
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/96908  

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/96908
mailto:wrap@warwick.ac.uk


 
 

Synthesis and application of new polymers for 
agriculture: pesticide formulation 

 

by 

 
Nuttapol Risangud 

 
Thesis 

 
Submitted to the University of Warwick 

for the degree of 

 
Doctor of Philosophy in Chemistry 

 
Department of Chemistry 

 
April 2017 

 

 



i 
 

Contents 
List of Tables          vi 

List of Figures          vii 

Acknowledgments         xv 

Declarations          xvi 

Abstract          xvii 

Abbreviations          xix 

Chapter 1 Introduction        1 

1.1 Research motivation       2 

1.2 Macromolecules and preparation techniques    2 

1.2.1 Step-growth polymerisation     6 

1.2.2 Chain-growth polymerisation     7 

1.2.3 From free radical polymerisation to controlled radical   

polymerisation       10 

1.2.4 Copper-mediated polymerisation    15 

1.2.5 Single electron transfer living radical polymerisation  16 

1.2.6 Other RDRP polymerisation technique    21 

1.2.7 Copolymers       23 

1.3 Current pesticide encapsulations      25 

1.3.1 Polymer based materials     26 

1.4 Spray drying and encapsulated application    31 

Chapter 2 Synthesis of stable isocyanate containing copolymers via SET-LRP 34 

2.1 Background        35 

2.1.1 Isocyanate-containing copolymers    35 



ii 
 

2.1.2 Polycondensation interfacial polymerisation   37 

2.2 Results and Discussion       39 

2.2.1 P(MMAm-co-IEMn) synthesis and modification   39 

2.2.2 P(BnMAm-co-IEMn) synthesis and modification   44 

2.2.3 Microcapsule synthesis      54 

2.3 Conclusion         56 

2.4 Experimetal        56 

2.4.1 Materials       56 

2.4.2 Characterisation       57 

2.4.3 P(MMAm-co-IEMn) polymerisation    57 

2.4.4 General modification of P(MMAm-co-IEMn) by amines  58 

2.4.5 P(MMAm-co-IEMn) modification by dibutylamine  58 

2.4.6 P(MMAm-co-IEMn) modification by octylamine   59 

2.4.7 P(MMAm-co-IEMn) modification by  

(R)-(+)-α-methylbenzylamine      59 

2.4.8 P(BnMAm-co-IEMn) polymerisation    60 

2.4.9 General modification of P(BnMAm-co-IEMn) by amines 60 

2.4.10 P(BnMAm-co-IEMn) modification by dibutylamine  61 

2.4.11 P(BnMAm-co-IEMn) modification by octylamine  61 

2.4.12 P(BnMAm-co-IEMn) modification by  

(R)-(+)-α-methylbenzylamine      62 

2.4.13 Microcapsule synthesis     62 

Chapter 3 Biodegradable polyurea microcapsules     63 

3.1 Background        65 



iii 
 

3.1.1 Biodegradable polymers and microcapsule synthesis  65 

3.1.2 Ring-opening polymerisation (ROP)    67 

3.2 Results and Discussion       70 

3.2.1 α, ω- Hydroxyl terminated poly(ɛ-caprolactone)     

polymerisation       70 

3.2.2 α, ω-Poly(ɛ-caprolactone) SET-LRP macroinitiator synthesis 73 

3.2.3 Synthesis of P(BnMA-co-IEM) copolymers from an α, ω-poly(ɛ-    

caprolactone) SET-LRP macroinitiator    80 

3.2.4 Emulsion droplet size      85 

3.2.5 Drying process and microcapsule distribution   87 

3.2.6 Microcapsule morphology     90 

3.2.7 Microcapsule thermal stability     95 

3.2.8 Encapsulation and release study of imidacloprid (IMI)  98 

3.3 Conclusion         102 

3.4 Experimental        103 

3.4.1 Materials       103 

3.4.2 Characterisation       104 

3.4.3 α, ω- Hydroxyl terminated poly(ɛ-caprolactone) 

polymerisation        104 

3.4.4 α, ω-PCL12 SET-LRP macroinitiator    105 

3.4.5 PCLx-P(BnMAm-co-IEMn) polymerisation   106 

3.4.6 Spray drying emulsion preparation    107 

3.4.7 Spray drying process      108 

3.4.8 Particle morphology      108 



iv 
 

3.4.9 Particle size distribution     109 

3.4.10 Particle thermal stability     109 

3.4.11 Determination of pesticide loading (PL), encapsulation  

efficiency  (EE), and release profile     109 

Chapter 4 Hydrosilylation: An efficient tool for polymer synthesis and  

modification          111 

4.1 Background        113 

4.1.1 Poly(dimethylsiloxane) (PDMS)     113 

4.1.2 Hydrosilylation       116 

4.2 Results and Discussion       118 

4.2.1 Modification of hydride terminated PDMS   118 

4.2.2 Synthesis of ABA triblock copolymers    126 

4.3 Conclusion         130 

4.4 Experimental        131 

4.4.1 Materials       131 

4.4.2 Characterisation       132 

4.4.3 Kinetic studies of hydrosilylation of methyl methacrylate 132 

4.4.4 General procedure for the hydrosilylation of methacrylates 133 

4.4.5 Synthesis of MMA-PDMS-MMA     133 

4.4.6 Synthesis of HEMA-PDMS-HEMA    133 

4.4.7 Synthesis of GMA-PDMS-GMA     134 

4.4.8 Synthesis of EHMA-PDMS-EHMA    134 

4.4.9 Synthesis of BMA-PDMS-BMA     134 

4.4.10 Synthesis of DEGMEMA-PDMS-DEGMEMA   135 



v 
 

4.4.11 Synthesis of PEG6-b-PDMS6-b-PEG6 copolymer  135 

4.4.12 Synthesis of PMMA2-b-PDMS6-b-PMMA2 copolymer  136 

Chapter 5 Acid-labile containing polymers synthesised via SET-LRP and 

their subsequent degradation       137 

5.1 Background        138 

5.1.1 pH responsive polymers     138 

5.1.2 pH change in soil root      140 

5.2 Results and Discussion       142 

5.2.1 Synthesis of a α, ω-poly(acetal) SET-LRP initiator  142 

5.2.2 Polymerisation       147 

5.2.3 Degradation of PMA80       152 

5.3 Conclusion         155 

5.4 Experimental        156 

5.4.1 Materials       156 

5.4.2 Characterisation       156 

5.4.3 Poly(acetal) synthesis      156 

5.4.4 α, ω-Poly(acetal) SET-LRP initiator synthesis   157 

5.4.5 Polymerisation of poly(methyl acrylate) (PMA40)  158 

5.4.6 Degradation study      159 

References          160 

 

 

 
 



vi 
 

List of Tables 
 

2.1 Summary of the results of P(MMAm-co-IEMn) polymerisation by SET-LRP 

(targeted DP 50) for five hours at ambient temperature    40 

2.2 Summary of the results of P(BnMAm-co-IEMn) polymerisation by SET-LRP 

(targeted DP 50) for three hours at ambient temperature    47 

2.3 SET-LRP polymerisation result of P(BnMAm-co-IEMn) from two to six hours 48 

2.4 Summary of SET-LRP result of BnMA/IEM copolymerization at room 

temperature after three hours       49 

3.1 Summary of PCLx-(BnMAm-co-IEMn) copolymers     82 

3.2 Laser scattering measurement of dry microcapsules prepared from 

PCL5-P(BnMA52-co-IEM8)        89 

3.3 Summary of powder polyurea microcapsules synthesised from polymer  

A (PCL12-P(BnMA44-co-IEM6) and polymer B (PCL5-P(BnMA52-co-IEM8)  91 

3.4 Summary of the TGA result of all microcapsules     97 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 

1.1 Schematic illustration of different types of copolymers    3 

1.2 Examples of polymer synthesis (polyester and polyamide) via condensation  4 

1.3 Examples of polymer synthesis via chain-growth polymerisation  5 

1.4 Plots of average molecular weight against monomer conversion for  

step-growth and chain-growth polymerisation      5 

1.5 Examples of free radical initiation reaction     8 

1.6 Examples of combination and disproportionation termination reactions 9 

1.7 The distribution of chains in an ideal living radical polymerisation when  

v = 100           13 

1.8 Reversible and dynamic equilibrium between active radical growing species  

and dormant species         14 

1.9 Model of copper mediated polymerisation technique    15 

1.10 The proposed mechanism of SET-LRP      18 

1.11 Common used monomers in SET-LRP      20 

1.12 Common used ligands in SET-LRP       20 

1.13 Schematic diagram of Me6Tren with CuBr (left) and CuBr2 (right)   20 

1.14 The proposed mechanism of NMP      22 

1.15 The proposed mechanism of RAFT      23 

1.16 Schematic representation of micelle formation to encapsulate hydrophobic 

pesticide          27 

1.17 Schematic diagram of spray dryer operation     32 

2.1 A model of oil in water emulsion (O/W)      38 



viii 
 

2.2 SET-LRP copolymerisation of MMA and IEM in an anhydrous solvent  39 

2.3 SEC traces of P(MMAm-co-IEMn) polymerisation at different conditions 41 

2.4 P(MMAm-co-IEMn) solution behaviour after exposing to atmosphere  41 

2.5 1H NMR of P(MMA22-co-IEM3) modified with dibutylamine   42 

2.6 13C NMR (J-modulated) of P(MMA22-co-IEM3) modified with dibutylamine 43 

2.7 FTIR spectra of polymer solution of P(MMA22-co-IEM3) in DMSO and  

P(MMA22-co-IEM3) modified with dibutylamine     43 

2.8 GPC traces of P(MMA22-co-IEM3) before and after modification by different  

amines           44 

2.9 SET-LRP copolymerisation of BnMA and IEM in an anhydrous solvent  44 

2.10 SEC traces of P(BnMAm-co-IEMn) shows no increasing of conversion after  

leaving polymerisation for 34 hours at ambient temperature   46 

2.11 SEC traces (left) and kinetic plot of monomer conversion measured by 1H NMR 

(right) for the synthesis of P(BnMAm-co-IEMn)      47 

2.12 Polymerisation mixture after three hours shows phase separation between 

polymer and solvent         48 

2.13 FTIR spectra of solid P(BnMA22-co-IEM2) copolymer    49 

2.14 SEC traces of P(BnMAm-co-IEMn) which is polymerised via SET-LRP in  

anhydrous IPA, in CHCl3 eluent with DRI detection     50 

2.15 1H NMR P(BnMA22-co-IEM2) copolymer after purification   50 

2.16 13C NMR of P(BnMA22-co-IEM2) copolymer after purification   51 

2.17 FTIR spectra of P(BnMA22-co-IEM2) and copolymer modified by dibutylamine  51 

2.18 1H NMR of modified P(BnMA22-co-IEM2) with octylamine   52 

2.19 13C NMR of modified P(BnMA22-co-IEM2) with dibutylamine   53 



ix 
 

2.20 SEC traces of p(BnMAm-co-IEMn) copolymer before and after modification by 

different amines         54 

2.21 Microcapsule fabrication via oil-in-water interfacial polymerisation of 

 P(BnMAm-co-IEMn)         54 

2.22 Optical microscope and dynamic light scattering result of microcapsule  

fabrication via oil in water interfacial polymerisation of P(BnMA22-co-IEM2) 55 

3.1 Examples of biodegradable polyesters      66 

3.2 A simple schematic of ring-opening polymerisation (ROP)   67 

3.3 The proposed mechanism of ROP of ɛ-CL by using (Sn(Oct)2) as the catalyst 69 

3.4 Ring opening polymerisation of ɛ-caprolactone initiates by diethylene glycol 70 

3.5 1H NMR of α, ω-poly(ɛ-caprolactone)      71 

3.6 MALDI-TOF (MS) spectra of α, ω-poly(ɛ-caprolactone)    71 

3.7 13C NMR of α, ω-poly(ɛ-caprolactone)      72 

3.8 COSY NMR of α, ω-poly(ɛ-caprolactone)      73 

3.9 α, ω-Poly(ɛ-caprolactone) SET-LRP macroinitiator    74 

3.10 SEC showing successful modification of α, ω-poly(ɛ-caprolactone) (α, ω-PCL12)     

with an acceptable narrow distribution      75 

3.11 1H NMR of before and after modification of α, ω-poly(ɛ-caprolactone) 75 

3.12 COSY NMR of modified α, ω-poly(ɛ-caprolactone)    76 

3.13 13C NMR spectra of modified α, ω-poly(ɛ-caprolactone) (α, ω-PCL12)  76 

3.14 FTIR spectra of non-modified and modified α, ω-poly(ɛ-caprolactone) 

(α, ω-PCL12)          77 

3.15 MALDI-TOF spectra of (α, ω-PCL12) SET-LRP macroinitiator   78 



x 
 

3.16 MALDI-TOF MS spectra indicates m/z measurement and m/z calculationof α, ω-

poly(ɛ-caprolactone) (α, ω-PCL12) SETLRP macroinitiator    78 

3.17 Overlaid MALDI-TOF spectra of α, ω-poly(ɛ-caprolactone) (α, ω-PCL12) SET-LRP 

macroinitiator and α, ω-poly(ɛ-caprolactone)     79 

3.18 MALDI-TOF spectra of α, ω-poly(ɛ-caprolactone) (α, ω-PCL5) SET-LRP 

macroinitiator          79 

3.19 SET-LRP polymerisation of BnMA and IEM monomer by α, ω-poly  

(ɛ-caprolactone) SET-LRP macroinitiator      80 

3.20 FTIR spectra of PCL12-P(BnMA44-co-IEM6) indicates that isocyanate function is 

preserved after purification        81 

3.21 SEC traces of PCLx-P(BnMAm-co-IEMn) copolymers synthesised from different 

α, ω-polycaprolactone macroinitiators      83 

3.22 1H NMR spectra of PCL12-P(BnMA24-co-IEM6) copolymer synthesised from  

the α, ω-PCL12 macroinitiator        83 

3.23 13C NMR spectra of PCL12-P(BnMA24-co-IEM6) copolymer synthesised from  

the α, ω-PCL12 macroinitiator        84 

3.24 HSQC NMR spectra of PCL12-P(BnMA24-co-IEM6) copolymer synthesised 

from the α, ω-PCL12 macroinitiator       84 

3.25 White powder of PCLx-P(BnMAm-co-IEMn) copolymer after purification 85 

3.26 Microcapsule fabrication via an oil-in-water interfacial polymerisation of PCLx-

P(BnMAm-co-IEMn)         85 

3.27 Laser scattering measurement of the emulsion droplets prepared from different 

copolymers (Table 3.1)        86 

 



xi 
 

3.28 Optical microscope and Mastersizer results of emulsion droplet when different  

of carrier oil/stabilizer (w/v) was applied, 27 % (a) and 2.2 % (b)   87 

3.29 BUCHI mini Spray Dryer B-290       87 

3.30 SEM image and laser scattering measurement of microcapsules prepared  

from PCL5-P(BnMA52-co-IEM8) after water removal by spray dryer at 160 °C  inlet 

temperatures          89 

3.31 SEM image and laser scattering measurement of microcapsules prepared  

from PCL5-P(BnMA52-co-IEM8) after water removal by spray dryer at 110 °C inlet 

temperatures          90 

3.32 SEM image of powder microcapsules synthesised from PCL5- P(BnMA52-co-IEM8) 

copolymer. Only aqueous PVA was usedas a stabilizer during the emulsion 

 preparation          92 

3.33 SEM image of powder microcapsules synthesised from different copolymer 

contents (1.1 % (a) 2.2 % (b) 3.3 % (c))      93 

3.34 SEM image of microcapsules synthesised from different stabilizer: An aqueous 

PVA (A) and PVA+ Arabic gum (B)       94 

3.35 SEM image of microcapsules synthesised from the PCL5-P(BnMA52-co-IEM8)    

copolymer          94 

3.36 SEM image of microcapsules synthesised from 2.2% of the PCL5-P(BnMA52-co- 

IEM8)  copolymer. PVA+ Arabic gum was used as a stabilizer   95 

3.37 TGA curve of the PCL5-P(BnMA52-co-IEM8) copolymer    96 

3.38 TGA curve of all microcapsules       97 

3.39 Structure of imidacloprid (IMI)       98 



xii 
 

3.40 UV-spectrometry calibration of imidacloprid (IMI) in water at 25 °C and the 

cumulative release profile of IMI in aqueous solutions    100 

3.41 SEM of microcapsules synthesised from the PCL5-P(BnMA52-co-IEM8) copolymer       

after treating with 0.1 M HCl aq. And 0.1 M NaOH aq.(B) overnight at 25 °C 100 

3.42 SEM of microcapsules synthesised from the PCL5-P(BnMA52-co-IEM8) copolymer 

after treating with HPLC water overnight at 25 °C     101 

4.1 Examples of PDMS modification via hydrosilylation reaction   114 

4.2 Chalk-Harrod hydrosilylation mechanism     117 

4.3 Structure of Karstedt’s catalyst       117 

4.4 Hydrosilylation of methacrylate monomer and h2PDMS hydride terminated 118 

4.5 1H NMR spectra of the feed mixture of MMA and h2PDMS and the product MMA-

PDMSn-MMA          119 

4.6 FTIR spectroscopy of h2PDMS and MMA-PDMSn-MMA    120 

4.7 Conversion of Si-H groups with time at different temperatures   120 

4.8 Structures of anti-Markovnikov and Markovnikov products   122 

4.9 13C spectroscopy of h2PDMS and MMA-PDMSn-MMA    122 

4.10 1H NMR spectrum of PDMS modification of all products   123 

4.11 SEC traces of h2PDMS and methacrylate (x) modified PDMS (x-PDMSn-x) 123 

4.12 MALDI-ToF MS spectrum of MMA-PDMS-MMA with the molecular composition     

(C2H6SiO)n (C7H15SiO2)2O.Na+        125 

4.13 A schematic reaction of PEG6-PDMS6-PEG6 and MMA2-PDMS6-MMA2  126 

4.14 1H NMR spectrum of PEG6-PDMS6-PEG6 triblock copolymer   127 

4.15 SEC elution traces of PEG6-PDMS6-PEG6 triblock copolymer   127 



xiii 
 

4.16 MALDI-ToF MS spectrum of PEG6-PDMS6-PEG6      128 

4.17 1H NMR spectra of the ABA triblock PMMA2-b-PDMS6-b-PMMA2  129 

4.18 FTIR spectrum of PMMA2-b-PDMS6-b-PMMA2 triblock copolymer  130 

5.1 Examples of pH-responsive polymer      139 

5.2 Proposed mechanism of acetal formation, the condensation reaction of          

alcohol and aldehyde, under acidic condition     140 

5.3 Some possible chemical reactions that influence soil pH   141 

5.4 Schematic reaction of diethylene glycol and benzaldehyde   142 

5.5 FTIR of α, ω-acetal synthesis from diethylene glycol and benzaldehyde  143 

5.6 1H NMR of α, ω-acetal synthesis from diethylene glycol and benzaldehyde 144 

5.7 13C NMR of α, ω-acetal synthesis from diethylene glycol and benzaldehyde 144 

5.8 FTIR of α, ω-acetal SET-LRP initiator      147 

5.9 13C NMR of α, ω-acetal SET-LRP initiator      147 

5.10 1H NMR of α, ω-acetal SET-LRP initiator      148 

5.11 Schematic diagram of the polymerisation of methyl acrylate (MA) and       

poly(ethylene glycol) acrylate (PEGA) from α, ω-acetal SET-LRP initiator  148 

5.12 1H NMR of polymerisation at different times of PMA80    149 

5.13 GPC trace of of polymerisation at different times of PMA80   149 

5.14 SEC trace of PMA40, PMA80, and PEGA40      150 

5.15 1H NMR of PMA80 after precipitation in methanol    151 

5.16 1H NMR of PEGA40 after dialysis against water     151 

5.17 The schematic diagram of PMA80 degradation study    152 

5.18 SEC traces (THF) of PMA80 after treating with an acid (TFA)   153 

5.19 1H NMR spectra of PMA80 after treating with an acid (TFA)   153 



xiv 
 

5.20 The proposed mechanism of acetal hydrolysis under acidic condition  164 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

Acknowledgments 

 

First, I would like to thank my supervisor, Professor Haddleton, for giving me the 

great opportunity to work in the Haddleton group and also for all his help and advice 

during the whole of my studies. The freedom that he gives me to design and work out 

the experiment is the valuable experience in which I believe is the best way to be trained 

and learn. Secondly, I would like to thank my sponsor, The Royal Thai Government 

(DPST), for the financial support throughout my studies in the UK.  

My next thanks go to the senior researcher in the group, Dr Paul Wilson, who has 

taught and helped me a lot since the first day I was here. It was a real pleasure to have 

you as a fume hood neighbour. I also would like to thank Dr Kristian Kempe for his advice 

from the beginning of my PhD. More importantly, it was a great opportunity to play 

football with Paul and was coached by Kristian, I am looking forward to the next Warwick 

polymer conference. 

I also would like to thank Raj, Kay and Dan for the great service and advice for 

SEC characterisation since the early stage of my polymer research. It has been a great 

experience for becoming a member of Haddleton group. I would like to thank you the 

member of the C210 office, Jenny, Danielle, Patrick, Rachel and Both Sams, for a big help 

and smile during past three years. I would also like to thank ex-group members: Zhang, 

Alex, Athina, Jamie, Waldron, and Vasiliki for their advice in the group meeting. In 

addition, my thanks go to the current group members: Chongyu, Richard, Nik, Atty, Glen, 

George, Pawel, Evelina and Alan for the nice working environment in the group. 

 I also want thank to my friends outside the group including, people in 

Manchester/Warwick Thai Society and Warwick staff football team for letting me join 

the team during my studies. There are also other people who I have known during the 

time I have spent in the UK.  

Finally, I want to thank my whole family, particularly my dad and mum who have 

supported my study from the beginning. I also thank my brother and all my lovely friends 

in Thailand, especially Siriporn and Ratchapan, without your love and motivation during 

the time here this would not be done. 



xvi 
 

Declarations 

 

Experimental results contained in this thesis are original research carried out by the 

author, unless otherwise stated, in the Department of Chemistry at the University of 

Warwick, between January 2014 and April 2017. No materials contained herein has been 

submitted for any other degree, or at any other institution. Results from other authors 

are cited in the usual manner throughout the text. 

 
Signature: 

 

 

Nuttapol Risangud 

Date: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

Abstract 

 
The objective of this work was to synthesise potential polymeric materials to use 

in agricultural applications, particularly as pesticide carriers. Synthesis of solid 

microcapsules, which contain hydrophobic pesticides, from functional polymers, was 

the primary goal. In addition, promising materials such as poly(dimethylsiloxane) 

(PDMS) and acid-labile containing polymers were also explored. The extraordinary 

reactivity of isocyanates towards nucleophiles offers an interesting synthetic tool as a 

catalyst-free reaction. Unfortunately, the high reactivity of isocyanate during the 

polymerisation process is a major concern, thus a facile approach in order to synthesise 

stable functional polymer was first investigated. 

Chapter 2 details the synthesis of two types of isocyanate side chain containing 

copolymers, poly(methyl methacrylate-co-isocyanatoethyl methacrylate) (P(MMAm-co-

IEMn)) and poly(benzyl methacrylate-co-isocyanatoethyl methacrylate) P(BnMAm-co-

IEMn), via Cu(0)-mediated controlled radical polymerisation. Both copolymers were 

functionalised with dibutylamine, octylamine, and (R)-(+)-α-methylbenzylamine, which 

further proved the successful incorporation of the isocyanate groups. Subsequently, 

P(BnMAm-co-IEMn) was used for the fabrication of liquid core microcapsules via an oil-

in-water interfacial polymerisation with diethylenetriamine as a crosslinker. 

Furthermore, chapter 3 illustrates the synthetic route of solid microcapsules 

containing hydrophobic pesticides; this illustrates the incorporation of biodegradable 

materials, modern controlled radical polymerisation techniques and isocyanate 

chemistry. An α, ω-poly (ɛ-caprolactone) SET-LRP initiator is first prepared by 

esterification to obtain a degradable halide initiator. Subsequently, biodegradable 

P(BnMAn-co-IEMn) was polymerised via the conditions from chapter 2. An isocyanate-

containing copolymer was used to fabricate a microcapsule which consists of 

imidacloprid (IMI), followed by water removal via spray dryer. 

Chapter 4 details an efficient tool to synthesise an amphiphilic copolymer 

containing PDMS. The versatility of hydrosilylation has been exploited for the 

preparation of an ABA block copolymer of PDMS and poly(ethylene glycol) methacrylate 

(PEGMA), which can be potentially used to prepare polymeric micelles. Also, to 



xviii 
 

demonstrate the adaptability of this method, different methacrylates and vinyl 

terminated methacrylic macromonomers were applied to modified hydride terminated 

PDMS. 

Finally, the α, ω-hydroxyl terminated poly(acetal) SET-LRP initiator was 

synthesised from the condensation and esterification reaction. A favourable Cu(0)-

mediated controlled radical polymerisation and degradation under an acidic conditions 

of acetal initiator was affirmed. Thus, this offers a great opportunity of using this initiator 

to synthesise isocyanate-containing copolymers, certainly, an acid-labile microcapsule 

to use as an agrochemical carrier is potentially achievable. 
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SEM – scaning electron microscopy 

SET-LRP – single electron transfer living radical polymerisation 

Sn(Oct)2– tin(II) ethyl hexanoate 

TEA – triethylamine 

TEMPO – 2,2,6,6-tetramethylpiperidynyl-N-oxy 

TFA –  trifluoroacetic acid 



xxi 
 

Tg – glass transition temperature 

TGA – thermogravimetric analysis 

THF –tetrahydrofuran 

TREN – tris(2-aminoethyl) amine 

UV-Vis – ultraviolet-visible



Chapter 1. Introduction  

 
 

1 
 

 

Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1. Introduction  

 
 

2 
 

1.1 Research motivation 

 

I was born in a farming family from an undeveloped area called Kalasin in 

Thailand. Agriculture is noted as the economic backbone of Thailand, and most other 

South East Asian countries, unfortunately, agronomics in those countries provides a 

deficient return resulting from several causes including; poor farmer education, land 

management, irrigation systems, and more importantly, expensive labour and 

agrochemical costs.  As a polymer chemist, the improvement of my beloved motherland 

has been set as the major objective during my academic career. Different agrochemicals 

have been used to increase crop productivity because of high global demand, however, 

conventional agrochemical solutions may cause too many problems to both humans and 

the environment. Hence, all of my research interests are based on the development of 

new materials to use in agricultural applications. 

1.2 Macromolecules and preparation techniques 

 

The word polymer has been used to represent a macromolecule which is 

synthesised from small molecules, called monomers. Both natural and synthetic 

polymers have been used in many applications including pharmaceutical, sport, 

agriculture, industry, electronic and astronomy [1-7]. Tunable physical and chemical 

characteristics make polymeric materials interesting and gain a huge interest from the 

industrial point of view as well as in academic research. There are different methods to 

classify polymers, however, polymer structure is used herein. Homopolymers and 

copolymers indicate a macromolecule that consists of only one type of monomer and 
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more than one monomer respectively. Furthermore, a copolymer can further be 

classified into different classes such as statistical, alternating, block and graft 

copolymers. 

 

Figure 1.1: Schematic illustration of different types of copolymers. 

Macromolecular preparations from monomers normally fall into two main 

polymerisation techniques: step-growth and chain-growth polymerisation. Step-growth 

polymerisation (also called condensation polymerisation) occurs from the reaction of A 

and B monomers, where A and B proceed to form covalent bonds via chemical reaction, 

for example, polyester (diol and dicarboxylic acid) and polyamide (diamine and 

dicarboxylic acid). The formation of the polymers via condensation occurs as a single-

step reaction and generates by-products such as water. Thus, high efficiency of water 
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removal is required to achieve the polymer at a desired molecular weight for this 

method of synthesis. 

 

Figure 1.2: Examples of polymer synthesis (polyester and polyamide) via condensation 
reaction. 
 
 

Conversely, chain-growth polymerisation (also known as addition 

polymerisation) occurs via an addition reaction, often via an active radical centre 

reacting with vinyl monomers, for example, ethylene (polyethylene), styrene 

(polystyrene) and methyl methacrylate (polymethyl methacrylate). Notably, ring-

opening polymerisation of cyclic monomers (and active centre reacts with monomers 

via opening cyclic ring) is also classified as an addition polymerisation. The degree of 

polymerisation depends on the number of used monomers. The active radical centre 

forms via an initiation reaction. Subsequently, the active chains are generated by the 

reaction of initiator radical to monomers. Thus, high molecular weight polymers can be 

immediately obtained unless termination reactions happen. The details of chain-growth 
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polymerisation will be presented in the following section with an example of a free 

radical polymerisation. 

 

Figure 1.3: Examples of polymer synthesis via chain-growth polymerisation. 

 

Figure 1.4: Plots of average molecular weight against monomer conversion for step-

growth and chain-growth polymerisation. 
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1.2.1 Step-growth polymerisation 

 

Step-growth polymerisation happens through a series of steps. The size of the 

macromolecule is typically represented via the degree of polymerisation (DP) in which 

step-growth polymerisation is usually displayed regarding the extent of reaction (p): the 

mole fraction of reacted functional group. Thus, the unreacted functional group fraction 

is represented by the term 1-p. For example, considering the polymerisation of A and B 

monomer in which A reacts with B to form AB i-mer, the number average degree of 

polymerization (DPn) is considered from the ratio of the total number of initial functional 

groups A ([N]0) to the number of functional groups A at any extent of reaction ([N]t). 

Degree of polymerisation =
[N]0

[N]t
 

Considering the kinetics of the reaction of A and B monomers, to simplify the 

kinetic scheme the reactivity of functional A and B is equal. 

A + B                       AB 

The overall polymerisation rate is k[A][B] (catalyst step growth polymerisation), 

which the same reactivity and monomer A and B is represented as M. 

 

Rate of Polymerisation = 𝑘[𝑀]2 

𝑑[𝑀]

𝑑[𝑡]
=  𝑘[𝑀]2 

∫
𝑑[𝑀]

[𝑀]2

𝑀𝑡

𝑀0

=  ∫ 𝑘𝑑𝑡

𝑡

0
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1

[𝑀]𝑡
= 𝑘𝑡 +

1

[𝑀]0
  

[𝑀]0

[𝑀]𝑡
= 𝑘𝑡[𝑀]0 + 1 

 

Therefore, the degree of polymerisation can be derived as follows: 

Degree of polymerisation =  
1

(1 − 𝑝)
=   𝑘𝑡[𝑀]0 + 1 

 

1.2.2 Chain-growth polymerisation 

Chain-growth polymerisation occurs with the initiation of active growth centres 

which subsequently react with a reservoir of vinyl monomers.  At least three reactions 

occur in chain-growth polymerisation: initiation, propagation and termination. Free 

radical polymerisation (FRP) is used herein to illustrate the characteristics of this type of 

polymerisation. The first step of a free radical polymerisation is initiation in which a 

radical is generated from initiator decomposition. Consequently, an initiating primary 

radical is formed resulting from the addition reaction of radical initiator and monomer. 

There are different types of initiators such as organic peroxides, hydroperoxides, redox 

systems, electromagnetic radiation, and azo compounds. A commonly used type 

initiator is an organic peroxide such BPO (benzoyl peroxide), because of the low 

dissociation energy of the O-O bond that breaks to generate primary oxygen centered 

radicals. Furthermore, azo compounds are also favoured due to the stability of N2 which 

drives the decomposition of initiator to form cyano isopropyl radicals.  The efficiency (f) 

of the initiator, the ratio of radicals incorporated into the polymer and the total primary 

radicals generated form the initiators should be considered. 
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Figure 1.5: Examples of free radical initiation reactions. 

 

Considering the decomposition of azo or peroxide initiator, one molecule 

generates two active radicals: 

I-I                                2I● 

The concentration of active radicals at a particular reaction time (t) is 

represented as: 

𝑅𝑖 =
𝑑[𝐼●]

𝑑𝑡
= 2𝑓𝑘𝑑[𝐼] 

Where f is the initiator efficiency. The next step is propagation in which primary 

radicals react with monomers (M) to generate active chains. 

𝐼●                    𝐼𝑀●                     𝑃● 

The rate of propagation is described as: 
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𝑅𝑝 =
−𝑑[𝑀]

𝑑𝑡
= 𝑘𝑝[𝑀][𝑃●] 

 

Finally, the termination processes take place, however, this process also occurs 

during the polymerisation resulting in the removal of active radicals. There are two 

principal modes of termination: combination and disproportionation, as shown in figure 

1.6. 

 

Figure 1.6: Examples of combination and disproportionation termination reactions. 

 

One termination reaction requires two polymer radicals. Thus the rate of 

termination is represented as: 

𝑅𝑡 =
−𝑑[𝑃●]

𝑑𝑡
= 2𝑘𝑡[𝑃●]2 

In order to determine the rate of propagation, a steady state of the total radical 

concentration is assumed. Thus, a constant total concentration of free radical is 

calculated from the equal rate of initiation and termination, this is named stationary-

state radical concentration. 
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2𝑓𝑘𝑑[𝐼] =  2𝑘𝑡[𝑃●]2  

Or 

[𝑃●] = √𝑓 (
𝑘𝑑

𝑘𝑡
) [𝐼] 

 
Finally, the propagation rate of free radical polymerisation can be derived as: 

 
 

𝑅𝑝 = 𝑘𝑝[𝑀]√𝑓 (
𝑘𝑑

𝑘𝑡
) [𝐼] = 𝑘𝑎𝑝𝑝[𝑀][𝐼]1/2 

 

 

1.2.3 From free radical polymerisation to controlled radical 
polymerisation 

 

Free radical polymerisation (FRP) has great industrial interest due to its 

robustness and ease of scale up. Nevertheless, FRP usually provides relatively broad 

molecular weight distributions due to a lack of selectivity, which leads to bimolecular 

termination and disproportionation in the polymerisation as well as a lack of end-group 

fidelity which results in limitations for certain applications. Living radical polymerisation 

(LRP) offers an advantage over several limitations of FRP, particularly the variety of 

polymer architectures and functionalities. An ideal living radical polymerisation is 

described as a chain-growth reaction with no transfer reaction. The kinetic scheme for 

LRP can be compared to the FRP reaction as follows: 

Initiation step: 

                                                                      M + I                         𝑃1
● 

Propagation step: 
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 𝑃1
● + M                          𝑃2

● 

 𝑃𝑖
●  + M                           𝑃𝑖+1

● 

The rate of propagation step: 

𝑅𝑝 =
−𝑑[𝑀]

𝑑𝑡
= 𝑘𝑝[𝑀][𝑃●] 

 

To follow the distribution of polymer chains after the propagation reaction (i-

mers), the change of concentration of active radical needs to be considered. In addition, 

the term of kinetic chain length (v) (the ratio of the number of propagation steps to 

initiation step) is also introduced. 

Considering when i = 1 

−
𝑑[𝑃●]

𝑑𝑡
= 𝑘𝑝[𝑀][𝑃●] 

Chain rule is applied: 

𝑑[𝑃●]

𝑑𝑡
=  

𝑑[𝑃●]

𝑑𝑣

𝑑𝑣

𝑑𝑡
 

 

The change of kinetic chain length over time is detailed as follows: 

𝑑𝑣

𝑑𝑡
=  −

1

[𝐼]0

𝑑[𝑀]

𝑑𝑡
= 𝑘𝑝[𝑀] 

𝑑[𝑃●]

𝑑𝑡
=  

𝑑[𝑃●]

𝑑𝑣
𝑘𝑝[𝑀] 

Therefore, 

−
𝑑[𝑃1

●]

𝑑𝑣
= [𝑃●] 

∫
1

[𝑃●]
 𝑑[𝑃●] = − ∫ 𝑑𝑣 
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[𝑃1
●] =  [𝑃1

●]0𝑒−𝑣 = [𝐼]0𝑒−𝑣 

 

The concentration of i-mers radical (i = 1) as the function of kinetic chain length 

is represented by the above equation, however, the chain length distribution of the 

polymers is complicated due to the active radical chain reacting with the monomer to 

generate i-mer. 

 𝑃1
● + M                            𝑃2

● 

𝑃2
● + M                           𝑃3

● 

𝑑[𝑃2
●]

𝑑𝑡
= 𝑘𝑝[𝑀][𝑃1

●] − 𝑘𝑝[𝑀][𝑃2
●] 

𝑑[𝑃2
●]

𝑑𝑡
= 𝑘𝑝[𝑀]([𝑃1

●] − [𝑃2
●]) 

𝑑[𝑃2
●]

𝑑𝑣
+ [𝑃2

●] = [𝑃1
●] =  [𝐼]0𝑒−𝑣 

𝑑[𝑃2
●]

𝑑𝑣
+  [𝑃2

●] = [𝐼]0𝑒−𝑣 

[𝑃2
●] = 𝑣[𝐼]0𝑒−𝑣 

When i = 3  

𝑑[𝑃3
●]

𝑑𝑡
= 𝑘𝑝[𝑀][𝑃2

●] − 𝑘𝑝[𝑀][𝑃3
●]   

𝑑[𝑃3
●]

𝑑𝑡
= 𝑘𝑝[𝑀]([𝑃2

●] − [𝑃3
●])   

𝑑[𝑃3
●]

𝑑𝑣
+  [𝑃3

●] = [𝑃2
●] =  𝑣[𝐼]0𝑒−𝑣 

𝑑[𝑃3
●]

𝑑𝑣
+  [𝑃3

●] = 𝑣[𝐼]0𝑒−𝑣 

[𝑃3
●] =

1

2
𝑣2[𝐼]0𝑒−𝑣 
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The population of i-mer during polymerisation is described by the kinetic chain 

length as follows: 

 

[𝑃𝑖
●] =  

1

(𝑖 − 1)!
 𝑣𝑖−1[𝐼]0𝑒−𝑣 

 

This leads to the population of activated radicals (Xi) in polymerisation (i-mer), 

the ratio of mole of i-mer to the initial concentration of initiator. Thus, the mole fraction 

distribution of i-mer in function of kinetic chain length is represented as follows: 

[𝑥𝑖] =  
𝑣𝑖−1𝑒−𝑣

(𝑖 − 1)!
 

 

Figure 1.7: The distribution of chains in an ideal living radical polymerization when v = 

100. 

The concept of living radical polymerisation offers a powerful tool to synthesise 

macromolecules with a well-defined material architecture as well as chemical and 

physical properties, however, termination reactions cannot be disregarded in LRP. Thus, 

the term of “reversible deactivation radical polymerisation” (RDRP) is often more 
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favoured than LRP. RDRP benefits from the advantages of free radical such as fast 

polymerisation, easy to scale up, and a wide range of suitable monomers, furthermore, 

living radical polymerisation characteristics, including narrow molecular weight 

distribution, complex polymer architecture, and end-group fidelity, also contribute in 

RDRP. The key process of the RDRP technique is a reversible step between dormant 

species and active radicals, with a very high concentration of dormant species compared 

to active species. Notably, the significant low concentration of active radical species is 

also necessary. A reversible and dynamic equilibrium process is typically accommodated 

by a catalyst or physical stimulus. 

 

Figure 1.8: Reversible and dynamic equilibrium between active radical growing species 

and dormant species. 

 

The kinetic scheme of reversible deactivation radical polymerisation (RDRP) is 

illustrated below: 

Propagation step: 

−
𝑑[𝑀]

𝑑𝑡
= 𝑘𝑝[𝑀][𝑃𝑖

●] 

−
𝑑[𝑀]

[𝑀]
= 𝑘𝑝[𝑃𝑖

●]𝑑𝑡 

 When [Pi
●] is constant: 
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𝑑[𝑀]

[𝑀]
= −𝑘𝑎𝑝𝑝𝑑𝑡 

∫
𝑑[𝑀]

[𝑀]

𝑀𝑡

𝑀0

= ∫ −𝑘𝑎𝑝𝑝𝑑𝑡

𝑡

0

 

𝑙𝑛
[𝑀]0

[𝑀]𝑡
= 𝑘𝑎𝑝𝑝𝑡 

 

1.2.4 Copper-mediated polymerisation 

Transition metals have been commonly used in many organic addition reactions 

to form chemical bonds, for example, carbon-carbon, carbon-halogen, and carbon-

hydrogen [8, 9]. The concept of using transition metals in radical polymerisations applies 

from the radical addition reaction, for example, the reaction between an olefin and 

carbon tetrachloride by using a ruthenium (II) complex as the catalyst [10]. However, 

the discovery and the development of transition metals including ruthenium, cobalt and 

copper as efficient catalysts for controlled radical polymerisation began in early 1990 

with the polymerisation of vinyl monomers [11-18]. Thousands of publications 

describing transition metal-catalysed controlled polymerisation have been published 

[19-21]. Active radicals are generated by the homolytic bond cleavage of a carbon-

halogen bond in an initiator [22]. 

 

Figure 1.9: Model of copper mediated polymerisation technique. 
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Many transition metals, especially from groups 8-11 including ruthenium, iron, 

nickel and copper, have been used in controlled radical polymerisation. However, 

copper complexes are most commonly used and are often highly effective. The most 

widely used copper(I) catalysed polymerisation is known as atom transfer radical 

polymerisation (ATRP) [23,24]. There are several factors to consider when looking at 

ATRP efficiency, including the monomer concentration and ligand/copper complex, 

monomer solubility, monomer and ligand compatibility. Conversely, Cu(0) is introduced 

for use in controlled radical polymerisation via a nascent copper(0) particle, which is 

usually produced in situ by a rapid disproportion from Cu(I) in the presence of nitrogen 

donor ligands, usually in a polar solvent such as dimethylsulfoxide (DMSO), methanol 

(MeOH), 2-isopropanol (IPA) or ethanol (EtOH). During the activation process of the 

carbon-halide initiator, two metal mediated reactions occur: production of active radical 

from the reaction of Cu (0) and formation of a deactivated radical and a Cu(II) halide. 

Both processes occur via a one electron transfer mechanism with significant low 

activation energy thus, polymerisation can occur at low temperature. Controlled radical 

polymerisation from Cu (0) is often named as single electron transfer living radical 

polymerisation (SET-LRP). 

 

1.2.5 Single electron transfer living radical polymerisation (SET-
LRP) 

 

SET-LRP offers well-defined polymer architectures, molecular mass, narrow 

molar mass dispersity and high-end group fidelity polymers [25]. Since SET-LRP was 

introduced two decades ago, many publications have described this polymerisation 
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technique for a variety of monomers including acrylates, methacrylates, and 

acrylamides [26-31]. In addition, the capacity of in situ chain extension and block 

copolymerisation to often be carried out within an hour at ambient temperature results 

in SET-LRP being used over other reversible deactivation radical polymerisation 

techniques. Notwithstanding, monomer and solvent are considered as the major 

limitations of SET-LRP. Highly reactive radicals of some monomers, such as vinyl 

chloride, show difficulty in obtaining well-defined polymers. On the other hand, less 

reactive monomers such as N-vinylpyrrolidone and vinyl acetate (VP) are challenging to 

be polymerised. The copper (0) catalyst can be employed in different forms including 

copper powder and copper wire, interestingly, copper wire provides some advantages 

such as polymerisation rate, catalyst preparation, and purification processes [32, 33]. In 

general, the copper wire surface does not contain 100% of Cu (0).  The copper oxide 

complex (CuxO) is usually detected due to the reaction of copper wire with oxygen in the 

atmosphere. The slow polymerisation rate during an induction period is the initial 

evidence of this assumption [34-37], thus, removal of CuxO is a crucial procedure. A 

simple method can be exploited via different chemicals including hydrazine, nitric acid, 

glacial acetic acid, and hydrochloric acid [38]. Notably, acid is more favoured to use due 

to lower toxicity as compared to hydrazine.  

 

Most SET-LRP initiators contain a halide leaving group and an electron-

withdrawing substituent. The polymerisation efficiency directly depends upon both the 

physical and chemical properties of the initiator, including a solubility match with 

monomers, activation energy to generate radical, and stability/reversibility of the 
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radical. Notably, solvent selectivity is a crucial part for SET-LRP polymerisation. Dimethyl 

sulfoxide (DMSO) [39-41], dimethyl formamide (DMF) [42-44], and aqueous media [30, 

45-48] have all been intensively studied because well-defined polymers with narrow 

molar mass distribution and high end-group functionality can be obtained. In addition, 

alcohols, including EtOH, IPA, MeOH, and t-BuOH [49-53] are also reported as good 

solvents for Cu(0)-mediated polymerisation. Interestingly, polymerisation in poor 

disproportionation solvents, including toluene, acetone, acetonitrile (MeCN) and 

dichloromethane (DCM), shows that the disproportionation process is important for 

Cu(0)-mediated controlled radical polymerisation. The lack of end group fidelity and 

broad molar mass distribution indicates that solvent plays a vital role in polymerisation 

[54, 55]. 

 

 

Figure 1.10: The proposed mechanism of SET-LRP. 
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Noteworthy, polymer synthesis without further complicated purification offers 

an advantage, thus binary phase polymerisation has been investigated to minimise the 

cost of polymerisation. Cu(0)-mediated polymerisation of butyl acrylate (BA) in DMSO 

was reported; a polymer layer separated from the solution mixture after reaching a 

certain molecular weight [56]. In the proposed SET-LRP mechanism (Figure 1.10), the 

ligand plays an important role during the disproportionation and comproportionation 

process. Interestingly, the optimisation of the [initiator]: [ligand]: Cu(II)Br2 ratio is 

required to avoid bimolecular termination to obtain a well-defined polymers [57, 58]. 

The key feature of deactivated reversible radical polymerisation is to maintain the 

dormant species at high concentration compared to the active species. N-Containing 

ligands such as tris[2-(dimethylamino)ethyl]amine (Me6Tren) are the most widely 

exploited to use as a catalytic system for SET-LRP [26, 27, 40, 46, 52, 59], in addition, 

other commercial ligands including tris(2-aminoethyl)amine (TREN) [48,60] and N, N, N’ 

, N’’ , N’’ -pentamethyldiethylenetriamine (PMDETA) [61-64] also have been reported as 

good ligands for Cu(0)-mediated polymerisation with respect to end-group fidelity and 

molecular mass distribution. 
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Figure 1.11: Common monomers in SET-LRP. 

 

Figure 1.12: Common ligands in SET-LRP. 

 

 

Figure 1.13: Schematic diagram of Me6Tren with CuBr (left) and CuBr2 (right). 
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1.2.6 Other RDRP polymerisation techniques 

There are also other RDRP techniques apart from copper-mediated 

polymerisation that have been introduced and exploited to give well-defined polymers 

in the last few decades including, reversible addition-fragmentation chain transfer 

polymerisation (RAFT), nitroxide mediated polymerisation (NMP) and ring opening 

polymerisation (ROP). 

 

NMP, was first introduced in the early 1980s [65] and expanded by Georges et. 

al. in 1993 describing the polymerisation of styrene by using benzoyl peroxide 

(BOP)/2,2,6,6-tetramethylpiperidynyl-N-oxy (TEMPO) as initiator [66]; it is classified as 

RDRP due to the reversibility of the process. An NMP initiator is known as an 

alkoxyamine; homolytic cleavage of the alkoxyamine starts the polymerisation via the 

radical addition reaction of a radical carbon centre to a vinyl monomer. Subsequently, 

alkoxyamines are reformed to maintain the dormant species at high concentration 

(Figure 1.14). Different NMP initiators have been introduced, for example TEMPO and 

2,2,5-trimethyl-3- (1-phenylethoxy)-4-phenyl-3-azahexane. A wide range of monomers 

can be polymerised via this technique, mostly vinyl monomers such as styrene, acrylates 

and methacrylate derivatives [67]. 
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Figure 1.14: The proposed mechanism of NMP. 

 

RAFT was discovered at Commonwealth Scientific and Industrial Research 

Organization (CSIRO), Australia, in 1998 [68]. The concept of RAFT is the combination of 

conventional free radical polymerisation and the reversible chain transfer process by 

chain transfer agent (CTA). Trithioester compounds such as dithiobenzoate, 

trithiocarbonate and dithiocarbamate are generally used to assist the chain transfer 

process. The polymerisation is initiated via radical generation from a conventional FRP 

initiation process. The main advantage of RAFT is a variety of accessible monomers such 

as styrene, acrylates, methacrylate, and vinyl acetate [69, 70]. Of note is that specific 

CTA and monomers are required to obtain a controlled polymerisation. 
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Figure 1.15: The proposed mechanism of RAFT. 

 

1.2.7 Copolymers 

Chain-growth polymerisation, particularly reversible deactivation radical 

polymerisation (RDRP), provides a broad range of accessible polymer architectures 

compared to step-growth polymerisation. Conventional free radical polymerisation is an 

effective technique to synthesise simple copolymers such as random copolymers, 

however, this technique struggles to provide more complex polymer architectures. 
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Conversely, RDRP has been known as a powerful tool to exploit complicated polymer 

structure such as block, graft and star copolymers [71-73]. In general, block copolymers 

are prepared via different approaches such as macroinitiators and chain extension. 

Notably, polymerisation via RDRP techniques offers an excellent possibility for chain 

extension because of high end-group fidelity [27, 74-77]. Copolymer synthesis via 

macroinitiator techniques will be represented in a later chapter of this thesis; 

homopolymers are usually functionalised by using organic reactions to obtain a 

macroinitiator [78-80], however, the difficulty of synthesis of complex copolymers by 

FRP is represented via the different reactivity of monomers. 

 

M1
●

 + M1                           M1M1
●

 

M1
●

 + M2                           M2M1
●

 

M2
●

 + M1                           M1M2
●

 

M2
●

 + M2                           M2M2
●

 

The rate of reaction: 

𝑅11   =   𝑘11[𝑀1
●][𝑀1] 

𝑅12   =   𝑘12[𝑀1
●][𝑀2] 

𝑅21   =   𝑘11[𝑀2
●][𝑀1] 

𝑅22   =   𝑘11[𝑀2
●][𝑀2] 

 The change of concentration of monomer M1 and M2: 

−
𝑑[𝑀1]

𝑑𝑡
=  𝑘11[𝑀1

●][𝑀1] + 𝑘21[𝑀2
●][𝑀1] 

−
𝑑[𝑀2]

𝑑𝑡
=  𝑘12[𝑀1

●][𝑀1] + 𝑘22[𝑀2
●][𝑀2] 
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 To simplify the copolymerisation reaction, the stationary-state of radical 

concentration is employed: 

𝑘12[𝑀1
●][𝑀2] =  𝑘21[𝑀2

●][𝑀1] 

  

This leads to the copolymer composition equation as shown below: 

𝑑[𝑀1]/𝑑𝑡

𝑑[𝑀2]/𝑑𝑡
=

[𝑀1]

[𝑀2]

(
𝑘11

𝑘12
) [𝑀1] + [𝑀2]

(
𝑘22

𝑘12
) [𝑀2] + [𝑀1]

 

𝑟1 =  
𝑘11

𝑘12
 , 𝑟2 =  

𝑘22

𝑘21
 

 

The monomer reactivity ratio is described as r; the possibility of monomer to 

either self-propagate or cross propagate. This term is usually used to predict copolymer 

structure, for example, the alternating copolymer is synthesised when r value is close to 

zero. In addition, block copolymer from free radical polymerisation can be obtained 

when r1*r2 is ≥ 1 (each radical trends to self-propagate and eventually cross-propagate). 

Interestingly, the reactivity of the monomer depends upon the temperature. To 

conclude this section, reversible deactivation radical polymerisation offers an extensive 

copolymer design with a facile polymerisation process. 

 

1.3 Current pesticide encapsulations 

The world’s population has dramatically increased over the past few decades 

which has led to a remarkable increase in food demand [81]. Consequently, different 

state-of the-art technologies, for example, fertilisers, herbicides, pesticides, and growth 
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hormones have been introduced in the agricultural field to enhance and maximise crop 

production [82-87]. More than one million tonnes of agrochemicals are applied during 

farming each year. However, only small amounts of chemicals reach their targets 

because of several factors, including degradation by photolysis, leaching, hydrolysis, 

evaporation, washing away by rain, and microbial activity. Thus, more chemicals are 

applied to maintain the effective level than should be required, which increases an 

ecosystem toxicity. Hence, the term controlled release formulations (CRFs) has been 

introduced to offer a sustainable release as well as reduce an environmental concern 

[88-90]. Pesticides are commonly prepared from different formulations such as 

emulsion, suspension, and solution [91]. Unfortunately some formulations, such as 

wettable powders, have recently been banned from agricultural registration authorities 

due to safety concerns, thus, polymeric pesticide encapsulation has been introduced to 

provide a safer and more stabilised formulation [92-94]. 

 

1.3.1 Polymer based materials 

Polymeric encapsulation, to apply as a guard material for agrochemical 

protection, is widely used and intensively researched. There are many active ingredients 

(AI) which are encapsulated by polymer based techniques including polymeric micro- 

and nanocapsule, micro- and nanogel, and micelles. These smart delivery systems offer 

an advantage over conventional agrochemicals, particularly in improving chemicals lost 

during an application before reaching the target. 

Formation of micelles arises from the different solubility properties of an 

amphiphilic copolymer in binary phase solutions. Characteristics of the micelle and their 
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encapsulation properties depend upon how they are prepared; a micelle is an ideal 

vehicle for the encapsulation of hydrophobic agrochemicals, however, to encapsulate 

hydrophilic chemicals inverse-micelles have been used. Several factors could tune 

micelle characteristics, including, appropriate solvents, copolymer concentration, 

amphiphilic blocks, the degree of polymerisation, and polymer architectures. 

Interestingly, the radius of gyration is directly proportional to the hydrophilic part of the 

copolymer, in other words, an amphiphilic copolymer with higher degree of hydrophilic 

segment provides a larger micelle. Materials that have been widely used to prepare the 

hydrophilic segment of micelles are often based on polyethylene glycol (PEG) due to 

several advantages, including, their high-water solubility, cost effectiveness, and low 

toxicity to both humans and the environment [95-97]. 

 

 

Figure 1.16: Schematic representation of micelle formation to encapsulate a 

hydrophobic pesticide. 

 

Different insecticides have been entrapped via micelle formation to protect 

them from environmental degradation and to increase the solubility and stability of 

water insoluble pesticides. The concept of using a surfactant to enhance the stability of 
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pesticides began a long time ago; Lukas Schreiber investigated the influence of cuticular 

wax of barley leaves (tetracosanoic acid) on stabilisation of pentachlorophenol (PCP) 

[98]. An amphiphilic copolymer containing a PEG hydrophilic segment offered 

outstanding properties, including tremendous micelle stability resulting from its water 

solubility. The PEG derivative copolymers have been widely used to capture several 

pesticides. A. C. Watterson and coworkers introduced amphiphilic copolymers for 

controlled release formulation of carbofuran [99]. They illustrated the carbofuran 

encapsulation via micelle formation; pesticide micelle formulation showed the 

improvement of insect control due to slow release. In addition, other insecticides, 

including imidacloprid, β-cyfluthrin, thiamethoxam, and triazophos, are also 

encapsulated via micelle formulation [100-104]. Similar micelle preparation methods 

were applied; a significant improvement on pesticide release was obtained after 

applying a polymeric micelle formulation compared to the commercial pesticide. In 

addition, amphiphilic chitosan carriers to deliver imidacloprid (IMI) was recommended 

by Min Li and colleagues. The result indicated a reasonable preservation of IMI in a PLA-

chitosan formulation with a controlled release profiles [105]. Interestingly, many 

synthetic amphiphilic copolymers and surfactants have also been used to provide a 

controlled release micelle formulation. For example, an amphiphilic block copolymer of 

benzyl methacrylate (BnMA) and methoxyhexa (ethylene glycol) methacrylate (HEGMA) 

was synthesised via group transfer polymerization (GTP). Consequently, a micelle was 

formed to assemble diazinon [106]. In addition, other materials such as sodium dodecyl 

sulphate (SDS), Tween 20, modified clay and poly (succinimide) star copolymers, also 
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have been used to encapsulate different pesticides including chlorpyriphos and 

imidacloprid [107-109]. 

 

Micro- and nanogels are defined as the particles dispersion in an aqueous 

solution; a hydrogel is linked with either physical or chemical interactions. Micro- and 

nanogels with an encapsulation of hydrophobic active ingredients are formed as follows; 

amphiphilic copolymers are dispersed and form a controlled aggregation. Subsequently, 

several interactions between the hydrophobic active ingredient and polymer matrix, 

including electrostatic and Van der Waals forces, lead to high efficiency of hydrophobic 

active ingredient encapsulation. Some applications of using micro- and nanogel have 

been reported, particularly for application in medical, industrial, and agricultural fields 

[110-118]. Paula et. al. described the use of chitosan to synthesise nano-gels to entrap 

Lippia sidoides essential oil (commonly used as antimicrobial). The comparison of 

encapsulated oil and pure oil was studied with a slow release profile with the acceptable 

efficiency of larvae treatment reported [119]. 

 

Polymeric micro- and nanocapsules are also widely used to increase the 

agrochemical efficiency. Notably, the factor that makes polymeric capsules look 

promising to utilize in modern crop protection technology is that the material wall can 

be easily varied. A natural material, such as carbohydrate derivatives, offers a non-toxic 

by-product after degradation and can also be relatively low cost compared to synthetic 

polymers. Conversely, synthetic materials often degrade to release non-toxic fragments 

after a certain time, including poly (ethylene glycol) (PEG) and polycaprolactone (PCL). 
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Different techniques are commonly used to prepare micro- and nanocapsules, including 

emulsion polymerisation, layer-by-layer assembly, solvent evaporation, and interfacial 

polymerisation [120-124]. 

 

For example, sodium alginate has been used to prepare micro- and nanocapsules 

to encapsulate different pesticides including, imidacloprid (IMI), azadiractin (Aza), and 

chlorpyrifos [125-127]. Pesticide stability was significantly improved after 

encapsulation. Wenbing Zhang et al. introduced a controlled release formulation of 

prochloraz pesticide. The stability of pesticide was detected, although the microcapsules 

were treated under different conditions including UV radiation and alkaline solution. 

Interestingly, the slow release profile of prochloraz also was observed for up to 60 days 

[128]. In addition, using chitosan to entrap pesticides, with a reasonable loading 

efficiency as well as pesticide stability, has also been reported [129]. Noteworthy, 

synthetic polymers can also play a major role in agrochemical encapsulations, for 

example PEG, PCL, poly (methyl methacrylate) (PMMA), poly (benzyl methacrylate) 

(PBnMA), polydopamine (PA), and poly(lactic-co-glycolic acid) (PLGA) [130-136]. As an 

illustration, Wenbo Sheng et al. prepared an avermectin (AV) microcapsule composed 

of poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) and polydopamine (PDA). 

They indicated that the sustainable release of the pesticide was observed [137]. 
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1.4 Spray drying and encapsulated applications 

 
Spray-drying is a powerful microencapsulation technique (single-step assembly) 

for different ingredients in many applications, for example, food materials, cosmetics, 

and agrochemicals [138-143]. The technique is the transformation of liquid to a dried 

powder [144]; four consecutive steps occur including, atomization, droplet-hot gas 

contact, evaporation of water, and powder-humidity separation. In the beginning, 

atomization produces a small liquid droplet to maximise the heat transfer of particle and 

hot air in the spray drying chamber. The droplet contacts with hot gas resulting in water 

evaporation; the temperature of the liquid droplet increases to a stable value caused by 

the heat transfer from the hot gas to particle droplet which provides a vapour pressure 

difference.  Once the water content in the droplet reaches a critical value, dried product 

is immediately formed. Finally, dried powder is directly separated from humidity 

through the cyclone chamber, where the product stays at the base. On the other hand, 

less dense product (humidity) is removed [145,146]. Different forms can be applied via 

this technique including emulsion, suspension, solution, and slurries [147-151]. Probably 

the most common example of this technique is dried milk manufacture [152-153]. 
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Figure 1.17: Schematic diagram of spray dryer operation. 

 

The spray drying process is commonly used for the encapsulation of oils, in 

general, samples are prepared from micro/nanoemulsion. The surfactant which acts as 

the emulsion emulsifiers is carefully chosen to optimise the highest oil encapsulation 

efficiency. The selection of the wall material is crucial; the encapsulated material could 

determine the property of both emulsion droplet and dried powder particle. Both 

synthetic and natural materials, for example, ethyl cellulose, maltodextrin, gum, 

poly(lactic-co-glycolic acid) (PLGA), chitosan, and poly(ɛ-caprolactone) (PCL), are widely 

applied to encapsulate different AIs in various applications, particularly food, cosmetic, 

medical delivery and crop protection [154-159]. Interestingly, maltodextrin offers 

several advantages including high water solubility, low cost and less agglomeration after 

spray drying. In addition, Arabic gum (GA) is also mostly used both as emulsifier and shell 
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material. The stable emulsion from Arabic gum solution is considered as a convenient 

method to synthesise chemical encapsulation [160-163]. An example of using synthetic 

polymer materials to encapsulate an active ingredient via the spray drying technique 

was introduced by Fontana et al.; where they used ɛ-PCL to encapsulate 

dexamethasone. Spherical particles were observed by SEM characterisation where high 

encapsulated yield was also obtained [143].
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This chapter details the synthesis of two types of isocyanate side chain 

containing copolymers, poly(methyl methacrylate-co-isocyanatoethyl methacrylate) 

(P(MMAm-co-IEMn)) and poly(benzyl methacrylate-co-isocyanatoethyl methacrylate) 

(P(BnMAm-co-IEMn)), which were synthesised via Cu(0)-mediated controlled radical 

polymerisation. Polymerisation proceeded to a reasonably high conversion giving 

polymers of relatively narrow molar mass distributions. The incorporation of the bulky 

aromatic groups in the latter copolymer rendered it sufficiently stable towards 

hydrolysis and enabled the isolation of the products. Both P(MMAm-co-IEMn) and 

P(BnMAm-co-IEMn) were functionalised with dibutylamine, octylamine, and (R)-(+)-α-

methylbenzylamine, which further proved the successful incorporation of the 

isocyanate groups. Furthermore, P(BnMAm-co-IEMn) was used for the fabrication of 

liquid core microcapsules via oil-in-water interfacial polymerisation with 

diethylenetriamine (DETA) as a crosslinker. The particles were obtained in the size range 

of 10 to 90 μm in diameter. 

 

2.1 Background 

2.1.1 Isocyanate-containing copolymers 

Searching for the term “Isocyanate copolymer” provides more than one 

thousand publication hits on “Web of knowledge”, indicating a large contribution of 

isocyanate chemistry to polymer research; the isocyanate functional group is 

represented as R-N=C=O [164]. The extraordinary reactivity of isocyanates towards 

nucleophiles, which is attributed to the high electronegativity of oxygen and nitrogen 

generating a very electrophilic carbon centre, is of great interest as a synthetic tool. As 
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a result, isocyanate functional groups are frequently employed as the reactive 

intermediates [165]. They are, however, highly sensitive to moisture. Dry reaction 

conditions, or the use of a glove box is frequently required to conduct successful 

reactions or for storage. Isocyanate-containing polymers are generally prepared through 

either modification of the initiator incorporating [166,167] an isocyanate containing 

monomer [168] or post-polymerisation modification [169]. Chemical protection can be 

used to preserve isocyanate functionality during a reaction, followed by deprotection 

and subsequent modification [170]. Alternatively, Endo and coworkers incorporated 

styrene monomers into polyisocyanates to improve the stability of the isocyanate 

functional group [171].  

 

Use of isocyanatoethyl methacrylate (IEM), to provide isocyanate-containing 

copolymers, has been suggested with many polymerisation techniques. Eick and 

coworkers introduced polymerisation of IEM via conventional free radical 

polymerisation; they suggested a successful synthesis achieved as isocyanate 

absorbance was detected in FTIR [172]. However, controlled radical polymerisation 

offers several advantages over free radical polymerisation as it was previously 

mentioned in chapter 1, thus, in order to prepare a well-defined isocyanate containing 

copolymer, reversible deactivation radical polymerisation of IEM is required, for 

example, both Hawker and coworkers and Perrier and coworkers, reported the 

reversible deactivation radical polymerisation of IEM via RAFT polymerisation to prepare 

nanoparticles by intramolecular cross-linking and modification of isocyanate functional 

groups, respectively [168,173]. To the best of our knowledge, Cu(0)-mediated 
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polymerisation of this monomer has not been previously reported. Furthermore, with a 

lack of control over polymer composition, and high temperature requirements, there 

are still major barriers to the full exploitation of this monomer. 

 

2.1.2 Polycondensation interfacial polymerisation 

Polymeric capsules have been intensively studied and applied to encapsulate 

many active ingredients (AI) in different applications, including, household chemicals, 

food ingredients, agrochemicals, cosmetics, and pharmaceuticals [174-178]. To 

synthesise polymeric capsules, polycondensation interfacial polymerisation is generally 

used; this is the chemical encapsulation technique which occurs at the interface of two 

immiscible liquids [179]. An emulsion droplet is generated followed by the condensation 

reaction of functional monomers at a droplet interface, where polymeric capsules 

complete the wall formation [180].  

 

Emulsion encapsulation is composed of three components, including water, oil, 

and surfactants. There are two main emulsion formulations used. The system that an oil 

phase disperses in an aqueous phase is named as an oil in water emulsion (O/W). 

Conversely, the term of water in oil emulsion (W/O) represents the opposite phase 

dispersion [181]. Encapsulation of hydrophobic AI is ordinarily performed via oil phase 

of O/W emulsion. The emulsion droplet size can be used to classify emulsion type: 

microemulsion and nanoemulsion. Both emulsion systems are formed by applying 

enough energy in order to generate liquid droplets. Notably, high input energy, for 

example, an ultrasound generator and high-pressure homogenizers are required to 

obtain a nanoemulsion, however, microemulsions can be easily produced with gentle 
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overhead stirring. More importantly, the droplet size can be altered by changing the 

ratio of oil and surfactant weights and also the ratio of oil to water. 

 

Figure 2.1: A model of oil in water emulsion (O/W). 

 

Encapsulation via polycondensation interfacial polymerisation has been known 

for half a century. At the early stage of the investigation, polymeric capsule, for example, 

polynylon, was widely studied [182-184]. Later, polyurethanes were introduced, for 

example, K. Bouchemal and coworkers reported a nanocapsule from the interfacial 

polymerisation of isophorone diisocyanate (IPDI) and different diols, including 1,2-

ethanediol (EG), 1,4-butanediol (BD), and different molecular weights of poly (ethylene 

glycol) diol. The successful interfacial polymerisation and acceptable encapsulation 

efficiency were informed [179]. Polyurethane and polyamide shell capsules have been 

broadly applied in many applications because their preparation requires simple 

chemistry, cost effective, and less time consuming [185, 186]. 
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2.2 Results and Discussion 

2.2.1 P(MMAm-co-IEMn) synthesis and modification 

 
 

Figure 2.2: SET-LRP copolymerisation of MMA and IEM in an anhydrous solvent. 
 

 

MMA and IEM (10 mol %) were copolymerised using a Cu(0)-mediated controlled 

radical polymerisation system with ethyl 2-bromoisobutyrate (EBiB) as initiator, 

anhydrous DMSO as solvent and a Cu(II)Br2/Me6Tren/EBiB ratio of 0.05:0.12:1 (Table 

2.1). Within three hours no further monomer conversion occurred, at monomer 

conversions of 25 and 40 % (as determined by 1H NMR) for MMA and IEM, respectively. 

This could be the result of a decrease in the reactivity of catalyst/ligand system over 

time. Subsequently, the concentration of Me6Tren ligand was increased to 0.36 

equivalents, resulting in a higher degree of polymerisation, with approximately 60 % 

conversion for both monomers (Table 2.1). In addition, different feed ratios of IEM were 

also studied to determine the effect on the monomer conversion and dispersity (Figure 

2.3). Of note, the SEC trace of the copolymer that polymerised from 15 % of IEM 

monomer shows a bimodal and broad molecular distribution (entry 4 in table 2.1). A 

broad molecular weight distribution could occur from several causes, including the 

reaction between isocyanate and moisture in the solvent; DMSO is known as a 
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hygroscopic solvent. This is a result of the isocyanate reacting with water to generate 

carbamic acid which subsequently decomposes to carbon dioxide [187] and a primary 

amine, which can form a urea bond with another isocyanate. Also, the reaction between 

the primary amines in the copolymer and the isocyanate in another copolymer leads to 

the bimodal distribution. Thus, at high levels of isocyanate functionality in the 

copolymer, a lack of stability in the presence of moisture prevents this copolymer from 

being a suitable candidate to prepare microcapsules. In addition, a white precipitate of 

highly crosslinked polyurethane was observed within a few minutes of exposure of the 

polymer solution to moisture as represented in figure 2.4. 

 

Table 2.1: Summary of the results of P(MMAm-co-IEMn) polymerisation by SET-LRP 

(targeted DP 50) for five hours at ambient temperature. 
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Figure 2.3: SEC traces of P(MMAm-co-IEMn) polymerisation at different conditions. 

 

Figure 2.4: P(MMAm-co-IEMn) solution behaviour after exposing to atmosphere. 

 

Modification of the isocyanate group in the copolymer, in this case in-situ, is a 

simple method to confirm if isocyanates are still present, and reactive, following 

polymerisation. Three different amines: dibutylamine, octylamine and (R)-(+)-α-

methylbenzylamine were used to examine this. To this end, the P(MMA22-co-IEM3) 

copolymer (Entry 3 Table 2.1) solution was transferred directly after polymerisation to 

the amine solution using a cannula under N2 and left to stir for three hours at ambient 

temperature. After purification, 1H and 13C NMR spectroscopy were used to indicate 
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successful modification by amines; Figure 2.5 shows the successful modification with 

dibutylamine and in the 13C NMR (Figure 2.6) spectra a new signal at 159 ppm can be 

attributed to the newly formed urea bond. Furthermore, FTIR spectroscopy (Figure 2.7) 

confirmed the successful functionalisation, by disappearance of the characteristic VN=C=O 

vibration at 2250 cm-1 in the product IR spectrum. Pleasingly, functionalisation had little 

effect on dispersity (Figure 2.8). 

 

 

Figure 2.5: 1H NMR of P(MMA22-co-IEM3) modified with dibutylamine (CDCl3, 400 MHz). 
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Figure 2.6: 13C NMR (J-modulated) of P(MMA22-co-IEM3) modified with dibutylamine 

(CDCl3, 400 MHz). 

 

 

Figure 2.7: FTIR spectra of polymer solution of P(MMA22-co-IEM3) in DMSO and 

P(MMA22-co-IEM3) modified with dibutylamine. 
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Figure 2.8:  SEC traces of P(MMA22-co-IEM3) before and after modification by different 

amines. 

 

 

 

2.2.2 P(BnMAm-co-IEMn) synthesis and modification 

 

 

Figure 2.9: SET-LRP copolymerisation of BnMA and IEM in an anhydrous solvent. 

 

 

In order to preserve the isocyanate functionality and allow isolation of the IEM 

copolymer, rapid monomer conversion and a straightforward purification protocol are 
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required. DMSO is the most common solvent for Cu(0)-mediated controlled radical 

polymerisation, although the difficulty of removing this solvent is still a major limitation. 

Alternatively, isopropanol (IPA) is easier to remove while not affecting the dispersity of 

the resultant well-defined polymer, as has been shown with various acrylate, 

methacrylate and acrylamide monomers [53, 188, 189]. In an attempt to prepare stable 

IEM copolymers, IEM was copolymerised with benzyl methacrylate (BnMA) in IPA using 

CuBr2: Me6Tren: EBiB = 0.05:0.12:1. The polymerisation ceased within five hours, in line 

with the P(BnMAm-co-IEMn) polymerisation above, resulting in conversions of 10 % and 

70 % of BnMA and IEM by 1H NMR, respectively. No further increase in molecular weight, 

determined by SEC, was observed (Figure 2.10), however, monomer conversion was 

successfully increased in the presence of increased Me6Tren concentration, thus a 

CuBr2:Me6Tren = 0.05:0.36 catalyst was employed. Notably, G. Raspoet reported the 

reactivity of IPA and PhNCO with an approximation of 1 x 10-4 m-1s-1 [190]. This reaction 

would also occur during the polymerisation process. Nevertheless, no bimodal 

distribution was detected by SEC which indicates that the reaction between isocyanate 

in the monomer/polymer and IPA does not significantly occur.  
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Figure 2.10: SEC traces of P(BnMAm-co-IEMn) shows no increasing of conversion after 

leaving polymerisation for 34 hours at ambient temperature. 

 

Kinetic studies of P(BnMA-co-IEM) formation showed a linear increase in molar 

mass up to two hours with monomer conversion as monitored by 1H NMR spectroscopy 

(Figure 2.11). P(BnMA-co-IEM) copolymer may consist of a random composition of PEIM 

and PBnMA, however, the conversion of IEM monomer is significantly higher than BnMA 

(Table 2.2). Therefore, to predict the microstructure of this copolymer, the possibility to 

form PIEM segment at the initiator end is more likely than PBnMA. Notably, the 

concentration of BnMA in the polymerisation solution is considerably high compared to 

IEM, thus the microstructure at the initiator end could randomly contain both PBnMA 

and PIEM. Nevertheless, PBnMA could only be polymerised at the chain end of the 

copolymer (Figure 2.12 left). A perceptible drop in polymerisation rate can be seen after 

two hours due to phase separation between polymer and monomer/solvent (Figure 2.12 

right). Polymerisations were left for up to six hours and interestingly, similar BnMA 

monomer conversion was detected for two, four, and six hours, while an increasing 
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amount of IEM was consumed with time (90% at six hours) (Table 2.3). Unfortunately, 

increasing IEM monomer conversion significantly increased the dispersity of the 

copolymer to Đ = 2.35. This is indicative of the loss of control in the system and an 

enhanced occurrence of side reactions with increasing reaction time. Thus, it was 

decided that [CuBr2]: [Me6Tren] = 0.05:0.36 catalyst and a reaction time of 3 hours were 

the best conditions to synthesise P(BnMAm-co-IEMn) with different monomer feed 

ratios.  

 

Table 2.2: Summary of the results of P(BnMAm-co-IEMn) polymerisation by SET-LRP 

(targeted DP 50) for three hours at ambient temperature. 

 

 

Figure 2.11: SEC traces (left) and kinetic plot of monomer conversion measured by 1H 

NMR (right) for the synthesis of P(BnMAm-co-IEMn). 
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Figure 2.12: The proposed microstructure of the P(BnMAm-co-IEMn) (left) and 

polymerisation mixture after three hours shows phase separation between polymer and 

solvent (right). 

 

 

Table 2.3: SET-LRP polymerization result of P(BnMAm-co-IEMn) from two to six hours at 

ambient temperature (EBiB: CuBr2: Me6Tren = 1: 0.05: 0.12 catalyst system). 

 

FTIR was used to determine the incorporation of the isocyanate functional group 

in to the copolymer. Strong transmittance of characteristic NCO stretches at 2250 cm−1 

demonstrates that the isocyanate group is still intact (Figure 2.13). We observed an 

acceptable control over molecular weight and dispersity (Figure 2.14). No significant 

difference of the dispersity was observed for both the homopolymer and copolymer. 

The PBnMA homopolymer has a uniform SEC trace, whereas the copolymer traces have 

a molecular weight shoulder and higher dispersity, indicative of side reaction of 

isocyanate functionality.  Although polymerisations were carried out under N2 and using 

anhydrous solvents, reaction of the isocyanate group with a nucleophile such as water 
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could have occurred, despite every effort to exclude water. Notably, SEC of PBnMA10-

co-PIEM2 (Figure 2.14 red) shows a small molecular shoulder which indicates that the 

composition of PBnMA and PIEM is also crucial; side reaction of the isocyanate during 

the polymerisation and purification is likely to happen unless enough bulky PBnMA 

segment is contained in the copolymer. 

 
Table 2.4: Summary of SET-LRP result of BnMA/IEM copolymerisation at room 

temperature after three hours. 

 

 

Figure 2.13: FTIR spectra of solid P(BnMA22-co-IEM2) copolymer, strong transmittance of 

characteristic NCO stretches at 2250 cm−1 demonstrates that the isocyanate group is still 

intact. 
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Figure 2.14: SEC traces of P(BnMAm-co-IEMn) which is polymerised via SET-LRP in 

anhydrous IPA, in CHCl3 eluent with DRI detection.  

 

 

 

Figure 2.15: 1H NMR P(BnMA22-co-IEM2) copolymer after purification, position 3 and 4 

indicate the CH2 group of PIEM segment. Position 1 and 2 represent aromatic CH and 

PhCH2 of PBnMA segments, respectively.  
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Figure 2.16: 13C NMR of P(BnMA22-co-IEM2) copolymer after purification which indicates 

the successful polymerization and purification; position 5 and 6 represent C=O and CH3, 

respectively.  

 

 

Figure 2.17: FTIR spectra of P(BnMA22-co-IEM2) and copolymer modified by 

dibutylamine. 
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The use of BnMA as a comonomer proves to have a beneficial effect on the 

stability of the copolymers, similar to the observation made by Endo [171]. Upon 

successful polymerisation, the copolymer was isolated by precipitation into cold n-

hexane. Further analysis of the isocyanate functionality was carried out post-

purification, to ensure that the polymer would be suitable for preparing microcapsules. 

Purified P(BnMA22-co-IEM2) was functionalised with octylamine, dibutylamine and (R)-

(+)-α-methylbenzylamine. The products were analysed by FTIR and NMR spectroscopy. 

An absence of a peak at 2250 cm−1, indicative of isocyanate, and a detection of C=O urea 

stretch at 1647 cm−1 shows that isocyanate functional groups in P(BnMA22-co-IEM2) 

were successfully modified by dibutylamine (Figure 2.17). 

 

 

Figure 2.18: 1H NMR of modified P(BnMA22-co-IEM2) with octylamine. 
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13C NMR shows the formation of a urea functional group (156.5 ppm) for all three 

modified samples, which was confirmed by 1H NMR. The chemical shift of the methylene 

group in the copolymer modified by octylamine (Figure 2.18, position 11 and 12) 

indicates no variation of chemical shift when compared to non-functional P(BnMA22-co-

IEM2). The molar mass of the amine-functionalised copolymer was slightly different from 

P(BnMA22-co- IEM2), however, the observation that there is no change in the dispersity 

values indicates that no inter/intramolecular cross-linking occurred during modification 

and purification (Figure 2.20). 

 

Figure 2.19: 13C NMR of modified P(BnMA22-co-IEM2) with dibutylamine. J-modulated 

mode was applied to distinguish the signal between C, CH2 (negative) and CH, CH3 

(positive). Also, a new signal at 159 ppm (position 2) after modification can be attributed 

to the newly formed urea bond. 
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Figure 2.20: SEC traces of p(BnMAm-co-IEMn) copolymer before and after modification 

by different amines; no change in the dispersity values indicates that no 

inter/intramolecular cross-linking occurred during modification and purification. 

 

 

2.2.3 Microcapsule Synthesis 

 

 

 

Figure 2.21: Microcapsule fabrication via oil-in-water interfacial polymerisation of 

P(BnMAm-co-IEMn). 

 

 

With this robust protocol for preparing isocyanate containing copolymers in 

hand, these polymers were used to prepare polyurea microcapsules via oil-in water 
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interfacial polymerization [183]. To this end, the P(BnMAm-co-IEMn) was dissolved in 

anhydrous dichloromethane followed by the addition of carrier oil and stabiliser 

poly(vinyl alcohol) solution. Subsequently, the solution mixture was homogenised and 

cross-linked by addition of diethylenetriamine. The size of the resulting particles was 

determined by light optical microscope and dynamic light scattering. Variation of either 

the molecular weight of the copolymer, or percentage of isocyanate functionality, 

afforded no significant differences in particle size according to optical microscopy 

measurements. Exemplarily, figure 2.22 shows that a range of differently sized particles 

from 10 to 90 μm in diameter, were prepared. This analysis was confirmed by dynamic 

light scattering with a range of sizes of 20 to 100 μm. 

 

 

Figure 2.22: Optical microscope and dynamic light scattering result of microcapsule 

fabrication via oil in water interfacial polymerisation of P(BnMA22-co-IEM2). 
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2.3 Conclusion 

 

Isocyanate functional copolymers were successfully synthesised via Cu(0)-

mediated controlled radical polymerisation at ambient temperature. P(MMAm-co-IEMn) 

was prepared and modified with three different amines. In order to improve the stability 

of the isocyanate functional group, benzyl methacrylate was incorporated into the 

polymerisation protocol. This allowed the preparation of stable copolymers which can 

be isolated through a simple polymer purification strategy. The isocyanate-containing 

copolymers were used for the fabrication of polyurea microcapsules via oil-in-water 

interfacial polymerisation. Interestingly, particle sizes showed no significant differences 

when copolymers of different molecular weights and isocyanate compositions were 

used. In conclusion, we introduced a facile synthetic method to prepare moisture stable 

isocyanate containing copolymers, and demonstrate their use to fabricate functional 

polyurea microcapsules. This tool will be incorporated into the biodegradable polymer 

in the following chapter, to synthesise isocyanate containing biodegradable copolymers 

to obtain the microcapsules which are considered as the promising materials to use as 

the pesticide carriers. 

 

2.4 Experimental  

2.4.1 Materials 

Acetone, ethyl α-bromoisobutyrate, dimethyl sulfoxide anhydrous, 

isocyanatoethyl methacrylate (IEM), methyl methacrylate (MMA), benzyl methacrylate 

(BnMA), deuterated chloroform (CDCl3), deuterated chloroform anhydrous, 2 
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isopropanol (anhydrous) (IPA) , dimethyl sulfoxide anhydrous (DMSO), dichloromethane 

anhydrous (DCM), diethylenetriamine, poly(vinyl alcohol) (Mw 130,000 g mol−1), 

copper(II) bromide, 35% aqueous hydrochloric acid, octylamine, dibutylamine and (R)-

(+)-α-methylbenzylamine were purchased from Sigma-Aldrich UK. Carrier oil was 

purchased from Stephan Company. Me6Tren was synthesised according to literature 

procedure [191]. 

 

2.4.2 Characterisation 

Size exclusion chromatography measurements were performed on an Agilent 

390 MDS Multi-Detector GPC system (CHCl3 + 2 % TEA Mixed C column set, THF + 2 % 

TEA + 0.01 wt. % BHT with PLgel Mixed C column set, 30 °C flow rate 1 mL/min, narrow 

standards of PMMA were used as calibration polymers between 955000 and 1010 g 

mol−1 and fitted with a third order polynomial) by DRI detection. 1H NMR (standard) and 

13C NMR (long acquisition long delay) were recorded on a Bruker Avance III HD 400 MHz 

and Bruker Avance III HD 300 MHz with CDCl3 and anhydrous CDCl3 as the solvent. IR 

spectra were recorded on a Bruker Vector 22 FTIR spectrometer with OPUS software 

used to analyse absorbance data. Particle size in aqueous solution was obtained by 

Malvern Instruments Mastersizer 2000 System and Olympus microscope (2x, 10x and 

20x). 

 

2.4.3 P(MMAm-co-IEMn) polymerisation 

5 cm of copper wire was entwined with a magnetic stirrer bar, and placed into 3 

mL of 35 % HCl solution for 5 minutes, washed with deionized water then acetone. Once 

dried, the cleaned wire was placed in a Schlenk tube containing CuBr2 (5.70 mg, 2.55 x 
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10−5 mol (0.05 eq. relative to initiator) and sealed with a rubber septum. Ethyl α-

bromoisobutyrate (75 μL, 5.11 x 10−4 mol, 1 eq.), 2-isocyanatoethyl methacrylate (0.36 

mL, 2.55 x 10−3 mol. 5 eq.) and methyl methacrylate (2.45 mL, 2.29 x 10−2 mol, 45 eq.) 

and anhydrous dimethyl sulfoxide (3 mL) were then added in to a Schlenk tube. The 

reaction mixture was degassed under a flow of N2 for 15 minutes, then Me6Tren (49.2 

μL, 1.84 x 10−4 mol, 0.36 eq.) was added. The reaction was stirred for five hours, polymer 

solution was characterised by NMR, IR and SEC. 1H NMR (300MHz, CDCl3, δ): 1.02 (m, 

CH2), 1.82 (m, CH3), 1.97 (m, CH3 (monomer)), 2.63 (s, CH3 (DMSO)), 3.48 (m, CH2N) 3.59 

(s, CH3O), 3.75 (s, CH3O (monomer)) 4.00 (s, CH2OCO), 4.11 (m, CH2OCO), 5.57 (s, CH, 

(monomer )), 5.65, (s, CH, (monomer )), 6.10 (s, CH, (monomer )), 6.18 (s, CH, (monomer 

)); IR: v = 1750 (C=O), 2250 (NCO), 2950 (C-H); SEC(THF): Mn= 5900 g mol−1, Đ = 1.58. 

 

2.4.4 General modification of P(MMAm-co-IEMn) by amines 

The polymerisation mixture (1 mL) was transferred by cannula into a 15 mL vial 

under positive N2 pressure. Amine (0.5 mL, 3.86 x 10−3 mol) was directly injected into 

the reaction mixture. The reaction was left for three hours and then THF (10 mL) was 

added. The solution was dialysed by MWCO 1K dialysis tubing against THF for 24 hours. 

The product was then precipitated in cold n-hexane and filtered by Buchner filtration. 

Modified polymer (70 % yield) was characterised by NMR, IR and SEC. 

 

2.4.5 P(MMAm-co-IEMn) modification by dibutylamine 

1H NMR (400 MHz, CDCl3, δ): 0.85 (m, 14H, CH3), 0.94 (m, 6H, CH3), 1.02 (m, 6H, 

CH3), 1.34-1.53 (m, 8H, CH2), 1.81 (m, 13H, CH2), 3.21 (s, 4H, CH2N) 3.50 (s, 2H, CH2N), 
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3.60 (s, 17H, CH3OCO), 4.08 (s, 2H, CH2OCO); 13C NMR (100.61 MHz, CDCl3, δ): 13.96 (s, 

CH3), 16.49, 18.72 (s, C backbone), 20.21 (s, CH2), 30.72 (s, CH2), 39.85 (s, CH2N), 44.55 

(s, CH2N), 51.83 (s, CH3O), 54.39 (s, CH3), 65.22 (s, CH2OCO), 157.46 (s, NC=O), 177.81 (s, 

C=O); IR: v = 2951 (C-H), 1725 (C=O), 1647 (C=O amide), 1239 (C-O); SEC (THF): Mn = 8300 

g mol−1, Đ = 1.37. 

 

2.4.6 P(MMAm-co-IEMn) modification by octylamine 

1H NMR (400 MHz, CDCl3, δ): 0.85-1.02 (m, 18H, CH3), 1.27-1.48 (m, 9H, CH2), 

1.76-1.90 (m, 10H, CH2), 3.18 (s, 2H, CH2N) 3.53 (m, 2H, CH2N), 3.60 (s, 14H, CH3OCO), 

4.03 (m, 2H CH2OCO); 13C NMR (100.61 MHz, CDCl3, δ): 14.13 (s, CH3), 16.49, 18.72 (s, C 

backbone), 22.66, 26.95, 29.28, 31.84 (s, CH2), 40.33 (s, CH2N), 44.55 (s, CH2N), 51.83 (s, 

CH3O), 54.48 (s, CH3), 65.40 (s, CH2OCO), 158.18 (s, NC=O), 178.11 (s, C=O); IR: v = 2951 

(C-H), 1725 (C=O), 1647 (C=O amide), 1239 (C-O); SEC(THF): Mn =8900 g mol−1, Đ = 1.49. 

 

2.4.7 P(MMAm-co-IEMn) modification by (R)-(+)-α 

methylbenzylamine 

 

1H NMR (400 MHz, CDCl3, δ): 0.84-1.02 (m, 21H, CH3), 1.46 (m, 3H, CH3), 1.81-

1.94 (m, 16H, CH2), 3.55 (m, 2H, CH2N) 3.60 (s, 18H, CH3OCO), 4.03 (s, 2H, CH2OCO), 7.24-

7.33 (m, CH aromatic); 13C NMR (100.61 MHz, CDCl3, δ): 16.37, 18.71 (s, C backbone), 

23.14 (s, CH3), 38.70 (s, CH2N), 44.54 (s, CH3O), 51.83 (s, CH3O), 54.20 (s, CH3), 64.85 (s, 

CH2OCO), 125.96 (s, CH aromatic), 128.52 (s, C aromatic) 157.78 (s, NC=O), 178.12 (s, 

C=O); IR: v = 2950 (C-H), 1725 (C=O), 1645 (C=O amide), 1553 (C-C aromatic), 1365 (C-

O); SEC(THF): Mn =8800 g mol−1, Đ = 1.54. 
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2.4.8 P(BnMAm-co-IEMn) polymerisation 

5 cm of copper wire was entwined with a magnetic stirrer bar and placed into 3 

mL of 35 % HCl solution for 5 minutes, washed with deionized water then acetone. Once 

dried, the clean wire was placed in a Schlenk tube containing CuBr2 (1.59 mg, 7.15x 10-6 

mol) (0.05 eq. relative to initiator) and sealed with a rubber septum. Ethyl α-

bromoisobutyrate (21 μL, 1.43 x 10-4mol, 1 eq.), 2-isocyanatoethyl methacrylate (0.10 

mL, 7.15 x 10-4 mol, 5 eq.), benzyl methacrylate (1.09 mL, 6.43 x 10-3 mol, 45 eq.) and 

anhydrous 2-isopropanol (1.2 mL) were then added. The reaction mixture was degassed 

under a flow of N2 for 15 minutes, then Me6Tren (14 μL, 5.15 x 10-5 mol, 0.36 eq.) was 

added. The reaction was stirred for three hours. Polymer was precipitated in cold n-

hexane and isolated by filtering through a sintered glass funnel. The resultant white 

powder (75 % yield) was characterised by NMR, IR and SEC. 1H NMR (400 MHz, CDCl3, δ): 

0.73-0.92 (m, 36H, CH3), 1.79-1.89 (m, 24H, CH2), 3.40 (m, 2H, CH2NCO), 4.00 (m, 2H, 

CH2OCO), 4.95 (s, 22H, PhCH2OCO), 7.40 (m, 55H, CH aromatic); 13C NMR (100.61 MHz, 

CDCl3, δ): 16.71 (s, CH2), 22.23 (s, CCH3), 44.48 (s, CH2N), 54.22 (s, CH3), 66.82 (s, 

PhCH2O), 68.29 (s, CH2OCO), 128.26 (s, NCO), 128.57 (s, CH aromatic), 135.08 (s, C 

aromatic), 177.13 (s, C=O); IR: v = 1500 (CH aromatic), 1750 (C=O), 2250 (NCO), 2950 (C-

H); SEC(CHCl3): Mn =7700 g mol-1, Đ = 1.41. 

 

2.4.9 General modification of P(BnMAm-co-IEMn) by amines 

P(BnMAm-co-IEMn) (1.14 x 10-5 mol) was added into a 15 mL vial which contained 

1 mL anhydrous dichloromethane and magnetic follower. The desired amine (5.93 x 10-

4 mol, excess) was added and the reaction mixture stirred for three hours. The modified 
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polymer (70 % yield) was precipitated in cool n-hexane, and characterised by NMR, IR 

and SEC. 

 

2.4.10 P(BnMAm-co-IEMn) modification by dibutylamine 

1H NMR (400 MHz, CDCl3,δ): 0.73-0.95 (m, 27H, CH3), 1.20-1.49 (m, 10H, CH2), 

1.70-1.89 (m, 16H, CH2), 3.15 (s, 2H, NCH2), 3.42 (s, 2H, CH2NCO), 3.97 (s, 2H, CH2OCO), 

4.95 (m, 10H, PhCH2OCO), 7.40 (CH, 31H, aromatic); 13C NMR (100.61 MHz, CDCl3, δ): 

13.56 (s, CH3), 18.63, 16.18 (s, CH2), 20.18 (s, CH2), 27.81 (s, CH2), 39.72 (s, CH2N), 44.77 

(s, CH2N), 54.04 (s, CH3), 66.78 (s, PhCH2O), 67.80 (s, CH2OCO), 128.55 (s, CH aromatic), 

135.08 (s, C aromatic), 157.39 (s, NC=O) 177.13 (s, C=O); IR: v = 2958 (C-H), 1725 (C=O), 

1650 (C=O amide), 1454 (C-C aromatic), 1368 (C-O); SEC(CHCl3): Mn = 7900 g mol-1, Đ = 1.27. 

 

2.4.11 P(BnMAm-co-IEMn) modification by octylamine 

 

  1H NMR (400 MHz, CDCl3, δ): 0.73-0.92 (m, 26H, CH3), 1.26-1.45 (m, 14H, CH2), 

1.78-1.90 (m, 16H, CH2), 3.14 (s, 2H, CH2NCO), 3.44 (s, 2H, CH2NCO), 3.97 (s, 2H, 

CH2OCO), 4.88 (m, 15H, PhCH2OCO), 7.40 (m, 37H, CH2 aromatic); 13C NMR (100.61 MHz, 

CDCl3, δ): 14.14 (s, CH3), 16.65, 18.72 (s, CH2), 22.66, 26.98, 29.31, 31.84 (s, CH2), 40.39 

(s, CH2N), 44.78 (s, NCH2), 54.46 (s, CH3), 66.78 (s, PhCH2O), 66.98 (s, CH2OCO), 128.53 

(s, CH aromatic), 135.09 (s, C aromatic), 158.07 (s, NC=O), 177.40 (s, C=O); IR: v = 2930 

(C-H), 1723 (C=O), 1652 (C=O amide), 1454 (C-C aromatic); SEC(CHCl3): Mn = 7200 g mol−1, 

Đ =1.31 
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2.4.12 P(BnMAm-co-IEMn) modification by (R)-(+)-α 

methylbenzylamine 

 

1H NMR (400 MHz, CDCl3, δ): 0.72-0.92 (m, 24H, CH3), 1.40 (d, 3H, CH3), 1.78-1.88 

(m, 16H, CH3), 3.38 (m, 2H, CH2N), 3.91 (m, 2H, CH2OCO), 4.80 (m, 14H, PhCH2OCO), 4.90 

(m, 2H, PhCHN), 7.28 (m, 40H, CH2 aromatic); 13C NMR (100.61 MHz, CDCl3, δ): 16.44, 

18.58 (s, CH2), 23.08 (s, CH3), 39.59 (s, NCH2), 44.77 (s, NCH2), 54. 53 (m, CH2), 66.79 (s, 

PhCH2O), 67.07 (s, CH2OCO), 126.01, 128.55 (m, CH aromatic), 135.11 (s, C aromatic), 

157.37 (s, NC=O), 177.27 (m, C=O); IR: v = 2949 (C-H), 1724 (C=O), 1650 (C=O amide), 

1448 (C-C aromatic), 1365 (C-O); SEC(CHCl3):Mn = 6700 g mol−1, Đ = 1.36. 

 

2.4.13 Microcapsule synthesis 

P(BnMAm-co-IEMn) copolymer (0.2 g) was added into a 50 mL vial containing 2 

mL anhydrous DCM. Neobee carrier oil (5 g) was added, followed by 18.4 mL of 1.3 % 

polyvinyl alcohol (Mowiol 18-88) aqueous solution. The mixture was homogenised at 

2000 rpm for 3 minutes using an overhead dissolver disc. The mixture was transferred 

to a 100 mL RBF and then stirred at 400 rpm using an overhead paddle mixer. To this, a 

40 % aqueous solution of diethylenetriamine (0.1 mL) was added dropwise into the 

reaction; the mixture was then left to stir at room temperature. After 1 hr the 

temperature was increased to 50 °C, after another hour the temperature was increased 

to 90 °C. Microcapsule size was determined by dynamic light scattering and optical 

microscopy. 
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The microcapsules have found use as carriers in personal care, agrochemical and 

drug delivery applications [174-178]. Microcapsules composed of polyureas have 

recently attracted significant interest due to their ability to efficiently encapsulate 

numerous active ingredients. These microcapsules are usually prepared via an interfacial 

polymerisation in an emulsion [179-181]. Recently, isocyanate has been employed to 

efficiently cross-link these microspheres, as well as nanoparticles, due to its high 

reactivity [168, 173]. In this chapter, ring-opening polymerisation, Cu(0)-mediated 

reversible deactivation radical polymerisation (RDRP), interfacial polymerisation, and a 

convenient drying process have been combined to prepare biodegradable 

microcapsules. First, α, ω-poly(𐐩-caprolactone) SET-LRP initiator was prepared by 

esterification to obtain a degradable halide initiator. Poly(benzyl methacrylate-co-

isocyanatoethyl methacrylate) (P(BnMAm-co-IEMn)) was prepared from the α, ω-PCL 

macroinitiator. Subsequently, isocyanate-containing copolymers were used to fabricate 

microcapsules via interfacial polymerisation in order to encapsulate imidacloprid (IMI), 

a neonicotinoid pesticide. Water removal via spray dryer followed. Characterisation of 

all products has been carried out with 1H, 13C NMR, FTIR spectroscopy, SEC, laser light 

scattering, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF 

MS), thermogravimetric analysis (TGA), UV-Vis spectroscopy (UV-Vis), and scanning 

electron microscopy (SEM). 
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3.1 Background 

3.1.1 Biodegradable polymers and microcapsule synthesis 

The use of biodegradable materials has increased significantly in the past few 

years, especially synthetic polymers such polyesters and polyurethanes. Natural 

materials, mostly polysaccharide derivatives, are also heavily used in different fields, 

particularly in food and therapeutic applications [192-195]. A key feature of these 

materials is an ability for self-degradation. The degradation process generally occurs 

through the scission of the polymer backbone by various mechanisms such as hydrolysis, 

photolysis and thermal degradation [196]. Polyester derivatives, including polyglycolide 

(PGA), polylactide (PLA) and polycaprolactone (PCL), (Figure 3.1) are increasingly applied 

as polymeric drug carriers in many applications, for example, biomedical and 

pharmacological materials, environmentally friendly packaging, carrier matrices for slow 

release and microelectronics [197-204]. PCL is classified as a semi-crystalline polymer, 

in other words, the degree of crystallinity influences the polymer property. Interestingly, 

facile synthesis, cost effectiveness, good drug permeability and slow degradation make 

PCL one of the promising candidates in long-term controlled release [197, 205-206]. 

Different tools are exploited in order to use PCL derivatives, including polymer films, 

micro- and nanocapsule, polymeric micelles, scaffolds and nanoparticle [207]. Notably, 

during the degradation process, the amorphous phase of PCL degrades, first through 

bulk erosion process, followed by a crystalline phase. This degradation leads to an 

unpredictable release profile, which makes PCL unsuitable for some applications. 

Microcapsules of PCL derivatives can be prepared via different techniques, including 

emulsion solvent evaporation, spray drying, solution enhanced dispersion, and hot melt 
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techniques, to encapsulate a number of active ingredients such as ketorolac 

trimethamine, insulin, antigens, ribozymes and doxycycline [206-212]. Consequently, 

most of the microcapsules show a significant improvement of active ingredients (AIs) 

stability, as well as a reduction of initial burst release period. In general, there are two 

major AI release mechanisms, which are surface erosion and diffusion through the 

media. The chemical property of AIs also influences the release profile, particularly the 

hydrophilic and hydrophobic characteristics. 

 

 

Figure 3.1 Examples of biodegradable polyesters. 

 

Spray-drying is a powerful microencapsulation technique and has many 

advantages, including cost effectiveness, a facile process, and speed. Thus, this 

technique is highly attractive from an industrial point of view [213]. A common example 

of the spray drying technique is the manufacture of dried milk. There are a few reports 

of using the spray drying method as a synthetic tool to encapsulate AI by using PCL as 

the capsule wall. For example, Sastre et al. showed the microcapsule formulation of PCL 

to deliver 5-fluoro uracil (5-FU) [214]. One finding indicated the successful encapsulation 

with a reasonable controlled release profile. In addition, Blanco and co-workers recently 

proved the ability of PCL as a promising material in order to encapsulate AIs via a spray 

drying process. Furthermore, acceptable encapsulated efficiency and slow release of 

paclitaxel (PTX) indicated the benefit of microcapsules [215]. Polymerisation of PCL is 
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straightforward through ring-opening polymerisation (ROP) from an inexpensive 𐐩-

caprolactone monomer. The brief polymerisation process will be discussed in the next 

section. 

 

3.1.2 Ring-opening polymerisation (ROP) 

Ring-opening polymerisation (ROP) is classified as chain-growth polymerisation. 

The concept of ROP is demonstrated when an active centre reacts with monomers via 

opening an n-cyclic ring (n = 3-8); the ring strain can play a vital role as the driving force 

in the polymerisation process. Most of the linear aliphatic biodegradable polyesters, 

including PCL, PLLA, and PGA, are synthesised via ROP because of several benefits, 

particularly the facile synthetic process. 

 

Figure 3.2: A simple schematic of ring-opening polymerisation (ROP). 

 

PCL was selected for use as the biodegradable material in this thesis because of 

several reasons, including the inexpensive nature of the 𐐩-CL monomer, its outstanding 

physical properties and the facile polymerisation procedure. In general, polymerisation 

of PCL can be achieved via two main routes: ring opening polymerisation of 𐐩-CL and 

condensation polymerisation, for example, the reaction of 6-hydroxyhexanoic acid, 

however, the ring-opening process is a favoured technique, because the condensation 

reaction generates by-products such as water. Thus, some polycondensation 
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polymerisation features, such as low molecular weight and high polydispersity, are 

detected. There are different methods used to synthesise PCL via ROP, for example, via 

activated monomer, anionic, cationic and coordination insertion [216]. A commonly 

used catalyst for coordination insertion ring-opening polymerisation of cyclic esters is 

tin(II) ethyl hexanoate (Sn(Oct)2), which is a low toxicity catalyst, easy to handle and 

soluble in most organic solvents. (Sn(Oct)2) is approved by the US Food and Drug 

Administration (FDA), thus, it has been widely applied in different applications, including 

food additives [217]. The mechanism and kinetics of lactone polymerisation by using 

Sn(Oct)2 as the catalyst has been intensively studied by Penczek et al. [218-220]. 

 

Initially, the reaction between an alcohol and (Sn(Oct)2) catalyst provides an 

active species. Subsequently, the catalyst is reformed and a polycaprolactone dormant 

species is generated. The process of transforming the active species to a polymer 

dormant species occurs quickly, which leads to narrowed molecular weight distribution. 

Thus, ROP via this catalytic system is also acknowledged as controlled polymerisation 

[221]. 
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Figure 3.3: The proposed mechanism of ROP of 𐐩-CL by using (Sn(Oct)2) as the catalyst. 
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3.2  Results and Discussion 

3.2.1    α, ω-Hydroxyl terminated PCL polymerisation 
 

 
 
Figure 3.4: Ring-opening polymerisation of 𐐩-caprolactone initiates by diethylene glycol. 
 
 

 

α, ω-Hydroxyl terminated polycaprolactone (α, ω-PCL) was synthesised through 

conventional ring-opening polymerisation by using diethylene glycol as an initiator. 

Polymerisation was catalysed by tin(II) 2-ethylhexanoate (Sn(Oct)2) and left at 110 ˚C 

under N2 for 15 hours. After purification, the polymer was characterised using different 

techniques, including NMR, FTIR, SEC, and MALDI-TOF. SEC indicated a successful ring 

opening of caprolactone according to the increase of molecular weight (Mn = 3700 g 

mol−1). Moreover, the dispersity was acceptable Đ = 1.15. The molecular weight of 

synthetic α, ω -PCL was considered from both SEC and 1H NMR spectroscopy; the ratio 

of integration of position 3 (from initiator) to 5 offers a degree of polymerisation (Figure 

3.5), thus, a molecular weight of α, ω -PCL is derived. Interestingly, the molecular weight 

of polymers from both characterisation techniques was significantly different. This could 

be the result of hydrodynamic volume differences of the calibration standards used in 

SEC. 
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Figure 3.5: 1H NMR of α, ω-poly(𐐩-caprolactone) synthesised via ROP by using Sn(Oct)2 

as the catalyst (CDCl3, 400 MHz). 

 

 

Figure 3.6: MALDI-TOF (MS) spectra of α, ω-poly(𐐩-caprolactone) synthesised via ROP 

by using Sn(Oct)2 as the catalyst. 



Chapter 3. Biodegradable Polyurea Microcapsules  

 

 72 
 

 

Figure 3.7: 13C NMR of α, ω-poly(𐐩-caprolactone) synthesised via ROP by using Sn(Oct)2 

as the catalyst (CDCl3, 400 MHz). 

 

To resolve the differences between SEC and 1H NMR on the measured molecular 

weight, MALDI-TOF MS was used. Degree of polymerisation (DPn) of α, ω - PCL from 

MALDI-TOF MS measurement is 6 to 18 (Figure 3.6). Moreover, the m/z repeating unit 

= 114.14, indicating a 𐐩-caprolactone. The narrow molar mass distribution of 

polycaprolactone from SEC data and degree of polymerisation of 12 from 1H NMR 

coincides with the result from mass spectroscopy. As a result, the polymeric structure 

of H(C6H10O2)6C4H8O3(C6H10O2)6H.Na+ is used to determine a molecular weight of α, ω - 

hydroxyl terminated polycaprolactone in order to synthesise a macroinitiator in a 

further step. 

 

 



Chapter 3. Biodegradable Polyurea Microcapsules  

 

 73 
 

 

Figure 3.8: COSY NMR of α, ω-poly(𐐩-caprolactone) synthesised via ROP by using 

Sn(Oct)2 as the catalyst (CDCl3, 400 MHz). 

 

3.2.2   α, ω-poly(𐐩-caprolactone) SET-LRP macroinitiator synthesis 
 

α, ω-Poly(𐐩-caprolactone) SET-LRP macroinitiator is synthesised via the 

esterification reaction of an acid halide, α, ω-bromoisobutyryl bromide (BiBB), with two 

different molecular weight α, ω-hydroxyl terminated poly(𐐩-caprolactone)s: α, ω-PCL12 

and α, ω-PCL5. α, ω-PCL12 was polymerised via ring opening polymerisation (ROP) of 𐐩-

caprolactone initiated by diethylene glycol, while α, ω-PCL5 was purchased from a 

commercial source. SEC analysis after modification of α, ω-PCL12 shows a slight increase 

of relative molecular weight after purification (Mn = 3700 g mol−1). In addition, the molar 

mass distribution (Đ = 1.11) demonstrates a similar distribution as for unmodified α, ω-

poly(𐐩- caprolactone) (Figure 3.10).The 1H NMR spectrum, figure 3.11, demonstrates a 

successful modification of both hydroxyl groups of α, ω-PCL due to a disappearance of 

CH2OH peak at 3.64 ppm and an evolution of the peak at 4.14 ppm of CH2COO. COSY 
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NMR of α, ω-hydroxyl terminated poly(𐐩-caprolactone) also indicates that the signal at 

3.64 ppm represents CH2 adjacent to the hydroxyl functionality (Figure 3.8). Thus, the 

chemical shift of new ester bond in the macroinitiator and the disappearance of CH2 

next to the hydroxyl group are also confirmed by COSY (Figure 3.12). The 1H NMR signal 

of methyl groups (position 1 in Figure 3.11) adjacent to the bromine at 1.91 ppm is 

observed. The absence of a signal from BiBB at 1.85 ppm is also seen. Finally, integration 

of all peaks shows a successful modification and purification. Furthermore, 13C NMR 

confirms the successful modification by the carbon at C(CH3)2Br at 28 ppm (Figure 3.13). 

FTIR spectra also proves the disappearance of O-H stretching (3450 cm−1) after 

modification (Figure 3.14). 

 

 

Figure 3.9: SET-LRP macroinitiator synthesised via esterification reaction of an acid 

halide and α, ω-hydroxyl terminated poly(𐐩-caprolactone).  
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Figure 3.10: SEC showing successful modification of α, ω-poly(𐐩-caprolactone) 

(α, ω-PCL12) with an acceptable narrow distribution. 

 

 

 

Figure 3.11: 1H NMR of before and after modification of α, ω-PCL12 (CDCl3, 400 MHz).  

The signal of methyl groups adjacent to the bromine and CH2COO in the initiator are 

detected at 1.91 and 4.14 ppm, respectively. Notably, the chemical shift at 3.64 ppm 

indicates the CH2 next to the hydroxyl group of α, ω-PCL12. 
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Figure 3.12: COSY NMR of modified α, ω-poly(𐐩- caprolactone) (α, ω-PCL12)(CDCl3, 400 

MHz). 

 

 

Figure 3.13: 13C NMR spectra of modified α, ω-poly(𐐩- caprolactone) (α, ω-PCL12)(CDCl3, 

400 MHz). 
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Figure 3.14: FTIR spectra of non-modified and modified α, ω-poly(𐐩- caprolactone) (α, 

ω-PCL12);  the disappearance of O-H stretching (3450 cm−1) was observed after 

modification. 

 

In addition, mass spectroscopy, MALDI-ToF MS, was applied to further 

characterise the modified α, ω-PCL12. Figure 3.15 shows the MALDI-ToF MS analysis of 

the macroinitiator; the molecular formula is represented as 

C4H6OBr(C6H10O2)mC4H8O3(C6H10O2)nC4H6OBr.Na+, where m and n are detected from 4-

10. The 𐐩-caprolactone monomer repeating m/z is represented by the mass difference 

of 114.14. Additionally, the theoretical and measured m/z of 

C4H6OBr(C6H10O2)6C4H8O3(C6H10O2)6C4H6OBr.Na+ is also shown in figure 3.16. Thus, 

MALDI-ToF MS characterisation showed the successful modification of both hydroxyl 

groups as demonstrated by an overlaid spectrum of non-modified PCL and bifunctional 

PCL macroinitiator, with the m/z increasing by 298.052 (Figure 3.17). Characterisation 

details, MALDI-ToF MS, of modified α, ω-PCL5 are also shown in Figure 3.18 
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Figure 3.15: MALDI-ToF spectra of α, ω-poly(𐐩-caprolactone) (α, ω-PCL12) SET-LRP 

macroinitiator. 

 
 

 

Figure 3.16: MALDI-ToF MS spectra represents the similar result of m/z measurement 

and m/z calculation of (α, ω-PCL12) SET-LRP macroinitiator. The isotropic pattern 

indicates that the initiator contains two bromines. The abundance of 79Br and 81Br is 51 

% and 49 %, respectively, thus 1: 1 intensity should be observed. However, other stable 

isotopes also consist in the initiator resulting in the difference of bromine intensity. 
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Figure 3.17: Overlaid MALDI-ToF spectra of α, ω-poly(𐐩-caprolactone) (α, ω PCL12)  SET-

LRP macroinitiator and α, ω-poly(𐐩-caprolactone); the successful modification of both 

hydroxyl groups is approved by the increasing of m/z by 298.052 (m/z of 2 x 

C=OC(CH3)2Br). 

 

 

 

Figure 3.18: MALDI-ToF spectra of α, ω-poly(𐐩-caprolactone) (α, ω-PCL5)  SET-LRP 

macroinitiator. 
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3.2.3  Synthesis of P(BnMA-co-IEM) copolymers from an α, ω-

poly(𐐩-caprolactone) SET-LRP macroinitiator 

 

 
 

Figure 3.19: SET-LRP polymerisation of BnMA and IEM monomer by α, ω 

polycaprolactone SET-LRP macroinitiator. 

 

Polymerisation conditions for poly (benzyl methacrylate-co-isocyanatoethyl 

methacrylate), P(BnMAm-co-IEMn) copolymers were investigated and presented in  

chapter 2 [49], thus these polymerisation conditions were duplicated to synthesise 

isocyanate-containing copolymers initiated by the α, ω-macroinitiator. The 

polymerisation (10 mol% IEM) was performed in anhydrous isopropanol at ambient 

temperature, and phase separation between polymer and monomer/solvent was 

detected after five hours. This straightforward purification process was used with the 

top layer removed, and the copolymer layer re-dissolved in anhydrous dichloromethane 

(DCM) and subsequently precipitated in cold hexane, followed by filtration through a 
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sintered glass funnel. The extraordinary reactivity of isocyanates towards nucleophiles 

leads to care concerning the stability of the isocyanate functionality in the copolymer 

being taken, thus the copolymer (white powder) was first characterised by FTIR to prove 

whether an isocyanate functional group (2250 cm−1) is retained in the copolymer after 

polymerisation and purification (Figure 3.20). 

 

Figure 3.20: FTIR spectra of PCL12-P(BnMA44-co-IEM6) indicates that isocyanate function 

is preserved after purification. 

 

Two molecular weights of the SET-LRP macroinitiator were used to polymerise 

P(BnMAm-co-IEMn) with a feed ratio of initiator: BnMA: IEM = 1: 45: 5, 1: 90: 10, and 1: 

180: 20. SEC measurement revealed that a molar mass distribution (Đ) of the copolymer 

is approximately 1.40 to 1.50 (Table 3.1). In addition, the symmetrical chromatogram, 

figure 3.21, indicates a reasonable controlled radical character. The absence of a 

shoulder peak indicates that no significant termination of living polymer chain occurs 
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during the polymerisation and purification processes. Monomer conversion was 

followed and calculated by 1H NMR due to phase separation system, which was 

approximately 50 % to 60 % for both monomers, and, interestingly, no further BnMA or 

IEM was consumed when the polymerisation was left overnight. 

 

Table 3.1: Summary of PCLx-P(BnMAm-co-IEMn) copolymers synthesised via SET-LRP at 

ambient temperature. 

 

1H NMR indicates that α, ω-PCL macroinitiators contain 5 and 12 𐐩-CL repeating 

units. Thus, this result was used to calculate monomer repeating units of PBnMA and 

PIEM in the copolymer. The known integrated area of the CH2 groups adjacent to the 

ester group in the macroinitiators (position 4 in Figure 3.22) was compared to position 

8 and 2, which are assigned to CH2-NC=O and Ph-CH2, respectively. Consequently, 1H 

NMR reveals a polymeric formula of PCL5-P(BnMA52-co-IEM8) for the copolymer 

synthesised from α, ω-PCL5 macroinitiator and PCL12-P(BnMA44-co-IEM6) copolymer 

polymerised from α, ω-PCL12 macroinitiator. 13C NMR (Figure 3.23) of the copolymers 

also showed a successful polymerisation of our system. Notably, all carbon positions are 

considered alongside the HSQC NMR experiment that represents the signal of a carbon 
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and proton correlation (Figure 3.24). A molecular weight difference between 1H NMR 

and SEC analysis was observed as a result of the SEC calibration with PMMA. 

 
 
Figure 3.21: SEC traces of PCLx-P(BnMAm-co-IEMn) copolymers synthesised from  α, ω-

PCL5 (A) and α, ω-PCL12 (B) macroinitiators. The absence of a shoulder peak indicates 

that no significant termination occurs during the polymerisation and purification 

processes. 

 

Figure 3.22: 1H NMR spectra of PCL12-P(BnMA24-co-IEM6) copolymer synthesised  from 

the α, ω-PCL12 macroinitiator (CDCl3, 400 MHz). The copolymer composition and 

monomer repeating unit are calculated from the integrated area of the CH2 groups 
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adjacent to the ester group in the macroinitiators, position 4, compared to position 8 

and 2, which are assigned to CH2-NC=O (IEM)and Ph-CH2 (BnMA), respectively. 

 

Figure 3.23: 13C NMR spectra of PCL12-P(BnMA24-co-IEM6) copolymer synthesised from 

the α, ω-PCL12 macroinitiator (CDCl3, 400 MHz). 

 

Figure 3.24: HSQC NMR spectra, NMR experiment that represents the signal of a carbon 

and proton correlation, of PCL12-P(BnMA24-co-IEM6) copolymer synthesised from the α, 

ω-PCL12 macroinitiator (CDCl3, 400 MHz).  
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Figure 3.25: White powder of PCLx-P(BnMAm-co-IEMn) copolymer after purification. 

 

 

3.2.4  Emulsion droplet size 

 

 

Figure 3.26: Microcapsule fabrication via an oil-in-water interfacial polymerisation of 

PCLx-P(BnMAm-co-IEMn). 

 

A protocol for the synthesis of polyurea microcapsules from isocyanate 

containing copolymers was presented in chapter 2. PCLx-P(BnMAm-co-IEMn) copolymers 

were dissolved in anhydrous dichloromethane followed by the addition of carrier oil and 

stabiliser poly (vinyl alcohol) (PVA) solution. The solution was homogenised by overhead 

stirring and cross-linked by addition of diethylenetriamine (DETA). Some conditions 

were modified to observe an influence on the emulsion droplet size, including 
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copolymer molecular weight and copolymer composition, the percentage of carrier oil/ 

stabiliser (w/v) and copolymer solid content in an organic solvent. Consistent droplet 

size was observed by both laser scattering measurements and optical microscope, 

although the copolymer content, copolymer molecular weight and a different number 

of isocyanate functions were alternated (Figure 3.27). Interestingly, only a percentage 

of carrier oil/ stabiliser (w/v) influences particle size; 1.1 %, 2.2 % and 27 % of carrier oil 

were studied. Laser scattering measurements and optical microscope results both show 

that the emulsion droplet size is directly proportional to the percentage of the carrier 

oil. The droplet size of the emulsion samples that were prepared with 27 % (w/v) of 

carrier oil/stabiliser showed a similar result from these characterisation techniques, 

approximately 50 µm in diameter (Figure 3.28a). Conversely, the particle size 

significantly decreases when 1.1% and 2.2% (w/v) of carrier oil/stabiliser system was 

applied, roughly 23 and 18 µm, respectively. (Figure 3.28b) 

 

Figure 3.27: Laser scattering measurement of the emulsion droplets prepared from 

different copolymers (Table 3.1). 
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Figure 3.28: Optical microscope and mastersizer results of emulsion droplet when 

different ratios carrier oil/stabilizer (w/v) was applied, 27 % (a) and 2.2 % (b). 

 

 

3.2.5  Drying process and microcapsule distribution 

 

 

Figure 3.29: BUCHI mini Spray Dryer B-290 

 

After the organic solvent (DCM) removal, the dispersed microcapsules were 

collected by evaporation by a lab scale spray dryer. The drying process conditions, 
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including inlet temperature, feeding rate and copolymer solid content, were optimised. 

An emulsion solution, prepared from 1.1 and 2.2 % (w/v %) of (PCL5-P(BnMA52-co-IEM8) 

copolymer to stabiliser, was sprayed with 10 % (3.3 mL/min) and 15 % (4.95 mL/min) 

feeding rate. The size of dried microcapsules was characterised by laser scattering 

measurements. However, the dried microcapsules had to be re-dispersed in 1 % (w/v) 

of aqueous Aerosol OT-100 surfactant, followed by sonication for 10 minutes before the 

measurement. Both copolymer solid content and feeding rate during the drying process 

showed a negligible influence on particle size (Table 3.2). Interestingly, the volume 

moment mean of the particle diameter (D4,3) from light scattering measurements 

illustrate that particle size slightly depends on the inlet temperature; microcapsules that 

were dried at 110 °C inlet temperature showed a slightly larger size compared to 

samples when operated at 140 °C and 160 °C. Surprisingly, Figure 3.30 and 3.31 present 

laser scattering measurement alongside SEM microphotography. Different operation 

temperatures produce a similar particle size, with approximately 2 to 10 μm. However, 

a small distribution trace in the range of 10 to 50 μm was detected from the 

microcapsule powder in which dehydration occurs at 110 °C (Figure 3.31). The evidence 

from SEM microphotography indicates that agglomeration of microcapsules occurs 

when 110 °C operation temperature is applied. Clearly, this result indicates a slight 

difference in particle size when laser diffraction measurement is used to characterise 

powder microcapsules. 
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Table 3.2: Laser scattering measurement of dry microcapsules prepared from PCL5-

P(BnMA52-co-IEM8). 

 

 

 

Figure 3.30: SEM image and laser scattering measurement of microcapsules prepared 

from PCL5-P(BnMA52-co-IEM8) after water removal by spray dryer at 160 °C inlet 

temperatures. 
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Figure 3.31: SEM image and laser scattering measurement of microcapsules prepared 

from PCL5-P(BnMA52-co-IEM8) after water removal by spray dryer at 110 °C inlet 

temperatures. 

 

 

3.2.6  Microcapsule morphology 

 

Herein, particle morphology is generally defined as particle size, shape and 

surface property. The spray drying process was investigated, 10 % (3.3 mL/min) feeding 

rate with 140 °C inlet temperature, and showed promise as conditions for other 

emulsion microcapsules. The previous section mentioned the independence of 

copolymer solid content of PCL5-P(BnMA52-co-IEM8) copolymers on microcapsule size 

after water removal. Unsurprisingly, a similar microcapsule size was observed, although 

copolymer solid content was increased up to 3.3 % (w/v). Moreover, Arabic gum (GA) 

was added to stabiliser solution to investigate its influence on the emulsion droplet size 
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and dried powder morphology after the drying process. Table 3.3 represents the 

summary of dried microcapsule size. Particles that were prepared from the PCL5-

P(BnMA52-co-IEM8) copolymer show a smaller particle size than PCL12-P(BnMA44-co-

IEM6) microcapsules. Further, adding GA in PVA stabiliser does not influence particles 

according to laser scattering measurement. Particle sizes (D4,3) of 10 to 14 μm were 

detected for dried microcapsules prepared from PCL12-P(BnMA44-co-IEM6) copolymer. 

On the other hand, approximately 3 to 6 μm was measured from microcapsules 

produced from the PCL5-P(BnMA52-co-IEM8) copolymer. Interestingly, no significant 

tendency of microcapsule distribution was detected. Thus further particle size and 

morphology characterisations are required. 

 

Table 3.3: Summary of powder polyurea microcapsules synthesised from polymer A 

(PCL12-P(BnMA44-co-IEM6) and polymer B (PCL5-P(BnMA52-co-IEM8), determined via 

laser diffraction measurements (Mastersizer Malvern 2000, UK). 

 

 The scanning electron microscopy (SEM) characterisation shows that broad 

particle size distribution is the result of light scattering measurements. Approximately 1 
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to 15 μm of microcapsule size was observed. Figure 3.32 shows the SEM 

microphotography of powder particles which were synthesised from PCL5- P(BnMA52-

co-IEM8) copolymer, with only aqueous PVA used as a stabiliser. The SEM analysis of the 

dried powder displayed a consistent wall without any ruptures or cracks, indicating a 

strong microcapsule wall with particles of a relatively rounded shape. This data reflects 

that this microcapsule holds potential for use as a carrier for active ingredients, 

especially applications that require reasonably strong particle walls in order to preserve 

active ingredients before reaching the target. However, the external structure of 

microparticles is described as concave or, during the initial driving process, as a shrinking 

sphere. This observation is a typical characteristic of microcapsules that are synthesised 

using the spray-drying method. Other research groups have made similar observations 

[163, 222, 223]. 

 

 

Figure 3.32: SEM image of powder microcapsules synthesised from PCL5- P(BnMA52-co-

IEM8) copolymer. Only aqueous PVA was used as a stabilizer during the emulsion 

preparation. 
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Figure 3.33: SEM images of powder microcapsules synthesised from different copolymer 

contents (1.1 % (a) 2.2 % (b) 3.3 % (c)). 

 

Furthermore, no significant difference in particle morphology was observed 

when experimental conditions such as copolymer content were altered; (PCL5-

P(BnMA52-co-IEM8)) copolymer in emulsion synthesis was increased from 1.1 % to 2.2 % 

and 3.3 %. (Figure 3.32) In addition, laser scattering measurements showed a broader 

and larger particle size of the microcapsule, which was synthesised from (PCL12-

P(BnMA44-co-IEM6)) compared to (PCL5-P(BnMA52-co-IEM8)) copolymer. These 

observations are confirmed by the SEM microphotography; Figure 3.34 represents a 

larger and broader particle distribution of microcapsules. Interestingly, a different 

stabiliser, PVA + Arabic gum (GA) solution, provided an interesting microcapsule 

morphology after drying via spray drying. Figure 3.35 shows the SEM of powder 

microcapsules synthesised from 3.3 % copolymer content and stabilised by PVA + Arabic 

Gum (GA) solution. A smooth and round particle shape was observed. Moreover, less 
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shrinkage was also detected when compared to an aqueous PVA stabiliser. A similar 

particle morphology was still observed even though the copolymer content was varied. 

Figure 3.36 illustrates the SEM microphotography of microcapsules that were 

synthesised from 2.2 % of PCL5-P(BnMA52-co-IEM8) copolymer. Aqueous PVA + Arabic 

gum was used as a stabiliser during emulsion preparation. This result indicates that GA 

co-stabiliser plays an important role in providing a sphere and less shrinkage of 

microcapsule occurs when water is eliminated via the spray drying process. 

 

 

Figure 3.34: SEM image of microcapsules synthesised from the PCL12-P(BnMA44-co-IEM6) 

copolymer. An aqueous PVA (A) and PVA+ Arabic gum (B) were used as stabilisers. 

 

 

 

Figure 3.35: SEM of microcapsules synthesised from the PCL5-P(BnMA52-co-IEM8) 

copolymer. An aqueous PVA + Arabic gum was used as a stabiliser. 
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Figure 3.36: SEM image of microcapsules synthesised from 2.2 % of the PCL5- P(BnMA52-

co-IEM8) copolymer. An aqueous PVA + Arabic Gum was used as a stabiliser. 

 

 

3.2.7  Microcapsule thermal stability  

 

The thermal stability of all microcapsules, including PCLx-P(BnMnm-co-IEMn) 

copolymer, has been determined by thermogravimetric analysis (TGA). Initial 

degradation of PBnMA was previously reported as 150 °C. Meanwhile, rapid weight loss 

occurs when the temperature reaches approximately 250 °C [224]. In addition, 50 % 

weight decomposition temperature (T%50) of PCL homopolymer is reported at 

approximately 420 °C, while the initial degradation occurs at about 300 °C [225]. The 

PCL5-P(BnMA52-co-IEM8) copolymer shows an intermediate thermal behaviour between 

PCL and PBnMA homopolymers; 50 % weight decomposition temperature occurs at 378 

°C, while the copolymer decomposes by almost 65 % at 400 °C (Figure 3.37). This 

observation indicates the increased thermal stability of PBnMA homopolymer after 
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copolymerisation with PCL. Table 3.4 represents the summary of the thermal character 

of all spray dried microcapsules. A similar tendency of the weight loss curve of all 

microcapsules was observed (Figure 3.38), while a 50 % weight loss of all microcapsules 

appears just after the temperature reaches 310 °C. Approximately 10 % of weight loss 

was noticed at 200 °C. This result illustrates an estimated percentage of carried oil 

content; there was no significant weight loss of the copolymer in this temperature range 

(Figure 3.38). Moreover, a small weight loss at 40 °C and 100 °C was observed. This 

demonstrates that both DCM and water were not entirely removed during interfacial 

polymerisation and the spray drying process, respectively. It is worth noting that the 

TGA results indicate good thermal stability of this material, which could offer a potential 

use of these microcapsules in different applications. 

 

 

Figure 3.37: TGA curve of the PCL5-P(BnMA52-co-IEM8) copolymer. 
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Table 3.4: Summary of the TGA result of all microcapsules; MC 1-6 and MC 7- 12 were 

synthesised from PCL12-P(BnMA44-co-IEM6) and PCL5-P(BnMA52-co-IEM8) copolymers, 

respectively. 

 

 

Figure 3.38: TGA curve of all microcapsules; MC 1-6 and MC 7-12 were synthesised from 

PCL12-P(BnMA44-co-IEM6) and PCL5-P(BnMA52-co-IEM8) copolymers, respectively 
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3.2.8    Encapsulation and release study of imidacloprid (IMI) 
 
 

 

 

Figure 3.39: Structure of imidacloprid (IMI). 

 
  

Varying conditions for microcapsule preparation have been evaluated in the 

previous section, but there is no significant difference in terms of the resulting particle 

surface. The particle shape depends on the initial stabiliser during emulsion formation. 

Microcapsules synthesised from 2.2 wt. % copolymer solid content with aqueous PVA 

and Arabic gum as the stabiliser (MC 11 in table 3.3) was used as the model microcapsule 

to encapsulate an imidacloprid (IMI) pesticide. IMI is classified as neonicotinoid systemic 

insecticide which interferes with the impulse transmission of the nervous system [226]. 

IMI has been widely used in order to control sucking insects in different crops, including 

potatoes, rice, sugar beets, sugarcane, and vegetables [101]. The literature reviewed 

indicates various polymers are considered for encapsulating IMI in order to prevent 

degradation, as well as increase its stability, for example, lignin/poly(ethylene glycol) 

matrices [226], chitosan (CHI) and sodium alginate (ALG) [120,126], chitosan-

poly(lactide) copolymer[105], polyethylene glycol (PEG)[101], and poly(propylene 

carbonate) (PPC) [227]. In this study, IMI was dissolved in DCM with isocyanate pre-

polymer during the emulsion preparation step. After the drying process, the amount of 

pesticide was followed by Soxhlet extraction in water. As a result, UV, absorption at 270 

nm, showed that the weight percentage of pesticide loading in the microcapsules is 
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approximately 0.5 wt. %. In addition, the encapsulation efficiency, which considers the 

weight of feeding pesticide and copolymer composition, showed that approximately 75 

% of pesticide was covalently reacted after the drying process. Notably, the temperature 

of spray drying process might influence the stability of the pesticide; the melting point 

of IMI is approximately 140-146 °C. The drying process condition, 140 °C inlet 

temperature, could lead to the loss of both pesticide stability and encapsulated 

efficiency. Nevertheless, IMI was used as a model chemical. Thus, further study is 

required before using microcapsules in the field, including either changing pesticide 

(higher stability) or decreasing the drying temperature. The release profile of IMI in 

microcapsules in aqueous solution at 25 °C was also followed by UV-Vis 

spectrophotometry; an initial burst release was detected up to approximately 70 % after 

30 minutes (Figure 3.40 right). Interestingly, the release profile of IMI in NaOH and HCl 

solution was significantly higher. This observation was affirmed by the different 

morphology of the microcapsules. The aggregation of microcapsules were observed 

after treating with acidic conditions (Figure 3.41 A) and basic solution (Figure 3.41 B). 

Notably, a microcapsule in normal water also showed an accumulation; however, no 

significant cracks were detected. (Figure 3.42) 
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Figure 3.40: UV-spectrometry calibration of imidacloprid (IMI) in water at 25 °C (left) and 

the cumulative release profile of IMI in aqueous solutions (right). 

 

 

 

 

 

 

Figure 3.41: SEM of microcapsules synthesised from the PCL5-P(BnMA52-co-IEM8) 

copolymer after treating with 0.1 M HCl aq. (A) and 0.1 M NaOH aq.(B) overnight at 25 

°C. 
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s 

Figure 3.42: SEM of microcapsules synthesised from the PCL5-P(BnMA52-co-IEM8) 

copolymer after treating with HPLC water overnight at 25 °C. 
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3.3 Conclusion 

Poly(𐐩-caprolactone) isocyanate functional copolymers were successfully 

synthesised via Cu(0)-mediated controlled radical polymerisation at ambient 

temperature. Two different molecular weights of macroinitiator were synthesised. α, ω-

Poly(𐐩-caprolactone) was polymerised via ring-opening polymerisation, followed by 

esterification with an acid halide, α-bromoisobutyryl bromide (BiBB). Isocyanate 

functional copolymers were prepared and isolated using a simple method. Polyurea 

microcapsules were fabricated via oil-in-water interfacial polymerisation. Interestingly, 

the emulsion droplet size showed no significant difference, though different emulsion 

synthetic conditions were applied, including the different molecular weights of the 

copolymers, copolymer content and stabilisers. Microcapsule emulsions were dried by 

spray drying; a slight difference of dried microcapsules was observed by laser scattering 

measurement. SEM microphotography of the dried powder displayed a constant wall 

without any wall ruptures or cracks, indicating a strong microcapsule wall with a 

relatively rounded particle shape. In addition, the external structure of the microcapsule 

is described as concave or a shrinkage sphere, which results from the initial drying 

process. Interestingly, less shrinkage in the dried particles was detected after aqueous 

PVA + Arabic gum (GA) was used to prepare the microcapsule emulsion. In addition, TGA 

results of microcapsules showed a good thermal stability with a similar tendency of the 

weight loss curve. Further, approximately 10 % of carrier oil in microcapsule can also be 

estimated from the weight loss of shown by TGA at 200 °C. Notably, the temperature of 

spray drying process could influence the stability of the pesticide; the melting point of 

IMI is approximately 140-146 °C. Nevertheless, IMI was used as a model chemical. Thus, 
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further study is required before using microcapsules in the field, including either 

changing the pesticide (higher stability) or decreasing the drying temperature. Finally, a 

good thermal stability and the reasonable encapsulation efficiency make these 

microcapsules suitable candidates for a prolonged release encapsulation system. 

 

3.4 Experimental  

3.4.1  Materials    

Acetone, anhydrous 2-propanol (IPA), 𐐩-caprolactone, benzyl methacrylate 

(BnMA), poly(𐐩-caprolactone) diol average Mn = 530 g mol−1 (PCL5), isocyanatoethyl 

methacrylate (IEM), deuterated chloroform (CDCl3), anhydrous dichloromethane (DCM), 

diethylenetriamine (DETA), gum Arabic (GA), copper(II) bromide, 35 % aqueous 

hydrochloric acid, α-bromoisobutyl bromide, poly(vinyl alcohol) (Mw = 130,000 g mol−1), 

triethylamine (TEA), trans-2-[3- (4-tert-Butylphenyl)-2-methyl-2-propenylidene] 

malononitrile (DCTB), sodium iodide (NaI), poly(ethylene glycol) (Mw = 1,500 g mol−1), 

anhydrous tetrahydrofuran (THF) and imidacloprid (IMI) were purchased from Sigma-

Aldrich UK. Carrier oil was purchased from Stephan Company. Tin(II) 2-ethylhexanoate 

was purchased from Alfa-Aesar. Me6Tren was synthesised according to literature 

procedure. Caprolactone (𐐩-CL) was purified by vacuum distillation over CaH2 prior to 

use 
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3.4.2 Characterisation 

 

Size exclusion chromatography measurements were performed on an Agilent 

390 MDS Multi-Detector GPC system (CHCl3 + 2 % TEA Mixed C Column Set, THF + 2 % 

TEA and 0.01 wt. % BHT with PLgel Mixed C columns set, 30 °C flow rate 1 mL/min, 

narrow standards of PMMA were used as calibration polymers between 955000 and 

1010 gmol−1 and fitted with a third order polynomial) by DRI detection. 1H NMR 

(standard) and 13C NMR (long acquisition long delay) were recorded on a Bruker Avance 

III HD 400 MHz and Bruker Avance III HD 300 MHz with CDCl3 as the solvent. FTIR spectra 

were recorded on a Bruker Vector 22 FTIR spectrometer and analysed with OPUS 

software. Particle sizes were obtained by a Malvern Instruments Mastersizer 2000 

System. Emulsion droplet microcapsules were dried using a Buchi mini spray dryer B-

290. Particle morphologies were characterised via scanning electron microscope (ZEISS 

SUPRA55VP). Thermogravimetric analysis was carried out on a Mettler Toledo 

TGA/DSC1. For the MALDI-ToF measurements an Autoflex ToF/ToF apparatus was used; 

trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), 

tethahydrofuran, sodium iodide (NaI) and poly(ethylene glycol) (Mw = 1,500 g mol−1) 

were used as matrix, solvent, ionizing agent and calibrated polymer, respectively. 

Pesticide loading, encapsulation efficiency, and release profile was obtained via Synergy 

HTX Multi-Mode reader. 

 

3.4.3 α, ω- Hydroxyl terminated Poly(𐐩-caprolactone) (𐐩-PCL12) 

polymerisation 
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Diethylene glycol (0.17 mL, 1.79 mmol, 1 eq.) and Sn(Oct)2 (10 mg, 0.025 mmol, 

0.014 eq.) were added into a dried ampoule tube and purged with nitrogen. 𐐩-CL (2.34 

mL, 21.48 mmol, 12 eq.) was added into the reaction mixture, and polymerisation was 

carried out at 110 °C for 15 hours. The polymer solution was poured directly to cold n-

hexane. Once the solvent was removed, the white solid product was characterised by 

NMR, IR and SEC and MALDI-ToF MS. 1H NMR (400 MHz, CDCl3, δ): 1.34-1.40 (m, 24H, 

CH2), 1.55-1.75 (m, 48H, CH2), 2.25-2.40 (m, 24H, CH2COO), 3.62 (t, 4H, HOCH2, J = 6.50 

Hz), 3.69 (t, 4H, HOCH2, 5.90 Hz), 3.96 (t, 4H, OCH2, J = 6.70 Hz), 4.04 (t, 22H, COOCH2, J 

= 6.70 Hz), 4.21 (t, 4H, COOCH2, J = 5.90 Hz), 13C NMR (100.61 MHz, CDCl3, δ): 24.50 (s, 

CH2), 25.46 (s, CH2) 28.27, (s, CH2), 34.05 (s, CH2), 69.01, (s, C-O), 64.08, (s, C-O), 63.22, 

(s, C-O(backbone)), 62.56 (s, C-O), 173.48 (s, C=O), IR: v = 3450 (O-H), 2937, 2863 (C-H), 

1728 (C=O) , MALDI-TOF MS (m/z) (C6H11O2)mC4H8O3(C6H11O2)n.Na+, 927.298 (m=3, n=4), 

1041.439 (m=4, n=4), 1155.561 (m=4, n=5), 1269.666 (m=5, n=5), 1383.7758 (m=5, n=6), 

1497.842 (m=6, n=6), 1611.918 (m=6, n=7), 1725.986 (m=7, n=7), 1842.053 (m=7, n=8), 

1955.119 (m=8, n=8), 2096.183 (m=8, n=9), 2183.252 (m=9, n=9), 2297.325 (m=9, n=10), 

SEC(CHCl3): Mn = 3200 g mol−1, Đ = 1.15. 

 

3.4.4 α, ω-PCL12 SET-LRP macroinitiator 

 

Polycaprolactone (2.8 g, 1.87 mmol, 1 eq.) was added to 250 mL round bottom 

flask containing stirrer bar and sealed by a rubber septum. Anhydrous tetrahydrofuran 

(THF) (100 mL) was canulated into a round bottom flask and followed by triethylamine 

(1.4 mL, 10 mmol, 5.4 eq.) The reaction was degassed with N2 for 20 minutes. The 

reaction mixture was cooled in an ice bath and α-bromoisobutyryl bromide (BiBB) (0.5 
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mL, 4 mmol, 2.1 eq.) was dropwise added. Once BiBB was completely added, the ice 

bath was removed and the reaction was carried out at ambient temperature overnight. 

THF was removed under reduced pressure and crude initiator product was re-dissolved 

by anhydrous DCM (100 mL). NaHCO3 aqueous solution (2 x 150 mL) was used to wash 

the crude product. DCM was removed by rotary evaporator. Finally, the macroinitiator 

was re-dissolved in dichloromethane (15 mL) and precipitated in cold n-hexane. After 

solvent removal, the resultant white solid product (90 % yield) was characterised by 

NMR, IR, SEC and MALDI-ToF MS. 1H NMR (400 MHz, CDCl3, δ): 1.33-1.42 (m, 24H, CH2), 

1.59-1.79 (m, 48H, CH2), 1.91 (s, 12H, 2xCOO(CH3)2Br), 2.27-2.36 (m, 24H, CH2COO), 3.69 

(t, 4H, OCH2, J = 4.90 Hz), 4.06 (t, 24H, COOCH2, J = 6.70 Hz), 4.17 (t, 4H, COOCH2, J = 6.50 

Hz), 4.23 (t, 4H, COOCH2, J = 4.90 Hz), 13C NMR (100.61 MHz, CDCl3, δ): 24.56, 25.52 (s, 

CH2), 28.34 (s, CH3), 28.75 (s, CH3), 34.10 (s, CH2), 55.86 (s, C-Br) 63.27 (s, C-O), 64.13 (s, 

C-O (backbone)), 65.76 (s, C-O), 69.08 (s, C-O), 173.53 (s, C=O), IR: v = 2950, 2866 (C-H), 

1730 (C=O), MALDI-TOF MS (m/z): C4H6OBr(C6H10O2)mC4H8O3(C6H10O2)nC4H6OBr.Na+, 

1339.552 (m=4, n=4), 1453.636 (m=4, n=5), 1567.725 (m=5, n=5), 1681.807 (m=5, n=6), 

1795.888 (m=6, n=6), 1909.055 (m=6, n=7), 2024.024 (m=7, n=7), 2140.081(m=7, n=8), 

2253.157(m=8, n=8), 2368.209(m=8, n=9), 2481.293 (m=9, n=9), SEC(CHCl3): Mn = 3700 g 

mol−1, Đ = 1.11 

 

3.4.5 PCLx-P(BnMAm-co-IEMn) polymerisation 

 

A magnetic stirrer bar was coiled with copper wire (8 cm) and placed into 3 mL 

of 35 % HCl solution for 5 minutes, washed with deionized water then acetone. Once 

dried, the cleaned wire was placed in a Schlenk tube containing α, ω-poly(𐐩-
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caprolactone) initiator (0.2 g, 0.11 mmol, 1 eq.) and CuBr2 (2.4 mg, 1.1 x 10−5 mol (0.1 

eq. relative to initiator). Next, the Schlenk tube was sealed with a rubber septum, 

anhydrous 2-propanol (1 mL), 2-isocyanatoethyl methacrylate (78 μL, 0.55 mmol. 5 eq.) 

and benzyl methacrylate (0.85 mL, 5.01 mol, 45 eq.) were added. The reaction mixture 

was degassed under a flow of N2 for 15 minutes, then Me6Tren (20 μL, 8.02 x 10−5 mol, 

0.72 eq.) was added. The reaction was stirred for 5 hours after which phase separation 

was observed. The upper layer was removed and anhydrous dichloromethane then was 

added to re-dissolved polymer layer. The polymer was precipitated in cold n-hexane and 

isolated by filtering through a sintered glass funnel. The resultant white polymer powder 

(71 % yield) was characterised by NMR, IR and SEC. 1H NMR (400 MHz, CDCl3, δ): 0.67-

0.86 (m, 90H, CH3), 1.15-1.35 (m, 80H, CH2), 1.57-1.88 (m, 108H, CH2), 2.22-2.30 (m, 24H, 

CH2C=O), 3.29 (m, 12H, CH2NCO), 3.61-3.63 (m, 4H, CH2O), 3.84-4.01 (m, 36H, COOCH2), 

4.15-4.17 (m, 4H, COOCH2), 4.81-4.84 (m, 48H, PhCH2OCO), 7.14-7.22 (m, 120H, CH2 

aromatic), 13C NMR (100.61 MHz, CDCl3, δ): 22.18 (s, CCH3), 24.59, 25.55, 28.37, 34.14 

(s, CH2), 30.78 (s, CCH3), 44.81 (s, CH2N), 54.95 (s, CH3), 63.30, 64.15 (s, CH2O), 66.78 (s, 

PhCH2O), 69.10 (s, CH2OCO), 128.21 (s, CH aromatic), 128.54 (s, CH2 aromatic), 173.54, 

177.04 (s, C=O) IR: v = 1500 (CH aromatic), 1750 (C=O), 2250 (NCO), SEC(CHCl3): Mn = 13400 

g mol−1, Đ = 1.48 

 

3.4.6 Spray drying emulsion preparation 

 
PCLx-P(BnMAm-co-IEMn) copolymer (0.6 g) was added into a 50 mL vial containing 

5 mL anhydrous DCM. Neobee Carrier Oil (0.4 g) was added, followed by 18.4 mL of 1.3 

% polyvinyl alcohol (Mowiol 18-88) aqueous solution. The mixture was homogenised at 
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2000 rpm for 3 minutes using an overhead dissolver disc. The mixture was transferred 

to a 100 mL RBF and then stirred at 700 rpm using magnetic stirrer. A 40 % aqueous 

solution of diethylenetriamine (DETA) (0.6 mL, excess) was added dropwise into the 

reaction; the mixture was then left to stir at room temperature. After 1 hour the 

temperature was increased to 50 °C and, after another hour, the temperature was 

further increased to 90 °C. Microcapsule size was determined by dynamic light scattering 

and optical microscopy. 

 

3.4.7 Spray drying process 

 
The emulsion solution was dried by using a Buchi mini spray dryer B-290 with a 

nozzle atomization system of 0.5 mm. Drying experiments were carried out at 100 % of 

aspirator rate, 3.3 mL/min feeding rate, 140 °C inlet air temperature and 6.7 bar of 

atomising nitrogen pressure. Dried products (58 % yield) were removed and stored in 

vials for further analysis. 

 

3.4.8 Particle morphology 

 
Microcapsules were dotted onto a two-sided adhesive tab and sputter coated 

with gold for 30 seconds. Morphological characteristic of microcapsules were observed 

by scanning electron microscopy (SEM; ZEISS SUPRA55VP) with an accelerated voltage 

of 10 kV. 
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3.4.9 Particle size distribution 

 

Particle mean diameter was measured by using a laser light diffraction 

instrument, Mastersizer S (Malvern Instrument Malvern, UK). Powder particles were re-

dispersed into aqueous solution of Aerosol OT-100 (1 %) and sonicated for 10 minutes. 

The particle size was represented as D(4,3), the volume weight mean diameter. 

 

3.4.10 Particle thermal stability 

 

Thermogravimetric analysis (TGA) was recorded on a Mettler Toledo TGA/DSC1. 

Samples were measured from 25 to 600 C at 10 °C/min under nitrogen. 

 

3.4.11 Determination of pesticide loading (PL), encapsulation 

efficiency (EE), and release profile 

 

20 mg of microcapsule was placed in a Soxhlet thimble and extracted using HPLC 

water (25 mL) as a solvent at 160 °C for 5 hours. The concentration of IMI was measured 

by UV-Vis spectrometry. The pesticide loading (PL) is defined as the weight percentage 

of IMI in a certain amount of microcapsule. Encapsulation efficiency (EE) details the 

amount of pesticide considered from feeding composition [227]. For the release profile, 

1.9 mg of microcapsule was placed in 96-well microplates, followed by 350 µL of HLPC 

grade water. The concentration of IMI over time was detected by UV-Vis spectrometry 

at λ = 270 nm. 

 

PL = [(weight of pesticide)/(weight of microcapsule)] x 100 
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EE = [(weight of pesticide)/(weight of microcapsule x pesticide content from the feeding 

composition)] x 100
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The use of amphiphilic block copolymers for active ingredient (AI) delivery has 

drawn the attention of researchers in recent decades [228-231]. In this chapter, 

commercially available telechelic PDMS hydrides (h2PDMS) have been modified with a 

range of different methacrylates via hydrosilylation as the precursor of ABA amphiphilic 

copolymers as promising materials for the carrying of water-insoluble agrochemicals. 

Poly(dimethyl siloxanes) (PDMS) are an important class of polysilicone due to their 

excellent glass transition temperature (Tg) and non-toxicity. The hydrophobicity of PDMS 

is a feature of these materials, making them ideal for use as hydrophobic segments of 

amphiphilic block copolymers. Hydrosilylation is a well-established reaction for the 

preparation of organo-silicone compounds [258-260]. Hydrosilylation of functional 

methacrylates provides access to functional poly(dimethylsiloxane) (PDMS) from 

appropriate hydride terminated PDMS in very high yielding reactions without the 

formation of any side products, without odour, and without a need for labour-intensive 

purification. The versatility of hydrosilylation has been exploited for the preparation of 

ABA triblock copolymers using poly(ethylene glycol) methacrylate and more structurally 

demanding vinyl terminated methacrylic macromonomers. The latter are obtained by 

catalytic chain transfer polymerisation (CCTP). 1H NMR revealed the formation of solely 

anti-Markovnikov products and the high tolerance of the reaction towards other 

functionalities. 
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4.1 Background 

4.1.1. Poly(dimethylsiloxane) (PDMS) 

Use of amphiphilic block copolymers for drug delivery, in order to increase drug 

solubility and stability, has drawn the attention of researchers in recent decades [228-

231]. A number of polymers have been exploited to synthesise amphiphilic copolymers 

via different polymerisation methods, particularly reversible deactivated radical 

polymerisation (RDRP) [232-235]. A variety of water soluble polymers are employed as 

hydrophilic segments of copolymers. Interestingly, polyethylene glycol (PEG) seems to 

be a commonly used material for several reasons, including biocompatibility, FDA 

approval, commercial availability and cost effectiveness [236-238]. Conversely, the 

hydrophobic segment selection is significant in copolymer synthesis for active ingredient 

delivery, especially when it is further used to form micelles and exploited as the water-

insoluble AI carrier, because hydrophobicity could influence the encapsulation efficiency 

resulting from intermolecular interactions [239, 240]. 

 

A further copolymer preparation method is the reaction between two polymers 

via organic reactions. Highly efficient organic reactions have been used for many years 

to modify and alter the properties of materials. The introduction of the click chemistry 

concept by Sharpless [241] and coworkers in 2001 has inspired researchers to seek new, 

and rediscover old, efficient reactions, which are, for instance, high yielding and 

stereospecific and which do not generate side products and, hopefully, do not require 

purification by chromatography. Numerous reactions have experienced a renaissance as 
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“click type” reactions and have been demonstrated to be applicable for the fabrication 

of diverse materials/ polymer architectures for applications in material science, biology 

and medicine [242-244]. Prominent recent examples include thiolene [245, 246] and 

Michael-addition and Diels-Alder reactions [247]. A highly efficient reaction that has not 

received as much attention in this context is catalytic hydrosilylation, i.e., the insertion 

of an unsaturated vinyl group into a Si-H bond [248]. The first hydrosilylation reaction of 

trichlorosilane and 1-octene in the presence of acetyl epoxide was reported by Sommer 

et al. in 1947 [249]. Since then, hydrosilylation has become a powerful reaction in 

silicone polymer and surface chemistry [250]. 

 

 

Figure 4.1: Examples of PDMS modification via hydrosilylation reaction. 

 

Poly(organosiloxane)s (POS), also known as silicones, are exploited as building 

blocks in many industrial products. Poly(dimethylsiloxanes) (PDMS) are probably the 

most important member of the silicone class, exhibiting some excellent material 

properties, including high flexibility, excellent thermal oxidative stability, high moisture 

resistance, low glass transition temperature (Tg), and non-toxicity [251]. Due to these 
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unique properties, POS, in particular PDMS, are used in diverse applications, for 

example, in semiconductor devices, aerospace, decorative coatings, biomaterials, 

mould release agents, antifoam and foaming agents, personal care products, and 

additive materials. The non-toxicity and hydrophobicity of PDMS offer a unique aspect 

for use as a hydrophobic segment of the amphiphilic block copolymer. Amphiphilic 

PDMS-PEG copolymer synthesis has been successfully obtained via different techniques, 

particularly organic click reactions [252-254]. In addition, several studies on the 

modification of hydride terminated PDMS and copoly-(dimethyl)(methyl-

hydrogen)siloxane have been reported [255]. The latter approach was used for the 

preparation of acrylate containing [256] and fluorinated PDMS, [257] respectively. 

Hydrosilylation of h2PDMS systems was demonstrated as a technique for the 

introduction of (meth)acrylic acid, [258, 259] amine and epoxy terminal end groups 

[260]. The addition of Si-H can be favourably compared with thiolene chemistry 

(addition of S-H), which has been the focus of many publications in recent years. 

Hydrosilylation has the advantage of having starting materials with little or no odour and 

which are extremely stable other than reacting very selectively with vinyl groups in the 

presence of appropriate catalysts. PDMS-PEG copolymers, which are formed via a 

conventional addition reaction, have been used to utilise and modify PDMS derivative 

polymers for more than fifty years. Nevertheless, only diblock copolymers of PDMS-PEG 

have been reported with regard to this reaction. Moreover, long reaction times and high 

temperatures are noted as some of the disadvantages of hydrosilylation [261-265]. In 

this chapter, we investigate the utility of this reaction. Specifically, we sought a shortcut 

in amphiphilic PDMS synthesis by using different functional methacrylate in an effort to 
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modify hydride terminated PDMS (H2PDMS). The high yielding and efficient 

hydrosilylation reactions were also shown by the successful modification of 

macromonomers prepared by catalytic chain transfer polymerisation (CCTP), as this 

sterically hindered the vinyl group. Based on these results, hydrosilylation of 

methacrylate-based materials is demonstrated as a tool for the synthesis of linear 

telechelic ABA amphiphilic block copolymers. 

 

4.1.2 Hydrosilylation 

Hydrosilylation is the insertion reaction of an unsaturated vinyl group into a Si-H 

bond. Since hydrosilylation was introduced, it has become one of the most powerful 

reactions in silicone polymer and surface chemistry. The mechanism for the late 

transition metal catalysed hydrosilylation (usually using d8 and d10 metals) was proposed 

by Chalk and Harrod. Hydrosilylation occurs through four consecutive steps, Figure 4.2. 

Firstly, the oxidative addition of a silane to the metal complex occurs. Next, the M(II) 

complex is generated, followed by the ordination of catalytic complex with vinyl 

functional groups. Subsequently, the migratory insertion of the alkene into the MH bond 

occurs. Thereafter, the reductive elimination step takes place, leading to the formation 

of the Si-C bond and the initial catalytic complex [248]. 

 

A wide range of late transition metal catalysts have been employed in 

hydrosilylation reactions, however, the most commonly used in both industrial and 

research PDMS synthesis/modification is a platinum complex. In this thesis, Karstedt’s 

catalyst (platinum-divinyltetramethyldisiloxane (Pt(dvs))), a platinum metal complexe 
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with the divinyl ligand, was exploited. In general, (Pt(dvs)) exists as the dimer structure, 

which is known as a pre-catalyst (Figure 4.3 left). It is worth noting that an equilibrium 

of organoplatinum compounds occurs during the reaction to generate an active catalyst. 

 

   

 

Figure 4.2: Chalk-Harrod hydrosilylation mechanism catalysed by a late transition-metal 

catalyst. 

 

 

 

 

Figure 4.3: Structure of Karstedt’s catalyst 
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4.2  Results and discussion  

4.2.1 Modification of hydride terminated PDMS with methacrylates 

 
 Hydrosilylation was employed as a versatile and efficient method for the 

synthesis of functional telechelic PDMS. PDMS with hydride α, ω-end groups(h2PDMS; 

average Mn 580 gmol−1) was modified with different methacrylates (Figure 4.4), 

including methyl methacrylate (MMA), 2-hydroxylethyl methacrylate (HEMA), glycidyl 

methacrylate (GMA), lauryl methacrylate (LMA), 2-ethyl hexyl methacrylate (EHMA), 

butyl methacrylate (BMA) and diethylene glycol methyl ether methacrylate 

(DEGMEMA). 

 

 

 

Figure 4.4: Hydrosilylation of methacrylate monomer and h2PDMS hydride terminated. 
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Firstly, MMA was used in order to optimize the reaction conditions with regard 

to temperature and reaction time. Within 60 minutes at 37 °C the reaction was found to 

be complete, as determined by 1H NMR. The characteristic Si-H signal at 4.80 ppm was 

used to follow the progress of the reaction (Figure 4.5). The insertion of the methacrylic 

alkene functionality into the Si-H bond results in the formation of a Si-C bond and loss 

of the Si-H group. After 60 minutes at 37 °C the Si-H signals disappeared whilst new 

signals between 0.5 and 1 ppm appeared, which can be assigned to the newly formed 

CH2 group. A high-field shift of the methacrylate methyl group is observed, characteristic 

for the transition from an sp2 to an sp3 neighbouring group. Further evidence of the 

success of the reaction was obtained by IR spectroscopy (Figure 4.6) with the 

disappearance of the characteristic Si-H band at 2126 cm−1 and the appearance of the 

ester band at 1750 cm−1. 

 

Figure 4.5: 1H NMR spectra of the feed mixture of MMA and h2PDMS (A) and the product 

MMA-PDMSn-MMA (B) (CDCl3, 250 MHz). 
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Figure 4.6: FTIR spectroscopy of h2PDMS and MMA-PDMSn-MMA. 

 

 

 

Figure 4.7: Conversion of Si-H groups with time at different temperatures; 100 °C 

(square), 70 °C (diamonds), and 37 °C (circles). 
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As a result, the temperature has a significant influence on the rate of 

hydrosilylation. Figure 4.7 indicates the kinetics of the reaction at different 

temperatures; faster reactions were observed at higher temperature, interestingly, the 

reaction was completed after 60 minutes at all studied temperatures. Hydrosilylation is 

a catalytic addition reaction and both the Markovnikov and the anti-Markovnikov 

products are possible. Previously, it has been reported that hydrosilylation catalysed by 

rhodium and rhenium complexes follow the anti-Markovnikov rule [266, 267]. Due to 

the asymmetric substitution of the methacrylates used in this study, valuable and 

conclusive information is obtained from the 1H NMR spectrum of the final product 

(Figure 4.5B). A product according to the Markovnikov rule would result in the formation 

of a quaternary carbon substituted with two methyl groups, whereas an anti-

Markovnikov product would contain CH2 and CH3 groups (Figure 4.8). 1H NMR 

spectroscopy revealed the formation of the anti-Markovnikov product; the quartet of 

triplets at 2.5 ppm corresponds to a CH group neighbouring a CH2 and CH3 group, and 

the two signals between 0.5 and 1 ppm originate from the CH2, which couples to the 

protons of the vicinal chiral carbon atom. In addition, 13C NMR spectroscopy also 

indicates that the hydrosilylation product is anti-Markovnikov (Figure 4.9). Thus, the 

conditions applied in this study favour an anti-Markovnikov product, most likely due to 

the lower steric hindrance of the intermediate state. All modifications in this study were 

complete after 60 minutes at 37 °C with close to 100 % yields. The formation of anti-

Markovnikov products was observed for all methacrylate additions as evidenced by the 

corresponding NMR spectra (Figure 4.10).  
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Figure 4.8: Structures of anti-Markovnikov (A) and Markovnikov (B) products, which can 

be obtained by hydrosilylation of methacrylates; R represents the same functional group 

as the right hand side. 

 

 

Figure 4.9: 13C spectroscopy of h2PDMS and MMA-PDMSn-MMA. 
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Figure 4.10: 1H NMR spectrum of PDMS modification (A) GMA-PDMSn-GMA, (B) HEMA-

PDMSn-HEMA, (C) LMA-PDMSn-LMA, (D) EHMA-PDMSn-EHMA, (E) BMA-PDMSn-BMA, (F) 

DEGMEMA-PDMSn- DEGMEMA. 

 

 

Figure 4.11: SEC traces of h2PDMS and methacrylate (x) modified PDMS (x-PDMSn-x). 
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Furthermore, the products were investigated by size exclusion chromatography 

(SEC) (Figure 4.11). Unmodified h2PDMS showed a monomodal trace with a narrow 

dispersity (Đ = 1.23). Notably, the retention time in SEC depends on the size of polymer 

in the solution; those with large hydrodynamic volume eluting first.  Upon modification, 

a shift to higher molar mass was observed. For example, the molar mass of LMA-PDMS-

LMA is greater than MMA-PDMS-MMA; LMA has a longer chain length than MMA which 

results in the larger hydrodynamic volume. The retaining narrow molar mass 

distributions for all hydrosilylation products was observed except HEMA-PDMS-HEMA. 

The reaction with HEMA resulted in a rather broad molar mass distribution (Đ = 1.71). 

This could be the result of interactions with the column material and a non-suitable 

solvent system employed for the amphiphilic product obtained. However, 1H NMR 

demonstrated quantitative conversion of the Si-H groups without the formation of any 

side products. To further elucidate the products formed, MALDI-ToF MS measurements 

were conducted. 

 

Analysis of the MALDI-ToF MS spectra of the MMA and HEMA hydrosilylation 

products revealed the molecular composition of the two products with distributions 

which are in agreement with the expected composition (Figure 4.12). The products were 

analysed using dithranol as matrix and sodium iodide to improve the ionization. The 

molar mass increments (74.02 g mol−1) were assigned to the DMS repeating units. End-

group analysis proved the successful introduction of MMA and HEMA groups into the 

polymer, with chemical composition calculated according to (C2H6SiO)n 

(C7H15SiO2)2O.Na+ and (C2H6SiO)n (C8H17SiO3)2O.Na+, respectively. No further 
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distributions or side products were observed, indicative of the high yields and selectivity 

of this reaction. The same observations were made for modifications with the other 

methacrylates. 

 

 

Figure 4.12: MALDI-ToF MS spectrum of MMA-PDMS-MMA with the molecular 

composition (C2H6SiO)n (C7H15SiO2)2O.Na+, where n represents the repeating unit of 

PDMS. 
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4.2.2  Synthesis of ABA triblock copolymers 

 

 

Figure 4.13: A schematic reaction of PEG6-PDMS6-PEG6 and MMA2-PDMS6-MMA2 

formations. 

 

Hydrosilylation was further employed for the synthesis of ABA triblock 

copolymers. Poly(ethylene glycol)methacrylate (PEGMA; average Mn 300 g mol−1) was 

selected as a methacrylate terminated polyether. The reaction was conducted according 

to the protocol established for the small organic methacrylates. Full conversion of 

h2PDMS was reached within 90 minutes, as indicated by the disappearance of the 

corresponding Si-H signal (4.80 ppm) in the 1H NMR spectrum (Figure 4.14). In addition, 

even for the reaction with PEGMA, exclusively the anti-Markovnikov product was 

obtained. Further, SEC analysis further demonstrated the quantitative conversion of the 

starting materials (Figure 4.15). A complete shift of the SEC trace to higher molar mass 

was observed following the reaction. The absence of the PEGMA signal proved the high 

efficiency of the hydrosilylation modification. A well-defined ABA triblock copolymer 
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was obtained as suggested by the narrow molar mass distribution (Mn = 2200 g mol−1, Đ 

= 1.19). 

 

Figure 4.14: 1H NMR spectrum of PEG6-PDMS6-PEG6 triblock copolymer (CDCl3, 250 

MHz). 

 

 

Figure 4.15: SEC elution traces of PEG6-PDMS6-PEG6 triblock copolymer. 
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Figure 4.16: MALDI-ToF MS spectrum of PEG6-PDMS6-PEG6. 

 

 

The MALDI-ToF MS spectrum showed a peak pattern typical for (block) 

copolymers with molar mass increments corresponding to both the DMS (74.02 g mol−1) 

and EG (44.03 g mol−1) repeating units (Figure 4.16). The chemical composition was 

confirmed by the isotopic pattern. End group analysis revealed the formation of solely 

PEGMA modified PDMS with the chemical formula C7H15SiO3(C2H4O)m 

(C2H6SiO)n(C2H4O)oC7H15SiO2.Na+, where n, m and o represent the number of repeating 

units of DMS, EG and EG, respectively. For a detailed analysis, the peak at 931.48 m/z 

was selected corresponding to the formula C7H15SiO3(C2H4O)4(C2H6SiO)3 

(C2H4O)4C7H15SiO2.Na+. For a more comprehensive evaluation, the peaks in the inset in 

figure 4.16 are assigned with the corresponding number of repeating units. Thus, 

MALDI-ToF MS confirms that simple hydrosilylation can be used to synthesise 

amphiphilic copolymers containing silicone hydrophobic middle blocks. 

 



Chapter 4. Hydrosilylation: An efficient tool for polymer synthesis and modification 

 

129 
 

To further demonstrate the versatility of the hydrosilylation reaction, 

structurally demanding vinyl end-functionalized CCT macromonomers were employed 

for the preparation of ABA triblock copolymers. In contrast to the hydrosilylation 

reactions described in this study, no reaction occurred at 37 °C, which is attributed to 

the steric hindrance of the substituents of the vinyl groups of CCT macromonomers. 

Thus, the reaction was conducted at elevated temperatures (100 °C) with a higher 

h2PDMS-to-CCTP MMA dimer ratio. After 24 hours full conversion of the Si-H groups was 

observed by 1H NMR (Figure 4.17) and IR spectroscopy (Figure 4.18), by the 

disappearance of the Si-H signal at 4.7 ppm and Si-H band at 2100 cm−1, respectively. 

 

 

Figure 4.17: 1H NMR spectra of (A) the ABA triblock PMMA2-b-PDMS6-b-PMMA2 after 24 

h reaction and (B) the feed reaction mixture. 
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Figure 4.18: FTIR spectrum of PMMA2-b-PDMS6-b-PMMA2 triblock copolymer. 

 

 

 

4.3 Conclusion 

Seven different small organic methacrylates have been used to modify terminal 

hydride substituted PDMS via hydrosilylation in the presence of a commercial 

platinum(II) catalyst (Pt(dvs)). It was demonstrated that the reactions proceed to very 

high conversions over 60 minutes under mild reaction conditions (37 °C). According to 

1H NMR spectroscopy and MALDI-ToF MS investigations, 100% conversions without the 

formation of side products were obtained for all methacrylates. 1H NMR revealed the 

synthesis of anti-Markovnikov products. Moreover, hydrosilylation is described as an 

alternative approach for the synthesis of block copolymers. Well-defined block 

copolymers were obtained by modification with PEGMA, as proven by 1H NMR 

spectroscopy, SEC and MALDI-ToF MS. Furthermore, adjustment of the reaction 

conditions enabled the synthesis of ABA triblock copolymers with sterically demanding 
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vinyl terminated CCT macromonomers. In summary, hydrosilylation represents a 

powerful tool for the fabrication of functional PDMS materials, including end-functional 

PDMS and block copolymers. The addition of Si-H can be compared to thiol-ene, S-H, 

chemistry which has found extensive use in polymer synthesis. The vast variety of 

commercially available hydride substituted PDMS and functional methacrylates in 

combination with the beneficial characteristics of the reaction, such as quantitative 

conversion at mild conditions, high selectivity and high tolerance towards various 

functionalities, makes hydrosilylation of methacrylates interesting for a broad range of 

applications.  The examples of using polymeric micelles to improve the solubility and 

stability of hydrophobic pesticides are mentioned in chapter 1. This section 

demonstrates a facile synthetic route of an ABA amphiphilic triblock copolymer 

containing the hydrophobic PDMS. Thus, PEGn-PDMSm-PEGn copolymers could be used 

to generate micelles which may be promising as carriers of water-insoluble 

agrochemicals like the microcapsules discussed in the previous chapter. 

 

4.4 Experimental  

4.4.1 Materials   

Hydride terminated PDMS (h2PDMS; average Mn 580 g mol−1), toluene, methyl 

methacrylate (MMA), 2-ethyl hexyl methacrylate (EHMA) , glycidyl methacrylate (GMA), 

lauryl methacrylate (LMA), butyl methacrylate (BMA), diethylene glycol methyl ether 

methacrylate (DEGMEMA), poly(ethylene glycol methyl ether) methacrylate (PEGMA, 

average Mn 300 g mol−1), dithranol, sodium iodide and THF were purchased from Sigma-
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Aldrich and used as received. 2-hydroxylethyl methacrylate (HEMA) was obtained from 

Sigma-Aldrich and purified by deionized water/hexane extraction. Pt(dvs) was 

purchased from Gelest. The MMA macromonomer was synthesized according to 

literature procedure [267]. 

 

4.4.2 Characterisation 

IR spectra were recorded on a Bruker Vector 22 FTIR spectrometer. OPUS 

software was used to analyse absorbance data. Size exclusion chromatography 

measurements were performed on an Agilent 390 MDS Multi-Detector GPC system 

(CHCl3 + 2 % TEA Mixed C Column Set, THF + 2 % TEA and 0.01 wt.% BHT with PLgel 

Mixed C columns set, 30 °C flow rate 1 ml/min, narrow standards of PMMA were used 

as calibration polymers between 955000 and 1010 gmol−1 and fitted with a third order 

polynomial) by DRI detection. 1H NMR and 13C NMR were recorded on a Bruker AC-250, 

with CDCl3 as the solvent. The chemical shifts are given in ppm relative to the signal from 

residual non-deuterated solvent. For the MALDI measurements an Autoflex ToF/ToF 

apparatus (Bruker Daltonics, Bremen, Germany) was used. 

 

4.4.3 Kinetic studies of hydrosilylation of methyl methacrylate 

Hydrosilylation was performed at 100 °C, 70 °C and 37 °C. In all cases, up to 10 

vials with each H2PDMS (1 g, 1.72 mmol, 1 eq.), methyl methacrylate (0.36 g, 3.59 mmol, 

2.1 eq.) and 11 µL of Pt(dvs) were prepared and stirred for a maximum of 120 min. At 

different time points samples were taken and the conversion of the Si-H bond was 

determined by 1H NMR spectroscopy. 
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4.4.4 General procedure for the hydrosilylation of methacrylates 

H2PDMS (1 g, 1.72 mmol, 1 eq.), methacrylate (3.59 mmol, 2.1 eq.) and 11 µL of 

Pt(dvs) were added into a glass vial and stirred for 60 min at 37 °C. The product was 

isolated by removal of excess monomer under reduced pressure. 

 

4.4.5 Synthesis of MMA-PDMS-MMA 

1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.65 (dd, 2H, Si-CH2, J = 8.10, 

14.85 Hz), 0.93 (dd, 2H, Si-CH2, J = 6.60, 14.85 Hz), 1.20 (d, 6H, CH3, J = 6.95 Hz), 2.5 (m, 

2H, CH), 3.60 (s, 6H, O-CH3), 13C NMR (75.47 MHz, CHCl3, δ): 0.00 (Si-C), 19 (Si-C), 22 (C-

C), 30 (C-C), 50 (C-O), 175 (C=O), IR: v = 2961 (C-H), 1768 (C=O), 1257 (C-O). MALDI-ToF 

MS (m/z): C7H15SiO3 (C2H6SiO)n C7H15SiO2.Na+, 579.30 (n=3), 653.34 (n=4), 727.38 (n=5), 

801.42 (n=6), 875.46 (n=7), 949.50 (n=8), 1023.54 (n=9). SEC (CHCl3): Mn = 690 g mol−1, Đ 

= 1.42. 

 

4.4.6 Synthesis of HEMA-PDMS-HEMA 

 1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.75 (dd, 2H, Si-CH2, J = 8.00, 

14.85 Hz), 1.10 (dd, 2H, Si-CH2, J = 6.15, 14.85 Hz), 1.25 (m, 6H, CH3), 2.58 (m, 2H, CH), 

3.94 (m, 4H, CH2-OH), 4.25 (m, 4H, O=C-O-CH2), 13C NMR (75.47 MHz, CHCl3, δ): 0.00 (Si-

C), 19 (Si-C), 23 (C-C), 30 (C-C), 55 (C-O), 64 (C-O), 175 (C=O), IR: v = 2962 (C-H), 1721 

(C=O), 1258 (C-O), MALDI-ToF MS (m/z): C8H17SiO4 (C2H6SiO)n C8H17SiO3.Na+, 639.24 

(n=3), 713.26 (n=4), 787.28 (n=5), 861.30 (n=6), 935.32 (n=7), 1009.33 (n=8). SEC(CHCl3): 

Mn= 1,200 g mol−1, Đ = 2.00. 
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4.4.7 Synthesis of GMA-PDMS-GMA 

1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.70 (dd, 2H, Si- CH2, J = 8.50, 

14.85 Hz), 1.10 (dd, 2H, Si-CH2, J= 6.60, 14.85 Hz), 1.20 (d, 6H, CH3, J = 6.95 Hz), 2.65 (m, 

2H, CH), 2.80 (t, 2H, O-CH2, J = 4.70 Hz), 3.20 (sex, 4H, O-CH, J = 3 Hz), 3.95 (m, 2H, O=C-

O-CH2), 4.45 (m, 2H, O=C-O-CH2), 13C NMR (75.47 MHz, CHCl3, δ): 0.00 (Si-C), 19 (Si-C), 

22 (C-C), 35 (C-C), 44 (C-O), 49 (C-O), 63 (C-O) 178 (C=O), IR: v = 2961 (C-H), 1741 (C=O), 

1258, (C-O), MALDI-ToF MS (m/z): C9H17SiO4(C2H6SiO)n C9H17SiO3.Na+, 589.37 (n=2), 

663.39 (n=3), 737.41 (n=4), 811.43 (n=5), 885.45 (n=6), 959.47 (n=7), 1033.49 (n=8), 

SEC(CHCl3): Mn= 1,400 g mol−1 , Đ= 1.18. 

 

4.4.8 Synthesis of EHMA-PDMS-EHMA 

1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.75 (dd, 2H, Si-CH2, J = 8.30, 

14.85 Hz), 0.90 (t, 12H CH3, 7.42 Hz ) 1.00 (dd, 2H, Si-CH2, J = 6.15, 14.85 Hz), 1.20 (d, 6H, 

CH3, 6.95 Hz) 1.35 (m, 16H, CH3), 1.55 (m, 2H, CH2) 2.55 (m, 2H, CH), 4.00 (m, 4H, O=C-

O-CH2), 13C NMR (75.47 MHz, CHCl3, δ): 0.00 (Si-C), 9 (Si-C), 12,19,25,35 (C-C), 63 (C-O), 

175 (C=O), IR: v = 2960 (C-H), 1735 (C=O), 1258 (C-O), MALDI-ToF MS (m/z): C14H29SiO3 

(C2H6SiO)n C14H29SiO2.Na+, 627.41 (n=1), 701.43 (n=2), 775.45 (n=3), 849.48 (n=4), 

923.50 (n=5), 997.52 (n=6), 1071.54 (n=7), SEC (CHCl3): Mn = 1,300 (g mol−1), Đ = 1.16. 

 

4.4.9 Synthesis of BMA-PDMS-BMA 

1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.75 (dd, 2H, Si-CH2, J = 8.20, 

14.85 Hz), 0.90 (t, 6H, CH3, J = 7.30 Hz) 1.00 (dd, 2H, Si-CH2, J = 6.32, 14.69 Hz), 1.20 (d, 

6H, CH3, J = 6.95 Hz), 1.42 (m, 4H, CH2), 1.55 (m, 4H, CH2) 2.55 (m, 2H, CH), 4.00 (t, 4H 
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O=C-O-CH2, J = 6.80 HZ), 13C NMR (75.47 MHz, CHCl3, δ): = 0.00 (Si-C), 11 (Si-C), 20, 23, 

28, 30(C-C), 60 (C-O) , 175 (C=O), IR: v = 2961 (C-H), 1736 (C=O), 1257 (CO), MALDI-ToF 

MS (m/z): C10H21SiO3 (C2H6SiO)n C10H21SiO2.Na+, 589.33 (n=2) 663.36 (n=3), 733.38 (n=4), 

811.40 (n=5), 885.43 (n=6), 959.45 (n=7), 1033.48 (n=8), SEC(CHCl3): Mn= 1,100 g mol−1, Đ 

= 1.17. 

 

4.4.10 Synthesis of DEGMEMA-PDMS-DEGMEMA 

1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.75 (dd, 2H, Si-CH2, J = 8.50, 

14.85 Hz), 1.00 (dd, 2H, Si-CH2, 6.32, 14.85 Hz), 1.18 (d, 6H, CH3, 6.95 Hz), 2.55 (m, 2H, 

CH), 3.40 (s, 6H, O-CH3), 3.5 (m, 4H, OCH3), 3.60 (m, 8H, O-CH3) 4.12 (m, 4H, O=C O-CH2), 

13C NMR (75.47 MHz, CHCl3, δ): = 0.00 (Si-C), 19 (Si-C), 22, 30 (C-C), 58, 62, 78, 70, 72 (C-

O), 175 (C=O), IR: v = 2961 (C-H), 1736 (C-H), 1258 (C-O). MALDI-ToF MS (m/z): C11H23SiO5 

(C2H6SiO)n C11H23SiO4.Na+, 681.33 (n=2), 755.31 (n=3), 829.31 (n=4) 903.33 (n=5), 977.35 

(n=6), 1051.37 (n=7), SEC(CHCl3): Mn = 1,500 g mol−1, Đ = 1.15 

 

4.4.11 Synthesis of PEG6-b-PDMS6-b-PEG6 copolymer 

H2PDMS (1 g, 1.72 mmol, 1 eq.) and PEGMA (1.04 g, 3.46 mmol, 2.01 eq.) were 

dissolved in 1.5 mL toluene and 11 µL of Pt(dvs) was added into a glass vial and stirred 

for 60 min at 37 °C. Subsequently, toluene was evaporated under reduced pressure and 

45 mL water was added and the solution was centrifuged for 12 min (7,800 rpm). The 

supernatant was removed and the precipitate was dissolved in THF, the organic phase 

was dried over MgSO4, filtered, and the volatiles were removed under reduced pressure 

to give the ABA triblock copolymer (85 % yield). 1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 
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36H, Si-CH3), 0.70 (dd, 2H, Si-CH2, J = 8.40, 14.85 Hz), 1.05 (dd, 2H, Si-CH2, J = 6.15, 14.85 

Hz), 1.20 (d, 6H, CH3, J = 6.95 Hz), 2.55 (m, 2H, CH), 3.46 (s, 6H, O-CH3), 3.58 (m, 44H, O-

CH2), 4.25 (m, 4H, O=C-O-CH2), 13C NMR (75.47 MHz, CHCl3, δ): = 0.00 (Si-C), 18 (Si-C), 22 

(C-C), 30 (C-C), 55, 60, 65, 70 (C-O) 175 (C=O), IR: v = 2960 (C-H), 1734 (C=O), 1258 (C-O), 

MALDI-ToF MS (m/z) (g mol−1): C7H15SiO3 (C2H4O)m(C2H6SiO)n(C2H4O)o C7H15SiO2.Na+, 

857.46 (m=4, n=2, o=4), 901.49 (m=5, n=2, o=4), 931.48 (m=4, n=3, o=4), 945.52 (m=5, 

n=2, o=5), 975.52 (m=4, n=3, o=5), 1005.51 (m=4, n=4, o=4), 1019.55 (m=5, n=3, o=5), 

1049.54 (m=5, n=4, o=4), 1329.67(m=6, n=6, o=6), SEC(THF): Mn= 2,200 g mol−1, Đ = 1.19. 

 

4.4.12 Synthesis of PMMA2-b-PDMS6-b-PMMA2 copolymer 

H2PDMS (5 g, 8.6 mmol, 1 eq.), MMA macromer (4.3 g, 21.5 mmol, 2.5 eq.) and 

33 µL of Pt(dvs) were added into a glass vial and stirred for 24 h at 100 °C. The product 

(80 %) was isolated by removal of excess monomer under reduced pressure at 137 °C. 

1H NMR (250 MHz, CHCl3, δ): 0.00 (m, 36H, Si-CH3), 0.72 (dd, 2H, Si-CH2, J = 7.16, 14.88 

Hz), 0.85 (dd, 2H, Si-CH2, J = 7.72, 14.88 Hz), 1.10, 1.44 (s, 12H, CH3), 1.67 (m, 2H, CH2), 

2.08 (m, 2H, CH2), 2.51 (m, 2H, CH), 3.60 (s, 12H, O-CH3), 13C NMR (75.47 MHz, CHCl3, δ): 

0.00 (Si-C), 21 (Si-C), 23 (C-C), 33 (C-C), 39 (C-C), 50 (C-O), 177 (C=O), IR: v = 2980 (C-H), 

1700 (C=O), 1250(C-O). SEC(THF): Mn = 1400 g mol−1, Đ = 2.10.
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This chapter details the synthesis of acid-labile containing polymers via the 

Cu(0)-mediated polymerisation technique. Acid degradation is likely to be the potential 

focus of chemistry in literature reports on the pH-change in the rhizosphere, as this 

change is promising as a trigger condition for an agrochemical release. α, ω-Hydroxyl 

terminated poly(acetal) was synthesised from the condensation reaction of diethylene 

glycol and benzaldehyde. Subsequently, it was successfully converted to an α, ω -acetal 

functional SET-LRP initiator via esterification with an acid halide, α-bromoisobutyryl 

(BiBB). The initiator was exploited to polymerise methyl acrylate (MA) and poly(ethylene 

glycol) methyl ether acrylate (PEGA) (average Mn 480 g mol−1) through SET-LRP at 

ambient temperature. A reasonably high monomer conversion (>90%) and narrow 

molecular weight distribution (Đ) (1.1-1.3) were obtained. After solvent removal, the 

acetal-containing polymer degradation under acidic conditions was investigated; the 

decrease in molecular weight, as well as the formation of benzaldehyde, were 

monitored by SEC and 1H NMR, respectively. 

 

5.1 Background 

5.1.1 pH responsive polymers 

Physical stimuli-responsive materials, such as pH, temperature, and redox 

responsive polymers, have drawn the attention of polymer chemists during the last 

decade [269, 270]. pH sentisive polymers refer to polymers whose properties, such as 

solubility, volume, and chain conformation, is tunable when a different pH environment 

is applied to a system, due to these polymers containing an ionizable group that can 

donate or accept protons [271]. There are three main pH responsive polymers that have 
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been extensively investigated: anionic polymers, cationic polymers and acid-labile 

polymers. The anionic polymers mainly consist of the carboxylic acid group (COOH), 

which can protonate at high pH, leading to an increase in the hydrophilic character of 

the polymer. Common anionic polymers, such as poly (methacrylic acid) (PMAA) and 

poly(acrylic acid) (PAA), have been widely exploited [272, 273]. Protonated groups 

containing a polymer backbone represent the cationic polymer, for example, poly (N, N-

dimethyl aminoethyl methacrylate) (PDMAEMA) and poly (4-vinylpyridine) (PVP) [274, 

275]. Furthermore, some acid-labile bonds, including ketal, acetal, and hydrazone, are 

stable at neutral pH, however, these linkages break down at low pH, resulting from a 

hydrolysis reaction [276, 277]. Literature indicates the intensive use of pH-responsive 

polymers as carrier materials in different applications, including pharmaceutical, 

biomedical, agriculture, and industrial coating [278-284].  

 

 

Figure 5.1: Examples of pH-responsive polymers. 

 

In this chapter, the acid-labile acetal, which is a chemical group represented as 

RCH(OR’)2, is chosen as the building block due to several benefits including being 
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associated with a simple synthetic method and ease of degradation under mild acidic 

conditions. In general, acetal is prepared from the condensation reaction of a hydroxyl 

group and carbonyl compounds such as the reaction of alcohol and aldehyde under 

acidic conditions [285, 286]. It should be noted that acetal formation is a reversible 

process, thus, efficient water removal is important in obtaining a high reaction 

conversion. Dean-Stark apparatus has been widely utilised to remove condensation by-

products [287-288]. Some acetal derivatives have been exploited in many applications, 

for example, acid degradation polymeric micelle/gels for drugs and protein delivery 

[289-295]. 

 

Figure 5.2: Proposed mechanism of acetal formation, the condensation reaction of 

alcohol and aldehyde, under acidic conditions. 

 

5.1.2 pH change in soil root 

pH-responsive polymers play a major role in material science, particularly in 

pharmacological and biomedical applications. The interest in polymers for agricultural 
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applications has increased significantly in the last few years [296, 297]. Acid degradation 

is likely to feature in literature reports on the pH-change in the rhizosphere, as this 

change is promising as trigger conditions for an active ingredient release. There are a 

few processes that alter the pH of the rhizosphere, primarily based on the variation of 

H+ and OH−, including cation-anion uptake, organic anion release, root respiration, and 

redox couple process. The uptake capacity of cations and anions influences the pH-

change at the rhizosphere through preservation of the root-cell at a certain pH. The 

releasing of H+ ions, when cations are more absorbed than anions [298]. Organic anion 

release, including citric, oxalic and malic acids, is considered as the major feature of pH 

change at root atmosphere (also known as rhizosphere acidification). Moreover, the 

redox couple process, which results from a change in the oxidation state of metals such 

as that between Fe(II) and Fe(III) in the soil, also influences the H+ concentration [299]. 

Furthermore, microorganism activities also lead to the decrease of rhizosphere pH due 

to the production of carbonic acid (H2CO3), resulting from the respiration product (CO2) 

of microorganisms [300, 301]. 

 

 

Figure 5.3: Some possible chemical reactions that influence soil pH. 
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5.2 Results and discussion 

5.2.1 Synthesis of a α, ω-poly(acetal) SET-LRP initiator  

 

Figure 5.4: The schematic reaction of diethylene glycol and benzaldehyde. 

 

Poly(acetal) was synthesised from diethylene glycol and benzaldehyde under 

reflux (Dean-Stark condensation). The reaction was successfully confirmed through 

different characterisation techniques, including, FTIR, 1H, and 13C NMR. IR spectroscopy 

indicates that the unreacted benzaldehyde was removed during the purification process 

from the absence of vC=O absorption at 1700 cm−1 (Figure 5.5). The broad absorption at 

approximately 3500 cm−1 signifies the OH absorption. Also, a successful acetal formation 

was proved by the strong detection of an acetal proton NMR signal at 5.65 ppm. Notably, 

a CH2 signal of both environments (CH2O and CH2OH) shows an overlap signal at 3.40-

3.60 ppm (Figure 5.6). It is noteworthy that the integration shows the repeating unit of 

polymer (DP) is approximately 1-2, which corresponds to SEC molecular weight (Mn = 

400 g mol−1, Đ = 1.90). Finally, the peaks at 101.23 ppm and 126-128 ppm in the 13C NMR 



Chapter 5. Acid-labile containing polymers synthesised via SET-LRP and their 
subsequent degradation  

 

143 
 

show the successful formation of acetal, representing acetal carbon and carbon of 

benzyl group, respectively (Figure 5.7). 

 

 

Figure 5.5: FTIR of α, ω-acetal synthesis from diethylene glycol and benzaldehyde. 
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Figure 5.6: 1H NMR of α, ω-acetal synthesis from diethylene glycol and benzaldehyde. 

 

 

Figure 5.7: 13C NMR of α, ω-acetal synthesis from diethylene glycol and benzaldehyde. 
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Subsequently, the α, ω-hydroxy terminated acetal was exploited to synthesise 

the SET-LRP initiator through esterification with bromoisobutyryl bromide (α-BiBB). FTIR 

reveals a peak at approximately 1700 cm−1 (C=O). Additionally, the disappearance of the 

absorption at about 3500 cm−1 indicates that the OH group was also present (Figure 5.8). 

The 13C spectrum (Figure 5.9) supports the FTIR result, as two peaks at 164 and 30 ppm 

were detected, which correspond to C=O carbon and C(CH3)2Br, respectively. 

Furthermore, the 1H NMR spectrum (Figure 5.10) demonstrates a successful 

modification of both hydroxyl groups of the polyacetal due to the formation of the peak 

at 4.30 ppm of CH2COO (position 5), as well as CH3 peaks at 1.90 ppm. Interestingly, two 

peaks at 1.90 and 1.96 ppm are detected; the sum of integration of these peaks (position 

4 in Figure 5.10) equals 12H when the integration of position 5 is fixed to 4H. This shows 

that there are two types of hydroxyl terminal groups formed during the condensation 

reaction. Figure 5.2 represents the mechanism of acetal synthesis. Thus, the possibility 

of hydroxyl terminated poly(acetal) in our product possibly contains both hemiacetal 

and acetal. 
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Figure 5.8: FTIR of α, ω-acetal SET-LRP initiator. 

 

 

Figure 5.9: 13C NMR of α, ω-acetal SET-LRP initiator. 
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Figure 5.10: 1H NMR of α, ω-acetal SET-LRP initiator. 

 

 

 

5.2.2 Polymerisation 
 

 

Figure 5.11: Schematic diagram of the polymerisation of methyl acrylate (MA) and 

poly(ethylene glycol) acrylate (PEGA) from α, ω-acetal SET-LRP initiator. 
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Methyl acrylate (MA) was polymerised by Cu(0)-mediated polymerisation in 

dimethyl sulfoxide (DMSO). 80 eq. of MA to the initiator was applied, and monomer 

conversion was followed by 1H NMR. The decrease of the vinyl peaks of methyl acrylate 

monomer (5.70, 5.95 and 6.25 ppm) compared to the proton corresponding to a methyl 

group (CH3) at 3.45 ppm is exploited to calculate the rate of monomer consumption 

(Figure 5.12). Interestingly, a considerably slowed polymerisation rate at the induction 

period is detected; about 30 % of the monomer is polymerised after one hour. This 

observation is affirmed by the SEC trace, in which a noticeably low molecular weight was 

observed after one hour. Also, a significantly broad molecular weight distribution (Đ > 

2.0) of the polymer was also found after 15 and 30 minutes (Figure 5.13). The 

assumption of this observation could be because of the dissociation of acetal initiator; 

it was mentioned in the previous section that acetal formation is a reversible process, 

thus this reaction could influence the increase of polymer polydispersity. However, a 

significantly higher molecular weight with a narrowed molecular weight distribution was 

detected after three hours; monomer conversions of approximately 80 % and 90 % were 

obtained after two and three hours, respectively. In this chapter, three polymers, 

namely PMA40, PMA80, and PEGA20, were successful synthesised. The 1H NMR reveals 

the absence of vinyl peaks from the monomer. Additionally, the narrowed molecular 

weight of all polymers was detected by SEC as shown in Figure 5.14. Furthermore, no 

significant shoulder is observed in the SEC trace, thus, this result confirms that this acetal 

initiator can synthesise well-defined polymers. 
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Figure 5.12: 1H NMR of polymerisation at different times of PMA80 at ambient 

temperature, (CDCl3, 250 MHz). The polymer formation was followed by the decrease 

of vinyl peaks of methyl acrylate monomer at 5.70, 5.95 and 6.25 ppm (blue) compared 

to the proton corresponding to a CH2 group at 1.10-2.40 ppm (orange). 

 

Figure 5.13: SEC trace of the polymerisation at different times of PMA80 at ambient 

temperature. 
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Figure 5.14: SEC trace of PMA40, PMA80, and PEGA40 α, ω-acetal synthesis from SET-LRP 

initiator. 

 

The polymer purification process was carried out through the precipitation of 

(PMA40, 80) and dialysis method (PEGA40), MWCO 1K dialysis tubing against water for 48 

hours, followed by a freeze-drying process. Notably, 1H spectra of purified pMA80 show 

correlated peaks with polymer structure (Figure 5.15). More importantly, the acetal 

signal at 5.65 ppm is still detected. This indicates the stability of acetal in the polymer. 

Purified PEGA40 was also characterised by 1H NMR. The acetal signal is also noticed, 

although it was placed in water for over two days (Figure 5.16). The strong singlet peak 

at 3.40 ppm also confirms the methyl group of PEGA in the polymer backbone, thus, 

Cu(0)-mediated controlled radical polymerisation of MA and PEGA by our SET-LRP 

initiator was successful. 
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Figure 5.15: 1H NMR of PMA80 after precipitation in methanol (CDCl3, 300 MHz). 

 

 

 

Figure 5.16: 1H NMR of PEGA40 after dialysis against water (CDCl3, 300 MHz). 
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5.2.3 Degradation of PMA80 

 

 

Figure 5.17: Schematic diagram of PMA80 degradation study in THF. 

 

A purified polymer was dissolved in the THF GPC eluent to prepare a stock 

polymer solution. Subsequently, concentrated trifluoroacetic acid (TFA) was added to 

the solution. The influence of acid concentrations on the rate of degradation was first 

studied. Different TFA concentrations (43, 86 and 129 μL/mL) were added to the 

polymer solution (0.006 mg/mL). The degradation of the acetal in the polymer was 

followed by SEC after an hour. The result showed that the rate of degradation is 

proportional to the concentration of acid (Figure 5.18 left). Further, the degradation of 

PMA80 at a certain TFA concentration (43 μL/mL) at different time intervals, from 0 to 

285 minutes, was investigated. The decrease of the polymer molecular weight indicates 

a breakdown of acetal after treating with acid. (Figure 5.18, right) Notably, SEC observed 

half of the polymer molecular weight (about 3.4 K gmol−1) following the degradation of 

the polymer. Thus, this result supports the 1H NMR spectra of the α, ω-acetal initiator in 

the previous section. Moreover, the SEC solvent was removed, and the dried sample 

was further characterised by 1H NMR. No acetal signal was detected at 5.65 ppm. 

Furthermore, the signal of Ph-HC=O of benzaldehyde at 10.75 ppm was instead 
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monitored (Figure 5.19). The proposed mechanism of hydrolysis of acetal by acid is 

shown in Figure 5.20. 

 

Figure 5.18: SEC traces (THF) of PMA80 after treating with an acid (TFA) at different 

concentration for an hour (left) and the degradation at different interval time (43 

μL/mL). 

 

Figure 5.19: 1H NMR spectra of PMA80 after treating with an acid (TFA) (CDCl3, 300 MHz). 
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Figure 5.20: The proposed mechanism of acetal hydrolysis under acidic condition. 
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5.3 Conclusion  

α, ω-Hydroxyl terminated poly(acetal)s were polymerised via the condensation 

reaction of diethylene glycol and benzaldehyde. Unfortunately, only 1-2 acetal bonds 

were formed. However, small α, ω-hydroxyl terminated acetal was successfully 

converted to SET-LRP initiator via esterification. Different characterisation techniques, 

including 1H and 13C NMR, FTIR and SEC were applied. Acetal formation was confirmed 

by the observation of the acetal peak at 5.65 ppm. Furthermore, 101.23 ppm was 

detected by 13C NMR. The disappearance of OH absorption at about 3500 cm−1 was 

detected by FTIR. In addition, the 1H and 13C NMR signal of methyl groups adjacent to 

the bromine after modification were identified at 1.96 and 30.13 ppm. The initiator was 

exploited to polymerise methyl acrylate (MA) and poly (ethylene glycol) acrylate (PEGA) 

(average Mn = 480 g mol−1). A reasonably high monomer conversion (>90%) and 

narrowed molecular weight distribution (Đ) (1.1-1.3) of polymers were obtained. After 

purification, polymer degradation under acidic conditions was investigated. The 

decrease of molecular weights and the formation of benzaldehyde were monitored by 

SEC and 1H NMR, respectively. To sum up, this chapter offers a feasible technique to 

synthesise the acidic-labile polymers via controlled radical polymerisation, which is 

promising as trigger conditions for an agrochemical release at the rhizosphere. Also, 

polymerisation conditions of P(BnMAm-co-IEMn) copolymers and fabrication of 

microcapsules via the spray drying technique were investigated and presented in 

chapter 2 and 3, respectively. Therefore, this chemistry could be potentially employed 

to synthesise acidic-responsive pesticide carriers. 
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5.4 Experimental  

5.4.1 Materials 

Acetone, dimethyl sulfoxide (DMSO), methyl acrylate (MA), poly (ethylene 

glycol) acrylate (PEGA) ( average Mn = 480 g mol−1), deuterated chloroform (CDCl3), 

copper(II) bromide, 35 % aqueous hydrochloric acid, α-bromoisobutyl bromide, 

triethylamine (TEA), benzaldehyde, diethylene glycol, hexane, dichloromethane (DCM), 

toluene, sodium hydrogen carbonate (NaHCO3), tetrahydrofuran (THF), sodium chloride 

(NaCl), p-toluenesulfonic acid monohydrate were purchased from Sigma-Aldrich UK. 

 

5.4.2 Characterisation 

Size exclusion chromatography measurements were performed on an Agilent 

390 MDS Multi-Detector GPC system (CHCl3 + 2 % TEA Mixed C Column Set, THF + 2 % 

TEA and 0.01 wt. % BHT with PLgel Mixed C columns set, 30 °C flow rate 1 mL/min, 

narrow standards of PMMA were used as calibration polymers between 955000 and 

1010 g mol−1 and fitted with a third order polynomial) by DRI detection. 1H NMR 

(standard) and 13C NMR (long acquisition long delay) were recorded on a Bruker Avance 

III HD 300 MHz and Bruker Avance III HD 250 MHz with CDCl3 as the solvent. FTIR spectra 

were recorded on a Bruker Vector 22 FTIR spectrometer and analysed with OPUS 

software. 

 

5.4.3 Poly(acetal) synthesis 

Diethylene glycol (5 g, 0.047 mole, 1 eq.) was added to a 250 mL round bottom 

flask containing p-toluenesulfonic acid monohydrate (89 mg, 4.67 x 10−4 mole, 0.01 eq.) 
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followed by benzaldehyde (5 g, 0.047 mole, 1 eq.) 150 mL of toluene and a magnetic 

stirrer bar were added. The reaction mixture was heated under reflux at 110 °C for 24 

hours. Saturated NaHCO3 aqueous solution (5 mL) was added to neutralize the reaction. 

The solvent was removed by rotary evaporator. The reaction was allowed to cool to 

ambient temperature. 3 X 50 mL of hexane was added to the crude product then the 

reaction mixture was centrifuged at 7000 rpm for 25 minutes. The polymer product (65% 

yield) was characterised by NMR, IR, and SEC. 1H NMR (300 MHz, CHCl3, δ): 3.55 (m, 12H, 

CH2O), 4.20 (m, 4H, CH2OH), 5.65 (s, H, OCHO), 7.50 (m, 5H, CH aromatic), 13C NMR 

(75.47 MHz, CHCl3, δ): 61.22, 64.05, 70.05, 72.45 (s, CH2,), 101.23 (s, OCO), 126.48, 

128.33 (s, C aromatic, CH2), 137.83 (s, C aromatic, CH); IR: v = 3500 (OH), 2950 (C-H), 

1500 (C-C aromatic) 1200 (C-O), SEC(CHCl3): Mn = 400 g mol−1, Đ = 1.91. 

 

5.4.4 α, ω-poly(acetal) SET-LRP initiator synthesis 

α, ω-Hydroxyl terminated acetal (4.9 g, 0.0125 mol, 1 eq) was added into a 500 

mL 3-necked round bottom flask containing a magnetic stirrer bar followed by 

cannulating anhydrous tetrahydrofuran (200 mL). Triethylamine (8.7 mL, 0.0625 mol, 5 

eq) was added to the reaction mixture. The reaction was degassed with N2 for 20 

minutes after that α-bromoisobutyryl bromide (BiBB) (3.4 mL, 0.027 mol, 2.2 eq) was 

added dropwise to the reaction in an ice bath. Once BiBB was completely added, the ice 

bath was removed and the reaction was carried out at ambient temperature overnight. 

The volatiles were removed by rotary evaporator. DCM (50 mL) was added to the crude 

product to dissolve crude initiator. NaHCO2 aqueous solution (2 x 150 mL) was used to 

wash the crude product, then the solvent was removed again by rotary evaporator. The 
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initiator (61 % yield) was characterised by IR, NMR, and SEC. 1H NMR (300 MHz, CHCl3, 

δ): 1.90, 1.96 (m, 12H, 2xCH3), 3.5 (m, 12H, CH2O), 4.30 (m, 4H, COOCH2), 5.65 (s, 1H, 

OCHO), 7.50 (m, 5H, C aromatic) ppm. 13C NMR (75.47 MHz, CHCl3, δ): 30.13 (s, CH3), 

63.75, 64.50, 68.23, 69.85 (s, CH2O), 100.80 (s, OCHO), 126.15-127.76 (m, C aromatic, 

CH2), 136.83 (m, C aromatic, CH), 164.71 (s, C=O) ppm. IR: v = 2950 (C-H), 1500 (C-C 

aromatic) 1200 (C-O); SEC (CHCl3): Mn = 420 g mol−1, Đ = 1.74 

 

5.4.5 Polymerisation of poly(methyl acrylate) (PMA40) 

5 cm of copper wire was entwined with a magnetic stirrer bar, then it was put 

into 3 mL of 35 % HCl solution and stirred for 5 minutes. Copper wire was washed with 

deionized water followed by acetone. Once dried, it was put into a Schlenk tube which 

contained 6.4 mg (2.9 x 10−5 mol, 0.10 eq.) of CuBr2 and sealed with a rubber septum. 

Dimethyl sulfoxide (DMSO) (2.4 mL), acetal initiator (0.2 g, 2.90 x 10−4 mol, 1 eq.) and 

methyl acrylate (1.04 mL, 0.012 mol, 40 eq.). The reaction mixture was bubbled with N2 

for 15 minutes, then Me6Tren (18.6 μL, 6.96 x 10−5 mol, 0.12 eq.) was added. The 

reaction was left overnight, the polymerization mixture crude product was characterized 

by 1H NMR and SEC followed by precipitation in ice cool methanol then filtered and 

dried. Purified polymer (80 % yield) was characterised by NMR, IR, and SEC. 1H NMR (300 

MHz, CHCl3, %): 1.1-1.70 (m, 80H, CH2), 1.95-2.40 (m, 52H, CH and CH3), 3.60-3.75 (m, 

132H, CH2O and OCH3), 4.30 (m, 4H, COOCH2), 5.65 (s, 1H, OCHO), 7.50 (m, 5H, C 

aromatic). IR: v = 2950 (C-H), 1720 (C=O), 1200 (C-O); SEC(THF): Mn = 2900 g mol−1, Đ = 

1.18 
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Poly(ethylene glycol acrylate) (PEGA40) 

The polymerization solution (PEGA40) was purified by dialysis using MWCO 1K 

dialysis tubing against water for 48 hours followed by freeze-drying. Following 

purification, the polymer was characterised by NMR, IR, and SEC. 1H NMR (300 MHz, 

CHCl3, δ): 1.20-1.65 (m, 80H, CH2), 1.90-2.45 (m, 52H, CH and CH3), 3.40 (s, 120H, CH3O), 

3.55-3.80 (m, 720H, CH3O), 4.05-4.35 (m, 84H, CH2OC=O), 5.65 (s, 1H, OCHO), 7.50 (m, 

5H, C aromatic); IR: v = 2950 (C-H), 1725 (C=O), 1200 (C-O); SEC(THF): Mn 12000 g mol−1, 

Đ = 1.32 

 

5.4.6 Degradation study 

0.18 mg of purified PMA80 was dissolved in THF GPC eluent (26 mL). The polymer 

solution was separated into a small vial (1.4 mL). Trifluoroacetic acid (TFA) (60 μL) was 

added to the polymer solution, where the degredation was followed by SEC. The solvent 

was removed after GPC analysis and NMR was used to characterise the polymer after 

treating with TFA.
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