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Abstract 

Catalytic anticancer metallodrugs active at low doses could minimise side-effects, introduce 

novel mechanisms of action which combat resistance, and widen the spectrum of anticancer 

drug activity. Here we use highly-stable chiral half-sandwich organometallic Os(II) arene 

sulfonyl diamine complexes, [Os(arene)(TsDPEN)] to achieve highly enantioselective 

reduction of pyruvate, a key intermediate in metabolic pathways, both in aqueous model 

systems and in human cancer cells, using non-toxic concentrations of sodium formate as a 

hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells 

versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models 

of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an 

alternative to formate in PC3 prostate cancer cells, which are known to over-express a 

deformylase enzyme. Transfer hydrogenation catalysts generating reductive stress in cancer 

cells offer a ground-breaking new approach to cancer therapy.  
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Introduction 

Catalytic metallodrugs might be able to achieve high efficacy at low dosages and combat 

resistance through a multi-targeted mechanism of action. These are currently unmet clinical 

needs, and a problem for non-catalytic drugs, such as the platinum anticancer complex cisplatin 

[PtCl2(NH3)2], yet platinum compounds are used in more than 50% of current 

chemotherapeutic treatments.1,2 Over the last decade, catalytic complexes of ruthenium,3-5 

iridium,6 and more recently osmium,7 have attracted attention, allowing access to unique 

architectures and redox potentials, with the possibility of avoiding platinum-drug resistance, 

reducing side-effects, and widening the spectrum of activity.8 The development of bio-

compatible catalytic metallodrugs is however subject to hindrance by catalyst deactivation.5 

Unlike metalloenzymes which protect metal ions within cavities of the protein, metal centres 

in small-molecule catalysts are relatively exposed. Nevertheless, metallodrugs have been 

reported to catalyse a variety of bio-orthogonal transformations in cells including C-C bond 

formation and functional group modifications.5 Complexes of ruthenium have been used in the 

deprotection of alloc/allyl-protected substrates,9-11 and to carry out olefin metathesis in cells.12 

Metal-based catalysts have also been used to induce cell damage in the treatment of cancer. 

For example, organotelluride catalysts can generate hydrogen peroxide, inducing cancer cell 

death by oxidative stress.13 Other complexes containing amino-terminal copper/nickel binding 

motifs can selectively cleave G-quadruplex telomeric DNA, inducing apoptosis in cancer 

cells.14 We have recently reported the reduction of the cofactor nicotinamide adenine 

dinucleotide (NAD+) to NADH inside cancer cells using non-chiral ruthenium5 and rhodium15 

catalysts [M(arene)Cl(TsEn)], TsEn = N-tosyl-ethylenediamine. This new approach to killing 

cancer cells targets their inherent redox vulnerability, which results from dysfunctional 

mitochondria. Molecular mimics of NADH can be regenerated by iridium ‘piano-stool’ 

catalysts in aqueous media and, in tandem with a NADH-dependent enzymatic reaction, yield 
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chiral products with high conversion and enantiomeric excess.16 Artificial transfer 

hydrogenation enzymes have been developed by Ward et al by introducing biotinylated 

iridium,17 ruthenium3 and rhodium18 piano-stool complexes within streptavidin to achieve high 

enantioselectivity for the reduction of prochiral imines and ketones, but have not been used to 

reduce intracellular targets directly. We now show for the first time that asymmetric transfer 

hydrogenation of pyruvate to D-lactate can be achieved in both model aqueous systems, and in 

cancer cells, using a novel synthetic chiral organo-osmium catalyst and sodium formate as a 

hydride source. 

 

Results 

A successful catalyst for use in cells must be highly stable with respect to deactivation in the 

complex chemical environment of the cell. Transfer hydrogenation reactions are commonly 

achieved using bifunctional catalysts, such as the tosyl diamine complexes of ruthenium, 

rhodium or iridium reported by Noyori and co-workers.19-22 Such catalysts can transfer 

hydrogen from a donor molecule (formic acid) to an acceptor (ketone) with high 

enantioselectivity. However, they require first the dissociation of a chloride ligand from the 

pre-catalyst. We recently reported chiral 16-electron osmium(II) complexes (Figure 1), 

analogous to the Noyori ruthenium(II) complexes, which are highly stable even in the 

catalytically-active 16-electron state, and have comparable efficiency to Ru(II) compounds.23 

As well as stability upon isolation and storage, we now find that these osmium complexes are 

particularly stable in aqueous media (phosphate-buffered saline) and also in DMSO, as studied 

by UV-visible and 1H-NMR spectroscopy (Figure 2b and Supplementary Figure 4). This high 

stability suggested that it may be possible to deliver intact active organo-osmium catalysts 

inside cells and for them to remain functional in order to carry out catalytic reactions. 
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A series of sulfonyl-substituted p-cymene complexes (3-6) was synthesised with the view to 

optimise both catalytic and biological activities. The complexes retained the high stability of 

parent tosyl compound 2 in DMSO (Supplementary Figure 4) and biological media (Figure 

2b), however catalytic efficiencies also remained very similar for the reduction of 

acetophenone, a widely-used test substrate in transfer hydrogenation (Table 1). Interestingly, 

all osmium complexes reduced acetophenone at higher rates (up to 3.5 × maximum turnover 

frequency, TOFmax) than the Noyori Ru catalyst (9) under identical conditions (Table 1). As an 

alternative approach to increase biological activity, the arene substituent (p-cymene) was 

exchanged for extended arenes (biphenyl and m-terphenyl) which increase the lipophilicity of 

piano-stool structures. Increased lipophilicity usually promotes increased uptake of 

metallodrugs by cells, hence increasing anticancer activity.24 Single crystals of both 

enantiomers of biphenyl complex 7 suitable for X-ray diffraction were obtained as chloroform 

solvates (Figure 1b and Supplementary Figures 1-2). These confirmed the 16-electron nature 

of the catalysts, and are similar to those of 2.23   

The antiproliferative activities of complexes 2-8 against A2780 cancer cells ranged from 

moderate to high (IC50 = 4-30 µM) and were not statistically different between enantiomers 

(Table 1). The antiproliferative activity of 2 was re-determined after 24 h incubation in RPMI-

1640 medium and did not differ significantly from the activity determined with freshly-

prepared solutions, suggesting that p-cymene complex 2 remains highly stable in the cell 

culture medium. Total Os accumulation (ng Os × 106 cells) in A2780 cancer cells after 24 h 

drug exposure ranged from 4.8 to 31.9 ng Os  106 cells (Supplementary Table 3). Further 

studies showed that the efflux of R,R-2 occurred only slowly, and significant amounts of Os 

still remain in cells after 72 h (ca. 15 % of total Os; Supplementary Figure 5 and Supplementary 

Table 5). As a measure of hydrophobicity, partition coefficients (Log P) were also determined 

for complexes 2-8, and range from 0.18 to 2.3 (Supplementary Table 3), and increase with 
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arene extension: p-cymene < biphenyl < m-terphenyl, as expected. In addition, there is an 

evident correlation between antiproliferative activities, or total metal accumulation, and 

partition coefficients (Pearson’s r = -0.92 and r = 0.77 respectively) for the sulfonamide series 

2-8 (Supplementary Figures 6 and 7).  

Cell fractionation experiments using A2780 cancer cells treated with complex 2 provided 

evidence for the presence of Os in the cytoplasmic (47 ± 2 %) and membrane/organelle (48 ± 

3 %) fractions, Supplementary Table 4). Cell cycle analysis of A2780 cancer cells 

(Supplementary Table 6), induction of apoptosis (Supplementary Table 7), and membrane 

integrity (Supplementary Table 8) were assessed after 24 h drug exposure to compound 2. The 

complex caused G1 arrest in A2780 cancer cells, but did not induce apoptosis, nor was the 

cellular membrane compromised by exposure to the osmium catalyst. The experiment was 

repeated to include 72 h of cell recovery time after drug exposure, but the results were not 

statistically different (Supplementary Tables 6-8). 

The stability, high cellular metal accumulation (30 ± 2 ng Os × 106 cells) and relatively low 

cytotoxicity (15.5 ± 0.5 μM) made complex 2 a suitable candidate for in-cell catalysis studies, 

as a high cytoplasmic drug availability could be achieved (ca. 50 % of total accumulated Os, 

Supplementary Table 4) without causing cell death before initiation of catalysis. There appear 

to be no reports of the asymmetric reduction of the pro-chiral biomolecule pyruvate, a key 

metabolite in cells, by an external synthetic catalyst (Figure 2a). We first explored the reduction 

of pyruvate in formic acid using each enantiomer of complex 2; confirming the formation of 

lactate by 1H-NMR (Figure 2c). We then repeated the experiment in phosphate-buffered saline 

(PBS), using sodium formate as a hydride source to model our cell experiments. The rate (TOF 

/ h-1) of catalysis in aqueous medium was monitored by 1H-NMR, and was found to be highly 

dependent on the concentration of formate; giving ca. 10× rate enhancement upon increasing 

formate concentration from 2 mol equiv. to 15 mol  equiv. compared to pyruvate concentration 
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(Supplementary Figure 8, Supplementary Table 9). To determine enantiomeric excess, the 

concentrations of each enantiomer of lactate were determined using enantio-specific enzymatic 

assay kits. Remarkably, the catalysts retained asymmetric activity, and a large enantiomeric 

excess was generated using each catalyst (e.e. = 83 %). (R,R)-2 formed D-lactate, and (S,S)-2 

formed L-lactate, respectively (Figure 2d, Supplementary Table 10).  

After the successful catalysis by osmium of the asymmetric reduction of pyruvate in the model 

aqueous system with high enantioselectivity, we investigated whether the reduction could be 

detected in cancer cells. A2780 human ovarian cancer cells were exposed to equipotent 

concentrations of 2 or 7 (arene = p-cymene or biphenyl, respectively) together with a non-toxic 

concentration of sodium formate (Figure 3a, Supplementary Table 11) as a hydride source. 

Sodium formate significantly enhanced (P<0.01) the activities of the complexes in A2780 

cancer cells by up to 13×. The decrease of cell proliferation with increase in formate 

concentration was similar for both enantiomers of p-cymene complex 2, and unaffected for 

cells treated with sodium formate alone. Sodium formate did not significantly affect the degree 

of cellular accumulation of osmium in cells treated with either complex 2 or 7 (P>0.77; Figure 

3a, Supplementary Table 13). We investigated selectivity in non-cancerous cells from the same 

tissue type (HOF human ovarian fibroblasts, Figure 3c) as well as normal cells from a different 

tissue (MRC5 lung fibroblasts, Figure 3d) using equimolar drug concentrations as in 

experiments with A2780 cells. Proliferation in both ovarian and lung primary fibroblasts was 

not significantly affected at the 95% confidence level, suggesting that such an anticancer 

treatment could selectively kill ovarian cancer cells with respect to healthy cells. Catalyst co-

administration with sodium acetate instead of formate was also studied, but acetate had no 

effect on the activity of the complexes (Figure 3b, Supplementary Table 12). This is consistent 

with formate, but not acetate, being able to act as a hydride donor to the osmium catalyst.  
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Induction of apoptosis and membrane integrity in A2780 cancer cells were re-assessed upon 

co-administration of complex 2 with sodium formate (2 mM) and did not statistically differ 

from experiments conducted without formate (Supplementary Tables 7-8). Cells treated with 

osmium complex 2 and sodium formate exhibited slightly increased G1 cell cycle arrest 

(Supplementary Table 6). 

We also explored the possibility of substituting sodium formate by N-formylmethionine (fMet), 

a formate precursor and substrate for the enzyme peptide deformylase (PDF), which is 

overexpressed in some cancer cell lines, including PC3 human prostate cancer cells. Cleavage 

of fMet by peptide deformylase in cells would be expected to generate formate as hydride 

donor and co-catalyst.  IC50 values for complex 2 and 7 in PC3 cells were found to be similar 

to those determined in A2780 cancer cells (Supplementary Table 3).  Co-administration of 

osmium catalyst with N-formylmethionine to PC3 cells achieved a ca. 20% reduction in 

normalised proliferation relative to the normalised cells treated with only osmium complex 2, 

without N-formylmethionine (Supplementary Table 14). Conversely, co-administration of N-

acetyl-methionine (which cannot release formate) in place of formylmethionine, had no 

significant effect on cellular proliferation (Supplementary Table 14).  

Potentiation of the antiproliferative activity of complexes 2 and 7 with non-toxic concentrations 

of sodium formate suggested that the drugs are likely to act as catalysts inside cells. Next we 

determined whether osmium-catalysed transfer hydrogenation inside cells occurs with high 

enantioselectivity, as observed in model experiments. In nature, pyruvate is selectively reduced 

to L-lactate by the enzyme lactate dehydrogenase in the cytosol. D-lactate is also present in 

cells, but only at low concentrations,25 and therefore increased D-lactate levels are readily 

identifiable. A2780 cancer cells were exposed to each enantiomer of complex 2, in the presence 

or absence of sodium formate, and intracellular D-lactate concentrations were determined using 

an enantioselective assay kit. The combination of R,R-2 and sodium formate significantly 
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enhanced the concentration of D-lactate in cells relative to the Os-free controls (P<0.02) and 

R,R-2 without formate (P=0.0474), whereas sodium formate alone did not increase the 

intracellular concentration (P=0.7259). Interestingly, R,R-2 produced significantly higher 

levels of D-lactate than S,S-2 (P=0.0452; Figure 4a, Supplementary Tables 15 and 16), 

suggesting that the enantioselectivity of lactate reduction observed in the aqueous model is 

maintained in vitro.  

The extracellular D-lactate concentration was also determined (Supplementary Figure 8 and 

Supplementary Table 17), and was not influenced by either enantiomer of catalyst in the 

presence or absence of formate, or in the catalyst-free control (P>0.1; Supplementary Table 18 

for full statistical analysis). These results are a clear indication that the reduction of pyruvate 

to D-lactate by catalyst R,R-2 occurs intracellularly. 

 

Discussion 

Platinum-based therapies are typically DNA-targeting and provide little specific differentiation 

between cancer cells and healthy cells. New chemotherapies that target biochemical traits that 

are unique to cancer cells might have significant advantages. Our work recognizes two key 

vulnerabilities in cancer cells. Firstly, glycolysis is up-regulated in cancer cells (resulting in 

increased lactate accumulation, a phenomenon known as the Warburg Effect).26 Lactate 

dehydrogenase (LDH) catalyses the inter-conversion of pyruvate and lactate,27 and its 

overexpression in cancer cells has been linked to a high likelihood of metastases, and poor 

clinical prognosis.28,29 Catalysing the conversion of pyruvate to lactate with an external 

synthetic catalyst and hydride source threatens the ability of cancer cells to harness energy and 

essential metabolites, such as NAD+. Secondly, cancer cells are under redox stress due to the 

metabolic demands of rapid proliferation.30 In contrast to cancer cells, healthy proliferating 
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cells have fully-functional mitochondria, and can recover from redox stress, and avoid 

damage.31 Performing transfer hydrogenation reactions inside cancer cells can therefore 

perturb the delicate redox balance.  

Complexes of the third-row transition low-spin 5d6 metal ion Os(II) are usually more 

kinetically inert than those of the second-row ion Ru(II); for example hydrolysis of the 

ethylenediamine (En) complex [Os(biphenyl)(En)Cl]+ is ca. 40× slower than for Ru(II), despite 

both being isostructural.32 Such behaviour and expectation of a less favorable catalytic 

performance may have previously deterred studies of osmium arene catalysts, but are likely to 

be favourable when considering the delivery of an active catalyst to cells, without deactivation. 

Osmium catalyst 2 displays properties which are compatible with biological use, including high 

stability both in aqueous solution and in the presence of DMSO, and the absence of degradation 

or inactivation by components of cell culture media over a 24 h period (310 K). Interestingly, 

osmium catalysis of acetophenone reduction occurs more rapidly than that of the Noyori-type 

ruthenium pre-catalysts, from which chloride must first dissociate to generate the active 

catalyst. Even after allowing the Ru(II) active catalyst to form in situ, the efficiency of the 

Os(II) complexes is higher than that of the ruthenium catalysts under identical conditions.  

The established anticancer compound cisplatin, and traditional organo-metallic ‘piano-stool’ 

chlorido complexes, undergo activation by hydrolysis of a metal-halide bond as a crucial step 

in their mechanism of action,33-35 but such an activation step is not required for activity of the 

16-electron osmium catalysts used here. Cellular accumulation experiments demonstrate that 

complexes with higher hydrophobicity exhibit increased cellular osmium accumulation, as well 

as higher potency towards cancer cells (Supplementary Figures 6 and 7). The cellular 

distribution of Os studied for complex 2 showed that ca. 50% of the total osmium accumulated 

is present in the cytoplasm. However, the detection of osmium by ICP-MS does not give 

information regarding the speciation of the metal complex (i.e. cannot distinguish between 
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intact and poisoned catalyst). Interactions with cellular proteins and small biomolecules36 are 

likely to cause catalyst deactivation and therefore the effective concentration of active catalyst 

in the cytosol is likely to be significantly lower.  

Co-administration of an osmium complex (2 or 7) with increasing concentrations of sodium 

formate significantly decreased proliferation of A2780 cancer cells (P<0.001, Figure 3a). No 

significant change in cellular proliferation was observed in osmium-free experiments, 

indicating that the potency increase requires both osmium complex and formate. Experiments 

using acetate in place of formate showed no decrease in proliferation suggesting that hydride 

transfer from formate to osmium and catalytic hydrogenation is involved. Even at 0.5 mM, 

formate is in molar excess of the osmium complex, and therefore further increases in osmium 

potency at formate concentrations (Figure 3a) suggests that the mechanism of action is 

catalytic. The accumulation of osmium in cancer cells is not significantly affected by co-

administration of sodium formate. Hence, decreased proliferation is not the result of increased 

osmium uptake (Figure 3a). Rather, increased potency can be attributed to a synergistic effect, 

in particular in-cell catalysis, involving both the osmium complex and formate. Importantly, 

we observed significant selectivity of antiproliferative activity towards ovarian cancer cells 

compared to healthy ovarian or lung cells. Modulation of antiproliferative activity by co-

administration of the complexes with sodium formate was significantly more pronounced in 

A2780 cancer cells (ca. 85% decrease) than in MRC5 lung fibroblasts (ca. 15% decrease) and 

HOF ovarian fibroblasts (ca. 5% decrease). 

The induction of apoptosis and membrane integrity in A2780 cancer cells treated with complex 

2 did not differ in the presence of sodium formate (Supplementary Tables 7 and 8). Co-

administration of formate increased the population of cells in G1 cell cycle arrest 

(Supplementary Table 6). These data suggest that co-administration of formate does not change 

the mechanism of action, but instead enhances the effect. G1 arrest has been associated as an 
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anti-apoptotic response to metabolic stress.37 Together, these experiments suggest a highly 

cytostatic component of the mechanism of action (which is enhanced by the presence of 

formate). Existing platinum-based therapies induce apoptosis in cancer cells, which exhibit 

S/G2M arrest resulting from DNA damage.2,38 Considering the low nuclear accumulation of 

osmium and absence of S/G2M cell cycle arrest, it seems likely that DNA damage is not 

involved in the mechanism of action of the sulfonamide complexes, which therefore differs 

significantly from that of Pt drugs.  

This is, to the best of our knowledge, the first report of the use of a Noyori-type transfer 

hydrogenation catalyst to convert pyruvate to lactate, and importantly, the first demonstration 

of the enantioselective reduction of pyruvate by an external synthetic catalyst inside cells. D-

lactate is produced in cytosol of cells by the glyoxylase pathway,39 and is present only at low 

concentrations, compared to the major enantiomer, L-lactate. Additional D-lactate produced 

using the osmium complexes was therefore readily detected. R,R-2 in combination with 

formate, produced significantly higher levels of D-lactate in cells than R,R-2 without formate 

(P=0.0474; Figure 4a), showing that the enantioselectivity of reduction is maintained inside 

cells. In the earliest molecular modelling studies on the Noyori catalysts, a concerted transition 

state for hydrogen transfer was proposed, with enantioselectivity attributed to a favourable 

interaction between an aromatic ring in the substrate and the η6-arene of the catalyst (‘C-H---

‘ interaction), with additional contributions from dispersion and steric effects.40,41 In more 

recent studies, including the specific involvement of solvent, the mechanism has been shown 

to be more likely stepwise in nature, with additional destabilisation of the disfavoured transition 

state by an unfavourable interaction with the SO2 group on the ligand.42-44 Other studies have 

revealed that multiple oxygen atoms in a substrate can engage in a process similar to the C-H-

-- interaction, i.e. where the electron-rich oxygen atoms take the place of the arene, in 

enantioselective reductions with Noyori catalysts.45 Although we do not have direct evidence 
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for the proposed transition state, the absolute sense of reduction of pyruvate suggests that the 

carboxylate fulfils the same role as the electron-rich arene or multiple oxygen atoms in the 

substrate by engaging in a similar favourable interaction with the H atoms on the 6-arene 

ligand (Figure 4b).  

Whereas the intracellular D-lactate concentration was significantly modulated after treatment 

with R,R-2 and formate, the extracellular D-lactate concentration was unaffected. Also osmium 

efflux from cells occurs only slowly (compared for example with some Ru complexes11), and 

therefore these data are indicative of in-cell reduction, as opposed to on-cell catalysis (which 

would involve efflux of pyruvate into the extracellular matrix containing the catalyst and 

formate, followed by uptake of D-lactate, since pyruvate is not present in the culture medium). 

Determination of the catalyst turnover number (TON) inside cells is complicated by several 

factors. The rate of transfer hydrogenation is limited by the available formate concentration, as 

shown in the model aqueous system (Supplementary Table 9). Also, the effective active 

concentration of catalysts is likely to be lowered by interactions with other biomolecules, 

including proteins. If for example a 5% availability of active catalyst is assumed, then the TON 

would be ca. 13.  

Lactate production is unlikely to be the direct cause of cell death, since neither D- or L-lactate 

were not toxic to cells up to 2 mM (Supplementary Table 2). However, cells are dynamic 

systems, and therefore, perturbing local concentrations of either lactate enantiomer (or 

depletion of pyruvate) even at low levels might have a major effect on cell pathways, 

particularly if lactate can act as a strong inhibitor of other pathways (binding constant in 

micromolar or lower range).46 Furthermore, it is possible that other unsaturated substrates may 

also be targeted by the Os catalyst, yielding a multi-targeted mechanism of action for the drug. 

Importantly, the experiments described here demonstrate that enantiomerically-selective 
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reduction of pyruvate to lactate can be achieved in cells, which now becomes a new cellular 

target worthy of further exploration. 

 

Conclusion 

We have shown that novel organo-osmium catalysts which are highly stable in aqueous media 

show promise not only as highly active transfer hydrogenation catalysts that out-perform 

ruthenium analogues under similar conditions, but also as cancer-cell-selective asymmetric 

catalysts with novel mechanisms of anticancer activity. Such new design concepts provide wide 

scope for further research into bio-compatible metallo-catalysts for use in the treatment of 

disease. Our work appears to provide the first example of both aqueous, and in-cell asymmetric 

transfer hydrogenation of pyruvate, with high enantioselectivity. Our studies demonstrate that 

an external catalyst may be used to produce a specific lactate enantiomer inside cells, 

depending on the chosen configuration of the catalyst chirality. Effective co-administration of 

catalyst and reducing agent might be achieved using nanoparticle encapsulation or polymeric 

micelles. Additionally, the use of formylmethionine as a hydride source is of great interest, as 

it can release formate when catabolised by the deformylase enzyme, which is overexpressed in 

certain cancer cells. Interactions of chiral biomolecules with enantioselective enzymes are 

crucial to cell metabolism and survival, and manipulation of enantiomeric ratios inside cells 

could provide a new strategy for fighting intractable diseases. 

 

Experimental 

Methods 
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The synthesis of sulfonamide ligands, osmium dimers and complexes, the instrumentation 

used, additional methods and numerical data are described in the Supplementary Information. 

 

Catalytic reductions in cell-free aqueous media. Osmium complexes R,R-2 or S,S-2 were 

incubated with sodium pyruvate in PBS, in the presence / absence of sodium formate. Final 

concentrations: osmium complex = 15 µM (IC50 concentration determined in A2780); sodium 

pyruvate = 1 mM; sodium formate = 2 mM. After 24 h incubation at 310 K, concentrations of 

D and L-lactate were measured individually using enantio-specific detection assay kits 

(Cayman Chemical) as described in the manufacturer’s instructions. Fluorescence (λex: 530-

540 nm, λem: 585-595 nm) was read using a Promega GloMax Multi+ microplate reader. 

Samples were measured in quadruplicate, and standard deviations calculated.  

 

In vitro growth inhibition assay. 5000 cells (A2780, HOF, MRC5 or PC3 cancer cells) were 

seeded per well (150 μL) in 96-well plates. The cells were pre-incubated in drug-free media at 

310 K for 48 h before adding different concentrations of the compounds to be tested. Stock 

solutions (100 μM) of the osmium complexes were prepared in DMSO (5% v/v) and medium 

(95% v/v), and then further diluted in culture medium until working concentrations were 

achieved. Drug stock solutions were concentration-adjusted after ICP-OES analysis. The drug 

exposure period was 24 h. After this, supernatants were removed by suction and each well was 

washed with PBS. A further 72 h was allowed for the cells to recover in drug-free medium at 

310 K. The SRB assay was used to determine cell viability.47 Absorbance measurements of the 

solubilised dye (on a BioRad iMark microplate reader using a 470 nm filter) allowed the 

determination of viable treated cells compared to untreated controls. IC50 values 
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(concentrations which caused 50% of cell death), were determined as duplicates of triplicates 

in two independent sets of experiments and their standard deviations were calculated.   

 

Co-administration of formate. Cell proliferation assays were carried out as described above 

with the following experimental modifications: A fixed (equipotent) concentration of each 

osmium complex was used, corresponding to ½ × IC50 concentration.  Stock solutions of 

osmium complexes were prepared as described previously (Os concentration in drug stock 

solution was determined by ICP-OES before adminstration to cells, see SI). This stock solution 

was further diluted using the corresponding medium until working concentrations were 

achieved. Sodium formate was co-administered at three different concentrations (0.5, 1.0 and 

2.0 mM). Both solutions were added to each well of cells independently, but within 5 min of 

each other. Cell viability was determined using the SRB assay as duplicates of triplicates. Cell 

viability modulation experiments were repeated using sodium acetate (0.5, 1.0, 2.0 mM) in 

place of sodium formate. N-formylmethionine modulation experiments were carried out 

similarly, using three concentrations (0.25, 0.5, 1.0 mM) in PC3 human prostate cancer cells, 

which are known to overexpress the peptide deformylase (PDF) enzyme. 

 

Metal accumulation in cancer cells.  The accumulation of osmium complexes in A2780 

human ovarian cancer cells was studied. Briefly, 4 x 106 cells were seeded on a 6-well plate. 

After 24 h of pre-incubation time in drug-free medium at 310 K, the complexes were added to 

give final concentrations equal to IC50 / 3 (Os determined by ICP-OES before administration 

to cells) and a further 24 h of drug exposure was allowed, with no recovery time (with the 

exception of efflux experiments, in which cells were allowed to recover in drug-free medium 

for up to 72 h). After this time, cells were treated with trypsin, counted, and cell pellets were 

collected. Each pellet was digested overnight in concentrated nitric acid (72%) at 353 K; the 
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resulting solutions were diluted using doubly-distilled water containing thiourea (10 mM) and 

ascorbic acid (100 mg/L).48 Concentrations were adjusted to give a final acid concentration of 

3.6% v/v HNO3 and the amount of Os taken up by digested cells was determined by ICP-MS 

in no-gas mode (see supplementary information). Experiments did not include recovery time 

in drug-free media; they were carried out in triplicate and the standard deviations were 

calculated. Statistical significances were determined using Welch’s unpaired t-test. 

 

Metal distribution in cancer cells. Cell pellets, obtained in triplicate (as described for metal 

accumulation studies) were fractioned using the Fraction PREP kit (BioVision). Samples were 

digested overnight in nitric acid (200 µL, 72% v/v) at 343 K, then diluted to achieve a final 

working acid concentration of 3.6% v/v (taking into account the volume of the sample: 

cytosolic and membrane fractions = 400 µL, nucleic fraction = 200 µL). Metal concentration 

in digested samples was determined by ICP-MS in no-gas mode. 

 

Reduction of pyruvate to lactate in cells. The D-lactate assay detection kit (Cayman 

Chemical) was stored at 255 K before use. Complexes R,R-2 and S,S-2 were selected for 

screening. 30 × 106 A2780 human ovarian cancer cells were seeded in T75 flasks with 24 h 

pre-incubation. After this time, solutions of Os complexes and sodium formate were added 

independently, but within 5 min of each other (final working concentrations: IC50 concentration 

of the osmium complex, 2 mM sodium formate) with 24 h drug exposure. The supernatant was 

collected to determine the extracellular D-lactate concentration. The cells were then washed 

twice with PBS, detached using trypsin / EDTA, counted and centrifuged at 1000 g for 5 min 

to obtain cell pellets of 40 × 106 cells to determine the intracellular D-lactate concentration. 

Samples were processed per the manufacturer’s instructions. Fluorescence (λex: 530-540 nm, 

λem: 585-595 nm) was read using a Promega GloMax Multi+ microplate reader. Samples were 
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measured in triplicate, and standard deviations calculated. Statistics were calculated using 

Welch’s t-test at the 95% confidence limit. 

 

Data availability 

Crystallographic data for complexes S,S-7 and R,R-7 can be found in the Cambridge 

Crystallographic Database (CCDC numbers 1507733 and 1507732, respectively). Datasets 

underpinning the research are included in the published manuscript and corresponding 

Supplementary Information. After the Open Access agreement has been established, 

underpinning datasets will be deposited in Warwick's Institutional Repository: Warwick 

Research Archive Portal (WRAP), according to the Open Access Agreement. 
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Intracellular asymmetric transfer hydrogenation catalysis is demonstrated. Enantiomers of 

Os(II) arene catalysts can penetrate cell membranes, achieving reduction of pyruvate to D- or 

L-lactate using formate as a hydride source, with high enantioselectivity. The mechanism is 

selective for cancer versus normal cells and offers a new approach to cancer therapy. 
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Figure Legends 

 

Figure 1. Synthesis of osmium(II) arene sulfonamide catalysts 1-8. (a) Dichlorido osmium pre-

catalyst 1 (X = 4-methylphenyl) is formed in situ en route to 16-electron catalysts 2-8.23 (R,R)- 

and (S,S) configured complexes were synthesised from enantiomerically-pure ligands, to yield 

both enantiomers of the phenyl-substituted complexes (2, 4-8), and methyl-substituted complex 

(3); (b) Mirror-image ORTEP diagrams of the x-ray crystal structures of 

[Os(biphenyl)(TsDPEN)] (7). R,R-7 • 2CHCl3 (left) and its enantiomer S,S-7 • 2CHCl3 (right), 

with thermal ellipsoids at 50% probability level. CHCl3 molecules have been omitted for 

clarity. 

 

Figure 2. Catalytic reduction of pyruvate to lactate in aqueous solution by [Os(p-

cymene)(TsDPEN)] 2, using formate as a hydride source. (a) Enantioselective reduction of 

pyruvate to lactate. (b) UV-visible spectrum of 2 in phosphate-buffered saline containing 5% 

DMSO does not change from 0 h (red) to 24 h (blue), 310 K, showing that it is highly stable. 

(c) Reduction of pyruvic acid by complexes S,S-2 in formic acid : triethylamine azeotrope (5:2) 

at 310 K, monitored by 1H NMR, S/C=200, 310 K (TOFmax = 296 ± 6 h-1). (d) 24 h aqueous-

phase reduction of pyruvate at 310 K in PBS by osmium catalysts R,R-2 / S,S-2, in the presence 

of formate, with high enantioselectivity (final concentrations: Os complex = 15 µM; pyruvate 



25 

 

= 1 mM; formate = 2 mM). The major product using R,R-2 is D-lactate (●) and for S,S-2 is L-

lactate (●). Error bars show ± one standard deviation from the mean. Statistics calculated using 

a two-tailed t-test with unequal variances (Welch’s t-test).  

 

Figure 3. Potentiation of the antiproliferative activity of osmium p-cymene complex S,S-2 or 

biphenyl complex S,S-7. (a) Cell % survival (normalised) decreases upon co-administration of 

formate alongside Os catalyst in A2780 cancer cells (●) however cellular accumulation of Os 

is not affected by formate concentration (●). (b) Cell % survival (normalised) is not affected 

by co-administration of acetate in A2780 cells (●). (c) Cell % survival (normalised) is not 

significantly affected after co-administration of formate and Os catalyst in non-cancerous HOF 

ovarian fibroblasts (●). (d) Cell % survival (normalised) is not significantly affected in non-

cancerous MRC5 fibroblasts after co-administration of formate and Os catalyst (●). Error bars 

show ± one standard deviation from the mean. Statistics using a two-tailed t-test with unequal 

variances (Welch’s unpaired t-test). *p < 0.05, **p < 0.01 ***p < 0.001.  

 

Figure 4. Enantioselectivity for the transfer hydrogenation (reduction) of pyruvate to 

selectively afford D-lactate is conserved in cells. (a) Intracellular D-lactate (µM) determined 

in A2780 cancer cells, after 24 h drug exposure at IC50 concentrations of complexes R,R-2 or 

S,S-2 (15 µM). Complex R,R-2, in contrast to S,S-2, shows significantly increased levels of 

D-lactate in the presence of formate (2 mM). * P<0.05 (Welch’s unpaired t-test). Error bars 

show ± one standard deviation from the mean. See Supplementary Table 15 for full statistical 

analysis. (b) Proposed transition state for the reduction of pyruvate to D-lactate by osmium 

complex R,R-2. 

 

  



26 

 

Tables 

 

Figure 1 table insert 

 arene X 

2 p-cymene 4-methylphenyl 

3 p-cymene methyl 

4 p-cymene 4-nitrophenyl 

5 p-cymene 4-fluorophenyl 

6 p-cymene phenyl 

7 biphenyl 4-methylphenyl 

8 m-terphenyl 4-methylphenyl 

 

 

Table 1. Catalytic data for acetophenone reduction and IC50 values (µM) against A2780 

ovarian cancer cells for osmium complexes 2-8, compared to established ruthenium transfer 

hydrogenation catalyst 9. 

 Acetophenone reduction [a] IC50 in A2780 / µM [d] 

Catalyst conv. (e.e.) [b] TOFmax / h-1 [c] (R,R)-isomer (S,S)-isomer 

2 99 (99) 63.9 ± 0.3 15.5 ± 0.5 15.2 ± 0.5 

3 99 (96) 58 ± 2 30 ± 2 29.8 ± 0.5 

4 99 (95) 61 ± 2 19.9 ± 0.5 19 ± 1 

5 99 (96) 40 ± 2 17 ± 1 17 ± 1 

6 92 (97) 58 ± 1 14 ± 1 15 ± 2 

7 99 (95) 78 ± 1 6.5 ± 0.3 6.3 ± 0.1 

8 95 (94) 43 ± 2 4.4 ± 0.3 4.5 ± 0.1 

9 99 (99) 23 ± 1 8.2 ± 0.7 9 ± 1 

[a] Reduction of acetophenone in formic acid / triethylamine (5:2) azeotrope (310 K, 0.5 mol% catalyst) using (S,S)-configured 

catalysts, giving the S enantiomer alcohol (final concentration: substrate ketone, 1.4M; catalyst, 6.9 mM). [b] Enantiomeric 

excess, determined by chiral GC-FID. [c] Maximum turnover frequency, determined by 1H NMR. [d] Half-maximal inhibitory 

concentration (IC50 / μM) determined in A2780 human ovarian cancer cells (24 h drug exposure + 72 h recovery time, 310 K). 

 


