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STATEMENT

The work presented in this Thesis has not been submitted 

for another degree of this or any other University. It is original 

with the exceptions stated below:

(i) The work in Chapter 1 is a review and commentary on the existing 

design methods for model reference adaptive systems.

(ii) In Chapter 2, the performance comparison of M.I.T. and Liapunov 

designs with step and sinusoidal inputs was reported in the candidate's 

M.Sc. dissertation. This work is reproduced here for the sake of 

completeness. The performance study for stochastic inputs and the 

inclusion of three other designs are new.

(iii) Elsewhere in the thesis ideas, results and examples which are 

due to other authors are clearly acknowledged in the references.

NOVEMBER 1973.



ABSTRACT

This thesis sets out to compare five well known design rules 

for the design of model reference adaptive systems. These are the 

M.I.T. rule, the Liapunov synthesis, the gradient rules of Dressier 

and Price, and the Monopoli design rule. A systematic performance 

comparison is made using two low order gain adjustment systems 

simulated on a digital computer. Step, sinusoidal and stochastic 

input signals are used and the system state variables and performance 

criteria are all expressed as dimensionless quantities. The results 

clearly demonstrate the superior performance of the Liapunov and 

Monopoli designs. The main disadvantage of other designs is that the 

dimensionless performance criteria is not a monotonic decreasing 

function of the dimensionless gain parameter. An analysis of the 

noisy case is then performed and this further points out the flexibility 

of the Liapunov synthesis.

The next objective of the research is to extend the scope of 

application of the Liapunov designs. First a modification of the usual 

design algorithm for multivariable systems is made sc that a wider 

class of plants, in which the adjustable parameters may appear simul­

taneously in two or more elements of the plant and control matrices, 

can be readily treated. Examples are given to illustrate the design 

procedures and the typical performance of such designs. Secondly, the 

simultaneous parameter and state estimation system using model 

reference methods is investigated. Landau's hyperstability design, 

which can be shown to be equivalent to the Liapunov design, is preferred 

for this problem. To distinguish this design from the well known 

Generalized Equation Error (G.E.E.) design, we have called it the 

Stable Response Error (S.R.E.) design. The practical difficulty of

(ii)



using this globally stable design rule is found to be the implementation 

of the series (derivative) compensator. It is then shown how the 

problem is solved by using the state variable filters. Various 

simulation results substantiate the characteristics (namely unbiased 

estimates and very fast convergence) of the resulting design. The 

recovery of the simultaneous state estimates when the state variable 

filters are used with the S.R.E. design is then considered. With 

a moderate rate of convergence, the quality of the state estimates is 

found to be good. The main disadvantage of the S.R.E. method is that 

the range of parameter variations must be known a priori in order to 

design the series compensator which ensures the global stability. 

Finally, the extensions of the S.R.E. method to treat nonlinear and 

multivariable systems are presented. The main effort here is to 

find the appropriate structures of the estimation model.

To conclude the thesis, a real case study is presented.

This is the modelling of a nonlinear, third order internal combustion 

engine by a linear, first order model. The parameters of the model 

are adjusted according to the S.R.E. design rule. The practical 

results obtained demonstrate the feasibility of using the model 

reference method in a real physical system. Then some of the 

experiments are repeated with the estimation system based on the

G.E.E. design rule. The results are found much inferior to those 

of the S.R.E. design.
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CHAPTER 1 INTRODUCTION

1.1. BACKGROUND

The model reference adaptive control (M.R.A.C.) technique 

has been a popular approach to the control of systems operating in the 

presence of parameter and environmental variations. In such a scheme, 

the desirable dynamic characteristics of the plant are specified in 

the reference model and the input signal or the controllable parameters 

of the plant are adjusted, continuously or discretely, so.that its 

response will duplicate that of the model as closely as possible. The 

identification of the plant dynamic performance is not necessary and 

hence a fast adaptation can be achieved.

In the last decade or so, the design methods for M.R.A.C. 

systems have been dominated by the so called M.I.T. rule and many 

attempts have been reported to implement the resulting design in real 

physical systems. However, more often than not, the designer finds 

himself confronted with a complex stability problem or inadequate 

performance of the adaptive loop and all these limit the widespread 

application of M.R.A.C. techniques although it is thought to be an 

attractive alternative to many conventional methods. In the same 

period, other new design methods have been developed to overcome the 

snortcomings of the M.I.T. rule and the literature is flooded with new 

proposals. In fact the situation has reached a stage where the 

designer is fairly confused about the status of the various methods 

now available.

Recently tho concept of model reference has been regarded 

more generally than it was first being used for in adaptive control.

For instance, it can be readily shown that the well known Kalman 

filter and the Luenberger observer can be reformulated in the framework



of parallel model reference systems. Two important methods of system 

identification namely the equation error method and the response error 

method can be formulated as a series-parallel and parallel model 

reference systems respectively. Also the recently popularized method 

of compensating multivariable systems, namely the model following method, 

can be treated as a parallel model reference system. Hence, further 

research on M.R.A.C. systems will benefit all these important areas of 

automatic control.

It is with such a background that this research has been 

initiated. It does not attempt to invent entirely new design rules. 

Rather the main effort has been expanded on the clarification of the 

status of the art of designing model reference adaptive systems and on 

further development of some prospective design rules to simplify the 

implementation and to widen the scope of their application.

1.2. LITERATURE SURVEY

1.2.1. Adaptive Control

The M.R.A.C. system was first designed by the performance

index minimization method proposed by Whitaker  ̂of the M.I.T.

Instrumentation Laboratory and has since then been referred as the

M.I.T. design rule. The performance index is the integral squared of

the response error. This rule has been very popular due to the simplicity

in the practical implementation of the plant gain adjustment loop. For

the adjustment of other parameters, however, sensitivity filters are

required and the hardware involved may be prohibitive for simultaneous

multi-parameter adjustments. An improved design rule with respect to
3the speed of response has then been proposed by Donalson who used a 

more general performance index than that of Whitaker, but additional 

filters and the measurement of the state vectors are required. The



need of the sensitivity filters can be avoided by a gradient method

developed later on by Dressier , or by an 'accelerated gradient method'

suggested by Price ^. The latter is easier to implement and is

capable of achieving faster adaptations compared with other gradient

techniques. Another contribution to the simplification of the design

comes from the application of sensitivity analysis by Kokotovic et 
7 8al ’ resulting in a design similar to the M.I.T. rule. Here, with

further approximation, only one sensitivity filter is required for

simultaneous multi-parameter adjustments. For some other particular 
. 27applications, Wmsor has also modified the M.I.T. rule to reduce

the sensitivity of the response to the loop gain, at the expense of

additional instrumentation. All the design rules mentioned are not

however, globally stable and hence the adaptive gain which governs the

speed of response is limited. A good compromise between the stability

and the speed of adaptation will have to be decided by laborious

simulation studies. A recent contribution by Green ** has extended the

work of Dressier to form a 'stable maximum descent' method. However

this adaptive rule is not attractive from a practical viewpoint because

the first derivatives of the state vectors are often required to assure

global stability of the resulting system.

Owing to the serious problem of instability encountered in

the M.I.T. rule and other gradient techniques, two branches of research

have become very active. These are the theoretical stability analysis

using such tools as the second method of Liapunov, and the new synthesis

approach which avoids the instability problem. The effort in the

analysis of the parameter adjustment loops,^which differential equations
24arc nonlinear and nonautonomous, are summarized by James who shows 

that the current status of control theory can only cope with simple 

systems with deterministic signals and can hardly treat those with 

stochastic signals. Furthermore the procedure involved is very complex



and time consuming. On the other hand, in the Liapunov synthesis

approach, the adaptive rule is obtained by selecting the design equations

to satisfy conditions derived from the second method of Liapunov, so that

the system stability is guaranteed for all inputs. Butchart and 
9

Shackcloth have first suggested the use of a quadratic Liapunov
• . 2 function which was employed later on by Parks to redesign systems

formerly designed by the M.I.T. rule. The use of a different Liapunov
. . 11 12function by Phillipson and Gilbart et al has resulted in the

introduction of proportional (feedforward) loops which would improve 

the damping of the adaptive response.

The main disadvantage of the Liapunov method is that the entire 

state vector must be available for measurement, which is not often

possible. Recent efforts in the application of the idea of positive real
13 14transfer function, notably that by Monopoli * , have allowed one to

eliminate or reduce the number of differentiators required to implement

the design rule for adjusting both the plant gain and other parameters.

Among other possible solutions to avoid the use of derivative networks,

Currie and Stear have envisaged the use of a Kalman filter, which

would also handle the measurement noise problem, while the use of state

observers ^  to estimate the states of an unknown time-varying plant is

still an open question. Some recent contributions on adaptive state 
17 18observers ’ represent the serious interest and the early stage of 

development in the use of observers in adaptive control. Another 

limitation of the Liapunov design rule is that it may not be applicable to 

cases where the plant parameters cannot be directly adjusted. Such a

case was mentioned by Winsor and Roy ^  but a solution has been found
14 . . .recently by Monopoli . A further possibility of indirectly controlling

the plant by adjusting the feedforward and feedback gains has been

investigated by Landau et al and Narendra et al

The Liapunov design can also be derived using the hyperstability

theorems of Popov ^ . Landau has further shown that using the hyper­



stability approach, the analysis of nonideal systems is very simple.

For instance the conditions for bounded-input bounded-output stability 

can be readily written down when noise or time-varying parameters are 

present. Although the hyperstability approach could give many other 

designs, so far the best found is still the same as the Liapunov design. 

Hence besides the convenience in analysis the hyperstable design rule 

is equivalent to the Liapunov design rule.

Other less well known but important designs deserve mentioning 
25here. Nikiforuk anc Rao have suggested combining the advantages of

the sensitivity and stability considerations and they produced an

adaptive rule which could be made stable if the bound on the parameter
26variations is known. Choe and Hikiforuk have suggested a feedback

law which guarantees bounded-input bounded-output stability and uses

only partial state measurements. Both of these approaches use the

second method of Liapunov and represent alternative ways of designing

on the basis of stability theory. Finally, the readers are referred
27-29to three recent survey papers for other proposed designs.

1.2.2. Identification

Process parameter estimation using an adjustable model has
39 A Obeen a popular on-line system identification technique ’ . This

method seeks to adjust the parameters of the model contii.uously so as

to null some error measure between the plant and the model. Two types

of models have been widely used, one being the series-parallel model
28while the other is the parallel model . The former yields an error 

measure called the equation error which is linear in the unknown 

parameters; the latter uses the response error as an error measure 

which is non-linear in the unknown parameters. Hence they are also 

called the equation error and response error methods respectively.



seeks to minimize the square of error measure according to a steepest
41descent law. It uses a so called state variable filter technique 

to avoid pure signal differentiations and is proved to be globally 

asymptotically stable. Recently the extension of this approach to

treat multivariable systems has been done by Pazdera and Pöttinger 49

50Narendra and Kudva who use the Liapunov synthesis design rules, 
61and by Landau who uses the hyperstability design rule. The only 

limitation of the G.E.E. method is that it gives biased estimates 

when the plant output is corrupted by noise.

The parallel model approach is in fact the usual parallel 

model reference adaptive system but with the adjustable model attempting 

to track the stationary (or slow-varying) plant. Hence all that has 

been said about the design methods in Section 1.2.1 may be applicable 

here. The status of the design rules is as follows. The sensitivity
37 47method ’ is most popular but uneconomical due to the large amount

of time-varying sensitivity filters required; the stability may be
52 4assured in some designs . The gradient method of Dressier ,

Hsia and Vimolvanich does not require sensitivity filters but is

limited to local convergence only. The gradient method employing
52 .stochastic approximation is stable but the amount of hardware 

required for generating sensitivity functions is usually prohibitive 

and the rate of convergence is very slow. The synthesis approach of 

Parks ^  and Landau globally stable but its implementation

requires the use of the plant state vector. All these methods,

|
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parallel model approach is that the former only gives parameter estimates
28whereas the latter gives simultaneous parameter and state estimates 

This aspect has not bean emphasized in the past primarily because the 

latter was dominated by the sensitivity design rule which was difficult 

to implement and because it was usually thought that the simultaneous

parameter and state estimation could be adequately handled by more
. 54 55complex methods like the extended Kalman filter ’ . However it is

now well known that the extended Kalman filter possesses a serious

convergence problem and is also difficult to implement. The potential

of the parallel model reference techniques is its simplicity in structure

and. fewer apriori information about noise statistics. The assured

stability of the Liapunov and hyperstability designs will certainly

add to the attractiveness of using model reference systems for simultaneous

parame :er and state estimations.

With explicit parameter and state estimations, many well known
. . . 44,control techniques can then be applied to achieve adaptive control

£ r £0 . Now there arises an important question as to when should M.R.A.C.

(without explicit identification) be used and when should the adaptive

control with on-line identification be used. Besides the usual

consideration about the accessibility of adjustable parameters, the

possibility of injecting test perturbations and the availability of

state vectors, the most important factor influencing the choice of

adaptive control technique is the question of whether or not the

plant has dominant right-half-plane zeros (nonminimum phase) which

vary with the operating condition. As the M.R.A.C. uses high gains

in the adaptive loops, it may not be suitable for systems with

nonminimum phase transfer function whereas the adaptive control employing
68explicit identification can cope with this type of system . If the 

system to be controlled is minimum phase, then M.R.A.C. is preferable
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as it avoids the usually difficult identification problems.

1.3. PURPOSE AND LAYOUT OF THF. THESIS

The initial part of this research is a continuation of work 

done as an M.Sc. project in which a simulation study verified in some 

examples the superior performance of the Liapunov design over the M.I.T. 

rule. In this thesis, other gradient methods are included in the 

comparison and more general stochastic inputs are also used. Only 

continuous time linear models and plants are considered. The results 

confirm the earlier observation that the Liapunov design possesses 

excellent performance characteristics not attainable by other designs. 

Hence further developments of the Liapunov design rule will be worth­

while in order to extend the usefulness of model reference techniques. 

The latter part of the research thus includes the generalization of 

the usual Liapunov design algorithm for multivariable systems to treat 

a wider class of plants, the use of state variable filters for 

implementing the parallel model reference identification system, and 

a practical case study to assess the model reference systems designed 

by using stability theories. The layout of the thesis is as follows.

Chapter 2 describes the comparative studies of several 

design rules which include the M.I.T. rule, the Liapunov syntr.esis, 

the gradient rules of Dressier and Price, and the. Monopoli design 

rule. Step, sinusoidal and stochastic inputs are used in the systematic 

performance comparison on the simulated examples. Dimensionless 

variables and performance criteria are used so that the results are 

most general. A qualitative analysis is then presented to discuss the 

relative performance when noise and disturbance are present.



Chapter 3 reviews the commonly used Liapunov design algorithm 

for the design of multivariable M.R.A.C, systems and points out its 

limitation when used in some actual applications, A new general 

algorithm is then derived and examined using the example of an 

adaptive speed control loop for a Ward-I.eonard system. Qualitative 

discussions of two more examples are also given.

Chapter 4 begins with the discussion of using the Landau 

hyperstability design rule for on-line system identification problems. 

The possibility of using the state variable filte: s to avoid pure 

differentiation of signals when only the output of the plant but not 

the'state vector is measurable is then investigated in detail. The 

feasibility of simultaneous parameter and state estimations is then 

explored. Finally, possible extensions to nonlinear systems and 

multidimensional systems are examined. Throughout this Chapter, 

various simulation results are presented to substantiate the theoretical 

developments and to demonstrate the typical performance of such designs.

Chapter 5 presents a case study in which the Landau design 

rule is assessed on a real physical system. The case is the on-line 

modelling of a third-order internal combustion engine by using an 

adjustable first-order linear model. The effects of neglecting the 

higher order modes and the inherent nonlinearity of the engine on the 

performance of this model reference identification system are examined. 

Finally a comparison is made with results obtained using the G.E.E.



not been widely recognised are brought together in the next section. 

Hopefully this will ease the reading of this thesis.

10

1.4. DEFINITIONS AND THEOREMS

The reader is assumed to have fundamental knowledge on the

second method of Liapunov, A good account of this method is the paper
32 . . . .by Kalman and Bertram while an example of its use m  synthesis is

demonstrated in appendix A.l, The various configurations of model

reference systems have been discussed in reference 28 and hence only

the series-parallel and parallel models are to be distinguished here.

The concepts of absolute stability and hyperstability which have only

been recently utilized for the synthesis of model reference adaptive 
2 21systems ' will be discussed.

28 29Series-parallel and parallel models * . These can be best

demonstrated via a single dimensional system as shown in Fig. 1.1.

e is called the equation error and e is called the response e t
error, A similar state space structure can be derived if the

. 49,50state vector is measured

SERIES-PARALLEL MODEL PARALLEL MODEL

Fig. 1.1



Positive real function 56,58 A rational transfer function G(s)

is termed "positive real" if the following conditions are 

satisfied:

(1) G(s) has no poles in Re [s] > 0 and poles on the jw 

axis are simple with positive real residues;

(2) Re G(ju) Z 0 for all u>.

It is termed "strictly positive real" if in the above conditions, 

the sign > is replaced by z and vice versa.

Positive real matrix ^ . A rational transfer function matrix

Z(s) is termed positive real if:

(1) Z(s) has real elements for real s;

(2) the elements of Z(s) have no poles in Re [s] > 0 and 

poles on the jui axis are simple, and such that the 

associated residue matrix is non-negative definite Hermitian

(3) Z(joj) + ZT*(ju) 5 0.

The signs T and * denote transpose and complex conjugate 

respectively. Similarly a strictly positive real matrix can be 

defined.

13 . .Kalman-Meyer Lemma . This lemma was first stated by Kalman in his

treatment of the Lure problem on absolute stability and was 

later modified by Meyer. The result is:

Lemma:

Let A be a real n x n matrix all of whose characteristic 

roots have negative real parts, x be a real non­

negative number and b , k be two real n-vectors. If'V %

x + 2 kT (si - A)“1 b

is a positive real function of s then there exist two 

n x n real symmetric matrices P, Q and a real n-vector
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/ H

d such that

a) A P + P A -d d - Q ;<\, »V,

rlb) P b = k + t 2 d ;
% r\j 'X*

c) Q is positive semidefinite and P is positive 

definite.

For the purpose of using this lemma in the Liapunov 

design, one needs to put 

t  = 0  ;

d■v 0 so that P b•v

[l, 0 ..... 0]

so that k^TjuX - A] 1 b<\, L J n.

k
•V.

k ;

N(joj)
D(ju)

where

57

N(s)
D(s) is the transfer function of the plant.

Hypers tability . This term was introduced by V.M. Popov to denote

the stability property of a system consisting of a linear section 

and a nonlinear feedback section as shown in Fig. 1.2.

a

Consider the following state space description of the linear 

section ,
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x
•\>

y

F x + G ur\, <\,
H x

(1.1)

where it is assumed that the pair [F, g] is completely 

controllable and the pair [f , h] is completely observable.

The vectors u and y are also assumed to have the same
<v >v<

dimension.

Kyperstability is a property of the system which requires the 

inputs u to satisfy the following inequality:'Vi

uT ( t )  y ( t )  d t  i  <$ [  ||x(°) II ]  SUP l l x ( t )  II ( 1 . 2 )

Here 6 is a positive constant depending on the initial state 

of the system but independent of the time t . The inequality 

(1.2) hence defines the allowable class oi nonlinearity.

The system (1.1) is termed "hyperstable" if for any u in the'Vi
subset defined by (1.2) the folloviing inequality holds for 

some positive constant k and for all t:

X ( t )  || i  k (  11x ( ° ) II + 6) (1.3)

The system is termed "asymptotically hyperstable" if for any 

u in the subset defined by (1.2) the inequality (1.3) holds

Now lets state the conditions required to^satisfieJby the linear 

section of equation (1.1), the transfer function matrix of which 

is



Theorem (Popov) 57: A necessary and sufficient condition for the

transfer function matrix Z(s) of the system (1.1) to define

14

a (asymptotically) hyperstable system is that Z(f) be (strictly) 

positive real.

20 • •Eventual stability . The origin of a system, which solution starts

at time co and state is said to be eventually stable if,

given e > 0 there exist numbers 6 and T such that

II «0 11 < Ó implies that 11 x ( t ,  t 0 ,'V X0> II < e for all

c * co ? T,

If in addition, there is an r > 0 and a Tfl such that

|| x0 I|<r and tQ i TQ imply.that x (t, tQ, xQ) ^ 0 as 

t -*• <» , then the origin is said to be eventually asymptotically 

stable.

Theorem (Lasalle and Rath): Consider the following systems (1.4)

and (1.5):

X = F (x, t) 0.4)

X - F (x, t) + P (x,t) 0-5)
<\j r\j %

If the system (1.4) has a uniformly asymptotically stable

origin, then the system (1.5) will be eventually asymptotically

stable if | P. (x. t) | S h (t) when || X II S 13<V0 > °)J v J 'v
where either:

h. (t) -* o as t -*• “J

or: j hj (t) dt is finite.
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CHAPTER 2 - COMPARATIVE STUDIES OF 

MODEL REFERENCE ADAPTIVE CONTROL SYSTEMS

2.1. INTRODUCTION

The design of continuous model reference parameter adaptive 

control systems has received much attention by the control engineers 

in the past fifteen years. Consequently many ingenious design rules 

have been reported in the literature. As pointed out in the brief 

survey of Section 1.2. there are two main approaches in the synthesis 

of this class of M.R.A.C. systems. One is based on the minimization 

of a performance index and the other on a Liapunov function

Each of these approaches has its own merits and limitations, although 

many modifications have been suggested to improve them further. A 

direct contrast of the merits of these designs has been briefly 

mentioned in the literature * but a rigorous comparison especially 

that from a performance viewpoint has not been reported. Hence a 

comparative study of the various design rules will be of great interest 

to the designers who have long been faced with the difficulty of 

selecting a suitable one for certain applications.

In this chapter attention will initially be focussed on 

single-inpui. single-output plant gain adjustment systems. Some of the 

more popular rules are critically analysed to point out their relative 

merits with regards to the stability, realization and adaptive response, 

which will also be supported by some simulation results. Subsequently 

a systematic performance comparison based on some well-known criteria 

is attempted through simulation studies. Deterministic as well as 

stochastic inputs are employed. Sensitivities of the performance to 

the input frequency bands are also examined. The interesting and 

usef... performance characteristics are presented in the form of
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similitudes .

The latter part of this chapter is concerned with the study 

of more general parameter adjustments. A qualitative analysis of the 

various designs is given and the general concern about noise and 

disturbance rejection is also examined.

The design rules to be compared are the M.T.T. rule \  the
2 12 4 . 5Liapunov synthesis * and the rules suggested by Dressier , Price

13 •and Monopoli . The first two rules are by now well known while the

latter three are les.' popular. The main reason for choosing the

Dressler's and Price's rules is not merely because of their own merits

but also because they can be viewed as a crude approximation to the

Liapunov design rule with e, replacing the e vector. Hence the effect

of using ej instead of e on the stability and response of the Liapunov

design can be investigated. The inclusion of the Monopoli's rule here

is natural as it is an improved version of the original Liapunov design

with regards to the physical implementation. There are of course other
g . . 25important design rules such as those due to Kokotovic , Nikiforuk

and Choe . However they are thought to be less general in applications

and possess one or more of the following weaknesses:

(1) time-varying filters are required to generate the 

exact sensitivity functions;

(2) at most bounded-input, bounded-output stability can 

be ensured;

(3) adaptive gains required to assure convergence are 

proportional to the bound on parameter variations - 

hence in practice only useful for systems with small 

parameter variations;

(4) no integral action in the adaptive loop - hence greater 

sensitivity to noise, initial state and initial



17

parameter deviations; one such effect is to cause 

saturation during the transients;

(5) not truly parameter adaptive - hence not applicable 

to system identification problems.

Therefore these latter designs are not included to maintain a feasible 

size of the undertaking.

2.2. A CRITICAL COMPARISON OF THE DESIGN RULES

The following analysis is based on the aggregate of knowledge 

scattered in the literature. This information is reviewed here and

studied by means of simulations. We shall first compare the M.I.T.
1 2 9-12rule and the Liapunov synthesis ’ through the design of a gam

adjustment loop of a linear system as shown in Fig. 2.1. Following
4 . 5this we shall examine design rules due to Dressier , Price and

13 . . .Monopoli . The block diagrams of these designs are shown m  Fig. 2.2.

2.2.1. M.I.T. Rule and Liapunov Synthesis

The notation used below is that shown in Fig. 2.1 and Fig. 2.2. 

The performance index used in the M.I.T. rule  ̂is j ej^ dt and the 

parameter adjustment law using a steepest descent minimization 

technique is

Kc Be, !_!e3 K ( 2 . 1)

In this case the sensitivity function 

hence the above equation becomes

is proportional to aud

B'e,0 1 m (2. 2)

where the constant B' is the adaptive gain .



KCD£L

Fig. 2.1 A basic M.R.A.C. gain adjustment system

tM O M O PO Lf)

Fig. 2.2 Various designs of the adaptive loop
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The Liapunov synthesis is based on the use of a Liapunov function 

The most successful form of this function V used to date is that 

proposed by Gilbart et al . As described in appendix A.I., the 

function takes the forms

V = eTPe + X (X + y K m)2

where m = B'e^Pbr

X = K - K K c v

(2.3)

(2.4)

(2.5)

(2. 6) 

(2.7)

and the time derivative of V is given by

= -e^Qe - 2 Xy K 2 m2 dt \  v

These result in a stable adjustment law:

K «* m + y mc
where y is a proportional constant which is chosen to provide

additional damping if required. Putting y = 0 results in the
2design rule used by Parks .

Equations (2.2) and (2.7) will be compared in the 

following manner:

(a) Stability - A stability analysis of equation (2.2) is very

difficult. The doubt about possible instability has been demonstrated
o ,by Parks for a second order system with step inputs. Even for a

23first order system with a sinusoidal input, James has obtained a 

complicated stability domain in the parameter space. This domain is 

shown here in Fig. 2.3(a) to demonstrate the complications «-hat arise. 

Further studies by James ^  have revealed the stability problems 

associated with stochastic inputs and the lack of adequate theoretical 

methods to predict the stability boundary. An example is shown here 

in Fig. 2.3(b). Hence extensive simulations during the design stage 

are necessary to establish the region of stable operations. On the other



Fig. 2.3 Stability regions of M.I.T. DESIGNS
/ , t 23,24.(after James )
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hand equation (2.7) is assured to be stable Tor all inputs such that

e 0 asymptotically, with the assumption that K is slowly time- 
% v
varying. When this assumption is severely violated, a stability

problem similar to that of equation (2.2) may arise. 'Eventual

stability', however, can be assured by using a theorem due to Lasalle

and Rath (see Section 1.4) if the time-varying function belongs
20to the following class :

|Kv (t)| s n(t) (2.8)

where n(t) 0 as t -*• "

or n(t) dt is finite.
^0

(b) Physical Realization - Equation (2.2) can be easily implemented

and it is this distinct advantage that has made M.R.A.C. a popular

adaptive control strategy. Equation (2.7) however, requires the

estimation of the complete state vector which is not often available

and hence necessitates the use of differentiating networks which cause

a noise amplification problem, or the use of adaptive state observers 
17 18' which further complicate the implementation.

(c) Response - The speed of adaptation of both equations depends

on the magnitudes of the adaptive gain B' and the input signal R. A

large B' is always necessary to maintain a high speed of adaptation.

However as B' and R vary, the damping of the response will also vary.
11 12Root locus plots of these equations for a second order system '

2would show that when B'R is large, the M.I.T. design will be under­

damped while the Liapunov design will be adequately damped with suitable 

values of the proportional gain y .

2.2.2. Other Design Rules

We shall next examine the following rules. 
4Dressier ---  The parameter adjustment law is
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where

|Kv (t)| $ n(t)

n(t) + 0  as t -*■ "

l(t) dt is finite.

( 2 . 8)

r-<• n

(b) Physical Realization - Equation (2.2) can be easily implemented

and it is this distinct advantage that has made M.R.A.C. a popular

adaptive control strategy. Equation (2.7) however, requires the

estimation of the complete state vector which is not often available

and hence necessitates the use of differentiating networks which cause

a noise amplification problem, or the use of adaptive state observers 
17 18’ which further complicate the implementation.

(c) Response - The speed of adaptation of both equations depends

on the magnitudes of the adaptive gain B' and the input signal R. A

large B' is always necessary to maintain a high speed of adaptation.

However as B' and R vary, the damping of the response will also vary.
11 12Root locus plots of these equations for a second order system ’

2would show that when B'R is large, the M.I.T. design will be under­

damped while the Liapunov design will be adequately damped with suitable 

values of the proportional gain y.

vafc
.A
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K = B'e,r (2.9)c l
The resulting controller is very simple and no sensitivity filter is 

required. The disadvantages are that the damping of the response suffers 

at larger loop gains and that the global stability is not guaranteed.

Its stability problem is similar to that of the M.I.T. rule.

Price ^ ---- The parameter adjustment law which is called the accel­

erated gradient method is

K  = B'eir + y c It (B'eir) (2-10)
where v is a constant.' c

The controller is similar to that of Dressier except for the 

addition of the proportional (feedforward) term. This term has the 

effect of improving the damping and the stability of the response.

This stabilising effect would however be impaired as the order of the

system increases, and generally the global stability cannot be guaranteed. 
13Monopolr ---  This is based on a modification of the Liapunov

scheme. A differentiating block (Z(s)) is used to modify the plant 

transfer function such that Z(s)N(s)/D(s) is positive real, and the 

Kalman-Meyer Lemma (see Section 1.4) is used to eliminate the error 

derivatives required in equation (2.7). Hence

Kc = B'eiy + y (B'eiy) (2.11)

where y is the modified input signal to the plant and obtained by 

passing the original signal through a filter (1/Z(s)). For an n-th 

order plant with m zeros, the order of Z(s) is (n-m-1). Global 

asymptotic stability of the adaptive loop will be guaranteed while the 

number of derivatives required is reduced to (n-m-1), or

(n-m-2) if the extra damping loop is not in use. The latter is achieved 

by decomposing Z(s) into Z'(s)(s + a). Now since K is available,

(s + a)Kcy can be implemented without pure differentiation as it can
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This technique can be easily extended to the case of a general time- 

varying gain.

2.2.3. A Simulation Study of the Adaptive Response

At this point one would wonder whether or not the stability 

issue should have an important weight at all on assessing a design 

rule. For instance if the M.I.T. design, subject to a stability 

analysis or simulation which defines the domain of stable operations, 

would in this stable domain exhibit a faster speed of adaptation than 

the Liapunov design, then the former would be regarded as practically 

adequate and the emphasis on achieving global stability should be 

lessened. If the reverse is true then the requirement for the design 

to guarantee global stability will be more acceptable and useful to 

the system designers. Such an issue, which has so far been neglected 

in the literature, will be investigated here.

various designs has been conducted. The adaptive response is defined 

in this context as the time response of the parameter adjustment when 

there is a step change in the parameter. The study has indeed shown 

that very often the Liapunov designs could achieve excellent performance 

not attainable by other rules. As an example consider a second order 

plant whose gain is to be adjusted. Referring to Fig. 2.1 and 2.2, the 

following values are assumed:

A simple simulation study of the adaptive response of the

N(s) 1 a i  *> 2 ,  a 2 ■= 1 ,  K  “  1 ,D(s) l+a1s+a2s2

a.
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Z(s) = 2s + 2 (as in Ref. 13) and shall limit the values of y and 

to, say, 50% because in actual use they may have to be quite small 

to reduce the effect of any noise at the plant output and the excessive 

transient overshoots due to large initial errors. Some of the typical 

adaptive responses of the various designs are depicted : • Fig. 2.4 

for step as well as sinusoidal inputs. The responses shown for the 

M.I.T., Dressier and Price designs have been optimized with respect 

to the convergence time. The responses shown for the Liapunov and 

Monopoli's schemes are, however, not optimized - i.e. they can still 

be further improved if required by increasing the adaptive gain. From 

this simulation study, the M.I.T. design is found to be unstable for 

B' > 1. Even when it is stable at lower values of B', the response is 

slow, the convergence time being well over five system time constants. 

The response of the Dressier scheme to a step input is similar to that 

of the M.I.T. scheme. However, for a sinusoidal input, the Dressier 

scheme shows a steady state parameter error which is dependent on the 

loop gain as well as the input signal frequency. The design due to 

Price shows a better damping and stability which improve as y c is 

increased. On the other hand, the Liapunov design is always stable 

and the damping and convergence can be improved systematically by 

varying B' and y. A convergence time of even less than one system 

time constant can be easily achieved. The design due to Mor.opoli, 

which does not require any differentiator in this case, exhibits quite 

a fast response. Although its damping would suffer at higher B', the 

system stability would always be maintained. These results also 

substantiate the foregoing theoretical analysis.

2.3. A SYSTEMATIC PERFORMANCE COMPARISON

The importance of a performance comparison has been discussed

: ' ‘itf i  *  " /  ; -i f
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in Section 2.2.3. The example given also indicates the complexity and

scale involved in any attempt to make a complete comparative study.

A systematic approach is therefore taken in this section.
30Some commonly used performance criteria which include the 

settling time (Tg) , the integral of squared error (ISE) , the integral 

of time absolute error (ITAE), and the integral of time squared error 

(ITSE) will be employed to compare the responses of the various designs 

against their system parameters. This will be studied experimentally 

through computer simulations of two gain adjustment schemes. The

results will be presented in the form of similitudes by applying a 
31dimensional analysis to the system differential equations such that

the quantities to be investigated are expressed in dimensionless

groups. The dimensionless performance criterion is denoted by m, 
an d  a;m er\Vtonl«ss sy stem  pam m eH n is  ¿«.»voted b y  *6». .
The performance characteristics are defined in this connection as the

plots of TTj against m2>

, N(s) 1 \2.3.1. First Order Systems ( --̂ -y = "J+sT '

In this case, the designs due to Dressier and Price are

identical to the Liapunov schemes. Also, the latter does not require

any differentiators. Hence we only need to compare the M.I.T. and

the Liapunov designs. Their system equations are listed in appendix

A .2.

Deterministic inputs ---  Step and sinusoidal inputs are employed.

From the dimensional analysis shown in appendix A.3. the following 

are defined:

m„ = KK B'R2T (M.I.T. design)
2 V

= K B'R2T (Liapunov design)
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= T /T s (5% Tg criterion)

KRT2

K2R2T
1

1
; iei2dt
Jt|ej(dt

(ISE criterion)

(ITAE criterion)

K2R2T2
1 (ITSE criterion)

The parameters which cannot be grouped into the above are fixed at: 

frequency of sinusoidal input = 2.5 c/s, Kc (tQ) - 0, y = 0 and

0.1.

2.5 and 2.6. For step inputs, in which case the M.I.T. design is 

always stable, the Tg criterion shows a region where this design is 

unfavourable since Xj may increase or decrease with an increment in 

tt2, whereas the same type of uncertainty does not appear in the 

Liapunov design with y = 0.1. For sinusoidal inputs, all the four 

characteristics for the M.I.T. design possess regions of uncertainty 

over a wide range of ir2< Furthermore it has already been ensured 

that within the parameter ranges tested, that is it s 25, this 

design is operated below the boundary of conditional stability as 

pointed out by James (Fig. 2.3 (a)). These findings suggest that an 

extensive simulation study would be necessary in order to determine 

a safe and economic value of tt2 t0 achieve any specific tTj even 

though the system is operated in the stable region. On the other hand, 

the similitudes for the Liapunov designs show a monotonic decrease of 

tt 1 with increasing ir2. This is a desirable feature. In addition this 

design can achieve values of ttj not attainable by the M.I.T. design. 

Examinations of the effect of changing the input signal frequency have 

also been conducted. The results which are too long to show here, 

indicate that in the M.I.T. scheme the system performance is very 

sensitive to the change in frequency whereas in the Liapunov scheme

The performance characteristics obtained are shown in Fig.
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X X X  (M .I.T.) . . .  (UAPC?NOV, < “ O) a a a  ( L ia p u n o v , t  » 0 .0

Fig. 2.5 Performance characteristics of first order systems 
with step inputs.
Criteria : (i) T ; (ii) ISE; (iii) ITAE; (iv) USE.





it is almost insensitive to the frequency especially at higher gains.

Stochastic inputs ---  The above experiment is repeated with a band-

limited Gaussian white noise input. This stochastic signal is obtained 

by spacing a digitally generated, zero mean, Gaussianly distributed 

sequence of pseudo random numbers, by an interval of h seconds and 

with linear interpolations. The variance of the signal is denoted by 

and its power spectrum which is approximately flat possesses a 

cutoff frequency of l/2h Hz . The properties and generation of

this stochastic signal are further discussed in appendix A.4. To 

reduce the complexity of this investigation, only the ISE criterion 

will be studied in detail.

where e [ ] denotes the expectation (i.e. ensemble average) operator. 

The fixed parameters are: h = 0.002, K^tg) = 0.0, y = 0 or 0.1.

similitudes show that both the M.I.T. and Liapunov designs exhibit the 

desirable characteristics that iij decreases monotonicaiiy with 

increasing The latter also achieves a much lower tr̂ which

cannot be reached by the former. Another important property that has 

been noted is that the variances about the expected values are different 

in each case. From the plot shown in Fig. 2.7(b), one observes that the 

variances in the M.I.T. design are very much larger than those in the 

Liapunov scheme. This indicates that in the former scheme there may 

exist a considerable degree of uncertainty about its performance. This

The dimensionless quantities are:

IT2 = KK B'6.2 t v N (M.I.T. design)

= K B'6.2 T v N (Liapunov design)

The results obtained are plotted in Fig. 2.7(a). The
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X X X ( M .X .T . )  . .  . (U R P U N O V , % — O )  A A A  ¿URPUNOV, *  = 0 -l)

Fig. 2.7 Performance characteristics of first order systems 
with stochastic inputs.
Criterion : ISE.
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XXX ('M.I.T.') . .  . c U A P U N O V , * = 0 )  *** fURPUNOV, < - 0 -l)

Fig. 2.8 A sample of the characteristics
Criteria : (i) ISE; (ii) ITAE; (iv) ITSE.
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is confirmed by studying the ensemble members of the random process.

One of these is shown here in Fig. 2.8. Also shown are ensembles of 

the corresponding results using the other two integral criteria. These 

similitudes reveal that the M.I.T. scheme possesses the undesirable

that in the Liapunov scheme shows an almost monotonic decrease.

In addition to the case just reported, other experiments 

have been carried out. The finding is that when the power spectrum 

of the input signal (proportional to l/h) is reduced, the performance 

of the M.I.T. design would deteriorate whereas that of the Liapunov 

design would improve.

here. The system differential equations are as listed in appendix A.2. 

It is noted that while the Liapunov design requires one differentiator, 

that due to Monopoli does not need any.

Deterministic inputs ---- From the dimensional analysis shown in

appendix A.3. the following are defined:

property that ir may increase or decrease with increaiing ir2 while

2.3.2. Second Order Systems ( d (s)" ”
1+a s+a s2 1 2

1 )

The five designs described in Section 2.2. will be examined

TT2 ■= KK B'R2a, v 1 (M.I.T. design)

- K B'R2a, v 1 (others)

(2% T criterion) s

1 Cj 2dt (ISE criterion)
K2R2a1

— —  tlejdt 
KRa2

(ITAE criterion)



= ----—  te 2dt (XTSE criterion)
K2R2a2 J 1

Other fixed parameters are: a2/a2 = Kc(tQ) = Yc =

Y = 0 and 0.1, frequency of sinusoidal input = 0.16 c/s.

The performance characteristics obtained are shown in Fig.

2.9 and 2.10. With step inputs, the M.I.T. and Dressier designs 

possess a minimum in it as tt2 varies; for tt2 smaller or larger 

than this minimum value, it increases sharply. Other designs show 

a monotonic reduction, especially at higher values of tt2> With sine 

inputs, both the M.I.T. and Dressier designs are again found to possess 

a minimum in iTj, and the latter is more critical than the former.

The design by Price shows an unfavourable performance in that the 

uncertainty as discussed in the first order systems occurs. The 

Liapunov and the Monopoli designs, however, still maintain the 

desirable performance characteristics similar to that with step inputs.

The performance of these designs with different frequencies 

of the sinusoidal input signal has also been examined. The same range 

of tt2 is used. The general observation is that the Liapunov and 

Monopoli designs are less sensitive to the signal frequency with 

regards to both the stability and the convergence rate. The M.I.T. 

system always possesses a minimum iTj at some value of tt2 which 

increases with the frequency; at lower frequencies, more than one 

minimum point may be observed. The convergence rate decreases with 

increasing frequencies. The Dressier system is unstable at higher 

frequencies; at lower frequencies the system is stable for a small 

range of it but this range may increase or decrease with decreasing 

frequencies. The design by Price improves at lower frequencies, in 

that the fluctuation in ir reduces, but deteriorates rapidly at 

frequencies higher than the resonant frequency of the plant and 

eventually becomes unstable.
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*xx ( M J . -O  .  .  . (LIBPUNOV, % =0) ‘ a * * CLIRPUNOV, % = 0.0

coo CMONOPOU') d o  b ¿ P R IC E , O .5} T ,  f  ( 'D R E S S L E R ')

< _ >  OR | CC-HflNGE in  SC A L IN G '')

Fig. 2.9 Performance characteristics of second order systems 
with step inputs.
Criteria : (i) Ts; (ii) ISE; (iii) ITAE; (iv) ITSE.
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t > oR ^ ( C H A N G E  IN SCALING)

Big. 2.10 Performance characteristics of second order systems 
with sinusoidal inputs.
Criteria : (i) T s; (ii) ISE; (iii) ITAE; (iv) ITSE.



o o o  CMONOP&Ui) ODD ( P R I C E ,  1<c = 0 * 5 )  Ttf ( D F E S S L E R )

^ C C H A N G E  IN SCALING)

Fig. 2.11 Performance characteristics of second order systems 
with stochastic inputs.
Criterion : ISE.



Stochastic inputs ---  The same experiment as in the first order

case is repeated. The main results with h = 0.1 are shown in Fig.

2.11(a) and 2.11(b). To summarise, the Liapunov and Monopoli designs 

exhibit monotonic decrease of it with increasing ir2 and the 

variances of Hj are small; the other designs exhibit one or more 

minima in it and the variauces are also large indicating serious 

uncertainty as mentioned in the previous section. Different spectra 

of the input signal have also been used. The general observation is 

that the M.I.T. <-nd Dressier designs exhibit worse performance when 

the bandwidth of the signal is reduced, while the other designs show 

improved performance.

2.3.3. Summary

The extensive computer simulation study of the various M.R.

A„C. designs reveals many interesting properties regarding the performance 

of the adaptive systems at different loop gains and under different 

input signals. These may be summarised as follows:

(1) The designs which are not assured to be stable globally behave 

very differently when the gain parameter it varies. They are also 

found to be sensitive to the frequency band of the input signal; one 

reason of this is that the total effective gain varies due to different 

attenuation by the system at different frequencies. The possible 

outcome of these two disadvantages is instability, poor damping, or 

poor convergence of the adaptation. It is unfortunate that in trying 

to compensate for the change in environment, the adaptive system may 

become sensitive to its own parameters.

(?) The performance of those designs which are assured to be globally 

stable improves as the gain parameter it increases. In addition they 

can be made less sensitive to the input signal magnitude and frequency
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content by operating at larger values of n2>

(3) Among the three schemes based on gradient methods, the Dressier 

design exhibits the worst performance characteristics especially when 

the input is sinusoidal or stochastic. The M.l.T. design is quite 

acceptable if the performance specification is not very strict. The 

design by Price performs better than the M.l.T. system with step or 

stochastic inputs but is inferior with sinusoidal inputs.

(4) The two designs based on stability consideration may achieve low 

values of tTj not attainable by other designs. Between the two,

the Liapunov scheme is better as it requires s lower value of ir

to meet the same performance criterion. On interchanging the roles of

the model and the plant, the case studied would become an identification

system. Hence this investigation also reveals the shortcomings of those
37 38model reference identification schemes ’ based on gradient methods.

2.4. GENERAL DISCUSSIONS

In the previous sections, no attempt has been taken to 

include the study of more general parameter adjustments and the effects 

of noise and disturbance inputs. Hence an examination of these 

general concerns is in order and presented herewith.

2.4.1. General Parameter Adjustments 1,4,12



b ^ and a ^  respectively. The parameter adjustment laws using the 

M.I.T. rule, the Dressier rule and the Liapunov synthesis are shown 

in Table 2.1. For simplicity the proportional term in the Liapunov 

design is put to zero; the laws due to Price and Monopoli are also 

not included as they are extensions of the Dressier and Liapunov designs 

and hence trivial for the purpose of comparing structures.

40

Rules M.I.T. Dressier Liapunov

b . = Pi gi * ei * rif
(i)

Bi ' el • r
T (i) 

Bi * < * % >  ■ r

a . = Pi "“i • el • °if -a. • e . ( Pi 1 m
X (i) 

-°i '  ■ ep

Table 2.1.

The ^  denotes the ith differentiation with respect to time and r.f

and 0., are defined as if

(2.13)
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economical compared to the M.I.T. rule since both require r and
(i)0 to be accessible. While the e can be readily generated using
C t ̂  ( i ) ^O and 0 , each r., and 0.„ would require one additionalp m if if M
filter having the same order as that of the model.

The Liapunov design has been synthesized to assure global 

asymptotic stability while the M.I.T. and Dressier designs could only 

be proved to be locally stable. It is observed that the stabilizing

factor in the Liapunov design is due to the presence of a . In thiss.
aspect, the other designs which use ê  only would seem to be less 

stable as the system crder increases.

In short the M.I.T. rule is found most undesirable; the 

Dressier rule offers the advantage of simplicity while the Liapunov 

synthesis guarantees global asymptotic stability. It is sufficient 

here to mention that the reduction of the order of differentiation, 

the introduction of proportional damping and the treatment of time- 

varying parameters can easily be incorporated in the Liapunov design.

(i)

2.4.2. Effects of Noise

We shall analyse the effect of including the process and

sensor noise in the plant output. 0^ is assumed to be the only

measurable output while r, r ^  and 0^ are assumed noise free. Thus

0 . 0., and e will have noise components. As is well known
P P if
in the case of parameter estimation system, the presence of noise 

components may introduce d.c. bias in the steady state values of the 

a . parameter and hence contribute to additional e.rror to the plant 

output. To investigate this possibility, we shall make use of the following 

equation.

a = a • e • 0 (2.15)

Let e„, 0„ and a be the respective noise free values, e and o * o o n
0 be the noise components in e and 0, e, and 0, be the errors



caused by the possible d.c. bias in the adjusted parameter. Hence

e + e + e , o n d

0 + 0  + 0 , o n d

(2.16)

(2.17)

Taking the expected (time-averaged) value of (e • 0),

E T e  • el - E !"(e + e + e j  • (0 + 0  + 0.)] (2.18)L J *■ o n d o n a J

Assume that the noise components e^ and 0^ have zero means and are

uncorrelated with e , 0 , e, and 0, so that o ’ o d d

Efe, * 0  + 0 • e + 0, ' e 1*■ d n o n d n J (2.19)

Further in the steady state of parameter adjustments, eQ -*• 0. Hence

E [e • 0] = E [e * 0  + e , • (0. + 0 )] (2.20)L J L n n  a a o J

Now since E[a] = 0  in the steady state, and using (2.15) and (2.20) 

we finally obtain

E [ed • (°d + V ]  “ "E [en * ( 2 . 21)

As en and 0 are highly correlated, n E [e • L n 0 "1^0. Thus e, nJ d * 0 ,

ed 4 0 and a j4 a . This confirms the O notion that if e and 0

contain zero mean noise components, the steady state value of 's' will

contain a d.c. bias which eventually contributes towards additional

error in 0. It is also obvious that if 0 = 0, = 0 in equation (2.17),n a
then ed = 0.

Using the above results to examine the design rules as listed 

in Table 2.1, all the b ^  adjustments are unaffected by noise. The 

M.l.T. and Liapunov designs will give biased api in the steady stste 

while the Dressier design will give unbiased api- The effect of having 

bias in a . (that is a . ^ a . in the steady state) is to givep i p i mi

additional error in the matching of model- plant outputs. This theoretical 

analysis is believed to be new and it supports the simulation observations
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reported in two recent papers 33,34

2.4.3. Noise and Disturbance Rejection

We have shown that the presence of zero mean noise at the 

plant output measurement may cause additional deviations in the parameter 

and the state errors in the steady state. Similarly one can show that 

any disturbance inputs in the process will have similar effects.

Lindorff has demonstrated that besides the possibility of causing 

instability during the transient adjustments, the steady state parameter 

error could be unbounded although the state error is still bounded. One 

such occurrence is when the input has insufficient frequencies in which 

case the parameter error would not be zero even without the effect of 

noise.

Until now there is no ready made modifications to include 

noise and disturbance rejection in the M.I.T. rule. On the contrary, 

some progress in the modifications required in the Liapunov

synthesis have been studied. These modifications are:

(1) To use

a . + k. a . pi l pi
T (i)

-a. • (e P ) • 0l \  -\,n P ( 2 . 22)

Then a bound on a . and c can be established which Pi -v
is inversely proportional to k^.

(2) If the adjustable parameter is embedded in the input 

then an additional input signal based on the so called 

input modification method can be designed to eliminate 

the effect of the disturbance.

14



2.5. CONCLUSIONS

This chapter has been devoted to the comparative studies of 

two popular design concepts for M.R.A.C. systems. These are the 

gradient approach such as the M.I.T. rule, the Dressier rule and the 

Price rule, and the synthesis approach using stabilicy theories such 

as the Liapunov designs of Parks, Gilbart and Monopoli. The systematic 

performance comparison proves very worthwhile as it reveals many 

interesting properties of the performance of the various designs.

It is found that the advantage of us; ng the gradient schemes 

is the relative ease in physical implementations. However these designs 

exhibit very complicated stability boundaries and hitherto no satis­

factory theoretical tool could be used to predict their existence.

Usually a tedious simulation is called for. In addition, they are 

shown in the performance study to possess very undesirable characteristics 

such as the performance criterion being a non-monotonic decreasing 

function of the dimensionless gain parameter. Hence they ought to be 

used with greater caution than previously thought.

On the other hand the design based on synthesis for assuring 

stability is found very attractive. It is globally asymptotically 

stable for all inputs and for any parameter deviations. Also the 

transient damping of the adaptive response can be readily controlled.

Hence the only simulation required is to find the design parameters 

which satisfy the system specification. This is easily achieved as the 

performance criterion will always reduce with the dimensionless gain 

parameter. Also it could achieve smaller performance criteria not 

attainable by the gradient schemes. The only problem with this stable 

design rule lies in its physical implementation which requires either 

the complete plant states or (n - m - 1) derivatives of the plant

output.
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An analysis of the noisy system reveals the nature of the

noise biasing action which causes additional parameter and state

deviations. The Dressier design is found insensitive to the noise

while the M.I.T. and Liapunov designs are affected by noise and could

even have unbounded steady state parameter errors. Howc.-er modifications

could be incorporated in the Liapunov design to achieve noise rejection
isso as to maintain Lagrange stability of the entire system.

This study gives convincing evidences of the potentials of 

the design technique employing stability theories. It is hoped that 

further researches w i n  be devoted to the development of this technique 

so that it can be easily implemented and hence will find a wider area 

of application. The following chapters will report on some efforts towards

this end.



CHAPTER 3 - DESIGN OF MULTIVARIABLE M.R.A.C.

SYSTEMS USING THE LIAPUNOV SYNTHESIS

3.1. introduction

Model reference adaptive control systems as synthesized by 

means of the second method of Liapunov have been shown in the previous 

chapter to possess not only the property of global asymptotic stability 

for all inputs and all initial conditions, but also good performance 

properties. The design rule is also very flexible as the damping of 

the adaptive response can be easily adjusted by varying the values of 

the- proportional (feedforward) gains in the parameter adjustment loops.

A generalization of this synthesis approach, in a state space formulation 

which is especially suitable for multivariable systems has been 

suggested by Winsor and Roy ^  and Porter and Tatnall ^  for the case

without the proportional damping terms. This has then been extended 
. 12by Gilbart and Monopoli to include the damping terms and the result 

is a general adaptive rule which can be easily written down and is very 

easy to use. A brief review of this general adaptive rule will, however, 

show that its application is restricted to the class of plants in which 

all the controllable parameters appear explicitly as individual elements 

of the plant and control matrices. In control problems where any 

controllable parameter may appear in two or more elements of these 

matrices simultaneously, a new set of design equations is needed. This 

is the subject of this chapter.

A slightly different but more common problem is the case 

where the plant parameters are not directly adjustable, an example 

being that posed by Winsor and Rcy This problem is not considered

here as solutions are already available in the literature ^»50,61^

The most effective solution is to introduce feedforward and feedback
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gains around the plant to form a model following problem ; then 

as long as a structural model matching condition can be satisfied, 

unique parameter adjustment laws - according to the usual Liapunov 

synthesis - can be readily derived.

3.2. 10 12 19GENERAL ADAPTIVE RULE PREVIOUSLY SUGGESTED ’ ’

The linear plant is represented by

tp A y + B u P Ip p ^
(3.1)

where y is an n state vector, u is an r control vector,'V.P <\,
A is an n x n plant state matrix and B is an n x r control P • K P
matrix. The elements of A and B are assumed to be slowly time-P P
varying but unknown. The reference model is represented by

y - A y + B u (3.2)m m «

in which the dimensionality of the model is the same as that of the plant.

A and B are so chosen as to embody the desirable dynamic plant m m
characteristics; in particular Am is a stable matrix.

Define the response error vector as

e»v,
y - y (3.3)

The vector differential equation of this error is

e A e + (A - A ) y  +(B - B ) uP ¡\,P P -v (3.4)

It is assumed that all the elements of A and B can be adjustedP P
individually to approach the corresponding elements of A^ and B ,

Hence we can define

AA

AB

[a..]

[b..] L ir

(3.5)

(3.6)
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The Liapunov function chosen is of the following form.

T n n - n r .
V = e P e + E E — a..2 + Z E b..2

* ^ i - i  j - i  ° i j  i - i  j - i  8i j  ^
(3.7)

To achieve asymptotic stability in the error state space, the parameter 

adjustment laws are chosen so that the time derivative o£ V becomes

T-e Q e
i\, f\, (3.8)

Where the symmetric positive definite matrices P and Q satisfy the 

Liapunov matrix equaticn

A P + P A = -Q m m ^ (3.9)

The parameter adjustment laws mentioned above are

a. . e. P. .) y .ij k=l k ki pj (3.10)

b. . = -ß. . ( £ e. P. .) u.
k=l k kl J (3.11)

If the responses of these adaptive loops are found to be underdamped 

extra damping can be introduced, at the additional cost of only one 

summing amplifier for each parameter adaptive loop, by using a new 

Liapunov function,

'k ki' 'pj-
T n V = e P e + £

* * i=l

n
£

j-1
1

a. ■ [a..i;. + a.. y .1 ij i
n

j( zJ k=l

n
+ £
i=l

r
£

j-1
1

ßij
[b.,, + ß. . 6.1 i

n
j( I 
J k=l

and a new V

T n n n
-e Qe - 2 £ £ a., y*. ( £ e. P, . y ,)2

i - 1  j - 1  ^  1J k-1 k k l  yPJ

n r  n
- 2 £ £ ß. . 6. .( £ e, P. . u.)2

i=l j=l J J k=l J
(3.13)
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The resulting parameter adjustment laws are

a. . = ij -a..(M .. + y. . M . .) lj aij 'ij aij (3.14)

•b. . = IJ -e. .(M. .. + 6. . M, . .)lj bij lj l)ij' (3.15)

n
M . . = aij ( E e, P. .) y . 

k=l ^  kl PJ
(3.16)

n
"bij " *0, p« > "j

(3.17)

damping is proportional to the values of y\ . and 6. .. 1 IJ
The adaptive loop gains required to achieve a specified performance will

also be reduced. It should be noted, however, that y .. and 6..
' i j  i j

cannot be increased indefinitely owing to a possible signal saturation

problem when adaptation is switched in with a large initial response 
11error

These design equations are attractive since they do not require 

sensitivity filters, are simple to implement, are asymptotically stable 

in the response error state space, and the dynamic adaptive responses can 

be improved systematically. However the class of plants considered, as 

indicated in equations (3.5)and (3.6^ is not general enough. For instance, 

if a controllable parameter appears simultaneously in m(>l) elements 

of either the plant or the control matrix, the design algorithm will 

give m conflicting equations for the synthesis of the adaptive loop.

An ?xample is in order here.

Let

Ap - l  l  V  ’ Am "

then according to equation (3.16), we obtain

Mal 2 êiPll + e2P2l) YP2
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a21 (e P + e P ) Y ' 1 12 2 2 2 ' pl

Now since M ^ M . , neither of these can be used to form a stable al2 a21

design rule according to equation (3.14) for the adjustment of the 

c parameter.

More examples of such a situation will be discussed later. 

Next the solution to this problem is sought.

3.3. A MORE CENERAI DESIGN ALGORITHM

The same state space representation as equations (3.1) to 

(3.4) will be used. The class of systems considered is indicated in 

the following equations:

AA

AB

V Ap = [fij(Xal’Xa2> " —  *Xa2>J (3.18)

V Bp = feiji’W ’W  “ “ *Xbs)J (3.19)

where the elements f.. and g.. are linear functions of the parameter ij
errors and respectively. For instance f Xal’ f12
X , + X . etc. are allowed while f,, al a3 11 X • X etc. are al a3al ’ 12
not allowed. There are (2. + s) adjustable parameters. First we shall 

choose a Liapunov function of the form:

T  i 1V = e Pe + Z —  (X , + ct, y. M , )2^ ^ , , a, ah h h ahn=i n

s
+ Z
h=l eh »h v (3.20)

where a , B, y, 6 are constants and Mfl and Mĵ are time-varying 

functions. Differentiating V with respect to time and combining with 

equation (3.4), we obtain
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V = -e^Qe + 2e^P(AA) y  + 2 T. —  (X , + a, y, H . ) (X ,+a y M , ) 
^  \  ^  i p  h=1 aa ah h h ah ah h h ah

+ 2^ P(AB) “ + 2 h!x t  (Xbh + Bh5hMbh) (̂ bh+eh6hPIbh) (3-21)

where P and Q satisfy equation (3.9) . Next rearrange the elements in

(AA) y and (AB) u such that<vP
(AA) y = f z  , Z „ ------------ Z . ] X (3.22)

%p ‘<\,al r^a2 'X/cl

(n x Z matrix) (Z vector'

(AB) u f2bl £b2 Z ] ^bsJ *b (2.23)

(n x s matrix) (s vector)

where each element of 

function of the plant 

Examples in Sections 

equations (3.22) and

eTP (AA) y =»x, <\,P

eTP (AB) u =»v 'V.

If one then makes the

(h=l,2,-- ,«.)

(h=l,2,-- ,s)

the vectors Z , and Z, , may be a linear ^ah ^bh
states y and control states u respectively.<vP <v
3.4 and 3.5 will clarify this point. 

(3.23) , we obtain 

Z

Now using

t (eTP Z .) X .
i=1 \  ai

(3.24)

8 TI (e P Z, .) X, . i=:1 -v bi (3.25)

following equalities:

r  H , “ e^P Z .ah r̂ ah
0

(3.26)

. *ah = "ah (Mah + Yh Mah) (3.27)

r ^ h  = ® P 2bh (3.28)

. \ h “ - v ^ h + 6h ■ W (3.29)
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Equation (3.21) becomes

V

Hence equations (3.22) , (3.23) and (3.26) to (3.29) constitute a unique 

design algorithm to synthesize the stable adaptive loops to achieve 

e 0 as t " asymptotically. The quantities y and 6 play the

same role in introducing extra damping as in those or section 3.2.

It is noted that if some adjustable parameters appear both 

in the A and B matrices, for instance if they are the forward or open- 

loop gains of a feedback system, then the corresponding terms in (AB)u

where q = s - number of common parameters.

Z , is then a function of both y and u. Such an example'\,an %p f\j

is given in section 3.5. Otherwise the design algorithm remains essentially 

the same. It is also not difficult to note that the less general 

design equations of Section 3.2 can be derived directly from those 

described in this section as a special case.

3.4. AN ILLUSTRATIVE EXAMPLE

of the plant and reference model are shown in Fig. 3.1. The physical 
meanings of the mathematical symbols used are also given in the diagram.

positions in the block diagram, is actually one parameter in the physical 

system and is only adjustable by varying the field current. Hence one

can be grouped into (AA) y such that

(3.31)

(n x l )  (ilxl) (nxq) (qxl)

Consider the adaptive control of a Ward-Leonard speed control 

system with a range of motor field weakening The block diagrams

• it ,It should be noted that the magnetic flux d> , though appears in twop a

would assume that A = A • <f> where é is the uncontrolled p pc pv pv
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flux and $ is the corresponding adjustable factor. The desirable

transient response of the speed control system is specified in the

model with $ = a constant. The aim of the control is to adjust the

controllable parameter d> continuously to ensure that during thepc
transient stage, y -*■ y and y „ -*■ y „ in the fac-i of fluctuations pi ml J p2 J m2

Pv
The state equations of the system are:

y , 0 $ “ y , -d"PI p Pi
plant: = +

. V
—K<)> -a 
. P .yp2

Ku

yml" 0 (f>m yml" -d“
model: = +--

1CMe —K<J> -a m ym2__ Ku

(3.32)

(3.33)

let X » 4> - <t> , e ■m p l

From equation (3.4),

0  X

yml - ypl e„ = y 2 ■'m2 P2

AA
-KX 0

(3.34)

In this case, the algorithm of Section 3.2 is not applicable. 

Hence the new algorithm of Section 3.3 will be used. 

Following equation (3.22), we have

y .
(¿A) y <\,P

P2
-K yPi.

Z X (3.35)

Therefore the design according to equations (3.26) and (3.28) gives

M = (P Y - P K Y ,)e, + (P,, Y - P „ K Y  )e, (3.36)a 11 p2 12 pi 1 12 p2 22 pi 2

- a(Mfl + y Mg) (3.37)
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Providing that $ ^ can be made much larger than , we obtain

PC X = a'(M + y'M ) a a (3.38)

The. block diagram of the adaptive loop designed according to equations 

(3.36) to (3.38) is shown in Fig. 3.2. A simulation study is then 

performed.

The following numerical data are used:

K = 8C3, a = 1 0 0, <J> = 1 , m

d = 0.3, G(s) s + 10
" s ;

for t < 0 , pc = X* V  = X*

for t * 0 , $pv - 0.5, R - 1.

'l o'
Q -

0 1

0 . 1 ;

Select

and from equation (3 .q> we obtain

’4.0625 0.000625

0.000625 0.005

The simulation is conducted for different values of the adaptive loop 

gain a' with y' ** 0. The state error responses with and without

adaptive control are shown in Fig. 3.3. From these results the merit 

of the adaptive control is evident. Furthermore the magnitude and 

settling time of the response errors always reduce with increasing values 

of a'. However the damping suffers at larger a'. If this is not 

tolerable, then one would increase the value of y ' to introduce additional 

damping. For instance, when the same experiment is repeated with y ' = 0.1, 

the results are shown in Fig. 3.4. The magnitudes and oscillations of 

the error response have been very much reduced and this improved



R (DEM ANDED SPEED )

Fig. 3.1 A model reference adaptive speed control system

p I2YP 2 -P22KYPI>

Fig. 3.2 The parameter adjustment loop
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-

performance has been achieved with lower adaptive gains.

This example may be criticized as being an over-simplified 

version of the actual case. For instance, we have assumed that the 

load torque can be directly measured and the load inertia remains constant. 

However the purpose here is merely to present a clear example as to 

when the conventional Liapunov algorithm will give difficulty. Then 

this example serves to demonstrate the ease with which the new design 

algorithm can be applied and the typical performance that can be 

obtained. It also shows the flexibility of designing in a state space 

formulation, as the transfer function of the plant, even with d = 0 , 

so that

yp (s)
u(s)

K<(>

s2+as+K6 2 
P

(3.39)

would seem difficult to handle.

3.5. FURTHER EXAMPLES

To further demonstrate the applicability of the new design 

algorithm, two popular though single-input single-output examples will 

be considered,

36Example 1: A roll flight control system

A basic roll axis flight control system for a missile is 

shown in Fig. 3.5.

Neglecting the servo dynamics, the plant is described by
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Fig. 3.5.

The purpose of M.R.A.C. is to maintain invariant control characteristics 

for different values of k& and at different flight envelopes.

Hence one would specify the model as

¿ m l
as

' 0 1  '
y m l '

+

0  '

C\J

- b
m

- a
m . V

b
m

(3.41)

Note that the adjustable parameter kj in equation (3.40) appears in 

both the state matrix and the control vector. Hence the conventional 

design algorithm is not applicable. Now one can define the parameter 

errors as

( 1 + k V (3.42)

(3.43)



then the error state equation becomes

(3.44)

We can make the following rearrangement according to equation

1--o01 _

y l b

1--o01 _

V
+ u =

-x, -x 
1 2J Ly 2

X
1J (u-yj) -y2 X2-

(3.31),

(3.45)

Hence we obtain

0 0

. z’ ^ a2
- y 2 .

Then, using the new design algorithm,

Mi = ( e x P 12
+ e  P )

2 22 ( u - y j )

M2 = ~ (.e 1 P 12 + e 2 P 2 2 ) y 2

(3.46)

(3.47)

Finally, differentiating equations (3.42) and (3.43) and assuming slow 

variations of kg and Ta> and substituting into (3.27), the unique 

stable adjusting laws are

- oij ' (Mj + y 2
(3.48)

É 2
= a2 '(M2 + yl V (3.49)

Example 2: A parameter tracking system.

In a model reference identification system, the parameters of 

a parallel model are to be adjusted to track those of the plant. Let 

us consider the following case,
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plant:
ypl V Cp2 V

+
Cp4

.V CP2 CP3. .V -CP5.

¿ml' 3 11 ai2 yml' 'b l'
adjustable
model

¿">2. a2! a 22 ym2.

+

b 2.

(3.50)

(3.51)

Now according to the conventional algorithm, unique adaptive laws to 

adjust a12 and a2, separately can be obtained. On the other hand, 

we can also use the new algorithm to obtain

a, _ “ a „, *» -a(M „ + vM _)12 21 a2  ' a 2 x (3.52)

a2 (eP + e P ) y + ( e P  + e P ) y  (3.53) 1 11 2 12 m2 1 12 2 22 ml

This would mean that the same integrator could be used to generate 

aJ2 and a21* In general, (2,-1) integrators will be saved if there 

are S, similar parameters to be estimated.

Observation

From these examples and also the example in Section 3.4, we 

observe that the M ^ or according to the new design equation

(3.26) or (3.28) is in fact equal to the summation of the original 

nonunique or ^bij respectively. This equivalence is difficult

to express mathematically for a general case but will serve useful 

purpose of checking the new design.



3.6. CONCLUSIONS

The conventional Liapunov design algorithm to synthesize 

globally stable multivariable model reference adaptive control systems 

in state space formulations is reviewed. A more general design algorithm 

is then derived which caters for a wider class of systems, in which the 

adjustable parameters may appear simultaneously as a linear function 

in the elements of the plant and control matrices. The adaptive loops 

thus designed are asymptotically stable in the response error state 

space and the damping can be systematically adjusteu to achieve an 

acceptable performance, as substantiated by the simulation studies of 

a speed control system. Other examples given also show that this 

generalization of the conventional Liapunov design algorithm is indeed 

useful as it extends the scope of application of the design method using

stability theories.



CHAPTER 4 - DESIGN OF MODEL REFERENCE PARAMETER 

AND STATE ESTIMATION SYSTEMS

4.1. INTRODUCTION

This chapter is devoted to the investigation of a model 

reference system identification scheme as synthesized by Landau's 

hyperstability design rule. This design can be shown to be equivalent 

to the Liapunov design but is more convenient to use for identification 

systems. Also to distinguish this method from the well known G.E.E. 

method, we shall call this the Stable Response Error (S.R.E.) method.

This investigation has been divided into several parts.

First the linear single-input single-output system is considered. The 

quality of the parameter estimates is analysed and the possibility of 

using the so called state variable filters (SVF) to relax the 

implementation difficulty of the S.R.E. method is fully explored.

Then the use of the parameter estimation scheme for simultaneous 

state estimation (the so called adaptive state observer), when only 

the input and output are available, is developed. The emphasis on 

the design specification is that the adaptation must be globally 

asymptotically stable while the mean parameter estimates are unbiased. 

No attempt will be made to study the overall system stability when
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the parameter and state estimates are used for computing suitable 

adaptive controls for the plant. Finally some attention is given to 

the extension of the design laws to treat nonlinear systems and 

multivariable systems.
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using the theory of hyperstability. The theory has been briefly 

introduced in Section 1.4 and its application to the design of model 

reference identification systems is separately discussed in appendix

hyperstability and Liapunov designs are pointed out. We select the 

hyperstability design here for its convenience in analysis when noise 

is present and also for the simplicity in the design for global 

stability. The analysis and development of this design method 

presented in the following will focus on a single dimensional system 

and will attempt to 1) examine the role of the. proportional damping 

loops, ii) relieve the implementation difficulty when the plant

state vector is not accessible, and iii) point out the merits of 

this method over the G.E.E. method when operating with noisy records.

4.2.1. Statement of the Basic Problem

the estimation problem is to determine the design laws for adjusting

plant output 0^ and the model output 0^ is reduced to zero 

asymptotically. It will be assumed that the input signal is active

A.6 . In the appendix the equivalence and mutual convertability of the

Given a linear time-invariant plant as shown in Fig. 4.1

with transfer function
n-1

N (s) (4.1)

and a model with transfer function
n-1

s + T. a . s

(4.2)

La a  .

j =0 mJ

the parameters b .mj and a . so that the error e mj 1
between the



enough so that e, o implies b . -» b . and a . -*■ a . . This 

"identifiability" condition is identical to that of the G.E.E. method 

and some details are given here in appendix A. 7. It is also assumed 

that the only measurable signals are the input u and the output 

0 ;̂ the derivatives of these signals or other plant states are not 

directly measurable. The hyperstability design will utilize a 

generalized error v (t) , also shown in Fig. 4.1, which is obtained

by processing the error e^Ct) through a linear series compensator
l

of the form Z^s) = Z z^ s1. The function and design of Zj(s) 
i=0

will be discussed later.

4.2.2. The Basic Design Rule

Using a state space formulation the system dynamics are

described by
.
y A y + B u (4.3)

plant ip P vP P <v

0
^P

(4.4)P

Jim Am (t) Jim + Bm (t) Ü (4.5)
model

,0m “ C 1 Jim (4.6)

e i - 0 - 0 (4.7)p m
error

v (s) 
1

“ ZjirO.ejis) (4.8)

where y and u are in phase variable forms, i.e.
'U

T r (n-1) -I
l " L y

ÿ ... y j (4.9)

T # (n-1 ) -,
u c*V/ f u

U • • • u

and A, B, C matrices are in the following forms.
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0 1 0  

0 0 1

A =

0

Cj = [l 0 . . . 0] (4.10)

Hence only the bottom row of A and B contains the unknown 

parameters and we obtain

(4.11)

These forms of matrices A, B and Cj are chosen for the following 

reasons:

(i) the parameters to be estimated appear in the same row in

the A and the B matrices, as required in hyperstabilitv 

designs (appendix A.6 .);

(ii) the equivalent linear block of the hyperstable system without

the compensator has a transfer matrix Cj (SI-A) *G which

reduces to a transfer function ~̂ 'sy  for the chosen A
P



and Cjj thus the design of the compensator becomes much 

simpler;

(iii) the application of state variable filtering in Section 4.2.4 

becomes straight forward.

The system described by equations (4.3) - (4.8) is seen to 

be a special case of the more general system discussed in appendix 

A.6 . Hence the hyperstability design can be stated as follows:

(1) the linear series compensator is such chosen that the 

transfei function

Z, (s) C, (SI-A ) _1 Gi p

which can be worked out as 

Zj(s)
iTT^-

is strictly positive real;

(2) the adaptive equations are given by:
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a . ■ mj _ajV lymj ' Yj f e (V i W
(4.12)

b . = mj 6jVluj + fij f e
(e.vju.) (4.13)

A block diagram of the design is shown in Fig. 4.2. Note that we 

make a change of sign here. The Vj in equation (4.12) and (4.13) is 

actually the v^ in the appendix since the adjustable parameters 

appear only in the n row of the A and B matrices, toe use v 

here to emphasize that it is obtained by processing ej through the 

compensator. The role of the compensator Zj(s) is now apparent from 

condition (1) above. Its function is to ensure the global asymptotic 

stability of the parameter adjustments for any initial parameter 

estimates and for any type of input signals. However if the complete 

plant states are not available, the compensator will have to be 

implemented using pure differentiations which would cause a noise



PLANT

Fig. 4.1

Fig. 4.2 The basic S.R.E. design
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amplification problem. The solution to this problem will be introduced 

in Section 4.2.4. It is also noted that to satisfy condition (1) 

above, the range of parameter variations of the plant's denominator 

dynamics must be known. Then Zj(s) will be designed such that the 

positive realness is maintained throughout the range of parameter 

variations. Examples of some positive real functions are given in 

appendix A.8 . where it is shown that for lower order systems the 

conditions for positive realness can be explicitly expressed as 

algebraic functions of the bound on parameters and cnat for higher 

order systems, some computer search methods are available. The design 

of Zj(s) is hence quite systematic and easier than the solution of 

the Liapunov matrix equation with parameter variations as in the
t

Liapunov design.

4.2.3. The Role of the Proportional (Feedforward) Loops

12It is well known that when the adaptive gains and

Bj of equations (4.12) and (4.13) are very large, the response of

both the parameter error and state error may be underdamped and hence

the identification time may increase. The role of the proportional
12gains and is to introduce additional damping to the

state error response when this situation arises. However it has not

b^en shown theoretically that the increase in proportional gains would

also reduce the convergence time of the parameter error. From many

simulations performed it is observed that although the response time

of the state error would reduce as the gains a^, Bj , Yj sod 6  ̂ are

increased, there is an optimum in the corresponding convergence rates

of a . and b .. For gains larger than the optimum values, the mj mj
response time for the adjustable parameters will increase although 

that for the state error will continue to decrease. The most likely

r r
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reason is due to the interaction of parameter adjustments since they 

are not designed to be orthogonal.

Another limit on the amount of proportional damping arises 

when significant noise is present at the plant output. In such a 

case the noise component will by-pass the integrator of the adaptive 

loops and cause high variance in the estimate. Fortunately it has 

been noted from simulations that when the noise level is high, the 

adaptive gains will have to be reduced to maintain small variance 

of the estimates. He.ice the underdamped phenomenon would never occur 

and the proportional gains are not required to be increased. For 

other intermediate cases suitable values of Yj and can be

found by simulation. It has also been observed that the proportional 

terms help to reject disturbance (for instance those caused by 

residual d.c. drifts) and hence it may be useful to have some 

proportional gains even when they are not at all required to provide 

additional damping.

4.2.A. The State Variable Filters

In the G.E.E. method the so called state variable filter 

(SVF) technique has been used extensively to avoid the direct

measurement of input and output derivatives. A previous attempt by

B. Courtiol 62 to apply this technique to the S.R.E. method was not 

entirely successful as the resultant scheme is not globally stable.

In the following a different way of using the SVF is introduced 

which avoids this limitation.

Consider the single-input single-output linear time-invariant 

system described by the following differential equation!

( A . 1 A )

w :
¡5».. 4 ~
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where

dt

The input u(t) and output 0p(t) are processed by two identical
. P (s)filters having a transfer function of q ( ^ J as ŝ own i-n fig- 4.3. Now

since the commutation of operators is allowed for the time-invariant
44 45 .system ’ one can easxly show that the following equation holds

after t > e.

n m
l  a. D3 0 ,(t) «

3 * 0 J ?£ j=0
E bj DJ uf(t) (4.15)

where

0pf(s) P(s)
Q(s) pe„(s) (4.16)

uf (s) p(s)
Q(sf u(s) (4.17)

and the filter should have sufficient bandwidth so that the initial 

conditions of u(t) and 0p(t) die out quickly and hence their 

effect can be neglected after a small time interval e immediately 

following the initiation of the filtration. Also the bandwidth of 

the filter should at least encompass that covered by the plant so 

that no useful information on the plant dynamics are lost by filtering. 

The function of the filter is now apparent since

sj °pf(S) " ^ f ep(s) (4,18)

j , i sJP(s) , .
8 uf(s) “ - Q r s r u(s) (4.19)

and no pure differentiation is involved in generating these signals 

provided the order of Q(s) is larger or equal to the sum of the 

order of P(s) and the order of the highest derivative. Usually 

P(s) is chosen to provide d.c. blocking to attenuate the bias level 

in the measured signals.
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UU (t)

PLANT 0 J O

S V F DmUf (t) SV F

U f (t) / d  ejt>
n

MODEL ---->---
0 „ « )

Li=t D"smf(t)

Fig. 4.3 The state variable filters technique

*  efl<*>

(a)

Fig. 4.4 (a) Multiple filters due to Young
(b) Filter due to Khor
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Two types of filters have been suggested in the literature.
44 • • **One is the "multiple filter" due to Young \  He uset — —  =

• Q(s)
as shown in Fig. 4.4(a), and synthesizes SQ(s)

s+c
from the signals 
c

He

appearing at the output of each low pass filter . This has the

advantage in the ease of scaling if a hybrid computer if employed in
. . 42the estimation scheme. The other type of filter is due to Khor

i.
uses Q(s) *> 1 + Z C.S^ as shown in Fig. 4.4(b). The ŝ  0 ,(s) 

i=l J p
signal is tapped from the input to the jth integrator from the

output of the filter. This method is more general and easier to use

than the multiple filter method.

Now equation (4.15) shows that the dynamic equation of the 

filtered system is identical to the original system. Hence if the 

S.R.E. design is applied to the filtered plant as shown in Fig. 4.3, 

the following design equations for parameter estimation are obtained:

(4.20)“fl 0 , - 0 ,pf mf

Vfl(s) = Z^s) efl(s)

mj “j vfl ymfj ” rj dt '“j’fl'mfj 

6j Vfl Ufj + 6j 3t (6j Vfl V

Note that for the canonical forms chosen (4.9 - 4.10), ymfj - DJemf-

Since Z (s) G ,(s) can be synthesized from the output S.V.F. ,
1 pf

Z. (s) 0 (s) and y . can be obtained directly from the model ar
1 m mj

from the input S.V.F., no single direct differentiation is
'fj
involved in implementing equations (4.20) to (4.23).

As an example, consider a second order plant which has a

transfer function Np(s)
Dp(s)

b . s + b P1 P°-
sz + a . s + a P1 po
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Fig. 4.5 The S.R.E. design for a 2nd order system.
(z > 0 , z >, 0 , —2. i

1 0 Zj Pin
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The required series compensator is given by Z (s) = z + z s and the
Zj (s) 1 ° 1

Popov's equivalent linear block is y which has to be madeDpis;
positive real. Now to avoid pure differentiation in implementing

Z (s), a set of filters with transfer function 1 is introduced.
1 + s Tf

The parameter adjustments are then designed according to equations 

(4.20) to (4.23). The complete parameter estimation scheme is shown 

in Fig. 4.5.

Next we shall examine the possibility of a further

simplification. In certain cases, we may be able to choose the
P(s)SVF (with transfer function -̂ y  ) such that P(s) = 1, Q(s) =

Zjis). If this is done, the scheme becomes that as shown in Fig. 4.6.

Since Z (s) 0 _(s) can be obtained indirectly by combining the model 
1 mt

states, this scheme only requires one SVF and hence one saves (n-1) inte­

grators. It is also interesting to note that the Monopoli design 

for plant gain adjustment (Chapter 2) is a special case of this scheme.

Fig. 4.6.



4.2.5. Noise Contamination

So far we have assumed an ideal case in the derivation of

the design laws, where there is no noise contamination in the measured

variables and the plant is linear, time-invariant while the model has

the same order as that of the plant. The relaxation of all these

assumptions has been examined by Landau again using the powerful

Popov's hyperstability theorem. He has shown that the S.R.E. design

method is still applicable to a large number of practical cases.

In the following the effect of noise is further examined.

We shall put the proportional adaptive gains Yj and 6  ̂ to zero

for. convenience and also for a reason discussed in Section 4.2.3 -

i.e. these gains must be chosen fairly small to reduce the variance

of the estimates when significant noise is present.

First we shall state the following result obtained by

Landau when noise is present at the plant output (noise inherent

or due to the measuring transducer).

The estimation scheme using equations (4.12) and (4.13) is

stable in the sense that Vj is bounded, and hence the parameter

errors Ad., Ab. are bounded, if the following sufficient and partially 
J J

necessary conditions are satisfied:

i) the estimation system without noise is hyperstable; 

ii) the norms of the noise vector and its first derrva'ives are 

bounded.

This stability result will still apply when the SVF technique is used. 

Hence we only need to examine the accuracy of the estimates here. Assume 

that the noise n(t) has a zero mean value. It will be filtered by the 

SVF to become nf(t) which superimposes on the noise-free error ef(t).

It finally appears as n^(t), after being processed by the series compen­

sator, on the noise-free vf(t). Assuming that the model output is almost



noise-free (due to the integrator in the adaptive loop and also the 

low-pass model itself, as demonstrated later in the simulation), the 

parameter adjustment laws become:
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a . mj = -a. (Vf + n p ^mf j (4,.24)

b . mj “ Bj (vf + np Ufj (4..25)

Since u^j and y^j are not correlated with » we have

E &»f * y»fjl - E &£ * ufjl (4.26)

Hence the estimates of â j and are asymptotically unbiased.
41-46The above result is in contrast to the G.E.E. method ,

a short account of which is given in appendix A.9. With the G.E.E.

method, all a^j are asymptotically biased. If the spectrum of the

noise is much higher than that of the process, the bandwidth of the

SVF may be suitably chosen to attenuate the bias. For more noisy

measurements, it will have to be used in conjunction with the so
41 45called "Instrumental Variable (IV)" * method to remove the noise­

biasing effect. But this is obtained at the expense of losing the 

global stability assurance. A brief comparison of the S.R.E. and 

G.E.E. methods are given in Table 4.1. The economy of the S.R.E.

method is evident. Its economy over other response error methods
, . _ . 48

h a s  b een  d e m o n s t r a te d  p r e v i o u s l y  by Parks

4.2.6. Simulation Results

The second order example shown in Fig. 4.5 has been studied 

in detail using digital simulation. The plant output 0p is corrupted 

by a zero mean, band-limited Gaussian white noise. The generation of 

this noise signal has been discussed in appendix A.4. The band—width 

of the noise is about ten times that of the plant and R.M.S. values

are used to measure the noise-signal ratio.



■^Hardware
Integrators Multipliers Remarks

Method

5n-2 4n

SRE

(Fig. 4.3)
(8) (8) globally

4n-l 4n unbiased(Fig. 4.6)
(7) (8)

4n 4n globally stable
G E.E.

(8) (8) but biased

E.E. and 6n 6n bias removedG
but not

IV network (1 2) (1 2) globally stable

Multiple 8n- 2 8n2 globally stable but

G E.E. biased; rapid

(Ref. 43) (14) (32) convergence

Table 4.1. H ardware Comparisons ( b r a c k e te d  numbers r e f e r  to  a 

2nd o r d e r  case).

fig. 4 . 7  shows a typical result of the parameter identificatic 

together with the identification (response) error ê  (t) when all the 

four parameters of the plant (s + 0.5) / (s2 + 2s + 1) are assumed 

unknown. The input is a unity magnitude pseudo random binary sequences 

(PRBS). The convergence time achieved is about fifteen system time 

constants. The variance of the estimate in the steady state is caused
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Fig. 4.7 Identification results for a linear system.
Plant TF « (bjS + b0)/ (s2 + ajS + a ) ; input = P.R.B.S.
Noise/signal = 0.1; --  for true values ; = 0.5 .
Zj(s) - 0.5 + s , cij - 10, <xo = ß0 = 2, - 0.5, all y - <5 - 0.

*s.<"■. • 7  ' < ; ' **'
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by the noise and the large gains used. It can, however, be reduced

if required by taking the moving average or by filtering. For

instance the thinner lines for a ft) and b (t) in the sameml mO

figure show the filtered estimates when a filter 1 ■ . is used(1 + 5s)
prior to recording.

Fig. A . 8 shows the result of a two-parameter identification. 

The bandwidth of the SVF is deliberately chosen to be smaller than 

that of the plant to demonstrate the capability of the S.R.E. design 

when some of the parameters are assumed known. Also the arrangement 

of Fig. 4.6 is used. The convergence time achieved is about five 

system time constants even with large noise-signal ratio. As we 

recall in Section 4.2.4, the use of small bandwidth of the SVF is 

justified only if the initial conditions of the plant states are zero 

or are known. Otherwise the settling of the transients due to these 

initial conditions might be too long.

The S.R.E. method has been verified in the simulation study 

to be stable for other inputs and for very large adaptive gains. The 

estimates obtained are always unbiased but the variances are high for 

large adaptive gains. The relative gains among the parameter 

adjustment loops are important in reducing the identification time and 

a useful guideline is the inverse proportion to the sensitivity of the 

output to each parameter. Typically the complete identification of a 

four—parameter second order plant would take five to ten system time 

constants.

4.3. THE ADAPTIVE STATE OBSERVER

The w e l l -k n o w n  L u e n b e rg e r  o b s e r v e r  16 can  d e te r m in e  th e  

s t a t e s  o f  a c o m p le te ly  known, t i m e - i n v a r i a n t  l i n e a r  sy s te m .  However 

i f  some o f  t h e  sy s te m  p a r a m e te r s  a r e  unknown, t h e  o b s e r v e r  c a n n o t  be



implemented. For this reason an observer that adapts to the unknown 

plant parameters will greatly extend the range of existing control 

laws.

The first adaptive observer, for single-input single-output

time-invariant linear system, was recently reported by Carroll and

Lindorff 37. The observer uses only the input and output data to

yield simultaneous parameter and state estimates for a given canonical

system structure. A different form of this adaptive observer was then
18considered by Luder ar.J Narendra . These adaptive observers, 

though guaranteed to be globally stable by means of the Liapunov 

design laws, suffer from a serious practical limitation in that the 

parameter estimates are asymptotically biased when noise is present 

at the plant output measurement, thus introducing errors in the state 

estimates. The following work is a development of a new adaptive 

state observer which aims to overcome this weakness of the contemporary 

observers. It is based on the parameter estimation scheme (the S.R.E. 

method) investigated in the previous section.

4.3.1. Development

The system is assumed to be completely controllable and 

observable. The proposed adaptive observer will identify the system 

parameters and states simultaneously according to the canonical form 

of equations (4.9) - (4.10). These state estimates can be directly used 

for computing control strategies or they can be first converted to 

those of a standard canonical form (the output or observable form) by 

means of an algebraic combination of the input and output state 

estimates 73. The detail is shown in appendix (A.10). Other canonical

forms can be obtained easily from the output form by means of a
. . . 7 3similarity transformation
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As shown in Fig. 4.9, the observer essentially consists of a

parameter estimator designed by the S.R.E. method used in conjunction

with the SVF. It is apparent that the model states 
(n-1)

i,mf ( mf mf ) is a filtered version of the actual 

state estimates since the input has been filtered by the SVF. To 

recover them, one just needs to process the y , through an inversic-vPf
of the SVF as indicated in the figure. The SVF is usually ■ y  ■■ 

where N^(s) has order equal to (n-1). Hence the inversion for a 

second order system does not require any differentiition since

0 and 0^  are obtainable directly from the model to implement

yj and y2:

y, = 0 rmf + Tf 0 rmf

= 0 „ + T „ 0mf f mf

where

Nf(s) ■= 1 + s Tf

For an n th order system, (n-2) differentiations of model states 

are required. This is of course feasible only if the model states 

are almost noise-free. From simulation experience, it is observed that 

when a moderate speed of parameter adjustments is used, the model state 

are quite clean. If a very fast speed of parameter adjustments is used 

the model states will become more noisy. This point will be clarified 

by the example demonstrated in Section 4.3.2.

It should be pointed out that the observer dynamics are 

entirely dependent upon the parameter estimator. Hence it is globally 

stable t*.ia the response time can be readily controlled.

A comparison of the proposed adaptive observer with the 

contemporary adaptive observers is in order here. The main advantages 

of the proposed scheme arc that the mean parameter and state estimates
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are not biased by the output noisy measurement and that the implementation 

is very simple since no auxiliary inputs (which involve a and b) 

are needed as in the case of the contemporary observers. The main 

disadvantage is that the range of plant parameters are needed to 

calculate the compensator Zj(s) which assures the stability of the 

parameter adjustments. Also the computation of the state estimates 

is less straight forward.

It is sometimes possible to avoid the differentiation of 

the model states ir> generating the plant state estimates. This is the 

case when the parameter adjustments are slow (typically more than 50 

system time constants) while the SVF has a large bandwidth. The 

commutation between the SVF and the model is then approximately valid 

and the resultant structure is shown in Fig. 4.10. The plant state 

estimates ^ are directly given by the model states ¡¡̂  . The only 

differentiations involved are those required to generate the input 

derivatives. This is not a problem as we have assumed a noise free 

input. If the plant has no numerator dynamics (i.e. no zeros in the 

transfer function), then no differentiation is required. Note that 

this simplified form is the same as a scheme recently proposed by 

Courtiol and Landau 61>62. Here, however, we have clearly demonstrated 

why this form is valid only when slow parameter adjustments are used.

: i* 1
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Fig. A.11 State estimation of a linear system

(same parameters as Fig. A.7)
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Fig. A.12 State estimation of a linear system 

(same parameters as Fig. 4.7 except that



( - 5 system time constants); comparing Fig. 4.7 and Fig. 4.11, one 

sees that the state estimates converge three times faster than the 

parameter estimates. It is also evident that y is almost noise-

free and y is reasonably clean. If the loop gains cij and 6  ̂

are much increased to speed up the convergence of the adaptation, the 

noise level in the state estimates will correspondingly increase. An 

extreme example is shown in Fig. 4.12 where the loop gains are 

increased by five times over those shown in Fig. 4.11 to obtain a 

convergence time of about one system time constant. The result shows 

a fairly noisy y and a very poor estimate for y. This would mean 

that there exists a practical limit, depending on the noise level, in 

the attainable speed of convergence of the state estimates. The 

physical interpretation is quite straight forward: the state 

observer actually acts as an adaptive noise filter in that for a 

slower adaptation it rejects noise and for a very fast adaptation it 

loses the noise rejection property; an extreme case being that the 

observer reproduces the noisy state to give zero tracking error! 

Hence it is advisable to allow an adaptation speed of a few system 

time constants for good noise rejections in the state estimates.

4.4. EXTENSIONS

Tlie S.R.E. method presented in Sections 4.2 and 4.". deals 

wi.-.h the parameter and state estimations of a single-input single­

output linear system. Possible extensions to treat a class of non­

linear systems and multivariable systems will be considered in the 

following. While the application of the S.R.E. method (using Liapunov 

or hyperstability approach) to nonlinear systems has not been 

considered by other authors, the design for multivariable systems 

given by Landau 51 requires the state vector measurement. Here we shall



assume that only the inputs and outputs are available and the aim is 

to obtain stable design laws without the need of pure differentiations. 

Only the parameter estimations will be discussed since the state 

estimations are straight forward matters once the parameter estimation 

system is designed by the S.R.E. method.
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4.4.1. A Class of Nonlinear Plants

Consider a plant consistinjof a stable linear section with 

a nonlinear feedback bection. The state equation is:

ip » A y + B u + B’ g ( y )p ,̂p p % p K *op (4.27)

0P = C,  y 
l U>

(4.28)

The y, u, g and the A, B, C, are all expressed in the special 

forms of equations (4.9) and (4.10). The elements of g (y )

represent single-valued nonlinear functions of y ; the forms of the•vP
nonlinearities are assumed known. Now if the input and output are 

processed by state variable filters which are choser. to approximate 

transportation lags ^ , the commutation of linear and nonlinear terms 

will give:

1* A y , P Î,Pf
+ BP ^ Bn «P 'V (y_f )'VP*

(4.29)

where the subscript 1 f* represents filtered values. The design of

the transportation-lag-type of SVF has been considered in detail by

vi, 42 Khor .
The formulation of cne proolem so that the S.R.E. method is 

applicable is to treat the nonlinear terms as additional inputs to 

the estimation model. Hence the model has the following state 

equation.

i.mf A y „t m ynf
+ B u, + B' g (y f)m „.f m ^ ,̂pt

(4.30)



The block diagram of the overall structure is shown in Fig. 4.13. 

Note that the series compensator is still linear and is given by

Vfi = F ef or vfl(s) = Z^s) e^s)

Fig. 4.13

. . . _ cortion 4 . 2 we obtain the followingNow applying the results of bection

conditions for hyperstability:

1) A is a stable matrix;

Zl.(-9—  is positive real, where D (s) is the 
i > D (s) v

P
denominator of the transfer function of the linear 

section;
P a r a m e t e r  a d j u s t m e n t  l a w s  a r e  g i v e n  by e q u a t i o n s  

(4 .2 2), (4.23) plus t h e  f o l l o w i n g :

3)



As an example consider a linear servo with a component having a 

"hard spring" characteristic:

The adjustable model used is

The required compensator is

S min (a )

The paiameter adjustments laws are

- ° 1  vfl ymf ■ Y 1 ft (a! Vfl ymf) (4.35)

"“o Vfi y*f " \  ft (“o Vfl * f  > (4.36)

vfi yPf3 - K  k  %  'pf3> (4.37)

A typical identification result is shown in Fig. 4.14.

The same method can be used to handle any single-valued

nonlinearity which exists in the input or as a function of both the

input and output. The disadvantage of this approach is that the

estimates b^V will be asymptotically biased when the noise at the

plant output, is significant. Replacing g (¡fpf) *n e9uat*on (4*30)

by g (y ), that is to say changing the imut to the nonlinearity 
\  ^nf

of the model (see Fig. 4.13) from ypf to y^, will remove the bias 

at the expense of losing the global stability assurance. Here still 

the advantage over the G.E.E. - IV method (appendix A.9) is in the 

economy since no extra instrumentation is needed to generate the IV

signals (fa).
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4.4.1. A Class of Multivariable Systems

A large class of multi-input multi-output linear systems 

can be decomposed into a number of uncoupled, multi-input single­

output sub-systems. Hence for this class of multivariable systems 

wc only need to consider the parameter estimation probiem for a 

multi-input single-output system as shwon in Fig. 4.15. We assume

that only the inputs u and the output 0 are measurable and that 
^  P

only 0p is noise-corrupted.

There are two possibilities of system structure for which

the estimation scheme using the S.R.E. method car. be applied. One

is to retain the individual transfer function from each input and
62 63hence a model as shown in Fig. 4.16 (a) can be used ’ . The state

equation is then

where

*
0

A y + B u4, <v,

A 1

| 1
' (0 ) • 
1 1

(0 ) •a ! —  
, 1 
1 1

[c 1C, 'L 1 1 1

, B. and Cj

(4.38)

Is l
ÛS

needed will be a vector function Z(s) and the positive real
r\jl

condition becomes:

Real Z (s) CT (91 - A ) 1 G ï 0 /\,1 *
(4.39)

It can be shown that

d̂ TTT d2pCiT (4.40)
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Hence a suitable Z (s) may not exist; it is also very difficult to 

determine,even if it exists.

The other possibility uses a model as shown in Fig. 4.16 (b). 

First we introduce Dp(s) which is the least common denominator of 

the elements of the transfer function matrix relating the inputs to 

the output. The polynomials Dp(s) and N^p(s) are then given by

k N. (s)
.E. dT̂ TsT ui^8^
1 = 1 ip F O O  E N1p ( s )  u i (s )  p 1 = 1 *

(4.41)

The corresponding model is given by

v— r-r I N! (s) u.(s) D (s )  . , im ' i '  m 1=1
(4.42)

The incorporation of the state variable filters presents no problem 

in that the plant output and each input are processed by identical 

filters before entering the estimation system as shown in Fig. 4.15.

The hyperstability design laws can be stated as:

(1) The compensator Z^s) which is a scalar is designed so that

Real
Zj(s)
D (sT 
P

(4.43)

(2) The parameter adjustment laws are given by

PJ

b! . iPJ
B,. v.

ij fr <“i vf i w (4.44)

Hi k  l s i j  v f i  “ i i>
(4.45)

Although the dimension of Dp(s) is generally higher than the 

individual D.p(s). this model is preferable to that of Fig. 4.16 (a) 

because the delign of the compensator Z^s) is much simpler. It is 

thought that this model is suitable for the identification of approximated 

(reduced) models of multivariable systems which is very popular 

7 6 >7 7currently

;iS

M
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Fig. 4.15 Identification scheme for multivariable systems
..
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Fig. 4.16 Model structures for multivariable systems



4.5. DISCUSSION AUD CONCLUSIONS

The S.R.E. method of parameter estimation via hyperstability

theories has been investigated and developed. In particular the

incorporation of the SVF technique has removed the need of pure

differentiation when only the plant output but not its derivatives

is available. The method is found to be very attractive since the

parameter estimates obtained are asymptotically unbiased in the

presence of output noise and the hardware involved is relatively

little. With small auditions of computation the simultaneous state

estimates can also be recovered. The stability and performance have

also been confirmed by means of digital simulation.

The computation of actual adaptive control using the

parameter and state estimates is not considered in this investigation

and the readers are refered to the literature on the technique of
28 65-68combined estimation and control ’ ' . Also, the reduction of

computation using the technique presented in Chapter 3 when some 

parameters are known to be the same will present no problem and hence 

has not been included for this study.

The performance properties of the S.R.E. method of parameter 

and state estimation have been studied via simulation and these are 

summarised as follows:
(1) The mean parameter estimates are unbiased when noise is 

present at the plant output.

(2) The proportional terms in the adaptive loop can be used to 

improve the damping of the adaptive response when very high 

adaptive speed is required.

(3) There is an optimum (about five system time constants for 

a second order plant) in the convergence rate of the 

parameter estimates, probably due to the interaction of
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simultaneous parameter adjustments. There is, however, no 

such limit to the convergence of the state estimates.

(4) When there is no noise, the proportional terms do not 

improve the convergence of the parameter estimate but 

improve that of the state estimate. For noisy measurements, 

the proportional terms may improve the parameter estimates by 

rejecting any bias in the noise and any d.c. offsets in

the measurement.

(5) Even without the proportional terms, the state estimates 

converge much faster than the parameter estimates.

(6) For state estimations, good results are obtained by a 

compromise between desired convergence speed and acceptable 

noise level in the estimates.

Some similar observations to the above have been reported recently for
. , 74,75discrete system identifications using the S.R.E. method •

Finally the extensions to treat nonlinear systems and 

multivariable systems have been carried out. These extensions have 

been found to be fairly easy once the proper model structure is 

found.
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CHAPTER 5 - AN APPLICATION CASE STUDY

5.1. INTRODUCTION

The theory of M.R.A.C. system design using the Liapunov

or hyperstability approach has received much attention of the control

engineers since 1965. However the realization of this theory on real

physical problems has been reported only very recently. Porter and 
78Tatnall were the first to investigate the performance of a M.R.A.C.

. 79controller for a hydraulic servomechanism. Sinner then considered

the adaptive identification and control of a heat exchanger and of a

d.c.- motor driving a variable load. More recently Bethoux and 
80Courtiol applied the hyperstability discrete model following system

74design to a heat exchanger while Hirsch and Peltie tested a 

discrete hyperstable identification algorithm on the same system. All 

these efforts have shown the feasibility of using the stable adaptive 

design method in practice.

In the previous chapters we have considered some analysis 

and development of the design of M.R.A.C. and Identification systems 

with examples simulated on the digital computer. While the effect of 

noise has been investigated in these simulations, other aspects of 

physical problems such as nonlinearity and different order of the 

plant and model transfer functions, have not been studied. In the 

following, we shall investigate the application of the identification 

scheme developed in Chapter 4 to the on-line modelling of an Internal 

Combustion (I.C.) engine. The linearised engine dynamics about a set 

point can be represented by a third order system but with a first order 

mode dominant. We shall investigate the possibility of using a first 

order system to model the engine dynamics. First the S.R.E. design 

method is used to obtain the stable parameter adjustment laws. Later



on some experiments are repeated with the G.E.E. method to compare 

the performance of these two designs. Only the modelling aspect is 

studied; the dynamic feedback control using the estimation results is 

not considered. The effects of possible nonlinear response and 

neglected high order modes of the plant on the performance of the 

estimation scheme will be specifically pointed out. Hitherto such 

effects have not been reported by other authors.

5.2. A BRIEF DESCRIPTION OF THE SYSTEM AND THE EXPERIMENTS

99

5.2.1. The Engine

The I.C. engine is a 1725 c.c. petrol engine which is
81 82coupled to an eddy current dynamometer ’ . The power absorption

of the dynamometer is controlled by adjusting the field excitation 

current. The entire system has been instrumented to serve as a 

laboratory rig for studies in the automation of engine testing. The 

block diagram of the particular section of the engine that we shall 

study is shown in Fig. 5.1.

Fig. 5.1.

The measurements of the throttle angle, field current, engine speed 

and torque are available. The system dynamics that we are interested 

to model is the small signal linearized transfer function from the

fixed value of the torque.throttle to the speed for a



Some a priori information on the system dynamics have been
81 82found by past students working on engine instrumentations ’ .

The steady state torque-speed characteristics for different throttle 

angles are shown here in Fig. 5.2 (a). Also shown is the load-speed 

characteristic for a fixed dynamometer field-current. Irom this 

figure it is seen that the engine dynamics are highly nonlinear. 

Consequently a linearized small signal model will assume different 

parameters as the operating point changes. The frequency response of 

the speed-throttle section for an operating point in the middle of 

the torque and speed ranges is shown in Fig. 5.2 (b). Clearly it 

has a first order dominant mode with a second order resonance nearly 

two decades from it. Hence we shall approximate the engine by a first 

order model of the following form:

, v KA speed (v) _ __ m__ (5.1)
A throttle (0) s +

The estimation problem can now be stated as the design of globally 

stable adjustment laws to adjust and continuously to track

the engine parameters as the operating point changes. The operating 

point is determined by set points for the throttle (Og) ant* ^or *-̂le 

dynamometer field current (Ij)*

5.2.2. The Experimental Setup

The experiments involve two stages. First a perturbation 

signal (sine wave or square wave) is added to the throttle servo input 

and the corresponding changes in the engine speed are recorded, 

recordings of all analogue signals are done by the multi-channel 

Philip's Analogue 7 Recorder. The next step is to play back the 

recordings through Analogue/Digital converters to obtain digital forms
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of the input and output signals. The adjustable model and the parameter 

adjustment loops are all realized digitally on the Sigma 5 computer 

using the SL 1 simulation language. The input and output signals will 

drive the parameter adjustment loops according to the S.R.E. design or 

the G.E.E. design. The results of the estimation and other relevant 

time series are obtained in numerical forms via the line-printer and 

in graphical forms via the digital graph plotter. A block diagram 

of the experiments is as shown in Fig. 5.3.
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Fig. 5.3.

5.2.3. The Adaptive Models

The complete estimation scheme designed by using the S.R.E. 

method is shown in Fig. 5.4. No state variable filters are needed as 

the model is of first order. Hence the model ouptut directly

gives a noise-free estimate of the engine outp
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Fig. 5.4 The S.R.E. design

Fig. 5.5 The G.E.E. design
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The complete estimation scheme designed by using the G.E.E. 

method is shown in Fig. 5.5. Two first order state variable filters 

are required. The bandwidths of the filters are chosen to be larger 

than the largest bandwidth that the engine will assume for different 

operating points. The estimate of the engine output is not directly 

available and has to be recovered if required by usirg an extra time- 

varying model.

5.3. EXPERIMENTAL RESULTS

5.3.1. The S.R.E. Design

Several sets of typical experimental results are shown in 

Fig. 5.6 to 5.10. Two operating points have been defined for 

convenience:

condition 1 when 0n 3.5 Volts, I, 0.7 Amps;
0 ~ -------- - ‘f

condition 2 when 0Q = 2.2 Volts, 1^ = 0.7 Amps.

These operating points have been marked on Fig. 5.2 (h).

The results are clearly expressed in the figures. For

instance, when the input is a sine wave as shown in Fig. 5.6, we

observe that the rate of convergence of the output state estimate

(15 seconds) is twice as fast as that of the parameter estimates

(30 seconds). Also the output state estimate is almost noise free

even though the input is quite noisy. From the time response of the

parameter estimates, we observe that there are consistent fluctuations

about the mean values. These are found to be deterministic - their

frequencies are dependent on the input frequency and their magnitudes

are proportional to the adaptive gains. Similar results are found

when the input is a square wave as shown in Fig. 5.7. The convergence

rate is faster than that with sine wave input. One important

observation here is that the response is nonlinear - the response in
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Fig. 5.8 Identification results with operating condition 2 , 

input: 0.1 C/S square wave, 

adaptive gains: a “ 8 “ 3, y •» 6 “ 0.



Fig. 5.9 Identification results with operating condition 2 

initial values estimated from condition 1 . 

input: 0.1 C/S square wave, 

adaptive gains: a “ 8 = 3, y = 6 “ 0.
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the positive cycle is different from that in the negative cycle. This 

directional dependent nonlinear response is less evident in the case 

of sine wave inputs. For a different operating point as ohown in Fig. 

5.8, the estimates obtained would change by about 100 per cent. The 

convergence rate is found to be faster ( 1 0 seconds) because the 

magnitude and frequency of the square wave input havi been increased. 

The tracking ability of the estimation system is demonstrated in 

Fig. 5.9 with the operating point changed from condition 1 to 

condition 2 .

The above results are for designs which do not make use of 

the proportional damping terms (i.e. all y « 6 » 0) . A demonstration 

of the use of these terns for state tracking is shown in Fig. 5.10. 

First the integral adaptive gains (a and B) are increased by 10 

times from the values used for Fig. 5.7. The resultant response is 

very oscillatory. Then proportional gains (y = 6) of 0.4 and 1.0 

are used resulting in much better damped and faster convergence. An 

expense of doing this is evident in the recording as Tore noise is 

contained in the estimate. Furthermore the parameter estimates (not 

shown) would have higher amplitude of fluctuations of the type shown 

in Fig. 5.7. If both parameter and state estimates are important, 

a compromised value of proportional gain can be used.

The results are summarised, together with some explanation

of the phenomenon, as follows:
(1) The convergence of the parameter estimates is fast 

(five to ten system time constants). The convergence 

of the state estimate is at least twice as fast as 

that of the parameter estimates and can be further 

accelerated by employing the proportional damping terms

(2) The adaptive estimation system is stable. The adaptive



gains are only limited by the variance (due to noise) 

and fluctuations (deterministic) of the parameter 

estimates.

(3) Deterministic fluctuations are present in the parameter 

estimates. The probable causes are (a) the directional 

dependent nonlinearity creates components of fluctuations 

having the same frequency as the input signal; (b) the 

neglected higher order modes of the plant would give 

additional transient error and hence '■reate components 

of fluctuations having twice the frequency of the 

input signal; i.e. at the beginning and ending of each 

step change, the model parameters will assume a 

different value to minimize the state error.

5.3.2. The G.E.E. Design

Two sets of results for different operating points are 

shown in Fig. 5.11 and 5.12. Each of these figures consists of 

two sections showing the effect of different state variable filters. 

From these figures it is seen that there are large fluctuations in 

the steady state estimates and that the estimates are fairly noisy.

Also for the same amount of fluctuations, the convergence rate is 

much slower than that of the S.R.E. method. The mean steady state 

parameter estimates are, however, only slightly different from 

of the S.R.E. method.
There is no obvious explanation of why the fluctua .ions in 

the G.E.E. design are much larger than those in the S.R.E. design.

The change in the bandwidth of the SVF does not affect much of the 

results. The causes of the fluctuations are again due to the non­

linearity and neglected dynamics of the engine These results



Fig. 5.11 Identification results with operating condition 1 

- The G.E.E. design.
input: 0.05 C/S square wave, a • 6 = 50.

SVF: (i) 5/(s + 5), (ii) 2/(s + 2).

___  mean values from the S.R.E. design.
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therefore suggest that the G.E.E. design is more sensitive to the 

practical problems of nonlinearity, lower order models and noise.

5.4. CONCLUDING REMARKS

Both the S.R.E. and G.E.E. designs have been found to be 

stable for the on-line identification of the throttle-speed transfer 

function. The former design is also superior in performance, with 

regard to speed and accuracy, to the latter. The main purpose of 

this investigation, which is to verify the applicability of the S.R.E. 

design method for practical problems, has been achieved.

The general characteristics of the S.R.E. method have been 

noted in the experiments. The design is always stable; the practicax 

limitations on the adaptive gains are due to the interaction of 

parameter adjustments, the noise present, the nonlinearity and the 

neglected higher order modes. A suitable compromise for speed and 

accuracy can be easily found. In addition the model state is a noise- 

free version of the plant state and hence could well be utilized for 

the purpose of feedback control.
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CHAPTER 6 ~ FINDINGS AND FURTHER WORK 

6.1. FINDINGS

In this thesis, new results are reported on the design 

methods for model reference adaptive systems. The main findings are 

summarised in the following:

- The comparative studies of design rules for model reference 

adaptive control systems have provided convincing proofs of 

the superior performance of the Liapunov synthesis to that of 

the gradient design. The dimensionless performance criteria for 

the gradient design, with both deterministic and stochastic 

inputs, are not a monotonic decreasing function of the dimension­

less gain parameter; also the performance varies significantly 

with the frequency band of the input signal. On the other hand, 

the same dimensionless performance criteria for the Liapunov 

design always decrease monotonically with the increasing 

dimensionless gain parameter; it could also achieve a smaller 

performance criterion not attainable by the gradient design. For 

noisy systems, some modifications can be incorporated in the 

Liapunov design to achieve noise rejection and bounded-input 

bounded-output stability of the entire system.

- For multivariable systems, there exists already a gc’eral design 

algorithm based on Liapunov synthesis and in a state space 

representation. This algorithm is extended to include a wider 

class of plants, in which the adjustable parameter may appear 

simultaneously in two or more elements of the plant and control 

matrices. The resultant design is globally stable in the response 

error state space and the transient damping can be systematically 

adjusted, to achieve an acceptable performance, by varying the



proportional gains.

The practical difficulty of implementing the stable model 

reference methods for on-line parameter and state estimation 

(the S.R.E. methods) is solved by using the state variable 

filters. In this technique, the input and output of the plant 

are filtered by identical low-pass filters before entering the 

parallel estimation model. The resultant scheme is characterised 

by unbiased estimates and fast convergence, and only the input 

and output measurements are needed. The main disadvantage is in 

the design of the series compensator; this requires a knowledge 

of the range of parameter variations and the satisfaction of a 

positive real condition over this range to give the compensator 

parameters which ensure the global stability of the parameter 

adjustments. The single-input single-output system has been 

treated in detail and the feasible extensions to treat nonlinear 

and multivariable systems have been pointed out.

The S.R.E. method has been tested on a real physical system. The 

excellent results obtained demonstrate the practical feasibility 

of this design method. It has also been observed that the 

inherent nonlinear response of the plant and the neglected 

higher order dynamics introduce deterministic fluctuations in 

the parameter estimates. However a compromise between accuracy 

and speed of adjustments can be easily found. Also the S.R.E. 

design is found to be less sensitive to these practical 

phenomena than is the well-known G.E.E. design.



6.2. SUGGESTIONS FOR FURTHER WORK

The work carried out in this research and also recent work 

by other authors 6 0 >79 have pointed out the feasibility and potential 

applications of model reference adaptive systems as synthesized by 

design methods based on stability theories. While more real case 

studies are desirable, further research on the reduction of computation 

and practical approximations are needed. The following topics are 

some areas which require urgent attention:

(1) The use of low order reference models for the adaptive

control of high order plants is an important subject, since it will

reduce the complexity (the numbers of state measurements and

adjustable parameters) of the adaptive controller. Such a possibility
83has been demonstrated previously by Hsia for M.R.A.C. systems

designed by a gradient method; he uses the idea of approximating the

model by a low order transfer function with a pure time lag. More
80recently Bethoux and Courtiol have demonstrated the good performance

of a hyperstable adaptive controller for a second order plant with a

first order reference model. Further case studies using the currently
76 77available transfer function reduction technique ’ will give a 

general guideline to the designers regarding the practical (economical) 

aspect of implementation of this type of adaptive controller. The 

on-line identification of a low order (approximated) mod^l o. a High- 

order plant is a slightly different problem. A practical example 

has been demonstrated in Chapter 5 of this thesis and the effect of the 

neglected dynamics on the performance of the parameter adjustments ’.ao 

been pointed out. More examples, especially those of multivariable 

systems, will be suitable topics for further work.

(2) Landau 60 has considered the identification of a process 

with a pure time lag t . He has given an approximate design rule
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for simultaneously identifying t  and other parameters by using the 

S.R.E. method. While the design has been shown to work satisfactorily, 

the hardware realization of an adjustable time lag device is 

expensive. Inoue and Sugimoto 8  ̂have also considered a similar 

problem but with a fixed time lag. They have shown that instability of 

parameter adjustments would result if the error in the assumed value 

of t  is too large. For many industrial processes, the value of 

t  is known and has only small variations; it will be beneficial to 

compare the performance of those identification, schemes using a 

variable t and those using a fixed t .

(3) For the on-line identification of multivariable systems,

we have suggested a particular form of the estimation model (equation

4.41) for the S.R.E. method in Chapter 4. While this form is very

useful for single-output systems, it becomes less economical when

more outputs or more states are available. Landau has recently
85examined the use of a canonical form, proposed by Luenburger , 

which is very economical when several outputs are available. A 

performance study of the various canonical forms will be desirable.

(4) The on-line parameter and state estimation system designed 

by the S.R.E. method is guaranteed to be globally stable. However 

the overall system stability is not theoretically assured when the 

estimates are used to compute suitable adaptive controls, for instance 

in the case of an adaptive state regulator28’79. So far the experimental 

results 79 have been found satisfactory. A theoretical analysis would 

be desirable in order to assess the effect of the transient parameter 

adjustments on the overall system stability.
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A. 1. T • n  . 12 Liapunov Design

The state equations of the plant and model are

plant: 0 =  A 0 +  b K K r o,p 0.P  V c (a.1 .1)

model: 0 = A 0  +  b K r (a.1 .2)

Define
<?<

t> ii i X n K - K
V
Kc

We obtain e =  A e + b X r
. 'X/ f\j %

(a.1.3)

Choose a V function

V =  eTP e + X (X +  y'v a*
K m ) 2

V
(a.1.4)

where m = B' eTP b  ra* 'u
(a.1.5)

8 ' =  ' /  ( X Kyi

The time derivative of V is

• TV = e
'V/

(ATP + PA) e + 2eTP b X r +
f\,

2X (X + Y Kvm)(X + Y Kym) (a.l

If we select the adaptive rule:

• •
K = m +  Y m c

(a.1.7)

i  .e. X + Y Kyni "  " Kv m
(a.1 .8)

then V becomes

V ■ -e*Q e - 2 Xy K ^ m 2
r\, r\,

(a.1.9)

P and Q are positive definite symmetric matrices which 

satisfy the. Liapunov matrix equation.
(a.1.10)



For example, if

0

1

Let
0

2

Solving equation la. 1.10), we obtain P =

eTP b - e + e'Xz ^ 1 *Hence

pe
r
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A.2. Differential Equations Of The Various Designs

The following differential equations describe the dynamics 

of the systems shown in Fig. 2.2.

First Order Systems

The error differential equation is

T k, + el = (K -  K K ) rv c
(a.2 .1)

and the adaptive equations are

M.I.T. Kc B' ei °m1 ra

f m ■ B' el r
(a.2 .2)

Liapunov <
Kc m Y m (a.2 .3)

The actual values used in the simulation are

T = 0.05, K = 1 , Kv = 1 0 , Kc(to) - 0 .

Second Order Systems

The error differential equation is

+ a, + e. (K “ Kv Kc)

and the adaptive equations are

M.X.T. B' ei °m

B* (., P12 * P ) r
22

(a.2 .4)

(a.2 .5) 

(a.2 .6)

Liapunov
m + y ni

(a.2 .7)
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. . 31A.3. Dimensional Analysis

(i) The equations describing the first order M.I.T. system are:

Te, + e, = (K - K K ) r 1 1  v c

K *> B' e 0 c 1 m

(a.3.1) 

(a.3.2)

Let R be the amplitude of a deterministic input signal (e.g. step, 

sine wave or square wave) and define the following variables:

e = ej / (KR) (a.3.3)

r = r / R (a.3.A)u

y « 0 / (KR) (a.3.5)m m

X = ( K - K  K ) / K (a.3.6)

T - t / T (a.3.7)

Substituting these into equations (a.3.1) and (a.3.2), we obtain



130

The dimensionless performance indices are obtained by using the 

dimensionless error e and the dimensionless time variable x. For 

instance, to obtain using the ISE criterion, we have

ir
1

2 dx

00

1

K2 R2 T
e2 dt 

o

Likewise, dimensionless parameters and performance indices for other 

inputs are derived.

(ii) The equations describing the second order M.I.T. system are: 

a2 ej ♦ 3l + ej = <K - Ky Ky) r U.3.H)

B' e, 0,1 m
(a.3.15)

Using the same dimensionless variables as (a.3.3) (a.3.6) and

define
x = t / at (a.3.16)

Substituting these into equations (a.3.14) and (a.3.15), we obtain

(a2 ' + S  + E = X ^
¿21 = -(K K B’ R2 a ) e ym
dx v

(a.3.17) 

(a.3.18)

Hence the required dimensionless parameter * 2

r2 = K Kv B' R2 T

another dimensionless parameter. Likewise, 

indices for other systems

(a.3.19)

and (a / a2) becomes 
2 1

dimensionless parameters and performance 

and for other inputs are derived.
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A.4. The Stochastic Signal

A stochastic signal is used to simulate a wide band noise

input in Chapter 2 and to simulate measurement noise in Chapter 4.

Ihis signal is required to approximate a band limited white noise.

Theoretically it can be generated by passing a white noise signal

through a low pass filter. However, when used with a digital simulation

language, the generation of white noise digitally will need a very

small integration interval and consequently lengthen the simulation

time. Hence a more direct method (described below) is used to

generate the stochastic signal. The main reason for using a digitally

generated random signal, instead of using an analogue noise signal

through A/D converter, is that the same sequence can be regenerated

and hence very useful for comparing responses of different systems.
24The method adopted was suggested by James . It is 

obtained by spacing a zero mean, Gaussianly distributed sequence of 

pseudo random numbers, by an interval of h seconds and with linear 

interpolations. For small values of mh, James has shown that the 

autocorrelation Rxx ( t )  and power spectral density <>xx (w> of 

this stochastic signal a(t) are those shown in Fig. A.4.1 and A.4.2. 

Note that R (o) is 2/3 times the variance of the random number
XX ____

(an2). Hence the root mean square value of this signal is /2/3 

(= 1/1.22474) times that of the random number. The half-power point 

is seen to be approximately one third of the cutoff (r/h rad/sec).

It is thus assumed that for <o < w/3h, the signal has approximately

flat (white) power spectrum.
, . _ rAlTSS (N) in the XDS-SIGMA 5There exists a subroutine GAUbb t )

. . a ceauence of zero mean, unity variancedigital computer to generate a .eq
Gaussian probability amplitude distribution, 

for each different starting value N.
random numbers having a 

The sequence will be different



Hence to obtain a(t) one just needs to write a subroutine to interpolate 

between these random numbers. This subroutine is called RANDOM. The 

flow chart is shown in Fig. A.4.3 while a listing of the actual program 

in Fortran, to be used with the main program written in the SL 1 

simulation language, is shown in Fig. A.4.4. The signal a(t) will 

have a bandwidth determined by the interpolation interval H as 

specified by the main program and the particular sample is determined 

by the number N. An ensemble of this signal is shown in Fig. A.5.



,4.1 Autocorrelation function of a(t)Fig. A

Fig. A .4.2 Power Spectral Density of a(t)



Fig. A.A.3 Flow Chart of Subroutine RANDOM

SUBROUTINE RANDOM (RAN, TIME, N) 
COMMON / SET 1 / H 
IF (TIME.GT.0.0) GO TO 9 
RAN2 “ GAUSS(N)
RAN 2 “ GAUSS (N)
NT - 0
GO TO 8

AA - TIME - H * (NT + 1)
IF (AA.LT.O.O) GO TO 10 
NT - NT + 1
RANI - RAN2 
RAN2 ■ GAUSS(N)
SLOPE » (RAN2 - RANI) / H
VA “ TIME - H * NT
RAN = 1.22A74 * (RANI + SLOPE * VA)

RETURN 
END
Fig. A.A.A Listing of the Subroutine RANDOM
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A.5. The Adaptive Laws For General Parameter Adjustments

Consider a plant with the following transfer function

0p(s)

n- 1
E b . s1
i=0 P1
n- 1

(sn + E a . s1) . „ pi 
1= 0 r

r (s) (a.5.1)

With the model having the same order but with b . and a . replacingmi mi
b . and a . respectively. The various design rules are stated in pi pi
the following.

M.I.T. rule: This is a steepest descent law for minimising

First the sensitivity functions are computed.

a2 d t.

fiL s1 r is r
6b. / 11 (s

n _ 1 i 
+ E a . s )

i=0 P1

n- 1  • 
(sn + E a . s1)

i-o ml

60

l

-S1 0P
-s1 0

_______ _ 2_____

/ n (s
n _ 1 i. + E a . s )
i=0 P1

n- 1  . 
(sn + E a . s ) 

i=0 *l

(a.5.2)

(a.5.3)

If one defines

rif (s)

®if (S)

1s r
n- 1  •

(sn ♦ .E ami S >i=0

s1 ©_
n- 1  £

(sU ♦ .E V  8 >i=0

(a.5.4)

(a.5.5)

then the steepest descent law gives

6 .P1
h  ei rif 

V  " -ai ei°if

(a.5.6) 

(a.5.7)
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Dressier: This is obtained by using a parametric optimization approach

to satisfy the following inequality

ej • Ae
i s  0 (a.5.8)

so that at least the local convergence is guaranteed. Toe resulting

laws ares

tb . =  Pi
(i)

Bi el r (a.5.9)

•a . = V1

(i)
- a . e, 0 l 1 m (a.5.1 0 )

. (i)where denotes i th differentiation with respect to time.

Liapunov: The positive definite V function is

V = £Tp t  + tXbi(bpi ‘ bmi) 2 + *ai(api ‘ 3 n. 'v. £ =o  r mi)2^ (a.5.1 1 )

The adjustment laws chosen to ensure that

V -eTQ e (i 0)
% %

(a.5.1 2 )

are
•b . = Pi

T (i) B. (e1 P ) r
1 r\j 'v 1

(a.5.13)

•a . * pi
,  H) 

-“i < ;  y  8P
(a.5.14)

whe::e P denotes the n th column of the matrix P. P and Q must

satisfy the Liapunov matrix equation

T
A P +m

P A  ** “Qm
(a.5.15)

where A is the state matn m
x  o f  t h e  model. P r o p o r t i o n a l  d a m p i n g  t e r m s

be included if required by modifying
the V and V functions 12
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Theor\

Consider the model reference identification system for a 

plant with m inputs and r outputs as shown in Fig. A.6.1. The 

dynamic equations are:

plant
{

model

error

y =ip
A y + B uP ÌP P -V

(A.6.1)

e
<\,p c .̂p

(A. 6 .2)

•
y »V “

A (t) y + B (t) m rja m u (A. 6 .3)

e C y (A.6 .4)

v “ y (A.6 .5)£ c
'V/ 'p  >

e B 0 - 0  = C E
>0 » ^  'V-

(A.6 .6)

V F e , (v(s) » Z (s) e(s)) (A.6 .7)

à  (t) m = G • 4>(v, t) (A.6 .8)

B (t) » G • n(v, t) (A.6 .9)
Parameter U1

where G is defined below in equation (A.6.11). From equations 

(A.6.1) - (A.6 .5), the error equation is found to be

(A. 6 .10)
c A e + G Wp ^ -v1

(A.6.11)

Note

G W »  (A - V C)> &n+ (BP *i\,l r

1 or 0 and W
that G consists of elements equal „1

v. Also the dimension of v must
must have the same dimension as

, c nf A (t) and B (t) which contain
be equal to the number of li”e m _

. . i the corresponding elements of Ap
elements not identical to

and Bp.



Now combining equations (A.6.10), (A.6 .6) and (A.6.7), and taking an 

inverse Laplace Transform, we obtain

v(s) - Zj(s) . C(sl - A )"* 1 2 * * * *- G • W, (s) (A.6 .12)
P

Define

Z(fi) = Zj(s) *C(sI " Ap ) _1 • G (A. 6 13)

*2 " ‘ “ l (A.6.14)

Equation (A.6 .12) becomes a linear system having an input-output 

transfer function matrix Z(s) and with a feedback (from v(s) to 

W 2 (8»  which is nonlinear and time varying (given by A.6 .8 , A.6 .9 

and A.6 .11). This equivalent system is shown in Fig. A.6 .2. Now 

Popov's hyperstability theorem is directly applicable. Assuming 

that the pair (Ap, Bp) is completely controllable and the pair 

(C, Ap) is completely observable, the following theorem due to 

Landau gives the hyperstability design.

Theorem (Landau): Sufficient and partially necessary conditions in

order that the adaptive identification system described by 

equations (A.6.1) to (A.6 .9) be asymptotically hyperstable 

are the following:
(1) the transfer matrix Z(s) given by equation (A.6.13) be 

strictly positive real;
(2) the computing block of the matrices Am (t) and Bm (t) in

order that the nonlinear feedback block satisfies

the Popov's inequality constraint (equation (1.2,„f Chapte

1) is gi”en by
d



Fig. A.6.1 Hyperstability design

C(sl-Ap) G
LINEAR_

e I v

s=L£i*>

■ w ,
______ .— -

------- "n l , t v
B L O C K

Fig. A.6 .2 The equivalent system
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nij(t) 6ij Vi "j + *ij dt (6ij Vi Uj> (A’6-16)

Relationship with the Liapunov Design

Equations (A.6.15) and (A.6.16) have the same forms as the
n

Liapunov design algorithm of Chapter 3 but with ( [ e, P .) replacing
k-i kl

. Following Landau we shall examine the following matrix 

transfer function

Z(s) - H(sl - Ap)_1G (A.6.17)

According to a Popov-Yacubovich-Kalman lemma if Z(s) is

strictly positive real, the following holds

AT P + P A = -Q (A.6.18)
P P

P G = H (A.6.19)

where P, Q are symmetric positive definite matrices. Kow applying 

these results to the hyperstable system, we obtain

T TP G = C F (A.6 .20)

This means that the matrix of the series compensator can also be found

by

GT P C (A.6 .21)

where P is calculated by equation (A.6.18) . Now let us give as an

example the Liapunov synthesis presented in Chapter 3. There we 

assume C - I. G - I; hence equation (A.6.20) will give
(A.6 .22)

p = F

From equation (A.6.7) and (A.6.22), therefore

V F e = P e*

v. = E Si. ^ 
k*l

(A.6.23) 

(A.6.24)
i . . !k ki
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The demonstration that the Liapunov and hyperstability designs are 

basically equivalent is thus completed* This result is very useful 

as it gives flexibility to the design of the series compensator which 

now can be designed either by using the positive real condition on 

equation (A.6.13) or by using the Liapunov matrix equation (A.6.18) 

together with (A.6 .21). Further the following cross-benefits are 

observed:

(1) The Liapunov matrix equation together with the expressions

for V ani V indicate the rate of convergence of the 
32error vector . No such information is directly obtainable 

from the hyperstability approach.

(2) The analysis of real systems is easily done via hyperstability

approach. For instance Landau has shown that the input

and output measurement noise, the time variation of Ap

and B , and the higher order neglected modes of the 
P

plant can all be grouped together to form an additional 

input W (i.e. W 0 in Fig. A.6.2) to the original
* r\j %

hyperstable system and a bounded-input condition assures 

bounded-output of the overall system. This result cannot 

be easily proven via the Liapunov approach.

(3) The matrix positive real condition or the Liapunov matrix 

equation is to be satisfied for the known range of 

variations of Ap. For a single dimensional system, Z(s) 

turns out to be a transfer function if Ap is expressed

in the companion form (see Section 4.2). Hence the positive 

real condition with parameter variations is easily obtained 

(some examples given in appendix A.8). However for other 

forms of A , *(•> becomes a transfer function matrix

and th. po.itlv. t e a l condition -i.h • «»D- •< 1» ™ ” “ '

m



variation is much more difficult to establish. Then it 

will be simpler to use the Liapunov matrix equation.

, . p -ofessor I.D. Landau and his colleagues
The author wishes to thank P-0

. ,nhoratory (Grenoble, France) for useful at the ALSTHOM Research Laboratory
„.-»rial presented in this appendix.] discussions on the materia p
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A process can be considered fully identifiable in a 

parametric sense provided

(a) it is activated by a sufficiently exciting input signal;

(b) it possesses an augmented state vector (i.e. both input and 

output states are grouped together) whose elements are neither 

linearly dependent, nor approach linear dependency;

(c) it is controllable and observable in the sense that no pole 

zero cancellation is present.

The condition (a) above will further need to satisfy the 

following conditions if the parameter error is to be guaranteed -*• 0 

as the error measure (equation or response error) 0 :

(i) the input signal be persistently exciting in the sense that

> > 0 ;

(ii) the number of distinct frequency components present in any

purely periodic input signal be equal to or exceed d where

d = (m + n + 1) / 2 5 (m + n + 1) even.

(m + n + 2) / 2 ; (m + n + I) odd.

m, n being the order of zeros and poles of the plant transfer 

function. If not all of the parameters are to be adjusted, 

the above condition can be relaxed, e.g. d = P/2 where 

P *= number of parameters to be identified.

. t-hat the random-noise~type cf.Practical experiments suggest that tne ran
identification results. The rateinput signal usually gives excellen

, • 1 fmind to be dependent on the bandwidth of theof convergence is also found to De v

■ „i- frenuency or best cutoff frequency of the input signal; the best single f <1
. , , - c nhe natural frequency of the plant,input signal is in the neighbourhood of the



A.8. Parameter Sensitivity of Positive Real Functions

We want to examine the design of Z^s) to ensure that

ofG(s) , given by Zjis) / Dp(s) is positive real for a range 

parameter variations in D^(s). For low order transfer functions, 

explicit conditions required for positive realness can be readily

derived. Some examples are given in the following:

(i) G(s) = -S +- -b----
s2 + a^  + aQ

the necessary and sufficient conditions for positive realness are

b a 0 * °
( f l l  -  b )  * 0

hence one can choose 0 £ b $
min

(ii) G(s)
s2 + bjS + bQ

s 3 + a2s2 + ajS + aQ

the sufficient conditions for positive realnesr- are

O' o a 0 4 0

a l b l  - a 0 ‘

a„ - b , 5 o2 1

also for stability of the plant xtself, we have a„ 

Now one may choose

b x - *2 .min

(ao m m min max
max

For higher order systems,
the explicit conditions become more

difficult to solve; also the
sufficient conditons may be too
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conservative and one would like to consider the necessary 

conditions as well. Then a numerical test method using computer 

calculations will be extremely helpful. Such a method has been 

suggested by Siljak and developed by Karmarker 70-72.
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41-49A.9. The Generalized Equation Error (G.E.E.) Method

Consider a linear time-invariant plant as shown in Fig. 

(A.9.1). If the state variable filters which process the input and 

the output are suitably chosen, we obtain the following equality:

ef (s) e(s) Nj l ( s )

U£(s) u(s) Dp (s)

n- 1
E b . sJ

± 9 .
pj

n-l
sn + E a .

j=0 PJ

(A.9.1)

Therefore,

0 = D (s) 0,(s) - N (s) uf(s)p r p r
(A. 9.2)

Now using a series-parallel model as shown, we define an e£ as

e£(s) = D (s) 0,(s) - N (s) u (s) (A.9.3)f m i  m t

Subtracting (A.9.3) from (A.9.2), we obtain

e (s) = (P (s) - D (s)) 0,(s) - (N (s) - N (s)) uf(s) (A.9.4)f m p I 111 r

or in the time domain,

ef(t) -  V [ ( a . ( t )  -  a )Gf . ~ ( b . ( t )  -  bpj)u£j] (A.9.5)
j-o

where 0 .. = t  6 . and u = ¿-r u and these signals are
f J dtJ f dtJ

available from the SVF without pure differentiations. The parameter 

adjustment laws according tc a steepest descent minimization are:

a s (t)mj '“j ef 6 a

b .(t) = "6 . emj 3 1

ef (A.9.6)a . = - a . e 0 ,.mj j f 1J

Gf-r-=—  “ e. e- U .b . j f
(A.9.7)

mj

The resulting scheme as shown in the figure is called the G.E.E. design. 

This scheme has been verified by Lion 43 to be globally asymptotically
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Fig. A.9.1

PLANT

S V  F S \ / F



stable by using the following Liapunov function:

V (A.9.8)

The time derivative of V is

Combining equations (A 9.5) to (A.9.7) with (A.9.9), we obtain

V = -2 ef 2 $ 0 (A.9.10)

Thus together with the identifiability conditions stated in appendix

A.7, global stability is established in the sense that e^ -> 0,

a . -*• a . and b . -»• a . asymptotically. 
n>J PJ mj PJ ’

The G.E.E. method has been extended to treat multivariable
. . 49systems via a state space representation by Pazdera and Pottinger 

64and by Landau . It is very simple to use, and as long as a particular 

canonical form is used so that the SVF can be readily applied, no 

direct signal differentiation is required.

The disadvantage of the G.E.E. method is that all the estimates 

of am . are asymptotically biased when noise is present at the plant

output 0. Although the bias may be reduced by reducing the bandwiath 

of the state variable filters, an example being demonstrated in Table 

A.9.1, the convergence of the initial conditions would suffer corres­

pondingly (see Section 4.2.4.). Also if the bandwidth of the noise is 

in the vicinity of the pass-band of the system, the SVF optimization 

will not be effective. Then a well known technique called the Instrumental 

Variable (IV) method is needed to remove the bias. The scheme

is shown in Fig. A.9.2. The signal 0^ approximates the noise free 0^
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and hence the following adjustment law can be used:

mj -a. e , 0 ,. J nf fj (A.9.11)

The expense of using the IV method, besides the obvious addition of 

hardware involved in generating the instrumental variables, is the 

loss of global stability assurance.

'v Noise/
Signal

“f

0 . 2 0.4 0 . 8

al ao ai ao ai ao

4 1.9 1.08 1.65 1.26 1.15 2.08

2 1.95 1.03 1 . 8 8 1 . 1 1 1.60 1 . 2 0

1 1.98 1 . 0 2 1.95 1.04 1.85 1.08

True value = 2 1 2 1 2 1

Table A.9.1. Steady states estimates.

Plant T.F. = l/(s2 + BjS + afl)j SVF = u^2/(s + u>^)2

input ■ Sin(t); output noise is white.
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A. 10. Transformation to a Canonical Form

The canonical form (equation 4.10) used in Section 4.2 is

’  0 1 0 • •  o" "o . .  .  0  '

0 0 1 • •  • • . .

m I y + •

0 1 • •

_ " a o - a l • • - a  in -1  J . b o  b. • •  V i .

u (a.1 0 .1)

0

(n-1)
[u u . . . u JT . This form may not be easily converted

• v

into other well known canonical forms using "similarity transformations" 
7 3 * In this appendix, we shall show how to compute a standard 

canonical form (the output or observable form) from the combination 

of x, u, a and b. From the output form, then, other canonical
^  ^  'Xj *\l

forms can be directly obtained using a similarity transformation.

The output form is

"an-l 1

oO

Vi '
-an- 2

0 1 • • 0 bn- 2

r i  - #
• * 
• • l  + •

“al 0 l
<

_ao 0 • • 0 b°

© n Xi

U (a.1 0 .2)

0

From (a.10.1), we have 

¿ 1 “ V i “ 

y ,  = y ,  = 0
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Hence, knowing 0 and its (n-1) derivatives, the y can be 

generated. What we look for is then x expressed as a function of I'

Now from (a.10.2),

X 1 = " V l  X 1 + x 2 + bn-l u

••• X 2 " X 1 + V l  X 1 ‘ bn-l U
x2 “ “an-2 X1 + x3 + bn-2 u

*'• x3 = X1 + V l  X1 + V 2  X1 " bn-l “ “ bn-2 U

Similarly x+ » __ Xn can be obtained. Using the equality that

(i) (i) . u , „  . y = 0 = v. the above can be written m  the following way:X T  xi+l
— —

1 0 0 • • 0 0 0 0 • • 0 u
a , n- 1

1 0 • • 0 b ! n- 1
0 0 • • 0 u

a 0 n- 2
a , n- 1

1 y -'V/ b 0 n- 2
b . 0 n- 1 • u

• • • • * . 0
•

• • • • (n-2)
a

1
a

2
• • a . 1 n- 1

b
1

b
2

• • b . n- 1
u

(a.1 0 .3)

The calculation involves only algebraic operation and is most conveniently 

done on a digital computer. Note also that equation (a.10.3) holds 

only when and b. are zero, i.e. when the parameter adjustments

have ceased. This means that the transformation into £ estimates

and b.̂  have been correctly estimated.are only valid when a^


