the previously

identified gene-specific transcriptional burst frequency, ampli-

tude, and duration, we also observe promoter-specific graded

switching patterns. Greater promoter complexity is likely to

support a rich variety of epigenetic control mechanisms to

generate accurate regulation across different time domains in

cells and tissues.
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DH5a Competent Cells Invitrogen 18265017

Chemicals, Peptides, and Recombinant Proteins

Forskolin Sigma-Aldrich F3917

Trichostatin A Sigma-Aldrich T1952

Cycloheximide Sigma-Aldrich C104450

Actinomycin D Sigma-Aldrich 01815

Critical Commercial Assays

FuGENE Transfection reagent Promega E2311

Copy number assay kit ThermoFisher 4442487

PureLink Genomic DNA kit ThermoFisher K182001

Stellaris FISH Biosearch Technologies VSMF-1007-5

Miniprep Qiagen 27104

Maxiprep Qiagen 10023

Deposited Data
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Experimental Models: Cell Lines

GH3 Tashjian et al., 1968 N/A

GH3/hGH3348 This paper N/A

GH3/hGH840 This paper N/A

GH3/hPrl This paper N/A

Oligonucleotides

Copy number Taqman probe FAM-AATTGCTCAACAGTATGGG-MGB N/A

Copy number luciferase forward primer CCGCGAACGACATTTATAATGA N/A

Copy number luciferase reverse primer CCACGGTAGGCTGCGAAA N/A

GGT1 probe Cy5-CCGAGAAGCAGCCACAGCCATACCT-BHQ2 N/A

GGT1 forward primer CCACCCCTTCCCTACTCCTAC N/A

GGT1 reverse primer GGCCACAGAGCTGGTTGTC N/A
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pGL3-hGH -840/+1-luciferase This paper hGH-840/+1bp

pGL3-hGH496/+1-luciferase Norris et al., 2003 hGH-496/+1bp
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Micro-Manager (Version 1.4) Edelstein et al., 2014 https://micro-manager.org/wiki/

Micro-Manager_Version_Archive
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TRANSFAC 7.0 Public 2005 Matys et al., 2006 http://gene-regulation.com/pub/

databases.html
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DeltaVision Microscopy Imaging Systems General Electric Softworx Suite 2.0
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Julian

Davis (julian.davis@manchester.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Female rat pituitary GH3 cells were used as a model in this study (Tashjian et al., 1968). These cells require growth in phenol-red free

DMEM with pyruvate (Gibco) supplemented with 1% glutamine, and 10% fetal calf serum (Gibco). All imaging was performed in

serum-starved conditions in phenol-red free DMEM with pyruvate, 1% glutamine, and 0.25% bovine serum albumin (Gibco). Cells

were maintained at 37�C and 5% CO2.

METHOD DETAILS

Plasmid Preparation and Transfection
Human growth hormone promoter-luciferase constructs were generated via amplification from the cosmid K2B (Jones et al., 1995).

The amplified fragments were digested with Sac1 and ligated into the Sac1 digested pGL3-basic plasmid (Promega) 5’ to the

luciferase reporter gene coding sequence. Generation of the 5kb prolactin-luciferase construct and cell line has been

previously described (Takasuka et al., 1998). 10mg of either plasmid was isolated via miniprep (Qiagen) and was mixed with 3ug

pVITRO2-hyg-mcs in 1ml of 150mM NaCl to allow for co-transfection into 1 x 105 GH3 cells using FuGENE transfection reagent

(Promega). Media was changed every 3 days post transfection, and was supplemented with 500mg/ml hygromycin selection

antibiotic. Positively transformed cells formed colonies after 2-3 weeks and were ring cloned into individual wells of a 48 well plate

and cultured. The clones were screened for luciferase expression and response to stimuli (5nM forskolin, 100nM dexamethasone,

and 50mM T3), prior to establishing gene copy number.

Copy Number Validation
The copy number of GH3 transfected luciferase constructs was quantified using a customisable copy number assay kit (Life

Technologies), comparing qRT-PCR amplification of the luciferase gene with known controls.

Genomic DNA Extraction
The PureLink Genomic DNA kit (Life Technologies) was used to extract all genomic DNA (gDNA) from the transformed GH3 cell

lines following the manufacturer’s instructions. gDNA concentration and purity was quantified using a Nanodrop 2000 UV-Vis

spectrophotomer (Thermo Scientific). The absorbance was measured between 260 and 280nm. All gDNA were of sufficient purity

with a A260/A280 ration between 1.9-2.1.

qRT-PCR
The gDNAwas amplified using the copy number assay kit (Life Technologies). 20ng of gDNAwasmixed withmanufacturer instructed

amounts of TaqMan genotyping master mix, copy number assay, copy number reference assay and nuclease-free water. The copy

number assay contains a TaqMan probe and quencher directed to the luciferase using customised luciferase oligonucleotides

(Forward- CCGCGAACGACATTTATAATGA; Reverse- CCACGGTAGGCTGCGAAA; Probe- FAM-AATTGCTCAACAGTATGGG-

MGB) (Semprini et al., 2009). Amplification of the luciferase target was compared directly to the amplification of the GGT1
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housekeeping gene using primers and a probe previously described by Pawlak et al. (1988) (Fwd- CCACCCCTTCCCTACTCCTAC;

Rev- GGCCACAGAGCTGGTTGTC; Probe- Cy5-CCGAGAAGCAGCCACAGCCATACCT-BHQ2). qRT-PCR was performed using

a StepOnePlus (Applied Biosystems) with cycling parameters as follows: initial denaturation at 95�C for 10 min; 40 cycles of 95�C
15 secs, 60�C 60 secs; hold at 72�C for 5 min.

Real-Time Luminescence Imaging
Image Acquisition

1 x 105 transformed GH3 cells were plated onto a CELLview 35mm glass-bottomed cell culture dish in FCS-containing media. 24h

prior to imaging cells were washed with PBS and serum starved in media containing 1mM luciferin. Application of stimuli was

performed immediately prior to transfer to the stage of a Zeiss Axiovert 200 equipped with an XL incubator to maintain the cells

at 37�C, 5% CO2. Luminescence images were obtained using a Fluar 10x, 0.5NA objective (Zeiss) and captured using an ImagEM

EM-CCD cooled camera (Hamamatsu photonics). Imageswere integrated over a 15mperiod using a 1 x 1 binning and acquired using

Micro-Manager software (Version 1.4). In treated conditions, forskolin (50mM) and trichostatin A (50nM) were added immediately prior

to imaging.

Protein and mRNA Inhibition

For the back-calculation from observed luminescence to the estimated transcriptional dynamics we required the calculation of

mRNA and protein degradation rates. Whilst both hGH-luciferase constructs have identical 3’ UTRs, their respective genome

insertion sites may vary and therefore affect post-translational modification and mRNA and protein half-lives. We imaged single-

cell bioluminescence of transformed GH3 cells when stimulated with 5nM forskolin followed by the application of cycloheximide

(10mg/ml) or actinomycin D (3mg/ml) (Sigma) to block translation and transcription, respectively.

Single Molecule RNA-In Situ Hybridisation
Sample Preparation

4 x 104 transformed GH3 cells were plated in FCS-containing media onto glass coverslips pre-treated with poly-L-lysine. Cells were

cultured for two days, treated with 5mM forskolin or left untreated, and fixed four hours later. Coverslips were fixed then hybridised

with the Stellaris FISH probe set against firefly luciferase conjugated with Quasar 670 dye (VSMF-1007-5, Biosearch Technologies),

using the manufacturer’s protocol for adherent cells.

Image Acquisition

Images were obtained using a Delta Vision Core restoration microscope (Applied Precision) using a 60x/NA 1.42 Plan Apo

objective and Sedat Quad filter set (Chroma Technology), and collected using a Coolsnap HQ2 camera (photometrics)(Mueller

et al., 2013).

Quantification and Statistical Analysis
Bioinformatic Promoter Analysis

hGH promoter sequence was obtained using the UCSCGenome Browser (http://genome.ucsc.edu/), locating the hGH start site and

exporting the upstream promoter sequence. Transfac analysis was performed on the -3348bp of promoter sequence using weight

limits: matrix = 0.9, core = 0.95 to identify likely transcription factor binding sites (TRANSFAC 7.0 Public 2005).

Analysis of Image Data

Individual cells were tracked using AQM6 image analysis software (Kinetic). Regions of interest were drawn around each individual

cell, and mean intensity data collected. Monadic noise between individual frames was removed, and background noise was

subtracted from the luminescence signal. Analysis of an individual cell ceased at the point of cell division.

qRT-PCR Analysis

Relative fluorescence was then analysed using Copy Caller Software (ThermoFisher) generating a relative quantification value for

number of gene copies within each clone.

FISH Data Processing

Raw images were deconvolved using the Softworx software then converted to .tif stacks using a custom ImageJ script. Transcript

counts for each cell were determined using FISH-quant (Jin et al., 1999).

Correlation Coefficient Calculation

To analyse the temporal correlation of luminescence dynamics in response to specific treatments we calculated the correlation

coefficient for sequential 1h pooled periods. The correlation of luminescence throughout an hour period was calculated between

each and every single cell under a particular treatment. Themedian and distribution of these hour correlation coefficients were plotted

for a 20h period demonstrating the degree of similarity between individual cells. The significance of each pool was compared using an

unpaired t-test.

Stochastic Switch Model

To estimate switches between variable rates of transcription, we applied a previously developed stochastic switch model (Hey et al.,

2015). This reversible jump Markov chain Monte Carlo algorithm estimates the temporal location of a significant change in transcrip-

tional activity through the back-calculation of protein and mRNA degradation rates (which remain unchanged by stimulation, Table
Cell Systems 5, 1–8.e1–e5, December 27, 2017 e3
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S2). The below stochastic reaction network is incorporated within this model, allowing for the identification of luminescence above

stochastic noise within the system:

B/
bðtÞ

mRNA
mRNA/
dm
B

mRNA/
a
mRNA +Protein
Protein/
dp
B

The degradation rates of reporter mRNA and protein are denoted by dm and dp, respectively, whilst a denotes the rate of translation

and b(t) denotes the time varying rate of transcription. Our transcription function is given by:

bðtÞ= bi for t˛½si�1 ; si� for i = 1;.;K;

where K is the number of transcriptional switches, occurring at times s1, s2, ., sK and b1, b2,., bK are the corresponding transcrip-

tional rates. We impose no restriction to the form of the transcriptional levels but note that the conventional binary switch behaviour

can be seen as a specific example where bi = bLOW if the gene is inactive in the time period [si-1,si] or bi = bHIGH if the gene is active.

Assuming light intensity measurements are related to reporter protein levels by the equation,

YðtÞ= kPðtÞ+ 3ðtÞ;
3ðtÞ � N
�
0;s2

�
;

inference is performed through the linear noise approximation to the stochastic reaction network coupled with this measurement

equation to obtain the posterior transcriptional function for each single cell. To ensure model identifiability, we impose informative

prior distributions about the degradation parameters, obtained from independent half-life experiments. In addition, we specify a

hierarchical framework over each dataset, as individual parameters are unlikely to change substantially.

In order to estimate both the number and positioning of transcriptional switches, we employ a reversible jumpMarkov ChainMonte

Carlo (MCMC) algorithm (Green, 1995). Consequently, the posterior distribution consists of all possible transcriptional profiles. In

order to extract the information regarding the estimated transcriptional dynamics, the posterior samples go through a post-process-

ing procedure outlined below.

A parametric model is fitted to the marginal posterior switch distribution (as described by Jenkins et al., 2013). Specifically, a

Gaussian mixture model is fitted to the marginal posterior distribution of the possible switch times.

All possible sub-models are extracted, to take into account the co-occurrence of switches. For example, if the marginal posterior

has two possible switch positions, the sub-models will consist of a zero switchmodel, twomutually exclusive one switchmodels, and

the two switch model. Counting the frequency with which each of the sub-models was sampled in the MCMC, we can associate a

weight or probability to each sub-model.

Therefore, this post-processing procedure associates each single cell to a set of mutually exclusive transcriptional profiles. The

analysis presented in the main paper has been calculated from the set of all possible transcriptional profiles, weighted by their

probability of occurrence.

Protein and mRNA Half-Life Estimation
Half-life Calculation

We used these luminescence decay assays to first calculate the protein degradation rate (dP) using the function:

dP

dt
= cp � dpPðtÞ

where cp is a small non-negative constant.

This then allowed the estimation of themRNA degradation rate (dM) from the transcription inhibition (actinomycin D) induced decay

using the function,

dM

dt
= cM � dMMðtÞ

where cM is a small non-negative constant that is close to zero if transcription is fully inhibited.
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Refractory Model

Statistical analyses of refractory (off) period modification were performed using a three-state model of transcription (Figure 3B). The

parameter values were estimated by analysing the transcription profiles statistically inferred by SSM to real-time luciferase datasets.

The maximum likelihood estimates of refractory and Off periods, T1 and T2, were obtained by fitting the sum of two exponential

distributions to the durations after a down switch with the assumption of T1 < T2, while On period, T0, was estimated by fitting an

exponential distribution to the durations after an up switch. Both durations in the SSM results were analysed as right-censored

ones. These period estimations are detailed below. Low and high rates, bL and bH, are the respective transcription rates after a

down and up switch.

Maximum Likelihood Estimation of Refractory (T1), and Off (T2) Periods

In the following, capital T denotes a period parameter, while small t its realisation in the SSM-generated Markov chain, which

represents the posterior distribution of the parameters. An inter-switch duration (t) is called complete if it is flanked by two switches,

but right-censored if it is open-ended.

Pre-processing

In the continuous SSM, it is often the happening that a down or up switch is followed by the same-direction switch. To fit the

SSM result into the current discrete on-off-primed model, such consecutive durations after same-direction switches are merged

to form a single inter-switch duration.

Refractory and Off Periods Estimation

As Poisson processes, refractory and off periods, t1 and t2, follow respective exponential distributions, t1 � Exp(�l1 t) and

t2 � Exp(�l2 t), where l1 and l2 denote respectively the inverse of T1 and T2. If l1 s l1 is assumed, the probability density

function (fd(td)) of the sum of those two random variables, td = t1 + t2 is given as follows.

fd(td) = l1 l2 / (l2 � l1) (exp(�l1 t) – exp(�l2 t))

while its corresponding distribution function is given as follows.

Fd(td) = 1/(l2 � l1) { l2 (1 � exp(�l1 t)) – l1 (1 � exp(�l2 t)) }

For given sets of complete and censored duration data, {tcomp
i} and {tcensj}, a logarithmic likelihood is given as follows.

l(T1, T2)= Si fd(t
comp

i; T1, T2) + Si (1 � Fd(t
cens

i; T1, T2))

With the assumption of T1 < T2, T1 and T2 are simultaneously estimated as argmax l(T1, T2).

DATA AND SOFTWARE AVAILABILITY

Raw data of single cell luminescence profiles is available in Table S1.

Refractory Model. Matlab scripts can be freely accessed at Mendeley Data: https://doi.org/10.17632/wjyccvc2zc.2

These Matlab scripts will infer the duration of the refractory period from stochastic switch model-identified transcription periods.
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