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ScienceDirect
Microbial communities present the next research frontier. We

argue here that understanding and engineering microbial

communities requires a holistic view that considers not only

species–species, but also species–environment interactions,

and feedbacks between ecological and evolutionary

dynamics (eco-evo feedbacks). Due this multi-level nature of

interactions, we predict that approaches aimed soley at

altering specific species populations in a community

(through strain enrichment or inhibition), would only have a

transient impact, and species–environment and eco-evo

feedbacks would eventually drive the microbial community to

its original state. We propose a higher-level engineering

approach that is based on thermodynamics of microbial

growth, and that considers specifically microbial redox

biochemistry. Within this approach, the emphasis is on

enforcing specific environmental conditions onto the

community. These are expected to generate higher-level

thermodynamic bounds onto the system, which the

community structure and function can then adapt to. We

believe that the resulting end-state can be ecologically and

evolutionarily stable, mimicking the natural states of complex

communities. Toward designing the exact nature of the

environmental enforcement, thermodynamics and redox

biochemistry  can act as coarse-grained principles, while the

use of electrodes — as electron providing or accepting redox

agents — can provide implementation with spatiotemporal

control.
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Introduction
Microbial communities perform key biochemical trans-

formations of organic and inorganic matter, underpin-

ning the biogeochemical cycles on Earth [1,2] and

playing a crucial part in the nutrition and health of

higher organisms including humans, animals, and plants

[3,4]. Thus, it is not surprising that there is increasing

interest in understanding and engineering microbial

communities for environmental, medical, and biotech-

nological applications [5�,6–9,10�,11]. Engineering of

microbial communities has been proposed both as a

top-down approach, controlling metabolic processes

for stabilizing complex, natural communities [5�,6,7]
and as a bottom-up approach, for designing defined,

synthetic communities with desired functionality

[8,9,10�,11]. In the former direction, most focus has

been on gut communities for impacting human and

animal health [6,7], and on anaerobic digestion (AD)

communities for improving industrial methane produc-

tion from organic wastes [11]. In the latter direction,

early studies focused on implementing defined commu-

nities for degradation of organic matter using existing

species (e.g. [12–14]), while more recent studies focused

on creating synthetic communities with defined (and

sometimes synthetically engineered) interactions that

give rise to specific biotechnological applications, popu-

lation dynamics, and community control (e.g. [15–

17,18�,19�]). In the future, these top-down and bot-

tom-up approaches could merge, with defined, synthetic

communities being used to impact and engineer the

behavior of complex, natural communities.

Irrespective of their specific aims and level of focus, any

engineering approach to microbial communities requires

predictive principles for describing community structure

and function relationships, and practical tools for shaping

these. A simplistic view (that could be considered as a

guiding principle in the engineering sense) is to consider

complex microbial communities as being composed of

different functional groups performing key tasks. This

viewpoint suggests that the overall behavior of a complex

community can then be modulated in a desired way by

including the necessary functional groups or by altering

the population fractions of such groups (Figure 1a). We

believe that this simplistic view is, however, unlikely to

be fruitful as an engineering approach to microbial com-

munities, as it ignores secondary interactions between

species and the environment, and the ensuing feedback

dynamics.
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Figure 1
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Microbial communities are affected by species–species and species–environment interactions. (a) Classically, microbial communities are thought

as functionally distinct groups of microbes (sketched as rectangles) connected through species–species interactions involving metabolite

(pentagons) conversions. These can include for example cross-feeding, competition, or auxotrophic interactions (involving the production of

metabolites affecting the growth of other species, e.g. yellow pentagon). (b) We call for a more holistic view of microbial communities that

explicitly takes into account species–environment interactions (indicated with the shaded background), and the feedbacks and intertwined

ecological and evolutionary dynamics arising from these. For instance, the impact of metabolic activities of microbes (primarily driven by redox

conversions) can directly lead to changes in redox potentials of other reactions (indicated by the standard potential E0, bar on the right) and the

environmental conditions (such as pH, shown on the right). These changes would then exert a feedback on the whole microbial community,

selecting for or against certain groups.
Species–species and species–environment interactions,

as well as evolutionary dynamics present significant chal-

lenges to complex community engineering. To illustrate

the above point, consider for example, increasing the

population fraction of a species involved in the fermen-

tation of a particular organic compound. Such an inter-

vention is expected to impact other species in a commu-

nity directly through creation of substrate-competition (e.

g. for carbohydrates), but also indirectly through environ-

mental pH-changes (e.g. acidification through formation

of organic acids) [20] and emergence of new cross-feeding

interactions (e.g. through organic acids acting as new

substrates) [21]. Thus, altering the population of one

functional group might present unexpected impacts, or

alternatively no impact at all. Indeed, several recent

studies find that functional improvements to a commu-

nity emerge from large-scale community ‘implantation’ or

mixing of multiple communities [22,23�], supporting the

notion that community function is the result of a commu-

nity as a whole, inclusive of its myriad species–species

and species–environment interactions.

Given the short generation times of some microbes, it is

also possible that long-term species–species interactions

can result in the evolution of additional genetic interac-

tions. Such evolutionary adaptation is implicated for

example by findings of abundant auxotrophic interactions

(emerging from the inability of one species to synthesize a

compound required for its growth) in communities

enriched for degradation of specific compounds [24�].
Current Opinion in Biotechnology 2018, 50:121–127 
Evolutionary dynamics can also be driven by species–

environment interactions resulting in so-called eco-evo

feedbacks [25]. These feedbacks are shown to impact the

population dynamics of cooperative traits in a population

[26,27,28�], and are proposed as a potential driving force

beyond physiological specialization [29,30]. The latter

possibility has been demonstrated theoretically in the

context of monocultures of Escherhichia coli, where it is

shown that metabolic activities altering the environment

can result in a feedback that drives the evolution of

different metabolic strategies within this organism [21].

To develop applications of microbial communities, engi-

neering approaches hence need to deal not only with

species–species, but also with species–environment inter-

actions and with the ensuing eco-evo feedbacks (Figure 1b).

Bottom-up engineering needs to consider
species–environment and eco-evo feedbacks
For different species to co-exist and achieve a common

functional goal, their environment needs to be designed in

a way to support (or even enforce) their growth and

interactions. This has been achieved for synthetic auxo-

trophic interactions within one species [17], and cross-

feeding and syntrophic interactions among different spe-

cies [15,16,31]. A key example in the latter direction

involves a methanogen and a sulfate reducer, which co-

exist in an environment that lacks sulfate (sulfate reducers’

natural choice as an electron acceptor) [31]. This model

system is achieved by enforcing a specific environment,
www.sciencedirect.com
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Figure 2
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Microbial metabolism can be seen as composed of intra-molecular and inter-molecular redox reactions with associated energy harvesting. (a)

Microbes couple oxidation of reduced energy sources (ESred) with the reduction of terminal electron acceptors (TEAs), thereby harvesting

reductive energy ([H]). This energy is invested in the building of biomass by reducing external carbon sources (CS), or in the production of other

energy equivalents (e.g. ATP). Note that CS and ES can be the same compound, and that in fermentation ES essentially equals TEA, but after

intramolecular redox conversion. Further biomass components (e.g. nitrogen, phosphorous) are ignored in this scheme for simplicity. (b) Standard

reduction potentials at biological conditions (i.e. all solute concentrations = 1 M (except for [H+] = 10-7), pressure = 1 bar, temperature = 25 �C) of

biologically relevant organic and inorganic compounds (note that proton reduction potential at [H+] = 1M, i.e. pH = 0, is shown separately,

corresponding to standard hydrogen electrode potential). Each gray dot indicates a reduction reaction, with the substrate and product shown in

the labels. Microbial growth involves combining one such reduction reaction with another that is run in the reverse (i.e. oxidation direction), so to

form a redox couple. Two examples for such microbial growth-supporting redox couples are highlighted; the overall process in methanogenesis,

where H2 oxidation (to H+) is coupled to reduction of CO2 (to methane); and a key part of the sulfate reduction, where lactate oxidation (to

pyruvate) is coupled to reduction of sulfite (from activated sulfate). For these couplings, the oxidation and reduction reactions are shown in black

and red respectively (adapting the cathode and anode color-coding). Note that individual reactions’ reduction potentials would shift as

participating compounds concentrations deviate from standard conditions, and where protons are involved, with environmental pH (e.g. see

shifting reduction potential for H+/H2 pair with changing pH, shown as dashed area on Figure 2b). Reduction potentials are calculated from

stoichiometrically balanced reduction reactions (using water, protons, and electrons), and using tabulated standard Gibbs free energy of formation

values for each of the involved compounds [58].
namely the lack of sulfate, that then naturally drives the

emergence of the syntrophic interaction. Indeed, it is

interesting to note that the syntrophic interaction in this

model system is impacted by evolutionary dynamics; a

maintained polymorphism in the sulfate reducer is found

to be required for the initiation of syntrophy [32�], and a

range of potentially stabilizing mutations are found to arise

over long-term co-culturing [33,34��]. Similarly, microbial

communities enriched for degradation of specific organic

compounds are found to display multiple syntrophic inter-

actions, as well as secondary dependencies such as auxo-

trophic interactions [24�]. These examples suggest that

microbial communities can naturally adapt their structure

and specific metabolic interactions to the given environ-

mental conditions and to achieve stability and productiv-

ity. In other words, it might be possible that enforcing
www.sciencedirect.com 
specific environmental constraints can directly facilitate

the engineering of community structure and function

toward an evolutionarily stable state.

Thermodynamics and redox processes as
‘design principles’ for community engineering
In the above example of syntrophic interactions, the

enforcement of the environment (through sulfate deple-

tion) relates directly to the thermodynamic basis of

microbial growth. Microbial (catabolic) metabolism can,

at a coarse level, be understood as a collection of path-

ways, each implementing a different redox reaction uti-

lizing a different terminal electron acceptor (TEA)

(Figure 2) [35,36�,37,38�,39�]. Shortage of strong TEAs

is common in many micro- and macro-environments,

including soil, AD reactors, gut, and lakes, while oxygen
Current Opinion in Biotechnology 2018, 50:121–127
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depletion can even happen in sealed cultures or biofilms

of fast-growing facultative organisms [40�,41]. Under the

absence of strong TEAs, the community-members need

to adapt to redox processes through weak TEAs (such as

H+, CO2, and SO4
2�), and fermentative pathways which

mitigate intracellular reductive energy overflow. This, in

turn, leads to the possibility of thermodynamic inhibition,

whereby microbes cease growth due to accumulation of

their own metabolic end-products [42].

Avoiding thermodynamic inhibition is only possible by

switching to alternative redox processes with new chemi-

cal products or actively engaging in syntrophic interac-

tions [38�,42]. Indeed, thermodynamic inhibition is sug-

gested to lead to maintenance of microbial and metabolic

diversity [38�], and to strongly affect community structure

and dynamics [1,2]. In anaerobic communities, for exam-

ple, depletion of strong TEAs leads to accumulation of

acetate and hydrogen, which can be consumed by metha-

nogens. At the same time, however, acetate accumulation

can decrease environmental pH and inhibit methanogens

[43]. The resulting delicate balance can spiral out to a

feedback dynamic, with increased acidification leading to

more inhibition of methanogenesis, and therefore to more

acidification, and finally to whole-community inhibition.

Differential TEA availability can also cause more direct

alterations in community structure. A drastic example is

the finding that gut host cell responses to inflammation

can lead to formation of nitrate, which can act as TEA for

selective groups of microbes and thereby give rise to host-

mediated changes in community dynamics [44�]. Simi-

larly, several redox active compounds such as Azo dyes

and humic substances (i.e. polyaromatic lignin-degrada-

tion fragments) are found to alter overall methanogensis

rates in AD communities [45–47,48�].

Electrical interferences as dynamic and
controllable means for community
engineering
The above findings highlight TEA availability as a key

driver of both environmental conditions and microbial

interactions, giving rise to the possibility that community

structure and function could be manipulated through

TEAs provision or removal, guided by thermodynamic

considerations of different microbial respiration processes.

This approach has already been used successfully to

achieve enrichment of specific microbial processes, pre-

dicted by thermodynamics (e.g. [49,50��]), and is suggested

as a route to design anaerobic production strategies in

biotechnology [36�,51,52�]. The TEA-based redox inter-

ventions can be achieved both at cellular- and community-

levels, and to date were successfully implemented using

different approaches including the provision of gases (i.e.

oxygen, hydrogen), chemical supplementation of media

(chemical electron donors/acceptors) [45,47,48�], genetic

modification (rate-control on NADH-synthesis/depletion)

(e.g. [53]), and electrode-based intervention [54,55�,56].
Current Opinion in Biotechnology 2018, 50:121–127 
Chemical interventions are established particularly in the

context of AD, however, they do not readily allow temporal

control. Similarly, genetic interventions cannot be trig-

gered in a temporal fashion and only target a specific

species, which might not be stable in the context of a

community. Electrode-based intervention, where electrons

can be supplied or retrieved from the system at set reduc-

tion potentials, provide a more direct and temporal control

over redox processes, provided that some key community

members are able to interface with the electrode by direct

or indirect electron exchange.

Promising results of electrode-based intervention with

community dynamics are already being obtained. In the

context of AD, electrons were successfuly supplied to a

complex anaerobic community via electrodes poised at

different potentials and currents [57��]. This study found

that at constant potential, a high current favored acetogen-

esis with some methane production through acetotrophic

methanogens. This suggests that the rate of electron

supply can to some extent control the electrons’ destiny,

highlighting the interlinked effect of thermodynamic and

kinetic reaction control in cell metabolism [36�,38�,59]. A

similar use of electrodes to control community dynamics in

bottom-up engineering is still to be attempted, but several

studies have shown that many different bacteria including

Clostridia species [59] and methanogens [60,61] are capa-

ble of electron transfer from and to electrodes, opening the

route to implement separate redox reactions such as

organics degradation and methanogenesis across compart-

ments coupled with electrodes.

Future outlook
We argued here for a microbial community engineering

approach that takes a holistic view and that considers not

only species–species, but also species–environment inter-

actions and eco–evo feedbacks. Shifting the emphasis

away from individual species (or functional groups) to the

system as a whole, this approach is similar to those

advocated for modeling connected biotic and abiotic

geochemical processes [62�], where thermodynamics

and considerations of entropy maximization are brought

to the fore as fundamental guiding principles. Holistic

engineering of microbial communities with such high-

level guiding principles will require us to better under-

stand the thermodynamic basis of microbial growth, and

in particular the energetics and dynamics of respiratory

and fermentative metabolic pathways. A crucial gap in

this understanding, amongst others, is the energetics of

cellular growth within micro-environments, such as bio-

films and microbial granules. Besides improved measure-

ment techniques of micro- and macro-environments, the

filling of this gap will also require increased interaction

between research communities from geochemistry, phys-

ics, electrochemistry, and biology. Increased understand-

ing at the micro level can subsequently allow better use of

thermodynamic principles at the microbial community
www.sciencedirect.com
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level, and to design specific electrode-based intervention

strategies. In this direction, more research is needed to

better understand electrode-microbe interactions, as well

as to develop cost effective electrical manipulations.

Together, these developments can allow electrical engi-

neering of complex microbial communities found in the

soil, gut, and the anaerobic digestion reactors, and bot-

tom-up design of functional, defined communities.
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