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Abstract

While Jeffreys priors usually are well-defined for the parameters of mixtures

of distributions, they are not available in closed form. Furthermore, they often

are improper priors. Hence, they have never been used to draw inference on the

mixture parameters. This paper studies the implementation and the properties

of Jeffreys priors in several mixture settings and shows that the associated pos-

terior distributions most often are improper. Nevertheless, the Jeffreys prior for

the mixture weights conditionally on the parameters of the mixture components

will be shown to have the property of conservativeness with respect to the num-

ber of components, in case of overfitted mixture and it can be therefore used as

a default priors in this context.

Keywords: Noninformative prior; mixture of distributions; Bayesian analysis;

improper prior

1. Introduction

Bayesian inference in mixtures of distributions has been studied quite exten-

sively in the literature. See, e.g., [20] and [10] for book-long references and [19]
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for one among many surveys. From a Bayesian perspective, one of the several

difficulties with this type of distribution,5

k∑
`=1

p` f`(x|θ`) ,
k∑
`=1

p` = 1 , (1)

is that its ill-defined nature (non-identifiability, multimodality, unbounded like-

lihood, etc.) leads to restrictive prior modelling since most improper priors are

not acceptable. This is due in particular to the feature that a sample from (1)

may contain no subset from one of the k components f(·|θ`) (see. e.g., 38).

Albeit the probability of such an event is decreasing quickly to zero as the sam-10

ple size grows, it nonetheless prevents the use of independent improper priors,

unless such events are prohibited [7]. Similarly, the exchangeable nature of the

components often induces both multimodality in the posterior distribution and

convergence difficulties as exemplified by the label switching phenomenon that is

now quite well-documented [5, 37, 15, 10, 11, 23]. This feature is characterized15

by a lack of symmetry in the outcome of a Monte Carlo Markov chain (MCMC)

algorithm, in that the posterior density is exchangeable in the components of

the mixture but the MCMC sample does not exhibit this symmetry. In addition,

most MCMC samplers do not concentrate around a single mode of the posterior

density, partly exploring several modes, which makes the construction of Bayes20

estimators of the components much harder.

When specifying a prior over the parameters of (1), it is therefore quite del-

icate to produce a manageable and sensible non-informative version and some

have argued against using non-informative priors in this setting (for example,

[20] argues that it is impossible to obtain proper posterior distributions from25

fully noninformative priors), on the basis that mixture models are ill-defined

objects that require informative priors to give a meaning to the notion of a

component of (1). For instance, the distance between two components needs to

be bounded from below to avoid repeating the same component indefinitely. Al-

ternatively, the components all need to be informed by the data, as exemplified30

in [7] who imposed a completion scheme (i.e., a joint model on both parame-
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ters and latent variables) such that all components were allocated at least two

observations, thereby ensuring that the (truncated) posterior was well-defined.

[39] proved ten years later that this truncation led to consistent estimators and

moreover that only this type of priors could produce consistency. While the35

constraint on the allocations is not fully compatible with the i.i.d. representa-

tion of a mixture model, it naturally expresses a modelling requirement that all

components have a meaning in terms of the data, namely that all components

genuinely contributed to generating a part of the data. This translates as a

form of weak prior information on how much one trusts the model and how40

meaningful each component is on its own (by opposition with the possibility

of adding meaningless artificial extra-components with almost zero weights or

almost identical parameters).

While we do not seek Jeffreys priors as the ultimate prior modelling for non-

informative settings, being altogether convinced of the lack of unique reference45

priors [27, 30], we think it is nonetheless worthwhile to study the performances

of those priors in the setting of mixtures in order to determine if indeed they

can provide a version of reference priors and if they are at least well-defined

in such settings. We will show that only in very specific situations the Jeffreys

prior provides reasonable inference.50

In Section 2 we provide a formal characterisation of properness of the pos-

terior distribution for the parameters of a mixture model, in particular with

Gaussian components, when a Jeffreys prior is used for them. In Section 3 we

will analyze the properness of the Jeffreys prior and of the related posterior

distribution: only when the weights of the components (which are defined in a55

compact space) are the only unknown parameters it turns out that the Jeffreys

prior (and so the relative posterior) is proper; on the other hand, when the

other parameters are unknown, the Jeffreys prior will be proved to be improper

and in only one situation it provides a proper posterior distribution. In Sec-

tion 4 we present a way to realize a noninformative analysis of mixture models,60

in particular we propose to use the Jeffreys prior as a default prior in case of

overfitted mixtures and introduce improper priors for at least some parameters.

3



The default proposal of Section 4 will be tested on several simulation studies in

Section 5 and several real examples in Section 6, on both well known datasets

in the mixture literature and a new dataset. Section 7 concludes the paper.65

2. Jeffreys priors for mixture models

We recall that the Jeffreys prior was introduced by [16] as a default prior

based on the Fisher information matrix

πJ(θ) ∝ |I(θ)|1/2 =

∣∣∣∣−E [ ∂2

∂θ∂θT
log g(X; θ)

]∣∣∣∣1/2 , (2)

whenever the later is well-defined; I(·) stands for the expected Fisher informa-

tion matrix and the symbol | · | denotes the determinant. Although the prior is

endowed with some frequentist properties like matching and asymptotic mini-

mal information [27, Chapter 3], it does not constitute the ultimate answer to70

the selection of prior distributions in non-informative settings and there exist

many alternatives such as reference priors [2], maximum entropy priors [26],

matching priors [12], and other proposals [18]. In most settings Jeffreys priors

are improper, which may explain for their conspicuous absence in the domain of

mixture estimation, since the latter prohibits the use of independent improper75

priors by allowing any subset of components to go “empty” with positive proba-

bility. That is, the likelihood of a mixture model can always be decomposed as a

sum over all possible partitions of the data into k groups at most, where k is the

number of components of the mixture. This means that there are terms in this

sum where no observation from the sample brings any amount of information80

about the parameters of a specific component.

Approximations of the Jeffreys prior in the setting of mixtures can be found,

e.g., in [9], where the authors revert to independent Jeffreys priors on the com-

ponents of the mixture. This induces the same negative side-effect as with other

independent priors, namely an impossibility to handle improper priors. [36] pro-

vides a closed-form expression for the Jeffreys prior for a location-scale mixture
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with two components. The family of distributions considered in [36] is

2ε

σ1
f

(
x− µ
σ1

)
Ix<µ +

2(1− ε)
σ2

f

(
x− µ
σ2

)
Ix>µ

(which thus hardly qualifies as a mixture, due to the orthogonality in the sup-

ports of both components that allows to identify which component each obser-

vation is issued from). The factor 2 in the fraction is due to the assumption of

symmetry around zero for the density f . For this specific model, if we impose

that the weight ε is a function of the variance parameters, ε = σ1/σ1+σ2, the

Jeffreys prior is given by

π(µ, σ1, σ2) ∝ 1/σ1σ2{σ1+σ2}.

However, in this setting, [36] demonstrates that the posterior associated with

the (regular) Jeffreys prior is improper, hence not relevant for conducting in-

ference. [36] also considers alternatives to the genuine Jeffreys prior, either by

reducing the range or even the number of parameters, or by building a product85

of conditional priors. They further consider so-called non-objective priors that

are only relevant to the specific case of the above mixture.

Another obvious explanation for the absence of Jeffreys priors is computa-

tional, namely the closed-form derivation of the Fisher information matrix is

analytically unavailable. The reason is that the generic [j, h]-th element, with

j, h ∈ {1, · · · , k}, of the Fisher information matrix for mixture models is an

integral of the form

−

∫
X

∂2 log

[
k∑̀
=1

p` f`(x|θ`)
]

∂θj∂θh

[
k∑
`=1

p` f`(x|θ`)

]−1
dx (3)

(in the special case of component densities with a univariate parameter) which

cannot be computed analytically. Since these are unidimensional integrals, we

derive an approximation of the elements of the Fisher information matrix based90

on Riemann sums. The resulting computational expense is of order O(b2) if

b is the total number of (independent) parameters. Since the elements of the

information matrix usually are ratios between the component densities and the
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mixture density, there may be difficulties with non-probabilistic methods of

integration.95

3. Characterization of the Jeffreys priors for mixture models and

respective posteriors

Unsurprisingly, most Jeffreys priors associated with mixture models are im-

proper, the exception being when only the weights of the mixture are unknown,

as already demonstrated in [3].100

We will characterize properness and improperness of Jeffreys priors and

derived posteriors, when some or all of the parameters of distributions from

location-scale families are unknown. These results are analytically established;

the behavior of the Jeffreys prior and of the deriving posterior has also been

studied through simulations, with sufficiently large Monte Carlo experiments105

(see Section 5). The following results are often presented for Gaussian mixture

models, anyway, the Jeffreys prior has a behavior common to all the location-

scale families; therefore the results may be generalized to any location-scale

family.

3.1. Weights of mixture unknown110

A representation of the Jeffreys prior and the derived posterior distribu-

tion for the weights of a three-component mixture model is given in Figure 1:

the prior distribution is much more concentrated around extreme values in the

support, i.e., it is a prior distribution conservative in the number of important

components.115

Lemma 3.1. When the weights pi are the only unknown parameters in (1), the

corresponding Jeffreys prior is proper.

Proof. The generic element of the Fisher information matrix I(p) of the mixture

model (1) when the weights are the only unknown parameters is (for j, h =

{1, . . . , k − 1}) ∫
X

(fj(x)− fk(x))(fh(x)− fk(x))∑k
`=1 p`f`(x)

dx (4)

6



Figure 1: Approximations (on a grid of values) of the Jeffreys prior (on the log-scale) when

only the weights of a Gaussian mixture model with 3 components are unknown (on the top)

and of the derived posterior distribution (with known means equal to -1, 0 and 2 respectively

and known standard devitations equal to 1, 5 and 0.5 respectively). The red cross represents

the true values.
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when we consider the parametrization in (p1, . . . , pk−1), with

pk = 1− p1 − · · · − pk−1 .

Consider now a data augmented model, where a latent variable describing the

allocations of each observation to the particular component is introduced. In

other words, a latent variable zi is considered such that zi = (0 · · · 1 · · · 0), where

zi` = 1 in the `-th position of the vector if xi has been generated from the `-

th components, for i = 1, · · · , n where n is the sample size and ` = 1, · · · , k.

Therefore, z = (z1, . . . , zn) is a multinomial variable for k possible outcomes

such that

g(x, z|θ, p) = g(x|z, θ, p)g(z|θ, p) =

n∏
i=1

g(xi|zi, θ, p)g(zi|θ, p)

=

n∏
i=1

k∏
`=1

[f`(xi|θ`)p`]
I[zi,`]=1 =

k∏
`=1

 ∏
i:zi,`=1

fl(xi|θ`)

[ k∏
`=1

pn`

`

]
(5)

where I[zi,`=1] is the indicator function that zi,` = 1 and n` is the number of

allocations to the `-th component. For an extensive review of the techniques of

data augmentation in the case of mixture models one may refer to [10].120

Equation (6) shows that the likelihood function is separable for θ and p

and that the second part is multinomial. Therefore, when looking for the Jeff-

freys prior for the weights of a complete (data-augmented) mixture model, the

elements of the Fisher information matrix are

−E
[
∂2

∂p2`
log g(x, z|θ, p)

]
= −n`np`

p2`
=

c

p`

−E
[

∂2

∂p`∂pj
log g(x, z|θ, p)

]
= 0

leading to the usual Jeffreys prior associated to the multinomial model, a Dirich-

let distribution Dir( 1
2 , · · · ,

1
2 ).

The above only applies to the artificial case when the allocations zi are

known. When they are unknown, it is easy to see that the log-likelihood function

becomes

log g(x|θ, p) = log g(x, z|θ, p)−
n∑
i=1

k∑
`=1

I[zi,`=1] log p(zi,` = 1|xi, θ, p) (6)
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where the second term on the right side of the equation represents the loss

of information compared to the data-augmented likelihood function. Define

the expected Fisher information matrix for model (6) (when only the weights

are unknown) as Idata−aug(p, θ). Therefore, since the difference between both

matrices is positive definite, this implies that

det(I(p)) ≤ det(Idata−aug(p))

[det(I(p))]
1/2 ≤

[
det(Idata−aug(p))

]1/2
πJ(p) ≤ πdata−augJ (p)

This results shows that the Jeffreys prior on the weights of a mixture model

when allocations are unknown is proper since bounded by the Jeffreys prior

Dir( 1
2 , · · · ,

1
2 ) for the complete model.125

As a particular case, when all the mixands converge to the same distribution,

each of the elements of the form (4) tends to∫
X

(fj(x)− fk(x))(f`(x)− fk(x))

fj(x)
dx

which does not depend on p. Therefore, in this case, the determinant of the

deriving Fisher information matrix is constant in p = (p1, · · · , pk) and the re-

sulting Jeffreys prior is uniform on the k-dimensional simplex.

We note that this result is a generalization to a k-component mixture of the130

prior derived in [3] for k = 2 (however, these authors derive the reference prior

for the limiting cases when all the components have pairwise disjoint supports

and when all the components converge to the same distribution). This reasoning

led [3] to conclude that the usual D(λ1, . . . , λk) Dirichlet prior with λ` ∈ [1/2, 1]

for ∀` = 1, · · · , k seems to be a reasonable approximation. They also prove that135

the Jeffreys prior for the weights p` is convex, with an argument based on the

sign of the second derivative.

It is important to stress that, in a mixture model setting, it is usual to

saturate the model when the number of components is not surely known a
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priori and consider a large number of components k. The main difficulty in this140

setting is non-identifiability, in particular the rate of estimation for the satured

model is much slower than the standard 1/
√
n. [35] have studied the effect

of a prior distribution on the weights of a general mixture on regularizing the

posterior distribution, i.e. consistency to a single configuration of the reduced

parameter space. This is achievable with a prior which allows to empty the145

extra-components or to merge the existing ones. In particular, [35] propose a

Dirichlet prior distribution, with parameters λ1, · · · , λk smaller than r/2 (where

r is the dimension of θ`) to empty the extra-components or larger than r/2 to

merge the extra-components. However, the choice of λj (j = 1, · · · , k) is quite

influential for finite sample sizes. The configuration studied in the proof of150

Lemma 3.1 is compatible with the Dirichlet configuration of the prior proposed

by [35]. This is an important property of the Jeffreys prior, since it makes

the prior conservative in the number of the components. Namely, one can

asymptotically identify the components that are artificially added to the model

but have no meaning for the data. Moreover, it offers an automatic choice, on155

the contrary of the Dirichlet prior where the hyper-parameters have to been

chosen.

The shape of the Jeffreys prior for the weights of a mixture model depends

on the type of the components: see Appendix A of the Supplementary Material

for a discussion. The marginal Jeffreys prior for the weight of one component is160

more concentrated around one if that component is more informative in terms

of Fisher information matrix: for example, if we consider a two-component

mixture model with a Gaussian and a Student t component, the Jeffreys prior

for the weights will be more symmetric as the number of degrees of freedom of

the Student t increases.165

3.2. Weights, location and scale parameters of a mixture model unknown

In this Section we will consider mixtures of location-scale distributions. If

the components of the mixture model (1) are distributions from a location-

scale family and the location or scale parameters of the mixture components

10



are unknown, this turns the mixture itself into a location-scale model:

p1f1(x|µ, τ) +

k∑
`=2

p`f`(
a` + x

b`
|µ, τ, a`, b`). (7)

As a result, model (1) may be reparametrized following [21], in the case of

Gaussian components

pN (µ, τ2) + (1− p)N (µ+ τδ, τ2σ2) (8)

namely using a reference location µ and a reference scale τ (which may be, for

instance, the location and scale of a specific component). Equation (8) may be

generalized to the case of k components as

pN (µ, τ2) +

k−2∑
`=1

(1− p)(1− q1) · · · (1− q`−1)q`

· N (µ+ τθ1 + · · ·+ τ · · ·σ`−1θ`, τ2σ2
1 · · ·σ2

` )+

+ (1− p)(1− q1) · · · (1− qk−2)

· N (µ+ τθ1 + · · ·+ τ · · ·σk−2θk−1, τ2σ2
1 · · ·σ2

k−1).

Since the mixture model is a location-scale model, the Jeffreys prior is as in the

following Lemma (see also Robert [27, Chapter 3]).

Lemma 3.2. When the parameters of a location-scale mixture model are un-

known, the Jeffreys prior is improper, constant in µ and powered as τ−d/2, where170

d is the total number of unknown parameters of the components (i.e. excluding

the weights).

An new version of the proof, never presented before, is available in Appendix

B of the Supplementary Material, while the characterization of the Jeffreys prior

for δ is given in Appendix C.175

We now derive analytical characterizations of the posterior distributions as-

sociated with the Jeffreys priors for mixture models.

Consider, first, the case where only the location parameters of a mixture

model are unknown.

There is a substantial difference between the cases where k = 2 or k > 2.180
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Lemma 3.3. When k = 2, the posterior distribution derived from the Jeffreys

prior when only the location parameters of model (7) are unknown is proper.

The complete proof of lemma 3.3 is given in Appendix D of the Supplemen-

tary Material. Here it is worth noticing that the properness of the posterior

distribution in the context of Lemma 3.3 depends on the representation of the185

mixture model as a location-scale distribution, where the second component is

defined with respect to a reference component: if we focus the attention on

the part of the likelihood depending only on the second component, even if the

prior is constant with respect to the difference between the location parameters

δ as δ → ±∞, the likelihood depends on δ as exp(−n−12 δ2) and therefore the190

behavior of the posterior distribution is convergent.

Figure 2 shows an approximation of the Jeffreys prior for the location pa-

rameters of a two-component Gaussian mixture model on a grid of values and

confirms that the prior is constant on the difference between the means and takes

higher and higher values as the difference between them increases, while the pos-195

terior distribution, even if showing the classical multimodal nature [5], seems to

concentrate around the true modes. It also appears to be perfectly symmetric

because the other parameters (weights and standard deviations) have been fixed

as identical.

The same proof cannot be extended to the general case of k components, be-200

cause the location parameters are defined as several distances from the reference

location parameter: if we again focus the attention on the part of the likelihood

depending on the second component, the integral with respect to δ2 converges,

however the prior is constant with respect to any other δj (j = 3, · · · , k) as

δj → ±∞ and the integral does not converge with respect to the other dif-205

ferences. Then the following Lemma holds (the formal proof is available in

Appendix E).

Lemma 3.4. When k > 2, the posterior distribution derived from the Jeffreys

prior is improper when only the location parameters of model (7) are unknown.

This result confirms the idea that each part of the likelihood gives infor-210
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Figure 2: Approximations (on a grid of values) of the Jeffreys prior (on the log-scale) when

only the means of a Gaussian mixture model with two components are unknown above and of

the derived posterior distribution (with known weights both equal to 0.5 and known standard

deviations both equal to 5) below.
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mation about at most the difference between the locations of the respective

components and the reference location, but not on the locations of the other

components.

We can now consider the case where all the parameters of (7) are unknown.

Theorem 3.1. The posterior distribution of the parameters of a mixture model215

with location-scale components derived from the Jeffreys prior when all param-

eters of model (7) are unknown is improper.

The proof is available in Appendix F of the Supplementary Material.

4. A noninformative alternative to Jeffreys prior

The information brought by the Jeffreys prior or lack thereof does not seem to220

be enough to conduct inference in the case of mixture models. The computation

of the determinant creates a dependence between the elements of the Fisher

information matrix in the definition of the prior distribution which makes it

difficult to find and justify moderate modifications of this prior that would lead

to a proper posterior distribution. For example, using a proper prior for part225

of the scale parameters and the Jeffreys prior conditionally on them does not

avoid impropriety, as it is shown Appendix G of the Supplementary Material.

The literature covers attempts to define priors that add a small amount of

information that is sufficient to conduct the statistical analysis without over-

whelming the information contained in the data. Some of these are related to230

the computational issues in estimating the parameters of mixture models, as in

the approach of [4], who finds a way to use perfect slice sampler by focusing

on components in the exponential family and conjugate priors. A characteristic

example is given by [25], who proposes weakly informative priors, which are

data-dependent (or empirical Bayes) and are represented by flat normal priors235

over an interval corresponding to the range of the data. Nevertheless, since mix-

ture models belong to the class of ill-posed problems, the influence of a proper

prior over the resulting inference is difficult to assess.
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Another solution found in [21] proceeds through the reparametrization (8)

and introduces a reference component that allows for improper priors. This

approach then envisions the other parameters as departures from the reference

and ties them together by considering each parameter θ` as a perturbation of

the parameter of the previous component θ`−1. This perspective is justified by

the argument that the (`− 1)-th component may not be informative enough to

absorb all the variability in the data. For instance, a three-component mixture

model gets rewritten as

pN (µ, τ2) + (1− p)qN (µ+ τθ, τ2σ2
1)

+ (1− p)(1− q)N (µ+ τθ + τσε, τ2σ2
1σ

2
2)

where one can impose the constraint 1 ≥ σ1 ≥ σ2 for identifiability reasons.

Under this representation, it is possible to use an improper prior on the global240

location-scale parameter (µ, τ), while proper priors must be applied to the re-

maining parameters. This reparametrization has been used also for exponential

components by [13] and Poisson components by [32]. Moreover, [34] proposes

a Markov prior which follows the same reasoning of dependence between the

parameters for Gaussian components, where each parameter is again a pertur-245

bation of the parameter of the previous component θ`−1. [17] also proposes a

reparametrization of location-scale mixtures based on invariance that allows for

weakly informative priors.

On one hand, this representation suggests to define a global location-scale

parameter in a more implicit way, via a hierarchical model that considers more250

levels in the analysis and choose noninformative priors at the last level in the

hierarchy.

On the other hand, we believe that an essential feature of a default prior is

that it should let the analysis be able to identify the correct number of meaning-

ful components, in particular in the standard case where an overfitted mixture255

is assumed because the a priori information on the number of components is

weak.

We thus propose a prior scenario which combines both the hierarchical rep-
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resentation and the conservativeness property in terms of components.

More precisely, consider the Gaussian mixture model (1)260

g(x|θ) =

k∑
`=1

piN (x|µ`, σ`). (9)

The parameters of each component may be considered as related in some

way; for example, the observations induce a reasonable range, which makes it

highly improbable to face very different means in the above Gaussian mixture

model. A similar argument may be used for the standard deviations.

Therefore, at the second level of the hierarchical model, we may write265

µ`
iid∼ N (µ0, ζ0)

σ`
iid∼ 1

2
U(0, ζ0) +

1

2

1

U(0, ζ0)

p|µ, σ ∼ πJ(p|µ, σ) (10)

which indicates that the location parameters vary between components, but are

likely to be close, and that the scale parameters may be smaller or larger than

ζ0; we have decided to define both µ` and σ` as depending on hyperparameter ζ0

without loss of generality, as one may notice by analysing mean and variance of

the random variables; this representation allows the application of the MCMC270

scheme proposed in [31] which allows a better mixing of the chains. The mixture

weights are given the prior distribution πJ(p|µ, σ) which is the Jeffreys prior for

the weights, conditional on the location and scale parameters, given in Section

3.1; this choice makes use of the conservative property of the Jeffreys prior for

the weights which is essential in the case of miss-specification of the number of275

components.

At the third level of the hierarchical model, the prior may be noninformative:

π(µ0, ζ0) ∝ 1

ζ0
. (11)
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As in [21] the parameters in the mixture model are considered tied together;

on the other hand, this feature is not obtained via a constrained representation

of the mixture model itself, but via a hierarchy in the definition of the model280

and the parameters.

Theorem 4.1. The posterior distribution derived from the hierarchical repre-

sentation of the Gaussian mixture model associated with (9), (10) and (11) is

proper.

The proof of Theorem 4.1 is available in Appendix H of the Supplementary285

Material.

As a side remark, even if Theorem 4.1 is stated for Gaussian mixture models,

it may be extended to other location-scale distributions. Section 6 will present

an example with log-normal components, Section 6.1 with Gumbel components.

However it cannot be generalized to any location-scale distribution.290

This hierarchical version of the mixture model presents some advantages;

in particular, the Jeffreys prior used for the weights is conservative in terms of

number of components in the case of misspecification. We remind that when

the number of components is not known, it is usual in practice to fix a model

with a high number of components (if one wants to avoid a nonparametric295

analysis), therefore it is essential that the posterior distribution gives hints on

the right k. This feature of the Jeffreys prior allow the experimenter to do

so in a noninformative way. More precisely, this hierchical prior respect the

Assumption 5 of [35].

5. Simulation Study300

In this Section we present the results of several simulations studies we con-

duct to support the theoretical results presented so far. The results of additional

simulations are given in Appendix G and H of the Supplementary Material.

As a remark, integrals of the form (3) need to be approximated, as mentioned

in Section 2. There are numerical issue here. We decided to use Riemann sums305
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(with 550 points) when the component standard deviations are sufficiently large,

as they produce stable results, and Monte Carlo integration (with sample sizes

of 1500) when they are small. In the latter case, the variability of MCMC

results seems to decrease as σi approaches 0. See the Supplementary Material

for a detailed description of these computational issues.310

We can analyse the property of conservativeness in overfitted mixtures through

simulations, by using the hierarchical prior proposed in Section 4. We consider

a very simple example to illustrate this theoretical result. Suppose we want

to fit a two-component Gaussian mixture model with weights p and 1 − p and

parameters unknown to a sample of data x = {x1, · · · , xn} generated from a315

standard normal distribution N (0, 1). We computed the posterior distribution

for M = 20 replications of samples of size n = (50, 100, 500, 1000, 5000, 10000).

Figure 3 shows that the posterior means of p increases to 1 as n increases.

We have also considered a more complicated situation, where we want to fit

a model with an increasing number of components (k = (2, 3, 4, 5)) to a data320

set x = {x1, · · · , xn} generated from a two-component mixture model

0.5N (−3, 1) + 0.5N (3, 1). (12)

Figures 4 and 5 show the boxplots for the posterior means of the weights

obtained through M = 20 replications of the experiment, with a correct (k = 2)

or a misspecified (k = (3, 4, 5)) model. It is clear that as the number of com-

ponents increases, the additional weights are estimated by smaller and smaller325

values as the sample size increases. It is evident that the variability of the

estimates (in repetitions of the experiment) is smaller when an exact number

of components is assumed; however, in every case, the Bayesian analysis based

on the Jeffreys prior is able to identify the right number of components. The

higher variability in estimating the weights is reflected in the fact that, as the330

number of components increases, the estimated (and the predictive) densities

are less and less smooth, nevertheless this feature is mitigated as the sample

size increases, see Appendix H in the Supplementary Material.

18



50 100 500 1000 5000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

p

Figure 3: Boxplots of posterior means of the largest weight p, with the hierarchical prior

on the parameters, in particular a conditional Jeffreys prior on the weights, for sample sizes

n = 50, 100, 500, 1000, 5000, 10000.
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Figure 4: Boxplots of posterior means of the weights p, with the hierarchical prior on the

parameters, in particular a conditional Jeffreys prior on the weights, for sample sizes n =

(50, 100, 500) and with models with k = (2, 3, 4, 5) components.
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Figure 5: As in Figure 4, for sample sizes n = (1000, 5000, 10000).
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6. Illustrations

In this Section we will analyse the performance of the approach proposed in335

Section 4 in three datasets so well-known in the literature of mixture models

that they can be taken as benchmarks and in a new dataset we propose here

for the first time. In order to better present this new dataset, the analysis of it

is presented separately.

The first dataset contains data about the velocity (in km per second) of 82340

galaxies in the Corona Borealis region. The goal of this analysis is to understand

the number of stellar populations, in order to support a particular theory of the

formation of the Galaxy. The Galaxy dataset has been investigated by several

authors, including [25], [24], [8] and [33] among others.

The galaxies velocities are considered as random variables distributed ac-345

cording to a mixture of k normal distributions. The evaluation of the number

of components has proved to be delicate, with estimates from 3 in [34] to 5 in

[25] and 7 in [8].

We have assumed a ten-component mixture model and check whether or not

the hierarchical approach that uses the conditional Jeffreys prior on the weights350

of the mixture model manages to identify a smaller number of significant com-

ponents. The results are available in Figure 6 and Table 1. The algorithm

identifies 5 components with weights larger than zero, which is a result along

the line of [25] and more conservative than [8], which confirms the Jeffreys prior’s

feature of being conservative in the number of the components. Credible inter-355

vals also show that the parameters of the components with marginal posterior

distributions for the weights not concentrated around zero are estimated with

lower uncertainty.

The second dataset is related to a population study to validate caffeine as a

probe drug to establish the genetic status of rapid acetylators and slow acety-360

lators [1]: many drugs, including caffeine, are metabolyzed by a polymorphic

enzyme (EC 2.3.1.5) in humans and the white population is divided into two

groups of slow acetylators and rapid acetylators. Caffeine is considered an inter-
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Figure 6: Predictive distribution of the galaxy dataset: the red line represent the estimation

of the density, the shadow blue area represents the credible intervals in 105 simulations by

assuming a ten-component mixture model.

esting drug to study the phenotype of people, because it is regularly consumed

by a large amount of the population. Several population studies have been365

conducted, some of them reporting a bimodality, some others a trimodality.

We focus on the study presented by [1], involving 245 unrelated patients and

computing the molar ratio between two metabolites of caffeine, AFMU and 1X,

both measured in urine 4 to 6 hours after ingestion of 200 mg of caffeine.

We have again assumed a ten-component mixture model and checked whether370

or not the hierarchical approach which uses the conditional Jeffreys prior on the

weights of the mixture model is able to identify a smaller number of significant

components.

The results are available in Figure 7 and Table 1. The algorithm identifies

two components with weights clearly larger than zero and two other components375

with very small weights. [1] identify a bimodal density, while [25] consider highly

likely a 3-5 component mixture. The Jeffreys prior allows to concentrate the

analysis on mainly two subgroups and it suggests that Gaussian components

may be inappropriate in this setting: by looking to the location of the com-
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Figure 7: Predictive distribution of the enzyme dataset: the red line represent the estimation

of the density, the shadow blue area represents the credible intervals in 105 simulations by

assuming a ten-component mixture model.

ponents with small weights, it may be more adequate to consider asymmetric380

distributions.

Our third dataset is related to measuring the acid neutralizing capacity

(ANC) (in log-scale) of a sample of 155 lakes in north-central Wisconsin, to

determine the number of lakes that have been affected by acidic deposition [6]:

the ANC measures the capability of a lake to neutralize acid, i.e. low values385

may indicate a problem for the lake’s biological diversity.

The results are available in Figure 8 and Table 1. The algorithm identifies

two components with significant weights and two other components with very

small weights. [6] assume a bimodal density, while [25] consider highly likely a 3-

5 component model. The Jeffreys prior again allows to concentrate the analysis390

on two main subgroups and suggests to investigate the importance of other two
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Figure 8: Predictive distribution of the acidity dataset: the red line represent the estimation

of the density, the shadow blue area represents the credible intervals in 105 simulations by

assuming a ten-component mixture model.

components and possibly the goodness-of-fit of the log-normal distribution in

this setting.

6.1. Network dataset

A recent trend in computer network systems is the deployment of network395

functions in software [22]. The so-called “software dataplanes” are emerging as

an alternative to traditional hardware switched and routers, reducing costs and

enhancing programmability.

The monitoring of IP packets is, among all possible network functions, one of

the most suitable for a software deployment. However, the monitoring has a huge400

cost in terms of consumed CPU (processing) time by packet. The main reason

for this is that each incoming packet triggers the retrieval, from a large hash-

table, of all the information related to the packet flow (i.e. the packet’s family).
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Table 1: Posterior means for the weights, the means and the standard deviations of a ten-

component mixture model, assumed for the galaxy, the enzyme and the acidity datasets

(the first number in brackets is the posterior mean and the second is the posterior standard

deviation). We have decided to not shown the estimated location and scale parameters when

the weights are concentrated around zero.

Dataset: galaxy enzyme acidity

p1 0.437 0.606 0.601

(23.139, 1.507) (0.193, 0.090) (4.356,0.442)

p2 0.390 0.343 0.378

(19.790, 0.715) (1.216, 0.348) (6.294, 0.531)

p3 0.080 0.021 0.003

( 9.709, 0.503) (0.915, 1.174) (0.083, 0.802)

p4 0.056 0.018 0.003

(32.630, 1.842) (1.176, 0.702) (0.125, 0.589)

p5 0.037 0.000 0.000

(16.138,1.226) - -
10∑̀
=6

p` 0.000 0.000 0.000
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This operation is generally called flow-entry retrieval. The time required for the

flow-entry retrieval (retrieval time) mainly depends on whether such information405

is available in one of the processor caches (e.g. L1, L2, L3) or in memory.

The dataset used in this analysis consists of generated samples of retrieval

time, each with 106 times, under two different set-ups. In the first one, the flow-

entry has been forced to reside in fast processor caches (“hit”). In the second

one, all flow-entries have been forced to reside in the server RAM (memory),410

which results in a slower flow-entry retrieval (“miss”).

Both samples show a heavy tail, due to possible hash collisions on the table,

as well as additional delays introduced by measuring the retrieval time at a

nanosecond timescale. In the case of “miss”, another reason for the heavy tail

can be identified with the virtual/physical memory mapping, which can inflate415

the retrieval time in some cases.

The goal of a realistic analysis is to infer the proportion of reported times

which may be considered from the “hit” distribution and the proportion of times

which may be considered from the “miss” distribution, i.e. to derive what is

the percentage of packets for which the flow-entry was in the cache and the420

percentage of packets for which the flow-entry was in memory.

However, a first simulation is generally used to test the procedure. The

interest of the analysis will be in the region of the space where the two distri-

butions are overlapping, therefore the interest is not in the external tails, which

may, nonetheless, affect inference. Therefore, a preliminary analysis may be425

conducted in order to understand if a part of the future observations may be

discarded from the analysis. In this particular case, the conservative property

of the Jeffreys prior may be used in order to understand how much important

are the tails of each distribution and to identify the right models to use. For

instance, a comparison between a Gaussian mixture model and a mixture model430

with Gumbel components may be run: if in both cases the analysis run with a

Jeffreys prior for the mixture weights identifies more than two (assumed) distri-

butions of interest, this may be a suggestion that the observations allocated to

the external components (not the “hit” or the “miss” ones) may be discarded,
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Figure 9: Predictive distribution of the network dataset: the red line represent the estimation

of the density, the shadow blue area (very concentrated around the red lines) represents

the credible intervals in 105 simulations by assuming a ten-component mixture model, with

Gaussian components on the left and with Gumbel components on the right.

providing inference on the proportion of observations to discard as well.435

Figure 9 and Table 2 show the results of this analysis: adopting a Jeffreys

prior for the mixture weights when assuming Gumbel components allows to

better estimate the first component and to describe the asymmetry observed

in the data as an asymmetry in the first component instead of an additional

component. Nevertheless it is not sufficient to identify the observations in the440

right tail of the second component as part of its tail, since the algorithm identifies

a third component located in that part of the space.

In this setting, the Jeffreys prior allows to i) identify a miss-specification

of the model assumptions (the approximated Bayes factor of the mixture of

Gumbel components against the mixture of normal components is 2.10) and ii)445

identify which part of the observations to discard from further studies.
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Table 2: Posterior means for the weights, the means and the standard deviations of a ten-

component mixture model, assumed for the network dataset (credible intervals of level 0.95

in brackets).

Gaussian comp.

p µ σ

0.214 224.318 50.271

(0.180,0.249) (222.657,233.842) (45.483,55.265)

0.519 161.645 7.497

(0.474,0.568) (160.216,161.882) (6.830,8.212)

0.221 82.847 1.888

(0.188,0.257) (81.057,82.270) (1.666,2.135)

0.046 92.826 3.474

(0.029,0.064) (91.710 ,93.700) (2.698,4.388
10∑̀
=5

p` = 0.000

Gumbel comp.

p µ σ

0.214 213.512 59.080

(0.183,0.251) (213.446,213.846) (53.526,64.667)

0.520 160.164 7.959

(0.479,0.562) (160.113,160.482) (7.465,8.482)

0.265 83.260 3.348

(0.219,0.302) (83.251,83.270) (3.005,3.753)
10∑̀
=4

p` = 0.000
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7. Conclusion

This thorough analysis of the Jeffreys priors in the setting of mixtures with

location-scale components shows that mixture distributions deserve the qualifi-

cation of an ill-posed problem with regard to the production of non-informative450

priors. Indeed, we have shown that most configurations for Bayesian inference

in this framework do not allow for the standard Jeffreys prior to be taken as a

reference. While this is not the first occurrence where Jeffreys priors cannot be

used as reference priors, we have shown that the Jeffreys prior for the mixture

weights has the important property to be conservative in the number of compo-455

nents, with a configuration compatible with the results of [35].This is a general

feature of the Jeffreys prior for the mixture weights, which is independent from

the shape of the distributions composing the mixture.

Nevertheless, we have decided to study its behavior in the specific case of

components from location-scale families. We have proposed a hierarchical rep-460

resentation of the mixture model, which allow for improper priors at the highest

level of the hierarchy and assumes the Jeffreys prior for the mixture weights in

the second level, conditional on prior distributions for the location and scale

parameters along the line of [21].

Through several examples, both on simulated and real datasets, we have465

shown that this representation seems to be more conservative on the number of

components than other non or weakly informative prior distributions for mixture

models available in the literature. In particular, it seems to be able to recognize

the meaningful components, which is an essential property for a noninformative

prior for mixture model: in fact, in an objective setting, it is essential to con-470

sider the possibility to have assumed a wrong number of components. In this

sense, the Jeffreys prior for the mixture weights may be used to identify the

meaningful components and possible miss-specifications of either the number or

the distributional family of the components.

As a note aside, we have mainly analyzed mixture of Gaussian distributions475

in this paper, with extensions of the theoretical results to the other distributions
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of the location-scale family. Nevertheless, the possible difficulties deriving from

the use of distributions different from the Gaussian are not considered here and

will be the focus of future research. In particular, all likelihoods poorly specified

and ill-behaved cases are more likely to meet difficulties. However, the Jeffreys480

prior is known as a regularization prior that does not necessarily reflect prior

beliefs, but in combination with the likelihood function yields posteriors with

desirable properties; see [14] for a detailed review of ill-behaved posterior cases

and the role of the Jeffreys prior in those cases.
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