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ABSTRACT. We report a high-resolution electrospray ionization mass spectrometric (HR ESI 

MS) access route leading to in-depths insight into the spontaneous zwitterionic copolymerization 

mechanism between cyclic imino ethers (i.e. 2-methyl-2-oxazoline (MeOx), 2-ethyl-2-oxazoline 

(EtOx) or 2-ethyl-2-oxazine (EtOz)) with acrylic acid (AA), exploiting the characteristic species 

accumulating during the copolymerization as well as tandem mass spectrometry (MS/MS). We 

demonstrate preferences in α,ω-end group formation by screening various feed ratios of cyclic 

imino ethers and acrylic acid (e.g. MeOx:AA = 1:1; MeOx:AA = 2:1; MeOx:AA = 1:2). Critically, 

a calibration curve – based on AA-MeOx-AA dimer – was established allowing for semi-

quantitative determination of the end group ratios with different feed ratios of acrylic acid. The 

formation of, previously suggested, alternating copolymers was confirmed by MS/MS 

experiments. Deviations from an ideal alternating composition were found to decrease from MeOx 

to EtOx to EtOz. The results of (semi-quantitative) HR ESI MS and MS/MS measurements 

suggest, for the first time presented in such precision, a polymerization mechanism for the 

spontaneous zwitterionic (alternating) copolymerization indicating optimal monomer ratios and 

pairings. 

 

INTRODUCTION 

The spontaneous zwitterionic copolymerization (SZWIP) between a nucleophilic (MN) and an 

electrophilic (ME) monomer serves as a facile platform for the generation of sophisticated 

poly(ester amide)s (PEAs) and other functional and/or degradable copolymers.1,2 Despite its early 
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discovery in 1977 by Saegusa and numerous reports in the 1970s and 1980s, this polymerization 

technique has not received much attention until its recent re-discovery by Kempe and coworkers 

in 2015.2–5 These authors reported the SZWIP of various cyclic imino ethers (CIEs), such as 2-

substituted-2-oxazolines (Ox), 2-substituted-2-oxazines (Oz), and acrylic acid (AA) and used it in 

combination with redox-initiated reversible addition-fragmentation chain transfer (RAFT) 

polymerization for the synthesis of functional and tunable comb polymers. The PEAs, or more 

precisely N-acylated poly(amino ester)s (NPAEs) thus obtained, represent a highly interesting 

polymer class as they combine the degradability of polyesters6 with the high level of functionality 

of CIE derived polymers, such as poly(2-oxazoline)s (POxs). Thus, SZWIP provides access to 

NPAEs with tailored properties. Along with POxs, PEAs are subject of ongoing research focusing 

on stimuli-responsive properties as well as self-assembly for biomedical applications.3,7–14 

However, the SZWIP mechanism has not been fully elucidated with only few publications 

describing the isolation of important zwitterionic intermediates.15,16 As reported in early studies, 

SZWIP leads to alternating copolymers with tunable end groups. In contrast, POx-derived 

polymers are very well studied, including the polymerization mechanism,17 obtained by infrared 

(IR) spectroscopy, nuclear resonance spectroscopy (NMR), size exclusion chromatography 

(SEC),18–21 and mass spectrometry (MS) involving electrospray ionization (ESI)22,23 as well as 

matrix-assisted laser desorption ionization (MALDI).23,24 Although POxs and NPAEs feature 

structural similarities, it is surprising that SZWIP-prepared polymers have not yet been submitted 

to a precision mass spectrometric analysis allowing for a mechanism to be formulated from a post-

mortem analysis of the detected species.  

MS has demonstrated to be a very powerful technique for precision analytics in polymer science.25 

For instance, the soft ionization afforded by ESI26 or MALDI27 usually keeps covalent bonds 
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unbroken while covering a broad molecular range. Coupled to a high-resolution mass analyzer 

such as Orbitrap (high resolutions (up to 280000) and high ion sensitivity), macromolecules with 

architecturally complex structures28 as well as polyelectrolytes29 are accessible, and very 

importantly, mechanistic (polymerization) details can be revealed.30 Especially, the collision 

induced dissociation (CID)31 – with optional higher-energy collision dissociation (HCD)32 – 

during tandem MS (MS/MS) measurements enables the detection of fragment ions, which can be 

used to deduce structural information of the precursor ion. For instance, the CID fragmentation 

pathway of POx has been studied intensively.24 Since the full isotopic pattern of a single species 

can be stored in the HCD chamber, MS/MS measurements can give quantitative compositions of 

isobaric structures.  

However, quantitative assessments obtained via mass spectrometry have to be evaluated with 

caution as the ionization efficiency may depend on chain termini (i.e. basic end groups ionize more 

readily), chain length (including chain conformation), salt concentration, hydrophobicity and 

surface activity of the analyte.33,34 Further factors influencing the ionization are the mass-

dependent ion transmission and detection (the latter can be neglected using Orbitrap). Nonetheless, 

two popular approaches are commonly used for ESI MS polymer chain termini quantification: (i) 

determination of the molar fraction based on the maximum peak height of two different species 

within a single spectrum;35,36 (ii) establishment of a calibration curve based on small molecule 

analogues giving direct access to absolute quantities.33,34,37 However, each of these approaches 

have their advantages and disadvantages. For instance, determination of the molar fraction is a 

work-around avoiding time consuming calibration curves (which often includes sophisticated 

small molecule organic synthesis). However, the molar fraction determination is governed by 

certain assumptions such as chain termini independent ionization and efficient ion transmission 
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(limiting the evaluation to single experiments).35 If the experiment set-up is constant (i.e. 

producing exact same molecular weights), it is legitimate to use the molar fraction determination 

without calibration curve.38 However, due to the ion transmission being mass-dependent and the 

fact that different polymerizations lead to different molar mass distributions, the synthesis of a 

reference small organic molecule and its derived calibration curve is essential to determine molar 

fractions for multiple experiment quantification.34  

This present work closes a critical analytical gap for SZWIP-prepared polymers, in particular 

NPAEs, regarding the integrity of purely alternating structures due to its unique polymerization 

mechanism. Scheme 1 collates the work that will be discussed: 2-methyl-2-oxazoline (MeOx), 2-

ethyl-2-oxazoline (EtOx) and 2-ethyl-2-oxazine (EtOz) are subjected to a SZWIP procedure with 

acrylic acid using different feed ratios (cyclic imino ether:acrylic acid = 1:1; 1:2 (for MeOx:AA 

also 2:1)). The oligomers were analyzed by NMR, SEC as well as precisely by HR ESI MS. The 

microstructure of the SZWIP-based polymers was evidenced by HCD (with ambient nitrogen gas) 

at around 25 eV collision energy. The fragment ions can be unambiguously attributed to specific 

microstructures including consecutive incorporation of the same monomer instead of a strongly 

alternating incorporation. Thus, the post-mortem analysis of the specific fragment ions allows to 

reveal the polymerization mechanism of the SZWIP. Moreover, an important key aspect revealed 

by the ESI MS characterization is the end group quantification that can be tailored externally by 

varying the feed ratio of the monomers or even using different cyclic imino ethers.  
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RESULTS AND DISCUSSION 

A library of oligomeric NPAEs, namely oligo(MeOx-alt-AA)nA, oligo(EtOx-alt-AA)nA and 

oligo(EtOz-alt-AA) has been prepared using previously reported procedures.2,4,5,39 Specifically, 

CIEs were reacted with AA in different ratios as summarized in Table 1. The presence of rotamers 

Scheme 1. Schematic representation of the SZWIP procedure of 2-methyl-oxazoline (MeOx), 2-

ethyl-oxazoline (EtOx) or 2-ethyl-2-oxazine (EtOz) with acrylic acid (AA) and their analysis via 

ESI MS and structural identification using tandem MS (x = 1: 2-oxazoline; x = 2: 2-oxazine). 
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as well as the existence of different oligomeric species and end groups impede a detailed structural 

assessment by 1H NMR, hence, the polymer composition, i.e. ratio of the two monomers, is the 

only information obtained.2 Moreover, elemental analysis of the NPAEs provide further indication 

of the composition of the oligomers as well as the effect of different feed ratios (Tab. S2). 

However, in neither case, a precise structural assignment, as accessed via ESI MS, can be 

accomplished. The following mass spectrometric experiments have been performed on an Orbitrap 

mass analyzer critically surpassing the previously published data on SZWIP-prepared polymers.2 

To this end, the oligomers were dissolved in water/acetonitrile/acetic acid (1:1:0.1 (v/v)) with a 

concentration of 0.500 mg∙mL-1 (the exact mass is crucial for subsequent quantifications).  

Table 1. 1H NMR and SEC characterization data for the oligomeric NPAEs prepared by SZWIP 

of different cyclic imino ethers (CIEs) and acrylic acid (AA). 

CIE CIE : AA DPa  

(CIE/AA) 

Mn,NMR
a  

[g mol-1] 

Mn,SEC
b  

[g mol-1] 

Đb 

MeOx 2 : 1 2.5/2.5 465 1800 1.32 

 1 : 1 2.5/2.5 465 1300 1.18 

 1 : 2 3/3 543 1500 1.27 

EtOx 1 : 1 2.5/2.5 500 1600 1.30 

 1 : 2 2/2 414 1300 1.17 

EtOz 1 : 1 3/3 627 2000 1.27 

 1 : 2 2.5/2.5 535 1600 1.20 

a Determined from 1H NMR analysis from the peak areas of the vinyl groups and the methylene group of CIE and AA 

repeating units. b Determined by SEC analysis. 
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Figure 1 depicts the overview mass spectra of oligo(MeOx-alt-AA)nA, oligo(EtOx-alt-AA)nA and 

oligo(EtOz-alt-AA). We decided to label the proton ionized species of the ideally alternating 

species with respective the ω-acid chain terminus (, , ) and the ω-amide chain terminus (, 

, ) in order not to overload the spectra with labelling the sodiated species, which are also highly 
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Figure 1. Overview ESI mass spectra of (A) oligo(MeOx-alt-AA)nA with feed ratio MeOx/AA 

=1:1; 1:2 and 2:1; (B) oligo(EtOx-alt-AA)nA with feed ratio EtOx/AA = 1:1 and 1:2; (C) 

oligo(EtOz-alt-AA) with feed ratio EtOz/AA = 1:1 and 1:2  recorded in water/acetonitrile/acetic 

acid (1:1:0.1 v/v) in a mass range between m/z 200 to 1000. The labels , ,  correspond to an 

acid-terminated species (H+ ionized), and labels , ,  indicate the corresponding amide-

terminated species (H+ ionized). (D) Proposed structural assignment for the ideally alternating 

copolymers with α-acrylic and ω-amide end groups. 
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abundant in the spectra (for detailed expanded spectra refer to Figure 2). The change in feed ratio 

influences the end group abundance significantly as initially observed for the MeOx/AA systems 

with three different feed ratios (Figure 2A): increasing the amount of acrylic acid leads to higher 

abundances of acid-terminated oligomers (e.g. represented by ), whereas increasing the amount 
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Figure 2. Expanded ESI mass spectra of (A) oligo(MeOx-alt-AA)nA with a feed ratio MeOx/AA 

=1:1; 1:2 and 2:1; (B) oligo(EtOx-alt-AA)nA with a feed ratio EtOx/AA = 1:1 and 1:2; (C) 

oligo(EtOz-alt-AA) with a feed ratio EtOz/AA = 1:1 and 1:2  recorded in water/acetonitrile/acetic 

acid (1:1:0.1 v/v). All relevant species are assigned in Table S3/16/25. (D) MS/MS spectrum of a 

oligo(EtOx-alt-AA)nA species at m/z 442.2538 dissociated with 20 eV. The assignment (Table 

S21) and the fragmentation scheme (Scheme S10) clearly evidence the microstructure of the 

species. 
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of cyclic imino ethers in the feed reduces the abundance of acid-terminated oligomers drastically 

(quantitative assessments will be discussed later).  

The expanded ESI spectra (Figure 2A-C) collate all species recorded in one full repeat unit (e.g. 

m/z(MeOx-AA)exp 157.0736; m/z(MeOx-AA)theo 157.0739). Apart from the discussed very 

abundant H+ ionized and Na+ ionized alternating copolymer species, further characteristic ions 

were detected: a low abundant peak in the MeOx/AA = 1:2 spectrum with 324.1047 m/z (labelled 

with ) represents oligo(MeOx1-alt-AA3). The incorporation ratio MeOx/AA=1:3 reveals that 

acrylic acid seems to be homocoupled to an acrylic acid dimer via a Michael addition reaction40 

before it reacts with another MeOx-AA dimer. As such a reaction preferably occurs in a surplus 

of acrylic acid (e.g. MeOx/AA = 1:2), the homocoupling species is of even lower abundance for 

the other copolymerization ratios (e.g. MeOx/AA = 1:1 and 2:1). A more important side product 

that has been revealed in the course of our mass spectrometric study is based on the homocoupling 

of cyclic imino ethers. For instance, a species at 328.1859 m/z (labelled with ) is almost equally 

abundant in each spectrum, irrespective of the copolymerization ratio and can be represented as 

oligo(MeOx3-alt-AA1).  

In order to obtain information about the general reaction of acrylic acid as well as CIEs and the 

polymerization mechanism, a closer look at the microstructure is of importance. The oligomer 

microstructures have been revealed by employing MS/MS (Figure 2D), where a precursor ion was 

stored within the HCD chamber. Fragmentation was induced with nitrogen gas close to 20 eV. 

Due to many possible isobaric structures, the determination of the microstructure is a tedious 

process, comprising (i) the development of a feasible fragmentation mechanism;41,42 (ii) their 

structural assessment; and (iii) the identification of key fragment ions unambiguously confirming 

the microstructure. Exemplarily performed on oligo(MeOx3-alt-AA1), such a microstructure 
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determination process is depicted in Figure 3. Two dominant fragmentation pathways are 

discussed in the POx-related literature:22 (i) a concerted depolymerization via a six-membered 

transition state deliberating chain termini and main chain fragments alike; and (ii) a ring closure 

depolymerization deliberating fragments always in β-position to the acetamide structural unit. We 

submit that the concerted depolymerization is the favored fragmentation pathway due to specific 

fragmentation ions that have been identified in the course of the MS/MS study. The fragment ion 

256.1656 m/z represents MeOx3 confirming that the microstructure contains homocoupled MeOx. 

An important consequence is that acrylic acid terminates the SZWIP process by ring opening 

CONCERTED DEPOLYMERIZATION RING CLOSURE DEPOLYMERIZATION

KEY FRAGMENT ION

Figure 3. Proposed fragmentation (depolymerization) during MS/MS experiments revealing the 

microstructure of CIEs. Oligo(MeOx3-alt-AA1) having acrylic acid as chain termini (acrylic acid 

terminates the SZWIP polymerization) yields various fragment ions. A key fragment ion with three 

MeOx units connected to each other has been detected. An isobaric structure having acrylic acid 

incorporated into the main chain is unlikely since the cyclic iminium ether is susceptible to ring-

opening reactions (e.g. water). 



 12 

MeOx. If the acrylic acid is incorporated into the main chain, the highly reactive cyclic 

oxazolinium is susceptible to ring-opening reactions with any nucleophiles (e.g. water). Yet, low 

abundant species have been detected (labelled with  (Figure 2)) where the SZWIP process was 

terminated by ambient water instead of acrylic acid. 

Close interpretation of the peaks observed in the MS spectra is of importance for the identification 

of isobaric structures. As discussed earlier, species e.g. labelled with  represent amide-terminated 

species possessing an ideally alternating microstructure. However, tandem MS is the only 

technique available to precisely assess microstructural defects associated with the ideally 

alternating copolymer. As an example, a species identified as oligo(MeOx3-alt-AA3) prepared 

from a feed ratio MeOx/AA = 1:2 (m/zexp 472.2295; m/ztheo 472.2290) is discussed. Strong signals 

in the MS/MS spectrum (Figure 4) indicate the alternating nature of oligo(MeOx3-alt-AA3). For 
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() and a microstructure containing a MeOx-MeOx sequence () can be 
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instance, a species at 158.0814 m/z represents the AA-MeOx dimer (m/ztheo 158.0812; labelled 

with ). Furthermore, an alternating depolymerization sequence commencing from 472.2295 to 

86.0609 m/z (MeOx monomer) is evident in the MS/MS spectrum. Strikingly, the existence of a 

MeOx-MeOx sequence can be evidenced by the species at 171.1130 m/z (labelled with ) 

indicating some extent of MeOx homopolymerisation during SZWIP. At 18 eV collision energy, 

1.49 mol% of this species is produced as product ion.  

Although MS/MS experiments are regarded to provide quantitative information based on fragment 

ions, spectra acquired in a full range mode (detecting several species) are of limited credibility for 

quantification motifs. However, it is interesting and important to evaluate the influence of different 

feed ratios (MeOx/AA = 1:1; 1:2; and 2:1) on the quantity of their respective end groups. As noted 

in the introduction, the ionization efficiency of a certain species depends on several factors,43 

which make the quantification and comparison, in particular across different samples challenging. 

In order to enable (semi-)quantification, a small molecule analogue, the acid-terminated dimer 

AA-MeOx-AA was prepared (Figure 5A) and used to record a calibration curve in single ion 

monitoring mode ranging from 0.75 mg∙mL-1 to 0.01 mg∙mL-1 (m/zexp 230.1019; m/ztheo 230.1023) 

(Figure 5B).  

Based on this, we were able to extract semi-quantitative information from all oligo(MeOx-alt-

AA)nA spectra with the peak used for calibration (m/zexp 230.1019) being present in all feed ratios 

(MeOx/AA = 1:1; 1:2; and 2:1). Within the same spectrum (e.g. MeOx/AA = 1:1), we obtained 

semi-quantitative information based on the mole fraction determination as reported in literature 

(Figure 5D).35 The calibration curve provides quantitative values for the acid-terminated 

oligomers and thus allows the semi-quantitatively determination of the mole fractions in all 

individual spectra (1:1; 1:2 and 2:1) and compare them with each other. Thus, the amide-
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terminated species has been determined by its mole fraction always referenced to the 

m/zexp 230.1019 species (Figure 5A). Semi-quantitative information from oligo(EtOz-alt-AA) and 

oligo(EtOx-alt-AA)nA has been obtained by using the same calibration curve under the assumption 

that the incorporation of additional neutral CH2 groups (either in the side chain as for EtOx or in 

both side and main chain as for EtOz) have limited effect on the ionization of the macromolecule. 

Key findings of our semi-quantification are illustrated in Figure 5C and further discussed in the 

following.  

Figure 5. (A) Reaction scheme for the small molecule analogue: (i) a.t., 18 h; (ii) (CH3CO)2O, 

Al2O3, 10 min; (iii) CH3COCl, NEt3, DMF, 0 °C to a.t., 18 h, (iv) trifluoroacetic acid, DMF, 0 °C 

to a.t., 18 h; (B) calibration curve recorded in single ion monitoring (SIM) mode focusing on the 

H+ ionized species (labelled with ); (C) repeat unit dependent evaluation of the mole fraction; 

(D) equation to obtain the mole fraction (χ) and the results of one species () based on the 

calibration; (E) general structure of species . 
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End group quantification within MeOx: Increasing the acrylic acid content in the feed mixture 

increases the amount of acid-terminated oligomers (e.g. species at m/zexp 387.1756, labelled with 

) from χavg = 0.27 (MeOx/AA = 1:1) to χavg = 0.57 (MeOx/AA = 1:2), whereas a depletion of 

MeOx (MeOx/AA = 2:1) yields χavg = 0.16. Increasing the cyclic imino ether in the feed increases 

the amount of amide-terminated oligomers (e.g. species at m/zexp 315.1455, labelled with ) from 

χavg = 0.36 (MeOx/AA = 1:1) to χavg = 0.49 (MeOx/AA = 2:1), whereas MeOx/AA = 1:2 yields 

χavg = 0.20. Homocoupling quantification: Species attributed to homocoupling reaction steps (e. 

g. the species at m/zexp 328.1862, labelled with ) are most abundant for MeOx/AA = 1:1 

(χavg = 0.45), however strongly reduced for MeOx/AA = 1:2 (χavg = 0.17). Generally, MeOx 

homopolymer sequences with up to five repeat units containing H+ and acrylic acid end groups 

can be assigned in remarkable abundancies, indicating the ring-opening polymerization of cyclic 

imino ethers as competitive pathway. The mole fraction of these species decreases from χavg = 0.36 

(MeOx/AA = 1:1) to χavg = 0.25 (MeOx/AA = 1:2) and increases slightly under surplus cyclic 

imino ether in the feed to χavg = 0.39 (MeOx/AA = 2:1). 

Quantification of different CIEs: Changing the 2-oxazoline from MeOx to EtOx had a 

compelling effect on the end groups. The amide-terminated species increase from χavg = 0.28 

(MeOx/AA = 1:1) to χavg = 0.50 (EtOx/AA = 1:1). Strikingly, homopolymerization of EtOx 

decreases from χavg = 0.70 (MeOx/AA = 1:1) to χavg = 0.27 (EtOx/AA = 1:1). A likely explanation 

for the increased abundancies of amide-terminated species is that the zwitterion of AA and EtOx 

(represented by ) forms less rapidly compared to MeOx and AA (represented by ) (see the 

detailed mechanistic approach below). Thus, more ionic adducts such as [HEtOx]+[AA]- are 

present in the mixture, which are responsible for the amide chain termination. Expanding the ring 

from a five-membered (oxazoline) to a six-membered (oxazine) ring influences the chain terminus 
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ratios even more drastically: amide-terminated species decrease from χavg = 0.28 

(MeOx/AA = 1:1) and χavg = 0.50 (EtOx/AA = 1:1) to χavg = 0.22 (EtOz/AA = 1:1). Further, 

homopolymerization of EtOz decreases from χavg = 0.70 (MeOx/AA = 1:1) and χavg = 0.27 

(EtOx/AA = 1:1) to only χavg = 0.03 (EtOz/AA = 1:1). All quantification data within each CIE (i.e. 

EtOx and EtOz) can be found in the SI, yet indicate the same trend as discussed previously on 

MeOx exemplarily. 

Supported by previous literature reports and based on the post-mortem analysis of the SZWIP-

prepared oligomers by mass spectrometry and tandem mass spectrometry alike, we are able to 

suggest a detailed mechanism for the SZWIP of CIEs and AA. In general, CIEs and AA can react 

in two ways: via a Michael addition reaction which leads to the required reactive zwitterionic 

species (Figure 6i and ii) and an acid-base reaction which results in the formation of an ion pair 

[HCIE]+[AA]- (Figure 6iii). The acid-base reaction depends on the acidity of AA (pKa = 4.26) and 

the basicity of the CIEs (MeOx: pKb = 5.77; EtOx: pKb = 5.65; EtOz: pKb = 6.49).44 As a 

consequence, the equilibrium of the acid-base reaction does not favor the protonation of the CIE 

to occur. However, as revealed by the MS analysis, the formation of an ion pair [HCIE]+[AA]- 

seems to be crucial for the generation of the amide chain termini (Figure 6vii). Thus, the acid-

base equilibrium is an important parameter to consider. As revealed by the end group 

determination and supported by the pKb value, EtOx is the most probable CIE in our study to form 

ion pairs, represented as [HEtOx]+[AA]- and thus form ω-amide end groups (see termination 

discussion below). As mentioned above, apart from reacting in an acid-base reaction, CIEs and 

AA can undergo an Aza-Michael addition (Figure 6ii) reaction followed by an intramolecular 

proton transfer (Figure 6i). The formation of the zwitterion has been experimentally confirmed in 

previous studies by isolation of the zwitterion.45 Surprisingly, there is not much data available on 
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the Aza-Michael addition kinetics with an acrylate. Reyniers and co-workers46 have provided 

calculations that estimate give equilibrium constants and kinetics of Aza-Michael additions. An 

important criterion for the generation of strongly alternating copolymers is the reaction rate of the 

Aza-Michael addition between a secondary amine and acryl derivative. Such reactions are fast (~ 

10-3 L∙mol-1∙s-1), thermodynamically, however, the reaction is not favored (K~10-3 L∙mol-1). The 

driving force for the formation of the dimer is the irreversible proton transfer (K~1017).46  

After the (spontaneous) initiation under the formation of either a zwitterion or an ion pair, three 

propagation pathways are possible: (A) dimer-dimer reaction generating ideally alternating 

copolymer structures; (B) homocoupling of unreacted CIE with the dimer/oligomer producing 

microstructurally defect alternating copolymers; and (C) initiation of homopolymerization by the 

ion pair to obtain poly(cyclic imino ether)s. Pathways (B) and (C) depend on the homocoupling 

kinetics, with MeOx polymerizing faster than EtOx.47 Due to the six-membered ring of EtOz, the 

ring-opening reaction is approximately four times slower.48 The kinetics are mirrored by the MS 

study: homocoupling decreases from χavg = 0.70 (MeOx/AA = 1:1) and χavg = 0.27 

(EtOx/AA = 1:1) to only χavg = 0.03 (EtOz/AA = 1:1). Therefore, microstructural defects arising 

from pathway (B) are less pronounced for EtOz. 
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 INITIATION

PROPAGATION

TERMINATION

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6. Proposed SZWIP mechanism based on post-mortem species identified during ESI MS 

and MS/MS experiments. Michael addition (MA) reaction (i, ii) to produce the zwitterionic dimer 

or acid/base reaction (iii) as competing reactions during initation. Alternating step-growth 

polymerization of MA dimers (iv), homocoupling to a MA dimer (v) or homopolymerization via 

consecutive homocouplings as competing reactions during propagation. Acid-induced ring 

opening reaction (vi) producing α-acrylic, ω-acid chain termini, two ring opening reactions (vii) 

forming α-acrylic, ω-amide chain termini, and water induced ring opening reaction (viii) as 

competing reactions during termination. 
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Ultimately, three termination pathways have been revealed by the mass spectrometric analysis. 

The majority of all zwitterionic species will be terminated by acrylic acid, which acts as 

nucleophile in the ring-opening reaction of the activated cyclic iminium ether and also protonates 

the ω-carboxylate end group (D). Thus, α-acrylic, ω-carboxylic copolymers are generated (Figure 

6vi). As demonstrated by different feed ratios, the acid end group responses sensitively on any 

change in feed ratios. In contrast, the amide end group is only little influenced by changes in feed 

ratio rationalized by the fact that only activated cyclic iminium ethers (e.g. [HCIE]+[AA]-) will 

yield amide chain termini (Figure 6vii) (E). Thus, the formation of α-acrylic, ω-amide copolymers 

is observed. A third possible termination is the quenching of the active end groups by other ambient 

nucleophiles, such as water, which can ring-open the cyclic iminium ether (F). 

 

CONCLUSION 

We introduce an in-depth mass spectrometric investigation of oligomers produced via a 

spontaneous zwitterionic copolymerization of three structurally different cyclic imino ethers 

(CIEs) and acrylic acid (AA) yielding oligo(MeOx-alt-AA)nA, oligo(EtOx-alt-AA)nA and 

oligo(EtOz-alt-AA)nA. Full MS spectra as well as MS/MS profiling of important species in 

combination with a semi-quantification obtained by a synthetically prepared AA-MeOx-AA motif 

unambiguously identify their microstructure with particular focus on the alternating character and 

end groups of the oligomers. Key findings are: (i) An excess of AA influences the amount of ω-

carboxylic acid end groups significantly (χavg = 0.27 (MeOx/AA = 1:1); χavg = 0.57 

(MeOx/AA = 1:2); χavg = 0.16 (MeOx/AA = 2:1)) due to the fact that acrylic acid terminates the 

polymerization. (ii) An excess of CIE does not affect the amide chain terminus abundance similarly 
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to acid excess (χavg = 0.36 (MeOx/AA = 1:1); χavg = 0.49 (MeOx/AA = 2:1); χavg = 0.20 

(MeOx/AA = 1:2)) due to the fact that only activated CIEs will react producing ω-amide end 

groups. (iii) The reaction of CIEs and AA either leads to the formation of a zwitterion or an ion 

pair [HCIE]+[AA]- containing an activated CIE, which strongly depends on the AA/CIE acid-base 

equilibrium an thus decreases from EtOx>MeOx>EtOz. Therefore, highest amide end group 

abundance is realized using EtOx (χavg = 0.50 (EtOx/AA); χavg = 0.28 (MeOx/AA); χavg = 0.22 

(EtOz/AA)). (iv) Importantly, homocoupling of CIEs as side reaction to the zwitterionic dimer 

formation introduces defects to the ideal alternating structure. The homocoupling is fast for five-

membered rings (MeOx>EtOx) and four times slower for six-membered rings (EtOz) (χavg = 0.70 

(p(MeOx)); χavg = 0.27 (p(EtOx); χavg = 0.03 (p(EtOz)). Thus, oligo(EtOz-alt-AA)nA is 

characterized by only a marginal amount of microstructural defects. Based on these findings, a full 

mechanism for the spontaneous zwitterionic alternating copolymerization of CIEs and AA has 

been established, which will facilitate the design of novel functional oligomers and 

macromonomers using the SZWIP in the future. 

 

ASSOCIATED CONTENT 

Supporting Information. Characterization methods, materials, synthetic procedures, additional 

mass spectra of oligo(MeOx-alt-AA)nA, oligo(EtOx-alt-AA)nA and oligo(EtOz-alt-AA)nA. 

MS/MS spectra of various species including their fragmentation schemes. Complete data of the 

semi-quantification including figures for the average mole fraction determination. 

The following files are available free of charge.  

Supporting Information (PDF) 



 21 

AUTHOR INFORMATION 

Corresponding Authors 

*Kristian Kempe (kristian.kempe@monash.edu) 

*Christopher Barner-Kowollik (christopher.barnerkowollik@qut.edu.au) 

*Anja Goldmann (anja.goldmann@kit.edu) 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

ACKNOWLEDGMENT 

K. K. gratefully acknowledges the award of a NHMRC-ARC Dementia Research Development 

Fellowship (APP1109945). C. B.-K. acknowledges key support from the Queensland University 

of Technology (QUT) as well as via a Laureate Fellowship of the Australian Research Council 

(ARC). Further continued support from the Karlsruhe Institute of Technology (KIT), the 

Helmholtz association via the BioInterfaces in Technology and Medicine (BIF-TM) and the 

Science and Technology of Nanosystems (STN) programs as well as the German Research Council 

(DFG) is acknowledged. J. S.’s PhD studies are funded by a Landesgraduierten Scholarship of the 

State of Baden-Wuerttemberg. P. d. J. was funded via a University of Warwick/Unilever 

studentship. This work was carried out -in part- within the Australian Research Council (ARC) 

Centre of Excellence in Convergent Bio–Nano Science and Technology (Project No. 

CE140100036). 

 

 



 22 

REFERENCES 

(1)  Saegusa, T. Spontaneous Alternating Copolymerization. Angew. Chemie Int. Ed. 1977, 16, 

826–835. 

(2)  Kempe, K.; de Jongh, P. A. J. M.; Anastasaki, A.; Wilson, P.; Haddleton, D. M. Novel 

Comb Polymers from Alternating N-Acylated Poly(aminoester)s Obtained by Spontaneous 

Zwitterionic Copolymerisation. Chem. Commun. 2015, 51, 16213–16216. 

(3)  Kempe, K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2-

Oxazoline)s to Poly(ester Amide)s. Macromol. Chem. Phys. 2017, 218, 1–17. 

(4)  de Jongh, P. A. J. M.; Bennett, M. R.; Sulley, G. S.; Wilson, P.; Davis, T. P.; Haddleton, D. 

M.; Kempe, K. Facile One-Pot/one-Step Synthesis of Heterotelechelic N-Acylated 

Poly(aminoester) Macromonomers for Carboxylic Acid Decoracted Comb Polymers. 

Polym. Chem. 2016, 7, 6703–6707. 

(5)  De Jongh, P. A. J. M.; Mortiboy, A.; Sulley, G. S.; Bennett, M. R.; Anastasaki, A.; Wilson, 

P.; Haddleton, D. M.; Kempe, K. Dual Stimuli-Responsive Comb Polymers from Modular 

N-Acylated Poly(aminoester)-Based Macromonomers. ACS Macro Lett. 2016, 5, 321–325. 

(6)  Rydz, J.; Sikorska, W.; Kyulavska, M.; Christova, D. Polyester-Based (Bio)degradable 

Polymers as Environmentally Friendly Materials for Sustainable Development. Int. J. Mol. 

Sci. 2015, 16, 564–596. 

(7)  Hoogenboom, R. Poly(2-Oxazoline)s: A Polymer Class with Numerous Potential 

Applications. Angew. Chemie Int. Ed. 2009, 48, 7978–7994. 

(8)  De La Rosa, V. R. Poly(2-Oxazoline)s as Materials for Biomedical Applications. J. Mater. 



 23 

Sci. Mater. Med. 2014, 25, 1211–1225. 

(9)  Luxenhofer, R.; Han, Y.; Schulz, A.; Tong, J.; He, Z.; Kabanov, A. V; Jordan, R. Poly(2-

Oxazoline)s as Polymer Therapeutics. Macromol. Rapid Commun. 2012, 33, 1613–1631. 

(10)  Wilson, P.; Ke, P. C.; Davis, T. P.; Kempe, K. Poly(2-Oxazoline)-Based Micro- and 

Nanoparticles: A Review. Eur. Polym. J. 2017, 88, 486–515. 

(11)  Winnacker, M.; Rieger, B. Poly(ester Amide)s: Recent Insights into Synthesis, Stability and 

Biomedical Applications. Polym. Chem. 2016, 7, 7039–7046. 

(12)  Fonseca, A. C.; Gil, M. H.; Simões, P. N. Biodegradable Poly(ester Amide)s - A 

Remarkable Opportunity for the Biomedical Area: Review on the Synthesis, 

Characterization and Applications. Prog. Polym. Sci. 2014, 39, 1291–1311. 

(13)  Rodriguez-Galan, A.; Franco, L.; Puiggali, J. Degradable Poly(ester Amide)s for 

Biomedical Applications. Polymer 2011, 3, 65–99. 

(14)  Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, Properties and Applications of 

Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to 

Poly(ester Amide)s. Int. J. Mol. Sci. 2014, 15, 7064–7123. 

(15)  Saegusa, T.; Kobayashi, S.; Kimura, Y. No Catalyst Copolymerization by Spontaneous 

Initiation Mechanism. Pure Appl. Chem. 1976, 48, 307–315. 

(16)  Saegusa, T.; Kobayashi, S.; Furukawa, J. Polymerization via Zwitterion. 10. Alternating 

Cooligomerization of 2-Methyl-2-Oxazoline with Ethylenesulfonamide. Macromolecules 

1976, 9, 728–731. 



 24 

(17)  Verbraeken, B.; Monnery, B. D.; Lava, K.; Hoogenboom, R. The Chemistry of poly(2-

Oxazoline)s. Eur. Polym. J. 2017, 88, 451–469. 

(18)  Seeliger, W.; Diepers, W.; Feinauer, R.; Nehring, R.; Thier, W.; Hellmann, H.; Aufderhaar, 

E. Neuere Synthesen Und Reaktionen Cyclischer Imidsaeureester. Angew. Chem. 1966, 78, 

913–927. 

(19)  Kagiya, T.; Maeda, T.; Fukui, K.; Narisawa, S. Ring Opening Polymerization Of 2-

Substituted 2-Oxazolines. J. Polym. Sci., Part B Polym. Lett. 1966, 4, 441–445. 

(20)  Bassiri, T. G.; Levy, A.; Litt, M. Polymerization Of Cyclic Imino Ethers. I. Oxazolines. J. 

Polym. Sci. B Polym. Lett. 1967, 5, 871–879. 

(21)  Tomalia, D. A.; Sheetz, D. P. Homopolymerization of 2-Alkyl- and 2-Aryl-2-Oxazolines. 

J. Polym. Sci. Part A-1 Polym. Chem. 1966, 4, 2253–2265. 

(22)  Altuntaş, E.; Kempe, K.; Crecelius, A.; Hoogenboom, R.; Schubert, U. S. ESI-MS & 

MS/MS Analysis of poly(2-Oxazoline)s with Different Side Groups. Macromol. Chem. 

Phys. 2010, 211, 2312–2322. 

(23)  Baumgaertel, A.; Altuntaş, E.; Kempe, K.; Crecelius, A.; Schubert, U. S. Characterization 

of Different Poly(2-Oxazoline) Block Copolymers by MALDI-TOF MS/MS and ESI-Q-

TOF MS/MS. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 5533–5540. 

(24)  Baumgaertel, A.; Weber, C.; Knop, K.; Crecelius, A.; Schubert, U. S. Characterization of 

Different poly(2-Ethyl-2-Oxazoline)s via Matrix-Assisted Laser Desorption/ionization 

Time-of- Flight Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 

756–762. 



 25 

(25)  Gruendling, T.; Weidner, S.; Falkenhagen, J.; Barner-Kowollik, C. Mass Spectrometry in 

Polymer Chemistry: A State-of-the-Art up-Date. Polym. Chem. 2010, 1, 599–617. 

(26)  Haven, J. J.; Vandenbergh, J.; Junkers, T. Watching Polymers Grow: Real Time Monitoring 

of Polymerizations via an on-Line ESI-MS/microreactor Coupling. Chem. Commun. 2015, 

51, 4611–4614. 

(27)  Calderaro, A.; Arcangeletti, M.-C.; Rodighiero, I.; Buttrini, M.; Gorrini, C.; Motta, F.; 

Germini, D.; Medici, M.-C.; Chezzi, C.; De Conto, F. Matrix-Assisted Laser 

Desorption/ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry Applied to Virus 

Identification. Sci. Rep. 2014, 4, 6803–6813. 

(28)  Steinkoenig, J.; Rothfuss, H.; Lauer, A.; Tuten, B. T.; Barner-Kowollik, C. Imaging Single-

Chain Nanoparticle Folding via High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 

2017, 139, 51–54. 

(29)  Cecchini, M. M.; Steinkoenig, J.; Reale, S.; Barner, L.; Yuan, J.; Goldmann, A. S.; De 

Angelis, F.; Barner-Kowollik, C. Universal Mass Spectrometric Analysis of Poly(ionic 

Liquid)s. Chem. Sci. 2016, 7, 4912–4921. 

(30)  Steinkoenig, J.; Zieger, M. M.; Mutlu, H.; Barner-Kowollik, C. Dual-Gated Chain-

Shattering Based on Light Responsive Benzophe- Nones and Thermally Responsive Diels-

Alder Linkages. Macromolecules 2017, 50, 5385–5391. 

(31)  Hart-Smith, G. A Review of Electron-Capture and Electron-Transfer Dissociation Tandem 

Mass Spectrometry in Polymer Chemistry. Anal. Chim. Acta 2014, 808, 44–55. 

(32)  Olsen, J. V; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Higher-Energy C-



 26 

Trap Dissociation for Peptide Modification Analysis. Nat. Methods 2007, 4, 709–712. 

(33)  Rizzarelli, P.; Zampino, D.; Ferreri, L.; Impallomeni, G. Direct Electrospray Ionization 

Mass Spectrometry Quantitative Analysis of Sebacic and Terephthalic Acids in 

Biodegradable Polymers. Anal. Chem. 2011, 83, 654–660. 

(34)  Urban, P. L. Quantitative Mass Spectrometry: An Overview. Philos. Trans. R. Soc. A Math. 

Phys. Eng. Sci. 2016, 374, 20150382. 

(35)  Voll, D.; Junkers, T.; Barner-Kowollik, C. A Qualitative and Quantitative Post-Mortem 

Analysis: Studying Free-Radical Initiation Processes via Soft Ionization Mass 

Spectrometry. J. Polym. Sci. A Polym. Chem. 2012, 50, 2739–2757. 

(36)  Lauer, A.; Fast, D. E.; Kelterer, A. M.; Frick, E.; Neshchadin, D.; Voll, D.; Gescheidt, G.; 

Barner-Kowollik, C. Systematic Assessment of the Photochemical Stability of 

Photoinitiator-Derived Macromolecular Chain Termini. Macromolecules 2015, 48, 8451–

8460. 

(37)  Brügger, B.; Erben, G.; Sandhoff, R.; Wieland, F. T.; Lehmann, W. D. Quantitative 

Analysis of Biological Membrane Lipids at the Low Picomole Level by Nano-Electrospray 

Ionization Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 2339–

2344. 

(38)  Tuten, B. T.; Menzel, J. P.; Pahnke, K.; Blinco, J. P.; Barner-Kowollik, C. Pyreneacyl 

Sulfides as a Visible Light-Induced Versatile Ligation Platform. Chem. Commun. 2017, 53, 

4501–4504. 

(39)  Odian, G.; Gunatillake, P. Zwitterion Polymerization of 2-Methyl-2-Oxazoline and Acrylic 



 27 

Acid. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 1983, 24, 135–136. 

(40)  Fujita, M.; Iizuka, Y.; Miyake, A. Thermal and Kinetic Analyses on Michael Addition 

Reaction of Acrylic Acid. J. Therm. Anal. Calorim. 2017, 128, 1227–1233. 

(41)  Altuntaş, E.; Krieg, A.; Baumgaertel, A.; Crecelius, A. C.; Schubert, U. S. ESI, APCI, and 

MALDI Tandem Mass Spectrometry of Poly(methyl Acrylate)s: A Comparison Study for 

the Structural Characterization of Polymers Synthesized via CRP Techniques and the 

Software Application to Analyze MS/MS Data. J. Polym. Sci. Part A Polym. Chem. 2013, 

51, 1595–1605. 

(42)  Bridoux, M. C.; Machuron-Mandard, X. Capabilities and Limitations of Direct Analysis in 

Real Time Orbitrap Mass Spectrometry and Tandem Mass Spectrometry for the Analysis 

of Synthetic and Natural Polymers. Rapid Commun. Mass Spectrom. 2013, 27, 2057–2070. 

(43)  Tang, K.; Page, J. S.; Smith, R. D. Charge Competition and the Linear Dynamic Range of 

Detection in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 

15, 1416–1423. 

(44)  All pKs Values Are Predicted Values. 

(45)  Saegusa, T.; Kimura, Y.; Kobayashi, S. Polymerization via Zwitterion. 14. Alternating 

Copolymerizations of Cyclic Imino Ethers with Acrylic Acid and with Beta-Propiolactone. 

Macromolecules 1976, 10, 236–239. 

(46)  Desmet, G. B.; D’Hooge, D. R.; Omurtag, P. S.; Espeel, P.; Marin, G. B.; Du Prez, F. E.; 

Reyniers, M. F. Quantitative First-Principles Kinetic Modeling of the Aza-Michael 

Addition to Acrylates in Polar Aprotic Solvents. J. Org. Chem. 2016, 81, 12291–12302. 



 28 

(47)  Wiesbrock, F.; Hoogenboom, R.; Leenen, M. A. M.; Meier, M. A. R.; Schubert, U. S. 

Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 

2-Nonyl-, and 2-Phenyl-2-Oxazoline in a Single-Mode Microwave Reactor. 

Macromolecules 2005, 38, 5025–5034. 

(48)  Bloksma, M. M.; Paulus, R. M.; Van Kuringen, H. P. C.; Van Der Woerdt, F.; Lambermont-

Thijs, H. M. L.; Schubert, U. S.; Hoogenboom, R. Thermoresponsive poly(2-Oxazine)s. 

Macromol. Rapid Commun. 2012, 33, 92–96. 

 

  



 29 

For Table of Contents use only 

Unraveling the Spontaneous Zwitterionic Copolymerization Mechanism of Cyclic Imino Ethers 

and Acrylic Acid 

Jan Steinkoenig,a,b Patrick A. J. M. de Jongh,c David M. Haddleton,c,d Anja S. Goldmann,*a,b 

Christopher Barner-Kowollik,*a,b and Kristian Kempe*d,c  

 

 

 

 

 

 

 

 

 

 


