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Abstract 

Self-assembly is a powerful process by which complex architectures can be achieved 

from single monomer units for a diverse range in applications from drug delivery to nano-

electronics, an excellent example of which is self-assembled cyclic peptide nanotubes. 

The addition of polymers greatly enhances the potential applications of cyclic peptide 

nanotubes, however, there lacks a fundamental understanding on how this affects 

assembly, and whether it can be controlled by environmental manipulation. Additionally, 

there are few synthetic methods by which it is possible to access more complex polymeric 

architectures without the need for complex conjugation strategies. 

As such the present work aims to further develop a scope of synthetic possibilities for 

polymeric cyclic peptide nanotubes, generating materials by which it is possible to probe 

the self-assembly properties of these complex supramolecular systems. Initially the 

polymerisation of poly(bromo ethyl acrylate) (BEA) is explored via reversible addition-

fragmentation chain transfer polymerisation (RAFT) and the post-modification 

possibilities this reactive polymeric precursor provides. From this, a library of polymer 

materials from a pBEA precursor via nucleophilic substitution with a range of 

nucleophiles can be generated.  

From this, the reactive pBEA polymers are combined with self-assembling cyclic 

peptides, without any unwanted side reactions. The self-assembly of these CP-pBEA 

conjugates was characterised in solution by SANS and SLS. From the CP-pBEA 

conjugates, it is possible to generate a range of materials, and the self-assembly of various 

nanotubular systems can be studied. These materials include a glycopolymer conjugate 

that forms sugar coated nanotubes in water, as determined by SANS, and displays 

interesting lectin binding properties. Furthermore, synthesis of highly charged 

polyelectrolyte-peptide conjugates was be carried out. The self-assembly of these 

polyelectrolyte conjugates could be readily manipulated by controlling the ionic strength 

of the solution.  
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Finally, the cell-penetration of charged copolymers of poly(poly(ethylene glycol) methyl 

ether acrylate) (pPEGA) conjugates were studied to determine whether charge or self-

assembly has a greater effect on cellular uptake. It was identified that self-assembly 

results in far greater in vitro cell penetration than for charged analogues.  

This thesis in its entirety reflects a thorough design strategy for the synthesis of complex 

materials; from the development of novel synthetic strategies and post-polymerisation 

modifications, through to supramolecular characterisation and a finally demonstration of 

the materials as an application for drug delivery in vitro. 
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1 
1 Introduction 

Self-assembly is a powerful tool for the synthesis of complex materials. By carefully 

tailoring individual building blocks, supramolecular forces can be used to do the synthetic 

heavy-lifting for the difficult task of creating demanding and otherwise challenging 

structures. As such, a diverse range of morphologies can be formed including micelles, 

vesicles, nanotubes, and lamellar sheets. Nanotubular structures in particular have gained 

a lot of attention recently, for the interesting properties that arise from their shape.1-6 Since 

their discovery in the 1990s, carbon nanotubes have championed the field of nanotube 

research,7-9 with a lot of attention paid to their unique structural, mechanical and 

electronic properties. With the introduction of carbon nanotube synthesis in the early 

1990s,10 the interest in nanotubes has vastly increased. Unfortunately, poor solubility, 

toxicity, and lack of size uniformity is a major drawback for any specific biomedical 

applications. Many of the problems facing fullerene based nanotubular structures can 

fortunately be overcome by employing organic nanotubes that more closely mimic nature 

such as carbohydrates, lipids and polymer-based nanotubes. These nanotubes generally 

span the width region between 10 - 1000 nm;  a scale that is inaccessible to top-down 

microfabrication techniques, nor carbon nanotube fabrication methods.11 Thus the study 

and synthesis of polymeric based bottom-up self-assembly processes is essential to obtain 

functional nanostructures. As is so often the case, science can take inspiration from nature 

for the synthesis of organic nanotubes and supramolecular materials. Tobacco mosaic 
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virus for example, exists as a tubular structure comprising unimeric coat proteins that 

self-assemble into a rod-like helical structure around a single strand of RNA.11, 12 

Nanotubular structures have advantages over other nanoparticle architectures in 

biological systems, due to their anisotropy resulting in increased circulation times and 

altered internalisation kinetics vs spherical and cubic nanoparticles.5, 6, 13, 14 

There are a number of intermolecular interactions by which supramolecular self-assembly 

can be guided, including van der Waals, electrostatic, π-π, and hydrogen bonding to name 

but a few.15 Of these, hydrogen bonds are particularly noteworthy due to the directionality 

of their interaction, enabling intricate supramolecular assemblies. Though hydrogen 

bonds are weak (Figure 1.1),16, 17 they are key to a number of biological interactions 

including DNA and RNA strand recognition, and protein folding. The cumulative 

strength of multiple hydrogen bonds in concert with other weak attractive forces, can lead 

to strong and stable complex architectures.17, 18 

 

Figure 1.1: A comparison of the strength and properties of noncovalent interactions 

involved in self-assembly. Adapted from Guler et al.17  

Numerous bio-molecules have been used in the preparation of nanotubes including DNA, 

lipids, carbohydrates, and peptides.11 Of these examples, peptides in particular are an 

attractive building block due to the ease with which the sequence can be modified and 

tailored towards a specific application. Alteration of the amino acid sequence in linear 

peptides allows for tuning the function and efficacy of the obtained material; a prime 

example of which is Gramicidin. Gramicidin A is perhaps one of the best know examples 

of linear peptides coiling into nanotubular structures of β-helices.19 Comprising 
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alternating L- and D- amino acids, Gramicidin has been extensively studied for its 

membrane transport properties.20 Studies have revealed that it is highly sensitive to 

structural alterations, and varying a single amino acid in the peptide sequence 

(Gramicidin A, B, and C variants) results in a subtly different supramolecular 

conformation, leading to different membrane interactions.19  

1.1 Self-assembling Cyclic Peptides 

β-sheet forming cyclic peptides are a remarkable example of synthetic nanotube forming 

materials. By tailoring the chemical structure of the cyclic peptide, the properties of the 

supramolecular structure can be altered. In this way the building blocks can be adjusted 

to tailor the nanotube properties to meet the requirements for the desired application. Self-

assembling cyclic peptides have thus become of particular interest as nanomaterial 

scaffolds in a range of fields from biomedical applications such as antimicrobials,21-23 

biosensors,24 to nanoelectronics.25-28 

1.1.1 Self-Assembly 

The potential of cyclic peptides comprised of alternating L- and D- α-amino acids to self-

assemble was first realised by De Santis and co-workers in 1974.29 In their theoretical 

study, they found that the backbone C=O and N-H bonds point in opposite directions and 

were nearly parallel to the symmetry of the ring (Scheme 1.1). They postulated that the 

direction of the backbone amide bonds would lead to inter-annular stabilisation that may 

result in a contiguous parallel or antiparallel β-sheet structure. It wasn’t until 1993 that 

the first self-assembling cyclic peptide was synthesised by Ghadiri et al;30 whereby they 

assembled the cyclo[-D-Ala-L-Glu-D-Ala-L-Gln-]2 peptide into nanotubes by controlled 

acidification. Their characterisation of the nanotubes by electron diffraction30, 31 

suggested that the nanotubes formed an antiparallel β-sheet-like structure with an inter-

unit spacing of 4.73 Å. Subsequent molecular dynamics32 and dimerisation studies33-36 

corroborate that an antiparallel β-sheet structure is the most energetically favourable 

conformation by 0.8 kcal·mol-1 over the parallel arrangement.34  
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Scheme 1.1: Scheme highlighting the directionality of the amide bonds in the backbone of 

CPs of alternating L/D α-amino acids in an octapeptide. Hydrogen bonding allows CP units 

to self-assemble in an antiparallel β-sheet conformation. 

In recent work by Silk et al., the first crystal structure of any continuous nanotube, rather 

than a simple N-alkylated CP-dimer, was analysed.37 In their work, the authors 

crystallised two cyclic octapeptides of alternating D- and L- α-amino acids comprising 

similar peptide sequences (Scheme 1.2). Remarkably, despite the similarity in the peptide 

sequence, the crystal structure revealed that the leucine bearing CPs formed nanotubes 

via an antiparallel β-sheet assembly, with CPs adopting two different conformations to 

facilitate stacking (Scheme 1.2A). The alanine bearing CP, however was present in only 

a single conformation, and adopted a parallel assembly (Scheme 1.2B). Despite the 

parallel conformation being a less favourable structure, the literature on Cyclic Peptide 

Nanotubes (CPNTs) has always assumed that nanotube formation is antiparallel. The 

antiparallel assumption has been based on computational modelling and model systems 

of N-methylated CP structures, however this new work highlights the importance of 

studying the continuous hydrogen bonded network. These crystal structures clearly 

demonstrate that assembly via parallel stacking is possible, despite being less 

energetically favourable, and should be considered as a mechanism for CPNT formation 

in future. 
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Scheme 1.2: X-ray crystal structures of peptide nanotubes. (a) Antiparallel nanotubes 

formed by cyclo[(DlKl)2]. Two conformations of the peptide are present (pink and yellow). 

Adjacent nanotubes are oriented head-to-tail. (b) Parallel nanotubes of cyclo[(DaKa)2] 

formed by a single peptide conformer. Adjacent nanotubes are parallel to one another and 

form sheets separated by HFIP molecules (orange). Adapted from Silk et al.37 

In either case for a parallel or antiparallel β-sheet assembly, the orientation of the 

backbone amide bonds forces the amino acid side chains to extend pseudo-equatorially 

from the periphery of the CP ring (Scheme 1.1). Following self-assembly into a 

nanotubular structure, the amino acid side chains thus form the external functionality of 

the nanotube (Scheme 1.3). The versatility of CPs as a supramolecular building block 
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arise from the ability to manipulate the peptide sequence, thereby controlling the 

supramolecular properties. By substituting different amino acids, whether naturally 

occurring or synthetic, into the peptide chain the properties of the nanotube can be tailored 

to a desired application. The inclusion of hydrophobic amino acids, such as tryptophan 

for example, has been used to improve lipid membrane interaction,22, 32, 38-42 and charged 

residues such as glutamic acid, aspartic acid, and lysine have been included to induce 

electrostatic charge that can control assembly.28, 30 These charged systems have also been 

analysed for potential antimicrobial activities.21, 23, 43 Control of the peptide sequence is 

pivotal to control the properties of the nanotube including the size of the pore, the internal 

and external functionality, as well as the extent of hydrogen bonding in the nanotube such 

as by N-alkylation of the peptide backbone. 

 

Scheme 1.3: Schematic representation of the assembly of a cyclic octapeptide comprising 

alternating L- and D- α-amino acids, displaying the dimensions of the internal pore. Red, 

green and blue protrusions from the circumference of the ring represent the amino acid side 

chains extending equatorially from the ring. The inset highlights the sequence-dependent 

inter-ring distances including the hydrogen-bond length (≈ 2.85 Å) and inter-axial distance 

(≈ 4.73 Å). 
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1.1.2 Cyclic peptides comprising non-natural amino acids 

Numerous attempts have been made at controlling the extended hydrogen bonding 

network in self-assembling CPs. This has primarily been achieved using strategic 

N-alkylation of the amide backbone.33, 35, 36, 44, 45 By incorporating N-methyl or N-alkyl 

residues of the same stereochemistry, the hydrogen bonding on a single face of the CP is 

blocked and self-assembly is limited to dimerisation (Scheme 1.4). This model system 

improves solubility and provides an insight into the thermodynamics and association 

constants of different peptide sequences. The equilibrium dimerisation constant, Ka, of 

CP dimers can be readily studied by concentration dependent 1H NMR studies in 

deuterated chloroform and is a far simpler task than the study of the association constant 

of non-alkylated analogues. Dimerisation constants measured for N-alkylated 

D,L-α-octapeptides comprising Ala and Phe are among the highest reported, between 

2,500 – 3,000 M-1.33, 34, 44 The low association constant suggests that the CPs interact via 

a cooperative mechanism. While computational approaches have brought insight to the 

self-assembly process,46-48 understanding nanotube formation and controlling the length 

and self-assembly of cyclic peptide nanotubes (CPNTs) remains challenging.  

 

Scheme 1.4: Schematic representation of the antiparallel β-sheet dimer composed of 

D,L-α-octapeptides with strategically N-alkylated amino acids blocking the hydrogen 

bonding from one face.  

CPs comprising alternating D,L α-amino acids (cyclo[-D-Ala-L-Glu-D-Ala-L-Gln-]2) were 

the first CP sequences reported, however since then, a number of sequences capable of 

self-assembly into nanotubular structures have been discovered. Peptide structures with 
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sequence lengths ranging from 6 amino acids,49, 50 through to 1051, 52 and 12 α-residues 

have been reported.53 Additionally, sequences in which some or all of the α-amino acids 

have been replaced with β-54, 55 and cyclic γ-residues56-59 have also been explored 

(Scheme 1.5). These structures result in nanotubes with a larger internal pore diameter, 

however successful nanotube formation is linked to ability of the CP to adopt a rigid ring 

conformation. Inclusion of γ-residues has been found to increase the strength of the 

assemblies formed despite decreasing the hydrogen bonding interaction,56, 60 with 

association constants as high as 5.3 × 105 M-1,33, 34 several orders of magnitude higher 

than many α-peptides. In addition, the cyclic nature of these γ-residues lends additional 

structural rigidity to the backbone when compared to α-CPs. As such, the internal 

diameters available to this system are far greater than for α-CPs, due to the additional 

rigidity of the peptide and their ability to form favourable intermolecular hydrogen bonds. 

Alteration of the amino acid sequence modifies the internal pore size of the CPNT in 

addition to the amino acid side chains providing the external properties of the nanotube. 

 

Scheme 1.5: Classes of cyclic peptides that assemble into nanotubes through β-sheet 

interactions: (A) CPs comprising alternating D, L α- residues; (B) CPs incorporating β-

residues; (C) CPs with both α- and γ-residues and; (D) self-assembling heterocyclic 

peptides by incorporation of ε-amino acids. Adapted from Chapman et al.61 
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1.1.3 External properties of the nanotubes 

It is clear in that the ability to tailor the peptide sequence of CPs is fundamental to their 

practicality as nanomaterial scaffolds. Given that the side-chains extend equatorially from 

the ring of the peptide, it is possible to control the functionality of the periphery of the 

nanotube. Adaptation of the amino acid sequence has led to a range of studies of structure 

activity relationships for applications such as ion-channels38, 39, 45, 51, 52, 62 and 

antimicrobials.21-23, 43, 50 The effect of peptide composition, including both natural and 

non-natural amino acids, on lipid bilayer interactions was studied by Danial et al.42 They 

found that CPs of different structures formed different pores within lipid bilayers (Figure 

1.1). This research, along with other earlier studies, focused heavily on lipid bilayer 

interaction, with a view to understanding the mechanism by which these CPs disrupt 

membranes. As such, they could be used as an exciting new class of antimicrobial 

materials.21-23, 42, 43, 50  

 

Figure 1.2: Illustration showing the different possible modes of bilayer channel formation. 

Formation of cyclic peptide channels in a lipid bilayer can occur as (A) a unimeric pore, 

(B) a barrel stave or (C) through a bilayer or carpet-like disruption. Adapted from Danial 

et al.42 

The orientation of the amino acid side chains has also been exploited to great effect for 

conjugation of both small and large molecules to CPs. By incorporating a reactive amino 

acid, such as the amine-bearing residue lysine, into the CP sequence, ligation of desirable 

materials can be readily achieved. This addition provides further functionality to the 

resulting nanotubes and allows for more control over the overall assembly. The primary 
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focus of conjugating molecules to the exterior of the nanotubes has been to tailor the 

CPNT properties towards specific applications, such as drug delivery, ion channel 

mimics, and electron transport. Indeed, various macrocyclic and polycyclic conjugates 

have been synthesised for their electron transport properties including a 1,4,5,8-

naphthalenetetracarboxylic diimide (NDI) conjugate.25 These CP-NDI conjugates 

displayed strong fluorescence properties which facilitated the study of the peptide 

orientation and conformation upon assembly. The additional attractive forces of π-π 

stacking between the NDI units resulted in nanotubes hundreds of nanometres long with 

an extended electronically-delocalised state.25 This system provides a very good example 

on how the addition of a molecule to the exterior of the nanotube can greatly enhance its 

physico-chemical properties, and therefore expand on the range of applications for these 

systems. In addition to controlling the peptide sequence, macromolecular conjugation is 

another primary focus of CPNT research, since the first instance of polymer-peptide 

nanotubes by Biesalski et al. in 2005 and is discussed at length in Section 1.2. 

1.1.4 Controlling Assembly and Orientation 

Controlling the self-assembly of CPNTs has been a key area of research, primarily 

focused on limitation of backbone hydrogen bonding, through strategic N-alkylation or 

electrostatic interactions introduced by charged amino acid residues,63 as in the seminal 

work by Ghadiri et al. using controlled acidification.30 A good example of successful 

control of both nanotube orientation and length was demonstrated by Mizrahi and co-

workers; who exploited different peptide sequences as a means of controlling the 

orientation of the nanotube on a gold surface in order to assess electron transport 

properties.28 They designed a series of three CPs for layer by layer (LbL) assembly; one 

for initial deposition on a gold surface, and a second and third (incorporating glutamic 

acid and lysine residues) to introduce negative and positive charges respectively (Figure 

1.3). The first CP included diametrically opposing cysteines for attachment to the gold 

electrode, in addition to the lysine residues to provide a point for charge interactions for 

additional layers. Assembly was induced by interlayer electrostatic interaction, with 

subsequent layer deposition alternating between negative glutamic acid bearing CPs 

(Figure 1.3, red ring) and positively charged lysine bearing CPs (Figure 1.3, blue ring). 
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LbL deposition is an interesting and successful approach to controlling NT length, 

however use of this system in solution severely limits the potential applications including 

cell-uptake and drug delivery.  

 

Figure 1.3: Schematic of the LbL assembly approach used by Mizrahi et al. Blue/red 

represents positively/negatively charged CPs respectively. The grey ‘‘arm’’ represents the 

cysteine side chains used to tether CPs to the gold surface. Note: AFM tip not to scale. 

Adapted from Mizrahi et al.28 

The structure of the peptide can have a drastic effect on its ability to self-assemble into 

nanotubes. Various structures and conformations have been extensively studied in order 

to understand the driving forces behind this process, which has paved way for future 

research looking into functionalised nanotubes as a way of expanding potential 

applications. 

1.2 Cyclic Peptide-Polymer Conjugates 

Polymer-conjugates of these self-assembling CPs have garnered considerable interest of 

late, due to the wide range of functionalities that can be imparted by polymeric species. 

Biesalski et al. first synthesised polymer conjugates with self-assembling cyclic peptides 

via a divergent approach in 2005. They synthesised a cyclic octapeptide with three atom 

transfer radical polymerisation (ATRP) initiating groups attached at the side-chains of 

Lys residues, from which they polymerised NIPAAm.64 While this divergent approach is 
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a successful synthetic approach, more recent advances have focused on convergent 

methods, which presents fewer limitations on reaction conditions and simpler 

characterisation methods.65, 66  

Larnaudie et al. recently highlighted that both a convergent approach, grafting polymers 

to the CP core; and a divergent approach, polymerising from the CP core, results in 

similar materials, however convergent synthesis facilitates full characterisation of all 

structures including the peptide, polymer and resultant nanotube.66 Employing a 

convergent approach to CPNT synthesis has led to many recent advances, including the 

creation of water-soluble conjugates,66, 67 stimuli responsive conjugates,41, 67-69 and more 

complex asymmetrical Janus-like NTs (Section 1.2.1).70  

The convergent approach to the synthesis of polymer conjugated CPNTs was first 

employed by Börner and co-workers,71 who used an 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) mediated condensation reaction to couple two 

poly(n-butyl acrylate) (pBA) arms with two lysine residues on a D, L-α-octapeptide core. 

The resulting nanotubes showed similar dimensions to those obtained by the divergent 

approach mentioned previously, with lengths of up to 300 nm and widths of ~5 nm in the 

dry state by AFM.71 More recently, a highly efficient conjugation method for the 

attachment of 2, 3, and 4 arms to cyclic octapeptides has been demonstrated by Chapman 

et al. via copper catalysed azide–alkyne cycloaddition (CuAAC) chemistry (Scheme 

1.6).72-74 Alkyne groups were installed on the α-chain end of polymers by reversible 

addition–fragmentation chain transfer (RAFT) polymerisation, mediated by an alkyne 

functional chain transfer agent (CTA). The lysine groups on the cyclic peptides were 

transformed into azides and incorporated into the peptide sequence by solid phase peptide 

synthesis (SPPS).  
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Scheme 1.6: Convergent approach to cyclic peptide–polymer nanotubes via CuAAC. 

Adapted from Chapman et al.72 

CuAAC “click” reactions such as these are ideal as a peptide-polymer coupling strategy,75 

as it uses functional groups that are orthogonal to both free radical polymerisation and 

peptide chemistries, in addition to being synthetically simple to introduce into both 

polymer and peptide. A library of peptide-polymer nanotubes has been synthesised by the 

CuAAC mediated convergent approach, including conjugates of poly(butyl acrylate),73, 

76 poly(dimethylaminoethyl acrylate),72 poly(acrylic acid),67 poly(styrene) (PS),72 and 

poly(hydroxyethyl acrylate).72, 74, 77 While the synthesis of CPNTs by CuAAC is 

attractive, due to its highly efficient and orthogonal nature to the chemistries involved, 

the presence of copper has been highlighted as problematic for applications such as drug-

delivery due to the toxicity of free metal ions, and some copper complexes,77 requiring 

careful selection of the copper catalyst employed.78, 79 In addition to the potentially 

cytotoxic nature of copper, it is also know to quench the fluorescence of dyes such as 

calcein,80 leading to potential problems in fluorescent labelled materials for cell-uptake 

studies. The synthesis of CP-polymers via copper-free conjugation techniques has led to 

the development of orthogonal conjugation strategies providing access to complex 

architectures.70  
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Attaching polymer arms to the CP core results in a number of changes to the properties 

of the nanotubes. For example, the steric bulk of the polymer arms limits the extent of 

hydrogen bonding, resulting in far shorter assemblies with no apparent lateral/inter-tube 

aggregation. In addition to altered nanotube dimensions, the CP-polymer nanotubes adopt 

enhanced solubility properties, more similar to those of the conjugated polymer arms. 

Functionalisation with PEG for example greatly enhances the aqueous solubility of the 

peptides, and provides a route for in vivo and in vitro applications. Another important 

factor is the length and graft density of the conjugated polymer chains on nanotube 

assembly. Biesalski et al. assessed the impact of polymer mass and graft density on the 

length and diameter of the nanotubes in the dry state.81 From AFM measurements they 

determined that as polymer molar mass increased, nanotube length decreased. More 

recently this has been demonstrated in solution, using Small Angle Neutron Scattering 

(SANS) to highlight that polymer length and graft density can have a significant impact 

on nanotube length.76  

While many strides have been taken towards understanding the effect of polymer length 

and steric interactions on nanotube assembly, the reality is that the effects on self-

assembly are more complicated than simply the polymer size. Factors such as the steric 

bulk of the monomer in addition to the solvent necessary to solvate the nanotube add 

further layers of complexity to the study of self-assembly. In a study by Koh et al.,82 they 

demonstrated that in highly hydrogen-bonding competitive solvents such as TFA, DMSO 

and DMF, the solvent competes with the backbone hydrogen-bonding necessary for self-

assembly, resulting in essentially unimeric species with scattering barely above the 

background in SANS. Analysis of the same pBA30 conjugates in chloroform and THF 

resulted in extended cylindrical structures with a length > 2100 Å. In 1:9 v/v mixtures of 

[D1]TFA/[D8]THF and [D1]TFA/CDCl3, 10 % TFA was sufficient to diminish NT length 

to 100 - 300 Å, highlighting how detrimental solvent hydrogen-bonding competitivity 

can be to CPNTs. Thus far the polymeric CPs described have focused on fundamental 

synthesis and characterisation of the self-assembly. However some recent examples in 

the literature include preparation of functional nanotubular materials as well as interesting 

architectures via strategic orthogonal chemistries. 
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1.2.1 Complex Architectures and Functionality 

In addition to CuAAC, there are examples in the literature on the use of different synthetic 

strategies to create more complex systems and materials. For example, Xu et al. have also 

followed a convergent methodology for the synthesis of CP-polymer conjugates, 

conjugating low molecular weight polymers of poly(ethylene oxide) (PEO), PS and 

pMMA to cyclic D, L α-octapeptides (Figure 1.4).83, 84 They annealed the various 

peptide-polymer conjugates with block-copolymers of pBA-b-pMMA that form 

hexagonally packed cylindrical micro domains which are normally orientated to the 

surface of the thin film. They found that CP-PEO conjugates in particular were selectively 

sequestered into the cylindrical micro domains, within which the conjugates self-

assembled forming nano-channels in the free-standing block copolymer film (Figure 

1.4). The nanoporous channels were tested for gas permeability with carbon dioxide and 

neopentane, and it was found that gas permeance was higher for the smaller CO2 

molecules than the larger neopentane molecules.83 

  

Figure 1.4: Schematic showing the directed co-assembly CP-polymer conjugates. 

(A) CP-polymer conjugates are first blended with block copolymers, (B) which results 

in formation of nanopores within microporous domains. Adapted from Xu et al.83 

Polymer addition not only allows for enhanced applications of CPNTs, it provides a 

unique method by which the self-assembly can be manipulated. Since their discovery, 

researchers have aimed to control the self-assembly of CP-polymer nanotubes to generate 
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well-defined, uniform nanotubular materials. The initial paper by Biesalski and co-

workers64 mention steric repulsion of the polymer arms as a potential mechanism by 

which the nanotube length could be controlled. pH driven electrostatic repulsion is an 

attractive method for controlling nanotube assembly and has been used for 

unfunctionalised CP systems (vide supra). Incorporation of pH and temperature 

responsive polymer arms have also proven effective for controlling CPNT assembly.67-69 

Chapman et al. studied thermoresponsive conjugates of CPs with poly(2-ethyl-2-

oxazoline) (pEtOx).69 Poly(2-oxazoline)s with ethyl side chains are known to exhibit 

molecular weight dependent LCST behaviours,85 and conjugates of CP-pEtOx were also 

found to display a lower critical solution temperature LCST in water. Below the LCST 

transition, or cloud point temperature, the polymer is hydrophilic and water soluble. 

However due to the unfavourable entropy of mixing, as the temperature increases the 

polymer becomes hydrophobic and thus insoluble in water.69 The addition of the CP to 

pEtOx resulted in different LCST behaviour to the native polymer, presumably due to the 

presence of a sterically hindered polymer environment around the CP core that modify 

the hydrogen bonding and hydrophobic interactions in the polymeric corona of the 

nanotube.  

Addition of ionisable groups on conjugated polymer arms has also been identified as an 

effective way to manipulate polymeric CPNT assembly. Another study by Chapman et 

al. made use of poly (acrylic acid) conjugates (pAA),67 and Catrouillet et al. used 

poly(dimethyl amino ethyl methacrylate) (pDMAEMA) conjugates,68 to control NT 

assembly, by manipulating the pH of the solutions, in both cases assessing self-assembly 

by SANS. For CP-pAA conjugates, assembly into cylinders occurred when the pAA arms 

were in an uncharged state at pH 3, as observed by SANS and supported by DLS 

measurements, with assembly greatly diminished at pH 11. Catrouillet and co-workers 

demonstrated the reversibility of assembly of CP-pDMAEMA conjugates in their SANS 

study.68 At pH 9 the CP-pDMAEMA conjugates were uncharged and formed NTs with a 

length of 68 Å and number of aggregation (Nagg) of 14.6. By controlled acidification with 

DCl down to pH 2, assembly was disrupted resulting in highly charged, unimeric species. 

Addition of NaOD brought the pH back up to 9, resulting in reformation of the 
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nanotubular assemblies with the accompanying increase in scattering intensity and 

comparable length of 59 Å and Nagg of 13.  

Another example of exacting control of the polymer nanotube architecture is the 

orthogonal synthesis of asymmetrical Janus-like CPNTs by Danial et al.70 They employed 

a two-step convergent strategy using consecutive orthogonal conjugation reactions that 

provided high-yielding conversions without the necessity of synthesising complex amino 

acids or linkers. They used a CuAAC/thiol-ene addition sequence, as well as a 

consecutive active-ester/thiol-ene sequence (Figure 1.5A) to synthesise Janus tubes both 

with and without copper. They discovered that the ligation relay employed had a 

significant impact on the conjugation efficiency of each technique. They found that 

CuAAC followed by thiol-ene resulted in quantitative conversion to the asymmetrical 

two arm product. However when the thiol-ene/CuAAC relay was employed, conjugation 

efficiencies were between 60-80% for thiol-ene addition, due to the limited solubility of 

the CP core in DMF. The Janus nature of the conjugate was assessed by 2D NMR, DSC 

and pore formation was observed in lipid bilayers. 2D NMR was used to observe the 

proton interactions between the asymmetrical polymer arms and DSC was employed to 

observe the changes in the Tg for conjugates of mixed corona (Figure 1.5B) and 

conjugates of Janus-like demixed corona (Figure 1.5C). The authors go on to assess the 

properties of the Janus NTs as nanopores following the well-established technique in 

which a fluorescent dye is encapsulated in large unilamellar vesicles (LUVs). As copper 

is known to quench fluorescence,80 the Janus NTs were recreated via an activated 

ester/thiol-ene ligation relay to avoid the CuAAC. From the calcein dye release profile of 

Janus vs. non-Janus NTs, they determined that Janus NTs form a macropore in LUVs as 

depicted in Figure 1.5D, as the calcein molecule is too large to fit through a unimeric 

pore, such as in Figure 1.2A. Their work-demonstrated the complex architectures 

accessible using self-assembling CPNTs and is an interesting bottom-up approach for the 

fabrication of new nanotubular materials. 
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Figure 1.5: (A) Synthesis of Janus conjugate [pBA71]-CP-[pSty68], (B) asymmetrical 

conjugates with a “mixed” corona comprising two miscible polymers (PS and pCHA), 

(C) depiction of the “demixed” corona of a Janus nanotube arising from micro-phase 

separation of immiscible polymers (PS and pBA), and (D) schematic representation of the 

pore formed by Janus conjugates in a lipid bilayer. Adapted from Danial et al.70 

These studies highlight the interesting yet complex nature of hydrogen bond directed self-

assembly of CPNTs, and while significant progress towards functionalising CP-polymer 

NTs has been made, there are few examples of fine control by manipulating the polymer 

corona. 

1.3 Motivation for this work 

Complex functionality can be difficult to incorporate into linear polymers, let alone 

complex polymeric architectures or polymer conjugates. In the various studies of CP-

polymer conjugates generated by either convergent or divergent approaches, it is clear 

that the vast majority of polymers used are simple polymers generated from direct 

polymerisation of the desired monomers by RDRP techniques such as ATRP and RAFT 

polymerisations. Incorporation of complex functionalities onto nanotubular architectures 
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remains to be explored. From these studies, it is clear that a more comprehensive view on 

the self-assembly process is required. The addition of polymers greatly enhances the 

potential applications of CPNTs, however, as discussed, there lacks a fundamental 

understanding on how this affects assembly, and whether it can be controlled by 

environmental manipulation. Additionally, there are few synthetic methods by which it 

is possible to access more complex polymeric architectures. 

As such, the aim of this thesis is to address these limitations, focusing on the synthesis 

and characterisation of polymeric CPNTs, and finally to demonstrate the bio-applications 

of these materials. Initially, a synthetic strategy by which complex functionalities can be 

introduced into the polymer arms of CPNTs will be developed. To this end the post-

modification of an alkyl halide monomer will be explored, to determine the materials that 

can be made via this strategy. Following on from this, the viability of conjugating a 

reactive polymer to the CP will be explored, to determine the orthogonality of the reactive 

polymer to the peptide chemistry. Once a successful synthetic strategy is established, a 

library of materials polymeric materials of varying functionalities will be generated via 

substitution of the precursor alkyl halide conjugate with different nucleophiles. The self-

assembly properties of each of the functional materials will be studied by a combination 

of scattering techniques including SLS and SANS. Finally, based on this fundamental 

ground work, a series of polymer conjugates will be prepared to assess the cellular 

interactions and uptake of these materials as potential biomaterials. 
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2 
2 RAFT Polymerisation and Post-modification of 

poly(bromo ethyl acrylate) 

 

Post-polymerisation modification has become a powerful tool to create a diverse range of 

functional materials. However, simple nucleophilic substitution reactions on halogenated 

monomers remains relatively unexplored. Here is summarised the synthesis of 
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poly(bromoethyl acrylate) (pBEA) by reversible addition fragmentation chain transfer 

(RAFT) polymerisation to generate a highly reactive polymer precursor for post-

polymerisation nucleophilic substitution. RAFT polymerisation of BEA generated well-

defined homopolymers and block copolymers over a range of molecular weights. The 

alkyl bromine containing homo- and block copolymer precursors were readily substituted 

by a range of nucleophiles in good to excellent conversion under mild and efficient 

reaction conditions without the need of additional catalysts. The broad range of 

nucleophilic species that are compatible with this post modification strategy enable the 

facile synthesis of complex functionalities, from permanently charged polyanions to 

hydrophobic polythioethers to glycopolymers. This chapter describes the synthesis and 

characterisation of all post-functionalised polymeric materials used in subsequent 

chapters. 

2.1 Introduction 

Synthesis of complex polymers with desirable functionalities, well-defined and 

controlled architectures is a core target of modern polymer science. The development of 

several “living” or controlled polymerisation methods, and in particular reversible 

deactivation radical polymerisation (RDRP), has paved the way for precise control over 

molecular weights, polymer architecture and end-group functionality.1-5 However, 

inclusion of desirable material properties, in addition to well-controlled polymerisation 

is limited by the range of chemical functionalities accessible to these polymerisation 

techniques.6-8 In light of this, post-modification of a reactive polymer precursor provides 

an attractive approach to overcoming this limitation, enabling synthesis of diversely 

functional materials, without subjecting them to detrimental polymerisation conditions.9-

13 

A variety of post-polymerisation methods have previously been explored,6-9 including 

copper-catalysed azide/alkyne click (CuAAC),14-16 Diels-Alder cycloadditions17-20 and 

active ester couplings.10, 21-23 These methods enable the introduction of complex 

functional groups, targeting applications ranging from drug delivery to organic 

electronics.19, 24, 25 In addition to these more established post-modification methods, is a 
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simple yet relatively un-explored reaction – nucleophilic substitution of alkyl halides. 

Thus far it is primarily metal catalysed polymerisations that have exploited this versatile 

handle to introduce functionality.13, 26-28 One reason for the limited use of this method in 

RDRPs may be the susceptibility of alkyl halides to abstraction by radicals, an attribute 

that is exploited in iodine transfer polymerisations.29, 30 Controlled radical 

polymerisations have thus far primarily made use of the monomer vinylbenzyl chloride, 

however control of this styrene type monomer requires extensive optimisation for 

successful polymerisation, often at the cost of very low conversions and yields.31, 32 As 

an alternative to overcome this limitation, Monnereau et al. used a two-step method by 

substituting a poly(hydroxyethyl acrylate) generated by ATRP with trimethylsilyl 

bromide to give the desired polybrominated product.12 However, the issues described 

above leave the direct polymerisation of simple alkyl halide monomers relatively 

unexplored, despite convenient monomer synthesis and a wide range of nucleophiles 

available for substitution of the precursor. The few examples reported using alkyl 

bromide monomers by RDRP methods, have primarily targeted the synthesis of 

ammonium based polycations33-35 or azide modifications in degradable copolymers.36, 37 

While these bromo containing RDRP polymers were employed effectively to introduce 

complex functionality, it is fascinating to note that these substitutions focused solely on 

nitrogen based nucleophiles, which represent but a fraction of the diverse range of 

potential substitutions achievable with alkyl halide monomers.  

In this contribution, the efficiency of polymerising bromoethyl acrylate (BEA) using the 

reversible addition-fragmentation chain transfer (RAFT) process is demonstrated. The 

versatility of the resulting BEA polymer in subsequent nucleophilic substitution reactions 

to generate a library of polymers of diverse and complex functionalities was shown. 

RAFT polymerisation provides a robust system that is both facile and convenient, yet 

remains tolerant to a broad range of functional groups and monomer varieties.1 BEA 

combines the ease of acrylate polymerisations with the high electrophilicity of a carbon 

adjacent to the bromine group, while the reactivity towards radicals remains low. Kinetic 

studies of the polymerisation shed light on the control and the retention of the active chain 

end. 
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The obtained reactive precursor polymer was subsequently used in a range of post-

polymerisation substitutions, to generate a library of functional polyacrylates. To 

demonstrate the versatility of the method, a wide variety of nucleophiles that differ in 

size, polarity and charge was used. An important characteristic of these reactions is the 

full conversion of the bromine group under very mild reaction conditions. In addition to 

these modifications, it was further illustrated the potential for functionalisation of pBEA 

by formation of block-copolymers followed by substitution to create self-assembled 

copolymer structures from a single reactive polymer precursor. 

2.2 Results and Discussion 

2.2.1 RAFT Homopolymerisation 

For RAFT polymerisation of BEA, (4-cyano pentanoic acid)yl ethyl trithiocarbonate 

(CPAETC) was used as the chain transfer agent (CTA) and dioxane as the solvent. To 

confirm the control of radical polymerisation of BEA, kinetics of the polymerisation were 

followed by 1H NMR and SEC (DMF, 0.1% LiBr). After an induction period of 

approximately 30 min, the pseudo first-order rate plot (Figure 2.1A) approaches 

linearity. The increase in Mn with monomer conversion is linear and dispersity of the 

polymer remains narrow (Ð < 1.2), thus indicating a controlled radical polymerisation.38-

40 At longer polymerisation times (> 2 h) the kinetic plot deviates from linearity and is 

more closely approximated by a third order polynomial, however the SEC traces (Figure 

2.1C) still show a narrow dispersity (Figure 2.1B) indicating the polymerisation remains 

controlled. The downturn in the kinetic rate plot (Figure 2.1A) is due to a decrease in the 

total radical concentration during polymerisation.41 Despite 85% of the initiator ACVA 

remaining at 2 h, radical generation by the initiator was less than the amount of radicals 

undergoing termination reactions, indicating potential unwanted side reactions such as 

radical abstraction by the pendant bromines.5, 42 By limiting the polymerisation time to 

the period in which the rate is closest to linear, it is possible to avoid unnecessary 

termination products that may occur at longer reaction times, ensuring a reduction in the 

number of dead chains present. It should also be noted, that the molecular weights 

obtained by SEC (Figure 2.1D) consistently underestimate Mn due to calibration of the 
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SEC using poly(methyl methacrylate) standards, however dispersity and molecular 

weight distribution remain representative. Furthermore, the Mn by NMR cannot be 

calculated for kinetic samples due to the ethyl end on the CTA Z group overlapping with 

the backbone polymer peaks (at ~1.2 ppm), and the dioxane solvent peak interfering with 

the peak at ~3.35ppm, giving incorrect integrations and erroneous Mn NMRs. 

 

Figure 2.1: Kinetic data for pBEA targeting DP 50. (A) Kinetic plot for the RAFT 

polymerisation of pBEA as determined by 1H NMR spectroscopy. Dashed line 

indicates linearity. (B) Plot of polymer dispersity vs. conversion. (C) SEC traces of 

kinetic samples. (D) Theoretical Mn vs. Mn from SEC values. 

Based on these kinetics a range of polymer DPs were targeted by varying the 

monomer/CTA ratio, the results of which are summarised in (Table 2.1). The prepared 

polymers were purified by precipitation using either methanol or diethyl ether and were 

obtained in high yield. In all cases high conversions (> 75 %) were obtained with short 
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polymerisation times (2 h) and a low consumption of initiator (< 2 %).43, 44 These results 

clearly demonstrate the ease of polymerising the halogenated monomer BEA using 

RAFT. 

Table 2.1: Summary of BEA RAFT homopolymerisation  

[M]
0
/[CTA]

0
 [CTA]

0
/[I]

0
 Conv.

a 
(%) 

Mn,th
b 

(g·mol-1) 

Mn,NMR
c 

(g·mol-1) 

Mn,SEC
d 

(g·mol-1) 
Đ 

13 10 94 2200 2500 1800 1.12 

25 10 96 5000 4700 4200 1.10 

50 10 94 8000 8300 6500 1.12 

100 10 90 16500 16800 15100 1.10 

200 10 78 26200 28000 24600 1.17 
a Determined from 

1
H NMR.  

b Calculated from conversion and characteristics of the parent polymer.  
c Calculated from 

1
H NMR end group analysis. d From SEC analysis (DMF LiBr, pMMA-Std.). 

2.2.2 RAFT block copolymerisation 

Based on the promising previous results, the formation of block copolymers comprising 

BEA monomer was further investigated, to demonstrate that the RAFT chain ends are 

still present and functional. The advantage of RAFT polymerisation is that it enables 

facile synthesis of well-defined block copolymers, by chain extending the remaining 

trithiocarbonate end-group moiety. To examine this “livingness” of the precipitated 

homopolymer, pBEA was chain extended using the hydrophobic monomer butyl acrylate 

(BA). The polymerisation of the second pBA block was achieved in an analogous fashion 

to BEA homopolymerisation, but instead the BEA polymer was utilised as a macro-CTA 

(Scheme 2.1). The shift in the SEC trace to high molecular weights clearly demonstrates 

the successful chain extension of the pBEA with pBA, however a low molecular weight 

shoulder can be observed, which corresponds to the macro-CTA (Figure 2.2A). 

Calculating the initiator decomposition under our reaction conditions, it would be 

expected that the number of dead chains in the system to be below 2 %.43, 44 Considering 

the highly reactive nature of the monomer due to the bromine group, additional loss of 

the CTA end-group cannot be fully excluded. Nevertheless, more than 90% of the chains 
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reinitiate and the SEC traces of the second block were in good agreement with 

theoretically expected values for the block copolymer (Figure 2.2A). 

 

Scheme 2.1: Scheme of entire synthesis, beginning with monomer synthesis, RAFT homo 

and block copolymerisation of BEA and nucleophilic substitution of pBEA precursors. 

  

Figure 2.2: Chain extension of: (A) pBEA50 macro-CTA (A1) with pBA70 and (B) pBEA45 

macro-CTA (A2) polymerised to 75% conversion, and subsequent chain extension with 

pBA115. 

To eliminate the possibility of the shoulder being formed by side-reactions at high 

conversion in the polymerisation of the pBEA macro-CTA, conversion of the macro-CTA 

polymerisation was limited to 75%, before repeating the chain extension with pBA. The 

low molecular weight shoulder remained (Figure 2.2B), despite limiting conversion of 
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the first block, suggesting that poor re-initiation of the macro-CTA is the cause of the 

shoulder. Formation of well-defined block copolymers requires that the first block have 

an R-group with a similar or greater leaving ability, than that of the second polymer 

radical.45, 46 In this case, despite both blocks being formed of acrylates, the polymer side 

chain appears to have influenced the stability of the macro-radical.43 The pBEA likely 

forms a macro-radical of lower stability than that formed by pBA, resulting in an adduct 

radical that partitions in favour of the starting materials, which causes the broadening of 

the molecular weight distribution, indicative of the remaining macro-CTA seen in Figure 

2.2A. In addition to the previous polymer sequence, the chain extension of a pBA macro-

CTA with BEA monomer was examined. Using similar conditions, a well-defined block 

copolymer, with a symmetrical, monomodal SEC trace (Figure 2.3) can be observed. 

These results support the hypothesis that pBA forms a more stable macro-radical, 

resulting in a better defined block-copolymer due to complete re-initiation of the macro-

CTA. Thus it can be demonstrated that BEA is suitable for the formation of pure block 

copolymers without any apparent side reactions with the bromine group, however 

synthesis does require planning of the block order and consideration of the second block 

macro-radical stability.  

 

Figure 2.3: Chain extension of pBA105 macro-CTA A3 with pBEA40. 

 

 



Chapter 2 - RAFT Polymerisation and Post-modification of pBEA 

 

Page | 33 

2.2.3 Post-polymerisation Modification 

After demonstrating the successful polymerisation of BEA, the reactivity of this precursor 

in nucleophilic substitutions testing a range of nucleophiles was investigated. Since 

pBEA consists of primary alkyl halides, it would be assumed that it would readily 

undergo an SN2 reaction with various nucleophilic species. As such, testing to see if very 

high conversions (> 95 %) could be reached in the absence of side reactions, both of 

which are crucial for an effective post-polymerisation modification, was studied. To 

investigate the versatility, 5 different types of nucleophiles were selected: amines, 

phosphines, azides, sulfites and thiols (Scheme 2.2). The substitutions of pBEA were 

conveniently followed by 1H NMR, by observing the shifts on the ethyl acrylate pendant 

arms both before and after substitution. 

 

Scheme 2.2: Summary of the substitutions achieved with pBEA50 precursor. 

As a first example, the substitution of the bromine by thiophenol (Figure 2.4) was 

examined. Thio-bromo substitutions have previously been reported to be rapid and 

efficient reactions to introduce end-group functionality.47-52 However, thio-bromo 
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substitutions have not been thoroughly explored for main chain functionalisation of 

polymers by controlled radical polymerisation.  

Thiophenol was selected to representatively probe substitution efficacy, since the 

appearance of aromatic protons in the 1H NMR (~7.1 ppm) are well separated from any 

peaks in the pBEA precursor simplifying the comparison. Initially the substitution was 

attempted using only 2 equiv. of thiophenol. Surprisingly, less than 5% conversion was 

observed after 3 h as indicated by the 1H NMR spectra (Figure 2.14A). In a subsequent 

reaction 2 equiv. of the sterically hindered base N,N-Diisopropylethylamine (DIPEA) was 

added to deprotonate the thiol, thereby increasing its nucleophilicity. This change resulted 

in a quantitative conversion to the desired polythiophenol product, as determined by a 

shift of proton signals from 4.34 and 3.65 ppm, to 4.08 and 3.09 ppm respectively, as well 

as the appearance of aromatic signals at ~7.1 ppm in 1H NMR (Figure 2.4B and Figure 

2.14), and the SEC trace also shifts to higher Mw (Figure 2.4A). Purification was 

conveniently achieved by precipitation in methanol. Comparison of the elemental 

analysis of the precursor pBEA with the polythiophenol product further demonstrates that 

the final product is pure and free from unreacted bromine sites. Remarkably, the ability 

to limit or promote reactivity by a change of pH offers the unique potential to combine 

this reaction with other thiol targeting conjugations such as the radical thiol-ene “click” 

and Michael addition to an acceptor. 

 

Figure 2.4: (A) SEC trace of precursor pBEA50 (1), and post-substitution pTPEA50, 

showing the similarity in distribution (B) 1H NMR in DMSO-d6 indicating the shifts of 

the pendant ethyl acrylate chain for protons α and β of pBEA50 (1) and protons α’ and β’ 

of pTPEA50. 
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Another highly desirable functionality to introduce is the azide group, which provides a 

potent platform for further post-modification reactions.6, 53, 54 The direct synthesis of 

polyazides requires polymerisation of azido monomers at low temperatures,55, 56 and 

numerous steps involve handling the toxic and potentially explosive azido derivatives. In 

this case, 2 equiv. of sodium azide were used and the reaction proceeded smoothly at 

room temperature, yielding full conversion after 16 h, with the excess sodium azide 

conveniently removed by precipitation in a brine/water mixture. Conversion was readily 

observed by the shift in the 1H NMR (Figure 2.5B), 4.34 and 3.65 ppm, to 4.17 and 3.54 

ppm in DMSO-d6, and the appearance of a strong signal at 2200 cm-1 in the IR spectrum 

(Figure 2.5A) that corresponds to the –N3 stretch frequency. This post-modification 

strategy for the synthesis of polyazides circumvents the use of highly reactive azido 

monomers, yet still readily provides the desired polymer. 

 

Figure 2.5: (A) IR overlay showing the absorbance of the pBEA50 (1) vs. pAEA50 (B) 1H 

NMR in DMSO-d6 indicating the shifts of the pendant ethyl acrylate chain for protons α 

and β of pBEA50 (1) and protons α’ and β’ of pAEA50. 

Another example where direct synthesis by controlled radical polymerisation is very 

demanding is the preparation of polyelectrolytes.57 The usual method of synthesis 

requires either protection of the ionic group or use of water as the polymerisation medium 

rendering it incompatible with hydrophobic co-monomers. The use of BEA as a precursor 

enables the synthesis of random and block copolymers in a hydrophobic environment 

before subsequent modification to give the polyelectrolyte.58, 59 Cationic polyelectrolytes 

were prepared via quarternisation with trimethyl amine or trimethyl phosphine. Tertiary 

amines are known to be strong nucleophiles, however, sterically demanding groups 
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encumber reaction on the amine as in the case of the sterically hindered DIPEA. Strong 

nucleophiles are also able to cleave trithiocarbonates, resulting in a free thiol at the 

terminus of polymer chains, as in the case of aminolysis.60 However, generally this 

requires a substantial excess of nucleophile to cleave all chain ends, and the nucleophile 

is likely to react preferentially with the alkyl halide than with the trithiocarbonate. For the 

less hindered trimethyl amine, the reaction proceeded rapidly to yield quantitative 

conversion of the bromine group (Figure 2.10) and a highly charged polyelectrolyte is 

obtained. Following this, the structurally and nucleophilically similar reaction of 

trimethyl phosphine with the bromine precursor was undertaken. This reaction was 

carried out under identical conditions to that of trimethyl amine and provided a 

particularly hygroscopic, polycationic polymer species (Figure 2.11). 

As previously mentioned this post modification route facilitates preparation of well-

defined ionic copolymers starting from hydrophobic monomers. To demonstrate the 

versatility of this method, the substitution reaction on the previously described block 

copolymers pBA-b-pBEA using trimethyl amine was tested. Similar to the corresponding 

homopolymers the reaction proceeds smoothly. The obtained pTMAEA-b-pBA block 

copolymer enables the formation of micellar structures, due to the opposing polarity of 

polyelectrolyte and pBA blocks. Dispersing the copolymer in water gives a highly turbid 

solution, which was analysed using DLS and zeta-potential. The results confirm the 

formation of uniform micelles with a positive surface charge (Table 2.5). 

In contrast to cationic polymers, strong anionic polyelectrolytes such as poly sulfonates 

are so far only accessible via the direct polymerisation of the respective sulfonate 

monomers, which require either stringent reaction conditions or protecting group 

strategies. Surveying the literature on preparation of sulfonates, it was discovered that 

sulfite salts are known to be excellent nucleophiles (the Strecker reaction), that have thus 

far been neglected for decades likely due to the limited solubility of these salts in organic 

solvent.61, 62 Based on a recent report,26 the tetraethyl ammonium salt starting from 

dimethyl sulfite was synthesised; a salt that displays superior solubility in polar organic 

solvents such as methanol or DMSO. With this material in hand, the substitution 

efficiency of the sulfite on the bromine polymer was tested. Astonishingly, this reaction 
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rapidly generates the desired sulfonate polymer in quantitative yield without any need for 

further optimisation (Figure 2.6). The success of this reaction highlights the strong 

nucleophilic character of sulfites and the preparation of alkyl ammonium salts drastically 

improves their solubility in organic media, which is crucial for such polymer analogous 

reactions. 

 

Figure 2.6: 1H NMR in DMSO-d6 of tetraethyl ammonium sulfonate polymer from pBEA50  

Finally, more biological relevant polymers were studied. Glycopolymers have recently 

attracted considerable attention due to their exclusive binding properties to surface 

proteins.63 The direct polymerisation of the respective glycomonomers still remains a 

challenge, and thus far the most common routes are via polymerisation of protected sugar 

monomers64 or post modification such as using CuAAC or activate ester strategies.14, 22, 

65, 66 Nevertheless, these attachments create additional linker groups such as triazoles that 

may impact on binding affinity.67, 68 The presented substitution of BEA does not create 

such expansive linkers. Given the success of the thio-bromo substitution using 

thiophenol, the commercially available thiolated sugar, β-thioglucose sodium salt was 

used. Anticipating that the thiolate anion would be sufficiently nucleophilic for the 

substitution, the reaction was conducted in the absence of any additional base. As 

confirmed by 1H NMR (Figure 2.15), substitution was quantitative after 48 h, using only 

1.5 molar excess of the sugar, at room temperature. The SEC trace (Figure 2.16) indicates 

there was some end group removal of the RAFT agent that caused minor disulfide 
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formation resulting in a shoulder at high molecular weight. Any additional sugar starting 

material was then easily and rapidly separated from the obtained glycopolymer, by 

centrifugal filtration. Considering the convenient synthesis of the precursor polymer by 

RAFT, the availability of various thiosaccharides, and the efficiency of the substitution, 

this synthesis represents a cost effective and scalable route towards accessible and well-

defined glycopolymers. Furthermore, by proceeding without catalysts nor protecting 

groups, and under very mild conditions, this is a protocol that could be widely applicable 

due to the ease of characterisation of the precursor, which with limited synthetic effort 

could rapidly generate a library of glycopolymers. 

Table 2.2: Summary of pBEA substitutions and structural characteristics of polymers and 

derivatives. 

Nucleophile Conv.
a
 DP 

M
n,th

b
 M

n,SEC

c
 M

n,th

b
 M

n,SEC

c
 

M
w
/M

n

c
 

pBEA pBEA Substituted Substituted 

Trimethyl amine >99% 50 8000 6500 10600 - - 

Trimethyl amine >99% 100 16500 15100 24200 - - 

Trimethyl phosphine 88% 50 8000 6500 11300 - - 

TEA sulfite >99% 50 8000 6500 13600 6500 1.21 

TEA sulfite >99% 150 26200 24600 45100 18200 1.34 

Sodium azide >99% 50 8000 6500 7200 6800 1.16 

β-D-Thioglucose >99% 50 8000 6500 15100 21400 1.16 

Thiophenol >99% 50 8000 6500 10800 9500 1.18 

Trimethyl amine >99% 50-b-70 22800 24600 21200 - - 

Trimethyl phosphine >99% 50-b-70 22800 24600 22100 - - 

a Determined from 
1
H NMR 

b Calculated from the conversion and characteristics of the parent polymer 
c From SEC analysis 

2.3 Conclusion 

This work demonstrates that nucleophilic substitutions of a halogen side group polymer, 

a reaction that has been widely disregarded in polymer science to date, enables access to 

highly reactive and yet well-defined homopolymers. These polymers can be synthesised 

without the need of stringent polymerisation conditions nor at the cost of polymer yield. 

Here is demonstrated a convenient and versatile synthesis of an alkylbromo polymer, 

pBEA that can be readily synthesised under RAFT conditions. A series of pBEA 
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polymers were synthesised with varied molecular weights (2.0 – 26.2 kg mol -1) and 

narrow dispersities (PDI = 1.10 – 1.17). Chain extension of these macro-CTAs proved 

that the majority of the chain ends remain active and no significant side reactions were 

observed despite the high reactivity of the bromine groups. The versatility of pBEA in 

nucleophilic substitutions for efficient production of a diverse library of functional 

polymers is shown. Therefore a variety of nucleophiles were examined including well 

known nitrogen based substituents such as azides or tertiary amines, but also the 

unreported sulfites and sugars were tested. Across all these nucleophilic species the 

substitution of pBEA proceeded with almost quantitative conversion (> 88%). A major 

advantage of this simple substitution are the mild conditions employed, i.e. room 

temperature and no need for additional catalysts.  

In combination with the good control provided by RAFT, this strategy enables the 

synthesis of well-defined, highly charged polycations, permanently charged polyanions, 

stable polythiol ethers, a highly reactive polyazide and even synthetically demanding 

glycopolymers with minimal synthetic effort. In particular, the substitution using thiols 

is not limited to the demonstrated materials, but can certainly be extended to encompass 

other available thiolates. Considering the potential to create libraries of various materials 

with minimal effort and originating from a single precursor polymer, the presented 

synthesis route represents a unique and versatile tool for material science. All these 

materials were later grafted to a cyclic peptide core to study the self-assembly process. 

2.4 Experimental 

2.4.1 Materials 

Triethylamine, dioxane and DMSO were purchased from Fisher Scientific. 

4,4-Azobis(4-cyanovaleric acid) (ACVA) was purchased from MP Biomedicals. All 

other compounds were purchased from Sigma-Aldrich. All chemicals were used as 

received. All solvents were bought from commercial sources and used as received.  
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2.4.2 Instrumentation 

1H NMR spectra were recorded on a Bruker AV-300, HD-300 or AV-400 in CDCl3, D2O 

or DMSO-d6. Shift values (δ) are reported in ppm. The residual proton signal of the 

solvent was used as an internal standard (CDCl3 δ H 7.26, D2O δ H 4.79, DMSO-d6 δ H 

2.50). Size exclusion chromatography (SEC) was carried out on a Polymer Laboratories 

PL-GPC 50 Plus. All anionic polymers were analysed on a Polymer Laboratories PL-

GPC 50 Plus system using a PL aquagel-OH guard column (5μm, 7.5 × 50 mm) followed 

by two PL aquagel-OH 30 columns (7.5 × 300 mm). Water (0.1 M NaNO3) was used as 

eluent at 1.0 mL min−1 at 30 °C. All other polymers were analysed on a Polymer 

Laboratories PL-GPC 50 Plus system using a PolarGel-M guard column (7.5 × 50 mm) 

followed by two PolarGel-M columns (7.5 × 300 mm). DMF (0.1% LiBr) was used as 

eluent at 1.0 mL·min−1 at 50 °C. Commercial narrow linear poly(methyl methacrylate) 

standards in range of 2.0 × 102 g mol−1 to 1.0 × 106 g mol−1 were used to calibrate the 

DMF SEC system. Analyte samples were filtered through polytetrafluoroethylene 

(PTFE) membrane with either 0.2 μm or 0.45 μm pore size before injection (100 μL). 

Centrifugal filtration was carried out using Vivaspin® 20, 3,000 MWCO centrifuge tubes. 

Experimental Mn,SEC and Đ values of synthesised polymers were determined using 

Agilent GPC software. Elemental analyses for CHN were carried out on a CE440 CHN 

Elemental Analyser, and Bromine was analysed using classical oxygen flask methods by 

Warwick Analytical Service.  

2.4.3 (4-cyano pentanoic acid)yl ethyl trithiocarbonate (CPAETC) 

 

CPAETC was synthesised according to previously published procedures.69, 70 A solution 

of ethanethiol (5 mL, 69.3 mmol) was suspended in diethyl ether (50 mL) under strong 

stirring at room temperature, to which a 27 wt % aqueous solution of sodium hydroxide 

(~10 g, containing 2.704 g, 69.3 mmol of NaOH) was added. The clear, colourless 



Chapter 2 - RAFT Polymerisation and Post-modification of pBEA 

 

Page | 41 

solution was stirred for 30 min., then treated with carbon disulfide (4.6 mL, 76.2 mmol) 

to give an orange solution. After further 30 min stirring, diethyl ether (15 mL) was added 

and the product reacted with a slow addition of iodine (4.8 g, 37.8 mmol). After 1.5 h, 

diethyl ether (30 mL) was added and the ether phase washed twice with an aqueous 

sodium thiosulfate solution (50 mL) and once with water (50 mL). The ether phase was 

dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure 

to give the intermediate product bis-(ethylsulfanylthiocarbonyl) disulfide as an orange 

oil. This was used unpurified in the subsequent step. 1H-NMR (400 MHz, CDCl3, ppm): 

δ = 3.31 (4H, t, -CH2-S), 1.36 (6H, m, -CH3).  

 

To a solution of bis-(ethylsulfanylthiocarbonyl) disulfide (2.27 g, 8.3 mmol) in dioxane 

(25 mL), 4,4`-Azobis(4-cyanovaleric acid) (4.6 g, 16.4 mmol) was added and the mixture 

was stirred for 20 h at 75 oC. Solvent was removed under reduced pressure, and the 

product purified by silica gel column chromatography (eluent: n-Hexane/EtOAc, 50/50) 

to afford the expected compound as a dark orange oil (1.51 g, 5.8 mmol, 70 % yield) that 

solidified on refrigeration. 1H-NMR (400 MHz, CDCl3, ppm): δ = 3.35 (2H, t, -CH2-S), 

2.71-2.67 (m, 2H, -CH2-), 2.58-2.36 (2m, 2H, -CH2-), 1.89 (3H, s, -CH3-), 1.36 (3H, t, -

CH3); 13C-NMR (100 MHz, CDCl3, ppm): δ = 216.9, 177.3, 118.9, 46.2, 33.4, 31.4, 29.5, 

24.8, 12.7; MS (ESI): [M+Na]+ calculated: 286.0, found: 285.9. 

2.4.4 Synthesis of 2-bromoethyl acrylate (BEA) 

BEA monomer was adapted from previously reported procedures.33, 71 In a typical 

reaction, 2-bromoethanol (67 g, 38 mL, 0.54 mol) was dissolved in CH2Cl2 (300 mL) to 

which triethylamine (82.2 mL, 59.7 g, 0.59 mol) was added under a nitrogen atmosphere, 

and the reaction cooled to 0 oC. Acryloyl chloride (53.4 g, 47.9 mL, 0.59 mol) in CH2Cl2 

(30 mL) was subsequently added dropwise over an hour with stirring. The reaction was 

allowed to warm to room temperature overnight with continued stirring. Upon 
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completion, the reaction mixture was filtered, the solid residue washed with CH2Cl2, and 

the organic layer washed with water (2 × 100 mL) then brine (2 × 100 mL). The organic 

layer was dried over anhydrous MgSO4, filtered and the solvent removed via rotary 

evaporation. The product was purified by distillation under reduced pressure (~1 mBar, 

39 - 40 oC) to give 2-bromoethyl acrylate as a clear colourless liquid in 80% yield. 1H 

NMR (300 MHz, 293 K, CDCl3, δ): 6.46 (dd, J = 17.3, 1.5 Hz, 1 H, C=CH2), 5.62 (dd, J 

= 17.3, 10.4 Hz, 1 H, CH2=CH-), 5.89 (dd, J = 10.5, 1.4 Hz, 1 H, C=CH2), 4.47 (t, J = 

6.1 Hz, 2 H, -OCH2CH2-), 3.55 (t, J = 6.2 Hz, 2 H, -CH2CH2Br) ppm; 13C-NMR (100 

MHz, CDCl3, ppm): δ = 165.52, 131.63, 127.82, 63.83, 28.60; Boiling Point: 41 - 43 oC 

(0.68 mmHg). 

2.4.5 RAFT polymerisation of BEA 

Polymers were synthesised by the following general method. A small vial was charged 

with magnetic stirrer; (4-cyano pentanoic acid)yl ethyl trithiocarbonate (0.0535 g, 0.203 

mmol), BEA (2.0 g, 11.17 mmol), ACVA (5.69 mg, 0.0203 μmol) and 1,3,5-trioxane (~5 

mg) as an internal standard. The mixture was dissolved in dioxane (2 mL) and the vial 

sealed with a rubber septum and deoxygenated by a stream of bubbled nitrogen for 10 

min. The vial was then suspended in a preheated oil bath at 70 oC and allowed to stir for 

3 h. Upon completion the solution was cooled to room temperature, opened to air and 

precipitated in diethyl ether to give compound 1. 1H-NMR (400 MHz, DMSO-d6, ppm): 

δ = 4.34 (m, 2nH), 3.65 (m, 2nH), 2.39-1.54 (4m, 3nH), 1.29 (t, 3H); 1H-NMR (300 MHz, 

CDCl3, ppm): δ = 4.41 (m, 2nH), 3.55 (m, 2nH), 2.45 (m, nH), 2.03 (m, 0.5nH), 1.76 (m, 

nH), 1.59 (m, 0.5nH), 1.36 (t, 3H); 13C-NMR (100 MHz, CDCl3, ppm): δ = 63.75, 41.24, 

34.89, 28.90, 25.61, 24.05, 12.80; IR (thin film) νmax 2962, 2929, 1733, 1444, 1386, 1280, 

1244, 1219, 1161, 1084 cm-1. For further details see Table 2.3. See Figure 2.2 for typical 

SECs in DMF (0.1 % LiBr): A1: pBEA50, Mn = 7000 g·mol-1, Mw = 7800 g·mol-1, 

Ð = 1.12.  
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Figure 2.7: 1H NMR in CDCl3 of pBEA50. 

2.4.6 RAFT block copolymerisation of p(BEA)-b-p(BA) 

Block-copolymers were synthesised by the following general method. A small vial was 

charged with magnetic stirrer, pBEA50 (compound A1 Table 2.3) homopolymer macro-

chain transfer agent (macro-CTA) (0.243 g, 0.026 mmol), BA (0.4 g, 3.121 mmol), 

ACVA (0.73 mg, 0.0026 μmol) and 1,3,5-trioxane (~5 mg) as an internal standard. The 

mixture was dissolved in dioxane (0.4 mL) and the vial sealed with a rubber septum and 

deoxygenated by a stream of bubbled nitrogen for 10 min. The vial was then suspended 

in a preheated oil bath at 70 oC and allowed to stir for 2 h. Upon completion the solution 

was cooled to room temperature, opened to air and precipitated in methanol. 1H-NMR 

(400 MHz, CDCl3, ppm): δ = 4.41 (m, 2nH), 3.96 (m, 2mH), 3.55 (m, 2nH), 2.45 (m, nH), 

2.27 (m, mH), 2.03 (m, 0.5nH), 1.89 (m, 0.5mH), 1.76 (m, nH), 1.60 (br d, [2mH + 

0.5nH]), 1.36 (br d, [2mH + 3H]), 0.93 (br t, 3mH). For further details of conditions see 

Table 2.4. See Figure 2.2A for a typical SEC in DMF (0.1 % LiBr): pBEA50-b-

pBA70: Mn = 18200 g·mol-1, Mw = 22700 g·mol-1, Ð = 1.25. 
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Figure 2.8: 1H NMR pBEA50-b-pBA70 (from macro-CTA A1) in (A) in CDCl3 and (B) 

DMSO-d6. 

2.4.7 RAFT polymerisation of BA 

Polymers were synthesised by the following general method. A small vial was charged 

with magnetic stirrer; (4-cyano pentanoic acid)yl ethyl trithiocarbonate (0.0137 g, 

0.052 mmol), BA (1.0 g, 7.80 mmol), ACVA (1.46 mg, 0.0052 μmol) and 1,3,5-trioxane 

(~5 mg) as an internal standard. The mixture was dissolved in dioxane (1 mL) and the 

vial sealed with a rubber septum and deoxygenated by a stream of bubbled nitrogen for 

10 min. The vial was then suspended in a preheated oil bath at 70 oC and allowed to stir 

for 2 h. Upon completion the solution was cooled to room temperature, opened to air and 

precipitated in diethyl ether. 1H-NMR (300 MHz, CDCl3, ppm): δ = 4.01 (m, 2mH), 2.29 

(m, mH), 1.89 (m, 0.5mH), 1.60 (br m, 2mH), 1.39 (br m, 2mH), 0.94 (br t, 3mH). For 



Chapter 2 - RAFT Polymerisation and Post-modification of pBEA 

 

Page | 45 

more details see Table 2.3. Anal. calcd. for C259H363Br50NO102S3: C 33.76%, H 3.97%, 

N 0.15%, Br 43.36%. Found: C 34.19%, H 4.04%, N 0.14%, Br 45.14%. For further 

details see Table 2.3. See Figure 2.3 for a typical SEC in DMF (0.1 % LiBr): A3 : pBA-

105: Mn = 15400 g·mol-1, Mw = 16600 g·mol-1, Ð = 1.08. 

2.4.8 RAFT block copolymerisation of p(BA)-b-p(BEA) 

Block-copolymers were synthesised by the following general method. A small vial was 

charged with magnetic stirrer, pBA115 (compound A3 Table 2.3) homopolymer macro-

chain transfer agent (macro-CTA) (0.502 g, 0.037 mmol), BEA (0.4 g, 2.23 mmol), 

ACVA (1.04 mg, 0.0037 μmol) and 1,3,5-trioxane (~5 mg) as an internal standard. The 

mixture was dissolved in dioxane (0.4 mL) and the vial sealed with a rubber septum and 

deoxygenated by a stream of bubbled nitrogen for 10 min. The vial was then suspended 

in a preheated oil bath at 70 oC and allowed to stir for 2 h. Upon completion the solution 

was cooled to room temperature, opened to air and precipitated in methanol. 1H-NMR 

(300 MHz, CDCl3, ppm): δ = 4.38 (m, 2nH), 4.01 (m, 2mH), 3.52 (m, 2nH), 2.43 (m, nH), 

2.25 (m, mH), 1.99 (m, 0.5nH), 1.87 (m, 0.5mH), 1.73 (m, nH), 1.57 (br m, [2mH + 

0.5nH]), 1.35 (br m, [2mH + 3H]), 0.91 (br t, 3mH). For further details see Table 2.4. See 

Figure 2.3 for a typical SEC in DMF (0.1 % LiBr): pBA105-b-

pBEA40: Mn = 22800 g·mol-1, Mw = 24600 g·mol-1, Ð = 1.08. 

 

Figure 2.9: 1H NMR in CDCl3 of pBA105-b-pBEA40 from macro-CTA A3. 
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Table 2.3: Summary of RAFT homopolymerisation for use as macro-CTAs. 

Polymer Monomer [𝐌]𝟎

[𝐂𝐓𝐀]𝟎
 [𝐂𝐓𝐀]𝟎

[𝐈]𝟎
 Conv.

a 

(%) 
M

n,th

b 
(g·mol

-1
) 

M
n,SEC

c 
(g·mol

-1
) 

Đ 

A1 BEA 55 10 92 9100 7100 1.12 
A2 BEA 61 10 75 7800 7000 1.09 
A3 BA 150 10 74 13900 15400 1.08 

a
 Determined from 

1
H NMR.  

b
 Calculated from the conversion and characteristics of the parent polymer.  

c 
From SEC analysis (DMF LiBr, pMMA-Std.). 

 

Table 2.4: Summary of RAFT chain extensions. 

Macro 
CTA 

Block 1  
monomer 

Block 2  
monomer 

[𝐌]𝟎

[𝐂𝐓𝐀]𝟎
 [𝐂𝐓𝐀]𝟎

[𝐈]𝟎
 Conv.

a 

(%) 
M

n,th

b 
(g·mol

-1
) 

M
n,SEC

c 
(g·mol

-1
) 

Đ 

A1 BEA BA 120 10 64 22000 18200 1.25 
A2 BEA BA 150 10 70 23000 15900 1.20 
A3 BA BEA 60 10 68 20700 22800 1.08 

a
 Determined from 

1
H NMR.  

b
 Calculated from the conversion and characteristics of the parent polymer.  

c 
From SEC analysis (DMF LiBr, pMMA-Std.). 

 

2.4.9 Post-polymerisation substitutions of homopolymers 

2.4.9.1 Substitution with Trimethyl amine 

Typical reaction of trimethyl amine with pBEA: pBEA50 (0.10 g, 12.6 μmol) was 

suspended in 3 mL of DMSO in a small vial with stirrer bar, to which was added 2 equiv. 

of trimethyl amine (4.2 M in ethanol, 300 μL, 1.26 mmol) and stirred for 24 h under a N2 

atmosphere. Upon completion, the solution was diluted with H2O, purified by dialysis 

and lyophilised to give the desired poly(trimethyl ammonium bromide ethyl acrylate). 

1H-NMR (300 MHz, DMSO-d6, ppm): δ = 4.53 (m, 2nH), 3.91 (m, 2nH), 3.34 (br m, 
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9nH), 2.41-1.61 (4m, 3nH); 13C-NMR (75 MHz, CDCl3, ppm): δ = 175.19, 64.46, 59.02, 

54.02, 38.74. 

 

Figure 2.10: 1H NMR in DMSO-d6 of product from trimethyl amine substitution of 

pBEA50. 

2.4.9.2 Substitution with Trimethyl phosphine 

Typical reaction of trimethyl phosphine with pBEA: pBEA50 (0.10 g, 12.6 μmol) was 

suspended in 2.5 mL of DMSO in a small vial with stirrer bar, to which was added 2 

equiv. of trimethyl phosphine (1 M in THF, 1.30 mL, 1.30 mmol) and stirred for 24 h 

under a N2 atmosphere. Upon completion, the solution was diluted with H2O, purified by 

dialysis and lyophilised to give the desired poly(trimethyl phosphonium bromide ethyl 

acrylate). 1H-NMR (300 MHz, DMSO-d6, ppm): δ = 4.33 (m, 2nH), 2.80 (m, 2nH), 2.30 

(m, nH), 2.04 (br m, 9nH), 1.75-1.50 (2m, 2nH); 13C-NMR (75 MHz, CDCl3, ppm): δ = 

174.21, 71.76, 70.26, 64.71, 58.60, 8.98, 8.26. 
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Figure 2.11: 1H NMR in DMSO-d6 of product from trimethyl phosphine substitution of 

pBEA50. 

2.4.9.3 Substitution with Tetraethyl ammonium sulfite 

Typical synthesis of tetraethyl ammonium sulfite salt: In a small vial 1 equiv. of 

dimethylsulfite (0.197 mL, 2.32 mmol) and 1.9 equiv. of tetraethyl ammonium hydroxide 

(1.5 M solution in methanol, 2.936 mL, 4.04 mmol) are combined and stirred vigorously 

for 5 h. The turbid solution of tetraethyl ammonium sulfite in methanol is used directly 

in the substitution of pBEA. 

Typical reaction of tetraethyl ammonium sulfite with pBEA: pBEA50 (0.10 g, 12.6 μmol) 

was suspended in 2 mL of DMSO in a small vial with stirrer bar, to which was added 5 

equiv. of tetraethyl ammonium sulfite (0.75 M in methanol, 3.72 mL, 5.87 mmol) and 

stirred for 24 h under a N2 atmosphere. Upon completion, the solution was diluted with 

H2O, purified by dialysis and lyophilised to give the desired poly(ethyl acrylate tetraethyl 

ammonium sulfonate). 1H-NMR (400 MHz, DMSO-d6, ppm): δ = 3.55-3.47 (m, 2nH), 

3.23 (q, 8nH), 2.35-1.32 (4m, 3nH), 1.16 (t, 12nH). See Figure 2.12 for typical SEC 

traces in water (0.1 M NaNO3): pEASTEA50 Mn = 6500 g·mol-1, Mw = 7900 g·mol-1, 

Ð = 1.21. 



Chapter 2 - RAFT Polymerisation and Post-modification of pBEA 

 

Page | 49 

 

Figure 2.12: SEC trace of product of tetraethyl ammonium sulfite substitution of pBEA50 

and pBEA150. 

2.4.9.4 Substitution with Sodium azide 

pBEA50 (0.05 g, 6.17 μmol) was suspended in 1 mL of DMF in a small vial with stirrer 

bar, to which was added sodium azide (0.0426 g, 0.49 mmol) in DMF 1.5 mL and stirred 

for 24 h under a N2 atmosphere. Upon completion, the solution was precipitated in a 1:1 

brine/water mixture, the precipitate was washed with water and dried under a stream of 

nitrogen to give the desired poly(azido ethyl acrylate). 1H-NMR (300 MHz, DMSO-d6, 

ppm): δ = 4.17 (m, 2nH), 3.54 (m, 2nH), 2.36-1.54 (4m, 3nH); IR (thin film) νmax 2958, 

2929, 2098, 1733, 1444, 1392, 1302, 1278, 1263, 1162 cm-1. See Figure 2.13 for a typical 

SEC trace in DMF (0.1 % LiBr): pAEA50 Mn = 6800 g·mol-1, Mw = 7800 g·mol-1, 

Ð = 1.16. 
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Figure 2.13: SEC trace of product of sodium azide substitution of pBEA50. 

2.4.9.5 Substitution with Thiophenol 

pBEA50 (0.04 g, 5.44 μmol) was suspended in 1.5 mL of DMF in a small vial with stirrer 

bar, to which was added 2 equiv. of thiophenol (50 μL, 0.49 mmol) and DIPEA (77.9 μL, 

0.45 mmol) and stirred for 24 h under a N2 atmosphere. Upon completion, the solution 

was precipitated in methanol and dried under vacuum to give the desired poly(thiophenol 

ethyl acrylate). 1H-NMR (300 MHz, DMSO-d6, ppm): δ = 7.26-7.11 (m, 5nH), 4.06 (m, 

2nH), 3.07 (m, 2nH), 2.27-1.39 (4m, 3nH); 13C-NMR (75 MHz, CDCl3, ppm): δ = 174.18, 

174.09, 135.07, 129.74, 129.11, 129.69, 126.54, 67.99, 63.03, 62.90, 41.34, 32.07, 31.97, 

25.62; Anal. calcd. for C559H613NO102S53: C 62.88%, H 5.79%, N 0.13%. Found: C 

60.13%, H 5.62%, N 0.15%. See Figure 2.14 for 1H-NMR spectra in CDCl3. See Figure 

2.4A for a typical SEC trace in DMF (0.1 % LiBr): pTPEA50 Mn = 8700 g·mol-1, 

Mw = 9900 g·mol-1, Ð = 1.13. 
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Figure 2.14: 1H NMR in CDCl3 of thiophenol substitutions of pBEA50 conducted: (A) 

without base and (B) in the presence of DIPEA. 

2.4.9.6 Substitution with 1-β-D-Thioglucose 

pBEA50 (0.014 g, 1.7 μmol) was suspended in 1 mL of DMSO in a small vial with stirrer 

bar, to which was added 1.5 equiv. of β-D-thioglucose sodium salt (21.8 mg, 0.1 mmol) 

and stirred for 24 h under a N2 atmosphere. Upon completion, the solution was diluted 

with H2O, purified by centrifugal filtration (3000 MWCO) and lyophilised to give the 

desired poly(β-D-thioglucose ethyl acrylate). 1H-NMR (400 MHz, D2O, ppm): δ = 4.57 

(d, nH), 4.34(br m, 2nH), 3.89 (d, nH), 3.72 (br d, nH), 3.45 (br m, 3nH), 3.34 (br t, nH), 

3.05 (br m, nH), 2.99 (br m, nH), 2.42 (br m, nH), 2.00 (br m, 0.5nH), 1.79 (br m, nH), 

1.64 (br m, 0.5nH); 13C-NMR (75 MHz, CDCl3, ppm): δ = 176.17, 85.47, 79.93, 77.26, 
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72.35, 69.47, 64.71, 61.04, 38.71, 28.53. See Figure 2.16 for a typical SEC trace in DMF 

(0.1 % LiBr): pTPEA50 Mn = 21400 g·mol-1, Mw = 24900 g·mol-1, Ð = 1.16.  

 

Figure 2.15: 1H NMR of pGluEA50 in (A) DMSO-d6 and (B) D2O. 
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Figure 2.16: SEC trace of product of 1-β-D-thioglucose substitution of pBEA50. 

2.4.10 Post-polymerisation substitutions of block-copolymers 

Block co-polymers of pBEA were substituted in the same manner as the homopolymers 

(vide supra). 

2.4.10.1 Substitution with Trimethyl amine 

Block co-polymers of pBEA were substituted in the same manner as the homopolymers 

(vide supra). 1H-NMR (400 MHz, DMSO-d6, ppm): δ = 4.36 (m, 2nH), 3.96 (m, [2mH + 

2nH]), 2.19 (m, mH), 2.05 (m, [mH + 0.5nH]), 1.95 (m, nH), 1.77 (m, [0.5mH + nH]), 

1.53 (br d, [2mH + 2nH]), 1.32 (br d, [2mH + nH]), 0.87 (br t, 3mH).  
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Figure 2.17: 1H NMR in DMSO-d6 of product from trimethyl amine substitution of 

pBEA50-b-pBA70. 

2.4.10.2 Substitution with Trimethyl phosphine 

Block co-polymers of pBEA were substituted in the same manner as the homopolymers 

(vide supra). 1H-NMR (400 MHz, DMSO-d6, ppm): δ = 4.36 (m, 2nH), 3.97 (m, 2mH), 

3.70 (m, 2nH), 2.80 (m, nH), 2.19 (m, mH), 2.05 (br m, 9nH]), 1.78 (m, [0.5mH + 2nH]), 

1.53 (br d, [2mH + 2nH]), 1.32 (br d, [2mH + nH]), 0.87 (br t, 3mH).  

 

Figure 2.18: 1H NMR in DMSO-d6 of product from trimethyl phosphine substitution of 

pBEA50-b-pBA70. 
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Table 2.5: DLS and Zeta Potential of block copolymers after substitution with trimethyl 

amine (pTMAEA) and trimethyl phosphine (pTMPEA). 

Sample Charged Type Filtered Size (d.nm) PDI Zeta Potential (mV) 

pTMAEA N
+ No 163 0.272 

44.6 
N

+ Yes 137 0.202 

pTMPEA P
+ No 127 0.264 

38.26 
P

+ Yes 124 0.205 
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3 
3 An Orthogonal Reaction Sequence for the 

Synthesis of Sugar-Coated Cyclic Peptide 

Nanotubes   

 

 

 

Self-assembly is a versatile technique for the creation of complex supramolecular 

materials, however synthesis of the precursors can be difficult when challenging 

functionalities are required. Post-modification of polymers is a versatile tool for the 

incorporation of synthetically demanding moieties in a material. Herein sugar-coated 

nanotubes were synthesised via an orthogonal peptide-polymer conjugation and 
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substitution strategy. Firstly, reactive polymer arms of poly(bromo ethyl acrylate) 

(pBEA) were conjugated onto a self-assembling cyclic-peptide core, applying a strategy 

using activated esters which react considerably faster and thus avoiding any unwanted 

side reactions. These robust precursor conjugates are then transformed using a thio-bromo 

“click” reaction with thioglucose to create sugar-coated nanotubes. Using Small Angle 

Neutron Scattering (SANS) and Static Light Scattering (SLS) the self-assembly of the 

precursor CP-pBEA and CP-glycopolymer conjugates was analysed in solution. Despite 

the rather large substituents on the polymer arms, in particular for the glycosylated 

materials, these conjugates form tubular assemblies that increase in size with decreasing 

lengths of the polymer chains.  

3.1 Introduction 

Introduction of complex functional groups, such as sugars, limits the ligations options 

available. Completely orthogonal reaction sequences become necessary, factoring in both 

polymer and CP reactivities and solubilities, yet remain robust and highly efficient under 

these conditions. In many cases the only route is via extensive protecting group strategies 

resulting in laborious syntheses. An elegant solution to the synthesis of materials 

incorporating two complex functionalities is post-modification. Post-polymerisation 

modification has proved a powerful tool in polymer chemistry,1-4 in particular for 

glycopolymers,5 offering numerous modification possibilities, involving mild conditions. 

We have recently reported on the polymerisation of bromo ethyl acrylate (BEA),6 a 

reactive halogen-bearing polymer that we have previously employed for the synthesis of 

complex polymeric materials via post-modification, requiring only mild conditions to 

create a diverse library of materials by nucleophilic substitution.  

Scattering techniques offer a powerful tool by which supramolecular materials may be 

characterised in solution. These techniques such as Small Angle Neutron Scattering 

(SANS) and Static Light Scattering (SLS) rely on the measurement of the scattered 

intensity at an angle, θ, by a particle irradiated with an incident beam at a wavelength, λ0 

(Figure 3.1). 
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Figure 3.1: The principle of scattering. 

The wave vector, q, can be defined by eq. 1:  

𝑞 =
4𝜋 sin

𝜃

2

𝜆0
  (SANS)  𝑞 =

4𝜋𝑛 sin
𝜃

2

𝜆0
 (SLS)    (1) 

where θ is the scattered angle, λ is the incident beam wavelength and n is the refractive 

index of the solvent.  

The inverse of the wave vector, q-1, is proportional to the size of the window of 

observation; the bigger the wave vector, the smaller the window of observation. By 

varying the position of the detector, and therefore the value of θ; or changing the 

wavelength of the incident beam, such as using light or neutrons, information can be 

obtained over a range of sizes. As such, SANS and SLS are complementary techniques, 

as highlighted in Figure 3.2, with which detailed information can be obtained about 

supramolecular structures in solution. 
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Figure 3.2: Relationship between q-range and size of the window of observation showing 

the complementarity of SLS and SANS. 

Herein, we outline the preparation of CP-polymer conjugates, comprising self-assembling 

cyclic peptides and pBEA of two polymer lengths. The conjugation was monitored by 

size exclusion chromatography (SEC) and the resulting materials were analysed by NMR 

to evaluate the orthogonality of the reactive pendant bromines to the activated ester end 

group used for conjugation. The self-assembly properties of the resulting CP-pBEA 

conjugates were analysed by using SANS and SLS. These reactive halogen-bearing 

polymer-conjugates are then transformed by post-modification, using nucleophilic 

substitution to install thioglucose moieties for the synthesis of glycopolymer-conjugates. 

The self-assembly properties of these sugar-coated nanotubes was also assessed by 

SANS. 

3.2 Results and Discussion 

3.2.1 Synthetic Strategy 

There are two primary synthetic methods for the preparation of cyclic-peptide polymer-

nanotubes. The divergent method, whereby the polymer is grown from the peptide 
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provides several advantages in terms of reaction conditions and purification, however 

characterisation of the constituent polymer and peptide is challenging.7 Alternatively, a 

convergent approach, that attaches a pre-formed polymeric chain to the peptide, is 

achieved using site specific and high yielding conjugation methods, enabling full 

characterisation of the polymer, peptide and conjugate.8, 9 Fortunately, conjugation 

chemistry has progressed in recent years such that there are a number of suitable options 

available, including copper(I)-catalysed azide-alkyne cycloaddition (CuAAC),10-13 

isocyanate,14-16 or activated ester-amide coupling.17-21 Using efficient ligation protocols 

in concert with controlled radical polymerisation techniques such as RAFT 

polymerisation,22 polymers of narrow dispersity with well-defined end-groups can be 

created with little synthetic effort. By manipulating polymer chain lengths and graft 

densities on the CP, some measure of control of the nanotube length and radius can be 

achieved.23  

Due to the reactive nature of pBEA, the ligation method employed must be orthogonal to 

nucleophilic substitution in order to limit the possibility of side reactions, and the 

polymerisation and substitution of these polymers was discussed in Chapter 2. Recently, 

successful strategies for the synthesis of well-defined CP polymer-conjugates via 

activated ester amide bond formation have been developed.8, 24 This synthetic route 

incorporates an N-hydroxysuccinamidyl (NHS) ester at the α-chain end by employing a 

chain transfer agent (CTA), with the -NHS pre-installed on the R-group prior to 

polymerisation. Also identified was that the speed and extent of conjugation strongly 

depends on the steric hindrance at the α-position of the activated ester, with primary esters 

resulting in more rapid conjugation than secondary.8 The CTA NHS-CPAETC bears a 

primary ester that results in rapid and efficient conjugation, with complete ligation 

achieved within 24 h to ~90 % efficiency. Since CPAETC has been shown to effectively 

control polymerisation of BEA,6 the NHS- modified CPAETC was thus used to 

polymerise BEA, providing well-defined polymers of narrow dispersity (Table 3.1). The 

cyclic-peptide core, cyclo[(L-Lys-D-Leu-L-Trp-D-Leu-)2], was designed to bear two 

lysine residues for use as polymer tethers (Scheme 3.1),8 to which NHS-pBEAn polymers 
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were reacted to form an amide bond, giving the desired CP-[pBEAn]2 conjugates (Scheme 

3.1). 

Table 3.1: Details of NHS-pBEA polymers synthesised. 

Polymer DP 
[M]

0
   [CTA]

0
 Conversion 

χ
a 

(%) 

M
n,th

b
 

(g·mol
-1

) 

M
n,SEC

c
 

(g·mol
-1

) 
Đ 

[CTA]
0
    [I]

0
 

NHS-pBEA
10

 10 11   10 94 2000 1800 1.12 

NHS-pBEA
25

 25 27   10 92 4400 3900 1.10 

a Conversion determined by 1H-NMR 
b Theoretical number-average molecular weight 
c DMF SEC, DRI detector, PMMA standards, number-average molecular weight 

 

 

Scheme 3.1: Reaction scheme of pBEA conjugations to a self-assembling cyclic peptide.  

Use of NHS-CPAETC as the CTA for BEA polymerisation resulted in NHS-pBEA 

polymers that underwent rapid conjugation with the CP. Ligation was complete within 

24 h using only a 1.1 equiv. of polymer per lysine, with conjugation efficiencies between 

86 - 94 % (Table A3.1), similar to those calculated for conjugation of non-reactive 

polymers.8 Primary amines are effective nucleophiles, capable of reacting not only once, 

but multiple times with alkyl halides; as the subsequent secondary and tertiary amines are 

produced, these intermediates then substitute further equivalents of the alkyl halide. Due 

to the nucleophilicity of the amines on the lysine residue, there is the potential of a side 

reaction on the pendant bromines on the polymer arms. Substituting the bromine would 

result in a shift of the adjacent protons in the 1H NMR spectrum, however no such 

substitution was observed by 1H NMR (Figure 3.3 - b and c). The analysis by SEC 

provides an even higher sensitivity for potential side reactions, as the multiple binding 
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sites on the reactive polymer would certainly result in larger chains and crosslinking. 

Therefore the SEC traces should show at least a high molecular weight shoulder in the 

case of side reactions. The absence of any shift by protons b and c in Figure 3.3, in 

addition to the absence of any higher molar mass shoulders in the SEC analysis of the 

conjugation reaction (Figure 3.4), indicates that the pendant bromines on CP-[pBEAn]2 

remain mostly intact. This suggests that the lysine -NH2 reactivity towards the activated 

ester is far more expedient than the halide substitution. To remove the remaining excess 

polymer, conjugates were purified by preparatory scale SEC in THF. Interestingly, short 

polymer-conjugates had better separation and fewer mixed fractions than conjugates with 

long polymer arms, due to the self-assembly increasing the gap between polymer and 

nanotube molecular weights. Conjugates were analysed by IR to estimate the inter-ring 

stacking distance, using Krimm’s analysis of the amide A N-H stretch in the region of 

3225 to 3280 cm-1.25 The peak arising at 3267 cm-1 in Figure A3.3 can be correlated to 

an NH…O bond distance of 2.97 Å, consistent with previous literature on self-assembling 

CP-polymer conjugates, resulting in an inter subunit spacing of 4.71 Å.9, 26 27 

 

Figure 3.3: 1H NMR of CP-[pBEA25]2 in DMSO-d6. 
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Figure 3.4: SEC chromatograms of conjugation reactions with varying polymer lengths: 

(A) DP 10 and (B) DP 25. The black arrows highlight the decreasing polymer peaks and 

the green arrow to the increasing 2-arm conjugate peak.  

The rate of reaction of pBEA conjugations, particularly in the early stages of reaction, 

depended on the length of polymer chain. This is likely due to the reduced steric hindrance 

at short polymer chain ends resulting in a faster reaction rate. This trend can be clearly 

observed in Figure 3.4A and B, CP-[pBEA10]2 and CP-[pBEA25]2 respectively, where 

the reaction has begun prior to the addition of base which should start the reaction. Close 

inspection of Figure 3.4A and B reveals that three populations are present during the 

early stages of conjugation; the polymer peak as well as two shoulders emerging towards 

high molecular weight. To better understand the species present, the SEC RI response of 

CP-[pBEA25]2 was converted to a number average MW as outlined by Zetterlund et al15, 

28 and deconvolved by fitting to a Log-normal distribution (Figure 3.5 and Table A3.2) 

in a manner similar to Monteiro et al for polymer-polymer couplings.29 From the 

deconvolution it is clear that three species are present, corresponding to the starting 

polymer, the 1-arm intermediate and the 2-arm final product. Over the first 3.5 h of 

reaction, the apparent percentage of 1-arm species remains constant at ~10 %, while the 

two-arm conjugate peak increases rapidly (Table A3.2). The constant quantity of 1-arm 

species indicates that the addition of one polymer arm to a CP lysine does not impede the 

second polymer arm addition to the second CP Lysine. This high reactivity, despite 
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increased steric hindrance, suggests there is little opportunity for nucleophilic attack by 

the lysine amine due to rapid consumption by the NHS mediated coupling. The shift in 

molecular weight by SEC for all conjugations is greater than double the molecular weight 

of the free polymer (Figure 3.4). Since self-assembly is suppressed in hydrogen bonding 

competitive solvents, such as the DMF eluent used for SEC, this suggests the CP core has 

a large impact on the hydrodynamic volume by SEC.  

 

 

Figure 3.5: Deconvolution number average molecular weight distributions of 

CP-[pBEA25]2 conjugation at (A) 0.5 h, (B) 1 h, (C) 1.5 h, (D) 3.5 h. 

3.2.2 Post-polymerisation modification 

Synthesis of glycopolymers by direct polymerisation of glycomonomers can be 

synthetically demanding, often requiring protecting group chemistry and extensive 
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optimisation. Post-modification is thus an attractive strategy for glycopolymer synthesis 

that is achievable by a number of different “click” strategies; including copper-catalysed 

azide-alkyne cycloaddition (CuAAC)30-32 and thiol based reactions including thiol-ene33 

or thiol-halide.34, 35 Thiols are excellent nucleophiles for the substitution of bromine, and 

have often been exploited for end-group modification and are frequently referred to as 

“click” reactions.36-39 Thiol-halogen substitution is an attractive synthetic strategy for 

glycopolymers leading to near quantitative yield with sufficiently activated halides 

without the requirement of a metal catalyst making it an ideal strategy to yield compounds 

suitable for drug delivery applications.5 To synthesise the desired sugar-coated nanotube, 

sugar moieties could be introduced by nucleophilic substitution on the bromine using a 

thiolate salt of glucose. Substitution of pBEA can be achieved under very mild 

conditions,6 ensuring that side reactions on the peptide core remain unlikely. 1-β-D-

Thioglucose sodium salt is readily available commercially, and the thiolate salt negates 

the necessity of base during the reaction, minimising potential aminolysis of RAFT end 

groups.  

Nucleophilic substitution of CP-[pBEAn]2 conjugates was achieved in DMSO at room 

temperature with 1.5 equiv. of thioglucose with full conversion to the desired 

glycopolymer conjugate (CP-[pGluEAn]2) achieved in 24 h. CP-[pGluEAn]2 conjugates 

were purified by centrifugal filtration and substitution was confirmed by 1H NMR 

(Figure 3.6). As has previously shown, pGluEA50 is readily soluble in DMF,6 whereas 

CP-[pGluEAn]2 conjugates were not, thus prohibiting analysis by SEC. The next step 

following the synthesis of these sugar-coated nanotubes, was to determine their self-

assembly properties in solution. 



Chapter 3 - Sugar Nanotubes via Post-modification of CP-pBEA Conjugates  

 

Page | 69 

 

Figure 3.6: 1H NMR of CP-[pGluEA10]2 in DMSO-d6. 

3.2.3 Self-Assembly properties of CP-polymer conjugates 

SANS is a powerful technique for the characterisation of supramolecular systems, as it 

allows direct assessment of any structural changes such as in response to stimuli or from 

processes applied to the sample. SANS measurements were taken over a large q range, 

resulting in a comprehensive molecular study on a broad length scale. The q-range probed 

can be further increased by using SLS, a complementary technique to SANS whereby 

using light rather than neutrons over wider scattering angles, further information 

including molecular weight and number of aggregation can be extrapolated. By 

measuring the scattering profiles of CP-polymer conjugates by SANS and SLS, and 

fitting the data to a series of form factors, it is possible to get an understanding on the 

overarching structures within the system, and how the polymer arm type and length 

affects self-assembly. From the work of Biesalski and Couet,40 as well as Chapman and 

Koh,23 it is anticipated that as polymer arm length increases, nanotube length will 

decrease; with conjugates of long polymers resulting in short, wide nanotubes, and 

conjugates of short polymers resulting in long, narrow nanotubes. As such the data 

obtained by SANS was fitted to a series of form factors to gain an understanding on the 

behaviour of the conjugates in solution. All data were analysed using the form factors 

available in the NIST SANS analysis package for Igor Pro.41, 42 First the data were fit to 

a Guinier-Porod model,55 which is an empirical model applicable to objects of arbitrary 

shape which gives an estimate of the radius of gyration, Rg, and a dimension variable, s. 
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The dimension variable is indicative of the shape of the object; s = 0 indicates the structure 

is a 3D spherical object, s = 1 indicates the object has an elongated or 2D symmetry such 

as a rod or cylinder, and s = 2 indicates the object has a 1D symmetry such as for lamellae 

or platelets, with values in between suggesting an intermediate shape. From the Guinier-

Porod analysis, subsequent form factors were used including Cylinder and a summative 

Gaussian Coil-Cylinder model to get the dimension of the nanotubes. 

3.2.4 Assembly of pBEA-conjugates 

The SANS profile of CP-[pBEA10]2 at low-q has an extended q-1 region that is 

characteristic of cylindrical structures. Guinier-Porod analysis of CP-[pBEA10]2 suggests 

a rod-like nanotube is formed in THF-d8 (Table 3.2 and Figure A3.5A) from the obtained 

s value of 0.90 (Table 3.2). When the CP-[pBEA10]2 sample in THF-d8 was filtered 

through a 0.5 μm syringe filter, the scattering profile changed dramatically, with a marked 

decrease in scattering intensity at low-q (q < 0.025 Å-1, Figure A3.5B) and an increase 

in scattering at intermediate-q values (q > 0.025 Å-1). The profile of filtered 

CP-[pBEA10]2 when analysed by the Guinier-Porod model resulted in a dimension 

variable of s = 0.54. Since an s value between 0 and 1 indicates an intermediate shape 

between a cylinder and a sphere, CP-[pBEA10]2 after filtration adopts an elongated sphere 

or ellipsoidal shape in solution. This change in morphology is likely due to the shear 

forces of filtration disrupting self-assembly, breaking up the longest assemblies, resulting 

in a greater proportion of intermediate length nanotubes.  

The scattering profile of CP-[pBEA25]2 has a lower overall intensity than the 

CP-[pBEA10]2 samples with a plateau at q < 0.02 Å-1. Guinier-Porod modelling of 

CP-[pBEA25]2 predicts a spherical object, with an s value of 0.013 (Table 3.2). The Rg 

estimated by Guinier-Porod modelling increased along with polymer arm length, yet 

remained independent of the shape given by the estimated dimension parameter. From 

this it can be concluded that the Rg determined by Guinier-Porod modelling is the cross-

sectional radius of the nanotube, rather than a representation of the overall molecule, 

which is consistent with the work by Pesek et al. on polymer bottlebrushes.43, 44  
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Table 3.2: Results of the Guinier-Porod analysis for Dimension Variable, s, and Radius of 

Gyration, Rg for CP-[pBEAn]2 conjugates. 

Compound S Rg (Å) 
CP-[pBEA

10
]

2 0.90  ± 0.0040 22.8  ± 0.13 
CP-[pBEA

10
]

2
 Filtered 0.54  ± 0.0065 26.5  ± 0.21 

CP-[pBEA
25

]
2 0.013  ± 0.0064 36.6  ± 0.15 

 

While Guinier-Porod analysis suggests spherical objects, the data could not be fit to a 

sphere model. Instead the data were fit to cylinder based models, which gives qualitative 

information about the sample by incorporating scattering length densities of the conjugate 

and solvent. Due to the supramolecular nature of our assemblies, there exist two regions 

that must be well described by the form factor; both the low-q region (q < 0.02 Å-1), 

corresponding to large molecules and intermolecular aggregation, and the intermediate q 

region (0.02 Å-1 < q < 0.1 Å-1), corresponding to the polymer arms of the supramolecular 

brush-like nanotubes (Figure 3.2). To adequately account for both regions in the SANS 

profiles, a summative model of the Cylinder and the Gaussian-Coil models in the Igor 

Pro software package was used to fit the data giving an improved fit over the Cylinder 

only model (Figure A3.7).41 

The CP-[pBEA10]2 profile displays an extended q-1 region at q < 0.02 Å-1, a feature that is 

characteristic of elongated supramolecular structures. Cylinder-Gaussian Coil modelling 

of CP-[pBEA10]2 gives a nanotube radius of 31.8 Å and a length of 1480 Å (Table 3.3 

and Figure 3.7). Since the q-1 region extends beyond the q-range probed by SANS, it is 

not possible to determine the exact length of CP-[pBEA10]2 nanotubes without SLS. The 

filtered CP-[pBEA10]2 (Figure 3.7 and Figure A3.6B) modelled by the Cylinder-

Gaussian Coil fit resulted in a similar radius of 32.9 Å, however the estimated length was 

reduced to only 259 Å (Table 3.3) which is significantly shorter than the nanotube length 

prior to filtration. This reduction in length further strengthens the hypothesis that the force 

of filtration decreases nanotube length. However it remains to be seen whether filtration 

accelerates equilibration to a thermodynamically favourable length or if it results in 

artificially shortened nanotubes. Analysis of CP-[pBEA25]2 estimated a radius of 46.5 Å 
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consistent with the longer polymer chain, and the estimated length was only 50.7 Å. This 

aspect ratio of nanotube radius and length is consistent with the spherical dimension 

variable estimated by Guinier-Porod analysis, suggesting short nanotubes. 

 

Figure 3.7: SANS profiles of CP-[pBEAn]2 conjugates at 10 mg ·mL-1 in THF-d8: 

CP-[pBEA10]2 before (green circles) and after (green squares) filtration and CP-[pBEA25]2 

(blue diamonds). Data were fit to a Cylinder-Gaussian Coil model (red lines). 

Table 3.3: Parameters estimated from fitting to Cylinder-Gaussian Coil model.  

Sample Radius (Å) Length (Å) Rg (Å) Nagg 
CP-[pBEA

10
]

2 31.8 ± 0.075 1480 ± 77 15.5 ± 0.0033 314.8 ± 16 
CP-[pBEA

10
]

2 
Filtered 32.9 ± 0.14 259.4 ± 2.8 19.5 ± 0.0032 55.2 ± 0.6 

CP-[pBEA
25

]
2 46.5 ± 0.32 50.7 ± 1.3 44.0 ± 0.0079 10.8 ± 0.28 

 

To further investigate the effect of filtration and equilibration time of the pBEA 

conjugates, an additional two conjugates, CP-[pBEA15]2 and CP-[pBEA29]2, were 

synthesised for characterisation by SLS (Figures A3.12 - 15). SLS data were collected 

before and after filtration, as well as after several days of equilibration time (Table 3.4), 

to calculate the number of aggregation (Nagg). For CP-[pBEA15]2, the Nagg obtained by 

SLS was 287, equivalent to ~ 1351 Å. After filtration the Nagg dropped to 175, and 

following 10 days of equilibration the Nagg was only 55 (Table 3.4). The diminution of 
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the Nagg with filtration by SLS is consistent with SANS data, suggesting that filtration 

breaks up large aggregates, however this does not represent the final, and most 

thermodynamically stable assembly. With additional equilibration time, the solvent will 

continue to permeate to the core, disrupting aggregation further, until the CP-assemblies 

attain a more thermodynamically favourable state, which for CP-[pBEA15]2 in THF is 

257 Å (Nagg = 55) as analysed by SLS. For CP-[pBEA29]2, the conjugate with longer 

polymer arms before filtration, the Nagg is 8.1. Following filtration the Nagg drops to 5.6 

with additional equilibration time resulting in an increase in the Nagg to 9.8. This trend 

corroborates the hypothesis that the force of filtration disrupts the length of the nanotubes 

formed, shortening the length of assemblies. Additional equilibration time then enables 

CPs to assemble or disassemble to a more favourable length. These data are consistent 

with previous literature on these systems that demonstrated that graft density, and 

polymer length affect the length of self-assemblies. 

Table 3.4: Nagg of CP-[pBEAn]2 conjugates before and after filtration, and after 10 days 

equilibration time. 

Compound Before Filtration After Filtration Equilibration 
CP-[pBEA

10
]

2 315 55 - 
CP-[pBEA

15
]

2 287 175 55 
CP-[pBEA

25
]

2 11 - - 
CP-[pBEA

29
]

2 8.1 5.6 9.8 

3.2.5 Assembly of Sugar-Conjugates 

To assess the self-assembly of glycopolymer-conjugates in D2O, both CP-[pGluEA10]2 

and CP-[pGluEA25]2 were analysed by SANS. At 5 mg·mL-1 the scattering profile of 

CP-[pGluEA10]2 increases towards low-q with a short region of q-1 scattering indicating 

that cylindrical structures are present in solution. Guinier-Porod analysis of 

CP-[pGluEA10]2 estimates a dimension variable, s, of 0.51 that suggests an elongated 

sphere or ellipsoidal morphology in solution. At the same concentration, CP-[pGluEA25]2 

has a lower intensity over all q-values than CP-[pGluEA10]2, suggesting that the 

assemblies formed are smaller. Guinier-Porod modelling estimated an s value of 0.19, 

suggesting a more spherical ellipsoid morphology than for CP-[pGluEA10]2. The 
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estimated Rg values increase with polymer arm length, from 20.1 Å to 26.8 Å for 

CP-[pGluEA10]2 and CP-[pGluEA25]2 respectively (Figure A3.11), consistent with an Rg 

arising from the cross-sectional radius of the nanotube. In both cases the CP-[pGluEAn]2 

conjugates adopt ellipsoidal morphologies in solution, with shorter polymer arms 

resulting in higher aspect ratio nanotubes, consistent with that found for CP-[pBEAn]2 

conjugates (vide supra) and previous work.23 Since neither data set could be satisfactorily 

fit to a sphere model, the data were instead fit to a Cylinder (Figure A3.10B) and a 

Cylinder-Gaussian Coil model (Table 3.6 and Figure A3.10A). Fitting of the data with 

the Cylinder-Gaussian Coil model gave radii of 23.8 Å and 26.8 Å for CP-[pGluEA10]2 

and CP-[pGluEA25]2 respectively; similar to the Rg values estimated by the Guinier-Porod 

model. The estimated length of CP-[pGluEA10]2 was 148.7 Å (Nagg = 32) and for 

CP-[pGluEA25]2 the length was 135.1 Å (Nagg = 29).  

 

Figure 3.8: SANS profiles of CP-[pGluEA10]2 (purple circles) and CP-[pGluEA25]2 (green 

circles) scattering profiles at 5 mg·mL-1 in D2O. Data were fit to a Cylinder-Gaussian Coil 

model (red lines). 
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Table 3.5: Summary of Guinier-Porod model fits for CP-[pGluEAn]2 in D2O. 

Sample S Rg (Å) 

CP-[pGluEA
10

]
2
 0.50 ± 0.0047 20.3 ± 0.093 

CP-[pGluEA
25

]
2
 0.19 ± 0.012 26.8 ± 0.34 

       

Table 3.6: Summary of Cylinder-Gaussian Coil model fits for CP-[pGluEAn]2 in D2O. 

Sample Radius (Å) Length (Å) Rg (Å) Nagg 

CP-[pGluEA
10

]
2
 23.8 ± 0.28 148.7 ± 1.7 25.5 ± 0.0063 31.6 ± 0.36 

CP-[pGluEA
25

]
2
 26.8 ± 0.76 135.1 ± 3.0 32.2 ± 0.014 28.7 ± 0.63 

 

Previous studies on the effect of polymer length and graft density have identified that 

increased steric bulk limits self-assembly in these systems.23, 40 In addition to steric 

effects, charge is capable of reversibly disrupting self-assembly in pH responsive 

polymer-conjugates.45 Indeed a number of factors have been identified that can affect the 

self-assembly of β-sheet forming CPs including; hydrogen-bond competitivity of the 

solvent, solvent access to the core, in addition to the steric effects of the polymer arms.23, 

40, 46 Considering the steric bulk of the glucose unit, the extent of self-assembly of 

CP-[pGluEAn]2 conjugates is surprising and that the sugar-conjugates are able to 

assemble in water, a highly hydrogen bonding competitive solvent, is even more so. 

Linear glycopolymers are capable of both intra- and inter-molecular hydrogen bonding 

between the carbohydrate hydroxyl units, as well as with several proteins, in addition to 

their selective targeting of cell receptors, a property making them attractive for use as 

gene therapy candidates.47, 48 The attractive hydrogen bonding forces between glucose 

moieties in this case works to promote nanotube self-assembly. Despite the bulky nature 

of the glucose monomer unit, the hydrogen bonding provided by the numerous hydroxyl 

units overcomes the steric repulsion, resulting in remarkably long sugar-nanotubes of 

~140 Å in a highly hydrogen-bonding competitive environment. 
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3.2.6 Lectin binding studies  

Biological events are often related to the interaction between carbohydrates and lectins. 

Lectins are binding proteins with high stereo-specificity for carbohydrates. A monomeric 

saccharide shows low affinity for its natural ligand, whereas multivalent interactions 

between a single lectin with one or more carbohydrate units are highly prevalent in 

nature;49, 50 and this “cluster-effect”32 strongly influences the design of well-defined 

glycopolymer architectures.  

A critical requirement for the application of glycopolymers in targeted drug delivery, is 

their ability to selectively bind to lectins, which is an important method for targeting 

cancerous cells that over-express lectins. To examine the binding efficacy of the 

glycopolymer conjugates, turbidimetry assays were performed for both CP-[pGluEAn]2 

conjugates using the lectin Concanavalin A (Con A). Con A comprises aggregates of 

25 g·mol-1 size. At pH 5 to 5.6 it exists as a dimer in solution, while at pH ≥ 7 Con A 

predominantly aggregates into tetramers.51 The rate of clustering was monitored in real-

time by measuring the absorbance at λ = 420 nm for 30 min after mixing the lectin and 

polymer solutions. The change in turbidity is related to the rate of receptor-receptor 

associations caused by the sugar-units of the polymers. The slope of the steepest portion 

of the initial curve was used to represent the clustering rate (s-1).52 The initial values of 

the curves relate to the formation of isolated Con A-polymer clusters, with later values 

correlating to interactions between the clusters. The formation of cross-linked clusters of 

higher order increases over time, thus analysis is limited to the section of the curve after 

the initial time points with high noise. The results of the Con A binding studies for 

CP-[pGluEAn]2 conjugates are summarised in Figure 3.9 and Figure 3.10.  
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Figure 3.9: Absorbance (λ = 420 nm) curves after adding 100 μL of 1 mg·mL-1 solution 

of Con A in HBS buffer to the solution of the polymer CP-[pGluEA10]2 (50 μM per sugar 

unit, in HBS). The linear fit of the steepest portions of the curves were used to calculate the 

clustering rate k = 1.31·10-3 s-1. 

 

Figure 3.10: Absorbance (λ = 420 nm) curves after adding 100 μL of 1 mg·mL-1 solution 

of Con A in HBS buffer to the solution of the polymer CP-[pGluEA25]2 (50 μM per sugar 

unit, in HBS). The linear fit of the steepest portions of the curves were used to calculate the 

clustering rate k = 5.94·10-4 s-1. 

Both CP-[pGluEAn]2 conjugates exhibit a continuous, slow increase in absorbance, 

indicating secondary interactions such as cross-linked clusters or partially soluble 

conjugates. The chain length of glycopolymers is an important factor that influences 

lectin clustering, with longer polymer chains generally resulting in an increased rate of 

binding.53 Interestingly, the clustering rate of Con A is faster for the shorter DP conjugate 

CP-[pGluEA10]2 than for the longer conjugate CP-[pGluEA25]2, in contrast to the 

literature.52, 53 This inverse trend is likely due to the increased self-assembly of the DP10 

conjugate that results in longer nanotubes. Once nanotube length is considered, since 
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shorter polymer arms tend to result in longer nanotubes in this system, it stands to reason 

that the inverse trend for DP dependent glycopolymer clustering will be true for this 

system. The rapid rate at which these sugar-coated nanotubes bind to Con A is a positive 

step towards the use of these interesting materials as for biological related applications. 

3.3 Conclusion 

Described here, is the development an orthogonal reaction sequence for the synthesis of 

sugar-coated nanotubes. End-functionalised BEA polymers were synthesised by RAFT 

polymerisation, using an NHS-modified CTA. NHS-pBEA polymers were conjugated to 

the self-assembling CP core without side-reactions, resulting in reactive nanotube 

precursors for subsequent post-modification. CP-[pBEAn]2 nanotubes were analysed by 

SANS and SLS and found to form short nanotubes in solution, with increased polymer 

chain length found to decrease the length of nanotube. The brominated precursor 

conjugates were then post-modified by a thio-bromo “click” reaction with thioglucose 

resulting in CP glycopolymer conjugates. These glycopolymer nanotubes were found to 

be rapid and effective lectin binding compounds that would make them excellent cell 

targeting materials. The sugar nanotubes were analysed by SANS and found to improve 

self-assembly over that of pBEA precursor, demonstrating that post-modification does 

not hinder self-assembly, but can improve it. Previous work described the synthesis of a 

complex new material with properties ideal for applications in cell-biology and gene-

delivery. The most remarkable result is the effect of post-modification on self-assembly 

of DP25 conjugates. CP-[pBEA25]2 conjugates form very short assemblies of only 50.7 Å 

long in THF-d6. Following post-modification, CP-[pGluEA25]2 in D2O formed longer 

tubes of 135.1 Å, in a more hydrogen bonding competitive environment. THF being a 

polar aprotic solvent is capable of participating in hydrogen bonding as a hydrogen bond 

acceptor, however remains far less competitive than water towards hydrogen bonding-

directed nanotube formation. The increase in length of the DP25 conjugate following 

post-modification, is an excellent demonstration that post-modification does not hinder 

self-assembly of the cyclic-peptide. Instead, post-modification is an advantageous route 

for enhancing nanotube formation by incorporating functional monomer units that can 
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promote self-assembly, either by improving solubility, reducing steric hindrance or 

increasing the inter-molecular attractive-forces such as with additional hydrogen bonding 

or π-π stacking. 

3.4 Experimental 

3.4.1 Materials 

Dioxane and DMSO were purchased from Fisher Scientific. 4,4-Azobis(4-cyanovaleric 

acid) (ACVA) was purchased from MP Biomedicals. Biobead SX-1 resin was purchased 

from Bio-Rad Laboratories Ltd. Cyclic peptide cyclo[(L-Lys-D-Leu-L-Trp-D-Leu-)2] was 

synthesised according to published methods8, 45 All other compounds were purchased 

from Sigma-Aldrich. All chemicals were used as received. All solvents were bought from 

commercial sources and used as received. The synthesis of BEA monomer is described 

in Chapter 2. 

3.4.2 Instrumentation 

1H NMR spectra were recorded on a Bruker AV-300, HD-300 or AV-400 in CDCl3, D2O 

or DMSO-d6. Shift values (δ) are reported in ppm. The residual proton signal of the 

solvent was used as an internal standard (CDCl3 δH 7.26, D2O δH 4.79, DMSO-d6 δH 2.50). 

Size exclusion chromatography (SEC) was carried out on a Polymer Laboratories PL-

GPC 50 Plus. All polymers were analysed on a Polymer Laboratories PL-GPC 50 Plus 

system using a PolarGel-M guard column (7.5 × 50 mm) followed by two PolarGel-M 

columns (7.5 × 300 mm). DMF (0.1% LiBr) was used as eluent at 1.0 mL min−1 at 50 °C. 

Commercial narrow linear poly(methyl methacrylate) standards in range of 2.0 × 102 g 

mol−1 to 1.0 × 106 g mol−1 were used to calibrate the DMF SEC system. Analyte samples 

were filtered through a polytetrafluoroethylene (PTFE) membrane with either 0.2 μm or 

0.45 μm pore size before injection (100 μL). Centrifugal filtration was carried out using 

Vivaspin® 20, 3,000 or 10,000 MWCO centrifuge tubes. Preparatory scale size exclusion 

chromatography was carried out using Biobead S-X1 bulk media in THF. Experimental 

Mn,SEC and Đ values of synthesised polymers were determined using Agilent GPC 

software. Infrared (IR) absorption spectra were recorded on a Bruker Vector 22 FT-IR 
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spectrometer using attenuated total reflection of a thin film. Notable vibrational 

wavenumbers are recorded in cm-1. PTFE 0.2 μm syringe filters were obtained from 

Fisherbrand for filtration of samples in organic solvents. Pall Gelman GHP Acrodisc 

0.2 μm syringe filters were obtained from Sigma-Aldrich for filtration of aqueous 

samples. 

3.4.3 Synthesis of Linear Peptide  

 

Synthesis of the linear peptide H2N-L-Lys(Boc)-D-Leu-L-Trp(Boc)-D-Leu-L-Lys(Boc)-

D-Leu-L-Trp(Boc)-D-Leu-COOH was achieved using solid phase synthesis adapted from 

previously published procedures:8, 23, 45, 54, 55 Under anhydrous conditions, 2-clorotrityl 

chloride resin (0.5 g, loading capacity 1.1 mmol·g-1) was swelled in CH2Cl2 (4 mL) for 

30 min in a 10 mL sinter-fitted syringe. The CH2Cl2 was filtered off and a solution of 

Fmoc-D-Leu-OH (2 eq. relative to resin capacity, 0.776 g, 2.2 mmol) and DIPEA 

(4 eq./amino acid, 1.14 g, 8.8 mmol) in CH2Cl2 (8 mL) was added to the resin and gently 

agitated for 2 h. The resulting loaded resin was washed with CH2Cl2 (3 × 5 mL), followed 

by a solution of CH2Cl2/MeOH/ DIPEA (17:2:1, 2 × 5 mL × 5 min) to cap any remaining 

unreacted sites and finally with CH2Cl2 (3 × 5 mL), DMF (3 × 5 mL) and CH2Cl2 (3 × 5 

mL). The resin was drained and dried under vacuum and used for further solid phase 

peptide synthesis. 

The loaded resin (0.2507 g, 0.218 mmol) was transferred to a sintered syringe, and 

swollen in CH2Cl2 for 30 min. The CH2Cl2 was filtered off then the peptide washed with 

DMF (3 × 5 mL) before treatment with a solution of 20 % piperidine in DMF (3 × 5 mL 

× 5 min) to remove the Fmoc group. These initial Fmoc deprotection solutions were 

collected for resin loading determination. The resin was drained and immediately washed 
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sequentially with DMF (3 × 5 ml), CH2Cl2 (3 × 5 mL) and DMF (3 × 5 mL). The resulting 

amine was used immediately in peptide couplings. 

The Fmoc deprotection solutions were combined and made up to 25 mL with 20% 

piperidine in DMF. An aliquot of this solution was diluted 200-fold and the concentration 

of the fulvene-piperidine adduct was assessed using UV-Vis absorption (301 nm, ε = 

7800 M-1·cm-1) to give the resin loading (1.15 mmol g-1). 

For subsequent coupling reactions, solutions containing the Fmoc-amino acid (3 eq., 

0.653 mmol), HBTU (3.1 eq., 0.675 mmol) and DIPEA (6 eq., 1.307 mmol) in DMF 

(2 mL) were prepared, bubbled with N2 for 15 min drawn to suspend the resin and agitated 

for 3 h. After additions, the resin was washed with sequentially with DMF (5 × 5 mL), 

CH2Cl2 (5 × 5 mL) and DMF (5 × 5 mL). 

Deprotection and addition steps were repeated to obtain the desired octapeptide. After 

completion of the amino acid coupling reactions and removal of the final Fmoc protecting 

group using 20 % piperidine in DMF, the peptide was cleaved from the resin using a 

solution of 20 % HFIP in CH2Cl2 (3 × 8 mL; 10 min each). The resin was washed with 

CH2Cl2 (3 × 4 mL) and the filtrate was concentrated in vacuo to yield the linear peptide 

as an off-white solid. Yield 0.40 g (quantitative). 1H-NMR (400 MHz, TFA-d, ppm): δ = 

8.07 (m, 2H, Trp), 7.54-7.22 (m, 8H, Trp), 5.11 (m, 2H, Hα Trp), 4.68-4.48 (m, 5H, Hα 

Leu and Hα Lys), 4.21 (m, 1H, Hα Lys N-end), 3.32-3.03 (m, 8H, CH2 Trp and CH2-NH 

Lys), 2.07-0.86 (m, 60H, CH2-CH2-CH2 Lys, CH2-CH Leu, C(CH3)3 Boc), 0.85-0.58 (m, 

24H, CH3 Leu), NH signals not observed. MS (ESI): [M+H]+ calculated: 1498.9, found 

1498.9. 
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3.4.4 Cyclisation of Linear Peptide 

 

Linear peptides were cyclised by head-to-tail coupling under dilute conditions.8, 23, 45, 54, 

55  Under anhydrous conditions linear peptide (0.200 g, 0.127 mmol) was dissolved in 

DMF (20 mL) and deoxygenated via a bubbled N2 stream for 20 min. DMTMM·BF4 (1.2 

eq., 0.051 mg, 0.152 mmol) was dissolved in DMF (5 mL) and deoxygenated with N2 for 

20 min, which was then added dropwise to the linear peptide solution. The mixture was 

stirred under an inert atmosphere for 5 days. The DMF solution was reduced to a volume 

of ~ 1 mL in vacuo then diluted in methanol (20 mL). Aliquots of the suspension were 

distributed into 2 mL Eppendorf tubes and centrifuged at 10000 rpm for 4 minutes using 

a benchtop centrifuge. The supernatant was discarded and the pellets resuspended in 

methanol. These solutions were centrifuged again and the supernatant discarded. The 

pellets were resuspended in methanol and combined. Methanol was removed in vacuo to 

yield the Boc-protected cyclic peptide in the form of an off-white powder. Yield 73 % 

(138 mg, 0.093 mmol). 1H-NMR (400 MHz, TFA-d, ppm): δ = 8.07 (m, 2H, Trp), 7.54-

7.22 (m, 8H, Trp), 5.15 (m, 2H, Hα Trp), 4.79-4.52 (m, 6H, Hα Leu and Hα Lys), 3.29-2.96 

(m, 8H, CH2 Trp and CH2-NH Lys), 2.07-0.86 (m, 60H, CH2-CH2-CH2 Lys, CH2-CH Leu, 

C(CH3)3 Boc), 0.85-0.58 (m, 24H, CH3 Leu), NH signals not observed. MS (ESI) [M+Na]+ 

calculated: 1503.89, found: 1503.8. 
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3.4.5 Deprotection of Cyclic Peptide 

 

Deprotection of the cyclic peptide was achieved using previously reported procedures:8, 

23, 45, 54, 55 Boc groups were removed by treatment with TFA/TIPS/H2O (18:1:1 v/v/v, 5 

mL) for 2 h, then precipitated in ice-cold diethyl ether and the supernatant discarded 

(2 × 50 mL). The precipitate was resuspended in diethyl ether and isolated via 

centrifugation in Eppendorf tubes. Excess solvent was removed in vacuo to yield an off-

white powder. Yield: 124 mg (quantitative). 1H-NMR (400 MHz, TFA-d, ppm): δ = 7.64-

6.60 (m, 10H, Trp), 5.16 (m, 2H, Hα Trp), 4.73 (m, 6H, Hα Leu and Hα Lys), 3.29-2.96 

(m, 8H, CH2 Trp and CH2-NH Lys), 2.07-0.86 (m, 24H, CH2-CH2-CH2 Lys, CH2-CH 

Leu,), 0.85-0.58 (m, 24H, CH3 Leu), NH signals not observed. MS (ESI) [M+Na]+ 

calculated: 1103.67, found: 1103.5. 

3.4.6 Synthesis of N-hydroxysuccinimide-(4-cyano pentanoic acid)yl ethyl 

trithiocarbonate (NHS-CPAETC) 

 

NHS-CPAETC was prepared from CPAETC (synthesised in Chapter 2) using a protocol 

adapted from the literature.8, 56 CPAETC (2.3 g, 8.7 mmol) was dissolved in CH2Cl2 (50 

mL) and stirred, followed by the addition of N-hydroxysuccinimide (1.2 equiv., 1.2 g, 
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10.5 mmol) and DMAP (0.1 g, 0.9 mmol). To this mixture, a 50 mL CH2Cl2 solution 

containing 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (1.2 equiv., 2.26 g, 

11.8 mmol) was added slowly over a period of 1 h at room temperature. The reaction was 

allowed to proceed at room temperature for a further 16 h yielding an orange solution. 

The excess EDC and DMAP was removed by washing twofold with water (200 mL) and 

twofold with brine (200 mL). The CH2Cl2 phase containing the product was dried over 

anhydrous MgSO4, filtered and dried to ~7 mL via rotary evaporation. Flash silica 

chromatography was performed using hexane:ethyl acetate (1:1 v/v) as the eluent. The 

purified NHS-CPAETC (1.98 g, 5.5 mmol, 63% yield) was isolated as a yellow oil that 

solidified upon refrigeration. 1H-NMR (400 MHz, CDCl3, ppm): δ = 3.35 (q, J = 7.3 Hz, 

2H, -CH2-S), 2.95-2.91 (m, 2H, -CH2-), 2.85 (m, 4H, NHS -CH2-CH2-), 2.69-2.49 (2m, 

2H, -CH2- ), 1.88 (s, 3H, -CH3-), 1.36 (t, J = 7.4 Hz, 3H, -CH3). 13C-NMR (100 MHz, 

CDCl3, ppm): δ = 216.3, 168.8, 167.0, 118.6, 45.9, 33.1, 31.4, 26.8, 25.5, 24.7, 12.7; MS 

(ESI): [M+Na]+ calculated: 383.0, found: 382.9. 

3.4.7 RAFT Polymerisation of BEA 

A typical RAFT polymerisation of BEA (Table 3.1): In a glass vial, NHS-CPAETC 

(0.0790 g, 0.219 mmol), BEA (1.0425 g, 5.82 mmol), ACVA (6.26 mg, 0.0223 mmol), 

1,3,5-trioxane (0.008 g, internal 1H NMR standard), and dioxane (1 mL) were combined 

along with a magnetic stirrer and the vial sealed with a rubber septum. The vial and 

solution were deoxygenated with nitrogen for 10 min, then put in an oil bath at 70 oC and 

allowed to stir until the desired conversion was reached (~3 h). Conversion of monomer 

to polymer was followed by taking kinetic samples with a degassed syringe and analysed 

by 1H NMR. Upon completion, the polymer (pBEA25) was rapidly cooled to room 

temperature, opened to air and precipitated with diethyl ether (40 mL). 1H-NMR (400 

MHz, 293 K, DMSO-d6, ppm): δ = 4.34 (m, 2nH), 3.65 (m, 2nH), 2.82 (s, 4H), 2.39 (m, 

nH), 1.91 (m, 0.5nH), 1.68 (m, nH), 1.55 (m, 0.5nH), 1.28 (t, 3H); 1H-NMR (300 MHz, 

293 K, CDCl3, ppm): δ = 4.40 (m, 2nH), 3.55 (m, 2nH), 2.85 (s, 4H), 2.47 (m, nH), 2.03 

(m, 0.5nH), 1.76 (m, nH), 1.57 (m, 0.5nH), 1.36 (t, 3H). 13C-NMR (100 MHz, CDCl3, 

ppm): δ = 173.99, 63.75, 41.24, 34.89, 28.90, 25.61, 24.05, 12.80 
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3.4.8 Conjugation of Polymer to Cyclic Peptide 

 

Cyclic peptide cyclo[(L-Lys-D-Leu-L-Trp-D-Leu-)2] (1 equiv. 21.84 mg, 0.0202 mmol) 

and NHS-pBEA25 (2.1 equiv. 0.2056 g, 0.04361 mmol) were suspended in DMSO 

(1 mL) to which N-methylmorpholine (NMM) (6 equiv. 13.32 μL, 0.121 mmol) was 

added and stirred for 24 h. Upon completion (as monitored by SEC), the conjugate was 

precipitated in diethyl ether. The conjugate was then dissolved in THF and purified by 

preparative size exclusion. 1H-NMR (400 MHz, 293 K, DMSO-d6, ppm): δ = 8.31 (br m, 

2H, Trp), 8.19 (br m, 4H, Trp), 8.06 (br m, 2H, Trp), 7.87 (br m, 2H, Trp), 7.60 (d, 2H, 

Trp), 7.28 (d, 2H, Trp), 7.10 (s, 2H, Trp), 7.01 (t, 2H, Trp), 6.92 (t, 2H, Trp), 4.34 (m, 

2nH, CH2-Br), 3.65 (m, 2nH, CH2-CH2-Br), 2.39-1.54 (4m, 3nH, polymer backbone), 

1.29 (t, 3H, -CH3), 0.81-0.72 (m, 24H, Leu), no other peptide peaks were detectable. 

3.4.9 Substitution with 1-β-D-Thioglucose 

CP-[pBEA25]2 (0.0561 g, 0.0112 mmol) was suspended in DMSO (1 mL) in a small vial 

with stirrer bar. Separately, 1-β-D-Thioglucose sodium salt (1.5 equiv. per bromine, 

0.0922 g, 0.419 mmol) was dissolved in DMSO (1 mL), then added to the CP-[pBEA25]2 

solution and stirred for 24 h under a N2 atmosphere. Upon completion, the reaction 

mixture was diluted in water and excess sugar removed by centrifugal filtration (10,000 

MWCO) and lyophilised to give the desired poly(β-D-thioglucose ethyl acrylate) 

conjugate (CP-[pGluEA25]2). 1H-NMR (400 MHz, 293 K, DMSO-d6, ppm): δ = 8.33 (m, 

2H, Trp), 8.24 (m, 4H, Trp), 8.10 (m, 2H, Trp), 7.90 (m, 2H, Trp), 7.61 (d, 2H, Trp), 7.30 

(d, 2H, Trp), 7.11 (s, 2H, Trp), 7.02 (t, 2H, Trp), 6.93 (t, 2H, Trp), 5.13 (m, 10H, -OH), 

5.04 (m, 10H, -OH), 4.94 (m, 10H, -OH), 4.44 (m, 10H, CH2-OH), 4.34 (m, 10H, CH2-S-

CH), 4.18 (m, CH2-S-), 3.67 (m, 10H, CH-CH-CH), 3.46 (m, 10H, CH-CH-O), 3.17 (m, 

30H, CH-CH-CH and CH2-OH), 3.02 (m, 10H, CH-CH-CH), 2.88 - 2.80 (d of m, 10H, 
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CH2-CH2-S-), 2.30 - 1.46 (4   m, 30H, polymer backbone), 1.35 (m, 10H -CH Leu), 0.84 

- 0.70 (br m, 12H, Leu), no other peptide peaks were observed. See Figure 3.3 for 

1H-NMR in DMSO-d6 and Figure 3.11 for 1H-NMR in D2O. 

 

Figure 3.11: 1H NMR of CP-[pGluEA25]2 in D2O. 

3.4.10 Turbidimetry Assay 

The aggregation studies with Con A were conducted as previously reported.52 Con A was 

fully dissolved in HBS buffer to a concentration of 1 mg·mL-1. 1 mL of a 50 μM (50 μM 

per sugar unit) stock solution of the polymer in HBS buffer was added to a quartz cuvette, 

which was placed in the UV-Vis spectrometer. 100 μL of the Con A stock solution was 

injected with a pipette to the bottom of the cuvette, then mixed briefly with pipette 

suction. The absorbance of the mixture was immediately recorded at λ = 420 nm for 

30 min every 0.5 s. All experiments were completed in triplicate. The interaction rate was 

calculated by using the slope of the linear fit of the steepest portion and averaged over 

the three measurements.  

3.4.11 Small Angle Neutron Scattering  

SANS was carried out on the Sans2d small-angle diffractometer at the ISIS Pulsed 

Neutron Source (STFC Rutherford Appleton Laboratory, Didcot, U.K.).57, 58 A 

collimation length of 4 m and incident wavelength range of 1.75 – 16.5 Å was employed, 

in order to provide a q-range of 0.0045 – 1.00 Å-1. 

q is defined as; 
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𝑞 =
4𝜋 sin

𝜃
2

𝜆
 

where θ is the scattered angle and λ is the incident neutron wavelength. 

Data were measured simultaneously on two 1 m2 detectors. The small-angle detector was 

4 m from the sample and offset vertically 60 mm and sideways 100 mm. The wide-angle 

detector was positioned 2.4 m from the sample, offset sideways by 980 mm and rotated 

to face the sample. The beam diameter was 8 mm. 

Each raw scattering data set was corrected for the detector efficiencies, sample 

transmission, and background scattering in D2O or THF; and converted into a scattering 

cross-section (∂Σ/∂Ω vs. q) using instrument-specific software.59 These data were placed 

on an absolute scale (Å-1) using the scattering from a standard sample (a solid blend of 

hydrogenous and perdeuterated polystyrene) in accordance with established procedures.60 

3.4.12 SANS Sample Preparation 

To ensure comparability between samples of different polymer arm lengths, all CP-

[pBEAn]2 samples were made up to 10 mg·mL-1 in THF-d8, and CP-[pGluEAn]2 samples 

were made up to 5 mg·mL-1 in D2O. Following analysis of CP-[pBEA10]2, this sample 

was then filtered with 0.5 μm PTFE syringe filters and rerun shortly after.  

3.4.13 SANS Analysis 

SANS data were analysed in the NIST NCNR analysis macro using Igor pro 6.36.41 

Data was analysed by a series of form factors, including sphere, ellipsoid, Gaussian coil, 

cylinder, flexible cylinder, and polyelectrolyte until the fit χ2 values were minimised. The 

fit parameters are outlined in the Appendix.  

3.4.14 Static Light Scattering 

The change in refractive index with concentration, ∂n/∂C, was determined by measuring 

the refractive index (RI) of pBEA50 over a range of concentrations in THF. RI 

measurements were taken on a Shodex RI detector operating at a wavelength of 632 nm. 
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The ∂n/∂C was calculated from the gradient of the RI vs. conc. multiplied by the RI of 

the solvent (THF = 1.407), divided by the RI constant of the instrument (1 194 000) to 

give 0.0729 for pBEA50. 

Light scattering measurements were obtained using an ALV-CGS3 system operating with 

a vertically polarised laser at wavelength of 632 nm. Measurements were taken at constant 

temperature (20 °C) over a range of scattering wave vectors, q (q = 4πn sin(θ/2)/λ, where 

θ is the scattered angle, λ is the incident light wavelength and n the refractive index of the 

solvent). 

The Rayleigh ratio, Rθ, was determined using equation (2), 

𝑅𝜃 =
𝐼𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝜃)−𝐼𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝜃)

𝐼𝑡𝑜𝑙𝑢𝑒𝑛𝑒(𝜃)
∙ (

𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑛𝑡𝑜𝑙𝑢𝑒𝑛𝑒
)

2
∙ 𝑅𝑡𝑜𝑙𝑢𝑒𝑛𝑒  (2) 

where Isolution, Isolvent and Itoluene are the scattering intensities of the solution, solvent and 

reference (toluene) respectively, n is the refractive index (nwater = 1.333, nTHF = 1.407, 

ntoluene = 1.496) and Rtoluene the Rayleigh ratio of toluene (Rtoluene = 1.35 × 10−5 cm−1 for λ 

= 632.8 nm). 

The optical constant, K, is defined by equation (3), where Na is Avogadro number and 

∂n/∂C is the change in refractive index with concentration. 

𝐾 =
4𝜋2𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡

2

𝜆4𝑁𝑎
(

𝜕𝑛

𝜕𝐶
)

2
     (3) 

In all cases it was verified that the apparent radius of gyration of the systems verified 

q × Rg < 1. Thus the Zimm approximation can be used to give equation (4). Plotting 

KC/Rθ as a function of q2 for each concentration yielded the apparent radius of gyration, 

Rg, of the scattering object and the apparent molecular weight extrapolated to zero angle, 

Ma. Representative plots are shown in the Appendix to Chapter 3. 

𝐾𝐶

𝑅𝜃
=

1

𝑀a
∙ (1 +

𝑞2∙𝑅g
2

3
)     (4) 

At a given concentration the Rayleigh ratio, Rθ, is related to the apparent molecular weight 

of the sample, given by equation (4). It is only at infinite dilutions, where the interactions 

between scattering particles are negligible, that the apparent molecular weight is equal to 
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the true molecular weight.61 Multiple concentrations were measured and linear regression 

was used to determine the apparent molecular weight at a concentration of 0 mg·mL-1. 

3.4.15 SLS Sample Preparation 

Samples of CP-[pBEAn]2 were prepared as a concentrated stock solution by direct 

dissolution at room temperature in THF. Samples for analysis were prepared by dilution 

of the stock solution to 0.5, 1, 2, and 5 mg·mL-1 and analysed by SLS without filtration 

on the day of preparation and ~24 h later. Samples were then filtered through Fisherbrand 

0.2 μm pore size PTFE syringe filters. 

3.5 References 

1.   Gauthier, M. A.; Gibson, M. I.; Klok, H.-A. Angewandte Chemie International Edition 

2009, 48, (1), 48-58. 

2.   Günay, K. A.; Theato, P.; Klok, H.-A., History of Post-Polymerization Modification. 

In Functional Polymers by Post-Polymerization Modification, Wiley-VCH Verlag 

GmbH & Co. KGaA: 2012; pp 1-44. 

3.   Gunay, K. A.; Theato, P.; Klok, H. A. J. Polym. Sci. Pol. Chem. 2013, 51, (1), 1-28. 

4.   Blasco, E.; Sims, M. B.; Goldmann, A. S.; Sumerlin, B. S.; Barner-Kowollik, C. 

Macromolecules 2017. 

5.   Burns, J. A.; Gibson, M. I.; Becer, C. R., Glycopolymers via Post-Polymerization 

Modification Techniques. In Functional Polymers by Post-Polymerization Modification, 

Wiley-VCH Verlag GmbH & Co. KGaA: 2012; pp 237-265. 

6.   Barlow, T. R.; Brendel, J. C.; Perrier, S. Macromolecules 2016, 49, (17), 6203-6212. 

7.   Couet, J.; Jeyaprakash, J. D.; Samuel, S.; Kopyshev, A.; Santer, S.; Biesalski, M. 

Angewandte Chemie-International Edition 2005, 44, (21), 3297-3301. 

8.   Larnaudie, S. C.; Brendel, J. C.; Jolliffe, K. A.; Perrier, S. Journal of Polymer Science 

Part A: Polymer Chemistry 2016, 54, (7), 1003-1011. 

9.   Chapman, R.; Danial, M.; Koh, M. L.; Jolliffe, K. A.; Perrier, S. Chemical Society 

reviews 2012, 41, (18), 6023-41. 

10.   Dehn, S.; Chapman, R.; Jolliffe, K. A.; Perrier, S. Polym. Rev. 2011, 51, (2), 214-

234. 

11.   Delaittre, G.; Guimard, N. K.; Barner-Kowollik, C. Accounts of Chemical Research 

2015, 48, (5), 1296-1307. 

12.   Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angewandte Chemie-

International Edition 2002, 41, (14), 2596-9. 



Chapter 3 - Sugar Nanotubes via Post-modification of CP-pBEA Conjugates  

 

Page | 90 

13.   Brendel, J. C.; Liu, F.; Lang, A. S.; Russell, T. P.; Thelakkat, M. ACS Nano 2013, 

7, (7), 6069-6078. 

14.   Gody, G.; Rossner, C.; Moraes, J.; Vana, P.; Maschmeyer, T.; Perrier, S. Journal of 

the American Chemical Society 2012, 134, (30), 12596-12603. 

15.   Gody, G.; Roberts, D. A.; Maschmeyer, T.; Perrier, S. Journal of the American 

Chemical Society 2016, 138, (12), 4061-4068. 

16.   Brendel, J. C.; Gody, G.; Perrier, S. Polym. Chem. 2016, 7, (35), 5536-5543. 

17.   Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. Journal of the American 

Chemical Society 1964, 86, (9), 1839-1842. 

18.   Bathfield, M.; D'Agosto, F.; Spitz, R.; Charreyre, M.-T.; Delair, T. Journal of the 

American Chemical Society 2006, 128, (8), 2546-2547. 

19.   Roth, P. J.; Wiss, K. T.; Zentel, R.; Theato, P. Macromolecules 2008, 41, (22), 8513-

8519. 

20.   Li, H.; Bapat, A. P.; Li, M.; Sumerlin, B. S. Polym. Chem. 2011, 2, (2), 323-327. 

21.   Vanparijs, N.; Maji, S.; Louage, B.; Voorhaar, L.; Laplace, D.; Zhang, Q.; Shi, Y.; 

Hennink, W. E.; Hoogenboom, R.; De Geest, B. G. Polym. Chem. 2015, 6, (31), 5602-

5614. 

22.   Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, 

R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 

1998, 31, (16), 5559-5562. 

23.   Chapman, R.; Koh, M. L.; Warr, G. G.; Jolliffe, K. A.; Perrier, S. Chemical Science 

2013, 4, (6), 2581-2589. 

24.   Danial, M.; My-Nhi Tran, C.; Young, P. G.; Perrier, S.; Jolliffe, K. A. Nature 

Communications 2013, 4, 2780. 

25.   Lautié, A.; Froment, F.; Novak, A. Spectroscopy Letters 1976, 9, (5), 289-299. 

26.   Koh, M. L.; Jolliffe, K. A.; Perrier, S. Biomacromolecules 2014, 15, (11), 4002-

4011. 

27.   Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 

1993, 366, (6453), 324-327. 

28.   Zetterlund, P. B.; Kagawa, Y.; Okubo, M. Chemical Reviews 2008, 108, (9), 3747-

3794. 

29.   Monteiro, M. J. European Polymer Journal 2015, 65, 197-201. 

30.   Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.; Irwin, J. L.; Haddleton, D. 

M. Journal of the American Chemical Society 2006, 128, (14), 4823-4830. 

31.   Chen, G.; Tao, L.; Mantovani, G.; Geng, J.; Nyström, D.; Haddleton, D. M. 

Macromolecules 2007, 40, (21), 7513-7520. 



Chapter 3 - Sugar Nanotubes via Post-modification of CP-pBEA Conjugates  

 

Page | 91 

32.   Geng, J.; Lindqvist, J.; Mantovani, G.; Haddleton, D. M. Angewandte Chemie 

International Edition 2008, 47, (22), 4180-4183. 

33.   Chen, G.; Amajjahe, S.; Stenzel, M. H. Chemical Communications 2009, (10), 1198-

1200. 

34.   Boyer, C.; Bousquet, A.; Rondolo, J.; Whittaker, M. R.; Stenzel, M. H.; Davis, T. P. 

Macromolecules 2010, 43, (8), 3775-3784. 

35.   Becer, C. R.; Babiuch, K.; Pilz, D.; Hornig, S.; Heinze, T.; Gottschaldt, M.; Schubert, 

U. S. Macromolecules 2009, 42, (7), 2387-2394. 

36.   Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Journal of Polymer Science Part 

A: Polymer Chemistry 2009, 47, (15), 3931-3939. 

37.   Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Journal of Polymer Science Part 

A: Polymer Chemistry 2009, 47, (15), 3940-3948. 

38.   Xu, J.; Tao, L.; Boyer, C.; Lowe, A. B.; Davis, T. P. Macromolecules 2010, 43, (1), 

20-24. 

39.   Ashok Kothapalli, V.; Shetty, M.; de los Santos, C.; Hobbs, C. E. Journal of Polymer 

Science Part A: Polymer Chemistry 2016, 54, (1), 179-185. 

40.   Couet, J.; Biesalski, M. Small 2008, 4, (7), 1008-1016. 

41.   Kline, S. Journal of Applied Crystallography 2006, 39, (6), 895-900. 

42.   Hammouda, B. Journal of Applied Crystallography 2010, 43, (4), 716-719. 

43.   Pesek, S. L.; Li, X.; Hammouda, B.; Hong, K.; Verduzco, R. Macromolecules 2013, 

46, (17), 6998-7005. 

44.   Pesek, S. L.; Xiang, Q.; Hammouda, B.; Verduzco, R. Journal of Polymer Science 

Part B: Polymer Physics 2017, 55, (1), 104-111. 

45.   Catrouillet, S.; Brendel, J. C.; Larnaudie, S.; Barlow, T.; Jolliffe, K. A.; Perrier, S. 

ACS Macro Letters 2016, 5, (10), 1119-1123. 

46.   Koh, M. L.; FitzGerald, P. A.; Warr, G. G.; Jolliffe, K. A.; Perrier, S. Chemistry – A 

European Journal 2016, 22, (51), 18419-18428. 

47.   Eissa, A.; Cameron, N., Glycopolymer Conjugates. In Bio-synthetic Polymer 

Conjugates, Schlaad, H., Ed. Springer Berlin Heidelberg: 2013; Vol. 253, pp 71-114. 

48.   Ahmed, M.; Narain, R. Biomaterials 2011, 32, (22), 5279-5290. 

49.   Pieters, R. J. Organic & Biomolecular Chemistry 2009, 7, (10), 2013-2025. 

50.   Ghadban, A.; Albertin, L. Polymers 2013, 5, (2), 431-526. 

51.   Dimick, S. M.; Powell, S. C.; McMahon, S. A.; Moothoo, D. N.; Naismith, J. H.; 

Toone, E. J. Journal of the American Chemical Society 1999, 121, (44), 10286-10296. 

52.   Gou, Y.; Geng, J.; Richards, S.-J.; Burns, J.; Remzi Becer, C.; Haddleton, D. M. 

Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, (12), 2588-2597. 



Chapter 3 - Sugar Nanotubes via Post-modification of CP-pBEA Conjugates  

 

Page | 92 

53.   Cairo, C. W.; Gestwicki, J. E.; Kanai, M.; Kiessling, L. L. Journal of the American 

Chemical Society 2002, 124, (8), 1615-1619. 

54.   Koh, M. L. Self assembly of (N-methylated cyclic peptide)-polymer conjugates. 

University of Sydney, 2013. 

55.   Danial, M.; Perrier, S.; Jolliffe, K. A. Organic & Biomolecular Chemistry 2015, 13, 

(8), 2464-73. 

56.   Danial, M.; Tran, C. M. N.; Young, P. G.; Perrier, S.; Jolliffe, K. A. Nature 

Communications 2013, 4, 13. 

57.   http://www.isis.stfc.ac.uk http://www.isis.stfc.ac.uk.  

58.   Heenan, R. K.; Rogers, S. E.; Turner, D.; Terry, A. E.; Treadgold, J.; King, S. M. 

Neutron News 2011, 22, (2), 19-21. 

59.   http://www.mantidproject.org. 2015. 

60.   Wignall, G. D.; Bates, F. S. Journal of Applied Crystallography 1987, 20, (1), 28-

40. 

61.   Brown, W., Light Scattering: Principles and Development. Clarendon Press: 1996. 

 

http://www.isis.stfc.ac.uk/
http://www.isis.stfc.ac.uk/
http://www.mantidproject.org/


 

Page | 93 

4 
4 The Effect of Ionic Strength on the Self-Assembly of 

Polyelectrolyte-Cyclic Peptide Conjugates  
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This chapter describes the synthesis and self-assembly of complex polyelectrolyte 

nanostructures consisting of both anionic and cationic polyelectrolyte-cyclic peptide 

conjugates. Using Small Angle Neutron Scattering (SANS) to follow the structure 

morphology in solution, it is possible to manipulate the self-assembly of the conjugates 

into nanotubes by varying salt concentrations. It was established that a high charge 

density strongly impacts the self-assembly process, and the effect can be controlled at 

high ionic strength; gaining valuable insight into the limitations of the system. Also 

demonstrated was that anionic and cationic conjugates made from an identical precursor 

form vastly different self-assembled structures. This study provides a fundamental insight 

into understanding the effect of charge on self-assembly, which is of vital importance for 

the design and control of charged and pH responsive conjugates as functional materials  

4.1 Introduction 

Despite recent advances looking at a greater diversity of polymer-conjugated nanotubes, 

there is still have a limited understanding of this incredibly complex supramolecular 

system. Water in particular is a challenging solvent due to the hydrogen bond competition 

between the solvent and the hydrogen-bonding necessary for nanotube formation. The 

hydrogen bonding between conjugates is remarkably strong for neutral, hydrophobic 

polymers such as poly(n-butyl acrylate) conjugates.1-3 However disruption of the 

assemblies is readily achieved by suspending the polymer-conjugates in hydrogen-

bonding competitive solvents such as DMF, DMSO or TFA.1, 2 In such solvents, the 

polymer conjugates exist primarily as unimers in solution whereas, upon dilution with 

less competitive solvents such as THF or CHCl3, the unimers begin to assemble into 

nanotubes. For water soluble, pH responsive polymer conjugates, including 

poly(dimethylamino ethyl methacrylate)4 and poly(acrylic acid),5 similar trends have 

been observed. In these cases, self-assembly is directed by pH changes, and is shown to 

be reversible, demonstrating that assembly can not only be controlled by pH but that the 

process is also reversible. Due to the hydrogen bonding capacity of water, hydrophilic 

polymer conjugates would likely have far shorter assemblies than could be expected in 

organic solvents such as methanol or THF. Thus any self-assembly occurring in water 
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must be sufficiently robust to overcome such a hydrogen-bond competitive environment. 

As demonstrated by pH controlled self-assembly studies, even the small presence of 

charge density on the polymer arms had a drastic impact on self-assembly.4  

To use these promising polymeric nanotubes as drug-delivery vehicles, a thorough 

understanding of the self-assembly properties of polymeric nanotubes in aqueous 

environments must be achieved. In order to control the assembly process, it must first be 

possible to disassemble the nanotubes into their constituent parts: the unimeric polymer-

conjugate building blocks. While attempts have been made to control nanotube assembly 

by using polymer-conjugates responsive to stimuli such as pH4, 5 or temperature,6, 7 a 

detailed study on the self-assembly from a disassembled state to an assembled one has 

yet to be carried out. Herein, cyclic-peptide polymer-conjugates bearing permanently 

charged polymer arms have been investigated, and an analysis on their self-assembly 

properties in an aqueous environment of varying ionic strength has been carried out. The 

polymer length, graft density, and charge density is kept constant by using a single 

precursor conjugate for synthesis. The samples were then studied by SANS to evaluate 

the morphology adopted by the conjugates in solution. By adding monovalent salt (NaCl) 

we incrementally increase the ionic strength of the environment, thus increasing the 

coulombic screening on the charged polymer arms, we can readily study the self-

assembly process of charged polymer-conjugates. 

4.2 Results and Discussion 

4.2.1 Synthetic Strategy 

This chapter looks at modified pBEA (DP25) covalently linked to a cyclic peptide. The 

synthesis of the polymer can be found in Chapter 2, and the conjugation strategy used 

was the same as in Chapter 3.  

The polymer pBEA25 was synthesised via RAFT polymerisation using NHS-CPAETC as 

a chain transfer agent following the protocols described in Chapters 2 and 3. After 

polymerisation, a theoretical average molecular weight of 4700 g·mol-1, corresponding 

to a degree of polymerisation of 25, was calculated from conversion by NMR (at 95% 
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monomer conversion). A narrow dispersity of 1.10 and an Mn,SEC of 4200 were 

determined by SEC (Figure 4.1). The conjugation reaction was followed by SEC by 

taking samples from the reaction mixture. The polymer peak at ~4600 g ·mol-1 (Figure 

4.1) diminished and the peak at ~11000 g ·mol-1 increased, indicating the reaction had 

gone to completion within 21 h. CP-[pBEA25]2 conjugates were purified by preparative 

scale size exclusion chromatography in THF to remove any excess polymer to minimise 

any impact on the scattering measurements. The pure CP-[pBEA25]2 conjugate had a 

calculated molecular weight of 10400 g·mol-1, the Mn,SEC was 12500 g·mol-1 with a low 

dispersity of 1.15 (Figure 4.1). 

 

Figure 4.1: SEC chromatograms of pBEA25 (green dashed), after CP-[pBEA25]2 

conjugation is complete (red dotted) and CP-[pBEA25]2 after purification (black solid line). 

Using cyclic peptide conjugates of pBEA to generate polyelectrolyte conjugates 

facilitates direct comparison on the effect of charge on self-assembly, while minimising 

structural variations that can arise during synthesis, such as different polymer lengths or 

inconsistent charge densities. To this end, using the CP-[pBEA25]2 conjugate was used to 

synthesise both cationic and anionic polyelectrolyte conjugates by nucleophilic 

substitution.8 To introduce a positive charge, the bromine groups of the CP-[pBEA25]2 
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precursor were substituted using trimethyl amine in DMSO, to give CP-[poly(trimethyl 

ammonium ethyl acrylate)25]2 (CP-[(pTMAEA)25]2). The anionic charge was introduced 

with a tetramethyl ammonium sulfite salt in a Strecker reaction9 in DMSO. The 

tetramethyl ammonium counterion used has been shown to improve sulfonated polymer 

solubility in polar organic solvents.10, 11 Thus the bromine was substituted, installing the 

negatively charged sulfonate to give CP-[poly(ethyl acrylate sulfonate tetraethyl 

ammonium)25]2 (CP-[(pEASTEA)25]2).  

4.2.2 SANS Analysis of Polymer-Conjugates  

To guarantee full control of conjugates irrespective of pH, permanent charges were 

installed on the polymer arms, ensuring that any self-assembly was directed by charge 

shielding on the polymeric chains. SANS experiments were then used to investigate the 

effects of the polymer charges on conjugate self-assembly. 

Here, SANS measurements were taken over a large q range (0.0045 – 1.00 Å-1), resulting 

in a comprehensive molecular study over a broad length scale using SANS2D (ISIS, UK). 

The window of observation in Å-1 for our data is related to q by 
2𝜋

𝑞
 . The low-q range (q  = 

< 0.025 Å-1) corresponds to length scales greater than 251 Å which is the region of interest 

for self-assembly and intermolecular aggregation such as in supramolecular systems. The 

intermediate-q region, (0.025 Å-1 < q < 0.1 Å-1), provides information on the polymer-

conjugate length, shape and cross-sectional size and stiffness in the 63 - 250 Å size range. 

The high-q region (q > 0.1 Å-1) can give information on a molecular level such as for 

polymer-arms of unimeric conjugates or thermal fluctuations.12 

4.2.3 Guinier-Porod analysis 

As in earlier SANS studies described in Chapter 3, the data was initially fit to a Guinier-

Porod model to describe the structure of these systems in solution. Guinier-Porod 

modelling did not satisfactorily fit either conjugate in pure D2O, suggesting it is 

unsuitable for the analysis of these samples. The s values obtained from fitting CP-

[pEASTEA25]2 (Figure A4.3) are between 0.16 and 0.3 at all salt concentrations, which 

have been plotted in Figure 4.2, suggesting anisotropic, spherical objects or ellipsoidal 
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morphologies. The approximated Rg from these fits increases from 22.9 Å at 0.18 M NaCl 

to 30.7 Å in 5 M NaCl solution in Figure A4.3. Given the CP has an internal diameter of 

7 Å, along with the addition of the polymer chain, could mean the peptide has the same 

Rg in both dimensions, indicating a more spherical object. In the case of the positively 

charged system, CP-[pTMAEA25]2, the dimension variable s ranges between 0.7 and 1.1, 

and is closest to 1 in 1 M and 2 M salt concentrations (s = 1.03 and 0.89 respectively, 

Figure 4.2 and Figure A4.6). These greater s values suggest the cationic conjugates adopt 

a more cylindrical or rod-like morphology than the anionic conjugates. Comparing the 

sample with 1 M NaCl and 5 M NaCl (Figure A4.6A and F, respectively), it appears that 

upon increasing salt concentration, the dimension variable s decreases, suggesting the 

assembly is adopting a more spherical structure. Rg values obtained from the Guinier-

Porod model are lower than anticipated for the supramolecular structure suggested by the 

dimension variable for the same fit. From this, it is possible to conclude that the Rg in this 

case provides an estimate of the cross-sectional radius of the cylindrical assembly, which 

is consistent with the studies by Verduzco and co-workers on bottlebrush polymers.12, 13 

This result is corroborated by the data presented in Chapter 3, where a similar result was 

found. 

 

Figure 4.2: Results from Guinier-Porod Model for the Dimension Parameter, s (A) and (B) 

the Radius of Gyration, Rg (Fits in Figure A4.3 and A4.6). 
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4.2.4 Polyelectrolyte conjugates in D2O  

In addition to the Guinier-Porod model, the data were also fit to both a polyelectrolyte 

and cylinder form factor, using the NIST macros in Igor Pro to confirm the conjugate 

morphologies in solution.14 In pure D2O, the scattering profiles shown in Figure 4.3 are 

dominated by both a significant upturn at low q and a peak at intermediate q values. In 

pure water, it was assumed that self-assembly would be completely disrupted due to the 

high charge density around the polymer arms, resulting in unimers in solution. Small, 

uncharged unimeric polymer-conjugates are expected to have a low scattering intensity 

at low-q values, however, the upturn at low-q is suggestive of higher order aggregation. 

The scattering behaviour at low-q (≤ 0.25 Å−1) can be fitted by a power law with an 

exponent between -1 and -4 which is consistent with other SANS studies on 

polyelectrolyte solutions.8, 15-17 While the origin of this upturn remains controversial, it is 

commonly attributed to scattering arising from large multi-chain clusters of concentrated 

polymer domains that are present even in dilute solutions of polyelectrolytes.15-18  

The broad maximum at intermediate-q (0.02 Å−1 < q < 0.1 Å−1) for both positive and 

negative polyelectrolytes profiles (Figure 4.3), shows a shift towards higher q with 

increasing concentration consistent with the literature.8, 17, 19 At middle to high, q > 

0.03 Å−1, the data for both conjugates are well described by a polyelectrolyte form factor 

(Borue-Erukhimovich polyelectrolyte - fits in Figure A 4.1). The upturn at low-q, 

< 0.025 Å- 1, was modelled with a power law fit that is consistent with literature on 

polyelectrolyte solutions,17 giving q- 1.1 for CP-[pTMAEA25]2 and q-3.7 for 

CP-[pEASTEA25]2. 

The conformation of polyelectrolytes in solution are expected to fit an ellipsoidal form 

factor, with the polymer cross-section and length giving the radii of the ellipse.20, 21 

Modelling polyelectrolytes as ellipsoids provides additional information about the 

conjugate morphology by incorporating the scattering length density of the samples. This 

fit suggested a radius a of 1.8 Å and radius b of 30.4 Å CP-[pTMAEA25]2 

(Figure A4.2B); and for anionic CP-[pEASTEA25]2 gave a radius a 2.7 Å and radius b of 

36.8 Å (Figure A4.2A). In an ellipsoid fit, when the radius b > radius a, the object is an 
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oblate ellipsoid and of a disk-like nature, suggesting the conjugates are unimers in D2O, 

with the polymer arms in an extended conformation. 

 

Figure 4.3: Scattering profiles of polyelectrolyte conjugates at a range of salt 

concentrations (A) anionic CP-[pEASTEA25]2 and (B) cationic CP-[pTMAEA25]2 

From this, it is possible to conclude, by modelling of polyelectrolyte conjugates in pure 

D2O, that the high charge density on the polyelectrolyte arms, competes with the 

intermolecular hydrogen bonding of the cyclic peptide core, hindering the supramolecular 

assembly to form nanotubes. 

4.2.5 The Effect of Salt on Self Assembly 

To control the self-assembly of the polyelectrolyte-conjugates, the addition of 

monovalent salt was used to screen the repulsive inter-chain interactions on the polymer 

arms. The use of salt in polyelectrolyte solutions is commonly used to shield long-range 

Coulomb interactions between particles.22 Thus the polyelectrolyte-conjugates at 

increasing ionic strengths was analysed, allowing the cyclic-peptide core to drive self-

assembly. To ensure consistency throughout the experiments, after each sample was run, 

additional salt was added to bring the solutions to the desired ionic strength, before being 

measured again until higher salt concentrations were achieved (5 M). 0.18 M NaCl was 

the lowest concentration measured, to simulate biological conditions at ion concentrations 

similar to biological grade phosphate buffered saline, with additional concentrations 

measured at 1 M through to 5 M NaCl in D2O. While the hydrogen-bonding in polymeric 

cyclic-peptide nanotubes is strong,23 a number of factors dictate the length of the nanotube 
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formed; inter-chain repulsion due to the high charge density on polyelectrolyte-

conjugates or pH responsive systems,4, 5 the polymer length, number of polymer arms 

conjugated, and bulkiness of the monomer.1, 2, 5  

4.2.6 Analysis of Anionic Polymer Conjugates in Solution 

At low ionic strength (0.18 M), the upturn in the scattering profile of CP-[pEASTEA25]2 

at low-q remains steep and fits to q-2.3, and the local maximum or shoulder at q = 0.05 Å-

1 broadens towards low-q. The Guinier-Porod dimension variables, suggest an elongated 

spherical shape, however a spherical form factor was unable to be fit to the data. The 

polyelectrolyte model was not able to fit the data once salt concentrations are factored 

into the fitting parameters, due to charge shielding. In the polyelectrolyte model, the salt 

concentration has a major effect on the fit. For all samples with added salt, the 

polyelectrolyte fit was incapable of modelling the data when ionic strength was included 

in the fit parameters. It may be that the diffusion of salt into the polymer corona is causing 

different charge densities along the chain, leading to charge shielding on the outside, but 

not closer to the peptide core; thus adding further confounding factors not taken into 

account in the form factor. 

The data is readily fit by a cylinder form factor however, which gives a radius of 37.7 Å 

and length of 2.1 Å (see Figure A4.4B for fits). The similarity between these results and 

those in D2O suggest that the conjugates exist as unimers. In assembled cyclic-peptide 

nanotubes, the inter-ring distance is 4.75 Å;24 and the Debye radius of a 0.18 M 

monovalent salt solution is 7.2 Å (Table 4.3),25 roughly 1.5 times the inter-peptide 

spacing. In electrolyte solutions, the Debye length (also known as Debye radius) is the 

measure of the distance that the electrostatic charge effects persist, the magnitude of 

which depends solely on the properties of the solution and can be calculated from the 

ionic strength of the solution (Table 4.3).25 This overlap of electrostatic repulsion would 

prevent the necessary hydrogen bonding between peptide subunits to occur.26 By plotting 

the radius and length parameters given by the cylinder model fit (Figure 4.4, and 

Figure A4.4 and A4.5), the trend with increasing ionic strength is clear. At 1 M NaCl 

concentrations, the length of the conjugates increases ten-fold to 23.8 Å. At this 
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concentration the Debye screening length is 3.0 Å, which is sufficiently reduced to allow 

intermolecular hydrogen bonding, permitting self-assembly to occur. As ionic strength 

continues to increase, so too does the length and radius, reaching a maximum at 35.6 Å 

and 47.1 Å respectively (Figure A4.5D), consistent with decreasing electrostatic 

repulsion facilitating assembly. The values obtained from cylindrical modelling are 

consistent with the Guinier-Porod values that suggest an anisotropic, spheroid object. 

From the inter-unit spacing and the length obtained from the cylinder model, a number 

of aggregation of 7.7 was calculated. The Debye radius at 5 M NaCl concentrations is 

1.4 Å (Table 4.3), and is sufficient to screen the electrostatic interaction between polymer 

arms of the cyclic peptides, thus enabling hydrogen-bonding. As the negative charge on 

the sulfonate is screened by the sodium ions present at high salt concentrations (> 1 M) 

the conjugates effectively behave as neutral polymers, with steric effects governing the 

self-assembly over electrostatic ones. The ethyl acrylate sulfonate and the bulky tetraethyl 

ammonium counterion result in a very sterically hindered polymer, and the size of this 

monomer unit limits the assembly of the conjugates, resulting in short nanotubes. 

  

Figure 4.4: Variation in length and radius of anionic CP-[pEASTEA25]2 conjugate 

assemblies from cylinder model fitting (Fits in Figure A4.4 and A4.5). Lines between 

points are added to guide the eye. 

 

 



Chapter 4 - Effect of Ionic Strength on the Self-Assembly of Polyelectrolyte Conjugates 

 

Page | 103 

4.2.7 Analysis of Cationic Polymer Conjugates in Solution 

The cationic conjugate CP-[(pTMAEA)25]2 has a scattering profile that is similar to 

anionic CP-[(pEASTEA)25]2, with an upturn at low-q from inter-chain aggregation. 

However the shape of the profile is distinctly different from that of the anionic conjugate; 

with increasing ionic strength, there is far less change in overall shape of the curves at 

intermediate-q values in the region of 0.03 Å−1 < q < 0.2 Å−1, and a distinctive q-1 region 

emerges with increased ionic strength (Figure 4.3). The Guinier-Porod fit suggested 

cylindrical rod-like structures (Figure A4.6), which is consistent with the extended q-1 

domain characteristic of this shape. Thus the data were fit to a cylindrical form-factor. 

Only data at low-q, < 0.1 Å- 1 corresponding to a length scale of > 63 Å, were adequately 

modelled by this form factor; suggesting the conjugates adopt an ordered, multi-chain 

array of long tubular assemblies. At high-q, however, the data were poorly fit by the 

cylinder model, and is instead best modelled by a Gaussian coil form factor that describes 

polymers in solution. Using an additive combination of the two models (Figure A4.8), 

the data could be adequately fit (Figure A4.7), the results of which have been plotted in 

Figure 4.5.  

At low ionic strength (0.18 M NaCl), the Cylinder-Gaussian coil model, gives a radius of 

11 Å and length of 198 Å (Figure A4.7). Here, both the radius and length increase with 

ionic strength to 33 Å and 284 Å respectively at 5 M NaCl, with an Rg of 40 Å. A plot of 

the Cylinder-Gaussian fit parameters in Figure 4.5, clearly shows the trend that the radius 

remains relatively stable and the length of the assemblies increases with ionic strength. 

This is consistent with the decreasing Debye length. At 1 M NaCl, the Debye radius of 

the electrostatic charge is 3 Å (Table 4.3), enabling inter-peptide hydrogen bonding. As 

the Debye radius decreased to 1.4 Å in 5 M NaCl, the maximum length of 284 Å was 

reached, corresponding to a number of aggregation of 60. For the cationic 

CP-[(pTMAEA)25]2 conjugates, the Cylinder-Gaussian coil model were fit to q-values 

≥ 0.02 Å-1 (length scale of 314 Å), due to the upturn in intensity from polymer-rich 

aggregates commonly present in polyelectrolyte samples. For the 0.18 M sample, the 

length obtained from the model is unexpectedly long (200 Å), considering the Debye 

radius is 7.2 Å, which should be sufficient to disrupt hydrogen bonding. For this two 
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theories could exist, firstly, that the upturn at low-q (< 0.02 Å-1) is close to q-1, and may 

be causing the model to over-estimate the cylinder length, secondly, the Debye length 

and electrostatic repulsion is being overcome by the inter-unit hydrogen-bonding, and a 

complex equilibrium between the repulsive electrostatic and steric forces and the 

attractive hydrogen-bond driven self-assembly exists to finely control aggregation. As 

mentioned previously, the impact of steric repulsion between polymer arms can have a 

drastic impact on the length of the overall assembly.1 The less bulky trimethyl ammonium 

ethyl acrylate monomer and counterion as compared to ethyl acrylate sulfonate leads to a 

lower degree of steric hindrance surrounding the peptide core.  

 

Figure 4.5: Variation in length and radius of cationic CP-[pTMAEA25]2 conjugate 

assemblies from Cylinder + Gaussian Coil model fitting. Lines between points are added 

to guide the eye. 

4.3 Conclusion 

Shown here is the in situ characterisation of polyelectrolyte-cyclic peptide conjugate self-

assemblies using small angle neutron scattering. In pure D2O, cyclic-peptide conjugates 

of both anionic pEASTEA and cationic pTMAEA exist as unimers. SANS scattering 

profiles of both conjugates were modelled to polyelectrolyte and cylinder form factors, 

and the results are consistent with that of single unimers in solution. The presence of 

unimers is due to the high electrostatic repulsion between polymer arms, preventing the 

inter-molecular hydrogen bond formation necessary for nanotube assembly. At high ionic 
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strengths, the SANS profiles of CP-[pEASTEA25]2 and CP-[pTMAEA25]2 are very 

different, despite being synthesised from a single precursor and having the same number 

of charged groups in the polymer chain. Guinier-Porod modelling revealed that 

CP-[pEASTEA25]2 formed an elongated spheroid structure, whereas CP-[pTMAEA25]2 

formed an extended cylindrical assembly. 

The scattering profile of anionic CP-[pEASTEA25]2 conjugates at high ionic strength was 

fit to a cylinder model, revealing that CP-[pEASTEA25]2 formed a mixture of unimeric 

conjugates and short stacks of peptides. The SANS profile of CP-[pTMAEA25]2 was fit 

with a Cylinder-Gaussian Coil combination model, which revealed that 

CP-[pTMAEA25]2 forms nanotubular structures of varying length in high ionic strength 

solutions. The difference in assembly between positively and negatively charged 

conjugates, despite the same polymer length, graft density and effective charge, is 

attributed to the difference in monomer size; with steric effects dominating the self-

assembly once the electrostatic were shielded. This work presents a step towards fine 

control of the self-assembly of polymeric nanotubes, made possible by tuning the 

electrostatic repulsion between polymer arms using salt to reduce the Debye radius and 

electrostatic repulsion.  

4.4 Experimental 

4.4.1 Materials 

Triethylamine, dioxane, and DMSO were purchased from Fisher Scientific (UK). 4,4-

Azobis(4-cyanovaleric acid) (ACVA) was purchased from MP Biomedicals (UK). Cyclic 

peptide cyclo[(L-Lys-D-Leu-L-Trp-D-Leu-)2] was synthesised within the group.4, 27 All 

other compounds were purchased from Sigma-Aldrich (UK). All chemicals were used as 

received. All solvents were of analytical grade or higher bought from commercial sources 

and used as received. 

4.4.2 Instrumentation 

1H NMR spectra were recorded on a Bruker AV-300, HD-300 or AV-400 in CDCl3, D2O 

or DMSO-d6. Shift values (δ) are reported in ppm. The residual proton signal of the 
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solvent was used as an internal standard (CDCl3 δH 7.26, D2O δH 4.79, DMSO-d6 δH 2.50). 

Size exclusion chromatography (SEC) was carried out on a Polymer Laboratories PL-

GPC 50 Plus. All other polymers were analysed on a Polymer Laboratories PL-GPC 50 

Plus system using a PolarGel-M guard column (7.5 × 50 mm) followed by two PolarGel-

M columns (7.5 × 300 mm). DMF (0.1% LiBr) was used as an eluent at 1.0 mL min−1 at 

50 °C. Commercial narrow linear poly(methyl methacrylate) standards in the range of 2.0 

× 102 g mol−1 to 1.0 × 106 g mol−1 were used to calibrate the DMF SEC system. Analyte 

samples were filtered through a polytetrafluoroethylene (PTFE) membrane with either 

0.2 μm or 0.45 μm pore size before injection (100 μL). Centrifugal filtration was carried 

out using Vivaspin® 20, 3,000 MWCO centrifuge tubes. Preparatory scale size exclusion 

chromatography was carried out using Biobead S-X1 bulk media. Experimental Mn,SEC 

and Đ values of synthesised polymers were determined using Agilent GPC software.  

4.4.3 RAFT polymerisation of BEA 

BEA was polymerised by RAFT in a similar manner as described in Chapter 2 using the 

conditions outlined in Table 4.1. See Figure 4.1 for a typical SEC in DMF (0.1 % LiBr): 

pBEA
25: Mn = 3900 g·mol-1, Mw = 4300 g·mol-1, Ð = 1.10. 

 Table 4.1: Details of pBEA-NHS polymerisation. 

Polymer 
[𝐌]𝟎

[𝐂𝐓𝐀]𝟎
 

[𝐂𝐓𝐀]𝟎

[𝐈]𝟎
 

Conv.a 

(%) 
Mn,th

b 

(g·mol-1) 
Mn,SEC

c 

(g·mol-1) 
Đ 

pBEA25 25 10 92 4400 3900 1.10 

a Conversion determined by 1H-NMR 
b Theoretical number-average molecular weight 
c DMF SEC, DRI detector, PMMA standards, number-average molecular weight 

4.4.4 Conjugation of Polymer to Cyclic Peptide 

Conjugation was achieved as described in Chapter 3. See Figure 4.1 for a typical SEC in 

DMF (0.1 % LiBr): CP-[pBEA25]2: Mn = 13500 g·mol-1, Mw = 15600 g·mol-1, Ð = 1.15. 
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4.4.5 Substitution with Trimethyl amine 

CP-[pBEA25]2 (0.050 g, 0.0106 mmol) was suspended in 1 mL of DMSO in a small vial 

with stirrer bar, to which was added 2 equiv. of trimethyl amine per bromine (4.2 M in 

ethanol, 133 μL, 0.559 mmol) and stirred for 24 h. Upon completion, the conjugate was 

precipitated in THF to give the desired poly(trimethyl ammonium bromide ethyl acrylate) 

conjugate (CP-[pTMAEA25]2). 1H-NMR (400 MHz, 293 K, DMSO-d6, ppm): δ = 8.31-

6.76 (m, 10H, Trp), 4.53 (m, 2nH), 3.91 (m, 2nH), 3.34 (br m, 9nH), 2.41-1.61 (4m, 3nH), 

0.85-0.59 (m, 24H, Leu), no other peptide peaks were observed. 

4.4.6 Substitution with Tetraethyl ammonium sulfite 

Typical synthesis of tetraethyl ammonium sulfite salt: In a small vial 1 equiv. of 

dimethylsulfite (0.197 mL, 2.32 mmol) and 1.9 equiv. of tetraethyl ammonium hydroxide 

(1.5 M solution in methanol, 2.936 mL, 4.04 mmol) were combined and stirred 

vigorously for 5 h. The turbid solution of tetraethyl ammonium sulfite in methanol was 

used directly in the substitution of pBEA. 

CP-[pBEA25]2 (0.050 g, 0.0106 mmol) was suspended in 1 mL of DMSO in a small vial 

with stirrer bar, to which was added 5 equiv. of tetraethyl ammonium sulfite per bromine 

(0.75 M in methanol, 1.86 mL, 1.40 mmol) and stirred for 24 h. Upon completion, the 

solution was diluted with H2O, purified by dialysis and lyophilised to give the desired 

poly(ethyl acrylate tetraethyl ammonium sulfonate) conjugate (CP-[pEASTEA25]2). 

1H-NMR (400 MHz, 293 K, DMSO-d6, ppm): δ = 8.31-6.76 (m, 10H, Trp), 3.55-3.47 (m, 

(2 × n)H), 3.23 (q, (8 × n)H), 2.35-1.32 (4m, (3 × n)H), 1.16 (t, (12 × n)H) 0.85-0.59 (m, 

24H, Leu), no other peptide peaks were observed.   

4.4.7 Small Angle Neutron Scattering  

SANS experiments and modelling were conducted as described in Chapter 3.  

4.4.7.1 SANS Sample Preparation 

To ensure comparability between different salt concentrations a single sample of polymer 

conjugate in D2O was measured. After each sample was run, the additional salt was added 
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to bring the salt concentration to the desired level. CP-[pTMAEA25]2 (10.53 mg, 

0.768 μmol) was dissolved in D2O (1.0681 g, 8.6 mg ·mL-1) and the sample run. 

Following measurement, anhydrous NaCl was added to the sample in the cuvette and 

agitated until the salt was fully dissolved giving the desired salt concentration. The sample 

was then run again and the process repeated until 5 M solutions were reached. The 

quantities of NaCl added for each sample are given below in Table 4.2. The same 

procedure was used for CP-[pEASTEA25]2 (9.60 mg, 0.556 μmol) in 1.1184 g (9.9 mg·

mL-1) of D2O. 

Table 4.2: Quantities of NaCl added to give the desired ionic strength 

Sample mL 0.18 M (mg) 1 M (mg)  2 M (mg) 3 M (mg) 4 M (mg) 5 M  (mg) 
CP-[pTMAEA

25
]

2
 0.45 4.7 21.61 26.52 26.2 26.18 26.58 

CP-[pEASTEA
25

]
2
 0.45 4.7 21.76 26.13 26.23 26.38 26.74 

4.4.8 SANS Analysis 

SANS data were analysed in the NIST NCNR analysis macro using Igor pro 6.36,14 in a 

similar manner as described in Chapter 3. Data was analysed by a series of form factors, 

including sphere, Gaussian coil, cylinder, core-shell cylinder, flexible cylinder, and 

polyelectrolyte until the fit χ2 values were minimised. The fit parameters are outlined in 

the Appendix to this chapter.  

4.4.9 Debye Length 

The Debye length was calculated at each ionic strength (Table 4.3) using the following 

equation:25 

𝑘−1 =
0.304

√  𝐼  
                                          (1) 

where I is the ionic strength of the solution in mol·L-1. 
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Table 4.3: Calculated values of the Debye length in nm and in Å. 

NaCl Conc. (M) Debye Length (nm) Debye Length (Å) 
0.18 0.72 7.2 

1 0.30 3.0 
2 0.21 2.1 
3 0.18 1.8 
4 0.15 1.5 
5 0.14 1.4 
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5 
5 Effect of Self-Assembly versus Charge on the 

Cellular Uptake of Cyclic Peptide-Polymer 

Nanotubes 

 

Self-assembling polymeric materials represent an exciting field in nanomedicine, 

especially in the field of drug delivery where they are frequently used as vectors to 

enhance the cellular uptake of cargo molecules. Introduction of charge has long been 

championed as a simple way to improve cellular uptake. However, the benefit of these 

charges is often incompatible with self-assembly due to the electrostatic repulsion 
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between individual monomer units. To better understand the importance of these two 

parameters, a comparison on the effect of self-assembly of cyclic-peptide polymer 

conjugates on cellular uptake vs. the effect of molecular surface charge is undertaken. 

Using RAFT polymerisation, the extent to which charge is introduced into each 

compound is carefully controlled, generating a library of statistical copolymers 

comprising PEGA and BEA. Using post-modification strategies, ammonium or 

phosphonium moieties were introduced. The introduction of charge resulted in 

diminished self-assembly of the cyclic peptide nanotubes, which significantly reduces 

cell uptake. Using these compounds, self-assembly was determined to be a greater driving 

force for cell-uptake than the degree of molecular surface charge. Finally, the mixing of 

charged and uncharged unimers demonstrates that in the case of ammonium conjugates, 

nanotube assembly is actively diminished by their co-assembly. 

5.1 Introduction 

Due to their large size and ability to carry payloads, macromolecules are well known to 

facilitate the transport of cargos across biological barriers and have been widely employed 

as cell uptake enhancers.1 Various physical properties, including size,2-4 charge,5-8 

hydrophilicity,9 monomer distribution,6, 10, 11 self-assembly properties,12 degree of 

cross-linking13 or branching14, have all been shown to impact cellular uptake. Among 

them, self-assembling cyclic-peptides (CP) polymer conjugates have been shown to be 

particularly promising drug delivery candidates both in vitro15 and in vivo.16 The self-

assembly of these CPs is robust to the attachment of various macromolecules including 

polymers17-19 and drugs,15 which in turn allow tuning of the physical properties (length, 

solubility) of the resulting conjugates. These conjugates provide a number of advantages 

over other nanovectors; the anisotropy of nanotubes improves circulation time,20-22 while 

their supramolecular nature facilitates excretion without toxic build-up in the body as in 

the case of carbon nanotubes.23 The β sheet-like self-assembly of these materials plays a 

key role in interaction with membranes,24-28 which can improve cell-uptake of these 

materials. Despite this, the influence of physical properties on cell uptake for these 

systems remains largely unexplored.  
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Of particular interest is the introduction of positively charged residues, which are well-

known to facilitate the cell uptake of macromolecules. While the presence of charged 

residues is expected to have a profound effect on the interaction of these conjugates with 

the cell membrane,6, 29-31 it should also affect the self-assembly of these structures. While 

charge and self-assembly have frequently been combined in polymeric materials,32-35 the 

importance of these two parameters, and in particular which is more efficient at enhancing 

cell uptake, remains unclear. 

Herein, a charged moiety was introduced into a model self-assembling cyclic peptide-

polymer conjugate, and their cell uptake assessed. Described here is a method that 

facilitates the incorporation of various quantities of charged residues using a post-

modification strategy. We observe that for these systems, self-assembly is a greater force 

for improving cellular uptake than surface charge. 

5.2 Results and Discussion 

5.2.1 Conjugate design 

Unlike previous chapters, the conjugates were designed here to comprise an asymmetrical 

cyclic octapeptide core with a single polymer arm conjugated at the side chain of a single 

Lysine residue. The polymer arm promotes solubility of the self-assembled nanotube by 

limiting lateral aggregation and adding some measure of control over the length of the 

tube by steric repulsion.19, 36 The cyclic-peptide (CP) core comprises alternating L- and 

D- α-amino acids (sequence: cyclo-L-Lys-D-Leu-L-Trp-D-Leu-L-Trp-D-Leu-L-Trp-

D-Leu-), that forms the flat, rigid ring-like conformation necessary for hydrogen bonding 

directed self-assembly.37, 38  

CP-polymer conjugates comprising a poly(ethylene glycol) methyl ether acrylate (PEGA) 

copolymer arm with varying proportions of charge were used for this study. PEGylation 

is an attractive means for the preparation of polymer conjugates as it diminishes 

proteolytic degradation and increases bioavailability of compounds.39-41 Conjugates of 

pPEGA offer additional benefits in vivo, with the PEG brush further diminishing 

enzymatic degradation and immunogenicity.39, 41 A pPEGA arm was chosen due to its 
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additional synthetic flexibility over PEG;40, 42 since it allows for further tailoring of the 

polymer chains to a desired sequence by using controlled radical polymerisation 

techniques such as RAFT polymerisation.43-45 By this means, PEGA can be 

copolymerised with bromoethyl acrylate (BEA), a reactive monomer by which a range of 

functionalities can be included by nucleophilic substitution as discussed in previous 

chapters. Using this method, charged moieties can conveniently be introduced, in varying 

percentages, as the final step in the synthesis (Chapter 2 and 3).46 Since macromolecules 

with high levels of charge typically result in highly toxic materials,47 this approach 

enables the design of a library of compounds with a variation in charges, so as to improve 

cell uptake, without being cytotoxic. Two different cationic residues were tested; 

ammonium and phosphonium. On one hand, ammonium is commonly used to introduce 

charge due to the low cost, and straight forward syntheses of amines and amine salts. On 

the other hand, phosphonium analogues of these compounds are often found to have 

interesting cell-uptake behaviours, displaying less cytotoxicity and improved transfection 

efficiency.48-51 The potential of phosphonium based polymeric materials is yet to be 

realised, likely due to the increased cost, toxicity and pyrophoric nature of organo 

phosphine reagents necessary for their production.49, 50  

5.2.2 Synthetic strategy 

Conjugates were prepared using a convergent approach in which BEA containing 

polymers are first prepared via RAFT polymerisation, then conjugated to the CP core via 

amide bond formation, as described in Chapters 2 and 3 respectively. pPEGA copolymers 

with DPs between 22 - 29 were successfully synthesised with conversions of 77 - 89 % 

and dispersities ≤ 1.13 (p(PEGA-stat-pBEA)
22: Mn = 10600 g·mol-1, 

Mw = 11900 g·mol-1, Ð = 1.13; p(PEGA-stat-pBEA)
26: Mn = 9900 g·mol-1, 

Mw = 11100 g·mol-1, Ð = 1.13; p(PEGA-stat-pBEA)
28: Mn = 9100 g·mol-1, 

Mw = 10100 g·mol-1, Ð = 1.10. 
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Table 5.1, Figure 5.5). Monomer conversion was quantified by 1H NMR spectroscopy, 

with SEC traces showing that all statistical copolymers are of comparable DP and Mn,SEC 

values. Copolymers were designed to incorporate BEA at 2 %, 5 %, 10 % and 25 %, with 

BEA incorporation assessed by 1H NMR from the shift in protons adjacent to the pendant 

bromine. An uncharged control polymer was also synthesised by incorporating a neutral 

moiety to “cap” the bromines instead. The control polymer, P1, was synthesised using 

the 2% statistical p(PEGA-stat-pBEA)29. 

The cyclic peptide was prepared using solid-phase peptide synthesis (SPPS) and cyclised 

using previously reported protocols (Chapter 3).34, 52 The -NH2 on the lysine side chain 

was then used as a tether for attachment of the polymer arm by amide bond formation 

with the polymer -NHS chain end (Scheme 5.2). In a previous study using BEA-CP 

conjugates, it was demonstrated that -NHS coupling to the Lysine residue is faster than 

the nucleophilic substitution on the BEA pendant bromines, as described in Chapter 3. In 

accordance with previous work, no trace of this SN2 side reaction was detected by either 

1H NMR or SEC of the conjugates (Figure 5.5).  

Following conjugation, compounds were tagged with a cystamidefluorescein dye 

prepared by amidation of carboxyfluorescein with a cystamine.HCl salt (Scheme 5.3).53 

A straightforward method for incorporation of a fluorescent tag is via substitution of 

bromine. To this end the cheap and commercially available carboxyfluorescein was 

altered, introducing a thiol moiety by forming an amide bond with cystamine. The ring 

opening of the lactone of fluorescein under basic conditions represented a foreseeable 

issue, as it makes a second carboxylic acid group available in the reaction mixture. 

However, due to the increased steric hindrance around the second carboxylic acid, 

activation of this moiety by HCTU would be unfavourable, thus making this potential 

side reaction unlikely.54 

Introduction of the charge to the polymer chain was achieved post-conjugation via 

nucleophilic substitution of the bromine residues of BEA in the presence of a base. 

Substitution of the pBEA units was achieved by slow addition of the dye to the reaction 

mixture, to avoid the reformation of disulfide bonds under basic conditions. Limiting the 
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concentration of thiols in the presence of the base thus gave the opportunity for the 

resulting thiolates to attack the bromine instead. To keep the number of dye units per 

conjugate to a minimum, 0.25 equivalents of dye were used. Introduction of charge was 

done at this point via nucleophilic substitution of the remaining bromine units using 

trimethyl amine and trimethyl phosphine to yield the final conjugates containing pending 

ammonium groups and phosphonium groups, respectively (Scheme 5.1).46 Substitution 

of the bromine was confirmed by 1H NMR (Figure 5.7 and Figure 5.8). Purification of 

the conjugates was achieved using centrifugal filtration in a sodium chloride solution at 

pH = 14 to minimise electrostatic interaction between remaining free dye and conjugates. 

The high salt concentration helped shield electrostatic interaction, while the high pH 

increased fluorescein solubility in water by deprotonating the remaining carboxylic acid 

moieties and opening the lactone ring. Finally, the purity of the polymers and conjugates 

was confirmed by HPLC using both UV and fluorescence detection (Figure A5.1 - A5.4).  

The surface charges of both CP-polymer conjugates and control polymers was quantified 

via zeta potential measurements, the results of which are reported in Table A5.1. All 

charged polymers (P2 - P9) and conjugates (CP2 - CP9) displayed a positive trend in zeta 

potential compared to the neutral conjugate CP1, with the charge increases correlating to 

the increasing numbers of charged monomers per chain. Uncharged CP1 showed a 

negative zeta potential, due to the measurement being conducted in deionised water.55 

Next, self-assembly of the compounds was characterised using the absolute molecular 

weight (Ma) of polymer-conjugates CP1 - CP9 as determined in water by static light 

scattering (SLS). The results were used to calculate a number of aggregation (Nagg) for 

each conjugate as described in Section 5.4.8, and previous chapters (Table A5.2). CP1 

was found to have a Nagg of approximatively 6, indicative of a short nanotube with a 

length of 30 Å. In contrast, CP-polymer conjugates containing positive charges were 

found to be mostly present as unimers in aqueous solutions, showing that introduction of 

even small percentages of positively charged residues in the unimers dramatically 

impaired the self-assembly, due to the electrostatic repulsion between the polymeric arms. 

These data are in agreement with those presented in Chapter 4, where the charged 

polymer conjugates also did not assemble in water. Measurement of the self-assembly of 
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these conjugates directly in cell culture media is prevented by interference from large 

macromolecules in measuring light scattering. Hence, for the cell culture experiments 

described hereafter, the Nagg values obtained in water via SLS were taken to be 

representative of the assembled state of the conjugates in cell media.10 

 

Scheme 5.1: Summary of compounds used in this study and their abbreviations. 

Having determined the effect of charge on the self-assembly process, a study of the 

behaviour of these compounds in the presence of cells was assessed. Positively charged 

macromolecules, and in particular ammonium-based ones, are notoriously toxic.47 Hence, 

acute cell toxicity was assessed first, using human breast adenocarcinoma (MDA-MB-

231) cells as a model cell line. The results showed that, following 24 hours of incubation, 

all compounds were non-toxic at concentrations up to 100 μM (Figure 5.1). While this is 

expected for the uncharged P1 and CP1, the low toxicity of charged P2-9 and CP2-9 is 

likely due to the presence of pendant brush-like PEG chains whose steric hindrance 
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minimises electrostatic interactions between the positively charged groups and the 

negatively charged cell membrane (vide infra), shielding the cell from said charge.56 

 

Figure 5.1: Cellular toxicity against MDA-MB-231 cells after 24 h incubation time with 

varying concentration of compound, as measured using XTT assay. 

Next, the influence of charge on the cellular uptake of these compounds was studied. 

Despite using the same number of cystamide-fluorescein equivalents during the 

functionalisation reactions, differences in the amount of dye incorporated were observed 

for each polymer and conjugate. To account for these differences, the fluorescence (λex = 

488 nm, λem = 575 nm) of each compound was measured against concentrations in the 

linear region, and the relative values of the slopes were used to calculate correction 

factors, as outlined in Table A5.2.57 The intracellular fluorescence of MDA-MB-231 

cells incubated with 50 µM of compounds for 20 hours was quantified using flow 

cytometry. For each experiment, the fluorescence intensity from > 5000 live cells (n = 4) 

was measured. The median of these data were averaged and corrected by fluorescence 
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correction factors (Table A5.2) to give the values reported in Figure 5.2. Incubation of 

MDA-MB-231 cells with P1-9 and CP1-9 showed a positive uptake for each sample, with 

CP1 showing significantly higher uptake than all other compounds (**** p < 0.0001). 

Interestingly, the charged conjugates (CP2-9) and polymers (P2-9) were all internalised 

by the cells in a similar amount to the single PEGA chain control (CP1). In addition, no 

significant differences were observed between various percentages of positive charge, nor 

between the compounds containing ammonium or phosphonium residues.  

The intracellular fluorescence results correlate with the Nagg data obtained via SLS, 

clearly indicating that self-assembly plays a major role on the cell-uptake of CP-polymer 

conjugates. In previous reports, positive charges have been highlighted as beneficial for 

the uptake of Lysine- or Arginine-containing macromolecules, where neutrally charged 

controls showed no significant cellular uptake.6, 29, 30 While neither the uptake nor 

cytotoxicity mechanisms of polycations is fully understood, the enhanced uptake 

observed for these compounds is generally associated with the presence of electrostatic 

interactions between the positive charges and the negatively charged membrane of cells.29 

In the present case, increasing the amount of charge in polymers P2-9 and conjugates 

CP2-9 does not result in an increased uptake by the cell, thus indicating that the charged 

segments in the system are potentially not able to interact with the cell membranes. This 

phenomenon was attributed to the screening of charge by the pendant PEG chain of the 

polymer arms. The brush-like structure of these long chains provides steric hindrance that 

prevents the positive charges from coming into close contact with the cell membrane and 

thereby enhancing penetration. A similar phenomenon has been previously reported by 

Knop et al. who show that PEG chains form a conformational cloud that shields the 

charge from the cell-membrane.39 This hypothesis is in direct accordance with the 

absence of toxicity observed for these compounds.  
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Figure 5.2: Intracellular fluorescence in MDA-MB-231 cells exposed to 50 μg·mL-1 of 

polymers P1-9, and CP-polymer conjugates CP1-9 for 20 hours, as determined using flow 

cytometry and fluorescence correction factors (n = 4). 

Having demonstrated that self-assembly is required for the enhanced uptake of these 

conjugates, the importance of charge repartition within the conjugates was investigated. 

This was done by comparing the cellular uptake of CP2-9, for which charges are 

homogeneously distributed within the polymer arms, with heterogeneous mixture of 

charged and uncharged conjugates. By combining charged (CP5 or CP9) and non-charged 

(CP1) conjugates, one of three effects would be observed; co-assembly resulting in 

improved cellular uptake, co-assembly resulting in diminished cell-uptake, or no co-

assembly resulting in simple dilution of fluorescence. Both CP5 and CP9, each containing 

25% charged residues, were mixed with neutral CP1 in varying ratios to attain overall 

values of 10%, 5%, and 2% total charge (assuming co-assembly), which can be readily 

compared with CP3-5 and CP7-9, containing equivalent percentage of charges which are 

homogeneously distributed (Table A5.3). Theoretical fluorescence values were 

calculated for the case where no co-assembly took place, taking into account the 

fluorescence correction factor of CP1 and CP5 and their respective uptake as determined 

by the previous experiment. These values, reported in Table A5.3, were then compared 

with the values obtained for mixtures of the two compounds incubated with MDA-MB-

231 cells for the same amount of time (20 hours).  
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For the mixtures of CP1 with CP5 (the ammonium derivative) a significant discrepancy 

between the theoretical and practical values was observed (Figure 5.3A). The results 

indicate that the 43.9 % decrease in fluorescence observed for the 40% CP5:CP1 mixture 

is not merely a feature of dilution of CP1. Instead, the results suggest that CP5 mixes and 

co-assembles with CP1, which in turns diminishes the propensity of the mixed system to 

self-assemble. In contrast, the phosphonium derivative mixture of CP9 and CP1 (Figure 

5.3B) follows the theoretical values closely, indicating that in this case the decrease in 

intracellular fluorescence is due to a dilution of CP1. While these results do not allow for 

a definitive conclusion on the mechanism of co-assembly of charged and uncharged 

unimers, they indicate there is some difference between conjugates bearing ammoniums 

and conjugates bearing phosphoniums. In the present case, these discrepancies can be 

explained by considering the differences in size and electronegativity of nitrogen and 

phosphorous atoms. Phosphonium has a larger atomic radius and is more electronegative 

than its ammonium counterpart, thus its association to counter ions in solution is 

weaker.58 Such enhanced electronegativity was previously reported in the literature, with 

phosphonium-based materials showing increased interaction with the negatively-charged 

membrane over ammonium analogues.59 Additional electrostatic repulsion between the 

phosphonium would then lead to fewer phosphonium-bearing unimers inserting within 

existing nanotubes of uncharged compounds. Assuming than only one or less 

phosphonium-bearing unimers is able to insert in one uncharged nanotube (Nagg = 6), this 

would explain why self-assembly is seemingly not affected by the presence of 

phosphonium unimers in solution.  
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Figure 5.3: Intracellular fluorescence in MDA-MB-231 cells exposed to 50 µM of 

conjugates with various amount of charge, introduced from heterogeneous mixing of 

neutral CP1 with (A) ammonium derivative CP5 and (B) phosphonium derivative CP9. 

5.3 Conclusion 

Herein the effect of self-assembly vs. the molecular surface charge was compared for a 

library of CP-polymer conjugates on cellular uptake. RAFT polymerisation was used as 

an effective method by which a library of pPEGA-stat-pBEA copolymers were generated 

for direct conjugation to a self-assembling cyclic peptide core, in the absence of side 

reaction. The charged conjugates created from these precursor polymers, incorporating 

either an ammonium and phosphonium group, displayed unexpected results in vitro. 

Increasing quantities of charge did not result in additional cellular uptake, as the bulk of 

literature would suggest. Instead, self-assembly was found to be a far more effective 

property for improved cell penetration for polymeric nanotubes. In addition to this, the 

negative effect of charge on self-assembly was found in mixtures of assembling and 

unimeric conjugates and that ammonium and phosphonium analogues co-assembled 

differently. Charged ammonium conjugates, when mixed with assembling conjugates, 

resulted in less cellular uptake due to the co-assembly of the charged conjugates. In the 

case of phosphonium analogues however, no co-assembly was apparent. This indicates 

that despite structural similarities, the species of charges results in remarkably different 

self-assembly and therefore cell-uptake behaviours. The self-assembly properties of this 
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system, and the improved cell uptake it imparts, makes these materials an exciting 

potential material for drug delivery. With these encouraging results, further study should 

be undertaken in a less sterically hindered system to confirm these results. 

5.4 Experimental  

5.4.1 Materials 

Triethylamine, dioxane and DMSO were purchased from Fisher Scientific. 4,4-Azobis(4-

cyanovaleric acid) (ACVA) was purchased from MP Biomedicals. All other compounds 

were purchased from Sigma-Aldrich. All chemicals were used as received except PEGA 

monomer which was run through basic alumina to remove the inhibitor. All solvents were 

bought from commercial sources and used as received. Amicon Ultra-15 10K MWCO 

centrifugal filtration units were used as received for purification. 

5.4.2 Methods & Instruments 

1H NMR spectra were recorded on a Bruker AV-300, HD-300 or AV-400 in CDCl3, D2O 

or DMSO-d6. Shift values (δ) are reported in ppm. The residual proton signal of the 

solvent was used as an internal standard (CDCl3 δH 7.26, D2O δH 4.79, DMSO-d6 δH 2.50). 

Size exclusion chromatography (SEC) was carried out on a Polymer Laboratories PL-

GPC 50 Plus. DMF (0.1% LiBr) was used as eluent at 1.0 mL min−1 at 50 °C. Commercial 

narrow linear poly(methyl methacrylate) standards in range of 2.0 × 102 g mol−1 to 1.0 × 

106 g mol−1 were used to calibrate the DMF SEC system. Analyte samples were filtered 

through polytetrafluoroethylene (PTFE) membrane with either 0.2 μm or 0.45 μm pore 

size before injection (100 μL). Analytical high performance liquid chromatography 

(HPLC) was performed on Agilent 1260 Infinity series stack equipped with an Agilent 

1260 binary pump and degasser. 50 μL samples were injected using Agilent 1260 auto 

sampler with a flow rate of 1 mL·min-1. The HPLC was fitted with an Agilent Eclipse 

Plus C18 column (100 × 4.6 mm) with 3.5 μm micron packing (95 Å). Detection was 

achieved using an Agilent 1260 variable wavelength detector monitoring at 220 nm and 

an Agilent 1260 fluorescence detector 𝜆ex = 490 nm, 𝜆em =525 nm. Mobile phase A 

consisted of 100 % water containing 0.05 % TFA as an additive. Mobile Phase B 
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consisted of 100 % methanol containing 0.05 % TFA as an additive. The column was 

equilibrated by washing with the starting % of mobile phase A for 10 minutes prior to 

injection for all conditions. The method gradient used for HPLC analysis: 15 % mobile 

phase B increasing to 100 % mobile phase B over 23 minutes, and remaining at 100% 

mobile phase B for 3 minutes, before resetting to the starting conditions in 1 minute and 

remaining in these conditions for 3 minutes to re-equilibrate the column before 

subsequent injections (30 min total run time). Zeta potential measurements were carried 

out using a Malvern nanoZS zetasizer instrument (scattering angle of 173°, 10mW He-

Ne laser) in Malvern disposable folded capillary cell (DTS1070) cuvettes. Polymer 

solutions were prepared at ~ 2 mg·mL-1 in deionised water. Each sample was run in 

triplicate at 25 °C using the Malvern Zetasizer software. Centrifugal filtration was carried 

out using Vivaspin® 20, 3,000 MWCO centrifuge tubes. Experimental Mn,SEC and Đ 

values of synthesised polymers were determined using Agilent GPC software. PTFE 

0.2 μm syringe filters were obtained from Fisherbrand for filtration of samples in organic 

solvents. Pall Gelman GHP Acrodisc 0.2 μm syringe filters were obtained from Sigma-

Aldrich for filtration of aqueous samples.  

5.4.3 Synthesis of Linear Peptide, Cyclic Peptide and Deprotection 

Synthesis of the linear peptide was achieved by SPPS as described in Chapter 3.4.3. The 

cyclic peptide was generated by high dilution end-to-end amide bond formation as 

described in Chapter 3.4.4. Boc deprotection of the cyclic peptide was achieved as per 

the protocol in Chapter 3.4.5. 
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5.4.4 Copolymerisation of PEGA and BEA 

 

Polymerisation of PEGA was achieved using a protocol adapted from a previously 

reported procedure:52 In a small vial with a magnetic stirrer; NHS-CPAETC (22.2 mg, 

0.0616 mmol), PEGA (0.720 g, 1.50 mmol), BEA (91 mg, 0.508 mmol), ACVA 

(1.73 mg, 6.18 μmol), 1,3,5-trioxane (11 mg) as an internal standard and dioxane 

(1.25 mL) were combined and the vial sealed with a rubber septum. The vial and solution 

were deoxygenated by a stream of bubbled nitrogen for 10 min, then put in an oil bath 

that was pre-heated to 70 oC and allowed to stir until the desired conversion was reached. 

Conversion of monomer to polymer was followed by taking kinetic samples with a 

degassed syringe and analysed by 1H NMR. Upon completion, the polymer was rapidly 

cooled to room temperature, opened to air and precipitated twice in hexane/diethyl ether 

(1:1, 50 mL). 1H-NMR (300 MHz, 293K, CDCl3, ppm): δ = 4.36 (OCH2CH2, BEA), 4.15 

(CH2OCO, PEGA), 3.76-3.35 (CH2CH2O, PEGA; CH2CH2Br, BEA), 3.38 (OCH3, 

PEGA), 2.86 (CH2 -NHS end group), 2.32-1.43 (CHCH2, PEGA; CHCH2, Backbone), 

1.21 (-CH3, end group). See Figure 5.4 for 1H-NMR in CDCl3. See Figure 5.5 a typical 

SEC in DMF (0.1 % LiBr): p(PEGA-stat-pBEA)
29: Mn = 11000 g·mol-1, 

Mw = 12400 g·mol-1, Ð = 1.13; p(PEGA-stat-pBEA)
22: Mn = 10600 g·mol-1, 

Mw = 11900 g·mol-1, Ð = 1.13; p(PEGA-stat-pBEA)
26: Mn = 9900 g·mol-1, 

Mw = 11100 g·mol-1, Ð = 1.13; p(PEGA-stat-pBEA)
28: Mn = 9100 g·mol-1, 

Mw = 10100 g·mol-1, Ð = 1.10. 
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Table 5.1: Details of NHS-p(PEGA-stat-BEA) polymers synthesised. 

Polymer % BEA DP 
[M]

0
  [CTA]

0
 

Conv. χ
a 

(%) 

M
n,th

b 

(g·mol-1) 

M
n,SEC

c 

(g·mol-1) 

Đ 
[CTA]

0
   [I]

0
 

p(PEGA-stat-pBEA)
29

 2% 29 32  10 89 14300 11000 1.13 

p(PEGA-stat-pBEA)
22

 5% 22 32  10 77 12300 10600 1.13 

p(PEGA-stat-pBEA)
26

 10% 26 32  10 89 12900 9900 1.13 

p(PEGA-stat-pBEA)
28

 25% 28 32  10 85 9400 9100 1.10 
 a

 Conversion determined by 
1
H-NMR 

b
 Theoretical number-average molecular weight 

c
 DMF SEC, DRI detector, PMMA standards, number-average molecular weight 

 

Figure 5.4: 1H NMR of NHS-p(PEGA75%-stat-BEA25%)28 in CDCl3. 
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5.4.5 Conjugation of Polymer to Cyclic Peptide 

 

Scheme 5.2: Conjugation of NHS-p(PEGA-stat-pBEA)n copolymers to cyclic D-, L- α-

octapeptide. 

Conjugation of NHS-p(PEGA-stat-pBEA)n to 1-arm cyclic peptide was achieved as 

described in Chapter 3.4.8. See Figure 5.5 a typical SEC in DMF (0.1 % LiBr): 

CP-p(PEGA-stat-pBEA)
29: Mn = 9500 g·mol-1, Mw = 11400 g·mol-1, Ð = 1.20; 

CP-p(PEGA-stat-pBEA)
22: Mn = 11700 g·mol-1, Mw = 14000 g·mol-1, Ð = 1.19; 

CP-p(PEGA-stat-pBEA)
26: Mn = 10900 g·mol-1, Mw = 12800 g·mol-1, Ð = 1.18; 

CP-p(PEGA-stat-pBEA)
28: Mn = 100100 g·mol-1, Mw = 1500 g·mol-1, Ð = 114. 
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Figure 5.5: SEC analyses of NHS-p(PEGA-stat-pBEA)n polymers (dotted line) and 

following conjugation to the cyclic peptide (solid line) for (A) 2% BEA, (B) 5% BEA, (C) 

10% BEA and (D) 25% BEA. 
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5.4.6 Synthesis of 3',6'-Dihydroxy-N-(2-mercaptoethyl)-3-oxo-3H-

spiro[isobenzofuran-1,9'- xanthene]-4-carboxamide 

(Cystamidefluorescein) 

 

Scheme 5.3: Synthesis of cystamidefluorescein from cystamine.HCl and 

5(6)-carboxyfluorescein via HCTU mediated amide bond formation. The disulfide 

intermediate product was treated with TCEP to give the desired free thiol 

cystamidefluorescein. 

Cystamide fluorescein was prepared in a similar method to Buhl et al.53 Cystamine.HCl 

(12.0 mg, 0.0534 mmol), 5(6)-Carboxyfluorescein (40.6 mg, 0.108 mmol), and HCTU 

(71.1 mg, 0.172 mmol) were suspended in DMF (1 mL) in a small vial with stirring and 

deoxygenated with a stream of N2. While still under N2 stream, NMM (80.3 μL, 73.9 mg, 

0.730 mmol) was added to the reaction mixture and the solution was stirred at room 

temperature for a further 24 h. The reaction mixture was precipitated in water and purified 

by preparatory HPLC (tR (min) = 23.3, 25.66, 26.98); 1H-NMR (400 MHz, 293 K, 

DMSO-d6, ppm): δ = 10.26 (2H, br s, -OH), 9.03 - 8.88 (1H, d of m, ArH), 8.44 (H, d, 

ArH), 8.25 - 8.05 (H, m, ArH), 7.87 (H, m, ArH), 7.68 - 7.61 (H, m, ArH), 7.38 - 7.27 (H, 

m, ArH); ESI-ToF (MeOH): [M+H]+ calculated: 436.077; found: 436.1. See Figure 5.6 

for HPLC (tR (min) = 23.3, 25.66, 26.98). 
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Figure 5.6: Overlay of HPLC traces for 5(6)-carboxyfluorescein starting material (black 

line), cystamidefluorescein product in the disulfide form (blue line) and desired free-thiol 

cystamidefluorescein product following addition of TCEP (red line). The trio of peaks in 

the cystamidefluorescein traces are due to isomerisation of the dye. 

5.4.7 Post-modification of Polymers and Conjugates 

5.4.7.1 Substitution with Cystamidefluorescein 

Typical reaction of cystamidefluorescein with p(PEGA-stat-pBEA) polymer or 

conjugate: CP-p(PEGA-stat-BEA)n (0.090 g, 9.62 μmol) and DIPEA (1 μL, 0.742 mg, 

4.59 μmol) were suspended in DMF (0.5 mL) in a small vial with stirrer bar. Separately 

fluorescein-SH (1 mg, 2.30 μmol) was suspended in DMF (0.5 mL) and added dropwise 

to the polymer solution over one hour. After 24 h the solution was halved without 

purification and directly substituted with trimethyl amine or trimethyl phosphine. 
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5.4.7.1.1 Substitution with Trimethyl amine 

 

The reaction of trimethyl amine with p(PEGA-stat-pBEA)n polymer or conjugate without 

dye was conducted as per Chapter 4. 

CP-[p(PEGA-stat-BEA)n] (20 mg, 2.13 μmol) was suspended in 1 mL of DMSO in a 

small vial with stirrer bar, to which was added 2 equiv. of trimethyl amine per bromine 

(4.2 M in ethanol, 50 μL, 0.21 mmol) and stirred for 24 h. Upon completion, the 

conjugate was precipitated in a hexane:ether mixture (~4:1) to give the desired conjugate 

(CP-[p(PEGA-stat-pTMAEA)n]).  

Typical reaction of trimethyl amine with dye-substituted p(PEGA-stat-pBEA) polymer 

or conjugate: The reaction mixture from the cystamidefluorescein substitution (0.5 mL) 

of CP-p(PEGA-stat-BEA)n (0.045 g, 4.79 μmol) and 2 equiv. of trimethyl amine per 

bromine (4.2 M in ethanol, 35 μL, 0.147 mmol) were added to a small vial and stirred for 

24 h under a N2 atmosphere. Upon completion, the conjugate was purified by centrifugal 

filtration (10 kDa MWCO) with 1:1 brine/water mixtures at pH = 14 until washes were 

clear (3 - 5 × 15 mL)), then washed with deionised water (3 × 10 mL) to give the desired 

conjugate (CP-[p(PEGA-stat-pTMAEA)n]). 1H-NMR (400 MHz, 293 K, DMSO-d6, 

ppm): δ = 8.31-6.92 (m, 10H, Trp), 4.41-4.58 (m, -CH2- 2xH), 4.08 (br s, PEG 2nH), 3.91 

(m, -CH2- 2xH), 3.50 (br s, PEG -CH2- ~16nH), 3.34 (br m, N-CH3 9xH), 2.41-1.61 (4m, 

3xH), 0.85-0.65 (m, 24H, Leu), no other peptide peaks were observed. See Figure 5.7 for 

1H NMR in DMSO-d6. Dye conjugation and removal of free dye was confirmed by 
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HPLC: See Figure A5.1 and Figure A5.3 for CP2-5 and P2-5 respectively. CP2: tR = 

22.57 min; CP3: tR = 22.53 min; CP4: tR = 22.23 min; CP5: tR = 21.53 min; P2: tR = 

21.02 min; P3: tR = 21.03 min; P4: tR = 20.24 min; P5: tR = 17.77 min.  

 

Figure 5.7: 1H NMR of CP-[p(PEGA75%-stat-pTMAEA25%)28] in DMSO-d6 following 

substitution with trimethyl amine. 

5.4.7.2 Substitution with Trimethyl phosphine 

 

Typical reaction of trimethyl phosphine with p(PEGA-stat-pBEA)n polymer or conjugate: 

CP-[p(PEGA-stat-BEA)n] (0.020 g, 2.13 μmol) was suspended in 250 μL of DMSO in a 

small vial with stirrer bar, to which was added 2 equiv. of trimethyl phosphine per 

bromine (1 M in THF, 250 μL, 0.250 mmol) and stirred for 24 h under a N2 atmosphere. 
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Upon completion, the conjugate was precipitated in a hexane:ether mixture (~4:1) to give 

the desired conjugate (CP-[p(PEGA-stat-pTMPEA)n]).  

Typical reaction of trimethyl phosphine with dye substituted p(PEGA-stat-pBEA) 

polymer or conjugate: The reaction mixture from the cystamidefluorescein substitution 

(0.5 mL) of CP-[p(PEGA-stat-BEA)n] (0.045 g, 4.79 μmol) and 2 equiv. trimethyl 

phosphine per bromine (1 M in THF, 200 μL, 0.2 mmol) were added to a small vial and 

stirred for 24 h under a N2 atmosphere. Upon completion, the conjugate was purified by 

centrifugal filtration with 1:1 brine/water mixtures at pH = 14 until washes were clear 

(3 - 5 × 15 mL)), then washed with deionised water (3 × 10 mL) to give the desired 

conjugate (CP-[pPEGA-stat-pTMPEAn]). 1H-NMR (300 MHz, 293 K, DMSO-d6, ppm): 

δ = 8.31-6.93 (m, 10H, Trp), 4.96 (br s, 2xH),  4.32-4.69 (m, -CH2- 2xH), 4.09 (br s, PEG 

2nH), 3.76 (m, -CH2- 2xH), 3.501 (br s, PEG -CH2- ~16nH), 2.29-1.61 (4m, 3nH + 9xH), 

0.87-0.67 (m, 24H, Leu), no other peptide peaks were observed. See Figure 5.8 for 1H 

NMR in DMSO-d6. Dye conjugation and removal of free dye was confirmed by HPLC: 

See Figure A5.1 and Figure A5.3 for CP6-9 and P6-9 respectively. CP6: tR = 22.54 min; 

CP7: tR = 22.51 min; CP8: tR = 22.31 min; CP9: tR = 22.02 min; P6: tR = 21.30 min; P7: 

tR = 21.33 min; P8: tR = 21.18 min; P9: tR = 21.07 min.  

 

Figure 5.8: 1H NMR of CP-[p(PEGA75%-stat-pTMAEA25%)28] in DMSO-d6 following 

substitution with trimethyl phosphine. 

 



Chapter 5 - Self-assembly vs. Charge on Cellular Uptake of CPNTs 

 

Page | 134 

5.4.7.3 Substitution with Thioglycerol 

 

Typical reaction of thioglycerol with dye substituted p(PEGA-stat-pBEA)29 polymer or 

conjugate: The reaction mixture from the cystamidefluorescein substitution (0.5 mL in 

DMSO) of CP-p(PEGA-stat-BEA)n (0.045 g, 4.79 μmol), thioglycerol (65 μL, 

0.754 mmol) and DIPEA (131 μL, 0.754 mmol) were added to a small vial and stirred for 

24 h under a N2 atmosphere. Upon completion, the conjugate was purified by centrifugal 

filtration with 1:1 brine/water mixtures at pH = 14 until washes were clear 

(3 - 5 × 15 mL), then washed with deionised water (3 × 10 mL) to give the desired 

conjugate (CP-[p(PEGA-stat-pGlyEA)29], CP1). 1H-NMR (300 MHz, 293 K, DMSO-d6, 

ppm): δ = 8.23-6.93 (m, 10H, Trp), 4.32-4.82 (m, -CH2- 2xH), 4.10 (br s, PEG 2nH), 3.69 

(m, -CH2- 2xH), 3.51 (br s, PEG -CH2- ~16nH), 2.41-1.61 (4m, 3xH), 0.78-0.66 (m, 24H, 

Leu), no other peptide peaks were observed. See Figure 5.9 for 1H NMR in DMSO-d6. 

Dye conjugation was confirmed by HPLC: CP1: tR = 22.93 min; P1: tR = 22.12 min. 
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Figure 5.9: 1H NMR of CP-[p(PEGA98%-stat-pGlyEA2%)29] (CP1) in DMSO-d6 following 

substitution with thioglycerol. 

5.4.8 Static Light Scattering 

SLS experiments were performed as discussed in Chapter 3. 
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Conclusion, Perspectives and Outlook 

The aim of this thesis was to develop a synthetic strategy by which complex polymeric 

cyclic-peptide nanotubes can be synthesised and further modified with a wide range of 

small molecules by post-polymerisation modification, and using these novel systems to 

determine if the self-assembly process can be manipulated and controlled on a molecular 

level. 

Chapter 2 demonstrates that nucleophilic substitutions of a halogen side group polymer, 

a reaction that has been largely disregarded in polymer science to date, enables access to 

highly reactive and yet well-defined homopolymers. These polymers can be synthesised 

without the need of stringent polymerisation conditions nor at the cost of a low polymer 

yield. A convenient and versatile synthesis of an alkylbromo polymer, pBEA that can be 

readily synthesised under RAFT conditions was developed. A series of pBEA polymers 

were synthesised with varied molecular weights (2.0 – 26.2 kg mol -1) and narrow 

dispersities (PDI = 1.10 – 1.17). Chain extension of these macro-CTAs proved that the 

majority of the chain ends remain active and no significant side reactions were observed 

despite the high reactivity of the bromine groups. The addition of the bromine residue on 

the polymer arm provides a highly reactive handle by which these polymers can be further 

modified by small molecules (such as charged moieties, or functional biomolecules) 

using simple post-polymerisation modification strategies. 

The versatility of pBEA in nucleophilic substitutions allows for efficient production of a 

diverse library of functional polymers. A variety of nucleophiles were examined 

including well known nitrogen based substituents such as azides or tertiary amines, but 

also sulfites and sugars (which was previously unreported in the literature). Across all 

these nucleophilic species the substitution of pBEA proceeded with almost quantitative 

conversion (> 88%). A major advantage of this simple substitution is that only mild 

conditions are employed, i.e. room temperature and no need for additional catalysts. In 

concert with the high level of control provided by RAFT polymerisation, this strategy 

enables the synthesis of well-defined, highly charged polycations, permanently charged 
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polyanions, stable polythioethers, a highly reactive polyazide and even synthetically 

demanding glycopolymers with minimal synthetic effort. In particular, substitution using 

thiols is not limited to the demonstrated materials, but can be readily extended to 

encompass other available thiolates, allowing for the conjugation of even more molecules 

such as drugs, fluorescent tags, or cell targeting moieties. Considering the potential to 

create libraries of various materials with minimal effort and originating from a single 

precursor polymer, the synthetic route developed here is a unique and versatile tool.  

Chapter 3 describes the development of an orthogonal reaction sequence for the synthesis 

of sugar-coated nanotubes. End-functionalised BEA polymers were synthesised by RAFT 

polymerisation as described in Chapter 2, however an NHS-modified CTA was used. The 

NHS- bearing pBEA polymers were conjugated to a self-assembling CP core without any 

unwanted side-reactions, resulting in a reactive nanotube precursor for subsequent post-

modification. The self-assembly of these CP-pBEA conjugates was analysed by SANS 

and SLS, and found to form short nanotubes in THF-d6 solutions; with longer polymer 

chain lengths found to decrease the size of nanotube. The brominated precursor 

conjugates were then modified post-conjugation via a thio-bromo “click” reaction with a 

glucose thiolate salt, which resulted in CP glycopolymer conjugates. The self-assembly 

of these glycopolymer conjugates was again assessed by SANS and were found to form 

longer tubes of 135 - 145 Å, in the more hydrogen bonding competitive environment of 

D2O. The increase in length of the DP25 conjugate following post-modification, is an 

excellent demonstration that post-modification does not hinder self-assembly of the 

cyclic-peptide. Instead, post-modification is an advantageous route for enhancing 

nanotube formation by incorporating functional monomer units that can promote self-

assembly, either by improving solubility, reducing steric hindrance or increasing the 

inter-molecular attractive-forces such as with additional hydrogen bonding or π-π 

stacking. 

In Chapter 4, the synthesis and in situ characterisation of highly charged polyelectrolyte-

CP conjugate self-assemblies using SANS was carried out. In pure D2O, CP conjugates 

of both anionic pEASTEA and cationic pTMAEA exist as unimers. SANS scattering 

profiles of both conjugates were modelled to polyelectrolyte and cylinder form factors, 
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and the results are consistent with that of single unimers in solution. The presence of 

unimers was found to be due to the high electrostatic repulsion between polymer arms, 

preventing the inter-molecular hydrogen bond formation necessary for nanotube 

assembly. At high ionic strengths, the SANS profiles of anionic and cationic conjugates 

are very different, despite being synthesised from a single precursor and having the same 

number of charged monomers in the polymer chain. Guinier-Porod modelling revealed 

that the anionic conjugate formed an elongated spheroid structure, whereas the cationic 

analogue formed an extended cylindrical assembly. The scattering profile of anionic 

conjugates at high ionic strength (5 M NaCl) was modelled very effectively to a cylinder 

model, revealing that a mixture of unimeric conjugates and short stacks of peptides were 

formed. The SANS profile of the cationic conjugate was fitted with a Cylinder-Gaussian 

Coil combination model, which revealed that nanotubular structures of varying length are 

formed in high ionic strength solutions. The difference in assembly between the positively 

and negatively charged conjugates, despite the same polymer length, graft density and 

effective charge, is attributed to the difference in monomer size; with steric effects 

dominating the self-assembly once the electrostatic repulsions were shielded. This work 

presents a good step towards fine control of the self-assembly process for polymeric 

nanotubes, made possible by tuning the electrostatic interaction between polymer arms 

using salt to reduce the Debye radius and electrostatic repulsion. 

Finally, in Chapter 5 the effect of self-assembly vs. the molecular surface charge was 

compared for a library of CP-polymer conjugates on cellular uptake. The RAFT 

polymerisation of BEA explored in Chapter 2, in conjunction with the pBEA conjugation 

method developed in Chapter 3, was used as an effective strategy by which a library of 

pPEGA-stat-pBEA copolymers were generated. The partially charged conjugates created 

incorporated either an ammonium or phosphonium group, and resulted in unexpected 

results in vitro. Increasing quantities of charge did not increase cellular uptake, as the 

bulk of literature would suggest, and instead remained in the cellular periphery without 

interacting with the lipid bilayer. In addition to this, the negative effect of charge on self-

assembly via co-assembly was determined. Using mixtures of assembling and unimeric 

conjugates, it was found that ammonium and phosphonium analogues have different co-
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assembly properties. Charged ammonium conjugates, when mixed with assembling 

conjugates of pPEGA, resulted in less cellular uptake due to the co-assembly of the 

charged unimers. In the case of phosphonium analogues however, no co-assembly was 

apparent. This indicates that despite structural similarities, the two different charged 

species results in a remarkably different self-assembly, and therefore cell-uptake 

behaviours. The self-assembly properties of this system, and the improved cell uptake it 

imparts, makes these materials an exciting potential material for drug delivery especially 

given the easy modification of the pBEA macromolecule. With these encouraging results, 

further study should be undertaken in a less sterically hindered system to confirm these 

results. 

In summary, this thesis presents a new synthetic strategy with which a diverse library of 

materials based on self-assembling polymeric cyclic peptide nanotubes can be generated. 

The benefits of generating materials from a single precursor, is the possibility to study of 

the effect of different monomer types on the self-assembly process directly. In addition, 

this method provides access to complex functionalities such as polyelectrolytes and 

glycopolymers, which offer an exciting potential as antimicrobials, non-viral gene-

delivery agents and drug delivery vehicles. Despite the scope of this work, there are many 

other avenues which can be further explored.  

In Chapter 2, a more extensive library of polymers could be generated via nucleophilic 

substitution, such as zwitterionic compounds for antifouling applications. Additionally, a 

further study into the copolymerisation and chain extensions of BEA with other acrylate 

monomers would be an interesting insight. 

The SANS and SLS of studies in Chapter 3 could be expanded to gain a better 

understanding of the effect of filtration and equilibration time in these systems. 

Additionally, the SLS of the glycopolymer conjugates, would give additional insight into 

the length of assemblies formed.  

In Chapter 4, it would be beneficial to the study if the SANS profile of the polymer arms 

alone could be obtained (if additional SANS beam-time could be won!). This would give 

a greater insight into the interactions that are occurring in this highly complex system. 
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Additionally, SLS of these materials would potentially offer further insights into the self-

assembly of these materials.  

The glycopolymer conjugates generated in Chapter 3, are an exciting material that would 

make an excellent candidate for non-viral gene delivery and drug delivery applications. 

A library of glycopolymer conjugates could be synthesised, of varying DP, as well as 

different sugar moieties, such as galactose or mannose, and used to mimic complex 

glycosylation pathways found naturally in vivo, thus considerably expanding the potential 

application of these systems. Further, these glycopolymer conjugates would make a very 

interesting in vitro study for improving cell penetration. It would also be interesting to 

determine if the lectin binding properties of sugar-coated nanotubes is consistent with 

other sugars, by repeating the Con A study using different variations of sugar moieties. 

From the results of the studies in Chapter 5, self-assembly was highlighted as an 

important factor for improving cell penetration in polymeric cyclic peptide nanotubes. 

The extended nanotubular structure formed by glycopolymer conjugates in D2O suggests 

these compounds have a very good potential in the field of drug delivery given their 

enhanced cell uptake. 

Finally, to extend the work of Chapter 5, a series of copolymer-conjugates incorporating 

different charges should be synthesised that have a less sterically hindered co-monomer, 

such as the PEGA that was used in this study. Since the presence of PEGA chains likely 

shielded the charged monomers from interacting with the negative cell-membrane, a 

copolymer of charged units with a polymer comprising thioglycerol units would be an 

interesting material. Further to this a thioglycerol conjugate would be an interesting 

analogue to study alongside both glycopolymer conjugates and for the assessment of self-

assembly vs. charge. 
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6 Appendix to Chapter 3  

A3.1 Calculation of Conjugation Efficiency 

The percentage of conjugated chains was determined using equation (1): 

 

% 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝑑 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑐ℎ𝑎𝑖𝑛𝑠 =
2 ×% 𝐴𝑟𝑒𝑎 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒

2 ×% 𝐴𝑟𝑒𝑎 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒+% 𝐴𝑟𝑒𝑎 𝑓𝑟𝑒𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 
 (1) 

 

If 2.2 equivalents of polymer were used, the theoretical maximum conjugation is: 

2

2.2
× 100 = 91% 

 

Conjugation efficiency was calculated as a percentage relative to this maximum value, 

using equation (2): 

𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
% 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝑑 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑐ℎ𝑎𝑖𝑛𝑠

% 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 
   (2) 

 

Table A 3.1: Conjugation efficiencies of pBEA conjugations using equation 2. 

Sample Conjugation Efficiency 

CP-[pBEA10]2 86% 

CP-[pBEA25]2 94% 
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A3.2 Deconvolution of peptide-polymer conjugations  

 

A 3.1: Deconvolution of dwdlogM of CP-[pBEA10]2 conjugation before and after addition 

of base. 

 

 

A 3.2: Deconvolution of dwdlogM of CP-[pBEA25]2 conjugation. 
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Table A 3.2: Deconvolution of CP-[pBEA25]2 conjugation area of peak fit. 

Log-Normal Peak Fit 
Time (h) Polymer 1-Arm 2-Arm 

0 100% - - 

0.5 67% 9% 24% 
1 60% 14% 26% 

1.5 59% 9% 32% 
3.5 48% 10% 42% 
24 32% - 68% 

 

 

A 3.3: Normalised Infrared transmittance spectra of CP-[pBEA10]2 (blue line) and 

CP-[pBEA25]2 (red line). 
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A3.3 pBEA Conjugate SANS Analysis 

 

A 3.4: SANS profile of CP-[pBEAn]2 conjugates at 10 mg·mL-1 in THF-d8: CP-[pBEA10]2 

before (green circles) and after (green squares) filtration and CP-[pBEA25]2 (blue 

diamonds). 
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Guinier-Porod Model 
CP-[pBEAn]2 in THF-d6 

n = 10  n = 10 filtered  n = 25 

Guinier Scale 0.0363 0.139 0.738 

Dimension Variable (s) 0.902 0.541 0.013 

Rg (Å) 22.8 26.5 36.6 

Porod Exponent 2.42 1.93 4.27 

Background (cm-1) 0.0515 0.0464 0.0663 

√𝜒2 𝑁⁄  2.48 1.65 1.07 

A 3.5: Guinier-Porod model fits of CP-[pBEAn]2 scattering profiles at 10 mg·mL-1 in 

THF-d8 with different polymer arm DP: (A) DP10, (B) DP10 filtered, and (C) DP25. 
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Cylinder-Gaussian Coil 
CP-[pBEAn]2 in THF-d6 

n = 10  n = 10 Filtered  n = 25 

Scale 0.00102 0.000874 0.000764 

Radius (Å) 31.8 32.9 46.5 

Length (Å) 1480 259 50.7 

SLDcylinder (× 10-6 Å-2) 9.46† 9.46† 9.00† 

SLDsolvent (× 10-6 Å-2) 5.73† 5.73† 5.73† 

Background (cm-1) 0.0494 0.0464 0.0593 

Scale 0.0757 0.194 0.180 

Rg (Å) 15.5 19.5 44.0 

Polydispersity 1† 1† 1† 

Background (cm-1) 0† 0† 0† 

√𝜒2 𝑁⁄  2.49 1.28 1.10 

N
agg

 314.8 55.2 10.8 

A 3.6: Cylinder-Gaussian Coil model fits of CP-[pBEAn]2 scattering profiles at 10 mg·

mL-1 in THF-d8 with different polymer arm DP: (A) DP10, (B) DP10 filtered, and 

(C) DP25.  
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Cylinder Model CP-[pBEAn]2 in THF-d6 
n = 10  n = 10 Filtered  n = 25 

Scale 0.00154 0.00238 0.00110 
Radius (Å) 25.9 21.0 29.5 
Length (Å) 1919.1 276.8 106.4 

SLDcylinder (× 10-6 Å-2) 9.46† 9.46† 9.00† 
SLDsolvent (× 10-6 Å-2) 5.73† 5.73† 5.73† 
Background (cm-1) 0.0558 0.0557 0.0567 

√𝜒2 𝑁⁄  5.78 5.09 4.71 

A 3.7: Cylinder model fits of CP-[pBEAn]2 scattering profiles at 10 mg·mL-1 in THF-d8 

with different polymer arm DP: (A) DP10, (B) DP10 filtered, and (C) DP25. 
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Ellipsoid Model CP-[pBEAn]2 in THF-d6 
n = 10  n = 10 Filtered  n = 25 

Scale 0.00312 0.0173 0.00108 
Radius a (Å) 8.71 1.87 23.9 
Radius b (Å) 81.3 63.2 55.5 

SLDellipsoid (× 10-6 Å-2) 9.46† 9.46† 9.00† 
SLDsolvent (× 10-6 Å-2) 5.73† 5.73† 5.73† 
Background (cm-1) 0.0505 0.0505 0.0665 

√𝜒2 𝑁⁄  10.52 5.52 1.07 
A 3.8: Ellipsoid model fits of CP-[pBEAn]2 scattering profiles at 10 mg·mL-1 in THF-d8 

with different polymer arm DP: (A) DP10, (B) DP10 filtered, and (C) DP25. 
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Sphere Model 
CP-[pBEAn]2 in THF-d6 

n = 10  n = 10 filtered  n = 25 

Scale 0.00120 0.00154 0.000893 

Radius (Å) 44.8 40.0 43.5 

SLDsphere (× 10-6 Å-2) 9.46† 9.46† 9.00† 

SLDsolvent (× 10-6 Å-2) 5.73† 5.73† 5.73† 

Background (cm-1) 0.0572 0.0581 0.0697 

√𝜒2 𝑁⁄  16.61 11.44 3.76 

A 3.9: Sphere model fits of CP-[pBEAn]2 scattering profiles at 10 mg·mL-1 in THF-d8 with 

different polymer arm DP: (A) DP10, (B) DP10 filtered, and (C) DP25. 



   Chapter 3 - Appendix 

 

Page | 153 

A3.4 Thioglucose Conjugate SANS Analysis 

 

Cylinder-Gaussian Coil 
CP-[pGluEAn]2  

Cylinder Model 
CP-[pGluEAn]2 

n = 10  n = 25  n = 10  n = 25 

Scale 0.000499 0.000164  Scale 0.000855 0.000571 

Radius (Å) 23.8 26.8  Radius (Å) 21.1 21.3 

Length (Å) 148.7 135.1  Length (Å) 131.0 119.2 

SLDCylinder (× 10-6 Å-2) 1.14† 1.12†  SLDCylinder (× 10-6 Å-2) 1.14† 1.12† 

SLDSolvent (× 10-6 Å-2) 6.34† 6.34†  SLDSolvent (× 10-6 Å-2) 6.34† 6.34† 

Background (cm-1) 0.0470 0.0442  Background (cm-1) 0.0551 0.0532 

Scale 0.0861 0.1413  √𝜒2 𝑁⁄  2.07 1.30 

Rg (Å) 25.5 32.2  Nagg 27.9 25.4 

Polydispersity 1† 1†     

Background (cm-1) 0† 0†     

√𝜒2 𝑁⁄  1.59 1.02     

Nagg 31.6 28.7     

A 3.10: Model fits of CP-[pGluEA 10]2 (purple circles) and CP-[ pGluEA 25]2 (green circles) 

scattering profiles at 5 mg·mL-1 in D2O: (A) fits to a Cylinder-Gaussian Coil model and 

(B) fits to a Cylinder model. 
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Ellipsoid Model 
CP-[pGluEAn]2  

Guinier-Porod Model 
CP-[pGluEAn]2 

n = 10  n = 25  n = 10  n = 25 

Scale 0.000902 0.000611  Guinier Scale 0.0505 0.122 

Radius a (Å) 88.9 80.9  Dimension Variable (s) 0.50 0.19 

Radius b (Å) 21.8 21.9  Rg (Å) 20.3 26.8 

SLDellipse(× 10-6 Å-2) 1.14† 1.12†  Porod Exponent 4.29 1.93 

SLDsolvent (× 10-6 Å-2) 6.34† 6.34†  Background (cm-1) 0.05 0.04 

Background (cm-1) 0.0541 0.0522  √𝜒2 𝑁⁄  1.48 1.51 

√𝜒2 𝑁⁄  2.13 1.23        

A 3.11: Model fits of CP-[pGluEA10]2 (purple circles) and CP-[pGluEA 25]2 (green circles) 

scattering profiles at 5 mg·mL-1 in D2O: (A) fits to an Ellipsoid model and (B) to a Guinier-

Porod model. 
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A3.5 SLS Analysis 

 

A 3.12: Concentration dependence of molecular weight (Ma) of (A) CP-[pBEA15]2 and (B) 

CP-[pBEA29]2 in THF obtained by light scattering. 

 

A 3.13: Evolution of KC/R as a function of q² obtained by light scattering for 

CP-[pBEA15]2 in THF before (A) and after (B) filtration. 
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A 3.14: Evolution of KC/R as a function of q² obtained by light scattering for CP-[pBEA29]2 

in THF before (A) and after (B) filtration. 

 

A 3.15: Evolution of KC/R as a function of q² obtained by light scattering for 

(A) CP-[pBEA15]2 and (B) CP-[pBEA29]2 in THF 10 days after filtration. 
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A3.6 Details used in Igor for the Cylinder + Gaussian-Coil model1 

This was achieved using the model picking function in Igor Pro: 

 

A 3.16: Screenshot of Cylinder + Gaussian-Coil sum model selected. 

The summed model is a simple linear combination of the two models selected in Figure A 

3.16 based on the assumption that the two structures producing the scattering are non-

interacting. 

The coefficients for the summed model are a succession of the coefficients for the two 

individual models. For the two models, there are two independent scale factors that 

determine the scaling of each individual model. In real samples, this is often linked to 

how the material is distributed in the solution. The duplicated parameters (scale and 

background) were held fixed at appropriate values for curve fitting and are indicated by † 

following the held value. 

A3.7 References 

1.   Kline, S. Journal of Applied Crystallography 2006, 39, (6), 895-900. 

 



 

 

Page | 158 

7 Appendix to Chapter 4  

A4.1  SANS Data Analysis 

 

Polyelectrolyte Model 
CP-[pEASTEA25]2 D2O  CP-[pTMAEA25]2 D2O 

8.6 mgml-1 5.9 mgml-1  10 mgml-1 8.3 mgml-1 

Contrast factor (barns) 5.840 16.15   21.74 24.52 

Bjerrum length (Å) 7.12† 7.12†   7.12† 7.12† 

Virial parameter (Å-3) 1589 1851   1951 1897 

Monomer length (Å) 18.1 28.0   19.7 21.5 

Salt conc. (mol/L) 0† 0†   0† 0† 

Degree of ionisation 1† 1†   1† 1† 

Polymer conc. (mol/L) 1.02 0.82   0.81 0.82 

Background (cm-1) 0.00175 0.00169   0.00411 0.00411 

Power Law Exponent -3.62 -3.82  -1.47 -0.88 

√χ2 N⁄  1.30 1.06  2.16 1.95 

A 4.1: BE_Polyelectrolyte fits of (A) CP-[pEASTEA25]2 at 8.6 mg·mL-1 and 5.9 mg·mL-1; 

and (B) CP-[pTMAEA25]2 at 10 mg·mL-1 and 8.3 mg·mL-1 in D2O (†=held parameter 

value). 
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Ellipsoid Model 
CP-[pEASTEA25]2 D2O  CP-[pTMAEA25]2 D2O 

8.6 mgml-1 5.9 mgml-1  10 mgml-1 8.3 mgml-1 

Scale 0.00214 0.00267  0.0080 0.0086 

Radius a (Å) 2.7 1.2  1.8 1.3 

Radius b (Å) 36.8 40.6  30.4 32.8 

SLDEllipsoid (× 10-6 Å-2) 0.56† 0.56†  0.65† 0.65† 

SLDSolvent (× 10-6 Å-2) 6.34† 6.34†  6.34† 6.34† 

Background (cm-1) 0.00234 0.00231  0.0041 0.0047 

Power Law Exponent -3.62 -3.82  -1.47 -0.88 

√χ2 N⁄  1.23 1.13  2.52 2.46 

A 4.2: Ellipsoid fits of (A) CP-[pEASTEA25]2 at 8.6 mg·mL-1 and 5.9 mg·mL-1; and 

(B) CP-[pTMAEA25]2 at 10 mg·mL-1 and 8.3 mg·mL-1 in D2O (†=held parameter value). 
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Guinier-Porod Model 0.18 M NaCl 1 M NaCl 2 M NaCl 3 M NaCl 4 M NaCl 5 M NaCl 

Guinier Scale 0.0726 0.141 0.236 0.258 0.377 0.298 

Dimension Variable (s) 0.25 0.27 0.21 0.23 0.16 0.25 

Rg (Å) 22.9 26.6 29.0 29.5 31.2 30.7 

Porod Exponent 2.03 3.12 3.29 3.79 3.88 4.15 

Background (cm-1) 0.00638 0.00873 0.00767 0.00736 0.00693 0.00732 

Power Law Exponent -2.34 -2.09 -1.96 -3.19 -2.15 -1.98 

√χ2 N⁄  0.80 0.96 1.61 1.12 1.15 1.08 

A 4.3: Guinier-Porod model fits of CP-[pEASTEA25]2 scattering profiles in D2O with 

(A) 0.18 M NaCl, (B) 1 M NaCl, (C) 2 M NaCl, (D) 3 M NaCl, (E) 4 M NaCl, and (F) 5 M 

NaCl. 
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Cylinder Model D2O 8.6 mgml-1 D2O 5.9 mgml-1 0.18 M NaCl 1 M NaCl 2 M NaCl 

Scale 0.00425 0.00341 0.00561 0.000810 0.000874 

Radius (Å) 32.6 35.9 37.7 43.9 45.3 

Length (Å) 2.4 1.7 2.1 23.8 28.2 

SLDCylinder (× 10-6 Å-2) 0.56† 0.56† 0.56† 0.56† 0.56† 

SLDSolvent (× 10-6 Å-2) 6.34† 6.34† 6.34† 6.34† 6.34† 

Background (cm-1) 0.00170 0.00200 0.00672 0.00956 0.00895 

Power Law Exponent -3.62 -3.82 -2.34 -2.09 -1.96 

√χ2 N⁄  1.28 1.17 1.10 1.49 1.65 

A 4.4: Cylinder model fits of CP-[pEASTEA25]2 scattering profiles in D2O (A) at different 

concentrations: 5.9 and 8.5 mg·mL-1 (B) with 0.18 M NaCl, (C) 1 M NaCl, (D) 2 M NaCl 

(†=held parameter value). 
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Cylinder Model 3 M NaCl 4 M NaCl 5 M NaCl 5 M repeat 

Scale 0.000896 0.000911 0.000917 0.000923 

Radius (Å) 45.6 45.5 47.3 47.1 

Length (Å) 32.3 34.4 36.0 35.6 

SLDCylinder (× 10-6 Å-2) 0.56† 0.56† 0.56† 0.56† 

SLDSolvent (× 10-6 Å-2) 6.34† 6.34† 6.34† 6.34† 

Background (cm-1) 0.00784 0.00761 0.00764 0.00730 

Power Law Exponent -3.19 -2.15 -1.39 0.32 

√χ2 N⁄  1.91 1.68 1.98 1.81 

A 4.5: Cylinder model fits of CP-[pEASTEA25]2 scattering profiles in D2O with (A) 3 M 

NaCl, (B) 4 M NaCl,(C) 5 M NaCl, (D) 5 M NaCl re-run after 24 h (†=held parameter 

value). 
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Guinier-Porod Model 0.18 M NaCl 1 M NaCl 2 M NaCl 3 M NaCl 4 M NaCl 5 M NaCl 

Guinier Scale 0.0502 0.0122 0.0245 0.0325 0.0377 0.0509 

Dimension Variable (s) 0.80 1.03 0.89 0.83 0.81 0.73 

Rg (Å) 89.7 14.1 18.0 19.6 17.4 22.0 

Porod Exponent 1.35 2.11 2.38 2.59 2.04 2.67 

Background (cm-1) 0.000975 0.00258 0.00341 0.00407 -0.02161 0.00306 

√χ2 N⁄  1.84 1.28 1.30 1.53 1.27 1.59 

A 4.6: Guinier-Porod model fits of CP-[pTMAEA25]2 scattering profiles in D2O with 

(A) 0.18 M NaCl, (B) 1 M NaCl, (C) 2 M NaCl, (D) 3 M NaCl, (E) 4 M NaCl, and (F) 5 M 

NaCl. 
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A 4.7: Cylinder-Gaussian Coil model fits of CP-[pTMAEA25]2 scattering profiles in D2O 

with (A) 0.18 M NaCl, (B) 1 M NaCl, (C) 2 M NaCl, (D) 3 M NaCl, (E) 4 M NaCl, and 

(F) 5 M NaCl (†=held parameter value). 
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A 4.7: Continued 

Cylinder-Gaussian Coil 0.18 M NaCl 1 M NaCl 2 M NaCl 3 M NaCl 4 M NaCl 5 M NaCl 

Scale 0.00100 0.00041 0.00035 0.00037† 0.00037† 0.00037† 

Radius (Å) 10.7 31.5 32.9 32.3 33.6 32.6 

Length (Å) 199.8 285.9 223.8 258.1 268.1 284.1 

SLDCylinder (× 10-6 Å-2) 0.65† 0.65† 0.65† 0.65† 0.65† 0.65† 

SLDSolvent (× 10-6 Å-2) 6.34† 6.34† 6.34† 6.34† 6.34† 6.34† 

Background (cm-1) 0.002160 0.000629 0.000843 0.000387 0.00885 0.000818 

Scale 0.498 0.107 0.229 0.294 0.292 0.368 

Rg (Å) 75.3 17.6 29.0 35.6 29.3 40.3 

Polydispersity 1† 1† 1† 1† 1† 1† 

Background (cm-1) 0† 0† 0† 0† 0† 0† 

√χ2 N⁄  1.44 1.79 0.89 1.22 1.17 1.56 

 

 

5 M NaCl 

Cylinder Model Gaussian Coil Model 

Scale 0.00110 Scale 0.496 

Radius (Å) 23.5 Rg (Å) 44.7 

Length (Å) 312.1 Polydispersity 1† 

SLDCylinder (× 10-6 Å-2) 0.65† Background (cm-1) 0.000219 

SLDSolvent (× 10-6 Å-2) 6.34† √χ2 N⁄  0.83 

Background (cm-1) 0.000216   

√χ2 N⁄  1.97   

A 4.8: Cylinder fit and model (red lines) and Gaussian-Coil fit and model (blue lines) of 

CP-[pTMAEA25]2 in D2O with 5 M NaCl (†=held parameter value). 
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Appendix to Chapter 5  

A5.1 HPLC analyses 

 

A 5.1: RP-HPLC traces of CP-polymer conjugates CP2-5: 15-100 % Methanol gradient 

over 30 min. The strong UV absorbance is due to the Tryptophan residues on the CP. 
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A 5.2: RP-HPLC traces of CP-polymer conjugates CP6 - 9: 15-100 % Methanol gradient 

over 30 min. The strong UV absorbance is due to the Tryptophan residues on the CP. 
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A 5.3: RP-HPLC traces of control polymers P2 - 5: 15-100 % Methanol gradient over 30 

min. UV traces for the polymers are weak due to the absence of strongly UV active 

functionalities. 
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A 5.4: RP-HPLC traces of control polymers P6 - 9: 15 - 100 % Methanol gradient over 30 

min. UV traces for the polymers are weak due to the absence of strongly UV active 

functionalities. 
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Table A 5.1: Zeta potential and electrophoretic mobility values for charged polymers and 

conjugates (P2 - 9 and CP2 - 9). 

Sample Charge (%) 
Zeta Potential 

(mV) 
Mobility 

(µmcm/Vs) 
Δ Zeta  

Potential* 
Δ Mobility** 

CP1 0 -16.70 -1.31 0 0 

P2 2 7.37 0.58 - - 

P3 5 6.85 0.54 - - 

P4 10 11.40 0.89 - - 

P5 25 18.93 1.49 - - 

CP2 2 -1.39 -0.11 15.31 1.20 

CP3 5 4.59 0.36 21.29 1.67 

CP4 10 7.26 0.57 23.96 1.88 

CP5 25 27.17 2.13 43.87 3.44 

P6 2 3.04 0.24 - - 

P7 5  4.26 0.29 - - 

P8 10  15.72  1.08 - - 

P9 25 28.43 2.23 - - 

CP6 2 -8.29 -0.65 8.41 0.66 

CP7 5 3.81 0.30 20.51 1.61 

CP8 10 9.68 0.76 26.38 2.07 

CP9 25 10.77 0.84 27.47 2.15 

*   Difference in zeta potential from CP1 value 

** Difference in electrophoretic mobility from CP1 value 
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A5.2 SLS Data 

Table A 5.2: Summary of Nagg values obtained by static light scattering. 

Compound Nagg 

CP1 6.2 

CP2 2.4 

CP3 2.8 

CP4 2.3 

CP6 2.6 

CP7 2.1 

CP8 1.9 

CP9 0.8 
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A 5.5: Zimm plots (KC/R) and concentration dependence of molecular weight for 

(A) CP-[p(PEGA-stat-pTMAEA2%]29 and (B) CP-[p(PEGA-stat-pTMPEA2%]29. 
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A 5.6: Zimm plots (KC/R) and concentration dependence of molecular weight for 

(A) CP-[p(PEGA-stat-pTMAEA5%]22 and (B) CP-[p(PEGA-stat-pTMPEA5%]22. 
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A 5.7: Zimm plots (KC/R) and concentration dependence of molecular weight for 

(A) CP-[p(PEGA-stat-pTMAEA10%]26 and (B) CP-[p(PEGA-stat-pTMPEA10%]26. 
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A 5.8: Zimm plots (KC/R) and concentration dependence of molecular weight for 

CP-[p(PEGA-stat-pGlyEA2%]29. 
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A5.3  Cell Experiments 

A5.3.1 Cell Lines 

MDA-MB-231 cells were cultivated in DMEM medium supplemented with 10% foetal 

bovine serum and 2 mM L-glutamine. 

A5.3.2 Cytotoxicity Assay 

Cell viability was tested using a standard protocol for the XTT assay.1 MDA-MB-231 

cells were seeded into a 96 well plate at a density of 1 × 104
 cells per well and allowed to 

grow for 24 h. The culture medium was replaced with fresh media containing a series of 

dilutions of polymer or conjugate (100, 50, 10, 1 and 0.1 μmol·L-1) previously prepared 

from stock solutions in water at 500 μmol·L-1. Following 24 h incubation, the media was 

replaced with fresh media and 25 μL of a solution of XTT (1 mg·mL-1) containing N-

methyl dibenzopyrazine methyl sulfate (PMS) (25 μmol·L-1) in medium was added. Cells 

were further incubated for 16 h. Absorbance of samples were then measured using a 

Synergy HTX plate reader at 450 nm and 650 nm (background). 

A5.3.3 Cellular Uptake Experiments 

MDA-MB-231 cells were seeded into a 24 well plate at a density of 1 × 105
 cells per well 

and allowed to grow for 24 h. The culture medium was replaced with fresh media 

containing the polymer or conjugate at 50 μmol·L-1 previously prepared from stock 

solutions in DMSO at 50 mmol·L-1. Cells were then incubated for 20 h, after which the 

medium was removed, the cells were washed with PBS, trypsinised, centrifuged, 

redispersed in ice-cold PBS and filtered into FACS tube for analysis. Cells were kept in 

ice to minimise exocytosis of the compounds. For the heterogeneous mixing experiments, 

CP5 and CP1 or CP9 and CP1 were mixed previously from stock solutions in DMSO at 

50 mmol·L-1, vortexed, then water was slowly added (up to 500 μmol·L-1) with frequent 

vortexing to allow good mixing of the unimers. These solutions were then allowed to mix 

for 30 minutes at room temperature before preparing the final solution at 50 μmol·L-1 in 
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cell culture media. The geometric mean fluorescence was used as the sample value. 

Uptake of fluorescein labelled polymers and conjugates was quantified using a Becton-

Dickinson FACScan flow cytometer (λex = 488 nm, λem = 530/30 nm). The data in Figure 

2 and 3 are representative of two separate experiments where each sample was measured 

in duplicate (n = 4). All errors reported correspond to the standard deviation from the 

mean. Statistical analysis was performed using Student’s t-test and **** p < 0.0001. 

Table A 5.3: Relative fluorescence of fluorescein-modified compounds in PBS and 

fluorescence corrections of flow cytometry data. 

Compound Slopea Correction Factorb 
MDA-MB-231 24 h 

Original Corrected 

P1 17.6 0.293 46.55 13.64 

CP1 18.9 0.315 342.54 107.9 

P2 255 4.250 2.32 9.88 

P3 638 10.63 0.76 8.13 

P4 501 8.350 1.31 10.96 

P5 409 6.817 1.87 12.76 

CP2 62.7 1.046 18.74 19.60 

CP3 62.6 1.044 15.37 16.05 

CP4 92.9 1.548 10.43 16.15 

CP5 74.7 1.245 14.19 17.67 

P6 53.6 0.893 16.32 14.57 

P7 24.1 0.402 27.81 11.18 

P8 78.7 1.311 7.85 10.29 

P9 76.1 1.268 7.77 9.85 

CP6 74.2 1.236 13.28 16.42 

CP7 98.6 1.644 11.59 19.06 

CP8 62.1 1.035 15.99 16.55 

CP9 29.3 0.489 46.83 22.90 

a Fluorescence intensity = f(concentration) 

b
 Slope/Average of slopes 
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Table A 5.4: Theoretical and experimental cellular fluorescence from mixtures of 

assembling and non-assembling conjugates. 

Mix CP1: CP5 Charge 
Theoretical 

Uptake* 
Uptake Difference 

CP5 0 100 25% 19.78 19.78 - 

CP1:CP5 60 40 10% 131.0 73.55 -43.9% 

CP1:CP5 80 20 5% 168.1 116.2 -30.9% 

CP1:CP5 90 10 2% 186.6 145.7 -22.0% 

CP1 100 0 0% 205.2 205.2 - 

CP9 0 100 25% 22.90 22.90 - 

CP1:CP9 60 40 10% 132.3 129.0 -2.50% 

CP1:CP9 80 20 5% 168.7 181.2 7.43% 

CP1:CP9 90 10 2% 186.9 206.2 10.3% 

CP1 100 0 0% 205.2 205.2 - 

*Theoretical uptake calculated by multiplying the respective CP1, CP5, or CP9 
by their respective ratio and added together.  
i.e. CP1/CP5 = 90: 10 = (205.2 × 0.9) + (19.78 × 0.1) = 186.6 
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