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ABSTP.ACT.

We study different properties of harmonic maps between two 
compact Riemannian manifolds M and M' and in particular the fol
lowing existence question : do there exist harmonic elements in 
the different homotopy classes of maps from M to M' ?

Our first result is an affirmative answer to that question 
when M is a surface and the second homotopy group of M' is zero. 
This result is then extended to certain products of manifolds and 
to ip-harmonic maps.

When M and M' are orientable surfaces, this solves the 
existence question as long as M' is not a sphere . When ti is a 
surface of genus p and M' a sphere, the question was answered 
by J. Eells and J. Wood for all classes of maps of degree greater 
or equal to p . For all remaining cases (degree - p - 1), we 
obtain existence results for particular metrics on M and M'.

We also study the question of existence for non-orientable 
surfaces, and obtain complete results for maps between spheres 
and projective planes.

A second type of results is a finiteness theorem for harmonic 
maps : we show that if the sectional curvature of M' is negative, 
there is only a finite number of non-constant harmonic maps from 
M to M' of dilatation bounded by a fixed constant . This implies 
a similar result on the number of almost complex maps between 
almost Kaenlerian manifolds.

Other results include an example of a continuous family of 
harmonic maps, a remark on the derivatives of the harmonicity 
equations and an answer to a question of H. Eliasson concerning a 
higher order energy.





CHAPTER 6 : HARMONIC MAPS OF NOM-ORIENTASLE SURFACES.
§ a : Classification of the homotopy classes, 
a b : Maps of spheres and projective planes .
S c : Maps involving other surfaces.............
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INTRODUCTION.

Let M,g and M',g' be compact C 
out boundary . A map f e is
it is a critical point of the energy

E(f) = - I df I vs W -

Riemannian 
said to be 
functional

manifolds with- 
harmonic iff

In this thesis, we shall study different problems related 
to the following question : does a given homotopy class of maps 
from M to M' contain a harmonic representative ? This question 
appeared when J. Eells and J. Sampson showed that its answer is 
affirmative for every homotopy class when the sectional curvature 
of M' is non-positive . On the other hand, J. Eells and
J. Wood have exhibited some homotopy classes between compact 
surfaces containing no harmonic element [_4"| . It is that question
of existence that we shall first study.

In chapter 1, we recall the basic definitions and properties 
of harmonic maps.

In chapter 2, we prove that if M is a surface and if the 
second homotopy group of M' is zero, there exists a harmonic 
element in every homotopy class of maps from M to M' . This result 
is obtained by means of a direct method of the calculus of 
variations and § a presents the basic results which are used . In 
§ b, we prove the existence theorem, in the case of a slightly 
more general integral, so that we can apply it to the cases of 
harmonic maps between certain products of manifolds (S d) and 

of ip-harmonic maps (5 e) . The regularity result required in the 

proof is a variation of a theorem of C. Morrey [20j and is
proven in S c.



II.
In chapter 3, we restrict ourselves to the case of two 

compact orientable surfaces, in order to get a more detailed 
picture of the situation . This will come, on one hand from 
existence results related to the direct method introduced above, 
and on the other from the relations between harmonic and holo- 
morphic maps in dimension 2, which we recall in § a.

Let p and p' denote the genera of M and M 1 . When d ' > 0, we 
get a complete existence result as an immediate consequence of 

tneorem 2.8.
When p' =0, the situation is more complicated . The 

homotopy classes of maps are parametrized by the degree CD, and, 
by changing the orientation of M if necessary, we can always sup
pose Gi positive or zero.

For CD - p, J. Eells and J. Wood have shown that every 
harmonic map of degree CD is holomorphic and deduced existence 
and non-existence results solving the existence question in all 
cases . We recall their results in § c .

In § d, we consider the only remaining case, namely p' = C,
&  - p - 1 . No complete results are then available, but we 
prove that for all p and CD < P , there exist a surface M of genus p 
and a harmonic non-holomorphic map of degree GD from M to S^.

This provides a partial existence result and shows that the 
theorem of J. Eells and J. Wood does not extend to these degrees.

Finally we exhibit for all p ^ 3 a surface M of genus p such
2that a certain non trivial homotopy class of maps from M to S 

contains 2 harmonic representatives, one holomorphic and one 
non-holomorphic.



Ill.
In chapter t+, we turn to a different type of problems and 

try to generalize to harmonic maps a class of results stating that 
under certain conditions, there is only a finite number of sur
jective holomorphic maps between two complex spaces (cf. fl2,S 3l ). 
For that, we have to introduce a new assumption on the maps, 
namely that their dilatation is bounded by a fixed constant K 
(S a) . We then prove that if M and M' are compact manifolds and 
if the curvature of M' is negative, there is only a finite number 
of non-constant harmonic maps from M to M' verifying that 
assumption (§ b) . When M and M' are almost Kaehlerian and M' of 
negative curvature, this implies a finiteness result on the 
number of almost complex maps between M and M'.

In chapter 5, we present 3 separate results.
In § a, we exhibit a continuous family of harmonic maps 

between surfaces which are not isometrically-or conformally 
equivalent.

In § b, we extend a result of K. Yano and S. Ishihara [2S~J 
by proving that, for any positive integer k, a map is harmonic as 
soon as the k**1 derivative of its harmonicity equation is zero.

Finally (§ c), we answer a question of H. Eliasson by showing 
that the second order energy defined in [5j does not always reach 
its infimum in a homotopy class of maps between surfaces, and 
hence does not satisfy condition (C).

In the last chapter, which results from very recent joint 
work with James Eells, we study the existence problem for harmonic
maps between not necessarily orientable surfaces M and M' .

2 . . 2When M' is not the sphere S or the projective plane P ,



IV.

theorem 2.8 implies the existence of a harmonic map in every 
homotopy class» so that we then restrict ourselves to the cases 

M' = S2 or P2.
In § a, we recall P. Olum's classification of the homotopy

2classes of maps from a surface to P .
We can then, in § b, solve entirely the existence question 

for maps between spheres and projective planes, obtaining 
existence and non-existence results.

When M is another surface, we have as yet only partial 

results, which are summarized in § c.
Some of the results of this thesis will appear in [l1*]] , 

[13] and [16] .



CHAPTER 1.

HARMONIC MAPS.

S a : DEFINITIONS AND NOTAI HNS.

In all this work, M,g and M',g' will represent compact 
connected C°° Riemannian manifolds without boundary, of dimensions 
n and n' . {x1} and {ua} will denote coordinate systems around
the points m of M and m' of M' . If n = n' = 2 ,  these systems 
will be denoted {x,y} and {u,v} . T and T' will be the 
coefficients of the Riemannian connections on M and M' and R 

and R' their curvature.
Let f : M ___» M' be a c“ map . Its covariant derivatives will

be denoted as follows :

n  -
3f^
dx1

fa 32fa - rk f1J 3xi3x^ ij f
a
k*



We define the harmonic maps after [̂ 1 •

definition 1.1 : The energy density of f at m t M is defined by 
e(f)Cm) = j  | df (m) | 2 = \  gl5(m) f?(m) f?(m) g^Cf(~)).

Definition 1.2 : The energy of f is the integral

E(f) = e(f) v
M g

where v is the volume element associated with g.g

3y definition, the function E : C (M,M')----7 ?- is posrti

or zero.

Definition 1.3 : A map f e c“ (M,M') is harmonic iff it is a 

critical point of the energy.

Proposition l.M- [3,§1,2] : A map f is harmonic iff it
the Euler-Lagrange equations x(f) = 0 where, in local 

coordinates,
t(f)a = gij (f?. + r'“Y (f) f| fT).

Definition 1.5 : x(f) is the tension of f.

N'ote that x is the trace of the second fundamental form of 

f, defined by
f“ . . = f?. + I” “ (f) f? fT> 13 13 Sy 1 d

and can also be written
x(f)a = Afa + gij r*JY(f) f? fT

where Afa is the Laplacian of fn.

If the dimension of M is 1, a harmonic map is a geodesic of 

M ’ . If H* = R, we have the usual definition of a harmonic 
function.



ve define the harmonic maps after [3]

ifinition 1 • 1 : The energy density of f at m t. M is defined by 
e(f)Cm) = |af(m)|2 = y g^(m) f?(m) f?(m) g^g(f(~)).

Definition 1.2 : The energy of f is the integral
E(f) = I e(f) v

JM g
where v is the volume element associated with g. g

3y definition, the function E : C ----, R is positi

or zero.

Definition 1.3 : A map f e C°0(M,M') is harmonic iff it is a 

critical point of the energy.

Proposition l.M- [3, §1,2] : A map f is harmonic iff it
the Euler-Lagrange equations x(f) = 0 where, in local 

coordinates ,
x(f)a = gij Cf?. + r'“Y (f) f| fT).

Definition 1.5 : x(f) is the tension of f.

Uote that x is the trace of the second fundamental form of 

f, defined by
fa .. = f?. + r'“ (f) f? fT •,13 13 3y 1 3

and can also be written
x(f)* 01 = ¿ftt + gij r'“y(f) f! fT

oi #where A f is the Laplacian of f .

If the dimension of M is 1, a harmonic map is a geodesic of 

M' . If M' = R, we have the usual definition of a harmonic 
function.

■ M H I



V.’e present the results of [3;5I,5j concerning the composition 

of har;nonic maps . Let M,M' and M' ' be three manifolds.

Proposition 1.3 : Let f 6 C°"(M,M') and h e C . Tnen

)a .. := f01 . . ha + ha „ f? f?a ;aS i 1
f)a = T(f)aha + a

i j . ag f?1

Corollary 1.7 : If f is harmonic and h totally geodesic (i.e.

na „ = 0), then hof is harmonic.;a8

In general, however, the composition of two harmonic maps 

is not harmonic.





define I„(f)D similarly . If V(D) denotes

deduce from (2) that

ID(f) ± A 1 ED(f) + B1 V(D)

e d (f) i 1AC\O
(ID(f) - B V ( D ) ) o

These relations show that I will, in 
the sane behaviour as E.

We now recall the definition of the 
is closely related to the study of E and 
exposition of [21] and refer to that tex 
details and other definitions.

the volume of D, we

(3) .

many respects, have 

ospace L^(H,M'), which 
I . We follow the 

t and [s] for more

Definition 2.1 
C°°(M,R“) for th

To define t 
embedding of K'

The space L2(M,p]' ) is the completion of

L2 = 1 f .
J f|2 + df!2]-vg-

2(M,M’), we then consider a
VT

in R (which always exists if N is large enough

[2 2]).

Definition 2.2 : f : M -- > M' belongs to L2(M,M') iff its
2 >4composition with the embedding of M' in R is in L^(M,R ).

2One can check that the space L^(M,M') does not depend on
the choice of the embedding (although of course the norm of the

2composed maps does) . As usual, we call map of class an
2equivalence class of maps, at zero L^-distance from one another 

and we call such a map continuous if an element of that class 

is continuous. 2The space appears naturally in the study of u.e function 
I (and in particular of the energy E) . Indeed, from the



definition of I and from the fact that M and M' are compact, 
we conclude that a set of maps on which I is bounded is precisely 
a bounded subset of L2(M,M').

In order to study the problem of existence of a minimum of 
I in a homotopy class H of maps from M to M', we shall use a 
direct method of the calculus of variations.Since I is bounded 
from below on H, we can choose a minimizing sequence for I ir.
H, and we obtain easily the following result :

Proposition 2.3 : Every minimizing sequence for I contains a
2subsequence (f^) which converges weakly to a map f . -.he

limit verifies
1(f) - lim inf I(f ).r

Proof.
2A minimizing sequence is a bounded set of . By 

[1; ( 12,15,10 ) J such a set contains a weakly converging sub
sequence . From [l; ( 12,15,8) J and the existence of a L,2 
converging subsequence (Rellich lemma) , we deduce that
1(f) i lim inf I(f ).r

In order to prove that I admits a minimum in H, it would
oo

then be sufficient to show that the limit f e C (M,M') and 
that f e H . This last point would automatically be satisfied 
if the convergence of the sequence were uniform.

If the dimension of M is one, this will be the case, by 
virtue of the theorems of Sobolev and Rellich . The limit will 
thus be in H and by theorem 1.10.1 of |*21j , it will be C .So 

we have proven the following result :

6 .



7.
Proposition 2.U : If n = 1, I reaches its minimum in every 

homotopy class.

2If n - 2, those theorems don't apply : an map is not
2always continuous and the weak convergence is not always uni

form . As a result, the direct methods of the calculus of 
variations will not lead to a general existence theorem, as is 
shown by the non-existence result of §3.c (th. 3.10).

As we will see, however, different existence results can
be obtained in the case n = 2 . This is due to the fact that a 
2L1 map in dimension 2 is "not too far" from being continuous.

This allowed C.Morrey to prove a regularity result for minima
of E which is particular to this dimension £20] . Still, it
does not imply that the limit of a minimizing sequence in K
v:ill be in H , and we shall have to introduce other assumptions.

We conclude this paragraph by a proposition that limits
2 . . .the "non-continuity" of a map m  dimension 2.

Definition 2.5 : A map f(x) from an interval to M* is absolutely

continuous iff V e > 0, 5 5 such that £ |f(x")-f(x^)| — e
a

whenever the intervals (x^,x^) are disjoint and J (x^-x^) ~ 6*
a

The notation | - | represents here the Riemannian distance on M'

Proposition 2.6 [20] : If f is absolutely continuous, its
derivative exists almost everywhere and the length of the 
curve fCx) is equal to the integral of |fx |.

Proposition 2.7 : Let M be a surface and f e. L^(M,M') . Let

(x,y) be local coordinates on a chart of M . The class f can



3 .
be represented by a map - also denoted by f - such than for 
almost every x (resp. y), f is absolutely continuous in y 
(resp. x) . f can be defined almost everywhere as the Lebesgu

derivative of
a

f dx dy.

Proof.
cf. Qì 1, lemma 9.4.1 cQ .

Remark : In what follows, f will always denote that representa

tive of the map.

§ b : EXISTENCE RESULT.

In order to deduce some existence results for harmonic ar.d 
i|)-harmonic maps (§ d and e) , we prove the fallowing theorem. :

Theorem 2.8 : Let M,g be a compact surface and M',g' a compact 
manifold whose second homotopy group ITjCM') is zero . Every 
homotopy class of maps from M to M' contains a map realizing nhe 

minimum of I.

Remark 2.9 : This theorem does not involve any assumption on 
the metrics g and g' .In particular, the curvature of M' need 

not be negative or zero.

Remark : A special case of this theorem (when I = E and dim M'=2) 
was proven in the thesis £13J . The case I = E was also an
nounced by K. Uhlenbeck.

Proof.
Let U and U' denote the universal coverings of M and M',



and let II and IT' be the projections . We endow U and U' with 

the metrics ll̂ g and n r*g'.
Any map h in the given homotopy class H can be lifted to

a map h : U ___  ̂U', which is determined by the choice of the
image h(P) of a single point within n' 'l (h( n C P))) .

bet II-(M) and II-(M1) denote the fundamental groups of M
and !<’ . A map h induces a conjugacy class of homomorphisms
from TI-CM) to II-(M'), which we denote h . An element y of II-(M)
can be seen as an automorphism of U and the lift h verifies the
relations hey = h (v)oh ’where h is an element of the conjugacy
class h , depending on the chosen lift.

Since I^CM') = 0, the proof of theorem 8.1.11 of [25]
implies that there is a one-to-one correspondence between
the homotopy classes of maps from M to H 1 and the induced
cor.jugacy classes of homomorphisms . Therefo-re, a continuous
map f belongs to H iff ^ y its lift verifies

f oY = a. h (y) • e "of (4)x
for a certain a a. II-CM').

Consider a map f verifying (4) . In general, U is not
_ 2compact so that f is not in L-(U,U'), but of course vie can give 

sense to a Sobolev condition on f, for instance by saying that
_ O
f e iff its restriction to any fundamental domain of U is 
in L- . In the same spirit, we define the "energy" ¡3 of h as 
the "energy" of its projection h : 3(h) = 1(h).

Consider now a minimizing sequence (f^) for 3 in the class 
of maos verifying (4) • Vie shall see that, after composition

9.

with automorphisms of U' , a subsequence converges weakly in £



IQ.
Since the (f^) are a minimizing sequence for 3, it is sufficient
to show that (after composition with elements of n^(M')) they

P 2are uniformly bounded in -L .
For that, it is convenient to consider a single compact

rectangular chart £ of U covering a fundamental domain (this is
2possible except in the case M = S , where we can take two charts). 

For two subsets of ^  with Euclidean coordinates (x,y) and (X,Y), 
we obtain by integrating formula (9.4.22) of [2lJ :

(x,y) ( X , Y )
|f (x,y) - f (X,Y)| dx dy dX dY

(|f (x,y) - f (X,y)|2 + |f (X,y) - f (X,Y)|Z) dx dy dX dY

- C.

r

(|f l 2 ♦ | f | 2) dx dy < C2 6(f) * C, 3(fr) + C4 i C (5).
where £(f ) = E(fr), fp being the projection of f p .

This implies that for a certain positive n> there exists for 
all r a subset of 3* area n whose image is in a single 
fundamental domain of U' . Indeed, if it where not the case, the 
sets f (.4*) would intersect more and more fundamental domains 
in a way contradicting (5) . By composing f with an automorphism 
of U 1, we can suppose that this fundamental domain is always the
same . The f p are then uniformly bounded by (5) and hence admit
a weak limit f.

Furthermore, only a finite number of conjugations appears in 
the relations f^^ = a h^ a  ̂ . If not, a domain of 3* and its 
image would drift apart when r increases, contradicting an ex
tension of (5) to that situation . Therefore, we can take a sub
sequence of the f 's such that f „  = h„ for all r . The limit f r rx x
will then also verify

f o y = h^(y)o f (5)
and minimize 3  among all maps verifying the same relations.

Let P be a point of U and c a positive constant . By



Since the (f^) are a minimizing sequence for* 3  , it is sufficient 
to show that (after composition with elements of n^(M')) they

c2are uniformly bounded in X» .
For that, it is convenient to consider a single compact

rectangular chart Z of U covering a fundamental domain (this is
2oossible except in the case M = S , where we can take two charts). 

For two subsets of ^  with Euclidean coordinates (x,y) and (X,Y), 
we obtain by integrating formula (9.4.22) of £2lJ :

(x,y) ( X , Y )
|f (x,y) - f (X,Y)| dx dy dX dY

(|fr (x,y) - fr,(X,y) |2 + |f„(X,y) - f^X.Y)!2) dx dy dX dY

(|fx |2 ♦ |fy |2) dx dy ^ C2 
where £(f^) = E(fp), f p being the projection of f p .

This implies that for a certain positive n, there exists for 
all r a subset of 3* area n whose image i§ in a single 
fundamental domain of U' . Indeed, if it where not the case, the 
sets f ( ‘4*) would intersect more and more fundamental domains 
in a way contradicting (5) . By composing f with an automorphism 
of U', we can suppose that this fundamental domain is always the 
same . The f are then uniformly bounded by (5) and hence admit

a weak limit f.
Furthermore, only a finite number of conjugations appears in 

the relations f = o h^ a_1 . If not, a domain of 3* and its 
image would drift apart when r increases, contradicting an ex
tension of (5) to that situation . Therefore, we can take a sub
sequence of the f 's such that f „  = h for all r . The limit f r r* -x-
will then also verify

f o y = h^( y) o f < o )
and minimize 3  among all maps verifying the same relations.

Let P be a point of U and c a positive constant . By



11.
proposition 2.7, f is absolutely continuous on the boundary of 
the disk D centred in P and of radius r, for almost all r - c.

Let us take r so small that D nyD = $ for aH  Y £ Jlj(M).
f|P is then a minimum of I among all maps on D having the same 
value on the boundary . Indeed, if it were not the case, we could
build by translations a map verifying (6) and of smaller £ than
f.

In the next paragraph, we shall see that f is then C . 3y 
(6), it has a projection f c C (M,M') which is in the homotopy 
class H.

Remark 2.10 : As a by-product of this proof, we see that when M 
is a surface and M ' a manifold, there exists a harmonic map from 
M to M' inducing any given conjugacy class of homomorphisms from 

n^M) to n1(M').

§ c : REGULARITY.

Following closely a method of C. Morrey [20J , we shall prove 
the regularity result used in the last paragraph.

Definition 2.11 : Holder-continuity . If D is a disk of M, a map
f : D __ » M' belongs to C°(D,M'), X e (0,1) iff V , m2 e D,
|f(m^) - f(m2)| i C.|m1 - m2 | \

Proposition 2.12 : If D is a disk of H of sufficiently small 2
2radius R and if f t L1(D,M') minimizes I among all maps in 

Lj(D,M') coinciding with f on 3d , then f is of class C° in the 
interior of D.



12 .

Proposition 2.13 : If f e. C°(D,M') is a critical point of I, 
then f t C°°( D, H 1 ) .

Proposition 2.12 is due to C. Morrey in the case 
[2 0] [21] , and it will be an easy matter to adapt 
the case of I . For completeness, we shall do it 
in the remainder of this paragraph.

Proposition 2.13 is an immediate consequence

1.10.4 iii of [2l] .

of the energy 
his proof to 
in details

of theorem

Proof of proposition 2.12.
Vie consider on M an atlas composed of exponential dis.-cs

*"■’ “1 _of radius R . We note D such a disk and D = exp D . For ar.y
map h : D  ? M', we put h = h oexp . h is a function cf the
Euclidean coordinates (x,y) and if (r,0) are polar coordinares 
on D, we put H(r,e) = h(x,y) . We define E-gQi) and I^(h) by 

E*Ch) = i f 5ij h^ h® g' dx dya3

I=(h) =u [■| A(exp(x,y),h(x,y)) h? h?

+ B(exp(x,y),h(x,y)] dx dy.
Since M is compact, we can suppose R so small that tnere 

exists a positive number w such that for all vector field X, 
1-form £ and function h on a disk A in D, one has

i w lex1)2“ij
,2

w [(X1)2

O'^h dx dy
A

de
3 A
. 1 
w ‘

4 «ij xl  X3
4 E13 q  Cj

- L h vexpA
* i  „  »

exp 3 A

g
ds

- W 

¿ W i<5i> 
* W

(7)
h dx dy 

A
W H de

3 A

where W



I

On M' we choose an atlas of the saae type, and denote R',
2w' and W 1 the associated quantities . A disk of IR of centre mQ 

and radius r will be denoted D(mQ ,r) or sometimes simply D.

13.

~ 2 n 'Lemma 2.1H : Let F e L1(3D(mo ,r),R ) and let h be the harmonic 
function on D(m ,r) coinciding with F on 3D . Then

ED (h) - ? Fp, ( 9 ) I d9 .

Proof.
If the Fourier expansion of F(9) is 

aa
Fa(0) -  + 7 (aa cosag + ba sino9), the harmonic function2 * a  oa = l

a „
H writ ten Ha(p,9) =

then

= l ((H")2 + ~ 2
a D p p i

oo
-- l l  on C(a^) L , 0a o=i

* y p 2r , , Ï.2> a H ( (a )
a 0 = 1 u

r 2 n  -, 2= l (Fa)2 d9.
a C 9

a = l r

la, 2.

a, 2,

a. 2,
V  -

Lemma 2.15 : Let D be a disk of radius r of R and F : 3D M *
an absolutely continuous map such that

|Fg(6)p  d6 - w ' R 1 2

There exists a map h e L^CD,M') equal to F on 3D and such that
~ . A W'

!~(h) - 2
3D

|'f o( 0) I2 d9 + B. n r 2o 1 ( 8 )  .



Proof.

14 .

Fix an angle 0q . There exists a 6^ such that | 9 9Q | - II

and ’(9) - F(eQ) | -

F(e1) - F(eo)

F(0 ) - F(0o)| ^ 9 " Then

i n

f6i ds
Jl ~

(prop, 2.6)

(Holder's inequality)

Hence 1F(0) - F(9 )|2 - w'R'2. i o 1
Consider an exponential chart of M' of radius F.' centred at 

F(6 ) . For all path ua(s) (where s is the Euclidean arc ler.ght),o
we have

rX
/g' (u) ua u^ds ^=aS

’x
r ( a n 2

0 L s ds

* X
and every point at a distance - R' of F(6q) is in the
chart . This is tne case for the set {F(0) | 9 £ [0,2Ill }.

How define h : D --->M' as the map from D to that chart,
equal to F on 3D and whose components are harmonic functions. 
3y lemma 2.14 and (7), we have

EB (h) = ± ■g I S«B *i dx dy

^ f W

* \  W

l  |h?|2 dx dy
D l ,a 
2H

0
|F0I ¿9.

(8) is then an immediate consequence of (3)

End of the proof of proposition 2.12.
2 . .Suppose now that f is the L. minimum of I that we wish to
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study . It minimizes I on every disk and is absolutely 
continuous on the boundary of almost every disk . Vie shall show 

in three steps that it is Holder-continuous.

Step 1 : For a point nu = (x^,y^) af a distance R - 5 of the
origin of T M, consider in the disk Dim.,5) the Euclidean 

1 o
coordinates (x,y) and the polar coordinates (r,9) (so that. 

(x1>yi) = (0,6)) . Put Er(f) = Ei(n<i>r)(f) and

E (f) = E 7 , .(f) and use similar notations for I . Thenr exp D(m.,r)m0 -i-
there exist two constants X e. (0,1) and such that

15.

Er (f)
m2 r \ 2 X

i  f  (f) for .11 r i 5.

Proof.
Is ' case : If

2H
!fq!2 d9 i w'R 2

, we know
0 n

there exists a
.v

map h e L2(d , ), equal to f~

(3) . Since f minimizes I in exp D , vie have,

E (f) t W2E (f) i v;2 A"1 (I (f) - B V(ex? D)) p  p  o  v  o

£ , ,2 A"1 (I (h) - 5o r
£. w4 A"1 (I (h) - 3o
L w4 A'1o ( f  , <o

3D

f2n
2^ case . If 2

lFJ d 9
o 1 e'

¡F (9)|2 d9 + (31 “  V  11 r 2 ) '

w ' R ' 2, we have

V ?) - C  (Ir(?) " 3o 11 r2)

- V;2 (Ir(f) - Bo n 1,2}

W2 A"1 (inf I„ - n r 2)
2H

i vr a2 .-1"-1 (inf I + 13 I n R ) --—
° ° w'R'

Ip o12 de.
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So in both cases we have : 

21!-1
r 4X Fq|2 de + r2

•/here X e. (0,1) is chosen so that 

4 X ’ (31 o ,n ’
w2w n
AoR , 2 (inf 1 + 3 J " r2>]

X will be kept fixed for the remainder of the proof.

f r  f2ni,~ ,2
O ' - '  p"

Since 2 E^if) =

we have for almost all r 
;2H

2r E ’ (f) = r

(|Fr |2 - -SlFgl2] P dp d&:
1 P ^
r

2 1 2 1 r d0

2n
!FeI 2 de  ̂ 4 X Er(f) - r2

i.e. E ’ ( f )  > ii Er<?) - f.
Integrating this inequality from r to the fixed radius o, 

we get
: i ,J6'(f)  ̂ E .(f) ?

2 X .2
4-4 X I S

2 X

* (-«“ > ♦ irar) (!)
2 X

Step 2 : f(m.,) is well defined and F is absolutely continuous 
in r for almost all 6 . If l(x,y) = V 2 ~e(f)(x,y)' > one has 
almost everywhere :

|f(x,y) - f(x1,y1)| - r
1 (9).

1 ((1 - t)x1 + tx , (1 - t)y1 + ty) dt

Proof.
Let L(r,6) be the function 1 in polar coordinates : 

L2(r,9) = |Fr |2 + r"2 |F0|2.



So in both cases we have :
21!

'tE (f) - —

•where X e (0,1) is chosen so that

X will be kept fixed f nder of the proof

Since 2 E^Cf) =

■;e have for almost al] r 
r 2II r _



Put Vir) =
2n

p L(p,0) dp de

By Holder's inequality and step one 
__ _ /f t

VCr) - V̂ ilr V \ „  1 dx dy

X
 ̂ /2Hr' M ~  .

17 .

Since ’t"(p) = f
2n

L( p , 8)dp d9

211 j
p^L(p,0) d0 a.e.,

0 1 
f r  ~~2p z V ' (p) dp
0

= r 2 VCr) + j
r r  - j

p 'F(p) dp

4  ' M o  p_1*x H

- cst. r A (10)

which tends to zero with r.(•j mF(r,0) is therefore absolutely continuous for almost all 

0 down to r = 0.
By prop. 2.5, for 0 < r^ < r2

’2n |F(r2,9) - F(r1,0)| d0 i
2n
0

r2 r
(|Fr l2 ♦ r-2If,

1
2Ì  2 dr d0.

2U
|FCr2,0) - F(r1,0)| d0 = 0Hence lim 

r2-»0
0 <r'i<r2

and there exists a map F(O,0) such that

lim
r->-0

|F(r,0) - F(O,0)| d0 = 0.

From (10) v/e deduce that lim
r-*-0

2n
F01 d0 = 0 so that F(O,0) is
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Put 7(r) =
fr f 211 j

p L(p , 9) dp d6

By Holder's inequality and step one
2 '7(r) - V2:Ir / L  1 dx dy

 ̂ /2Hr'M %  .
6A

. f 
' 1

L(p , 8)dp d9 =

Since 7 1(p) 

r ,211 

0 0

2n y
p L ( p , 0 ) d0 a .e .,

r “Tp A 7 1 (p) dp
0

= r 2 7(r) + j p 2 7(p) dp

- cst. r^
which tends to zero with r.

,r -1+1 j Ì) dc

(10)

F(r,9) is therefore absolutely continuous for- almost all 

0 down to r = 0.
1 f Avi fl ✓ n V.By prop. 2.5, for 0 < r1 < r

'2n |F(r2,9) - F(r1,6)| de ^ r2 n 
00

12n „ rsJ
Hence lim |F(r0,6) - F(r

r2-*-0 J 0
0<r,l<r2

and there exists a map F(0,9) such that 
|F(r,0) - F(O,0)| d0 = 0.

2n ^
lim
r+0
From (10) v;e deduce that lim

r-+0
|F_| d0 = 0 so that F(0,6) is



18.
almost everywhere independent of 0 . f(m.) is thus defined.

(9) is then proven as follows :
tV

|F(r,0) - F(0,9)| i |Fr | dp

L(p,0) dp

L(t.r ,9) dt.

Step 3 (Dirichlet Growth lemma) : Let f e. L2(D(mQ ,R)>M') be 
such that m e D(mo>R) and for 0 - r - 5 = R - | m - m o |

(|Fr |2 + p"2 | FQ | 2) p dp d0 c- N2
2 X

J D(m,r)
Then f e C°(D(mQ ,p)) V p < R and |f(£) - f(m)| ^ C.N 
for | ^  L

1

(11) . 
X

Proof. /VL e t  m a nd 5 e  0 ( n o I n  -  Cl  -  |  • L e t  m =
r*J __

point n e D(m,x).

,P.) , with |m - | = R - 6 and

and x = • Consider finally a

3y step 2, for almost every n, 
|f(n) - f(C)| * 2 X jQ L(5 + t(n $)) dt.



We now integrate on D(m,x) and make the substitution 
k = ? + t (n - C) • Putting = (1 - t)C + tm, we get

19 .

3y averaging on 0 the tv;o sides of
|f(m) - f(C)|  ̂ |f(m) - f(n)| + |f(n) - f(£)| , we obtain the
result since the left-hand side does not depend on n.

§ d : HARMONIC MAPS.

From theorem 2.8 , we shall deduce two existence results for 
harmonic maps.

F irst, by putting A = 1 and B = 0, we obtain immediately the

1
dn - 2x _dn

, D(m,x) Jo
L(C + t(n-C)) dt

By Holder's inequality and (10)

L(k ) d< é L2(k ) d< 2 V(D(mt ,tX))
1

D(mt ,tx) JD(mt ,tx)

- I - !The same inequality applies to the average of |f(0) - f(m)|.

following :
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Theorem 2.16 : Let M be a compact surface and M' a compact 
manifold whose second homotopy group is zero . Every homotopy 
class of maps from M to M' contains a harmonic representative 
which realizes the minimum of the energy in the class.

Consider then the following situation . Let M = N x K and 
M' = N' x K' be differentiable products of compact Riemannian 
manifolds . We denote by ,̂g, and the components of the 
metric, the connection and the curvature on N, and use similar 
notations on K, N' and K' . Let us choose on M coordinate 
systems (x^,...,xr ;xr+^,...,xn) = ( x ^ x 3 ) such that the (x1) 
are coordinates on N and the (xa), on K . Similarly, on N' x K', 
we use the coordinates (u ,...,u ;u ,...,u ) = (u ;u ).

On M, we define the metric

on N' .

Remark 2.17 : Even when JJ' and K' are fla t (for instance when 
they are circles) , the manifold M' is  not necessarily of 
non-positive curvature . So, even simple cases of this situation  
can bring outside the scope of the Eells-Sampson theorem .

0
g where X is a positive

0 XCx1) Kgab(xC)
function on N.

On M', the metric g' is defined by

0
g' U being positive

0

Theorem 2.18 : Suppose that there exists a harmonic map
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: K ---r K' of constant energy density, i.e. a map such that

t ( 3>) = 0
e( 3") = cst.

If N is a surface and if n^^N') = 0, then for all homotopy 
class of maps from N to M', there exists a harmonic map
U : N x K ---\ N' x K' of the form
?. / I  n .U : (x ,...,x ), • • • , , ...,xn )) such that f

is in the given homotopy class.

Proof.
3y direct calculations in local coordinates, we can obtain 

the expression of the energy and the tension of U :

depends only on the coordinates on N and their image by f.
The following lemma shows then that the variational problem 
in U is equivalent to the study of the problem (12) in f.
Since (12) is of the form (1), theorem 2.18 becomes a consequence 
of theorem 2.8.

Lemma 2.19 Ql3] : Every map from M to M' extremizing E among 
the maps of the form

E(U) = V(K) e(f) X 
N

t(U)a = T(f)a + ik 3X 1 3fa £ r i k

V + E( ̂ )
n g

(f)

(12) .

t(u)A = j  x( 3o a .
Since t (3') = 0 and e (S’ ) = cst., t(U)A = 0 and x(U)a

) • • • ) > • • • »
is harmonic

Proof.

For such an extremal U and for each vector field along U
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JT : K ---> K' of constant energy density, i.e. a map such that

t ( 30 = 0
e( 30 = cst.

If N is a surface and if I^iN') = 0> then for all homotopy 
class of maps from N to M', there exists a harmonic map 
U : N x K ---> N' x K' of the form

is in the given homotopy class.

Proof.
By direct calculations in local coordinates, we can obtain 

the expression of the energy and the tension of U :

depends only on the coordinates on N and their image by f.
The following lemma shows then that the variational problem 
in U is equivalent to the study of the problem (12) in f.
Since (12) is of the form (1), theorem 2.18 becomes a consequence 

of theorem 2.8.

Lemma 2.19 £13] : Every map from M to M' extremizing E among 
the maps of the form

U : (x1, . . . , x n)>----> ( f ^ x ^ x 2) ; 3‘A(x3, . . .  ,xn)) such that f

E(U) = V(K) e(f) X 
N

n-r
V

n-r 1

+ E( ̂ ) y(f) X 2 V
N 1

( 12)

/n «  ̂n-r ik 3X 1 3f a „ ,  A,,t (U) = t (f) + g — j  j  — £  “ e( JT)
3X1 A 3x

(f)

Since t ( 3* ) = 0 and e (¿J- ) = cst., t(U)'^ 0 and t(U)a

) • • • )
is harmonic.

Proof.

For such an extremal U and for each vector field along U
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of the form
Xa = /“(x1» • • • )

we have -<x(U),X> = D^E(U) = 0,DXE(U)
i.e. g'(f) Xa(x1,...,xr ) t (U)S V

N K
Since x(U)p does not depend on (x

1x ,. . . g

. ,xn), this implies

N up
We have noted already tl__ ___

X 2 g;B(f) Xa(x1,..

Remark 2.20 : One can give different examples of maps jh such
that x( 3*) = 0  and e(3*) = cst.. The simplest ones are of 
course the identity from a manifold to itself, or a harmonic 
(that is minimal [3;§I,2,d]) Riemannian immersion . The 
harmonic maps between spheres or products of spheres obtained 
in [24,examples 1.3 and 3. 3j also have constant energy density.

§ e : 0 -HARMONIC MAPS.

In [17] , A. Lichnerowicz introduces the following notion :

Definition 2.21 : Let tp be a positive function defined on the
Riemannian manifold M,g . A 0°° map f  : M,g-----> M' ,g ' is
ip-harmonic i f f  i t  is a c r itic a l point of the function

Clearly this integral is of the form (1), and therefore we

have the existence result :
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Proposition 2.22 : Let M,g be a compact surface and M',g' a 
compact manifold such that = 0 • Let be a positive
function on M . Then every homotopy class of maps from M to 
M' contains a iJ)-harmonic representative.

It turns out that such a result, with dim M = 2, has a 
special interest in the case of ^-harmonic maps . Indeed, it 
is observed in £l7j that when dim M t 2, a ’¿¡-harmonic map from 
M,g to M',g' is precisely a harmonic map from ^ . g  to
M',g' . Therefore, in these dimensions, the study of ¿¡-harmonic
maps reduces for certain problems to the study of harmonic 
ones . For instance, if the sectional curvature R' of M* is 
negative or zero, a homotopy clans of maps from M to M' 
always contains a ’¿»-harmonic map, since it is harmonic for 
another g . This is used extensively in § 14 and 15 of £17]•
If dim M = 2, this reasoning is not valid, since a conformal 
transformation of g will preserve ¿¡-harmonic maps, and not 
make them harmonic . However, proposition 2.22 applies in this 

case and we have :

Theorem 2.23 : Let ip be a positive function on M and suppose 
R' - 0 . Then every homotopy class of maps from M to M' contains 
a ¿¡-harmonic representative.

Proof.
As explained above, if dim M i  2, this result is obtained 

in £l7j as a consequence of £3] . If dim M = 2, it is a 
corollary of proposition 2.22 . Indeed, since R' - 0, the 
Cartan-Hadamard theorem implies that = 0.



24 .

The consequences of theorem 2.23 appearing in § 14 and 

§ 15 of Ql7j are thus valid in dimension 2 also.



HARMONIC MAPS BETWEEN 0RIEMTA3LE SURFACES.

In all this chapter, M and M' will be compact orientable 
surfaces, whose genera will be denoted by p and p'.

§ a : HARMONIC AND HOLOMORPHIC MAPS.

We first recall the relations between harmonic and holomorphic
maps in dimension 2 [3] £27j • To simplify, we do not
always present the results in complete generality.

If M,g is an oriented surface, we can define on M a complex
structure J such that (M,J,g) is Herraitian . In a tangent plane
T M, the action of J is defined as the rotation of 90° in a m 2sense determined by the orientation . Then J = -I and g(JX,JY) = 
g(X,Y) . The almost complex structure J is automatically

CHAPTER 3 .

2 5 .



complex since M is a surface.
Around every point of M, we can then consider an isothermal

2 2 2 2chart, in which the metric is written ds = p (dx + dy ).
In the same way, the metric on M' can be denoted by 
ds'2 = a 2 (du2 + dv2) . We put z = x + i y , w = u + i v  and 
define as usual the complex derivatives f and f— .Z <U

26 .

Proposition 3.1 [2] : If f e  C°°(M,M'), then

E(f) 

T ( f )

1
2 a2(f) ( | f J 2 + | % | 2) dx dy M z z

4
2P

w — +zz ).

Corollary 3.2 : If f g C°°(M,M') is holoinorphic or anti- 
holomorphic, then it is harmonic.

Corollary 3.3 : If f e C°°(M,M'), the energy E(f) and the 
equation f(f) = 0 are independent of the function p.

In other words, the harmonicity of the maps does not depend 
on the choice of the Hermitian metric on M,J . We can therefore 
talk of a harmonic map from a Riemann surface to a Riemannian 

one.
As in £13]] , these properties can also be presented in a 

real framework, by using the following notion :

Definition 3.4 : A map f e c“ (M,M') is conformal iff there 
exists a function v - 0 on M such that f*g' = vg.

Remark that we admit in this definition that v could have 
some zeros . This definition is related with the preceding 
discussion by the fact that a map between orientable surfaces 
is conformal iff it is either holomorphic or antiholomorphic.



27.
From the composition law (proposition 1.6) we then deduce :

Proposition 3.5 : If M , M' and M" are surfaces, if f e C (M ,M ') 
is holomorphic or antiholomorphic and if h e C (M',M") is 
harmonic, then hof is harmonic.

We now proceed with a discussion of the existence of harmonic 

maps, according to the genera p and p'.

§ b : p 1 - 1.

As a special case of theorem 2.15, we get :

Proposition 3.6 : If the genus of M' is non zero, then every 
homotopy class of maps from M to M* contains a harmonic repre
sentative, which realizes the infimum of the energy in the 
class.

§ c : p l = 0 , (̂ - p .

We now consider the only case left out by proposition 3.6, 
namely the case where M' is a sphere . We then have a simple 
parametrization of the homotopy classes :
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Definition 3.7 : Let f be a C°° nap between surfaces . The 
degree of f at a regular value Q is defined as

©  = £ sign det(df) (P).
Pef_1(Q)

(X) is then independent of the point Q and of the nap r 
within a homotopy class [l9j . Moreover :

Theorem 3.8 (Hopf) : If M' is a sphere, the homotopy classes 
of maps from M to M' are parametrized by their degree.

Remark 3.9 : By definition, the degree is an integer, and its 
sign depends on the chosen orientations on M and M' . Therefore, 
we shall in the sequel suppose that G) is positive . The 
negative case reduces to the positive one by a change of 
orientation on one of the surfaces, which would for instance 
transform a antiholomorphic map of negative degree in a 
holomorphic one of positive degree.

For a ll  Q  i p, the existence problem fo r harmonic maps 
was solved by J .  Eells and J .  Wood in [4] . (The case p = 0
had previously been obtained in (J27^ and [jl ) . We summarize 
their results :

Theorem 3.10 : Let M and M' be orientable surfaces with arbitrary 
metrics g and g' . I f  p' =0 and 6) 5 p, every harmonic map of 
degree <& from M to M' is holomorphic.

Such a holomorphic map exists in the following cases :

i) <35 * p + 1
i i)  Q) = p and M non hyperelliptic
i i i )  (5) = p, p even and M hyperelliptic.



As we shall see in the following paragraph, those holomorphic 
maps are minima of the energy in their class.

On the other hand, when p is odd and M hyperelliptic, there 
is no harmonic map of degree p from M to M'.

In particular, there is no harmonic map of degree 1 from 
the torus to the sphere, whatever metrics are chosen on those 
surfaces . For higher odd genera and (S3 = p , the existence 
will depend on the metric on M, or more precisely on the 
hyperellipticity of the induced complex structure.

§ d : p ’ = 0 ,  © * p -  1 .
When - p - 1, no complete existence results are available, 

but we can obtain different partial results.

Proposition 3.11 : Let p' = 0 and suppose that f  : M---- > M1

minimizes the energy among all maps of degree O  . Then f is 

holomorphic.

This proposition is proven in the thesis [l3] • As its proof
is similar to that of proposition 5.5 of § 5, c , we shall not 
repeat it here.

Corollary 3.12 : I f  p - 1 and p* = 0 , the infimum of the
energy is not reached in the class of maps of degree 1.



Indeed, a holomorphic map of degree 1 would have to be a 
diffeomorphism, which is impossible.

Remark 3.13 : For a (Si such that 2  ̂  ̂ p - 1, the existence
of a holomorphic map of degree (D from M to the sphere depends 

on the conformal structure of M.

So we see that in general, we cannot expect to find a
minimum of E in a class, and therefore a direct method of the
calculus of variations could lead to a sequence converging 

2weakly in to a map contained in another homotopy class. 
Nevertheless, we shall now show how to modify this method in 
certain cases to obtain harmonic maps which are not minima of 
the energy . Vie shall prove the following result :

Theorem 3.1‘l : For every p - 1 and O ^ v D - p - l ,  there 
exists a Riemann surface M of genus p and a metric on the 
sphere M' such that there is a harmonic non-holomorphic map 
of degree (D from H to M 1 . That map is not a minimum of the 
energy in the class.

Remark 3.15 : This shows that the result of J .  Eells and

J .  Wood (theorem 3.10) does not extend to smaller degrees.

This theorem is  a corollary of propositions 3.16, 3.17,

3.20 and 3.23, which concern different values of (ft.

First case ; &  = 1 .

Proposition 3.16 : Let M be a surface of even genus  ̂ 2, 
symmetric with respect to three orthogonal lin e s , and M' a sphere 
with the same symmetries . Then there is a non-holomorphic

30 .
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harmonic map of degree 1 from M to M'.

Such surfaces could for instance look as follows :

can be represented as a sphere with handles symmetric with 
respect to an equator and p meridians forming angles n/p . Let 
M 1 be a surface of revolution of genus zero, symmetric with 
respect to its equator . Then there is a harmonic map from M 
to M' of all degrees - p/2.

An examole could look as

These two propositions were proven in the thesis [_13j . For 
completeness, we recall briefly the argument, in the case G) = 1. 
The case 2 - © -  ^ is treated sim ilarly, and is not needed 
for the Droof of theorem 3.14.
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Indeed, a holomorphic map of degree 1 would have to be a 

diffeomorphism, which is impossible.

Remark 3.13 : For a 6b such that 2  ̂ ©  - p - 1, the existence 
of a holomorphic map of degree ©  from M to the sphere depends 
on the conformal structure of M.

So we see that in general, we cannot expect to find a
minimum of E in a class, and therefore a direct method of the
calculus of variations could lead to a sequence converging 

2weakly in to a map contained in another homotopy class. 
Nevertheless, we shall now show how to modify this method in 
certain cases to obtain harmonic maps which are not minima of 
the energy . We shall prove the following result :

Theorem 3.1^ : For every p - 1 and 0 - (D - p - 1» there 
exists a Riemann surface M of genus p and a metric on the 
sphere M' such that there is a harmonic non-holomorphic map 
of degree Gb from M to M' . That map is not a minimum of the 
energy in the class.

Remark 3.15 : This shows that the result of J. Eells and 
J. Wood (theorem 3.10) does not extend to smaller degrees.

This theorem is a corollary of propositions 3.16, 3.17,
3.20 and 3.23, which concern different values of 5b.

First case : &  = l.

Proposition 3.16 : Let M be a surface of even genus - 2, 

symmetric with respect to three orthogonal lines, and M' a sphere 
with the same symmetries . Then there is a non-holomorphic
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harmonie map of degree 1 from M to M'.

Such surfaces could for instance look as follows :

Proposition 3.17 : Let M be a surface of genus p - 2 which 
can be represented as a sphere with handles symmetric with 
respect to an equator and p meridians forming angles H/p . Let 
M' be a surface of revolution of genus zero, symmetric with 
respect to its equator . Then there is a harmonic map from M 

to M' of all degrees - p/2.

These two propositions were proven in the th esis £l3j . For 
completeness, we recall briefly the argument, in the case 6)  = 
The case 2 - © -  ^ is treated sim ilarly, and is not needed 
for the proof of theorem 3.14.



Proof of propositions 3.16 and 3.17.

Step 1 : For proposition 3.16, we call 0,1,2 the lines of sym
metry on M and 0',1 *,2' the lines on M' . For prop. 3.17, we 
call 0,...,p the lines on M, O' the equator of M' and 1',...,p' 
a set of meridians of M' put in correspondence with the sym
metry lines on M (see figures above) . We call and the 

symmetries with respect to i and i'.
We then choose a minimizing sequence (f^) among the maps

h : M___ÿ M' which commute with the symmetries, i.e. which

verify hoS^ = S| o h.

Step 2 : In order to insure that the limit of a converging 
subsequence is of degree 1, we shall build a new sequence (f^), 
which also commute with the S^'s, such that E(f^) - E(fp)
(so that it is a minimizing sequence in the same class) but 
with the additional property that the image by f^ of a portion 
of M limited by the lines 0,i and i+1 (mod.p) is contained in 
the corresponding portion of M', limited by the lines 0',i' and 

(i+1) ' (mod.p).
The map is obtained as follows :
For proposition 3.16, consider the image of the region I by

32 .

The line I n i  has its image in i ' , but the image of I could
possibly go out of I* . By applying in succession the symmetries
S', S! and Si to the part of f (I) not contained in I'» we bring o i 2  r
it within that region . The image of the line i is still in i' ,
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and therefore, when we apply the same construction to f

2restricted to each portion of M, we obtain a map f^ e E^.
Vie also have E(f^) = ECf^) and f^ © = S|o f ̂ •

For proposition 3.17, we use a similar construction . But 
to insure that the image of the line i by f^ is contained in 
i', we have to use, as well as the symmetries, certain projections 
of a portion on its boundary along the cercles centred at the 
pole of M 1 . We illustrate that construction in the case p = 3.

TT1 and iI!' are projected on the lines 2' and 1'.
IT' , IT' and H Z ' are then folded on I'.
The lines 1' and 2' are thus preserved.

Again, by applying that construction to each portion of M, we

class of maps commuting with the symmetries . One can check 
that the proof of proposition 2.12 applies to this case, so that 
f is Holder-continuous . For that, one shows that it is possible 
to consider only coordinate disks symmetric with respect to

1'

2obtain a map f^ e L1, commuting with the symmetries and such

that E(f') ^ E (f ). r r

Step 3 : We now consider a subsequence of (f^) converging
oweakly to a map f e L1 . By construction, f minimizes E in the
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any line they intersect • In lemmas 2.14 and 2.15, the nap h 
which is constructed has then the same symmetry properties as

r**the given map F.

Step 4 : As f does not minimize E in a homotopy class, we have 
to show that it is harmonic, which we do chart by chart.

In a chart of M which does not meet any of the line i, the 
symmetries don't induce any condition and f is harmonic.

Consider now a chart symmetric with respect to one line and 
without intersection with the others . Call S and S' the as
sociated symmetries on M and M' . Let X be a vector field along 
f in that chart, null on the boundary . We want to show tnat 
DvE(f) = 0 . Call the symmetry induced on X by S' . X can be

written in the form
y - y . y - * + + x - ^ X
A " *1 *2 " 2 2

where by definition A  X^ = and - "Xj*.
Since X. is symmetric, Dy E(f) = 0, as f minimizes E in the 1 A-

In a chart symmetric with respect to more than one line, the 
relation DxE(f) = 0 is obtained by symmetrizing X with respect 

to all the lines.

Step 5 : f being harmonic and Holder-continuous is C by

i a i

class of maps commuting with S and S'
On the other hand,

-Dy E(f> 
*2

proposition 2.13.
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Step 6 : f is then harmonic, C°°, commutes with the symmetries 
and sends a portion of M on the corresponding portion of M'. 
This implies that it is of degree 1 . Since p - 2 and p' = 0, 
f cannot be holomorphic.

2Remark 3.18 : In the space L^CM.M'), this construction can be
interpreted as follows : the solution is a minimum of the

2 n , energy in a subspace of L^, but not in the whole space . The
graph of E on L^(M,M') is "symmetric" with respect to that
subspace and therefore the solution is a critical point in the

whole space.

Remark 3.19 : Since f is not an absolute minimum of E, it would 
be interesting to know whether it's a local minimum, degenerate 
or not, or whether it has a positive Horse index . It seems 
that it is not possible to answer those questions, because one 
lacks the necessary information on f.

For instance, let us consider a deformation of f obtained 
by composition with an infinitesimal conformal transformation 
of M', perpendicular to the equator O' . (This choice is 
motivated by some of the results of [25]).

We endow M' with isothermal coordinates (u,v) c R x [0,211)
such that the equator O' is defined by u = 0 . The canonical
metric on M' is then written as :

2

gll = g22
2 e
1 + e2u

and the vector field is an 
mation.

Using the second variation

infinitesimal conformal transfor-

formula of [2̂  , we get :
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D|_E<*> = 
3 u

4g13 e2u 1 4 ®2U fl fl
(l+e2u)2 1 (l+e2u)2 J fj

1 8 e2u ' f2 f2
Cl«,2")2 1 3 (1) .

The function e2u / (l+e2u)2 takes its maximum value r in 0, and 

is greater or equal to -i between - ln(3+2'/2) and ^  ln(3 + 2'/?).

The terms involving ff fj in (1) bring therefore only a positive

contribution, but the same is not true for the terms involving 
f? f? . Without more information on f, it does not seem possible 
to determine the sign of (1).

Second case : 6 ) - 2.
We now turn to the case 2 - ©  - p - 1 and prove :

Proposition 3.20 : Let M' be a surface of genus zero symmetric 
with respect to three orthogonal lines . For" all p - 3 and CÂ) 
such that 2 - û> S p - 1, there exist a surface M of genus p and 
a harmonic non-holomorphic map of degree ©  from M to M'.

Proof.
B y proposition 3.16, we know that there is a surface M of 

genus 2 for which there exists a harmonic non-holomorphic map 
of degree 1 on the sphere and by proposition 3.5, we know 
that the composition of a holomorphic map with a harmonic one 
is harmonic . We shall show that there exists a Riemann surface 
of genus p which is a ©-sheeted branched covering of M with 
holomorphic projection . The composition of that projection 
with the harmonic map of proposition 3.16 will then be of 
degree © ,  harmonic and non-holomorphic.
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In fact, it will be sufficient to build a topological 

surface M which is a branched covering of M . Indeed, M will 
then admit a unique complex structure for which the projection 
is holomorphic £7].

Let us recall that if M is a ©-sheeted covering of M, their 
genera p and p are related by Hurwitz* formula :

2 - 2p + r = &C2 - 2p) (2)
where r is the ramification index, i.e. the sum on all points 
at which the derivative of the projection is 0 of the local 
degree minus one.
Here we have p = 2, and (2) becomes

r = - 2 ©  - 2 + 2p (3).
Since r has to be positive or zero, a necessary condition 

for the existence of a covering is therefore (5) - p - 1, which 
is what we have supposed.

p and ©  being given, we shall now build the covering.
We consider ©) copies of M . With any two of these copies, 

we can form a two-sheeted covering by joining them crosswize 
along a line (by this, we mean that we choose on both copies the 
"same" line -i.e. 2 lines such that one is the copy of the 
other--, make a slit in each surface along the line and join them 
crosswise along the slit) . That line could be closed, but not 
homotopic to zero, in which case there is no ramification or 
it could be a segment with two endpoints, and in that case we 
have a ramification index of two . We can also join two copies 
by more than one segment, which gives a higher ramification 
index . Having joined two copies, we can then add the others in 
a similar way . The idea is to choose the number of segments in
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order to obtain a ramification index r that will impose the 
right genus p, through formula (3).

If for the fixed p, ? = 5J - 1, we use exactly ^ segments 
to join the G) copies . If ^ > ©  - 1, we join two of the 
copies along ^ - ©  + 2 segments, and add the others using 1 
segment at a time . If, finally, ^ < G) - 1, we use ^ segments 
and 6 )  -  1 - ^ closed lines . In all cases, we obtain a 
sheeted covering with ramification index r and hence genus p.

Remark 3.21 : As we have noted in the proof, such a covering 

cannot exist for ifr ^ p.

Remark 3.22 : In the case <S) = p - 1, we can give a more 
geometric representation of M, suggested by E. Calabi . Suppose 
that M is a surface of genus p, invariant by a rotation of 
order p - 1, as represented below.

The quotient of M by the rotation is a surface M of genus 2 . We 
can then endow M with the right complex structure and lift it to 
the original surface . We have here an unbranched covering 

(r = 0).

Third case : vD = 0.
Let us finally consider the case = 0 . We have a stronger

result :
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order to obtain a ramification index r that will impose the 
right genus p, through formula (3).

r> rIf for the fixed p, y = •->■> - 1, we use exactly y segments 
to join the G ) copies . If ^ > ©  - 1, we join two of the 
copies along ^ - ©  + 2 segments, and add the others using 1 
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sheeted covering with ramification index r and hence genus p.

Remark 3.21 : As we have noted in the proof, such a covering 
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Remark 3.2 2 : In the case <£) = p - 1, we can give a more 
geometric representation of M, suggested by E. Calabi . Suppose 
that M is a surface of genus p, invariant by a rotation of 
order p - 1, as represented below.

The quotient of M by the rotation is a surface M of genus 2 . We 
can then endow M with the right complex structure and lift it to 
the original surface . We have here an unbranched covering 

(r = 0).

Third case : (D = 0.
Let us finally consider the case &  = 0 . We have a stronger

result :
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order to obtain a ramification index r that will impose the 
right genus p, through formula (3).

If for the fixed p, y = •-*> - 1, we use exactly ^ segments 
to join the G) copies . If ^ > ©  - 1, we join two of the 
copies along y - ©  + 2 segments, and add the others using 1 
segment at a time . If, finally, ^ < G) - 1, we use ^ segments 
and Gb - 1 - y closed lines . In all cases, we obtain a <S> 
sheeted covering with ramification index r and hence genus D.

Remark 3.21 : As we have noted in the proof, such a covering 

cannot exist for (5i ^ p.

Remark 3.22 : In the case ©  = p - 1, we can give a more 
geometric representation of M, suggested by E. Calabi . Suppose 
that M is a surface of genus p, invariant by a rotation of 
order p - 1, as represented below.

The quotient of M by the rotation is a surface M of genus 2 . We 
can then endow M with the right complex structure and lift it to 
the original surface . We have here an unbranched covering 

(r = 0).

Third case : = 0.
Let us finally consider the case ©  = 0 . We have a stronger

result :
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Proposition 3.23 : Let M be a surface of genus - 1 and M' a 
surface of genus 0, with arbitrary metrics . Then there exists 
a harmonic non-holomorphic map of degree 0 from M to M'.

Proof.
Consider a circle S . By [j3,I,4,Dj , there exists (at least)

one surjective harmonic map from M to S . On the other hand,
the surface M' contains at least one closed geodesic £l8] , and

\therefore there is a totally geodesic map from S to M' . By 
corollary 1.7, the composition of these two maps is harmonic. 
Since its image is one-dimensional, it is not holomorphic.

Remark 3.2*4 : For certain metrics on M and M' , one can construct 
more interesting maps, for instance some harmonic non-holomorphic 
maps of degree 0 which are surjective on the sphere.

When M is a flat orthogonal torus and M' the sphere with its 
canonical metric, such a map was constructed by R. T. Smith [2 3^.

For a higher genus p of M, it is then sufficient to build 
a covering of the torus of genus p . (2) becomes in this case
r = 2p - 2 and we obtain a covering by joining 2 or more 

2copies of T along p - 1 segments.
Again, we obtain a more geometric representation of such a 

covering (with p sheets) by taking the quotient with respect 
to the rotation of order p of the following surface :

The ramification is realized here by two branch points of index

P 1.
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We conclude this paragraph by the following examples :

Proposition 3.25 : For every p i 3, there exist a surface M of
2genus p and a non-trivial homotopy class of maps from M to S 

containing two harmonic maps, one holomorphic and one non- 
holomorphic . The first is a minimum of E in the class and the 
second has a greater energy . Such examples don't occur for

Proof.
i) Suppose first p - 2 . Then every harmonic map of degree 
greater or equal to p is holomorphic and every harmonic map of 
degree between 1 and p - 1 is non-holomorphic (since the only 
possible case is p = 2, (0 = 1).

2 . . . .ii) Take now p = 3 and endow M' = S with a metric symmetric witn
respect to three lines, as in proposition 3.16 . We shall obtain 
M as a two-sheeted covering of a surface M of genus 2, also 
symmetric with respect to three lines . M is defined by taking 
two copies of M and joining them along the closed line 1 
represented on this figure

M is then a 2_sheeted unramified covering of M and is therefore 
of genus 3 . The composition of the projection with the harmonic 
map of proposition 3.16 is harmonic, non-holomorphic and of 
degree 2.

M
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Consider now the surface M, represented as the 2-sheeted 
covering of M and define an isometry Y of M of order 2 as the 

rotation of 180° around the axis A which preserves each sheet, 
except along the line 1 where it is defined by continuity.

On each sheet, the copy of the points c,d,e and f is fixed by Y , 
but the two copies of a and b are permuted, so that Y has 
exactly 8 fixed points.

By Hurwitz' formula (2), the quotient M/Y is of genus 0, and 
is conformally equivalent to the sphere with, the metric chosen
above . The projection is therefore a harmonic holomorphic map2of degree 2 from M to S .
iii) A similar example with p = 4 is obtained by joining the 
two copies of M along a line with two endpoints, and not a 
closed one . M is then of genus 4, and the rest of the constructio 

goes through.
iv) For p * 5, we simply observe that there exists a 2-sheeted 
covering of the surface of genus 3 built in ii) by a surface M 
of genus p . Indeed, Hurwitz' formula in that case reduces to

2 - 2p + r = 2.(2 - 6) = -8 
or r = 2p - 10.
r is therefore positive or zero and we can build the covering 

as above, by joining 2 copies of the surface of genus 3 along 
a closed line (for p = 5) or p • 5 segments ( for p - 6).



The composition of the projection with the maps built in ii)
2gives rise to 2 harmonic maps of degree 4 from M to S > one 

holomorphic and one non-holomorphic.

42 .



CHAPTER 4.

FINITENESS THEOREM.

§ a : DILATATION’.

Let M,g and M',g' be Riemannian manifolds and f : M --->M'
a smooth map . For each m « M, the pull-back f*g' of the metric
on T ,, is a symmetric semidefinite quadratic form on T M.f Cm) m
Let k - n,n' be its rank . We can choose an orthonormal basis

k
{e.... . } of T M such that f*g' = [ L  to. g> to., where to. is1 n m 1—1 . " ^ " ^ ^ "  A
the dual 1-form of e; and ^  5 ^  • ^  > 0.

1
Definition 4.1 £s] : 11 = ^/Ajj^is the(first) dilatation of f 

at m.

By definition, 1^ is greater or equal to 1.
43
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We shall use a notion of map of bounded dilatation which is

Definition 4.2 : We say that the dilatation of f is bounded by 
K iff at each point of M we have 1^ - K or df = 0.

Remark 4.3 : We admit in this definition that the rank of f 
varies from a point to another, and that it takes the value 0. 
But it cannot take the value 1, since 1^ would then be infinite.

Remark 4,4 : When M and M' are surfaces, a map of dilatation 
bounded by K is a K-quasiconformal mapping . If K = 1, it is 
conformal.

Suppose now that the sectional curvature of M' is strictly 
negative . Since M and M' are compact, there exist two positive 
constants A and B such that -A is a lower bound for the 
curvature of M and -B an upper bound for that of M '.

We now observe that theorem 4.1 of |]6j remains true for 
definition 4.2 and that we have :

Proposition 4.5 : Let M and M' be compact, R 5 -A, R' - -3 
and call H the minimum of {n,n'} . If f €. C (M,M') is a 
harmonic map of dilatation bounded by K, then

At m, let us consider an orthonormal frame (e^). The norm of

slightly more general than the one in .

Proof.
At a point m « M, the map df : T M --» Tf(m)M ' induces a maP

defined by \ 7d f ( . X * ' n  = df(X) * df(Y).

A2df is then defined by |A2df|2 = J |A2df(e. ,e.)|2.
i<j 1 ■*
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We first show that when f is of dilatation bounded by K, we 

have at every point m £ M
| df j 2 * iI.K.|A2df| (1)-

At a point where the rank of df is zero; this is trivial . We 
can therefore suppose that the rank k of df at m is greater or
equal to two . As above, let us consider at m an ortnonornal

k
basis {e.} of T M such that f*g' = £ X. to^ew^,a n i = i

X - X A1 A 2
We have

1 df I 2 
iA2dfI

- *k > 0<

l h

(1. h f

X .

X. X.
. i . - VK J  X,

k h  
*2 
1

X „ i 2
K

- k K - N K.

Consider now a point m ^ which |df] attains its
maximum (M is compact) . Since f is harmonic £3,(I,3,3)J

2 ■ .1. fij fij * 1. g;s

- S R' fU fS fY f6 Ro 3y 6 fi 11 » J
(where Ric is the Ricci tensor of M), and we have at m

- I  K w  ‘ - l  Ricii f“ fr
By the hypothesis on the curvature,
- I P.ic i j f? f? i  (n-1) A | df | 2 ,

2 B |A2df|! t - 5 R'Bt5 fj if f|, 

and therefore |A2df j 2 - ^ Idf|2 (2),



45.

Combining (1) and (2), we get :

| d f|2 *  U 2 K2 |
at m . Since |df| is maximum at m, this relation is valid 

everywhere.

Corollary 4.6 : With the hypothesis of proposition 4.5, f 
multiplies the distances by at most the constant C.

The principle of the proof of this property goes back to [ll] , 
where it is applied to the case of quasiconformal maps between 

surfaces.

§ b : FINITEMESS THEOREM.

We now prove a finiteness theorem, generalizing classical 
results for holomorphic maps between Riemann surfaces [l2].

Theorem 4■7 : Let M and M' be compact Riemannian manifolds and 
suppose the sectional curvature of M' strictly negative . Let 
K - 1 . Then there is only a finite number of non-constant 
harmonic mappings from M to M' of dilatation bounded by K.

Proof.
Since R' < 0, it is an immediate consequence of assertion (I) 

of [9̂  that there can be only one non-constant harmonic map of 

bounded dilatation in a homotopy class of maps from M to M' . 
Indeed, the only condition imposed on the harmonic maps in that
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Combining (1) and (2), we get :

| df)2 i  'I2 K2 — ■ |

at m . Since |df|2 is maximum at m, this relation is valid 

everywhere.

Corollary 4.6 : With the hypothesis of proposition 4.5, f 
multiplies the distances by at most the constant C.

The principle of the proof of this property goes back to [’ll] , 
where it is applied to the case of quasiconformal maps between 

surfaces.
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§ b : FIMITEIJESS THEOREM.

We now prove a finiteness theorem, generalizing classical 
results for holomorphic maps between Riemann surfaces [l2].

Theorem 4.7 : Let M and M' be compact Riemannian manifolds and 
suppose the sectional curvature of M' strictly negative . Let 
K - 1 . Then there is only a finite number of non-constant 
harmonic mappings from M to M' of dilatation bounded by K.

Proof.
Since R' < 0, it is an immediate consequence of assertion (I) 

of [9] that there can be only one non-constant harmonic map of 

bounded dilatation in a homotopy class of maps from M to H'. 
Indeed, the only condition imposed on the harmonic maps in that
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assertion is that their image is not reduced to a point or a 
closed geodesic, and this last possibility is excluded by the 
bound on the dilatation . So we just have to prove that, for a 
given K, only a finite number of homotopy classes can contain 
a non-constant harmonic map of dilatation bounded by K.

Since the sectional curvature of M' is negative, the Cartan- 
Hadamard theorem asserts that the homotopy groups IK(M') are 
trivial for i - 2 . By theorem 8.1.11 of [2 6*1 , this implies 
that the homotopy classes of maps f from !1 to M' are parametrized 
by the conjugacy classes of the induced homomorphisms
f : !T (M)---> n.(M').

As in the proof of theorem 2.3, call U and U* the universal 
coverings of M and M' . Choose a point P of U and a fundamental
domain of u" . Every map f : M ---?M' can be lifted to a
map f : U  * U' such that f(?) c CU  • For.all y e n^(M), f
will then verify the relation f oy = f Cy) o f, where f ̂ is 
one of the conjugates of f , depending on the choice of 3»'.

Let S = (p = 1, p,,...,p } be a set of generators of II. (K) 
and put Pr = pr(P), r = 0,...,s . The images of the Pr 's by a 
map f are contained in (a.f(P) | aeilj(M')} . The set S being 
finite, we can find a bounded connected domain D of U containing 
all Pp's . Since the maps that we consider send P in 3*' anc* 
multiply the distances by at most the fixed constant C (corol
lary 4.6), the images of D by these maps are contained in a 
bounded set D' of U' . Since D' is bounded, the set 
T = c n ^ M ’) | a.f(P) £ D'} is finite.

The conjugacy classes of the associated homomorphisms f are 
characterized by the restrictions : S ---> T

m I
. Since S and



T are finite, the number of these classes is also finite, and so 
is the number of homotopy classes containing a non-constant 
harmonic map of dilatation bounded by K.
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Remark 4.8 : In view of Satz 5.9 of [10^ and of corollary 4.12 
of next paragraph, one might ask whether theorem 4.7 can be 
extended to the case where M' is a product of manifolds or 
negative sectional curvature . We shall show by anexample that 
it is not the case.

Let N and M' be compact Riemannian manifolds with !!' of 
negative sectional curvature and such that there is an infinity 
of homotopy classes of maps from N to N ' . For instance, fl and 
N* could be Riemann surfaces with genus U - genus ;J' - 2 . (An 
infinite sequence of non nomotopic maps can then be built by 
twisting a handle of N around a handle of h'' an arbitrary 
number of times)..

By [3], every homotopy class of maps from 'J to M ’ contains 
a harmonic element and we can choose an infinite sequence r/ *  ̂
of distinct non-constant harmonic maps . (By theorem 4.7, the 
associated ratios X ^ V x ^ ^  form an unbounded set of numbers).

The set of maps h^t} x h(t  ̂ : N x N -- > N'x N ' is then an
infinite set of distinct harmonic maps with non-constant 
projections on N', and their dilatation is always 1 since the
eigenvalues of (h^^ x (g* x g')
,.(t> ,(t) .(t) .(t).V A - >A ^  > • • • » A > A /  •

are



a c : ALMOST COMPLEX MAPS.

We shall now apply theorem H.7 to the case of almost complex 
maps between almost Kaehlerian manifolds . Recall that if M,J
and M' ,J' are almost complex manifolds, a map f : M ---? M' is
called almost complex if its differential verifies 
df o J = J'o df . When M and M' are complex, such an fis 
holomorphic.

Proposition U.9 : Let M,J,g and M'.J'.g' he almost Hermitian
manifolds and f an almost complex map from M to M* . For each
m e  Y, there exists an orthonormal basis {e.} of T M such that ’ , i mK
e  2 -  -  “ e2--l dnd = Xi with  ̂2 j = x 2 3 -1 and

X1 * * X2 " X3 = X4 * ’ • * " Xk-1 = Xk 51 0 ' In, particular, the

dilatation of f is bounded by 1.

Proof.
Consider an orthonormal basis {e.} of T M such thati in

f*g* = l , with Xi  ̂^i+1 * Since f is almost complex
and M' almost Hermitian, we have for X, Y e T^M :

f*g'(JX,JY) = g'(df.JX.df.JY) = g'(J'.df.X.J'.df.Y)
=g'(df.X.df.Y) = f*g'(X,Y).

So in particular, f^g'(Je1,Je1) = X^ . Since Je^ is normal to 
e„, it is a combination of the e^'s, i - 2 . Since

X1 " X2 " " Xk ’ X2 mu3t be e^a l  to Xi*
If X̂  t X£, then e2 = Je„ and we can consider the space 

generated by e3,...,en and apply the same reasoning to prove that

•+9 .



50.
If 1, s n = ... = X , then Je. is in the space generated by2 6 p 1

e^,...^^ . By a rotation of that space (which preserves the 
restriction of f*g', equal to the restriction of X3g)> we can 
replace e^ by Je1 . We then proceed as above to prove that

x3 = x4.
The proposition follows from a repetition of this argument.

Let F denote the fundamental 2-form of the almost Hermitran 
manifold M . Recall £l7;IV,15,c3 that M is called special if

ü-i
2 ±dF = 0 and special of pure tyDe if (dF). 0 = 0 .An almost 

Kaehlerian manifold satisfies these conditions since its 
fundamental form is closed.

Proposition 4.10 : If M is a compact special almost Hermitiar. 
manifold and M' a compact special almost Hermitian manifold of 
pure type and of negative sectional curvature, then there is 
only a finite number of non-constant almost complex maps from 

M to M'.

Indeed, by proposition IV,15,d of |"l7j , an almost complex map 
is harmonic and by proposition 4.9, its first dilatation is 1.

Corollary 4.11 : There is only a finite number of non-constant 
almost complex maps between two compact almost Kaehlerian 
manifolds if the sectional curvature of the second is negative.

In contrast with the real case (remark 4.8), we can consider 
a product of almost complex manifolds and obtain the following 

analogue of £lO,Satz 5.9 (2>3•
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Corollary U. 12 : Let M be a compact special almost Hernitian 
manifold and M' a product of compact special almost Hermitian 
manifolds of pure type and of negative sectional curvature. 
Then there is only a finite number of almost complex maps from 
M to M* whose projections on all factors are non-constant.

Indeed, the maps followed by the projections satisfy the 

hypothesis of proposition U.10.

In the case of holomorphic maps between complex manifolds, 
numerous strong finiteness results can be found in [l2,§83-



CHAPTER 5.

REMARKS AND EXAMPLES.

g a : A FAMILY OF HARMONIC MAPS.

In the study of surfaces, some continuous families of 
harmonic maps appear in a trivial way . For instance, if M' has 
a non-zero space of infinitesimal isometries i(M'), the composi
tion of any harmonic map f with the associated isometries is a 
continuous family of harmonic maps . The same is true for iso
metries of M, if df.i(M) i  0.

This will always happen when df t 0 and M is a sphere or a 
torus, since by a conformal transformation we can always assume 
that they carry their canonical metric.

For that reason, when studying the second variation of tr.e
52.



energy, R. T. Smith has introduced the reduced nullity of a 
harmonic map, equal to its nullity minus the dimension of 

span(i(M*), df i(M)) £2 5].

of M is again harmonic . For instance, the reduced nullity of

group [2 5] .
We now give an example of a continuous family of harmonic 

maps which are not isometrically or conformally equivalent.
Let M be the torus R/2JIZ x R/2ITZ with its usual flat metric 

and Euclidean coordinates (x,y) . Let 0 < c < a and be
the cylinder £-a + c  , a - cj xS^, equiped with the metric 
defined in coordinates (u,v) c f-a + c,a - cj x |j),2n) by

A direct calculation shows that the equations t(f) = 0 reduce

the maps
f(x,y) = (b cos(x + d),y) with |b| - a - c.
When b varies in £-a + c,a - c] we obtain a family of harmonic 

maps which are not conformally equivalent . Their energy is of 
course independent of b and is

2When M = S , a larger family of maps will appear since the

composition of a harmonic map with any conformal transformation

2 . . . .  - the identity on S is precisely 3, the dimension of the conformal

1 02 2 )
0 a u

This metric is c” on M' and using a partition of unity, we cand ) C»
extend M* to form a C°° Riemannian surface M' of any genus.a ,c

We restrict our attention to the maps from M to M' whose 
images are in M' and which are of the form f(x,y) 1 (F(x),y).d )C

j t p
for these maps to ^-4 + F = 0 . The solutions are therefore 

dx2

E(f) = 4 [b2 sin2(x+d) + a2 - b2 cos2(x+d>3 dx dy
1 M
y (2 H a)2.



As in remark 3.24, we can of course replace the torus M by 
a surface of higher genus, by means of a branched covering.

§ b : DERIVATIVES OF THE TENSION.

Let M and M' be compact Riemannian manifolds . In [28j ,
K. Yano and S. Ishihara proved that a map f is harmonic as soon 
as the derivative of its tension is zero . In other words, 
t(f) = 0 <=> Vf(f) = 0 . It is easy to obtain the following 

extension of that result :

Proposition 5.1 : A map f e. C (M,M') is harmonic as soon as 
there exists an integer k such that V t(f) = 0.

This is a consequence of the result of Q28j and of the 

following property :

Proposition 5.2 : Let X be a vector field along the map f such 
that Vk+1X = 0 (k i 1) . Then VkX = 0.

Proof.
Consider on H the vector field

V = gip g3q Is
g g“B "pq-» 3xi

where X? is the
k-1 k

covariant derivative of X with respect to those k-1 indices. 

The divergence of Y is :
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7, Y

Since

||VkX|

it> uq g - g
1D 10E • g

ls , Ya Yß ,
’ gaB Xij... 1 Xpq...s

ls , va Y8
s saß j...1 Aipq...s

V-X1 V = 0  and X? i g îpq...s

2 V = 0  and VkX = 0.

0, we have

3 c A SECOND ORDER ENERGY.

In [5], H. Eliasson introduces the integral

J(f) = ( |T(f) I2 3 + X|df |2) V„ X > 0
K

and uses it to obtain a new proof of the existence of harmonic 
maps when dim M is at most 3 and the curvature of M' is non
positive . The principle of his proof is to show with these 
assumptions that J verifies condition (C) of Palais and Smale 
(which insures the existence of the minimum of J in every class)
and that such a minimum is harmonic . The advantage of J is that,

2 2when R' - 0, it is related to the Sobolev space (of L maps
2 2whose first and second derivatives are in L ) and not L^.

When no condition is imposed on the curvature, he asks (p.132)
whether J will still verify condition (C) in dimensions 2 and

. 23 . (More precisely, he asks whether it is weakly proper m  E2 
with respect to C°, and that fact would imply condition (C) 

cf. [5, p.125-5 and p.130] for details)..
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We shall give a negative answer to this question and show that 
J does not always reach its infimum in a homotopy class in 
dimension two . This implies in particular that it does not_ 
satisfy condition (C).

We first recall a result of [3} :

Definition 5 . 3 : Let f t C , id * )

by
V(f)

’
det f*g'

M det g

The volume of f is defined

Proposition 5.4 [3J : Let dim M = 2 . For all f e. C^ChijM1 ) ,

V(f) - ECf).
Equality holds when and only when f is conformal (in the 

weak sense of definition 3.4).

We can now build the example :

Proposition 5.5 : Let M be a flat torus containing a disk of 2
2 . .radius 2 and M' the sphere S with its canonical metric . m e  

infimum of J is not reached in the class of maps of degree 1 

from M to K*.

Remark 5.6 : By using conformal mappings, one can in fact 
replace M by any surface of genus - 1.

Proof.
Let H be the homotopy class of maps of degree 1 . For all f 

in H, we have by proposition 5.4 :
J(f) i  2 X E(f)  ̂ 2 X V(f) i 2 X V(M') = 8 X II.
Hence, the infimum of J in H satisfies 

infH J - 8 X !!.

11
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J does not always reach its infimum in a homotopy class in 
dimension two . This implies in particular that it does not. 

satisfy condition (C).
We first recall a result of [3] :

Definition 5 . 3 : Let f £ C°°(M,M ' )

by
V(f) det f*g'

M det g

The volume of f is defined

Proposition 5.4 [3J : Let dim M = 2 . For all f e.

V<f) - E(f).
Equality holds when and only when f is conformal (in the 

weak sense of definition 3.4).

We can now build the example :

Proposition 5.5 : Let M be a flat torus containing a disk of
o . .radius 2 and M' the sphere S with its canonical metric . m e  

infimum of J is not reached in the class of maps of degree 1 

from M to K'.

Remark 5.6 : By using conformal mappings, one can in fact 
replace M by any surface of genus i 1.

Proof.
Let H be the homotopy class of maps of degree 1 . For all f 

in H , we have by proposition 5.4 :
J(f> i 2 X E(f) > 2 X V(f) ± 2 X V(M') = 8 X n.
Hence, the infimum of J in H satisfies

infH J 8 X n.
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We now prove that we have in fact equality, by constructing 
a sequence of maps for which J decreases to 8 X II.

Let and Dj be concentric disks of radius 1 and 2 in ?i, 
equiped with polar coordinates (r,8) and let (R,E)e [0 ,lf] x [0,2H) 
be polar coordinates around a point of the sphere M' . We build 
a map f of the sequence as follows.

Let e > 0 . On , f is defined by f(r,9) = (F(r),9) where

F(r) = 2 arc tg ar and a = tg .
f is then conformal and satisfies f(0,9) = (0,9) and 
f(1,6) = (n-£,9) . Moreover

Û L Idr Ir=l
2 tg ^
i ♦ tg2 5 ^

= h(e ).

Observe that lim h(e)/ £ = 1.£-►0
Outside the disk D2, we define f as constant with value (H,8). 
Finally, we join these two maps in the annulus by a

map also of the form f(r,9) = (F(r),9), in such a way as to keep 
its contribution to J small . Therefore, we impose that

F minimizes

, F( 2 ) =

f 2 d2F
i l dr2

dF
dr ( 1 ) h(e) and 4M 2) dr 0 and also that

dr.

Call G the derivative of F . We see that G will minimize 

(G1)2 dr under the conditions G(l) = h(e), G(2) = 0 and

G' dr = e . Using Lagrange's multipliers method, one checks

that G has then to be a second order polynomial in r . Hence, 
p = a r 2 + b r 2 + c r + d ,  and the conditions at 1 and 2 imply

Îtf
f*
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that
F(r) = (h-2e)r3 + (9e-Sh)r2 + (8h-12e)r + II + - 4h (1).
One checks that for r g. [l,2]] , F <- |jl-e,n] .

We can now estimate J(f).
2We have built f in such a way that it is C except along the 

lines r = 1 and r = 2 where it is . That last fact shows that 
the only thing which could happen along those lines is a 
discontinuity of F", which won't bring any contribution to J.
The integral J(f) on M is therefore the sum of the integrals 
on the three regions D^, D2\D^ and M\p2.

In the disk D^, f is conformal and harmonic . Therefore, 
t  = 0 and E(f) = V(f) . Hence J(f) = 8 X Tt - 0(e2).

Outside the disk D2, J(f) = 0.
In the annulus D0\D„, we calculate J . First,2 x 

2
| df! 2 V = 2il f  (F'2 + —  sin2F) r dr.

]d 2\ Di g ¡ 1  r2

From the expression (1) of F and the fact that h •v> e, we deduce
2that this integral tends to zero as e .

The same is true for

9 f2 f d2 F 1 dF sinF cosFl21t c f >| v = 2n 
g 11 U r 2 r dr r 2 |

We see therefore that J(f) tends to 8 X IT when e tends to
zero, which is what we wanted to show.

Suppose now that a map f minimizes J in H . We have

8 X n = JCf)  ̂ 2 X EC f) * 2 X V(f) ^ 8 X IT.
So E(f) = VCf) and f is holomorphic . Since it is of degree 1, 
it has to be a diffeomorphism, which is impossible.



CHAPTER 6.

HARMONIC MAPS OF NON-ORIENTABLE SURFACES.

In this chapter, which results from joint work with James EellsJ 
we study the existence question for harmonic maps between not 
necessarily orientable surfaces.

As in the orientable case, a large class of surfaces is 
covered by theorem 2.8, which implies :

Preposition 6.1 : Let M,g and M',g' be compact surfaces and 
suppose that M' is not the sphere or the projective plane . Then 
every homotopy class of maps from M to M' contains a harmonic 
element, which is a minimum of E in the class.

From now on, we shall therefore suppose that M' is the
7 . 2sphere S or the projective plane P .

59.
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§ a : CLASSIFICATION OF THE HOMOTOPY CLASSES.

We shall now recall the classification of the honiotopy classe
2 2of maps from a surface to S or P .

2If M is a non-orientable surface and M' = S , there are two 
homotopy classes of maps from M to M', parametrized by their 

degree mod.2.
2When M is a surface and M' = P , the homotopy classes were 

studied by P. Olum in [29] . We summarize his results, referring
to [23"] for some of the definitions involved.

Let f e C°°(M,P^), where M is a surface . We first consider
the homomorphism induced by f on the homotopy groups of M and 

. , . „ „ ,a2f : n.(M)-x- 1 * IÎ CP > = Z2 = {eo ,e1>, e^ being the neulral

f is said to be orientation-true if every loop of IT̂ O' 
along which the orientation is preserved is sent to e and

1)

every loop along which it is reversed is sent to e^ . If M is
-1 -1 -1 -1

represented by the polygone a • • • ai1ahblclt>l C1 ‘ ‘ ‘ ' bpCpbp Cp 
with the usual identifications, this means that the a^’s are 
sent to e^ and the b^'s and c^'s, to eQ .

To a given orientation-true homomorphism is associated an 
infinity of homotopy classes, parametrized by the absolute 
value of the twisted degree of the maps, which takes either 
ail even or all odd values . We refer to [29] for the definition 
of the twisted degree . As it reduces to the usual degree when 
M and M' are orientable, we shall also call it the degree and 
denote it by S) . As proven in [29] , the degree of the
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composition of two maps is equal to the product of their 

degrees.
When a homomorphism of the homotopy groups is not orientatio 

true, there are one or two homotopy classes of maps inducing 
that homomorphism : one if an odd number of the a^'s goes to e, , 
and two in the other case . The degree mod.2 of all the as
sociated maps is 1 in the first case and 0 in the second.

S b : MAPS OF SPHERES AND PROJECTIVE PLANES.

When M and M' are spheres or projective planes, we can 
solve entirely the existence question for harmonic maps.

As proven in [27] and [13] (see also theorem 3.10), every
2 2.harmonic map from S to S is conformal . In order to find all 

harmonic maps, we can therefore suppose that both copies of the 
sphere are endowed with their canonical metric, since it is 
conformally equivalent to the given ones . In the notations of 
S 3.a, every narmonic map of degree Gi (resp. -(Jb) from S to 

S takes then the form
r r

(resp. v/ )

where a^ i  T*

function on S

i  0 i  b and <£> = max(r,s) . Indeed, every meromorphic s2on S is rational.
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„2o

2 2For every f : S __ P , the associated homomorphism
f : {e} ___ ^ {e ,e„} must of course be trivial, so that f can'Ar '  O 1
be lifted to a map f :

2 2 . .where the covering of P by S is Riemannian1, and f is 
orientat ion-true.

2 2 . . .  Suppose first that S and P carry their canonical metrics.
Since the degree of the projection is 2, the map f defined by

Ifw = z projects to a map f of degree 2k . The homotopy classes 
2 2of maps from S to P must therefore be parametrized by the 

numbers | ¿¡j | = 2k and they contain harmonic representatives.
3y a conformal transformation, this result extends to 

arbitrary metrics . We have shown :

Proposition 6.2 : Every homotopy class of maps from S ,g to 
2P ,g' contains a harmonic representative.

2 2There are two homotopy classes of maps from P to S , one 
of them being the trivial one (i.e. containing the constants). 
We prove :

2 2Proposition 6.3 : Every harmonic map from P ,g to S ,g' is 
constant . In particular, the non-trivial homotopy class does 

not contain any harmonic element.

Proof.
Let f be harmonic . It can be lifted by composition to a 

map f :
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2 2 .where S ___ > P is a Riemannian covering.
Since the composition of f with an orientation-reversing

2 • — diffeomorphism of S is horaotopic to f, the same goes for f
which must therefore be of degree zero . Since every harmonic 2 2 . —map from S to S is conformal, f must hence be constant.

2 2There are two homomorphisms from It̂ (P ) to H^(P ) : the
isomorphism and the zero morphism.

Suppose first that f is the isomorphism . is then
orientation-true so that there is an infinity of associated
homotopy classes . The maps f inducing f don't lift to maps»■o ? —  2 2from P*- to 3 , but we can lift them as maps f from S to S :

2 2 .When both copies of P and S carry their canonical metrics, 
—  2 2the maps f  from S to S defined in complex coordinates by

k 2 2 . .w = z  factorize as maps f  from P to P i f f  k is  odd . Since
the degree of f  equals the degree of f ,  we see that the homotopy
classes associated to f  are parametrized by the numbers

| (511 » k, which take a ll  positive odd values . The maps
w = z are harmonic representatives of the classes.

2 2 • 2 • Since P ,g and P ,g ' are conformally equivalent to P with

its  canonical metric, this provides harmonic representatives

for any metric.



6i+.

sending e and e, to e .Two homotopy classes induce that f , o 1 o at-
—  2 2and the maps f in these classes lift to maps f from P to S :

Consider next the case of the trivial homomorphism f ,

2 2 .We have already seen that any harmonic map from P to S is 
constant and so is its projection . Therefore, the non-trivial 
among these two homotopy classes contains no harmonic representa 
tive . To summarize :

Proposition 6.U : There are two families of homotopy classes
o o .of maps from P ,g to P ,g' . The first contains an infinity of

classes, all of which contain a harmonic element, the second
contains two classes, the trivial one (which contains the
constants), and another which does not contain any harmonic map.

§ c : MAPS INVOLVING OTHER SURFACES.

2 2When other surfaces than S and ? are involved, only very 
partial results were obtained up to now . We shall summarize 
them here under their present form.

2Orientable surface -- * P  .

Suppose that M is an orientable surface, and consider first
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Consider next the case of the trivial homomorphism f ,vt
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The maps f can then be lifted to maps f :

65 .
the maps f inducing the zero homomorphism f : Z-, .

Since M is orientable, the morphism f is orientation-true . when 
f is of degree G> , f is of degree 2 ®  so that the homotopy 
classes are parametrized by the values |2©|.

As there is a one-to-one correspondence between the f's and 
the f's, every statement made in chapter 3 on the maps f from

9M to S implies the same statement on f, by replacing the degree 
©  by ]261| and using the notion of weak conformality instead 
of holomorphy . We refer to that chapter for a complete list
of results.

Let us then consider the case of a non-orientation-true 
(i.e. non-zero) homomorphism f . To such an f^ are associated 

two homotopy classes of maps.
from remark 2.10, we deduce that at least one of these two 

classes contains a harmonic element, which realizes the minimum 
of the energy in the two classes . Whether the second class 

would contain a harmonic map is not known.

2Ho:■ -oricntable surface ---- >P“ .
Let M be non-orientable . We have as yet no result concerning 

tr.e infinite family of homotopy classes associated to an 
orientation-true homomorphism.

When is  not orientation-true, we have one or two homotopy 
classes associated to f^ , and we know (remark 2.10) that each 
of these classes or couples of classes contains a harmonic map.



In particular, we have :

Proposition 6.5 : Let f be a non-orientation-true homomorphism

which sends an odd number of the a^'s to e^ . The unique 
nomotopy class associated to f contains a harmonic map.

To be complete, we finally note that we have as yet no 
result concerning the maps of a non—orientable surface to a 
sphere . All we know is that they lift to maps of degree zero 
from an orientable surface to S^, and it is only when that 
surface is also a sphere that we can draw a conclusion.
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