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Abstract

This study presents a dose-response-time (DRT) analysis based on a large pre-
clinical biomarker dataset on the interaction between nicotinic acid (NiAc) and
free fatty acids (FFA). Data were collected from studies that examined di�erent
rates, routes, and modes of NiAc provocations on the FFA time course. All in-
formation regarding the exposure to NiAc was excluded in order to demonstrate
the utility of a DRT model. Special emphasis was placed on the selection pro-
cess of the biophase model. An inhibitory Imax-model, driven by the biophase
amount, acted on the turnover rate of FFA. A second generation NiAc/FFA
model, which encompasses integral (slow buildup of tolerance - an extension
of the previously used NiAc/FFA turnover models) and moderator (rapid and
oscillatory) feedback control, was simultaneously �tted to all time courses in
normal rats. The integral feedback control managed to capture an observed
90% adaptation (i.e., almost a full return to baseline) when 10 days constant-
rate infusion protocols of NiAc were used. The half-life of the adaptation process
had a 90% prediction interval between 3.5-12 h in the present population. The
pharmacodynamic parameter estimates were highly consistent when compared
to an exposure-driven analysis, partly validating the DRT modelling approach
and suggesting the potential of DRT analysis in areas where exposure data are
not attainable. Finally, new numerical algorithms, which rely on sensitivity
equations to robustly and e�ciently compute the gradients in the parameter
optimization, were successfully used for the mixed-e�ects approach in the pa-
rameter estimation.
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1. Introduction

The traditional pharmacokinetic-pharmacodynamic (PK-PD) modelling ap-
proach is generally based on known plasma kinetics when the PD properties are
assessed. Dose-response-time (DRT) data analysis is an alternative to exposure-
driven kinetic - dynamic modelling when exposure data are sparse or lacking.5

This involves studies where the pharmacological response precedes the systemic
exposure (e.g. pulmonary drug administration) or when the drug is locally ad-
ministered (e.g. in ophthalmics). In DRT analyses the pharmacological e�ect
is assumed to contain some kinetic properties whereby a biophase function can
be developed and in turn acts as a `driving' function of the pharmacological ef-10

fect. The biophase function is assessed using various structures from a biophase
model library when the DRT model is �tted to data. This biophase library
consists of feasible models derived from the kinetic information in the response-
time course in combination with knowledge of the physiology.

DRT data analysis dates back to the 1960's and 1970's when Smolen [53,15

54, 55] and Levy [39] introduced the concept. Smolen used response data to
quantify the bioavailability and biokinetic behaviour of a mydriatic drug after
oral and ophthalmic administration whilst Levy derived a relation between the
pharmacological e�ect and elimination rate of a mydriatic drug. Since the work
of Smolen, DRT data analysis has been proven to be applicable to novel sys-20

tems where the kinetics and/or dynamics behave non-linearly, when there are
time-delays in the response data, and when the system contains feedback mech-
anisms [24]. The technique has successfully been applied in models of the muscle
relaxant drug vecuronium [14, 22, 21, 64], antinociceptive drugs [1, 26, 24], oph-
thalmic drugs [24, 41], antidepressants [28], psycho-motor stimulants [26], drugs25

to treat chronic obstructive pulmonary disease (COPD) [65], and osteoporosis
[46]. For a review and theoretical guide to DRT analysis see Gabrielsson et
al. [24, 26]. DRT models go under the name of K-PD (K for kinetic) models
in some analyses [28, 29, 35, 46, 65]. However, in the latter case the biophase
turnover rate, rather than the biophase amount, is driving the response.30

NiAc has long been used as a therapeutic agent to treat dyslipidemia. The
drug e�ectively suppresses the level of triglycerides and low-density lipopro-
tein cholesterols in plasma whilst elevating the level of high-density lipoprotein
cholesterol [16]. NiAc inhibits hydrolysis in adipose tissue by activating the G-
coupled receptor GPR109A, which in turn inhibits the adenylyl cyclase, leading35

to reduced levels of cyclic adenosine monophosphate (cAMP). The cAMP ac-
tivates the enzyme protein kinase A which phosphorylates hormone-sensitive
lipase that in turn hydrolyses triglycerides into FFA (Fig. 1) [44].

We sought to further demonstrate the utility of DRT data analysis. To do
so, we analysed a rich preclinical data set containing several individuals (a total40

of 95 rats and response-time courses) and provocations (constant rate infusions
at three dosage levels, step-wise increasing infusion at two dosage levels, and
oral administration at three dosage levels) of the NiAc - FFA interaction. Avail-
able exposure data for NiAc were intentionally excluded in order to use a DRT
approach. The developed DRT model was compared and validated by means of45
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Figure 1: Mechanism of NiAc-induced inhibition of lipolysis. NiAc activates the G-coupled
receptor GPR109A, which in turn inhibits the adenylyl cyclase, reducing the production of
cyclic adenosine monophosphate (cAMP) from adenosine triphosphate. cAMP activates pro-
tein kinase A, which phosphorylates hormone-sensitive lipase, thereby regulating the hydroly-
sis of triglycerides into FFA. Thus, NiAc binding will inhibit lipolysis leading to reduced levels
of FFA. Adapted from O�ermanns 2006 [44].

exposure-driven kinetic/dynamic results, where the pharmacokinetic properties
of NiAc had been thoroughly characterized [3].

The applied pharmacodynamic model is an extended and signi�cantly im-
proved version of a previously utilised feedback model [2, 4, 6, 25, 59]. This
second-generation feedback model uses an integral feedback control mechanism50

to capture the slowly developing tolerance. This model is a�ected by a biophase
model that drives the inhibitory drug-mechanism function. The biophase model
was selected using an iterative modelling approach where the biophase model
was systemically re�ned in order to better capture the dynamic behaviour seen
in the data. This study presents an approach to the development of the bio-55

phase model structure simultaneously with the pharmacodynamic model. In
light of the aforementioned, DRT analyses do not fully replace exposure-driven
analyses, particularly in safety assessment.
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2. Materials and methods

2.1. Background and data sources60

The pre-clinical data set consisted of FFA response-time series of 95 male
Sprague-Dawley rats under NiAc provocation. These data have previously been
described by Ahlström et al. [3, 5, 7, 4, 6, 33] and Tapani et al. [59]. A thor-
ough description of the animals and surgical procedure, experimental design,
and analytical assay can be found in Ahlström et al. [4].65

All experiments were designed and conducted at AstraZeneca, Mölndal Swe-
den, and approved by the Ethics Committee for Animal Experiments, Gothen-
burg, Sweden (EA 100868).

2.2. Selection process of biophase models

The DRT data analysis is based on the assumption that the pharmacological70

response contains some kind of kinetic information and is driven by NiAc in a
hypothetical biophase compartment. The �t of the pharmacodynamic model
(given in Sec. 2.4) to the data informs about the soundness of choice of the
driving biophase function. Depending on the route of administration, the input
is either approximated to be directly into the biophase (intravenous dosing)75

or absorbed into the biophase (oral dosing). The biophase model structures
were modi�ed through a series of steps where data from di�erent routes and
rates of administration were sequentially assessed (see Table 1). In a pair-
wise accept-reject procedure, two models were qualitatively and quantitatively
compared and the one considered to be the better model, in terms of goodness-80

of-�t, was selected and further challenged by more complex data (see Table 1).
The goodness-of-�t was based on the likelihood function value and by graphical
inspection of the function plots.

Step I. The �rst biophase model that was evaluated consisted of a zero-order
input into and �rst-order elimination from the biophase (Fig. 2b). To capture85

the disposition characteristics, the model was evaluated using response-time
data derived from di�erent constant-rate intravenous infusion experiments.

Step II. The next biophase model to be evaluated consisted of zero-order input
and Michaelis-Menten elimination from the biophase (Fig 2c). This model was
evaluated using the same data as in step I.90

The model that best described (in terms of goodness-of-�t) the dynamics,
using the response-time data derived from di�erent constant-rate intravenous
infusion experiments, was kept for the later stages of the biophase evolution. In
this case, the models used in step I and II had close to similar objective func-
tion values and were indistinguishable by graphical inspection of the function95

�ts. However, in accordance with the principle of Occam's razor, and by apply-
ing the Akaike Information Criterion [8], the zero-order input and �rst-order
elimination model was chosen.
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Step III. When a model for the biophase elimination model was set, response-
time data derived from experiments for di�erent oral dosages were included100

in order to address the biophase absorption. The �rst biophase absorption
model that was evaluated consisted of �rst-order input and elimination from
the biophase (Fig. 2d).

Step IV. The �nal absorption model that was evaluated consisted of Michaelis-
Menten input and �rst-order elimination (Fig 2e). This model was evaluated105

using the same data as in step III.
The model in step IV had a higher likelihood function value and a substan-

tially better �t when inspecting the function plots than the model in step III,
and was therefore selected.

2.3. The �nal biophase model110

The biophase was modelled as

dAb

dt
= Inf− k ·Ab, (1)

for intravenous administration of NiAc, with initial condition

Ab(0) = 0 (2)

where Ab denotes the biophase drug amount, k the biophase elimination rate
constant, and Inf the infusion rate to the biophase. The infusion rate was mod-
elled as a step function with either constant rate during the infusion period, or115

stepwise decreasing infusion rates, to mimic the infusion regimens used in the
experiments.

Orally administered NiAc was assumed to be eliminated from the gut ac-
cording to a Michaelis-Menten type of saturable process

dAg

dt
= −Vmax,g ·Ag

Km,g +Ag
(3)

with initial condition120

Ag(0) = D (4)

where Ag denotes the amount of drug in the gut, Vmax,g the maximal elimination
rate from the gut,Km,g the Michaelis-Menten constant (representing the amount
in the gut at half maximal rate), and D the oral drug dose. The drug amount
that is eliminated from the gastro-intestinal tract is absorbed into the biophase,
giving the biophase equation125

dAb

dt
=
Vmax,g ·Ag

Km,g +Ag
− k ·Ab (5)

with initial condition
Ab(0) = 0 (6)
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where Ab denotes the biohase drug amount and k the biophase elimination rate
constant.

2.4. Structure of the FFA feedback model

The fundamental dynamics of FFA are described in terms of a turnover130

equation
dR

dt
= k̃in − k̃out ·R (7)

where R denotes the FFA level, and k̃in and k̃out are functions describing the
lumped e�ects of NiAc, and insulin and other hormones, on the turnover and
fractional turnover of FFA, respectively. The NiAc-induced action on FFA is
described by means of an inhibitory drug mechanism function given by135

I(Ab) = 1−
Imax ·Aγb
IDγ50 +Aγb

(8)

where Ab denotes the biophase drug amount, Imax the e�cacy, ID50 the po-
tency, and γ the Hill exponent.

The FFA level in the model is a�ected by a chain of moderator compart-
ments M1, . . . ,M8. These moderator compartments represent a conglomerate
of insulin, and other hormonal, regulators of the FFA disposition. Insulin, for140

example, acts as a dual regulator on the FFA level via rapid inhibition of the
lipolysis and slow re-esteri�cation of FFA to triglycerides [23, 50, 58]. This
is captured by the dynamics of the �rst M1 and the last M8 moderator com-
partment, respectively. The moderators are described by the following set of
equations145

dM1

dt
= ktol · (R−M1)

dM2

dt
= ktol · (M1 −M2) (9)

...

dM8

dt
= ktol · (M7 −M8)

where R denotes the FFA level and ktol the fractional turnover rate of the
moderators. Consequently, all moderator compartments have the same transit
time of 1/ktol. The moderators are initially assumed to be in equilibrium with
the response, thus

M1(0) = . . . =M8(0) = R0 (10)

where R0 is the FFA baseline level. The number of moderator compartments150

selected was previously discussed by Ahlström et al. [7].
Long-term exposure to NiAc has proven to induce insulin resistance in adipocytes

[20, 47]. This is believed to be a consequence of down-regulated gene expressions
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of the insulin and β-adrenergic pathways in adipose tissue [32]. Insulin resis-
tance ultimately leads to full systemic adaptation with a FFA level that returns155

to its baseline within a few days [37, 45]. This slow and complete adaptation is
captured by an integral feedback controller, with output u(t), that slowly forces
deviating FFA levels back towards their baseline R0 despite persistent pertur-
bations such as constant rate infusion of NiAc. The integral controller is given
by160

u(t) = Ki

t∫
0

(
1− R(τ)

R0

)
dτ (11)

whereKi denotes the integral gain parameter (here-after referred to as the adap-
tation rate). The integral controller may also be expressed as a rate equation

du

dt
= Ki ·

(
1− R(t)

R0

)
(12)

with initial condition
u(0) = 0. (13)

The expanded turnover equation of FFA under NiAc provocation is given by165

dR

dt
= kin · (1 + u(t)) · 1(

M1

R0

)p · I(Ab)

− kout ·
(
M8

R0

)
·R (14)

with initial condition
R(0) = R0 (15)

where R denotes the FFA level, kin the basal turnover rate, kout the basal frac-
tional turnover rate, R0 the baseline of response, u(t) the integral controller,
p the ampli�cation factor, and M1 and M8 the �rst and last moderator, re-
spectively. The moderators are normalized in the turnover Eq. 14 with the170

baseline FFA value R0. The levels of the moderators follow the level of the
FFA according to Eq. 9. In turn, the �rst moderator M1 modi�es the turnover
rate kin, ampli�ed with the exponent p, whilst the last moderator M8 modi�es
the fractional turnover rate kout. These feedback mechanisms represent the fast
inhibition of lipolysis and the slower re-esteri�cation of FFA to triglycerides,175

triggered by insulin and other hormones, that strive to dampen �uctuations
in the FFA level. Furthermore, when the FFA level drops below the baseline
level, the integral controller, given by Eq. 11, will accumulate and provide a
positive contribution to the turnover rate kin of FFA. Similarly, when the FFA
level increases and rises above the baseline level, the integral controller will ac-180

cumulate and provide a negative contribution to the turnover rate. The full
pharmacodynamic model structure is depicted in Fig 3.
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2.5. Initial parameter estimates

At time zero, before administration of NiAc, the system is in steady-state,
with the moderators set at R0. Consequently, the turnover equation (Eq. 14)185

pre-NiAc administration is given by

dR

dt
= kin − kout ·R0 = 0. (16)

A simple rearrangement gives the relation

R0 =
kin
kout

(17)

and hence the system may be simpli�ed with one of the parameters R0, kin, or
kout removed in the parameter estimation. In this study, kin was estimated as a
secondary parameter from the product of R0 and kout. The initial estimate of190

the FFA baseline level R0 was taken as the mean response at time zero.
Since the minimum FFA level is close to zero, initially for high NiAc dosages,

we conclude that NiAc has a high e�cacy and that Imax is close to 1. Further-
more, for high NiAc infusion rates, the inhibitory drug-mechanism function
becomes saturated whilst the moderators are initially in steady-state with the195

response. Using this, and the initiate estimate of Imax Eq. 14 can be approxi-
mated as

dR

dt
≈ −kout ·R (18)

or
R(t) ∼= R0e

−koutt. (19)

By means of this relation, kout can be estimated from the initial down-swing of
the response on a semi-logarithmic scale.200

The Hill exponent γ and the ampli�cation factor p were initially set to 1
since little was known about the respective parameter values. The remaining
parameters were estimated from simulations of the system.

2.6. Modelling random e�ects and residual variability

The extent of the data set allowed for mixed-e�ects to be included in the205

model, i.e., speci�c parameter values were allowed to vary within the population.
To identify which parameters had a signi�cant spread in the population, individ-
ual parameter �tting was applied. The �ve parameters with highest variability,
in terms of coe�cient of variation, were then selected as individual parameters;
the rest were considered as population parameters. The parameters chosen to210

vary in the population were k, Ki, R0, kout, and ktol. These parameters were as-
sumed to be uncorrelated (to simplify the model) and log-normally distributed
(to keep the parameters positive).

The individual parameter estimates are referred to as Empirical Bayes Estimates
(EBE's) and their individual �ts and the model assumptions were quanti�ed by215

their corresponding η-shrinkage [51, 13].
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2.7. Parameter estimation

The parameter estimation of the DRT model in this study was performed
using a mixed-e�ects modelling framework implemented in Mathematica, devel-
oped at the Fraunhofer-Chalmers Research Centre for Industrial Mathematics220

(Gothenburg, Sweden) [9]. This framework is designed to estimate parameters
in non-linear mixed e�ects models where the underlying dynamical system is
either described by a set of ordinary or stochastic di�erential equations. The
framework relies on the �rst-order conditional estimation (FOCE) [38], with or
without interactions, to estimate the individual likelihoods of the population225

likelihood function. The argument that maximises the population likelihood
function is found using the Broyden�Fletcher�Goldfarb�Shanno algorithm [43]
where the gradient of the objective function is calculated using the so-called
sensitivity equations.

3. Results230

Observed response-time series with corresponding population model �ts and
90% Monte Carlo prediction intervals [49] are illustrated in Fig. 4. The FFA
concentrations were suppressed in all animals receiving NiAc. A clear adapta-
tion towards the FFA baseline was only seen for the individuals that received a
300min constant rate infusion of NiAc (Fig. 4d-4f). This functional adaptation235

was more pronounced the higher the infusion rate. All infusion regimens gave
rise to a rebound e�ect, i.e., the FFA level overshoots the initial baseline, after
the infusions were stopped. The rebound e�ect was more pronounced the higher
the infusion rate. This e�ect was followed by apparent oscillations in the FFA
level around the baseline, which were more pronounced with the extended NiAc240

infusion regimens (longer duration of the infusions and higher NiAc doses). The
rats that received an oral dose of NiAc experienced an FFA drop followed by an
approximately constant FFA level (Fig. 4i-4k). The higher the dose, the longer
the rats stayed at a suppressed and approximately constant FFA level. This was
followed by rebound and oscillations. The suppression of FFA, the occurrence245

of rebound, and the extent of the oscillations were more pronounced the higher
the oral dose.

The estimated population biophase amount-time courses are illustrated in
Fig. 5. For the constant rate NiAc infusions, the biophase amount quickly
reached steady-state (Fig. 5a-5f). The wash-out kinetics were rapid with a half-250

life of around 2min. For the highest oral doses, the biophase amount declined
in a non-linear fashion post-peak due to absorption-rate limited elimination of
NiAc (Fig. 5k).

Observed individual FFA response-time series with individually �tted FFA
response levels are illustrated in Fig. 6 for one individual per administration255

route and rate. The model captured the individual behaviour for all individu-
als. Speci�cally, the slow adaptation, in the individuals that received a 300-min
infusion of NiAc, was captured by the integral feedback control present in the
pharmacodynamic model (Fig. 6d-6f).
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The �tted population parameters and inter-individual variations with cor-260

responding relative standard errors for the full system are illustrated in Table
2. The biophase elimination rate constant k and the fractional turnover rate of
FFA kout are of the same order of magnitude, indicating little to no time-delay
between biophase kinetics and FFA dynamics. Since the absorption into the
biophase is non-linear, we observed typical absorption-rate limited elimination265

at higher oral doses of NiAc. The estimated Km,g of about 40 µmol kg−1 implies
that the two higher oral doses (81.2 and 812 µmol kg−1) approach and exceed
saturation.

The e�cacy parameter Imax was estimated as 0.893 < 1; therefore, NiAc
cannot completely suppress FFA levels. The estimated biophase potency ID50270

shows that the drug-mechanism function (Eq. 8) will be saturated at the highest
infusions and for all the oral doses (Fig. 5). The estimated Hill exponent γ indi-
cates a steep NiAc biophase amount - FFA response relationship at equilibrium.
The rate constants kout, ktol, and Ki all have di�erent orders of magnitude, and
thus act over di�erent time-scales. Half-lives for the three rate constants with275

90% non-parametric bootstrap prediction intervals [18] are given in Table 3.
The pivotal systems (kout, ktol, Ki, p) and drug parameters (Imax, γ) were

compared to estimates from an exposure-driven analysis, using the same dy-
namic model. The estimates are given in Table 4.

3.1. Model predictions280

By using the predicted population parameters, we explored the long-term ef-
fects of NiAc provocation on FFA level for the infusion rate of 0.17 µmol kg−1 min−1

(Fig. 7), aiming at a therapeutic plasma concentration of NiAc of 1µmol [4].
The model predicted 90% adaptation within approximately 10 days of constant
NiAc exposure. The e�ect of the fast moderator (M1) feedback can be seen im-285

mediately after the initial drop, where the system rapidly returns towards the
baseline. The e�ect of the slower moderator feedback (M8) is seen as a slower
terminal return with oscillations in the FFA level. The e�ect of the integral
feedback controller is seen as the slow return to baseline over time.

3.2. Structural identi�ability290

The model structure was proven to be structurally locally identi�able. Iden-
ti�ability was tested using the Exact Arithmetic Rank (EAR) approach [11,
36, 48]. This approach requires that the functions in the system of di�erential
equations are rational polynomial expressions in the variables and parameters.
In this study, the inhibitory drug-mechanism function and the feedback func-295

tion of the �rst moderator compartment did not ful�l this requirement since
the state variables were raised to the powers of γ and p, respectively (which
are real-valued). However, this problem is solved by re-writing the system in
rational form by the introduction of auxiliary variables [40]. For example, let

B(t) = Aγb(t) (20)

B(0) = B0 (= Aγb(0)). (21)

10



Then we have that300

dB

dt
= γ

B(t)

Ab(t)
· dAb

dt
, (22)

and by introducing the parameter ĨD50(=ID
γ
50) the non-rational functions in

the inhibitory drug-mechanism function can be written as

1− Imax ·B(t)

ĨD50 +B(t)
(23)

which is a rational expression of the parameters and the variables.

3.3. Shrinkage analysis

Shrinkage analysis was used in order to quantify the individual parameter305

assumptions (log-normality) and to quantify the model �ts [51]. The η-shrinkage
of the EBE's are given in Table 2. The standard deviation of the residual
additive error and the ε-shrinkage for the infusion and oral data are given in
Table 5.

4. Discussion310

DRT data analysis has previously proved to be an alternative approach to
exposure-driven modelling when exposure data are sparse or absent [14, 22, 21,
24, 26, 35, 41, 64, 65]. The technique has been applied in studies of novel systems
where the pharmacodynamic response behaves non-linearly, where time-lags are
present, and when functional adaptation is manifested [24]. These examples315

demonstrate the potential of DRT modelling in characterizing mechanisms of
action of complex pharmacological systems. The present study extends the util-
ity of a non-linear biophase model, permitting the description of more complex
absorption kinetics. The non-invasiveness of DRT analysis promotes its use
when excessive sampling is prohibited (small animals, paedriatic populations)320

[60].

4.1. DRT modelling

DRT data analysis typically requires response-time series with higher resolu-
tion than traditional traditional exposure-driven studies. This is because kinetic
information in response-time data are sought for the biophase turnover.325

In contrast to exposure-driven pharmacodynamic modelling, the biophase
kinetics and the pharmacodynamic properties of a DRT model must be esti-
mated simultaneously. This may in some instances lead to di�culties in sepa-
rating confounding factors originating from either the concentration-time or the
response-time course or both. If, for example, drug absorption and disposition330

is highly non-linear this may confound the interpretation of nonlinear pharma-
coynamics. Therefore, a priori knowledge about the mechanism(s) of action is
necessary for construction of an adequate biophase model.
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4.2. Strategy when selecting the biophase model

The structure of the biophase model is preferably derived through a series335

of steps where data from di�erent administration routes are sequentially imple-
mented and the biophase is structure re�ned if necessary. In this way, di�erent
properties, for example elimination rate and absorption rate, can be addressed
separately.

In this study, the intravenous data were initially analysed in order to ad-340

dress the biophase disposition. Both a linear �rst-order and a Michaelis-Menten
elimination model were successfully �tted to the data. The two models had ap-
proximately the same objective function values and �tted the data equally well
when the function plots were inspected graphically. However, when the AIC
was applied, the simpler model was preferred, and therefore selected. The sim-345

ilarity between the linear �rst-order and Michaelis-Menten elimination models
was due to the high estimate of the Michaelis-Menten constant, in comparison
to the biophase amounts, rendering an approximately linear elimination rate at
all dose levels.

When the disposition model was set, oral data were included and the absorp-350

tion process into the biophase was assessed. Both a �rst-order and nonlinear
Michaelis-Menten absorption model were �tted to the data. The �rst-order
absorption model failed to capture the full dynamic behaviour of the data in
that it systematically over-predicted the response-time course for the highest
oral dose (812 µmol kg−1). This problem was resolved by the Michaelis-Menten355

absorption model that also captured the absorption-rate limited elimination.

4.3. The NiAc/FFA DRT model

The model captures the general trends of the populations and the Monte
Carlo prediction intervals span most of the individuals.

The population �ts in Fig. 4 indicate that the population medians di�er360

slightly from the individual behaviours for the infusion of 0.033 µmol kg−1 min−1

(Fig. 4a), which is predicted to be higher than the individual outcomes, and
the oral dose of 81.2 µmol kg−1 (Fig. 4i), which is predicted to be lower than
the individual outcomes. This di�erence is believed to be an artefact of inter-
occasional variability since these populations have lower (for the infusion of365

0.033 µmol kg−1 min−1), respectively higher (for the oral dose of 81.2 µmol kg−1),
baseline values than the estimated population baseline. A potential way to avoid
this issue is to model the inter-occasional variations.

The eight moderator compartments were chosen to model the slow and fast
action of insulin and other hormones. A more eloquent way would be to optimize370

the number of compartments as a system parameter or use another time-delay
relation, such as the actual insulin concentration-time course. This is a matter
for future model re�nement.

The integral feedback control, moderator feedback, and the turnover of FFA
are shown to act over di�erent time-scales (Table 3). Turnover of FFA occurs375

within minutes, the feedback triggered by insulin and other hormones operates
within 30 minutes, while the slow buildup of NiAc tolerance occurs within a
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couple of hours.
The model predicts full system adaptation for long-term constant rate infu-

sions with the therapeutic infusion rate of 0.17 µmol kg−1 min−1 (Fig. 7). This380

illustrates the e�ect of the integral feedback control, which forces the response
back to baseline over time. Homeostatic behaviour has been proven experimen-
tally in studies of long-term NiAc provocation [45]. However, 90% of adaptation
typically occurs within 24 h at therapeutic concentrations of NiAc. A better es-
timate for the adaptation Ki is expected when longitudinal data are generated385

and added to the analysis.
In general, there is high consistency between our derived system parameter

estimates and the ones from exposure-driven analysis. The slight deviations are
still within reasonable biological limits given the parameter uncertainty (Table
4). This comparison strengthens the use of DRT analysis as a complementary390

technique in studies where limited exposure data are available.
The proposed biophase model is per se a substantial simpli�cation in com-

parison to the original multi-compartment plasma kinetics (exposure) model
that has been applied by others (Iwaki et al. [34], Ahlström et al. [7] and
Tapani et al. [59]). Therefore, dose predictions, impact of di�erent dosing regi-395

mens, or assessment of safety margins will probably require an exposure-driven
approach.

This study has demonstrated the utility of DRT modelling by developing
biophase-driven pharmacodynamic models. The biophase structure was chal-
lenged by means of di�erent rates, routes, and modes of administration, on top400

of the pharamcodynamic complexities.
We envision that DRT data analysis will have great signi�cance on phar-

macological responses (biomarkers) used in the future assessment of dynamics.
DRT analysis has proven to be an acceptable alternative to exposure-driven PD
modelling in situations where plasma concentrations are sparse or missing, or405

if extreme di�erences are seen for the initial and terminal disposition phases in
plasma (such as with oligonucleotides, where rate and extent of exposure vary
signi�cantly between tissues [15, 31]).

4.4. Control theory

In this study, techniques from systems and control theory were utilized to410

describe feedback mechanisms and systemic adaptation. By applying integral
feedback control the system demonstrated full adaptation under constant long-
term NiAc pressure (see Fig. 7). In fact, integral feedback control is a prereq-
uisite for perfect adaptation in systems that experience constant disturbance
[10, 56].415

The control theory feature of the pharmacodynamic model provides a sig-
ni�cant improvement in comparison to previously published NiAc/FFA models
[7, 59], and will make the model better suited for chronic regimens.

Many biological systems, experiencing adaptation when put under external
disturbance, have been successfully modelled by means of control theory tech-420

niques, including metabolic networks [30], synthetic biology [17], the osmoreg-
ulation in yeast [27, 42], and bacterial chemotaxis [12, 66]. El-Samad et al.
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showed how integral feedback control could, for example, be derived from enzy-
matic relations when the goal is to address the control of plasma calcium levels
[19]. Control theory techniques have been used sparsely within PK-PD mod-425

elling and mostly in dose control [52, 57, 61, 63, 62]. Control theory techniques
have a clear potential in modelling intrinsic control and feedback systems.

4.5. Inter-individual and intra-individual variability

When the model was �tted for each individual separately (i.e., without a
mixed-e�ects approach) the parameter estimates of R0, k, kout, ktol, and Ki430

had large coe�cients of variation, indicating that the data contained enough
information to estimate the corresponding η's of these parameters (i.e. the
individual parameters) in a mixed-e�ects approach. However, no parametric
model (e.g., normal or log-normal) was successfully matched to the distributions
of the EBE's. Regardless, a log-normal distribution was chosen to model the435

EBE's spread due the positive range of the log-normal distribution, a generic
feature expected in the parameters. Use of a log-normal model led to high
levels of shrinkage in some of the EBE's. Whilst R0 and k had low η-shrinkages,
indicating that the log-normal assumption on the parameter distributions was
reasonable, the remaining three parameters (kout, ktol, and Ki) had high η-440

shrinkages of 40 − 60%, indicating that the log-normal distribution does not
describe these parameters in a satisfactory way. Thus, one should be careful
not to over-interpret the values of the EBE's. This includes EBE vs EBE plots
or EBE vs covariate plots, which are not reliable under high levels of shrinkage.
For that reason, analyses of these kinds are omitted in this study. However,445

the estimated random e�ects are still useful when describing the data and when
extrapolating to, for example, other dosing regimens.

Both of the models used for the infusion and oral data gave reasonably low
ε-shrinkages of less than 10% indicating that the models describe the data in a
satisfactory manner without being over-�tted.450

4.6. New numerical algorithms

The new numerical algorithms used rely on sensitivity equations to calculate
the gradients in the optimization routine. This improves precision and accu-
racy extensively in comparison to �nite di�erence approximations, increasing
the chance of convergence in the parameter estimation for computer-intensive455

models [9].

5. Conclusions

A DRTmodel was successfully �tted to all time courses available of the NiAc-
induced changes in FFA in normal rats, showing the versatility of this approach.
A nonlinear biophase model was used to describe saturable absorption. Using460

moderator compartments, and systems and control theory, we captured di�erent
feedback mechanisms. The systems and control theory techniques was success-
fully applied to describe complete system adaptation under constant long-term
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exposure to NiAc. This provides a signi�cant improvement of the previously
used NiAc/FFA models and will be suited in chronic regimens. Consistency in465

pharmacodynamic parameters between biophase- and kinetic-driven studies in-
dicates potentially wider use of DRT data analysis. New numerical approaches
were successfully applied to robustly and e�ciently compute the gradients in
the nonlinear mixed-e�ects framework.

DRT analysis is generally a poorly explored area that has great potential470

and could be considered more frequently in future pharmacological studies when
drug exposure data are scarce or even lacking.
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Figure 3: Schematic structure of the pharmacodynamics of the DRT feedback model. The
pharmacodynamic model structure consists of a turnover equation coupled with a chain of
moderator compartments, with slow and rapid feedback, as well as a slow integral control
feedback. Here kin denotes the turnover rate of FFA, kout the fractional turnover rate of
FFA, ktol the turnover rate of the moderators, p the ampli�cation factor, I(Ab) the drug-
mechanism function, and M1 and M8 the �rst and last moderator, respectively. Solid lines
represent �uxes whilst the dashed lines represent �ow of information (i.e., how the di�erent
entities a�ect one another)
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Table 3: Estimated system rate constants and their corresponding half-lives (in minutes)
with 90% non-parametric bootstrap prediction intervals

Parameter Estimate Half-life 90% PIa

kout (min−1) 0.31 2.3 [1.3, 4.0]
ktol (min−1) 0.024 29 [15, 51]
Ki (min−1) 0.0017 400 [210, 710]

a90% non-parametric bootstrap prediction interval

Table 4: Comparison between the dynamic parameter estimates from the DRT study and
an exposure-driven study. The parameter estimates are given with corresponding relative
standard errors (RSE%)

Parameter DRT analysis Exposure-response anal.
kout (min−1) 0.306(8.1) 0.244(7.3)
ktol (min−1) 0.0242(5.2) 0.0222(2.7)
Ki (min−1) 0.00174(25) 0.00160(18)
p 0.819(4.7) 0.859(3.7)
Imax 0.881(2.8) 0.907(0.63)
γ 2.96(8.6) 2.36(9.2)

Figure 7: The long-term model-predicted e�ect of NiAc provocation on FFA level in normal
rats with an infusion rate of 0.17µmol kg−1 min−1 (aiming at a therapeutic NiAc concentration
of 1µmol [4]) during 10 days. The inserted �gure shows in more detail the dynamics during
the �rst day of NiAc infusion

Table 5: Model residual additive errors with corresponding relative standard errors (RSE%)
and ε-shrinkage for infusion and oral data, respectively

Data Residual add. error σ ε-shrinkage
Infusion 0.0982(14) 9.5%
Oral 0.149(5.0) 7.7%
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a
l
u
e

=
{
{
a
V
m
a
x
,
5
}
,
{
a
K
m
,
3
0
}
,
{
θ
1
,
2
}
,

{
k
b
,
0
.
3
}
,
{
K
i
,
0
.
0
0
1
}
,

{
I
D
5
0
,
0
.
0
5
}
,
{
k
o
u
t
,
0
.
3
0
}
,
{
R
0
,
0
.
7
0
}
,
{
γ
,
1
}
,
{
k
t
o
l
,
0
.
0
3
}
,
{
p
,
1
}
}
;

ω
S
t
a
r
t
V
a
l
u
e

=
{
{
ω
1
1
,
0
.
1
}
,
{
ω
2
2
,
0
.
1
}
,
{
ω
3
3
,
0
.
1
}
,
{
ω
4
4
,
0
.
1
}
,
{
ω
5
5
,
0
.
1
}
}
;

s
S
t
a
r
t
V
a
l
u
e

=
{
{
s
1
,
0
.
1
}
,
{
s
2
,
0
.
1
}
,
{
s
3
,
0
.
1
}
}
;

f
u
l
l
P
a
r
a
m
e
t
e
r
L
i
s
t

=
J
o
i
n
[
p
a
r
a
m
s
,
{
s
1
,
s
2
,
s
3
}
]
;

E
st

im
at

io
n 

of
 p

ar
am

et
er

s

{
p
E
x
p
V
a
l
u
e
s
,
p
V
a
l
u
e
s
,
h
i
s
t
o
r
y
}
=

F
i
t
P
o
p
u
l
a
t
i
o
n
M
o
d
e
l
[
d
a
t
a
,
m
o
d
e
l
s
,
l
i
s
t
O
f
I
n
p
u
t
s
,
p
a
r
a
m
e
t
e
r
S
t
a
r
t
V
a
l
u
e
,

{
S
L
i
s
t
,
s
S
t
a
r
t
V
a
l
u
e
}
,
{
r
a
n
d
o
m
P
a
r
a
m
s
,
Ω
,
ω
S
t
a
r
t
V
a
l
u
e
}
,
t
,
f
u
l
l
P
a
r
a
m
e
t
e
r
L
i
s
t
]
;

2
   

 
E
s
t
im

a
t
io

n
 c

o
d
e
.n

b
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