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Abstract

Active liquid crystals, in which the rod-like constituents endow the fluid they are
immersed in with active stresses, have proven successful as a paradigm for biologically
inspired complex fluids with orientational alignment. These include suspensions of
swimming bacteria or cell extracts comprising cytoskeletal filaments and molecular
motors, whose natural environment is characterised by spatial confinement.

In this thesis we study active liquid crystals in three confined geometries – a planar
thin film, a droplet on a flat surface, and a spherical shell. For alignment fields with
topological defects, which are known to be energy minima for passive liquid crystals
in these geometries, we investigate with analytical and numerical methods the e↵ect
of activity. Novel results include defect-driven motility of active drops and shells as
well as the formation of stable flow vortices in spherical confinement.

In the first part we calculate analytically the active flows in a thin film, which are
driven by a generic defective alignment field, and identify the type of flow singularity
that a defect with arbitrary topological strength generates. The sliding velocity of an
active drop, which moves due to an asymmetrically placed defect within, is calculated
analytically. In general, asymmetry in the alignment generates motion of the drop due
to directed flows in the bulk, although slip at the substrate and active flows resulting
from gradients in the drop shape counteract this motion. Steady state shapes of a
drop with a central defect reveal the formation of a hole or a cusp in its free surface.

The thin film model is adapted to a spherical shell in the second part, where
locally the defect-driven flows are analogous to a flat film. Globally, the active flow
is restrained by the Poincaré-Hopf theorem, which prescribes a total winding of +2.
We find that the flow typically forms two counterrotating vortices, which is shown to
have crucial implications for the defect motion and for the swimming behaviour of
the shell. The dynamics of di↵erent defect configurations are simulated numerically
with a particle-based model, where the defects move due to elastic forces and active
advection, which is extracted from an exact expression for the active flow in the shell.
We recover the oscillatory motion of four half-integer defects known from experiments
and interpret it in view of the two counterrotating vortices, which advect the defects.
The onset of oscillations is captured analytically in a linear stability analysis. Further,
new predictions are provided for the scaling of measurable quantities, like oscillation
frequency and defect speed, for the dynamics of additional defect-pairs and for polar
shells, in which unit strength defects are found to attract or repel due to active flows.
Finally, the swimming speeds of active nematic shells through a passive medium are
calculated analytically, or numerically if half-integer defects are present. Remarkably,
shells with triangular defect arrangements are found to be swimming and rotating.

In summary, this work furthers the understanding of geometrically confined active
liquid crystals, highlighting the role of topological defects and the active flows they
produce. The results presented here could also find application in microfluidics, for
instance aiding in the design of artificial crawlers and swimmers.
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CHAPTER 1

Introduction

1.1. Active matter

“[...] Living matter, while not eluding the “laws of physics” as established up to date,

is likely to involve “other laws of physics” hitherto unknown.” Phrased by Erwin

Schrödinger in “What is life?” [Schrödinger, 1944] as early as 1944, this statement foretells

the decades-long endeavour of physicists to contribute to the understanding of the

mechanisms governing the living world. Notwithstanding the vast complexity of even

a single cell [Phillips et al., 2009], a physical framework overarching a surprisingly diverse

range of biological phenomena has emerged in the last twenty years. Mechanical pro-

cesses inside eukaryotic cells, collections of crawling cells or swimming bacteria, schools

of fish, and flocks of birds — all are encompassed by the framework of active matter

[Marchetti et al., 2013; Ramaswamy, 2010; Prost et al., 2015]. From a condensed matter physics

perspective these systems may be regarded as collections of active particles, which

have the defining ability to transform chemical or other types of energy into directed

motion. Being typically elongated entities, their geometry guides the direction of

their self-propulsion and enables large numbers of such particles to align in parallel and

move collectively. Such swarming behaviour was first reproduced in a model of “flying”

magnets [Vicsek et al., 1995]. This launched a successful and still ongoing e↵ort to classify

active systems and identify universal behaviours like order-disorder phase transitions,

fluctuations, and instabilities, based on symmetries and conservation laws at play in a

particular system. The out-of-equilibrium nature of active matter, which stems from

the local energy intake at the level of each individual active particle, leads to “other

laws of physics” and a whole range of novel phenomena, which are nonexistent in

equilibrium materials. Crucially, active materials spontaneously generate flows [Simha

and Ramaswamy, 2002a], and the interplay of such flows with geometrical confinement

and defective alignment of particles leads to a rich phenomenology, including motion

on large scales [Sanchez et al., 2013; Keber et al., 2014], that is currently a vibrant area of

research.

1



1.1. Active matter

Figure 1.1: Illustration of the di↵erent levels of collective e↵ects in an active liquid crystal on the
example of an active nematic droplet, adapted from Reference [Sanchez et al., 2013]. The energy
intake and initial motion is on the level of a single kinesin motor, which is then transformed to
larger scales by a hierarchy of processes: 1) several kinesin-motors are bound into a cluster; 2)
a number of clusters link two microtubule-bundles and make them slide past each other; 3) in a
dense suspension the sliding microtubules align locally into a nematic phase; 4) the active nematic
develops moving topological defects, which collectively create large-scale flows; 5) confined to the
surface of an emulsion droplet these flows (blue arrows) lead to self-propulsion of the droplet (red
arrow) when in contact with a surface. The relationship between active defects (middle box) and
macroscopic motility (right box) is one of the topics of this thesis.

This thesis focuses on active liquid crystals (ALCs), which are orientationally

ordered phases of active particles suspended in water. This class is most relevant for

the description of the cytoskeleton of cells and of in vitro suspensions of intracellular

filaments with their associated molecular motors, such as microtubules (MTs) and

kinesin motors, but also for collections of swimming microorganisms like cells and

bacteria. The behaviour of an active liquid crystal is strongly a↵ected by the presence

of boundaries. Employing confinement to induce specific behaviours of an active

system is a topical field of research, aimed at microfluidic and biomimetic applications.

Moreover, spatial confinement is a precondition for the functioning of most biological

realisations of active matter at cellular and subcellular scales. It is thus a necessary

part of any attempt to model such systems, for instance when modelling the swarming

of bacteria in biofilms or the cytoplasmic flows in a cell.

Recent years have seen fascinating experimental breakthroughs on the side of ALCs

in confinement. Dogic and coworkers have designed a well-controlled model system of

an extensile active nematic material [Sanchez et al., 2013], which has already confirmed

many theoretical predictions like the emergence of spontaneous flows and dynamic

defect patterns. Moreover, it has opened the possibility to realise and manipulate

active liquid crystals in new, more complex geometries [Keber et al., 2014; Wu et al., 2017].

Here, we model and o↵er theoretical predictions for two such geometries, a flat drop

on a surface and a spherical shell.

Droplets coated with a layer of ALC were shown to self-propel over large distances

when put in contact with a surface [Sanchez et al., 2013]. The ALC in this case consists

2



1.1. Active matter

of bundles of MTs, connected with each other by clusters of kinesin motors that

consume the chemical fuel adenosin triphosphate (ATP). Each of these motors converts

the energy stored in one molecule of ATP into a step of 8 nm along a MT, but

collectively they are able to propel the whole droplet, which can be as large as ⇠
100 µm in size. To date, there is no theoretical understanding of how such active

droplets move. This astonishing transfer of tiny movements into large-scale motion and

focusing of the energy taken in at the smallest scale requires self-organised coordination

on several levels of processes, that work together in the droplet not unlike the cog

wheels of a mechanical clockwork, as illustrated in Figure 1.1. One such “cog wheel”

is the local alignment of the MT bundles and the fundamental relationship between

gradients in the alignment field and active fluid flows generated by it. The flows on

the surface of the drop can then push against the surrounding medium and propel

the drop. Intertwined with this process are topological defects – singularities in the

local alignment field, which cannot be removed by continuous deformations and which

naturally are sources of strong gradients and active flows. The topology of a droplet

enforces such defects, which should make them the main drivers of the flow and,

therefore, of the macroscopic motion. We will investigate this connection for a droplet

sliding on a flat surface and for a spherical shell immersed in a passive fluid.

Topological defects are fundamental features of ordered phases of matter and a

topic of great current interest across disciplines1. They have universal properties tied

to the symmetry – nematic or vectorial symmetry for instance – and the topology of

the system. In combination with specific boundary geometries defects can generate

new macroscopic properties of a piece of material, as evident from the variety of

states known for drops and shells of passive liquid crystals [Lopez-Leon and Fernandez-

Nieves, 2011]. The role of topological defects in active and living systems is far from

being understood. Some intriguing new properties of defects resulting from activity

have already been established, for instance self-propulsion and rotation [Kruse et al.,

2004; Giomi et al., 2013, 2014] as well as their spontaneous generation in the bulk [Sanchez

et al., 2013; Thampi et al., 2013]. However, many questions remain unresolved: What are

the collective dynamics of defects under their self-generated active flows? What new

interactions arise among active defects? How do defects in active systems a↵ect the

shape of surfaces, the large-scale flows, and the macroscopic motion? Understanding

these relationships might open up possibilities for better control of active materials

through the manipulation of defect structures and lead to a more complete classifica-

tion of the states of active matter. This thesis addresses some of these questions for

specific geometries.

1The Nobel Prize 2016 in Physics has been awarded to J. M. Kosterlitz, D. Haldane and D. J.
Thouless for their work on topological phase transitions where topological defects play a crucial role.
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1.2. Summary of this thesis

1.2. Summary of this thesis

In this thesis we study the implications of topological defects in active liquid crystals in

the context of various confined geometries. Our focus lies on the relationship between

defects, the active flows they produce locally, and the resulting coherent large-scale

flows and macroscopic motion, of the type found in the experiments pioneered by

the Dogic and Bausch groups. We work in the framework of a thin film of active

liquid crystal and choose two geometries for our analysis – a flat droplet on a surface

and a spherical shell – which have received only little attention thus far [Joanny and

Ramaswamy, 2012; Keber et al., 2014]. Both geometries are of considerable relevance for

the design of biomimetic, self-propelling objects and provide the means to explore

the physical basis of certain functions of biological cells, like cytoplasmic streaming,

swimming and crawling.

The content of this thesis is presented as follows. In Chapter 2 the theoretical

background on active liquid crystals is provided, including generalised hydrodynamics,

liquid crystal elasticity, and the description of topological defects in two dimensions.

Thereafter, existing theoretical and experimental work on ALCs in confinement is

reviewed. The Chapters 3-6 cover the original contributions of this thesis and their

discussions.

In Chapter 3 the hydrodynamic model for a thin film of ALC is presented. The

active flow is obtained analytically for an imposed alignment field with an arbitrary

collection of defects, that lies tangential at the film boundaries and represents an

energetic minimum of a passive liquid crystal. The flow is driven by an active

force which is decomposed into three contributions – splay and bend of the two-

dimensional alignment field and coupling to shape gradients. We then calculate a

generic relationship between the type of defect and the flow singularity it produces

in the film, by expanding the active flow in the vicinity of a defect. This generalises

previously known results to defects of any topological strength and yields a new scaling

of the speed of the self-propelling half-integer defects. Further, for a half-integer defect

the active flow in the defect core region is solved for analytically and matched with

the thin film solution, to regularise the latter at the defect location.

A flat drop on a surface, which is modelled as a laterally bounded thin film, is

studied in Chapter 4. For the geometry of a spherical cap and for defects of di↵erent

type and position the structure of the analytically calculated active flow is analysed

regarding its three contributions. Asymmetrically positioned +1 defects, or generally

asymmetric splay or bend distortions of the alignment, generate directed bulk flows,

but flows due to shape gradients are found to counteract those close to the contact line.

The centre-of-mass velocity of a droplet with one defect or with a smoothly splayed

4



1.2. Summary of this thesis

or bent alignment is calculated analytically. An optimal defect position maximises

this velocity. Finite slip at the substrate reduces the velocity and an estimate is given

for the amount of slip required to stall the motion. Further, the stationary shape is

obtained analytically for an axisymmetric drop with one defect – a vortex defect or

a spiral defect with di↵erent angles. This reveals that defects can strongly deform

the drop, leading to a dip or hole in the former case and to a cusp in the latter. For

asymmetric drops the initial deformations away from a spherical cap are estimated.

In Chapter 5 the thin film model is adapted to a spherical shell and solved for the

instantaneous active flow in this geometry. Here, the Poincaré-Hopf theorem imposes a

total winding of +2 in both the alignment field and the flow field and the implications

of this are investigated in that chapter. A derivation of the equilibrium alignment

field with defects on a sphere is provided. At this point the stereographic projection

from the sphere to the complex plane is introduced, which is also used in subsequent

calculations involving the active flow. The local active flow singularities at defects on

the sphere are derived, showing the same structure as in a planar film. The interplay

of these local flow singularities with the global topological constraint is shown for

several exemplary defect configurations. It is shown that, in general, additional, not

defect-based flow singularities are required to satisfy the constraint.

In the second part of Chapter 5 the motion of defects in active shells is studied

with numerical simulations. The defects are modelled as particles that move due to

advection in the active flow and due to elastic interactions with each other in an

overdamped regime. To this end the liquid crystal elastic interactions of defects are

formulated for a sphere. The active advection is extracted from the exact solution

for the active flow, whereby the flow is locally averaged at a short-length cut-o↵

distance from the defect to avoid divergence. An exact expression is given for the

direction and speed of +1/2 defects on the sphere. A second order expansion of

the flow at a defect reveals a di↵erent scaling for the active advection of +1 defects

on a sphere as compared to +1/2 defects. Thereafter, the overdamped dynamical

equations for di↵erent collections of defects on the sphere are solved numerically

using a standard Runge-Kutta method. First, the dynamics of four +1/2 defects

are simulated. We find an elasticity-dominated regime, where the defects settle into

a deformed tetrahedron. In the activity-dominated regime the defects form pairs and

undergo steady oscillations, moving through tetrahedral and planar arrangements

at lower activity and on ever smaller, circular trajectories as activity is increased.

The oscillatory motion is caused by two stable counterrotating active flow vortices,

which advect the defects and lead to their e↵ective attraction in pairs. The transition

between these two regimes is quantified in a linear stability analysis. The dynamics of

two +1 defects are similar and we find active attraction of vortex-like and repulsion
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1.2. Summary of this thesis

of aster-like defects for an extensile material. Finally, the e↵ect of half-integer defect

pairs added to the four-defect configuration at random or specific locations is studied.

Chapter 6 contains a theoretical analysis of the swimming properties of an active

nematic shell through a passive medium using the squirmer model. We calculate the

translational and rotational velocities of a shell from the active flow on its surface

analytically, or numerically if half-integer defects are involved. We find that the

defect configurations considered in Chapter 5 do not lead to macroscopic motion,

neither translational nor rotational, as the corresponding flows are variants of the two

counterrotating flow vortices and therefore too symmetrical. However, a shell with a

triangular defect arrangement, known from passive nematics, is found to be swimming

and rotating.

In Chapter 7 we summarise and discuss the main results of this thesis and outline

interesting directions for further research and potential applications.
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CHAPTER 2

Active Liquid Crystals

2.1. Classification of active matter

Here we concern ourselves with systems that are commonly described as wet active

matter with liquid crystalline order, or active liquid crystals. Such systems may be

aqueous suspensions of biological filaments [Nedelec et al., 1997; Sanchez et al., 2013], with

molecular motors providing the source of motion on the smallest scale, as well as

collections of swimming cells or bacteria [Wioland et al., 2013]. A continuum description

of the long-wavelength behaviour of these suspensions is based on the identification

of slow variables, associated with conserved quantities and broken symmetries. In

wet active matter the total momentum is conserved and its density is one of the

fields entering the continuum model [Simha and Ramaswamy, 2002a; Kruse et al., 2004]. The

resulting equations are those of liquid crystal (LC) hydrodynamics [de Gennes and Prost,

1995; Chaikin and Lubensky, 2000], modified by terms arising from activity, which will be

introduced in Section 2.2.2.

The other class is dry active matter, in which any hydrodynamic interactions

between the constituents are damped, for instance by strong friction with a substrate,

and overall momentum is not conserved [Toner et al., 2005]. The number density of active

particles becomes the relevant conserved field. On the microscopic scale this represents

cell monolayers [Duclos et al., 2014] and motility assays of intracellular filaments [Schaller

et al., 2010], but is also applicable to active objects on large scales, such as groups of

animals in motion [Toner and Tu, 1998; Toner et al., 2005].

To describe dry active matter a di↵erent approach in the form of discrete, stochas-

tic models may be taken, known under the name of self-propelled particle (SPP)

models [Vicsek and Zafeiris, 2012; Cates and Tailleur, 2015]. In the simplest case the epony-

mous particles have an orientation and a prescribed velocity and align with their

neighbours according to some rules and subject to noise [Vicsek et al., 1995]. Agent-

based computer simulations of SPPs have been successful in describing for instance

collective motion of birds [Pearce et al., 2014] and provide a framework to incorporate
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2.1. Classification of active matter

new, system-specific behavioural rules [Pearce and Turner, 2014]. In the context of active

liquid crystals topological defects allow for an e↵ective description as SPPs interacting

via an elastic potential [Giomi et al., 2014; Keber et al., 2014]. We will employ this approach

in Chapter 5 to study the motion of defects in an active nematic shell in simulations.

Orientationally ordered active systems are also di↵erentiated according to the sym-

metry of their orientation field and the type of stresses they exert on their surrounding.

Polar particles, which have a well-defined direction of self-propulsion, flock into phases

with vectorial order. Locally, particles move in parallel, leading to directed motion

of the whole flock. Motile cells, swimming bacteria, and moving animals intrinsically

have this head-tail asymmetry. On the microscale, there are also instances of active

particles which are head-tail symmetric, such as melanocytes, fibroblasts, and other

spindle-like cells [Kemkemer et al., 2000; Duclos et al., 2014, 2016]. They order into nematic

phases, which are invariant under locally reversing the orientation of the constituents.

Nematic symmetry is well-known from liquid crystals, which consist of aligning rod-

like molecules. Nematic “flocks” do not move, on average, and allow for di↵erent

types of topological defects than polar flocks. This type of order occurs not only if the

active particles are apolar, but also if the interactions between particles are insensitive

to their polarity or if the collection is well-mixed, with equal amounts of oppositely

polarised particles [Sanchez et al., 2013]. In this sense, an active particle does not have to

be self-propelling, but is only required to exert anisotropic forces on its environment.

One distinguishes between extensile and contractile forces in the direction of local

orientation.

There are also examples of active matter, which are not biological in origin:

vibrated granular rods [Narayan et al., 2007]; collections of colloidal particles, for instance

activated by light [Palacci et al., 2013, 2014], by magnetic fields [Bricard et al., 2013], or by

chemical gradients; suspensions of artificial swimmers and swimming droplets; and

swarms of moving robots, like bristlebots [Giomi et al., 2012] or kilobots [Rubenstein et al.,

2014]. Most of these systems however do not fall under the realm of active liquid

crystals, because they are either dry or lack liquid crystalline alignment, like spherical

colloidal particles and droplets.

We stress, that we do not aim to describe “living liquid crystals”. Although previ-

ously having been used as a synonym for active liquid crystals [Simha and Ramaswamy,

2002b], this term has recently been reintroduced for a new type of active matter, which

consists of bacteria immersed in a bath of passive nematic liquid crystal [Zhou et al.,

2014] and hence requires a di↵erent theoretical description than the systems considered

here.
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2.2. Continuum description of active liquid crystals

2.2. Continuum description of active liquid crystals

As the continuum description of ALCs is an extension of liquid crystal hydrodynamics,

this section first introduces the basics of nematic liquid crystals and the generalised

elasticity that is associated with distortions in the nematic alignment field. We then

present the derivation of active hydrodynamic equations after Simha and Ramaswamy

[2002a], focusing on the active stress term, but also mention various generalisations.

The new features that these systems acquire due to activity are reviewed, in particular

flow instabilities, rheology, and fluctuations.

2.2.1. Elasticity of nematic liquid crystals

The term liquid crystal denotes a whole range of mesomorphic phases of matter, which

have properties in between simple fluids and crystals. The simplest such phase is the

nematic liquid crystal, for instance consisting of rod-like molecules in suspension. A

nematic has no positional order whatsoever and can be well described as a fluid with

an additional director field n(x), which represents the mean local alignment of the

rod-like units [de Gennes and Prost, 1995]. As the units are head-tail symmetric, all

physical properties of a nematic material are invariant under inversion of the director

n ! �n, so it can be visualised as a headless vector field or line field, like in Figure

2.1 (a).

The emergence of orientational order can be rationalised as a phase transition, in

which the rotational symmetry of the isotropic liquid state is broken, for instance in

the framework of a Landau-De Gennes theory [de Gennes and Prost, 1995]. The isotropic-

to-nematic transition can be induced by an increase in concentration or a decrease in

temperature, the material then being lyotropic or thermotropic, respectively. In the

ordered phase the director is typically assumed to have unit magnitude

n

2 = 1, (2.1)

except at the locations of topological defects, see Section 2.4.

Like in any ordered medium with a spontaneously broken continuous symmetry,

there are long-wavelength distortions of the nematic order which give rise to the Frank

free energy [de Gennes and Prost, 1995]

E =
1

2

ˆ
d3x
n

K
1

(r · n)2 +K
2

[n · (r⇥ n)]2 +K
3

[(n ·r)n]2
o

(2.2)

where the three terms represent splay, twist and bend deformations and the K
i

are

the corresponding Frank elastic constants. Equilibrium directors for given boundary
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2.2. Continuum description of active liquid crystals

conditions are found by minimising the free energy (2.2) with respect to n, �E

�n

= 0.

Away from equilibrium, changes of the director are driven by the molecular field

h = ��E
�n

· (I� nn) , (2.3)

where I is the unit tensor. Only the component perpendicular to n is included, to

satisfy the constraint (2.1).

Although in most real liquid crystals the values of the three constants can be

quite disparate, it is insightful to work in the one-elastic-constant approximation,

K
i

= K. In particular, it o↵ers a simplified description in which far greater analytic

progress can often be made. The principal e↵ect of anisotropy in the elastic constants

is to break the symmetry between di↵erent geometric distortions (splay and bend),

however, in active materials this geometric coupling (distinction between splay and

bend) is already provided by the active forces so that all qualitative phenomena should

be captured even in the one constant approximation. In this approximation the energy

functional (2.2) reduces to

E =
K

2

ˆ
d3x
n

|rn|2
o

. (2.4)

In two dimensions, a unit magnitude director is determined by its local angle of

orientation ↵(x),

n(x) = cos(↵(x))ê
x

+ sin(↵(x))ê
y

. (2.5)

In terms of ↵(x) the elastic energy (2.4) is written as

E =
K

2

ˆ
d2x (r↵)2 (2.6)

and its variation is �E = �K
´
d2x(r2↵)�↵. So, in the one-elastic constant approx-

imation, a director satisfies the equilibrium condition if its local angle is a harmonic

function,

r2↵(x) = 0 . (2.7)

An obvious solution is a uniform director, but in general the real and imaginary part of

any holomorphic function is harmonic [Needham, 1998]. In this thesis we are concerned

with singular solutions to equation (2.7), which incorporate topological defects and

are discussed in Section 2.4 and, more generally, in Section 3.3.
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2.2. Continuum description of active liquid crystals

b)a)

Figure 2.1: (a) In a nematic liquid crystal the rod-like particles are locally aligned on average
along a direction given by the director field n(x, t), whereby n and �n are equivalent. (b) Cartoon
of an active rod-like particle producing an extensile (�0 > 0) dipolar flow (light grey arrows). For
a contractile flow (�0 < 0) the arrows would be reversed. The notation used to coarse-grain a
collection of such force dipoles is shown.

2.2.2. Active liquid crystal hydrodynamics

We follow the derivation of the equations of motion for an active liquid crystal given

by Simha and Ramaswamy [Simha and Ramaswamy, 2002a,b; Toner et al., 2005], where the

form of the active stress was first established. Consider an orientationally ordered,

three-dimensional suspension of active particles with nematic alignment. The long-

wavelength, long-time behaviour of this material can be described in a generalised

hydrodynamic approach [Martin et al., 1972], where one identifies the slow, or hydrody-

namic, variables and writes down their time-evolution expanded to leading orders

in gradients. Hydrodynamic variables are those for which the frequency of their

fluctuations vanishes as their wavelength diverges, that is fluctuations of conserved

quantities and Goldstone modes of spontaneously broken continuous symmetries. In

an ALC variables of the first type are the mass density ⇢(x, t) and the momentum

density g(x, t) = ⇢(x, t)u(x, t), where u(x, t) is the fluid velocity field. Here, density

and velocity refer to the suspension as a one-component fluid, not distinguishing

between the solvent and the active particles suspended in it. The concentration of

active particles can be another hydrodynamic variable, but we consider it as constant

for simplicity, c(x, t) = c
0

.

Nematic order entails a slow variable of the second type, which we take to be the

unit length nematic director n(x, t). Its time evolution can be directly adopted from

standard liquid crystal theory [de Gennes and Prost, 1995; Chaikin and Lubensky, 2000],

@
t

n+ (u ·r)n+ ! · n =
1

�
1

h� ⌫
1

v · n , (2.8)

with the vorticity tensor !
ij

= (@
i

u
j

� @
j

u
i

)/2, the strain rate tensor v
ij

= (@
i

u
j

+
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2.2. Continuum description of active liquid crystals

@
j

u
i

)/2, and the molecular field h given by (2.3). The phenomenological parameters

are the rotational viscosity �
1

and the flow-alignment parameter ⌫
1

, distinguishing

between rod-like (⌫
1

> 0) and disk-like (⌫
1

< 0) particles which align (|⌫
1

| > 1) or

rotate (|⌫
1

| < 1) in shear-flow. Here, we consider rod-like, flow-aligning active particles

(⌫
1

> 1), which are thought to reflect active biofilament suspensions. This choice is not

consistent throughout the literature, perhaps because no experimental measurements

are yet available regarding the collective response of such suspensions to shear flow.

There is evidence for perfect flow-alignment of microtubules with shear flow in dilute

motility assays [Kim et al., 2006]. Single, sti↵ or semi-flexible actin filaments, however,

were found to tumble and even coil in shear-flow [Harasim et al., 2013; Lindner and Shelley,

2015].

For a constant density the continuity equation, @
t

⇢+r · (⇢u) = 0 turns into the

incompressibility condition for the fluid velocity

r · u = 0. (2.9)

The time evolution of the velocity is in general given by the Navier-Stokes equation

[Batchelor, 1967]

⇢(@
t

u+ (u ·r)u) = r · �, (2.10)

where (r · �)
i

= @
j

�
ij

.

The relative importance of inertial to viscous e↵ects is captured by the Reynolds

number Re = ⇢UL/µ [Batchelor, 1967], which is small on the microscopic length scales

relevant for experimental active liquid crystals. The kinematic viscosity of water at

room temperature is µ/⇢ ⇠ 10�6 m2/s [Batchelor, 1967]. For instance, the bacterium

Bacillus subtilis has a rod-shaped body of length L ⇠ 5 µm and swims at a speed

U ⇠ 15 � 20 µm/s [Sokolov et al., 2007], resulting in Re ⇠ 10�5. In microtubule-based

active suspensions bundles of ⇠ 1.5 µm in length slide past each other at a speed ⇠ 3

µm/s in the dilute regime [Sanchez et al., 2013], leading to Re ⇠ 10�6. Thus, in such

systems all inertial terms in the fluid dynamics are negligible compared to the viscous

terms. This approximation results in Stokes-type, linear equations, replacing equation

(2.10) with a force balance

r · � = 0 . (2.11)

The total stress tensor �(x, t) is composed of the pressure p(x, t), the viscous stress

with dynamic viscosity µ, the elastic distortion stress �

e(x, t), and the active stress

�

a(x, t),

�
ij

= �p�
ij

+ 2µv
ij

+ �e
ij

+ �a
ij

. (2.12)
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2.2. Continuum description of active liquid crystals

The stress due to distortions in the director [Marchetti et al., 2013],

�e
ij

=
⌫
1

2

✓

n
i

h
j

+ h
i

n
j

� 2

3
h
k

n
k

�
ij

◆

, (2.13)

arises from standard nematic elasticity, because the rods generate a shear-flow when

they rotate [de Gennes and Prost, 1995]. In active systems this so-called “back-flow” is

usually a small contribution compared to active e↵ects [Yeomans, 2016].

The contribution from activity enters in the form of the active stress tensor

�a
ij

= ��
0

✓

n
i

n
j

� 1

3
�
ij

◆

. (2.14)

This term arises because it cannot be ruled out by symmetries1 or conservation laws of

the system [Simha and Ramaswamy, 2002a; Ramaswamy et al., 2003]. In equilibrium it does not

occur, because forces entering the equations of motion have to be derived from a free

energy functional. For a nematic such forces depend on derivatives of n, not n itself,

see equation (2.2). Further, in this derivation [Simha and Ramaswamy, 2002a] no relations

are imposed among the phenomenological parameters, other than those arising from

geometrical symmetries. An active system lacks the time-reversal symmetry on the

microscopic level, which is present in linear non-equilibrium theories, where it yields

Onsager reciprocal relations for the phenomenological parameters [De Groot and Mazur,

1984]. Here, in particular, the activity parameter �
0

is not related to any other

process. It characterises whether the active liquid crystal produces extensile (�
0

> 0)

or contractile (�
0

< 0) stresses.

Derivation of the active stress from a suspension of force dipoles

The active stress (2.14) can be derived by coarse-graining the hydrodynamic e↵ect

of a collection of active particles suspended in a fluid [Simha and Ramaswamy, 2002a].

A self-propelled particle does not exert any net force or torque on the surrounding

fluid as a consequence of Newton’s Third Law, since the combined system of particle

and fluid is force-free. It follows that the leading contribution to the fluid flow that

an active particle generates2 in the far field is a stresslet, the flow field associated

with a force dipole [Yeomans, 2016]. This flow field, as illustrated in Figure 2.1 (b), has

nematic symmetry and exists in two variants: the particle is a pusher and produces

an extensile flow if it expels fluid along its body axis and pulls fluid in on the sides,

and a puller, producing contractile flow, conversely. For instance, the MT-based

1In this setup the equations have to be invariant under rotations in space and under reversion of
the director, n ! �n.

2For a swimmer, this is the time-averaged flow generated during one swimming stroke.
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2.2. Continuum description of active liquid crystals

active nematic [Sanchez et al., 2013] generates local extensile stresses when the MTs slide

past each other, as can be verified from Figure 1.1. Actin and myosin mixtures are

usually contractile. Certain microorganisms also fit well into this classification, for

instance the bacterium Escherichia coli is a pusher [Drescher et al., 2011]. For others it is

insu�cient, the single-cell alga Chlamydomonas reinhardtii behaves like a puller only

on very large scales and Volvox carteri produces a unidirectional flow [Drescher et al.,

2010].

Consider a small volume element of fluid that contains N active force-dipoles at

the centre-of-mass positions x

i

(t), i = 1, . . . , N . Each rod points along the direction

given by the unit vector n̂

i

(t) and has the total length a + a0, allowing for a polar

activity. The two forces f
i

= f n̂
i

and f

0
i

= �f n̂
i

act on its ends, as shown in Figure

2.1 (b). The force density f

a generated by the presence of active particles in this

volume element can be written as

fa

k

(x, t) =
N

X

i=1

�

f
i,k

�(x� (x
i

+ an̂
i

)) + f 0
i,k

�(x� �x
i

� a0n̂
i

�

)
 

= f
N

X

i=1

n̂
i,k

�

�(x� x

i

� an̂
i

)� �(x� x

i

+ a0n̂
i

)
 

⇡ �f(a+ a0)
N

X

i=1

n̂
i,k

n̂
i,j

@
j

�(x� x

i

) , (2.15)

where the last line was obtained by expanding the expression for a, a0 ⌧ 1. Because

the directions n̂
i

are constant the spatial derivative extends over the whole expression.

Taking the continuum limit, we have
P

i

n̂

i

(t)n̂
i

(t)�(x�x

i

) = c
0

n(x, t)n(x, t), so that

fa

k

(x, t) = �f(a+ a0)c
0

@
j

n
k

n
j

. (2.16)

Identifying this expression with the divergence of a stress leads to the active stress

(2.14). This calculation shows that the activity parameter �
0

is proportional to the

concentration c
0

, the strength of the force-dipoles f , and the separation of the two

forces in each of them. Notably, this first order contribution to the active stress does

not distinguish between polar (a 6= a0) and apolar (a = a0) particles.

Alternative derivations and generalisations

Alternative derivations of active hydrodynamics can be grouped into two approaches

[Marchetti et al., 2013]. One can start with a microscopic model, for instance with

the stochastic dynamics of molecular motors on a network of filaments [Liverpool and

Marchetti, 2006] or the microscopic description of swimmers and their hydrodynamic
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2.2. Continuum description of active liquid crystals

interactions [Baskaran and Marchetti, 2009], and coarse-grain it in the style of the kinetic

theory of rarefied gases [Pottier, 2010]. This approach relies on seemingly constrictive

assumptions of low density and weak interactions, but it provides a valuable link

between the parameters of a continuum description and the microscopic mechanisms.

Further, it is also possible to use the framework of linear non-equilibrium thermody-

namics [De Groot and Mazur, 1984], where the system is assumed to be driven away from a

well-defined state of thermal equilibrium by a small force. This approach was used to

describe the actin-myosin cell cytoskeleton as an active gel [Kruse et al., 2004] and will be

summarised below, in Section 2.3. In essence, all approaches lead to similar systems

of equations, in particular featuring the stress given in (2.14) as the main e↵ect of

activity, and thus to similar properties of active liquid crystals. Generalisations of

the minimal system of equations (2.8)-(2.14) presented above may include a polar

orientation field [Kruse et al., 2004], resolving the multiple components of the suspension

and viscoelasticity [Joanny et al., 2007; Callan-Jones and Jülicher, 2011].

2.2.3. Properties of active liquid crystals

One of the fundamental properties of active liquid crystals is the instability of a

uniformly oriented, nonflowing phase towards spontaneous splay or bend distortions

of the director and fluid flow, which was first shown by Simha and Ramaswamy [Simha

and Ramaswamy, 2002a,b]. In the bulk, active nematic suspensions and polar suspensions

at low Reynolds numbers are unstable at long-wavelengths for any nonzero value of

activity [Simha and Ramaswamy, 2002a]. In a confined geometry this instability can be

suppressed for a nematic, since there is a threshold that relates the smallest dimension

with the activity and elasticity of the material. For an active suspension in a slab-

geometry it can be found that, if the thickness of the slab is smaller than a threshold

l
a

⇠
s

K

|�
0

| , (2.17)

the uniformly oriented, nonflowing nematic state is linearly stable [Voituriez et al., 2005;

Ramaswamy and Rao, 2007]. The instability, leading to a tilt in the orientation in the

contractile case [Voituriez et al., 2005], and the onset of spontaneous flows are recovered

for films thicker than the threshold. Equivalently, this can be recast into a minimal

activity, |�
0

| ⇠ K/l2
a

, which is required to destabilise the ordered nematic state in a

given geometry. In the confined geometry this instability is reminiscent of the Frederiks

transition in passive nematics between two plates, where in a su�ciently strong electric

or magnetic field a uniform director spontaneously changes to a tilted configuration

[de Gennes and Prost, 1995]. The active counterpart has two crucial di↵erences, which
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2.2. Continuum description of active liquid crystals

a) b)

Figure 2.2: Illustration of the two fundamental instabilities in active liquid crystals: a) bend in
the director is enhanced in extensile ALCs, b) splay in the director is enhanced in contractile ALCs.
The size of outlined arrows represents the strength of the active fluid flow, which in both cases is
such that it increases the distortion. Reproduced after Reference [Ramaswamy and Rao, 2007].

are that it occurs in the absence of external fields and that the tilt in the director

is accompanied by steady flows. Figure 2.2 gives a pictorial explanation of the

nature of these instabilities. Microscopically, the fundamental instability can be

derived from the long-range hydrodynamic flows that the active particles exert on

each other, which decay as ⇠ 1/r2 with particle separation [Baskaran and Marchetti,

2009]. Suppression of the instability is therefore possible by mechanisms that screen

this particular hydrodynamic interaction, for example elasticity of the surrounding

medium, damping by substrate friction, or if the individual swimmer’s symmetry is

such that the dipolar ⇠ 1/r2 term vanishes [Baskaran and Marchetti, 2009; Pooley et al., 2007].

Further, orientational order can also be stabilised by translational order [Ramaswamy

and Rao, 2007] and, in the contractile case, by su�ciently strong shear flow [Muhuri et al.,

2007].

In two dimensions, a whole range of phases and patterns are predicted in dif-

ferent variants of active hydrodynamic models [Marchetti et al., 2013; Prost et al., 2015],

including striped flowing phases, travelling waves and swirls, bursts of active flows and

consequent relaxation oscillations, and flow vortex and polar defect lattices [Voituriez

et al., 2006; Marenduzzo et al., 2007; Giomi et al., 2008, 2011; Giomi and Marchetti, 2012; Tjhung

et al., 2011]. The high activity regime in such systems, also called active turbulence,

is characterised by chaotic flows and director distortions and has been studied exten-

sively for the nematic case [Thampi et al., 2014b,a, 2013], where half-integer defects3 are

spontaneously generated, advected and annihilated. Due to the various quantitative

observations of this regime in experiments [Dunkel et al., 2013; Sanchez et al., 2013] it is

an area of ongoing research. For instance, recently the distribution of vortex sizes in

the turbulence-like flow patterns has been linked to the intrinsic active length scale l
a

3See Figure 2.3 for an illustration of the di↵erent defect types, which will be explained in Section
2.4.1.
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2.3. Cellular cytoskeleton as an active gel

[Giomi, 2015].

Active liquid crystals have unusual rheological properties, generally associated

with shear-thinning or -thickening. Isotropic suspensions of extensile nematic particles

lower the e↵ective viscosity, but contractile suspensions are shear-thickening [Hatwalne

et al., 2004]. This was also generalised to polar filament-and-motor solutions with

contractile activity [Liverpool and Marchetti, 2006]. At the isotropic-to-nematic transition

the viscosity is predicted to diverge for contractile active nematics [Hatwalne et al., 2004;

Liverpool and Marchetti, 2006; Cates et al., 2008]. Shear-thinning was confirmed experi-

mentally for bacteria suspensions of Bacillus subtilis [Sokolov and Aranson, 2009] and of

Escherichia coli [López et al., 2015], the latter even revealing a superfluid-like regime at

high activity and volume fraction in which the e↵ective viscosity vanishes, as predicted

in the literature [Cates et al., 2008].

In polar active suspensions the fluctuations of the number N of active parti-

cles in a given volume are anomalously large compared to equilibrium fluctuations,
p

(�N)2 ⇠ N
1
2+

1
d with d the dimension [Simha and Ramaswamy, 2002a]. These large

number fluctuations have been predicted first for dry systems, like active nematics on

a substrate [Ramaswamy et al., 2003], and were confirmed experimentally with vibrated

rods [Narayan et al., 2007].

2.3. Cellular cytoskeleton as an active gel

2.3.1. Active components of the cell

The cytoskeleton of eukaryotic cells [Lodish et al., 2007; Alberts et al., 2014] is a sca↵old of

biopolymers that provides a cell with structure and is the principal cellular component

to carry out mechanical tasks like moving, changing shape, dividing, responding to

and generating forces, and producing cytoplasmic flows [Serbus, 2005]. It is built of three

types of protein filaments – actin filaments, microtubules, and intermediate filaments

– of which only the former two are relevant for active processes [Prost et al., 2015].

MTs, schematically shown in Figure 1.1, are hollow tubes having a diameter of 25 nm

and lengths of up to 20 µm in vivo. The tube is assembled from thirteen thread-like

protofilaments, each being a string of polar tubulin subunits bound in head-to-tail

fashion. Due to this assembly the MT as a whole acquires polarity, having a plus

and a minus end. The plus end is favoured for polymerisation of further subunits,

a process which requires binding of guanosin triphosphate. Because of their tubular

structure MTs are the most rigid filament type and provide long-range organisation

and structure in a cell. Combined into bundles, they are an integral part of the mitotic

spindle, which is responsible for the separation of the chromosome pairs during cell
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2.3. Cellular cytoskeleton as an active gel

division.

Actin filaments are thinner and more flexible than MTs, with a diameter of 8

nm and lengths between 36 nm and several µm, depending on the structure. Polar

G-actin monomers are activated by binding one ATP and assemble into a helical

strand consisting of two linear chains. Twenty-eight monomers form one F-actin unit,

which has one pointed and one barbed end due to the polarity-preserving assembly

mechanism. The pointed end is strongly favoured for polymerisation. Actin is found in

many di↵erent structures in the cell. The cell cortex is an isotropic mesh of short actin

filaments underneath the cell membrane. The thin lamellipodium at the leading edge

of crawling cells is a highly polarised and branched actin network. Bundled actin is

found in stress fibres, which are important for cell shape, in thin membrane protrusions

called filopodia, and in the contractile ring which separates the two daughter cells

during cell division.

Although somewhat di↵erent structurally, both actin filaments and microtubules

are polar and their ends are sites of active polymerisation and depolymerisation

processes, resulting in treadmilling if the rates are equal, which can generate forces in

the cell [Dogterom and Yurke, 1997]. Actin treadmilling is a crucial part of cell crawling,

providing the force to push the cell membrane at the leading edge [Murrell et al., 2015].

The second source of activity in the cytoskeleton are the molecular motors, which

are able to perform conformational changes when they consume chemical fuel and to

“walk” along the appropriate type of filament. Cytoskeletal molecular motors also

exist in three varieties: myosin, which walks and pulls on actin filaments, and kinesin

and dynein, which use microtubules as tracks. Myosin motors consist of a neck domain

and one or two head domains, depending on the type, and processive myosins turn

one ATP molecule into a step of 5 - 10 nm along an actin filament. The ATP is

hydrolysed into adenosin diphosphate and inorganic phosphate, whereby the motor

performs a conformational change that produces a force on the object it is bound

to, for example another actin filament. Together with the actin network architecture

and the deformability of actin filaments [Lenz, 2014], the pulling force they provide is

responsible for the contractile nature of the actin-myosin cytoskeletal structures like

lamellipodium, cell cortex, and muscles, and of reconstituted actin-myosin gels [Mizuno

et al., 2007; Köhler et al., 2011].

The kinesin family contains two-headed motors which walk on MTs, making a step

of 8 nm, to the next tubulin subunit, upon binding of one ATP. Kinesins walk towards

the plus end of MTs, whereas dyneins walk towards the minus end. This allows for

instance kinesin-1 clusters to attach to and pull on antiparallel MTs, which is the

mechanism providing microtubule sliding in the MT-based active nematic [Sanchez

et al., 2013] described in Section 2.4.4. The main function of kinesins is intracellular
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transport of vesicles on the long MT tracks which span a cell. This process is a

prototype of a one-dimensional active system, which have been modelled extensively,

for instance using stochastic exclusion processes [Kolomeisky and Fisher, 2007; Khoromskaia

et al., 2014].

To study the active mechanical properties of the cytoskeleton in vitro, reconsti-

tuted actin-myosin [Pinot et al., 2012; Shah and Keren, 2014] or microtubule-kinesin [Nedelec

et al., 1997; Sanchez et al., 2013] systems, or cell extracts with few components [Verkhovsky

et al., 1999], are often used.

2.3.2. Active gel model

From a material perspective the actin-myosin cytoskeleton allows for a description as

a viscoelastic gel of cross-linked actin filaments, which is driven out of equilibrium by

the active processes described above. In addition, since the individual filaments are

polar, the gel can have macroscopic polar alignment, described by the polarisation field

p(x, t). The active polar gel model was derived by Jülicher, Kruse et al. [Kruse et al.,

2004, 2005]. It is very similar to the hydrodynamic model described in Section 2.2.2,

therefore we only highlight the main di↵erences here. In order to explicitly include

actin treadmilling and motor activity, the setup is that of a multi-component gel,

keeping track of the number densities of actin and myosin bound to the network and in

solution, respectively. One assumes that the active state is a small perturbation away

from thermal equilibrium, which allows to use linear non-equilibrium thermodynamics

[De Groot and Mazur, 1984]. Pairs of fluxes and conjugate forces are identified from the

entropy production rate. The active force is characterised by the chemical potential

di↵erence �µ between ATP and its hydrolysis products, and the ATP consumption

rate is the conjugate flux.

The main contribution from activity is again a stress of the form �ag
ij

= �⇣�µ(p
i

p
j

�
�
ij

/3) � ⇣̄�µ�
ij

, with new transport coe�cients ⇣ and ⇣̄, which are associated with

contraction if they are negative and with extension otherwise. The first part is similar

to expression (2.14), but gives a concrete connection to the two microscopic origins of

activity in the gel. From the second part it follows that a compressible gel can contract

or expand also in the absence of local alignment. Several e↵ects follow from polar as

opposed to nematic order. Self-advection in the direction of polarisation, (u+�p)·rp,

represents treadmilling of actin filaments with another new parameter � associated

to activity. This term is for instance the origin of concentration bands in multi-

component active gels [Giomi et al., 2008]. The free energy density (2.2) is augmented

by a spontaneous splay contribution ⇠ r ·p. Finally, to account for elastic properties

of the cytoskeleton the active gel model can be combined with the Maxwell-model

for a viscoelastic material, which behaves like a solid with elastic modulus E = µ/⌧

19



2.3. Cellular cytoskeleton as an active gel

on time scales smaller than the elastic relaxation time ⌧ , and like a viscous fluid on

longer times [Kruse et al., 2004].

2.3.3. Cell motility and other active processes

Variants of the active gel model, either in a simplified form or with additional phe-

nomenological terms included from biology, have provided new insights into cell motil-

ity and other cellular processes [Jülicher et al., 2007; Prost et al., 2015].

Cell motility on a substrate

The two main processes leading to cell motility on substrates are actin treadmilling

and actin-myosin contraction [Lodish et al., 2007]. A typical cell, crawling on a flat

substrate, exhibits a strongly asymmetric shape, such as the crescent-like keratocyte

[Mogilner and Keren, 2009]. The front part of the cell, the thin lamellipodium, is filled with

a polarised and branched actin-myosin network which is anchored to the substrate and

is continuously polymerising at the leading edge and depolymerising closer to the rear.

The anchoring points, called focal adhesions, are highly force-sensitive and dynamic

protein complexes in the membrane. Focal adhesions transmit the polymerisation

forces to the substrate [Gardel et al., 2008], thus providing sliding friction to the motion

of the cell [Schwarz and Safran, 2013]. Because of the anchoring, the treadmilling of actin

generates a force at the leading edge that pushes the membrane forward. Treadmilling

and myosin contractility give rise to retrograde flow of actin with respect to the

substrate in the lamellipodium and to anterograde flow of actin at the back of the

cell [Vallotton et al., 2005; Yam et al., 2007]. Simultaneously, myosin contracts the cell rear,

which is retracted as the rearward focal adhesions dissociate from the substrate.

A stationary cell is not polarised, often assuming a round shape with the cell

nucleus in the centre and with actin being polymerised along the edge and moving

radially inwards. Motility is initiated by spontaneous or induced breaking of this

symmetry, which is thought to be realised by myosin-mediated contraction of the

prospective rear of the cell [Yam et al., 2007]. The symmetry breaking can be induced

externally by chemical cues [Yam et al., 2007] or by mechanical force [Verkhovsky et al.,

1999].

Active gel models have been able to reproduce certain aspects of the crawling

motility of cells on substrates and have highlighted the role of myosin-induced con-

tractile stresses and flows. For instance, a simple model for the lamellipodium is a

thin film of polarised contractile fluid [Kruse et al., 2006; Jülicher et al., 2007]. On long time

scales the average e↵ect of focal adhesions can be modelled as a viscous friction force
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2.3. Cellular cytoskeleton as an active gel

[Gerbal et al., 2000]

F

v = ⇠v (2.18)

opposing the flow v of active fluid at the substrate with an e↵ective friction coe�cient

⇠ that is related to the average number of attached focal adhesions. When only the

cross section of the film is considered, a contractile flow profile and a height profile

consistent with observations of cells can be derived from the assumption that actin

polymerisation is localised at the front [Kruse et al., 2006]. In this model the cell velocity

was imposed and wetting phenomena at the cell front were not considered.

Early models of crawling cell motility focused on the spontaneous symmetry break-

ing [Callan-Jones et al., 2008] and the shape of the two-dimensional cell contour [Keren

et al., 2008; Shao et al., 2010; Blanch-Mercader and Casademunt, 2013], with actin polymerisation

and adhesion to the substrate being su�cient ingredients. Recently, the framework of

active gels has allowed to also study the polarisation field of actin filaments [Ziebert et al.,

2012] and the flow field [Tjhung et al., 2012; Marth et al., 2015] in these motile states. Such

models suggest the symmetry breaking in the polarisation field as a motility-initiating

mechanism [Tjhung et al., 2012]. In simple models of cells as contractile polar droplets

the motile state is characterised by a splayed polarisation, a crescent-like shape, and

a flow vortex pair in the interior, propelling the drop in the direction of splay [Tjhung

et al., 2012; Whitfield et al., 2014; Marth et al., 2015]. Most models imply that a physical

machinery underlies cell motility, which can self-organise and maintain motion even

in the absence of signalling or external cues. The persistent motility of lamellipodial

fragments of keratocytes, which contain not much more than the actin-myosin system

[Verkhovsky et al., 1999], would support this view. However, there is no consensus on

whether this physical machinery is dominated by treadmilling or by contractility.

In the models described above the cell is treated as a flat object, which misses some

three-dimensional aspects of crawling cell motility, such as the structure of cytoplasmic

flows during migration [Keren et al., 2009; Lewis et al., 2015], the role of membrane tension

[Lieber et al., 2015], and the determination of the cell shape [Keren et al., 2008]. Few

investigations so far have considered the full three-dimensional shape of crawling

cells [Gabella et al., 2014; Herant and Dembo, 2010; Tjhung et al., 2015]. In one study, motile

keratocytes, as well as their lamellar fragments, have shown parallels with droplets on

a substrate, for instance pinning of the cell front on substrate ridges. The cell speed

correlated with cell roundness, which could be understood by relating the contact

angle at the leading edge with the force acting on the polymerising actin [Gabella

et al., 2014]. A minimal model of a cell extract as a droplet of active fluid was able to

reproduce in simulations various cell shapes observed with real, motile and stationary

cells [Tjhung et al., 2015]. The shapes were a result of the interplay between active

21



2.3. Cellular cytoskeleton as an active gel

contractile stresses from a polarised actin gel, strength of polarisation anchoring at

the interface, and actin treadmilling. The typical lamellipodium shape emerged from

the simulation for intermediate values of all three parameters and was accompanied by

a splayed polarisation and fluid flow directed towards the leading edge and following

the splay in the orientation. Measurements of cytosol flow in moving keratocytes also

show this directionality [Keren et al., 2009]. Tjhung et al. [2015] also included variable

friction of the type (2.18) to represent the adhesion strength of a cell to the substrate.

The velocity of the model cell decreased substantially with slip, up to a reversion of

the direction of motion, but a theoretical argument for this was not given. In another

computational study realistic three-dimensional shapes of motile cells were generated

using a hydrodynamic model [Herant and Dembo, 2010], although without including the

polarisation field of active filaments.

Cell motility in three dimensions

In vivo cells usually migrate through three-dimensional tissue, which requires di↵erent

mechanisms than crawling in the plane [Even-Ram and Yamada, 2005; Mogilner and Keren,

2009]. For example, one possible mode of migration is based predominantly on actin-

myosin-contractility and cytoplasmic streaming in roughly spherical cells [Poincloux

et al., 2011], with a reduced role for attachment and no actin treadmilling. A related

mechanism involves strong shape deformations, where the cell forms spherical mem-

brane protrusions called blebs [Charras and Paluch, 2008].

The former type of migration was reproduced in a model of a spherical actin

cortex [Hawkins et al., 2011], where the myosin-mediated contractility drives spontaneous

symmetry breaking in the thickness of the cortex and causes meridial cortical flows

consistent with experimental measurements of displacements of Matrigel4 around

moving cells [Poincloux et al., 2011]. Measurements of flow fields of cytosol inside such

cells are not yet available. This swimming-like migration was also obtained for three-

dimensional active polar droplets immersed in passive fluid [Tjhung et al., 2012; Whitfield

et al., 2014]. There, contractile active stresses spontaneously break symmetry and

produce a splayed polarisation and flow in the form of a toroidal vortex ring, in

the absence of treadmilling and friction at the droplet boundary.

Other cellular processes

Because the actin cortex of cells plays a major role in shape deformations, active gel

theory was employed to describe processes like shape oscillations [Salbreux et al., 2007]

and asymmetric steady state shapes [Berthoumieux et al., 2014; Callan-Jones et al., 2016] of

4A type of artificial extra-cellular matrix.
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nonadherent cells, as well as strong deformations during the division of a cell, where

the final stage is the constriction of a contractile actin ring [Salbreux et al., 2009; Turlier

et al., 2014]. The mitotic spindle, also part of the cell division machinery, was shown to

behave like a self-organising active nematic droplet with microtubule turnover [Brugués

and Needleman, 2014]. Finally, cytosolic streaming can also occur in stationary cells, for

instance, as a circulatory flow resulting from a spiral-like arrangement of the actin

cytoskeleton that rotates the nucleus [Kumar et al., 2014].

2.4. Topological defects

2.4.1. Defects in liquid crystals

Apart from the Goldstone modes described in Section 2.2.1 a nematic director can also

be distorted by topological defects [Mermin, 1979; de Gennes and Prost, 1995; Chaikin and

Lubensky, 2000]. These are topologically stable singular points in the director, where

the orientation is not defined. Figure 2.3 shows di↵erent types of such defects in

a two dimensional nematic. In two dimensions defects are grouped into topological

equivalence classes according to the winding number of the director around them. This

means that defects in the same class can be transformed into one another by continuous

changes of the director, while defects in distinct classes cannot – in the same way as

they cannot be removed completely without making discontinuous transformations of

the director.

Winding numbers

Consider the two dimensional vector field n(x) = (cos(↵(x)), sin(↵(x))). Formally,

the winding number [Chaikin and Lubensky, 2000], or index I [Needham, 1998], of the vector

field around a point is the total change in the orientation ↵(x) along a loop � enclosing

the point,

I =
1

2⇡

˛
�

r↵(R(s)) · dR(s) =
1

2⇡

˛
�

d↵

ds
ds . (2.19)

� is any closed loop parametrised by its arc length s, but it will be convenient to use

a small circle centred at the defect. In two dimensions, a nematic director with

↵(�) = m�+ ↵
0

, (2.20)

where (r,�) denote polar coordinates, solves the equilibrium condition (2.7) and has

a single defect at the origin. Here, m is the winding number or topological strength

of the defect, since
´
2⇡

0

d↵

d�

d� = 2⇡m. For a nematic material m 2 1

2

Z, since n ⇠ �n,

so the director can change by multiples of ⇡ as a circle around the defect is traversed.
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Figure 2.3: Topological defects in a two-dimensional nematic liquid crystal, classified by their
topological strength m 2 1

2Z, which indicates how much the local director winds around the defect
in multiples of 2⇡. The director field is represented by line segments and the point marks the
singularity. For m = +1 two possible director geometries are shown: an aster, with pure splay
distortions, and a vortex, with pure bend distortions. They can be obtained by adding a di↵erent
phase ↵0 to the local angle of orientation (2.20): ↵0 = 0 and ↵0 = ⇡/2, respectively.

For a material with polar symmetry the orientation can change by multiples of 2⇡, so

m 2 Z. In this way, characterising the defects that occur in a material allows to draw

conclusions about its symmetry properties.

In the one-elastic-constant approximation a constant phase ↵
0

can be added to

the local orientation, since bend and splay distortions are energetically equivalent.

The phase alters the local geometry of the director around the defect, as illustrated in

Figure 2.3 for m = +1. The local director has pure splay distortions for ↵
0

= 0 and

pure bend distortions for ↵
0

= ⇡/2. In the former case the defect is usually called an

aster and in the latter case a vortex. Any intermediate choice of ↵
0

leads to a spiral-

like director. This di↵erentiation of defects according to their phase is important in

active nematics due to the contrasting roles of splay and bend, as discussed in Section

2.2.2. Working with one elastic constant allows to study the entire family of directors

parametrised by this phase and identify the di↵erences that arise from activity.

If a curve encloses a region with more than one defect then their winding numbers

are added to give the total winding number. This can be seen by deforming the curve

into circular parts, each of them enclosing only one defect and contributing this defect’s

winding number, and linear parts, which connect the circles and do not contribute to

the integral. Therefore, a texture with a pair of defects with opposite strengths, m

and �m, is topologically equivalent to a texture with no defects at all. This is the
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reason why defect pairs can be created from a smooth director field, if enough energy

is supplied by a thermal fluctuation or – as we shall see in the next Section – by

continuous energy input due to activity. Conversely, two defects of opposite strengths

can annihilate and leave behind a smooth texture.

In three dimensional nematics there are point defects in the bulk called hedgehogs

and point defects at boundaries called boojums5 [Volovik and Lavrentovich, 1983], both

existing in di↵erent topological strengths. Characteristic for bulk nematics are line

defects, or disclinations6, which only exist with half-integer winding, since integer

strength defect lines can be removed by an escape of the director into the third

dimension and are therefore topologically unstable [Alexander et al., 2012]. These half-

integer defect lines can close upon themselves in three dimensions, creating complex

topological structures, like knots and links. The classification of such structures is

an active area of research [Machon and Alexander, 2013, 2014]. In thin nematic films

the thickness determines which type of defect lines are energetically favoured. For

instance, there is a critical thickness beyond which a defect line connecting two half-

integer defects at the film boundaries becomes unstable in favour of two +1 boojums

[Vitelli and Nelson, 2006].

Defects in passive liquid crystals can occur naturally during quenched isotropic-

to-nematic transitions or can be induced by applied fields. A di↵erent path, which is

also promising to control defects in active systems [Keber et al., 2014; Duclos et al., 2016],

is to frustrate the order by well-chosen geometric constraints with specific anchoring

conditions, for instance by complex sample boundaries or included colloidal particles

[Senyuk et al., 2013]. In passive nematics this is a well-established way to control the

appearance and locations of defects. The resulting defect structures, like loops, knots

and links [Tasinkevych et al., 2014], can in turn be used to manipulate nanoparticles,

guide self-assembly of molecular structures [Wang et al., 2015], or serve as a playground

to explore the topological richness of nematic liquid crystals [Machon and Alexander, 2013,

2014].

Energy of defects

A nematic director with a defect as in (2.20) is a local free energy minimum, but

by construction has a higher energy than the undistorted state. The total energy is

composed of the core energy E
c

and the elastic distortion energy E
def

. Real defects

have a defect core of size r
c

at the location of the mathematical singularity, where

5Coined by N. David Mermin as a term for a surface defect, the word “boojum” originally describes
a fictitious creature in Lewis Carroll’s poem “The Hunting of the Snark” [Mermin, 1981].

6These give the nematics its name, which derives from the Greek word “nema” for thread
[de Gennes and Prost, 1995].
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the nematic melts and becomes isotropic or which is devoid of nematogens altogether,

and E
c

is associated with the creation of this region from a nematic state. Since

r↵ = m

r

ê

�

, the elastic energy (2.6) for a nematic texture with one defect is

E
def

= K⇡m2

ˆ
R

r

c

1

r
dr = K⇡m2 ln

✓

R

r
c

◆

. (2.21)

The integral is cut o↵ at the defect core radius r
c

, below which the continuum elastic

theory breaks down, and at a length scale R, that represents the sample size. From

equation (2.21) it is evident that the energetic cost of a single defect grows with its

topological strength.

It can be shown that the elastic energy of a nematic director with a collection

of defects, for which the expression is given in Chapter 3, with strengths m
j

and

inter-defect distances r
jk

, is

E = K⇡ ln

✓

R

r
c

◆

X

j

m2

j

+ 2K⇡
X

j<k

m
j

m
k

ln

✓

R

r
jk

◆

. (2.22)

The first part are the self-energies E
def

of all defects, as in (2.21), and the second are

the pairwise interaction energies. According to (2.22), replacing a defect of strength m

by two defects of strengths m

2

, which are further apart than r
c

, reduces the total elastic

energy of the system. Thus, in two-dimensional nematics integer strength defects are

generally unstable and decay into ±1/2 defects. The interaction between two defects

is repulsive, if m
j

and m
k

have the same sign, and attractive otherwise. The strength

of the interaction grows with decreasing distance r
jk

.

The i-th defect, with position r

i

= (x
i

, y
i

), experiences an elastic force F

(i) due

to all other defects,

F

(i) = �r
i

E, (2.23)

where r
i

= (@/@x
i

, @/@y
i

). The motion of defects in two dimensions or defect lines

in three dimensions can be described by overdamped dynamics [Ryskin and Kremenetsky,

1991; Denniston, 1996; Giomi et al., 2014]

⇠

✓

dr
i

dt
� u(r

i

)

◆

= F

(i), (2.24)

in which the elastic force is counterbalanced by a friction force with an e↵ective friction

coe�cient ⇠ and proportional to the defect velocity with respect to some background

flow u. This particle-like model will be employed in Chapter 5 to describe the motion

of defects in the case when u is the self-generated active flow.

The friction coe�cient may depend on various other parameters like the rotational
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viscosity �
1

in equation (2.8), the winding number of the defect, and the defect velocity

[Giomi et al., 2014]. The dependence on the first two can be estimated from the energy

dissipation rate E [Imura and Okano, 1973; Ryskin and Kremenetsky, 1991]. Consider one

defect moving with constant velocity v = vê
x

with no background flow. Then we

have [de Gennes and Prost, 1995]

E =

ˆ
h ·
✓

v
@n

@x

◆

dx dy = �
1

v2
ˆ ✓

@↵

@x

◆

2

dx dy , (2.25)

where we have used the simplified form of equation (2.8) that holds in this case,

v@n/@x = h/�
1

, to replace the molecular field. Assuming a director of the form

(2.20) and a bounded domain of size R one finds

E = ⇡�
1

m2 ln

✓

R

r
c

◆

v2. (2.26)

On the other hand, E = F vv = ⇠v2 with the viscous drag force F v, so ⇠ / �
1

m2 follows

from (2.26). By considering small variations of the director away from its equilibrium

form (2.8) it is possible to remove from equation (2.26) the divergence with system

size [Denniston, 1996].

The attraction between defects of opposite strength results in annihilation of such

pairs. Consider two defects on the x-axis with m
1/2

= ±m and x
1

< x
2

. In the

absence of flow, u = 0, it can be shown that their separation r
12

= x
2

� x
1

evolves

according to
dr

12

dt
= �4K⇡m2

⇠

1

r
12

. (2.27)

Therefore, shortly before two defects annihilate their distance scales as

r
12

(t) ⇠ p
t
a

� t, (2.28)

where t
a

is the time of annihilation [Denniston, 1996; Tóth et al., 2002; Dierking et al., 2012;

Giomi et al., 2013]. Recent work has also highlighted the importance of the relative

orientation of defects and of the resulting hydrodynamic torques on the relaxational

dynamics, for instance +1/2 defects tend to align anti-parallel as they repel [Keber et al.,

2014; Vromans and Giomi, 2016]. An unconstrained nematic in equilibrium is defect-free,

as all defects will have annihilated. On the other hand, if a nonzero total topological

charge is enforced by boundary conditions, the excess defects will have strengths of

the same sign and therefore will settle in configurations that maximise their spacing.
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2.4.2. Defects on curved surfaces

On closed curved surfaces the presence and type of defects in a vector field is deeply

connected to the topology of the surface and we follow Kamien [2002] to illustrate this

connection. First, we introduce some basic di↵erential geometry to describe surfaces

and vector fields on them. LetM be a closed surface embedded in R3 and parametrised

by X(s
1

, s
2

), with local coordinates s
1

and s
2

. Two orthonormal basis vectors in

the tangent plane are ê

i

= @
s

i

X/|@
s

i

X|, i = 1, 2, from which the unit normal is

constructed as N̂ = ê

1

⇥ ê

2

. The vectorial surface element is dS = dSN̂ = ds
1

ds
2

N̂ .

The Gaussian curvature K = 
1


2

is the product of the two principal curvatures 
1

and 
2

at each point on the surface, which are the minimal and maximal rate of change

of tangent vectors. The Gauss-Bonnet theorem,

‹
M

KdS = 2⇡� , (2.29)

relates the integrated Gaussian curvature to a topological invariant of the surface –

its Euler characteristic � = 2(1� g), where g is the number of handles, or the genus.

A sphere has � = 2, a torus � = 0, a double-torus � = �2, etc.

Consider a tangent vector field on M given by n(s
1

, s
2

) = cos(↵)ê
1

+sin(↵)ê
2

. To

find the winding number of this field inside an area ⌦ surrounded by the closed curve

@⌦, instead of r↵ as in equation (2.19), one has to integrate the covariant derivative

D↵ = r↵� ê

1

·rê

2

. This takes into account the spatially varying basis through the

spin connection A = ê

1

·rê

2

. Suppose n is smooth with respect to the basis, then¸
@⌦

D↵ · dR = 0. On the other hand, using Stokes theorem, we have

˛
@⌦

D↵ · dR =

˛
@⌦

r↵ · dR�
¨

⌦

(r⇥A) · dS. (2.30)

The Gaussian curvature can be expressed as K = N̂ · �r⇥A

�

[Kamien, 2002] and so,

if we choose ⌦ = M and use (2.29),

‹
M

(r⇥r↵) · dS =

‹
M

KdS = 2⇡� . (2.31)

As the integral on the left side of equation (2.31), in analogy to equation (2.19), counts

the winding numbers m
j

of all defects on the surface, multiplied by 2⇡, we have

X

j

m
j

= � , (2.32)

which is known as the Poincaré-Hopf theorem [Hopf, 1989]. In particular, this implies

that a vector field on a sphere necessarily has defects and that their topological
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strengths will add up to � = 2. On a torus, on the other hand, defect-free vector

fields are possible.

Topology only determines the minimal number of defects that a nematic has to

have on a surface. The topography, that is the distribution of the curvature, a↵ects

the positions of defects and can also stabilise states with higher number of defects

than the minimally required [Serra, 2016; Jesenek et al., 2015; Selinger et al., 2011; Hirst et al.,

2013]. On toroidal nematic shells, for instance, defect pairs are created and prevented

from annihilating if the torus is fat, that is if its aspect ratio is almost one [Jesenek

et al., 2015]. The positive half-integer defects then accumulate on the outside, where

the Gaussian curvature is positive, and the negative ones on the inside, where the

curvature is negative, forming a metastable multiple-defect state. Generally, defects of

positive (negative) topological strength are attracted to regions of positive (negative)

Gaussian curvature [Selinger et al., 2011; Kralj et al., 2011; Pairam et al., 2013]. Conversely,

defects can be employed to generate local curvature in soft vesicles with in-plane

orientational order [Hirst et al., 2013; Nguyen et al., 2013].

2.4.3. Active defects

Defects in biological systems

The role of defects in living organisms is largely unexplored, although they do occur

in vivo in many di↵erent settings. Some early observations about the topology of

ridge patterns in fingerprints date back to Roger Penrose, who identified half-integer

defects in these patterns and conjectured that the origin of these must be “something

of a tensor character, such as a stress or strain” [Penrose, 1979]. While Penrose’s

intuition has not been confirmed with real fingerprint patterns yet, it is known that in

vitro monolayers of various types of spindle-like epithelial cells display active nematic

behaviour with typical half-integer defects [Kemkemer et al., 2000; Duclos et al., 2014],

which can be stabilised by circular confinement [Duclos et al., 2016]. Such cells include

melanocytes, which are responsible for pigmentation of the skin in human epithelia.

Other active biological systems also display defect formation. Corneal epithelial cells

of mice and rats are found to develop a spiral defect [Mort et al., 2009; Mohammad Nejad

et al., 2014], probably as a result of the half-spherical space they grow and migrate

on. In the interior of cells self-organised defective structures can also be found, for

instance the mitotic spindle forms two aster defects at the poles [Brugués and Needleman,

2014] and the cytoskeleton can assume a spiral-defect-like organisation to rotate the

nucleus [Kumar et al., 2014]. In Vibrio cholerae biofilms – droplets of bacteria attached to

a surface – hedgehog-defect-like alignment is found at large cell numbers and densities

[Drescher et al., 2016].
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Phenomenology of active defects

There is, however, a number of new, non-equilibrium properties that defects acquire

in an active material. Most importantly, the local polarity of splay and bend de-

formations can lead to translational and rotational motion of defects and to the

generation of strong active fluid flows. Another characteristic of active defects is their

spontaneous generation in the bulk, which was first observed in an active suspension

of microtubules and kinesin motors [Nedelec et al., 1997; Surrey et al., 2001]. In very thin

circular micro-chambers microtubules first formed asters, which became spiral defects

with circulatory flow around the centre as the microtubules grew in length. In a

laterally unconfined chamber irregular lattices of spirals or asters formed as steady

states, depending on kinesin concentration.

Positive half-defects in active systems are special, because they self-propel due

their locally polar director structure. This was first mentioned as an observation

in monolayers of vibrated granular rods in the nematic phase [Narayan et al., 2007],

anticipated from the prediction of director-curvature induced motion of dry active

nematics [Ramaswamy et al., 2003].

The nature of a real active defect core will depend on the system and the defect

type. For instance, spiral and vortex defects formed by biofilaments [Nedelec et al., 1997]

have an empty core, the size of which is roughly the same for di↵erent confinements,

but asters have an accumulation of molecular motors and microtubule ends at their

centre. The core of a �1/2 defect formed by melanocytes can be empty, filled with

one triangular cell, or with several cells with mixed orientations [Kemkemer et al., 2000].

In the microtubule-based active nematic [Sanchez et al., 2013] �1/2 defects have a bigger

void at their core than +1/2 defects, see Figure 2.4. The reason might be that the

very thin and long MT-bundles can fit well into the geometric structure of the director

around the latter, with MT-bundles arranging locally in the shape of a “T”. This can

be altered by increasing the viscosity of the adjoining oil layer, in which case the void

at the positive defect grows in size [Guillamat et al., 2016c].

The strength of an active defect is not governed by energetics only, as opposed to

its passive counterpart, but seems to be sensitive to elasticity, activity, and system size

[Marchetti et al., 2013]. In the MT-based active nematic only half-integer defects occur,

which reveals its nematic symmetry [Sanchez et al., 2013]. But the same material confined

to a small enough spherical surface develops a ring-like structure, equivalent to two

vortex defects [Keber et al., 2014]. In simulations, an active nematic in a circle also forms

as rotating spiral at low activity, which separates into two half-defects only at higher

activity [Woodhouse and Goldstein, 2012]. In a di↵erent computational approach, where

microtubules are modelled as active semi-flexible filaments, they are found to coil into
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Figure 2.4: Positive (red) and negative (blue) half-integer defects in a quasi-two dimensional
active nematic, from Reference [DeCamp et al., 2015]. Characteristic for the regime of high activity
is the spontaneous unbinding of ±1/2 defect pairs, as seen in the right half of the figure, after
which the self-propelling +1/2 defect moves away (in direction of red arrow).

an irregular array of spirals apart from displaying the usual half-integer dynamics

[Prathyusha et al., 2016].

Theoretical description of active defects

Active liquid crystal theory provides a convenient framework to study defects in active

systems, since parallels to passive defects can be drawn. Flows produced by single

active defects of strength +1, +1/2 and �1/2 have been calculated analytically and

several results regarding stability and interactions of defects are available.

The linear stability of +1 defects in active gels has been studied by Kruse et al.

[2004, 2005]. In a passive LC there is a family of defects characterised by the phase

↵
0

, see equation (2.20) with m = 1 for the polarisation angle, all of which are stable

in the one-constant approximation. For unequal elastic constants the degeneracy is

lifted and only asters are stable for �K = K
3

� K
1

> 0, whereas only vortices are

stable for �K < 0. An active polar gel without self-advection, described by simplified

equations equivalent to those in Section 2.2.2, is considered in a disk of radius R. In

this description the polar nature of the material is reflected only in the topological

strength of the defect, but not in the hydrodynamics, as explained in Section 2.2.2.

For �K = 0, the active defect is only stable if |⌫
1

| > 1 and if the phase ↵
0

satisfies the

relation

cos(2↵
0

) = � 1

⌫
1

. (2.33)

This is the same angle that a nematic liquid crystal would assume in shear flow.

The spiral produces a rotating flow of the form u
�

(r) / r ln(r/R), as a result of

incompressibility and no slip at the boundary. For �K 6= 0 linear stability analysis
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shows that for extensile activity the dependence on �K is like in the passive case, but

both asters and vortices are turned into spirals by a su�ciently contractile activity

[Kruse et al., 2005]. Simulations confirm this phase diagram [Elgeti et al., 2011].

Note, that the above results are obtained for disk-like particles, that is ⌫
1

< 0 in

equation (2.8). For rod-like particles a numerically produced phase diagram shows

that contractile activity favours asters and extensile activity mainly favours spirals,

with vortices occurring in a very small parameter region [Elgeti et al., 2011]. In the same

work interactions between two +1 defects inside a circular patch were simulated. Two

contractile active asters relaxed into a steady state separation, rather than leaving the

droplet as passive defects would due to elastic repulsion. In the extensile case, two

rotating spirals circled around each other, either steadily or with periodically changing

sense of rotation [Elgeti et al., 2011].

In compressible active polar films phases with defect arrays were found numerically

[Voituriez et al., 2006]. Two types of possible lattices were suggested, a triangular and

a cubic, both constructed from elementary cells with one spiral defect and a flow

vortex. We note, that although such lattices satisfy continuity in the flow, they require

domain walls in the orientation and are therefore not energy-minimising director

configurations.

Analytical results for the active flow generated by half-integer defects in active

nematics were obtained by Giomi et al. [2014]. For this purpose a half-integer defect in

a two-dimensional circular domain of radius R with no-slip boundaries was considered.

The flow was calculated by integrating the active force generated by the defect against

the Oseen tensor, which is the Green’s function of the Stokes equation [Batchelor, 1967].

The +1/2 defect produces at its location a directed flow with the magnitude

v
0

=
|�

0

|R
4µ

(2.34)

in the direction of its comet-head in an extensile material, and in the opposite direction

in a contractile material. To satisfy the no-slip condition, the flow field in the circular

region is a vortex pair. On the other hand, the �1/2 defect generates at its location a

stagnation point with three-fold symmetry. Therefore, positive active half-defects self-

propel, whereas negative half-defects are stationary in the absence of external flows

or forces. Introducing finite slip at the boundary does not change the main features

of these flows [Giomi et al., 2014].

The self-propulsion of active defects can dramatically change the interaction be-

tween defects, for instance by competing with and even overcoming elastic attraction

of a ±1/2 pair [Giomi et al., 2013]. In an extensile active nematic, if a +1/2 defect points

with its comet-head in the direction of the �1/2 defect the annihilation happens faster.
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The trajectories are increasingly asymmetric due to activity and r
12

/ ��
0

t. Only at

very short distances does the elasticity dominate and the scaling (2.28) is recovered.

When the +1/2 defect points in the opposite direction its active propulsion slows the

annihilation down. If v
0

is larger than a critical value the +1/2 defect will always

overcome the elastic attraction and escape the pair. This is observed in the MT-based

active nematic [Sanchez et al., 2013], where defect pairs are created and immediately

separated, so that a constant defect density is maintained.

The interaction of two +1/2 defects was investigated in the context of a two-

dimensional active nematic droplet, whose behaviour is controlled by an active capil-

lary number [Giomi and DeSimone, 2014]. For contractile activity and normal anchoring

at the boundary, the active flows generated by the two +1/2 defects act to increase

their repulsion, which leads to elongation and even rupture of the droplet. In between

these two cases, at intermediate capillary number, the elongated droplet is prone to a

splay instability and starts moving [Giomi and DeSimone, 2014].

2.4.4. Experimental realisation of microtubule-based active nematic

Arguably, the most beautiful experimental realisation of an active nematic liquid

crystal are the suspensions of cellular filaments and motors developed in the group

of Zvonimir Dogic [Sanchez et al., 2013], see Figure 1.1. This seminal paper describes

most of the distinctive features of active half-integer defects – spontaneous unbinding

of defect pairs, self-propulsion of +1/2 defects – in addition to active turbulence and

large-scale motion of active nematic droplets driven by the defect dynamics. The active

suspension consists of microtubules, bipolar clusters of kinesin-1 motors, which can

bind to two microtubules and pull on them, and ATP to drive the motors. An ATP

regeneration system was incorporated to maintain its concentration. Polyethylene

glycol (PEG) was added to facilitate the formation of MT-bundles through depletion

interaction. When bundles are well-mixed regarding the MT polarity they are contin-

uously extending. At higher concentrations, when MT-bundles formed a viscoelastic

network in bulk, extension led to a cycle of buckling, breaking and reforming. When

adsorbed to a flat water-oil interface, the MT-bundles form a dense two-dimensional

active nematic phase. It is characterised by strong streaming flows and continual

buckling and fracture of nematic domains. Fracture events produce pairs of ±1/2

defects, after which the positive defects move actively and the negative are advected

in the flow, as shown in Figure 2.4 from a follow-up experimental work [DeCamp et al.,

2015]. When the MT-bundle suspension is enclosed in an emulsion drop with diameters

of ⇠ 100 µm, the active nematic adheres to the drop’s surface. Such drops, when

confined between two glass plates, move autonomously with average velocities up to

⇠ 1µm s�1. The trajectories are erratic, but show signs of periodicity. This motion was
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caused by the active flow of a defective director on the surface, although quantitative

data relating defect motion to drop velocity were not presented. Lastly, two active

droplets next to each other seemed to interact, moving closer and further apart in a

quasi-periodic fashion.

Further investigations of this material have focused on the tunable properties of

the three-dimensional active network [Henkin et al., 2014], on the depletion interaction

[Hilitski et al., 2015] and the sliding friction [Ward et al., 2015] between individual MTs, and

on the e↵ective viscosity of the two-dimensional nematic phase [Guillamat et al., 2016c].

Variations in the viscosity of the oil, which the active nematic shares one interface

with, have a strong e↵ect on the dynamics and orientational order. Notably, positive

defects move slower and have a larger core with increased oil viscosity, while their

number density increases [Guillamat et al., 2016c]. Another new direction which has been

explored using this material is nematic ordering of the active +1/2 defects themselves,

which occurs in very thin films [DeCamp et al., 2015].

Furthermore, the chaotic active flows in the MT-based active nematic can be

suppressed in favour of more regular flow patterns by confinement to the surface of

vesicles [Keber et al., 2014], which will be described in detail in Section 2.5.3, or by

putting it in contact with a passive liquid crystal with controllable patterns [Guillamat

et al., 2016a,b].

2.5. Active fluids in confinement: thin films, droplets, and shells

The drive to study geometrically confined active matter is rooted in two di↵erent, but

related, motivations. Firstly, real living systems are often adapted to small spaces and

complex boundaries, as illustrated by the cytoskeleton dynamics in the confinement

of a cell, by suspensions of swimming bacteria living in porous media [Rusconi et al.,

2014], and by the other examples in Sections 2.3.3 and 2.4.3. In order to understand

and, perhaps, reproduce their active behaviours these constraints have to be taken into

account. Secondly, there is growing interest in producing more regular and controllable

active flows and dynamic patterns, as well as active motile objects, not least because

flows and patterns found in living systems are often well-orchestrated in space and

time and stable against noise. This can be achieved by confining an active fluid,

since it is a way to suppress active turbulence and to stabilise topological defects.

For instance, circular confinement creates stable, self-driven circulatory flows. Here,

we discuss the main features that active fluids acquire in di↵erent types of confined

geometries and outline open questions.
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2.5.1. Thin films and drops on surfaces

The simplest confined geometry to consider is a thin, flat film of active fluid, where

di↵erent types of boundary conditions are possible. A Hele-Shaw cell has two rigid,

no-slip boundaries, whereas a freely suspended film has two shear-free, deformable

boundaries. Intermediate situations can allow for partial slip at a boundary, which

creates shear stress at this boundary through viscous friction as given in (2.18).

Typically, the polar or nematic orientation field is anchored tangentially at both

bounding surfaces. Key to the theoretical description of flows in this geometry is

the thin film approximation, or lubrication approximation, in which gradients in the

confined direction dominate [Oron et al., 1997].

Very thin films possess a quiescent, uniformly oriented steady state [Voituriez et al.,

2005; Ramaswamy and Rao, 2007]. Above the threshold film thickness, as given by (2.17),

di↵erent steady flow patterns are found in thin active polar films depending on the

type of boundary [Voituriez et al., 2005]. In a freely suspended film the spontaneous flow

is antisymmetric about the mid-plane of the film, such that the net flux vanishes. For

two no-slip surfaces the flow is also antisymmetric, but it vanishes at the boundary. A

unidirectional flow is obtained only for one no-slip and one shear-free surface, which

corresponds to a thin film of active fluid coating a solid substrate. In this model

[Voituriez et al., 2005] the flow component perpendicular to the bounding surfaces was set

to zero, but interesting, new e↵ects arise if the free boundary is allowed to deform and

if the film extends in two directions [Voituriez et al., 2006; Sankararaman and Ramaswamy,

2009]. In a height-averaged description of a freely suspended active gel of varying

thickness, which results in a compressible two-dimensional fluid, stripes of splay with

anti-parallel flows and arrays of polar defects with vortices are predicted in simulations.

Compressibility is described to be crucial for the occurrence of these instabilities

[Voituriez et al., 2006]. In a similar setup, wave-like instabilities result from a coupling of

polarisation, surface deformations, and concentration of active filaments [Sankararaman

and Ramaswamy, 2009]. Thereby, filaments splay in the plane of the film, which generates

fluid flow and film thickness gradients. A strong enough self-propulsion of the filaments

weakens the growth of this instability [Sankararaman and Ramaswamy, 2009]. Thin films

covered with self-propelled surfactants can be stabilised or destabilised depending on

the propulsion velocity of the particles [Pototsky et al., 2014] and various oscillating,

dynamic patterns are found for such films numerically [Pototsky et al., 2016].

Although the thin film approximation provides a suitable framework to study fluids

coating curved surfaces, like cylinders and spheres [Takagi and Huppert, 2010], we know

of no work where active liquid crystals have been considered in these thin geometries.

The thin film approximation was, however, employed to describe the actin cortex in
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a cylindrical and a spherical geometry, but only in the limit of weak or vanishing

orientational order [Salbreux et al., 2007, 2009].

A much less understood situation is an active fluid film that is bounded in the

lateral directions. Joanny and Ramaswamy [2012] have considered a drop of active

fluid on a surface, focusing on the wetting properties and steady state shapes of sym-

metric drops with small equilibrium contact angles. The polarisation was assumed to

be tangential to both bounding surfaces and to instantaneously follow the deformation

of the free surface. In this way, the spreading dynamics and steady states can be in

principle obtained from a single equation for the time evolution of the shape. First,

the cross section of such a drop is considered, in which case the spreading is driven

by the tilt in the orientation due to the confined shape, much like the instabilities

considered by Sankararaman and Ramaswamy [2009]. Numerically, a flat, pancake-

like steady state shape was obtained for extensile drops. Scaling arguments revealed

that the height is controlled by the interplay of activity and surface tension, whereas

at the edge the shape is a consequence of nematic elasticity and surface tension and

grows as ⇠ x2 with the distance x from the edge. A similar, but rounder shape

was obtained numerically for the contractile case. The active droplet cross sections,

with lateral size R(t), deform into these final shapes according to the spreading law

R(t) ⇠ t1/4. Furthermore, an axisymmetric three-dimensional drop with an aster or a

vortex defect was considered. Such directors minimise the elastic energy in the plane

of the substrate, provided that the anchoring along the edge is chosen accordingly. For

the drop with an aster defect, the defect was ignored and the final shape was taken

to be the pancake shape obtained for the cross section, rotated around the symmetry

axis. Due to the additional dimension, the spreading law changed to R(t) ⇠ t1/6. For

the vortex state, the defect was included which lead to a divergent radial contribution

to the flow, ⇠ 1/r, which was likened to a centrifugal force. We note, that in this

case the polarisation is strictly azimuthal and therefore not coupled to axisymmetric

changes in the shape, so ignoring the defect would lead to trivial, passive spreading.

It is important to allow for three-dimensional incompressibility in order to obtain this

contribution to the flow, because in a two-dimensional consideration of an active +1

defect all radial components vanish [Kruse et al., 2004]. The steady state shape resulting

from a vortex defect is calculated analytically and is non-monotonic, with a well at

the defect location in the extensile case [Joanny and Ramaswamy, 2012]. Finally, the cross

section can also represent an elongated drop with two half-defects at either side in the

limit of large anisotropy.

In summary, the interplay of shape and orientation field in the confined geometry

of an active droplet on a substrate was first analysed by Joanny and Ramaswamy

[2012], but several interesting directions have been referred to future work. First,
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the presence of the defect in the droplet was only considered properly for the vortex

and only for that case was an analytical expression for the shape given. However,

a deformation of the drop above the defect should also be expected in the case of

an aster. Moreover, spiral defects and the rotating flows they generate [Kruse et al.,

2004] have not been considered in this context, but should lead to rotation of the drop.

Another natural extension of this work is to ask whether such drops can become motile

due to asymmetry in the director. Chapter 4 addresses this question and provides an

analysis of various aspects of motility that derives from the presence of defects in the

droplet.

There are no experiments with active droplets on a surface available to date. The

closest may be the active nematic droplets moving between two plates [Sanchez et al.,

2013]. The propulsion of the droplet is due to frictional contact with a surface, although

there are two rigid plates in this case, which prohibits any shape changes. The other

important di↵erence is that the active material only coats the surface of the droplets,

whereas the interior is passive fluid.

2.5.2. Flow vortices and defects in circular confinement

A liquid crystal in circular, or thin cylindrical, confinement with appropriate anchoring

is required to have defects with overall topological strength of +1 [Alexander et al., 2012].

When ALCs are confined to a circular geometry, in addition to the defects in the

orientation, stable flow vortices emerge as a prominent feature.

In dense suspensions of Bacillus subtilis bacteria, which in bulk show active tur-

bulent flows [Dunkel et al., 2013], confinement gives rise to a stable vortex state [Wioland

et al., 2013, 2016b]. When confined to quasi-two-dimensional droplets, bounded by

two glass plates ⇠ 15 � 25 µm apart, the bacteria self-organise into a vortex if the

droplet diameter is in the range 20 � 70 µm. The combined flow due to advection

and swimming is purely azimuthal, but has a thin counterrotating boundary layer.

Detailed measurements have revealed that the bacteria are oriented in an outward

pointing spiral everywhere in the drop, but in the bulk they are advected by the vortex

against their swimming direction [Lushi et al., 2014]. The emergence of the vortex and

the boundary layer was rationalised in particle-based simulations [Lushi et al., 2014] and

in continuum simulations and linear stability analysis of a polar extensile active fluid

in a disk [Theillard et al., 2016], both emphasising the role of hydrodynamic interactions

and geometry. The self-organisation of the vortex starts at the boundary, where the

pusher cells align at an angle and produce a flow against their orientation, which is

amplified to become the bulk vortex.

In simulations, a nematic ALC was found to circulate spontaneously in a disk

[Woodhouse and Goldstein, 2012]. Di↵erent phases were found for increasing activity
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above the circulation threshold, which was derived in a linear stability analysis of

a homogeneous disordered state. The first phase was a rotating spiral defect, as

predicted by Kruse et al. [2004]. At higher activity, the +1 defect separated into two

+1/2 defects, which continued to circulate around the disk centre. At even higher

activity, the defect pair shifts o↵-centre and the flow circulation centre itself starts to

oscillate.

Recently, the MT-based active nematic was indirectly confined to circular domains

by an underlying liquid crystal [Guillamat et al., 2016b]. The liquid crystal formed a

lamellar phase with circular domains of di↵erent sizes, in which the viscosity in the

radial direction is much higher than in the polar due to the structure of the LC. Large

enough domains were able to capture the flowing active nematic, which then circulated

inside the domain. Usually one pair of rotating +1/2 defects was captured, but they

were periodically remodelled due to the active bending instabilities and other defect

combinations with a total strength of +1 were also observed. Passive tracer particles

were advected by the active flow on outwards spiralling trajectories [Guillamat et al.,

2015]. We note, that this is only possible if the active flow inside the circular domain

has a radial component, which means that it cannot be purely two-dimensional but

has to pump fluid into its vortex centre, for instance from the passive fluid above the

active nematic.

Circulatory flows are also found in active polar fluids confined to the cross section

of a Taylor-Couette geometry [Fürthauer et al., 2012; Neef and Kruse, 2014]. A spontaneously

formed single vortex can move the two coaxial cylinders with respect to each other

and, at higher activity, states with multiple counterrotating vortices occur, which

can be either stationary or travelling around the inner cylinder [Neef and Kruse, 2014].

Interestingly, in this model no defects in the orientation were created. In a cylinder,

where full three-dimensional flows are allowed, an active nematic produces complex

vortex structures in the cross section depending on the anchoring conditions, which

either lead to half-defect lines or to a director escaped into the axial direction [Ravnik

and Yeomans, 2013]. For tangential anchoring along the cylinder axis the spontaneous

flow is unidirectional at intermediate activity, but bidirectional at higher activity. In

both cases the cross-sectional flow component consists of symmetric arrangements of

counterrotating vortices, but is much smaller than the axial component. Homeotropic

or circular anchoring stabilises two +1/2 defect lines, which drive purely cross-sectional

flow consisting of two counter-rotating vortex pairs. At higher activity the defects

escape into the third dimension and the flow is again predominantly axial. In this

numerical study, the +1/2 defects drive a flow for any nonzero value of activity [Ravnik

and Yeomans, 2013].

In biological systems self-organised circulatory flows are characteristic of cyto-
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plasmic streaming in plant cells [Goldstein and Tuval, 2008; Verchot-Lubicz and Goldstein,

2009; Woodhouse and Goldstein, 2012, 2013], with spherical or cylindrical confinement, and

of cytosolic streaming in animal cells [Keren et al., 2009; Yi et al., 2011; Ganguly et al.,

2012; Kumar et al., 2014]. Flows in motile cells have motivated a number of active

polar [Tjhung et al., 2012; Whitfield et al., 2014; Marth et al., 2015; Whitfield and Hawkins,

2016] or nematic [Giomi and DeSimone, 2014] droplet models. The main findings of

these models are summarised for the case of contractile activity. Typically, an active

droplet is initialised with a uniform or a defective orientation field, depending on the

anchoring along the boundary. At low activity the droplet deforms – it is elongated

perpendicular to the axis of orientation due to contractile stresses and, in the nematic

case [Giomi and DeSimone, 2014], by the repulsion of two half-defects – but remains

immotile. Even for this uniformly aligned state the confinement to a droplet generates

flow in its interior, which is symmetric and quadrupolar, provided there is finite

slip at the boundary [Whitfield et al., 2014]. At a critical activity the director splays

spontaneously and the droplet starts moving in the direction of the splay, propelled

by a pair of counterrotating vortices. This symmetry breaking is also reflected in

a crescent-like shape [Tjhung et al., 2012; Giomi and DeSimone, 2014; Marth et al., 2015].

However, also for a fixed, circular shape and an imposed splay similar flow fields

and motility are found analytically [Whitfield et al., 2014]. A three-dimensional motile

drop is equivalent to the flat drop rotated around its axis of propulsion [Tjhung et al.,

2012]. The three-dimensional, splayed orientation develops a hedgehog defect at high

activity. As activity is increased further, the defect approaches the centre, which

brings the drop to a halt and restores the spherical shape [Tjhung et al., 2012]. If the

droplet is instead initialised with a central hedgehog defect, or with an aster defect in

two dimensions, the defect’s position is linearly stable for contractile activity, but the

defect moves away from the centre for extensile activity which leads to directed motion

of the drop [Whitfield and Hawkins, 2016]. In an extensile drop initialised with uniform

polarisation, spontaneous bend occurs at critical activity and, if self-advection along

the polarisation is added, the droplet moves on spiralling trajectories [Tjhung et al.,

2012].

The mechanism responsible for the generation of a bulk vortex in a drop of

bacteria [Wioland et al., 2013] was recently harnessed to stabilise bacteria into a steady

unidirectional circulation inside a thin “racetrack” channel [Wioland et al., 2016a]. This

geometry has also revealed a di↵erent type of vortex formation, in which arrays of

flow vortices emerge at a critical channel width, before the flow becomes chaotic. The

vortex size matches the width of channel and the rotation sense is chosen randomly

[Wioland et al., 2016a; Theillard et al., 2016]. Flow vortex lattices were also found in

numerical studies of active nematics in a channel, where they were accompanied
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by a regular arrangement of ±1/2 defects [Doostmohammadi et al., 2016b]. Similarly,

a passive rotor, or even arrays of such rotors, can be set in rotation by a flowing active

nematic [Thampi et al., 2016]. These examples suggest that active turbulent flows may

be regularised into vortex lattices if the length scale of the geometric confinement

matches the intrinsic active length scale l
a

[Giomi, 2015].

We comment on the minimal and maximal domain sizes for which circulatory flows

occur in experiments. For the Bacillus subtilis suspensions the length scale of ⇠ 70

µm characterises the domain size at which the flow vortex in a circle becomes unstable

[Wioland et al., 2013], as well as the channel width for which laminar flow is replaced by

a chain of channel-spanning vortices [Wioland et al., 2016a], and the size of characteristic

swirls in bulk active turbulence [Dunkel et al., 2013]. In the MT-based active nematic

vortices were found up to the largest measured domain sizes, ⇠ 200 µm [Guillamat et al.,

2016b]. This is larger than the typical length scale of folds in an unconstrained active

nematic, ⇠ 100 µm [Sanchez et al., 2013], possibly because vortices are not self-organised,

but forced by the underlying LC structure. Naturally, there is also a minimal domain

size for the emergence of a stable vortex, which is ⇠ 20 µm for Bacillus subtilis

suspensions [Wioland et al., 2013] and ⇠ 30 µm for MT-based active nematics at standard

conditions [Guillamat et al., 2016b]. In the active nematic this length scale increases with

bending rigidity of MTs and decreases with ATP concentration, which means that at

stronger activity +1/2 defects are able to circulate with a smaller separation. Thus,

in this experiment the minimal domain size is thought to be connected to the intrinsic

active length scale l
a

[Guillamat et al., 2016b; Giomi, 2015].

In active systems with high frictional dissipation stable vortices can also arise in

the absence of spatial confinement, for instance in active nematics on a substrate

at the transition from the wet to the dry regime [Doostmohammadi et al., 2016a] or,

experimentally, in motility assays [Schaller et al., 2010; Sumino et al., 2012]. Cellular

monolayers on substrates, which belong to the class of dry active matter, also display

stable defects [Duclos et al., 2016] and collective rotation [Segerer et al., 2015; Li and Sun,

2014; Mohammad Nejad et al., 2014] in circular confinement, for instance in self-organised

droplets [Rappel et al., 1999].

2.5.3. Shells and spheres

Active liquid crystal shells are realisations of a di↵erent type of confined geometry

and constitute a new area of research, initiated by the seminal experiments conducted

by the groups of Dogic and Bausch [Keber et al., 2014]. As activity now interferes with

elasticity, active nematic shells display new, dynamical versions of features known

from their passive counterparts. Therefore, we first review the latter and thereafter

describe vesicles coated with an active nematic [Keber et al., 2014] and related active

40



2.5. Active fluids in confinement: thin films, droplets, and shells

systems.

Passive nematic shells

It is a topological requirement that nematic order on a sphere has to have defects with

a total strength of +2, as shown in Section 2.4, but one can imagine many possible

arrangements of defects that satisfy this and di↵er in their elastic energy. An elegant

argument for finding the energetic ground state for the more general problem of n-atic7

order on a sphere was given by Lubensky and Prost [1992]: take the smallest number

of minimum strength disclinations and put them as far apart as possible, to minimise

their mutual repulsion. For a nematic this translates to four +1/2 defects arranged

at the vertices of a tetrahedron. This result laid the ground for a large amount of

theoretical and experimental work on nematic shells [Lopez-Leon and Fernandez-Nieves,

2011], nudged also by Nelson’s idea to functionalise such objects in order to make

micron-scale “atoms” with a “valence” that is controlled by the defect configuration

[Nelson, 2002]. Although the tetrahedral ground state was predicted in the one-elastic-

constant approximation in a strictly two-dimensional setup [Lubensky and Prost, 1992;

Nelson, 2002], it is found in experiments [Fernandez-Nieves et al., 2007; Lopez-Leon et al., 2011]

and simulations of nematic layers with finite thickness [Huber and Stark, 2004; Skačej and

Zannoni, 2008; Bates et al., 2010; Kralj et al., 2011; Nguyen et al., 2013; Wand and Bates, 2015].

Other defect configurations can, however, be induced by varying the shell thickness,

by elastic anisotropy, applied fields, and deviations from the spherical shape.

Vitelli and Nelson [Vitelli and Nelson, 2006] have studied theoretically the crossover

from a two-dimensional spherical nematic to a three-dimensional nematic shell using a

similar director formalism to [Lubensky and Prost, 1992] with one elastic constant. They

derived a threshold for the shell thickness beyond which the tetrahedral configuration

becomes unstable and is replaced by two antipodal +1 boojums on the outer surface.

This configuration is similar to the ground state of polar order on a sphere, but there

are two more +1 boojums on the inner surface of the shell and the director is escaped

into the radial direction in between the surfaces, that is it acquires a component

perpendicular to the shell. It is also shown that the tetrahedral state, for thin enough

shells, should be stable against thermal fluctuations [Nelson, 2002; Vitelli and Nelson, 2006].

Experimentally, nematic shells can be realised by inserting an aqueous droplet

into a nematic droplet, which itself is immersed in water [Fernandez-Nieves et al., 2007;

Lopez-Leon et al., 2011; Koning et al., 2016]. If these shells are thin and homogeneous in

thickness three defect configurations are observed with similar frequency of occurrence:

the tetrahedron of four +1/2 defects, two antipodal +1 defects, and one +1 and two

7A rotation of the local direction by 2⇡/n results in a physically equivalent state. Polar (n = 2)
and nematic (n = 1) order are special cases.
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a) b) c) d)

Figure 2.5: Various defect arrangements compatible with nematic order on a sphere: a) two
aster defects, b) two vortex defects, c) four +1/2 defects in tetrahedral arrangement, d) one
+1 defect and two +1/2 defects arranged in an isosceles triangle. Defects are marked with red
dots and position vectors. The tetrahedron is the global free energy minimiser, but the other
configurations are found experimentally with a similar frequency in passive nematic shells due to
the small energetic di↵erences [Koning et al., 2016].

+1/2 defects arranged in an isosceles triangle. The occurrence and long-time stability

of all three configurations could stem from the free energy di↵erences being small, but

the energy barriers between the states being high [Koning et al., 2016]. In shells with

varying thickness defects migrate to thinner regions, which reduces the energy due to

their three-dimensional nature.

Splay-dominated textures with either two antipodal asters or two pairs of +1/2

defects are found to be energy-minimising in simulations of hard arcs [Zhang et al., 2012]

or rods [Bates, 2008; Shin et al., 2008] on a sphere, respectively. Such simulations reflect a

nematic with strong elastic anisotropy, where splay is much softer than bend. In the

limit of infinite anisotropy, for instance K
3

! 1, one can even expect a continuous

family of degenerate ground states, which are constructed by starting with antipodal

+1 defects and rotating one hemisphere along a great circle passing through the defects

[Shin et al., 2008].

Four half-defects in a nematic shell can arrange in a variety of configurations,

if other e↵ects are included, that compete with the repulsion between defects. For

instance a bipolar configuration, where defects pair up at opposite sides of the shell,

is induced if the shell is deformed into a prolate ellipsoid [Bates et al., 2010; Kralj et al.,

2011], if a homogeneous electric field is applied [Skačej and Zannoni, 2008], in the case of

strong elastic anisotropy [Bates, 2008; Shin et al., 2008], or if the nematic is chiral [Wand

and Bates, 2015]. The relative orientation of the two pairs can range from perpendicular

[Bates et al., 2010; Kralj et al., 2011] to parallel [Skačej and Zannoni, 2008; Bates et al., 2010; Shin

et al., 2008], where all defects are aligned on one great circle. In Chapter 5 we explore a

new, dynamic way in which the tetrahedron of four half-defects can be distorted due

to the active self-propulsion of the defects.

Toroidal, or even higher genus, nematic shells have not been experimentally re-

alised to date. However, three dimensional nematics confined to tori and other handle-
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bodies with degenerate tangential anchoring have been produced using a yield-stress

material as outer fluid [Pairam et al., 2013]. In tori a doubly-twisted texture without

defects is adopted [Koning et al., 2014], but with each additional handle two �1 boojums

appear in saddle regions of the surface. These and other experiments [Campbell et al.,

2014; Tasinkevych et al., 2014] could soon lead the way to testing theoretical predictions

of defect unbinding and stabilisation in toroidal shells [Jesenek et al., 2015; Selinger et al.,

2011]. The active counterparts of such systems could then display interesting defect

dynamics.

Active nematic shells

In the recent experiments conducted by Keber et al. [2014] a MT-based active nematic

[Sanchez et al., 2013], described in Section 2.4.4, adheres to the inner surface of a lipid

vesicle. In su�ciently large spherical vesicles four half-integer defects are found to

be in steady motion accompanied by streaming flows. As shown in Figure 2.6, the

defects oscillate between tetrahedral and planar configurations. This behaviour is

the result of the competition between elastic relaxation to a tetrahedron, which is

one of the expected configurations for a thin nematic shell [Lubensky and Prost, 1992;

Koning et al., 2016], and the self-propulsion of active half-defects. It is reproduced by a

particle-based model [Keber et al., 2014] described below. For a vesicle radius of ⇠ 20

µm the frequency of oscillations is given as 12 mHz, but no data is shown for other

sizes. When vesicles are smaller than 18 µm in radius, a di↵erent configuration is

sometimes observed, in which the active nematic forms a ring around the equator

of the vesicle, which is equivalent to two +1 vortex defects. Although the material

is nematic, the rings are rotating. Buckling instabilities of the ring form transient

four-defect-states, which occur more often with increasing radius. Still more novel

states are found if vesicles are allowed to deform, either due to excess membrane or

due to sti↵er MTs. In the oscillatory regime, when vesicles are deflated due to applied

hypertonic stress, the shape of the vesicle starts to elongate and shrink periodically

and it also develops four long, filopodia-like protrusions at the locations of the half-

defects. Such deformed vesicles are reported to be motile, but no details of the type

of motion are given. Finally, sti↵er MTs self-assemble into a dynamic spindle-like

structure with two +1 aster defects at the poles and deform the vesicle accordingly.

The two asters periodically collapse into one and reform again as a result of cycles

of MT extension and buckling. In summary, active nematic vesicles display a variety

of dynamical defect states and shape deformations as a result of activity [Keber et al.,

2014].

In an older experiment, microtubules and motors confined into a vesicle were found

to self-organise into protrusions, single asters, and rings, but there all structures were
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E

F

Figure 2.6: A spherical vesicle coated with a MT-based active nematic displays four half-integer
defects that oscillate between tetrahedral and planar configurations, which are shown in panel E.
Panels A, B, and D show the defect positions at consecutive points in time. Panel C illustrates
the director around a +1/2 defect. The oscillations are clearly visible in the plot of the angular
distances ↵

ij

between the defects and the their mean angular distance h↵i in panel F. Taken from
Reference [Keber et al., 2014].

static [Pinot et al., 2009]. Although artificial actin-myosin cortices may also be regarded

as active spherical shells, topological considerations and defects have played a minor

role so far [Loiseau et al., 2016]. This is possibly because orientational order emerges

only locally in actin-myosin shells, for instance in the form of contractile rings [Salbreux

et al., 2009]. Finally, recent experiments with a swarm of Escherichia coli confined to

an emulsion droplet revealed accumulation of bacteria at the spherical surface at high

densities and for large enough droplets, but a quantitative analysis of the flow patterns

and orientational order of bacteria was not presented yet [Vladescu et al., 2014].

Models of active matter on curved surfaces

The defect oscillations found in the active nematic vesicle were captured by a model

of four self-propelled defects [Keber et al., 2014]. Here, we give account of the main parts

and results of this model, because it served as a starting point for our approach in

Chapter 5. In [Keber et al., 2014], the interaction energy (2.22) and the overdamped

dynamics (2.24) were formulated on the surface of a sphere. The four +1/2 defects,

whose comet-head directions were represented by arrows d̂
i

, self-propelled with veloc-

ities u = v
0

d̂

i

. The imposed speed v
0

was taken from a two-dimensional calculation

[Giomi et al., 2014], see equation (2.34) with the vesicle radius R chosen as the relevant

length scale. The translational dynamics were complemented by rotational dynamics

of the directions d̂
i

, which were also derived from the interaction energy (2.22). The

dynamics were solved numerically, with defects initially placed on the equator with

random orientations. It was found that up to v
0

⇡ 0.25 the defects relaxed into a static,

increasingly skewed tetrahedron, in which the orientations formed two co-planar pairs.
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Above this value the defects would oscillate between two di↵erent tetrahedral configu-

rations, passing through square-like planar configurations in between. The defects are

described to group into pairs and revolve at constant angular velocity around the pair

centre. The oscillations were found when the rotational dynamics of the d̂

i

was much

faster compared to the translation of the defect core. In the experiment the defect

cores are depleted of MT-bundles, so moving them involves transport of mass, but

reorienting the director around the defect does not. Therefore, it was argued that fast

rotational dynamics are a good representation of the experimental system. Further,

the frequency of oscillations is predicted to scale as f ⇠ v
0

/R, which from (2.34)

results in linear dependence on activity, but no dependence on vesicle size. While this

model [Keber et al., 2014] reproduces the oscillations found in experiments, it does not

resolve the fluid flow in the active nematic layer and is restricted to the case of four

half-defects. The structure of active flows in this new type of confinement is one of the

important insights provided by our model of a thin active shell, described in Chapter

5.

Another paper has considered the swarming of soft SPPs on a sphere in a Vicsek-

like model [Sknepnek and Henkes, 2015]. Spherical confinement leads to the formation of

a polar vortex state, in which all particles move around the sphere in one surface-

spanning flock, or a dense, circulating band at higher self-propulsion velocities. Inter-

estingly, the respective +1 defects in the velocity and the alignment fields are spatially

separated in the low activity regime. Although this model elucidated the interplay of

activity with a curved surface, it left any questions about hydrodynamic interactions

and active flows unanswered.
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CHAPTER 3

Flow singularities in thin active films

The thin film approximation is an established framework to study the flow of passive

fluids in geometries with one very small length scale [Oron et al., 1997], which has already

been successfully adapted to describe flow instabilities and spreading of active fluid

films [Voituriez et al., 2005; Sankararaman and Ramaswamy, 2009; Joanny and Ramaswamy, 2012].

We aim to extend this approach to active films in di↵erent thin geometries, with a

focus on defects and the active flows they produce. In this chapter we introduce the

thin film approximation for a three-dimensional film of active liquid crystal placed

on a flat, rigid substrate and bounded by a free, deformable interface from the other

side. First, the closed form solution for the active flow driven by a given director with

only small vertical variations is derived. The in-plane component of the director is

parametrised as a minimiser of the Frank free energy with an arbitrary collection of

defects. This parametrisation allows to analyse the local flow structure in the vicinity

of a defect and it is found that within the thin film approach defects generate active

flow singularities at their location, whose winding number relates to the topological

strength of the defect. For the self-propelling half-integer defect the active flow inside

the defect core is solved for in a two-dimensional model and matched with the thin

film flow to obtain a finite propulsion speed.

3.1. Model assumptions

In this thesis we consider minimal models that allow us to capture the e↵ect of

activity on defects in thin films, droplets and spherical shells of active liquid crystal

and to extract new phenomenology and qualitative predictions, which can then be

compared against existing and future numerical work and experiments. The full

coupled dynamics of flow, orientation and concentration as described in Section 2.2.2

is uncompliable to theoretical analysis and a number of simplifications has to be made.

Therefore, in order to keep calculations tractable and obtain closed form solutions we

base our modelling on the following common assumptions:
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• We work in the one-elastic-constant approximation and focus on director con-

figurations with defects, which minimise two-dimensional Frank free energy in

the plane of the film, and have only small variations in the third dimension.

Such directors can be parametrised entirely by the defect locations and topo-

logical strengths. Therefore, the director dynamics, given by equation (2.8) in

its general form, is to first approximation governed by the motion of defects

in the active flow and for given defect locations the director approaches its

minimum instantaneously. In other words, we assume that the elastic relaxation

time of the director is much smaller than the time scale of active flows, which

has been argued to well represent MT-based active nematics at intermediate

activity [Keber et al., 2014]. This reflects a situation in which a passive LC is

allowed to equilibrate and then activity is “switched on”, but restricted to small

or intermediate values way below the onset of active turbulence. A natural

consequence of using a director with defects is that no activity threshold exists

for active flows to occur, since the large distortions present around defects can

drive a flow at arbitrarily small values of activity [Ravnik and Yeomans, 2013].

• We are interested in the main e↵ect of activity on the dynamics of the flow,

given by the force balance (2.11). Therefore, we ignore the coupling of elastic

distortions to velocity gradients, setting ⌫
1

= 0. This simplification is common to

theoretical and numerical investigations of active fluids [Joanny and Ramaswamy,

2012; Neef and Kruse, 2014]. Furthermore, some numerical work reports that no

significant di↵erences are found if ⌫
1

6= 0 [Neef and Kruse, 2014; Whitfield et al., 2014].

As described above, h ⇡ 0 for the directors we consider, so elastic stresses are

negligible compared to active. In the context of flow-aligning active rods, this

assumption would reflect a material with very small Leslie angles in shear-flow.

However, experimentally measured values for ⌫
1

in active liquid crystals are not

available to date.

• Finally, already in Section 2.2.2 we have assumed a constant concentration of

active constituents in the suspension. From simulations it is known that this

approximation works well if there is no self-advection of active particles [Giomi

et al., 2008; Elgeti et al., 2011], which is the case in the nematic ALCs we consider.

Although at the defect core this approximation breaks down, unless the e↵ect of

the concentration drop at the defect core significantly exceeds the active flows

due to the strong director distortions our approach will still lead to the correct

geometrical structure of the flow at defects.

We take these assumptions as a valid starting point to discern the e↵ect of active

stresses in the systems we consider – thin films of active liquid crystals with defects in
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di↵erent geometries – and proceed with their mathematical description within these

assumptions. Comparison of our predictions with existing experimental work further

supports this approach.

3.2. Thin films of active liquid crystals

3.2.1. Description of thin films with one free boundary

We will focus on active liquid crystals in di↵erent thin geometries, which are liable to

a theoretical description in the thin film approximation [Oron et al., 1997]. In this

description a separation of length scales yields a simplified version of the Stokes

equation for the fluid. In the current and the next chapter, we consider a layer of

active fluid spread on a flat substrate with a soft fluid-fluid or fluid-air interface at

the top, which can deform due to active flows generated in the film [Sankararaman and

Ramaswamy, 2009; Joanny and Ramaswamy, 2012]. The lower interface is non-permeable,

but allows for finite slip of fluid through viscous friction.

A thin film approximation in a film with two rigid boundaries, i.e. a Hele-Shaw

geometry, reduces to a two-dimensional model, which is equivalent to starting in

a two-dimensional setting and including strong enough friction with the substrate

[Doostmohammadi et al., 2016a]. In contrast, when at least one boundary is free to deform,

the model is not strictly two-dimensional, because flows in the third dimension are

allowed and necessary to drive deformations of the boundary. Retaining the full,

three-dimensional description of the thin film will turn out to be crucial for several

features of the systems that we study, for instance for the shape of active droplets on

a surface and for the defect dynamics in a thin active shell.

First, we introduce the height representation, or Monge gauge [Chaikin and Lubensky,

2000], for surfaces that are almost flat to describe the upper interface of the film.

The local coordinates in the surface are identified with the coordinates in the plane,

for instance Cartesian coordinates s
1

= x and s
2

= y, and the surface is given by

X(x, y) = (x, y, h(x, y)). Alternatively, it can be defined as the zeros of the surface

function F (x, y, z) = z � h(x, y) ⌘ 0. From the two tangent vectors

e

1

= (1, 0, @
x

h)> and e

2

= (0, 1, @
y

h)> (3.1)

the outward unit normal to the surface is obtained

n̂

h

=
(�r?h, 1)>
p

1 + (r?h)2
⇡ (�r?h, 1)

>, (3.2)

where the approximation holds for small gradients in the height of the film. We adopt
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the notation x? = (x, y)> and r? = ê

x

@
x

+ ê

y

@
y

for vectors and gradients in the

plane of the substrate.

Let the flow field in the film be denoted by u(x?, z, t) = (u
x

, u
y

, u
z

) = (u?, uz).

The kinematic boundary condition relates the speed of the interface with the normal

component of the fluid velocity at the interface

@
t

h = u|
z=h

· n̂
h

= �u?|z=h

·r?h+ u
z

|
z=h

. (3.3)

Three-dimensional incompressibility,r·u = 0, allows to express this condition entirely

through the height-integrated in-plane flow

ū?(x?) =

ˆ
h

0

u?(x, y, z) dz . (3.4)

Employing Leibniz’ rule [Riley et al., 2006] for di↵erentiating integrals yields

r? ·
ˆ

h(x,y)

0

u?(x) dz = u?(x, y, h) ·r?h+

ˆ
h(x,y)

0

r? · u? dz . (3.5)

On the other hand, with u
z

(z = 0) = 0, from incompressibility it follows that

u
z

|
z=h

= �
ˆ

h

0

r? · u? dz , (3.6)

so equation (3.3) becomes a local conservation law

@
t

h = �r? · ū?, (3.7)

from which a self-consistent evolution equation for h(x, y) is obtained if the right hand

side can be expressed in terms of the height function and its gradients only. In this

chapter we consider a film that is unbounded in the lateral directions, so no further

conditions are required to describe the surface of the film.

3.2.2. Orientation field in a thin film

Let the three-dimensional orientation field of active filaments in the film be given

by S(x). We restrict the analysis to directors which are tangentially anchored to

both bounding surfaces. At the flat substrate the orientation is given by S(x, y, 0) =

(n
x

, n
y

, 0) in terms of the two-dimensional director n = (n
x

, n
y

), with |n| = 1, which

at this stage is completely generic but will be specified in Section 3.3. This can be

mapped to a tangential director at the upper surface, S(x, y, h) / (n
x

, n
y

, n
z

) up to
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(a) (b)

Figure 3.1: (a) Schematic representation of a section of the thin film of active nematic, with the
height function h(x, y) and the three-dimensional director S(x). (b) Two-dimensional director
n(x, y) in the plane of the substrate. Two defects are shown, with their complex positions z

j

=
x
j

+ iy
j

and topological strengths m
j

.

normalisation, by defining

n
z

= (n
x

e

1

+ n
y

e

2

) · ê
z

⇡ n ·r?h, (3.8)

to linear order in r?h. This corresponds to a projection of the director at the lower to

the upper surface with no rotation about the z-axis, so that the final, three-dimensional

director has no twist. Finally, the three-dimensional unit length orientation field is

constructed by a smooth interpolation between the two surfaces, using the prefactor

z/h in the z-component,

S(x) =
1

s(x)

0

B

@

n
x

n
y

z

h

n
z

1

C

A

, (3.9)

where the normalisation prefactor is s(x) =
p

1 + (z/h)2n2

z

. Equation (3.9) is the

most general form of a polarisation field that satisfies the tangential anchoring condi-

tion and is consistent with the assumption of a thin film, where the variations of the

polarisation in the z-direction are small.

3.2.3. Thin film approximation for active fluids

The fluid flow in the active film is determined by the Stokes and continuity equations

�rp+ µ�u+r · (�a + �

e) = 0, (3.10)

r · u = 0 , (3.11)

as explained in Section 2.2.2. The geometry of the film can be exploited to simplify

equation (3.10). We assume that its horizontal extension, characterised by the length

scale L, is much larger than its average height h0 . Therefore, as we are interested in

long-wavelength phenomena, the variations of the flow in the x and y directions are
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3.2. Thin films of active liquid crystals

much more gradual than in the z direction. We define the small parameter

" =
h0

L
⌧ 1 (3.12)

and perform an expansion of the governing equations, as commonly done for thin films

of passive [Oron et al., 1997] or active fluids [Sankararaman and Ramaswamy, 2009; Joanny and

Ramaswamy, 2012].

We define dimensionless coordinates, rescaling with L in the lateral direction and

with h0 in the vertical direction,

x̃ =
"x

h0

, ỹ =
"y

h0

, z̃ =
z

h0

, and likewise h̃ =
h

h0

. (3.13)

We assume that compared to the height the extension of the film is similar in both

horizontal directions, therefore we treat the x and the y directions analogously. With

a characteristic active flow velocity U0 we define dimensionless flow components

ũ
x

=
u
x

U0

and ũ
y

=
u
y

U0

. (3.14)

With (3.14) the incompressibility condition (3.11) becomes

U0"

h0

✓

@ũ
x

@x̃
+
@ũ

y

@ỹ

◆

+
1

h0

@u
z

@z̃
= 0, (3.15)

which for the last term to be of the same order as the first two requires

ũ
z

=
u
z

"U0

. (3.16)

Alternatively, it is possible to set u
z

= 0 and reduce (3.11) to two-dimensional

incompressibility, which would restrict the model to two flat, unchanging surfaces.

Finally, for completeness, the time scale active flows in the plane of the film is set by

T = L/U0 , and therefore t̃ =
"U0 t

h0
.

The active stress in equation (3.10) is

�a
ij

= ��0(Si

S
j

� �
ij

/3), (3.17)

as defined in (2.14) but with the director S(x), given by (3.9). The prefactor in (3.9)

is s(x) = 1 + O("2), hence we omit it from S(x). We treat the two-dimensional

director n as given. Further, n is normalised, so its components are n
x

, n
y

⇠ O(1).

The components of the active stress divergence are calculated in Appendix A and have
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3.2. Thin films of active liquid crystals

the following form and scaling with "

r · �a= ��0

0

B

@

1

h

r? · (hn
x

n)
1

h

r? · (hn
y

n)

r? · (n z

h

(n·r?h)) +
2z

h

2 (n ·r?h)
2

1

C

A

⇡ � "

h0

�0

h̃

0

B

@

r̃? · (h̃nx

n)

r̃? · (h̃ny

n)

0

1

C

A

,

(3.18)

where we have neglected the z-component, which is O("2), in the second line.

The tensor �e in (3.10) accounts for stresses due to nematic elasticity and was given

in equation (2.13). We will consider director profiles which minimise elastic energy

in the xy-plane, see Section 3.3, and have only a small out-of-plane tilt, suggesting

that flows due to elasticity should be small compared to active flows. Specifically,

assuming one elastic constant, the leading order term in the Frank free energy (2.2)

is the one associated with splay in z-direction, K

2

(r · S)2 ⇠ O("2). Thus, in relation

to the active stresses �e is small and we will omit it from now on.

Having made the main terms dimensionless and using also (3.18), the components

of the Stokes equation (3.10) become

� "h0

µU0

@
x̃

p+ "2r̃2

? ũx + @2
z̃

ũ
x

� "h0

µU0

�0

1

h̃
r̃? ·

⇣

h̃n
x

n

⌘

= 0, (3.19)

� "h0

µU0

@
ỹ

p+ "2r̃2

?ũy + @2
z̃

ũ
y

� "h0

µU0

�0

1

h̃
r̃? ·

⇣

h̃n
y

n

⌘

= 0, (3.20)

� 1

µU0

@
z̃

p+ "3r̃2

?ũz + "@2
z̃

ũ
z

+O("2) = 0. (3.21)

Note, that p and �0 still carry dimensions and that in (3.19) and (3.20) the leading

order terms are @2
z̃

ũ
x

and @2
z̃

ũ
y

, respectively. Because we want to study flows that are

driven by active stresses, we require that the active stress term be of the same order

and therefore define the dimensionless active parameter as

�̃
0

=
"h

0

µU
0

�
0

, (3.22)

which also fixes the velocity scale to

U
0

=
�
0

h2
0

µL
. (3.23)

Similarly, in conformance with passive thin films [Oron et al., 1997],

p̃ =
"h

0

µU
0

p. (3.24)
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3.2. Thin films of active liquid crystals

This completes the expansion of the Stokes equations in ", leaving them in a simplified

form

�@
x̃

p̃+ @2
z̃

ũ
x

� �0

h̃
r̃? ·

⇣

h̃n
x

n

⌘

= 0, (3.25)

�@
ỹ

p̃+ @2
z̃

ũ
y

� �0

h̃
r̃? ·

⇣

h̃n
y

n

⌘

= 0, (3.26)

@
z̃

p̃ = 0, (3.27)

which can be solved once the boundary conditions are specified.

3.2.4. E↵ective active force

From the in-plane components of (3.18) we define a two-component vector fa repre-

senting the e↵ective active force

f

a(x?) = ��0

h

 

r? · (hn
x

n)

r? · (hn
y

n)

!

. (3.28)

A short calculation shows that it can be written in a coordinate-independent form

f

a(x?) = ��
0

✓

n

✓

r? · n+
1

h
n ·r?h

◆

+ (n ·r?)n

◆

, (3.29)

which allows a geometric interpretation of the individual contributions. From left to

right we identify1 in (3.29) the splay of n, a coupling to gradients in the film thickness,

and bend of n. These contributions will be discussed in detail in the context of a thin

drop of active fluid on a surface in Chapter 4.

Equations (3.25) and (3.26) may now be combined into

@2
z̃

ũ? = r̃?p̃� f̃

a

. (3.30)

3.2.5. Boundary conditions

In this section we first state the boundary conditions for the velocities and stresses

in terms of unscaled variables, before transforming to dimensionless variables and

expanding in the small parameter ". At the base we allow for partial slip with viscous

friction, as given in equation (2.18). The shear stress acting on the fluid at the

substrate is proportional to the fluid velocity evaluated at the boundary,

(ê
z

· �) · ê
i

= �
iz

= �1

⇠
u
i

for i = x, y, (3.31)

1Compare with the contributions in the Frank free energy (2.2).
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3.2. Thin films of active liquid crystals

where � is the total stress tensor of the fluid as given by (2.12), but with �

e omitted,

as justified above. Therefore,

�
ij

= �p�
ij

+ µ(@
i

u
j

+ @
j

u
i

) + �a
ij

. (3.32)

Here ⇠ is the inverse friction coe�cient, so that ⇠ = 0 corresponds to a no-slip

condition, and its dimensionless form is ⇠̃ = ⇠µ

h0
. For small " condition (3.31) becomes

u?
�

�

z=0

= �⇠@
z

u?
�

�

z=0

(3.33)

in dimensionless variables with tildes omitted. The substrate is non-permeable and

therefore the z-component of the flow vanishes there

u
z

|
z=0

= 0. (3.34)

At the free boundary the stress component tangent to the surface should vanish,

n̂

h

· � � ((n̂
h

· �) · n̂
h

) n̂
h

= 0, (3.35)

which for small " and in dimensionless variables, with tildes omitted, simplifies to

@
z

u?
�

�

z=h

= 0. (3.36)

The normal stress at the upper boundary is given in terms of the mean curvature

H of the surface, the surface tension � and the pressure p
0

in the surrounding medium

[Joanny and Ramaswamy, 2012],

(n̂
h

· �) · n̂
h

= �p
0

+ �H. (3.37)

The mean curvature is the surface divergence of the normal n̂
h

, see equation (3.2),

which in a thin film amounts to

H = �r
s

· n̂
h

= � (e
1

@
x

+ e

2

@
y

) · n̂
h

= @2
x

h+ @2
y

h = r2

?h (3.38)

and condition (3.37) then becomes

p|
z=h

= p
0

+
�0

3
� �r2

?h, (3.39)

which, in the absence of activity, reduces to the Young-Laplace law [Oron et al., 1997].
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3.2. Thin films of active liquid crystals

Making all quantities but � dimensionless we get

p̃|
z̃=

˜

h

= p̃
0

+
�̃0

3
� "3

µU
0

�r̃2

?h̃. (3.40)

The surface tension term is currently three powers of " smaller than the leading terms

and there are two ways to approach this discrepancy [Oron et al., 1997]. If we wanted to

retain surface tension e↵ects, the coe�cient has to be rescaled as �̃ = �"3/µU
0

, which

would reflect very large surface tensions � ⇠ "�3. This results in

p̃|
z̃=

˜

h

= p̃
0

+
�̃0

3
� �̃r̃2

?h̃. (3.41)

Earlier we identified that the active stress coe�cient should scale as �0 ⇠ "�1, see

equation (3.22). In view of the main focus of this work, namely the e↵ect of activity,

a di↵erent approach would be to neglect surface tension in equation (3.40), that is to

assume � ⇠ O(1) ⌧ �
0

.

3.2.6. General solution for the flow field

We will omit the tildes in all dimensionless equations derived so far for clarity and

solve equations (3.27) and (3.30) subject to boundary conditions (3.33), (3.36), and

(3.41). First, equation (3.27) with condition (3.41) results in a height-independent

pressure

p(x, y) = p(x, y, h) = p
0

+
�
0

3
� �r2

?h, (3.42)

which makes the right-hand-side of equation (3.30) z-independent and yields r?p =

��r?r2

?h. We integrate equation (3.30) twice, using first the no shear boundary

condition (3.36) in

� @
z

u? =

ˆ
h

z

@2
z

u? dz = (z � h)(�r?r2

?h+ f

a) (3.43)

and then the viscous friction condition (3.33) in

� u? � ⇠@
z

u?|z=0

= �
ˆ

z

0

@
z

u? dz =

✓

z2

2
� hz

◆

(�r?r2

?h+ f

a). (3.44)

But from (3.43) we have @
z

u?|z=0

= h(�r?r2

?h+f

a), which yields the instantaneous

horizontal flow component

u? =

✓

h (z � ⇠)� z2

2

◆

�

�r?r2

?h+ f

a

�

. (3.45)
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3.3. Nematic director with defects

The height-integrated horizontal flow is

ū? = h2
✓

h

3
� ⇠

◆

�

�r?r2

?h+ f

a

�

. (3.46)

The instantaneous vertical flow component can be obtained by integrating the three-

dimensional incompressibility equation (3.11) with condition (3.34)

u
z

=

ˆ
z

0

(�r? · u?) dz

= �
✓

z2

2
� ⇠z

◆

r?h · (�r?r2

?h+ f

a)�
✓

h

✓

z2

2
� ⇠z

◆

� z3

6

◆

�

�r4

?h+r? ·fa

�

.

(3.47)

Finally, using (3.46) in equation (3.7), the time evolution equation for the shape of

the free boundary is obtained

@
t

h = h2
✓

⇠ � h

3

◆

�

�r4

?h+r? ·fa

�

+ h(2⇠ � h)r?h ·
�

�r?r2

?h+ f

a

�

. (3.48)

These results generalise those in Reference [Joanny and Ramaswamy, 2012] to a large class

of orientation fields, which are energy-minimisers, which can contain an arbitrary

collection of defects restricted only by the topology of the film. How such orientation

fields are parametrised is described below.

3.3. Nematic director with defects

A two-dimensional nematic director can be written as n = cos(↵)ê
x

+ sin(↵)ê
y

with

↵ = ↵(x, y). An example of a director with one defect of strength m at the origin

was given in Section (2.4) as ↵ = m�+ ↵
0

, where � is the polar angle. Here, we will

construct a director with an arbitrary collection of defects that is a minimiser of the

Frank free energy in the one-elastic-constant approximation, see equation (2.6).

Two-dimensional problems can be conveniently represented in the complex plane,

with the complex coordinate z = x + iy and its complex conjugate z̄ = x � iy [Riley

et al., 2006; Needham, 1998]. It is well-known that planar solutions of the Laplace equation

(2.7) with defects can be given in terms of holomorphic functions [Chaikin and Lubensky,

2000; Ovrut and Thomas, 1991; Lubensky and Prost, 1992]. For instance, the function (z�z
0

)m

has a pole of order |m|, if m < 0, or a zero of order m, if m > 0. Thus the phase

winds around z
0

by 2⇡m and we can use this function to construct a director with

one defect at z
0

. The unit vector field n can be “complexified” to

n(z, z̄) = ei↵(z,z̄) (3.49)
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3.4. Active flow singularities

and the angle is expressed through the argument of the holomorphic function as

↵(z, z̄) = arg((z � z
0

)m) = Im
�

ln
�

(z � z
0

)m
� 

(3.50)

Di↵erential operators transform as @

@z

= 1

2

( @
@x

� i @
@y

) and @

@z̄

= 1

2

( @
@x

+ i @
@y

). Writing

↵(z, z̄) = m

2i

ln
⇣

z�z0
z̄�z̄0

⌘

, it is easy to see that it is a solution of the complex Laplace

equation
@

@z̄

@

@z
↵(z, z̄) = 0 . (3.51)

Consequently, a director with n
def

defects, with the j-th defect located at z
j

and

having strength m
j

, is constructed from a holomorphic function with an appropriate

arrangement of poles and zeros

f(z) =
ndef
Y

j=1

(z � z
j

)mj . (3.52)

The director for this collection of defects is then given by the angle

↵(z, z̄) = ↵
0

+ Im{ln f(z)} = ↵
0

+
ndef
X

j=1

m
j

Im{ln(z � z
j

)} , (3.53)

where, as before in Section 2.4.1, we have added a constant phase ↵
0

allowed in the

one-constant-approximation. By linearity this superposition also satisfies equation

(3.51).

This parametrisation of the director is the starting point for our analysis of the

active flow. In a laterally unbounded thin film with a quasi-two dimensional director,

that is a director with only small vertical variations due to a coupling to the bounding

surface, the choice of defects has to confirm with the topological constraint

ndef
X

j=1

m
j

= 0 , (3.54)

but otherwise the configuration of defects is arbitrary.

3.4. Active flow singularities

Consider a thin film, where the two-dimensional polarisation is n = cos(↵)ê
x

+

sin(↵)ê
y

, with the angle given by (3.53). The active force (3.29) may be written
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3.4. Active flow singularities

in a complexified form as

fa(z, z̄) = fa

x

+ ifa

y

(3.55)

= ��
0

✓

@
z

�

n2

�

+ n2

@
z

h

h
+
@
z̄

h

h

◆

(3.56)

= ��
0

0

@ei2↵

0

@

ndef
X

j=1

m
j

1

z � z
j

+
@
z

h

h

1

A+
@
z̄

h

h

1

A (3.57)

where h = h(z, z̄) and we have used nn̄ = 1 to obtain (3.56). Consider the active

force in the vicinity of the k-th defect, specifically on a circle of radius ⇢ given by

z(s) = z
k

+ ⇢eis, with s 2 [0, 2⇡). First, on this circle the director angle becomes

↵(s) = ↵
0

+
X

j 6=k

m
j

Im
�

ln
�

z
k

� z
j

+ ⇢eis
� 

+m
k

Im
�

ln
�

⇢eis
� 

(3.58)

= w(z
k

) +m
k

s+O(1), (3.59)

where we have defined the constant

w(z
k

) := ↵
0

+
X

j 6=k

m
j

Im{ln(z
k

� z
j

)}. (3.60)

In the following we assume that the variation of the film height across the small circle

is much smaller than the variation of the director. Indeed, for the spherical cap shape

used in Chapter 4, see equation (4.4), we have @
z̄

h, @
z

h ⇠ const. + O(⇢). However,

this is not always the case, since the active film may become unstable [Sankararaman

and Ramaswamy, 2009] or the defects may lead to strong deformations of the film. In

the latter case, flows driven by the defect and flows due to shape gradients are of

comparable magnitude and a stationary shape of the film is characterised by a balance

of the two contributions, as discussed in Chapter 4.4.

If @
z

h, @
z̄

h ⇠ O(1) on the circle we have

fa(s) = ��
0

0

@ei2↵(s)

0

@

m
k

⇢
e�is +

ndef
X

j 6=k

m
j

1

z
k

� z
j

+ ⇢eis
+
@
z

h

h

1

A+
@
z̄

h

h

1

A (3.61)

= ��
0

m
k

⇢
ei2w(z

k

)ei(2mk

�1)s +O(1). (3.62)

This reveals the following about the instantaneous horizontal flow u?, evaluated at a

fixed height. Firstly, in the vicinity of a defect the flow diverges as ⇠ 1/⇢ as a result

of the thin film approach. Therefore, a cut-o↵ at some finite ⇢
0

is required. The circle

radius ⇢ is a dimensionless scale and ⇢
0

may be associated with the length at which

58



3.5. Regularisation of the defect core

the thin film approximation breaks down in the vicinity of the defects, which is either

the film thickness h
0

or the core size r
c

of the defect,

⇢
0

=
1

L
max{h

0

, r
c

}. (3.63)

Secondly, the dominant contribution to the active flow u? at a defect of strength m
k

is a flow singularity with winding number

I = 2m
k

� 1 (3.64)

at the location of the defect, where m
k

6= 0. The flow singularities for di↵erent

defect types are illustrated in Figure 3.2. Unit strength defects produce a flow

vortex2 (I = 1). These flow vortices may acquire a sink- or source-like character

according to whether the defect resembles an aster or a vortex, respectively. Since this

instantaneous flow is coupled to the film shape, such flows are allowed and, for instance,

lead to novel stationary shapes of a drop of active fluid on a surface, see Section 4.4.

For most types of defects the flow singularity will be a higher order stagnation point, as

for instance for m
k

= �1/2 or m
k

= �1 in Figure 3.2. Interestingly, simple stagnation

points (I = �1) cannot be created at defect locations.

On the other hand, from equation (3.64) it is evident that the active flow is not

winding at a +1/2 defect. Instead, it is directed along the defect’s symmetry axis.

The direction of the axis is found from �/2+↵
0

= �±n⇡, n 2 N, so it is given by the

vector (cos(2↵
0

± 2n⇡), sin(2↵
0

± 2n⇡)), which points away from the defect’s comet-

head. Consider for simplicity a single +1/2 defect in the film, such that w(z
k

) = ↵
0

,

and ⇠ = 0. The active flow at the defect, here evaluated for instance at the upper

surface, z = h(x, y), is then given by

u

+1/2

? = ��0
4

h2

⇢
0

 

cos(2↵
0

)

sin(2↵
0

)

!

(3.65)

in dimensionless quantities. For an extensile defect the flow is towards the comet-head,

and it is oppositely directed for a contractile defect.

3.5. Regularisation of the defect core

Since the thin approach yields flow at the defects that diverges in magnitude a di↵erent

model is required for the defect core to regularise this flow. We perform an exemplary

calculation for a +1/2 defect. Consider a slice through the cylindrical defect core

2Here, we denote a flow singularity a “vortex” only if it has winding I = 1, in contrast to some of
the literature.
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3.5. Regularisation of the defect core

Figure 3.2: Defects (top) and associated active flow singularities (bottom) in a thin film, with
winding numbers I = 2m

k

� 1, as given by formula (3.62). Phase constants are ↵0 = ⇡/8 for
m

k

= 1/2, ↵0 = ⇡/4 for m
k

= 1 and ↵0 = 0 otherwise. For m
k

= 1/2 the flow is not winding and
its direction is given by the red arrow (bottom). It coincides with the direction of the comet-head
of the defect. The angle 2↵0 is indicated in the director. The flow directions are evaluated for
an extensile material with �0 = 1. Only the dominant contribution to the flow is shown, which is
⇠ 1/⇢ with the distance from the defect and is cut o↵ at a finite ⇢0.

region of radius r
0

= max{r
c

, h
0

} at a given height. Inside the core in-plane gradients

of the flow are dominant, therefore a two-dimensional description is appropriate,

�r?p+ µr2

?u� �
0

(n (r? · n) + (r? · n)n) = 0, (3.66)

r? · u = 0 , (3.67)

with p = p(x, y), u = (u
x

, u
y

) and the director n = cos(�/2 + ↵
0

)ê
x

+sin(�/2 + ↵
0

)ê
y

.

With

n (r? · n) = 1

4

✓

x

r2
+

cos(2↵
0

)

r

◆

ê

x

+
1

4

✓

y

r2
+

sin(2↵
0

)

r

◆

ê

y

and (3.68)

(r? · n)n =
1

4

✓

� x

r2
+

cos(2↵
0

)

r

◆

ê

x

+
1

4

✓

� y

r2
+

sin(2↵
0

)

r

◆

ê

y

(3.69)

the active force becomes

f

a = ��0
2

cos(2↵
0

)

r
ê

x

� �
0

2

sin(2↵
0

)

r
ê

y

. (3.70)

Taking the in-plane divergence of equation (3.66) and using (3.67) yields a Poisson-

type equation for the pressure

r2

?p =
�
0

2r2
cos(�� 2↵

0

). (3.71)
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3.5. Regularisation of the defect core

Making the ansatz p / rk cos(�� 2↵
0

) provides a particular integral for k = 0 and

complementary functions of the homogeneous equation for k = ±1. A general solution

can thus be written as

p = cos(�� 2↵
0

)

✓

��0
2

+Ar +
B

r

◆

(3.72)

= cos(2↵
0

)
⇣

��0
2

x

r
+Ax+B

x

r2

⌘

+ sin(2↵
0

)
⇣

��0
2

y

r
+Ay +B

y

r2

⌘

, (3.73)

with two constants A and B. Plugging this pressure back into the Stokes equation

(3.66) cancels the active force, such that

µr2

?u =

✓

�
0

4r
� B

r2

◆

 

cos(2(�� ↵
0

))

sin(2(�� ↵
0

))

!

+
⇣�

0

4r
+A

⌘

 

cos(2↵
0

)

sin(2↵
0

)

!

. (3.74)

We set B = 0, as otherwise a divergent term / ln(r)2 would arise. For the first

�
0

-term in (3.74) we make the ansatz u / rk(cos(m(�� ↵
0

)), sin(m(�� ↵
0

))), which

produces

r2

?(r
k(cos(m(�� ↵

0

))) = cos(m(�� ↵
0

))
1

r
@
r

(r@
r

rk) +
1

r2
rk@

��

cos(m(�� ↵
0

))

= rk�2(k2 �m2) cos(m(�� ↵
0

)), (3.75)

and a similar expression in the y-component. This yields a particular integral for the

first �
0

-term for k = 1 and m = 2, and complementary functions for k = m. Likewise,

the ansatz / rk produces the last two terms in (3.74) for k = 1 and k = 2, respectively.

The flow around the defect is thus given by

u =
1

4µ
(�

0

r +Ar2 +D)

 

cos(2↵
0

)

sin(2↵
0

)

!

+
�
0

4µ
(Cr2 � r

3
)

 

cos(2(�� ↵
0

))

sin(2(�� ↵
0

))

!

. (3.76)

We have added a complementary, harmonic function with k = m = 2 and additional

constants C and D in order to match the boundary conditions at r = r
0

and ensure

self-propulsion of the defect. Along the circular boundary the solution of the core and

the thin film calculation have to match, so

u(r = r
0

) = v
0

 

cos(2↵
0

)

sin(2↵
0

)

!

, (3.77)
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where we have combined the prefactor in (3.65) into v
0

/ 1/r
0

. The boundary

condition (3.77) is satisfied by choosing

A = ��0
r
0

, C =
1

3r
0

, and D = 4µv
0

. (3.78)

The regularised self-propulsion speed of the +1/2 defect in physical quantities is then

|u(r = 0)| = v
0

= ��0h0
4µ

(3.79)

as required by the thin film solution, where we chose r
0

= h
0

. This result justifies a

simple cut-o↵ at a finite distance away from the defect as an approximation to the

flow at the defect centre.

3.6. Discussion

We have extended the active thin film model of Sankararaman and Ramaswamy [2009]

and Joanny and Ramaswamy [2012] to a more general director, specified by its in-

plane component n and the height gradients of the film. Writing the active force in

the form of (3.29) reveals the role of its three components – splay, bend, and coupling

to the shape – and allows for instance to study how they compete in an active droplet

of finite size, see Chapter 4.

We find a general relationship between a defect and the type of flow singularity

it produces at its location. The result coincides with those known for half-integer

defects [Giomi et al., 2014] and +1 defects [Kruse et al., 2004], but also extends to other

types of defects for which the active flow was not yet analysed. However, the thin film

approximation ceases to be valid close to a defect, at a distance comparable to the film

thickness or the core size. This results in divergent flow magnitudes at defects, instead

of a finite flow strength for a +1/2 defect [Giomi et al., 2014] and vanishing velocity for a

+1 defect [Kruse et al., 2004] and, similarly, for all other types of defects. We resolve this

problem for a +1/2 defect by solving for the active flow in the core region separately

and matching the two models at the cut-o↵ distance, which results in a finite defect

speed and regularised flow in the core region. Such a matching procedure could be

done for other types of defects, too. For instance, the core region of a +1 defect could

be described as a cylinder with only azimuthal active flows in the interior, like in

Reference [Kruse et al., 2004], but radial in- or outflux from the thin film solution across

the core boundary.

The general solution for the flow (3.76) in the core region of a +1/2 defect is

equivalent to the result obtained by Giomi et al. [2014]. However, the boundary
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conditions used here are di↵erent, leading to a di↵erent flow structure. Giomi et al.

[2014] consider a circular patch with a no-slip boundary, which together with the

directed flow at the defect results in two flow vortices occurring either side of the

defect. This boundary condition also leads to a linear dependence of the defect speed

on the domain size, see equation (2.34). Instead, here we impose the unidirectional

flow from the thin film calculation at the cross-over boundary, which results in a defect

speed inversely proportional to the cut-o↵ length. If this length is the film thickness,

then the defect speed (3.79) has a form analogous to equation (2.34), but with the

crucial di↵erence that the relevant length scale is the film thickness h
0

rather than a

lateral length scale R.

We have not yet considered the deformations of the free boundary that would

result from the instantaneous flow (3.45) through the kinematic boundary condition

(3.48). Such deformations are studied in Chapter 4 in the context of a thin active

drop with one defect.

Apart from deforming the boundary, the active flows generated by the defective

director will advect the defects themselves. Positive half-integer defects drive their

own self-advection, but defects with m
k

6= 1/2 may also move due to flows generated

by the other defects in their surrounding. This advection is of subleading order in the

active force expansion (3.62). We postpone the study of defect motion to Chapter

5, where the excess topological charge enforced by spherical topology stabilises states

with defects. In a planar film with no specific anchoring at the rim one should expect

all defects to annihilate for intermediate activity. However, recent numerical work has

shown the existence of intriguing defect and flow vortex patterns arising in di↵erent

slab-like geometries just before the cross-over to the active turbulent state [Theillard

et al., 2016; Doostmohammadi et al., 2016b]. Such geometries and the corresponding defect

patterns might also be studied within a thin film approach.
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CHAPTER 4

Thin drop of active fluid on a surface

In contrast to their well-studied passive counterparts [Oron et al., 1997; De Gennes et al.,

2003], droplets of active liquid crystals attached to a surface have received little at-

tention so far [Joanny and Ramaswamy, 2012; Tjhung et al., 2015]. The geometry of a

drop is important in the context of biofilms [Kasyap et al., 2014; Drescher et al., 2016],

motile cell fragments or spreading cells on substrates [Keren et al., 2009; Étienne and

Duperray, 2011; Gabella et al., 2014], and active emulsion droplets [Sanchez et al., 2013],

which might be turned into artificial crawlers. A first theoretical analysis has revealed

new spreading laws and stationary shapes originating from activity for several highly

symmetric director fields with defects [Joanny and Ramaswamy, 2012], accounting for a no-

slip boundary only. Questions related to the motility of such drops along the surface

remained unexplored.

Here, we study the onset of motility of such drops and how it is controlled by spatial

variations and defects in the director, the shape of the drop, and the surface friction

at the substrate. Numerical work on two-dimensional active polar drops [Tjhung et al.,

2012] has revealed the existence of steady moving states with a splayed or bent director,

in which the amount of distortion is proportional to the activity. The increase in splay

or bend can culminate in the creation of a defect in the drop, which then continues to

move, as long as the defect is located o↵-centre [Tjhung et al., 2012]. Motivated by these

findings, we impose asymmetric directors with defects or distortions in an active drop

shaped like a flat spherical cap. First, utilising the results of the previous chapter the

structure of the instantaneous active flows generated in the drop by such directors

is analysed for several examples. We then calculate analytically the centre-of-mass

velocity of the drop in dependence of the position of an aster or vortex defect and

give an estimate for the amount of slip at the substrate, for which the drop would

stop moving. Solutions for the stationary shape of an axisymmetric drop with either

a vortex or a spiral defect are derived.

64



4.1. Description of drops on surfaces

4.1. Description of drops on surfaces

We consider a three-dimensional drop of active fluid, illustrated schematically in

Figure 4.1, with mixed boundary conditions: a flat, rigid substrate providing frictional

dissipation underneath and air or a fluid of much lower viscosity with zero tangential

stress above the drop, allowing the shape to deform. In this way, the drop is equivalent

to a film that is bounded laterally. The dynamics of the drop for a given static director

is thus described by the active force (3.29), the instantaneous active flow (3.45) and the

shape evolution (3.48), derived for a thin film of ALC in Chapter 3, but supplemented

by additional boundary conditions which we formulate for a radially symmetric drop

for simplicity [Oron et al., 1997]. An idealised drop touches the surface along a time-

dependent contact line of radius R(t), defined through the condition

h(R(t), t) = 0. (4.1)

The drop has a finite volume

V
0

= 2⇡

ˆ
R(t)

0

h(r)rdr. (4.2)

The shape of the drop along the contact line is characterised by a contact angle ✓
c

,

which is defined by

@
r

h|
r=R(t)

= � tan ✓
c

. (4.3)

In the regime of partial wetting a drop on a surface in equilibrium takes the shape

of a spherical cap [De Gennes et al., 2003]. The height function for a drop with a radius

of curvature R
c

and maximum height h(r = 0) = h
0

is given by

h(r) =
p

R2

c

� r2 �R
c

+ h
0

(4.4)

and its radius is

R =
p

h
0

(2R
c

� h
0

), (4.5)

so the radius of curvature can be expressed as R
c

= (R2 + h2
0

)/2h
0

. We restrict to

shapes for which h
0

/R ⌧ 1, so that the thin film approximation of Section 3.2 applies.

In this case R ⇡ p
2h

0

R
c

⌧ R
c

, so the drop is a flat spherical cap with a small contact

angle. Further, expanding h(r) as given in (4.4) for r/R
c

⌧ 1 yields a parabolic profile

h(r) ⇡ h
0

R2

�

R2 � r2
�

, (4.6)

which is a stationary solution of the shape evolution equation (3.48) in the passive
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Figure 4.1: (a): Schematic view of a droplet of active fluid with filaments oriented according
to the three-dimensional director S, which has the two-dimensional projection n. The filaments
are anchored parallel to the bounding surface, which is given by its height function h. (b): The
active stresses induced by the filaments generate a flow u, which is separated into direction (white
arrows) and magnitude (increasing from white to dark blue).

limit, �
0

= 0, where it reads

@
t

h = r? ·
✓

h

✓

h

3
� ⇠

◆

�r?r2

?h

◆

. (4.7)

For the director we impose tangential anchoring at both the base of the drop and

the free surface, as in Section 3.2.2, and work with directors of the form (3.9). We

are interested in the e↵ect of a single defect inside the drop, or of strong director

distortions equivalent to a virtual defect located outside the drop. Therefore, the

in-plane director is taken to be

n = cos (m (x
0

) + ↵
0

) ê
x

+ sin (m (x
0

) + ↵
0

) ê
y

, (4.8)

where, as before, m is the strength of the defect and ↵
0

controls the geometry of the

director around it, for example whether it is an aster (↵
0

= 0) or a vortex (↵
0

= ⇡/2)

for strength m = +1, as shown in Figure 4.2 (d) and Figure 4.3 (d), respectively. Since

the defect can be located anywhere along the x-axis, the angle  (x
0

) = arctan
⇣

y

x�x0

⌘

depends on the defect’s position x
0

. If |x
0

| > R, there is no defect in the interior

of the drop, but the virtual defect generates a distorted director in the drop, see for

instance the splayed configuration in Figure 4.2 (a).

We have not yet specified the anchoring along the contact line. In order to obtain

a static alignment, which minimises elastic energy up to small vertical distortions, we

first specify the type of defect and its location and then choose the anchoring such

that it matches the director generated by this particular defect. By imposing directors

in this way, we mimic the moving steady states of active droplets found in simulations

[Tjhung et al., 2012], which are characterised by stable splayed or bent directors and, at

stronger activity, by stable defects located o↵-centre.
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Figure 4.2: (a)-(d): Top view of drops with a splayed polarisation field (m = 1,↵0 = 0) due
to an aster defect at x0 = �2R,�R,� 1

2R, 0. (e)-(h): Plot of the resulting flow field (4.9) at
z = 0.01h0, for a contractile drop with no slip (�0 = �1, ⇠ = 0). The flow is aligned with
the polarisation, but changes sign along a line where the splay of n balances the coupling term
(4.11). Here and in the following plots red lines represent the polarisation field, and the flow field
is decomposed into direction (white arrows) and magnitude (colour coded). At a defect the flow
typically diverges and is cut o↵ in the display (black region).
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Figure 4.3: (a)-(d): Top view of drops with a bent polarisation field (m = 1,↵0 = ⇡

2 ) due
to a vortex defect at x0 = �2R,�R,� 1

2R, 0. (e)-(h): Plot of the resulting flow field (4.9) at
z = 0.01h0, for an extensile drop with no slip (�0 = 1, ⇠ = 0). The flow is perpendicular to the
polarisation in the bulk, but in (e)-(g) it aligns with the polarisation close to the boundary due to
the coupling term (4.11). In the axisymmetric case, (d) and (h), the coupling term vanishes and
the flow points radially outwards.
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4.2. Instantaneous active flows

We consider the situation in which the drop of ALC on a surface contains a defect

that generates an asymmetric director and study the instantaneous active flows in the

drop for a given initial shape, which might then deform due to the flows. For this

purpose the drop is chosen to be initially in the shape of a flat spherical cap with

radius R = 1 and height h
0

= 0.1 given by the profile (4.6), or equivalently the profile

(4.4) with R
c

= 5.05.

In Chapter 3 we have used a thin film approximation to find the solution for the

instantaneous flow u? resulting from a particular orientation field S and shape h of a

film, which also holds for a droplet of finite size. Since the flat spherical cap considered

here is an equilibrium shape, equation (3.45) reduces to the active flow contribution

u? = �
✓

z2

2
+ h (⇠ � z)

◆

f

a

= �
0

✓

z2

2
+ h (⇠ � z)

◆✓

n

✓

r? · n+
1

h
n ·r?h

◆

+ (n·r?)n

◆

.

(4.9)

The x?-dependence of u? is primarily determined by the e↵ective active force f

a

and can be decomposed into three parts, each with a clear interpretation in terms of

spatial variations in n and h. The vertical flow component (3.47), with active terms

only, reads

u
z

=
z3

6
r? · fa

? �
✓

z2

2
� ⇠z

◆

r? · (hfa

?) , (4.10)

from which it is obvious that the three-dimensional nature of the flow will be most

prominent in regions of strongly varying f

a

?, in particular at topological defects in n.

Figure 4.1(b) provides an insight into one example of the full three-dimensional flow

field (u?, uz) in the interior of a drop, however in the following we restrict the visual

presentation to two-dimensional cross-sections.

4.2.1. Pure splay and pure bend directors

We illustrate the properties of the flow in the drop on examples of polarisation fields

that are generated by defects of di↵erent topological strength. In simulations of active

polar droplets stable splayed directors are found in the moving steady state in the

contractile case and stable bent directors in the extensile [Tjhung et al., 2015]. Here, we

impose similar directors with an aster defect in the contractile and a vortex defect in

the extensile case.

The first n-dependent term in (4.9) produces flow in direction of the polarisation
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field and is proportional to the sum of its splay, r? · n, and the term

u
h

=
1

h
n ·r?h , (4.11)

which couples the polarisation of the filaments to the shape of the drop and accounts

for splay into the third dimension. Since term (4.11) is large in the vicinity of the

contact line, where h ! 0, it dominates the flow at the boundary and aligns it

there with the director. The second contribution, (n · r?)n, creates flow that is

perpendicular to the director and equal to its bend. This is a manifestation of the

instabilities towards splay or bend in contractile or extensile active fluids, respectively,

which are described in Section 2.2.3. For a drop on a surface this mechanism means

that both pure splay or pure bend, in an asymmetric configuration, should generate

a directed flow in the bulk of the drop and thus enable it to propel itself along the

substrate, similar to a moving active droplet in two dimensions [Tjhung et al., 2015;

Whitfield et al., 2014]. The direction of propulsion will depend on the sign of the activity

�
0

and on the friction parameter ⇠, see Section 4.3. Figures 4.2 and 4.3 show examples

for orientation fields with pure splay or pure bend and the resulting active flows in a

plane close to the substrate.

A director with pure splay can be produced by varying the position of an aster

defect, as illustrated in Figure 4.2. The resulting flow will be aligned with the

polarisation and have a large component in direction of the splay. However, the

flow changes its direction along a line where the splay of n is balanced by the coupling

term (4.11), u
h

+r? ·n = 0. At the right boundary the flow is driven by the vertical

splay due to the tangential anchoring to the bounding surface and directed inwards

in this example. Note, that in the limit of uniform n, that is x
0

! ±1, the flow

is completely symmetric with respect to the mid-plane. The coupling to the surface,

that is term (4.11), is then solely responsible for generating a flow in the drop and

leads to symmetric spreading. This type of droplet was studied in detail by Joanny

and Ramaswamy [2012]. Here, however, the flow at the boundary counteracts the

bulk flow that is driven by strong variations in n, and therefore also the propulsion

of the drop.

A director with pure bend, as in Figure 4.3, can be generated by a variably

positioned vortex defect. The flow is perpendicular to the director in the bulk,

but aligns with the director close to the boundary due to the coupling term (4.11).

However, in the axisymmetric case in Figure 4.3 (h) u
h

vanishes, because h is now

constant along closed circles in n, leading to purely radial flow.
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Figure 4.4: (a)-(c): Top view of directors with (a) spiral (m = 1,↵0 = ⇡/4), (c) +1/2 defect
(↵0 = 0), and (e) �1/2 defect (↵0 = 0) in the centre of the drop (x0 = 0). (d)-(e): Plot of the
corresponding active flow fields (4.9) for z = 0.01h0. Parameters are �0 = 1 (extensile) and ⇠ = 0
(no slip).

4.2.2. More complex directors

For more complex polarisation fields, in particular with m 6= 1, all contributions to

(4.9) are present, as shown in Figure 4.4 for three di↵erent types of defects placed in

the centre of the drop. The spiral defect in Figure 4.4 (a) generates rotational flow

around the centre, as expected from the results of Section 3.4. However, close to the

boundary the direction of rotation reverses, which is here again can be attributed

to the coupling to r?h. Interestingly, a similar flow pattern, including the change

of rotational direction, was observed in thin drops of bacteria suspensions where the

swimming bacteria self-organised into a spiral vortex [Wioland et al., 2013].

In addition to profiles with integer strength defects, which can be found in systems

with polar or nematic order, we also consider half-strength defects that only exist in

nematic systems and are intrinsically asymmetric. In the setup of a droplet such

defects may be stabilised by anchoring conditions that vary along the contact line, for

instance mainly tangential on one side and mainly homeotropic on the other side in

the case of a +1/2 defect. A +1/2 defect in the centre of the drop, shown in Figure 4.4

(c), creates unidirectional flow in the bulk, as expected from its self-propelling nature,

see Section 3.4. A �1/2 defect, on the other hand leads to no net direction of the flow

in the bulk due to its three-fold symmetry, as shown in Figure 4.4 (e), but might lead

to interesting, triangular spreading along the directions of the three splay-dominated

regions.
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Figure 4.5: Centre-of-mass velocity as given by (4.15) for di↵erent values of friction and di↵erent
positions of an aster defect in, or outside of, a contractile drop, like in Figure 4.3. The velocity only
has an x-component in this case (↵0 = 0), whose maxima (red dots) are indicated. A vortex defect
in an extensile drop would produce the same plot. A no-slip boundary yields the highest maximum
velocity in the direction away from the defect and for large enough slip, ⇠ & 0.4, the drop comes
to a halt. Maximal propulsion speeds are achieved with the defect being placed asymmetrically in
the interior of the drop, |x0| < R. Parameters are R = 0, h0 = 0.1, �0 = �1.

4.3. Velocity of a moving drop

To determine whether strongly directed in-plane flows in the bulk of the drop, like

those in Figure 4.2 (f) or 4.3 (f), will displace the drop as a whole we introduce the

centre-of-mass velocity

v

cm =
1

V
0

ˆ
drop

u? dV =
1

V
0

ˆ
base

ū? dx dy , (4.12)

where V
0

= ⇡h
0

R2/2 is the volume of the drop in the partial wetting regime. The

integral only contains the tangential flow, as the vertical flow component cannot lead

to propulsion, only to deformations of the upper interface.

We consider a +1 defect located at (x
0

, 0), where the exact position of the defect

might originate from an active symmetry breaking mechanism [Tjhung et al., 2012] or be

induced by some given anchoring conditions along the contact line. Using expression

(3.46), write the complexified version of (4.12) as

vcm =
1

V
0

ˆ
R

0

dr rh2(r)

✓

h(r)

3
� ⇠

◆ ˆ
2⇡

0

d� fa(r,�) (4.13)

with the complexified active force fa introduced in (3.57) taking the form

fa = ��
0

✓

ei2↵0

z̄ � x
0

� ei2↵0

R2 � r2
z̄(z � x

0

)

z̄ � x
0

� z

R2 � r2

◆

. (4.14)

The �-integral in (4.13) can be solved by transforming it into a complex contour
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4.3. Velocity of a moving drop

integral over the unit circle �, with w = ei�,

ˆ
2⇡

0

d� fa(r,�) = ��0
i

ˆ
�

dw

✓

� ei2↵0

x
0

(w � r/x
0

)
+

r2ei2↵0

x
0

(R2 � r2)

w � x
0

/r

w(w � r/x
0

)
� r

R2 � r2

◆

,

which after calculating the residues yields the final result

v

cm = |vcm| (cos(2↵
0

)ê
x

+ sin(2↵
0

)ê
y

) , (4.15)

|vcm| =
(

��0
9

h0
R

x0
R

⇣
(9⇠ � 4h0) + (6h0 � 9⇠)

�
x0
R

�2
+ (3⇠ � 4h0)

�
x0
R

�4
+ h0

�
x0
R

�6⌘
if |x0| < R,

�0
9

h0
x0

(h0 � 3⇠) if |x0| > R.

For an aster or vortex the velocity only has an x-component, which we plot for

di↵erent values of friction and defect positions for the exemplary spherical cap in

Figure 4.5. The drop propels in the direction opposite to the location of the defect,

as expected. The highest speeds are achieved for a no-slip boundary, whereas the

drop slows down and can come to a halt when the amount of slip is su�cient, here at

⇠/h
0

⇡ 0.4. Furthermore, the dependence on the friction coe�cient is linear in (4.15).

Interestingly, there is an optimal defect position that maximises the magnitude of the

propulsion speed. In units of R, this optimal position depends only on h
0

and ⇠, but

it is not instructive to show the expression here. Speed maxima marked in Figure

4.5 indicate that, for large friction, it moves toward the drop centre as the friction

decreases. In the no-slip case maximal speed is achieved if the defect is approximately

half-way between the boundary and the centre of the drop. Exactly the same plot

as in Figure 4.5 holds for a vortex defect in an extensile drop. For any spiral defect,

↵
0

6= 0,⇡/2, the centre-of-mass velocity acquires a non-zero y-component, which is

maximised for a perfect spiral.

If the director distortions in the drop are non-singular, |x
0

| > R, the much simpler

form of the speed (4.15) reveals that h
0

is the only relevant geometric length scale

for the drop propulsion in this case. Moreover, the speed now has a simple linear

dependence on 1/x
0

, which can be seen as a measure of the splay or bend of the

director in the drop.

The e↵ect of friction on the speed can be explained as follows. The amount of slip

at the rigid surface, which is represented here by the e↵ective friction parameter ⇠,

controls how strong the rotational component of the bulk flow is. We illustrate this on

the example of the splayed orientation field from Figure 4.2 (b), where an aster defect

is located on the contact line. For a no-slip boundary (⇠ = 0) the flow vanishes at the

base and, at finite height, is directed away from the defect in a mostly laminar way in

the bulk of the drop. For small slip (Figure 4.6(a)) a thin treadmilling layer emerges

close to the base, on top of which the flow is still laminar. Friction with the substrate
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Figure 4.6: Plot of the flow components (u
x

, u
z

) for y = 0, given by (4.9) and (4.10), for the
splayed polarisation field in Figure 4.2 (b) in a contractile drop (�0 = �1). In this side view the
defect is located in the left corner. The slip increases from (a) to (c), ⇠ = 0.07, 0.15, 1.5. The
colour-coded magnitude of the flow corresponds to (c) and scales in the same way as ⇠ for (a) and
(b).

induces a shear flow that opposes the flow generated by active stresses. For finite slip

this creates a vortex in the fluid that moves upwards and spans a larger region of the

drop with increasing slip (Figure 4.6(b)).

This behaviour is apparent from the role of the friction parameter in the z-

dependent prefactor of the flow (4.9), which is bounded from below and above by

h

✓

⇠ � h

2

◆

 z2

2
+ h (⇠ � z)  h⇠ . (4.16)

While the upper bound is h⇠ � 0, the lower bound becomes negative in those regions

of the drop where

⇠ <
h

2
. (4.17)

Both horizontal flow components u
x

and u
y

then change sign at a height z
0

(x, y) =

h �ph(h� 2⇠). For high enough friction condition (4.17) is satisfied in the bulk of
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4.4. Steady state shapes

the drop and the flow is rotational. Since in dimensionless variables h ⇡ 1, friction

⇠ ⇡ 0.4 at which the speed of the drop vanishes in Figure 4.5 roughly coincides with

the threshold in (4.17).

4.4. Steady state shapes

So far we have only considered instantaneous active flows and drop speeds that will

arise from these flows in a drop having the shape of a flat spherical cap. The condition

of free tangential stress at the upper bounding surface means that it is free to deform

in response to the active flows pushing against it. First, we look for steady state

solutions of the height evolution equation (3.48) for specific defect configurations. In

the steady state the shape adjusts in a way that the imposed n does not induce any

further deformations.

4.4.1. Axisymmetric drops

Consider an axisymmetric drop with one defect of strength +1 and variable phase

↵
0

. This situation is most conveniently described in cylindrical coordinates (r,�, z).

While a director with one defect of strength m is given by the angle (2.20) in Cartesian

coordinates, its polar representation is

n = cos ((m� 1)�+ ↵
0

) ê
r

+ sin ((m� 1)�+ ↵
0

) ê
�

, (4.18)

which for m = 1 becomes n = cos(↵
0

)ê
r

+sin(↵
0

)ê
�

. Due to axial symmetry h = h(r)

and the active force (3.29) becomes

f

a = ��
0

⇢

ê

r

✓

cos(2↵
0

)

r
+ cos2(↵

0

)
@
r

h

h

◆

+ ê

�

✓

sin(2↵
0

)

r
+

sin(2↵
0

)

r

@
r

h

h

◆�

.

(4.19)

We focus on the radial component, because the azimuthal component does not a↵ect

an axially symmetric shape. The ⇠ 1/r contribution comes from the defect and

changes sign at ↵
0

= ⇡/4, since a perfect spiral produces purely azimuthal flow.

Thus, the presence of the +1 defect should result in thickening or thinning of the drop

at its location depending on the director geometry and the sign of the activity. On

the other hand, the contribution from splay in the z-direction, ⇠ @
r

h, vanishes for a

vortex defect (↵
0

= ⇡/2). For instance, for the special cases of aster, perfect spiral,
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Figure 4.7: Stationary shapes of an active droplet with a vortex defect at the centre, given by
(4.24). Extensile activity (�0/� > 0) reduces the height at the defect location, leading to a non-
monotonic shape. Contractile activity (�0/� < 0) has the opposite e↵ect and the shape stays
monotonic. For �0/� = 0 the equilibrium spherical cap is recovered. Parameters are R = 1,
h0 = 0.1. Only the cross section of the three-dimensional, axially symmetric shape is shown.

and vortex defect we have
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(4.20)

In summary, the time evolution equation of the shape for this axisymmetric case

becomes

@
t

h =
1

r
@
r

✓

rh2
✓

h

3
� ⇠

◆✓

�

✓

@3
r

h+
@2
r

h

r
� @

r

h

r2

◆

� �
0

✓

cos(2↵
0

)

r
+ cos2(↵

0

)
@
r

h

h

◆◆◆

.

(4.21)

Due to the non-linearity of the shape-coupling term an analytical form for a stationary

solution to this equation can be found only in specific cases. Note, that in the case

of an unbounded film and finite slip a trivial solution to @
t

h = 0 is a film of constant

thickness h ⌘ 3⇠ for any form of director. Considering the results of Section 4.3,

in this solution the cross-sectional flow presumably consists of convection cells that

take up any vertical flow component that the director might produce, analogously to

the rotational flow in Figure 4.6 (b). Another unbounded solution is h ⌘ 0, which

corresponds to the wetting limit where the film spreads over the substrate to infinity

and its thickness approaches zero.

4.4.2. Vortex defect

First, we revisit a drop with a vortex defect (↵
0

= ⇡/2), which was discussed in

Reference [Joanny and Ramaswamy, 2012]. This configuration corresponds to Figure 4.3
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4.4. Steady state shapes

(d) and (h). With a no-slip boundary, the equation for the steady state reads

0 = @
r

✓

r
h3

3

✓

�

✓

@3
r

h+
@2
r

h

r
� @

r

h

r2

◆

+
�
0

r

◆◆

. (4.22)

This can be reduced to

�

�
0

✓

@3
r

h+
@2
r

h

r
� @

r

h

r2

◆

= �1

r
, (4.23)

for which a solution of the form

h(r) =
�

R2 � r2
�

✓

h
0

R2

� �
0

4�

◆

� �
0

4�
r2 ln(r/R) (4.24)

can be obtained using the replacement u = @
r

h and the ansatz u ⇠ rk. The constants

are chosen such that for �
0

= 0 the equilibrium shape (4.6) is recovered and terms

⇠ ln(r) vanish. The ratio �
0

/� is the defining parameter and (4.24) is evaluated

for di↵erent values of it in Figure 4.7. For extensile activity (�
0

/� > 0) the shape

becomes non-monotonic, as shown in Reference [Joanny and Ramaswamy, 2012], since the

defect acts as a flow source that pushes fluid away from its location. The height of

the droplet at the origin is

h(0) = h
0

� R2�
0

4�
, (4.25)

which shows that it can vanish and one such example is shown in Figure 4.7 for

�
0

/� = 0.4. This case was not mentioned in Reference [Joanny and Ramaswamy, 2012].

In principle, the height h(0) can even become negative, for instance if �
0

> 4h
0

�/R2.

This might indicate that active droplets with defects could rupture at the centre. The

rupture might be similar to a dewetting transition [De Gennes et al., 2003]. Moreover,

@
r

h(0) = 0, so the contact angle is vanishing when the upper interface touches the

substrate in Figure 4.7. On the contrary, contractile activity (�
0

/� < 0) drives fluid

in towards the defect, so the thickness of the drop increases at the centre.

4.4.3. Spiral defect

For a range of spiral defects a stationary shape can be obtained in the limit of negligible

surface tension, �/�
0

⇡ 0. In this limit the stationary version of equation (4.21) can

be written as

0 = ��0
r
@
r

✓

rh2
✓

h

3
� ⇠

◆✓

cos(2↵
0

)

r
+ cos(↵

0

)2
@
r

h

h

◆◆

(4.26)
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Figure 4.8: Stationary shapes for an active droplet with a spiral defect at the centre, for di↵erent
phases in the range ↵0 2 (⇡/4,⇡2). Plotted are numerical solutions to the implicit equation (4.36)
for the phase values (a) ↵0 ⇡ 1.05, (b) ↵0 = arctan

�

p
2
� ⇡ 0.95, (c) ↵0 ⇡ 0.83. Further, the

parameters R = 1, h0 = 0.1 and di↵erent friction coe�cients satisfying 3⇠ > 3h0/2 are used.

or equivalently

0 = @
r

(h (h� 3⇠) (h+ ⇣r@
r

h)) , (4.27)

where we have defined ⇣ = cos(↵
0

)2/ cos(2↵
0

). Here, finite slip, ⇠ > 0, is required to

regularise the shape at the origin. A first integration of equation (4.27) yields

h(h� 3⇠)(h+ ⇣r@
r

h) = c
0

, (4.28)

where the constant is the left-hand-side evaluated at r = 0,

c
0

= h2
0

(h
0

� 3⇠) (4.29)
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and we have imposed a finite height at the origin, h(0) = h
0

. A separation of variables

in equation (4.28) and a second integration yield

� 1

⇣
ln(R/r) =

ˆ
R

r

dr

r
=

ˆ
0

h(r)

h(h� 3⇠)

h2(h� 3⇠)� h2
0

(h
0

� 3⇠)
dh (4.30)

To integrate the right-hand-side of (4.30) we want to decompose the integrand into

partial fractions,

h(h� 3⇠)

h2(h� 3⇠)� h2
0

(h
0

� 3⇠)
=

A

h� h0
+

B

h� h
1

+
C

h� h
2

(4.31)

with h
1/2

being solutions to (h � h
1

)(h � h
2

) = h2 + (h + h
0

)(h
0

� 3⇠). Using the

shorthand a = 3⇠, the solutions are

h
1/2

=
1

2

⇣

a� h
0

±
p

(a� h
0

)(a+ 3h
0

)
⌘

. (4.32)

By comparing the coe�cients in equation (4.31) one obtains

A = � h
0

(h
0

� a)

(h
1

� h
0

)(h
0

� h
2

)
, (4.33)
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h
1
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1
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1
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)
, (4.34)
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h
2
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2
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(h
2

� h
1

)(h
2

� h
0

)
. (4.35)

Equation (4.30) can be integrated exactly to give an implicit equation for the solution

h(r) for the stationary shape of a drop of radius R and height h
0

, which is given

through

A ln

✓

h
0

h
0

� h(r)

◆

+B ln
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h
1

h
1

� h(r)

◆

+ C ln
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h
2

h
2

� h(r)

◆

=
1

⇣
ln
⇣ r

R

⌘

. (4.36)

In order for all terms on the left-hand-side to be real the friction is required to satisfy

a = 3⇠ > 3h
0

/2, which ensures both h
1/2

2 R and h
1/2

> h
0

> h(r). This indicates

a lower limit for the amount of slip required at the substrate to obtain a stationary

shape in the case of a spiral defect.

Solutions to equation (4.36) with finite h
0

exist for ⇣ < 0, corresponding to the

range of phases ↵
0

2 (⇡/4,⇡/2). Cross sections of stationary drop shapes are plotted

in Figure 4.8 for di↵erent values of ↵
0

and of the friction coe�cient. The shapes are

di↵erent from those obtained for a vortex defect in Section 4.4.2 regarding two main

features. Firstly, activity generates a right angle at the contact line, ✓
c

= ⇡, which is
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Figure 4.9: Shape deformation away from the spherical cap after a small time step �t for a
contractile drop with (a) splayed and (b) bent orientation field (see Figure 4.2 (a) and Figure 4.3
(a)) and a no-slip boundary.
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◆
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Further, in Figure 4.8 (a) and (b) the drop develops a cusp at the centre – a point at

which @
r

h is discontinuous. It was not possible to obtain a closed form for @
r

h|
r=0

, but

the discontinuity can be seen clearly for the bigger values of friction. The formation of

a cusp is a new prediction for an active fluid, but is known from passive liquid crystal

drops [de Gennes and Prost, 1995].

On the other hand, the choice of ↵
0

that is closest to a perfect spiral leads to

shapes which are flat across the main part of the drop. This is reminiscent of the “flat

pancake” shape that was obtained numerically by Joanny and Ramaswamy [2012] for

small surface tension. Although this flat shape was associated to an axisymmetric

drop with an aster defect, the defect itself was ignored in the calculation [Joanny and

Ramaswamy, 2012]. Ignoring the defect, however, e↵ectively describes the situation with

a perfect spiral, for which the drop deforms only due to the active coupling to shape

gradients, see equation (4.20). Therefore, the “flat pancake” represents the limiting

case of our solution for ↵
0

! ⇡/4, as Figure 4.8 (c) correctly suggests.

4.4.4. Asymmetric drops

For the asymmetric polarisation fields considered in Section 4.2.1 it is not possible to

obtain an analytical result for the steady state. We can however qualitatively describe

the deviation �h from the initial spherical cap shape at time t
0

after a small time

interval �t if we plot �h ⇡ @
t

h(t
0

)�t for a particular orientation field, see Figure 4.9.

We consider a contractile drop a with no-slip boundary for this purpose. For a splayed

orientation field as in Figure 4.2 (a) the instantaneous flow results in an increase in
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height along a crescent-like area and a decrease to the front and back of it, as shown

in Figure 4.9 (a). For a bent orientation field as in Figure 4.3 (a) the height grows

in the rear of the drop and decreases along the sides, so we can expect the drop to

become more slender. However, the changes in shape will alter the orientation field

and thus the flow. To investigate the dynamics of the shape over longer time periods

it would be necessary to perform numerical simulations with moving boundaries.

4.5. Discussion

We have derived exact expressions for the active flow field in and the resulting sliding

velocity of a drop of a given shape and with a prescribed director profile. The flow

structure turns out to be guided by both the familiar instabilities towards bend and

splay in active systems [Simha and Ramaswamy, 2002a] and the coupling of the orientation

to gradients in the height profile, which has previously been studied in the context of

spreading of drops [Joanny and Ramaswamy, 2012]. The exact formula for the centre-of-

mass velocity allows us to address a variety of aspects of drop motility in an analytical

way. Our model reveals that asymmetric spatial variations in the orientation are key

to enable drop propulsion and explains why friction at the substrate is essential. We

also find that topological defects can both drive drop motility and also induce singular

vertical flows that can lead to dramatic deformations of the free interface.

The high motility of the drop for an asymmetrically positioned aster defect is

in qualitative agreement with three-dimensional active polar droplets observed in

simulations [Tjhung et al., 2012], where an aster defect emerges spontaneously at high

levels of activity. In simulations both the speed and the splay of the director increased

with activity, but no data was shown for how this changes when the director becomes

singular. It was reported that at a critical activity the defect reaches the centre of

the drop and the drop comes to a halt, indicating that there also might be an optimal

defect position and this would be interesting to compare with our results.

Whitfield et al. [2014] have calculated an analytical expression for the speed of a

two-dimensional active droplet with imposed splay and we can compare it with our

result for the case of a virtual aster defect, that is with expression (4.15) for |x
0

| > R.

We also get a linear dependence of the speed on the splay parameter and the activity.

One di↵erence is the way in which friction enters the model, due to the di↵erent

propulsion mechanisms. In Reference [Whitfield et al., 2014] the droplet swims through a

viscous medium, so the velocity vanishes in the no-slip limit. Here, the drop slides on

a rigid substrate, which requires friction. Interestingly, equation (4.15) for |x
0

| > R

does not include the lateral extension R of the drop, only its thickness h
0

.

A recent numerical paper has studied the motility of polar active fluid droplets on
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4.5. Discussion

a substrate, but with a stronger focus on crawling cells, obtaining various biologically

relevant shapes and motile steady states [Tjhung et al., 2015]. The computation included

both actin treadmilling and a variable e↵ective friction representing the focal adhesions

as mechanisms that are crucial for cell motility on a substrate. The motile state with

the morphology of a lamellipodium has striking similarity to the examples of splayed

directors in Figure 4.2 regarding the active flow field, which also follows the splay of

the director in Reference [Tjhung et al., 2015]. Another interesting parallel is the decrease

of the sliding velocity of the drop with slip, which can be seen in Figure 1 of Reference

[Tjhung et al., 2015], but is not commented upon. We think that this observation could

be captured by the same mechanism that we describe in Section 4.3, in particular

because the cross section of the flow shown in Supplementary Figure 3 of Reference

[Tjhung et al., 2015] reveals a similar, rotational flow structure like we get for small values

of slip, see Figure 4.6 (a). It is important to note that treadmilling was not necessary

for the motion of the drop in the numerical model, but it was crucial for generating

cell-specific shapes.

The backward flow at the leading edge in Figure 4.6(a) (see Figure 4.2(f) for top

view) is a result of the strong tangential anchoring of filaments to both bounding

surfaces, which splays the filaments vertically. This flow enhances spreading of fore-

aft symmetric active droplets [Joanny and Ramaswamy, 2012], but in the case of a strong

directed bulk flow driven by horizontal variations in the orientation, as in Figure 4.6,

it can turn into a backflow on one side and counteract drop propulsion. There are two

ways in which our model could be modified to eliminate this backflow at the leading

edge. Firstly, one could locally remove the tangential anchoring condition in a region

opposite the defect and with it the source of the backflow. Secondly, we expect that

including self-propulsion of the filaments along their direction of orientation, which is

the simplest way to model actin treadmilling [Tjhung et al., 2012, 2015], would enhance

the bulk flow and compensate the backflow flow at the frontal boundary.

Our choice of tangential anchoring at the bounding surfaces of the drop is mo-

tivated by experiments where active filaments tend to adhere to the interface of an

emulsion droplet [Sanchez et al., 2013; Keber et al., 2014]. In the lamellipodia of crawling

cells actin filaments also lie tangential to the substrate, but push perpendicularly

against the leading edge [Yam et al., 2007]. Homeotropic alignment at the upper part of

the interface, which is typical for passive nematic films [Poulard et al., 2006], is unlikely

for long cytoskeletal filaments in the thin geometry of a droplet on a surface, but is

observed in situations with shorter active particles like bacteria [Drescher et al., 2016].

Alternatively, the orientation may be free to point in any direction at the contact line.

This would allow the defect to change its position and would add another degree of

freedom, which we have chosen to ignore here.
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4.5. Discussion

The cusped shapes we obtain for drops with a spiral defect are reminiscent of

the free interface of thin passive nematic films, which can also acquire cusps or dips

associated with unit strength point defects [de Gennes and Prost, 1995; De Gennes and

de Gennes, 1970; Meyer, 1972]. In these thin films or droplets the anchoring is tangential

at the free surface, but normal at the other surface. Applying a magnetic field then

generates point defects and cusps on the interface. In the passive case the cusps arise

from a balance of surface tension and nematic elasticity in the magnetic field [De Gennes

and de Gennes, 1970]. On the contrary, in our model the cusped shapes are generated by

activity and slip at the substrate, in the limit of negligible surface tension and nematic

elasticity. Further, the anchoring conditions used here also di↵er from those of the

passive nematics.
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CHAPTER 5

Spherical shell of active fluid

In their recent experiments Keber et al. [2014] have realised an ALC in a new type

of geometry – a closed, curved surface. Specifically, in the spherical geometry of

the experiment a prominent observation was the oscillatory dynamics of four +1/2

defects, which was captured by a minimal model with four self-propelled particles. A

variety of other states was observed, like vesicle deformations, two vortex defects in

smaller spherical vesicles and two aster defects in spindle-like vesicles. Most aspects

of this geometry are not yet understood, for instance the structure of the active

flows underlying the defect motion, which we study in this Chapter. We also make

predictions for other types and configurations of defects in spherical shells of ALC.

In analogy to the planar model of Chapter 3, we formulate a spherical version of

a thin film of ALC with one free boundary. It is shown that an equilibrium nematic

director on a sphere can be parametrised in the same way as in the plane, whereby

on the sphere defects are unavoidable. This is done by using stereographic projection

from the sphere to the complex plane. Locally, the hydrodynamic model is like a

planar thin film, but topology imposes constraints on the global structure of the active

flow, which then typically acquires two counterrotating flow vortices. An expansion

of the active flow at defects in powers of the distance from the defect reveals that to

leading order the flow singularities coincide with those of Chapter 3. The subleading

order term allows to quantify the advection of +1 defects. The global structure of

the instantaneous active flow in the shell is discussed for examples of di↵erent defect

configurations.

The director dynamics is assumed to be dominated by the motion of defects,

which corresponds to a fast reorientation of the director into its equilibrium for

given defect positions and was argued to represent well the dynamics of the MT-

based active nematic [Keber et al., 2014]. A system of overdamped dynamical equations

for a collection of defects on the sphere, which move due to active advection and

elastic interactions, are formulated and solved numerically. The dynamics of four

+1/2 defects, two +1 defects, and four +1/2 defects with additional ±1/2 pairs are
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5.1. Thin film approximation on the sphere

Figure 5.1: Schematic view of the spherical shell of active liquid crystal with inner radius R and
thickness h0. The inner shell is no-slip and the outer interface is free to deform, analogously to
the planar setup of Chapter 3. The director n(✓,�) is taken to be tangential to the inner sphere
everywhere throughout the shell. The spherical orthonormal basis is indicated.

simulated in this way. For four half-defects we also perform a linear stability analysis to

characterise the transition from the static to the dynamic regime. Finally, we estimate

the speed of the shape changes of the initially spherical shell that may accompany the

defect dynamics.

5.1. Thin film approximation on the sphere

We consider a thin layer of ALC coating a no-slip, rigid sphere and having a shear-

free, deformable outer interface. The setup is illustrated in Figure 5.1. We work in

standard spherical coordinates (r, ✓,�), ✓ 2 [0,⇡], � 2 [0, 2⇡), and the corresponding

orthonormal basis {ê
r

, ê
✓

, ê
�

}. When convenient, we will use the non-unit orthogonal

basis vectors e
✓

= Rê

✓

and e

�

= R sin ✓ê
�

, specifically in Section 5.2.

Initially, both confining surfaces of the shell are taken to be spherical. The director

is tangential to the spherical surfaces everywhere throughout the thickness of the shell,

P (r) = cos (✓,�)ê
✓

+ sin (✓,�)ê
�

. (5.1)

As a simplification we assume that in the presence of small deviations of the free

surface away from a spherical shape the director is still given by expression (5.1). As

explained in Section 2.4.2 such a director has to have defects. The parametrisation of

equilibrium nematic directors on a sphere is postponed to Section 5.2.

The instantaneous flow in the active nematic shell with a given configuration of
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5.1. Thin film approximation on the sphere

defects is found as the solution of the Stokes equation driven by the active stress tensor

�

a = ��
0

�

PP � 1

3

I

�

. With the flow field u = (u
r

, u
✓

, u
�

) and the pressure p(r, ✓,�)

this takes the form [Batchelor, 1967]
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with the spherical Laplacian operator having the form

�f =
1

r2
@
r

�

r2@
r

f
�

+
1

r2 sin ✓
@
✓

�

sin ✓@
✓

f
�

+
1

r2 sin2 ✓
@2
�

f .

The three-dimensional continuity equation reads

0 = r · u =
1

r2
@
r

�

r2u
r

�

+
1

r sin ✓
@
✓

(sin ✓u
✓

) +
1

r sin ✓
@
�

u
�

. (5.5)

We consider a spherical shell with a thickness h
0

that is much smaller than its inner

radius R, as shown in Figure 5.1, and define the small parameter " = h
0

/R ⌧ 1.

In the long-wavelength limit, flows in the polar and azimuthal directions are O(U
0

),

where U
0

= R/T is the typical magnitude and T is the time scale of active flows.

We define ũ
✓

= u
✓

/U
0

and ũ
�

= u
✓

/U
0

. Partial derivatives in these directions are

independent of ",
@

@✓
,
@

@�
⇠ O(1),

as opposed to the in-plane derivatives in a planar thin film described in Chapter 2. A

point within the shell has the radial position r = R+ r
s

, where r
s

⇠ O(h
0

). Then

r

R
= 1 +

r
s

R
= 1 +

h
0

R

r
s

h
0

= 1 + "r̃
s

, (5.6)

where we have introduced the dimensionless variable r̃
s

⇠ O(1) that measures the

radial position within the shell in units of h
0

, r̃
s

2 [0, 1]. We have

r̃
s

=
1

"

⇣ r

R
� 1
⌘

, (5.7)

so that @r̃
s

/@r = 1/"R = 1/h
0

and for some function f(r) the partial derivative in

the radial direction transforms as

@f

@r
=

1

h
0

@f

@r̃
s

(5.8)
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5.1. Thin film approximation on the sphere

The scale of the radial flow component can be inferred from ensuring that all terms

in the continuity equation are of the same magnitude, or by realising that the length

scale of this flow is h
0

, so that the dimensionless flow component is ũ
r

= u
r

/"U
0

. Any

radial component to the flow in the shell is thus a factor of " smaller compared to

tangential flows. These radial flows, though small, are important, in particular for

the motion of defects and for the ability of the shell to propel itself through a passive

fluid, which will be considered in Chapter 6.

Separation of length scales

Writing the equations (5.2)-(5.4) in a dimensionless form, using the above scalings,

allows to identify the leading order terms in ", like we have done for a planar film

in Section 3.2.3. In view of this approximation, we replace factors of r and 1/r with

R and 1/R, respectively. First, the Laplacian term in the radial component (5.2)

becomes
R2
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0
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In the tangential flow components we have
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ũ
✓

) +
1

sin2 ✓
@
�

ũ
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With the above, components (5.3) and (5.4) of the Stokes equation become
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ũ
✓

+O("2) (5.12)

0 =� "2R

µU
0

1

sin ✓
@
�

p+
"2R2

µU
0

(r · �a)
�

+ @2
r̃

s

ũ
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As before in Chapter 3, we require the components of the active stress divergence to

be ⇠ O(1) to retain in the equations and be strong enough to drive a flow. For a

polarisation field given by (5.1) we find that this divergence is of the form

r · �a = ��0
R

0
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5.1. Thin film approximation on the sphere

This results from the tensor divergence in spherical coordinates, which including only

non-zero terms reads

r · �a =
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rr
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and is given in full in Appendix B.1. To achieve the correct scaling in (5.12) and

(5.13), the dimensionless pressure and activity constant are

p̃ =
"2R

µU
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=
"2R

µU
0

�
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, (5.15)

which is equivalent to the planar thin film scalings (3.22) and (3.24), with L replaced

by R. Then (5.12) and (5.13) become
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The r-component (5.2) reduces to @
r̃

s

p̃ = 0. The boundary condition equivalent

to (3.37) for the normal stress at the outer interface is

� p|
r̃

s

=1

+
�
0

3
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rr

= �p
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given in dimensionless quantities. The mean curvature of the spherical boundary is
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which yields a pressure that is to first approximation in " constant throughout the

shell,

p = p
0

+
�
0

3
+ �

2

R
. (5.20)

It therefore disappears from (5.16) and (5.17) and we obtain equations for ũ
✓

and ũ
�

,

which are analogous to equation (3.30) for a planar thin film. This analogy means

that for a thin enough spherical film the curvature is negligible locally, so it does

not directly enter the expression for the flow. However, it globally determines the

topology of the tangential flow through the underlying formulation of the equations

in the spherical basis, in particular enforcing the presence of flow singularities.

We solve equations (5.16) and (5.17), with the constant pressure (5.20), for a
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5.2. Nematic director on a sphere

Figure 5.2: Illustration of the stereographic projection between the sphere and the complex plane
on the example of a nematic director with four half-defects arranged equidistantly on a circle in
the upper hemisphere. A defect on the sphere at position (✓

j

,�
j

) corresponds to a defect in the
plane at z

j

= R cot(✓
j

/2)ei�j . Here, the north pole of the sphere is chosen as the projection point
and only the upper hemisphere is shown for clarity. The lower hemisphere is projected onto points
inside the circle of radius R.

no-slip inner boundary and a shear-free outer boundary, that is
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and similar expressions for ũ
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. With these boundary conditions the tangential flow
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which is analogous to the planar result (3.45) with ⇠ = 0 and h = 1. The radial flow

component can be obtained from the continuity equation (5.5),
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where we used ũ
r

(r̃
s

= 0) = 0.

5.2. Nematic director on a sphere

5.2.1. Nematic elasticity on a sphere

We follow the approach in [Ovrut and Thomas, 1991; Lubensky and Prost, 1992; Vitelli and

Nelson, 2006] of finding expressions for the equilibrium nematic director on a sphere via

stereographic projection to the complex plane. We work in the one-elastic-constant
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5.2. Nematic director on a sphere

approximation and begin by formulating equation (2.6) for the elastic energy in the

local spherical basis. Consider a nematic director in the tangent plane of the sphere,

expressed in the orthonormal basis as

n(x) = cos(↵(x))ê
✓

+ sin(↵(x))ê
�

, (5.24)

where we have combined the two angular coordinates into the vector x = (x1, x2) =

(✓,�). The sphere is parametrised as R(x) = R(sin ✓ cos�, sin ✓ sin�, cos ✓). As

explained in Section 2.4.2, we use the covariant derivative of ↵ to write the elastic

energy of such a director

E =
K

2

ˆ
2⇡

0

ˆ
⇡

0

d✓ d�R2 sin ✓(r↵�A)2 . (5.25)

In the orthonormal basis the spin connection is A = ê

✓

· rê

�

, see Section 2.4.2.

There is a natural correspondence between the surface of a sphere and the complex

plane, which we will use to rewrite expression (5.25) in way that allows to find energy-

minimising ↵(✓,�) explicitly.

Stereographic projection

The stereographic projection [Needham, 1998] from a sphere of radius R to the complex

plane, extended to include the point at infinity, is a conformal map

' : S2 ! C,
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Here, the projection is chosen such that the sphere’s equator coincides with a circle

of radius R centred at the origin in the complex plane and the north pole is the

projection point, see Figure 5.2. Interpreted as a coordinate transformation, the

map (5.26) provides a new set of coordinates to parametrise the spherical surface,

y = (y1, y2) = (z, z̄). Some useful identities for working in stereographic coordinates

are given in Appendix B.2. The inverse map '�1 yields

✓(z, z̄) = 2 arctan(R/|z|) and �(z, z̄) =
1

2i
ln(z/z̄) . (5.27)

The basis vectors in the new coordinates, given by e
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Note, that for any complex function f(z, z̄) we have @f/@z = @f̄
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@f/@z̄ if f is real-valued. Using sin ✓ = 2R|z|/(|z|2 + R2), the corresponding metric
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and
p|det g| = 2(1+|z|2/R2)�2. Under this metric the surface element in the complex

plane is expressed as

dS =
p

|det g|dzdz̄ =
4R2r

1 + r2/R2

drd�, (5.30)

where (r,�) are the standard polar coordinates in the plane. When projected onto

the plane, infinitesimal distances on the sphere are stretched by the factor
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Elasticity in stereographic gauge

First, we express the covariant derivative of ↵ in the stereographic coordinates y,

using the inverse metric tensor gkl = (g�1)
kl

,
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where Einstein summation is implied in the first line. Using cos ✓ = (1�R2/|z|2)/(1+
R2/|z|2), the components of the spin connection read
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In this stereographic gauge the total elastic energy (5.25) takes the form [Lubensky and

Prost, 1992; Vitelli and Nelson, 2006]
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The variation of this energy with respect to ↵ is
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which removes the spin connection from (5.35). This leads to Laplace’s equation in

complex coordinates

@
z̄

@
z

↵ = 0 , (5.37)

for which we already know the form of the solutions with defects from Chapter 3, see

equation (3.53),

↵(z, z̄) =
ndef
X

j=1

m
j

Im{ln(z � z
j

)} . (5.38)

Finally, we have to ensure that the Poincaré-Hopf index theorem is satisfied, which

yields a constraint on the number of defects, n
def

, and their strengths, m
j

. To get the

counting right, first note that under our choice of stereographic projection a defect of

strength m
j

in ↵(z, z̄) contributes a winding number of �m
j

to the director on the

sphere. Second, as discussed in [Lubensky and Prost, 1992], the limit |z| ! 1 is projected

onto the north pole, but in this limit ↵ ⇡Pndef
j=1

m
j

Im{ln z} = �
P

ndef
j=1

m
j

= 2�. This

contributes a winding of +2 at the north pole. The basis vectors ê
✓

and ê

�

also add

winding of +1 to both poles. In total, in addition to the defects whose locations are

defined explicitly via (5.38), there is a defect of strength +3 at the north pole and a

defect of strength +1 at the south pole.

5.2.2. Projection of planar director

To accommodate these additional windings we alter the angle in the following way. If

↵(z, z̄) is a solution of equation (5.37), then so is �� ↵(z, z̄), because

@
z̄

@
z

(�� ↵) = @
z̄

@
z

� = @
z̄

✓

1

2iz

◆

= 0 . (5.39)

With this angle, defects defined explicitly in (5.38) produce the correct strengths on

the sphere, but now there is additional winding of �2 at the north pole. Adding �

contributes winding of �1 at the south pole and +1 at the north pole, such that after

91



5.2. Nematic director on a sphere

taking into account the basis vectors the director becomes smooth at the poles.

Alternatively, this director angle can also be obtained simply by lifting a planar

director onto a sphere, whose angle is a harmonic function in the complex plane

and which has a total winding of +2. Here, it is more convenient to use the standard

Cartesian coordinates of the complex plane x = (z+ z̄)/2 and y = (z� z̄)/2i, such that

the inverse map becomes ✓(x, y) = 2 arctan
⇣

R/
p

x2 + y2
⌘

and �(x, y) = arctan(y/x).

Consider a vector field in the plane, f(x) = f
x

(x)ê
x

+f
y

(x)ê
y

, written in the complex

representation as f(x, y) = f
x

(x, y) + if
y

(x, y). Its projection onto the sphere is

f

s = f
✓

e

✓

+ f
�

e

�

(5.40)

= J
'

�1 · (f
x

, f
y

) (5.41)

= �1� cos ✓

R

✓

f
x

cos�+ f
y

sin�,
1

sin ✓
(f

x

sin�� f
y

cos�)

◆

, (5.42)

where we have used the Jacobian matrix of the inverse map,

J
'

�1 =
1� cos ✓

R

 

� cos� � sin�

� sin�

sin ✓

cos�

sin ✓

!

. (5.43)

If we start with a unit vector field f = (cos↵, sin↵) in the plane, and also normalise

its projection, we obtain

f̂

s

= �
✓

cos
�

�� ↵(✓,�)
�

ê

✓

+ sin
�

�� ↵(✓,�)
�

ê

�

◆

, (5.44)

now expressed in the orthonormal basis. When constructing a nematic director the

sign of f̂
s

can be omitted, since n ⇠ �n.

5.2.3. Equilibrium director on the sphere

In summary, an equilibrium nematic director on the sphere with defects of strength

m
j

at locations (✓
j

,�
j

) is given by

n(✓,�) = cos
�

�� ↵(✓,�)
�

ê

✓

+ sin
�

�� ↵(✓,�)
�

ê

�

(5.45)

with

↵(✓,�) = ↵
0

+
ndef
X

j=1

m
j

Im
�

ln
�

z(✓,�)� z
j

(✓
j

,�
j

)
� 

, (5.46)
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5.3. Active flow generated by defects

satisfying the topological requirement

ndef
X

j=1

m
j

= 2 . (5.47)

This constraint means that on the sphere it is not possible to have defect-free nematic

textures. We will use this fact to formulate the active hydrodynamic problem entirely

in terms of the positions and topological strengths of the defects. One example

of a director with four half-integer defects, all positioned on a circle in the upper

hemisphere, and its projection in the complex plane are shown in Figure 5.2.

5.3. Active flow generated by defects

We use a director that is everywhere tangential to the spherical surfaces, such that

P (r) = P (✓,�) = n(✓,�) (5.48)

for all r 2 [R,R+ h
0

], with the director n(✓,�) given by (5.45)-(5.47). With

 (✓,�) = �� ↵(✓,�), (5.49)

the tangential active flow (5.22) becomes

ũ? = �̃
0

f(r̃
s

)

 

sin (2(�� ↵)) @
✓

↵+ cos(2(��↵))
sin ✓

(cos ✓ + 1� @
�

↵)

� cos (2(�� ↵)) @
✓

↵+ sin(2(��↵))
sin ✓

(cos ✓ + 1� @
�

↵)

!

, (5.50)

where we have abbreviated the r̃
s

-dependent part by f(r̃
s

) = r̃
s

(r̃
s

/2� 1).

5.3.1. Complex representation of the flow

For a constant r̃
s

, the form of (5.50) suggests to write the flow in a complex represen-

tation. We formally define a local “complexified” flow on the sphere

u := ũ
✓

+ iũ
�

, (5.51)

which we want to express in terms of the variables z and z̄, using stereographic

projection (see Section 5.2.1). The function u is well-defined, because we can relate

it to the projection of the spherical flow field onto the complex plane. The projected

field, expressed in the complex form as u
x

+iu
y

, is related to the spherical one through
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5.3. Active flow generated by defects

equation (5.42). In the orthonormal basis we have

(ũ
✓

, ũ
�

) = �(1� cos ✓)

✓

u
x

cos�+ u
y

sin�, u
x

sin�� u
y

cos�

◆

. (5.52)

Formally writing the complex representation of this field yields

ũ
✓

+ iũ
�

= �(1� cos ✓) {u
x

(cos�+ i sin�) + u
y

(sin�� i cos�)}
= �(1� cos ✓)ei�(u

x

� iu
y

) ,

and through this relation u is indeed a well-defined function in z and z̄. In complex

representation, the projection of the flow onto the plane is accordingly u
x

+ iu
y

=

�ūei�/(1� cos ✓). To find the winding of the flow at certain points, we can work with

u directly and use stereographic projections of loops on the sphere onto the plane for

evaluation, provided they do not encircle the poles, that is the factor ei� does not

contribute to the winding. However, to interpret the direction of the flow at certain

points, we have to use u
x

+ iu
y

.

As a first step, from equation (5.50) we find

ũ
✓

+ iũ
�

= �̃
0

f(r̃
s

)ei2(��↵)
⇢

� i@
✓

↵+
1

sin ✓
(cos ✓ + 1� @

�

↵)

�

. (5.53)

In spherical coordinates, we use A
j

= cot(✓/2) cos� � cot(✓
j

/2) cos�
j

and B
j

=

cot(✓/2) sin�� cot(✓
j

/2) sin�
j

to express the derivatives

@
✓

↵ = �cot(✓/2)

sin ✓

ndef
X

j=1

m
j

A
j

sin��B
j

cos�

A2

j

+B2

j

, (5.54)

@
�

↵ = cot(✓/2)
ndef
X

j=1

m
j

A
j

cos�+B
j

sin�

A2

j

+B2

j

. (5.55)

After some algebraic manipulations we can rewrite (5.53) in terms of z and z̄ as

u(z, z̄) = �̃
0

f(r̃
s

)e�i2↵(z,z̄)

⇢

z2

R|z| �
z

2

✓

R

|z| +
|z|
R

◆

ndef
X

j=1

m
j

z � z
j

|z � z
j

|2
�

, (5.56)
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where ↵(z, z̄) is given by (5.38) and we made use of the following relations

R2(A2

j

+B2

j

) = |z � z
j

|2 ,
R(A

j

+ iB
j

) = z � z
j

,

1 + cos ✓

sin ✓
= cot (✓/2) =

|z|
R

,

and
1

sin ✓
=

1

2

✓

R

|z| +
|z|
R

◆

.

5.3.2. Flow singularities on the sphere

There have to be singularities in the tangential active flow and some of them are

generated by the defects in the director in a way that we describe in this section. The

relation between active flow singularities and defects in a thin spherical film turns out

to be the same as for a planar film, see Section 3.4, but we derive this result here for

completeness.

The active flow diverges in magnitude at the defect locations, which can be seen

from the following. Consider a small circle with opening angle ⇢ on the sphere, centred

at the k-th defect, and projected onto the complex plane

z(s) = z
k

� ⇢R

1� cos ✓
k

ei(�k�s) , (5.57)

where s 2 [0, 2⇡], see Appendix B.3 for a derivation of this expression. We evaluate

the magnitude of u(z, z̄) on this circle, keeping only terms of lowest order in ⇢,

|u(s)|2 ⇡ ��̃
0

f(r̃
s

)
�

2

�

�

�

�

�

� z
k

R

2|z
k

|
✓

1 +
|z

k

|2
R2

◆

m
k

z(s)� z
k

|z(s)� z
k

|2
�

�

�

�

�

2

=
�

�̃
0

f(r̃
s

)
�

2

1

4

✓

1 +
|z

k

|2
R2

◆

2

m2

k

(1� cos ✓
k

)2

⇢2

=
�

�̃
0

f(r̃
s

)
�

2

m2

k

1

⇢2
. (5.58)

The dimensionless tangential flow diverges as 1/⇢ in the vicinity of a defect. The

winding of the flow around these singularities is found in a similar way. First, on the

small circle (5.57) we write

↵(s) = ↵
0

+
X

j

m
j

Im
�

ln(z(s)� z
j

)
 

= ↵
0

+
X

j 6=k

m
j

Im{ln(z
k

� z
j

)}+m
k

(�
k

� s) +m
k

⇡ +O(⇢) . (5.59)
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The last term results from writing ln(�x) = ln(x) + i⇡ if x > 0. We will use the

abbreviation

w(z
k

) := ↵
0

+m
k

⇡ +
X

j 6=k

m
j

Im{ln(z
k

� z
j

)} . (5.60)

Next, we consider the expansion of all terms contributing to u(z, z̄) in powers of ⇢.

Using (5.59) and (5.60) we find

e�i2↵(s) =e�i2w(z

k

)e�i2m

k

(�

k

�s)⇥
(

1 +
⇢

2

✓

R

|z| +
|z|
R

◆

X

j 6=k

m
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� z
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� z
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|2 z̄ke
is � z̄
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� z̄
j

|z
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� z
j

|2 zke
�is

!)

+O(⇢2) .

(5.61)

In the sum in (5.56) the k-th term gives

�z
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R

|z| +
|z|
R

◆

m
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|z � z
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|2 =
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4
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R

|z
k

| �
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|
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◆
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k

4
e�i2sei2�k

✓
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|z
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| + 3
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|
R

◆

+O(⇢) (5.62)

and all other summands can be written as

� z

2

✓

R

|z| +
|z|
R

◆

X

j 6=k

m
j

z � z
j

|z � z
j

|2 = �z
k

2

✓

R

|z
k

| +
|z

k

|
R

◆

X

j 6=k

m
j

z
k

� z
j

|z
k

� z
j

|2 +O(⇢) .

(5.63)

Further, we have
z2

R|z| =
z2
k

R|z
k

| +O(⇢) . (5.64)

From (5.61)-(5.64), we find that to lowest order in ⇢, which is ⇠ O(1/⇢), the flow in

the vicinity of the defect is

u(s) / ei(2mk

�1)sei2(1�m

k

)�

ke�i2w(z

k

)

m
k

⇢
. (5.65)

From the first exponential in (5.65) it follows that this dominant contribution to the

flow at the k-th defect has the winding number I = 2m
k

� 1. Expression (5.65) is

very similar to expression (3.62) for a planar film, but with an additional �
k

-dependent

term and a slightly di↵erent definition of w(z
k

). See Figure 3.2 in Section 3.4 for plots

of the local flow structure around di↵erent types of defects in the plane, which also

hold locally for defects on the sphere.

Like in the planar case this relationship is only one-directional, as flow singularities

can occur at places in between defects. In the spherical case, this can be seen as a
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0

0.5

1.0(a) (b) 1.0

0.5

0.0

Figure 5.3: (a) Orientation field P , given by equation (5.48), with four +1/2 defects in a paired
planar configuration. (b) Resulting tangential flow ũ? from equation (5.50), showing the typical
two-vortex structure. The flow magnitude is colour-coded and cut o↵ in the vicinity of the defects.
Displayed is the outer surface of the shell, r̃

s

= 1.

consequence of the Poincaré-Hopf theorem, see Section 2.4.2. If the flow singularities

that arise due to defects are to be the only ones present, then their total topological

strength has to be

2 =
ndef
X

j=1

(2m
j

� 1) = 4� n
def

, (5.66)

which can only be achieved if there are n
def

= 2 defects. Thus, a single +2 defect and

any configuration with more than two defects will inevitably lead to flow vortices which

are not at the defects’ locations. Moreover, with four +1/2 defects there have to be at

least two vortices in the flow, even though the flow is not singular at the defects. Figure

5.3 gives an example of the director for four +1/2 defects in a planar configuration

and the corresponding active flow, given by equation (5.50) and evaluated at the outer

surface, which is seen to consist of two counterrotating vortices. This emergence of

stable vortices is the germane feature of the active flows on spherical shells.

Another consequence of the unidirectionality of the relation above, is that simple

stagnation points (I = �1) cannot be created at defect locations. This is important

for flows that have additional ±1 flow singularity pairs on top of the two minimal

vortices. However, higher order stagnation points, with I < �1, can be created by

defects, for example in the many-defect configurations considered at the end of this

Chapter, in Section 5.7.

We illustrate the relationship between defect configuration and active flow with

several examples, shown in Figure 5.4. The only situation in which all flow singular-

ities are located at the defects is when there are two antipodal defects, for instance

{+1,+1}. Higher topological strength defect pairs, like {�1,+3} and {�2,+4}, also
fall under this case, but we will not consider them since they are not likely to be

of physical relevance. As illustrated in Figure 5.4 (a,d), two antipodal spiral defects
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create a pair of counterrotating vortices centred at the defects. Such perfect spirals,

with equal amount of splay and bend, are obtained with the phase ↵
0

= ⇡/4. For

a more splay(bend)-like structure, that is if 0 < ↵
0

< ⇡/4 (⇡/4 < ↵
0

< ⇡/2), the

vortices acquire a sink(source)-like component and there will be radial flow, leading

to changes in shell thickness.

If two unit strength defects are not antipodal, then additional flow singularities

occur, due to the fact that the two minimal defect-centred vortices are counter-

rotating. When the axial symmetry is broken there is one additional pair of ±1

singularities on the great circle passing through the defects, with the stagnation point

being on the defect-free hemisphere. One example of this is shown in Figure 5.4 (b,e)

for two asters, which generate active flow sinks at their locations. In this example

a flow source forms in between them, but in general this singularity will be a vortex

possibly with an inward or outward directed component, depending on the splay- or

bend-like nature of the director. This flow vortex will advect the defects, even though

their local flow is winding, and we study this motion of +1 defects in Section 5.6.

For two defects which are not located at the poles of the sphere the amount of

splay and bend is controlled through the phase ↵
0

= � arg(z
1

� z
2

) + ↵̃
0

, as will be

shown in Section 5.6. The additional constant, constructed from the projected defect

positions, ensures that the geometric type of the two defects does not change as they

move. With this phase, ↵̃
0

= 0 corresponds to two asters and ↵̃
0

> 0 adds bend to

the director, up to two pure vortex defects at ↵̃
0

= ⇡/2.

For a number of defects other than two, additional flow singularities are always

required in order to satisfy the Poincaré-Hopf condition. The simplest example is a +2

defect, shown in Figure 5.4 (c,f), whose active flow singularity of strength +3 requires

an additional simple stagnation point, which forms opposite the defect.

5.4. Defect dynamics

In general, the director in the shell will change in time due to the active flows it

produces. The assumption of an equilibrium director, together with the necessary

presence of defects on the sphere, allows to reduce the director dynamics to the

motion of defects. How the defects move, in turn, is captured by an e↵ective point-

particle description as explained in Section 2.4.1 for passive defects and extended

in Section 2.4.3 to active defects. The motion of active defects is driven by elastic

forces, like in a passive system, and by advection due to the active flow they create. We

describe these two components and derive dynamical equations for the defect positions

in an overdamped Newtonian dynamics approach, generalising equation (2.24) to a

collection of active defects on a sphere.

98



5.4. Defect dynamics

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Orientational fields (top) with one or two defects and corresponding active flow
(bottom) from equation (5.50). (a,d) Two antipodal spiral defects create a pair of counterrotating
vortices, whose cores coincide with the defects. Additional flow singularities which are not at
the locations of defects do occur, when defects are not antipodal (b,e) or when defect-driven
singularities do not satisfy the Poincaré-Hopf condition, which is the case for a +2 defect (c,f).
Colour-coding of the flow is on the scale (d) [0, 1], (e) [0, 3], and (f) [0, 4].
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5.4. Defect dynamics

5.4.1. Elastic forces

Similar to the energy (2.22) of a defective nematic in the plane, the free energy (5.34)

of a nematic on a sphere can be rephrased in terms of the defects’ pairwise interaction

energies, which depend of their geodesic distances, and their self-energies [Lubensky and

Prost, 1992; Nelson, 2002; Vitelli and Nelson, 2006],

E = �⇡K
2

ndef
X

i,j=1

i 6=j

m
i

m
j

ln(1� cos�
ij

) +
ndef
X

j=1

�

E
def

(R,m
j

) + E
c

�

. (5.67)

Here, R�
ij

is the geodesic distance between defect i and j and

cos�
ij

= cos ✓
i

cos ✓
j

+ sin ✓
i

sin ✓
j

cos(�
i

� �
j

) , (5.68)

which is obtained from the scalar product of the three-dimensional position vectors

of the defects. As we will not consider the energetics of defect unbinding or merging,

the second sum in equation (5.67) is a constant and hence irrelevant in our model.

The force acting on defect k due to all other defects is [Chaikin and Lubensky, 2000;

Keber et al., 2014]

F

(k) = �r
k

E = �
✓

ê

✓,k

1

R
@
✓
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�,k

1
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�

k

E

◆

, (5.69)

which is the spherical version of equation (2.23). We use the notation ê

✓,k

= ê

✓

(✓
k

,�
k

)

and ê

�,k

= ê

�

(✓
k

,�
k

). Because cos�
kj

= cos�
jk

, we have

@
✓
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E = K⇡m
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ndef
X

j=1, j 6=k
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@
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cos�
kj

1� cos�
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(5.70)

and a similar expression for @
�

k

E, where

@
✓

k

cos�
kj

= � sin ✓
k

cos ✓
j

+ cos ✓
k

sin ✓
j

cos(�
k

� �
j

) , (5.71)

@
�

k

cos�
kj

= � sin ✓
k

sin ✓
j

sin(�
k

� �
j

) . (5.72)

Energy-minimising defect configurations

For a given collection of defects on a sphere, the elastic forces (5.69) work to minimise

the energy in (5.67) by adjusting the positions of the defect. The global energy

minimum for a nematic in the one-constant-approximation is achieved if four half-

defects are arranged at the vertices of a tetrahedron [Lubensky and Prost, 1992]. The
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angular distances in a perfect tetrahedron are

�
ij

= � = 2arctan
⇣p

2
⌘

⇡ 109.47�, (5.73)

so cos�
ij

= �1/3 for all pairs of defects. With the self-energy of a defect given by

equation (2.21) the total energy of this configuration becomes

Etetra ⇡ ⇡K (�0.431 + ln (R/r
c

)) + 4E
c

. (5.74)

On the other hand, the energetic ground state of an orientation field with polar

order on a sphere is an antipodal configuration of two +1 defects, for which the energy

is

Epolar ⇡ ⇡K (�0.693 + 2 ln (R/r
c

)) + 2E
c

. (5.75)

Another configuration, which is found to be metastable for a nematic on a sphere

[Koning et al., 2016], is an isosceles triangle with m
1

= 1 and m
2

= m
3

= 1/2. If

the defect strengths are given, the optimal triangle has the angles �
12

= �
13

= ⇡ �
arccos(2/3) and �

23

= 2arccos(2/3), so cos�
12

= �2/3 and cos�
23

= �1/9. The total

energy of this configuration is

Etri ⇡ ⇡K

✓

�0.537 +
3

2
ln (R/r

c

)

◆

+ 3E
c

. (5.76)

5.4.2. Active advection

Self-propelling +1/2 defects

To find the active advection of +1/2 defects, we can directly evaluate the flow, since

it is non-winding (I = 0). For simplicity, we use only the dominant term / 1/⇢. From

equation (5.65) with m
k

= 1/2, the self-propelling velocity of the k-th +1/2 defect is

ũ

def = �̃
0

f(r̃
s

)
1

2⇢

 

cos
�

�
k

� 2w(z
k

)
�

sin
�

�
k

� 2w(z
k

)
�

!

, (5.77)

with w(z
k

) given in (5.60). The divergent flow magnitude is cut o↵ at an angular

distance ⇢, which is the opening angle of the small circle considered earlier. It can be

associated with the core size of the defect or with the thickness of the film, whichever

is bigger,

⇢ =
1

R
max{r

c

, h
0

}. (5.78)

The core size r
c

is a constant, which can be measured for a particular experimental

system and defect type. It can be assumed to be independent of the shell size. The
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justification to use a simple cut-o↵ was given for the planar case in Section 3.5, where

the divergent thin film solution was matched with a regularised defect core. The same

argument holds for defects in a spherical shell, since the same local regularisation

procedure could be performed here.

Through the relation (5.44) for vectors under stereographic projection, the direc-

tion of the velocity vector (5.77) corresponds to the direction of ei2w(z

k

) in the complex

plane, where the nematic director is given by ei↵. Consider a small circle given by

z(s) = z
k

+ ⇢eis, s 2 [0, 2⇡]. Then, in analogy to (5.59), we have ↵(s) = w(z
k

) + s/2.

Along the direction of the symmetry axis of the defect, given by the angle s̃, the

director orientation coincides with this angle1

s̃ = ↵(s̃) = w(z
k

) + s̃/2 . (5.79)

So, 2w(z
k

) = s̃, from which it follows that the velocity of the defect on the sphere

points along its symmetry axis. For extensile activity the defect moves in direction

of its comet-head and for contractile activity it moves in the reverse direction. This

is an alternative derivation of this well-known behaviour as the dominant part of the

active flow in a thin film. Notably, in this approach the direction of the comet-head

is fixed by the locations of the other defects through w(z
k

).

For the simulations we evaluate the tangential flow at the outer surface, r̃
s

= 1,

where the flow magnitude is maximal and f(1) = �1/2. The prefactor in (5.77) then

becomes ��̃
0

/4⇢.

Averaged active flow

For defects with m
k

6= 1/2 the dominant part of the flow is winding, so it is not

possible to extract a well-defined direction of motion from evaluating this flow at the

defect. Instead, we can average the flow over a small circle centred at the defect,

which will pick up higher order contributions that may be non-winding. Thus, one

advantage of having a solution for the whole flow field in the active nematic shell is

the possibility to study the motion of defects which are not self-propelling, but which

are instead advected in the flow created by other defects.

Consider a small circle on the sphere centred at the k-th defect and given by

✓(s) = ✓
k

+ ⇢ cos(s) and �(s) = �
k

+ ⇢ sin(s)/ sin(✓
k

), with s 2 [0, 2⇡] (see Appendix

B.3). We approximate the flow at the k-th defect with m
k

6= 1/2 by the average flow

on the circle

ũ

def =
1

2⇡

ˆ
2⇡

0

ũ?(s) ds . (5.80)

1More precisely, s̃+ n⇡ = ↵(s̃) with n 2 Z, which leads to the same result.
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Clearly, the velocity (5.77) can also be cast in terms of the integral (5.80), but here

we focus on the cases when the singular term ⇠ 1/⇢ is winding and hence does not

contribute to the integral. To study the structure of this type of active advection we

collect all O(1)-terms from (5.61)-(5.64), the expansion of u(s) in powers of ⇢. This

first non-singular contribution to the flow u(s) is proportional to

e�i2w(z

k

)e�i2m

k

�

k⇥
(

m
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2
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|
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m
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j

|z
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� z
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⇢
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k

R|z
k

| +
m

k

4
ei2�k

✓

R

|z
k

| �
|z

k

|
R

◆

�
✓

z
k

2
+

m
k

z̄
k

2
ei2�k

◆✓ |z
k

|
R

+
R

|z
k

|
◆

X

j 6=k

m
j

z
k

� z
j

|z
k

� z
j

|2
�

)

. (5.81)

From the s-dependent exponentials it follows that at this order there is no net advec-

tion, unless m
k

= 1, in which case the first summand gives a non-zero contribution

to the integral in (5.80). Advection of +1 defects is thus one order of magnitude in ⇢

smaller than the velocity of +1/2 defects.

On the other hand, advection of -1/2 defects is at least two orders of magnitude in

⇢ smaller than the velocity of +1/2 defects, since it can only arise from contributions

⇠ O(⇢) or higher. Thus, in collections of ±1/2 defects, the active motion of negative

defects can be neglected.

5.4.3. Dynamical Equations

We denote by r

k

= Rê

r

(✓
k

,�
k

) the three-dimensional position vector of the k-th

defect. Since @
✓

ê

r

= ê

✓

and @
�

ê

r

= sin ✓ê
�

, its total time derivative is

dr
k

dt
= R

d

dt
ê

r

(✓
k

,�
k

)

= R

✓

@

@✓
k

ê

r

(✓
k

,�
k
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@

@t
✓
k

+
@

@�
k

ê
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(✓
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,�
k

)
@
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�
k

◆

= R
�

ê

✓,k

✓̇
k

+ ê

�,k

sin ✓
k

�̇
k

�

. (5.82)

With r̃

k

= r

k

/R and t̃ = t/⌧ we arrive at a dimensionless equation

dr̃
k

dt̃
=
�

ê

✓,k

@
˜

t

✓
k

+ ê

�,k

sin ✓
k

@
˜

t

�
k

�

. (5.83)

On the other hand, since inertia is negligible, the equations of motion for the
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defects are overdamped,

⇠

✓

dr
k

dt
� u

def

◆

= F

(k), (5.84)

as discussed in Section 2.4.1. Making this equation dimensionless and using equation

(5.83), we obtain dynamical equations for the spherical coordinates of the k-th defect

@✓
k

@ t̃
=

⌧

⇠R
F (k)

✓

+
⌧

R
udef
✓

(5.85)

@�
k

@ t̃
=

1

sin ✓
k

✓

⌧

⇠R
F (k)

�

+
⌧

R
udef
�

◆

. (5.86)

Dimensional analysis of active and elastic e↵ects

We consider the scaling of the active advection for the cases of +1/2 and +1 defects,

although the analysis is generalisable to any type of defect. The flow is always

evaluated at the outer surface, where f(r̃
s

= 1) = �1/2. From (5.77), for defects

with m
k

= 1/2 the flow magnitude is expressed in terms of the system parameters as

�

�

�

u

def

�

�

�

= U
0

1

4⇢
=

h2
0

�
0

Rµ

1

4⇢
, (5.87)

where we have used the scaling

U
0

=
h2
0

�
0

µR
(5.88)

that follows from equation (5.15). Choosing ⇢ = r
c

/R from (5.78) we get

v
0

=
�

�

�

u

def

�

�

�

=
h2
0

�
0

4r
c

µ
, (5.89)

so the velocity of +1/2 defects does not depend on the radius of the shell, but only on

its thickness h
0

. This agrees with the intuition that a +1/2 defect generates its own

advection locally and the system size should not a↵ect this. In addition, the flow at

the outer surface is higher when the active nematic film is thicker, since the distance

to the no-slip boundary increases.

On the other hand, for m
k

= 1 we have

�

�

�

u

def

�

�

�

⇠ U
0

=
h2
0

�
0

µR
. (5.90)

The flow decreases with radius, because the +1 defect is advected in the flow generated

by other vortices which move further apart, as the radius is increased. The velocity of

defects with other topological strengths decreases with shell size at least as ⇠ 1/R2,

since the dimensionless flow is at least ⇠ O(r
c

/R).
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5.4. Defect dynamics

The scaling of the elastic e↵ects does not depend on the defect type. For example

for the ✓-component, the elastic term in equation (5.85) can be written as

⌧

⇠R
F (k)

✓

= � ⌧K

⇠R2

⇡m
k

ndef
X

j=1, j 6=k

m
j

@
✓

k

cos�
kj

1� cos�
kj

. (5.91)

Because the material parameters have the units [⇠] = Ns/m and [K] = Nm, the

dimensionless elasticity prefactor

K̃ =
⌧K

⇠R2

(5.92)

defines a time scale

⌧ =
⇠R2

K
, (5.93)

which can be identified with the time scale of elastic relaxation of defects into their

equilibrium positions in the absence of activity. This choice of time scale sets K̃ = 1.

On the other hand, the scaling of the dimensionless activity parameter in equation

(5.15),

�̃
0

=
h2
0

�
0

RµU
0

=
h2
0

�
0

T

R2µ
(5.94)

determines the active time scale in terms of the other system parameters,

T =
R2µ

h2
0

�
0

=
µ

�
0

"2
, (5.95)

with [µ] = Ns/m2 and [�
0

] = N/m2, which we already used to make equations

dimensionless in Section 5.1. Hence, if the time of the dynamics is in units of ⌧ ,

there will be a factor
⌧

T
=
⇠h2

0

�
0

Kµ
(5.96)

in front of the dimensionless active advection velocity. For a general defect configura-

tion, equations (5.85) and (5.86) become

@
˜

t

✓
k

= �⇡m
k

4

X

j=1, j 6=k

m
j

@
✓

k

cos�
kj

1� cos�
kj

+
⌧

T
ũdef
✓

(5.97)

@
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1

sin ✓
k

0

@� ⇡m
k

sin ✓
k

4

X

j=1, j 6=k

m
j

@
�

k

cos�
kj

1� cos�
kj

+
⌧

T
ũdef
�

1

A . (5.98)

However, due to the flow singularities in ũ

def there is an additional prefactor

(1/⇢)2 = (R/r
c

)q, associated to the core size r
c

of a defect as discussed above, where

the power q depends on the strength of the defect. Therefore, we should consider
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the dynamical equations for each defect type separately. Note, that this prefactor is

an important consequence of the flow singularities in the thin film model for active

defects and could not be guessed from dimensional arguments alone. Moreover, it

introduces a dependence of the dynamics on the shell radius R, which is otherwise

absent in (5.96).

For a +1/2 defect the prefactor of the active terms in equations (5.85) and (5.86)

then becomes
⌧

R

�

�

�

u

def

�

�

�

/ ⇠Rh2
0

�
0

Kµr
c

=: ⌫ , (5.99)

which we define as the dimensionless ratio of active to elastic e↵ects. This ratio

determines the type of dynamics of four +1/2 defects in the spherical shell, which

is analysed in Section 5.5. At ⌫ ⇡ 1 one can expect a cross over from an elasticity-

dominated regime, in which the defects relax into close-to-equilibrium configurations

as we will discuss in Section 5.5.1, and an activity-dominated regime of steady motion

described in Section 5.5.2.

For a +1 defect the corresponding prefactor is

⌧

R

�

�

�

u

def

�

�

�

/ ⇠R

K

h2
0

�
0

µR
=
⇠h2

0

�
0

Kµ
=: ⌫(1) , (5.100)

which reflects that for these defects both active and elastic e↵ects scale with shell

radius in the same way, as ⇠ 1/R.

In summary, if there is only one type of defects in the system, like four +1/2 or

two +1 defects, then there is only one parameter that determines the dynamics. This

parameter represents the relative importance of active to elastic e↵ects. However, if

there is a combination of defects of di↵erent strengths, then the ratio R/r
c

= 1/⇢ is

necessary to estimate their relative velocity magnitudes.

Dynamical equations for four +1/2 defects

With the above scalings we now write explicitly the dynamical equations for four +1/2

defects in the shell

@
˜

t

✓
k

= �⇡
4

4

X

j=1, j 6=k

@
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k

cos�
kj

1� cos�
kj

� ⌫

4
cos (�
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)) (5.101)
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� ⌫

4
sin (�

k

� 2w(z
k

))

1

A (5.102)

for k = 1, . . . , 4, where w(z
k

) = ↵
0

+ ⇡

2

+ 1

2

P

j 6=k

Im{ln(z
k

� z
j

)}. In this dimen-

sionless formulation the ratio ⌫, defined in (5.99), and the phase ↵
0

are the only two
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parameters.

5.4.4. Numerical method

Numerical simulations are performed using the software MATLAB 2016a. Equations

(5.97)-(5.98), or (5.101)-(5.102) in the case of four +1/2 defects, are solved using

the MATLAB ordinary di↵erential equation solver ode23s, with absolute and relative

accuracy set to 10�6⌧ . The function ode23s employs a standard lower-order Runge-

Kutta method [Reichelt and Shampine, 1997], which is well suited for sti↵ di↵erential

equations. The equations considered here have the potential for being sti↵, because

the two time scales – the elastic and the active – drift apart when their ratio is

increased. Indeed, for this particular dynamical system we find numerically stable

results for all considered parameter values with the ode23s solver, whereas other

solvers seem not reliable for larger activities and long measuring times.

The average flow at a +1 defect is obtained with the MATLAB function integral,

with absolute and relative accuracy set to 10�4⌧ and 10�2⌧ , respectively. The calcula-

tions are performed in Cartesian coordinates with the integral-option ’ArrayValued’.

For simulations with four +1/2 defects, the defects are initialised at the vertices

of a tetrahedron, which has no vertices at either of the spherical poles but for which

one of the tetrahedron’s 2-fold symmetry axis coincides with the z-axis. For this

tetrahedron the defect positions are given by

✓(0)
i

= (�/2,⇡ � �/2,�/2,⇡ � �/2) and �(0)
i

= (0,⇡/2,⇡, 3⇡/2) , (5.103)

where � = 2arctan
�

p
2
�

is the angular distance between defects in a tetrahedron.

Angular distances between defects are measured according to equation (5.68) in the

steady state. The mean angular distance �̄(t), the mean angular distance �̄ averaged

over a trajectory, and the minimal angular distance �
min

along a trajectory are

calculated as follows

�̄(t) =
1

6

X

<i,j>

�
ij

(t), (5.104)

�̄ =
⌦

�̄(t)
↵

t

, (5.105)

�
min

= min
t,<i,j>

�
ij

(t) , (5.106)

where < i, j > denotes summation over all six defect pairs.

All plots are produced with the software Mathematica 11. Director fields and flow

fields on the sphere, as in Figure 5.3, are plotted on a randomised grid (✓
i

,�
ij

) for

a smoother visual e↵ect. For instance, for m � 1 points in the ✓-direction, omitting
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the poles, we choose ✓
i

= i

m

⇡ + ⇠
i

, for i = 1, . . . ,m � 1, with a Gaussian noise

⇠
i

⇠ N (0, 0.03). For each ✓
i

a grid of �-values is constructed: �
ij

= j

n

i

2⇡, with

j = 1, . . . , n
i

and n
i

= d⇣
i

m sin ✓
i

e with a Gaussian noise ⇣
i

⇠ N (1, 0.2).

5.5. Motion of four +1/2 defects

The dynamics of four +1/2 defects, given by equations (5.101) and (5.102), is deter-

mined primarily by the value of ⌫, which can be interpreted as the ratio of active to

elastic e↵ects. Although ⌫ is a combination of various system parameters, given by

(5.99), we imagine a system in which varying ⌫ is facilitated by varying the activity

�
0

, with all other parameters kept constant, and investigate the change in dynamics

as activity is increased. In particular, we fix the shell radius to R = R
0

, which also

fixes the elastic time scale ⌧ = ⌧
0

, if K and ⇠ are fixed. We discuss the complementary

case of fixed activity and varying shell radius in Section 5.7, where collections of larger

numbers of defects are considered. The main results are presented for extensile active

stresses, �
0

> 0, in order to relate with microtubule-based active nematics [Sanchez

et al., 2013; Keber et al., 2014], but we comment on the contractile case in the Discussion,

Section 5.9.

At zero activity the four defects relax into a tetrahedral configuration, when

starting at random initial positions, as expected for the passive case (see Section

5.4.1). For non-zero activity a tetrahedron is chosen as the initial configuration. As

activity is increased from zero, defects undergo a small transient movement, relaxing

into a configuration where they have moved closer in pairs. We call this configuration

a “skewed tetrahedron”, which is increasingly distorted with activity.

At a critical activity ⌫⇤ there is a transition to a dynamical regime, where the

defects start moving on periodic orbits. As illustrated in Figure 5.5, the shape of

those orbits depends on the strength of the activity. Importantly, the motion of

defects is characterised by the formation of flow vortices that separate the defects into

two pairs and drive them on their orbits.

From simulations we estimate the critical activity by measuring the mean and

minimal angular distances between the four defects along a trajectory, shown in Figure

5.5 (a). Both change rapidly at ⌫⇤ ⇡ 0.7. The mean distance increases, indicating

that defects are no longer in a tetrahedral or near-tetrahedral arrangement. The

drop in the minimal distance is associated with the formation of rotating pairs in the

dynamical regime.

The second parameter that determines the dynamics is the phase ↵
0

, which con-

trols the amount of bend and splay in the nematic texture. We find that ↵
0

2 (0,⇡/4)

and ↵
0

2 (⇡/4,⇡/2) leads to similar ⌫-dependence of the dynamics. We first focus on
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Figure 5.5: (a) Mean and minimal angular distances between four +1/2 defects plotted against
⌫, the ratio of active to elastic e↵ects. The rapid change in both at ⌫⇤ ⇡ 0.7 marks the transition
to the dynamical regime, in which defects move on periodic orbits. The shape of these orbits
changes smoothly with ⌫: (b) square-like trajectories for intermediate activity, corresponding to
the tetrahedral-planar oscillations found experimentally [Keber et al., 2014], (c) ellipsoid orbits at
higher activity, where defects in each pair have moved closer. In (b) and (c), crosses represent the
initial tetrahedral configuration, big dots represent the defect positions at a time corresponding to
plots in Figure 5.7 and arrows indicate the direction in which defects traverse the orbits.

this range, specifically fixing

↵
0

= ⇡/2� 0.2 (5.107)

for the examples shown in all subsequent figures. The special cases of ↵
0

= 0, which

produces a bend-dominated texture, ↵
0

= ⇡/2, which produces a splay-dominated

texture, and ↵
0

= ⇡/4, in which case the texture has comparable amounts of splay

and bend, are discussed at the end of this section.

5.5.1. Regime of transient motion

We describe the “skewed tetrahedron” and the transition to the dynamical regime by

a linear stability analysis of the dynamical equations (5.101) and (5.102), which for

this purpose are rewritten as
dx(t)

dt
= g(x(t)) , (5.108)

where x(t) = (✓
1

(t), . . . , ✓
4

(t),�
1

(t), . . . ,�
4

(t)) 2 R8 is the vector of spherical defect

positions and g(x(t)) are the concatenated right hand sides of equations (5.101) and

(5.102).

Since in the low activity regime the defects relax into a steady state in the
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simulations, we assume that there is a stable fixed point x

⇤(⌫,↵
0

) corresponding

to the “skewed tetrahedron”. In simulations, we find that the deviations of defect

positions relative to the perfect tetrahedron are small. Moreover, the defects move in

a symmetric fashion that corresponds to a combination of twisting and stretching of

the initial tetrahedron, as illustrated in the inset of Figure 5.6 (a). Consequently, the

defect positions in the “skewed tetrahedron” can be described by

✓⇤
1

= ✓⇤
3

= ✓(0)
1

� �✓, (5.109)

✓⇤
2

= ✓⇤
4

= ✓(0)
2

+ �✓, (5.110)

�⇤
1

= �(0)
1

� ��, �⇤
2

= �(0)
2

+ ��, (5.111)

�⇤
3

= �(0)
3

� ��, �⇤
4

= �(0)
4

+ ��, (5.112)

with two small deviations �✓ = �✓(⌫,↵
0

) and �� = ��(⌫,↵
0

) for ⌫ < ⌫⇤, and �✓, �� > 0.

Here, ✓(0)
i

and �(0)
i

denote the positions in the initial tetrahedron given by (5.103). To

study the linear stability of this fixed point x⇤ as a function of ⌫, we look at a small

perturbation �x away from x

⇤, which evolves according to

d�x

dt
= rg

�

�

x

⇤ · �x. (5.113)

In Figure 5.6 (b) we plot the eigenvalues of

rg

�

�

x

⇤
=(✓

⇤
1 ,...,�

⇤
4)
, (5.114)

using the ✓⇤
1

, . . . ,�⇤
4

from simulation data. Firstly, there are three vanishing eigen-

values, �
1

, �
2

and �
3

, which correspond to the rigid body rotations of the defect

configuration in three dimensional space. All other eigenvalues are negative, therefore

as expected the “skewed tetrahedron” is linearly stable for ⌫ < 0.7. However, the

data suggests that at ⌫ = 0.7 the eigenvalue �
7

changes its sign from negative to

positive, which would render the “skewed tetrahedron” linearly unstable and explain

the transition to the dynamical regime. The data points from simulations can only be

plotted for ⌫ < 0.7, since above this value the defects are in periodic motion and the

– supposedly unstable – fixed point cannot be extracted.

To corroborate this supposition we make use of approximate analytical solutions

for the deviations �✓(⌫) and ��(⌫), which are derived as follows. We want to find

deviations for which the resulting positions are a fixed point x

⇤ of the dynamical

system (5.108). Plugging the ansatz from equations (5.109)-(5.112) into the condition

g(x(�✓, ��)) = 0 (5.115)
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Figure 5.6: (a) Deviations of defect positions from the tetrahedron in the small activity regime.
Shown are deviations �✓ and �� measured in simulations (circles) and obtained from linear order
calculation of the fixed point (lines). The inset shows the corresponding twist (red arrows)
and stretching (blue arrows) modes of deformation of the initial tetrahedron. (b) Spectrum of
rg evaluated at the “skewed tetrahedron”, using defect positions from the simulation (circles)
and positions obtained from analytical expressions for �✓(⌫) and ��(⌫) given in (5.116) and
(5.117) (lines). The data suggests that at ⌫⇤ = 0.7 the eigenvalue �7 (boxed) becomes positive,
which renders the “skewed tetrahedron” linearly unstable. This is qualitatively confirmed by the
theoretical prediction, albeit with an overestimated transition point.

and solving its linearised version for small deviations, �✓ ⌧ 1 and ��⌧ 1, we find
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2⌫ cos(2↵
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Figure 5.6 (a) shows that while �✓(⌫) recovers the simulation data very well, the

deviations in �-direction are strongly underestimated with this linear approach for

⌫ � 0.3, so the twist in the “skewed tetrahedron” is not accurately described near the

transition to the dynamical regime.

Nonetheless, the eigenvalues of (5.114) evaluated at the fixed point x⇤(�✓(⌫), ��(⌫))

that is constructed from the deviations (5.116) and (5.117) correlate well with the

ones from simulation data up to ⌫ ⇡ 0.5, as shown in Figure 5.6 (b). There is

qualitative agreement in the behaviour of eigenvalue �
7

for larger ⌫. Again, while

all eigenvalues are non-positive for small ⌫, �
7

is continuously growing and becomes

positive at ⌫ ⇡ 1.05. When �
7

> 0, the corresponding eigenvector has the structure

(a,�a, a,�a,�b, b,�b, b) with b � a > 0. It represents a deformation which slightly

reverses the stretching and, to a much stronger extent, amplifies the twist of the

“skewed tetrahedron” (see inset of Figure 5.6 (a) for an illustration of these deforma-

tion modes). This is exactly the dynamics found in simulations at early times, see for

instance the trajectory between crosses and big dots in Figure 5.5 (b). Although the

activity at which the transition happens is overestimated, this theoretical argument

shows that the the dynamical regime is indeed initiated by the “skewed tetrahedron”
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5.5. Motion of four +1/2 defects
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Figure 5.7: The dynamics of four +1/2 defects is characterised by the formation of counterrotating
flow vortices and defect pairs. (a)-(c): Tetrahedral-planar oscillations in intermediate activity
regime (⌫ = 0.8); Director (a) and flow (b) in tetrahedral configuration at time marked with arrow
in (c) ; (c) shows pairwise and mean geodesic distances between defects; tetrahedral and planar
configurations correspond to 109.5� and 120�, respectively. (d)-(f): At higher activity (⌫ = 8.0)
the two vortices become more pronounced and the defect pairs are tighter (see yellow line); Director
(d) and flow (e) in planar configuration at time marked with arrow in (f); The tetrahedron is no
longer approached as seen from pairwise distances in (f). In (c) and (f) (i, j) denotes the distance
between defects marked as (i) and (j) in Figure 5.5 (b).

becoming linearly unstable to a specific deformation that is the start of the periodic

orbits.

5.5.2. Oscillatory regime

In the dynamical regime the defects settle into periodic orbits, whose shape varies

smoothly with increasing activity from square-like to more ellipsoid as seen in Figures

5.5 (b) and (c). To characterise the di↵erent dynamics we plot the oscillation of angular

distances between the defects and exemplary director and flow fields in Figure 5.7.

For intermediate activity (⌫ = 0.8) the defects periodically pass through tetrahedral

and planar configurations, as shown in Figure 5.7 (c), which is the dynamics found

in experiments [Keber et al., 2014], see Figure 2.5. Peaks in the mean angular distance

at �̄ ⇡ 120� correspond to planar arrangements of defects, which are also equidistant

at this activity, since the minimal distances are ⇡ 90�. Minima in the mean angular

distances are at �̄ ⇡ 110� and correspond to tetrahedral configurations, in which all

other angles also approach this value.

Figures 5.7 (a) and (b) show the director and the corresponding active flow at
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5.5. Motion of four +1/2 defects

one such tetrahedral arrangement. The flow reveals that the motion is characterised

by the formation of two counterrotating flow vortices. The vortices are responsible

for the separation of defects into two pairs, in which they rotate around each other.

This e↵ect becomes more pronounced as the activity is increased (see Figure 5.7

(e)). The separation of defects within each pair decreases significantly with increasing

activity, as seen in Figure 5.5 (a), such that the tetrahedral configurations are no

longer approached. The di↵erence in the dynamics is also illustrated in Figure 5.7 (f),

where the angular distances now oscillate between two di↵erent planar arrangements,

but the paired defects always stay close. If activity is further increased the dynamics

approaches the situation for two antipodal spirals in the director, which in the limit

generate a perfectly symmetric flow vortex pair.

The total defect velocities, comprising motion due to both active advection and

elastic repulsion, are found to oscillate in time as shown in Figure 5.8. The speeds are

synchronised for all defects, therefore only one line is seen in the plot. For intermediate

activity (⌫ = 0.8) lowest speeds occur around the tetrahedral configurations, and the

defects are fastest when they are in planar arrangements. On the other hand, for

higher activity (⌫ = 8.0) the defect speed plateaus over prolonged time intervals, but

drops in between those. Notably, there are two types of planar configurations that

di↵er in the separation of paired defects and speed minima correlate with those, in

which defects are closer to each other. The di↵erent role of planar configurations

in these two examples is not surprising, as the total speed depends on the relative

orientation of the active velocity and the elastic force acting on the defect, and is not

simply determined by the defect distances.

Frequency of defect oscillations

Although the defect speed oscillates, we can estimate from Figure 5.8 that its average

scales linearly with ⌫. Therefore, we can conclude that the total defect speed is

dominated by the active contribution and from that estimate how the frequency of

defect oscillations will change with system parameters. The active speed of a +1/2

defect is v
0

⇠ h2
0

�
0

/µr
c

, see equation (5.89). If ⌫ is constant, the length of the defect

orbits scales as ⇠ 2⇡R, therefore the period of oscillation is ⌧a ⇠ R/v
0

⇠ µr
c

R/h2
0

�
0

or, in units of the elastic relaxation time, ⌧̃a = ⌧a/⌧ ⇠ 1/⌫. Consequently, the

frequency is

fa = 1/⌧a ⇠ h2
0

�
0

µr
c

R
, (5.118)

or f̃a = fa⌧ ⇠ ⌫. This relationship is in agreement with the frequencies measured in

simulations for di↵erent ⌫, see Figure 5.8 (b). If the radius of the shell is increased in

a way that keeps ⌫ constant, for instance due to an appropriate decrease in activity
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Figure 5.8: (a) Total defect speed, corresponding to the magnitude of (5.83), for intermediate
and high activity regimes. The speeds are synchronised for all defects (all lines overlap), but change
periodically in accordance with the defect positions. (b) The frequency of defect oscillations grows
linearly with ⌫, if the time scale ⌧ = ⇠R2/K stays constant, for instance when ⌫ changes due to
an increase in activity �0.

�
0

, then oscillations would slow down as fa ⇠ 1/R. On the other hand, if all other

system parameters remain the same, ⌫ grows with radius, which a↵ects the shape and

with it the length of the orbit. However, comparing the lengths of the trajectories

in Figure 5.5 this e↵ect should be small and should not change the frequency scaling

dramatically.

Defect pair formation

Both the rotation of defects along their trajectories and the reduction of defect

separation with increasing activity is the result of the active flow vortices in the shell.

The e↵ective attraction of defects into pairs is mediated by the active flow vortices

that form in between them, which in turn are controlled by the underlying director.

In the tetrahedral configuration the nematic has a characteristic tennis ball texture

[Nelson, 2002; Vitelli and Nelson, 2006], but for generic values of ↵
0

this texture is skewed,

such that each two defects form a separated spiral. The flow vortices accordingly

acquire a sink- or source-like component, depending on the tilt in the spiral. As can

be seen for instance in Figure 5.7 (b), the paired defects have a sink-like vortex in

between them which keeps them together. This active attraction mechanism requires

the possibility of radial flows to accommodate this influx, which is guaranteed in the

thin film approach and is an advantage compared to a strictly two-dimensional model,

in which such flows would be prohibited by in-plane continuity.

Special choices of ↵
0

We now comment on the special choices of ↵
0

left out in the previous discussion.

Bend-dominated (↵
0

= 0) and splay-dominated (↵
0

= ⇡/2) textures have a similar

dynamics. Starting from the initial tetrahedron, the defects move away in the ✓-

direction for small activity, which is also captured by �� = 0 in (5.117). The

dynamical regime starts at a higher activity, ⌫⇤ ⇡ 2.0 and ⌫⇤ ⇡ 1.6, respectively.
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5.6. Motion of two +1 defects

The main di↵erence to the previous dynamics is that the defects keep passing through

a tetrahedral or near-tetrahedral configuration for increasing ⌫, even though the orbits

become thinner in one direction. The minimal defect separation decreases at first, but

approaches the limit of ⇡ 50� for high activity. The case of comparable splay and

bend (↵
0

= ⇡/4) is quite di↵erent, because there is no dynamical regime. The initial

motion is mainly in the �-direction, �✓ ⌧ �� from equations (5.116) and (5.117). The

defects always relax into a paired configuration, with defect distance decreasing with

⌫, but there is no steady motion.

5.6. Motion of two +1 defects

Our model can also be used to study the active motion of +1 defects in an active shell,

of which there are two in the ground state of a shell with polar symmetry. Such defects

can di↵er in their geometric type, that is they can be more bend-like or more splay-

like. In the one-constant approximation any choice of ↵
0

, that is any combination

of splay and bend, results in an energy-minimising texture. This degeneracy is lifted

if the elastic constants become unequal. For polar order on a sphere the smallest

anisotropy in elastic constants renders pure bend or pure splay textures energetically

favoured and spirals become unstable [Vitelli and Nelson, 2006]. In active polar gels,

however, this is not the case. Su�ciently large activity is theoretically predicted to

favour spiral defects even at unequal elastic constants [Kruse et al., 2004; Elgeti et al., 2011].

Such defects, with di↵erent degrees of tilt, were also observed experimentally in active

suspensions of biological filaments [Nedelec et al., 1997; Keber et al., 2014]. Moreover, spiral-

like structures in two dimensions are rotating due to their strong circulatory active

flows and should thus lead to more interesting defect dynamics than pure bend or pure

splay textures. We therefore consider all textures allowed in the one-elastic constant

approximation, as they might be relevant for active nematics and active polar gels.

First, we note that in the definition of the director (5.46) the choice of ↵
0

that

fixes the defect geometry, that is whether the two defects are more aster-like or more

vortex-like, depends on the locations of the defects. In other words, the same choice of

↵
0

may produce a splay-dominated or a bend-dominated texture around the defects,

depending on where they are. We would like to study the motion of two defects of

a fixed type so we can single out the e↵ect of the phase, that is that two defects for

instance stay asters when they move. We remove this ambiguity with a constant shift

c
1

,

↵
0

= c
1

+ ↵̃
0

, (5.119)

and vary ↵̃
0

2 [0,⇡/2] instead. We find c
1

by imposing an aster-geometry for ↵̃
0

= 0

for all defect positions. Consider a director with two +1 defects in the plane. If points
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Figure 5.9: Active advection leads to repulsion of two aster-like defects and attraction of two
vortex-like defects. (a) Distance of the two +1 defects over time for di↵erent local director
geometry, controlled by ↵̃0, which varies in steps of ⇡/16. Here, the motion of defects is due to
active advection only, with K̃ = 0. (b) Perfect asters (↵̃0 = 0) or vortex defects (↵̃0 = ⇡/2) move
along geodesics, but in general the defects move on outward or inward spiralling trajectories. Two
perfect spirals (↵̃0 = ⇡/4) move along a circular path, without changing their distance. (c) Two
spiral-like defects (↵̃0 = 5⇡/16) are attracted to each other by the sink-like flow vortex that forms
in between them. (d) When elasticity is included, attraction of +1 defects is found only above a
threshold ⌫(1) and for large enough tilt ↵̃0.

in the vicinity of the defect at z
1

are described with z(s) = z
1

+⇢eis, then the condition

for an aster geometry around this defect reads

s = ↵(s) = c
1

+ arg(⇢eis) + arg(z
1

� z
2

) , (5.120)

which leads to

c
1

= � arg(z
1

� z
2

) . (5.121)

A similar condition formulated in the vicinity of the second defect leads to c
1

=

� arg(z
2

� z
1

), which is equivalent to (5.121) since arg(z
2

� z
1

) = arg(z
1

� z
2

) + ⇡.

We first consider the limit of very strong active advection, setting K̃ = 0 and

scaling the time with T instead of ⌧ . Figure 5.9 (a) shows the time evolution of

the distance between two +1 defects, which move due to their self-generated active

flows. We find that the defects are either attracted to or repelled from each other,

depending on the local director geometry controlled by ↵̃
0

. Two defects that are aster-

like (0  ↵̃
0

< ⇡/4) experience repulsion and relax into an antipodal configuration.

On the other hand, two defects which are vortex-like (⇡/4 < ↵̃
0

 ⇡/2) are drawn

towards each other. In this idealised setting without elasticity, they merge into a +2

boojum.

For symmetry reasons, two perfect asters (↵̃
0

= 0) and two perfect vortex defects

(↵̃
0

= ⇡/2) can only move along their connecting geodesics, which is seen from the

trajectories in Figure 5.9 (b). In general, however, the trajectories spiral outward or

inward until the defects reach maximal separation or merge, respectively. Two perfect

spiral defects (↵̃
0

= ⇡/4) keep a constant distance, rotating around each other on a
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5.6. Motion of two +1 defects
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Figure 5.10: When elastic e↵ects are included (K̃ = 1) high activity is required to observe
attraction between vortex-like defects. (a) Here, ⌫ = 15 and strongly vortex-like defects (↵̃0 =
7⇡/16,⇡/2) are drawn together. The opening angle ⇢ of the circle, which is used to calculate the
advection of a +1 defect, only a↵ects the dynamics at short distances, as seen from the splitting
of the lines with di↵erent symbols. (b) Whether the defects attract or repel each other depends
on the activity ⌫ and the phase ↵̃0, here ↵̃0 = 5⇡/16, 3⇡/8, 7⇡/16,⇡/2 from top to bottom for
each symbol, but not on the initial distance �12(0) between the defects.

circular path. The initial distance of the defects does not a↵ect the type of dynamics.

The mechanism of this active attraction or repulsion is, like for half-defects, related

to the nature of the flow in between the two +1 defects. As discussed in Section 5.3.2,

if two +1 defects are not antipodal then there is an additional ±1 flow singularity pair

on the great circle which goes through the defects. The +1 singularity forms in the

middle of the connecting geodesic and the �1 stagnation point forms on the opposite

side (see Figure 5.4 (e)). The +1 singularity is source-like for 0  ↵̃
0

< ⇡/4 and

sink-like for ⇡/4 < ↵̃
0

 ⇡/2, causing the repulsive or attractive flows, respectively.

Figure 5.9 (c) shows the active flow with the additional sink-like vortex in between

the defects (↵̃
0

= 5⇡/16), that draws the defects in on a spiralling trajectory. The

defects’ trajectory rotates in a direction opposite to the rotation of their local flow

vortices.

When elastic e↵ects are included, with K̃ = 1, a su�cient activity is necessary

for active attraction of +1 defects to occur, since there is additional elastic repulsion

between the defects that acts along their connecting line. We find that for ⌫(1) < 12

the two defects move into the antipodal position for all ↵̃
0

. For stronger activity, we

recover active attraction if defects are su�ciently vortex-like, however the limiting

case is not at ↵̃
0

= ⇡/4. Figure 5.9 (d) shows a parameter scan over ⌫(1) and ↵̃
0

,

giving a rough idea of the boundary between the parameter regions of repulsion

and attraction. For this plot, the defects have an initial separation of 7⇡/8 and

a parameter combination of ⌫(1) and ↵̃
0

corresponds to attraction of defects, if the

distance measured at a time t = 2⌧ is smaller than the initial distance. As an example,

in Figure 5.10 (a) the time evolution of the defect distance is shown for ⌫(1) = 15 and
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di↵erent ↵̃
0

. Attraction is found for the two highest values, ↵̃
0

= 7⇡/16 and ↵̃
0

= ⇡/2.

The advection of +1 defects is obtained as the average flow over a circle of

opening angle ⇢ centred at the defect. In Section 5.4.3 we argued that the dominant

contribution to this average that is directed and not winding is ⇠ O(1) in a ⇢-

expansion. Hence, the motion of two +1 defect should not depend on ⇢, which is

related to the core size of the defect as ⇢ = r
c

/R. Indeed, Figure 5.10 (a) shows that

the dynamics does not depend on ⇢ for most part of the data, in agreement with our

theoretical analysis. However, when the defects come closer, a larger ⇢ smoothens the

attraction, slowing the defects down and increasing their stationary distance. The

e↵ect becomes visible at distances of ⇡ 60�. Finally, Figure 5.10 (b) shows that the

initial distance �
12

(t = 0) does not seem to a↵ect whether defects attract or repel

each other for the same ↵̃
0

.

In summary, there are thresholds for the activity and for the tilt of the director,

above which the antipodal configuration of two +1 defects is always unstable. Inter-

estingly, in such cases the defects again collapse into a very close pair, that resembles

a +2 defect. In an experimental system, fluctuations in the tilt of a spiral around the

limiting value of ↵̃
0

might lead to oscillations between the antipodal and the collapsed

configurations.

5.7. Additional ±1/2 defect pairs

When activity |�
0

| or radius R are increased such that
p

K/|�
0

| = l
a

< R the nematic

shell will transition into the state of active turbulence, where defect pairs are created

and annihilated continually and defects move on chaotic trajectories, see Section 2.2.3.

Here, we are interested in a regime which is not yet in the realm of active turbulence,

such that a small number of additional ±1/2 defect pairs may be created on top of the

four +1/2 defects. These would typically occur at random positions, as fluctuations,

and distort the oscillatory dynamics. However, the defects could also be specifically

guided into configurations which are metastable as a result of a balance between elastic

forces and active flows and which produce more complex active flow vortices.

To study such situations we imagine an active nematic shell of larger radius, but

with other physical parameters comparable to the previous two sections, where we

fixed the radius to R
0

. We call the time scale used in Sections 5.5 and 5.6 ⌧
0

= ⇠R2

0

/K.

For reference, we use the ratio ⌫
0

= ⇠R
0

h2
0

�
0

/Kµr
c

= 1, that corresponds to the

regime of tetrahedral to planar oscillations in Figure 5.5. If relative to this choice of

parameters the radius is increased as R = �R
0

, with � > 1, then in order to keep the
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Figure 5.11: (a) Four +1/2 defects show regular oscillations before and shortly after the insertion
of an additional ±1/2 defect pair, as seen from ✓

i

(t) for i = 1, . . . , 6 with � = 2. Inset: Close-up
on the rapid annihilation of the additional pair. (b) Defects resume similar trajectories after the
fluctuation, but with di↵erent pairing.

dimensionless elasticity parameter

K̃ =
⌧K

⇠R2

0

�2
= 1 (5.122)

the time scale has to change to

⌧ =
�2⇠R2

0

K
= �2⌧

0

. (5.123)

Alternatively, the value of K̃ could be decreased accordingly, but having a small

parameter in the dynamical equations might lead to numerical instabilities. It is

therefore favourable to adapt the time scale of simulations instead, also for comparison

with previous results. The new activity to elasticity ratio is then ⌫ = �⌫
0

, that is with

increasing shell size active e↵ects dominate over elastic with the factor �. Based on

the analysis of the flow at the defects in Section 5.4.2, the +1/2 defects are advected

by the dominant flow in the direction of their symmetry axis and �1/2 defects only

move due to elastic e↵ects. This should capture their main dynamics very well, as we

found that both the next-lowest order directed flow contribution at a +1/2 defect as

well as the lowest order directed flow at a �1/2 defect are at most ⇠ O(⇢). They are

therefore negligible with respect to the main flow at +1/2 defects, which is ⇠ O(1/⇢),

because here we are interested in the collective dynamics of the defects, rather than

the small-distance behaviour of an annihilating ±1/2 pair.

Simulations with n
pair

additional ±1/2 defect pairs were performed with di↵erent

initial conditions and an additional mechanism for defect annihilation, since defects

of opposite strengths attract each other elastically with a force that diverges when

they come close, see equations (5.69) and (5.70). On a shell of radius R
0

, when two

opposite half-defects are closer than ⇢
0

= 0.1, they coalesce and are removed from the

director. The value of ⇢
0

is estimated from Figure 1 B in Reference [Keber et al., 2014],
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where the radius of the vesicle is R ⇡ 25µm and the size of the defective region, which

is devoid of microtubules, can be approximated as r
c

⇡ 2.5µm. For increasing size

this cut-o↵ is adapted as ⇢ = 0.1/�. In the simulation the annihilation is realised by

setting m
k

= 0 for both. As shown below, starting with n
pair

additional pairs after a

time scale characteristic for a particular � all pairs will have coalesced and only the

four +1/2 defects remain. This mode represents a system with a fluctuation, which

produces transient defect pairs. The defect creation is mimicked by inserting them at

positions chosen randomly from a uniform distribution on the sphere. Configurations

in which at least one pair is closer than 10⇢ are discarded.

First, the situation with n
pair

= 1 is studied. We consider a system in which four

defects undergo tetrahedral-planar oscillations and inject one ±1/2 pair at a random

position. The positions of the two new defects are produced independently from a

uniform distribution. Figure 5.11 (a) shows a representative example for how the

dynamics reacts to this perturbation for � = 2. One of the +1/2 defects annihilates

with the �1/2 on a time scale which is very short compared to the period of oscillation.

After the annihilation event the remaining defects resume the oscillation, but in a

di↵erent pairing. Figure 5.11 (b) illustrates this, since the defect trajectories before

and after the transient defect pair are of a similar shape. Similarly, when all defects

are placed at random positions the annihilation events happen rapidly, leaving the

minimal four-defect state in the oscillating regime. The same is found for more than

one additional pair of half-defects in the system, for which data is shown in Appendix

C. This indicates that the oscillatory state is stable, as long as additional defect pairs

occur as fluctuations and are not produced constantly.

A di↵erent approach is to design metastable dynamic defect arrangements by

inducing defects at specific positions, in which the elastic forces are almost balanced

along a trajectory on which defects move due to active advection. Of course, as

the defect distances are changing during this motion, elastic e↵ects will distort the

motion and eventually lead to coalescence. The time scale for this to happen should

however increase with �. Configurations with metastable vortices could be achieved if

n
pair

is even, because then all +1/2 defects could form pairs and, consequently, active

flow vortices. Their arrangement will depend on their number, but we hypothesize

a symmetric arrangement in which the negative defects cluster at the poles in equal

numbers and the positive defects form a band of vortices along the equator. If n
pair

is

odd, there is inevitably a +1/2 defect that is not in a pair and, moreover, a symmetric

arrangement of �1/2 defects at the poles is not possible.

The simplest many-defect configuration that is metastable is shown in Figure 5.12

(a) and (b), in which there are two additional ±1/2 defect pairs. The six +1/2 defects

are allocated to three flow vortices arranged equidistantly around the equator, with
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Figure 5.12: (a) Orientation field with eight defects, six +1/2 and two �1/2, producing a
symmetric flow vortex arrangement. (b) Corresponding flow structure with six equidistant vortices
on the equator, +1/2 defect trajectories marked in black. (c) Time to first coalescence event for
the eight defect configuration with vortices as shown in (b) and of a random configuration of eight
defects (averaged over 100 initial conditions) over �.

another three vortices rotating in the opposite direction in between them. The three-

fold symmetry of this flow field is guided by the flow singularities at the �1/2 defects,

which have I = �2 and are located at the poles. This configuration is transient and

reduces to the four-defect-state due to coalescence of oppositely charged defects. The

corresponding defect trajectories are shown in Figure C.2 in Appendix C. In Figure

5.12 (c) the time to the first annihilation event for this metastable configuration is

compared to the average time to first annihilation for n
pair

= 2 with random initial

configurations. The annihilation time for the metastable configuration is orders of

magnitude higher than the one for random configurations and increases considerably

with �.

The metastability of such configurations could be aided by an advantageous manip-

ulation of the shell shape, for instance by trapping positive defects in regions of higher

curvature [Selinger et al., 2011]. The shape of the shell may change due to the presence of

the defects themselves, and the radial flows at the active vortices they generate. This

opens an interesting direction of tuning specific many-defect states before the onset of

active turbulence by exploiting the topologically required singularities in both flow and

director. For instance, in a polar shell a metastable configuration could be composed

of four +1 defects distributed around the equator and two -1 defects, one at each pole.

5.8. Shell deformations

In analogy with equation (3.7) for a planar film, we can write a kinematic boundary

condition for the outer surface of the shell and incorporate the continuity equation

(5.5) to obtain an equation for the time evolution of a deviation �R(t) from the

121



5.8. Shell deformations

spherical shape of the shell

@
t

(R+ h
0

+ �R(t)) = �r
s

· ū?, (5.124)

where r
s

is the in-plane divergence and ū? the thickness-averaged in-plane flow

ū?(✓,�) =

R+h0ˆ

R

dru?(r, ✓,�) ⇠ h
0

U
0

. (5.125)

From this the scaling for shape deformation follows

@
t

(�R(t)) ⇠ h
0

U
0

R
. (5.126)

Thus speed of deformations is a factor "⇢ smaller than the speed of a +1/2 defect,

see (5.89), and a factor " smaller than the speed of a +1 defect, see (5.90). Thus,

the shell deforms much more slowly than the defects move and can be neglected to

first approximation, which is what we have done in the preceding Sections on defect

dynamics. In analogy to the scalings derived in Reference [Joanny and Ramaswamy, 2012],

we can fix the volume of the spherical shell, V
0

= 4⇡R2h
0

, which leads to

@
t

(�R(t)) ⇠ V
0

h2
0

�
0

µR4

=
"V

0

�
0

R2µ
. (5.127)

In the case of four half-defects the flow at the defects is tangential, so now

deformations are expected around the defects in this case. Deformations should occur

at the centres of the two vortices, which form in between the defects, due to the sink-

or source-like nature of the flow. These will be small, according to (5.126). On the

other hand, in the case of +1 defects the strongest deformations can be expected to

be at the locations of the defects themselves, which would lead locally to a di↵erent

scaling

@
t

(�R(t)) ⇠ "

⇢
U
0

. (5.128)

These deformations could significantly alter the motion of +1 defects, as we expect

that "/⇢ ⇠ O(1). However, numerical simulations would be better suited to explore

this coupling and an interesting direction for further work.
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5.9. Discussion

5.9.1. Active flow in a spherical shell

In a shell of active liquid crystal the flow has to have in general a total winding of +2.

Since the, likewise necessary, defects in the director generate flow singularities that are

determined entirely by their topological strength, these are generally not su�cient to

satisfy the topological constraint. Only in the case of two +1 defects in an antipodal

configuration are the defect-centred flow vortices the only ones present. During the

dynamics of four half-defects two counterrotating flow vortices typically dominate the

flow and drive the motion of defects on their circular orbits. It appears that two +1/2

defects can generate one stable active flow vortex, if the underlying director has an

appropriate spiral-like structure, and this can be utilised to design metastable states

with larger numbers of half-integer defects and a more complex flow structure, see

Figure 5.12.

Simple stagnation points with I = �1, although they cannot be generated by

defects, seem to occur in the shell in regions with nearly uniform directors, see

examples in Figure 5.4 (e) and (f). For the extensile material considered in the Figure

the stagnation point is oriented with its extensional flow locally along the director.

This interesting correspondence of almost uniform, non-singular director regions with

extensional flows might explain why simple stagnation points do not occur at defects.

In the case of two +1 defects we have only considered the tangential flow compo-

nent so far. However, like in a flat drop on a surface, the sink- or source-like nature of

the active flow at these defects should lead to local deformations of the shell interface

of the types found in Section 4.4. Specifically, in the extensile case the shell should

become thicker at asters and thinner at vortices. In the case of two vortices there

could be a dewetting of the spherical active film at both defects, similar to what we

described in Section 4.4.2, leaving behind a ring of active liquid crystal. The ring of

MT-bundles that forms in small vesicles instead of four half-defects [Keber et al., 2014]

could be an experimental realisation of such a dewetting active nematic layer. We

also expect the formation of cusps in the case of spirals, as obtained in Section 4.4.3

for the droplet on a surface.

5.9.2. Active attraction of +1/2 defects

Our model predicts numerically that +1/2 defects form rotating pairs and that the

defect separation in each pair decreases with the parameter ⌫, roughly linearly as

can be seen in Figure 5.5 (a). This active attraction has not been described in the

experimental work on active nematic vesicles [Keber et al., 2014], perhaps because the
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parameter range realised so far has not allowed to observe it. Since changing the

activity severely is di�cult in these experiments, we propose to vary the size of the

vesicle in order to probe higher values of ⌫ and test the predicted dynamics, such as

in Figure 5.7. Vesicles in the range 20 - 100 µm in diameter should show regular,

non-turbulent dynamics, but so far only vesicles of up to 60 µm in diameter were

reported and, moreover, no size-dependence of the dynamics was given [Keber et al.,

2014].

As opposed to Reference [Keber et al., 2014], in our model the speed of +1/2 defects

does not depend on the radius, see equation (5.89). It is plausible that since the

self-propulsion is generated locally, the film thickness should influence it, whereas the

system size should be irrelevant. This speed also changes the prediction for the radius-

dependence of the frequency of defect oscillations, see equation (5.118), which could

also be tested experimentally by changing the size of active vesicles.

The dynamical regime starts at a critical parameter ⌫⇤ ⇠ O(1), below which the

defects settle into distorted tetrahedra. From (5.99) we have ⌫ = ⌧/(⇢T ), where ⇢T

is the time scale of the self-propulsion of the +1/2 defect. We can conclude that at

the transition this active time scale becomes comparable to the time scale of elastic

relaxation, which is a plausible criterion for the switch from an elasticity-dominated

to an active, dynamical regime. Another new result from the thin film approach is

that this transition can be induced by increasing the film thickness or the shell radius,

see equation (5.95), not just by increasing the activity.

In two-dimensional active nematics in the active turbulent phase, with a large

number of pairs of ±1/2 defects, the defect separation is known to be related to

the intrinsic length scale l
a

[Giomi, 2015], see equation (2.17). It might be possible to

establish an analytical relationship between the positive half-defect separation in our

model and l
a

, since ⌫ / 1/l2
a

. For instance, one could try to rewrite the system of

equations (5.101)- (5.102) in terms of the six defect distances, rather than the eight

coordinates. This could be further simplified by assuming some symmetries in the

defect trajectories, so that perhaps the system could be solved for the steady state in

this low-parameter subspace.

5.9.3. Interaction of +1 defects

We compare our findings regarding the rotation and translation of two +1 defects

in the spherical shell with the only other work that considers the interaction of two

unit strength active defects. Elgeti et al. [2011] find in simulations that contractile

asters settle at a finite distance from each other, which increases as the activity is

reduced. Further, extensile spirals are found to rotate around each other at a fixed

distance [Elgeti et al., 2011], which is equivalent to our result, see Figure 5.9. In our
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model, extensile vortices attract each other, and extensile asters repel. Considering

the duality between extensile and contractile activity, the phenomenology is thus the

same as in the numerical work of Elgeti et al. [2011], although in their model it is not

clear what causes the defects to overcome elastic repulsion, since it is strictly two-

dimensional and no sinks or sources are allowed. In a di↵erent, but related theoretical

work it is found that two co-rotating active rotors are spiralling towards each other

if they are pullers, that is if each of them produces radially inward flow locally, and

spiralling outwards if they are pushers [Fily et al., 2012]. Although the problem setting is

di↵erent, in particular there is three-dimensional passive fluid everywhere in between

the rotors, the similarity is nonetheless encouraging. Note, that our description of

two vortices as counter-rotating refers to the situation when they are positioned on

opposite sides of the sphere. When the same vortices were located close to each other

on the same side of the sphere they would be called co-rotating.

5.9.4. Contractile activity

Our results can be extended to contractile active fluids by changing the sign of the

activity �
0

. The reversed sign of the flow exchanges the role of splay-like and bend-like

distortions in the orientation. As the sign of ⌫ is also reversed, the direction of motion

of positive half-integer defects is reversed, but the tetrahedral-planar oscillations and

the formation of vortices – with opposite rotation sense – is unchanged. Likewise,

the attraction or repulsion between integer strength defects is reversed, that is in a

contractile system two aster defects in a spherical shell are attracted to each other

due to active flows.

5.9.5. Di↵erence between polar and nematic shells

We predict a di↵erent scaling of the defect dynamics in thin polar shells compared to

nematic shells. This follows from the di↵erent parameter combinations in the defining

parameters (5.99) and (5.100) for half-integer and unit strength defects, respectively.

In polar shells only integer strength defects are present and, notably, the radius of the

shell becomes irrelevant for the type of dynamics that the defects undergo.

The simplest many-defect state for polar shells could be constructed from two

additional ±1 defect pairs on top of two +1 defects. The �1 defects should be situated

at the two poles, guiding the flow into a four-fold symmetric vortex configuration

with eight vortices along the equator, of which four should be centred at +1 defects.

However, because elasticity and activity for unit strength defects have the same scaling

with radius, metastability cannot be achieved by increasing the radius, but for instance

by a large increase in activity.

125



5.9. Discussion

5.9.6. Simulations of many-defect states

Initialising the additional defects on top of four +1/2 defects at independent positions

is an approximation we make, because it is di�cult to generate a director in which the

two opposite defects are close, but are oriented in a way that the positive will move

away from the negative [Giomi et al., 2013]. In the realm of our model, it is possible to

control this precisely in the plane for a single ±1/2 defect pair by manipulating ↵
0

in a way similar to the procedure for two +1 defects (see Section 5.6), where we are

adding a constant that depends on the defect positions. How to adapt this strategy

for a situation with multiple defects on the sphere has to be figured out in the future.

In an attempt to mimic the active turbulent state of a nematic on a sphere the

simulations were modified, such that an annihilated pair was replaced by a new pair

of ±1/2 defects immediately. They were placed at a random position (✓
new

,�
new

±
10⇢/ sin(✓

new

)). The initial separation was necessary for them to not coalesce immedi-

ately. In this mode a constant number of additional defect pairs was sustained. How-

ever, even for very large � the annihilation and creation events happen very quickly

with positive defects moving toward nearby negative defects on almost straight, rather

than chaotic, trajectories. We may conclude that the basic underlying assumption of a

rapidly reorienting director prevents our model from reproducing the correct dynamics

in the active turbulent regime.
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CHAPTER 6

Active nematic shell as a squirmer

One of the central questions that drives research on active fluid droplets is whether and

how they swim through a passive medium [Hawkins et al., 2011; Tjhung et al., 2012; Whitfield

et al., 2014; Giomi and DeSimone, 2014; Whitfield and Hawkins, 2016]. The active nematic shell

studied in Chapter 5 may also be regarded as a type of active droplet that generates

a slip velocity on its surface, with which it could both propel itself as a whole and

produce specific three-dimensional flows in its surrounding. The new feature is that

such propulsion would be driven by static or dynamic arrangements of topological

defects in the director and thus would present a di↵erent route for generating and

controlling an artificial swimmer.

In this chapter we present a first analysis of an active nematic shell as a swimmer,

using specific defect configurations. The swimming and rotation of a spherical shell

can be obtained from integrals of the active flow on its surface. The integrals are solved

analytically for the situation of one +2 defect and of two +1 defects with arbitrary

positions by reducing them to complex contour integrals using the stereographic

projection. For four +1/2 defects they are evaluated numerically for the positions

they move through during their periodic dynamics. Finally, we consider a di↵erent,

triangular defect arrangement, for which the steady state defect positions are obtained

in simulations akin to those of Chapter 5. The swimming and rotational velocities of

such a shell are calculated numerically.

6.1. Squirmer model for a microscopic swimmer

The swimming of organisms at the microscale is dominated by viscous forces, hence

the hydrodynamics of the flow field u and the pressure p of the fluid surrounding the

swimmer is governed by the Stokes equation, �rp + µr2

u = 0, with appropriate

boundary conditions, in particular on the surface of the swimmer [Lauga and Powers,

2009]. The linearity and time-independence of this equation poses constraints on the

mechanisms of swimming that exist at these length scales [Lauga, 2011]. Biological
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swimmers often move by periodic body deformations, which have to be non-reciprocal

in time [Purcell, 1977]. Another strategy that is exploited by microorganisms with a

fixed spherical or ellipsoidal shape, such as Volvox or Paramecium, is to generate a

fluid flow on the surface by thousands of cilia or flagella that coat the microorganisms

and move synchronously [Pak and Lauga, 2014]. A similar mechanism is employed by

artificial chemical swimmers, such as emulsion droplets that swim due to Marangoni

flows on their surface [Schmitt and Stark, 2016]. This type of propulsion is well captured

by the squirmer model, which was first developed by Lighthill and Blake [Lighthill, 1952;

Blake, 1971] and describes a model swimmer with a given slip velocity on the surface,

from which its swimming speed and the three-dimensional flow it generates in the

external fluid is calculated. Here, we use this model to characterise the swimming of

an active nematic shell.

A direct relationship between the surface flow and the swimming speed is available

for a sphere [Stone and Samuel, 1996]. The translational and rotational velocities of the

spherical swimmer, U(t) and ⌦(t), are obtained as surface integrals of the slip velocity

[Stone and Samuel, 1996]

U(t) = � 1

4⇡R2

‹

M

u? dS (6.1)

⌦(t) = � 3

8⇡R3

‹

M

ê

r

⇥ u? dS , (6.2)

whereM is the surface of the sphere of radius R. We will use the active flow fields from

Chapter 5 as the surface velocity u?, see equation (5.50). Writing out the Cartesian

components of (6.1) and (6.2) we get

U(t) = � 1

4⇡

ˆ
2⇡

0

ˆ
⇡

0

sin ✓
�

(cos ✓ cos�u
✓

� sin�u
�

)x̂

+(cos ✓ sin�u
✓

+ cos�u
�

)ŷ � sin ✓ u
✓

ẑ

 

d✓ d� (6.3)

and

⌦(t) = � 3

8⇡R

ˆ
2⇡

0

ˆ
⇡

0

sin ✓
��(sin�u

✓

+ cos ✓ cos�u
�

)x̂

+(cos�u
✓

� cos ✓ sin�u
�

)ŷ + sin ✓ u
�

ẑ

 

d✓ d� . (6.4)

In order to make use of the complexified form of the active flow (5.51), we combine
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6.1. Squirmer model for a microscopic swimmer

the translational and rotational velocities into a vector with complex components

I(t) := �4⇡U(t) + i
8⇡R

3
⌦(t)

= U
0

ˆ
2⇡

0

ˆ
⇡

0

sin ✓(ũ
✓

+ iũ
�

)
�

(cos ✓ cos�+ i sin�)x̂

+ (cos ✓ sin�� i cos�)ŷ � sin ✓ ẑ
 

d✓ d� , (6.5)

from which one recovers the two velocities as

U(t) = � 1

4⇡
Re{I(t)} (6.6)

⌦(t) =
3

8⇡R
Im{I(t)} . (6.7)

To simplify the calculation further we introduce

I
1

:= I
x

+ iI
y

= U
0

ˆ
2⇡

0

d�

ˆ
2⇡

0

d✓ sin ✓(cos ✓ + 1)ei�(ũ
✓

+ iũ
�

) (6.8)

I
2

:= I
x

� iI
y

= U
0

ˆ
2⇡

0

d�

ˆ
2⇡

0

d✓ sin ✓(cos ✓ � 1)e�i�(ũ
✓

+ iũ
�

) , (6.9)

which can be written entirely in terms of (r,�) using the relations summarised in

Appendix B.2. Taking all expressions together, we want to calculate

I
1

= U
0

ˆ 1

0

dr
8R2r3

(r2 +R2)3

ˆ
2⇡

0

d� ei�u(r,�) (6.10)

I
2

= �U
0

ˆ 1

0

dr
8R4r

(r2 +R2)3

ˆ
2⇡

0

d� e�i�u(r,�) (6.11)

I
z

= �U
0

ˆ 1

0

dr
8R3r2

(r2 +R2)3

ˆ
2⇡

0

d�u(r,�) (6.12)

for the di↵erent defect configurations considered in Chapter 5. Through I
x

= (I
1

+

I
2

)/2 and I
y

= (I
1

� I
2

)/2i the translational and rotational velocities of the shell can

be recovered.

Having non-zero in-plane divergence is a requirement for swimming [Stone and

Samuel, 1996; Schmitt and Stark, 2016]. Suppose the surface flow is divergence-free, r? ·
u? = 0. There is then a vector potential which only has a radial component, A = Aê

r

,

such that the slip velocity can be written as u? = r⇥A. Using Stokes’ theorem, it

can be shown that the integral (6.1) vanishes for such a flow, see Appendix D.1. In

our model the surface flow is in general not in-plane divergence-free, since we impose

three-dimensional incompressibility. We therefore expect to find defect configurations

with non-zero self-propulsion and rotation of active nematic shells.

129



6.2. One, two and four defect configurations

6.2. One, two and four defect configurations

6.2.1. One +2 defect

Although this type of defect is usually unfavoured energetically, a shell with one +2

defect is an obvious candidate for a swimming object due to the broken symmetry

of this configuration. We therefore first consider a director with one +2 defect at

z
1

= r
1

ei�1 . From equation (5.56) the active flow for this configuration is

u = � �̃0
2
e�i2↵0

✓

re�i� � r
1

e�i�1

rei� � r
1

ei�1

◆

2

⇢

r

R
ei2� � r2 +R2

R

ei�

re�i� � r
1

e�i�1

�

(6.13)

To rewrite the term e�i2↵(z,z̄), we made use of the identity

ei2 arg(z) =
z

z̄
. (6.14)

Without loss of generality we can move the position of the defect to the origin of the

complex plane, z
1

= 0. Then the complexified flow on the surface of the shell takes

the simple form

u(r,�) =
�̃
0

2

R

r
e�i2↵0e�i2� , (6.15)

so the integrals (6.10)-(6.12) vanish, because in all three of them the integrand is

winding in �. Thus, one +2 defect does not generate propulsion or rotation of a

spherical nematic shell. Note, that (6.15) has the projection to the plane u
x

+ iu
y

/
ei�ū / ei3�, which has the correct winding of I = 3 at the origin.

6.2.2. Two +1 defects

Consider a director with two +1 defects, as in Section 5.6. Again, one defect is placed

at the origin, so the defects have the positions z
1

= 0 and z
2

. In this case, the slip

velocity in the complex form (5.56) reads

u(z, z̄) = � �̃0

2
e�i2↵0

z̄(z̄ � z̄2)

z(z � z2)

⇢

rei2�

R
� rei�

2

✓

R

r
+

r

R

◆✓

1

z̄
+

1

z̄ � z̄2

◆�

(6.16)

= � �̃0

2
e�i2↵0

⇢

1

2

✓

r

R
� R

r

◆

re�i� � r2e
�i�2

rei� � r2e
i�2

+
re�i�

2

✓

R

r
+

r

R

◆

1

rei� � r2e
i�2

�

(6.17)

This function is not holomorphic in z, so to evaluate the �-integral in (6.10)-(6.12)

with the help of the residue theorem we use a standard transformation to a new
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complex variable [Alexander and Ravnik, 2012]

w = ei(���2) , (6.18)

for which w̄ = 1/w. In this new variable the integrand becomes holomorphic

u(w) = � �̃0

2
e�i2(↵0+�2 )

1

w(w � r2/r)

⇢

1

2

✓

r

R
� R

r

◆✓

1� r2
r
w

◆

� 1

2

✓

R

r
+

r

R

◆�

.

(6.19)

The integrals then become complex contour integrals over the unit circle � using the

transformation ˆ
2⇡

0

d� =
1

i

ˆ
�

dw

w
. (6.20)

With u(w) the �-integrals in equations (6.10)-(6.12) become

I
�

= e�2i(↵0+�2)

ˆ
�

dw

w � r
2

/r

✓

r2 �R2

2Rr

⇣

1� r
2

r
w
⌘

� r2 +R2

2Rr

◆

⇥

8

>

>

>

<

>

>

>

:

e

i�2

w

for I
1

,

e

�i�2

w

3 for I
2

,

1

w

2 for I
z

.

(6.21)

The integrand has a simple pole at w
1

= r
2

/r if r
2

< r and a first, third, or second

order pole at w
2

= 0, respectively. The corresponding residues Res(w
1

) and Res(w
2

)

are given in Appendix D.2. By the residue theorem,

I
�

= e�2i(↵0+�2)2⇡i
�

H(r � r
2

)Res(w
1

) + Res(w
2

)
�

, (6.22)

where H(r � r
2

) is the Heaviside step function (see Appendix D.2). Evaluating the

r-integrals in (6.10)-(6.12) with this result yields zero in all three cases. For example,

for the first integral I
1

the calculation is shown here:

I
1

= U
0

ˆ 1

0

dr
8R2r3

(r2 +R2)3
I
�

(6.23)

/
ˆ 1

0

dr
8R2r3

(r2 +R2)3
R

r
2

+

ˆ 1

r2

dr
8R2r3

(r2 +R2)3

�

R2r2
2

� r2
�

2R2 + r2
2

��

2r2Rr
2

(6.24)
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� 2R3

�

2r2 +R2

�
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(r2 +R2)2
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2R
�
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�

2R2 + r2
2

�

+R4

�
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(r2 +R2)2

�1
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(6.25)

=
2R

r
2

+

✓

�2R

r
2

◆

= 0. (6.26)

Therefore, two +1 defects in the active nematic shell do not lead to propulsion

or rotation either, irrespective of their position. This was to be expected as the flow

field for two unit strength defects of the same geometric type has a 2-fold rotation
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(a) (b) (c)

Figure 6.1: (a) Schematic view of the isosceles triangle of one +1 defect and two +1/2 defects in
a trivalent nematic shell. (b) Nematic director in a trivalent shell with ↵0 = ⇡/4, which generates
a perfect spiral defect at one pole. (c) Active flow from equation (5.50) corresponding to the
director in (b), consisting of four vortices and two simple stagnation points.

symmetry, visible for instance in Figure 5.4 (d,e) and Figure 5.9 (c). The axis of

rotation is perpendicular to the great circle passing through the defects at the midpoint

between the defects. This symmetry reflects the counterrotating nature of the flow,

so the integral over the whole surface vanishes. A promising direction to break this

symmetry and render the shell motile would thus be a manipulation of the local defect

geometries. This would require the phase ↵
0

to vary over the shell.

6.2.3. Four +1/2 defects

For four half-defects in the shell we find numerically a similar result as for the

previous two cases. Calculating the integral I(t) along the trajectories found for

di↵erent values of ⌫ leads to velocities that are numerical zeros for all points in time.

Although not obvious from the defect trajectories themselves, the flows that the defects

generate when they move on these trajectories are distorted versions of the symmetric

counterrotating vortices found in the limit of two spiral defects, so this result is not

surprising. It is to be expected, though, that in an experimental realisation the vortices

and trajectories will be distorted by noise, which should result in small erratic motions

of the shell. The study of this, possibly biased, di↵usion is deferred to further work.

6.3. Trivalent nematic shells

6.3.1. Three defects in isosceles triangle

In passive nematic shells apart from two +1 defects and four +1/2 defects there is

a third configuration of defects that is found in experiments [Koning et al., 2016] and

simulations: one +1 defect and two +1/2 defects, arranged on a great circle in an

isosceles triangle as indicated in Figure 6.1 (a). Given these defect strengths, it can
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Figure 6.2: (a) Time evolution of the angular distance �12, between the +1 and one of the +1/2
defects, for di↵erent values of the phase ↵̃0 for ⌫(1) = 5. (b) Final angle �fi

12 of the new isosceles
triangle that the active system settles into for three values of activity and di↵erent ↵̃0. Connecting
lines are a guide to the eye.

be shown that the optimal configuration has a sharp angle of �
23

= 2arccos 2

3

⇡ 96.4�

at the +1 defect and the angles �
12

= �
13

= ⇡�arccos 2

3

⇡ 131.8� at the +1/2 defects

[Koning et al., 2016]. In a passive nematic it is metastable due to the high energy barriers

to the two and four defect states. The total elastic energy of this configuration is given

in equation (5.76).

A trivalent active nematic shell breaks the symmetry along the axis of the triangle,

therefore it is a good candidate to generate net motion and rotation along this axis

due to the active flows it generates.

6.3.2. Active flows and defect motion

In general, the defect positions change due to the active flows they generate. The

equilibrium isosceles triangle is stable under active flows only for ↵
0

= ⇡/4. For this

choice the +1 defect is a perfect spiral and the velocity of the two half-defects is

purely azimuthal, as shown in Figures 6.1 (b) and (c). The triangle is thus in constant

rotation, but the angles do not change. The two half-defects again create a vortex,

which is counterrotating compared to the flow at the +1 defect, but the symmetry is

broken and there are two additional pairs of ±1 singularities in between those.

We study the deformation of the equilibrium triangle in an active shell in simula-

tions like in Section 5.4. In the simulations the active advection is obtained from the

integral (5.80) for all three defects and both ⌫(1) and ⇢ are required as parameters,

since this is a combination of defects with di↵erent active velocity scalings. We choose

⇢ = 0.1. The motion of the +1 defect, if any, is expected to be slow compared to the

+1/2 defects, but it is included for completeness.

First, we note that in the absence of activity, ⌫(1) = 0, the three defects relax

into the isosceles triangle from random initial configurations. Therefore, with nonzero

activity they are initialised in a specific triangular configuration chosen such that no
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Figure 6.3: The x-component of the (a) translational and (b) angular velocity of a trivalent active
nematic shell for di↵erent angles �12 and phases ↵̃0. Plots are obtained by numerically evaluating
equations (6.3) and (6.4). The active flow scale U0 was given in equation (5.88).

defects are at the poles of the coordinate system. We place the defects on the equator,

with the positions

✓(0)
1

= ✓(0)
2

= ✓(0)
3

= ⇡/2, �(0)
1

= 0, �(0)
2

= �
12

, �(0)
3

= �
12

+ �
23

. (6.27)

Like in the case of two +1 defects, we want to gauge ↵
0

such that the geometric

type of the +1 defect does not change when the defects move, in order to make the

e↵ect of ↵
0

unambiguous. In the setup of Section 5.6, that is with ↵
0

= c
2

+ ↵̃
0

, this

condition can be formulated as

s = ↵(s) = c
2

+ s+
1

2
arg (z

1

� z
2

) +
1

2
arg (z

1

� z
3

) . (6.28)

So with c
2

= �(arg(z
1

� z
2

) + arg(z
1

� z
3

))/2 the geometry of the director around

the +1 defect is a perfect aster for ↵̃
0

= 0 and the amount of bend increases with

↵̃
0

2 (0,⇡/2].

When activity is turned on, ⌫ > 0, the +1/2 defects move out of the initial triangle,

if ↵̃
0

6= ⇡/4, and settle into a new isosceles triangle. No motion of the +1 defect occurs.

In Figure 6.2 (a) the time evolution of the triangle is shown for di↵erent values of ↵̃
0

.

For ↵̃
0

< ⇡/4, that is if the +1 defect is an aster-like spiral, the two +1/2 defects

move further apart. In the other case, they move closer together. In Figure 6.2 (b) the

final angle �fi
12

, that characterises the new isosceles triangle, is shown. Interestingly,

the value of the active parameter ⌫(1) does not seem to have a substantial e↵ect on

the final state of the defects, but most important is the phase. With higher activity,

however, the final angle is approached more quickly.
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6.3.3. Swimming and rotation

The components of (6.3) and (6.4) are evaluated numerically for isosceles triangles

with di↵erent opening angles. The integrals are taken over the spherical surface with

circular cut-outs with radius 0.01 around each defect, but the results were checked

to be independent of this radius. As expected, for the particular orientation of the

triangle chosen in Section 6.3.2 the x-component of both the translational and the

angular velocities is nonzero in general, which are shown in Figure 6.3. The other two

components are negligible for this defect configuration, see Appendix D.3. Consistent

with the results of Section 6.2, both U
x

and ⌦
x

vanish in the limits �
12

= 0 and

�
12

= ⇡. These limits correspond to one +2 defect and two antipodal +1 defects,

respectively.

For any value of the phase, U
x

has maximal magnitude if the two half-defects

are half-way between the +1 defect and the other pole, �
12

= ⇡/2. For any defect

position, the magnitude is maximised when ↵̃
0

= 0 or ↵̃
0

= ⇡/2, which corresponds

to the +1 defect being an aster or a vortex, respectively. The magnitude decreases

as ↵̃
0

approaches ⇡/4, in which case the shell does not move any more. The shell

moves in direction of the +1 defect if ⇡/4 < ↵̃
0

< ⇡/2 and in the opposite direction if

0 < ↵̃
0

< ⇡/4.

In general the shell also rotates about the axis given by its direction of translation.

The rotation is anticlockwise with respect to the direction of motion for 0 < ↵̃
0

< ⇡/4

and clockwise for ⇡/4 < ↵̃
0

< ⇡/2. It is maximised when the shell is not moving,

↵̃
0

= ⇡/4, and in addition when the two half-defects are halfway between the poles.

6.4. Discussion

We have investigated analytically and numerically the swimming behaviour of the

active nematic shells considered in Chapter 5 and a trivalent shell, assuming a spherical

outer surface. The former turn out to be stationary and not rotating. In particular,

we find that polar active shells in the ground state cannot swim. The four half-

defects also leave the shell stagnant while they move on their periodic orbits, not just

over one period but in every instant of time. This was surprising, since four half-

defects at random positions generally lead to small, but non-zero propulsion, which

was estimated by simply adding the three-dimensional direction vectors of the defects

for di↵erent positions [Whitfield, 2016].

Inspired by the work on passive nematic shells [Koning et al., 2016], we have found

one defect configuration that generates both swimming and rotation of the active

shell. The swimming and rotation are along the same axis, therefore leading to

straight trajectories. For very high activity and ↵̃
0

close to ⇡/4 we observed in
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6.4. Discussion

simulations an oscillatory behaviour of the two half-defects, which should be further

investigated. Moreover, it would be interesting to check the dynamics that occurs

for random initial defect positions at nonzero activity, which might perhaps lead to

more complex trajectories. The magnitude of both velocities is rather small compared

with the magnitude of active flows on the surface, for instance ⇠ 10�3U
0

in the

case of translation, see Figure 6.3 (a). Nonetheless, we look forward to experimental

realisations of such trivalent active shells.

A frictional contact of the active fluid in the shell with the external, passive fluid

of viscosity µ
ext

might influence the active dynamics within the shell. To check when

this e↵ect becomes relevant we can estimate the frictional stress �
S

on the shell from

the Stokes drag F
S

= 6⇡µ
ext

RU acting on a spherical swimmer [Batchelor, 1967],

�
S

= F
S

/4⇡R2 =
3

2

U

R
µ
ext

. (6.29)

For the swimming velocity we can assume U ⇠ U
0

⇠ h2
0

�
0

/µR, see equation (5.88).

The back-propagating frictional stress should be negligible if it much smaller than the

active stress, �
S

⇠ µ
ext

h2
0

�
0

/µR ⌧ �
0

, which yields a condition on the viscosity ratio

µ

µ
ext

� "2. (6.30)

Only if the external medium has a large enough viscosity will the active hydrodynamics

in the shell be distorted.

Another mechanism to swim is through deformations of the shell due to radial

flows at the interface [Vlahovska, 2016]. In an alternative calculation one would take the

radial component of the active flow and relate the small deformations resulting from it

to the swimming velocity [Vlahovska, 2016]. It is reasonable to assume that this approach

for the four half-defects would lead to similar, if not identical, results compared with

the squirmer approach, where it is also e↵ectively the non-divergence-free part of the

flow that contributes to the propulsion velocity. On the other hand, it might lead to

propulsion for non-spherical shells with two +1 defects in an asymmetric configuration

due to the additional symmetry breaking in the shape. For instance, with two vortex-

like spiral defects one might expect the formation of two cusped bumps, locally similar

to the shapes of flat droplets in Section 4.4.3. After the equilibration of the shape the

residual active flows should lead to a rotation of these bumps around an axis, which

might lead to rotary motion of the shell as a whole.
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CHAPTER 7

Discussion and conclusion

7.1. Active thin films

In this work we have modelled a film of active liquid crystal, in which the director

takes a general form with a collection of topological defects. The local active flow at

a defect not only leads to rotation and self-propulsion for specific defects, but also to

active advection of the other defects in the system and to deformations of the film.

These deformations were studied for a droplet of finite size in Chapter 4, where we

found that +1 defects can severely deform the film in their vicinity leading to dips

or holes or to cusps, depending on the geometric type of the defect. Similar results

should also hold locally in an extended film. Generally, in a polar active film arrays

of ±1 defects may be expected, since active defects occur spontaneously [Nedelec et al.,

1997], and our results for a single defect may be generalisable to an active dewetting of

such films. An important next step would be a numerical investigation of the shape

evolution equations for an active film with defects, since more quantitative results are

di�cult to achieve with analytical methods due to the strong non-linearities. Another

interesting geometry to consider in this context is an active film coating a cylinder,

which might have applications for bacterial biofilms in pipes.

7.2. Motile drops on surfaces

We have given an analytic description of dynamic steady state motion of an active

drop on a planar substrate. The exact expression for the instantaneous active flow in

the drop leads to the identification of two key requirements for self-propulsion. These

are an asymmetrically splayed or bent orientation field, for instance induced by a

topological defect in the interior of the drop, and su�cient surface friction provided

by the substrate for the drop to push itself forward. The active flows in the drop are

primarily driven by horizontal variations in the orientation and the coupling to the

shape contributes mainly at the contact line, where it can generate flows that work
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7.3. Active fluids in curved geometries

against drop propulsion. A motile drop will become stagnant, treadmilling on the

spot, when the surface friction drops below a certain value.

In the case of a contractile droplet with splay, our model also suggests a possible

scenario for the bulk of a polarised and motile cell extract of actomyosin [Verkhovsky

et al., 1999], where the e↵ective friction is mediated by focal adhesions that attach the

actomyosin gel to the substrate. For instance in Figure 4.6 (a) the bulk of active fluid

flows in direction of the splay, away from the defect, therefore such a cell extract would

move to the right. The back-slip of the drop at the substrate could be accounted for

by a reduced number of focal adhesions. This flow field is also in agreement with the

forward flow of cytosol observed experimentally in a moving cell viewed from above

[Keren et al., 2009] and with with numerical results for the three-dimensional flow in a

crawling cell [Tjhung et al., 2015].

Shape deformations of active droplets could be studied experimentally on vesicles

filled with an active suspension, where the surface tension can be reduced by applying

hypertonic stress [Keber et al., 2014]. To impose a particular, static orientation of active

filaments the drop could be placed on a micro-patterned substrate [Vignaud et al., 2012],

specifically to induce axisymmetric defect configurations which would allow to observe

the corresponding stationary shapes of the drop. In order to manufacture controllable

crawling active droplets one could also manipulate the director in the droplet into

asymmetric configurations by an underlying patterned material. For instance, the

substrate might be a passive nematic controlled by a magnetic field [Guillamat et al.,

2016a].

This model could be extended to allow for di↵erent anchoring on the two surfaces

of the drop or film. For instance, recent work on active nematic films found that

homeotropic anchoring at the substrate and “active” anchoring at the free surface,

which prefers tangential anchoring in the extensile case, leads to spontaneous flows as

well as irregular undulations and break up of the free surface [Blow et al., 2017]. Such

conditions would also more closely resemble the situation studied for passive nematic

drops and films, in which cusps occur at the surface [De Gennes and de Gennes, 1970].

7.3. Active fluids in curved geometries

We presented an active thin film model for a spherical shell, which has elucidated for

the first time the structure of active flows in this geometry. The relationship between

an active defect and its flow singularity derived for a planar film also holds locally

in the shell. However, the global flow structure is constrained by the topological

requirement of a total winding of +2 in the flow. This typically leads the formation

of two counterrotating flow vortices, one in each hemisphere, paralleling the vortex
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formation seen in other types of confinement [Woodhouse and Goldstein, 2012; Wioland et al.,

2013; Sknepnek and Henkes, 2015]. This flow structure has important implications for the

motion of defects and for the swimming properties of the shell.

Tetrahedral to planar oscillations of four +1/2 defects are obtained in our model

and are attributed to the advection of defects in pairs by the two counterrotating

vortices. As the activity is increased the two vortices become more pronounced

and the pair of +1/2 defects within each are pulled closer together in an e↵ective

attraction of like-charge defects. These oscillations appear at a finite threshold of the

activity, below which the defects form static configurations of distorted tetrahedra.

Linear stability analysis captures the mode of deformation and the threshold for defect

motion. The oscillations of four half-defects are found to be stable against additional

half-defect pairs created randomly in larger shells. If the defects are instead induced

at specific positions, it is possible to generate more complex, metastable flow vortex

configurations.

The dynamics of polar configurations with only integer strength defects is similar

and we find attraction of pairs of aster-like +1 defects in extensile active nematic

shells, but repulsion for vortex-like defects. The speed of defects in the polar case

is shown to have di↵erent scaling than for nematic shells, in particular the type of

motion does not depend on the radius in the former case whereas it does in the latter.

This fundamental di↵erence in the dynamics of polar shells compared to nematic

contributes to the classification of active phenomena according to their symmetry and

should hold for other topologies in the same way.

Our work establishes the formation of vortices under confinement, see Section

2.5.2, as a generic feature also for ALCs on spherical surfaces. It would be interesting

to extend to other topologies, for instance tori with additional handles. Similarly to

the passive case [Jesenek et al., 2015] one can expect metastable states with multiple

±1/2 defect pairs and a non-trivial dynamics of those defects due to active flows. The

toroidal topology is particularly appealing, because it is still relatively simple and

therefore might be analytically tractable. Moreover, the MT-based active nematic

has very recently been realised in bulk toroidal droplets for the first time [Wu et al.,

2017], so more experimental data on this type of confinement should be available soon.

7.4. Active nematic shells as artificial swimmers

It seems that the problem of self-propulsion for active nematic shells is not a straight-

forward one, at least in the absence of hydrodynamic interactions with boundaries or

other shells. In particular, the slip velocity has to be su�ciently asymmetric, which is

not in general fulfilled by nematic directors with regular defect arrangements. How-
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7.5. Elastic anisotropy

ever, objects which are immobile on their own can swim collectively by hydrodynamic

interactions with each other [Alexander et al., 2009]. For instance, one observation in

the experiments done by Sanchez et al. [2013] was a roughly oscillatory motion of two

active nematic droplets when in close proximity.

Another promising direction is the calculation of the full, three-dimensional flow

field that an active shell generates in the external passive fluid. For the immobile shells,

which have two counterrotating vortices, one can expect that the three-dimensional

flow has nematic symmetry and is extensile or contractile along the axis of the vortices,

depending on the geometric phase of the director. A collection of such shells should

then display the same collective hydrodynamic behaviour like a suspension of extensile

or contractile shakers, but on considerably larger length scales than the suspension of

filaments in the active layer.

Conversely, by reversing the boundary conditions, with a shear-free interface on

the inside of the shell, one would be able to find the three-dimensional flows that an

active layer would drive in the interior of the drop. This would perhaps shed light on

the generation of cytoplasmic flows in cells and could also be extended to the advection

of a passive object in this flow. The latter could represent as a simple model for a

cell nucleus set in motion by cytoplasmic flows, which is a problem of current interest

[Kumar et al., 2014; Fruleux and Hawkins, 2016].

7.5. Elastic anisotropy

We have taken a one elastic constant approximation as a basic assumption, but in

systems of elongated filaments like those of the MT-based active nematics one can

expect anisotropy. In particular, long flexible nematogens are much more compliant

to bend distortions than to splay, which is clearly visible in the dynamics of this system

[Sanchez et al., 2013]. In fact, it is known that the splay constant diverges in the limit of

infinitely long filaments [De Gennes, 1976].

Available results on passive nematics on a sphere with unequal elastic constants

allow to speculate about their e↵ect on the active system. A spherical two-dimensional

nematic with infinite elastic anisotropy has a ground state that is very di↵erent from

the tetrahedral configuration [Shin et al., 2008; Bates, 2008]. Four half-defects are all in

the same plane, sitting at the vertices of a rectangle of variable ratio. This rectangle

can become infinitely thin, such that each two defects form a +1 defect. If K
1

/K
3

!
1, splay is inhibited and the director is pure bend. There is a continuous family

of degenerate ground states, which can be achieved by starting with two antipodal

vortex defects and rotating the director by an arbitrary angle along a great circle

going through the defects. This procedure yields textures with half-defects forming
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spiral-like pairs, similar to the pairs we find in the active nematic at high activity,

see Section 5.5.2. For strong, but finite anisotropy the situation is similar, but the

defects’ positions can deviate slightly from the planar one and they never come close

enough to form +1 defects [Shin et al., 2008; Bates, 2008]. This suggests that a lower bend

constant might favour the formation of tight pairs in the active regime. On the other

hand, since flexible filaments bend more easily, the two transitions for four defects –

from skewed tetrahedron to regular oscillations and then to active turbulence – would

require smaller values of activity, respectively. Situations with unequal constants may

be explored in simulations of active nematics. For instance, a good candidate system

with softer bend might be a collection of flexible active polymers on a sphere [Prathyusha

et al., 2016; Zhang and Chen, 2011], which would complement a hydrodynamic approach.

7.6. Possible applications

Potential microfluidic or biomimetic applications of active droplets might be the

following. The first direction is the transport of substances encapsulated in a self-

propelled nematic droplet. Because all ingredients of MT-based active nematics are

non-toxic1 this material might be used for directed transport of medical substances to

a location in the body where they would be released from the vesicle or emulsion drop.

The second direction relates to microfluidics, since active droplets could be prepared

in a way that they generate a complex flow field around them over a long period of

time, controlled by the ATP concentration inside the droplet. Such flows could be

useful to provide mixing of fluid or even size-dependent filtering of micro-particles

in the droplet’s surrounding. This filtering property was recently discovered in the

complex flow fields generated by starfish larvae to collect food, which are composed

of six di↵erently sized vortices [Gilpin et al., 2016], and could be recreated with artificial

active droplets.

7.7. Conclusion

In summary, we have studied thin films of active liquid crystals in di↵erent geometries,

where topological defects play an important role. Our results emphasise the impor-

tance of defect-driven flows for the large-scale dynamics of these systems, but also show

how global topological constraints can feedback on the local defect motion. Further,

we found interesting new features like strong shape deformations, or even rupture, of

active films and activity-mediated attractive interactions between defects. These rely

on a finite film thickness and cannot be grasped with purely two-dimensional models.

1Apart from PEG, they are part of every human cell.
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7.7. Conclusion

The qualitative predictions we make are in good agreement with numerical simu-

lations [Tjhung et al., 2015] and existing experiments [Keber et al., 2014]. This justifies the

assumptions described in the beginning of this work and encourages to analyse other

geometries with similar minimal models.
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APPENDIX A

Calculations for a thin film

A.1. Active stress tensor divergence in a thin film
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APPENDIX B

Expressions for spherical geometry

B.1. Spherical coordinates

In the spherical coordinates r 2 [0,1), ✓ 2 (0,⇡), and � 2 (0, 2⇡), the local orthonor-

mal basis vectors are
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and their spatial derivatives are

@
r

ê
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ê

�

= 0, @
�

ê
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For a scalar function f(r, ✓,�), a vector f(r, ✓,�), and a tensor T (r, ✓,�):
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B.2. Useful identities for stereographic projection

With the complex variable z = R cot(✓/2)ei� = rei�:

sin ✓ =
2Rr

r2 +R2

cos ✓ =
r2 �R2

r2 +R2

ˆ
⇡

0

d✓ =

ˆ
0

1
dr

✓

� 2R

r2 +R2

◆

=

ˆ 1

0

dr
2R

r2 +R2
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B.3. Parametrisation of circles on a sphere

Consider a sphere of radius R centred at the origin. We want to parametrise a circle

with opening angle �. If the circle is centred on the z-axis, it is described by the

vector r(t) = R(sin � cos t, sin � sin t, cos �), with t 2 [0, 2⇡). To have it centred at the

point (✓
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) we apply first a rotation by ✓
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For an expression for a small circle with � ⌧ 1 given in terms of
�
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to first order

145



B.3. Parametrisation of circles on a sphere

in �, and obtain

✓(t) = ✓
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+ � cos t (B.11)
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Using the stereographic projection described in Section 5.2.1, the image of this

circle in the complex plane is
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Note, that the projected circle is traversed in a direction opposite to that of the original

circle on the sphere.

146



APPENDIX C

Simulations with additional defect pairs

To quantify the annihilation of one additional defect pair we measure the time to

coalescence of the �1/2 defect with any of the +1/2 defects. The measurement

time is chosen as 400⌧
0

, to ensure that no coalescence events are missed for large

�. Histograms of these times for 500 initial conditions are shown in Figure C.1. The

shape of distribution is similar for di↵erent values of � The mean time to coalescence

grows with �, as can be seen in Figure C.1 (d), although most coalescence events still

happen at very small times as the distributions are skewed to the left. Figure C.1 (e)

shows the defect trajectories, which correspond to the largest time to coalescence for

� = 10. This plot elucidates the reason for this long time, since the defects are guided

by the active advection into swirly trajectories along which some of the defects encircle

each other. This motion is reminiscent of the oscillations found for four defects, but

much more erratic and transient. Due to the changing positions of the +1/2 defects

the direction of motion of the �1/2 defect also changes several times, before it finally

coalesces with one of the +1/2 defects. The positive defects are found to move towards

the negative one in a pair, which is an interesting superposition of active advection

and elastic attraction. As can be seen from the histograms such dynamics, however,

is very rare.
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Figure C.1: (a) Histograms of times to coalescence of an additional ±1/2 defect pair on top of
four half-defects, npair = 1, for � = 1, 5, 10. (b) Mean and standard deviation of the time to first
coalescence over �. (c) Defect trajectories for the sample with the longest time for � = 10. The
�1/2 defect is marked with a thick line.

Figure C.2: Trajectories for the coalescence of defect pairs from the metastable configuration
shown in Figure 5.12 in the main text.
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APPENDIX D

Integrals for squirmer calculations

D.1. Integral of divergence-free slip velocity

With the vector potential A = An̂, where n̂ = n
k

ê

k

is the unit surface normal of the

sphere, the in-plane-divergence-free slip velocity can be written as u? = r⇥A. The

integral (6.1) then becomes

U(t) = � 1

4⇡R2

‹

M

r⇥A dS (D.1)

With Einstein summation implied and "
ijk

the Levi-Civita tensor, the i-th component

of the integrand is
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where we used r⇥ n̂ = 0. We can relate the components of integral (D.1) to a new

vector B = B
k

ê

k

with B
k

= A 8k, for which
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(D.3)

from invoking Stokes’ theorem and using the fact that a sphere has no boundary. The

sum of all components thus vanishes, but since this result is independent of the basis

each of them has to vanish identically.
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D.2. Residues for contour integrals in Section 5.1

D.2. Residues for contour integrals in Section 5.1
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The Heaviside step function used in the integrals is defined as

H(x) =

8

<

:

1 if x � 0

0 if x < 0.
(D.6)

D.3. Integrals for trivalent shell
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Figure D.1: The y- and z-components of the (a,b) translational and (c,d) angular velocity of
a trivalent active nematic shell for di↵erent angles �12 and phases ↵̃0. Plots are obtained by
numerically evaluating equations (6.3) and (6.4).
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M. Harasim, B. Wunderlich, O. Peleg, M. Kröger, and A. R. Bausch. Direct Observation of the

Dynamics of Semiflexible Polymers in Shear Flow. Physical Review Letters, 110(10):108302–5,

Mar. 2013. doi: 10.1103/PhysRevLett.110.108302. URL http://link.aps.org/doi/10.1103/

PhysRevLett.110.108302.

Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha. Rheology of active-particle suspensions.

Physical Review Letters, 2004. doi: 10.1103/PhysRevLett.92.118101. URL http://journals.aps.

org/prl/abstract/10.1103/PhysRevLett.92.118101.

R. J. Hawkins, R. Poincloux, O. Bénichou, M. Piel, P. Chavrier, and R. Voituriez. Spontaneous

Contractility-Mediated Cortical Flow Generates Cell Migration in Three-Dimensional Environ-

ments. Biophysical Journal, 101(5):1041–1045, Sept. 2011. doi: 10.1016/j.bpj.2011.07.038. URL

http://dx.doi.org/10.1016/j.bpj.2011.07.038.

G. Henkin, S. J. DeCamp, D. T. N. Chen, T. Sanchez, and Z. Dogic. Tunable dynamics of microtubule-

based active isotropic gels. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 372(2029):20140142–20140142, Oct. 2014. doi: 10.1098/rsta.

2014.0142. URL http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2014.0142.

M. Herant and M. Dembo. Form and Function in Cell Motility: From Fibroblasts to Ker-

atocytes. Biophysical Journal, 98(8):1408–1417, Apr. 2010. doi: 10.1016/j.bpj.2009.12.

4303. URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010BpJ....98.

1408H&link_type=EJOURNAL.

F. Hilitski, A. R. Ward, L. Cajamarca, M. F. Hagan, G. M. Grason, and Z. Dogic. Measuring

Cohesion between Macromolecular Filaments One Pair at a Time: Depletion-Induced Microtubule

Bundling. Physical Review Letters, 114(13):138102, 2015. doi: 10.1103/physrevlett.114.138102.

URL http://link.aps.org/doi/10.1103/PhysRevLett.114.138102.

L. S. Hirst, A. Ossowski, and M. Fraser. Morphology transition in lipid vesicles due to in-plane order

and topological defects. In Proceedings of the National Academy of Sciences, 2013. doi: 10.1073/

pnas.1213994110/-/DCSupplemental. URL http://www.pnas.org/content/110/9/3242.short.

H. Hopf. Di↵erential Geometry in the Large. Lecture Notes in Mathematics. Springer Berlin Heidel-

berg, 1989. ISBN 9783540514978. URL https://books.google.co.uk/books?id=zNnw8NduHL0C.

M. Huber and H. Stark. Tetravalent colloids by nematic wetting. Europhysics Letters, 2004. doi: 10.

1143/JJAP.31.3895. URL http://iopscience.iop.org/article/10.1209/epl/i2004-10316-1/

meta.

156

http://www.pnas.org/lookup/doi/10.1073/pnas.1600339113
http://arxiv.org/abs/1611.06416v1
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=28085294&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=28085294&retmode=ref&cmd=prlinks
http://link.aps.org/doi/10.1103/PhysRevLett.110.108302
http://link.aps.org/doi/10.1103/PhysRevLett.110.108302
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.118101
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.118101
http://dx.doi.org/10.1016/j.bpj.2011.07.038
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2014.0142
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010BpJ....98.1408H&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010BpJ....98.1408H&link_type=EJOURNAL
http://link.aps.org/doi/10.1103/PhysRevLett.114.138102
http://www.pnas.org/content/110/9/3242.short
https://books.google.co.uk/books?id=zNnw8NduHL0C
http://iopscience.iop.org/article/10.1209/epl/i2004-10316-1/meta
http://iopscience.iop.org/article/10.1209/epl/i2004-10316-1/meta


BIBLIOGRAPHY

H. Imura and K. Okano. Interaction between disinclinations in nematic liquid crystals. Physics Letters

A, 1973. URL http://www.sciencedirect.com/science/article/pii/0375960173907299.

D. Jesenek, S. Kralj, R. Rosso, and E. G. Virga. Defect unbinding on a toroidal nematic shell. Soft

Matter, 11(12):2434–2444, Mar. 2015. doi: 10.1039/C4SM02540G. URL http://dx.doi.org/10.

1039/C4SM02540G.

J.-F. Joanny and S. Ramaswamy. A drop of active matter. Journal of Fluid Mechanics, 705:46–57,

Apr. 2012. doi: 10.1017/jfm.2012.131. URL http://www.journals.cambridge.org/abstract_

S0022112012001310.
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