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CONTROLLING NONLINEAR INFINITE-DIMENSIONAL SYSTEMS

VIA THE INITIAL STATE

NEIL D. EVANS∗

Abstract. A control problem is considered for nonlinear time-varying systems described by
partial differential equations, in which the control acts only via part of the initial state. The problem
is to drive part, or all, of the process to some desired state in a specified time. The motivation
for such systems are control problems arising in medicine and biology that involve spatial or age
characteristics, or time-delays. The approach taken is to formulate the problem as a fixed point
problem for a suitable abstract differential equation and then apply a version of the Contraction
Mapping Theorem. Conditions are imposed so that the problem is well defined and a weaker form
of solution exists. The solution obtained ensures that the target state is achieved on the range of a
linear operator arising from a linearisation of the system about an initial estimate for the control.
Although the Contraction Mapping Theorem yields a constructive method to determine the solution
an alternative, more direct, approach is presented, which relies on an iterative scheme for the control
and the original dynamics.

Key words. distributed parameter systems, initial state control, fixed point theorems

AMS subject classifications. 93C10, 93C20, 93C25

1. Introduction. The control problem which this paper considers is to drive
some part (or all) of a particular process to some desired state in a specified time,
when the control acts only via the initial state. For example, in [7] the problem of
controlling the spread of rabies in a fox population was considered where the initial
distribution of vaccinated and/or culled foxes had to be chosen such that the combined
distribution of infected foxes was some desired target. In this case the parts of the
system that were controlled were the population densities of incubating and rabid
foxes, while the control represented the distribution of vaccinated and/or culled foxes
produced via a suitable intervention. In [7] the control problem was formulated in
terms of an abstract differential equation with the part of the state to be controlled
as an output. Thus the problem became that of driving the output of the system to
a desired value in a specified time using only an input term in the initial condition.

This paper addresses the problem in [7] in a more general setting that permits
unboundedness of the nonlinearity and proposes an alternative, iterative scheme for
determining the required control. In addition, the control problem is generalised
slightly by permitting multiple impulsive inputs. The mathematical formulation of
the control problem is as follows: Consider the system of differential equations on a
Banach space Z given by the following

żi(t) = f(t, zi(t)), zi(τi) = zi−1(τi) +Bui, i = 1, . . . ,m,

where f is nonlinear, the m inputs, u1, . . . , um, are applied at times 0 = τ1 < τ2 <
· · · < τm, and z0(0) = z0 denotes the known, given initial state of the equation
without input. The linear operator B determines how the control acts via the given
state. he states from these systems of equations can be pieced together to form the
trajectory z(t) = zi(t), for t ∈ [τi, τi+1), i = 1, . . . ,m, where τm+1 = T for some fixed
time T .

The controls, ui, are assumed to belong to the same Hilbert space U such that
B ∈ L(U,Z). Therefore the treatment of this paper is confined to the situation
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2 N.D. EVANS

involving bounded inputs. If, for the underlying system, it is not possible to affect
the state at every point of the spatial domain so that the controls are restricted to only
a few points or parts of the boundary the resulting model will involve an unbounded
input operator. Following the approach of [16] for systems with unbounded inputs and
outputs, it can be assumed that there exists a Banach space Z ⊂ Z1 with continuous
injection and dense range. The input operator is then assumed to be bounded from
U to Z1.

The output associated with the differential equation is given by

y = Czm(T ),

where T is the specified time and the output takes values in a Hilbert space Y . The
control problem is to choose the ui such that the resulting output is y = yd, the
desired target output.

Suppose that initial guesses are made for the control, ûi say, with associated
differential equations

˙̂zi(t) = f(t, ẑi(t)), ẑi(τi) = ẑi−1(τi) +Bû, (1.1)

where ẑ0(0) = z0 and that these equations have continuously differentiable solutions
ẑi(·). While this control might be a good initial guess there is no reason to assume
that the output of this system, Cẑm(T ), is the desired final state. Therefore a local
approximation is made by setting zi = ẑi + zi and ui = ûi + ui to get

żi(t) + ˙̂zi(t) = f(t, zi(t) + ẑi(t)), zi(τi) = zi−1(τi) +Bui, (1.2)

for i = 1, . . . ,m, where z0(0) = 0. Now suppose that f is differentiable around the
trajectory {(t, z′(t)) : t ∈ [0, T ]} in the sense that

f(t, zi) = f(t, ẑi(t)) +A(t) (zi − ẑi(t)) +N(t, (zi − ẑ(t))) (1.3)

for some piecewise continuous A(·) such that A(t) is an unbounded linear operator on
Z for each t ∈ [0, T ]. In the following, to permit unboundedness of the nonlinearity
on Z, it will be assumed that there are Banach spaces Z and Z such that that
N : [0, T ] × Z −→ Z. More precise assumptions will be introduced in the following
section.

Equation (1.2) therefore can be rewritten as

żi(t) = A(t)zi(t) +N(t, zi(t)), zi(τi) = zi−1(τi) +Bui, (1.4)

for i = 1, . . . ,m, where z0(0) = 0.
In §3 the first stage of the control problem is considered, namely the construction

of inputs that give rise to a mild solution with the desired properties. A fixed point
theorem is applied to give the solution using the following version of the Contraction
Mapping Theorem from [2]:

Theorem 1. Suppose that ϕ : W −→ W is a mapping between Banach spaces
that satisfies

‖ϕx− ϕy‖ ≤ k‖x− y‖, 0 ≤ k < 1

(k a constant), for x, y ∈ D, a subset of W . If both the ball

S =

{

w ∈W : ‖w − w1‖ ≤ k

1− k
‖w1 − w0‖

}
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and w0 lie in D, then the iterative process wi+1 = ϕwi converges to a unique fixed-
point in D.

The earliest use of fixed point methods in a control context was in [8] for finite-
dimensional systems. In [4] the application of fixed point methods to finite-dimensional
time-varying systems was presented, and this approach has been extended to infinite-
dimensional systems in [11]. An early review of the use of fixed point methods in
nonlinear control and observation is provided in [1].

In §2 the general framework for considering the control problem is proposed and
the control problem itself is solved in §3 using a fixed point approach. An equivalent,
but less intuitive, method for constructing the control is given in §4. This method
exploits the original system dynamics and uses an adaptive scheme to give the so-
lution. This method readily lends itself to numerical simulation and constructs the
control directly rather than via a mild solution (as is the case in the fixed point ap-
proach). Motivated by the example in [7] a class of systems is considered in §5 in
which the linear part of the dynamics arises from a time-varying perturbation of the
(time-invariant) generator of a strongly continuous semigroup. In contrast with [7]
the perturbation is permitted to exhibit unboundedness comparable with that of the
nonlinearity. Finally to illustrate the application of the approach proposed in this
paper a case study is considered in §6, in which the problem of determining a dosing
schedule to control the viral load in a HIV patient is solved. The solution exploits
the iterative approach of §4 applied to the numerical solution of the system delay-
differential equations. This case study illustrates how even the single input version
(m = 1) of the theory can be applied to yield results for multiple inputs. For the
case study this is achieved because the inputs affect states that appear linearly in the
model so that the system can be formulated in terms of a delay differential system.

2. Mathematical framework. In this section the general system given by

żi(t) = A(t)zi(t) +N(t, zi(t)), zi(τi) = zi−1(τi) +Bui, (2.1)

is considered in order to provide an abstract framework in which to tackle the control
problem. Consider for the moment the linear part of (2.1), with arbitrary initial state,
given by

żi(t) = A(t)zi(t), zi(s) = zs, (2.2)

with s ∈ [0, T ]. In the time-invariant case, if A is a densely defined linear operator on
Z with non-empty resolvent set ρ(A), then it is well known that the Cauchy problem
(2.2) is well-posed if and only if A is the generator of a strongly continuous semigroup
[15]. In the time-varying case the situation where A(t) is the generator of a strongly
continuous semigroup for each t ∈ [0, T ] was considered in [17] and that when A(t)
is strongly continuous with domain independent of t in [10]. Adopting the setting in
[9], who weakened the latter assumption, the following assumption is made:

Assumption 1. A(t) is a linear operator on Z for all t ∈ [0, T ] with domain
D(A), which is independent of t and dense in Z. For all z ∈ D(A) the map t 7→ A(t)z
is continuous except on a finite set of discrete points J . For each τ ∈ J and z ∈ D(A)
the one-sided limits limt↓τ A(t)z, limt↑τ A(t)z exist.

By allowing A(t) to be only piecewise continuous Hinrichsen and Pritchard [9]
were able to slightly weaken the definition appearing in the literature for the time-
varying Cauchy problem given by (2.2) to be well-posed. In parallel with the time
invariant case the Cauchy problem (2.2) is well-posed if and only if there is a strong
evolution operator (U(t, s))(t,s)∈∆(T ) with generator A(·) [9].
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For the full problem (2.1), even in the time-invariant case with bounded non-
linearity, in general it cannot be guaranteed that the resulting Cauchy problem is
well-posed. However, if N(·, z(·)) ∈ PC(s, T ;Z) and the Cauchy problem is well-
posed with solution z(·), and strong evolution operator U(t, s), then

z(t) = U(t, s)zs +

∫ t

s

U(t, σ)N(σ, z(σ)) dσ.

Therefore, in the following, the control problem will first be considered with respect
to the corresponding mild solutions:

zi(t) = U(t, τi) (zi−1(τi) +Bui) +

∫ t

τi

U(t, s)N(s, zi(s)) ds, (2.3)

for i = 1, . . . ,m, where z0(0) = 0 and ui ∈ U , a Hilbert space such that B ∈ L(U,Z)
and U(t, s) is a mild evolution operator on Z. Suppose that the following assumptions
hold:

TV 1. Z ⊂ Z are Banach spaces such that the nonlinearity N : [0, T ]× Z −→ Z
maps functions in Lp(0, T ;Z) to functions in Lq(0, T ;Z) for real numbers p, q ≥ 1 in
the sense that

(N z) (·) = N(·, z(·)) ∈ Lq(0, T ;Z) whenever z(·) ∈ Lp(0, T ;Z).

TV 2. U(t, s) is a mild evolution operator on all three spaces Z, Z and Z.
TV 3. There exists a k1(·) ∈ Lr(0, T ), with 1

r + 1
q = 1

p + 1, such that for all

(t, s) ∈ ∆(T ), U(t, s) ∈ L(Z,Z) and

‖U(t, s)z‖Z ≤ k1(t− s)‖z‖Z for all z ∈ Z. (2.4)

Let K1 = ‖k1(·)‖Lr(0,T ).
TV 4. There exists a k2(·) ∈ Lp(0, T ) such that for all (t, s) ∈ ∆(T ) and u ∈ U ,

U(t, s)Bu ∈ Z and

‖U(t, s)Bu‖Z ≤ k2(t− s)‖u‖U . (2.5)

Let K2 = ‖k2(·)‖Lp(0,T ).
The above assumptions ensure that the following operator is well-defined (in Z)

(MUh) (t) =

∫ t

0

U(t, s)h(s) ds for all h(·) ∈ Lq(0, T ;Z). (2.6)

Moreover, the map t 7→ (MUh) (t) is continuous with respect to ‖·‖Z and the following
notion of weak solution is well defined for (2.3):

Definition 1. A mild solution of (2.3) is any piecewise-continuous function
z(·) ∈ PC(0, T ;Z) (with discontinuities at t = τi) such that z(t) ∈ Z for almost all
t ∈ [0, T ], z(·) is Lp-integrable in Z on every interval [0, t] and (2.3) is satisfied for
all t ∈ [0, T ].

Therefore a mild solution, z(·), of (2.3) is sought such that the output given by

y = Cẑ(T ) + Cz(T ) = Cẑm(T ) + Czm(T ), (2.7)
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where y ∈ Y for a suitable Hilbert space Y , is some specified value yd. For consider-
ations to be discussed in greater detail later, it is necessary to assume that the range
of φ is a closed subspace of Y , and therefore it might not be possible to consider C as
a bounded linear operator from Z to Y . Therefore, the following assumption is made:

TV 5. There exists a Banach space V ⊂ Z, with continuous injection, such that
C ∈ L(V, Y ). In addition, for all k = 1, . . . ,m and u ∈ U , U(T, τk)Bu ∈ V , with
constant K3 such that

‖U(T, τk)Bu‖V ≤ K3‖u‖U .

There exists a constant K4 such that (MUh) (T ) ∈ V and

‖ (MUh) (T )‖V ≤ K4‖h‖Lq(0,T ;Z)

for all h ∈ Lq(0, T ;Z).

3. The control problem. Considering for the moment only the linear dynam-
ics, the control problem is to find ũi (i = 1, . . . ,m) such that the output

y = Cẑ(T ) + CU(T, τm) (Bũm + zm−1(τm))

= Cẑ(T ) +

m
∑

k=1

φkũk where φk = CU(T, τk)B,

is the desired value yd. For the Hilbert space U = Um with inner product 〈u, v〉U =
∑m

k=1〈uk, vk〉U , let Φ : U −→ Y be the linear map defined by Φ(ũ1, . . . , ũm) =
∑m

k=1 φkũk. If yd − Cẑ(T ) ∈ ranΦ then a solution exists. In particular, if Φ is
invertible, then there is a unique solution given by

ũ = (ũ1, . . . , ũm) = Φ−1 (yd − Cẑ(T )) .

Therefore the linear part of the system can be steered to {y ∈ Y : y − Cẑ(T ) ∈ ranΦ}.
In the literature [12, 1] it is usual to consider the nonlinear problem on this subspace,
with some suitable topology defined on it:

Lemma 1. The range of Φ is a Banach space R(Φ), with a suitably defined norm.
Proof. Since Φ is a bounded linear operator, define the space X by

X := U/ kerΦ.

Since kerΦ is closed X is a Banach space under the norm

‖[u]‖X = inf
u∈[u]

‖u‖U = inf
Φũ=0

‖u+ ũ‖U .

Now define Φ̃ : X −→ Y by

Φ̃[u] = Φũ ũ ∈ [u].

Then Φ̃ is injective and

‖Φ̃[u]‖Y ≤ ‖Φ‖ ‖[u]‖X .

Now define a norm on the range of Φ̃ by

‖v‖R(Φ) := ‖Φ̃−1v‖X .
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This norm is equivalent to the graph norm on D(Φ̃−1). Since Φ̃ is bounded and
D(Φ̃)(= X) is closed it holds that Φ̃ is a closed linear operator and so Φ̃−1 is also
closed [18]. Therefore it follows that R(Φ) is a Banach space with the above norm.

For any yd ∈ Y such that yd−Cẑ(T ) ∈ R(Φ), since U is a Hilbert space and kerΦ
is closed the infimum in the definition of ‖ · ‖X is attained and so there is a u ∈ U
such that u = Φ̃−1 (yd − Cẑ(T )) that minimises ‖u‖U over all controls that achieve
y = yd. Thus a more general form of the linear problem is to find a least squares
solution that minimises

‖ [yd − Cẑ(T )]− Φu‖Y (3.1)

over all choices of u ∈ U , and with the smallest norm in U . This control, provided
yd − Cẑ(T ) ∈ ranΦ + (ranΦ)

⊥
, is given by [14]

ũ = Φ† (yd − Cẑ(T ))

where Φ†is the generalised inverse of Φ.
For the nonlinear problem this suggests that the control given by

ũ = Φ†

(

yd − Cẑ(T )− C

∫ T

0

U(T, s)N(s, z(s)) ds

)

(3.2)

be applied. However this is an implicit expression since the state z(·) is dependent on
the control. If a solution exists then the output is driven to the following

y = ΦΦ†yd +
(

I − ΦΦ†)
[

Cẑ(T ) + C

∫ T

0

U(T, s)N(s, z(s)) ds

]

. (3.3)

If Φ is invertible then Φ† = Φ−1 and (3.3) reduces to y = yd. If Φ is not invertible,
but yd − Cẑ(T ) ∈ ranΦ, then (3.3) reduces to the following:

y = yd +
(

I − ΦΦ†)
[

C

∫ T

0

U(T, s)N(s, z(s)) ds

]

.

Remark 1. The first term of (3.3), in the case where the range of Φ is closed, is
the orthogonal projection of yd onto ranΦ and the second is the orthogonal projection
onto ranΦ⊥. Therefore, on the range of Φ, the control drives the system to the desired
final state.

For notational convenience denote by Ũ(t, s) the family of bounded linear opera-
tors defined as follows:

Ũ(t, s)z =

{

U(t, s)z t ≥ s

0 t < s

for z ∈ Z. Therefore the controllability problem is reduced to that of finding a fixed
point of the following map, ψ : Lp(0, T ;Z) −→ Lp(0, T ;Z):

(ψz)(t) =

m
∑

k=1

Ũ(t, τk)Bũk + (MUN z) (t), (3.4)

where ũ = Φ† (yd − Cẑ(T )− C (MUN z) (T )). Once a fixed point has been found this
can be readily substituted into the right-hand side of (3.2) to find the control. The



CONTROLLABILITY VIA THE INITIAL STATE 7

following result from [14] is important for the main theorem of this paper because
it characterises when the generalised inverse of a bounded linear operator is itself
bounded.

Lemma 2. Let Φ : U −→ Y be a bounded linear operator between two Hilbert
spaces. Then the generalised inverse Φ† is bounded if and only if the range of Φ is a
closed subspace of Y .

Theorem 2. Consider the nonlinear system governed by

z(t) =
m
∑

k=1

Ũ(t, τk)Buk +

∫ t

0

U(t, s)N(s, z(s)) ds, (3.5)

where U(t, s) is a mild evolution operator on Z, with output given by

y = Cz(T ) + Cẑ(T ) (3.6)

for a given output Cẑ(T ). Suppose that the following conditions are satisfied:
1. Assumptions TV 1–5 hold.
2. The range of φ is a closed subspace of Y .
3. The nonlinearity N satisfies the following Lipschitz condition on the ball of

radius a′ about the origin, Ba′ :

‖N z −Nw‖Lq(0,T ;Z) ≤ k(‖z‖, ‖w‖)‖z − w‖Lp(0,T ;Z) (3.7)

for each z, w ∈ Ba′ and some continuous symmetric function k(·, ·) : R+ ×
R

+ −→ R
+ such that k(0, 0) = 0.

4. Choose a ≤ a′ such that

(√
mK2‖Φ†‖ ‖C‖K4 +K1

)

K̃ = K < 1 (3.8)

where K̃ = sup0≤θ1,θ2≤a k(θ1, θ2).
Suppose that yd ∈ Y satisfies

‖yd − Cẑ(T )‖Y ≤ a (1−K)√
mK2‖Φ†‖ . (3.9)

Then there exists a control ũ of the form (3.2) that drives the output (3.6) to yd on
the range of Φ.

Proof. The first step of the proof is to show that ψ is a contraction on Ba:

‖ψz − ψw‖Lp(0,T ;Z) ≤
√
mK2‖Φ†C (MU (Nw −N z)) (T )‖U
+ ‖ (MU (N z −Nw)) (·)‖Lp(0,T ;Z)

≤
(√
mK2‖Φ†‖ ‖C‖K4 +K1

)

K̃ ‖z − w‖Lp(0,T ;Z).

Therefore by (3.8) ψ is a contraction on Ba.
Since the initial guess for the control has been included in the initial state for ẑ,

it seems natural to consider the iterative process given by zn = ψzn−1 with z0 = 0.
Then it is seen that

z1(t) =
m
∑

k=1

Ũ(t, τk)Buk, where u = Φ† (yd − Cẑ(T )) .
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Let S =
{

z ∈ Lp(0, T ;Z) : ‖z − z1‖Lp(0,T ;Z) ≤ K
1−K ‖z1‖Lp(0,T ;Z)

}

. This will be con-

tained in the ball of radius a if

(

1 +
K

1−K

)

‖
m
∑

k=1

Ũ(·, τk)Buk‖Lp(0,T ;Z) ≤ a,

which will be the case if

1

1−K

√
mK2‖Φ†‖ ‖yd − Cẑ(T )‖Y ≤ a.

Rearranging this inequality yields (3.9) and so applying Theorem 1 proves the exis-
tence of a unique fixed point for ψ. Substituting this fixed point into (3.2) gives the
control ũ.

Note that the output resulting from applying the control given by the last theorem
is only guaranteed to coincide with the desired state on the range of φ. If there exists
a control ũ such that the output, when applying this control, is the desired state, then
it remains an open question whether the previous theorem gives the same control.

The proof of Theorem 2 provides an iterative scheme for obtaining the fixed
point (and hence the control). In the next section a more direct method of finding
the required control (and hence the fixed point) is given.

4. Iterative method for constructing control. The constructive method of
the proof of Theorem 2 can be used to find the control that solves the control problem,
but the desired control is found indirectly from the fixed point solution. In this section
an alternative method for obtaining the control that gives rise to the solution of the
fixed point problem is constructed. The method exploits the original dynamics and
directly determines the required control without the need for further substitution.

The method used in this section is as follows: Consider the dynamical equations

zn(t) =
m
∑

k=1

Ũ(t, τk)Bu(n)k + (MUN zn) (t) (4.1)

where (as before) U(t, s) is a mild evolution operator on Z and the output is given
by the following

yn = Czn(T ) + Cẑ(T ). (4.2)

The control u(n+ 1) is defined in terms of the previous control as follows

u(n+ 1) = u(n) + Φ† (yd − yn) .

For each n ∈ N it must be shown that there exists a solution of the dynamical equation
and that the iterative scheme for u(n) converges to the required solution of the fixed
point problem.

Theorem 3. For each n ∈ N consider the nonlinear system governed by

zn(t) =

m
∑

k=1

Ũ(t, τk)Bu(n)k + (MUN zn) (t). (4.3)

Suppose that the following conditions are satisfied:
1. Assumptions TV 1–5 hold.
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2. The range of φ is a closed subspace of Y .
3. The nonlinearity N satisfies the following Lipschitz condition on the ball of

radius a′ about the origin, Ba′ :

‖N z −Nw‖Lq(0,T ;Z) ≤ k(‖z‖, ‖w‖)‖z − w‖Lp(0,T ;Z) (4.4)

for each z, w ∈ Ba′ and some continuous symmetric function k(·, ·) : R+ ×
R

+ −→ R
+ such that k(0, 0) = 0.

4. Choose a ≤ a′ such that
(√
mK2‖Φ†‖ ‖C‖K4 +K1

)

K̃ = K < 1 (4.5)

where K̃ = sup0≤θ1,θ2≤a k(θ1, θ2).
Suppose that yd ∈ Y satisfies

‖yd − Cẑ(T )‖Y ≤ a (1−K)√
mK2‖Φ†‖ . (4.6)

Then the iterative scheme u(0) = 0,

u(n) = u(n− 1) + Φ† (yd − yn−1) n ≥ 1,

gives rise to a mild solution zn of (4.3) for each n and the sequence of controls, u(n),
converges to the fixed point solution, ũ, of Theorem 2.

Proof. The theorem is proved in two steps: Firstly it is shown inductively that the
scheme gives rise to a solution zn for each n ∈ N. Then it is shown that the scheme
converges and that the limit is the fixed point solution from the previous section.

To show the existence of each solution, zn, of (4.3) Theorem 1 will be applied to
the operator Ψ : Lp(0, T ;Z) −→ Lp(0, T ;Z) given by

(Ψzn) (t) =

m
∑

k=1

Ũ(t, τk)Bu(n)k + (MUN zn) (t). (4.7)

Suppose that u(n) ∈ U satisfies

‖u(n)‖U ≤
a
(

1−K1K̃
)

√
mK2

. (4.8)

Ψ is a contraction on the ball Ba since, for z, w ∈ Lp(0, T ;Z)

‖Ψz −Ψw‖Lp(0,T ;Z) = ‖ (MUN z) (·)− (MUNw) (·)‖Lp(0,T ;Z)

≤ K1K̃‖z − w‖Lp(0,T ;Z).

Therefore by (4.5) Ψ is a contraction.
For the iterative scheme wn+1 = Ψwn, starting with w0 = 0, it is seen that

w1(t) =
m
∑

k=1

Ũ(t, τk)Bu(n)k

and so let S =

{

w : ‖w − w1‖Lp(0,T ;Z) ≤
K1K̃

1−K1K̃
‖w1‖Lp(0,T ;Z)

}

. S will be con-

tained in Ba if
(

1 +
K1K̃

1−K1K̃

)

‖
m
∑

k=1

Ũ(·, τk)Bu(n)k‖Lp(0,T ;Z) ≤ a
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which will certainly be the case if

1

1−K1K̃

√
mK2‖un‖U ≤ a

that is, if (4.8) is satisfied, and so applying Theorem 1 ensures the existence of a
unique fixed point zn of Ψ.

Trivially, since u(0) = 0 the inequality (4.8) is satisfied for n = 0 giving a solution
z0 = 0. Now inductively, if solutions, zk(t), of (4.3) exist for k < n, then

u(n) =
(

1− Φ†Φ
)

u(n− 1) + Φ† (yd − Cẑ(T )− C (MUN zn−1) (T ))

= . . . = Φ† (yd − Cẑ(T )− C (MUN zn−1) (T ))

and so

‖u(n)‖U ≤ ‖Φ†‖ (‖yd − Cẑ(T )‖Y + ‖C (MUN zn−1) (T )‖Y )

≤ ‖Φ†‖





a
(

1−K +
√
mK̃K2‖Φ†‖ ‖C‖K4

)

√
mK2‖B‖ ‖Φ†‖



 =
a
(

1−K1K̃
)

√
mK2

.

Therefore, for each n ∈ N there exists a solution zn of (4.1).
Now it is shown that the iterative scheme for u(n) converges: Observe that

‖u(m)− u(n)‖U = ‖Φ†C (MU (N zn−1 −N zm−1)) (T )‖U
≤ ‖Φ†‖ ‖C‖K4K̃ ‖zm−1 − zn−1‖Lp(0,T ;Z)

and so

‖zm − zn‖Lp(0,T ;Z) = ‖
m
∑

k=1

Ũ(·, τk)B (u(m)k − u(n)k) + (MU (N zm −N zn)) (·)‖Lp

≤
√
mK2‖Φ†‖ ‖C‖K4K̃

1−K1K̃
‖zm−1 − zn−1‖Lp(0,T ;Z).

Therefore, by (4.5) the sequence of solutions, zn, (and hence controls u(n)) converges
as n→ ∞. Now

u(n) = Φ† (yd − Cẑ(T )− C (MUN zn−1) (T ))

and so letting n→ ∞, since Φ† and C (MU ·) (T ) are bounded, the limit is given by

u = Φ† (yd − Cẑ(T )− C (MUN z) (T )) ,

but then z (the limit of the sequence (zn)n∈N
) satisfies

z(t) =

m
∑

k=1

Ũ(t, τk)Buk + (MUN z) (t), u = Φ† (yd − Cẑ(T )− C (MUN z) (T ))

and so is a fixed point of ψ. Hence the iterative and fixed point schemes converge to
the same z and yield the same control.

Consider the single input case and suppose that (as considered in [7]) the original
dynamics are semilinear in form:

ż(t) = f(t, z(t)) = Az(t) + g (t, z(t)) , z(0) = z0 +Bu, (4.9)
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where A is the generator of a strongly continuous semigroup, S(t), on Z and g :
[0, T ] × Z −→ Z is strictly nonlinear and continuously differentiable. If an initial
guess, û, is made for the control such that z0 + Bû ∈ D(A), then there exists a
classical solution, ẑ(·), of the initial value problem on [0, T ] [15]. If P (t) = dg(ẑ(t)),
the derivative of g with respect to z evaluated at ẑ(t), then P (·) ∈ C(0, T ;L(Z)).
Define the following function from [0, T ]× Z −→ Z:

N(t, z) = g(t, z + ẑ(t))− g(t, ẑ(t))− P (t)z.

Therefore, setting z = ẑ + z and u = û+ u gives

ż(t) = (A+ P (t))z(t) +N(t, z(t)), z(0) = Bu,

which is of the form (2.1) with Z = Z = Z and A(t) = A + P (t). The assumptions
above ensure that A(·) = A+P (·) is the generator of a mild evolution operator, U(t, s),
on Z that is uniformly bounded [3] (in fact U(t, s) is a weak evolution operator [9]).
Therefore it is seen that assumptions TV 1–4 are satisfied.

Since g is continuously differentiable it satisfies a local Lipschitz condition in that
there exists a constant k∗(c) such that

‖g(t, z1)− g(t, z2)‖Z ≤ k∗(c)‖z1 − z2‖Z

for zi ∈ Z with ‖zi‖Z ≤ c. Therefore, the nonlinear operator N(·, ·) is also locally
Lipschitz since, for zi ∈ Z with ‖zi‖Z ≤ c,

‖N(t, z1)−N(t, z2)‖Z ≤ ‖g(t, z1 + z′(t))− g(t, z2 + z′(t))‖Z + ‖P (t) (z1 − z2) ‖Z

≤
(

k∗(c+ η) + sup
t∈[0,T ]

‖P (t)‖L(Z)

)

‖z1 − z2‖Z

where η = ‖z′(·)‖C(0,T ;Z).
A further control u is then sought such that, if z(·) is a solution of (4.9) with

initial state

z(0) = z0 +Bû+Bu,

then

Cz(T ) = yd

for some fixed T and yd. Now consider a sequence of controls (un)n∈N that are related
via the iterative scheme so that the nth control, un is given by

un = un−1 +Φ†(yd − yn−1),

and suppose that the differential equation (4.9) can be solved for the corresponding
sequence of initial states

zn(0) = z0 +Bû+Bun−1 +BΦ† (yd − yn−1)

with u0 = 0. If the remaining conditions of Theorem 2 are satisfied then the sequence
of outputs yn = Cz(T ) converges, at least on the range of Φ, to the desired target yd.
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5. A class of perturbed systems. Motivated by the final remarks of the pre-
vious section consider systems in which the linear operator A(·) is obtained by an
unbounded perturbation of some time invariant A:

żi(t) = (A+ P (t)) zi(t) +N(t, zi(t)), zi(τi) = zi−1(τi) +Bui, (5.1)

where z0(0) = 0. For simplicity the degree of unboundedness of the perturbation
is the same as that of the nonlinearity, and so P (·) ∈ PC(0, T ;L(Z,Z)). Based on
the Pritchard-Salamon class of systems introduced in [16] to study linear quadratic
optimal control for infinite-dimensional systems with unbounded input and output
operators, suppose that the following assumptions hold for (5.1):

PS 1. Z ⊂ Z ⊂ Z are Banach spaces such that the canonical injections Z →֒ Z,
Z →֒ Z are continuous with dense ranges. Moreover, the nonlinearity N : [0, T ] ×
Z −→ Z maps functions in Lp(0, T ;Z) to functions in Lq(0, T ;Z) for real numbers
p ≥ q ≥ 1 in the sense that N z ∈ Lq(0, T ;Z) whenever z ∈ Lp(0, T ;Z). In addition,
P (·) ∈ PC(0, T ;L(Z,Z)).

PS 2. A is the generator of a strongly continuous semigroup, S(t), on Z, which
is also a strongly continuous semigroup on Z and Z.

PS 3. There exists a continuous ka(·) : [0, T ] −→ R
+, and for all s ∈ [0, T ),

h(·) ∈ L2(s, T ;Z), the map t 7→
∫ t

s
S(t− σ)h(σ)dσ is continuous from [s, T ] to Z and

∥

∥

∥

∥

∫ t

s

S(t− σ)h(σ)dσ

∥

∥

∥

∥

Z

≤ ka(t− s)‖h(·)‖L2(s,t;Z). (5.2)

PS 4. There exists a Kb > 0 such that

‖S(·)z‖L2(0,T ;Z) ≤ Kb‖z‖Z (5.3)

for every z ∈ Z.
In addition, the following assumption is sufficient to provide the necessary smooth-

ing properties with respect to the possible unboundedness of the output operator C:
PS 5. There exists a Banach space V ⊂ Z, with continuous injection, such that

C ∈ L(V, Y ). In addition, there exist a continuous kc : [0, T ] −→ R
+ and a constant

Kd such that for all s ∈ [0, T ) and h(·) ∈ L2(s, T ;Z),
∫ T

s
S(T − σ)h(σ)dσ ∈ V ,

∥

∥

∥

∥

∥

∫ T

s

S(T − σ)h(σ)dσ

∥

∥

∥

∥

∥

V

≤ kc(s)‖h(·)‖L2(s,T ;Z) (5.4)

and for all k = 1, . . . ,m and u ∈ U , S(T − τk)Bu ∈ V ,

‖S(T − τk)Bu‖V ≤ Kd‖u‖U .

Theorem 4. Suppose that conditions PS 1–3 are satisfied. Then A(·) = A+P (·)
is the generator of a mild evolution operator U(t, s) on Z in the sense that U(t, s) is
the unique, in the class of strongly continuous operators on Z, solution of

U(t, s)z = S(t− s)z +

∫ t

s

S(t− σ)P (σ)U(σ, s)zdσ (5.5)

for z ∈ Z.
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Proof. Fix s ∈ [0, T ] and define an operator Γs : P∞(s, T ;L(Z)) −→ P∞(s, T ;L(Z))
by

Γs(U)(t)z := S(t− s)z +

∫ t

s

S(t− σ)P (σ)U(σ)z dσ. (5.6)

Note that

‖Γs(U1)(t)− Γs(U2)(t)‖L(Z) ≤ γ(t− s)1/2‖P‖ ‖U1(·)− U2(·)‖P∞

where Ka = sups≤t≤T ka(t− s) and so by induction

‖Γk
s(U1)− Γk

s(U2)‖P∞
≤
[

(T − s)k

k!

]1/2

(Ka‖P‖)k ‖U1(·)− U2(·)‖P∞
.

By choosing k such that
[

(T−s)k

k!

]1/2

(Ka‖P‖)k < 1 it is seen that Γs is a contraction

on P∞(s, T ;L(Z)). Therefore there exists a unique fixed point U(·, s) of (5.6). This
fixed point is given by U(t, s) =

∑∞
n=0 Un(t, s) where U0(t, s)z = S(t− s)z and

Un(t, s)z =

∫ t

s

S(t− σ)P (σ)Un−1(σ, s)z dσ.

Clearly U(s, s) = I and note that, for z ∈ Z,

‖U(t, r)U(r, s)z − U(t, s)z‖Z

=

∥

∥

∥

∥

∫ t

r

S(t− σ)P (σ) (U(σ, r)U(r, s)z − U(σ, s)z) dσ

∥

∥

∥

∥

Z

≤ ka(t− s)‖P‖ ‖(U(·, r)U(r, s)z − U(·, s)z)‖L2(r,t;Z) .

Therefore, setting g(α) = ‖U(α+ r, r)U(r, s)z − U(α+ r, s)z‖2Z it follows that

0 ≤ g(t− r) ≤
∫ t−r

0

[const] g(σ) dσ

and so applying Gromwell’s Lemma U(t, s) = U(t, r)U(r, s).
Suppose that sup0≤t≤T ‖S(t)‖L(Z) =M0, z ∈ Z and consider

‖Un(t, s)z‖Z ≤ Ka‖P‖ ‖Un−1(·, s)z‖L2(s,t;Z)

≤
[

(t− s)n

n!

]1/2

(Ka‖P‖ )nM0‖z‖Z .

Therefore the series giving U(t, s) is majorised by

M0

∞
∑

n=0

[

(t− s)n

n!

]1/2

(Ka‖P‖ )n

and so converges absolutely in the uniform topology of L(Z). Thus U(·, ·) is uniformly
bounded, with bound denoted by MU . Together with the strong continuity of S(t)
this implies that U(·, ·) is strongly continuous on ∆(T ).
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In fact the smoothing properties of the semigroup, PS 3 and PS 4, are sufficient
for U(t, s) to be extended to a mild evolution operator on Z and Z:

Corollary 1. Suppose that the hypotheses of Theorem 4, together with PS 4,
are satisfied and let U(t, s) be the corresponding mild evolution operator. Then an
extension of U(t, s) to a bounded linear operator on Z can be defined by

Ũ(t, s)z := lim
n→∞

U(t, s)zn

for each z ∈ Z, where (zn)
∞
n=1 is a sequence into Z such that ‖zn − z‖Z → 0 as

n → ∞. Furthermore, this extension, which will be denoted by U(t, s), is a mild
evolution operator on Z and Z.

Proof. First note that there exist positive constants, R1 and R2, such that ‖z‖Z ≤
R1‖z‖Z ≤ R1R2‖z‖Z for all z ∈ Z. Let z ∈ Z and consider

‖Un+1(t, s)z‖Z ≤ Ka‖P‖ ‖Un(·, s)z‖L2(s,t;Z)

≤
[

(t− s)n

n!

]1/2

(Ka‖P‖)n+1
Kb‖z‖Z

so that there exists a constant, M1, such that ‖U(t, s)z‖Z ≤ M1‖z‖Z for all z ∈ Z.
Therefore it is seen that U(·, ·) is uniformly bounded with respect to ‖ · ‖Z and ‖ · ‖Z ,
with bounds denoted by MU and MU .

Now for z ∈ Z, let (zn)
∞
n=1 be a sequence into Z such that ‖zn − z‖Z → 0. Then

‖Ũ(t, s)z‖Z = lim
n→∞

‖U(t, s)zn‖Z ≤ lim
n→∞

MU‖zn‖Z =MU‖z‖Z

and so the extension of U(t, s) to Z (and Z) is also uniformly bounded. It is clear
that Ũ(t, t)z = z for all z ∈ Z, and if (t, s) ∈ ∆(T ), with r ∈ [s, t], then

‖U(t, r)U(r, s)zn − Ũ(t, s)z‖Z = ‖Ũ(t, s)zn − Ũ(t, s)z‖Z ≤MU‖zn − z‖Z −→ 0

as n→ ∞. Therefore Ũ(t, s)z = Ũ(t, r)Ũ(r, s)z for all z ∈ Z.
To see that Ũ(·, ·) is strongly continuous note that

‖Ũ(t, s)z − U(t, s)zn‖Z = ‖Ũ(t, s)z − Ũ(t, s)zn‖Z ≤MU‖zn − z‖Z
and so Ũ(·, s)z is the uniform limit of a sequence of continuous functions, U(·, s)zn.
Similarly, Ũ(t, ·)z is also continuous and the extension Ũ(t, s) is a mild evolution
operator on Z and Z, which will be denoted by U(t, s) in the following.

Remark 2. In proving the uniform boundedness of the mild evolution operator in
Corollary 1 it is seen that there exists a constant M1 such that ‖U(t, s)z‖Z ≤M1‖z‖Z
for all z ∈ Z. Therefore the extension to Z satisfies U(t, s) ∈ L(Z,Z) with uniform
bound M1. Hence U(t, s) satisfies TV 3. Moreover, ‖U(t, s)Bu‖Z ≤ R1M1‖B‖ ‖u‖U
for all u ∈ U so that TV 4 is also satisfied.

Remark 3. Note that if PS 5 is satisfied then for all z ∈ Z
∥

∥

∥

∥

∥

∫ T

s

S(T − σ)P (σ)U(σ, s)z dσ

∥

∥

∥

∥

∥

V

≤ kc(s)(T − s)1/2‖P‖M1‖z‖Z .

Thus it is seen that the extension of z 7→
∫ T

s
S(T − σ)P (σ)U(σ, s)z dσ to a bounded

map from Z to Z also maps into V . Furthermore, this extension is strongly continuous
in s with respect to L(Z, V ).
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Suppose that A is the generator of a semigroup S(t) such that assumptions PS 1–
PS 5 are satisfied. Assumption TV 1 is the same as PS 1, while the previous results
show that A+ P (·) is the generator of a mild evolution operator U(t, s) on Z, Z and
Z so that TV 2–4 are satisfied. Now let h ∈ Lq(0, T ;Z) and consider

7→
∫ T

s

S(T − σ)P (σ)U(σ, s)h(s) dσ,

which is measurable from Remark 3. Furthermore, this map is integrable in V :

∫ T

0

∥

∥

∥

∥

∥

∫ T

s

S(T − σ)P (σ)U(σ, s)h(s) dσ

∥

∥

∥

∥

∥

V

ds

≤
∫ T

0

Kc(T − s)1/2‖P‖M1‖h(s)‖Z ds ≤ Kc‖P‖M1T
1/2T 1/q̂‖h(·)‖Lq(0,T ;Z)

where Kc = sup0≤t≤T kc(t) and (1/q̂) + (1/q) = 1. Since
∫ T

s
S(T − σ)h(σ)dσ ∈ V by

assumption it follows that (MUh) (T ) ∈ V . Note that

∥

∥

∥

∥

∥

∫ T

0

U(T, s)h(s) ds

∥

∥

∥

∥

∥

V

≤
∥

∥

∥

∥

∥

∫ T

0

S(T − s)h(s) ds

∥

∥

∥

∥

∥

V

+

∥

∥

∥

∥

∥

∫ T

0

∫ T

s

S(T − σ)P (σ)U(σ, s)h(s) dσds

∥

∥

∥

∥

∥

V

≤ Kc

(

1 + ‖P‖M1T
1/2T 1/q̂

)

‖h(·)‖Lq(0,T ;Z).

In addition, for u ∈ U and 1 ≤ k ≤ m

‖U(T, τk)Bu‖V ≤
(

Kd +KcT
1/2‖P‖M1R1‖B‖

)

‖u‖U

and so TV 5 is also satisfied.
The preceding discussion shows that for a perturbed system such that assumptions

PS 1–PS 5 hold, a mild evolution operator is defined for which TV 1–TV 5 are satisfied.
Hence the methods of the previous sections can be applied.

Example. Consider the following diffusion equation with simple nonlinearity:

∂z

∂t
=
∂2z

∂x2
+ z2, z(0, t) = z(1, t) = 0

such that the input acts via the initial condition, z(x, t) = u(x). This example is
considered with respect to the Hilbert space Z = L2(0, 1) as the abstract differential
equation

ż = Az + z2, z(0) = u

whereAh = d2h
dx2 for h ∈ D(A) = {h ∈ L2(0, 1) : h, dhdx are absolutely continuous, d2h

dx2 ∈
L2(0, 1) and h(0) = h(1) = 0}. Then A is the generator of a strongly continuous semi-
group S(t) on Z given by

S(t)z =

∞
∑

n=1

e−n2π2t〈ψn, z〉Zψn
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where ψn(x) =
√
2 sin(nπx) is an orthonormal basis for Z = L2(0, 1). With respect

to this basis and any real α > 0 define the following dense linear subspace of Z:

Zα :=

{

z ∈ Z :

∞
∑

n=1

n2α〈ψn, z〉2Z <∞
}

with corresponding inner product

〈z1, z2〉α :=
∞
∑

n=1

n2α〈ψn, z1〉Z〈ψn, z2〉Z .

The space Zα is a Hilbert space under this inner product.
Since the nonlinearity is continuously differentiable on L∞(0, 1) then û ∈ D(A)

gives rise to a classical solution, ẑ, on L∞(0, 1). Now consider the perturbations
z = z + ẑ and z = u+ û:

ż(t) = Az(t) + 2ẑ(t)z(t) + z(t)2, z(0) = u.

Therefore this system is of the form considered in this section where P (t)z := 2ẑ(t)z
and N(z) = z2. The problem is to determine u ∈ U = Zβ (β ≥ 2 so that U ⊆ D(A))
such that z(T ) + ẑ(T ) is some desired target yd. Therefore the output is y = z(T ) so
that C = 1 and Y = Z = L2(0, 1).

Choose Z = Zα, with α > 1
2 so that Zα ⊂ L∞(0, 1), and Z = Z. Then P (·) ∈

C(0, T ;L(Z,Z)), and N : Z −→ Z is such that N(z(·)) ∈ L2(0, T ;Z) whenever z(·) ∈
L4(0, T ;Z). The nonlinearity satisfies the Lipschitz condition (3.7) with k(θ1, θ2) =
m3 (θ1 + θ2) for a constant m3. Then it is seen that the semigroup generated by S(t)
satisfies assumptions PS 1 and PS 2.

For z(·) ∈ L2(0, T ;Z) and ( 12 <)α ≤ 1 consider

∥

∥

∥

∥

∫ t

s

S(t− σ)z(σ) dσ

∥

∥

∥

∥

2

α

=
∞
∑

n=1

n2α
[∫ t

s

e−n2π2(t−σ)〈ψn, z(σ)〉Zdσ
]2

≤ 1

2π2

(

1− e−2π2(t−s)
)

∞
∑

n=1

n2(α−1)

[∫ t

s

〈ψn, z(σ)〉2Zdσ
]

≤ 1

2π2

(

1− e−2π2(t−s)
)

∫ t

s

‖z(σ)‖2Zdσ

so that (5.2) is satisfied with ka(t) =
1√
2π

(

1− e−2π2t
)1/2

and PS 3 is satisfied. Now

for z ∈ Z note that

∞
∑

n=1

(

∫ T

0

n2αe−2n2π2t〈ψn, z〉2L2

)

dt ≤ 1

2π2

(

1− e−2π2T
)

‖z‖2Z <∞

so that

∫ T

0

( ∞
∑

n=1

n2αe−2n2π2t〈ψn, z〉2L2dt

)

=
∞
∑

n=1

(

∫ T

0

n2αe−2n2π2t〈ψn, z〉2L2

)

dt

and hence the series converges for almost all t ∈ [0, T ]. Hence

‖S(·)z‖2L2(0,T ;Zα) ≤
1

2π2

(

1− e−2π2T
)

‖z‖2Z



CONTROLLABILITY VIA THE INITIAL STATE 17

and PS 4 is satisfied with Kb =
1

2π2

(

1− e−2π2T
)1/2

.

Considering the special case where û = 0 so that ẑ(t) = 0 it is seen that the linear
operator φ : U −→ Y is such that

φu =

∞
∑

n=1

e−n2π2T 〈ψn, u〉L2ψn

and therefore

ranφ = R(φ) :=

{

y ∈ Z :
∞
∑

n=1

n2βe2n
2π2T 〈ψn, y〉2Z <∞

}

.

Since ranφ is a dense linear subspace of Y it is seen that the linearised system is
approximately controllable to Y = Z, but ranφ is not a closed subspace of Y . The
most natural restriction of Y is to the Hilbert space R(φ), in which case V = R(φ).
However, in this case it is not possible to verify assumption PS 5, and so constraining
attention to the space controllable to from the initial condition for the linearised
system is too restricting.

An alternative approach is to restrict U to a finite dimensional subspace of U :
For any m ∈ N let Um = {u ∈ U : u =

∑m
n=1 unn

−βψn, un ∈ R}, which is isomorphic
to R

m. With respect to this input space the linear operator φm : Um −→ Y is such
that

φmu =
m
∑

n=1

une
−n2π2Tn−βψn,

and so ranφm is a closed subspace of Y that is also isomorphic to R
m. Note that the

generalised inverse of φm can be explicitly constructed as a map from Y to Um:

Φ†
my =

m
∑

n=1

[

en
2π2Tnβ〈ψn, y〉Z

]

n−βψn =
m
∑

n=1

en
2π2T 〈ψn, y〉Zψn.

If V = Z then PS 5 is satisfied since Z = Z and S(t) is a strongly continuous

semigroup on Z. Since e−n2π2Tn−βψn forms an orthonormal basis of R(φ) with
respect to the inner product

〈y1, y2〉R(φ) =

∞
∑

n=1

e2n
2π2Tn2β〈ψn, y1〉Z〈ψn, y2〉Z ,

any yd ∈ ranφ can be approximated by yd,m given by

yd,m =

m
∑

n=1

e−n2π2Tn−β〈ψn, yd〉Zψn ∈ ranφm.

The results of Sections 3 and 4 can therefore be applied to determine a control um
that drives the system to yd,m on ranφm.
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6. Application: Control of viral load in HIV. The quantitative predictions
of the consequences of various dosing regimens for a pharmaceutical intervention can
be provided by a validated pharmacokinetic (PK) model, which describes the ab-
sorption, distribution, metabolism and excretion of the agent. Properties of the time
course (such as half-life or area-under-curve, AUC) for a particular compartment (typ-
ically blood plasma) might be linked to pharmacological activity, or directly modelled
by coupling the PK model with a pharmacodynamic (PD) model of the physiological
effect of the agent.

The high replication and mutation rates of the human immunodeficiency virus
(HIV), which ultimately results in strains resistant to any single agent, leads to the
adoption of a multiple-agent strategy. Highly active anti-retroviral therapy (HAART)
uses two or more agents that target different components of the HIV replication
cycle, but these agents typically produce adverse side effects in patients. A number of
authors have applied techniques from nonlinear control to this problem, but in general
the explicit link between the drug dose and the physiological effect, via the PK, is
neglected so that the controls derived are continuous in time. In the finite-deminsional
case, Mhawej et al. [13] addressed this control problem via feedback linearization
applied to a PD model of HIV dynamics. A single-compartment PK model was then
used to estimate a dosing regime that gave rise to the required continuous control
law. The general dosing problem for finite-dimensional systems was considered in [6]
in which a fixed-point approach was taken to determine the doses required to obtain
a particular AUC or target profile.

Dixit and Perelson [5] argue that the viral dynamics for HIV should include
an intracellular delay between infection of cells and production of new virus. In
the presence of a reverse transcriptase inhibitor (RTI) the corresponding delayed
differential system for the viral dynamics is given by the following [5]:

ẋ1(t) = p1 − p2x1(t)− (1− ǫ(t)) p3x1(t)x3(t)

ẋ2(t) = (1− ǫ(t− τ)) p4x1(t− τ)x3(t− τ)− p5x2(t)

ẋ3(t) = p6x2(t)− p7x3(t)

(6.1)

where pi > 0 are parameters, τ is a fixed intracellular delay, x1(t) is the density
of uninfected CD4+ T cells, x2(t) the corresponding density of infected T cells and
x3(t) is the viral load. The efficacy of the RTI is represented by ǫ and related to drug
plasma concentration, Cp(t), by the following:

ǫ(t) =
Cp(t)

IC50 + Cp(t)
=

x4(t)

vP IC50 + x4(t)

where IC50 is the plasma concentration required to achieve 50% efficacy, vP is the
plasma volume of distribution and x4(t) the mass of drug in plasma. For simplicity
the efficacy is related directly to plasma concentration rather than intracellular con-
centration (the latter as was done in [5]). Assuming standard oral absorption kinetics
for the RTI the drug plasma concentration is related to the dose, D, via the following
two-compartment model:

Ġ(t) = −kAG(t), G(0) = g0 + fD

ẋ4(t) = kAG(t)− kELx4(t), x4(0) = m0

(6.2)

where G(t) is the mass of drug in the gut, f is the drug bioavailability, kA the
absorption rate constant and kEL the elimination rate constant.
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The general control problem associated with models of this form is to choose
daily dosages in order to reduce viral load a certain amount in the short-term and
then below a detectability limit in the medium to long-term (see, for example, [13]).
Therefore, consider the problem of determining doses Di (i = 1, . . . ,m), administered
at times τi, such that the viral load is some prescribed trajectory. For convenience
the PK model (6.2) is replaced by the following polynomial version:

ẋ4(t) = kA

m
∑

i=1

x5+i(t− τi)− kELx4(t), x4(0) = 0

ẋ5(t) = −x5(t)2
(

kA

m
∑

i=1

x5+i(t− τi)− kELx4(t)

)

, x5(0) = 1/(vP IC50)

ẋ5+i(t) = −kAx5+i(t), x5+i(0) = fDi, i = 1, . . . ,m,

(6.3)

so that ǫ(t) = x4(t)x5(t).
It is assumed that the first dose corresponds to τ1 = 0, so that for t < 0 no drug

is present in the system, and it is also assumed that the virus dynamics are in steady
state prior to administration. This system is therefore of the form

ẋ(t) = A0x(t)+
m
∑

i=2

Aix(t−τi)+g(x(t), x(t−τ), x(t−τ2), . . . , x(t−τm)), x(0) = x0+Bu

where u =
(

D1, . . . , Dm

)T ∈ U = R
m and g : Rn × · · · × R

n −→ R
n is given by

g(x, xτ , xτ2 , . . . , xτm) =

(

p1 − p3(1− x4x5)x1x3, p4(1− xτ4x
τ
5)x

τ
1x

τ
3 , 0, 0,

− x25

(

kAx6 + kA

m
∑

i=2

xτi5+i − kELx4

)

, 0, . . . , 0

)T

.

The state for the abstract differential equation formulation is z(t) = (z1(t), z2(t))
T ,

where z1(t) = x(t) and [z2(t)] (θ) = x(t+ θ) for θ ∈ [−τm, 0]. The Banach space Z is
taken to be R

n × C(−τm, 0;Rn) for n = 5 +m. The corresponding system equation
is given by

ż(t) = Az(t) + G(z(t)) z(0) = z0 + Bu (6.4)

where

A
(

z1
z2(·)

)

=

(

A0z1(t) +
∑m

i=2Aiz2(−τi)
dz2

dθ (·)

)

with domain

D(A) =

{(

z1
z2(·)

)

∈ Z : z2(·) ∈ C1(−τm, 0;Rn) and z2(0) = z1

}

.

and

G
(

z1
z2(·)

)

=

(

g(z1, z2(−τ), z2(−τ2), . . . , z2(−τm))
0

)

Bu =

(

Bu
0

)

.
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Note that A is the generator of a strongly continuous semigroup on Z that is defined
by:

S(t)

(

x(0)
h(·)

)

=

(

x(t)
x(t+ ·)

)

where x(θ) = h(θ) for θ ∈ [−τm, 0].

Let T > τm and consider the problem of choosing u such that the output is the viral
load over the final τm units of time, which is given by

y = Cz(T ) where C

(

r
h(·)

)

= h3(·) ∈ Y = L2(−τm, 0;R), (6.5)

is some given function yd. Note that C ∈ L(Z, Y ).
If an initial guess, û, is made for the vector of doses, which gives rise to a classical

solution, ẑ(t), then

ż(t) = (A+ P(t)) z(t) +N(t, z(t)), z(0) = Bu

where P(t)z = dG(ẑ(t))z (dG(ẑ(t)) is the derivative of G(·) evaluated at ẑ(t)) and, for
z = (r, h(·))T ,

N(t, z) = G(z + ẑ(t))− G(ẑ(t))− P(t)z

=

(

− p3M1(r, x̂(t)), p4M1(h(−τ), x̂(t− τ)), 0, 0,−M2(z, ẑ(t)), 0, . . . , 0

)T

with

M1(w, v) = (1− v4v5)w1w3 − (v5w4 + v4w5 + w4w5) (v1w3 + v3w1 + w1w3)

− v1v3w4w5

M2(z, ẑ(t)) =
(

r25 + 2x̂5(t)r5
)

(

kAr6 + kA

m
∑

i=2

h5+i(−τi)− kELr4

)

+ r25

(

kAx̂6(t) + kA

m
∑

i=2

x̂5+i(t− τi)− kELx̂4(t)

)

.

Since P(·) ∈ C(0, T ;L(Z)), A + P(·) is the generator of a uniformly bounded weak
evolution operator, U(t, s), on Z. With p = q = ∞ and V = Z assumptions TV 1–5
are satisfied.

Since U is finite dimensional the range of the linear operator φu = CU(T, 0)Bu is
a closed subspace of Y . The nonlinearity N(·, ·) satisfies the Lipschitz condition with

k(θ1, θ2) = m4

(

θ1 + θ2 + θ21 + θ22 + θ31 + θ32
)

for a suitable constant m4. Thus the iterative approach of Section 4 is applied in
Matlab, with the system equations numerically solved using the delayed differential
equation solver (dde23) using the parameter values provided in [5].

The problem is considered over a period of 30 days with daily dosing, so that
τi = i− 1 (days) and T = 30 (days). In Figure 6.1 the viral load corresponding to a
standard treatment of 300 mg daily is shown. It is noticeable from this figure that viral
load increases after approximately 20 days. To improve on the standard treatment
response the target for the control scheme is chosen to be a decaying exponential (to
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Fig. 6.1. Viral load following standard treatment protocol of 300 mg per day (solid line) and
decaying exponential target for control scheme (dashed line).

a baseline) that approximates the first 20 days of standard treatment, as indicated in
Figure 6.1.

Starting with an initial dose, û, corresponding to a treatment schedule of 150 mg
daily the iterative scheme produces a dosing schedule shown in Figure 6.2, which
results in the viral load shown in Figure 6.3. Starting from other constant levels for
the initial dose does not significantly affect the final control obtained. The iterative
scheme was also applied to the target given by

ỹd = φφ† (yd − Cẑ(T )) + Cẑ(T ) = φφ†yd +
(

1− φφ†
)

Cẑ(T )

so that ỹd−Cẑ(T ) ∈ ranφ. The dosing schedule returned is not significantly different
from that in Figure 6.2 but it is seen that the response converges to the output yd, as
seen in Figure 6.4. This modified target is dependent on the initial dosing schedule,
û, both in terms of the dependence of φ on ẑ, but also in terms of the presence of the
term Cẑ(T ).

7. Conclusions. A control problem has been considered for nonlinear time-
varying distributed parameter systems, in which the control acts only via part of the
initial state. The problem was to drive part, or all, of the process to some desired
state in a specified time. The approach taken was to formulate the problem as a fixed
point one for a suitably defined abstract differential equation, with conditions imposed
such that it is well defined while allowing for unboundedness of the nonlinearity in the
system. Under additional conditions a version of the Contraction Mapping Theorem
could be applied that yielded a solution to a weakened version of the original problem.
The solution obtained ensures that the target state is achieved on the range of a linear
operator arising from a linearisation of the system about an initial estimate for the
control, which suggests that the initial control be chosen carefully.
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Fig. 6.2. Dosing schedule returned by iterative scheme (circles) starting from initial schedule
of 150 mg per day (squares).

Application of the Contraction Mapping Theorem yields a constructive method
to determine the required fixed point solution, and from this the required control is
obtained. However, this approach involves integral equations that require the full
solution trajectory at each step to be stored. Therefore, an alternative, more direct,
approach was presented, in which an iterative scheme for the control is implemented
that uses the original system dynamics. The same conditions for the fixed point
approach are required and the iterative scheme yields the same solution, though in
this case the required control is directly constructed. If a solution to the original
problem exists, which yields the required target trajectory, it remains to be determined
whether the fixed point approach presented here determines it.

The applicability of the iterative scheme for constructing the required control was
illustrated by considering the problem of determining a dosing schedule for the control
of HIV dynamics. The model for the viral dynamics of HIV in patients proposed by
Dixit and Perelson [5] includes an intracellular delay parameter and was coupled
with a two compartment model for the pharmacokinetics of a reverse transcriptase
inhibitor, via saturable nonlinear pharmacodynamic term relating efficacy (within the
HIV dynamics model) to plasma drug concentration. Exploiting the time-delay form
of the equations a series of oral drug administrations was included in the initial state
of the system model. The control produced by the iterative scheme drove the system
to a particular trajectory corresponding to the orthogonal projection of the target
onto the range of the linear operator plus the orthogonal projection of the output
corresponding to the initial control onto the orthogonal complement of the range.
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Fig. 6.3. Decaying exponential target for control scheme (dashed black line), viral load following
initial dosing schedule of 150 mg per day (solid black line), and viral load following dosing schedule
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