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Abstract

Slip bands and crack initiations were investigated by in-situ experiments and

nonlocal CPFEM simulations systematically. Experimental techniques in-

cluding EBSD, digital image correlation (DIC) and SEM have been used to

obtain consistent grain orientations, local strain, as well as slip bands and

microcracks in the same area of the sample surface. The realistic microstruc-

ture based on EBSD map has been generated and used for finite element

modelling. An advanced nonlocal crystal plasticity model, which considers

the isotropic hardening and kinematic hardening of plastic strain gradient,

has been adopted. The simulation results match experimental results well

from many aspects. It was found that total strain and averaged slip on slip
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systems, combined with accumulated slip on specific slip planes help predict

the location and orientation of slip bands and microcrack initialization cor-

rectly. Furthermore, a fatigue indicating parameter based on competition

between maximum slip and the total slip has been proposed to reproduce

experimental results.

Keywords: A. crack initiation, A. slip band, B. crystal plasticity, 4-points

bending test, fatigue indicating parameter

1. Introduction

The fatigue life of metallic materials usually goes through three main

stages as crack initiation, crack propagation and failure. The microstruc-

ture features of the material determine the location sites for the appearance

of cracks, which usually take place in these regions such as triple points,

particle-matrix interfaces, pores and so called weak grains. Although crack

initiation plays a dominant role in the whole process of fatigue, it has re-

ceived relatively less attention than crack propagation. Nevertheless, many

studies have been done in this field (e.g. (Christ et al., 2009) and (Sangid

et al., 2011)). Various experiments have been conducted to observe how

cracks formed in the material, and a large number of numerical models have

been established to predict crack initiation in past decades.

A large number of experiments with different materials under different

loading conditions have been conducted through the years to observe the

micro-cracks. For example, Bozek et al. (2008) studied the fatigue process

on double edge-notched (DEN) specimens. They observed cracks in most of

Al7Cu2Fe particles only after the first fatigue cycle. The observations are
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consistent with that of many others similar experiments reported in litera-

ture. Cheong et al. (2007) carried out a four-point bending fatigue test of

an aluminum sample, which was subjected to high cycle fatigue (HCF) and

the microstructure was characterized by EBSD analysis. Valuable investi-

gation on crack initiation under uniform tensile stress has been carried out.

Alexandre et al. (2004) and Findley (2005) showed that the crack initiation

life depends on the relative sizes of the grains and inclusions. Alexandre

et al. (2004) found that cracks formed only at slip bands for materials with

large grain size. Jablonski (1981) found that crack initiation originated in

persistent slip bands of a ceramic material, with these regions having more

tendency to incubate cracks that those regions where the inclusion diameter

was less than or equal to the grain size.

Many models have been proposed in the literature to predict crack incu-

bation and growth. Tanaka and Mura (1981) assumed that crack initiation

originates from slip bands, without consideration of cyclic hardening effect.

Bozek et al. (2008) made a probabilistic simulation of constituent particle

cracking in a specimen. They used a reduced number of particles to simulate

crack initiation and micro-structurally small crack propagation. Hochhalter

et al. (2010) adopted two slip-based metrics to study crack initiation, one

based on the slip on the dominant slip systems and the other on the summa-

tion of slip on all slip systems. They found that the metrics and local stresses

are crucial to predict crack initiation. Many studies (Fine and Bhat, 2007;

Mura and Nakasone, 1990; Tanaka and Mura, 1981; Bobylev et al., 2010;

Xie et al., 2016) proposed that an energy barrier must be overcome during

fatigue crack initiation for forming new surfaces.
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The combination of a representative volume element (RVE) and the crys-

tal plasticity finite element method (CPFEM) is a powerful tool which could

be used to evaluate crack initiation and propagation inside a computational

micro-mechanics framework (Anahid and Ghosh, 2013; Bache et al., 2010;

Brahme et al., 2011; Dunne et al., 2007; Kuhlmann-Wilsdorf, 1999; Li et al.,

2012; Repetto and Ortiz, 1997; Robert et al., 2012; Bennett and McDowell,

2003; Sweeney et al., 2013; Hoshide and Kusuura, 1998; Olfe et al., 2000). Li

et al. (2015) adopted the CPFEM and a RVE under cyclic loading to identify

the weakest regions where cracks initiate and obtained a relationship between

microstructure and an energy efficiency factor. Cheong et al. (2007) studied

cracks inside a 4-point bending fatigue test specimen. Their model correctly

predicted the crack initialization sites observed in the experiment. Based on

the Tanaka-Mura model, Shenoy et al. (2007) investigated the fatigue life

of a polycrystalline Ni-base superalloy with the help of fatigue-indication-

parameters (FIPs) distribution. Using a Voronoi tessellation with 100 grains

(Brückner-Foit and Huang, 2006) and the Tanaka-Mura model, (Brückner-

Foit and Huang, 2006) studied the heterogeneous stress distribution and es-

timated the number of cycles to initiate cracks. Their approach was able to

describe the whole process of crack fatigue life and revealed a relationship

between crack initiation and the number of load cycles. Huang et al. (2007)

extended the often used 2D model to a mesoscopic model close to 3D and

found that, although the analysis became more complicated, results for crack

density were quite similar to that from the 2D model. Full 3D models have

also been developed in recent studies and showed the importance of using a

3D model in predicting the fatigue life. Navarro et al. (2014) compared the re-
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sults of fatigue life estimation from 2D and 3D models. They concluded that

the 3D model gave better results under certain conditions, but the 2D model

also produced results similar to the experimental results. Manonukul and

Dunne (2004) investigated the crack initiation in Ni-based alloy under high-

and low-cycle fatigue considering grain morphology and crystallographic ori-

entation. It was found that the persistent slip bands (PSBs) and accumulated

plastic deformation are important mechanisms for crack initiation. Results

also showed that crack initiation occurs at weak grains under both LCF

and HCF. Cyclic plasticity is also important in predicting crack initiation.

Several studies showed that the application of cyclic plasticity led to perfor-

mant predictions(Dunne et al., 2007; Manonukul et al., 2005; Tsutsumi et al.,

2010; Kartal et al., 2014), sometimes with better results than those obtained

using accumulated plasticity for some materials. Till now there still exist

challenges including: construction of proper microstructures of multiphase

engineering materials for finite element modelling, development of physical

principle based crystal plasticity models considering hardening of strain gra-

dients, and finding the relation between damage and microcrack initialization

with local stress and strain. The RVE generation methods in some studies

(Becker and Panchanadeeswaran, 1995; Cheong et al., 2007; Weiland and

Becker, 1999; Becker and Weiland, 2000; Bhattacharyya et al., 2001; Cheong

and Busso, 2004; St-Pierre et al., 2008; Choi et al., 2013; Zhang et al., 2016)

often include mapping EBSD data to a coarser regular finite mesh (Cheong

et al., 2007) or generate a statistic type Voronoi tessellation considering grain

size distribution (Kozaczek et al., 1995). Regular meshed RVEs of polycrys-

tals therefore contains steps and corners along grain boundaries which are
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physically unrealistic and inaccurate since the mechanical properties of grain

boundaries are very much dependent on both local misorientations and the

grain boundary plane’s normal vector direction. Simulation results from this

kind of RVEs have therefore limitations in their prediction of deformation

and failure measured through in-situ experiments.

In this paper, crack initiation and slip bands were investigated by in-

situ experiments and CPFEM simulations systematically. A Deben vertical

bending equipment was used to conduct a 4-points bending test over the

sample with a hole. Experimental techniques including EBSD, digital image

correlation (DIC) and SEM have been used to study crystal orientations,

local strain distributions and slip band and micro-crack, respectively. Subse-

quently, a quasi-2D finite element model (a 3D material model for microstruc-

ture with a thickness of one finite element) of a realistic microstructure, based

on EBSD maps, has been generated for simulations adopting an advanced

nonlocal crystal plasticity model (Ma and Hartmaier, 2014), which considers

the isotropic hardening and kinematic hardening of plastic strain gradient.

In our study, since damage and micro-cracks appear after the first loading cy-

cle, as shown by experimental results reported in section 2, the accumulated

plastic strain is therefore proposed as an important factor for damage and

micro-crack initiation for the investigated material. Based on the simulation

results, different FIPs were calculated and compared. Some individual grains

and related slip systems were found to be responsible for crack initialization

under cyclic loading.
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2. Experiment

2.1. Material and Methods

The experiment was performed using an aluminium alloy Al2024 T4 re-

ceived as a 50mm thick plate. Samples were machined at mid-thickness

of the plate. The dimensions of the specimen are 50mm (length)×7mm

(width)×4mm (thickness), with a 1mm hole drilled in the center. The cor-

responding geometry and bending schematic are shown in Fig.1. The sample

was electropolished at the top surface, in a solution containing 30% Nitric

acid and 70% Methanol.

EBSD measurements were carried out using a FEI-Sirion SEM, the mag-

nified EBSD map is shown in Fig.1. After EBSD measurements, the samples

were re-polished and then etched to reveal microstructural features such as

grain boundaries, particles and inclusions. Cyclic fatigue tests were con-

ducted using a Deben testing stage working inside a CamScan SEM with

a cross head speed of 2mm/min, a frequency of 0.5Hz and a strain value

of approximately 0.01 for the 4 points vertical bending geometries shown in

Fig.1.

Local displacement- and strain maps were obtained by means of DIC

(Efthymiadis, 2015; Alharbi et al., 2015). The natural features of the mi-

crostructure were used to perform the correlation. Measurements were car-

ried out for a flat un-tilted specimen. The microstructure was slightly over-

etched to clearly reveal more microstructural features and to increase the

contrast of the inclusions and precipitates. The procedure to quantify errors

relative to DIC measurements carried out inside a SEM has been reported

in Ghadbeigi et al. (2012). Errors for strain values reported in this work
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are smaller than 0.03 for all images obtained throughout the test. At first

the image of the undeformed sample was taken as a reference. Subsequently,

consecutive images were obtained at minimum and maximum displacements

of each cyclic loading up to 500 cycles. These images were correlated to the

reference image to calculate strain maps.

The two yellow boxes on the EBSD map in Fig.1 show areas, covering

approximately an area of 2.25mm×1.5mm, observed during the in-situ test.

The micrographs were analysed using the commercial DIC software, DaVIS

7.0, LAVision to compute the in-plane displacement field from which the

strain values were calculated, as explained in (Alharbi et al., 2015). A sensi-

tivity analysis was pursued relative to the interrogation window size. Instead

of using a constant interrogation window defined by the number of pixels, a

multi-pass procedure of four passes, two passes with 32×32 pixels and an-

other two with 16×16 pixels was selected for all the experimental results

presented in this work. This procedure allows for a progressive reduction

of the interrogation window, in order to get accurate measurements of the

strains at the grain level. The local strain accuracy is 0.07% with the global

strain accuracy 0.0006%. The minimum detectable displacement is 7.8 mi-

crons.

Errors due to the SEM imaging system were considered. Errors due to

electron beam drift were assessed and were in line with results reported in

(Ghadbeigi et al., 2012), with a non-uniform distribution over the analysed

area but with magnitudes less than 0.5% which were deemed negligible com-

pared to values up to 75% reported in Fig.2.
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Figure 1: Schematic drawing of the 4-point bending test with two highlighted regions for

EBSD and DIC investigation.

2.2. Experimental results

After the first bending cycle, micro-cracks were found in the two high-

lighted areas of the strain map (Fig. 2 (c) and (d)). The different microcrack

locations infer that grain shape and grain orientation influence the crack ini-

tiation process strongly. As shown in Fig.2a, the DIC measured major strains

are distributed highly non-uniformly over the microstructure. The highest

strain magnitudes are observed in regions marked with white triangles near

the edge of the central hole. Damage also occurred away from the hole edge

in the upper triangle area. This suggests that strain magnitudes alone are

not sufficient to predict crack initiation.
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The higher magnification SEM images (Fig. 2b, c, d and e) show different

crack-formation mechanisms on the sample surface. In one region (Fig. 2b,

d), intense slip bands were observed after the first cycle with a crack initiated

after 10 cycles along one slip band. Along the slip bands, microvoids have

nucleated as shown in Fig.2c. Irreversible plastic slip and locally excessive

plastic deformation are probably the main mechanisms leading to microvoid

formation and microcracking along the formed slip bands.

Figure 2: (a) Local tensile strain measured by DIC, (b), (c), (d), (e) slip bands and

microcrack initiation observed in the SEM with microvoids highlighted in (c). The loading

direction is horizontal in the images(Efthymiadis, 2015).
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3. Simulation

3.1. Micro-structure for finite element modelling

In this study, the original EBSD map, shown in Fig.1, with some modifi-

cation explained below has been used to generate a corresponding microstruc-

ture for FEM modelling. Large grains with their orientations and long grain

boundaries were kept in the edited image. Some small grains were deleted.

The original and edited images as well as the generated FEM mesh, directly

created using Abaqus 6.11, can be seen in Fig.3. About 90% of the grains

with the main features of the experimental microstructure have been cap-

tured perfectly. Due to the large grain size, it is expected that the influence

of the subsurface grains is minimum. The model has a thickness of one finite

element with plane strain conditions. The final microstructure contains 179

grains with different initial orientations. Due to the complex grain geometry,

C3D4 (4-node linear tetrahedral) elements had to be used for the simulation.

A total of 23,999 elements have been used to reproduce the details of the

microstructure.

The displacements at the left and right edges of the DIC map were ob-

tained and imported as boundary conditions into Abaqus. No significant

alterations were observed for the displacement vectors at the two (left and

right) edges of the DIC map in Fig. 2 during cyclic loading (up to the first

100 cycles).

3.2. The non-local crystal plasticity model

The CPFEM model was developed based on a large total deformation

framework. Total deformation gradient F can be separated into elastic part

11
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Figure 3: (a) Original microstructure, (b) simplified microstructure and (c) finite element

mesh.

Fe and plastic part Fp by adopting the multiplicative decomposition ap-

proach (Lee, 1969).

F = FeFp . (1)

Elastic law (Hooke’s law) can be defined in the intermediate configuration

with the help of the stiffness tensor C and right Cauchy-Green tensor Ce =

FeTFe as

S̃ =
1

2
C :
(
FeTFe − I

)
, (2)

where S̃ is the second Piola-Kirchhoff stress defined in the intermediate con-

figuration.

Dislocation slip is the only mechanism considered for the plastic defor-

mation, where dislocations glide on well defined slip systems. This widely

used constitutive assumption (Asaro and Needleman, 1985; Kalidindi et al.,

1992) is adopted for crystal plasticity. For the large deformation framework,

if the initial plastic deformation gradient Fp0 and a small time increment are

12
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given, plastic deformation gradient rate can be approximated as

Ḟp =
12∑

α=1

γ̇αM̃αF
p0 , (3)

where γ̇α and M̃α are the shear rate and the Schmid tensor for slip system

α, respectively. The list of Schmid tensors of the FCC crystal structure is

given in Table 1.

The following flow rule (for each slip system) is used in this study based

on (Ma and Hartmaier, 2014), which incorporates the effect of the non-local

hardening terms τGNDk
α , τ̂GNDi

α .

γ̇α = γ̇0

∣∣∣∣
τα + τGNDk

α

τ̂ cα + τ̂GNDi
α

∣∣∣∣
p1

sign(τα + τGNDk
α ) . (4)

In this equation, τα is the corresponding resolved shear stress of the slip

system α, τ̂ cα represents the strain hardening term. τ̂GNDi
α is the isotropic

hardening due to first order of plastic strain gradients and τGNDk
α is the kine-

matic hardening due to second order plastic strain gradients on slip system

α. p1 is the inverse value of the strain rate sensitivity. For a small elastic

deformation, the resolved shear stress τ can be approximated as

τα = S̃ · M̃α . (5)

Typical strain hardening caused by the accumulation of statistically stored

dislocations (SSDs) for slip system α can be defined as

˙̂τ cα =
12∑

β=1

h0χαβ

(
1−

τ̂ cβ
τ̂ sat

)p2
|γ̇β| , (6)

where γ̇0 is the reference shear rate, p1 is the inverse value of the strain rate

sensitivity, h0 is the initial hardening rate, χαβ is the cross hardening matrix,

τ̂ sat is the saturation slip resistance, and p2 is a fitting parameter.

13
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According to the currently used higher order non-local model (Ma and

Hartmaier, 2014), the dislocation density tensor (Nye, 1953; Dai and Parks,

1997) obtained from the first gradient of Fp can be rationalized to 9 super

GND components. To evaluate the higher order stresses, gradients of super

GND tensor are approximated as 27 super GND segments localized at specific

position. Following the above approach, isotropic and kinematic hardening

due to the first and second order gradients of plastic deformation (Fp) are

calculated for slip system α.

τ̂GNDi
α = cpassµb

√√√√
9∑

β=1

χ′αβ |Aβijδjkl (Fp ⊗∇)ikl| /b , (7)

τGNDk
α = FpC′ (Fp ⊗∇⊗∇)FpT · M̃α . (8)

In Eq. (7), the coefficient cpass is used to calculate the passing stress of

crystallographic mobile dislocations due to super GNDs as forest dislocation.

Whereas µ, b, χ′αβ are model parameters representing shear modulus, Burger

vector (magnitude) and interaction matrix between crystallographic mobile

dislocations and super GNDs, respectively. Apart from this, δjkl and Aβij

in Eq. (7) are the third rank permutation tensor and third order conversion

tensor and are used to evaluate the plastic strain gradients. Except for

A111 = A222 = A333 = A412 = A513 = A623 = A721 = A831 = A932 = 1,

the rest of the 72 components of Aβij are zero. The sixth order tensor C′ in

Eq. (8) depends on the stiffness tensor C and the average GND pile-up size

L. One can refer to the detailed description of non-local terms in Ma and

Hartmaier (2014).

The list of model parameters is given in Table 2. Values were reported in

Luo and Chattopadhyay (2011), Luo (2011) and Efthymiadis (2015). These

14
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parameters were calibrated from simple monotonic tensile tests as well as

fully reversed cyclic tests.

Table 1: Schmid tensors of the FCC crystal structure

α M̃α = d̃α ⊗ ñα α M̃α = d̃α ⊗ ñα

1 (011̄)⊗ [111]/
√

6 7 (011)⊗ [11̄1]/
√

6

2 (101̄)⊗ [111]/
√

6 8 (101̄)⊗ [11̄1]/
√

6

3 (11̄0)⊗ [111]/
√

6 9 (110)⊗ [11̄1]/
√

6

4 (1̄11)⊗ [1̄11]/
√

6 10 (011)⊗ [111̄]/
√

6

5 (101)⊗ [1̄11]/
√

6 11 (101)⊗ [111̄]/
√

6

6 (110)⊗ [1̄11]/
√

6 12 (11̄0)⊗ [111̄]/
√

6

3.3. Simulation results

3.3.1. Strain distributions

The strain gradients which produce isotropic and kinematic hardening

strongly depend on grain size and hole size. In order to investigate the non-

local hardening, the maximum principal strain distribution for simulations

with and without nonlocal hardening are compared in Fig.4 and Fig.5. One

can easily see that the nonlocal hardening of strain gradients only influ-

ence some details of the strain distribution as the grain size and hole size

are rather large. From Fig.5, GND hardening, only found in the nonlocal

model, is more extensively distributed throughout the microstructure, but

with a lower magnitude compared to that of strain hardening in the nonlocal

model. The strain magnitude and heterogeneity in Fig.5 is higher than that

in the experiment. This is likely due to the small area of the microstructure
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Table 2: Nonlocal crystal plasticity model parameters.

parameter notation value

elastic constant c11 112GPa

elastic constant c12 59.5GPa

elastic constant c44 24.7GPa

shear moduli µ 48GPa

Poisson ratio ν 0.3

reference shear rate γ̇0 0.001

inverse of strain rate sensitivity p1 20

initial critical resolved shear stress τ̂0 82.5MPa

initial hardening rate h0 37MPa

saturating critical resolved shear stress τ̂f 100MPa

exponent of strain hardening p2 2.25

cross hardening coefficient χαβ 1.0

cross hardening coefficient for GND χGND
αβ 1.0

geometrical factor c1 0.1

average dislocation pile-up size L 8× 10−7 m

16
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Figure 4: Maximum principal strain distributions by using a nonlocal model (a) and a

local model (b).

simulated around the hole with the nodes in the upper and lower boundaries

treated as free nodes in the simulation. The simulation results from the local

model and the nonlocal model adopted the same model parameters listed in

Table 2. The difference in terms of strain distribution is small, but the strain

magnitude in the local model is slightly higher than that in the non-local

model. This is quite reasonable as the local model is softer than the nonlocal

model. Considering the high resemblance of local and nonlocal simulation

results, in the following part of this paper, only results of the nonlocal model

are reported.

The comparison between total strain and averaged slip on slip systems is

given in Fig. 6. The total strain is the von-Mises strain. The accumulated

slip is the time integration of the absolute shear rate on slip systems. The

averaged slip is the average of accumulated strain of 12 slip systems. Grain

17
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(a) (b)

Figure 5: Hardening distributions in (a) a nonlocal model with strain hardening (SVD29)

and (b) a nonlocal model with GND hardening (SDV58).

boundaries, grain number, larger deformation regions as well as grains where

microcracks were observed in the experiments are highlighted in the unde-

formed configuration. The strain distributions are rather heterogeneous. Al-

though the strain field measured by DIC (Fig. 2b) does not show dominating

deformation localization bands, a pronounced typical continuous 45◦ strain

localization band at 45◦ with respect to the tensile direction and a partially

continuous 45◦ plastic strain localization band, in the upper-left part of the

sample, is predicted in the simulation. This is due to the simplified boundary

conditions adopted in the simulation. The good agreement between strain

distributions in the experiment and simulation appears in the regions near

to upper-middle and lower-middle edges of the hole. The whole of grain-60

18
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and part of grain-149 are inside these high strain regions. Since grain-125,

for which slip bands and microcrack initiation were observed experimentally,

does not fall in the high strain regions, total strain and averaged slip alone

are not sufficient to predict fatigue crack initiation.

(a) (b)

Figure 6: Distribution of (a) total strain and (b) averaged slip on slip systems (SDV47)

in undeformed configuration with grain numbers. Regions having large deformation and

grains showing microcrack initiation have been highlighted.

3.3.2. Accumulated slip on slip systems

In order to explain different slip band and microcrack initialization mech-

anisms in different grains, the accumulated slip on each of the 12 slip systems

has been calculated. As shown in Fig.6 and Fig.7, although the averaged slip
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inside grain-125 is very low, the accumulated slip on the (111)[01̄1] slip sys-

tem is much higher than on other slip systems. Compared to the strong slip

gradients on slip system (1̄11)[110] in grain-60 and on (111̄)[101] in grain-

149, the slip in grain-125 is much more uniform. For this reason, according to

Equation (8) grain-60 and grain-149 withstand higher kinematic hardening

than grain-125.

Furthermore, with the help of Euler angles in the current configuration,

the slip plane normal directions, the slip directions, and the intersection

line directions of the slip plane with the sample surface with respect to the

dominating slip systems in grain-60, grain-125 and grain-149 have been de-

termined. These lines and directions are superimposed to the experimental

image of the microstructure in Fig.8. The results in the deformed configura-

tion show that the slip planes of slip systems 1, 5 and 10 have different angles

with respect to y-direction. These angles, 68.13°, 90.72°and 78.76°, respec-

tively, are in good agreement with experimental results. Through plotting

FEM simulated values at gauss points using the software OVITO, the accu-

mulated slip on four different slip planes was also compared. For example, the

combination of slip on 10-11-12 slip systems (Fig.9d) supports the appear-

ance of slip bands in the three important grains compared to results obtained

for the three other cases (Fig.9a-9c). These simulations results therefore give

some useful insight into the formation of slip bands observed in the SEM

images.

3.4. Comparisons of different fatigue indicating parameters

Many fatigue indicating parameters (FIPs) have been proposed in the

literature to predict crack initiation (Bozek et al., 2008; Shenoy et al., 2007;
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Figure 7: Accumulated slip on (a) slip system (111)[01̄1] (SDV35), in (b) (1̄11)[110]

(SDV39)and (c) (111̄)[101] (SDV45) in c).

Manonukul and Dunne, 2004; Sweeney et al., 2013; Zhang and Jiang, 2006;

Przybyla and McDowell, 2010). Very few publications have focused on com-

paring these parameters. The Fatemi-Socie (FS) parameter was selected in

this study and was calculated inside the Abaqus UMAT subroutine. The FS

parameter is defined as:

FS =
∆γmax

2

(
1 + k

σmaxn

σy

)
(9)

where ∆γmax is the maximum range of cyclic plastic shear strain, σmaxn is the

peak tensile stress normal to the plane which is associated with maximum

shear range, σy is the yield strength and k is a constant that is fitted from

the uniaxial and torsion fatigue test data.

When k = 0, it means that the crack incubation is independent of the

normal stress and completely controlled by the irreversible motion of disloca-

tions, in that case FSmps only relates to the maximum range of cyclic plastic

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 8: Comparison between simulated and measured slip band direction.

shear strain and amounts to:

FSmps =
∆γmax

2
. (10)

Although the Fatemi-Socie parameter is traditionally used in macro-

scopic models of fatigue, it has more recently been introduced for the pre-

diction of FCI and FCP (fatigue crack propagation) at the crystallographic

level(Shenoy et al., 2007; Hochhalter et al., 2010, 2011). This parameter

therefore depends on the maximal shear strain magnitude variation and the

normal stress acting on slip planes. The amount of shear on each slip system

was compared at the beginning and at the end of each load cycle to find the
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(a) (b)

(c) (d)

Figure 9: Distribution of accumulated slips on (a) (111) plane, (b) (1̄11) plane, (c) (11̄1)

plane, (d) (111̄) plane.
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magnitude of maximal shear variation along with the normal stresses. As

the maximal shear is assumed to cause a cleavage type micro-crack parallel

to a slip plane, the normal stress on this slip plane is related to the growth

of the crack at the microstructural scale.

Fig.10 shows the FS distribution map, with the value of constant k set

to 1.2, for both monotonic and cyclic conditions. This parameter does pre-

dict correctly crack initiation at the red arrowed locations of Fig.10. Both

locations correspond to the very edge of the hole where crack initiation oc-

curred. There is a slight shift with respect to the location for crack initiation

between Fig.10a and b, moving from monotonic to cyclic loading conditions.

The location is better predicted when used cyclic loading conditions in the

simulation. However, at the black-arrowed locations, crack initiation is not

predicted correctly, as in the simulation (both for monotonic and cyclic) fail-

ure occurs at the edge of the hole, while in the experiment it occurs at a

distance from the hole. As a result a new FIP parameter is proposed, which

consists of two sub-parameters

D∗ =
(2α+β)

√
D2α

1 ·Dβ
3 (11)

where D1 represents the maximum accumulated slip system, and D3 repre-

sents the total accumulated slip over all slip systems (Bozek et al., 2008).

For this study α = β = 1. The reason for choosing a larger exponent

for D1 is that the maximum slip leads to the formation of strong slip bands

and initiation of cracks. The exponent for D3 is selected by considering that

slip bands also formed outside critically loaded areas but they did not lead

to fatigue crack initiation eventually. (2α + β) has been used in order to

obtain dimensional consistency. Fig.11 shows simulation results when using
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parameter D∗, with highly damaged areas predicted above and below the

central hole. The map shows that crack initiation not only happens along

the edge of the hole (red arrows), but also in other locations, close to the

edge of the hole as pointed by black arrows. The locations predicted to fail

do not change significantly between monotonic and cyclic loading conditions.

The effect of grain orientation is more pronounced under cyclic loading condi-

tions in Fig.11b. A shear band forms at the red-arrowed location close to the

grain boundary of the highlighted grain. This indicates also the advantage of

using a non-local CPFE model for predicting behaviours such as shear local-

isations within grains and strain localisations close to grain boundaries. By

comparing Fig.2, Fig.10 and Fig.11, D∗ predicts better the locations where

fatigue crack initiation occurs under high amplitude cyclic loading conditions

in comparison to the FS parameter. The sub-parameters D1 and D3 are both

important factors for the prediction of the right locations for fatigue crack

nucleation in the microstructure. These results therefore indicate that the

Fatemi-Socie parameter is not as effective as the D∗ parameter for predict-

ing FCI for the investigated material but is a better predictor for modelling

slow crack growth (SCG), as fatigue cracks always initiate along strong slip

bands, but tend to deflect towards other directions upon SCG(Shenoy et al.,

2007). However further validation of the proposed new criterion through

experiments and simulations will be needed in the future.

4. Conclusion

In this paper, slip bands and crack initiation sites at the scale of the mi-

crostructure were investigated under cyclic loading using in-situ experiments
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(a) (b)

Figure 10: Comparison of damage predictions by using parameter FS in monotonic (a)

and cyclic (3 cycles) (b) loading conditions.

and CPFEM simulations systematically. Experimental techniques including

EBSD, digital image correlation (DIC) and SEM were used to measure grain

orientations, as well as local strain, distributions, and to analyse slip bands

and microcrack formation in the same area of the sample surface. A realistic

microstructure based on the EBSD map was generated and used for finite

element modelling. An advanced nonlocal crystal plasticity model, which

considers the isotropic hardening and kinematic hardening of plastic strain

gradient, has been adopted. The simulation results are in good agreement

with experimental results from many aspects:

1. It was found that some individual grains and related slip systems were
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(a) (b)

Figure 11: Comparison of damage predictions by using parameter D∗ in monotonic (a)

and cyclic (3 cycles) (b) loading conditions.

responsible for crack initiation under cyclic loading.

2. Total strain and averaged slip on slip systems, combined with accu-

mulated slip on specific slip planes correctly predict the location and

orientation of slip bands as well as microcrack initiation sites.

3. A new fatigue indicating parameter based on the competition between

maximum slip and total slip has been proposed and can reproduce

experimental results.
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