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ABSTRACT
Glyoxalase 1 (Glo1) is part of the glyoxalase system in the cytoplasm of all human cells. It
catalyses the glutathione-dependent removal of the endogenous reactive dicarbonyl
metabolite, methylglyoxal (MG). MG is formed mainly as a side product of anaerobic
glycolysis. It modifies protein and DNA to form mainly hydroimidazolone MG-H1 and
imidazopurinone MGdG adducts, respectively. Abnormal accumulation of MG, dicarbonyl
stress, increases adduct levels which may induce apoptosis and replication catastrophe. In the
non-malignant state, Glo1 is a tumour suppressor protein and small molecule inducers of
Glo1 expression may find use in cancer prevention. Increased Glo1 expression is permissive
for growth of tumours with high glycolytic activity and is thereby a biomarker of tumour
growth. High Glo1 expression is a cause of multi-drug resistance. It is produced by over-
activation of the Nrf2 pathway and GLO1 amplification. Glo1 inhibitors are antitumour
agents, inducing apoptosis and necrosis, and anoikis. Tumour stem cells and tumours with
high flux of MG formation and Glo1 expression are sensitive to Glo1 inhibitor therapy. It is
likely that MG-induced cell death contributes to the mechanism of action of current
antitumour agents. Common refractory tumours have high prevalence of Glo1 overexpression
for which Glo1 inhibitors may improve therapy.

Taxonomy: protein glycation, cancer.
Key words: cancer prevention; gene amplification; cancer chemotherapy; inhibitor;
apoptosis; replicative stress
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1. Introduction: the glyoxalase system
The glyoxalase system is a metabolic pathway in the cytoplasm of all human cells which
catalyses the detoxification of the endogenous reactive metabolite, methylglyoxal (MG) –
Fig. 1A. It consists of two enzymes which catalyse successive reactions, glyoxalase 1 (Glo1)
and glyoxalase 2 (Glo2), and a catalytic amount of reduced glutathione (GSH). Glyoxalase 1
(Glo1) catalyses the isomerisation of the hemithioacetal, formed spontaneously from MG and
GSH to S-D-lactoylglutathione: CH3COCHO + GSH ⇌ CH3COCH(OH)-SG 
CH3CH(OH)CO-SG. Glyoxalase 2 (Glo2) catalyses the conversion of S-D-lactoylglutathione
to D-lactate and reforms GSH consumed in the Glo1-catalysed reaction step [1]. The
glyoxalase system metabolises other reactive, acyclic α-oxoaldehydes such as glyoxal and 
hydroxypyruvaldehyde. MG is the most reactive dicarbonyl and of highest endogenous flux
and so is often the primary concern for health [2]. The primary function of the glyoxalase
system is to metabolise MG and/or other reactive acyclic α-oxoaldehyde metabolites, and 
thereby suppress them to low steady-state concentrations.

MG is formed mainly by the degradation of triosephosphates, and also by the
metabolism of ketone bodies, threonine degradation and the fragmentation of glycated
proteins – reviewed in [3]. The estimated flux of formation in healthy adults is ca. 3 mmol
MG per day. Little MG is absorbed from the diet and ca. 0.1 μmol MG per day is excreted in 
urine. The typical concentrations of MG are 100 – 200 nM in plasma and in 1 – 4 µM in
cells and tissues [4].The glyoxalase system is the major pathway for metabolism of MG.
When Glo1 activity is decreased in situ by gene silencing [5, 6], cell permeable Glo1
inhibitors [6, 7] and depletion of GSH [8], the cellular concentration of MG increases
markedly. MG is a potent glycating agent, reacting non-oxidatively mainly with arginine
residues of proteins to form the hydroimidazolone adduct MG-H1 and reacting with DNA to
form mainly imidazopurinone MGdG [9, 10] – Fig. 1, B & C. MG-H1 and MGdG are
quantitatively and functionally important protein and nucleotide-derived advanced glycation
endproducts (AGEs). Urinary excretion of protein and nucleotide MG-derived glycation
adducts is ca. 10 μmol per day or ca. 0.3% of the flux of MG formation [10, 11], indicating
that the protection against protein and DNA glycation afforded by metabolism of MG by the
glyoxalase system is highly effective. Protein and DNA contents are 0.1 – 0.8 mmol/mol arg
and ca. 9 adducts per 106 nucleotides, respectively. Abnormally high concentrations of MG,
and/or other reactive α-oxoaldehyde metabolites, is a dysfunctional metabolic state called 
dicarbonyl stress where dicarbonyl glycation is increased [12]. The protein adduct MG-H1 is
frequently directed to functional sites of cellular and extracellular proteins. There is loss of
positive charge of modified arginine residues resulting in protein inactivation and dysfunction
[2, 13] – including induction of apoptosis and anoikis [14, 15]. The DNA adduct MGdG is
mutagenic and linked to malignant transformation when Glo1 is down regulated [10].

The glyoxalase system has been historically linked to cancer research through early
studies of tumour metabolism and the cytotoxic activity of high exogenous concentrations of
MG [16]. It is one of the oldest and well-developed links of glycation to carcinogenesis,
tumour growth and cancer chemotherapy. The historical development of the glyoxalase
research, molecular characteristics of glyoxalase enzymes, molecular physiological of
glyoxalase metabolites, including in cancer [17], and techniques available to study the
glyoxalase system – the glyoxalase researchers “toolkit” – have been reviewed elsewhere
recently [3, 16, 18-20]. The aim of this review is to address recent advances – including
development of small molecule inducers of Glo1 expression or “Glo1 inducers” and their
potential use in cancer prevention, association of Glo1 expression to tumour growth and
multidrug resistance (MDR) in cancer chemotherapy, GLO1 amplification in cancer and
MDR, barriers to developing Glo1 inhibitor anticancer agents and mechanism of their
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antitumour activity, and a distinct tumour type, neuroendocrine tumours (NETs), where Glo1
biomarkers and inhibitors may be beneficial.

2. Methylglyoxal in carcinogenesis - glyoxalase 1 is a tumour suppresser protein and
thereby glyoxalase 1 inducers may have a role in cancer prevention

The presence of MG and glyoxal-derived nucleotide AGEs in DNA is associated with
increased mutation frequency, DNA strand breaks and cytotoxicity. The mutagenicity of
methylglyoxal was improved markedly in the presence of hydrogen peroxide. Mutation is
suppressed by (NER) - reviewed in [21]. MGdG is the major nucleotide adduct formed
spontaneously in human cells, exceeding the oxidative damage adduct 7,8-dihydro-8-oxo-2’-
deoxyguanosine in DNA of peripheral blood mononuclear cells by ca. 3-fold [10]. Frameshift
mutations were induced by high concentrations of MG in human HepG2 cells in vitro and
prevented by a Glo1 inducer [22]. Until recently, however, it has been difficult to gain
evidence for a role of MG in carcinogenesis and tumour prevention by Glo1.

In studies of a p53 knockout Ras overexpression model of liver carcinogenesis in mice,
an unfocused genome-wide scan for tumour suppressor genes was made. Hits were identified by
increased tumour development with selective gene silencing achieved by introduction of pools
of short hairpin RNAs into premalignant progenitor cells and selection for those that promote
tumour formation after transplantation. Thirteen tumour suppressor genes (in addition to p53)
were identified: one was GLO1 [23]. If this model translates to clinical carcinogenesis,
increasing Glo1 expression is expected to be associated with decreased cancer risk – at least
for hepatocellular carcinoma (HCC). Glo1 inducers are now in clinical evaluation for other
therapeutic applications [24]. Future studies may explore cancer prevention by Glo1 inducers
in high risk subject groups.

The association of decreased Glo1 expression with increased tumour development is
likely through genetic instability induced by increased formation of MG-derived adducts of
DNA, MGdG and CEdG [10, 25]. Other contributions may be from disturbance in dicarbonyl
stress of signal transduction producing overstimulation by mediators of cell proliferation and
inflammation. Of great interest in this regard is the overexpression of cyclo-oxygenase-2 or
prostaglandin synthetase-2 (COX-2 or PTGS2) in most human neoplasia. COX-2 inhibitors
have cancer chemopreventive effects in experimental and clinical carcinogenesis [26, 27].
Recent phase 1 clinical valuation of a Glo1 inducer, trans-resveratrol-hesperetin (tRES-
HESP) combination, showed potent down regulation of COX-2 expression in peripheral
blood mononuclear cells (PBMCs) [24]. If this translates to tissues, this suggests that indirect
suppression of COX-2 by Glo1 inducers may also make available an expected cancer
chemoprevention effect. COX-2 inhibitors have been considered and evaluated clinically for
prevention of colorectal adenocarcinomas but cardiotoxic adverse effects linked to off-target
effects of COX-2 inhibitors have prevented their use. Nevertheless, studies of siRNA
silencing of COX-2 and other studies provide compelling evidence for its involvement in
carcinogenesis and metastasis. Targeting upstream regulation of COX-2 by tRES-HESP,
likely linked to increased expression of β-Klotho and down-regulation of monocyte 
chemoattractant pritein-1 (MCP-1), may be a better option – Fig. 2. Further research is
required to identify pre-cancerous lesions that have increased COX-2 expression and
functionality which may be sensitive to Glo1 inducer down regulation of COX-2 [28]. Cancer
prevention effects of tRES alone have been reviewed elsewhere in this journal with beneficial
responses mainly achieved at concentrations and doses that are not clinically translatable
[29]. tRES and HESP do not shown potent down regulation of COX-2 individually; rather
synergism of the tRES-HESP combination is required for potent anti-inflammatory response
[24].
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Clinical treatment with the Glo1 inducer, tRES-HESP combination, also decreased
expression of the receptor for advanced glycation endproducts (RAGE) in healthy human
subjects [24]. Decreased expression of RAGE is expected to be linked to decreased tumour
development, growth and metastasis [30] which may also contribute to a cancer
chemopreventive response.

3. Association of increased Glo1 expression with robust tumour growth and multidrug
resistance (MDR)

Increased expression and activity of Glo1 in established human tumours has been found in
many studies – reviewed in [17]. The association of increased Glo1 expression with tumour
growth may suggest GLO1 is an oncogene [31]. However, increased expression of Glo1 or
mutation of Glo1 does not drive malignant transformation in vitro or in vivo [32, 33]. This
suggests that GLO1 is not an oncogene [32, 34]. Indeed, in the non-malignant state, Glo1 is a
tumour suppressor gene – see above. Rather, increase Glo1 expression contributes to robust
growth – particularly in conditions of high glycolytic activity and adaptation to hypoxia [35,
36]. Increased Glo1 expression is likely due to an increased requirement to protect the tumour
proteome against a local, relatively high flux of MG formation. Many tumours display high
rates of anaerobic glycolysis even when well-perfused and oxygenated. This has been called
the “Warburg effect”. It has been proposed that this is an adaptation to intermittent hypoxia in
pre-malignant lesions and may offer growth advantage [37]. Pentosephosphate pathway
activity is also increased, providing pentoses for nucleotide synthesis and increased flux of
NADPH for biosynthesis – which also sustains a reducing cytoplasm and resistance to
oxidative stress [38]. The Warburg effect is now viewed as part of a broader spectrum of
metabolic reprogramming in tumours to provide for growth, tissue invasion and metastasis
with a changing nutrient supply [39]. A consequence of this is related relatively high flux of
MG formation and requirement for high expression of Glo1 [40]. Increased Glo1 activity is
permissive for survival and growth of tumours with high glycolytic rates and related high
fluxes of formation of MG [10].

Hypoxia in tumours could pose a threat to tumour cell survival through dicarbonyl
stress since the precedent from proliferating non-malignant stem cells suggests that Glo1
expression is down-regulated and flux of formation of MG is increased through switch to
increased anaerobic glycolysis in hypoxia [41]. Down regulation of Glo1 is driven by
hypoxia-inducible factor 1-alpha (HIF1α) [42]. However, tumour-derived stem cells have
adapted to circumvent this. Bcr-Abl+ leukaemia-derived stem cells exhibited a counter
response – increased Glo1 expression in response to hypoxia [36]. This is a growth
advantage: evidenced by transfection of the HEK293 tumour cell line to overexpress Glo1
gave improving adaptation to growth in hypoxic conditions [35]. The dependence of Glo1 for
hypoxia adaptation is a metabolic weakness or “Achilles heel” to exploit since hypoxia-
adapted tumour stem cells were vulnerable to cytotoxicity induced by cell permeable Glo1
inhibitors [36]. This suggests tumour stem cells may be more sensitive to than non-malignant
hematopoietic and mesenchymal stem cells to Glo1 inhibitors. Since cancer stem cells
survive many commonly employed cancer therapies, this could provide a significant
advantage in cancer chemotherapy.

Transcriptome-wide study of gene expression in cell lines sensitive and resistant to
anticancer drugs revealed increased Glo1 expression was associated with MDR in cancer
chemotherapy [43]. This suggests that current antitumour drugs may increase the cellular
concentration of MG as part of their mechanism of action for antitumour cytotoxic effect.
Subsequent studies have shown that the cell permeable Glo1 inhibitor, S-p-bromobenzyl-
glutathione cyclopentyl diester (BBGCp2), provides effective treatment for tumour cell in vitro
and tumour-bearing mice with Glo1-linked MDR [6, 31, 44]. Tumours with high expression of
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Glo1 were also sensitive to toxicity of short hairpin RNA knock-down of Glo1 in primary
cultures and xenograft tumours established from HCC cells. This suggests Glo1 inhibition is
a target for HCC chemotherapy with expected high response rate [45]. It is likely that Glo1
overexpression contributes to MDR in prevalent refractory tumours in clinical therapy.

As high expression of Glo1 supports robust tumour growth then poor treatment
outcomes may not be limited to chemotherapy but to radiotherapy and surgical interventions.
In radiotherapy dicarbonyl stress is induced by GSH depletion and decreased in situ activity
of Glo1 contributes to the tumour cell kill [46]. Increased Glo1 expression was also
associated with tissue invasiveness, lymph node metastasis and pathological stage – for
example, in gastric cancer [47] – making the effectiveness and success of surgical therapy
more challenging.

If Glo1 expression is permissive for high glycolytic rates and growth of tumours then
Glo1 mRNA and protein measurements could provide useful clinical biomarkers to assess
risk of tumour progression, metastasis and survival. There is high prevalence (79%) of
increased Glo1 expression in breast cancer, compared to control non-malignant tissue, and in
a cross-sectional study Glo1 expression increased progressively with tumour grade [48]. In
clinical HCC, increased Glo1 expression had prevalence of 48% [45]. Despite recent
advances in treatment, clinical HCC remains refractory to current clinical chemotherapy [49].

The association of Glo1 expression of tumours with clinical outcome of treatment at
follow-up has been examined in few studies. In colorectal cancers, increased Glo1 protein
assessed by immunohistochemistry (IHC) was associated with rapid tumour progression and
poor survival [50]. In gastric cancer, increased Glo1 protein by IHC was associated with
decreased 5-year survival (43% versus 70%) [47] and survival hazard ratio 2.5 [31].

Increased Glo1 expression may occur through dysfunctional transcriptional
regulation. Several promoter elements in GLO1 are known and some have increased
functional activity in tumours – particularly Nrf2 interaction with the functional antioxidant
response element (ARE) [19, 22]. Nrf2 is often over-activated in lung cancer and HCC [51,
52].

4. Glyoxalase 1 gene amplification in cancer
A further mechanism contributing to increased Glo1 expression in tumours is GLO1 gene
amplification [6]. In 2010 working with the Cancer Genome project investigators, we
discovered increased GLO1 copy number (gene copy >2) and Glo1 expression in human
tumours. Human GLO1 is located at locus 6p21.2 with low level duplication in the healthy
population of 2% prevalence [53]. The DNA segment copied in tumour GLO1 copy number
increase was larger than in gene duplication in the healthy population [54]. In clinical
tumours GLO1 copy number was functional; increased copy number correlated with increase
Glo1 mRNA and protein. In our study of 225 human tumours of different types, the highest
prevalence of GLO1 copy number increase in breast cancer (22%), sarcomas (17%) and non-
small cell lung cancer (NSCLC) (11%) – assessed by qPCR [6]. In vitro studies suggest any
functional increase in GLO1 copy number produces MDR, severity of MDR increasing with
level of copy number increase. Other investigators have followed up with studies on GLO1
copy number in human tumours. GLO1 amplification has very high prevalence in breast
cancers that do not express oestrogen receptor, progesterone receptor and HER-2 genes, triple
negative breast cancer (TNBC) [55]. TNBCs respond poorly to current chemotherapy [56].
Glo1 copy number increase also had high prevalence in advanced malignant melanoma [57];
it was moderate in gastric cancer [31] and low in hepatocellular carcinoma (HCC) [45] –
Table 1. Further data on GLO1 copy number in human tumours is provided at
“Tumourscape” (http://portals.broadinstitute.org/tumorscape/pages/portalHome.jsf) – a
compendium of copy number alterations across multiple types of tumour [58]. The
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association of Glo1 copy number increase with clinical follow-up has been examined in few
studies. In gastric cancers, increased GLO1 copy number assessed by qPCR was linked to
decreased survival [31]. There is a requirement for further validation of the association of
increased GLO1 copy number with tumour progression and patient survival as clinical
measurement of GLO1 copy number could be easily implemented and a potentially useful
biomarker to guide patient treatment and care.

We also studied GLO1 copy number in 750 human tumour cell lines [6]. In human
tumour cell lines in vitro GLO1 copy number increase is not always functional and hence
there is a weak correlation of GLO1 copy number with Glo1 expression. For example, using
data from the compendium of gene copy number of expression data in human cancer cell
lines – the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE)
(https://portals.broadinstitute.org/ccle/home) [59], for all breast cancer cell lines we found
Glo1 copy number correlates positively with Glo1 expression level (r = 0.57, P<0.001, n =
59, Spearman), supporting the likely importance of change in GLO1 copy number as a
determinant of Glo1 expression in human breast cancer cell lines.

The mechanism of GLO1 amplification in cancer is unknown but a suggestion came
from a study of GLO1 duplication in mouse embryonic stem cells (mESCs) [41]. Low level
copy number increase of GLO1 was found in hypoxia, suggesting a role for hypoxia-
activated histone demethylase KDM4A/JMJD2A. Exploring the possibility that GLO1 may
suffer copy number increase induced by exposure to high concentrations of MG, we studied
prolonged, 12-day, exposure of mESCs to exogenous MG in vitro [12]. For physiological
relevance we studied Glo1 activity and copy number changes also under an atmosphere of
3% oxygen – equivalent to ambient oxygen concentration for embryonic stem cells in vivo [60].
We found low level increased copy number focussed to the GLO1 genomic domain induced
to a similar level by addition of exogenous MG, 3% oxygen, and exogenous MG and 3%
oxygen together.

The Glo1 gene is present in a large transcriptional domain of the genome at the
flanking region of Btbd9 in which copy number increases are enriched. Large transcription
units drive locus-specific genomic instability during DNA replication. They are replicated
late in the cell cycle and organize copy number duplications in their flanking regions. This is
thought to occur through transcription-dependent double-fork failure in DNA replication
[61].

Black et al. reported genetic domain specific increase of gene copy number in primary
human T-lymphocytes and tumours – including genes linked to MDR [62]. This was driven
by KDM4A [63]. Increased histone demethylation is hypothesised to create more open
chromatin which promotes inappropriate recruitment of mini-chromosome maintenance
(MCM) proteins and DNA polymerases and thus promote re-replication for copy number
gain [63]. Copy number change at the GLO1 locus was not studied. We proposed that
hypoxia and/or high concentrations of MG activate KDM4A demethylation to drive GLO1
copy number increase in tumours. KDM4A is highly expressed in many tumours where it is
also involved in metabolic reprogramming for increased tumour anaerobic glycolysis [64].
Alternatively, increased glycation of histones may achieve a similar functional change in
histone proteins to produce increase GLO1 copy number. This would explain why hypoxia
and MG treatment achieve the same level of induced Glo1 copy number increase individually
and together – Fig. 3. Increased Glo1 expression was found in hypoxia-adapted tumour stem
cells but copy number increase was not investigated as a possible mediating factor [36].

KDM4A may likely drive low level GLO1 copy increase in the healthy population
and also in tumours post-carcinogenesis. GLO1 copy number increase in the early stages of
tumour development may become dominant through clonal selection and lead to MDR. This
is supported by observations in malignant melanoma, for example, where GLO1 copy
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number increase has low prevalence (2%) in early stages and high prevalence (80 - 89%) in
advanced stages [6, 57, 58]. Antitumour drug treatment may also increase MG exposure and
be an additional pressure for GLO1 copy number increase.

5. Barriers to developing Glo1 inhibitor anticancer agents
Development of cell permeable Glo1 inhibitors for cancer chemotherapy was recently
reviewed [17]. Treatment with MG was initially proposed and evaluated for cancer
chemotherapy. It was ineffective, likely due to the high capacity of non-malignant and some
tumour tissue to metabolize MG by Glo1 [65]. To circumvent this Vince and Wadd proposed
development of Glo1 inhibitors which were initially based on substrate analogues,
glutathione S-thioethers such as S-p-bromobenzylglutathione [66, 67]. These were not
effective antitumor agents in vitro because they lacked cell permeability and stability to
degradation by cell surface ɣ-glutamyl transferase in the extracellular compartment. These 
problems were circumvented by our team when we prepared S-p-bromobenzylglutathione
diester prodrugs. Diesterification blocked extracellular degradation, provided cell
permeability and was hydrolyzed when delivered inside cells by cellular non-specific esterase
to reveal the active inhibitor, S-p-bromobenzylglutathione. The inhibitor constant Ki value of
S-p-bromobenzylglutathione for human Glo1 is 160 nM [68]. The most potent diester
derivative to date is the cyclopentyl diester, BBGCp2, which resists hydrolysis by serum or
plasma esterase before delivery into cells [7, 69, 70]. Creighton and co-workers developed
more potent Glo1 inhibitors [71]. They also recognized that for evaluation in tumour-bearing
mice, esterase-deficient mice were required as conventional wild-type strains have markedly
higher plasma esterase activity than human subjects. Use of conventional wildtype strains of
laboratory mice would underestimate clinical potency of the prospective new drugs by rapid
de-esterification in plasma [72]. For the National Cancer Institute panel of leukaemia, non-
small lung cancer, colon cancer, central nervous system cancer, melanoma, ovarian cancer,
renal cancer, prostate cancer and breast cancer cell lines, S-p-bromobenzylglutathione diethyl
ester gave median growth inhibitory concentration GC50 values in the range 7 - 20 µM [73].
BBGCp2 had antitumour activity in tumour bearing mice and was particularly effective
against tumour with high Glo1 expression and resistance to established anticancer drugs [7,
44]; and similar Glo1 substrate studies were performed with Glo1 competitive inhibitor S-(N-
p-chlorophenyl-N-hydroxycarbamoyl)-glutathione (CHG) administered as prodrug CHG
ethyl diester (CHGEt2) and cyclopentyl diester [74]. From efficacy studies, dosing schedules
have been achieved that give similar potency to current clinical antitumour agents [7, 44, 74].
So why are cell permeable Glo1 inhibitors not in clinical use? The following are the likely
reasons:

5.1 Limited potency
Whilst good efficacy of treatment has been achieved with BBGCp2 and similar compounds in
tumour-bearing mice, the doses required for potent therapeutic effect were high, 50 – 200
mg/kg. For BBGCp2 these doses gave no indication of toxicity other than to the tumour but
for CHGEt2 the doses used were close to the maximum tolerable dose [7, 44, 74]. The reason
for the high dose requirement may be that the inhibitor is cleared relatively rapidly from the
tumour. The active inhibitors are substrate analogues - GSH conjugates - and so are rapidly
cleared from cells by the mercapturic acid pathway [74]. For CHGEt2 administered to mice
intravenously, 120 mg/kg, the peak concentration of 30 - 60 μM in the tumour occurred 15 
min after injection and thereafter decreased with a half-life of 10 min to an extended plateau
phase of 6 μM [74].  

5.2 Metabolic resistance
MG is also metabolised by aldoketo reductase isozymes, AKR isozymes 1A4, 1B1 (aldose
reductase) and 1B3 to mainly hydroxyacetone [75]. Expression of these enzymes is
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upregulated by Nrf2 which is often over-activated in tumours – see above. Consequently,
relatively high capacity metabolism of MG by AKR may be available to some tumours.
AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that
contain somatic alterations in the Nrf2 pathway; and in the case of SCC, AKRs were also
enriched in most other tumours [51]. Early evidence of the effect of AKR activity on potency
of Glo1 inhibitors was that an aldose inhibitor Sorbinil potentiated the growth inhibitory
response of BBGCp2 in HL60 cells in vitro [7]. There is also the risk that increase of MG
may induce Glo1 expression [22, 76] but this would be circumvented with a high dose of
Glo1 inhibitor that kills cells before significant induction of Glo1 expression can occur.

5.3 Tumour sensitivity markers
From surveying activity of BBGCp2 activity in tumour cell lines it was clear that some
tumour cell lines are sensitive to Glo1 inhibitors and some are resistant. The lack of tumour
sensitivity markers for Glo1 inhibitors stymies development for cancer treatment because
tumours that will likely give strong therapeutic response cannot be easily identified. This
impacts particularly on commercial pharmaceutical development. Team leaders in the
pharmaceutical industry seeking to develop new antitumour drugs often have limited time to
identify a type of tumour sensitive to a particular drug target before strategic decisions are
taken to more to a different drug target. Many studies have found potent cytotoxicity to
tumour cells by siRNA silencing of Glo1 – for example [6, 31]. This increases cellular and
extracellular levels of MG driving apoptosis and anoikis [7, 15]. There is little doubt that
Glo1 is a valid target for antitumour development from the cell biology and pharmacology
viewpoint. To identify tumours that are likely sensitive to Glo1 inhibitors, we need to identify
biomarkers indicative of high risk of increase of MG to a cytotoxicity level when Glo1 is
inhibited.

A reasonable assumption for the key criterion of cytotoxicity by a Glo1 inhibitor is
attainment of a critical threshold steady-state level of MG-derived protein or nucleotide
AGEs that activates programmed cell death – see below. The ability to increase this above
this threshold level for cytotoxicity by Glo1 inhibition will be linked positively to both: (i)
steady level of MG-derived AGE in the tumour, and (ii) Glo1 activity of the tumour. MG-H1
and MGdG are major adducts quantitatively in tumour cells so these are the best analytes to
determine, and Glo1 protein is an easily measurable surrogate of Glo1 activity in the setting
of the clinical chemistry laboratory. Both MG-derived AGE and Glo1 protein could be
measured by frozen tissue by Western blotting if the clinical sample was thought to be
homogenously malignant or in frozen tissue section by immunohistochemistry whereby
analyte intensities in tumour and non-tumour tissue could be spatially discriminated. Use of
formalin-fixed paraffin-embedded (FFPE) tissues would compromise the AGE content
measurement. This hypothesis predicts that tumours most sensitive to Glo1 inhibitor
chemotherapy are tumours with high steady-state level of MG-H1 residues in cell protein
concurrent with high expression and activity of Glo1. This is a surrogate of a high flux of MG
formation in the presence of a high Glo1 activity – mathematical modelling of the glyoxalase
pathway confirms this [19]. The high activity of Glo1 indicates there is a high concentration
of receptor for the inhibitor, Glo1 protein, to achieve high metabolic impact through rapid
accumulation of MG and related increased protein and nucleotide MG-derived AGE
formation. This remains to be evaluated clinically. For tumour cell lines in vitro, HL60 cells
had relatively high Glo1 activity and high AGE content and was a cell line sensitive cell lines
to BBGCp2: GC50 = 4.2 µM [7, 10, 77], and sensitivity to BBGCp2 also reflected this for
other selected cell lines [6, 10]. Sensitivity of tumour cell liens to BBGCp2 is not reflected in
GLO1 copy number alone as GLO1 copy number increase is not always functional in tumour
cell lines and is not always associated with high levels of MG-derived AGEs [6, 10].
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Cell permeable Glo1 inhibitors employed in cancer chemotherapy and other
therapeutic agents and prospective therapeutic agents with Glo1 inhibitor activity are given in
Table 2.

6. Cytotoxic mechanism of action of glyoxalase 1 inhibitors: mechanism of
cytotoxicity induced by methylglyoxal accumulation in tumour cells

The cytotoxic mechanism of action of accumulation of cellular MG by inhibition of Glo1
may be investigated by studying responses to siRNA silencing of Glo1 and indirectly by
addition of high concentrations of exogenous MG. The latter approach has the drawback that
there is a steep negative gradient of MG concentration from outside to inside cells when the
reverse applies in Glo1 inhibitor chemotherapy. There have also been many studies that have
used MG from commercial sources which is known to have major formaldehyde
contamination [4, 78]. How this contamination may compromise the outcomes is not known;
where there are corroborate studies with Glo1 siRNA knockdown, the outcomes are secure.

To identify key processes mediating MG-induced inhibition of tumour cell growth,
study of changes occurring early in the time course of cytotoxicity under MG-concentration
limiting conditions are critical. From initial studies with human leukaemia 60 (HL60) cells
we found growth inhibition required exposure to MG for 24 h. This was approximately
equivalent to one cell growth cycle duration [79]. It is likely therefore that MG-treated cells
commit to cell death mainly at one point of the cell growth cycle and that MG concentration
has to be maintained at a cytotoxic level for 24 h for effective antitumour effect. Analysis of
the cell growth cycle in MG-treated HL60 cells showed that by 12 h there was a decrease of
cells in the S-phase, accumulation of cells in the G0-G1 phase and induction of apoptosis,
suggesting cells are growth arrested and die at entry to the S-phase and DNA synthesis is
inhibited. Indeed, from MG concentration-response curves, inhibition of cell growth was
closely linked to inhibition of DNA synthesis rather than inhibition of RNA or protein
synthesis. Time course studies with [14C]MG where 98% inhibition of cell growth was
achieved showed intriguingly MG adducts with protein maximized at 30 min and thereafter
decreased, MG adducts with DNA increased to 1 h and remained at that level and MG
adducts with RNA increased slowly throughout the initial 2 h period studied at very low
levels. This peak protein adduct content was ca. 35 pmol per 106 cells, equivalent to an
increment of ca. 1 mmol/mol arg MG-H1 adducts. This is only an approximate doubling of
MG-H1 adduct content, compared to control. The decrease in protein adducts beyond 30 min
indicate cellular proteolysis is activated rapidly in response to MG treatment [14]. The
maximum level of MG-derived DNA adducts attained, was ca. 40 adducts per 106

nucleotides cells. This was only a 2-fold increase with respect to untreated cells [10]. Similar
studies with the cell permeable inhibitor BBGCp2 (10 µM, inhibiting cell growth by 97%)
increased cellular DNA adducts to ca. 80 adducts per 106 nucleotides. This was a 4-fold
increase with respect to untreated cells [10]. It is likely that the increases in steady-state
levels of MG-derived protein and DNA adducts are relatively modest because the MG and
BBGCp2 treatments are activating cell proteolysis and DNA damage repair mechanisms. It
cannot be inferred that 2-fold and 4-fold increase of protein and DNA adducts in other
tumour cells lines and primary cultures will induce toxicity. Tumours cells maintain
markedly different steady-state levels of MG-H1 and MGdG which will tolerate different
extents of change in MG concentration before cytotoxicity. For example, tumour cell lines
had over 10-fold difference in steady-state level of MGdG [10]. This relates to both
glyoxalase pathway metabolism and activity of NER.

To predict the cellular concentration of MG sustained by Glo1 inhibition we
developed a mathematical model of the glyoxalase pathway [19]. Currently this is one-
compartment that does not take into account cellular export MG but provides initial insights
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into how large the cellular increase in MG is likely to be for effective tumour cell kill. A key
aspect of MG metabolism accommodated in the model is the large capacity of reversible
binding sites for MG provided by protein thiols. Note that experimental estimates of MG
concentration represent the sum of free MG, GSH-MG hemithioacetal and MG-protein thiol
adducts. Most (>99%) MG in situ is reversibly bound to protein thiols. Modifying the model
to predict change in MG concentration when Glo1 is inhibited by 90% (10-fold inhibition),
the predicted steady-state increase in cellular MG was increased 6.3 fold and the decrease in
D-lactate formation was 31% [19]. The increase in MG is less than might be expected on first
thoughts but the less than 10-fold increase in MG concentration is due the effect of increased
MG and hemithioacetal concentrations reacting more effectively with the residual Glo1
activity. In cell culture studies where 97% inhibition of HL60 cell growth was achieved by 10
µM BBGCp2, the cellular concentration of active inhibitor S-p-bromobenzylglutathione was
ca. 13 µM [7]. Given that the Ki = 160 nM, this is predicted to inhibit Glo1 by 97%. Re-
running the metabolic mathematical model for 97% inhibition of Glo1 (30-fold inhibition),
the predicted increase in cellular MG concentration is ca. 12-fold. So a sustained 12-fold
increase in steady-state MG concentration in HL60 cells for 24 h or a cell cycle is likely to
produce potent antitumour effect. The very high concentrations of MG required to inhibit
HL60 cell growth in the absence of Glo1 inhibition was probably required to maintain
cellular MG concentration to at least 12-fold higher than control for 24 h. This remains to be
confirmed.

Exogenous MG, siRNA silencing and cell permeable Glo1 inhibitors activate
apoptosis of tumour cells under concentration/dose limited conditions [6, 7, 14] and also
necrosis at very high concentrations of MG [80]. Characteristics of this have been
investigated in many studies – see Table 3. Key features are: growth arrest at entry into the S-
phase of the cell cycle; decline of mitochondrial membrane potential and activation of the
mitochondrial apoptotic pathway with release of cytochrome c; activation of caspase-3 and
caspase-9 and decreased anti-apoptotic factors XIAP, survivin, cIAP1, Bcl-2, and Bcl-xL;
and activation of kinase pathways ATM-Chk1 and Chk2 kinases, p38 kinase, MAPK and
ASK1-JNK, kinase pathways. Findings that MG induced cell cycle arrest at G2/M phase
using the nocodazole-cell synchronization technique [81] are now thought insecure as cells
treated this way do not progress round the cell cycle normally on release from nocodazole
treatment [82].

MG likely activates the mitochondrial pathway of apoptosis by modification of the
mitochondrial permeability transition pore (MPTP), a high conductance channel in
mitochondria. MG-H1 residue formation was produced rapidly, producing membrane
depolarization, swelling, and cytochrome c release [83]. Downstream of this is activation of
caspase-9 and caspase 3, and interaction with BCL2, XIAP and Bcl-xL [84]. These are
responses to increased protein damage by MG. Activation of ATM, Chk1 and Chk2 kinases
is indicative of a DNA damage response and is likely the response to increased levels of
DNA damage by MG. By analogy with other types of DNA damage, primary MGdG lesions
are likely converted into single strand DNA (ssDNA), which is rapidly coated by the ssDNA-
binding protein replication protein A (RPA), other proteins and finally Chk1/2 [85]. They are
intra-S phase protein activated in response to DNA damage and delay replication origin firing
to provide time to deal with repair and preventing under-replicated DNA regions being taken
beyond S-phase [86]. When the DNA damage is too high for repair capacity, DNA
replication stalls and there is replication catastrophe and apoptosis or necrosis – as reviewed
[87]. So, MG-induced cell death likely has both mitochondrial and DNA damage response
pathways. Other features of MG-treated cells were: decreased cell migration, invasiveness
and tubule formation [88]. This is likely linked to MG modification of integrins and
extracellular matrix (ECM) proteins, blocking migration and angiogenesis [15, 32]. MG
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modification of ECM protein induces cell detachment-activated cell death where the
apoptosis is activated by the extrinsic pathway - lack of ECM contact or the engagement with
inappropriate ECM leads to the activation of death receptors, and the intrinsic pathway -
mitochondria apoptotic pathway [89].

N-Acetyl-cysteine (NAC) was found to inhibit MG-induced apoptosis and this was
considered to be evidence of oxidative stress mediating cell death by increased reactive
oxygen species (ROS) [81, 90, 91]. Use of NAC in this way is misleading, however, and this
interpretation is probably incorrect. NAC binds MG in the culture medium and blocks
apoptosis and related cell response by preventing MG entering cells [92]. Consistent with
lack of critical involvement of ROS in MG-induced cells death was the observation that
overexpression of cytoplasmic and mitochondrial superoxide dismutases did not inhibit MG-
induced apoptosis [93].

In studies of MG-modified proteins, there was apparent preferential modification of
heat shock protein-27 (HSP27; also known as heat shock protein beta-1) in tumour cells on
arg-188. HSP27 has anti-apoptosis activity and MG modification of this may block its
suppression of the mitochondrial apoptotic pathway [94]. The modification was detected by
immunoblotting with monoclonal antibody mAb3C which recognises the MG-derived AGEs,
argpyrimidine, and with lower affinity also MG-H1 [95]. The modification was claimed to be
argpyrimidine but this is unlikely as it is a minor MG-derived AGE [9]. In recent studies of
MG-modified proteins by direct detection with high resolution mass spectrometry we were
able to detect MG-H1 residue modification of HSP27 at arg-188 in cell protein incubated
with exogenous MG but it was one of 344 proteins modified by MG in a total of 1366
proteins detected in the cell cytosol [96]. One possibility for this disparity may be that the
antibody is recognizing a specific MG-modified peptide. The MG-modified, arginine
containing tripeptide motif residue in HSP27 is ser-arg-ala. This same peptide motif residue
occurs in multiple domains in keyhole limpet haemocyanin – the protein used for MG
modification to produce the immunogen to raise the mAb3C antibody. This antibody may
detect only this MG-modified tripeptide motif rather than all MG-modified proteins in cells,
giving an impression of selective MG-modification of HSP27 in cells when this is not the
case. This requires further investigation but blocking of anti-apoptotic activity of HSP27 by
MG may contribute to cytotoxicity [94].

The mechanism of cytotoxicity of cell permeable Glo1 inhibitors through cellular
accumulation of MG accumulation in tumour cells is summarized – Fig. 4. From the observation
that several current antitumour drugs suffer MDR with high expression of Glo1, it is likely that
MG-induced apoptosis and anoikis contribute in part to the mechanism of action of current
clinical antitumour drugs.

7. Neuroendocrine tumour as target for GLO1 amplification and MDR
Malignant neuroendocrine tumours (NETs) comprise only ∼2% of all malignant tumours
diagnosed in the western world [97] but incidence is increasing [98]. The majority of NETs
are well differentiated and consequently often insensitive to chemotherapy [97, 99], with the
exception of pancreatic NET where response rates are highly varying. However, lack of
objective response to chemotherapy has been reported in up to 60-70% of patients even with
pancreatic NETs [100, 101]. This has been attributed to low mitotic rates, presence of high
levels of the anti-apoptotic protein Bcl-2 and increased expression of the multi-drug
resistance gene P-glycoprotein 1 [99]. A further factor, however, may be amplification of
GLO1. Overexpression of Glo1 confers resistance to streptozotocin which are first choice
treatments for chemotherapy of pancreatic NETs [102]. It is therefore of interest and
important to study GLO1 amplification and Glo1 expression in NETs. This may in future
inform for optimum antitumour drug selection for decreased sensitivity to resistance by Glo1
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overexpression. The prevalence of GLO1 copy-number increase in patients with GEP-NET
has not been investigated to date but Nrf2 has been found over-activated in some NETs due
to mutation that block its proteolysis [103]. This is expected to increase the expression of
Glo1 and confer growth advantage, MDR and possibly poor treatment outcome. We are
currently performing related research at our local NET Centre.

8. Concluding remarks
Methylglyoxal metabolism and glyoxalase are frequently overlooked in cancer research but new
advances suggest oncologists will find renewed interest. Glo1 inducers may provide a safe ane
effective way to clinically suppress COX-2 and RAGE for cancer prevention. Glo1 response to
hypoxia may provide the basis of selective cytotoxic chemotherapy for removal of tumour stem
cells. Glo1 copy number, mRNA and protein and MG-modified protein assessments clinically
may provide biomarkers of tumour growth, MDR and sensitivity to cell permeable Glo1
inhibitors. Finally, if the barriers to development of cell permeable Glo1 inhibitors can be
overcome, there may be effective therapy for refractory tumours with high Glo1 expression -
possibly including NETs.
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Table 1. GLO1 Copy number increase in human tumours.
Tumour type(s) and prevalence Link to functionally, tumour growth and survival Reference
Breast cancer (22%), sarcomas (17%), NSCLC (11%),
bladder (9%), gastric (6%), renal (6%) colon (3%), glioma
(1%)

Linked to increased Glo1 expression (mRNA and
activity).

[6]

TNBC (83%). Non-TNBC (9%) Linked to Glo1 expression. [55]
Malignant melanoma, advanced stage (80 – 89%) Not investigated [57]
Gastric cancer (33%) [31]
Hepatocellular carcinoma (6%) Linked to increased Glo1 expression [45]

Table 2. Inhibitors of glyoxalase 1 and related compounds.
Inhibitor Ki (nM) Comment References
S-p-Bromobenzyl-
glutathione

160 Delivered into tumour cells and tissue by diester esterification [7, 44, 69, 70]

S-(N-p-chlorophenyl-
N-hydroxycarbamoyl)-
glutathione

40 Delivered into tumour cells and tissue by diester esterification [74, 104]

Curcumin 5,100 High doses of curcumin, 8 g per day, achieved peak plasma concentrations
of ca. 1.8 μM. Curcumin is unlikely to provide potent inhibition of Glo1 in
vivo unless it can be actively accumulated in tumours.

[105, 106]

Methotrexate 20,000 Peak plasma concentrations of methotrexate in cancer chemotherapeutic
use is ca. 16 μM, so some antitumur activity of methotrexate may be linked 
to inhibiton of Glo1.

[107, 108]

For other potent Glo1 inhibitors not yet evaluated for cancer treatment see [17].
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Table 3. Mechanism of methylglyoxal induced cell death
Cell type [MG]

(μM) 
Characteristics Reference

HL60 (acute myeloid
leukemia)

238 GC50: 282 μM. 24 h exposure period required for growth inhibition and toxicity. 
Growth inhibition increased with medium serum content (growth rate)

[79]

33 – 524 Apoptosis. Growth inhibition linked concentration-dependently to inhibition of DNA
synthesis; early decrease in S-phase cells. Protein adducts maximized at 30 min and
DNA adducts at 1 h.

[14]

LNCaP (androgen-sensitive
prostate adenocarcinoma)

1,000 Activates mitochondrial apoptotic pathway (cytochrome c release form
mitochondria), potentiated by Glo1 silencing

[109]

HEK393 cells 400 &
800

Activation of ATM-Chk1 and Chk2 kinases, p38 kinase, MAPK and ASK1-JNK,
kinase pathways.

[81]

Jurkat (T-cell leukemia),
MOLT-4 (T-cell leukemia),
and HeLa (cervical
adenocarcinoma)

250 &
500

Apoptosis (250 μM) with necrosis (500 μM). JNK and caspase-3 driven apoptosis  [80] 

Jurkat cells 250 MG-induced activation of caspase-3 and caspase-9, release of cytochrome c, decline
of mitochondrial membrane potential and JNK activation;

[91]

SW480 colonic cancer cells 100 -
500

MG suppressed the expression of anti-apoptotic factor XIAP, survivin, cIAP1, Bcl-2,
and Bcl-xL. Potentiated TRAIL apoptosis. GLO1 siRNA had the same effect.

[93]

MCF7, MDA-MB-231, T47D 100 –
1,600

Growth inhibition, decreased invasiveness and tubule formation, MAPK activation
and decreased Bcl-2 at ≥ 800 μM MG, increasing apoptosis; decreased cell migration 
at 400 μM ; decreased colony formation at 100 – 200 μM. GLO1 siRNA had the same 
effect.

[88]
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Figure legends.

Figure 1. The glyoxalase system and glycation of protein and DNA by methylglyoxal. A.
Metabolism of methylglyoxal by the glyoxalase system. B. Glycation of arginine residues by
methylglyoxal to form hydroimidazolone MG-H1. The peptide amide binds are omitted for
clarity Other hydroimidazolone structural isomers may be formed [110]. Other minor MG-
derived AGEs are: Nε-(1-carboxyethyl)lysine (CEL), argpyrimidine, methylglyoxal-derived 
imidazolium cross-link (MODIC), and methylglyoxal-derived lysine dimer, 1,3-di(N-lysino)-4-
methyl-imidazolium salt (MOLD). In mammalian tissues MG-H1 usually represents > 90% total
MG-derived adducts [111]. C. Glycation of deoxyguanosine to form imidazopurinone isomers,
MGdG. The nucleotide base is shown only for clarity. Lower amounts of 2-(1,R/S-
carboxyethyl)-deoxyguanosine (CEdG) are also formed [10].

Fig. 2. Proposed mechanism of anti-inflammatory mechanism of action of Glo1 inducer
formulation. Key: yellow filled arrows – mechanism of health improvement by; red filled
arrows – damaging processes suppressed. See also [112]. Abbreviations: KLB, β-klotho; CBP, 
CREB binding protein; and maf, small maf protein – accessory proteins for Nrf2 activation.

Fig. 3. Mechanism proposed for gene amplification of GLO1. See also [41, 62, 63].
Abbreviations: CNV, copy number variation; mini-chromosome maintenance (MCM) proteins;
Me3, histone lysine triple methylation.

Fig. 4. The mechanism of cytotoxicity of cell permeable Glo1 inhibitors through cellular
accumulation of methylglyoxal accumulation in tumour cells is summarized. Yellow filled arrows,
key reactions of MG. Red arrows: cell death response. Green elements: anoikis; purple elements,
mitochondrial apoptotic pathway. Abbreviations: Apaf-1, apoptotic protease activating factor 1;
BAX, bcl-2-like protein 4; BID, BH3 interacting-domain death agonist; Fas, CD95 cell death
receptor; FADD, Fas-associated death domain adaptor protein; MPTP, mitochondrial
permeability transition pore; ss, single strand; tBID, truncated (activated) BID; TNFR1, tumour
necrosis factor receptor-1. See also [83, 87, 89].
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