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Abstract

The aim of this thesis is to provide techniques for the analysis of a variety of types of

spatial data, each corresponding to one of three biological questions on the function

of the protein TACC3 during mitosis. A starting point in each investigation is

the interpretation of the biological question and understanding of the form of the

available data, from which a mathematical representation of data and corresponding

statistical problem are developed.

The thesis begins with description of a methodology for application to two col-

lections of (marked) point patterns to determine the significance of differences in

their structure, achieved through comparison of summary statistics and quantifica-

tion of the significance of such differences by permutation tests. A methodology is

then proposed for application to a pair spatio-temporal processes to estimate their

individual temporal evolutions, including ideas from optimal transportation theory,

and a test of dependence between such estimators. The thesis concludes with a

proposed model for line data, designed to approximate the mitotic spindle structure

using trajectories on the surface of spheroids, and a comparison score to compare

model fit between models and/or observations.

The results of methodologies when applied to simulated data are presented as

part of investigations into their validity and power. Application to biological data

indicates that TACC3 influences microtubule structure during mitosis at a range of

scales, supporting and extending previous investigations.

Each of the methodologies is designed to require minimal assumptions and num-

bers of parameters, resulting in techniques which may be applied more widely to

similar biological data from additional experiments or data arising from other fields.

ix



Chapter 1

Introduction

State of the art microscope technology allows the collection of large numbers of

high resolution images. Specialised preparation of biological samples and choice of

imaging approach can lead to the identification of subcellular structures and the

localisation of biomolecular species within such images. The purpose of collecting

such images may be observational, to ascertain the typical behaviour within the cell,

or experimental, to ascertain the impact on the cell of applied external conditions.

It is commonly the case that images are collected from multiple samples, the ana-

lysis of which may be improved in terms of accuracy and reliability by statistical

techniques. This thesis combines three investigations of spatial data arising from

images of biological samples during mitosis and formulates statistical methodologies

for their analysis to answer related biological questions of interest.

1.1 Biological background

Mitosis is the procedure through which eukaryote cells (those within fungi, plants

and animals) replicate, with one cell dividing into two. Chromosomes encode the

genetic material within cells and during mitosis the collection of chromosome pairs

are divided such that one chromosome from each pair makes its way into each of the

two resulting cells. Errors in the division of chromosome pairs can result in the death

of resulting cells or mutations that may be harmful to the organism (Holland and

Cleveland, 2009). A key research topic for cell biologists is therefore the process of

mitosis, the action of biomolecular species during mitosis and the impact of applied

external conditions on the process.

Division of chromosome pairs during mitosis is effectively a mechanical process.

During the prometaphase of mitosis connecting fibers, kinetochore fibers or K-fibers,

grow to connect two anchor points within the cell, centrosomes, to connection points

on the chromosomes, kinetochores. Each K-fiber is made up of a bundle of cylindrical

1



Prometaphase Metaphase Anaphase

Kinetochore

fiber

Kinetochore

Daughter

chromosomes

Centrosome

Figure 1.1: Diagram of the intermediate stages of mitosis.

structures, microtubules, which are believed to be held together by a mesh-like

structure (Booth et al., 2011). Prometaphase is followed by metaphase during which

chromosome pairs are pulled into alignment along the metaphase plate by the action

of the K-fibers. Following this, during the anaphase, chromosome pairs are pulled

apart into different halves of the cell before the cell divides. An illustration of

this process may be seen in Figure 1.1. The structure of those microtubules which

separate chromosomes during mitosis is referred to in combination as the mitotic

spindle.

1.2 Biological questions of interest

Three related biological questions of interest are considered as part of this thesis,

with each providing different types of spatial data and resulting in the development

of corresponding statistical techniques. The theme linking the three problems is

the action of TACC3 (Transforming Acidic Coiled-coil Containing protein 3) during

mitosis.

Investigations are carried out using imaging data at differing scales to investigate

different influences on the mitotic spindle structure. We refer to the micro scale as

that which considers microtubules within a single K-fiber. The macro scale on

the other hand considers microtubules within the entire mitotic spindle structure.

Differentiation is necessary because different imaging techniques are used — it is not

possible to determine every microtubule within a K-fiber from macro scale images,

similarly the field of view of micro scale images is not large enough to make inference

on the whole spindle structure.

2



1.2.1 Localisation of TACC3 and EB3

EB3 (End Binding protein 3) is a protein known to localise on the tips of growing

microtubules during mitosis (Akhmanova and Steinmetz, 2010). There is some evi-

dence that TACC3 also localises on the tips of microtubules (Gutierrez-Caballero

et al., 2015). As a key purpose of microtubules is the division of chromosome pairs

during mitosis, localisation of TACC3 at the tip of microtubules may be used as

important evidence that TACC3 has some function during mitosis. We propose to

investigate data provided by Dr. Stephen Royle (previously investigated as part of

work by Gutierrez-Caballero et al. (2015)) comprised of images displaying localisa-

tion of both TACC3 and EB3, with evidence of dependence between the localisation

patterns further supporting the belief that TACC3 is localised on the tips of micro-

tubules and that it may have a function during mitosis.

The data available for this analysis is fluorescence microscopy images of both

TACC3 and EB3 captured for multiple cells across a number of time points. The

two proteins are each tagged with a fluorophore which emits light at a specific range

of wavelengths when excited by incident light of particular wavelengths. Provided

emission wavelengths are suitably distinct, the emitted light may be filtered and

recorded by a camera to result in a pair of images for each sample at each time point.

Variation of light intensity within each image may be interpreted as a surrogate for

the spatial distribution of each biomolecular species. Examples of such images may

be seen in Figure 4.5 in Chapter 4.

An existing technique for the comparison of localisation between two images is

colocalisation analysis, described in more detail in Chapter 2. Due to dissatisfaction

with existing approaches and the additional information contained within time series

of images an alternative methodology for analysis is presented in Chapter 4. We

consider time series of images to be representative observations of a spatio-temporal

process, give a methodology for approximation of the temporal evolution of such

processes and provide a test for dependence between temporal evolutions. This

methodology is presented in detail in Chapter 4.

1.2.2 Impact of TACC3 on K-fiber structure

Given the evidence from Gutierrez-Caballero et al. (2015) and our investigations

(Honnor et al., 2017b), that TACC3 is located at the tip of microtubules, and the

results of investigations by Booth et al. (2011) and Nixon et al. (2015) it is proposed

that TACC3 impacts the structure of microtubules within K-fibers. Interpreting

mitosis as a mechanical process, on a micro scale differences in the structure of

microtubules within K-fibers may impact the ability to transfer force to chromosomes

3



and achieve accurate separation. We propose to investigate data provided by Dr.

Stephen Royle (previously investigated as part of work by Nixon et al. (2015))

comprised of microtubule locations within K-fibers under control conditions and

conditions where TACC3 is overexpressed, with evidence of significant differences

supporting the belief that TACC3 has an impact on microtubule structure within

K-fibers.

The data available for this analysis is obtained by electron microscopy of indi-

vidual K-fibers within multiple cells under both experimental conditions — control

and TACC3 overexpression. K-fiber cross-section images are obtained from parallel

imaging planes approximately perpendicular to what is assumed to be the K-fiber

axis, within which microtubules are distinguishable as dark circles. In some cases

only single images are taken from each sample, from which microtubule centre loca-

tions are reported which we choose to model as point patterns. In other cases two

images are taken from slices through a single sample at different distances along a

K-fiber, from each of which microtubule centre locations are reported. Additional

information is also provided on how microtubule centre locations, one from each

image frame, are paired as ends of a common microtubule. We choose to model pai-

red centre locations as paired point patterns, which we then re-express as a marked

point pattern. Diagrams of both types of pattern may be seen in Figures 3.2 and

3.3 in Chapter 3.

There exists a large literature on the theory and application of point processes, an

introduction to which is provided in this thesis in Chapter 2. We approach the pro-

blem by considering a number of summary statistics of the (marked) point patterns

and comparing summary statistics between experimental groups, with permutation

testing used to obtain a significance level for the difference. This methodology is

presented in detail in Chapter 3.

1.2.3 Mitotic spindle structure modelling

Investigation of the previous problem is carried out at the micro scale, that of mi-

crotubules within individual K-fibers. There may be an extension of this or an

additional impact of TACC3 visible on the macro scale of the whole mitotic spindle,

irregularities in the structure of which may reduce its capability to separate chro-

mosome pairs. We propose to investigate data provided by Dr. Stephen Royle

comprised of microtubule endpoint pair locations under combinations of two tem-

perature levels and three levels of TACC3 expression, with evidence of differences

in microtubule structure indicating that TACC3 and/or temperature changes result

in structural differences of the mitotic spindle.

The data available for this analysis is a collection of microtubule endpoint pairs

4



obtained by serial block face scanning electron microscopy through multiple cells

under a variety of experimental conditions, a detailed discussion of which is given

by Nixon et al. (2017). Additionally, for each sample a pair of points are provided

as an approximation to the centrosomes or poles of the mitotic spindle to permit

orientation of the structure. We choose to investigate the data through the collection

of straight lines connecting microtubule endpoints. Illustrations of resulting sets of

lines may be seen in Figures 5.3 and 5.4 in Chapter 5.

We make an exploratory approach to modelling the mitotic spindle using ide-

alised microtubules trajectories on the surface of a spheroid proposed based upon

arguments of symmetry and parsimony, to which the deviation of observed lines

may be determined. We then suggest a formula for comparison of model deviations

between two models and/or samples to quantify the difference in the degree to which

they deviate from the model. This methodology is presented in detail in Chapter 5.

1.3 Thesis outline

This chapter has provided a summary of three questions of interest arising from

cellular imaging studies, statistical methodologies to investigate which are the focus

of this thesis, alongside an overview of the biological knowledge necessary to put

the problems in context. Chapter 2 introduces the background theory necessary to

illuminate the methodologies presented in further chapter, including current appro-

aches that have been applied to similar problems and others which we make use

of.

Chapters 3 to 5 each present methodologies for the questions introduced in this

chapter. Chapter 3 introduces a methodology for assessing the significance of the

difference between collections of (marked) point patterns. The methodology is first

applied to simulated (marked) point patterns, before application to patterns arising

from real subcellular images. Chapter 4 introduces a methodology for estimating

local bulk movement patterns and quantifying the significance of the dependence

between pairs of such patterns. The methodology is applied to simulated image

data, before application to real cellular images. Chapter 5 proposes an exploratory

model for the mitotic spindle and statistic for the comparison of model fit between

two models and/or samples. The methodology is applied to line patterns arising

from real cellular images.

The final chapter of this thesis, Chapter 6, provides an overview of the conclu-

sions of each of the previous chapters after which some directions in which each of

the proposed methodologies may be extended are described.

5



1.4 Novel contributions

This thesis brings together theory from statistics, mathematics and physics in order

to develop statistical techniques for the analysis of a particular range of biological

data, but which are designed with application to more general data sets in mind.

The novel contributions of this thesis are the statistic summarising the degree to

which a collection of lines are oriented in the same direction, the effective force

transference, introduced in Chapter 3; the methodology of estimating the temporal

evolution of a spatio-temporal process by methods of optimal transportation and the

procedure for testing for dependence between two such spatio-temporal processes,

introduced in Chapter 4; and the mathematical model for microtubule direction in

the mitotic spindle and a corresponding model fit comparison score, introduced in

Chapter 5. Application to biological data sets is either completely novel, Chapters

4 and 5, or expands significantly on previous analysis of the same data set, Chapter

3.
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Chapter 2

Background

2.1 Point processes

A summary of the evolution of the study of point processes including state of the art

approaches may be found in works by Møller (2003), Gaetan and Guyon (2009) and

Diggle (2013). This section defines some of the terms and notation used in reference

to point processes in the rest of this thesis, including a description of the Poisson

point process, the foundational tractable point process model. Point processes are

denoted by underlined capital letters X,Y , . . ., point patterns by underlined lower

case letters x, y, . . ., while lower case letters with subscripts xj , xk, . . . are used to

denote points in patterns and lower case letters without subscripts x, y, . . . are used

to denote points in the general space Rd.

2.1.1 Definition

A spatial point process X is a random countable subset of a space S. The focus

of this thesis is point processes on subsets of R2 and marked point processes on

subsets of R2 × R2, but the theory of spatial point processes is introduced in this

and the following sections in the more general case of S ⊆ Rd. In practice the entire

process X is typically not visible, rather we observe X restricted to some bounded

observation window W ⊆ S.

For any subset x ⊂ S, let n(x) denote the cardinality of x, with n(x) = ∞ if x

is not finite. Denote by xB = x ∩B the restriction of a point configuration x to B.

The set x is then said to be locally finite if n(xB) <∞ whenever B ⊆ S is bounded.

The majority of the literature on point patterns and our investigations are restricted

to point processes X whose realisations are locally finite subsets of S.

As with the notation xB, XB will be used to denote the restriction of the random

subset X to B. The locally finite restriction on X ensures that X takes values in
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the space Nlf defined by

Nlf = {x ⊆ S : n(xB) <∞ for all bounded B ⊆ S}.

Elements of Nlf are referred to as locally finite point configurations. The empty

point configuration is denoted by ∅.
For a point process X on S the count function is the random variable given by

N(B) = n(XB).

2.1.1.1 Marked point processes

Consider X, a point process on T ⊆ Rd. Given some space V , if a random mark

vi ∈ V is assigned to each point xi ∈ X, then Y = {(xi, vi) : xi ∈ X} ⊂ S = T × V
is called a marked point process with points in T and mark space V . Typically, the

mark space V is a finite set or a subset of Rp, p ≥ 1.

A disc process is an example of a marked point process with mark space V =

(0,∞), for which the marked point (xi, vi) is understood to represent the disc with

centre xi and radius vi (Stoyan and Penttinen, 2000). A marked point process of this

type may be produced in the case where X models a forest, with vi recording the

radius of the tree located at xi. Association of point processes with geometric objects

which can be identified with points in Rp, for example ellipses or line segments, may

be more broadly classified as germ-grain models (Heinrich, 1992) in which xi, the

germ, specifies the location of vi, the grain.

A further example of a marked point process is the multitype point process,

where the discrete marks, V = {1, 2, . . . , k}, specify k different types of points (Lot-

wick and Silverman, 1982). One of the most studied multitype point process data

sets is the amacrine cell data (Diggle, 1986) which records the locations of different

light detecting cells within the eyes of a rabbit. Multitype point processes with k

types of points may alternatively be considered as k-dimensional multivariate point

process, that is a tuple (X1, X2, . . . , Xk) of point processes X1, X2, . . . , Xk corre-

sponding to k different types of points. Multitype and multivariate point processes

are equivalent, with the preferred choice of specification potentially dependent upon

the application.

2.1.1.2 Formal treatment of spatial point processes

In the previous section marked point processes on S = T ×V with points in T ⊆ Rd

were distinguished from point processes on S ⊆ Rd. However, it is possible to

formalise discussion of both of these types of point processes and point processes on

non-Euclidean spaces through a unified measure theoretic framework, where S is a

general metric space.
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More formal treatment requires the specification of σ-algebras for the space S

and the set of locally finite point patterns Nlf . As the focus of this thesis is on point

patterns on spaces S ⊆ Rd and not on proving theorems related to point patterns,

the treatment of point patterns will be less formal, with B ⊆ S used instead of

the statement that B is a member of a σ-algebra over S, F ⊆ Nlf used instead

of the statement that F is a member of a σ-algebra over Nlf and all sets assumed

measurable with respect to the appropriate Borel σ-algebra.

2.1.2 Properties

2.1.2.1 Stationarity and isotropy

A point process X on Rd is defined to be stationary if its distribution is invariant

under translations. In other words, the distribution of X + x = {xi + x : xi ∈ X}
must be the same of that of X for any x ∈ Rd.

A point process X on Rd is defined to be isotropic if its distribution is invariant

under rotations about the origin. In other words, the distribution of RX = {Rxi :

xi ∈ X} is the same as that of X under the action of any matrix R from the special

orthogonal group of dimension d, R ∈ SO(d).

2.1.2.2 First order properties

The first order properties of the random count variables N(B) for B ⊆ S are des-

cribed by the intensity measure. The intensity measure µ on Rd is given by

µ(B) = EN(B) B ⊆ Rd.

If the intensity measure µ can be written as

µ(B) =

∫
B
ρ(x)dx B ⊆ Rd,

for some function ρ : S → [0,∞), then ρ is referred to as the intensity function.

If ρ(x) = ρ is constant over x ∈ S, then X is said to be homogeneous or first

order stationary with intensity ρ. (A process X may be first order stationary or

homogeneous, but not stationary as in the description of the previous section if

Var(N(B)) varies with the location of B.) The intensity ρ of a homogeneous point

process may then be interpreted as the mean number of points per unit volume.

If ρ(x) is not constant over x ∈ S, then X is said to be inhomogeneous. In the

inhomogeneous case, ρ(x)dx may be thought of as the probability of the occurrence

of a point in an infinitesimally small ball with centre x and volume dx.
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2.1.2.3 Second order properties

The second order properties of the random count variables N(B) for B ⊆ S are

described by the second order factorial moment measure. The second order factorial

moment measure α(2) on S × S is given by

α(2)(C) = E
∑

xi 6=xj∈X
1[(xi, xj) ∈ C] C ⊆ S × S,

where the sum is taken over all distinct pairs of points xi and xj .

The intensity measure µ and the second order factorial moment measure α(2) to-

gether determine the second order moments of the random count variable N(B), B ⊆
Rd through

E[N(B1)N(B2)] = E

∑
xi∈X

1{xi ∈ B1} ×
∑
xj∈X

1{xj ∈ B2}


= E

 ∑
xi 6=xj∈X

1{xi ∈ B1}1{xj ∈ B2}

+
∑

xi=xj∈X
1{xi ∈ B1}1{xj ∈ B2}


= E

 ∑
xi 6=xj∈X

1{xi ∈ B1}1{xj ∈ B2]

+ E

∑
xi∈X

1{xi ∈ B1 ∩B2}


= α(2)(B1 ×B2) + µ(B1 ∩B2) B1, B2 ⊆ Rd,

where the second summation term over all pairs of equal points xi = xj with xi ∈ B1

and xj ∈ B2 reduces to the sum over the individual points in B1 ∩B2.

If the second order factorial moment measure α(2) can be written as

α(2)(C) =

∫ ∫
1{(x, y) ∈ C}ρ(2)(x, y)dxdy C ⊆ Rd × Rd,

where ρ(2) is a non-negative function then ρ(2) is called the second order product

density. Intuitively, ρ(2)(x, y)dxdy is the probability of observing a pair of points

from X occurring jointly in each of the two infinitesimally small balls with centres

x, y and volumes dx, dy.

2.1.2.4 Complete spatial randomness

A point process X on S satisfies the independent scattering property, also referred to

as complete spatial randomness, if XB(1) , XB(2) , . . . are independent for disjoint sets

B(1), B(2), . . .. As a result, if X satisfies the complete spatial randomness property
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the second order product density is simply the product of the intensity functions at

the corresponding locations

ρ(2)(x, y) = ρ(x)ρ(y) x, y ∈ S.

The concept of complete spatial randomness is important as a baseline for point

processes to be compared to. Violation of complete spatial randomness may be

caused by interactions between points which lead to clustering or regularity of point

locations via attraction or repulsion respectively.

The only stationary point process on S ⊆ Rd which satisfies the property of

complete spatial randomness is the homogeneous Poisson point process. Formal

definition of the Poisson point process and discussion of its properties are introduced

later in Section 2.1.4.

2.1.3 Summary statistics

Exploratory analysis for spatial point patterns and the validation of fitted models is

often based upon the nonparametric estimation of summary statistics. These sum-

mary statistics provide information on the distribution of observed points and may

be compared between observations and to theoretical reference values to illustrate

how these distributions differ.

First and second order summary statistics are described in the following secti-

ons. Higher order summary statistics can also be considered, but the corresponding

nonparametric estimators may be less stable if the number of points observed is not

sufficiently large.

2.1.3.1 First order summary statistics

For x a realisation of a homogeneous point process X on the observation window

W , obtained by first fixing W and then reporting all point locations within W , a

natural unbiased estimator of the intensity ρ is given by

ρ̂ =
n(x)

|W |
,

where |W | denotes the volume of the observation window W .

In the case of inhomogeneous point processes x observed on the window W , a

nonparametric kernel estimator of the intensity function is given by

ρ̂b(x) =
∑
xi∈x

kb(x− xi)
cW,b(xi)

x ∈W. (2.1)

In this expression kb is a kernel with bandwidth b > 0, i.e. kb(x) = k(x/b)/bd

for some density function k in the case of S ⊆ Rd. The term in the denominator,
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cW,b(xi), is an edge correction factor introduced by Diggle (1985) taking the value

cW,b(xi) =

∫
W
kb(x− xi)dx. (2.2)

Nonparametric kernel estimators of the form presented in (2.1) are usually sen-

sitive to the choice of bandwidth, b, while the choice of kernel, k, is less important

(Diggle, 1985). Regardless of the choice of kernel and bandwidth, it can be shown

that
∫
W ρ̂b(x)dx is an unbiased estimator of µ(W ) (Møller and Waagepetersen, 2003).

2.1.3.2 Pair correlation function

If both the intensity, ρ, and second order product density, ρ(2), exist then the pair

correlation function, g, is defined by

g(x, y) =
ρ(2)(x, y)

ρ(x)ρ(y)
x, y ∈ S,

where it is taken that g(x, y) = 0 if either or both of ρ(x) and ρ(y) equal zero (Diggle,

2013).

The pair correlation function compares the joint probability of observing a pair

of points to the marginal probabilities of observing each point in the pair. For a

homogeneous Poisson point process the pair correlation function is equal to one for

all x, y ∈ S due to satisfaction of the property of complete spatial randomness.

Values of g(x, y) > 1 indicate that pairs of points are more likely to occur jointly at

the locations x, y than for a homogeneous Poisson point process and the converse is

true for g(x, y) < 1.

If the point process X is stationary then g becomes translation invariant. If g is

both stationary and isotropic, that is g(x, y) = g(||x− y||) = g(r), then at least for

small values of r, g(r) > 1 indicates aggregation or clustering at distances of r while

g(r) < 1 indicates regularity at distances of r. Over larger values of r the conclusion

to be drawn is less clear as there may be a mixture of aggregation and clustering on

scales less than r.

Under the assumption that the pair correlation function is stationary and iso-

tropic, g can be estimated from another summary statistic, the K-function, which

is introduced alongside a description of the estimating procedure in the following

section. An edge corrected kernel estimate of the pair correlation function is also

given by Doguwa (1990).
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2.1.3.3 K-function

The K-function for a stationary point process X on the space S is given by

K(r) =
1

ρ
E

 1

N(S)

∑
xi 6=xj∈X

1{||xi − xj || < r}

 . (2.3)

In this case ρK(r) is the expected number of further points within a distance of r

from a randomly selected point in X (Diggle, 2013). For this reason, and to aid

future understanding, we refer to the K-function as the scaled neighbourhood count

function.

For a homogeneous Poisson point process X on S ⊆ R2 with intensity ρ and

xi ∈ X we have that

µ(b(xi, r)) =

∫
b(xi,r)

ρdx

= ρ|b(xi, r)|

= ρπr2,

for b(xi, r) the two-dimensional ball of radius r centred at xi. As such, the scaled

neighbourhood count function for X is given by K(r) = πr2. Values of K(r) > πr2

are evidence for aggregation of points within X at distances of less than r. Values

of K(r) < πr2 are evidence of regularity of points within X at distances of less than

r.

The transformation of the scaled neighbourhood count function named the L-

function, and given by

L(r) =

(
K(r)

π

)1/2

,

in the case of S ⊆ R2, is commonly considered as an alternative to the K-function

as the transformation is variance stabilising when estimated for stationary point

processes using nonparametric methods (Møller and Waagepetersen, 2003). For a

homogeneous Poisson point process X with intensity ρ we have L(r) = r and as a

result when plotting the L-function, plots of L(r) − r are often considered. Values

of L(r)− r > 0 are evidence for aggregation of points within X at distances of less

than r. Values of L(r) − r < 0 are evidence for regularity of points within X at

distances of less than r.

The K- and L-functions are cumulative functions and therefore summarise in-

formation across distances of less than or equal to r. As such, care must be taken

when making inferences based upon K(r) at a single distance of r. In cases where

the point pattern is non-stationary, deviation from the theoretical values proposed
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in this section may be caused by inhomogeneous intensity rather than specific inte-

raction between points. Furthermore, similarity in K- and L-functions for different

point processes is not necessarily an indication that they are identical as very diffe-

rent point process models can share the same K-function (Baddeley and Silverman,

1984).

Realisations of point processes, x, are typically restricted to observation windows

W ⊂ S and as such modification to the form of (2.3) is necessary to account for

edge corrections. For example, an edge corrector estimator in the case where x is

assumed to be a realisation of a stationary point process is given by

K̂ecf (r) =
1

ρ̂

∑
xi 6=xj∈x

1{||xi − xj || < r}
ρ̂|W ∩Wxj−xi |

,

where ρ̂ is an estimator of the intensity and Wx = {x+ y : y ∈ W} is a translation

of the observation window W by x ∈ Rd. The term |W ∩Wxj−xi | is then an edge

correction factor (Møller and Waagepetersen, 2003).

An alternative edge correction is given by minus sampling as

K̂rs(r) =
1

ρ̂2|W	r|
∑

xi 6=xj ,xi∈x,xj∈x∩W	r

1{||xi − xj || < r},

where W	r = {x ∈W : b(x, r) ⊆W} is the set of points in W whose distance to the

boundary of W is greater than r. This is known as the simple border correction or

reduced sample estimator of the K-function (Møller and Waagepetersen, 2003).

There is a loss of information in the reduced sample estimate as some pairs of

points are excluded from the sum, while the edge correction factor estimate sums

over all pairs of observed points. On the other hand, if the number of observed

points is sufficiently large then ignoring some pairings for large values of r may be

more acceptable than the potential for very large weights 1/|W ∩Wxj−xi | in the edge

correction factor estimation.

If the pair correlation function g is isotropic, depending only upon r = ||x− y||,
then it can be related to the derivative of the K function by

g(r) =
K ′(r)

2πr
,

in the case when S ⊆ R2, where the prime denotes differentiation of K(r) with re-

spect to r. However, estimators K̂ of K are typically the sums of indicator functions,

making it problematic to estimate K ′ from K̂.

2.1.3.4 Empty space function

If the point process X on S is stationary then the empty space function, denoted

by F , is the distribution function of the distance from any fixed point in S to the
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nearest point in X (Diggle, 2013).

F (r) = P(X ∩ b(x, r) 6= ∅),

for x any point in S. The empty space function is also referred to as the spherical

contact distribution function.

As in the case of the scaled neighbourhood count function, K, the empty space

function may be estimated using a reduced sampling estimator based upon minus

sampling. Define by d(x,B) = inf{||x − y|| : y ∈ B} the shortest distance from

a point x ∈ Rd to the set B ⊂ Rd. Further, let I ⊂ W denote a finite regular

grid of points chosen independently of X and #Ir denote the number of elements

in the set Ir = I ∩ W	r for r > 0, where W	r has previously been defined as

W	r = {x ∈W : b(x, r) ⊆W}.
An unbiased, reduced sampling estimator of F is then given by

F̂RS(r) =
1

#Ir

∑
x∈Ir

1{d(x, x) ≤ r},

for #Ir > 0.

A more efficient estimator of F is given by the Kaplan-Meier estimate (Baddeley

and Gill, 1997)

F̂KM (r) = 1−
∏
s≤r

(
1− #{x ∈ I : d(x, x) = s, d(x, x) ≤ d(x, ∂W )}

#{x ∈ I : d(x, x) ≥ s, d(x, ∂W ) ≥ s}

)
,

for values of r > 0, where ∂W denotes the boundary of the observation set W and

the convention 0/0 = 0 is used.

2.1.3.5 Nearest neighbour function

The nearest neighbour function, G, for a stationary point process X with intensity

ρ is given by

G(r) =
1

ρ|A|
E

 ∑
xi∈X∩A

1{(X \ xi) ∩ b(xi, r) 6= ∅}

 r > 0,

for an arbitrary set A ⊂ Rd with 0 < |A| <∞. As X is assumed to be stationary, the

nearest neighbour function does not depend upon the chosen set A. The G-function

may be interpreted as the distribution function of the distance from a typical point

in X to its nearest neighbour in X.

A combination of the empty space function and nearest neighbour function is

the J-function, given by

J(r) =
1−G(r)

1− F (r)
,
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for values of F (r) < 1. The J-function is the ratio of the probability of observing a

point xj ∈ X within a distance of r of any point x ∈ S to that of observing a point

xj ∈ X within a distance of r of a randomly selected point xi ∈ X \ xj . For a point

process satisfying the property of complete spatial randomness, given xi ∈ X the

distribution of X \ xi on S \ xi is unchanged. As a result, for such point processes

the J-function satisfies J(r) = 1 for r > 0.

Both the spherical contact distribution function and nearest neighbour function

are cumulative functions and thus care should be given to their interpretation at

single values of r, but in general F (r) < G(r) and correspondingly J(r) < 1 indicates

clustering while F (r) > G(r) and correspondingly J(r) > 1 indicates regularity.

Similarly to the case of the empty space function, an estimate of G can be

obtained through a reduced sampling estimator

ĜRS(r) =
1

ρ̂|W	r|
∑

xi∈x∩W	r

1{d(xi, x \ xi) ≤ r}

over the range of values of r for which |W	r| > 0.

A Kaplan-Meier estimate of G is given by

ĜKM (r) = 1−
∏
s≤r

(
1− #{xi ∈ x : d(xi, x \ xi) = s, d(xi, x \ xi) ≤ d(xi, ∂W )}

#{xi ∈ x : d(xi, x \ xi) ≥ s, d(xi, ∂W ) ≥ s}

)
for values of r > 0.

Estimates of J may be produced as the ratio of estimators of F and G.

2.1.3.6 Comparison of nonparametric summary statistic estimates

Estimates of the nonparametric summary statistics presented in this section, for

example K(r), may be bounded by confidence intervals for each value of r. Confi-

dence intervals allow the comparison of nonparametric summary statistic estimates

and the testing of null hypotheses H0 under which it is possible to simulate X.

Confidence intervals for the estimator K̂ may be obtained via a bootstrapping

simulation procedure under H0, provided that it is possible to simulate realisations

of point patterns X under H0 (Davison and Hinkley, 1997). For a given distance

r > 0 define by T0(r) = T (x, r) the estimate of the scaled neighbourhood count

function for the observed point pattern x on the observation window W . Further,

let Ti(r) = T (Xi, r), i ∈ {1, 2, . . . , n} be the estimates of K(r) for independent

and identically distributed simulations X1, X2, . . . , Xn under H0. The empirical

distribution of T1(r), T2(r), . . . , Tn(r) can then be used to estimate any quantile of

the distribution of T0(r) under H0, where the precision of the estimator is limited

only by the number of simulations n.
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Although the Ti(r) are independent of each other, vectors (T1(r), . . . , Tn(r)) are

dependent for different values of r > 0. Caution should therefore be taken when

comparing to confidence intervals across different values of r.

2.1.4 Poisson point process model

The homogeneous Poisson point processes has previously been introduced in Section

2.1.2.4 as the only stationary point process on S ⊆ Rd satisfying the requirements

for complete spatial randomness. In this section a formal definition of the Poisson

point process is given and in the following sections its properties are explored in

more detail.

Let f be a density function on a set B ⊆ S and let n ∈ N = {1, 2, 3, . . .}. A point

process consisting of n independent and identically distributed points with density

f is called a binomial point process of n points in B with density f , denoted by

X ∼ binomial(B,n, f).

A point process X on S is defined to be a Poisson point process with intensity

function ρ(x) if the following properties are satisfied (Møller and Waagepetersen,

2003):

1. For any B ⊆ S with µ(B) = E(N(B)) < ∞, N(B) ∼ po(µ(B)), the Poisson

distribution with mean µ(B).

2. For any n ∈ N and B ⊆ S with 0 < µ(B) < ∞, conditional on N(B) = n,

XB ∼ binomial(B,n, f) with f(x) = ρ(x)/µ(B).

We then write X ∼ Poisson(S, ρ).

The process Poisson(S, ρ) is called a homogeneous Poisson point process on S

with rate or intensity ρ if ρ is constant. For ρ(x) which varies as a function of

x ∈ S the process Poisson(S, ρ) is called an inhomogeneous Poisson point process

on S. The homogeneous Poisson point process on S with constant unit intensity,

Poisson(S, 1), is referred to as the standard or unit rate Poisson point process.

For all further discussion we restrict attention to Poisson point processes defined

on spaces S ⊆ Rd, with locally integrable intensity functions ρ : S → [0,∞), that is∫
B ρ(x)dx <∞ for all bounded B ⊆ S. Under this restriction, the intensity measure

is locally finite, that is µ(B) <∞ for bounded B ⊆ S and diffuse, that is µ({x}) = 0

for x ∈ S.

2.1.4.1 Superposition

A union ∪∞i=1Xi of independent point processes X1, X2, . . . is called a superposition.

If Poisson point processes Xi ∼ Poisson(S, ρi), i = 1, 2, . . ., are mutually independent

17



and the intensity function ρ =
∑
ρi is locally integrable, then with probability one,

point locations in X = ∪∞i=1Xi are unique, and X ∼ Poisson(S, ρ) (Kingman, 1993).

2.1.4.2 Independent thinning

Let p : S → [0, 1] be a function and X be a point process on a space S. The

point process Xthin ⊆ X obtained by independently including each point xi ∈ X

in Xthin with probability p(xi), is said to be an independent thinning of X with

retention probabilities p(x), x ∈ S. Furthermore, if X ∼ Poisson(S, ρ) is subject

to independent thinning with retention probabilities p(x), x ∈ S, and we define

ρthin(x) = ρ(x)p(x), x ∈ S then Xthin and X \ Xthin are independent Poisson pro-

cesses with intensity functions ρthin and ρ − ρthin respectively (Møller and Waage-

petersen, 2003).

2.1.4.3 Independent, random displacement

Consider the point process X on T ⊆ Rd. Let Y = {(xi, vi) : xi ∈ X} be the marked

point process with points in T ⊆ Rd and mark space V ⊆ Rd. In the case that,

conditional on X, the marks vi are independent and each distributed according to a

density fxi on Rd which does not depend upon X\xi, we may define the point pattern

X∗ obtained by independent, random displacements of X as X∗ = {xi+vi : xi ∈ X}.
If X is a homogeneous Poisson point process with constant intensity ρ and the

distribution of marks fxi is independent of location xi then X∗ is also a homogeneous

Poisson point process with intensity ρ∗ = ρ, identical to that of X (Kingman, 1993).

2.1.4.4 Simulation

Taken in combination, the definition of Poisson point processes as binomial point

processes and the independent thinning property of Poisson point processes provide

a straightforward method for simulating Poisson point processes on bounded sets

B ⊂ Rd.
To simulate a homogeneous Poisson point process X on the bounded set B ⊂

S ⊆ Rd with constant intensity ρ(x) = ρ0 the procedure begins by determining a

box B0 = [−a1, a1]× [−a2, a2]× . . .× [−ad, ad] containing B, B ⊆ B0. The number

of points in B0, N(B0) ∼ po(ρ02da1a2 . . . ad), may then be sampled from the appro-

priate Poisson distribution. The location of the points are then sampled uniformly

over B0 by sampling each ith coordinate uniformly over the appropriate box dimen-

sion, Uniform[−ai, ai]. The realisation of XB is then obtained by disregarding those

points whose locations lie outside B in the set B0 \B.

To simulate an inhomogeneous Poisson point process X on the bounded set B
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with intensity ρ(x) bounded above by a constant ρ0 ≥ ρ(x), ∀x ∈ B with ρ0 > 0

it is convenient to first simulate Y , the homogeneous Poisson process on B with

constant intensity ρ0. The independent thinning of Y with retention probabilities

p(yi) = ρ(yi)/ρ0 is then a realisation of X by the independent thinning property.

2.1.4.5 Summary statistics

For x a realisation of a homogeneous Poisson point pattern with constant intensity

ρ on the observation window W , the estimator

ρ̂ =
n(x)

|W |
,

is both unbiased and the maximum likelihood estimator of ρ.

Simply due to the fact that the homogeneous Poisson point process satisfies the

property of complete spatial randomness, we obtain the previously stated results

that

g(x, y) = 1

K(r) = πr2

L(r) = r

J(r) = 1,

for X a homogeneous Poisson point process on S ⊆ Rd.
The empty space function and nearest neighbour function are both given by

F (r) = P(n(b(0, r) ∩X) > 0)

= 1− P(n(b(0, r) ∩X) = 0)

= 1− exp(−ρπr2)

⇒ G(r) = 1− exp(−ρπr2),

for X a homogeneous Poisson point process with intensity ρ on S ⊆ Rd.
The tractability of summary statistics for the homogeneous Poisson process and

their relative ease of simulation makes them a common reference process when stu-

dying summary statistics. Summary statistics for more advanced point process

models are typically intractable.

2.1.5 Point process density

If X1 and X2 are two point processes defined on the same space S, then the distri-

bution of X1 is said to be absolutely continuous with respect to the distribution of

X2 if there exists a function f : Nlf → [0,∞] such that

P(X1 ∈ F ) = E[1{X2 ∈ F}f(X2)] F ⊆ Nlf .
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Should such a function f exist, it is referred to as the density of X1 with respect

to X2. Poisson processes are not always absolutely continuous with respect to each

other, but they are always absolutely continuous with respect to the standard (unit

rate) Poisson point process in cases where S is bounded (Møller and Waagepetersen,

2003)

The Papangelou conditional intensity for a point process X on S with density f

with respect to the standard Poisson point process is defined by

λ∗(x, x) =
f(x ∪ x)

f(x)
x ∈ Nf , x ∈ S \ x,

where Nf = {x ⊂ S : n(x) < ∞} is the set of finite point configurations contained

within S and it is taken that a/0 = 0 for a ≥ 0 (Gaetan and Guyon, 2009). Heuris-

tically, λ∗(x, x)dx may be interpreted as the conditional probability of X having a

point in an infinitesimal region containing x and of size dx given that the rest of X

is x.

For a Poisson point process with intensity ρ the Papangelou conditional intensity

is given by λ∗(x, x) = ρ(x), which is independent of x. For each of the other

Markov point processes introduced in Section 2.1.6.2, the density f is known only

up to proportionality through h ∝ f with h : Nlf → [0,∞). The Papangelou

conditional intensity is therefore a particularly useful method of describing a point

process because its particular formulation does not depend upon the normalising

constant of f .

2.1.6 Alternative point process models

A single observation of a point process may indicate deviation from homogeneity,

visible by an uneven distribution of points and detectable by the form of previously

mentioned summary statistics or more straightforwardly via quadrat counts (Dig-

gle, 2013). However, with the evidence of a single point pattern it is impossible

to determine whether deviation from homogeneity is caused by an inhomogeneous

underlying intensity or dependencies between point locations. Stronger evidence

for a particular conclusion may be obtained by analysing replicated point patterns,

repeated samples of the same process, but this data is not always available or the

results conclusive.

The following sections introduce Cox processes, for which deviation from homo-

geneity is caused by inhomogeneous intensity, and Markov point processes, for which

deviation from homogeneity is caused by dependencies between point locations.
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2.1.6.1 Cox processes

Poisson point process models may be too simplistic for real data, but can form a

foundation for the construction of more flexible model classes. Cox processes (Cox,

1955) are a natural extension of the Poisson point process, obtained by considering

the intensity function to be the realisation of a random field.

Consider a point process X on the space S and suppose that Z = {Z(x) : x ∈ S}
is a non-negative random field, that is Z(x) is a non-negative random variable for

all x ∈ S, such that with probability one, x→ Z(x) is a locally integrable function.

If the conditional distribution of X given Z is a Poisson process on S with intensity

function Z, then X is defined to be a Cox process driven by Z. In the case where Z

is deterministic, X simply becomes a Poisson process with intensity function ρ = Z.

Further generalisations of the Cox process are given by Neyman-Scott processes

(Neyman and Scott, 1958), log-Gaussian Cox processes (Møller et al., 1998) and

shot noise Cox processes (Møller, 2003).

2.1.6.2 Markov point processes

Markov point processes form another large class of alternatives to the Poisson point

process and are typically used to model interactions between points (van Lieshout,

2000). These interactions are incorporated through the specification of densities

with respect to the standard Poisson point process, under conditions which ensure

the Markov property. The Markov property requires that the conditional intensity

λ∗(x, x) is dependent only upon x ∩ b(x,R), those points in x which are within a

distance of R of x, for some constant R. A focus on locally finite point processes

means that they are often used to model repulsive behaviour, but it is also possible

to model attraction through Markov point processes.

Pairwise interaction point processes (Ripley, 1977) form an introduction to the

class of Markov point processes and are specified through their density with respect

to the standard Poisson process

f(x) ∝
∏
xi∈x

φ(xi)
∏

{xi,xj}⊆x

φ({xi, xj}),

where φ is an interaction function, that is a non-negative function for which f is

integrable with respect to the standard Poisson point process.

The range of interaction of the pairwise interaction point process is defined by

R = inf{r > 0 : ∀{x, y} ⊂ S, φ({x, y}) = 1 if ||x− y|| > r}.

The Poisson point process with intensity ρ(x) is equivalent to the pairwise inte-

raction point process with interaction function φ(x) = ρ(x), φ({x, y}) = 1 as there
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is no interaction between points. The range of interaction for the Poisson point

process is therefore R = 0. Pairwise interaction point processes modelling point

processes which are not Poisson are analytically intractable because of the unknown

normalising constant.

Strauss processes (Strauss, 1975) are pairwise interaction point processes for

which φ(x) = β > 0 is constant and φ2({x, y}) = φ2(||x − y||) = γ1{||x−y||≤R}

for 0 ≤ γ ≤ 1. The parameter γ is the interaction parameter, with the strength of

repulsion between points increasing as γ decreases. The extreme case in which γ = 0

is referred to as a hard core process with hard core R, as under this formulation

points are prohibited from being closer than a distance of R. The other extreme

case in which γ = 1 is simply the homogeneous Poisson point process with intensity

β.

2.2 Comparison between pairs of spatial processes

2.2.1 Colocalisation analysis

Colocalisation analysis is a widely used technique for the analysis of fluorescence

microscopy images (Adler and Parmryd, 2012). A number of colocalisation statistics

have been proposed, formulated to quantify the degree to which biomolecules are

deemed to interact based upon similarities in their location and evaluated using a

pair of images, one for each biomolecular species. Although a commonly used term,

colocalisation is poorly defined and may be used by different authors to refer to

both co-occupation and correlation (Adler and Parmryd, 2012). Co-occupation is

deemed to occur when sufficiently high intensity is observed in the same places for

both images, while correlation occurs when there is a linear relationship between

intensity values paired at the same locations.

Given pixel intensity values m0(x) and m1(x) across locations x within a region

of interest χ∗, a subset of the image space χ∗ ⊆ χ = {1, 2, . . . , n1} × {1, 2, . . . , n2},
a number of the most commonly used colocalisation statistics are as follows:

Definition 1. Pearson’s correlation coefficient (Pearson, 1895) is given by

rρ =

∑
x∈χ∗(m

0(x)− m̄0)(m1(x)− m̄1)√∑
x∈χ∗(m

0(x)− m̄0)2
√∑

x∈χ∗(m
1(x)− m̄1)2

∈ [−1, 1],

where

m̄0 =
1

|χ∗|
∑
x∈χ∗

m0(x) m̄1 =
1

|χ∗|
∑
x∈χ∗

m1(x).

As a measure of colocalisation, Pearson’s correlation coefficient is clearly a me-

asure of correlation. A variant on Pearson’s correlation coefficient, formulated to
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highlight the implication of values of m(x) = 0 indicating absence of the biomolecule

at x and m(x) > 0 indicating presence of the biomolecule at x, is Manders’ overlap

coefficient.

Definition 2. Manders’ overlap coefficient (Manders et al., 1993) is given by

r =

∑
x∈χ∗m

0(x)m1(x)√(∑
x∈χ∗m

0(x)2
)(∑

x∈χ∗m
1(x)2

) ∈ [0, 1],

which in turn leads to the specification of the split overlap coefficients

k0 =

∑
x∈χ∗m

0(x)m1(x)∑
x∈χ∗m

0(x)2
k1 =

∑
x∈χ∗m

0(x)m1(x)∑
x∈χ2 m1(x)2

,

such that r =
√
k0k1.

The split overlap coefficients quantify the degree of colocalisation using a pair

of statistics, with k0 quantifying the degree to which m0 is colocalised with m1 and

k1 quantifying the degree to which m1 is colocalised with m0. Such a distinction

may be useful in cases where a biomolecular species is located everywhere that the

species for comparison is located, while also being located in other regions. In such

cases a single split overlap coefficient may be large enough to indicate a need for

further investigation even if the overlap coefficient is not exceptionally large.

Manders’ overlap coefficient quantifies a combination of co-occupation and cor-

relation in unclear proportions, leading some to recommend against its use in favour

of alternative statistics (Adler and Parmryd, 2010). For example, Manders’ coloca-

lisation coefficients which quantify colocalisation solely through co-occupation.

Definition 3. Manders’ colocalisation coefficients (Manders et al., 1993) are given

by

M0 =

∑
x∈χ∗m

0(x)1{m1(x) > 0}∑
x∈χ∗m

0(x)
M1 =

∑
x∈χ∗m

1(x)1{m0(x) > 0}∑
x∈χ∗m

1(x)
∈ [0, 1].

A development of Manders’ colocalisation coefficients which sets an automatic

threshold, t > 0, to reduce the impact of background noise is given by Costes’

approach.

Definition 4. Costes’ approach (Costes et al., 2004) suggests coefficients

M̃0 =

∑
x∈χ∗m

0(x)1{m0(x) > t,m1(x) > at+ b}∑
x∈χ∗m

0(x)
∈ [0, 1]

M̃1 =

∑
x∈χ∗m

1(x)1{m0(x) > t,m1(x) > at+ b}∑
x∈χ∗m

1(x)
∈ [0, 1],
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based upon a threshold value of t. The values of a and b are determined as the inter-

cept and slope respectively of the orthogonal regression of m1(x) on m0(x), x ∈ χ∗.
Where orthogonal regression minimises the sum of the squares of the perpendicular

distances to the regression line, in comparison to linear regression where the sum of

the squares of the vertical distances to the regression line is minimised. The thres-

hold is reduced from max{m0(x), (m1(x) − b)/a} to a critical value t at which the

correlation of {(m0(x),m1(x)), x : m0(x) < t or m1(x) < at+ b} is zero.

Costes’ approach thresholds to ignore from statistic calculations those points x

at which m0(x) < t or m1(x) < at + b, across which the correlation between m0

and m1 is zero. A correlation of zero is deemed appropriate to consider at least one

of the intensities at such locations to be representative only of noise and therefore

contributing no evidence of colocalisation. Orthogonal regression is used to result

in thresholds which are independent of the labelling of m0 and m1.

Differences in the quantity being measured between colocalisation statistics make

them difficult to interpret and compare between experiments where different statis-

tics have been used. Co-occupation based measures are typically easier to interpret

as the proportion of each biomolecular species observed at shared locations, but

ignore the fact that interacting biomolecules require a fixed number of biomolecules

of each species and thus a linear relationship between intensities. As an alternative,

correlation based measures do take into account the relationship between intensity

values.

In the commonly expected presence of background noise co-occupation may be

recorded at every pixel location, an issue which Costes’ approach attempts to resolve

through thresholding. Background noise may also impact correlation statistics, for

which specification of a region of interest χ∗ containing large numbers of pixels with

intensity levels consistent with noise alone may mask the strength of any linear

relationship between intensity values.

The majority of the presented colocalisation statistics take values in the range

[0,1], with zero indicating absence of colocalisation and one indicating complete colo-

calisation. Pearson’s correlation coefficient differs, taking values in the range [-1,1],

with zero indicating absence of colocalisation and one indicating strong colocalisa-

tion. Negative values of Pearson’s correlation coefficient are difficult to interpret

in the biological context, although well understood in a statistical context. Fixed

ranges of values provide some ability to interpret the strength of colocalisation, but

there is no convincing method of analysing the significance of obtained colocalisa-

tion statistics. Instead, colocalisation statistic values may be classified into one of

five categories from very weak to very strong based upon crude threshold values

(Zinchuk and Zinchuk, 2008).
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The biggest criticism of each of the proposed and often used colocalisation statis-

tics is their ignorance of the spatial nature of the data within the region of interest

χ∗. Techniques from other statistical fields which do take the spatial nature of the

data into account are described in the following sections as potential inspirations for

measures alternative to colocalisation.

In cases where a single pair of images are compared to analyse colocalisation, it

is difficult to distinguish between coincidental co-occupation of biomolecular species

and true interaction. When a sequence of images is collected over time, colocalisa-

tion may be quantified at each time point to provide a more reliable indicator of

interaction. We approach the problem of determining interaction by estimating and

comparing movement patterns between consecutive time points, on the basis that

chance similar movements are less likely to occur than chance similar localisations.

On an experimental level FRET, Fluorescence (or Förster) resonance energy

transfer (Clegg, 1995), is an alternative methodology which may more accurately

determine interaction between biomolecular species. However, false negatives may

be recorded by FRET due to the requirement that fluorophores be very closely se-

parated, which may not be the case even for interacting biomolecules, and false

positives may be recorded as a result of cross-talk or bleed-through between fluorop-

hore colours (Piston and Kremers, 2007).

2.2.2 Metrics between probability distributions

In cases where observed spatial processes are non-negative and finite, observations

may be normalised to be considered as probability densities over space,

µ0(x) =
m0(x)∑
y∈χm

0(y)
µ1(x) =

m1(x)∑
y∈χm

1(y)
.

which evolve over time. Similar to colocalisation statistics presented in the previous

section, there are a number of methods for quantifying the distance between proba-

bility distributions including total variation distance and Hellinger distance, see for

example the summary by Gibbs and Su (2002). A distance of particular interest is

the Wasserstein metric (Givens and Shortt, 1984).

Definition 5. Let (χ, d) be a metric space. The Wasserstein metric between µ0 and

µ1 on (χ, d) is W (µ0, µ1) = inf E[d(X,Y )], taken over joint distributions of X and

Y with marginals µ0 and µ1 respectively.

Importantly for our analysis, the Wasserstein metric takes into account the space

on which the probability measures are defined, through d, in a manner that alter-

natives such as the total variation distance and Hellinger distance do not.
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2.2.3 The earth mover’s distance

For some investigations, it may undesirable to normalise observations m0 and m1

into probability densities µ0 and µ1 as the relative total mass of each observation is

informative. In such cases an alternative, but closely related, measure of the distance

between m0 and m1 with finite total masses is provided by the earth mover’s distance

(Rubner et al., 2000).

Definition 6. The earth mover’s distance between two non-negative spatial proces-

ses m0 and m1 over the finite discrete space χ is given by

EMD(m0,m1) =

∑
x∈χ,y∈χ f̂(x, y)d(x, y)∑

x∈χ,y∈χ f̂(x, y)

f̂ = arg min
f∈η(m0,m1)

f(x, y)d(x, y),

for d(x, y) a cost function and η(m0,m1) the set of f for which

f(x, y) ≥ 0 ∀x ∈ χ, y ∈ χ∑
x∈χ

f(x, y) ≤ m1(y) ∀y ∈ χ

∑
y∈χ

f(x, y) ≤ m0(x) ∀x ∈ χ

∑
x∈χ,y∈χ

f(x, y) = min

(∑
x∈χ

m0(x),
∑
y∈χ

m1(y)

)
.

If m0 and m1 are interpreted as spatial distributions of mass and the cost of

moving unit mass from x ∈ χ to y ∈ χ is d(x, y) then the earth mover’s distance

is the minimal total cost of rearranging m0 into m1 normalised by the total mass

moved. The conditions on η(m0,m1) ensure that only positive quantities of mass

are moved, the total mass moved into y ∈ χ is no more than m1(y), the total mass

moved out of x ∈ χ is no more than m0(x) and that the total amount of mass moved

is the minimum of the total mass in m0 and the total mass in m1.

In the case where the total mass of m0 and m1 is identical, the earth mo-

ver’s distance is equivalent to the Wasserstein distance (Levina and Bickel, 2001).

The earth mover’s distance is typically defined over a discrete space, but may be

alternatively expressed for continuous spaces. In the case where
∑

x∈χm
0(x) >∑

y∈χm
1(y) the earth mover’s distance may be equated to the Wasserstein distance

by augmenting χ with the location z such that d(x, z) = 0 ∀x ∈ χ and speci-

fying m1(z) =
∑

x∈χm
0(x) −

∑
y∈χm

1(y). A similar argument may be given for∑
y∈χm

1(y) >
∑

x∈χm
0(x).

Specification of the earth mover’s distance and its use in practice has been moti-

vated by problems in image analysis and in particular image comparison and retrieval
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(Peleg et al., 1989; Rubner et al., 2000). Given a colour image, a histogram may

be produced which summarises the number of pixels satisfying intensity constraints

in each of the blue, red and green channels according to a proposed binning. His-

tograms summarising related images are expected to result in small values of the

earth mover’s distance when compared, allowing the single or multiple best matching

images within a collection to be retrieved.

Calculation of the earth mover’s distance is an optimal transportation problem,

which with the augmentation of χ to equalise total mass and the restriction ofm(x) ∈
Q is an assignment problem (Munkres, 1957). The computational complexity of

solving such a problem is O(n3 log n) for n = |χ|, the total number of locations

(Rubner et al., 2000). An implementation of the earth mover’s distance is available in

R (R Core Team, 2016) via the emdist package (Urbanek and Rubner, 2012), which

returns the value of the earth mover’s distance and, important in later considerations,

the optimal set of flows f̂ .

2.2.4 Common component models

Spatial processes, M(x), defined over a continuous space x ∈ χ may be be modelled

using techniques from geostatistics (Diggle and Ribeiro, 2007; Fanshawe and Diggle,

2011). Observations of a realisation m of M at a discrete collection of locations

x ∈ χ∗ may be used to fit a Gaussian geostatistical model of the form

M(x) = µ(x) + S(x) m(x) = µ(x) + S(x) + Z(x),

for which µ is a mean trend term, S is a Gaussian random field and Z is an obser-

vation error term. Inference may then be made on the underlying mean trend, the

spatial covariance structure and/or for predictions of M(x) at unobserved locations

x ∈ χ \ χ∗. In each case inference is typically carried out using Bayesian statistical

techniques.

The mean trend term, µ(x), defines the average value of M at location x and may

be expressed as dependent upon p spatial covariates di(x) through the coefficients

βi

µ(x) = β0 +

p∑
i=1

βidi(x).

The Gaussian random field, S, then specifies the spatial correlation structure of

M . In cases where S may be assumed to be stationary and isotropic, the joint

distribution of the collection (S(x1), S(x2), . . . , S(xn)) for any points xi ∈ χ is an

n-dimensional multivariate normal with

E[S(xi)] = 0 Cov(S(xi), S(xj)) = σ2ρ(||xi − xj ||),
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for a standard deviation σ > 0 and suitable correlation function ρ. Examples of

correlation functions include the Matérn and powered exponential (Diggle and Ri-

beiro, 2007), which themselves are dependent upon parameters that determine the

form and scale of covariances. The observation error term is independently normally

distributed at each location x ∈ χ with

E[Z(x)] = 0 Cov(Z(xi), Z(xj)) = τ2
1{xi = xj},

for a standard deviation τ > 0.

Gaussian geostatistical models describe real valued spatial processes M which

take values in Rχ. In scenarios where M is a count process, taking values in (Z+)χ,

an alternative formulation is provided by the Poisson generalised geostatistical model

(Diggle and Ribeiro, 2007)

M(x) ∼ po(λ(x)) log(λ(x)) = µ(x) + S(x) + Z(x).

Under this formulation M is related to the Gaussian geostatistical model by the log

link function, µ is an offset and Z provides the potential for extra-Poisson variation.

In cases where inference is to be made in relation to two spatial processes, M1

and M2, a class of common component models have been developed (Fanshawe and

Diggle, 2011). Gaussian common component models consider processes M1 and M2

as a combination of independent Gaussian random fields, S1 and S2 corresponding

to the respective spatial process and S0 which is common to both processes

M1(x) = µ1(x) + σ01S
0(x) + S1(x) + Z1(x)

M2(x) = µ2(x) + σ02S
0(x) + S2(x) + Z2(x).

The terms σ01 and σ02 incorporate the degree of influence of the common component

to each of the processes. Equivalent common component models have been proposed

for spatial count data and applied to investigate common causes of disease (Knorr-

Held and Best, 2001).

Geostatistical models and in particular common component models were consi-

dered as one approach to make inference on the localisation of TACC3 and EB3.

Image data could be taken as a surrogate for the quantity of each biomolecular

species across the space of pixel locations, χ∗. The relative influence of the com-

mon component S0 in comparison to the observation specific components could be

summarised as a measure of colocalisation. Progress with this approach was limited

by the requirement for assumptions on correlation structure, a lack of information

with which to specify µ and the computational challenges of fitting the models, it is

therefore not described further in later chapters.
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2.2.5 Object tracking techniques

The approach presented in Chapter 4 determines the significance of the dependence

between the movement patterns of EB3 and TACC3, estimated as the solution of

an inverse problem the results of which are then summarised over subregions. The

purpose of this is to take advantage of the information within the temporal evolution

of each spatial distribution on the basis that coincidental dependence between mo-

vement patterns is less likely to occur by chance than coincidental similarity between

spatial distributions at a single time point.

In cases of small to medium numbers of individually resolvable objects there exist

a number of object tracking methodologies, some of which have been applied to cel-

lular images (McFarlane and Schofield, 1995). An investigation of the effectiveness

of a wide range of such methods for this application has been compiled by Chenou-

ard et al. (2014). Each methodology may be broadly divided into two phases, the

first of identifying objects in each image and the second of then connecting object

locations between time points to propose movement trajectories. Performance at

both steps may be improved by careful specification of parameters based upon prior

information.

In each of the images that we wish to investigate there are vast numbers of each

biomolecular species of interest, resulting in an approximately continuous spatial

distribution. This precludes the use of specific object tracking methodologies and

we instead introduce a methodology based upon estimation of aggregate or bulk

movement patterns. As the proposed technique does not require specification of

parameters it is expected that it will also be more widely applicable to alternative

data sets arising from cell imaging and other fields.

2.3 Hypothesis testing

2.3.1 Statistical test

Given data, x, a realisation of a random variable, X, a null hypothesis, H0, may

be tested using a test statistic function, t(x) ∈ R. The null hypothesis is rejected if

the probability that t(X) is as or more extreme than the observed t(x) is less then

a specified significance level, α. The definition of as or more extreme is included

within the specification of the null hypothesis and may be represented by the binary

relation �, with a � b representing that a is as or more extreme than b. The binary

relation must be reflexive, i.e. a � a, transitive, i.e. a � b and b � c implies a � c,

and total, i.e. for all a and b at least one of a � b and b � a. For example, a one-

sided test at the upper tail uses the binary relation specified by a � b ⇐⇒ a ≥ b,
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while a two-sided test uses the binary relation specified by a � b ⇐⇒ |a| ≥ |b|.
The null hypothesis is rejected at significance level α if the observed value of t(x)

lies within the corresponding rejection region, R(α), satisfying

P(t(X) ∈ R(α)|H0) = α ∀a ∈ R(α), b ∈ R \R(α), a � b.

Equivalently, the null hypothesis is rejected at significance level α if the p-value,

p = P(t(X) � t(x)|H0), is less than α. In the case where the distribution function

of t(X), Ft, is known and invertible determination of R(α) or p may be carried out

analytically. In cases where the distribution function is unknown or cannot be inver-

ted to obtain an analytical expression for p or R(α) an alternative testing procedure

must be used, a general and more specialised example of which are presented in the

following sections.

A hypothesis testing methodology is valid if the probability of a type I error, that

is the probability of rejecting H0 when it is true, is no greater than the significance

level, α, for any α ∈ [0, 1]. The methodology described in this section is valid by

construction, but the criteria is one against which other testing procedures may be

measured.

2.3.2 Bootstrap test

Bootstrap methods allow the testing of a null hypothesis in cases where Ft is

unknown or not invertible, by instead performing calculations using repeated sam-

ples, {t1(x), t2(x), . . . , tn(x)}, of t(X) under H0. There exist a number of bootstrap

tests, each of which differ in the production of samples but share a common tes-

ting methodology given this information. For example, in the case where X =

(X1, X2, . . . , Xn) is a collection of n independent, identically distributed random va-

riables a collection of samples may be generated, with ti(x) = t(xi) arising from xi

a random sample with replacement from x = (x1, x2, . . . , xn) of size n. The permu-

tation test is an additional example and is described in more detail in the following

section.

The observed test statistic value, t(x) denoted by t0, may be taken in combina-

tion with simulated test statistics to produce the set {t0, t1, t2, . . . , tn}. This set of

statistics may then be ordered according to the binary relation �

t(n+1) � t(n) � . . . � t(2) � t(1),

and in the case where simulated test statistics are independent a rejection region

specified as

R(α) = {a ∈ R : a � t(n+1−b(n+1)αc), t(n+1−b(n+1)αc) � a}.
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This test is valid as the probability that t(x) = t0 lies in any α proportion of the

collection of ti, and therefore by definition the most extreme α proportion, is less

than or equal to α when the ti are independent and identically distributed. The test

may be expressed in terms of the p value

p =
1

n+ 1

n∑
i=0

1{t0 � ti},

rejecting H0 at significance level α when p ≤ α.

A hypothesis testing procedure is exact if the probability of a type I error is

identically the significance level α for all α ∈ [0, 1]. Under the above formulation the

bootstrap test is valid but not exact. To illustrate this consider n = 9 and α = 0.05,

the resulting set R(0.05) are those values which are strictly more extreme than every

ti. As a result the probability of rejecting H0 is zero, because t(x) = t0 is one of the

ti, and thus the probability of a type I error is zero, strictly less than 0.05. However,

the number of samples n may be chosen such that (n+ 1)α ∈ Z to result in an exact

bootstrap test when samples ti are independent.

An alternative formulation of the bootstrap test which is both valid and exact is

obtained by first specifying k = n+ 1− b(n+ 1)αc and counts c+ and c0 as follows

c+ =
n∑
i=0

1{ti � t(k), t(k) � ti}

c0 =
n∑
i=0

1{ti � t(k), t(k) � ti}.

Intuitively, c+ is the number of ti which are strictly more extreme than t(k) and c0 is

the number of ti which are exactly as extreme as t(k). A randomisation test function

φ(x) = P(reject H0), given by

φ(x) =


1 if t(x) � t(k)(x) and t(k)(x) � t(x)

(n+1)α−c+(x)
c0(x)

if t(x) � t(k)(x) and t(k)(x) � t(x)

0 if t(x) � t(k)(x) and t(k)(x) � t(x),

then determines rejection of H0 (Chung and Romano, 2013).

The size of the test is

EX [φ(X)|H0 true] =
c+

n+ 1
+

(n+ 1)α− c+

c0
× c0

n+ 1

= α,

as under H0 the ti are identically distributed and thus t(x) = t0 may be considered

to be a single random sample from the collection of t(i). This formulation of the

bootstrap test is therefore valid and exact.
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2.3.3 Permutation test

Under some formulations of H0 in cases where X is a collection of, potentially

dependent, random variables a permutation test may be carried out. The suitability

of a permutation test is dependent upon the existence of a collection of operators,

λ ∈ Λ, under which t(X)
d
= t(λX), with

d
= used to denote equality in distribution.

This is known as exchangeability under the action of all λ ∈ Λ, which we will refer

to as Λ-exchangeability. An example is the scenario in which the variables within X

are divided into two collections, those with distribution function F1 and those with

distribution function F2, with H0 specifying that F1 ≡ F2. The random variables X

are then exchangeable under the set of operators Λ equivalent to relabelling of the

random variables as members of the two collections.

Specifying |Λ| = n + 1 and the identity operator λ0 ∈ Λ such that λ0X = X,

the bootstrap test conducted using the set of all samples generated by allowable

permutations {t(λ0x), t(λ1x), . . . , t(λnx)} is referred to as the exact permutation

test (Edgington, 1964). A benefit of the permutation test is that the distribution

function of the test statistic, Ft, need not be specified. Permutation tests simply

require structure within the data X under which there is Λ-exchangeability for some

set of operators Λ.

In cases where the size of Λ and the time required to calculate each t(λx) com-

bine to be infeasible an approximate permutation test may be carried out. The

approximate permutation test is a bootstrap test evaluated using samples t(λx) for

λ ∈ Λ′, a randomly sampled subset of Λ of size n′ which includes λ0 (Edgington,

1969). The resulting test function is dependent upon both X and Λ′, φ(X,Λ′), but

provided Λ′ is sampled from Λ independently of X the hypothesis test is both valid

and exact, since

EΛ′,X [φ(X,Λ′)|H0] = EΛ′ [EX [φ(X,Λ′)|H0 true]|H0 true]

= EΛ′ [α|H0 true]

= α.

Although the approximate permutation test remains valid and exact, its power

is reduced in comparison to the exact permutation test under the complete set of

operators, Λ. When testing at the α = 0.05 significance level with n′ = 1000 the

power of the approximate test is at least 94.5 percent of that for the exact test,

rising to at least 98.3 percent when n′ = 10000 (Jöckel, 1986).
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2.3.4 Multiple hypothesis testing

As described in Section 2.3.1, an exact hypothesis test carried out at significance

level α has a probability equal to α of rejecting the null hypothesis in cases where it

is true, also known as the size of the test or the probability of a type I error. When

a single test is carried out specification of the significance level therefore limits the

probability of such an error. In cases where multiple tests are carried out, each has a

corresponding probability of a type I error and the combination of these probabilities

must be taken into account to avoid making misleading conclusions.

A measure of the error rate for a collection of hypothesis tests is the family wise

error rate, the probability of making at least one type I error (Shaffer, 1995). Under

the assumption that the results of each of n exact tests are independent and that

each test is carried out at the same significance level, α, the family wise error rate

is 1− (1− α)n. As an illustration, consider n = 16 tests carried out at significance

level α = 0.05. The resulting false positive rate is then 1− (1− 0.05)16 = 0.56, i.e.

there is a greater than 50 percent chance of rejecting the null hypothesis for at least

one of the tests when all of the null hypotheses are true.

A method for the control of the family wise error rate across n tests is the

Bonferroni correction, for which each individual test is carried out at the reduced

significance level of α/n (Dunn, 1961). The family wise error rate in the case of

independent tests, 1 − (1 − α/n)n ≤ α by Boole’s inequality, is controlled by the

Bonferroni correction to be no more than the significance level α. However, for

large numbers of comparisons the Bonferroni correction can result in tests which

lack power and are conservative when the results of individual tests are positively

correlated (Simes, 1986). There exist alternatives to the Bonferroni correction which

control the family wise error rate and maintain greater statistical power, including

the stepdown max-based permutation testing procedure of Romano and Wolf (2005).

Under the null hypothesis p-values are uniformly distributed on the interval

[0, 1]. The empirical distribution of p-values may therefore be compared to the

Uniform[0, 1] distribution in a single hypothesis test, using for example the one-

sample Kolmogorov-Smirnov test (Massey, 1951). In the case of repeated application

of the same hypothesis test to multiple sets of identically distributed data, rejection

of this omnibus test may then be taken as evidence against the null hypothesis.

2.3.5 Effect size

When comparing the difference or dependence between two sets of observations, it is

often important to investigate effect size alongside corresponding significance tests.

For example, in the case of samples x = {x1, x2, . . . , xnx} observed under control
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conditions and samples y = {y1, y2, . . . , yny} observed under treatment conditions

following an intervention, a statistical test may tell us if the change in observation

mean, ȳ − x̄, is significant but nothing about the magnitude of the effect size. In

cases where n1 and n2 are very large, a very small treatment effect may result in

rejection of the null hypothesis of no difference between the means of the populations

from which x and y are sampled, but be of no practical importance.

In the case of comparing the difference between sets x and y, Cohen’s d statistic

(Cohen, 1992) is a measure of effect size. The value of d depends upon sample

means, x̄ and ȳ, and standard deviations, sx and sy,

d =
x̄− ȳ
s

s =

√
(nx − 1)s2

x − (ny − 1)s2
y

nx + ny − 2
.

The magnitude of d may be assessed by comparison to thresholds (Cohen, 1992),

with |d| ≤ 0.2 denoting a negligible effect size, 0.2 < |d| ≤ 0.5 a small effect size,

0.5 < |d| ≤ 0.8 a medium effect size and anything greater than 0.8 a large effect size.

Alternatively, the magnitude of d may be assessed in comparison to its standard

deviation, sd, given by

s2
d =

(
nx + ny
nxny

+
d2

2(nx + ny − 2)

)(
nx + ny

nx + ny − 2

)
.
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Chapter 3

Differences between collections

of point patterns

This chapter introduces in more detail the methodology proposed for testing for

differences between collections of point patterns. The material has been made avai-

lable as a working paper (Honnor et al., 2017a), and is presented in this chapter in

a slightly reduced format as background information common to the whole thesis is

presented in Chapter 2.

An introduction is first given to put the biological question in context, describe

the data and formulate a statistical question which aims to answer the biological

question with the data available. Following this the methodology is presented in

Section 3.2. In Section 3.3 a validation study design is presented and the results

analysed. Application of the methodology to a set of TACC3 biological data follows

in Section 3.4 before a summary of the conclusions is presented in Section 3.5.

3.1 Introduction

Advances in sensor (Kanoun and Trankler, 2004) and storage technology (Grochow-

ski and Hoyt, 1996) allow parallelisation of data collection across sensor networks

and continuous monitoring. Improvements in communication networks have also

made collected data more accessible. One result of this is the production of large,

specialised spatial point pattern data sets, the analysis of which requires develop-

ment of new statistical techniques. A particular area in which this is apparent is the

imaging of large numbers of biological samples at high magnifications. The resulting

images may be analysed computationally to determine the location of subcellular

structures of interest. Further investigation can shed light on the inner workings of

the cell and the effect of applied external conditions.

This chapter introduces and applies a methodology for comparing the structure
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of point patterns with a particular biological application in mind, the structure

of microtubules within kinetochore fibers, but with further applicability to more

general data sets. Analysis of microtubule structure is of particular importance as

microtubules perform a vital role during chromosome separation in mitosis, where

errors can lead to aneuploidy, a common cause of genetic disorders.

Point pattern data comprising observations from two populations such as those

analysed in this chapter may arise in numerous ways. For example, Plant locations,

divided into two populations based upon the species of plant (Mateu et al., 2014), and

the location of neurons within the brain, divided based upon whether the individual

suffers from mental illness (Diggle et al., 1991).

It may be desirable to determine if there is variation in the structure of point

patterns to make inference on underlying differences between the two populations.

Such variation may occur consistently, but at a small enough scale to make detection

by eye impossible. This chapter describes a statistical methodology for application

to point patterns and a class of marked point patterns, to test for the existence of

structural differences between two collections of point patterns.

One modelling approach is to model each of the populations individually and

compare the models. Due to the wide variety of models and difficulties fitting them

to data, we instead compare the collections of point patterns directly using a number

of nonparametric summary statistics, which are then combined across and compared

between collections to produce test statistics. Nonparametric permutation testing

is then be used to quantify the significance of reported test statistic values.

We introduce a variety of test statistics, such as the number of points and the dis-

tances between points, and a number of comparison methods, for example pointwise

and functional comparisons. Decisions on which of the suggested testing procedures

are most suitable will depend upon the type of pattern structure of interest, the

required sensitivity of the testing procedure and the desired interpretability of the

test statistic.

3.1.1 Mathematical representation of data

The methodology in the following section is designed for application to point pat-

terns x ∈ χ2, where χ2 is the set of all finite point patterns on R2. That is

x = (x1, x2, . . . , xn(x)) with xj ∈ R2 and n(x) ∈ N. The point pattern x is re-

presented as an ordered collection of point locations for identifiability purposes. To

summarise,

χ2 := {(x1, x2, . . . , xn(x)) : n(x) ∈ N, xi ∈ R2 for i = 1, 2, . . . , n}.

We will consider a collection of point patterns xi ∈ χ2 indexed by the set of
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i ∈ I. The notation xJ = (xi : i ∈ J) is used to represent the collection of point

patterns indexed by the set J , where ordering is again simply for identifiability. Two

collections of point patterns, indexed by I0 and I1 and denoted by xI0 and xI1 , are

obtained by partitioning the set I. Under this notation, xij is the location of the jth

point in the ith point pattern, xi.

Additional methodologies are also designed for application to marked point pat-

terns y ∈ χ+
2 . The point space χ+

2 is the set of all finite point patterns on R2

augmented with a third coordinate equal to zero, with each point xj assigned a

corresponding mark vj which is itself a vector in R2 augmented with a third coordi-

nate equal to h. That is y = ((x1, v1), (x2, v2), . . . , (xn(y), vn(y))) with xj ∈ R2 × {0}
and vj ∈ R2 × {h}. Again, the points of y are ordered for identifiability purposes.

The reason for the particular formulation of χ+
2 will become clear in light of the

particular application described in Section 3.4, but in brief is chosen to represent

paired point patterns in parallel planes separated by a distance of h by a marked

point pattern. To summarise,

χ+
2 := {((x1, v1),(x2, v2), . . . , (xn(y), vn(y))) : n(y) ∈ N, xi ∈ R2 × {0}

and vi ∈ R2 × {h} for i = 1, 2, . . . , n(y)}. (3.1)

We again consider a collection of marked point patterns yi ∈ χ+
2 indexed by the

set I, with yJ = (yi : i ∈ J) the collection of marked point patterns indexed by

the set J . The sets of indices I0 and I1 are defined analogously to those for the

unmarked point patterns.

3.1.2 Statistical problem

Point patterns xI0 may be considered to be independent realisations of a point

process X0 and point patterns xI1 to be independent realisations of a point process

X1. The aim of the proposed methodology for point patterns is to make inference

on the existence and form of a difference between the processes X0 and X1 using

the available data xI .

Similarly, marked point patterns yI0 may be considered to be independent realisa-

tions of a marked point process Y 0 and marked point patterns yI1 to be independent

realisations of a marked point process Y 1. The aim of the proposed methodology for

marked point patterns is to make inference on the existence and form of a difference

between the processes Y 0 and Y 1 using the available data yI .
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3.2 Quantification of differences in point pattern struc-

ture

3.2.1 Summary statistics

Summary statistics provide information on the distribution of observed points and

may be compared between observations. Comparison may also be made to the homo-

geneous Poisson process for which frequently used summary statistics are tractable.

Summary statistics for more advanced point process models are typically intractable.

This section introduces a number of summary statistics, each of which summarises

a property of a single (marked) point pattern, with the following section combining

these values over the index sets I0 and I1 to produce test statistics.

The data which is the focus of our study, and is described in more detail in Section

3.4, is comprised of measurements of multiple observed point patterns which may

only be compared according to the relative location of points, due to the absence of a

common fixed location and orientation with which to specify a consistent co-ordinate

system. As a result, while intensities could be estimated for each individual point

pattern, it is not possible to combine these separate estimates into intensity profiles

for the generating processes. An alternative to determining intensity profiles of the

generating processes is the comparison of features of the estimated intensity of each

observation, for example the smoothness of the intensity quantified via estimation of

the parameters of the correlation function of a fitted Gaussian process. We instead

investigate the patterns through summary statistics which may be accurately es-

timated using only the information obtained from relative point locations. Such

summary statistics can also be more intuitive for explanation to non-statisticians,

such as biologists for whom our analysis aims to inform.

For X a homogeneous point process on the observation window W , the intensity

is given by

ρ =
µ(W )

|W |
,

where |W | denotes the volume of the observation window W . For x a realisation

of a homogeneous point process, obtained by first fixing the observation window W

and then reporting all point locations within W , the intensity may be estimated by

ρ̂ =
n(x)

|W |
, (3.2)

as introduced earlier in Section 2.1.3.1.

The nearest neighbour of point xj in pattern x may be denoted by nn(xj)

nn(xj) =

{
xk : k = arg min

l
||xl − xj ||

}
,
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where the set definition accounts for the possible existence of more than one nearest

neighbour. The nearest neighbour distance of point xj may then be denoted by

nnd(xj) with

nnd(xj) = inf
x∈nn(xj)

{||xj − x||},

the unique infimum over nn(xj) which gives the Euclidean distance between xj and

its nearest neighbours in x. The mean nearest neighbour distance for the point

process X is then

nnd(X) = E[nnd(x), x ∼ Uniform{X}],

an estimator of which for the point pattern x is given by

nnd(x) =
1

n(x)

n(x)∑
j=1

nnd(xj). (3.3)

The graph produced by including only those edges which represent a nearest neig-

hbour relationship is unlikely to be connected. As a result, the disjoint connected

subgraphs may be translated to produce clearly different point patterns which retain

the same nearest neighbour properties. The minimum spanning tree is a connected

alternative graph for which the translation of subgraphs typically results in a diffe-

rence in a corresponding mean minimum spanning distance.

Considering the weighted graph associated with the point pattern x denoted by

G(x) = (V (x), E(x), D(x)),

the vertex set of G(x), denoted by V (x), is the set of point locations xj ∈ x. The

graph G(x) is the complete graph on V (x), meaning that the edge set E(x) is the

set of edges joining every vertex to every other vertex. Graph edges are weighted by

the distances between points, with the edge joining the vertices at xj and xk being

attached the weight ||xj−xk||, producing the set of edge weightsD(x). The minimum

spanning tree of the graph G(x), denoted by G∗(x), is the spanning subgraph of

G(x) with minimum weight. Let E∗(x) ⊂ E(x) denote the edge set of G∗(x) and

D∗(x) ⊂ D(x) denote the corresponding set of edge weights. The expected edge

length of the minimum spanning tree of the point process X, referred to as the

mean minimum spanning distance msd(X), is then

msd(X) = E[d, d ∼ Uniform{D∗(X)}].

An estimate of the mean minimum spanning distance for a point pattern x is given

by

msd(x) =
1

n(x)− 1

∑
d∈D∗(x)

d, (3.4)
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where the divisor is n(x)− 1 as the minimum spanning tree of n points is made up

of n− 1 edges.

The K-function, or scaled neighbourhood count function, is described previously

in Section 2.1.3.3 for point processes, with examples of edge corrected estimators for

point patterns. As part of this analysis we consider the edge corrected estimator

K̂(x, r) given by

K̂(x, r) =
|W |
n(x)2

∑
j 6=k

ej,k1(||xj − xk|| ≤ r), (3.5)

where ej,k is an edge correction term such that ej,k is the proportion of the circum-

ference of the circle with centre xj and radius ||xj − xk|| which is contained within

the observation window W (Diggle et al., 2000).

The G-function, or nearest neighbour function, is described previously in Section

2.1.3.5 for point processes, with examples of edge corrected estimators for point

patterns. As part of this analysis we consider the uncorrected estimator Ĝ(x, r)

given by

Ĝ(x, r) =
1

n(x)

n(x)∑
j=1

1 [nnd(xj) ≤ r] , r ∈ [0,∞), (3.6)

for reasons described in more detail in Section 3.4.4.

The location of points within marked point patterns may be summarised by

the previous statistics described in this section. We propose a further summary

statistic for the marked point pattern y which may be formulated using only the

marks vj ∈ R2 × {h}, each of which represents the vector connecting related points

in paired point patterns lying in parallel planes separated by a distance of h. Let v̂j

denote the unit vector in the direction of the mark vj and β be given by

β =

n(y)∑
j=1

v̂j . (3.7)

We then propose the effective force transference summary statistic for the marked

point process Y as

EFT(Y ) = E[cos(θ(v, β)), (x, v) ∼ Uniform{Y }],

where θ(v, β) is the angle between vectors v and β. An estimate of the effective force

transference summary statistic for a marked point pattern y is given by

EFT(y) =
1

n(y)

n(y)∑
j=1

cos(θ(vj , β)).
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This approximation may alternatively be expressed as

EFT(y) =
1

n(y)

n(y)∑
j=1

v̂j · β
||β||

=
||β||
n(y)

. (3.8)

A further expression of the effective force transference estimator is given by

EFT(y) =
1

n(y)

√
β · β

=
1

n(y)

√√√√√n(y)∑
j=1

v̂j ·
n(y)∑
k=1

v̂k

=
1

n(y)

√√√√√n(y)∑
j=1

n(y)∑
k=1

cos(θ(vj , vk)). (3.9)

From this formulation it is clear that the effective force transference is dependent

only upon the angles between mark vectors, independently of point locations and

the length of mark vectors.

As β is the sum of n(y) unit length vectors, 0 ≤ ||β|| ≤ n(y) and EFT(y) ∈
[0, 1]. The expression of effective force transference given in (3.9) makes it clear that

EFT(y) = 1 if and only if all mark vectors are parallel and the greater the angles

between lines, the smaller the value of the effective force transference. As a result

EFT(y) is a measure of the degree to which mark vectors vj are similarly oriented.

Further to the general interpretation of the effective force transference test statistic

for any y ∈ χ+
2 , Section 3.4.4 introduces a specific interpretation in the case of the

TACC3 data which motivates the name.

There are a number of directional statistics which could have been considered

instead of the effective force transference test statistic, such as the concentration

parameters of the Von Mises-Fisher distribution (Mardia, 1975) or Kent distribution

(Kent, 1982). Our observed unit directions are akin to locations on the unit 2-

hemisphere (half of the 2-sphere in R3), while both of these distributions may be

specified over the 2-sphere. This difference and the physical interpretation of the

effective force transference in light of the TACC3 data lead us to favour investigation

of the effective force transference over the potential alternatives.
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3.2.2 Test statistics

The first order summary statistic, n(x), may be compared between point pattern

collections using the pattern size test statistic

δN (I) =
1

|I0|
∑
i∈I0

n(xi)− 1

|I1|
∑
i∈I1

n(xi).

In some cases, and specifically in the case of the data we investigate in Section

3.4, point patterns are reported by methods other than first fixing the observation

window W and then reporting all point locations within W . In such cases the area

of the observation window, |W |, may be considered to be random and compared

between point pattern collections using the pattern area test statistic

δW (I) =
1

|I0|
∑
i∈I0

|W i| − 1

|I1|
∑
i∈I1

|W i|.

The estimated homogeneous intensity of point patterns, ρ̂(x), defined in (3.2),

may be compared between collections using the intensity test statistic

δρ(I) =
∑
i∈I0

ω0(xi)ρ̂(xi)−
∑
i∈I1

ω1(xi)ρ̂(xi),

where weights ω0 and ω1 may be formulated to produce unweighted test statistics

with

ω0(xi) =
1

|I0|
, ω1(xi) =

1

|I1|
,

or weighted test statistics with

ω0(xi) =
n(xi)∑
j∈I0 n(xj)

, ω1(xi) =
n(xi)∑
j∈I1 n(xj)

. (3.10)

The notation δρ is used to denote unweighted test statistics, with δρ,ω used to denote

weighted test statistics. Uniform weighting takes into account the evidence of each

point pattern equally, while weighting according to the number of points attaches

equal weight of evidence to each point.

Pattern size, area and intensity test statistics summarise point pattern properties

through single numbers dependent only upon first order properties, independently

of the location of observed points xj within the observation window W . In cases

where point patterns are expected to be realisations of homogeneous Poisson point

patterns, specification of the intensity completely describes the distribution of the

number of points and their locations, while specification of the number of points

completely describes the distribution of point locations. However, knowledge of the

number of points or the estimated density under the assumption of homogeneity is

inadequate for specification of the distribution of point locations for inhomogeneous
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Poisson point processes and alternative classes of point processes. As a result, test

statistics based upon the second order property of distances between points may be

more suitable when the patterns are not believed to be realisations of homogeneous

Poisson processes.

We propose comparison of nnd(x), defined in (3.3), between collections using the

mean nearest neighbour test statistic

δnnd(I) =
∑
i∈I0

ω0(xi)nnd(xi)−
∑
i∈I1

ω1(xi)nnd(xi). (3.11)

Similarly, we propose comparison of the mean minimum spanning distance msd(x),

defined in (3.4), between collections using the mean minimum spanning distance

test statistic

δmsd(I) =
∑
i∈I0

ω0(xi)msd(xi)−
∑
i∈I1

ω1(xi)msd(xi).

The mean nearest neighbour distance and mean minimum spanning distance

test statistics compare average separation distances, ensuring that the statistics

summarise information only on the distances between points and not on the number

of points in each pattern. While nearest neighbour and minimum spanning distances

both summarise point separation distances, they are expected to differ in particular

for cluster processes containing multiple clusters. For a cluster process the mean

nearest neighbour distance summarises within-cluster point separation distances,

while the mean minimum spanning distance tends to summarise both within-cluster

point separation distances and between-cluster distances.

Summarising the information contained within a point pattern by a single num-

ber before comparison between collections xI0 and xI1 leads to a large loss of infor-

mation. An alternative approach summarises the information in each observation by

a function to allow the preservation of a greater amount of information, with com-

parison between functions revealing differences which may be unobservable when

comparing single number summary statistics. The additional information can be

carried forwards even in cases where the comparison of functions results in a single

number.

Diggle et al. (2000) propose a test statistic for the comparison of the scaled

neighbourhood count function, K(r), an estimator of which is defined in (3.5). An

estimate of the average scaled neighbourhood count function evaluated at distance

r for the collection of point patterns xJ indexed by the set J , denoted by K̄(xJ , r),

is given by

K̄(xJ , r) =
1∑

i∈J n(xi)

∑
i∈J

n(xi)K̂(xi, r). (3.12)
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The proposed test statistic, which will in future be referred to as the scaled neig-

hbourhood count test statistic, is given by

δK(I) =

∫ r0

0

1

r2

∑
i∈I0

n(xi)

[K̄(xI0 , r)− K̄(xI , r)
]2
dr

+

∫ r0

0

1

r2

∑
i∈I1

n(xi)

[K̄(xI1 , r)− K̄(xI , r)
]2
dr. (3.13)

The integration in (3.13) is carried out across the range r = 0 to r = r0, where

r0 is chosen to be large enough to summarise the information present in the point

patterns, but small enough in comparison to the dimensions of W that the impact

of edge corrections is not too great. The dominant term in the sampling variance of

K̂(x, r) is of order 1/n(x) for a homogeneous Poisson process (Diggle et al., 2000),

motivating the weighted average in the expression of K̄(xJ , r) in (3.12). Further-

more, for a homogeneous Poisson point process and values of r which are small in

relation to the dimensions of the observation window W , the dominant term in the

sampling variance of K̂(x, r) with r is of order r2 (Diggle et al., 2000). As a result

a multiplier of 1/r2 is included in the expression of the scaled neighbourhood count

test statistic given by (3.13).

Estimated nearest neighbour functions, defined in (3.6), may be averaged over

the collection of point patterns xJ indexed by the set J , to produce Ĝ(xJ , r) given

by

Ĝ(xJ , r) =
∑
i∈J

ωJ(xi)Ĝ(xi, r), (3.14)

where ωJ is defined for the set J as ω0 is defined for the set I0 in (3.10). We

propose two test statistics for comparison of Ĝ(xI0 , r) and Ĝ(xI1 , r) across the range

of distances r. These will be referred to as the L1 nearest neighbour distribution

test statistic, denoted by δG,1(I), and the L∞ nearest neighbour distribution test

statistic, denoted by δG,∞(I), given by

δG,1(I) = ||Ĝ(xI0 , r)− Ĝ(xI1 , r)||1

=

∫ ∞
0
|Ĝ(xI0 , r)− Ĝ(xI1 , r)|dr. (3.15)

δG,∞(I) = ||Ĝ(xI0 , r)− Ĝ(x(I1 , r)||∞

= sup
r
|Ĝ(xI0 , r)− Ĝ(xI1 , r)|. (3.16)

Both the L1 and L∞ nearest neighbour distribution test statistics propose com-

parison of the nearest neighbour function, G(r), over an infinite range of r values.

In practise, there is a finite value of r = r1, equal to the largest observation window
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diameter, which all observed nearest neighbour distances are less than and, as a

result, Ĝ(x, r) = 1, ∀r ≥ r1. The upper limit r1 could then replace the upper limit

of integration in the L1 nearest neighbour distribution test statistic and limit the

set over which the supremum is taken in the L∞ nearest neighbour distribution test

statistic to r ∈ [0, r1].

The L∞ and L1 norms are the two extreme Lp norms which respectively attribute

all weight to the maximum difference between functions across the argument r and

equal weight to the difference between functions across r. As a result, the L1 distance

may be preferred as it explicitly compares across the entire range of values of r. The

form of the comparison in the scaled neighbourhood count function test statistic is

more reminiscent of a weighted combination of L2 norms.

We propose comparison of the effective force transference test statistic between

collections using the effective force transference test statistic

δEFT(I) =
∑
i∈I0

ω0(yi)EFT(yi)−
∑
i∈I1

ω1(yi)EFT(yi).

3.2.3 Significance quantification

In the formulation of the statistical problem, we propose that observations xI0 are

independent realisations of the point process X0 and observations xI1 are inde-

pendent realisations of the point process X1. It is not possible that any single

one-dimensional test statistic totally summarises all possible differences between X0

and X1. In the previous section we therefore proposed a number of test statistics,

each of which compares particular properties of X0 and X1. Despite the variety of

proposed test statistics our null hypothesis is unchanged for each test statistic, H0:

X0 and X1 are equal in distribution, with straightforward extension to Y 0 and Y 1.

Without making further assumptions on the properties of X0 and X1, the dis-

tribution of proposed test statistics under the null hypothesis cannot be analytically

determined. Analysis of the significance of calculated test statistics is therefore car-

ried out using permutation testing, introduced previously in Section 2.3.3. Under

the null hypothesis the labelling of point patterns as members of the collections xI0

and xI1 is exchangeable because they are assumed to be independent realisations of

the same point process, X
d
=X0 d

=X1, say.

Exchangeability of allocation to collections xI0 and xI1 is theoretically described

by the application of permutations λ ∈ S|I| = {λ0, λ1, . . . , λm}, the symmetric group

of degree |I|, to the set of indices I. Application of the permutation λj to the set of
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indices I results in subsets I
(j)
0 and I

(j)
1 satisfying

I
(j)
0 ∪ I(j)

1 = I, I
(j)
0 ∩ I(j)

0 = ∅,

|I(j)
0 | = |I0|, |I(j)

1 | = |I1|,

between which point patterns are compared. The observed test statistic under the

identity permutation, δ(λ0(I)) with λ0 : λ0(I) = I, is then be compared to the set

{δ(λ0(I)), δ(λ1(I)), . . . , δ(λm(I))} in the case of the exact permutation test.

In practice, the total number of permutations is too large to feasibly calculate for

both simulated data and the real data examples considered in the following sections.

An approximate permutation test is therefore carried out using a subset of S|I| of

size m′ equal to 10 000 to ensure good power (Jöckel, 1986). In the case where

|I0| = k, I
(j)
0 is obtained by randomly sampling k elements of I without replacement

such that I
(j)
0 6= I

(l)
0 ∀l ∈ {0, 1, . . . , j− 1}. The corresponding set I

(j)
1 is then simply

I \I(j)
0 and the first permutation is chosen specifically to be the identity permutation

such that I
(0)
0 = I0 and I

(0)
1 = I1.

Across all proposed test statistics δ(I) = 0 indicates no difference between xI0

and xI1 . Scaled neighbourhood count and nearest neighbour distribution test statis-

tics take values in [0,∞), as a result one-sided p-values are calculated at the upper

tail. All other proposed test statistics take values in (−∞,∞), as a result two-sided

p-values are calculated.

3.3 Validation study

To confirm the suitability of the methods described in the previous section, we first

apply them to simulated data which models the features that we wish to differentiate

between.

3.3.1 Simulation description

Let HPPP(ρ,W ) denote the homogeneous Poisson point process with intensity ρ

on the window W ⊂ R2. Similarly, let IPPP(ρ(x),W ) denote the inhomogeneous

Poisson point process with intensity ρ(x) on the window W ⊂ R2.

Let CPP(d,W ) denote the cluster point pattern containing n + 1 points distri-

buted over the observation window W ⊂ R2, according to d = {d1, d2, . . . , dn}, an

ordered set of n fixed strictly positive separation distances arranged in ascending

order. Point location xj+1 is determined by rejection sampling using as a proposal

distribution Uniform{x ∈ R2 : ∃k ∈ {1, 2, . . . , j} st ||x−xk|| = dj}, with acceptance

probability 1{x ∈ W, infk∈1,2,...,j ||x − xj || ≥ dj}. The result of this procedure is
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Data: d, W

Result: Point pattern x on W with nearest neighbour distances {d1} ∪ d
x1 ← centre of W ;

for i in 1 : n do

repeat

j ∼ Uniform{1, . . . , i};
θ ∼ Uniform[0, 2π];

xi+1 ← xj + di(cos θ, sin θ);

until mink∈{1,2,...,i} ||xi+1 − xk|| ≥ di and xi+1 ∈W ;

end

x← (x1, x2, . . . , xn+1);

Algorithm 1: CPP(d,W ) generation

point locations distributed according to the conditional distribution

xi+1|x1, x2, . . . , xi ∼ Uniform

(
W ∩

{
x ∈ R2 : min

j∈{1,2,...,i}
||x− xj || = di

})
.

An algorithmic description for the generation of a realisation of a CPP(d,W ) process

is given in Algorithm 1. From Algorithm 1, it is clear that nnd(x1) = d1 and

nnd(xi) = di−1, i ∈ {2, 3, . . . , n + 1}. Similarly, the minimum spanning tree of

X ∼ CPP(d,W ) has weight
∑

i∈{1,2,...,n} di by construction.

Let MPP(n, u, φ) denote the marked point process on χ+
2 , defined in 3.1, with a

fixed number of points n and mark directions vj deviating from u ∈ R3 by angles

of up to φ. As the effective force transference summary statistic depends only upon

the distribution of marks vj , point locations xj are fixed at the origin. Marks are

then simulated for u
′

= (0, 0, 1) with

φj ∼ Uniform[0, φ], θj ∼ Uniform[0, 2π], v
′
j = (sinφj cos θj , sinφj sin θj , cosφj).

Marks are transformed by the rotation R for which Ru
′

= u and scaled by the

constant ηj such that vj · ẑ = h, producing vj = ηjRv
′
j .

3.3.2 Study design

For each simulation type, the required collection of point patterns xI or yI is si-

mulated before permutation testing is carried out for each of the appropriate test

statistics, with the resulting p-value being recorded. One hundred independent repli-

cates of each simulation and testing procedure are carried out to provide information

on the sensitivity and specificity of proposed tests and the variability of these pro-

perties. In the case of point patterns, x, collection sizes are |I0| = |I1| = 30 and for

marked point patterns, y, the collection sizes are |I0| = |I1| = 14 to approximately
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match the observed data analysed in Section 3.4. A realisation of each simulation

type is displayed in Figure 3.1.

Homogeneous intensity simulations are made up of point patterns x simulated

according to HPPP(ρ0,W ) for x ∈ xI0 and HPPP(αρ0,W ) for x ∈ xI1 . The base

intensity ρ0 = 10−4 is chosen to approximately match that of the observed data, with

each W the square window with area sampled independently from Uniform[5002 −
105, 5002 + 105] to produce approximately the same number of points per pattern as

the observed data. Tested values of α vary across the set {1, 1.1, 1.2, 1.5}, resulting

in various strengths of difference between collections xI0 and xI1 .

Inhomogeneous intensity simulations are made up of point patterns x simula-

ted according to HPPP(ρ0,W0) for x ∈ xI0 and IPPP(ρ,W0) for x ∈ xI1 . The

observation window W0 is fixed as the square window with side length 500. The

inhomogeneous intensity at the point with coordinate location (x, y) ∈ R2 is given

by

ρ((x, y)) =



3ρ0x
250 x+ y < 500, x < y

3ρ0y
250 x+ y < 500, x > y

3ρ0(500−x)
250 x+ y > 500, x > y

3ρ0(500−y)
250 x+ y > 500, x < y.

The shape of the inhomogeneous intensity is then a square based pyramid with

maximum height 3ρ0, chosen such that∫
W0

ρ(x)dx =

∫
W0

ρ0dx.

Under this formulation the first order properties of x are identical for both collections

xI0 and xI1 , while the second order properties differ.

Disjoint cluster simulations aim to compare point patterns made up of a single

cluster with point patterns made up of four clusters, one in each quadrant of the

square observation window. For x ∈ xI1 point patterns x = ∪4
j=1x

j are the union

of four simulated realisations xj of CPP(dj ,W j
1 ). The W j

1 divide W1, the square

window with area |W1| = 2|W0| = 2 × 5002, into four square quadrants each with

area |W0|/2. The total number of points n(x) ∼ po(ρ0|W0|), is truncated to be

greater than eight such that each quadrant contains at least two points. Point

separation distances are determined from d̃, simulated as an independent sample of

size n(x) − 4 from Normal(55, 102), truncated to be non-negative and arranged in

increasing order. Once sampled, elements of d̃ are partitioned into four subsets dj

with

d̃j ∈ dj , j ∈ {1, 2, 3, 4},

P(d̃i ∈ dj) = 1/4, i ∈ {5, 6, . . . , n(x)}, j ∈ {1, 2, 3, 4}.
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α = 1 α = 1.1 α = 1.2 α = 1.5

Homogeneous intensity, HPPP(αρ0,W )

ρ = ρ0 HPPP(ρ0,W0) ρ = ρ((x, y)) IPPP(ρ((x, y)),W0)

Inhomogeneous intensity

CPP(d,W1) ∪4
j=1CPP(dj ,W j)

Disjoint cluster

α = 1 α = 1.1 α = 1.2 α = 1.5

Cluster variance, CPP(dα,W1)

Figure 3.1: Realisations of each of the simulation types.
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Point patterns x are simulated according to CPP(d̃,W1) for x ∈ xI0 to produce point

patterns with the same nearest neighbour distribution as for x ∈ xI1 . The number

of points n(x) is simulated from po(ρ0|W0|) and again truncated to produce values

greater than eight. Separation distances d are again determined by d̃ a sample of

size n(x)− 4 from Normal(55, 102), truncated at zero to produce only non-negative

separation distances and arranged in increasing order, with

d = {d̃1, d̃2, d̃2, d̃3, d̃3, d̃4, d̃4, d̃5, d̃6, . . . , d̃n(x)−4}.

All point patterns x ∈ xI have identical first order properties, due to common obser-

vation window sizes and distribution of number of points, and identically distributed

nearest neighbour distances. However, xI0 and xI1 differ in that x ∈ xI0 are made

up of a single cluster while x ∈ xI1 are made up of four clusters.

Cluster variance simulations are made up of point patterns x simulated by

CPP(d,W1) for x ∈ xI0 and CPP(dα,W1) for x ∈ xI1 . For all observations n(x)

is simulated from po(ρ0|W0|). Separation distances d are an independent sample

of size n(x) from Normal(55, 102), truncated to be non-negative, while dα are an

independent sample of size n(x) from Normal(55, 102α), again truncated to be non-

negative, for α varying across the set {1, 1.1, 1.2, 1.5}. Point patterns therefore have

identical first order properties and identical mean nearest neighbour distances, but

different nearest neighbour distance variances between collections xI0 and xI1 .

Varying angle simulations are made up of marked point patterns y simulated

according to MPP(n, u, φ) for y ∈ yI0 and MPP(n, u, αφ) for y ∈ yI1 . The number of

points, n are sampled independently from po(30) to approximately match observed

data. Direction u is fixed at (0, 0, 1) as results are independent of its value. Maximum

angle φ is fixed at 10 degrees, the approximate average for observed data, with α

varying across the set {1, 1.05, 1.1, 1.2, 1.5}. There is therefore a greater variance in

line trajectories for y ∈ yI1 than for y ∈ yI0 with increasing α.

3.3.3 Study results

Simulated point patterns are tested using each of the relevant test statistics using a

total of 10 000 permutations and this procedure is repeated for 100 independent sets

of simulations, resulting in 100 p-values for each test statistic for each parameter

value. The distribution of p-values is compared to the Uniform distribution on [0, 1]

via the Kolmogorov-Smirnov test (Massey, 1951) as an omnibus test to determine if

p-values differ from their expected distribution under the null hypothesis ofX0 d
=X1.

Omnibus tests are carried out at a corrected five percent significance level, using the

Bonferroni correction to account for multiple testing of the same data using a number

of different test statistics. The proportion of p-values in the interval [0, 0.05] is also
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presented as the proportion of individual tests which would have rejected the null

hypothesis at the five percent level. These values are presented for simulated point

patterns x in Table 3.1 and simulated marked point patterns y in Table 3.2.

Test statistics based upon first order statistics, δN , δρ and δρ,ω, successfully report

a difference for homogeneous intensity simulations where the difference in intensity is

at least ten percent, but fail to report a difference in any other case. This behaviour is

to be expected as the alternative classes of simulations produce differences in second

order properties, while keeping first order properties constant. There is negligible

difference between unweighted and weighted intensity test statistics, δρ and δρ,ω.

The pattern area test statistic, δW , consistently fails to reject the uniform dis-

tribution of p-values. This is the expected behaviour as for homogeneous intensity

simulations the pattern area, |W |, is identically distributed for both collections of

point patterns xI0 and xI1 . For all other simulations the pattern area is exactly

identical for all simulated point patterns and it is unnecessary to test the pattern

area test statistic.

Test statistics based upon single number second order summary statistics, δnnd,

δnnd,ω, δmsd and δmsd,ω, successfully report a difference for both homogeneous and

inhomogeneous intensity simulations. Mean minimum spanning distance test statis-

tics, δmsd and δmsd,ω, are additionally able to report the difference between disjoint

cluster simulations. This is expected by construction of the mean minimum span-

ning distance summary statistic which summarises both within- and between-cluster

distances, in comparison to the mean nearest neighbour distance summary statistic

which summarises only within-cluster distances. As these test statistics compare the

means of separation distances they are unable to report a difference when only the

variance of separation distances changes, as in the case of the cluster variance simu-

lations. The difference between weighted and unweighted test statistics is small, but

in general weighted test statistics are more accurate at detecting differences. Test

statistics based upon the mean minimum spanning distance generally outperform

those based upon the mean nearest neighbour distance.

Test statistics based upon functional summary statistics of nearest neighbour

distances, δG,1, δG,1,ω, δG,∞ and δG,∞,ω, successfully report a difference in every

case except for disjoint cluster simulations. This behaviour is expected as by design

the nearest neighbour distribution depends upon within-cluster separation distances

that are unchanged for disjoint cluster simulations, while the between-cluster sepa-

ration distance does change. The difference between weighted and unweighted test

statistics is again small, with weighted test statistics performing slightly better for

homogeneous and inhomogeneous intensity simulations and no clear difference for

cluster variance simulations. Test statistics comparing nearest neighbour functions
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δN δW δρ δρ,ω δnnd δnnd,ω δmsd δmsd,ω δK δG,1 δG,1,ω δG,∞ δG,∞,ω

Homogeneous intensity, α 1.0 0.07 0.07 0.02 0.04 0.05 0.04 0.04 0.04 0.08 0.07 0.06 0.07 0.05

1.1 0.23† 0.11 0.46† 0.44† 0.17† 0.21† 0.30† 0.30† 0.01 0.17† 0.18† 0.14† 0.14†

1.2 0.65† 0.05 0.96† 0.96† 0.63† 0.71† 0.80† 0.87† 0.06 0.67† 0.72† 0.51† 0.54†

1.5 1.00† 0.04 1.00† 1.00† 1.00† 1.00† 1.00† 1.00† 0.04 1.00† 1.00† 0.99† 1.00†

Inhomogeneous intensity 0.07 - 0.07 0.08 0.98† 0.99† 1.00† 1.00† 1.00† 0.97† 0.99† 0.95† 0.97†

Disjoint cluster 0.06 - 0.06 0.08 0.06 0.05 1.00† 1.00† 1.00† 0.09 0.09 0.09 0.09

Cluster variance, α 1.0 0.04 - 0.04 0.05 0.05 0.04 0.05 0.04 0.04 0.05 0.03 0.05 0.05

1.1 0.03 - 0.03 0.03 0.05 0.05 0.04 0.05 0.06 0.32† 0.33† 0.18† 0.17†

1.2 0.07 - 0.07 0.07 0.06 0.07 0.07 0.08 0.07 0.93† 0.92† 0.43† 0.50†

1.5 0.05 - 0.05 0.06 0.05 0.09 0.02 0.02 0.08† 1.00† 1.00† 1.00† 1.00†

Table 3.1: Validation study results from testing for differences between simulated point patterns for a number of different simulation types,

simulation parameters and test statistics. Proportion of p-values in the range [0, 0.05], † indicates non-uniformity of p-values under the

Kolmogorov-Smirnov test at the Bonferroni corrected (Dunn, 1961) 5/13 = 0.38 (Homogeneous intensity) or 5/12 = 0.42 (Inhomogeneous

intensity, Disjoint cluster, Cluster variance) percent significance level.
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δEFT δEFT,ω

Varying angle, α 1.00 0.02 0.01

1.05 0.32† 0.32†

1.10 0.84† 0.83†

1.20 1.00† 1.00†

1.50 1.00† 1.00†

Table 3.2: Validation study results from testing for differences between marked

point patterns for a number of different simulation parameters and test statistics.

Proportion of p-values in the range [0, 0.05], † indicates non-uniformity of p-values

under the Kolmogorov-Smirnov test at the Bonferroni corrected (Dunn, 1961) 5/2 =

2.5 percent significance level.

using the L1 distance outperform those which compare using the L∞ distance, likely

because they directly summarise the difference over the entire range of distances r.

The scaled neighbourhood count test statistic, δk, accurately reports a difference

in the case of inhomogeneous intensity and disjoint cluster simulations, but is largely

ineffective for alternative simulations. As the scaled neighbourhood count summary

statistic is normalised by the estimated intensity, ρ̂, it is not expected to report a

difference for homogeneous intensity simulations. Accurate detection in the case of

disjoint cluster simulations may result from the fact that the scaled neighbourhood

count function summarises more point separation distances than simply nearest

neighbour distances.

The effective force transference test statistics, δEFT and δEFT,ω, accurately re-

port a difference in mark orientation in close to one third of simulations when the

difference in maximum deviation is increased by at least five percent, consistently

so when the increase is at least 20 percent.

As a result of the simulation study we have confirmed the scenarios in which each

of the test statistics are effective, supporting the use of specific test statistics when

it is desired to test for particular differences in structure. We have also confirmed

the suitability of the permutation testing approach, with an absence of evidence to

reject uniformity of p-values when there is no difference between simulated point

pattern collections xI0 and xI1 .
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3.4 Investigation of changes in K-fiber microtubule or-

ganisation following TACC3 overexpression

3.4.1 Biological background

During mitosis, subcellular structures known as kinetochore fibers (K-fibers) con-

nect two anchor points, centrosomes, within the cell to each of the chromosome pairs

(Booth et al., 2011). The chromosomes contain the genetic information and success-

ful mitosis requires the pairs to be evenly divided, such that each of the two daughter

cells contains one of each chromosome (Holland and Cleveland, 2009). K-fibers are

believed to apply the force necessary to separate chromosome pairs and as a result

they are important for successful cell division. An illustration of the intermediate

stages in the process of mitosis including the function of the K-fibers can be seen in

Figure 1.1.

Each K-fiber is made up of a number of microtubules, approximately cylindrical

structures which are bound together by a mesh structure to form the rigid K-fiber.

Our collaborators, Dr. Stephen Royle and his research group within the Centre

for Mechanochemical Cell Biology at the University of Warwick, are interested in

the effect that overexpression of TACC3, Transforming acidic coiled-coil containing

protein 3, may have on the structure of microtubules within K-fibers. The structure

may be visualised by microscopy imaging of cells at the correct point in the cell cycle

under a control regime and a treatment regime for which there is overexpression of

TACC3.

Example diagrams of point locations arising from microtubule locations may be

seen in Figure 3.2. Note that these are not the microscope images from which point

locations are recorded, rather they illustrate the interpretation of the results with

circles centred at point locations with radius equivalent to the expected radius of

microtubules. Point patterns are presented in boxes to separate them, but these

boxes are not observation windows, due to the method in which point locations are

reported (described in more detail in the following section). Dashed boxes divide

point patterns into xI0 and xI1 , again for illustrative purposes as the total number

of point patterns is too large to present them all.

We choose to investigate 2D coordinate locations obtained from imaging biolo-

gical samples as point patterns. This results in |I| = 63, I0 indexing observations

under the control regime with |I0| = 26 and I1 indexing observations under the

treatment regime with |I1| = 37.

Also available is a data set comprising paired 2D microtubule coordinate locati-

ons obtained from two parallel image slices through the same sample approximately

perpendicular to microtubule directions, including information on which coordinate
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xij

xI0 = {xi : i ∈ I0}
xi ∼ X0

xI1 = {xi : i ∈ I1}
xi ∼ X1

xi

Figure 3.2: Diagrams of sample microtubule location data. Each pattern represents

a single K-fiber with microtubules represented as circles, the centres of which are

analysed as point locations and the radii of which are consistent with the expected

microtubule radius.

locations represent ends of the same microtubule in each of the slices. Paired coor-

dinate locations are reported as

x = {(x1,0, x1,1), (x2,0, x2,1), . . . , (xn(x),0, xn(x),1)}.

We choose to investigate paired 2D coordinate locations obtained by imaging bio-

logical samples as marked point patterns y with xj = xj,0 × {0} and vj = (xj,1 −
xj,0)× {h}.

An example diagram of a single marked point pattern may be seen in Figure

3.3. This is again not a microscope image but rather a schematic diagram using

the information reported from analysis of the images themselves. Arrows are used

to represent each mark direction, vj , oriented such that point locations, xj , are at

the tail of each arrow. Three diagrams in combination present the marked point

pattern as projections into perpendicular frames, perpendicular to and parallel to

the K-fiber axis.

Paired coordinate observations are similarly collected for multiple samples under

each of the two experimental regimes. This results in |I| = 28, I0 indexing obser-

vations under the control regime with |I0| = 13 and I1 indexing observations under

the treatment regime with |I1| = 15.
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Figure 3.3: Plots of sample marked point pattern data. Point locations and mark

orientations representing the location and direction of microtubules when viewed

parallel to the K-fiber axis (left and bottom) and perpendicular to the K-fiber axis

(top right).
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3.4.2 Observed data features

Using the notation introduced in Section 2.1.3.1, point patterns x are realisations

of point processes, X, obtained by reporting the locations of all points contained

within a fixed observation window W . Point patterns produced from observed data

are instead made up of points added to the pattern using an iterative process. The

experimenter first selects a single microtubule cross-section within the microscope

image, taken to be located within the K-fiber of interest, with the coordinates of

its centre recorded as the first point location, x1. The coordinates corresponding

to any microtubule cross-section whose centre lies within a distance of 105nm of x1

are then added to the point pattern as point locations x2, x3, . . .. This procedure is

iterated, searching in a neighbourhood of size 105nm from each point in the pattern

until there exists no further microtubule cross-sections whose centres satisfy this

requirement. The specific distance of 105nm has been suggested by previous biolo-

gical investigations to be the maximum centre-to-centre distance at which K-fiber

microtubules may be connected by mesh, as microtubules have an average radius

of 12.5nm and the mesh forms edge-to-edge connections at distances up to 80nm

(Nixon et al., 2015). All locations and distances are on the scale of nanometres and

as a result we omit explicit reference to units in the rest of this chapter, describing

instead points within a distance of 105.

The purpose of the iterative procedure is to isolate and report the locations

of only those microtubules which belong to a single K-fiber. An estimate to the

observation window may be recreated using the observed data, resulting in W (x)

given by

W (x) = ∪xj∈xb(xj , 105), (3.17)

where b(xj , 105) is the two dimensional ball centred at xj with radius 105. Under

this formulation W (x) is a realisation of W (X), a random observation window. As

a result, estimators which are unbiased in the deterministic case of W (X) = W are

not expected to be unbiased when the estimator W (x) is used instead.

Paired coordinate locations for observed data represent the centres of endpoints

of microtubules which may be modelled as straight lines at the scale of our obser-

vations. Point locations xj specify microtubule locations, while marks vj specify

microtubule directions. Combining these pieces of information, a parametric speci-

fication of the jth microtubule is given by

Lj(t) = xj + tvj t ∈ [0, 1]. (3.18)

The purpose of the K-fiber is the separation of chromosome pairs during mitosis,

with each K-fiber forming a physical link between a chromosome and the mitotic
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spindle pole, transferring the force required to physically pull apart the chromosome

pair. Under the simplifying assumption that force is applied through the K-fiber via

the application of forces of identical magnitude, F , in the direction of each of the

microtubules, vj , the resultant force is given by

n(y)∑
j=1

F v̂j = Fβ.

The magnitude of the resultant force is F ||β|| and, if we further assume the K-fiber

to be optimally directed such that all of this resultant force is used to separate the

chromosome pair, the proportion of input force effectively transferred is

F ||β||
F × n(y)

=
||β||
n(y)

= EFT(y).

Therefore, the effective force transference summary statistic intuitively relates to

the performance of the K-fiber, with larger values of effective force transference

indicating that the K-fiber is more effective at transferring force as its component

microtubules are better aligned.

Observed paired point pattern data arises from parallel imaging planes which

are oriented approximately perpendicular to the axis of the K-fiber. As the K-fiber

axis is not uniquely defined and its features may be obscured before imaging takes

place, there is the possibility of variation in the orientation of the imaging planes

between samples. Imaging a single sample at different orientations results in changes

in the length of marks, ||vj ||, but does not affect the trajectory of marks relative

to each other. The effective force transference test statistic has been proposed

with this particular property in mind and, as it is calculated using only relative

mark trajectories, it is independent of the orientation of the parallel imaging planes

(provided imaging planes are not themselves parallel to any of the microtubule

directions).

3.4.3 Assumption checking

Coordinate locations reported for observed data represent the centres of microtubule

cross-sections. Under the biological assumption that microtubules have radii of 12.5

and are connected by a mesh structure which extends a distance of no further than

80 (Nixon et al., 2015), we expect

nnd(xj) ∈ [25, 105], (3.19)

for all points xj in all point patterns x. In practice 1811 of the 1824 total points

satisfy (3.19), with two values of nnd(xj) = 23.5 and 11 values of nnd(xj) > 105,

the largest of which is 127.3.
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Extending the idea of a nearest neighbour distance to marked point patterns

through the expression of lines Lj(t) in Equation 3.18, we have

nndmin(Lj) = min
k∈{1,2,...,j−1,j+1,...,n(y)}

min
t1,t2∈[0,1]

||Lj(t1)− Lk(t2)||,

and expect that nndmin(Lj) ∈ [25, 105]. In practice, for all but two patterns values

of nndmin(Lij) lie within the slightly extended range [20, 110].

Marked point pattern y13 ∈ yI0 has a large number of points with nndmin(L13
j ) >

110 and pattern y17 ∈ yI1 has a large number of points with nndmin(L17
j ) < 20.

Individual investigation of these patterns indicates that the discrepancy in y13 may

be explained by incorrect scaling from pixel coordinates to physical coordinates

and the discrepancy in y17 may be caused by imaging planes significantly far from

perpendicular to the K-fiber axis. Despite these deviations from the assumptions,

we continue with analysis of the entire data set as the observations are only slightly

outside of the expected range and because the amount of data is already limited due

to the time and expertise required to collect the images. A sensitivity analysis of the

data after the removal of these two marked point patterns (not shown) indicates that

although there are marginal changes in p-values, the significance of results remains

unchanged.

Each of the proposed summary statistics is calculated under the assumption

that point patterns are stationary. Visualisation of the estimated intensity of point

patterns, obtained using the approach described by Diggle (1985), supports this

assumption. Point patterns are further assumed to be generated by a process ot-

her than the homogeneous Poisson point process, as a result of which we propose

alternative methods. Consider xj a randomly selected point from a homogeneous

Poisson point process with intensity ρ. We then have that

P(25 ≤ nnd(xj) ≤ 105) = exp(−ρπ252)− exp(−ρπ1052),

which is maximised by the value of ρ = ρ∗ given by

ρ∗ =
2 log 105− 2 log 25

π(1052 − 252)
= 8.8× 10−5, (3.20)

at which its value is 0.79. As over 99 percent of observed points xj do satisfy

nnd(xj) ∈ [25, 105], there is strong evidence to support the assumption that point

patterns are not realisations of homogeneous Poisson point processes.

3.4.4 Exploratory data analysis

Under the reconstruction of observation windows given by (3.17), the area of the

observation window, |W (x)|, may be taken as a surrogate for the cross sectional area
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Figure 3.4: Boxplots of first order summary statistics, n(x), |W (x)| and ρ̂, for

observed TACC3 point patterns divided into controls, indexed by I0, and treatments,

indexed by I1. Horizontal red lines indicate means, horizontal green lines indicate

weighted means.

of the K-fiber. There is also a clear dependence between the observation window

area |W (x)| and the number of points n(x). This dependence impacts the accuracy

of the estimated density ρ̂ = n(x)/|W (x)|.
Figure 3.4 displays boxplots of the number of points, observation window area

and estimated density for the observed point patterns separated into collections xI0

and xI1 according to whether they were obtained under the control or treatment

experimental regime. Means and medians are greater for treatment observations

for each of the first order test statistics, indicating that K-fibers are made up of a

greater number of microtubules which are more closely separated within thicker K-

fibers when the TACC3 protein is overexpressed. Weighted mean densities over the

collections xI0 and xI1 are greater than unweighted means, indicating that K-fibers

with greater numbers of microtubules are more tightly packed.

Figure 3.5 displays boxplots of the mean nearest neighbour distance and mean

minimum spanning distance for the observed point patterns divided into two col-

lections for control, xI0 , and treatment, xI1 , observations. In each case the average

separation distance is reduced for treatment observations, indicating that TACC3

may limit the distance at which microtubules can be bound together into the K-fiber

structure. Each weighted mean is also less than the corresponding unweighted mean,

providing further evidence that K-fibers with greater numbers of microtubules are
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Figure 3.5: Boxplots of second order summary statistics, nnd(x) and msd(x), for

observed TACC3 point patterns divided into controls, indexed by I0, and treatments,

indexed by I1. Horizontal red lines indicate means, horizontal green lines indicate

weighted means.

more tightly packed.

The assumption that nnd(x) ≤ 105, verified in Section 3.4.3, in conjunction with

the specification of observation windows W (x) in (3.17), ensures that nn(xj) ∈ x

for all points j ∈ {1, 2, . . . , n(x)} in each of the patterns. The nearest neighbour

function, G, may therefore be calculated without the need for edge correction.

Plots of the estimated nearest neighbour function, Ĝ(x, r), for TACC3 point

patterns typically lie below the theoretical form for the Poisson point process with

intensity ρ∗ from (3.20), G(r) = 1 − exp(−ρ∗πr2), for small values of r less than

approximately 50. There is therefore evidence of regularity on short length sca-

les, although it is unclear the extent to which this is caused by the restriction of

nnd(xj) > 25 and the cumulative nature of the nearest neighbour function obscures

the exact scale on which there is regularity. At values of r greater than approximately

50, plots of the nearest neighbour function exceed their expected theoretical form.

There is therefore evidence of clustering at large length scales, although it is once

again unclear the extent to which this is caused by the restriction of nnd(xj) < 105.

Evidence of clustering and regularity can be observed in Figure 3.6 which includes

plots of Ĝ(xI0 , r) for control observations and Ĝ(xI1 , r) for treatment observations.

Across the entire range of distances r we observe Ĝ(xI0 , r) ≤ Ĝ(xI1 , r), indicating

that P(nnd(xj) < r) is greater for treatment observations than control observations,
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Figure 3.6: Plots of second order summary statistic functions, average nearest neig-

hbour functions, G (left), and scaled neighbourhood count functions, K (right), for

observed TACC3 point patterns. Red lines indicate means, green lines indicate weig-

hted means. Solid lines indicate the average over controls, indexed by I0, dashed

lines indicate average over treatments, indexed by I1. Black lines are theoretical

values for Poisson point processes with intensity ρ∗.

further supporting the previous assertion that microtubules are more tightly packed

for observations collected under the treatment regime. It can also be observed that

weighted mean estimates of the nearest neighbour function lie below unweighted

mean estimates across the entire range of distances r, again suggesting that K-fibers

with greater numbers of microtubules are packed more tightly.

Figure 3.6 also includes plots of estimates K̄(xI0 , r) for control observations,

K̄(xI1 , r) for treatment observations and the theoretical value πr2. Over short dis-

tances r, K̄(xI0 , r) < K̄(xI1 , r) indicating that microtubules are more tightly packed

when TACC3 is overexpressed even when normalising for differences in point den-

sity. The difference between the weighted and unweighted means of estimated scaled

neighbourhood count functions is negligible.

Boxplots of the effective force transference for control observations and treat-

ments observations are presented in Figure 3.7. Across all observations the effective

force transference is above 0.9, suggesting that microtubules are generally consis-

tently aligned. The effective force transference is on average greater for control

observations, indicating greater agreement in microtubule directions in comparison

to treatment observations. Application of the testing methodology is required to
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Figure 3.7: Boxplots of marked point pattern summary statistics EFT(y) for ob-

served TACC3 marked point patterns divided by controls, indexed by I0, and tre-

atments, indexed by I1. Horizontal red lines indicate means, horizontal green lines
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δN 0.0005 δnnd 0.0057 δK 0.1092 δEFT 0.0011

δW 0.0018 δnnd,ω 0.0005 δG,1 0.0061 δEFT,ω 0.0005

δρ 0.0001 δmsd 0.0019 δG,1,ω 0.0005

δρ,ω 0.0002 δmsd,ω 0.0005 δG,∞ 0.0087

δG,∞,ω 0.0013

Table 3.3: Results (p-values) of testing for differences between treatment and control

TACC3 (marked) point pattern data for a number of different test statistics.

assess the significance of the observed difference.

3.4.5 Permutation testing results

Table 3.3 summarises the p-values for approximate permutation testing of observed

data using 10 000 permutations for each of the 15 proposed test statistics. In every

case other than the scaled neighbourhood count test statistic, δK , the difference

between xI0 and xI1 or yI0 and yI1 is reported as significant at the five percent

significance level, with some reported as significant at the 0.5 and even 0.05 percent

significance levels.

Point pattern size, area and density are significantly greater for xI1 than for

xI0 , with little difference between the results for weighted and unweighted inten-
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sity statistics. Biologically, this may be taken as evidence that overexpression of

TACC3 causes K-fibers to contain significantly greater numbers of microtubules,

have significantly larger cross-sectional area and significantly higher density of mi-

crotubules than K-fibers under control conditions. The difference between weighted

and unweighted density test statistics is negligible.

Mean nearest neighbour distance and mean minimum spanning distance are sig-

nificantly greater for xI0 than for xI1 . Biologically, this may be taken as evidence

that overexpression of TACC3 results in closer spacing of microtubules within K-

fibers than under control conditions. Weighted mean nearest neighbour distance

and mean minimum spanning distance test statistics result in noticeably smaller

p-values than their unweighted alternatives.

Tighter packaging of microtubules within K-fibers following overexpression of

TACC3 is further supported by all of the nearest neighbour function test statistics.

There is some evidence that the average difference between Ĝ(xI0 , r) and Ĝ(xI1 , r),

measured by the L1 nearest neighbour distribution test statistic, is more significant

than the maximum difference, measured by the L∞ nearest neighbour distribution

test statistic. Although both weighted and unweighted test statistics are significant

at the five percent level, weighted test statistics are also significant at the 0.1 percent

level while the unweighted test statistics are not.

The scaled neighbourhood count test statistic, δK , is the only test statistic which

fails to reject the null hypothesis at the five percent level. This result may be explai-

ned by the formulation of the scaled neighbourhood count function or the accuracy of

its estimation. Failure to reject the null hypothesis for δK , combined with rejection

of the null hypothesis for density test statistics, δρ and δρ,ω, could be evidence that

differences in the generating processes X0 and X1 are limited to the density of

points. A difference in point density would also be expected to result in differences

in point separation distances, which have been detected for the observed data. Alter-

natively, difficulties accurately estimating the scaled neighbourhood count function

are caused by the requirement of edge correction and uncertain estimation of the

density due to the non-standard specification of the observation windows. These

difficulties limit the reliability of results obtained using the scaled neighbourhood

count function in comparison to the presented alternatives.

Both the weighted and unweighted effective force transference test statistics re-

sult in rejection of the null hypothesis at the upper five percent level, and would also

report significance at the stricter 0.5 percent level, indicating that the effective force

transference is significantly reduced in treatment samples in comparison to control

samples. Biologically, this may be taken as evidence that increased expression of

TACC3 causes microtubules in K-fibers to be less well aligned, potentially reducing
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Statistic Effect size d Classification sd

δN 16.6 microtubules 0.84 Large 0.27

δW 1.19× 105 µm2 0.77 Medium 0.27

δρ 1.50× 10−5 microtubules/µm2 1.03 Large 0.28

δnnd -5.71µm 0.72 Medium 0.27

δmsd -6.25µm 0.81 Large 0.27

δEFT -0.03 1.50 Large 0.47

Table 3.4: Reported treatment effect sizes for TACC3 data.

their capacity to accurately divide chromosome pairs.

Taken in combination, the results for point patterns x indicate that overexpres-

sion of TACC3 results in larger K-fibers which are made up of more tightly packed

microtubules. The results for marked point patterns y indicate further that overex-

pression of TACC3 results in K-fibers comprised of less well aligned microtubules.

The protein TACC3 is believed to influence changes in the microtubule structure

indirectly, by altering properties of the mesh structure binding microtubule into

K-fibers. On the evidence of our analysis an interpretation may be that increased

expression of TACC3 alters the mesh structure by limiting the distance at which

it may bind microtubules. Limiting mesh connection distances may require micro-

tubules to be closer and pull microtubules out of a natural alignment, resulting in

reduced force transference properties which are then compensated for by increased

numbers of microtubules per K-fiber. All of these effects have been observed in the

data set studied. Further biological experimentation would clearly be needed to

confirm or contradict this hypothesis.

Table 3.4 summarises the treatment effect sizes for those test statistics based

upon differences in means. The effect sizes support the results of the statistical tes-

ting procedure, indicating that the treatment increases the number of microtubules

per K-fiber and K-fiber area. The treatment increases the packing density of micro-

tubules within K-fibers and correspondingly reduces the distance between nearest

neighbours and within the minimum spanning tree. Finally, the treatment reduces

the effective force transference corresponding to a less well-ordered structure. All of

the effect sizes are non-negligible in comparison to reference category values (Cohen,

1992) and their standard errors. More work would be necessary to determine effect

size for the proposed functional comparisons.
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3.4.6 Sensitivity analysis

3.4.6.1 Sensitivity analysis design

The are multiple possibilities for errors when imaging biological samples and repor-

ting the coordinate locations of microtubule cross-section centres. Errors can be

minimised, but are difficult to completely remove. As a result, the proposed metho-

dology should be robust to perturbations which are small on a scale determined by

the application. To ensure that this is the case we carry out a sensitivity analysis.

Each of the perturbations are simulated and tested using each of the appropriate

test statistics using 10 000 random permutations. Repeating this process 100 times

produces 100 p-values for each test statistic.

Relabelling perturbations consider scenarios in which observations are incorrectly

assigned to collections xI0 and xI1 , potentially due to human error. Perturbed index

sets are denoted by Iq0 and Iq1 , for q ∈ [0, 0.5] the probability of incorrect assignment.

That is

P(i ∈ Iq0) =

1− q i ∈ I0

q i ∈ I1

P(i ∈ Iq1) =

q i ∈ I0

1− q i ∈ I1.

Relabelling perturbations are tested over values of q ∈ {0, 0.05, 0.1, 0.2, 0.5} where

q = 0 leaves collections xI0 and xI1 unchanged and q = 0.5 results in completely

random allocation of point patterns to collections, expected to produce uniformly

distributed p-values.

Additional points perturbations consider scenarios in which there exist additional

microtubule centres which are not reported, potentially due to poor image quality.

For each point pattern x, a homogeneous Poisson point pattern x′ is simulated

according to HPPP(αρ0,W (x)) and x∪x′ reported. The parameter value ρ0 = 10−4

is an approximation to the density of TACC3 point patterns. For each marked

point pattern y, a marked point pattern y′ is simulated according to MPP(n, u, φ)

and y ∪ y′ reported. The number of marked points n is simulated as po(30α), with

reference direction u = β and maximum angle φ = 20 degrees. The parameter α

is varied over the set {0.2, 1, 3} to represent increases in the number of points of

approximately 20 percent, 100 percent and 300 percent. As the additional points

in x′ and y′ are identically distributed across I0 and I1, increasing values of α are

expected to reduce the reported significance of differences between the collections

xI0 and xI1 .

Point location perturbations consider scenarios in which the location of micro-

tubule cross-section centres are recorded with some degree of error. Point locations

xj (xj,1 in the case of marked point patterns) are each shifted in a random direction
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by a distance uniformly sampled between zero and ε. The parameter ε takes values

in the set {5, 20}, in comparison to the typical microtubule radius of 12.5.

3.4.6.2 Sensitivity analysis results

A summary of the 100 p-values obtained for each test statistic under each pertur-

bation is provided by Table 3.5.

For relabelling perturbations the proportion of p-values reported significant at

the five percent level reduces with increasing probability of mislabelling, α. The

impact when α = 0.05 is generally small, indicating that minor errors in allocation to

collections xI0 and xI1 do not render the results useless. For α = 0.5 a Kolmogorov-

Smirnov test at the five percent significance level across the 100 p-values reports

insufficient evidence to reject the uniform distribution of p-values on the interval

[0, 1] across all test statistics, as expected. Increasing values of α for point patterns,

x, appear to have a greater impact when unweighted test statistics are used, while

the converse is true for marked point patterns, y.

In the case of additional points perturbations, the proportion of p-values reported

as significant at the five percent level reduces as the number of additional points

increases with α. The impact when α = 0.2 is generally small, indicating that

the methodology is robust so long as a large proportion of points are identified.

First order statistics report very little change as more points are added because

original and perturbed observation window areas and number of points are strongly

correlated. Increasing values of α again have a greater impact on unweighted test

statistics for point patterns, x.

Point location perturbations have a negligible impact on the proportion of p-

values reported significant at the five percent level, indicating that the methodology

is robust to small errors in point locations. For first order statistics this behaviour

is expected as they are calculated independently of point locations. While pertur-

bations to point locations does impact the value of second order summary statistics,

the random perturbations do not make collections xI0 and xI1 more similar and thus

the difference between them remains consistently significant.

3.5 Conclusions

3.5.1 Statistical methodology

This chapter presents a number of test statistics for the comparison of point pat-

terns and marked point patterns of a particular form based upon existing and novel

summary statistics. The suitability of each for a variety of scenarios has been high-

lighted by application to simulated data sets, the results of which indicate that the
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δN δW δρ δρ,ω δnnd δnnd,ω δmsd δmsd,ω δK δG,1 δG,1,ω δG,∞ δG,∞,ω δEFT δEFT,ω

Relabelling, α 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.05 0.95 0.92 1.00 0.91 0.88 0.90 0.94 0.93 0.03 0.86 0.90 0.80 0.88 0.96 0.87

0.10 0.79 0.71 0.89 0.72 0.69 0.72 0.81 0.76 0.14 0.68 0.72 0.58 0.65 0.83 0.69

0.20 0.49 0.44 0.61 0.47 0.38 0.38 0.39 0.43 0.10 0.33 0.39 0.28 0.39 0.40 0.33

0.50 0.06‡ 0.06‡ 0.05‡ 0.04‡ 0.06‡ 0.06‡ 0.06‡ 0.04‡ 0.08‡ 0.06‡ 0.06‡ 0.06‡ 0.08‡ 0.04‡ 0.04†

Additional 0.2 1.00 1.00 1.00 1.00 0.67 0.97 0.92 1.00 0.02 0.72 0.98 0.66 0.97 1.00 1.00

points, α 1.0 1.00 1.00 0.96 1.00 0.35 0.53 0.56 0.76 0.03 0.40 0.62 0.22 0.50 0.90 0.84

3.0 1.00 1.00 0.92 0.99 0.23 0.26 0.37 0.52 0.51 0.22 0.29 0.12 0.17 0.06‡ 0.05‡

Point 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

location, ε 20 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.02 1.00 1.00 0.91 1.00 1.00 1.00

Table 3.5: Sensitivity study results from testing for differences between treatment and control TACC3 (marked) point pattern data for a

number of different perturbation types, perturbation parameters and test statistics. Proportion of p-values in the range [0, 0.05], ‡ indicates

failure to reject uniformity of observed p-values under the Kolmogorov-Smirnov test at the Bonferroni corrected (Dunn, 1961) 5/13 = 0.38

(for point patterns) or 5/2 = 2.5 (for marked point patterns) percent significance level.
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methodology is adept at detecting minor differences, smaller than those which may

be detected by eye. Application to a biological data set has provided positive results,

indicating significant differences between control and treatment observations which

matches and extends a previous analysis of the same data (Nixon et al., 2015). A

sensitivity analysis further reports that the testing procedure is not unduly affected

by variation in the data on a scale consistent with measurement error.

We have proposed a total of 13 test statistics for application to 2D point pat-

tern data and two further statistics for application to marked point pattern data for

the comparison of collections xI0 and xI1 (respectively yI0 and yI1) assumed to be

independent realisations of (marked) point processes XI0 and XI1 (Y I0 and Y I1).

Alongside these statistics we propose the use of a nonparametric permutation hypot-

hesis testing procedure to determine p-values of the proposed test statistics under

the null hypothesis that X0 and X1 are identically distributed, given a collection of

observed data xI .

The test statistics are designed to test for differences in various features of the

point patterns under comparison, for example the number of points or the average

distance between nearest neighbouring points. The particular feature tested will

depend upon the data set being analysed and the questions of interest, but our

suggestions cover a variety. Test statistics also differ in the format of the comparison,

for example the difference between average nearest neighbour distances or through

comparisons between functions which quantify nearest neighbour distances. Some of

the proposed comparisons are more straightforward to present and interpret, while

others are more sensitive to differences between the collections xI0 and xI1 .

A detailed simulation study has been used to highlight the various scenarios in

which each of the proposed test statistics are effective. Manipulating the size of the

difference between simulated collections xI0 and xI1 allows the sensitivity of each of

the proposed approaches to be quantified, the results of which support the use of the

proposed techniques to be able to detect even minor differences between collections.

In the case of no difference between simulated data sets, there is insufficient evidence

to reject the uniform distribution of p-values on the interval [0, 1], indicating that

the testing approach has good specificity.

3.5.2 Biological conclusions

The proposed methodologies are also applied to a collection of real biological data in

which points represent microtubule locations under control, xI0 , and treatment, xI1 ,

conditions where TACC3 has been overexpressed. For this data set, investigation

in particular of the distances between points is of interest as it is understood that

nearby microtubules are bound together in K-fibers by a mesh-like structure and
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that TACC3 may have an impact on this mesh. Investigation by eye is insufficient

for this application as the data sets appear visually very similar, so we apply the

proposed methodology.

Testing of the observed data using all of the proposed test statistics results in

a number of rejections of the null hypothesis. Summarising these results, we learn

that K-fibers contain significantly more microtubules, the constituent microtubules

are more tightly packed and variation in the orientation of microtubules is greater

following overexpression of TACC3. A possible explanation for this may be that

overexpression of TACC3 limits the distance over which the mesh may connect mi-

crotubules, bringing them closer together and disrupt their organisation. Due to

the vital importance of K-fibers during mitosis, the results obtained by the ana-

lysis support more targeted investigation of the impact of TACC3 through further

experimentation.

The observed data analysed in this chapter is also analysed by Nixon et al.

(2015), for which discussions with us are acknowledged. There is an agreement

in results between our works, although ours extends further by introducing test

statistics based upon different features and with different measures of comparison.

The largest difference between our work comes in the testing procedure, with Nixon

et al. (2015) quantifying the significance of observed differences using t-tests reliant

upon the assumption of normality, while we carry out permutation tests that require

no similar assumptions. A significant new contribution of our work is to consider

the analysis of marked point pattern data to make comment on the 3D structure of

microtubules within K-fibers, with results indicating that overexpression of TACC3

has a significant effect on this structure.

The results of an in-depth sensitivity analysis of the proposed methodology sug-

gest it to be robust to the small errors in data recording which are expected to be

most likely. This is particularly valuable for our application, as images are produced

through a human controlled imaging process from which coordinate locations are

manually reported, with the possibility for errors at each step.
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Chapter 4

Dependency between estimated

local bulk movement patterns

This chapter introduces in more detail the methodology proposed for estimation

and testing for dependence between local bulk movement patterns. The material

has been made available as a working paper (Honnor et al., 2017b), and is presented

in this chapter in a slightly reduced format as background information common to

the whole thesis is presented in Chapter 2.

An introduction is first given to put the biological question in context, describe

the data and formulate a statistical question which aims to answer the biological

question with the data available. Following this the methodology is presented in

Section 4.2. Section 4.3 describes the formulation of a validation study, the results

of which are then presented and analysed. Application of the methodology to a set

of TACC3 and EB3 biological data follows in Section 4.4 before summary of the

conclusions in Section 4.5.

4.1 Introduction

For many phenomena in which recordings of a physical process are made across

various times and locations, a question of interest is the evolution in location over

time and the comparison of this evolution between observations. In cases of small

numbers of clearly defined individual units, estimates of movement patterns may be

obtained via object tracking algorithms. Such procedures may be used for applica-

tion to the movement of a species of animal (McFarlane and Schofield, 1995) or the

movement of specific subcellular structures (Chenouard et al., 2014).

Our interest extends further to physical processes for which individual units are

not resolvable or for which a very large number of individual units precludes use of

more standard object tracking procedures. The example considered in this chapter
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is the location of biomolecules of a particular species within a cell, as observed by

microscope imaging. In this case each biomolecule is a discrete unit, but their large

number and limits on microscope resolution make it impossible to identify and at-

tempt to track each biomolecule. Observations are therefore interpreted as a density

of biomolecules across space which evolves in time, from which we propose an esti-

mation of movement patterns. An alternative example may be the distribution of

water molecules, observed via the depth of water within a tank. The problem of de-

termining movement patterns using a sequence of observations is an ill-posed inverse

problem and as a result we provide an estimate of movement patterns averaged over

local regions, which we term local bulk movement patterns.

Once movement patterns have been estimated, it may be desirable to compare

between observations to determine whether the degree of dependence between mo-

vement patterns is statistically significant. In this chapter the purpose of determi-

ning dependence is to investigate whether two biomolecular species of interest inte-

ract, a process which typically requires biomolecules from each species to become

conjoined, at which times they are similarly located and undergo similar movements.

Comparison of movement patterns may also be of interest in other settings, for exam-

ple for animal species to understand predator-prey relationships (Mitchell and Lima,

2002). We introduce a methodology which summarises and compares the high di-

mensional data resulting from estimation of movement patterns in a manner which

is both meaningful and takes into account the spatial nature of the observations.

Proposed methodologies are applied to simulated processes with independent

temporal evolutions, the results of which support the theoretical validity of the

permutation testing procedure. Further testing on a number of different types of

simulation with varying degrees of dependence indicate that the testing procedure

is able to identify such scenarios with good power.

The methodology is then applied to an observed data set comprised of fluores-

cence microscopy images of TACC3, Transforming Acidic Coiled-Coil Containing

Protein 3, and EB3, End-Binding protein 3. As an end binding protein, EB3 is

known to locate at the growing end of microtubules during mitosis (Mimori-Kiyosue

et al., 2000). It is further believed that TACC3 influences microtubule structure

during mitosis (Booth et al., 2011), with our investigation considering whether EB3

and TACC3 undergo dependent movements in order to make inference on the loca-

tion of TACC3, from which biologists may infer a function of the TACC3 protein.

4.1.1 Mathematical representation of data and statistical problem

We wish to analyse the spatio-temporal process M , that is Mt(x) ∈ Q+ for locations

x ∈ χ and times t ∈ τ , under a minimum of modelling assumptions. The require-
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ment that M is non-negative and rational valued across all locations and times is

necessary such that M may be likened to the distribution of a collection of basic

units and realistic as recording and storage of M is digital, at least in the case of

images collected over time. In situations where the number of basic units is very

large, M may be likened to a density and tracking individual units becomes theore-

tically and computationally very difficult. We therefore propose a methodology to

investigate bulk movement patterns on a scale greater than that of individual units

for application in such cases.

The data available for the analysis of M is a collection of observation values

mt(x) ∈ Q+ across locations x ∈ Ψ and times t ∈ Υ. Observed values may be

obtained from a realisation of the process M via projection or averaging and are

expected to be subject to noise. Motivating examples have been provided in the

introduction, with our focus in this chapter on M the distribution of biomolecules of

a single species and mt(x) the light intensity emitted by biomolecules at the centre

of pixel locations x ∈ Ψ = {1, 2, . . . , n1} × {1, 2, . . . , n2} at discrete time points

t ∈ Υ = {t1, t2, . . . , tn3} as recorded in the presence of background noise by a digital

camera attached to a confocal microscope.

In future it will be necessary to refer to the collection of values across a set of

locations ψ ⊆ Ψ and times υ ∈ Υ which will be denoted by mυ(ψ). Our aim is to

make inference on the dependency between the temporal evolution of two processes

M0 and M1 via the comparison of two collections of observations, denoted by m0
Υ(Ψ)

and m1
Υ(Ψ), over identical location, Ψ, and time, Υ, spaces.

4.2 Estimating movement patterns and a test for de-

pendence

4.2.1 Approximation of movement

Under the specification in the previous section as a scaling of the number of basic

units at each location at each time point, M may be interpreted as a spatial distri-

bution of mass which evolves over time. The process describing the quantity of such

mass moving from location x at time s to location y at time t may then be denoted

by Fs,t(x, y). We specifically consider direct dependency in movement patterns F 0

and F 1, corresponding to processes M0 and M1, such that F 0
s,t(x, y) is positively

associated with F 1
s,t(x, y). That is, the quantity of mass moving from location x to y

between time points s and t is positively associated between processes M0 and M1,

across all pairs of locations and times. Although Fs,t is described as a movement

pattern, it also includes a description of those masses which remain fixed in place
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through Fs,t(x, x), considered as movements which both start and end at the same

location.

Determination of Fs,t(x, y) using the information available in m{s,t}(ψ) may be

formulated as a solution of the inverse problem∣∣∣∣∣∣
∣∣∣∣∣∣mt(x)−

ms(x)−
∑
y∈ψ∗

Fs,t(x, y) +
∑
y∈ψ∗

Fs,t(y, x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= 0, (4.1)

of reducing a measure of the discrepancy between mt(ψ) and the result of applying

all movements Fs,t to ms(ψ) to zero, where ψ∗ is the augmentation of ψ with the

additional location z such that

ms(z) = max

∑
x∈ψ

mt(x)−ms(x), 0


mt(z) = max

∑
x∈ψ

ms(x)−mt(x), 0

 ,

to account for differences in total mass at times s and t. The solution of (4.1) is

obtained by any Fs,t satisfying the constraints

Fs,t(x, y) ≥ 0 ∀x, y ∈ ψ∗∑
y∈ψ∗

Fs,t(x, y) = ms(x) ∀x ∈ ψ∗

∑
x∈ψ∗

Fs,t(x, y) = mt(y) ∀y ∈ ψ∗.

The first constraint ensures that only positive masses are moved, the second ensures

that the total mass moving out of each location x at time s is ms(x) and the third

ensures that the total mass moving into each location y at time t is mt(y).

The problem of solving (4.1) for Fs,t satisfying these constraints is an ill-posed

problem as the solution is typically not unique. We therefore consider F̂ψs,t =

∪x,y∈ψF̂s,t(x, y), the solution to the regularised problem of

F̂s,t = arg min
{Fs,t:||mt(x)−(ms(x)−

∑
y∈ψ∗ Fs,t(x,y)+

∑
y∈ψ∗ Fs,t(y,x))||

2
=0}
||Fs,t||c

according to the same set of constraints as previously and where

||Fs,t||c =
∑
x,y∈ψ

Fs,t(x, y)c(x, y)

for some cost function c. The solution of this regularised problem is again not

necessarily unique (see further discussion in the following section), but the problem

is closer to being well-posed and later steps in the methodology are designed to

result in identical outcomes for a majority of m{s,t}(ψ).
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The resulting estimator, F̂ψs,t(x, y), may be interpreted as the set of movements

which minimise the total cost of rearranging the distribution of mass ms(ψ) into

mt(ψ) according to a cost function c(x, y). This can be calculated using the earth

mover’s distance with

F̂ψs,t = arg min
f∈ηψs,t

∑
x,y∈ψ

fs,t(x, y)c(x, y)

where ηψs,t is the set of all functions f satisfying

fs,t(x, y) ≥ 0 ∀x, y,∈ ψ∑
y∈ψ

fs,t(x, y) ≤ ms(x) ∀x ∈ ψ

∑
x∈ψ

fs,t(x, y) ≤ mt(y) ∀y ∈ ψ

∑
x,y∈ψ

fs,t(x, y) = min

∑
x∈ψ

ms(x),
∑
y∈ψ

mt(y)

 .

For the analyses proposed we focus on a single cost function, c(x, y) = ||x −
y||2, equal to Euclidean distance. This cost function is chosen to be homogeneous

and isotropic across x, y ∈ ψ and penalises proposed movements only according to

the distance moved, as we wish to avoid further assumptions. Returning to the

interpretation of m as a distribution of mass, if we assume that applied forces are

constant between s and t then c(x, y) = ||x − y||2 is exactly the energy required to

move unit mass from x to y. The estimated collection of movements F̂ψs,t is then

that which minimises the total energy required to rearrange ms(ψ) into mt(ψ). Some

further discussion of the choice of cost function follows in Sections 4.2.2 and 4.2.6.

4.2.2 Movement summary statistic

The collection of movements F̂ψs,t is an estimator of Fψ, taking values in the high

dimensional set (Q+)ψ×ψ. To facilitate comparison between F̂ψ,0 and F̂ψ,1 resulting

from observations m0 and m1 we first summarise the information in F̂ψ via the

summary statistic Ŝψ ∈ (R+)8.

Defining a(v) ∈ (0, 2π] to be the anticlockwise angle between the vector (1, 0) and

the vector v ∈ R2, and sets θ1 = (15π/8, 2π] ∪ (0, π/8] and θj = ((2j − 3)π/8, (2j −
1)π/8] for j ∈ {2, 3, . . . , 8}, elements of the summary statistic are given by

(Ŝψs,t)j =
∑

x,y∈ψ:a(y−x)∈θj

F̂ψs,t(x, y)||x− y||2 j ∈ {1, 2, . . . , 8}.

An illustration of this summary is presented in Figure 4.1. To elaborate on

the formulation of the summary statistic, (Ŝψs,t)j is equal to (t − s) multiplied by
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m = 1

m = 2

F̂ψs,t = 1

F̂ψs,t = 2

(Ŝψs,t)1 = 0

(Ŝψs,t)2 = 0

(Ŝψs,t)3 = 1× 1 + 1×
√

10

(Ŝψs,t)4 = 0

(Ŝψs,t)5 = 2× 2

(Ŝψs,t)6 = 1×
√

2

(Ŝψs,t)7 = 0

(Ŝψs,t)8 = 0

1

234

5

6 7 8

Figure 4.1: Distributions of mass ms(ψ), top left, and mt(ψ), top right, estimated

movements F̂ψs,t, bottom left, and contributions to the calculation of the summary

statistic Ŝs,t, bottom right.

the total momentum in directions within an angle of π/8 of the cardinal or ordinal

direction (E,NE,N,NW,W,SW,S,SE) corresponding to j. This formulation is specific

to ψ ⊆ R2 as is the focus of this chapter, however, generalisation may be made to

spaces of dimension other than two as Ŝψ is intended to summarise the collection of

movements or the bulk movement pattern within the space ψ.

The division of movements into eight different directions provides more detail

than if they were for instance separated into the four cardinal directions. In the

particular instance where ψ is a regular grid, ψ = {1, 2, . . . , n1}× {1, 2, . . . , n2}, the

proposed division also avoids peculiarities at the boundaries of sets θj as there exists

no direction y−x lying exactly on the border of any of the sets θj . To establish this,

note that a(y−x) = π/8 if and only if (y−x)2/(y−x)1 = tan(π/8) = 1+
√

2 ∈ R\Q,

whereas ψ restricts (y−x)2/(y−x)1 ∈ Q. A similar argument holds for all boundaries

between θi and θi+1, each of which occurs at angles which are odd multiples of π/8.

Particular spatial distributions ms(ψ) and mt(ψ) may lead to non-uniqueness

of F̂ψs,t when c(x, y) = ||x − y||2. For example, consider three colinear locations

ψ = {x, y, z} with ||x − y||2 + ||y − z||2 = ||x − z||2 and Υ = {0, 1} with m0(ψ) =

(1, 1, 0) and m1(ψ) = (0, 1, 1). In such a scenario F̂ψ0,1(a, b) = 1{a = x, b = z} and
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F̂ψ0,1(a, b) = 1{a = x, b = y or a = y, b = z} both satisfy the regularised inverse

problem presented in the previous section. However, in both cases the total cost

||F̂ψ0,1||c =
∑
a,b∈ψ

F̂ψ0,1(a, b)||a− b||2 = 2,

is identical. The specification of Ŝψ in terms of momentum, moving masses mul-

tiplied by distances moved, resolves this most common scenario of non-unique F̂ψ

into a consistent value of Ŝψ. Alternative scenarios in which F̂ψs,t is not unique that

result in different values of Ŝψs,t do exist, but require particular values of ms and mt

at more than three locations and complex interactions with values of ms and mt at

the remaining locations in ψ, which are expected to be unlikely and increasingly so

for larger spaces ψ.

4.2.3 Summary statistic comparison

Our interest is in the degree to which movement patterns differ between observations

m0 and m1 and the significance of any difference. In order to quantify this we require

a method of comparing summary statistics Ŝψ,0s,t and Ŝν,1s,t between subsets ψ, ν ∈ Ψ.

We propose to make this comparison using the function Ĝψ,νs,t .

Before specifying Ĝψ,νs,t we first define the intermediate quantity

µψ,0s,t (x) =
8∑
j=1

1

{
x = ej

(
Ŝψ,0s,t

)
j

}
x ∈ R2,

where ej is the unit length vector such that a(ej) = (j − 1)π/4. The intermediary

µψ,0s,t may then be seen as the spatial distribution of eight unit masses, each of which

is at a distance (Ŝψ,0s,t )j from the origin in the direction ej .

The value of the comparison is then given by

Ĝψ,νs,t = EMD(µψ,0s,t , µ
ν,1
s,t ),

the minimal cost required to rearrange the eight unit masses with Euclidean distance

as cost function. Small values of Ĝ imply close agreement of bulk movement patterns,

with large values of Ĝ indicating differences.

Comparison of summarised movement patterns Ŝ is proposed using this met-

hod rather than a more straightforward alternative because the Ŝ summarise spatial

information. The first element of Ŝ quantifies momentum in easterly directions

(between east north east and east south east), with the second in north-easterly

directions and the fifth in westerly directions. Intuitively, Ŝ = (0, 1, 0, 0, 0, 0, 0, 0)

is therefore more similar to Ŝ = (1, 0, 0, 0, 0, 0, 0, 0) than to Ŝ = (0, 0, 0, 0, 1, 0, 0, 0).

Comparison using the earth mover’s distance takes this into account, while approa-

ches which treat Ŝ as a vector generally do not.
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In the case where M is the distribution of a physical quantity the elements of Ŝ

are proportional to the momentum of the movements, with Ĝψ,ν then proportional

to the impulse required to transform Ŝψ,0 into Ŝν,1.

4.2.4 Combination of summary statistic comparisons

As previously stated, the high dimensionality of estimated movement patterns, F̂ ,

makes them difficult to compare. We have therefore proposed summary statistics Ŝ

and a method to compare them between observations m0 and m1 via Ĝ.

A comparison of bulk movement patterns across the entire space Ψ between two

consecutive time points is given by ĜΨ,Ψ
s,t . However, aggregating movements over

Ψ for large image spaces may result in unintuitive values of ĜΨ,Ψ
s,t . For example, if

movement in the upper half of Ψ is in easterly directions and in the lower half of Ψ is

in westerly directions for m0 and vice versa for m1 then ŜΨ,0
s,t and ŜΨ,1

s,t are expected

to be very similar and the value of ĜΨ,Ψ
s,t very small.

A more effective comparison may be obtained by comparing bulk movement

patterns over smaller subregions of Ψ and then combining these values. We therefore

consider the partition of Ψ into w subregions denoted by Ψw = {ψ1, ψ2, . . . , ψw} and

the combined comparison statistic

ĤΨw,Ψw

s,t =
w∑
j=1

Ĝ
ψj ,ψj
s,t .

Choice of the number, sizes and organisation of subregions clearly has an effect

on the value of Ĥ. In future examples we consider the regular grid location space

Ψ = {1, 2, . . . , n1} × {1, 2, . . . , n2} which may be partitioned into identically sized

square subregions which tessellate Ψ, an illustration of which may be seen in Figure

4.2. This restricts the number of subregions to w = u1u2 for u1 = n1/k and u2 =

n2/k for u1, u2, k ∈ N. Selection of a larger value of w results in comparisons over

smaller subregions, resulting in a value of ĤΨw,Ψw which is sensitive to differences

in bulk movement patterns on a smaller local scale.

On the other hand, ĤΨw,Ψw

s,t is dependent upon estimated movement patterns F̂
ψj
s,t

which are calculated using only the information in m{s,t}(ψj). Movements estimated

using all available data, F̂Ψ
s,t, are expected to be the closest estimator of the true

Fs,t, with the combination of regional estimates ∪wi=1F̂
ψj
s,t expected to decrease in

accuracy with w as movements between subregions are not taken into consideration.

There is therefore a balance in choosing w large enough that the local comparisons

are sensitive, but small enough that the local movement patterns are accurate.

Partition of Ψ into Ψw has computational benefits, discussed in more detail in

Section 4.2.6.
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Assuming mass is evenly distributed over the space and moves at a consistently

distributed speed, the magnitude of Ŝψj is approximately proportional to subregion

size which is in turn inversely proportional to the number of subregions. Values

of ĤΨw,Ψw may therefore be considered to be on the same scale regardless of the

choice of w. Despite this, we do not compare ĤΨw,Ψw for different values of w as

we are more interested in tests of the significance of ĤΨw,Ψw through comparison to

ĤΨw,λΨw for some rearrangement operator λ on the collection of subregions Ψw.

4.2.5 Significance quantification

Our aim is to determine whether or not the evolutions of M0 and M1 over time are

dependent. The formulation of ĤΨw,Ψw gives an insight into this, with small values

indicating similarity in local bulk movement patterns and evidence of dependence

and the converse for large values. However, without making further assumptions

on the evolution of processes M0 and M1 it is not possible specify a parametric

distribution of Ĥ under which its significance may be quantified. We therefore

consider nonparametric testing of the significance of the observed value ĤΨw,Ψw

s,t .

In particular, we consider a permutation test (previously introduced in Section

2.3.3) under the action of λ = {λ1, λ2, . . . , λw} ∈ Λ on the collection of subregions

Ψw = {ψ1, ψ2, . . . , ψw}, with λΨw = {λ1ψ1, λ2ψ2, . . . , λwψw} chosen such that under

a specified null hypothesis H0 there exists exchangeability of the set {Sψ1
s,t , S

ψ2
s,t . . . ,

Sψws,t } under the action of any λ ∈ Λ. That is

{Sψ1
s,t , S

ψ2
s,t . . . , S

ψw
s,t }

d
={Sλ1ψ1

s,t , Sλ2ψ2
s,t . . . , Sλwψws,t }.

In practice, the set Λ is typically too large to calculate ĤΨw,λΨw

s,t for all λ ∈ Λ and so

an approximate permutation test is carried out using a random subset Λ′ of Λ which

includes the identity operator λ0 : λ0Ψw = Ψw. The resulting lower tail p-value is

then given by

p =
1

|Λ′|
∑
λ∈Λ′

1{ĤΨw,λΨw

s,t ≤ ĤΨw,Ψw

s,t }.

Each null hypothesis tested according to this method is comprised of three

statements. The first statement is that there is between-sample independence of

local bulk movement patterns, that is {Sψ1,0
s,t , Sψ2,0

s,t , . . . , Sψw,0s,t } is independent of

{Sψ1,1
s,t , Sψ2,1

s,t , . . . , Sψw,1s,t }. The second statement is required to specify the set of

operations Λ under which permutation testing is carried out, in particular those

operations for which the marginal distributions are identical, S
ψj
s,t

d
=S

λjψj
s,t , examples

of which are provided in Section 4.2.5.2. The final statement is that there is within-

sample independence of local bulk movement patterns. That is S
ψj
s,t is independent

of Sψks,t for j 6= k, required to ensure exchangeability under the action of λ ∈ Λ.
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Within-sample dependence between S
ψj
s,t and Sψks,t is caused by movements be-

tween subregions, Fs,t(x, y) > 0 for x ∈ ψj , y ∈ ψk. In cases where the interval

between time points, t − s, is small in comparison to the speed at which mass mo-

ves in M , Fs,t(x, y) is expected be non-zero only for those locations x and y close

to the border between adjacent subregions ψj and ψk. In the rest of this chapter

we consider observations from designed experiments for which the time points are

chosen close together to satisfy this. The proportion of movements which are inter-

subregion may be further limited by reducing the number of subregions w, limiting

the proportion of the space Ψ which is adjacent to a boundary between subregions.

Variation in the second statement of the null hypothesis allows for the testing

of independence under differing assumptions. In Section 4.2.5.2 four example null

hypotheses are given with corresponding sets of operators Λ. However, the metho-

dology is by no means restricted to these four null hypotheses, but rather is more

broadly applicable to any null hypothesis for which a suitable set of operations Λ

may be determined under which the Sψj are exchangeable. Sets of operations Λ are

typically created based upon null hypothesis statements that permit reflection or

rotational symmetry.

4.2.5.1 Operator definitions

In the following sections we will repeatedly refer to particular rearrangements of the

sets ψj which we therefore define here.

Let Re define a set of rearrangements of ψj based upon reflections. Firstly, ρ1ψj

is the rearrangement based upon the reflection of locations x ∈ ψj across the line

passing through the centre of ψj in the direction (1, 0). Similarly, ρ2ψj across the

line in direction (1, 1), ρ3ψj across the line in direction (0, 1) and ρ4ψj across the

line in direction (−1, 1). Further, let ρ0ψj = ψj be the identity rearrangement.

Let Ro define a set of rearrangements of ψj based upon rotations. Firstly, %1ψ1 is

the rearrangement based upon the rotation of locations x ∈ ψj anticlockwise about

the centre of ψj by angle π/2. Similarly, %2ψj by an angle of π and %3ψj by an angle

of 3π/2. Further, let %0ψj = ψj be the identity rearrangement.

A diagram illustrating ρ ∈ Re and % ∈ Ro for Ψ may be seen in Figure 4.2.

Applied in combination as ρ% or %ρ with ρ ∈ Re = {ρ0, ρ1, ρ2, ρ3, ρ4} and % ∈
R0 = {%0, %1, %2, %3} a number of permutations are identical. For example, ρ3%1ψj =

ρ2%0ψj . There are a total of eight unique transformations of ψj of this form, one

listing of which is {ρ0%0, ρ1%0, ρ2%0, ρ3%0, ρ4%0, ρ0%1, ρ0%2, ρ0%3}.
The value of Ŝ

ρ%ψj
s,t for any of the ρ ∈ {ρ0, ρ1, ρ2, ρ3, ρ4} and % ∈ {%0, %1, %2, %3}

is obtained by a straightforward rearrangement of Ŝ
ψj
s,t . For example, Ŝ

ρ3%1ψj
s,t =

((Ŝ
ψj
s,t)3, (Ŝ

ψj
s,t)2, (Ŝ

ψj
s,t)1, (Ŝ

ψj
s,t)8, (Ŝ

ψj
s,t)7, (Ŝ

ψj
s,t)6, (Ŝ

ψj
s,t)5, (Ŝ

ψj
s,t)4).
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4.2.5.2 Example hypotheses

Definition 7. The isotropic null hypothesis, HI
0 , specifies on a scale according to

w between-sample independence of local bulk movement patterns, that local bulk

movement patterns, Sψj , are homogeneous and isotropic across the whole space Ψ

and within-sample independence of local bulk movement patterns. The correspon-

ding set of operators for which there exists exchangeability under HI
0 is denoted by

ΛI .

Under the assumption of isotropy, local bulk movement patterns Sψj are identi-

cally distributed under rearrangement of ψj by rotation and reflection represented

by the action of ρ%, ρ ∈ Re, % ∈ Ro on ψj . Further, under the assumption of ho-

mogeneity, local bulk movement patterns Sψj are identically distributed under any

rearrangement of subregions, realised as a reordering of Ψw = {ψ1, ψ2, . . . , ψw}. The

set of operators ΛI is therefore

ΛH,I = {(λ1, λ2, . . . , λw) : λjψj = ρ%ψσ(j), ρ ∈ Re, % ∈ Ro, σ ∈ Sw},

where Sw is the symmetric group of size w. The total number of unique operators

is |ΛI | = 8w × w!.

Definition 8. The homogeneous null hypothesis, HH
0 , specifies on a scale according

to w between-sample independence of local bulk movement patterns, that local bulk

movement patterns, Sψj , are homogeneous across the whole space Ψ and within-

sample independence of local bulk movement patterns. The corresponding set of

operators for which there exists exchangeability under HH
0 is denoted by ΛH .

Under the sole assumption of homogeneity the set of operators ΛH is given by

ΛH = {(λ1, λ2, . . . , λw) : λjψj = ψσ(j), σ ∈ Sw}.

The total number of unique operators is |ΛH | = w!. Note that ΛH ⊂ ΛI .

Definition 9. The symmetric null hypothesis, HS
0 , specifies on a scale according to

w between-sample independence of local bulk movement patterns, that local bulk

movement patterns, Sψj , are symmetric across the whole space under the application

of ρ%, ρ ∈ Re, % ∈ Ro to Ψ and within-sample independence of local bulk movement

patterns. The corresponding set of operators for which there exists exchangeability

under HS
0 is denoted by ΛS .

Symmetry in the distribution of Sψj under a limited set of rotations and re-

flection of Ψ allows us to partition Ψw into classes for which ψj and ψk are members

of the same class if and only if Sψj
d
=Sρ%ψk for some suitable choice of ρ and %.
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Figure 4.2: Illustration of rotations and reflections of Ψ, left, and the division of

Ψ into subregions ψj ∈ Ψ25 with shading according to the exchangeability classes

under the symmetric null hypothesis, Definition 9, right.

The specification of symmetry under the application of all rotations and reflections

ρ%, ρ ∈ Re, % ∈ Ro to Ψ requires Ψ to be square.

An example in the case of w = 25 is illustrated in Figure 4.2, for which the ex-

changeability classes are {ψ13}, {ψ8, ψ12, ψ14, ψ18}, {ψ7, ψ9, ψ17, ψ19}, {ψ3, ψ11, ψ15,

ψ23}, {ψ2, ψ4, ψ6, ψ10, ψ16, ψ20, ψ22, ψ24} and {ψ1, ψ5, ψ21, ψ25}. Examples of allowed

transformations are

Sρ%ψ13 d
=Sψ13 ∀ρ ∈ Re, % ∈ Ro

Sρ3ψ2 d
=Sψ4

Sρ4ψ8 d
=S%1ψ8 d

=Sψ14 .

The total number of unique operators is

|ΛS | =



8 if w = 1

24 × 4! if w = 4

8× (24 × 4!) if w = 9

(k × 24 × 4!)×
(
k(k−1)

2 × 8!
)

if w = (2k)2, k = 2, 3, . . .

8× (2k × 24 × 4!)×
(
k(k−1)

2 × 8!
)

if w = (2k + 1)2, k = 2, 3, . . . .

Note that ΛS ⊂ ΛI as ΛI includes all rearrangements, rotations and reflections

and ΛS includes only those which preserve the classes of Ψw. Further, ΛS * ΛH
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as ΛH includes only rearrangements of subregions and ΛS requires rotations and

reflections of subregions in combination with rearrangements, and ΛH * ΛS as ΛH

includes all rearrangements of subregions and ΛS restricts rearrangements within

the classes partitioning Ψw.

Definition 10. The horizontal reflection null hypothesis, HR
0 , specifies on a scale

according to w between-sample independence of local bulk movement patterns, that

local bulk movement patterns, Sψj , are horizontally symmetric across the whole

space under the application of ρ3 to Ψ and within-sample independence of local

bulk movement patterns. The corresponding set of operators for which there exists

exchangeability under HR
0 is denoted by ΛR.

Under HR
0 subregions ψj are each paired with the corresponding subregion loca-

ted at the same position as (ρ3Ψw)j for which rearrangement is allowed under the

application of ρ3 to both ψj and (ρ3Ψw)j .

In the case where Ψw is u1 subregions wide and u2 subregions high, with w =

u1u2, the total number of unique operators is

|ΛR| = 2d
u1
2 eu2 ,

where due is the value of u rounded up to the nearest integer.

4.2.6 Computational considerations

Estimation of local bulk movement patterns Ŝψs,t first requires estimation of mo-

vement patterns F̂ψs,t resulting from calculation of the earth mover’s distance bet-

ween ms(ψ) and mt(ψ). Calculation of the earth mover’s distance is based upon

solution of an assignment problem, the computational cost of which is superlinear

in the number of origin and destination locations x, y ∈ ψ, requiring O(|ψ|3 log |ψ|)
operations (Rubner et al., 2000). Partitioning Ψ into w subregions, ψj , therefore

results in a collection of Ŝ
ψj
s,t which may be determined at less overall computational

cost than ŜΨ
s,t, by a factor of 1/w2 as

w ×O(|ψj |3 log |ψj |) = O(w|ψj |3 log |ψj |)

= O

(
w

(
|Ψ|
w

)3

log
|Ψ|
w

)

= O

(
1

w2
|Ψ|3 log Ψ− 1

w2
|Ψ|3 logw

)
=

1

w2
O(|Ψ|3 log |Ψ|).

Furthermore, as calculation of Ŝ
ψj
s,t is independent of calculation of Ŝψks,t for disjoint

sets ψj and ψk, partitioning of Ψ into subregions ψj permits parallelisation of earth

mover’s distance calculations.
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The cost function for estimating movements, F̂ψs,t(x, y), is specified as c(x, y) =

||x − y||2, the Euclidean distance between locations x and y. This cost function

satisfies the triangle inequality, that is for locations x, y and z we have c(x, z) ≤
c(x, y) + c(y, z). An interpretation of the triangle inequality for our application is

that it is always as or more expensive to move mass from x into y and an equal

quantity of mass from y to z than it is to move mass directly from x to z. As a

result, provided c satisfies the triangle inequality, we can state before calculation

of the earth mover’s distance that F̂ψs,t(x, x) = min{ms(x),mt(x)}. Calculation of

F̂ψs,t(x, y) may therefore be based upon the collection of data {ms,+(ψ),mt,−(ψ)} =

{ms(x)−min{ms(x),mt(x)},mt(x)−min{ms(x),mt(x)}, x ∈ ψ}. However, for every

pair ms,+(x),mt,−(x) at least one is zero. Therefore, the total number of origin and

destination locations is reduced by at least half, resulting in a large computational

saving when c satisfies the triangle inequality.

As stated in Section 4.2.5.1, the value of Ŝ
ρ%ψj
s,t may be obtained without further

calculation from Ŝ
ψj
s,t by rearrangement if ρ ∈ Re and % ∈ Ro. In cases where

the null hypothesis permits operations of rearrangement, reflection and rotation

dramatic savings can therefore by made by avoiding repeated recalculation of the

earth mover’s distance.

4.3 Validation study

To confirm the suitability of the methods described in the previous section, we first

apply them to simulated data modelling varying degrees of dependence which our

methodology is designed to detect.

4.3.1 Simulation description

A general simulation may be made up of a total of k objects, where the centre of

object i at time t is denoted by ci(t) and its intensity by bi. The evolution over

time of the process is determined by the relationship between ci(s) and ci(t) for

time points s and t. The shape of object i is specified by di(x), the set of points

belonging to shape i whose centre is located at x. In this framework simulations may

be thought of as sequences of germ-grain models, with point locations or germs ci(t)

associated with sets corresponding to object shapes or grains di(x). Simulations

may include an observation error term ε(x, t) at locations x at times t. Under such
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a formulation we may specify

m(x, t) =

k∑
i=1

bi1{x ∈ di(ci(t))}+ ε(x, t)

Fs,t(x, y) =
k∑
i=1

bi1{x ∈ di(ci(s)), y − x = ci(t)− ci(s)}.

For the validation study investigated in this section we consider a discrete lo-

cation space Ψ = {1, 2, . . . , 60} × {1, 2, . . . , 60} and a discrete time space Υ =

{1, 2, 3, 4, 5}. The number of objects, k, differs between simulation classes but ob-

jects are all of the same intensity bi = 30. Objects are further all the same size and

shape, that of a Greek cross of the four locations directly adjacent to x = (x1, x2)

and x itself

di(x) = {x, (x1, x2 − 1), (x1, x2 + 1), (x1 − 1, x2), (x1 + 1, x2)},

and initially independently distributed uniformly over Ψ, ci(1) ∼ Uniform{Ψ}. The

evolution of object centres over time also differs between simulations and is therefore

described separately.

For each class of simulation 15 replicates are produced, allowing 105 unique

comparisons between simulations of the same class. Dependence between movement

patterns in observations of the same class is introduced by the inclusion of a pro-

portion of identical objects in each simulation.

Definition 11. Noise simulations contain no objects, k = 0, and therefore represent

only Poisson distributed white noise with mean three, that is ε(x, t) ∼ Poisson(3)

independently for all times t ∈ Υ and locations x ∈ Ψ.

There is no dependence between noise simulations. The white noise specified for

noise simulations is also included in all further simulations.

Definition 12. Isotropic simulations contain 100 objects, k = 100, for which

ci(t+ 1) = ci(t) + 3(cos(θi,t), sin(θi,t)) mod 60,

for θi,t ∼ Uniform[0, 2π) simulated independently for each object and each time

point. Centre locations are calculated under the specification that 60 mod 60 = 60

and with rounding of ci(t) to the nearest location in Ψ.

The evolution of object centres for isotropic simulations is independent of lo-

cation and uniform across all directions, resulting in movement patterns which are

both isotropic, homogeneous and reflection and rotationally symmetric under com-

binations ρ%, ρ ∈ Re, % ∈ Ro applied to Ψ. Taking object centres modulo 60 ensures
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that all objects remain within the location space Ψ, appearing to wrap around from

each edge to the opposite edge.

Isotropic 10 simulations each contain the same 10 objects and 90 objects simu-

lated independently for each observation. Similarly, isotropic 30 simulations each

contain the same 30 objects and 70 objects simulated independently for each obser-

vation.

Definition 13. Homogeneous simulations contain 100 objects, k = 100, for which

ci(t+ 1) = ci(t) + 3
(

cos
(π

4

)
, sin

(π
4

))
mod 60,

again under the specification that 60 mod 60 = 60 and with rounding of ci(t) to the

nearest location in Ψ.

The evolution of object centres for homogeneous simulations is independent of

location, resulting in movement patterns which are homogeneous. Evolutions are

also symmetric under reflection of Ψ by ρ2 as centres move in the direction of the

vector (1, 1). Movement patterns in homogeneous simulations are neither isotropic

nor reflection or rotationally symmetric in any other way. Taking object centres

modulo 60 again ensures that all objects remain within the location space Ψ.

Homogeneous 10 simulations each contain the same 10 objects and 90 objects si-

mulated independently for each observation. Similarly, homogeneous 30 simulations

each contain the same 30 objects and 70 objects simulated independently for each

observation.

Definition 14. Symmetric simulations contain 100 objects, k = 100, for which

ci(t+ 1) = ci(t) + 3
z − ci(t)
||z − ci(t)||

,

where z = (30.5, 30.5) is the point at the centre of Ψ and locations ci(t) are rounded

to the nearest location in Ψ.

The evolution of object centres for symmetric simulations produces movement

patterns which are reflection and rotationally symmetric under combinations ρ%, ρ ∈
Re, % ∈ Ro applied to Ψ. Movement patterns in symmetric simulations are neither

homogeneous nor isotropic, additionally differing from all other described simulati-

ons in that the distribution of the collection of objects is expected to vary over time

as they aggregate towards the centre of Ψ.

Symmetric 10 simulations each contain the same 10 objects and 90 objects si-

mulated independently for each observation. Similarly, symmetric 30 simulations

each contain the same 30 objects and 70 objects simulated independently for each

observation.
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Object speeds have been fixed at three as a compromise, with speeds smaller than

three resulting in movements which may be accurately determined by eye alone and

speeds larger than three expected to limit accuracy of F̂ as an estimator of F . The

following section provides the results of testing the described classes of simulations

under a variety of hypotheses for a range of subregion sizes and thus a range of

values of w. With square subregions of width 10, 12, 15 and 20 (corresponding to

w = 36, 25, 16 and 9), object speeds of three ensures that the proportion of objects

moving between subregions is small.

Illustrative examples of each class of simulation are presented in Figure 4.3.

4.3.2 Study results

4.3.2.1 Movement pattern estimation

Figure 4.4 displays a single example of the movements obtained via estimation of

F̂s,t and the true movements given by Fs,t. Data is a single isotropic simulation of

10 objects on a region of size 20 by 20, with the additional condition that objects

must remain within the observation window.

Generally good agreement is observed between F̂s,t and Fs,t, in particular when

objects are well separated. In cases where objects overlap and trajectories cross

there is a reduction in accuracy which is to be expected based upon the formulation

of the estimator F̂s,t. Investigation of this example and others suggest that the

proposed method of determining F̂s,t results in a reasonable estimator of Fs,t, the

accuracy of which may be increased by reducing the size of the time step, t− s, to

restrict the potential for object trajectories to cross.

4.3.2.2 Independent simulations

The first set of tests carried out are for each of the independent simulations under

each of the hypotheses HI
0 , HH

0 and HS
0 . These tests are carried out across all four

pairs of consecutive time points 1 → 2, 2 → 3, 3 → 4 and 4 → 5, and across each

of the four considered subregion sizes 20, 15, 12 and 10 corresponding to w = 9,

16, 25 and 36. Table 4.1 summarises the results of these approximate permutation

tests under 10 000 permutations, presenting the results as the proportion of the 105

returned between-sample p-values which are less than 0.05. Furthermore, † is used

to denote those collections of between-sample p-values which reject the omnibus null

hypothesis of Uniform[0,1] distribution of between-sample p-values according to the

Kolmogorov-Smirnov test (Massey, 1951) at the five percent level. Issues of multiple

testing specific to this investigation are discussed in Section 4.3.2.4.

Noise simulations contain no objects and therefore no structured movements. As

87



Noise

t = 1 t = 2 t = 3 t = 4 t = 5

Isotropic

t = 1 t = 2 t = 3 t = 4 t = 5

Homogeneous

t = 1 t = 2 t = 3 t = 4 t = 5

Symmetric

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 4.3: Examples of simulated spatio-temporal data. Pixel intensities corre-

spond to values of m, linearly scaled such that the maximum value of m across all

time points is black and the value m = 0 is white.
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Figure 4.4: Illustration of observed mass distributions ms, top left, mt, top right,

estimated movements F̂s,t and true movements Fs,t, bottom left, for a single simula-

tion. A scale is provided in the bottom right. Simulated movements are represented

by green arrows, with grey arrows used to represent estimated movements of varying

quantities of mass and mass distributions displayed as shades of red for ms and blue

for mt. The background image of the bottom left plot displays ms −min{ms,mt}
in red and mt − min{ms,mt} in blue, the information on which movements are

estimated.
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a result, local bulk movement patterns, Ŝψj , are expected to be identically distri-

buted under the action of all operators λ ∈ ΛI ,ΛH and ΛS . Between-sample in-

dependence of simulations and within-sample independence of local bulk movement

patterns Ŝψj induced by construction therefore suggests that the null hypotheses

should be satisfied, reflected in Table 4.1 by values close to 0.05 and a general ab-

sence of markers †. This is the observed behaviour, with the two marked occasions

rejecting the omnibus null hypothesis doing so with p-values of 0.013 and 0.009.

Isotropic simulations are also independent and expected to produce local bulk

movement patterns Ŝψj which are isotropic, homogeneous and symmetric. A diffe-

rence between noise and isotropic simulations is the movement of objects between

subregions, which introduce a within-sample dependence between local bulk mo-

vement patterns. The results in Table 4.1 indicate that there is not enough evidence

to reject within-sample independence, as the proportion of between-sample p-values

less than 0.05 remains approximately 0.05 and the single rejection of the omnibus

null hypothesis at the five percent level occurs with p-value 0.024. We therefore

conclude that within simulations local bulk movement patterns are approximately

independent, an important result for the interpretation of future test results and

one that has been shown to hold across all considered subregion sizes.

Homogeneous simulations are independent, producing local bulk movement pat-

terns which are homogeneous but neither isotropic nor symmetric. The result of

this is rejection of null hypotheses HI
0 and HS

0 as local bulk movement patterns

Ŝψj are not identically distributed under the action of operators λ ∈ ΛI and ΛS .

Under HI
0 and HS

0 a generally greater proportion of between-sample p-values are

less than 0.05 for larger subregion sizes, potentially because movement patterns F̂ψj

are more accurately estimated for larger subregions. Homogeneous simulations are

particularly susceptible to inaccuracy in the estimation of F̂ψj for small subregion

sizes as an object exiting the northeast of the subregion may be replaced by an

object entering the southwest of the subregion, resulting in an estimated movement

in the opposite direction to that which actually occurred. An increase in significant

between-sample p-values for increasing subregion size is counterintuitive in terms of

rejection of the null hypothesis due to within-sample dependence, as smaller subregi-

ons are expected to increase the proportion of objects crossing boundaries, increasing

the within-sample dependence. Homogeneous simulations typically fail to reject the

omnibus null hypothesis under HH
0 at the five percent level as expected, with the

one exception doing so with p-value 0.027.

Symmetric simulations produce similarly expected results, consistently rejecting

HI
0 and HH

0 as local bulk movement patterns Ŝψj are not identically distributed

under the action of λ ∈ ΛI and ΛH . When testing against HS
0 , failure to reject the
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omnibus null hypothesis at the five percent level is also commonly seen, with the

two exceptions rejecting with p-values 0.032 and 0.022.

The results of testing independent simulations across a number of hypotheses

indicate that if a null hypothesis is chosen which is suitable for the movement pat-

terns of the process, the testing procedure generally returns between-sample p-values

whose distribution is indistinguishable from Uniform[0,1]. That is to say, local bulk

movement patterns are between-sample independent (by construction), equal in dis-

tribution under the action of λ ∈ Λ for an appropriate specification of Λ (also by con-

struction) and within-sample independent. This suggests that the proposed testing

procedure is valid under considered specification of the null hypothesis, following

which rejection of future tests may be taken as evidence against between-sample

independence of local bulk movement patterns.

4.3.2.3 Dependent simulations

The power of the proposed testing procedure is assessed by testing dependent si-

mulations under the most appropriate choice of null hypothesis. That is, isotropic

10 and isotropic 30 simulations under HI
0 , homogeneous 10 and homogeneous 30

simulations under HH
0 and symmetric 10 and symmetric 30 simulations under HS

0 ,

where each test is an approximate permutation test using 10 000 random samples

from the corresponding set of operators Λ. Table 4.2 summarises the results of these

tests, presenting the proportion of the 105 between-sample p-values which are less

than 0.05 and marking with ‡ those which fail to reject the omnibus null hypothe-

sis of Uniform[0,1] distribution of between-sample p-values under the Kolmogorov-

Smirnov test at the five percent level. Tests are again carried out over four pairs of

consecutive time points and four subregion sizes varying between 10 and 20.

Over all comparisons the testing procedure is generally able to detect dependence

when it exists, observed as generally consistent rejection of the omnibus null hypot-

hesis at the five percent level. This is always the case for the simulations sharing

30 out of the 100 total objects, but there are some failures to reject the omnibus

null hypothesis at the five percent level when the degree of dependence is weaker

and only 10 objects are shared. For isotropic 10 simulations the failure to reject

the omnibus null hypothesis occurs with a p-value of 0.739. For homogeneous 10

simulations there are more cases, failing to reject the omnibus null hypothesis with

p-values 0.201, 0.142, 0.145 and 0.439. For symmetric 10 simulations we again see a

few failures to reject the omnibus null hypothesis, with p-values 0.935, 0.627, 0.081,

0.273 and 0.116.

Although the omnibus null hypothesis is typically rejected at the five percent le-

vel, it is by no means the case that every between-sample test rejects the respective
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HI
0 HH

0 HS
0

20 15 12 10 20 15 12 10 20 15 12 10

noise 1→ 2 0.03 0.06 0.06 0.04† 0.02 0.08 0.06 0.02† 0.03 0.06 0.05 0.05

2→ 3 0.06 0.03 0.08 0.06 0.06 0.02 0.06 0.06 0.07 0.02 0.06 0.03

3→ 4 0.04 0.04 0.04 0.10 0.06 0.04 0.05 0.09 0.05 0.07 0.04 0.05

4→ 5 0.04 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.02 0.02 0.04 0.04

isotropic 1→ 2 0.06 0.10 0.07 0.03 0.08 0.09 0.07 0.03 0.07 0.04 0.03 0.03

2→ 3 0.05 0.04 0.03 0.07 0.05 0.01 0.04 0.06 0.08 0.02 0.04 0.06

3→ 4 0.06 0.07 0.10 0.08 0.05 0.06 0.08† 0.06 0.06 0.04 0.08 0.05

4→ 5 0.05 0.03 0.06 0.05 0.04 0.03 0.06 0.05 0.05 0.02 0.04 0.05

homogeneous 1→ 2 0.88† 0.73† 0.62† 0.44† 0.05 0.02 0.05 0.06 0.90† 0.71† 0.67† 0.52†

2→ 3 0.53† 0.40† 0.39† 0.41† 0.04 0.03 0.09 0.05 0.6† 0.40† 0.36† 0.39†

3→ 4 0.80† 0.70† 0.56† 0.55† 0.03 0.06 0.03 0.03 0.79† 0.70† 0.65† 0.60†

4→ 5 0.70† 0.57† 0.57† 0.33† 0.04† 0.03 0.05 0.03 0.70† 0.57† 0.54† 0.33†

symmetric 1→ 2 0.00† 1.00† 0.98† 0.94† 1.00† 1.00† 0.98† 0.94† 0.02 0.08 0.07 0.06

2→ 3 1.00† 1.00† 0.91† 0.98† 1.00† 1.00† 0.93† 0.98† 0.08 0.07† 0.07 0.05

3→ 4 0.99† 0.96† 0.99† 1.00† 1.00† 0.96† 0.99† 1.00† 0.08 0.03 0.06 0.06

4→ 5 0.98† 1.00† 1.00† 1.00† 1.00† 1.00† 1.00† 1.00† 0.09 0.07 0.10 0.05†

Table 4.1: The results of testing each class of independent spatio-temporal simulations under each of the three hypotheses HI
0 , HH

0 and HS
0

for a range of consecutive time points and subregion sizes. Comparison between the 15 simulations in each class produces 105 between-sample

p-values for each test, with the table presenting the proportion of p-values less than 0.05 and † used to denote sets of p-values which reject

the omnibus hypothesis of Uniform[0,1] distribution of between-sample p-values under the Kolmogorov-Smirnov test at the five percent level.
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null hypothesis at the five percent level, with the proportions of tests that do so

varying between 0.04 and 0.90. This is to be expected due to the difficulty of the

problem and the general solution that we propose, requiring only minor assump-

tions on movement patterns to determine exchangeability of local bulk movement

patterns. Despite this, when the optimal choice of subregion size is made and the

dependence is 30 percent of all objects the proportion of between-sample tests re-

ported significant at the five percent level is on average 0.77, which we take as an

indicator that the proposed testing procedure has an acceptable level of power.

There is almost universal improvement in detection ability, measured by an in-

crease in the proportion of between-sample p-values which are less than 0.05, with

decreasing subregion size. As subregion size reduces, the expected number of inde-

pendent simulated objects in each subregion is reduced. The relative contribution

to Ŝψj by shared simulated objects in the subregions in which they are located is

therefore increased, making their existence more easily detectable under the testing

procedure. Despite this, there is expected to be a limit below which further re-

duction of subregion sizes will result in a reduction in power, as the accuracy of the

estimator F̂ψj is reduced as the probability of objects moving between subregions

increases.

In general the proportion of between-sample p-values less than 0.05 is greater

for isotropic simulations than for both homogeneous and symmetric simulations, for

which the proportions are broadly comparable. A possible explanation for this may

be that for homogeneous and symmetric simulations movements are determined

solely by the location of objects, with closely separated objects undergoing very

similar movements. This could result in greater numbers of coincidentally similar

movements, making dependencies more difficult to identify for homogeneous and

symmetric simulations in comparison to isotropic simulations for which movement

direction is independent of object location and coincident similarities are as a result

rarer.

There is expected to be some dependence between tests at different pairs of

consecutive time points, but the form of this dependence is difficult to quantify. For

isotropic and homogeneous simulations local bulk movement patterns are expected

to be identically distributed in time and observed results are similarly consistent

over time. This is not the case for symmetric simulations, as objects aggregate at

the centre of Ψ over time. Despite this, there is no discernible difference in results for

symmetric simulations across different pairs of consecutive time points, suggesting

that whether movements are spread over Ψ or congregated closer to its centre has

no impact on the performance of the testing procedure.

The power of the proposed testing procedure is further assessed by testing de-
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20 15 12 10

isotropic 10 1→ 2 0.19 0.11 0.23 0.26

2→ 3 0.10 0.12 0.10 0.17

3→ 4 0.07‡ 0.20 0.10 0.23

4→ 5 0.10 0.11 0.18 0.23

isotropic 30 1→ 2 0.37 0.47 0.84 0.90

2→ 3 0.47 0.40 0.83 0.88

3→ 4 0.49 0.51 0.93 0.90

4→ 5 0.57 0.33 0.84 0.88

homogeneous 10 1→ 2 0.03‡ 0.12‡ 0.13 0.13

2→ 3 0.15 0.16 0.22 0.30

3→ 4 0.05‡ 0.06 0.10‡ 0.13

4→ 5 0.10 0.11 0.09 0.21

homogeneous 30 1→ 2 0.37 0.40 0.62 0.80

2→ 3 0.24 0.63 0.50 0.90

3→ 4 0.16 0.45 0.50 0.73

4→ 5 0.20 0.51 0.67 0.69

symmetric 10 1→ 2 0.05‡ 0.11 0.09 0.16

2→ 3 0.07‡ 0.10 0.16 0.17

3→ 4 0.06‡ 0.10 0.10 0.09

4→ 5 0.04‡ 0.12 0.10‡ 0.06

symmetric 30 1→ 2 0.21 0.39 0.53 0.60

2→ 3 0.24 0.48 0.37 0.53

3→ 4 0.19 0.26 0.77 0.70

4→ 5 0.27 0.30 0.40 0.69

Table 4.2: The results of testing each class of dependent simulations against the

most appropriate hypothesis for a range of consecutive time points, subregion sizes

and degrees of dependence. Comparison between the 15 simulations in each class

produces 105 between-sample p-values for each test, with the table presenting the

proportion of p-values less than 0.05 and ‡ used to denote sets of p-values which fail

to reject the omnibus null hypothesis of Uniform[0,1] distribution of between-sample

p-values under the Kolmogorov-Smirnov test at the five percent level.
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pendent isotropic simulations under the three null hypotheses HI
0 , HH

0 and HS
0 .

Rejection of any of these hypotheses may be taken as evidence of between-sample

dependence because local bulk movement patterns for isotropic simulations are ex-

changeable under operators λ ∈ ΛI and both sets of operators ΛH ⊂ ΛI and ΛS ⊂ ΛI

by construction. Table 4.3 summarises the results of these tests, presenting the pro-

portion of the 105 between-sample p-values which are less than 0.05 and marking

with ‡ those which fail to reject the omnibus null hypothesis of Uniform[0,1] distri-

bution of between-sample p-values under the Kolmogorov-Smirnov test at the five

percent level. These test are again carried out over the four pairs of consecutive

time points and four subregion sizes varying between 10 and 20.

Across all null hypotheses there is largely consistent rejection of the omnibus null

hypothesis at the five percent level. The exceptions to this fail to reject the omnibus

null hypothesis with p-values of 0.739 for HI
0 , 0.824 for HH

0 and 0.624 for HS
0 .

The proportion of between-sample tests reporting significance at the five percent

significance level is greatest under HI
0 , but only mildly greater than under HH

0 which

is in turn mildly greater than under HS
0 . These results support the effectiveness of

the testing procedure using any suitably large valid set of operations Λ under which

local bulk movement patterns are exchangeable, with a minor reduction in power

in comparison to the test carried out under the maximal set of operations Λ under

which local bulk movement patterns are exchangeable.

4.3.2.4 Multiple testing

Both the testing of simulations in the previous section and the testing of real data in

the following section raise questions of multiple comparisons, previously introduced

in more detail in Section 2.3.4. Focusing on a single example, the results presented

in Table 4.1 for the testing of noise simulations under HI
0 are based upon tests of 105

between-sample comparisons across four subregion sizes and four pairs of consecutive

time points, for a total of 1 680 statistical tests. Considering the testing of the 16

omnibus null hypotheses via the Kolmogorov-Smirnov test at the five percent level,

we observe one rejection of the null hypothesis. However, this individual result must

be considered in the wider picture of all sixteen omnibus tests.

In all tests of the omnibus null hypothesis we expect strong positive correlation

between test results, the exact form of which is difficult to quantify. This is because

tests across different subregion sizes are applied to the same simulation data each

time and for all but one class of simulations data is identically distributed across

all time points, indicating that tests between s = 1, t = 2 and s = 2, t = 3 are

expected to produce very similar results. The Bonferroni correction and alternative

corrections are therefore not applied, with tests carried out at the nominal five
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isotropic homogeneous symmetric

20 15 12 10 20 15 12 10 20 15 12 10

isotropic 10 1→ 2 0.19 0.11 0.23 0.26 0.20 0.11 0.24 0.26 0.17 0.15 0.18 0.22

2→ 3 0.10 0.12 0.10 0.17 0.13 0.14 0.10 0.16 0.08 0.11 0.06 0.15

3→ 4 0.07‡ 0.20 0.10 0.23 0.06‡ 0.19 0.10 0.22 0.05‡ 0.20 0.09 0.19

4→ 5 0.10 0.11 0.18 0.23 0.10 0.13 0.22 0.26 0.10 0.10 0.15 0.17

isotropic 30 1→ 2 0.37 0.47 0.84 0.90 0.27 0.48 0.81 0.89 0.30 0.46 0.76 0.90

2→ 3 0.47 0.40 0.83 0.88 0.47 0.43 0.84 0.89 0.41 0.39 0.83 0.76

3→ 4 0.49 0.51 0.93 0.90 0.30 0.54 0.95 0.84 0.44 0.50 0.75 0.79

4→ 5 0.57 0.33 0.84 0.88 0.41 0.30 0.83 0.79 0.56 0.32 0.73 0.78

Table 4.3: The results of testing dependent isotropic spatio-temporal simulations against the three appropriate hypotheses for a range of

consecutive time points, subregion sizes and degrees of dependence. Comparison between the 15 simulations in each class produces 105

p-values for each test, with the table presenting the proportion of p-values less than 0.05 and ‡ used to denote sets of p-values which fail to

reject the omnibus null hypothesis of Uniform[0,1] distribution under the Kolmogorov-Smirnov test at the five percent level.
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percent level but resulting conclusions made in light of the presence of multiple

testing.

4.4 Investigation of EB3 and TACC3 data

4.4.1 Biological background

As stated in the introduction to this chapter, we aim to make inference on depen-

dence between the local bulk movement patterns of biomolecular species TACC3

and EB3. The protein EB3 is known to localise at the tip of growing microtubules

during mitosis (Mimori-Kiyosue et al., 2000) and the biological question of interest

is whether TACC3 is similarly located, with the results potentially shedding light

on its impact on the process of mitosis.

The available data is comprised of confocal fluorescence microscopy images col-

lected across seven samples at a total number of between 47 and 57 time points.

Images are collected of live cells during mitosis with TACC3 tagged with a green

fluorescing protein and EB3 tagged with a red fluorescing protein. Microscope re-

solution is such that each pixel is 68.9nm square and images are collected at a rate

of one per second. Green and red intensities are recorded at the same time by two

different digital cameras, resulting in two greyscale images for each sample at each

time point, one corresponding to EB3 and one to TACC3. Digital cameras are used

for image acquisition, meaning that the data contained in each image is accessible

as a matrix of integer valued intensity levels, one for each pixel location. We treat

intensity levels as a surrogate measure for quantity of the relevant biomolecular

species located at the centre of each pixel. Example images from five consecutive

time points for three of the samples may be seen in Figure 4.5, illustrating the struc-

ture seen, variability within samples between time points and between samples more

generally.

The proposed testing methodology requires an assumption under which the

subregions ψj may be rearranged and remain identically distributed. As EB3 is

located at the end of microtubules which grow in a spindle structure during mito-

sis, we make the assumption that movement patterns are symmetric across the line

connecting microtubule organising centres, the poles of the approximately ellipsoid

spindle structure. The mitotic spindle is a three dimensional structure, with the

resulting two dimensional images a projection into a single plane. Original image

sequences are therefore rotated and cropped to focus on only the spindle region,

with the imagined line connecting what is estimated to be the spindle poles vertical.

The result is image sizes of 180 pixels wide and 240 pixels high across all samples,

permitting exact tessellation by square subregions ψj of side lengths 20, 15 and 12.
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Sample 2 EB3

TACC3

t = 1 t = 2 t = 3 t = 4 t = 5
Sample 4 EB3

TACC3

t = 12 t = 13 t = 14 t = 15 t = 16
Sample 5 EB3

TACC3

t = 23 t = 24 t = 25 t = 26 t = 27

Figure 4.5: EB3 and TACC3 biological images from three samples across five con-

secutive time points. Pixel intensities correspond to values of m with the maximum

value of m across all time points black and m = 0 white.
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Collection of images every second is expected to capture the location of bio-

molecules at a great enough time resolution that their movement patterns may

be estimated. In investigation of the same data (Gutierrez-Caballero et al., 2015)

biomolecule clusters were located and tracked using an automatic object tracking

process requiring specification of a number of parameters tuned based upon the

observed images and prior beliefs about the biology underpinning the process (Ap-

plegate et al., 2011). Results indicated that both biomolecular species are located at

the end of growing microtubules, separated by an average distance of 229nm, with

TACC3 closest to the growing tip. We propose to investigate the same data set wit-

hout specification of parameters, other than the assumption of reflection symmetry

across the imagined vertical line connecting the spindle poles which divides images

in half, and further statistically test for dependence between TACC3 and EB3 bulk

movement patterns.

4.4.2 Exploratory data analysis

Intensities in images of EB3 are in general greater than those for TACC3 due to

expression of TACC3 at a lower level. Greater expression of TACC3 is avoided, as

it results in aggregation of TACC3 away from microtubule tips (Gutierrez-Caballero

et al., 2015), and consequently away from EB3, which could obscure the ability

to investigate dependence between TACC3 and EB3 movements. Estimation of

movement patterns for TACC3 is therefore expected to be more challenging as in-

tensities are in some cases on a similar scale to background noise.

Scaling of intensity in a subregion, m(ψ), by a positive constant across time

points s and t consistent with changing the brightness of images results in an identical

scaling of the summary statistic, Ŝψs,t, but a potentially non-linear change to the

comparison score Ĝψ,ψs,t between observations. However, if the scaling is consistent

across all subregions and all time points within an observation then the impact of

differences in brightness on test results should be minimal.

As an exploratory investigation, colocalisation between image pairs may be quan-

tified using Pearson’s correlation coefficient, the results of which are displayed in

Figure 4.6. Calculations are made for comparison pairs EB3 × TACC3, for which

we are interested in the degree of similarity, and EB3 × TACC3* and TACC3 ×
TACC3*, where TACC3* is the vertical reflection of TACC3 for which we expect to

see only coincidental similarity. For each of the seven samples correlation values are

greater for EB3 × TACC3 than the alternatives, indicating that there is more than

coincidental similarity between EB3 and TACC3 localisation. However, without a

methodology for quantifying the significance of obtained correlation values it is im-

possible to conclude that there is dependence between the distribution of EB3 and
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Figure 4.6: Boxplots to display the distribution of values of Pearson’s correlation

coefficient between pixel intensity values across all pairs of consecutive time points

for each of the biological sample comparisons considered.

TACC3.

A major foundation of the estimator F̂ψs,t is that ms(ψ) and mt(ψ) represent

distributions of approximately the same masses at two different time points. In the

context of the EB3 and TACC3 image data this equates to minimal changes in in-

tensity on a subregion by subregion basis, caused by biomolecules moving between

subregions, and on a whole image basis, caused by photobleaching over time. To in-

vestigate the validity of these assumptions we plot changes in pixel average intensity

between consecutive time points

1

|ψ|
∑
x∈ψ

mt+1(x)−mt(x),

for subregions, ψj , of sizes 20, 15 and 12 and for the whole image space, Ψ, the

results of which may be seen for sample four in Figure 4.7.

Average intensity plots indicate that there is a consistent but minor reduction

in intensity across the whole space between consecutive time points, consistent with

photobleaching, but not believed to be significant enough to render the estimation

of F̂ as unreliable. There are sometimes large changes in subregion intensity be-

tween consecutive time points, corresponding to particularly large concentrations

of biomolecules moving between subregions, but the vast majority of changes on

an individual pixel scale are small in comparison to average pixel intensity, indica-

ting that movements are largely contained within subregions. Predictably, larger
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Figure 4.7: Variation in subregion total pixel intensity over time on a per-pixel scale

for EB3, left, and TACC3, right. Solid black line denotes the mean intensity change

over Ψ, with solid red, green and blue lines corresponding to medians over subregions

ψj of size 20, 15 and 12 respectively. Coloured dashed lines denote upper and lower

quartiles over the collection of subregions ψj , with dotted lines denoting maximum

and minimum differences. Horizontal black dashed line denotes no change in average

intensity.

relative intensity changes are observed for smaller subregion sizes as the proportion

of locations x ∈ ψj which are close to the subregion boundary increases, meaning

biomolecules are more likely to move between subregions.

4.4.3 Permutation testing results

As described in the previous section, we make three comparisons between EB3,

TACC3 and TACC3*, the vertical reflection of TACC3 across the horizontal line

through the centre of Ψ. Testing is carried out as an approximate permutation test

of 10 000 random permutations under HR
0 , which specifies on a scale determined by

the number of subregions, w, between-sample independence of local bulk movement

patterns, identical distribution of the collection of S
ψj
s,t under the action of any λ ∈ ΛR

and within-sample independence of local bulk movement patterns.

Test results are presented in Table 4.4 as the proportion of between sample

comparisons across all consecutive time points reporting p-values of less than 0.05,

with † used to denote those collections of p-values which reject the omnibus null
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hypothesis of Uniform[0,1] distribution of between-sample comparisons under the

Kolmogorov-Smirnov test at the five percent level. Note the difference between

presentation of EB3 and TACC3 results in comparison to simulation results — here

collections of p-values tested against the omnibus hypothesis are combined across

the between 46 and 56 pairs of consecutive time points, while for simulation data

they were collected across the 105 pairs of between-sample comparisons at a single

pair of consecutive time points.

Rejection of the null hypothesis is expected to occur if any of the three compo-

nents of HR
0 are not met, however, the biological question of interest relates only

to the first condition of between-sample independence of local bulk movement pat-

terns. It is for this reason that the comparison between EB3 and TACC3* is made,

for which between-sample independence is expected by construction and rejection

of HR
0 may be attributed to improper specification of ΛR or within-sample depen-

dence of local bulk movement patterns. The results indicate that the omnibus null

hypothesis is not rejected at the five percent level for comparison between EB3 and

TACC3* for any sample, suggesting that there is insufficient evidence to refute the

assumption of horizontally symmetric bulk movement patterns and within-sample

independence. The omnibus null hypothesis is rejected in some instances of compa-

rison between TACC3 and TACC3* but these may be attributed to between-sample

dependencies, in particular for subregions along the vertical centre of Ψ which may

be compared to reflections of themselves under λ ∈ ΛR.

For each of the seven samples the omnibus null hypothesis comparing EB3 and

TACC3 is rejected at the five percent level, taken as strong evidence of between-

sample dependence in local bulk movement patterns between EB3 and TACC3. The

proportion of between-sample tests reporting p-values less than 0.05 varies between

0.36 and 1.00, rising to between 0.58 and 1.00 when subregions of the smallest size,

12, are considered. This is evidence of regular rejection of HR
0 , improving with

reduction in subregion size but not detectable at only a single subregion size which

must be accurately specified. The effect of varying subregion sizes is similar to that

observed for simulated data sets.

Investigation of the distribution of between-sample p-values across the range of

consecutive time points shows that non-significant values are interspersed within

significant values at the five percent level. This suggests that rather than periods of

dependence and periods of independence of local bulk movement patterns, between

some pairs of time points movement estimation may be particularly inaccurate as ob-

jects of considerable intensity move between subregions, resulting in an insignificant

test result.
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20 15 12

Sample 1 EB3 × TACC3 0.48† 0.55† 0.68†

EB3 × TACC3* 0.05 0.07 0.04

TACC3 × TACC3* 0.09 0.14 0.12†

Sample 2 EB3 × TACC3 0.85† 0.98† 1.00†

EB3 × TACC3* 0.11 0.07 0.07

TACC3 × TACC3* 0.11 0.20 0.22†

Sample 3 EB3 × TACC3 0.53† 0.60† 0.69†

EB3 × TACC3* 0.02 0.05 0.04

TACC3 × TACC3* 0.18 0.25† 0.25†

Sample 4 EB3 × TACC3 0.36† 0.67† 0.71†

EB3 × TACC3* 0.05 0.07 0.07

TACC3 × TACC3* 0.11 0.09 0.22†

Sample 5 EB3 × TACC3 0.47† 0.51† 0.58†

EB3 × TACC3* 0.02 0.07 0.05

TACC3 × TACC3* 0.11† 0.13 0.11

Sample 6 EB3 × TACC3 0.78† 0.85† 0.93†

EB3 × TACC3* 0.05 0.07 0.07

TACC3 × TACC3* 0.09 0.18 0.16

Sample 7 EB3 × TACC3 0.47† 0.53† 0.67†

EB3 × TACC3* 0.00 0.05 0.11

TACC3 × TACC3* 0.09† 0.11 0.09†

Table 4.4: The results of testing for dependency between spatio-temporal biological

data for seven samples, each of which comprises two sets of images representing the

locations of EB3 and TACC3 over between 47 and 57 time points and a resulting

third set, TACC3*, which is the vertical reflection of the TACC3 data. Table values

are the proportion of between-sample p-values under HR
0 which are significant at the

five percent level for subregion sizes varying between 20 and 10. † is used to indicate

the collections of between-sample p-values which reject the omnibus null hypothesis

of Uniform[0,1] distribution at the five percent level according to a Kolmogorov-

Smirnov test. Testing is carried out using approximate permutation tests with 10

000 permutations.
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4.5 Conclusions

4.5.1 Statistical methodology

We have proposed a method for the estimation of local bulk movement patterns

within two samples and a testing procedure for quantifying the significance of the

dependence between these patterns. The procedure relies upon a minimal set of

assumptions, namely consistency of total mass within the whole space Ψ, the abi-

lity to define identically sized and shaped subregions ψj ⊆ Ψ for which movements

of mass between subregions is minimal in comparison to movements within subre-

gions and symmetry or otherwise of subregion movement patterns such that they

may be transformed and rearranged and remain identically distributed. These as-

sumptions are generally easier to satisfy for observations derived from symmetric

physical phenomena where observations have been collected at a sufficiently high

time resolution.

Application of the proposed methodology to simulated data for which movement

patterns are independent produces results which reject correctly specified null hypot-

heses at a rate consistent with that of the size of the test, supporting the theoretical

validity of the testing procedures. In cases of incorrectly specified null hypotheses,

tests may reject the null hypothesis when movement patterns are independent as

the null hypothesis is a composite of three statements and failure to satisfy any one

is sufficient for rejection of the null hypothesis.

Application of the proposed methodology to simulated data where movement

patterns are partially dependent often results in rejection of correctly specified null

hypotheses, but due to the complexities of the problem and the minimal set of as-

sumptions power may be limited. In the case of 10 percent dependence between

movement patterns, correctly specified null hypotheses are rejected at the five per-

cent level typically between 10 and 30 percent of the time. In the case of 30 percent

dependence between movement patterns, correctly specified null hypotheses are re-

jected at the five percent level between 20 and 90 percent of the time. In almost

all cases, the collection of between-sample p-values rejects the omnibus null hypot-

hesis of Uniform[0,1] distribution according to the Kolmogorov-Smirnov test at the

five percent level, indicating that the omnibus hypothesis may be useful to detect

dependence when comparing over multiple samples or time points.

The statistical testing procedure compares local bulk movement patterns, where

local is on a scale defined by the size of subregions. In application to simulated data

the test is more powerful for smaller subregion sizes, indicating that dependencies

between movement patterns may be insignificant when summaries are made over

larger areas.
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4.5.2 Biological conclusions

Analysis of a biological data set to compare movement patterns of EB3 and TACC3

biomolecule species during mitosis reports consistent rejection of the omnibus null

hypothesis at the five percent level. Further, there is a general failure to reject

the omnibus hypothesis when EB3 observations are compared to a transformation

of TACC3 data by vertical reflection. Taken in combination, these results suggest

that null hypotheses are in this instance rejected on the basis of dependence bet-

ween movement patterns rather than due to a lack of exchangeability within each

observation under the specified set of transformations and rearrangement of subre-

gions. As in the case of simulated data, an increase in the proportion of significant

between-sample p-values is seen as subregion size decreases. Our analysis therefore

supports the previous work by Gutierrez-Caballero et al. (2015) that the movement

patterns of EB3 and TACC3 are dependent, potentially through their localisation

on the tips of growing microtubules.

In cases where the degree of dependence between two variables is of interest

there exist measures of effect size for Pearson’s correlation coefficient (Cohen, 1992).

The analysis in this Chapter endeavours to ascertain the existence of dependence

between two spatio-temporal processes, for application to images of biomolecule

distributions. However, due to the novel approach used to quantify dependence

more work would need to be carried out to determine the magnitude of the effect

size and its variability. We therefore rely solely upon the results of the statistical

testing procedure which we have proposed.
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Chapter 5

Mitotic spindle modelling and

comparison

This chapter introduces a preliminary model of the structure of the mitotic spindle

on a macro, whole-spindle scale alongside a score to compare model fit between

models and/or observations. The material forms part of a paper published in the

Journal of Cell Science (Nixon et al., 2017) written alongside our collaborator Dr.

Stephen Royle and his research group. The R code required to implement the

proposed methods has been made available online at www.github.com/quantixed/

VolumeFinder alongside notes for its use.

An introduction is first given to highlight specific relevant biological and imaging

background information and describe mathematically the form of the data. Follo-

wing this the model is presented and a comparison score described in Section 5.2.

Section 5.3 presents an exploratory analysis of samples of observed spindle data and

comparisons between model fit for each of the samples. A summary of conclusions

and directions for further investigation is then presented in Section 5.4 to end the

chapter.

5.1 Introduction

The collection of microtubules which bind the centrosomes in each half of a cell

undergoing mitosis to the chromosome pairs is known as the mitotic spindle. The

purpose of these microtubules is to apply the force necessary to separate the chromo-

some pairs, with accurate separation required to ensure the health of the daughter

cells (Holland and Cleveland, 2009). To quantify the ability of the spindle to per-

form this task accurately we investigate the degree to which observed microtubules

deviate from a proposed model of the spindle.

Information on microtubules within the spindle is available via an imaging techni-
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que known as Serial Block Face Scanning Electron Microscopy (Nixon et al., 2017).

This procedure images the sample in sections, imaging the surface of the sample via

scanning electron microscopy before slicing off the top layers and imaging the newly

revealed surface. Repeated imaging and slicing results in a collection of images re-

corded in parallel planes at a sequence of depths through the sample. Microtubules

may be determined from within images using automated image analysis techniques,

the result of which is a collection of straight lines.

Imaging data at the metaphase state of mitosis has been provided by our colla-

borator Dr. Stephen Royle for a total of 11 samples across six different experimental

conditions. Control samples are unmodified and express normal levels of TACC3.

Mutant samples are engineered to express S558A, a TACC3 mutant which is known

to be unable to localise to the mitotic spindle. The final set of samples are enginee-

red to overexpress TACC3. Samples of each type are assessed after being grown at

37 degrees Celsius, warm conditions, or grown at 37 degrees Celsius and then cooled

to zero degrees Celsius for 10 minutes before fixing and imaging, cold conditions. A

small number of replicated experiments results in 11 data sets across the six different

sample and condition combinations.

The aim of our work is to present a model which describes the organisation of

microtubules within the mitotic spindle using the available samples and biological

knowledge. Model fit for different observations may then be compared to determine

conditions under which the mitotic spindle structure deviates from our expectation,

the result of which may be reduced performance during mitosis and an increased pos-

sibility of errors. Due to the limited number of samples and the inherent complexity

of the structure we limit our investigation to an exploratory analysis, presenting

a simple but effective model and a comparison score by which model fit may be

compared.

5.1.1 Mathematical representation of data

For a given sample observed straight lines may be expressed parametrically as Li(t) ∈
R3 for the parameter t ∈ [0, 1] and index i ∈ {1, 2, . . . , n}. Under this formulation

the direction of lines may be associated with an increasing value of t as Li(1)−Li(0),

however, they may be also associated with a decreasing value of t as Li(0)−Li(1) =

−(Li(1)−Li(0)). In Section 5.2.2 we describe how each line may be associated with

a unique direction.

Alongside lines Li, observations are provided with the location of two fixed

points, p1, p2 ∈ R3. These fixed points represent the location of centrosomes within

the cell, the two fixed points from which microtubules are understood to originate.

When not observable directly from images the locations of p1 and p2 are estimated
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by the biologist conducting the experiments based upon the observed structure of

lines. Points p1 and p2 are referred to in future discussion as the poles of the spindle,

with the line connecting them referred to as the axis of the spindle.

The density of observed lines varies in space for each sample and in some cases

observations do not contain the entire spindle structure. As a result, we limit our

model to specification of the expected orientation of lines within the sample at

any location v ∈ R3. Following specification of such a model, deviation between

observations and the model may be summarised by the angles between observed

and model directions, collated to produce the set Θ ∈ [0, π]n from which model fit

is quantified.

Automatic detection of microtubules from images is by no means a perfect pro-

cedure, with possibilities of failure to detect microtubules, reporting of microtubules

which do not exist and errors in the specification of lines. We therefore wish to

propose a statistic Π comparing Θ1 and Θ2 arising from different models and/or

samples which is robust to such potential errors.

5.2 Model formulation and comparison of model fit

5.2.1 Spheroid model

We have a collection of assumptions based upon the purpose of the biological spindle

which guide our creation of a model. Firstly, lines are believed to represent secti-

ons of trajectories which originate at the poles, p1 and p2, and travel towards the

equatorial plane which is perpendicular to and bisects the spindle axis connecting

the poles (Jaqaman et al., 2010). This is because microtubules originate at centro-

somes and travel towards chromosomes aligned approximately equidistant from the

centrosomes.

Secondly, trajectories are expected to vary continuously in space. That is, the

angle θ(ρ(v1), ρ(v2)) between proposed trajectories ρ(v1), ρ(v2) at locations v1 and

v2 is expected to be small when the distance between v1 and v2, ||v1−v2||2, is small.

This is under the assumption that there is a consistent ordering of microtubules,

that they are locally similarly aligned and do not cross each other at large angles.

Finally, we expect reflection symmetry across the equatorial plane under the

assumption of a force balance between the microtubules in each hemisphere and

rotational symmetry about the spindle axis, as a parsimonious assumption in the

absence of further information.

A model which satisfies each of these constraints is based upon spheroids whose
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surface is described by the vectors v satisfying

v2
x

a2
+
v2
y

a2
+
v2
z

b2
= 1,

for varying values of a, where the poles are located at p1 = (0, 0, b) and p2 =

(0, 0,−b). Model trajectories ρ(v) are then tangents to geodesic paths on the surface

of the spheroid which pass through v and and both poles. The derivation of these

model directions is provided in Sections 5.2.3 and 5.2.4.

5.2.2 Data alignment

Lines Li are initially reported in the coordinate system of the imaging procedure, for

which they lie in planes perpendicular to the z-direction at heights z ∈ {ζ1, ζ2, . . . ,

ζm}. Fixed points p1 and p2 are also provided in this coordinate system, but the

spheroid model is specified for a coordinate system in which the spindle axis is

aligned with the z-direction and centred at the origin, for which spindle poles are

located at p̃1 = (0, 0, b) and p̃2 = (0, 0,−b).
Data is therefore transformed to produce L̃i(t) = R(Li(t)−c) for c = (p1−p2)/2 ∈

R3 and R ∈ SO(3) the matrix such that Rv results in the rotation of the vector v

by an anticlockwise angle of φ about the vector u for

φ = cos−1

(
(p1 − c).(0, 0, 1)

||p1 − c||2

)
u =

((p1 − c)y,−(p1 − c)x, 0)√
(p1 − c)2

x + (p1 − c)2
y

.

The vector u is therefore perpendicular to both the z-direction and the original

spindle axis p1 − p2, resulting in a rotation which aligns the two.

An illustration of the model and the required transformation is displayed in

Figure 5.1.

Following transformation from Li(t) to L̃i(t) the direction of lines may be cla-

rified. Lines are directed such that with increasing t they approach the equato-

rial plane to match the growth of microtubules from centrosomes at the poles to

chromosomes at the equatorial plane. Taking the midpoint as a reference point

to determine which hemisphere the trajectory lies in, they are oriented such that

|L̃i(0)z| ≥ |L̃i(1)z|.

5.2.3 Model direction

Specification of p1 and p2 determines b, the semi-principal axis length of the spheroid

in the z-direction. For a given location v ∈ R3 such that |vz| < b there is a unique

spheroid centred at the origin that passes through v with semi-principal axis lengths
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Figure 5.1: Transformations required to align observed line data with the spindle

model coordinate system.

b in the z-direction and a(v) in both the x- and y-directions. The value of a(v) is

given by

a(v)2 = b2

(
v2
x + v2

y

b2 − v2
z

)
.

The tangent plane to the spheroid with principal axis lengths a and b at any point

w along its surface is perpendicular to the normal to the surface of the spheroid at

w. This normal may be obtained as the gradient of the scalar field F given by

F (w) =
w2
x

a2
+
w2
y

a2
+
w2
z

b2

∇F (w) =

(
∂F

∂wx
,
∂F

∂wy
,
∂F

∂wz

)
=

(
2wx
a2

,
2wy
a2

,
2wz
b2

)
.

Once a(v) has been determined its value is fixed and thus

∇F (v) =

(
2vx
a(v)2

,
2vy
a(v)2

,
2vz
b2

)
.

The proposed trajectory at v, ρ(v), is then that which is perpendicular to the

spheroid surface normal at v, ∇F (v), and passes through the extended spindle axis

at (0, 0, h) for some h ∈ R. To ensure that the proposed direction is towards the
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equatorial plane we require that sign(h) = sign(ρ(v)z). The result is

ρ(v) = v − (0, 0, h) h : ρ(v) · ∇F (v) = 0

⇒ 0 = (v − (0, 0, h)) ·
(

2vx
a(v)2

,
2vy
a(v)2

,
2vz
b2

)
⇒ h = vz +

b2

a(v)2

v2
x + v2

y

vz

⇒ ρ(v) =

(
vx, vy,−

b2

a(v)2

v2
x + v2

y

vz

)
.

Substituting in the value of a(v) simplifies this to

ρ(v) =

(
vx, vy,

v2
z − b2

vz

)
.

5.2.4 Imaging correction

Observed directions L̃i(1) − L̃i(0) could be compared to model directions at their

midpoint ρ(Li(0.5)), with the angle between the two representing discrepancy from

the model. However, lines Li lie in parallel imaging planes, resulting in a structured

discrepancy that is dependent upon the orientation of the imaging planes which may

be corrected for to obtain a more accurate measure of model fit.

Imaging planes in the original coordinate system are perpendicular to the z-

direction, ẑ = (0, 0, 1). After undergoing transformation they are then perpendicular

to Rẑ for the previously stated rotation matrix R. Model directions ρ(v) may be

projected into these same planes before comparison, resulting in projected directions

ρ′(v) given by

ρ′(v) = ρ(v)− (ρ(v) ·Rẑ)Rẑ.

Discrepancy between directions proposed by the model and those of observed

lines are then summarised by the collection of angles Θ = {θ1, θ2, . . . , θn} for

θi = cos−1

(
ρ′(L̃i(0.5)) · (L̃i(1)− L̃i(0))

||ρ′(L̃i(0.5))||2||L̃i(1)− L̃i(0)||2

)
.

An illustration of the angle θi is displayed in Figure 5.2.

5.2.5 Model comparison

Collections of angles Θ0 and Θ1 corresponding to different models applied to the

same set of data or the same model applied to two sets of data may be compared

using a comparison statistic Π(Θ0,Θ1) to quantify relative model fit.
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Figure 5.2: Discrepancy between observed line directions and fitted spindle model

directions.

One approach could be to consider Π(Θ0,Θ1) = Θ̄0 − Θ̄1 the difference between

the means of each collection. However, the collection Θ is in general not symmetri-

cally distributed, making the mean a poor choice of summary statistic. Further, the

mean may be heavily influenced by a small number of extreme deviations, potentially

arising as a result of falsely specified lines at the stage of imaging and microtubule

detection.

Instead, we propose the comparison statistic

Π(Θ0,Θ1) =
1

|Θ0||Θ1|
∑

θ∈Θ0,ϑ∈Θ1

1{θ < ϑ},

taking values in the set [0, 1]. Under this formulation Π summarises comparison

between every element of Θ0 and Θ1, resulting in a more informed comparison than

that between a summary statistic of Θ0 and a summary statistic of Θ1. Comparison

of θ and ϑ by an indicator function ensures that minor changes in either are expected

to result in negligible changes in the value of Π(Θ0,Θ1) and the impact of individual

extreme values of θ ∈ Θ0 or ϑ ∈ Θ1 is limited to 1/|Θ0| or 1/|Θ1| respectively.

Values of Π(Θ0,Θ1) close to 0.5 indicate little difference between sets Θ0 and Θ1,

interpreted as similar fit for both models. Values greater than 0.5 are interpreted

as better fit for the model producing Θ0, with values less than 0.5 interpreted as
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better fit for the model producing Θ1. Under the assumption that Θ0 and Θ1

are samples from continuous probability distributions exact equality of any pair

θ ∈ Θ0, ϑ ∈ Θ1 occurs with probability zero and as a result we may specify that

Π(Θ0,Θ1) = 1−Π(Θ1,Θ0).

5.3 Investigation of spindle data

5.3.1 Exploratory analysis

We have a collection of 11 observations for analysis (1 : C+, 2 : C+, 3 : C−, 4 :

M+, 5 : M+, 6 : M+, 7 : M−, 8 : M−, 9 : OE+, 10 : OE+, 11 : OE−) where C

denotes a control sample with natural levels of TACC3, M denotes a mutant sample

where TACC3 is removed and replaced by S558A which is known to be unable to

localise on the mitotic spindle and OE denotes a sample engineered to overexpress

TACC3. Superscripts + and − are used to indicate the temperature under which

each sample is treated, hot and cold respectively. The number of lines in each

sample varies between a minimum of 1891 and a maximum of 8800. The length of

lines varies between 12 and 4650, with a median of 223 and quartiles at 107 and 430.

Our model specifies directions only for those lines which when transformed to

the standard coordinate system lie vertically between the two poles, that is lines

for which |L̃i(t)z| < b ∀t ∈ [0, 1] where p̃1 = (0, 0, b). We further limit ourselves to

analysis of only those lines with length greater than 60, chosen as a threshold to

remove those very short lines which are expected to be least accurately specified.

The number of such lines within samples varies between 1819 and 7688.

A plot of the observed lines for sample two is displayed in Figure 5.3. Note

that this is not the microscope images but rather an illustration of the lines inferred

from microscope images to represent microtubules. The structure of lines appears

to be approximately consistent with that of the spheroid model, with poles p1 and

p2 appearing to be reasonably specified. Plots of lines displayed in x-y planes show

a strong parallel structure, an artefact of the parallel imaging planes which the final

step of the methodology aims to correct for. Despite the generally good fit, there are

still some lines observable which deviate significantly from what the model would

propose.

The sample which by eye looks least like the idealised spheroid model is sample

five, the resulting collection of lines of which are displayed in Figure 5.4. It is difficult

to reconcile the lines in sample five with any sort of structured model, potentially

due to influence of the experimental conditions on the structure and/or the imaging

procedure appearing to include only a portion of the spindle.

Each of the collections of angles Θ summarising model fit may be plotted as a
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Figure 5.3: Plotted lines L̃i(t), t ∈ [0, 1] determined from imaging of biological sam-

ple two, a control sample treated under warm conditions. Poles p̃1 and p̃2 are plotted

in red.
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Figure 5.4: Plotted lines L̃i(t), t ∈ [0, 1] determined from imaging of biological sam-

ple five, a mutant sample treated under warm conditions. Poles p̃1 and p̃2 are plotted

in red.
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smoothed, normalised density to visualise their distribution and differences between

samples and experimental conditions. The density of the angle distribution is esti-

mated using a Gaussian kernel density estimate with bandwidth selection according

to the suggestion of Scott (1992). An edge correction is made similar to that in

Equation 2.2 described for point pattern density estimation, with each kernel divi-

ded by its integral over the interval [0, π] on which angles θ take their values. This

ensures that the resulting estimator is a normalised density on the interval [0, π]

which integrates to one. Density estimates for the 11 observations are plotted in

Figure 5.5. Plotted densities display peaks at close to zero, indicating that the pro-

posed model is in general a good fit. There is variation between observations, but

the variation between samples (control, mutant, overexpressing) appears to be on

the same scale as the variation between treatments (hot and cold). It is therefore

very difficult to draw any conclusions on the impact of the conditions.

5.3.2 Model comparison results

The results of comparing model fit between each of the 11 observations by Π are

presented in Table 5.1. The results are generally inconclusive, although a couple of

general comments may be made.

For both control and TACC3 overexpressing samples there is no consistent diffe-

rence between temperature treatments, with reported values of Π close to and either

side of 0.5. For mutant samples there are larger deviations from 0.5 when comparing

between temperature treatments, with cold treated observations deviating further

from the model than warm observations four and six. However, warm sample five

deviates further from the model than both cold treated observations. This may

provide some indication that in the absence of TACC3 the mitotic spindle is more

susceptible to disruption at low temperatures.

Comparing between samples, there appears to be little difference in model fit

for control and TACC3 overexpressing samples. A difference is seen in comparison

between both control and TACC3 overexpressing samples against mutant samples,

with indication that model fit is superior for samples that express TACC3 to a

greater or lesser degree rather than those which instead express the mutant S558A.

As S558A is unable to locate to the spindle, this may provide some indication that

TACC3 is important for stability of the mitotic spindle.

Given the relatively small number of samples of each type we are unable to

make any conclusions as the result of statistical testing procedures, however, the

results presented in this section may be used to inform future experiments and data

collection, which may in turn be analysed by the proposed methodology.

The limited number of samples of each type and the novel comparison of model
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Figure 5.5: Smoothed density estimates of the model discrepancy angle, Θ, for each

of the 11 biological observations. Black lines are control samples, green are mutant

samples and red TACC3 overexpressing samples. Solid lines denote those warm

treated, dashed lines those cold treated.

117



Θ1 \Θ0 1 : C+ 2 : C+ 3 : C− 4 : M+ 5 : M+ 6 : M+ 7 : M− 8 : M− 9 : OE+ 10 : OE+ 11 : OE−

1 : C+ 0.50 0.53 0.51 0.56 0.30 0.48 0.44 0.39 0.54 0.45 0.49

2 : C+ - 0.50 0.48 0.53 0.28 0.45 0.41 0.37 0.51 0.43 0.47

3 : C− - - 0.50 0.55 0.29 0.47 0.43 0.39 0.54 0.45 0.49

4 : M+ - - - 0.50 0.26 0.42 0.38 0.35 0.49 0.40 0.44

5 : M+ - - - - 0.50 0.69 0.65 0.58 0.73 0.65 0.69

6 : M+ - - - - - 0.50 0.46 0.41 0.56 0.47 0.51

7 : M− - - - - - - 0.50 0.45 0.60 0.51 0.55

8 : M− - - - - - - - 0.50 0.64 0.56 0.60

9 : OE+ - - - - - - - - 0.50 0.41 0.45

10 : OE+ - - - - - - - - - 0.50 0.54

11 : OE− - - - - - - - - - - 0.50

Table 5.1: Spindle model fit comparison scores, Π(Θ0,Θ1), between each pairing, {Θ1,Θ2}, of the eleven observations. Lower triangle entries

follow directly from Π(Θ0,Θ1) = 1−Π(Θ1,Θ0).
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fit using the Π statistic mean that more work would be required to determine the

magnitude of the effect size and its variability.

5.4 Conclusions

We have proposed a model for the direction of microtubules within the mitotic

spindle structure which satisfies the limited number of conditions that we impose and

is also straightforward to perform calculations with. The model is not expected to be

the single structure to which all mitotic spindles adhere, and there is some doubt that

there is indeed such a single structure, but it provides a parsimonious representation

of our beliefs and the beliefs of our biologist collaborators while also fitting well to

real observations in general. We further specify a statistic for comparison of model

fit between two models and/or observations which is designed to explicitly compare

fit across all observed lines and is expected to be robust to the types of outliers that

may occur for cellular imaging data.

Application of the proposed model to a number of observations arising from cel-

lular imaging indicates that the impact of temperature is negligible, except in the

case of mutant cells expressing S558A instead of TACC3 for which cold treated ob-

servations appear to deviate further from the proposed model. Furthermore, mutant

observations generally deviate further from the model than control observations and

those engineered to overexpress TACC3. These interpretations arise from collecti-

ons of observation comparison scores which may generally lie above or below 0.5,

the indicator of equivalent model fit, but there are exceptions in every category and

the variation between comparison scores is typically on the same scale as deviati-

ons from 0.5. This, combined with a limited number of observations under each

condition means that any interpretations are indicative rather than the results of

formal statistical tests. In future cases where larger numbers of samples are availa-

ble it should be possible to apply a permutation testing methodology by relabelling

samples to make more informed conclusions.
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Chapter 6

Discussion

6.1 Overview

In conjunction with our collaborator Dr. Stephen Royle and members of his research

group we have obtained a number of biological data sets and corresponding biolo-

gical questions of interest. For each, we have modelled the data as an appropriate

spatial mathematical object and formulated statistical problems from the biological

questions of interest. Methodologies are presented which combine techniques from

spatial statistics, optimal transportation and nonparametric hypothesis testing to

make inference on the statistical questions of interest. In cases where a testing

procedure is described validation has been carried out on simulated data and the

sensitivity of the results to changes in the input data investigated.

Application of proposed methodologies to data sets from cells with varying le-

vels of expression of the protein TACC3 has resulted in evidence of the influence of

TACC3 on the process of mitosis. We have presented evidence that the movement

of TACC3 in the mitotic spindle is directly dependent upon the movement of EB3, a

protein known to localise on the tip of growing microtubules, suggesting that TACC3

has some function in microtubule creation. We have presented evidence that TACC3

overexpression results in greater numbers of microtubules packed more tightly and

with a greater variety of directions within K-fibers. We have also presented prelimi-

nary evidence that when TACC3 is removed and replaced with a mutant type the

mitotic spindle is less well structured.

Evidence provided in answer to the biological questions of interest support pre-

vious investigations where they have been carried out and provide new information

to encourage further biological studies. Importantly, proposed methodologies are

formulated with the aim of minimising assumptions such that the methods may be

applied to further data sets, potentially arising from completely different scientific

fields.
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6.2 Possible extensions

Alongside application to alternative data sets there are a number of ways in which

the methods presented in this thesis may be extended, a selection of which are

described in this section.

In Chapter 3 we describe a methodology for testing for the presence of structural

differences in (marked) point patterns. Marked point patterns are used to model

point data recorded in each of two parallel imaging planes alongside additional in-

formation on how the points are connected. This is done under the assumption that

microtubule trajectories are straight lines between the two planes. A more detailed

investigation may be carried out using point data recorded in more than two parallel

imaging planes (similar to the manner in which mitotic spindle data is produced)

alongside additional data on the connections between points in neighbouring fra-

mes. The resulting data could be modelled as a marked point pattern where points

are located in one of the two end planes, with each assigned a mark made up of

an ordered set of direction vectors, one for each pair of adjacent imaging frames.

Such data would require a new summary statistic, potentially an extension of the

effective force transference statistic, and may require an extension of the described

permutation testing approach for currently considered marked point pattern data.

For the analysis of existing marked point patterns it may be desirable to deter-

mine a summary statistic which summarises both the locations and marks of marked

point patterns. The effective force transference summary statistic is currently con-

structed to be dependent only upon marks, as point locations are dependent upon

the choice of imaging planes. While differences in the structure of point locations

may be tested separately using any of the number of proposed test statistics it may

be preferred to have a single statistic and correspondingly a single test to determine

structural differences in marked point patterns, potentially through some transfor-

mation of the observations as in the specification of the mitotic spindle model to

avoid issues with imaging plane specification.

In Chapter 4 we describe a methodology for estimating local bulk movement

patterns and a test for dependence between such patterns. The movement estimation

procedure is not exact and may be improved, in particular in the case of crossing

object trajectories, potentially through alternative expression of the cost function,

c(x, y). The cost function as specified is fixed at c(x, y) = ||x − y||2 across all

pairs of time points and locations. Modifications to the cost function applied to

calculate F̂s,t could be made to take into account the estimated movement pattern

between the preceding pair of time points, F̂r,s, r < s, under the belief that objects

velocities change continuously in time. Such an approach might be similar to those
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proposed for tracking smaller numbers of objects, with simplifications to reduce the

computational burden.

As currently formulated, tests of dependence between local bulk movement pat-

terns are carried out separately between each pair of consecutive time points. It may

be preferred to create a single test of dependence across all time points to account

for existing dependencies, which could be strengthened by reformulation of the cost

function to take into account information from prior time points. Such an appro-

ach could be used to support or contradict the evidence currently obtained via the

omnibus test.

In Chapter 5 we describe a model for the mitotic spindle. As an exploratory

analysis and initial model there are a number of ways in which the investigation

could be extended. In cases where fixed point centrosomes are not directly observable

within images, but instead estimated by the biologist conducting the imaging, they

may instead be included in the model as parameters which are then be optimised

over to obtain the best fit model, as determined by Π. Similarly, the spheroid model

may be relaxed or deformed according to a number of parameters over which the

best fitting model may be determined. For example, poles may be allowed to be

unequal distances from the equatorial plane and trajectories may be considered to lie

on the surface of ellipsoids with three unique semi-axis lengths, both of which relax

the symmetry requirements upon which our model is based and might be observed

in practice.

An additional extension may be made to the comparison score, Π, between mo-

dels and/or samples. As presented Π compares all angles in Θ0 to all angles in Θ1,

the result of which is potentially influenced by differences in model fit at distantly

separated locations within the spindle. This issue could be overcome by including

in Π only those comparisons between angles observed at similar locations within the

mitotic spindle, with similar locations determined with the rotational and reflection

symmetries assumed in mind.
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