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Abstract 26 

In pregnancy, resistance of endometrial decidual cells to stress signals is critical for the 27 

integrity of the feto-maternal interface and, by extension, survival of the conceptus. O-28 

GlcNAcylation is an essential post-translational modification that links glucose sensing to 29 

cellular stress resistance. Unexpectedly, decidualization of primary endometrial stromal cells 30 

(EnSCs) was associated with a 60% reduction in O-GlcNAc modified proteins, reflecting 31 

downregulation of the enzyme that adds O-GlcNAc to substrates (O-GlcNAc transferase, 32 

OGT) but not the enzyme that removes the modification (O-GlcNAcase, OGA). Notably, 33 

EOGT, an endoplasmic reticulum-specific O-GlcNAc transferase that modifies a limited 34 

number of secreted and membrane proteins, was markedly induced in differentiating EnSCs. 35 

Knockdown of EOGT perturbed a network of decidual genes involved in multiple cellular 36 

functions. The most downregulated gene upon EOGT knockdown in decidualizing cells was 37 

ENHO, which encodes adropin, a metabolic hormone involved in energy homeostasis and 38 

glucose and fatty acid metabolism. Analysis of mid-luteal endometrial biopsies revealed an 39 

inverse correlation between endometrial EOGT and ENHO expression and body mass index. 40 

Taken together, our findings reveal that obesity impairs the EOGT-adropin axis in decidual 41 

cells, which in turn points towards a novel mechanistic link between metabolic disorders and 42 

adverse pregnancy outcome.  43 

 44 

Précis 45 

Induction of EOGT, a selective glycosyltransferase downstream of the nutrient-dependent 46 

hexosamine biosynthetic pathway, is essential for endometrial decidualization and adropin 47 

expression. 48 

 49 

 50 
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Introduction 51 

During the mid-luteal phase of the menstrual cycle, the endometrium becomes transiently 52 

poised to transit from a cycling into a semi-permanent tissue that is maintained throughout 53 

pregnancy (1). During this window, the luminal endometrial epithelial cells acquire a receptive 54 

phenotype and the underlying stromal cells start to differentiate into secretory decidual cells. 55 

After breaching of the luminal epithelium, migratory decidual cells rapidly encapsulate the 56 

implanting embryo (2), and form a nutritive and immune-privileged matrix that enables 57 

trophoblast invasion and placenta formation (3). Once the process of interstitial and 58 

endovascular trophoblast invasion begins, the placental-maternal interface is intensely 59 

remodeled and exposed to profound changes fluctuations in oxygen tension associated with 60 

changes to the vascular tree (1,4).  Decidual cells are programmed to resist a range of stressors, 61 

thus ensuring integrity of the interface and survival of the conceptus. Several molecular 62 

mechanisms underpin this quasi-autonomous state of decidua cells, including silencing of 63 

circadian gene expression (5), inhibition of stress pathways such as c-Jun N-terminal  kinase 64 

(JNK) (4,6), attenuated inositol trisphosphate signaling (7), global cellular hypoSUMOylation 65 

(8), resistance to miRNA-mediated gene silencing through loss of argonaute proteins (9), and 66 

marked upregulation of free radical scavengers (10). 67 

Posttranslational modification of proteins with O-linked β-N-acetylglucosamine (O-68 

GlcNAc) is an integral component of the cellular stress response (11,12). O-GlcNAcylation 69 

refers to the covalent addition of a GlcNAc sugar moiety to hydroxyl groups of serine and/or 70 

threonine residues of cytosolic, nuclear, and mitochondrial proteins. The O-GlcNAc 71 

transferase (OGT) transfers the O-GlcNAc moiety from uridine diphosphate (UDP)-GlcNAc 72 

to target proteins, whereas O-GlcNAcase (OGA) removes O-GlcNAc from proteins. UDP-73 

GlcNAc is an end product of the nutrient-dependent hexosamine biosynthetic pathway (HBP), 74 

a branch pathway in glycolysis. Increased glucose flux through the HBP elevates UDP-GlcNAc 75 
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and drives increased cellular O-GlcNAcylation (13,14). OGT targets in excess of 3,000 76 

proteins (15), enabling it to regulate multiple processes, including signal transduction and 77 

transcription in a manner akin to - and cooperative with - protein phosphorylation (11,16). 78 

Importantly, increased O-GlcNAcylation is important for cell survival in response to a variety 79 

of stressors, including osmotic (12,17), oxidative (18), genotoxic (12,19,20), endoplasmic 80 

reticulum (ER) (21), and hypoxia/re-oxygenation stress (21,22). 81 

In addition to OGT, a second enzyme has been identified that catalyzes the transfer of 82 

GlcNAc from UDP-GlcNAc to epidermal growth factor (EGF) repeats of extracellular proteins 83 

was identified (23,24). By contrast to OGT, this glycosyltransferase, termed EGF domain-84 

specific O-linked GlcNAc transferase (EOGT), resides in the ER and targets seemingly only a 85 

very limited number of secreted and membrane receptors, including Notch receptors (25-27).  86 

 In this study, we examined the expression OGT, OGA and EOGT upon decidual 87 

transformation of primary EnSCs. Although increased O-GlcNAcylation has been implicated 88 

in stress resistance, decidualization was associated with a marked reduction in O-GlcNAc-89 

modified proteins, reflecting down-regulation of OGT but not OGA. However, EOGT 90 

expression in differentiating EnSCs was increased. While the EOGT target proteins in decidual 91 

cells remain to be determined, we demonstrate that EOGT knockdown perturbs the expression 92 

of numerous genes; most prominently ENHO, which encodes a newly discovered metabolic 93 

hormone, adropin, that regulates lipid metabolism, confers insulin sensitivity, and protects 94 

against vascular disease (28,29). Finally, we demonstrate that obesity, a major risk factor for 95 

reproductive failure, is associated with lower mid-luteal endometrial EOGT and adropin 96 

expression.  97 
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Methods 98 

Patient selection and endometrial sampling 99 

The study was approved by the NHS National Research Ethics – Hammersmith and Queen 100 

Charlotte’s & Chelsea Research Ethics Committee (1997/5065). Endometrial samples were 101 

obtained during the luteal phase of an ovulatory, non-hormonally stimulated menstrual cycle 102 

using a Wallach EndocellTM sampler, starting from the uterine fundus and moving downward 103 

to the internal cervical ostium. Written informed consent was obtained from all participants in 104 

accordance with the guidelines in The Declaration of Helsinki 2000. A total of 193 biopsies 105 

were used in this study, including 24 fresh endometrial biopsies processed for primary culture. 106 

In addition, 112 biopsies stored in RNAlater (Sigma-Aldrich) were used to measure mRNA 107 

expression and a further 57 snap-frozen and formalin-fixed biopsies were used for Western 108 

blot analysis and immunohistochemistry, respectively. All endometrial biopsies were timed 109 

between 6 and 10 days after the pre-ovulatory LH surge. Demographic details are summarized 110 

in Supplementary Table 1. None of the subjects was on hormonal treatment for at least 3 111 

months prior to the procedure.     112 

 113 

Primary cell culture  114 

EnSCs were isolated and established from endometrial tissues as described previously (30). 115 

Confluent EnSC monolayers were decidualized in DMEM/F-12 containing 2% DCC-FBS with 116 

0.5 mM 8-bromo-cAMP (Sigma-Aldrich) and 10–6 M medroxyprogesterone acetate (MPA; 117 

Sigma-Aldrich) to induce a differentiated phenotype. Culture medium was refreshed every 48 118 

hours. All experiments were carried out before the third cell passage. 119 

 120 

Transient transfections 121 
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Primary EnSCs were transfected with small interfering RNA (siRNA) using the jetPRIME 122 

Polyplus transfection kit (VWR International). Undifferentiated EnSCs were transiently 123 

transfected with 50 nM EOGT-siGENOME SMARTpool or siGENOME Non-Targeting (NT) 124 

siRNA Pool 1 (GE Healthcare). Transfection studies were performed in triplicate and repeated 125 

on primary cultures from 4 subjects. 126 

 127 

Real-time quantitative (RTQ)-PCR 128 

Total RNA was extracted from EnSC cultures using RNA STAT-60 (AMS Biotechnology). 129 

Equal amounts of total RNA were treated with DNase and reverse transcribed using the 130 

QuantiTect Reverse Transcription Kit (QIAGEN) and the resulting cDNA used as template in 131 

qRT-PCR analysis. Detection of gene expression was performed with Power SYBR® Green 132 

Master Mix and the 7500 Real Time PCR System. The expression levels of the samples were 133 

calculated using the dCt method, incorporating the efficiencies of each primer pair. The 134 

variances of input cDNA were normalized against the levels of the L19 housekeeping gene. 135 

All measurements were performed in triplicate. Melting curve analysis confirmed product 136 

specificity.  137 

 138 

Western blot analysis 139 

Protein extracts were prepared by lysing cells in RIPA buffer containing protease inhibitors 140 

(cOmplete, Mini, EDTA-free; Roche). Protein yield was quantified using the Bio-Rad Protein 141 

Assay Dye Reagent Concentrate. Equal amounts of protein were separated by SDS-142 

Polyacrylamide Gel Electrophoresis (SDS-PAGE) before wet-transfer onto nitrocellulose 143 

membrane. Global O-GlcNAcylation was determined by spotting 10 μg and 2 μg of total 144 

protein lysate directly onto nitrocellulose membranes. Nonspecific binding sites were blocked 145 

by overnight incubation with 5% non-fat dry milk in Tris-buffered saline with 1% Tween 146 
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(TBS-T; 130 mmol/L NaCl, 20 mmol/L Tris, pH7.6 and 1% Tween). The antibodies used in 147 

this study are listed in Table 1. Protein complexes were visualized with ECL Plus 148 

chemiluminescence. Densitometry was performed using Gene Tools software.    149 

 150 

Immunohistochemistry 151 

Paraffin-embedded, formalin fixed endometrial specimens were immunostained for EOGT 152 

using the Novolink polymer detection systems (Leica) as per manufacturer’s instructions. 153 

Universal LSAB Plus kits (DAKO) were used as previously described (31) using primary 154 

antibodies against EOGT (1:500 dilution) and ENHO (1:200 dilution). Bright-field imagines 155 

were obtained on a Mirax Midi slide scanner and visualized using Panoramic Viewer software 156 

for analysis.  157 

 158 

RNA-Sequencing and data analysis 159 

Total RNA was extracted using RNA-STAT-60 from primary EnSC cultures first transfected 160 

with either EOGT or non-targeting (NT) siRNA and then decidualized with 8-br-cAMP and 161 

MPA for 4 days. 3 biological repeats were performed to allow for inter-patient variability. RNA 162 

quality was analysed on an Agilent 2100 Bioanalyzer. RNA integrity number score for all 163 

samples was ≥ 8.0. Transcriptomic maps of paired-end reads were generated using Bowtie-164 

2.2.3, SAMtools 0.1.19, and TopHat 2.0.12 against the University of California, Santa Cruz 165 

hg19 reference transcriptome (2014) from the Illumina iGenomes resource using the fr-166 

firststrand setting. Transcript counts were assessed by HTSeq-0.6.1. Transcripts per million 167 

(TPM) were calculated as recently described (32). Differential gene expression analysis was 168 

performed using DEseq2-1.14.1. Significance was defined as an adjusted P value (q value) of 169 

< 0.05 following Benjamini-Hochberg False Discovery Rate correction. Expression data have 170 

been submitted to the Gene Expression Omnibus (GEO) repository (accession number: 171 
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GSE104720). Gene Ontology (GO) analyses were carried out using DAVID Bioinformatics 172 

Resources 6.8 (33,34) and visualized using REVIGO online software (35). GO Term Gene Set 173 

Enrichment Analysis (GSEA), was performed using piano R package (36). Briefly, GO ID was 174 

extracted for each Ensembl gene ID using biomaRt package in R (37). Gene ID and GO ID 175 

were loaded into correct format using loadGSC function and GSEA was performed using the 176 

runGSA function. Genes were ranked according to the adjusted P value and log2 Fold Change 177 

was used to determine up or downregulated transcripts.  178 

 179 

Statistical Analysis 180 

In vitro experiments were analyzed with the statistical package Graphpad Prism 6. Unpaired 181 

Student’s t-test and one-way ANOVA with post hoc Tukey’s test were used when appropriate. 182 

The association between EOGT and ENHO mRNA in endometrial biopsies and BMI was 183 

analyzed using Pearson’s rank correlation. Statistical significance was assumed when P < 0.05  184 
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Results 185 

Loss of OGT-dependent O-GlcNAcylation in decidualizing EnSCs  186 

O-GlcNAcylation of target proteins is enhanced in response to diverse stress signals and tissue 187 

injury (15). To test if O-GlcNAcylation plays a role in decidualization, primary EnSCs were 188 

decidualized with 8-br-cAMP and MPA for 2, 4 or 8 days and the expression of O-GlcNAc 189 

processing enzymes, OGT, EOGT and OGA, examined at both mRNA and protein level. 190 

Analysis of 4 independent primary cultures demonstrated that decidualization results in 191 

downregulation of the canonical O-GlcNAc transferase OGT at both mRNA and protein level 192 

(Fig. 1A and 1B), whereas expression of OGA (encoded by MGEA5) was unchanged. In 193 

contrast to OGT, expression of EOGT increased significantly upon decidualization.  In fact, 194 

induction of EOGT was more marked at protein than mRNA level, with levels increasing ~5-195 

fold after 8 days of decidualization (Fig. 1A and 1B). Densitometric analyses of Western blots 196 

are shown in Supplementary Fig. 1. 197 

 While thousands of OGT substrates have been identified, only a handful of EOGT 198 

targets have been described to date (38,39). To determine the impact of decidualization on total 199 

cellular O-GlcNAcylation, protein lysates from undifferentiated EnSCs and cells decidualized 200 

for 8 days were subjected to dot-blot analysis using a primary antibody directed against serine 201 

and threonine residues with attached beta-O-linked GlcNAc. This analysis revealed ~60% 202 

reduction in global O-GlcNAcylation in decidual cells (Fig. 1C), reflecting the relative shift to 203 

OGA over OGT. Thus, decidualization is associated with decreased OGT-mediated cellular O-204 

GlcNAcylation, yet increased expression of EOGT, a highly selective transferase that targets 205 

secreted and membrane-bound proteins (39).  206 

 207 

EOGT expression in mid-luteal endometrium. 208 
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Mining of the Genotype-Tissue Expression (GTEx) and FANTOM (Functional Annotation of 209 

Mammalian Genomes) projects revealed that EOGT is highly expressed in the endometrium 210 

compared to other tissues (40,41). Furthermore, analysis of Gene Expression Omnibus (GEO 211 

profile ID: 24476716) demonstrated that EOGT mRNA levels in cycling endometrium 212 

increases sharply upon transition from the early- to mid-secretory endometrium (Fig. 2A). 213 

Laser microdissection of glandular endometrial epithelium coupled to RNA-sequencing 214 

revealed a transient 3-fold increase in EOGT mRNA levels during the mid-luteal phase, 215 

coinciding with the putative window of implantation (Fig. 2B) (42). Immunohistochemistry 216 

was performed to assess the spatiotemporal expression of EOGT in the endometrial stromal 217 

compartment. In timed early-secretory phase (LH+5) biopsies, EOGT immunoreactivity was 218 

largely confined to endometrial glands (Fig. 2C, upper panel). During the mid-luteal 219 

implantation window (LH+9), stromal cells were strongly EOGT positive (Fig 2C, lower 220 

panel). Interestingly, EOGT was also expressed in endothelial cells lining the emerging 221 

terminal spiral arteries, although the surrounding perivascular cells often appeared devoid of 222 

this glycosyltransferase. Thus, EOGT is expressed in the endometrial epithelial compartment, 223 

decidualizing stromal cells and vascular endothelial cells at the time of embryo implantation 224 

 225 

Impact of EOGT knockdown on decidual marker genes and Notch signaling.   226 

Induction of decidual marker genes, such as PRL and IGFBP1, in response to cAMP and 227 

progestin signaling is mediated, at least in part, by the auto/paracrine actions of a host of 228 

cytokines and morphogens (1). We speculated that the strong induction of EOGT could be 229 

essential for the expression of decidual marker genes in differentiating EnSCs. To test this 230 

conjecture, 4 primary cultures were first transfected with non-targeting (NT) or EOGT siRNA 231 

and then decidualized with 8-br-cAMP and MPA for 2, 4 or 8 days. Although EOGT 232 

knockdown was highly efficient (Fig. 3A, upper panel), there was no significant impact on the 233 
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induction of either PRL or IGFBP1 in decidualizing cultures (Fig. 3A, middle and lower panels, 234 

respectively).  235 

 Notch receptors are perhaps the best characterized targets of EOGT (27). O-GlcNAc 236 

modification of epidermal growth factor-like repeats of NOTCH1 enhances signaling by 237 

potentiating interaction with Delta like-1 (DLL1) and DLL4 ligands in a cell-specific context 238 

(27). Ligand binding to the extracellular domain of Notch receptors induces proteolytic 239 

cleavage and releases Notch intracellular domain (ICD), which enters the cell nucleus to 240 

regulate gene expression. To test if induction of EOGT in decidualizing EnSCs modulates 241 

Notch signaling, total protein lysates of undifferentiated cells and cells treated with 8-br-cAMP 242 

and MPA for 2, 4 or 8 days were subjected to Western blot analysis for NOTCH1 and NOTCH3 243 

ICDs. As shown in Figure 3B, decidualization was associated with gradual silencing of Notch 244 

signaling and EOGT knockdown had no discernable effect on this response. Further, 245 

expression of HEY1 and HES1, target genes of the canonical Notch signaling pathway (43), 246 

was not significantly altered upon EOGT knockdown in EnSCs decidualized for 4 days (P > 247 

0.05; Fig. 3C). Taken together, these observations indicate that Notch activity is not likely 248 

regulated by EOGT-mediated O-GlcNAcylation in decidualizing cells.  249 

 250 

EOGT knockdown perturbs decidual gene expression.  251 

To gain insight in the role of EOGT in decidual cells, total RNA harvested from 3 independent 252 

cultures, first transfected with either EOGT or NT siRNA and then treated with 8-br-cAMP 253 

and MPA for 4 days, was subjected to RNA sequencing. Approximately, 26-36 million paired-254 

end reads were sequenced per sample. After accounting for variation between primary cultures, 255 

the impact of EOGT knockdown on decidual gene expression was highly consistent with 256 

principal components (PC) 1 and 2 accounting for 52% and 36% of variance in gene 257 

expression, respectively (Fig. 4A). Based on q ≤ 0.05, we identified 340 genes that were 258 
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significantly altered upon EOGT knockdown (Fig. 4B); of which 178 (52%) were up- and 162 259 

(48%) down-regulated. Several highly induced decidual genes were downregulated 260 

significantly upon EOGT knockdown, including LEFTY2 (q = 3.13 × 10−4), CDKN1C (q = 261 

5.10 × 10−8), GADD45G (q = 9.58 × 10−9) and GPX3 (q = 7.17 × 10−12) (Supplementary Fig. 262 

2). EOGT knockdown also downregulated ESR1, coding the estrogen receptor alpha, in 263 

decidualizing cells (q = 1.07 × 10−3). However, the most repressed gene upon EOGT 264 

knockdown was ENHO (Energy Homeostasis Associated gene; -2.03 log2 fold-change; q = 265 

5.67 × 10−11), coding adropin, a recently discovered peptide hormone implicated in the 266 

regulation of energy homeostasis, insulin resistance and lipid metabolism (28). Interestingly, 267 

IL1RL1, which encodes the IL-33 receptor, is strongly upregulated upon decidualization (44), 268 

yet EOGT knockdown amplified induction of this gene in differentiating EnSCs (1.8 log2 fold-269 

change; q = 2.31 × 10−17).  270 

 Gene ontology (GO) term enrichment analysis, using both DAVID (Fig. 4C) and GSEA 271 

(Supplementary Fig. 3), revealed that EOGT knockdown results in upregulation of genes 272 

involved - amongst other categories - in cell adhesion, extracellular matrix organization, and 273 

signal transduction (Fig 4C, left panel; Supplementary Table 2; Supplementary Fig. 3). Notable 274 

GO terms enriched in downregulated genes include oxidative-reductive process, response to 275 

estrogen/estradiol, and inflammatory responses (Fig 4C, right panel; Supplementary Table 2; 276 

Supplementary Fig. 3). We also annotated genes perturbed upon EOGT knockdown by their 277 

disease association. GO analysis yielded a conspicuous association between EOGT-responsive 278 

decidual genes and vascular and metabolic disorders, most prominently type 2 diabetes (Fig. 279 

4D).  280 

 281 

Obesity perturbs the endometrial EOGT-adropin axis  282 
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To explore the putative link with metabolic disorders, we measured EOGT transcript level by 283 

RTQ-PCR in 112 mid-luteal (LH+7-10) endometrial biopsies. Demographic details are 284 

summarized in Supplementary Table 1. Interestingly, endometrial EOGT mRNA levels 285 

correlated inversely with body mass index (BMI) (Pearson’s r = -0.194, P = 0.043; Fig. 5A). 286 

By contrast, no association was found between either OGT or OGA mRNA levels and BMI 287 

(Supplementary Fig. 4). Western blot analysis of total protein lysates of 48 biopsies (LH+7-9) 288 

substantiated the inverse correlation between endometrial EOGT levels and BMI (r = -0.335, 289 

P = 0.02; Fig. 5B), with levels being significantly lower in clinically obese patients compared 290 

to control subjects (P < 0.03) (Fig. 5C).  291 

 Expression of adropin in the endometrium has not yet been reported. As shown in 292 

Figure 6A, ENHO mRNA levels increase significantly in primary EnSCs decidualized with 8-293 

br-cAMP and MPA for 4 days, although the level of induction varied markedly between 294 

primary cultures (Fig. 6A, Supplementary Fig. 5). Furthermore, immunohistochemistry of 295 

serial endometrial sections (LH+8) revealed that the tissue distribution of adropin is 296 

indistinguishable from EOGT, characterized by strong expression in glands, differentiating 297 

stromal cells, and endothelial but not perivascular cells (Fig. 6B). Furthermore, a strong 298 

positive correlation was observed between EOGT and ENHO transcript levels in 112 timed 299 

endometrial biopsies (r = 0.327, P = 0.0003; Fig. 6C); as well as a negative correlation between 300 

ENHO mRNA expression and BMI (r = -0.178, P = 0.044; Fig. 6D).  301 

 302 

Discussion 303 

Dynamic changes in protein O-GlcNAcylation enable cells to homeostatically balance energy 304 

supply and demand by modulating the stability, localization and function of a myriad of 305 

proteins (45). Here, we report that decidualizing EnSCs downregulate OGT expression and 306 

intracellular O-GlcNAcylation but upregulate the highly selective glycosyltransferase EOGT. 307 
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Increased canonical O-GlcNAcylation is a well characterized pro-survival response (15); 308 

rendering the downregulation of OGT in differentiating EnSCs counterintuitive, especially as 309 

initiation of decidual differentiation coincides with a burst of endogenous reactive oxygen 310 

species (ROS) production and release of various inflammatory mediators (46,47). However, 311 

SUMO modification of proteins is also dramatically reduced in decidualizing cells and 312 

uncoupled from JNK-mediated stress signaling though the induction of MAP kinase 313 

phosphatase 1 (MKP1) (48-50). Hence, by silencing selective pathways that converge on the 314 

posttranslational modification code of numerous proteins, decidual cells appear to prioritize 315 

cellular homeostasis over an adaptive response to stress signals. Further, recent studies have 316 

shown that decidualization is critically dependent on glucose utilization via the pentose 317 

phosphate pathway (51), suggesting that loss of OGT may be integral to the metabolic 318 

reprogramming of the endometrium in preparation of pregnancy.  319 

Induction of EOGT in the endometrium during the mid-luteal phase of the cycle 320 

coincides with the window of implantation. At this time, EOGT is expressed in the glandular 321 

epithelium, vascular endothelial cells, and stromal cells that are poised to decidualize. 322 

Decidualization is characterized by an unfolded protein response that underpins ER expansion 323 

and acquisition of a secretory phenotype (52). In fact, multiple secreted factors, including 324 

interleukin (IL)-11, leukemia inhibitory factor (LIF) and bone morphogenetic protein 2 325 

(BMP2),  have been implicated in the auto/paracrine propagation of the decidual response (1). 326 

However, the identity and role of EOGT target proteins, whether secreted or expressed on the 327 

cell surface, in differentiating EnSCs requires further investigation. We showed that Notch 328 

signaling is attenuated upon decidualization (53), irrespective of EOGT knockdown. 329 

Furthermore, other known EOGT target proteins (26), including thrombospondin (THBS1), 330 

peptidase domain containing associated with muscle regeneration 1 (PAMR1), and laminin 331 

alpha 5 (LAMA5), are also downregulated upon decidualization, at least at mRNA level (GEO 332 
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accession number: GSE104720). Although EOGT knockdown did not significantly impact on 333 

PRL or IGFBP1 expression in differentiating cells, RNA-sequencing uncovered a robust set of 334 

341 EOGT-dependent genes. EOGT knockdown upregulated several genes encoding 335 

inflammatory mediators, including IL-1β (IL1B) and complement component 3 (C3), but 336 

downregulated key genes involved in decidual stress defenses, such as GPX3 (coding 337 

extracellular glutathione peroxidase), GLXR (glutaredoxin) and GADD45G (growth arrest and 338 

DNA damage inducible gamma) (1). EOGT knockdown also blunted the induction of other 339 

cardinal decidual genes, including F3 (tissue factor) (1), LEFTY2 (left-right determination 340 

factor 2, also known as endometrial bleeding-associated factor or EBAF) (54), and CDKN1C 341 

(cyclin dependent kinase inhibitor 1C, p57kip2) (55). Most strikingly, however, was the 342 

repression of ENHO upon loss of EOGT. ENHO encodes adropin, a recently discovered 343 

peptide hormone implicated in energy homeostasis, glucose and fatty acid metabolism, and 344 

vascular protection (56).  Although ENHO is primarily expressed in the liver, pancreas and 345 

brain (28), we showed that this gene is also induced upon decidualization of human EnSCs, 346 

although the magnitude of induction varied markedly between primary cultures. We further 347 

showed a strong positive correlation between EOGT and ENHO transcript levels in whole 348 

endometrial biopsies; and immunohistochemistry on serial tissue sections revealed that the 349 

cellular distribution of adropin in mid-luteal endometrium is indistinguishable from EOGT.  350 

GO analysis revealed a putative association between decidual genes perturbed upon 351 

EOGT knockdown and metabolic and cardiovascular disorders. To explore this possible link 352 

further, we measured the transcript levels of the 3 O-GlcNAc processing enzymes in 112 353 

randomly selected mid-luteal endometrial biopsies from women ranging in BMI from 18 to 42. 354 

A weak but significant negative correlation was observed between BMI and EOGT mRNA 355 

levels but not OGT or OGA expression. Western blot analysis confirmed that obesity is 356 
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associated with impaired endometrial EOGT expression. Furthermore, endometrial ENHO 357 

transcript levels also correlated negatively with BMI.  358 

Obesity increases the risk of a spectrum of pregnancy disorders, including obstetrical 359 

syndromes, such as pre-eclampsia, fetal growth restriction and preterm labor (57,58), that are 360 

caused by impaired endovascular trophoblast invasion and spiral artery remodeling (59). In the 361 

absence of physiological remodeling, these uterine vessels are prone to develop acute atherosis, 362 

characterized by changes in lipid metabolism, intravascular inflammation, macrophage 363 

infiltration and endothelial cell dysfunction (60). Adropin promotes various indices of vascular 364 

health, including increased endothelial cell proliferation, migration, and angiogenesis; and 365 

diminishes permeability and apoptosis (61). Although as yet untested, these observations 366 

suggest that adequate decidual adropin production may be essential for successful spiral artery 367 

remodeling in pregnancy. Notably, low circulating adropin levels have not only been associated 368 

with high BMI, insulin resistance, endothelial dysfunction and coronary atherosclerosis but 369 

also severe preeclampsia (62,63).   370 

In summary, the shift from OGT to EOGT dominance in decidualizing EnSCs results 371 

in intracellular hypo-O-GlcNAcylation whereas glucose utilization through the HBP pathway 372 

for modification of selective secreted and/or membrane proteins is likely enhanced. We 373 

demonstrate that EOGT upregulation is critical for normal decidual function and identified 374 

ENHO as major EOGT-responsive gene. Further, our observation that obesity impairs the 375 

EOGT-adropin axis in the endometrium intimates a novel mechanistic pathway that links 376 

metabolic disorders to vascular placental pathology and adverse pregnancy outcome.   377 
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Figure 1. Regulation of O-GlcNAcylation in decidualizing EnSCs. A) OGT, OGA and EOGT 594 

transcript levels were measured in undifferentiated EnSCs and cells decidualized with 8-br-595 

cAMP and MPA for 2, 4 or 8 days. Expression was normalized to L19 mRNA levels and the 596 

data show mean ± SEM relative to that in undifferentiated cells in 4 independent primary 597 

cultures. Different letters above the error bars indicate groups are significantly different from 598 

each other at P < 0.05. Group comparison by ANOVA and post hoc Tukey’s test.  B) Total 599 

protein lysates from parallel cultures were subjected to Western blotting. β-Actin served as a 600 

loading control. C) Representative dot blot of total cellular O-GlcNAcylation from total protein 601 

lysates from cells decidualized for 2, 4 or 8 days. Lower panel denotes total cellular O-602 

GlcNAcylation relative to β-actin by densitometry and expressed as arbitrary units (A.U.). 603 

Group comparison by ANOVA and post hoc Tukey’s test. 604 

 605 

Figure 2. EOGT expression in mid-luteal endometrium. A) EOGT transcripts, expressed as 606 

arbitrary units (A.U.) in proliferative (P), early secretory (ES), mid-secretory (MS) and late 607 

secretory (LS) endometrium. The data were derived from in silico analysis of GDS2052 608 

microarray data.  B) Expression of EOGT, in transcripts per million (TPM), in ES, MS and LS 609 

endometrial glandular epithelium. The data were derived from in silico analysis of published 610 

RNA-Seq data (64). Different letters above the error bars indicate groups are significantly 611 

different from each other at P < 0.05. Group comparison by ANOVA and post hoc Tukey’s 612 

test. C) EOGT immunohistochemistry of mid-luteal endometrial biopsies obtained 5 and 9 days 613 

following the LH surge, representing the early- and mid-luteal phase, respectively. Inset in the 614 

upper panel shows no staining upon omission of primary antibody (negative control). Arrows 615 

indicate positive staining of endothelial cells. Scale bar = 50μm 616 

 617 
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Figure 3. EOGT knockdown in decidualizing EnSCs. A) Four independent primary cultures 618 

were transfected with either non-targeting siRNA (siNT) or siRNA targeting EOGT (siEOGT). 619 

After 24 hours, the cultures remained either undifferentiated or were decidualized for 2, 4 and 620 

8 days. Total mRNA was subjected to RTQ-PCR analysis to determine transcript levels for 621 

EOGT (left panel), PRL (middle panel) and IGFBP1 (right panel). Expression was normalized 622 

to L19 mRNA levels and data show mean ± SEM fold change relative to undifferentiated 623 

EnSCs. ** P < 0.01. Group comparison by Unpaired t test. B) Western blot analysis of EOGT, 624 

NOTCH1 and NOTCH3 ICDs levels in total protein lysates from EnSCs first transfected with 625 

siNT or siEOGT and then decidualized for the indicated time points. β-Actin served as a 626 

loading control. Densitometric analyses of NOTCH1 and NOTCH3 expression are shown in 627 

middle and right panels, respectively. C) Transcript expression of HES1 and HEY1, normalized 628 

to L19 mRNA, from 3 independent primary EnSC cultures transfected with siNT or siEOGT 629 

and decidualized for 4 days.  Data are mean ± SEM of three biological replicates. P > 0.05 630 

(unpaired t-test). 631 

 632 

Figure 4. EOGT knockdown perturbs distinct gene networks in EnSCs. A) Principal 633 

Component Analysis of RNA-Seq data from 3 independent primary EnSC cultures first 634 

transfected with siNT and siEOGT and then decidualized for 4 days. B) Clustered heatmap of 635 

RNA-seq data for differentially expressed transcripts between siEOGT and siNT transfected 636 

cultures. C) Semantic clustering of significantly overrepresented GO terms (P < 0.05) of 637 

differentially up- and down-regulated genes (left and right panel, respectively) upon EOGT 638 

knockdown. Circle size is proportional to the percentage of genes in the GO term whereas the 639 

color indicates the log10 p-value. Color key is on the right. D) Word cloud presentation of 640 

overrepresented disease associations based on GO terms upon EOGT knockdown in 641 

decidualizing EnSCs. Size of word is proportional to log10 q-value.      642 
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 643 

Figure 5. Obesity perturbs endometrial EOGT expression. A) Pearson’s correlation (r) 644 

between normalized EOGT transcript levels in mid-luteal endometrial biopsies and BMI in 112 645 

subjects. B) Pearson’s correlation between normalized EOGT protein expression and BMI in 646 

mid-luteal endometrial biopsies from 48 subjects. C) Normalized EOGT protein levels in timed 647 

endometrial biopsies obtained from women with BMIs of <25, 25-30 (overweight), and > 30 648 

(obese). * P < 0.05 (unpaired t-test). 649 

 650 

Figure 6. Endometrial ENHO expression relates to BMI A) ENHO mRNA levels were 651 

measured in undifferentiated EnSCs and cells decidualized with 8-br-cAMP and MPA for 4 652 

days (upper panel). Expression was normalized to L19 mRNA levels and the data show fold-653 

change relative to expression in undifferentiated cells in 6 independent primary cultures ** P 654 

< 0.01 (unpaired t-test). Total protein lysates from parallel cultures were subjected to Western 655 

blotting (lower panel). β-Actin served as a loading control. B) Immunohistochemistry of EOGT 656 

(left panel) and adropin (right panel) on serial tissue sections, demonstrating co-localization of 657 

both proteins in mid-luteal endometrium. Inset in the left panel shows no staining upon 658 

omission of primary antibody (negative control); arrows indicate EOGT and adropin 659 

immunoreactivity in endothelial cells of terminal spiral arteries. Scale bars = 50μm. C) 660 

Pearson’s correlation between EOGT and ENHO transcripts in endometrial biopsies from 112 661 

subjects. D) Pearson’s correlation between ENHO mRNA levels in mid-luteal endometrial 662 

biopsies and BMI in 112 subjects. 663 

 664 

 665 

 666 

 667 
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Table 1: Primary Antibodies used throughout the study. 668 

 669 

 670 

    

Protein Target Manufacturer and Catalogue 

number 

Dilution Research Resource 

Identifier  

OGT CST # 24083 WB 1:1000 AB_2716710 

OGA Sigma-Aldrich #SAB4200267  WB 1:500 AB_10797267 

EOGT Sigma-Aldrich #HPA019460 WB 1:500; IHC 1:500 AB_1844628 

O-GlcNAc (CTD110.6) Sigma-Aldrich #O7764 WB 1:500 AB_1079524 

NOTCH1 CST # 3608 WB 1:1000 AB_10691684 

NOTCH3 CST # 5276 WB 1:1000 AB_10560515 

ADROPIN Abcam #ab122800 WB 1:500; IHC 1:300 AB_11132112 

B-ACTIN Abcam #ab8227 WB 1:50000 AB_2305186 
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Supplementary Table 1: Demographic details of 193 participating subjects. 

   

(n=193) Mean Standard Deviation 

Age (year) 36.1 4.7 

Body Mass Index (BMI) 25.9 5.4 

First Trimester Loss (n) 3.5 2.3 

Day of Cycle (day) 8.0 (Median) 1.5 

uNK centile 36.2 25.9 

 
Demographic details of participating 

subjects in mRNA correlative analysis 

  

(n=112) Mean Standard Deviation 

Age (year) 35.7 4.8 

Body Mass Index (BMI) 25.5 4.9 

First Trimester Loss (n) 3.1 2.3 

Day of Cycle (day) 8.0 (Median)  1.4 

uNK centile 35.8 26.2 

 
Demographic details of participating 

subjects in protein correlative analysis 

  

(n=48) Mean Standard Deviation 

Age (year) 36.4 4.4 

Body Mass Index (BMI) 26.4 6.0 

First Trimester Loss (n) 3.8 2.1 

Day of Cycle (day) 8.5 (Median) 1.7 

uNK centile 41.2 24.3 
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Supplementary Table 2: Enriched GO categories upon EOGT knockdown. Categories in 

italic denotes overrepresented GO terms of differentially up-regulated genes. Categories 

underlined denotes overrepresented GO terms of differentially down-regulated genes. 

Category Term PValue % Count 

GO:0007155 cell adhesion 6.93E-05 8.57143 15 

GO:0007165 signal transduction 2.81E-04 13.7143 24 

GO:0007411 axon guidance 5.92E-04 4.57143 8 

GO:0043547 positive regulation of GTPase activity 0.00506 7.42857 13 

GO:0007605 sensory perception of sound 0.00704 3.42857 6 

GO:0051056 regulation of small GTPase mediated signal transduction 0.00726 3.42857 6 

GO:0001822 kidney development 0.00754 2.85714 5 

GO:0070509 calcium ion import 0.01 1.71429 3 

GO:0016337 single organismal cell-cell adhesion 0.01309 2.85714 5 

GO:0045944 positive regulation of transcription from RNA polymerase II 
promoter 

0.01529 9.71429 17 

GO:0001525 angiogenesis 0.01556 4 7 

GO:0035235 ionotropic glutamate receptor signaling pathway 0.01948 1.71429 3 

GO:0035019 somatic stem cell population maintenance 0.02075 2.28571 4 

GO:0070588 calcium ion transmembrane transport 0.02251 2.85714 5 

GO:0030335 positive regulation of cell migration 0.02543 3.42857 6 

GO:0006211 5-methylcytosine catabolic process 0.02674 1.14286 2 

GO:0007015 actin filament organization 0.02708 2.28571 4 

GO:0030198 extracellular matrix organization 0.03217 3.42857 6 

GO:0086091 regulation of heart rate by cardiac conduction 0.03939 1.71429 3 

GO:0007044 cell-substrate junction assembly 0.04276 1.14286 2 

GO:0033564 anterior/posterior axon guidance 0.04417 1.14286 2 

GO:2001199 negative regulation of dendritic cell differentiation 0.04417 1.14286 2 

GO:0086046 membrane depolarization during SA node cell action potential 0.04417 1.14286 2 

GO:0030336 negative regulation of cell migration 0.04423 2.28571 4 

GO:0007517 muscle organ development 0.04623 2.28571 4 

GO:0055114 oxidation-reduction process 7.06E-05 10.4575 16 

GO:0010642 negative regulation of platelet-derived growth factor receptor 
signaling pathway 

0.00127 1.96078 3 

GO:0042127 regulation of cell proliferation 0.01593 3.92157 6 

GO:0043200 response to amino acid 0.02492 1.96078 3 

GO:0042981 regulation of apoptotic process 0.02732 3.92157 6 

GO:0006954 inflammatory response 0.0313 5.22876 8 

GO:0045629 negative regulation of T-helper 2 cell differentiation 0.03131 1.30719 2 

GO:0071395 cellular response to jasmonic acid stimulus 0.03131 1.30719 2 

GO:0045920 negative regulation of exocytosis 0.03131 1.30719 2 

GO:0030730 sequestering of triglyceride 0.03131 1.30719 2 

GO:0043407 negative regulation of MAP kinase activity 0.03291 1.96078 3 

GO:0042493 response to drug 0.0341 4.57516 7 

GO:0032355 response to estradiol 0.03564 2.61438 4 

GO:0042308 negative regulation of protein import into nucleus 0.04152 1.30719 2 
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GO:0007568 aging 0.04227 3.26797 5 

GO:0045627 positive regulation of T-helper 1 cell differentiation 0.0466 1.30719 2 

GO:0071799 cellular response to prostaglandin D stimulus 0.0466 1.30719 2 
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Supplementary Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 5 

 



Supplementary Figure 1. Regulation of O-GlcNAcylation in decidualizing EnSCs. Related to 

Figure 1. Densitometric analyses of OGT, OGA and EOGT protein expression from 4 

independent primary cultures relative to β-actin expressed as arbitrary units (A.U.). Different 

letters above the error bars indicate groups are significantly different from each other at P < 

0.05. Group comparison by ANOVA and post hoc Tukey’s test. 

 

Supplementary Figure 2. EOGT knockdown perturbs distinct gene networks in EnSCs. 

Related to Figure 4. Relative expression of LEFTY2, CDKN1C, GADD45G and GPX3 

expressed as transcripts per million (TPM) in 3 independent primary EnSC cultures transfected 

with siEOGT and decidualized for 4 days relative to cultures transfected with siNT (dotted 

line). 

 

Supplementary Figure 3. EOGT knockdown perturbs distinct gene networks in EnSCs. 

Related to Figure 4. Semantic clustering of significantly overrepresented GO terms (P < 0.05) 

of up- and down-regulated genes (left and right panel, respectively) upon EOGT knockdown 

as ranked by q value by GSEA analysis. Circle size is proportional to the percentage of genes 

in the GO term whereas the color indicates the log10 p-value. Color key is on the right.   

 

Supplementary Figure 4. Obesity perturbs endometrial EOGT expression. Related to Figure 

5. Pearson’s correlation (r) between normalized OGT and OGA transcript levels in mid-luteal 

endometrial biopsies and BMI in 112 subjects. 

 

Supplementary Figure 5. Endometrial ENHO expression relates to BMI. Related to Figure 

6. Densitometric analysis of adropin protein expression from 3 independent primary cultures 

relative to to β-actin expressed as arbitrary units (A.U.). Different letters above the error bars 



indicate groups are significantly different from each other at P < 0.05. Group comparison by 

ANOVA and post hoc Tukey’s test. 
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