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Abstract

We estimate the e�ect of a large rural workfare program in India on private em-

ployment and wages by comparing trends in districts that received the program earlier

relative to those that received it later. Our results suggest that public sector hiring

crowds out private sector work and increases private sector wages. We compute the

implied welfare gains of the program by consumption quintile. Our calculations show

that the welfare gains to the poor from the equilibrium increase in private sector wages

are large in absolute terms and large relative to the gains received solely by program

participants.
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1 Introduction

Recent studies have shown that policy interventions in developing countries have important

e�ects on non-participants. Food distribution policies a�ect consumer prices (Jayachandran

et al., 2010), and direct cash transfers can increase the consumption of non-bene�ciaries

through risk-sharing networks (Angelucci and Giorgi, 2009). The impact of policy interven-

tions on labor market equilibrium, however, has received little attention. This is despite the

fact that short-term manual labor (�casual labor�) is an important income source for the

poor (Banerjee and Du�o, 2007) and that even non-labor market interventions such as cash

transfers and infrastructure creation have been shown to have important impacts on labor

supply (Ardington et al., 2009; Dinkelman, 2011).

The �rst objective of this paper is to document the di�erential trends in wages and

employment within districts where the �agship Indian anti-poverty program, the National

Rural Employment Guarantee Act (NREGA), was rolled out �rst relative to those districts

where the program was introduced later. We focus on how these di�erential trends may

be used to estimate the causal impact of the program. The second objective is to use the

resulting estimates along with a model of rural labor markets to calculate how the welfare

gains from the program are distributed across the population. We compare the gains due

to the estimated equilibrium rise in wages to the gains due solely to participation in the

program for poor and rich households.

The NREGA provides a particularly good opportunity to study the labor market impacts

of a large workfare program. Started in 2006, the NREGA provides short-term manual

work at a wage comparable to or higher than the market rate. According to government

administrative data, in 2010-11 the NREGA provided 2.3 billion person-days of employment

to 53 million households making it the largest workfare program in operation today.1 Further,

the program was introduced at the district-level, an administrative unit large enough to

reasonably approximate a distinct labor market (Rosenzweig, 1978; Topalova, 2010).

Assessing the labor market impact of large-scale policy interventions is complicated by

the fact that a plausible counterfactual for areas a�ected by the interventions rarely exists

and by the fact that even large-scale programs are often introduced within an area too

small to be considered a distinct labor market.2 We exploit the fact that the program was

introduced gradually throughout India starting with the poorest districts in early 2006 and

1Figures are from the o�cial NREGA website nrega.nic.in.
2The well-studied Mexican Progresa program for example was rolled out at the village level (Angelucci

and Giorgi, 2009).
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extending to the entire country by mid-2008. We document changes in employment and

wages in districts that received the program between April 2006 and April 2007 relative to

those that received it after April 2008.

We show that the introduction of the workfare program is correlated with a substantial

increase in low-wage, low-skilled public employment and a roughly equivalent fall in private

sector work (waged, self-employed or domestic work). We �nd daily wages of casual laborers

increase in early districts relative to late districts. The estimated 4.7% increase in wages

and 1.5% decrease in private employment imply a 0.31 elasticity of labor demand, which is

consistent with existing evidence (Binswanger and Evenson, 1980).

Given that poorer districts were more likely to be selected as early phase districts, the

di�erential changes in employment and wages that we document may in part re�ect dif-

ferential trends in early and late phase districts unrelated to the program. A number of

facts suggest the employment and wage results are indeed due to the program. First, these

results are concentrated during the agricultural o�-season when most NREGA employment

is provided. Second, the results are concentrated in the seven states that account for the

majority of employment generated by the program (we call them �star� states in the analy-

sis). Third, the results are robust to controlling for district characteristics (including early

phase selection criteria) which could predict changes in labor market outcomes. Though we

�nd evidence of a positive trend in casual wages in early relative to late districts before the

program was implemented, this trend disappears once we control for district characteristics,

which suggests that our speci�cation e�ectively deals with selection. The results are also

robust to controlling for pre-program changes in outcomes for each district and for state-level

time e�ects.

Our second objective is to use the wage and employment estimates combined with

household-level data on consumption, casual labor supplied, and casual labor hired to calcu-

late how the welfare gains from the increase in wages are distributed across rural households.

We show the rise in wages redistributes income from richer households (net buyers of labor)

to poorer households (net suppliers of labor). We then use individual-level data on program

wages and participation to estimate the magnitude of the direct gains from participation

in the program. Our estimates show that for households in the bottom three consumption

quintiles, the estimated welfare gain due to the wage change represents 31% of the total

welfare gain from the program. Further we �nd that households in the richest quintile are

actually made worse o� by the program as a result of the increase in wages. Our calculations

also suggest that the NREGA cost of 241 Rs per rural household is larger than the welfare
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gains even to households in the poorest quintile (112 Rs). A complete cost-bene�t analysis,

however, is beyond the scope of this paper, as it would include the productivity bene�ts of

NREGA infrastructures.

The results contribute to the literature in three ways. First, we document the wage

and employment trends surrounding the implementation of a particular, widely adopted

anti-poverty policy. Government hiring by public works programs may crowd out private

sector work and therefore lead to a rise in equilibrium private sector wages (Ravallion, 1987;

Basu et al., 2009). The empirical evidence, however, on the equilibrium impacts of workfare

programs is limited. The few existing studies include two concurrent studies, which present

evidence consistent with the NREGA raising unskilled wages (Azam, 2012; Berg et al.,

2013). Zimmermann (2013) �nds no signi�cant impact on wages, but con�dence intervals

are su�ciently large to include our own estimate.

Second, we modify the theoretical framework presented in Deaton (1989) and Porto

(2006) in order to quantify the extent to which the equilibrium impacts on the labor market

both bene�t and hurt di�erent segments of the population. This framework allows us to

estimate the welfare impact of a policy using empirical estimates of its aggregate e�ect

on wages. A similar methodology could be used to assess the equilibrium impacts of other

policy interventions in developing countries which a�ect labor supply (Ardington et al., 2009;

Dinkelman, 2011).

Finally, the results contribute to the literature on the structure and functioning of labor

markets in developing countries (Rosenzweig, 1980; Behrman, 1999) as well as the broader

literature that uses the impact of policy interventions to infer how markets operate (Card

and Krueger, 1992). Speci�cally, the rise in casual wages following the implementation of the

program is hard to reconcile with a naïve model of �surplus labor� in which self-employed

members of poor households could be hired with no e�ect on private sector wages (Sen,

1966). Our �ndings are in line with Rosenzweig and Foster (2010)'s recent argument that

surplus labor in rural India is not due to a lack of employment opportunities.

The following section describes the workfare program in more detail. Section 3 proposes

a model of rural labor markets which provides a framework for estimating the distributional

e�ects of the program. Section 4 presents our data and empirical strategy. Section 5 presents

the main empirical results. Section 6 uses these results to estimate the welfare gains due to

the program and Section 7 concludes.
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2 The Workfare Program

The National Rural Employment Guarantee Act (NREGA), passed in September 2005, en-

titles every household in rural India to 100 days of work per year at a state-level minimum

wage. In 2010-11 the NREGA provided 2.3 billion person-days of employment to 53 million

households.3 The India-wide budget was Rs. 345 billion (7.64 billion USD) representing

0.6% of GDP. The act was gradually introduced throughout India starting with 200 of the

poorest districts in February 2006, extending to 130 districts in April 2007, and to the rest

of rural India in April 2008. The NREGA sets out guidelines detailing how the program is to

be implemented in practice. Whether and how these guidelines are actually followed varies

widely from state to state and even from district to district (Sharma, 2009; Dreze and Khera,

2009; Institute of Applied Manpower Research, 2009; The World Bank, 2011). Drawing from

existing �eld studies, we provide an overview of how the act operates in practice.

2.1 Poverty Reduction through Employment Generation

One of the chief motivations for the act is poverty reduction through employment gener-

ation. In this respect, the NREGA follows a long history of workfare programs in India

(see Appendix Section A.1). Although a nominal goal of the act is to generate productive

infrastructure, The World Bank (2011) writes, �the objective of asset creation runs a very

distant second to the primary objective of employment generation...Field reports of poor

asset quality indicate that [the bene�t from assets created] is unlikely to have made itself

felt just yet.� Indeed, the act explicitly bans machines from worksites and limits material,

capital and skilled wage expenditure to 40% of total expenditure. Wages paid for unskilled

work are borne entirely by the central government while states can pay at most 25% of

expenditure on materials, capital and skilled wages. Together, these restrictions create a

strong incentive to select projects that require mainly unskilled labor.

Well-targeted, well-implemented NREGA projects may have had a positive impact on

agricultural productivity in the medium run. Deininger and Liu (2013) �nd that in Andhra

Pradesh low caste households' income increased three years after irrigation works were made

on their land. The evidence, however, reviewed by The World Bank (2011) suggest that

NREGA infrastructures did not substantially improve productivity in the initial years of

program implementation. Our study focuses on these initial years.

3Figures are from the o�cial NREGA website nrega.nic.in.
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2.2 Short-term, Unskilled Jobs

The work generated by the program is short-term, unskilled, manual work such as digging

and transporting dirt. Households with at least one member employed under the act in

agricultural year 2009-10 report a mean of only 38 days of work and a median of 30 days

for all members of the household during that year. The jobs provided by the program are

similar to private sector casual labor jobs. In fact, India's National Sample Survey O�ce

(NSSO), which collects the main source of data used in this paper, categorizes employment

under the NREGA as a speci�c type of casual labor. Out of those who report working in

public works in the past week, 45% report they usually or sometimes engage in casual labor,

while only 0.2% report that they usually or sometimes work in a salaried job.4 The similarity

of these public sector jobs and casual labor jobs motivates our focus on casual wages in the

empirical analysis.

2.3 Wages and Payment

Wage rates are set at the state level, and NREGA workers are either paid a piece-rate or

a �xed daily wage. Under the piece-rate system, which is more common, workers receive

payment based on the amount of work completed (e.g. volume of dirt shoveled). The resulting

daily earnings are almost always below the state-set wage levels. Theft by o�cials reduces

the actual payment received.5 Despite the fact that actual daily earnings often fall short

of stipulated wage rates, NREGA work appears to be more attractive than similar private

sector work available to low-skill workers. Based on a nationally representative India-wide

survey during the agricultural year 2007-08, both male and female workers report earning

an average of Rs. 79 per day for work under the act.6 Reported earnings are 12% higher

than the average daily earnings for casual workers (National Sample Survey O�ce, 2010).

These �gures may actually understate the attractiveness of NREGA work for the typical

rural worker if search costs or other frictions drive the private sector wage rate above the

marginal value of time (Walker and Ryan, 1990).

4Authors' calculations based on NSS Round 66 Employment and Unemployment Survey. The Employ-
ment surveys are described in detail in Section 4.1.

5Based on a survey in the state of Orissa of 1499 individuals who show up as working in the government
administrative data, only 821 both exist and report having worked (Niehaus and Sukhtankar, 2013a). Of
these 821, most received less than the stipulated minimum wage.

6Authors' calculations based on NSS Employment and Unemployment Survey Round 64.
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2.4 Employment, Rationing and Awareness

Perhaps a more direct way to assess whether NREGA work is more attractive than available

work is to ask people. The studies that ask �nd high levels of unmet demand (Dreze and

Khera, 2009; Imbert and Papp, 2014). Although the act stipulates a minimum employment

guarantee of 100 days of work per household per year, actual employment falls well short of

the 100 day guarantee, even for households that report wanting to work the full 100 days.

One may naturally wonder, if the act guarantees 100 days and households want 100

days, why workers do not simply demand 100 days of work. However, as The World Bank

(2011) summarizes: "In practice, very few job card holders formally apply for work while

the majority tend to wait passively for work to be provided." Even those who demand work

are not guaranteed work. During agricultural year 2009-10, an estimated 19% of households

reported attempting to get work under the act without success.7 The rationing of demand for

NREGA work is one reason that across Indian states, the number of NREGA days provided

is only weakly correlated with poverty (Dutta et al., 2012).

2.5 Seasonality and Cross-State Variation in Implementation

The above generalizations mask considerable state and even district variation in the im-

plementation of the program (Dreze and Khera, 2009; Dreze and Oldiges, 2009). Figure 2

shows cross-state di�erences in public employment provision, as measured by the fraction of

days spent on public works by rural adults in 2007-08 according to National Sample Survey.

Consistent with anecdotal evidence and administrative data, seven states are top perform-

ers: rural adults in Andhra Pradesh, Chattisgarh, Himachal Pradesh, Madhya Pradesh,

Rajasthan, Uttarkhand and Tamil Nadu spend more than 1% of the year on public works.

Throughout the paper, we will refer to these seven states as �star states�. Di�erences in

NREGA implementation are explained by some combination of political will, existing ad-

ministrative capacity, and previous experience in providing public works (see Appendix A.2).

Public employment provision is also highly seasonal. Local governments start and stop

works throughout the year, with most works concentrated during the �rst two quarters of

the year prior to the monsoon. The monsoon rains make construction projects di�cult

to undertake, which is likely part of the justi�cation. Field reports, however, document

government attempts to stop works during the rainy season so they do not compete with the

labor needs of farmers (Association for Indian Development, 2009). Figure 3 illustrates the

7Authors' calculations using NSS Employment and Unemployment Survey Round 66.
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variation in public employment provision between the dry and the rainy season. It shows the

fraction of days spent on public works by rural adults in each quarter of 2007-08, according

to National Sample Survey. Rural adults spend on average 1.5% of their time on public

works during the �rst six months of the year, and less than 0.5% during the last six months,

when the monsoon rains have come.

3 Model

We present a model to clarify how an increase in public sector hiring will impact aggregate

employment and wages. We use the framework to trace out the equilibrium distributional

impact of a workfare program across households. The model draws heavily from Deaton

(1989) and Porto (2006) except that we focus on the labor market rather than the market

for consumption goods.

In rural labor markets in developing countries, where a large part of the labor force is

engaged in self-employment or domestic work, the opportunity cost of time may be lower

than the market wage (Datt and Ravallion, 1994). The framework we use for calibration

allows each household's opportunity cost of time to be less than the market wage.

3.1 Households

Consider an economy consisting of a continuum of households indexed by i. Household i

operates a production function Fi(Di) where Di is labor used (demanded) by the household.

We assume households di�er in their production function by a productivity factor Ai, so that

for each household Fi(Di) = AiG(Di), with G
′(·) > 0 and G′′(·) < 0. Ai ∈ [A,A] re�ects

di�erences in productive assets owned by the households (e.g. land), which we consider as

exogenous.

Households have utility function u(ci, li) over household consumption ci and leisure li.

We assume the function is increasing and concave in both arguments. Let yi denote non-

labor income and πi pro�ts from home production. Let W̃i be the shadow wage, i.e. the

price of labor for household i, which could be lower than the market wage W . Let Lsi denote

household total labor supply and Di denote household total labor demand. Households
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choose Lsi , Di and ci to solve:

max
ci,Ls

i ,Di

u(ci, T − Lsi )

s. t. ci = yi + W̃iL
s
i

yi = πi = AiG(Di)− W̃iDi

The solution to this problem depends on the productivity factor Ai and the shadow price

of labor W̃i. Let us �rst consider the case where labor markets are perfect and the market

wage is the relevant price of labor for all households (W̃i = W ∀i). Household production

and labor supply decisions are separable, and households equalize the marginal productivity

of labour to the market wage: AiG
′(D∗i ) = W . The most productive households (e.g. large

landholders), with high Ai, are net buyers of labor (D
∗
i > L∗si ) and the least productive ones,

with low Ai, are net sellers of labor (D
∗
i < L∗si ).

Now suppose due to labor market frictions (e.g. job search costs) a wedge p ∈ [0, 1] exists

between the returns to one unit of wage labor for workers (pW ) and its costs for employers

(W ). In this case, high productivity households are net labor buyers and set AiG
′(D∗i ) = W

while low productivity households are net labor sellers and set AiG
′(D∗i ) = pW . Households

with intermediate productivity levels do not participate in the market and set AiG
′(D∗i ) ∈

[pW,W ]. This model makes clear that the opportunity cost of time may be lower than the

market wage for poorer households as in Benjamin (1992).8

3.2 Public works

Now suppose the government hires workers for public works projects. Motivated by the

evidence on rationing of public works employment discussed in Section 2.4, we assume the

government provides public works employment at wage Wg > W . The government must

therefore determine the amount of employment to provide to each household, denoted by

Lgi . Total public employment provided is Lg =
∫
i
Lgi di .

Throughout, we will assume that households use the shadow wage as the relevant op-

portunity cost of time, rather than the government wage. This will be the case as long as

households that work in public works spend some time working on their own farm or on

others' farms. Given that periods of public works employment for the typical worker are

8For simplicity, we abstract from di�erences in family size across households by assuming that total time
is the same for all households. However, if separability does not hold then family size will a�ect the amount
of labor used on the farm (see for example Benjamin (1992)).
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quite short (often under thirty days per year), this assumption seems reasonable.

The household's maximization problem remains the same except for the additional source

of income from public employment:

max
ci,Ls

i ,Di

u(ci, T − Lsi )

s. t. ci = yi + W̃iL
s
i

yi = πi + (Wg − W̃i)L
g
i

πi = AiG(Di)− W̃iDi

Because of the assumption that public employment is rationed and that the shadow wage

is the relevant opportunity cost of time, the government wage from public sector work Wg

only enters through its impact on non-labor income.

Public hiring (a change in Lg) reduces labor supply to the private sector, and therefore

wages must rise to equate supply and demand. This argument is straightforward if labor

markets are perfect (p = 1), and also applies to the case with search frictions (p < 1). In

both cases, private employment (the sum of wage employment and self-employment) falls.

Appendix A.3.4 presents the formal derivation.

This result contrasts with some versions of �surplus labor� models in which low productiv-

ity households are isolated from the market, and hence the government can hire workers from

these households without any e�ect on the market wage (Sen, 1966; Rosenzweig, 1988). An

increase in private sector wages caused by the employment guarantee would be inconsistent

with the predictions of these models.

Models of imperfect competition also yield di�erent conclusions. If employers have market

power (Binswanger and Rosenzweig, 1984) then government hiring may actually increase

private sector wages and employment (Basu et al., 2009). Our empirical analysis of the

e�ect of the employment guarantee on employment and wages will allow us to directly test

this prediction.

In the special case where p = 1, we can compute the elasticity of labor demand as the

ratio of the percentage change in the wage divided by the percentage change in employment.

See Appendix A.3.4 for details.
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3.3 Impact on Household Welfare

Let the expenditure function corresponding to the dual of the utility maximization problem

above be given by e(W̃i, ui). The expenditure function gives the total income required to

achieve utility level ui given a shadow wage W̃i ∈ [pW,W ]. Since this is a one-period model,

expenditure equals income, so we can write:

e(W̃i, ui) = πi(W̃i) + W̃iT + (Wg − W̃i)L
g
i + zi (1)

where zi is exogenous income, e(W̃i, ui) is the expenditure or total income required to achieve

utility level ui and πi(W̃i) + W̃iT + (Wg − W̃i)L
g
i + zi is total income.

A change in Lg may have two e�ects for household i. First, depending on the allocation

rule, it may increase Lgi , the time spent on public works by members of the household.

Second, as we discussed in the previous section an increase in government hiring may increase

the market wage W and hence the shadow wage W̃i.

For �xed zi, when Lg changes, Equation 1 will no longer hold because the expenditure

required to achieve the same utility will change and because the household's available in-

come will change. Appendix A.3.3 derives the change in zi required to maintain equality in

Equation 1 and therefore maintain the same utility level, following a small change in Lg:

−dzi = (Lsi − L
g
i −Di)W̃i

dW/W

dLg
+ (Wg − W̃i)dL

g
i

= Net Casual Labor Earnings × dW/W

dLg
+ (Wg − W̃i)

dLgi
dLg

(2)

We interpret −dzi as the amount of money that a social planner would have to take from

household i in order for the household to have the same level of utility before and after the

implementation of the program. In this sense, it is a measure of the welfare e�ect of the

program and is often referred to as the compensating variation (Porto, 2006).9

9The impact on welfare is not the same as the impact on consumption. In Appendix A.3.5, we derive the
impact of the program on consumption of household i. The key di�erence compared with Equation 2 is that
the impact on consumption includes the change in consumption due to the change in labor supply from the
change in income.
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4 Data and Empirical Strategy

With the theoretical framework above in mind, we next describe how we estimate the impact

of NREGA on employment and wages and discuss the possible threats to our empirical

strategy.

4.1 Data

Our primary source of data is the nationally representative Employment and Unemployment

survey carried out by the National Sample Survey Organization (�NSS Employment Survey�).

We use village-level data from the 2001 census aggregated to the district-level, as well as data

on agricultural yield, rainfall, political cycles and roads built under a national rural roads

construction program (PMGSY) to construct district-level controls, which are described in

detail in Appendix A.4. For the calibration in Section 6, we use the ARIS-REDS data set,

described in Appendix A.4.3.

Our identi�cation strategy relies on changes at the district-level. Districts are admin-

istrative units within states. Because the workfare program is applicable only to persons

living in rural areas, we drop districts that are completely urban and only use data for per-

sons located in rural areas. Our sample includes districts within the twenty largest states

of India, excluding Jammu and Kashmir. We exclude Jammu and Kashmir since survey

data is missing for some quarters due to con�icts in the area. The remaining 497 districts

represent 97.6% of the rural population of India. Appendix A.4 details how we adjust the

data to account for district splits and merges. The median district in our sample had a rural

population of 1.37 million in 2008 and an area of 1600 square miles.

We use four rounds of the NSS Employment Survey, which is strati�ed by urban and rural

areas of each district. Surveying is further divided into four sub-rounds each lasting three

months. Although the sample is not technically strati�ed by sub-round, the NSSO states that

it attempts to distribute the number of households surveyed evenly within each district sub-

round. We discuss in detail in the next section the extent to which this goal is accomplished in

practice. The NSSO over-samples some types of households and therefore provides sampling

weights (see National Sample Survey Organisation (2008) for more details). All statistics

and estimates computed using the NSS data are adjusted using these sampling weights.

The NSS Employment Survey is conducted on an irregular basis, sometimes with a small

and sometimes with a large sample. To enhance precision and ensure that our sample is

representative, we only use years with a large sample (�thick rounds�). We use data spanning
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July 2004 to June 2005 to form the pre-program period. For the post-program period, we use

data spanning July 2007 to June 2008. In the placebo analysis, we use data from July 1999

to June 2000 to test for di�erential trends in outcomes before the program was implemented.

Finally we use data from July 2009 to June 2010 to document trends in outcomes after the

program had been introduced to all districts.

4.2 Construction of Outcomes

Our main outcomes are individual measures of employment and wages. We construct the

employment measures as follows. The NSS Employment Survey includes detailed questions

about the daily activities for all persons over the age of four in surveyed households for

the most recent seven days. We restrict the sample to persons aged 18 to 60. We then

compute for each person the percentage of days in the past seven days spent in each of four

mutually exclusive activities: private sector work, public works, not in the labor force, and

unemployed. Private sector work includes waged work, self-employment and domestic work.

Domestic work could arguably be categorized as not in the labor force. However, given

that most households engage in small-scale agriculture, many activities could equally well

be categorized as domestic work or self-employment. In the context of the model presented

in Section 3, we believe both domestic work and self-employment naturally fall under the

de�nition of private sector work.

Our wage measure is computed as follows. The NSSO makes the distinction between two

types of waged work depending on the duration and formality of the relationship with the

employer: salaried work is long-term and often involves a formal contract while casual work

is temporary and informal. The NSSO asks individuals who worked in casual labor over the

past seven days their total earnings from casual labor. For each individual we compute the

average earnings per day worked in casual labor (the �casual wage�).

Although the NSSO makes an e�ort to survey villages within each district throughout

the year, in a few occasions no households were surveyed in some district-quarters. Even

if households were surveyed, if none of the surveyed adults worked in casual labor, we do

not have a measure of wages for that district-quarter. Table A.1 presents the number of

non-missing observations for each district-quarter for the employment and wage outcomes.

The fraction of districts with no measure of employment for a given quarter is relatively

low: it is always below 1% in the survey years 2004-05 and 2007-8. For wage outcomes,

this fraction is higher, but still low (2-4%) in the survey years 2004-05 and 2007-8. Missing

observations are more of a concern for the survey year 1999-2000, which we only use for the
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placebo analysis. Appendix A.4 provides further discussion.

4.3 Empirical Strategy

Our empirical strategy compares changes in districts that received the program earlier to

changes in districts that received the program later. The program was �rst introduced in

200 districts in February 2006, extended to 130 districts in April 2007, and �nally to the rest

of rural India in April 2008.10 From our sample of 497 districts, our analysis compares the

288 districts selected to be part of the �rst two phases (�early� districts) to the 209 districts

which received the program in 2008 (�late� districts). We use for our pre-period July 2004

to June 2005, and for our post-period July 2007 to June 2008. Both periods contain one full

year.11

Early phase districts were selected to have lower agricultural wages, a larger proportion

of �backward� castes and lower agricultural output per worker. These targets were balanced

with the goal of spreading early phase districts across states. As a result, some early phase

districts in richer states rank signi�cantly better based on the three indicators than late phase

districts in poorer states. Further, political considerations seem to have played some role in

the selection of early districts (Gupta, 2006). Figure 1 shows the geographic distribution of

early and late districts across India. Early districts are relatively well spread out, though

there is a concentration of early districts in northern and eastern India, where rural poverty

is higher. Because early districts were purposefully selected based on variables that are

correlated with labor market outcomes, a simple comparison of early and late districts is

unlikely to be informative of the program impact. For this reason, we compare changes over

time in early districts relative to late districts.

These di�erence-in-di�erences estimates will be biased if outcomes in early districts are

trending di�erentially from outcomes in late districts. We are able to partly address this con-

cern by including controls meant to capture di�erential changes across districts. We control

for pre-program measures of caste composition, agricultural wages and agricultural output

10Prior to the o�cial start date in February 2006, the government launched a pilot program known as
the Food for Work Program in November 2004 in 150 of the initial 200 districts. Con�rming existing �eld
observations (Dreze, 2005), we �nd little evidence of an increase in public works during this pilot period.

11Late districts technically received the program in April 2008. We use the entire survey round July
2007 to June 2008 both to increase sample size and so that we can observe e�ects throughout the whole
agricultural year. Even in the second quarter, we �nd a signi�cant di�erential rise in public works in early
relative to late districts, likely due to the fact that public works employment did not start immediately in
late districts in April 2008.
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per worker, which were the three criteria used for the selection of early phase districts.12 The

rest of the district-level controls are shown in Table 1 and include pre-program measures of

poverty, literacy, population density, labor force participation, workforce composition and

land irrigation. We interact these time-invariant controls with a dummy for post-program

status to pick up trends correlated with the controls. We also include time-varying controls:

annual percentage deviation from average rainfall, its square, and a dummy variable for the

one year preceding a state or local election. Since outcomes may respond di�erently to these

variables in early phase districts our speci�cation allows the e�ect of time-varying controls

to di�er in early and late phase districts.13 We control for the number of kilometers of road

completed in the district over the last year under a national rural road construction program

started in 2001, the Pradhan Mantri Gram Sadak Jozna (PMGSY).

Migration between early and late phase districts is unlikely to be a major concern for

our analysis. Rural to rural inter-district migration for employment is limited. Out of all

adults (18 to 60) living in rural areas, only 0.4% percent report having migrated to a di�erent

rural district for employment within the past year.14 Low levels of migration are similarly

documented in Munshi and Rosenzweig (2009) and Topalova (2010). A higher number, 1.9%

of rural adults, report having migrated from rural to urban areas. Imbert and Papp (2014)

present evidence that the NREGA reduces short-term migration from rural to urban areas

in a group of villages in northwest India. Since urban areas are excluded from our analysis,

a drop in rural to urban migration induced by the NREGA would not bias our estimates of

the impact on wages. It would, however, imply the estimated e�ect of the NREGA on rural

labor markets may have been mitigated by migration �ows and that urban labor markets

too may have been a�ected by the NREGA.

4.4 Regression Framework

We estimate variations of

Yidt = βTdt + δZd × 1{t>2006} + γXdt + λXdt × 1{Early} + αHi + ηt + µd + εidt

where Yidt is the outcome (e.g. earnings per day worked) for individual i surveyed in

district d in quarter t, Tdt is a dummy equal to one for early phase districts in the post

12These controls are not redundant with the program dummy because the selection of early districts was
not based entirely on these criteria and because the Planning Commission used measures of agricultural
wages and output from the 1990s, more than a decade older than our controls (Planning Commission, 2003).

13In particular, wages may be more pro-cyclical in early phase districts, which are poorer (Jayachandran,
2006).

14Authors' calculations using NSS Employment and Unemployment Survey Round 64.
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period (July 2007 to June 2008), Zd are time-invariant district controls, 1{t>2006} is a dummy

variable equal to one after 2006, Xdt are time-varying district controls, 1{Early} is a dummy

variable equal to one for observations within early districts, Hi are individual controls, ηt

are year-quarter �xed e�ects, and µd are district �xed e�ects. All estimates are adjusted

for correlation of εidt over time within districts by clustering at the district-level. For most

speci�cations, we include interactions of Tdt with other variables such as season dummies or

dummies for whether the district is in a star state, in order to exploit the variation in public

employment provision across seasons and states.

Because we are interested in the impact of the program on the labor market equilibrium,

the relevant level of analysis is not the individual but the district. We re-weight individual

observations so that the sum of all weights within a district-quarter is constant over time

for each district and proportional to the rural population (see Appendix A.4.4 for details).

Individual controls are used only to ease concerns that our estimates of the program impact

on wages are driven by worker selection. For example the average private sector wage might

increase mechanically if the program is more likely to hire low-wage workers. The individual-

level controls include dummy variables for age group, education level, gender, caste, religion

and marital status (see Section A.4 in Appendix for more details).

5 Results

We next present descriptive statistics for early and late districts. We then turn to our

empirical estimates of the e�ect of the program on public employment, private sector work

and wages.

5.1 Summary Statistics

Table 1 presents the pre-period means for the controls used for early and late districts as

well as districts in star states and non-star states. As expected given the criteria used to

choose early districts, early districts are poorer based on every measure (literacy, poverty,

share of low caste population, fraction of the labor force in agriculture). Star states, on the

other hand, seem to be slightly richer and employ a greater fraction of agricultural workers

than other states, with a larger share of tribal (ST) population. Recall from Section 2.5 that

star states are states which implemented the program better than other states.

Table 2 presents the pre-period means for the outcomes used in the paper for early and

late districts as well as districts in star states and non-star states. The allocation of days
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between private sector work, public sector work, unemployment and not in the labor force

is similar in early and late districts. As expected given the stated selection criteria used by

the government, casual labor earnings per day are 13-24% lower in early phase districts prior

to the introduction of the program. The main di�erence between star states and the rest of

India is a smaller fraction of time spent on domestic work.

Our empirical strategy compares trends in outcomes in early and late districts before

and after the implementation of NREGA. Figures 4, 5 and 6 present the trends of our main

outcomes, public works, private sector work and wages for the dry season in early and late

phase districts. Figure 4 shows that before NREGA, early and late phase districts had

similarly low levels of public employment. In 2007-08, time spent on public works increased

sharply in early districts. Interestingly, public employment provision in late districts does

not catch up completely with early districts after the program is extended to all of India by

2009-10.15 Figure 5 shows that time spent doing private sector work fell in 2007-08 in early

relative to late districts and in 2009-10 in late relative to early districts. The magnitude of

the drop is similar to the observed increase in public employment. Finally, Figure 6 shows

that wages in early phase districts were lower but increasing relative to late phase districts

even before NREGA was implemented. Relative wage growth appears to have accelerated in

2007-08, when NREGA was rolled out in early phase districts, and decelerated in 2009-10,

when the program was extended to the rest of India.

5.2 Change in Time Allocation

We divide daily activities into four mutually exclusive categories: public works, private

sector work (including casual labor, salaried work, domestic work and self employment),

unemployment and not in the labor force. The results for our main speci�cation using

these outcomes are presented in columns one to four of Table 3.16 We �nd a strong and

signi�cant impact of the program on the fraction of total time spent working in casual public

employment. Public works employment increased by 1.17 percentage points during the dry

season and 0.46 percentage points during the rainy season. Hence the results con�rm that the

rise in public works is concentrated during the dry season. The one percentage point increase

in public employment during the dry season masks considerable heterogeneity among states.

We explore this heterogeneity further in Section 5.4. During the dry season, the rise in public

15The lack of catch-up by late districts is why we chose not to make use of the potential second di�erence-
in-di�erences estimate comparing late districts and early districts from 2007-08 to 2009-10 in our main
speci�cation. We discuss the results of this second di�erence-in-di�erences in section 5.5 below.

16Table A.2 in the appendix presents the results without controls.
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employment is o�set by a fall in private sector work rather than time spent outside the labor

force or unemployment. We cannot reject that private employment falls one-for-one with

public employment generation.

Perhaps surprisingly, unemployment does not appear to fall in early districts relative to

late districts. A possible explanation is that after the introduction of the program, unem-

ployed workers are more likely to report that they are available or looking for work while

working at home or on the farm. As a result the fall in private sector work may in part

represent a fall in disguised unemployment or private sector work with close to zero produc-

tivity (see Section 3.2). Another explanation is more driven workers take up private and

public sector work, while the others remain unemployed. This does not seem to be the case:

the proportion of casual workers who report that they have worked on public works during

the last seven days is the same for those who report an unemployment spell and those who

do not (2.3% in NSS Employment Survey Round 66).

5.3 Change in Private Sector Wages

The model presented in Section 3.2 predicts that the fall in private sector work during the

dry season be matched with a rise in wages. Column �ve of Table 3 presents the results for

our main speci�cation using de�ated log casual earnings per day as the dependent variable.

The estimates for the dry season show that de�ated daily earnings rise by 4.7 log points

more in early relative to late districts. The speci�cation includes district-level controls to

control for potential di�erential trends in wages and worker-level controls to account for

possible change in worker composition.17 This result suggests that NREGA increased wages

for unskilled labor. This �nding is inconsistent with �surplus labor� models in which low

productivity households are isolated from the market, and hence the government can hire

workers from these households without any e�ect on the market wage (see Sen (1966) and

Rosenzweig (1988) for a discussion).

One may wonder whether the magnitude of the wage increase is reasonable given the fall

in private sector work. To explore this question, we assume labor markets are competitive

so that changes in the wage are due to shifts along a labor demand curve. We can then

use the estimate of the increase in the wage of 4.73% and the fall in private sector work to

compute a labor demand elasticity. Rural prime-age adults in early phase districts spend on

average 89.3% of their time in private sector work (Table 2). Therefore our estimate from

17Table A.2 presents the results with district controls but without worker controls. The estimated impact
on wages is slightly lower, which suggests that worker selection biases our estimate downwards, not upwards.
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the previous section implies that private sector work declined by 1.31/.893 = 1.46%. As

discussed in Section 3.2, if labor markets are competitive, the elasticity of labor demand is

given by the ratio of the change in private employment to the change in the wage. Hence

our estimate of the elasticity of labor demand is ε̂d = 1.46
4.73
≈ 0.31, which lies within the 0.25

to 0.40 range estimated by Binswanger and Evenson (1980) for farm employment in India.

5.4 Star States

We next document the changes in labor market outcomes for early districts in the few states

that provided most of the NREGA employment (see Section 2.5). Star states are by def-

inition selected based on their implementation of the program. As a result, it is possible

that even conditional on controls, labor market outcomes in these states would have changed

di�erentially absent the program. This important caveat notwithstanding, we believe docu-

menting the trends in employment and wages of early districts in star states as compared to

late districts is important. If the employment and wage changes were concentrated in states

where the NREGA was not well implemented, it would cast doubt on the validity of our

empirical strategy.

Table 4 presents our main speci�cation with the program dummy interacted with whether

the district is in one of the star states as well as a dummy for the rainy or dry season. The

results in column one con�rm that the �eld studies are correct in labeling these states as

star states. While time spent on public employment in early districts of star states rises by

3.1 percentage points in the dry season, there is no increase in public employment in early

districts of non-star states.

Columns two through four show that the fall in private sector work documented for all

of India is concentrated within the early districts of star states during the dry season. The

estimates are consistent with a one-for-one crowding out of private employment by public

sector work. Neither unemployment nor not in the labor force seem to be a�ected by the

program. Column �ve further shows that in star states, daily casual earnings increase by

a strongly signi�cant 8.98% in the dry season. Consistent with the all India estimate, the

implied labor demand elasticity is equal to 3.07
0.893∗8.98 = 0.38. During the rainy season in star

states, wages increase by an insigni�cant 4.58%. The coe�cients for other states are on the

order of one to two percent.
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5.5 Robustness Checks

A primary concern is that the di�erential change in employment and daily earnings doc-

umented above for early relative to late districts may represent changes unrelated to the

program. That the e�ects are concentrated during the dry season and in states where the

program is best implemented suggests the results are due to the program. As a further

check, Table 5 presents a similar speci�cation to the one in Table 4 except that the sample

is composed of years 1999-00 and 2004-05 and the program dummy is set to one for early

districts in 2004-05. In other words, we estimate the di�erential changes across early and

late districts prior to the program.

As expected, we do not �nd any di�erential increase in public employment in early relative

to late phase districts prior to the implementation of the program. As we saw from Figure

6 daily casual earnings did increase in early relative to late phase districts between 1999-

00 and 2004-05. However, once we control for district characteristics using our preferred

speci�cation, the point estimates are small and insigni�cant. Finally, even with controls, we

�nd a signi�cant decrease in time spent in private sector work and an insigni�cant increase

in unemployment and in time spent outside of the labor force in early as compared to late

districts between 1999-00 and 2004-05.

The analysis of pre-existing trends suggests that labor markets in early and late phase

districts either were on di�erent long-term paths or experienced di�erent seasonal shocks

between 1999-00 and 2004-05. The inclusion of controls in our main speci�cation seems to

be e�ective in dealing with most of the e�ect of selection into early phases of the program. As

a further test we include changes in the outcomes between 1999-00 and 2004-05 as controls

in our main speci�cation; our results are not a�ected (see Appendix Table A.4).

Economic shocks or policy changes concurrent to NREGA roll out represent another im-

portant threat to our identi�cation strategy. Since the states are the relevant level for many

policy decisions (e.g. industrial policy, infrastructure programs) and are integrated econom-

ically, it seems natural to test whether our results hold when we only compare early and late

districts within each state. We do this by including in our main speci�cation a dummy for

each state interacted with a dummy for 2007-08. The results presented in Table A.6 are close

to our main estimates: employment on public works rises by 1.1 percentage points, private

sector work falls by 1.8 percentage points and wages for casual labor increase by 4.2%.

As a �nal test of the parallel trend assumption, we use the second di�erence-in-di�erences

based on changes in outcomes in late and early phase districts between 2007-08 and 2009-10

during which the program was extended to late phase districts. The results are presented
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in Table A.4. We �nd a small and insigni�cant increase in public employment in late as

compared to early districts; this is due to the fact that public employment provision con-

tinued to expand in early districts. We also �nd that private employment decreases and

unemployment increases in late relative to early districts as the NREGA is extended to all

of India. This may be due to the fact that workers in late districts are more likely to declare

being unemployed once the employment guarantee is implemented. Finally, we �nd a small

and insigni�cant increase in casual wages in late relative to early districts, which suggests

our main results are not driven by a long-term rise in wages in early relative to late districts.

5.6 Alternative speci�cations

Three concurrent studies by Azam (2012), Berg et al. (2013) and Zimmermann (2013) esti-

mate the impact of the NREGA on labor market outcomes. In order to better understand

how our results relate to their �ndings, we estimate speci�cations that are similar to theirs

using our data. We provide an overview of the results and leave many of the details to

Section A.5.

First, we follow Azam (2012) and estimate the program e�ect separately for men and

women (results are presented in Appendix Table A.7). As Azam (2012) we �nd a stronger

e�ect for women and an insigni�cant e�ect for men. However, when we include district

controls, the e�ect for men increases and becomes signi�cant and the e�ect for women drops

and becomes insigni�cant. This suggests that part of the di�erence in wage trends between

male and female workers in early districts relative to late districts may be shocks or trends

unrelated to the program.

Second, we follow Berg et al. (2013) and rede�ne the treatment variable as the number of

months since the program was launched in each district. The estimates suggest the program

had a positive e�ect on time spent in public works, a negative e�ect on time spent in private

sector employment, and a positive e�ect on casual wages. Adding district-speci�c trends

changes the magnitude of the coe�cients but not their sign or their statistical signi�cance.

Berg et al. (2013)'s approach yields similar conclusions to ours: public works increase,

private employment falls, and casual wages rise. In the �rst half of 2008, the NREGA had

been in place for two years in �rst phase districts and for one year in second phase districts.

Based on the monthly estimates, wages increased by 6.48% and 3.24% in �rst and second

phase districts respectively. Using population weights (60% and 40%), the estimated average

impact is 5.1% in early districts, which is close to our own 4.7% estimate.

Third, we follow Zimmermann (2013) and use a regression discontinuity design to identify
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the e�ect of the program on employment and wages. The selection of early districts was based

on a backwardness ranking detailed by Planning Commission (2003). Within each state, and

taking the number of early districts as given, one can use each district's backwardness rank

to predict its assignment to early or late phases. One can then estimate the e�ect of the

program by comparing 2007-08 outcomes in early and late phase districts close to the cut-o�,

controlling for the backwardness rank.

Allowing for di�erent slopes on each side of the cut-o�, we �nd a positive but insigni�cant

e�ect of the program on time spent in public works (0.51 and 0.35 percentage points for

the linear and quadratic speci�cation respectively), a negative but insigni�cant e�ect on

time spent in private sector work (-0.8 and -1.5 percentage points), and positive e�ects on

private sector wages (6% and 11%). These estimates are reasonably close to those of our

preferred speci�cation and never signi�cantly di�erent from them. The standard errors of

the estimated coe�cients are large.

6 Estimating the Distributional Impact

The previous analysis suggests the workfare program increased government work and led

to an increase in wages for private sector casual laborers. Recall from Section 3 that the

compensating di�erential for household i given by Equation 2 is

−dzi = Net Casual Labor Earnings i ×
dW/W

dLg
+ (Wg − W̃i)dL

g
i (3)

We use the estimates from the previous section combined with pre-program household-level

data. We focus on the �rst half of the year, the o�-season of agriculture, when most of the

employment is generated by the program.

6.1 Gains and Losses from Wage Change

The �rst term of Equation 3 (Net Casual Labor Earnings i ×
dW/W
dLg

) is the change in welfare

due to the equilibrium change in the wage. To estimate this term, we use 4.7% for the wage

change (dW/W
dLg

) based on the estimates in Table 3.

Net casual labor earnings is more di�cult to estimate because in the NSS Employ-

ment Survey we only observe casual labor earnings, not payments. We use the 1999-00

ARIS/REDS data set, which is a nationally representative survey of households in rural

India. The ARIS/REDS survey includes questions on total casual earnings as well as total
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payments to hired casual laborers (see Appendix A.4.3 for more detail). We �rst compute

the share of labor costs paid by each consumption quintile by dividing the sum of labor

payments made in each quintile by total labor earnings. These shares do not sum to one

because casual labor earnings reported by rural households may come from urban employers.

We then multiply each share by total casual labor earnings reported in the NSS Employment

Survey to obtain the estimates of casual labor payments by consumption quintile given in

row seven of Table 6.

We observe casual labor earnings directly in the NSS Employment Survey, and these

earnings are reported in the third row of Table 6. Net casual earnings (row eight) are given

by total casual earnings (row three) less total casual payments (row seven). As expected,

net casual earnings decrease as we move from the bottom to top quintiles. The resulting net

gain from the wage change is 4.7% multiplied by net labor earnings for each quintile (row

ten).

6.2 Direct Gains from Participation

We next quantify the second term in Equation 3. The term (Wg − W̃i)dL
g
i is the direct gain

for program participants from working for the program. The welfare gain due to program

participation is (Wg − W̃i)∆Lg. Ideally, we would estimate ∆Lg using a direct measure of

how many days households in each consumption quintile worked for the program. However,

since we measure employment in all types of public works projects and not only employment

provided by the program, we instead estimate the change in public works by quintile using our

main speci�cation with the program dummy interacted with a dummy for each consumption

quintile. That is, we estimate:

Yidt =
∑
q

βqTdt ×Dq
idt + γXdt + λXdt × 1{Early} + δZd × 1{t>2006} + αHi + ηqt + µqd + εidt

where Yidt is the fraction of time spent on public works by individual i at date t in district

d. Dq
idt is a dummy variable equal to one if individual i belongs to consumption quintile q.

Quintiles are de�ned separately for each year of data. Tdt is a dummy for program districts

in the post period (July 2007 to June 2008), Xdt are time-varying district controls, Zd are

time-invariant district controls, Hi are individual controls, η
q
t are year-quarter-quintile �xed

e�ects, and µqd are district-quintile �xed e�ects.18

18We also estimate the e�ect of the program on employment and wage outcomes for di�erent consumption
quintiles by regressing these outcomes on an interaction of the program dummy with a dummy for each
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The estimates of βq for each quintile provide an estimate of the increase in public works

(∆Lg) for each quintile. These estimates are presented in row 11 of Table 6. As compared to

our main speci�cation, this method of estimating the increase in public works employment

relies on the additional assumption that the composition of each consumption quintile did not

change di�erentially in early and late phase districts and was not a�ected by the program.

Given the short time lag between the pre and post-program periods, and given the relatively

small size of the income transfer due to the program, we believe that large changes in the

distribution of consumption are unlikely.

We estimate Wg using daily earnings for program participants. Based on the NSS 2007-

08 Employment Survey, average daily earnings for program participants were 15% higher

than average casual daily earnings in early districts. This �gure likely understates the initial

public-private wage gap, since private wages have moved closer to the government wage as

a result of the program. The estimated wage increase following program implementation

between 2004-05 and 2007-08 is 4.7%. Hence, for the calibration we set the government

wage to be 20% ≈ 15% + 4.7% higher than the mean casual wage in 2004-05.

As discussed in Section 3, participants' outside option W̃i may be lower than the market

wage. Datt and Ravallion (1994) use a survey of participants in a similar Indian workfare

program in the state of Maharashtra and conclude that forgone income represents 20-30%

of the earnings from the workfare program. We adopt their estimate for the purpose of

our calibration and assume the shadow wage W̃i is on average 30% of the market wage

(equivalently 25% of the public sector wage).19 The implied direct transfer (Wg − W̃i)∆Lg

under this assumption is presented in Row 14 of Table 6.

6.3 Comparing Equilibrium and Direct Gains

Figure 7 presents the estimated gain due to the change in wages, the gain due to participation

in the program assuming an outside option equal to 30% of the market wage, and the sum

of the two for each quintile. For the three poorest quintiles, the equilibrium wage e�ect is

of comparable magnitude to the gains from participation; approximately a third of the total

gain is due to the increase in wages. For the richest quintile, the increase in labor costs more

quintile and by including district-quintile and time-quintile �xed e�ects. Regression results are shown in
Table ??.

19Since non-farm opportunities were more scarce in rural areas in the 1990s, 30% is likely a lower bound
of the opportunity cost of time. Using counterfactual questions asked to NREGA workers in Bihar, Murgai
et al. (2013) estimate that foregone earnings are 34% of public works wage.
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than o�sets the gains from participation resulting in a welfare loss for these households.20

The numerical estimates plotted in Figure 7 are presented in Table 6. Row 15 presents the

total estimated gain for each consumption quintile. Row 16 further shows that the fraction

of the total gain due to the equilibrium change in wages is between 22% and 42% of the

total gain from the program for the three poorest quintiles. Finally, row 17 expresses the

total gain from the program as a fraction of total expenditure: although richer households

lose from the program, the impact is less than one percent of total expenditures.

6.4 Discussion

Our calibration results depend on the validity of the theoretical framework outlined in section

3. We discuss here some of the assumptions of the framework presented above, and how the

results might change if those assumptions do not hold.

Imperfect Competition: We assume labor markets are competitive. If employers have

market power then Equation 2 would capture the welfare impact of the program for labor

suppliers but not for labor buyers (see Appendix A.3.6 for more details). However, the

results presented in Section 5 show an increase in wages and a simultaneous fall in private

employment. This contradicts predictions of imperfect competition models and lends support

to our assumption that labor markets are competitive.

Changes in Worker Productivity : To the extent the program increases wages by changing

worker productivity, Equation 2 will not capture the full welfare impacts of the program.

Though there is limited existing evidence, the discussion in Section 2.1 suggests it may be

reasonable to assume that infrastructure created by the program did not have large e�ects

on worker productivity within the �rst two years of implementation.21 To the extent that

these e�ects exist, our framework will underestimate the welfare gains for households that

hire labor.

Fiscal cost of the program: Our model implicitly assumes the NREGA is funded from

the outside (e.g. by taxes levied on urban taxpayers). In practice, the central government

bears 90% of the cost of NREGA. It derives 56% of its tax revenues from corporate and

income tax (�direct taxes�), and 44% of its revenues from customs, excise, and value added

20When computed over the whole year, the monthly welfare gains from the program are 30% lower than
the gains for the dry season only, but the relative magnitudes of the direct and indirect e�ects remain the
same.

21Worker productivity may have also increased through other channels. For example, the increased income
due to the program may allow workers to make investments in their health leading to higher productivity
(Strauss, 1986), or higher wages may have led employers to substitute away from labor towards labor-saving
capital.
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taxes (�indirect taxes�).22 Since most of the rural economy is informal, and agriculture is

exempt from corporate and income taxes, few rural households pay direct taxes. Indirect

taxes, however, may a�ect both rural and urban households (Jha and Srinivasan, 1989). If

we assume these taxes are progressive, because rich households consume more goods from the

formal (taxable) sector, our estimate may understate the distributive impact of the program.

6.5 Cost-bene�t analysis

An important question is how the welfare gains of the program compare with the costs. A

complete cost-bene�t analysis of the NREGA would require estimating many factors beyond

the scope of this paper, such as the productivity of the infrastructure generated. We may gain

some insight, however, by comparing the welfare gains as estimated in the previous section

with the government expenditure. From January to June 2008, total monthly NREGA

expenditure in early districts was 241 Rs. per rural household (167 Rs. on unskilled labor

alone).23 Hence, the cost of the NREGA per rural household is much higher than the

estimated welfare gains even to the poorest consumption quintile (112 Rs.).

One reason for the large di�erence between the �scal cost of the program and the bene�ts

accrued to rural households is foregone income. Murgai et al. (2013) compare the poverty im-

pacts of the NREGA with a hypothetical cash-transfer scheme given to all rural households

without any work requirement and conclude that the cash-transfer is more cost-e�ective.

Another reason for the gap between costs and bene�ts of the program is widespread corrup-

tion. Imbert and Papp (2011) compare administrative data on person-days provided under

NREGA with estimates using the NSS survey data on days spent on public works in 2007-08.

We �nd that only 42 to 56% of NREGA days are independently con�rmed by survey data.

This �nding suggests that leakages severely limit the extent of redistribution achieved by

NREGA (Niehaus and Sukhtankar, 2013b).

22These �gures are for the 2011-12 �nancial year (http://dor.gov.in/revenue_ctc).
23In order to compute monthly NREGA expenditures per rural household we used monthly progress reports

available on NREGA o�cial website (nrega.nic.in) and census 2001 data, adjusted for annual population
growth in each state between 2001 and 2011 (censusindia.gov.in).

26



7 Conclusion

We provide some of the �rst evidence on the equilibrium impacts of workfare programs in

a developing country context. Like many social programs in developing countries, workfare

programs involve a transfer to the rural poor funded by (mostly urban) taxpayers. We show

that through their e�ect on labor markets, workfare programs trigger a redistributive e�ect

within rural areas, from households which are net labor buyers to households which are net

labor sellers. Further, we show that these redistributive e�ects are quantitatively signi�cant.

Under reasonable assumptions, the increase in equilibrium wages represents a third of the

total welfare gain for the poor.

Our analysis also suggests that the �scal cost of the program is much higher than the

estimated welfare gains to rural households. This result must be interpreted with caution,

given that we do not account for the productivity bene�ts of the generated infrastructure. As

discussed in Section 2.1, �eld reports indicate that the quality of NREGA infrastructures is

poor overall (The World Bank, 2011), so that zero productivity seems a natural benchmark.

Once rigorous empirical evidence on the e�ect of NREGA infrastructure is available, we

hope our calibration will provide a useful framework which can be extended to include these

e�ects in the welfare analysis.
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Figure 1: Map of Early and Late Districts
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Figure 2: Heterogeneity in employment provision across States

0
.5

1
1.

5
2

2.
5

F
ra

ct
io

n 
of

 ti
m

e 
sp

en
t o

n 
pu

bl
ic

 w
or

ks
 (

%
)

GJ KN PJ MH BR JH KL AS WB UP OR HR UT TN HP RJ AP CH MP

Source: National Sample Survey (NSS) 2004-05 and 2007-2008. Rural prime-age adults
in early phase districts only. All states above 1% are 'Star states' in the analysis.

2004-05 2007-08

Figure 3: Seasonality in employment provision
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Figure 4: Di�erence in Time spent on Public Works during the Dry Season between Early
and Late Phase Districts.

Figure 5: Di�erence in Time spent on Private Sector Work during the Dry Season between
Early and Late Phase Districts.
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Figure 6: Di�erence in log De�ated Casual Daily Earnings during the Dry Season between
Early and Late Phase Districts.
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Figure 7: Welfare Gains by Expenditures Quintiles
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Table 2: Summary Statistics of Outcomes in 2004-05 for Early and Late Districts

Early Late p-value Star States Other States p-value
(1) (2) (3) (4) (5) (6)

Time Allocation:
Public Work (Casual) 0.1% 0.1% 0.90 0.3% 0.1% 0.55
Private Work 89.3% 87.7% 0.56 87.2% 89.3% 0.43

Cultivator 27.2% 26.8% 0.91 30.6% 25.6% 0.22
Non-Ag Self-employed 9.0% 9.1% 0.99 9.0% 9.1% 0.96
Casual Labor 16.8% 15.9% 0.76 18.8% 15.5% 0.31
Salaried Work 4.3% 7.0% 0.20 5.8% 5.1% 0.75
Domestic Work 29.9% 27.4% 0.52 21.3% 32.2% 0.01

Unemployed 5.0% 5.9% 0.60 6.7% 4.8% 0.31
Not in Labor Force 5.6% 6.2% 0.75 5.9% 5.8% 1.00

Log Daily Casual Earnings 3.70 3.90 0.00 3.73 3.80 0.17

Number of Observations 108,201 73,276 58,742 122,735

This table presents means of the main outcomes used in the paper for different samples. All samples are restricted 
to persons aged 18 to 60. Column (1) is restricted to districts that received the workfare program prior to April 
2008. Column (2) includes only districts that received the program after April 2008. Column (3) presents the p-
values of the Student's t-test of equality of means in Column (1) and (2). Column (4) restricts the sample to star 
states. Star states include Andhra Pradesh, Chhatisgarh, Himachal Pradesh, Madhya Pradesh, Tamil Nadu, 
Rajasthan, and Uttarkhand. Column (5) includes districts in non-star states.  Column (6) presents the p-values of 
the Student's t-test of equality of means in Column (4) and (5). For the Student's t-test in column (3) and (6) 
standard errors are computed assuming correlation of individual observations over time within each district.
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Table 3: E�ect of NREGA on Labor Market Outcomes

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5)

Program X Dry 1.174*** -1.306* 0.281 -0.149 0.0473**
(0.298) (0.759) (0.544) (0.467) (0.0213)

Program X Rainy 0.460** 0.673 -0.652 -0.481 0.0287
(0.179) (0.790) (0.597) (0.546) (0.0240)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents results from a separate regression. All regressions include district and year-
quarter fixed effects. The sample is composed of all adults aged 18 to 60 interviewed from July 
2004 to June 2005 and from July 2007 to June 2008.  Private, unemployed, and not in the labor 
force are estimates of the percentage of total time spent working in private sector work (including 
domestic work), unemployed or not in the labor force. Log daily casual earnings is the log of 
earnings per day worked for people who report working in casual labor. Deflated earnings are 
deflated using the monthly, state-level price index for agricultural labourers from the Indian 
Labour Bureau. Program is a dummy variable equal to one for early districts during July 2007 to 
June 2008. Dry is a dummy variable equal to one for the first two quarters of the year. Rainy is a 
dummy variable equal to one for the second two quarters of the year. All estimates are computed 
using weights proportional to district population. District controls are listed in Table 1. District 
controls that do not vary over time are interacted with a dummy for 2007-08 (post-program). 
Worker controls include dummy variables for gender, age group, education levels, caste, religion 
and marital status. All estimates are computed using sampling weights. Standard errors in 
parentheses are adjusted for correlation of the errors at the district level. ***, **, and * indicate 
significance at the 1, 5, and 10% levels. 
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Table 4: E�ect of NREGA in States which implement

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Casual Daily 

Earnings
(1) (2) (3) (4) (5)

Program X Dry X Star States 3.132*** -3.071*** 0.108 -0.169 0.0898***
(0.682) (1.103) (0.725) (0.589) (0.0258)

Program X Rainy X Star States 0.368 0.782 -0.846 -0.305 0.0458
(0.228) (0.985) (0.765) (0.662) (0.0285)

Program X Dry X Other States 0.00622 -0.260 0.424 -0.171 0.0181
(0.168) (0.809) (0.608) (0.509) (0.0246)

Program X Rainy X Other States 0.0804 1.000 -0.496 -0.584 0.00869
(0.158) (0.851) (0.649) (0.563) (0.0267)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents the results of a separate regression. All regressions include district and year-
quarter fixed effects. The sample is composed of all adults aged 18 to 60  interviewed from July 
2004 to June 2005 and from July 2007 to June 2008. The unit of observation is a person. The 
outcomes are defined as in Table 3. Program is a dummy variable equal to one for early districts 
during July 2007 to June 2008.  Dry is a dummy variable equal to one for the first two quarters of 
the year. Rainy is a dummy variable equal to one for the second two quarters of the year. District 
controls are listed in Table 1. District controls that do not vary over time are interacted with a 
dummy for 2007-08 (post-program). Worker controls are listed in the notes of Table 3. Star states 
is a dummy variable equal to one for districts within star states. Other states is a dummy variable 
equal to one for districts that are not in star states. See Table 2 for a description of star states. All 
estimates are computed using sampling weights. Standard errors in parentheses are adjusted for 
correlation of the errors at the district level. ***, **, and * indicate significance at the 1, 5, and 
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Table 5: Placebo Treatment

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5)

Program X Dry -0.00116 -1.397** 0.702 0.697 0.00591
(0.100) (0.699) (0.520) (0.466) (0.0217)

Program X Rainy -0.103 -0.851 0.249 0.705* 0.0134
(0.0806) (0.625) (0.492) (0.425) (0.0220)

Observations 383,881 383,881 383,881 383,881 67,676
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents the results of a separate regression. All regressions include district and year-
quarter fixed effects. The sample is composed of all adults aged 18 to 60 interviewed from July 
1999 to June 2000 and from July 2004 to June 2005. The unit of observation is a person. The 
outcomes are defined as in Table 3. Program is a dummy variable equal to one for early districts 
during July 2004 to June 2005.  Dry is a dummy variable equal to one for the first two quarters of 
the year. Rainy is a dummy variable equal to one for the second two quarters of the year. District 
controls are listed in Table 1. District controls that do not vary over time are interacted with a 
dummy for 2005 (post-program). Worker controls are listed in the notes of Table 3. All estimates 
are computed using sampling weights. Standard errors in parentheses are adjusted for correlation 
of the errors at the district level. ***, **, and * indicate significance at the 1, 5, and 10% levels. 
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FOR ONLINE PUBLICATION ONLY

A Appendix

A.1 History of Public Works Programs in India

India has a long history of providing public works dating back to British rule. Three large-

scale public works programs deserve speci�c mention. First is the Maharashtra Employment

Guarantee Scheme passed in 1976 and still in force today. The NREGA is in part based on

the design of the Maharashtra EGS.

Second, the Sampoorn Grameen Rozgar Yojana (SGRY) started in 2001 with the purpose

of generating employment across India and was still active until 2008. The total allocation

to the SGRY was 35 billion Rupees per year from 2004-2008 (Afridi, 2008).

Finally, the National Food for Work Program was introduced as a pilot for the NREGA

in 150 of the phase one districts, with an allocation of 60 billion Rupees in �scal year 2005-06

(Afridi, 2008). As a comparison, during �scal years 2006-07 and 2007-08, the allocation for

the NREGA was 116 billion Rupees. Con�rming existing �eld observations that the National

Food for Work Program was poorly implemented and plagued with massive leakages Dreze

(2005), we �nd little evidence of an increase in public works during this pilot period.

A.2 Determinants of Government Employment Provision

The central government funds most of the expenditure for the NREGA (all of labor and 75%

of material expenditures). However, the responsibility of implementing the scheme is left to

the states and the lower administration levels (districts and village councils). In principle,

local o�cials are meant to respond to worker demand for work, but the process required to

provide work requires considerable administrative capacity: selecting public works projects,

applying for funds, opening the works, sanctioning expenditures, making payments to work-

ers and suppliers of materials etc. When the scheme started in each district, awareness

campaigns also had to be implemented by the administration, sometimes with the help of

civil society organizations. Depending on the administrative capacity of each state, NREGA

implementation was initially more or less successful.

During the period we study, which is immediately after the launch of the scheme, the

states of Andhra Pradesh, Chattisgarh, Himachal Pradesh, Madhya Pradesh, Rajasthan,

Tamil Nadu and Uttarakhand, which we call "star states" in the analysis provided signi�-
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cantly more employment than other states (see Figure 2. This was partially due to demand

for work in these states. However, very poor states such as Bihar, Jharkhand, Orissa, and

Uttar Pradesh where demand should be high saw little employment generation. In this sec-

ond group of states, lack of administrative capacity and rampant corruption hampered public

employment delivery, despite large potential demand (Khera, 2011; Dutta et al., 2012). In

the 2009-10 NSS employment survey, workers were asked whether they had, and whether

they desired NREGA employment. Using answers to these questions, Dutta et al. (2012)

con�rm that three years after the scheme started, demand for work is still more rationed in

the poorest states of India.

In order to investigate the sources of observed disparities in NREGA implementation

across states, we use NSS data to regress time spent on public works by rural adults in

2007-08 on the set of district controls presented in Table 1, and plot state-level averages of

the residuals in Figure A.1. The seven states we de�ned as star states all have higher public

employment provision than predicted by the model. This �nding is consistent with the view

that di�erences in public employment provision across states are due to supply factors (e.g.

political will or administrative capacity) rather than demand factors (e.g. poverty or labor

market conditions). The state which has lowest public employment provision compared to

the predicted value in Figure A.1 is Maharashtra, which had its own employment guarantee

since the 1970s and whose government was reluctant to implement NREGA.

A.3 Theoretical Appendix

A.3.1 Utility maximization

Each household has a utility function u(ci, li) over household consumption ci and leisure

li. We assume the function is increasing and concave in both arguments. Let Lsi denote

household total labor supply and Di denote household total labor demand. Household labor

supply Lsi has two components: family labor used for household production Lfi and wage

work supplied by household members to the market Loi . Household labor demand Di also

has two components: family labor Lfi and hired by the household Lhi . Households choose

Lfi , L
o
i ,L

h
i and ci to solve the following maximization problem:

max
ci,L

f
i ,L

o
i ,L

h
i

u(ci, T − Lfi − Loi )

s. t. ci = pWLoi + AiG(Lfi+L
h
i )−WLhi
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We further impose that the optimal labor quantities Lfi , L
o
i ,Lhi cannot be negative, and

both consumption and leisure must be positive (ci > 0 and T > Lfi − Loi ). We write the

Lagrangian:

L = u(ci, T − Lfi − Loi ) + λ(pWLoi + AiG(Lfi+L
h
i )−WLhi − ci)

The Kuhn Tucker conditions write

u′c − λ ≤ 0 and c(u′c − λ) = 0

−u′l + λpw ≤ 0 and Loi (u
′
l − λpw) = 0

−u′l + λAiG
′ ≤ 0 and Lfi (u

′
l − λAiG′) = 0

λ(AiG
′ −W ) ≤ 0 and Lhi (W − AiG′) = 0

However, we assume that ci > 0 hence the �rst condition simply yields: u′c = λ > 0. We can

rewrite the three other conditions using this equality:

pw ≤ u′l
u′c

and Loi (u
′
l − λpw) = 0

AiG
′ ≤ u′l

u′c
and Lfi (u

′
l − λAiG′) = 0

AiG
′ ≤ W and Lhi (W − AiG′) = 0

There are seven cases to consider depending on whether the optimal Lfi , L
o
i ,L

h
i are null.

Cases 1 Let us assume that Loi > 0, Lhi > 0 and Lfi > 0. Then we must have pw =
u′l
u′c

and W = AiG
′. However, we also need to have AiG

′ =
u′l
u′c
. Hence this case is only possible

if p = 1, i.e. households can be suppliers and buyers of labor at the same time if and only if

the labor market is without friction. In the general case with friction, households cannot be

on both sides of the market.

Case 2 we assume that Loi > 0, Lfi = 0 and Lhi = 0. Then we must have that pw =
u′l
u′c
,

AiG
′ ≤ u′l

u′c
and AiG

′ ≤ W . This case is unlikely. Households cannot not choose to supply

labor to the market without producing anything on their farm, because for any W one can

�nd a Lfi small enough so that the marginal productivity of labor will be higher than pW .

This is because we assumed that all households are able to produce (Ai > 0).

Case 3 we assume that L0
i = 0, Lfi = 0 and Lhi > 0. Then we must have that pw ≤ u′l

u′c
,

AiG
′ ≤ u′l

u′c
and AiG

′ = W . This case is also unlikely. Households will not optimally choose to
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hire workers without supplying any family labor (i.e. reduce their consumption and devote

all their time to leisure), because for any W one could �nd a Lfi small enough so that the

marginal rate of substitution of consumption to leisure will be higher than W .

Case 4 where L0
i = Lfi = Lhi = 0 is not optimal if Ai > 0.

Case 5 the household is net supplier of labor (L0
i > 0, Lfi > 0 and Lhi = 0). Then the

marginal productivity on the farm is equal to wage labor earnings, which is less than the

market wage (i.e.
u′l
u′c

= AiG
′ = pW ≤ W ) .

Case 6 the household is net buyer of labor (L0
i = 0, Lfi > 0 and Lhi > 0). Then the

marginal productivity on the farm is equal to the market wage (i.e.
u′l
u′c

= AiG
′ = W ≥ pW ).

Case 7: the household does not participate to the labor market (L0
i = 0, Lfi > 0 and

Lhi = 0). Then the marginal productivity on the farm is equal to the marginal rate of

substitution between consumption and leisure. It is lower than the market wage and higher

than labor market earnings (i.e.
u′l
u′c

= AiG
′ ∈ [pW,W ]).

If p < 1 only cases 5, 6 and 7 are possible; households are either labor suppliers, labor

buyers or they do not participate to the market. If p = 1, cases 1, 5 and 6 are possible and

case 7 contracts to a single point: households may be labor sellers, labor buyers, or both.

A.3.2 Productivity thresholds

For each value of the wage W , let us consider the value of the productivity factor Ai such

that labor supply and labor demand from household i are equal:

Lsi (W,AiG
′(D(W,Ai)) = Di(W,Ai)

Let us denote this value φ(W ). Since LsY ≤ 0 and DA(W,Ai) ≥ 0, φ(W ) exists and is unique.

Since LsW > 0 and DW (W,Ai) < 0, the function φ(W ) is strictly increasing in W .

Proposition 1: A household i is net labor buyer if and only if Ai > φ(W )

Proof: A household with Ai = φ(W ) therefore supplies and demands D(W,φ(W )) la-

bor. Since the marginal cost of hiring labor is W while the marginal value of working in

the labor market is piW < W , the household will always supply labor to its own pro-

duction function at least up to D(W,φ(W )). Therefore, households with Ai = φ(W ) are

neither net labor supplying nor net labor buying households. For Ai > φ(W ), we will have

D(W,Ai) > Ls(W,AiG
′(D(W,Ai))), so that the household will be a net labor buyer as long

as it can hire labor at W and as long as the marginal value of time is given by W as well.
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Since net labor buyers supply labor only to their own farm, this will be the case. Net labor

buyers will always face an e�ective marginal wage of W . Therefore, if Ai < φ(W ), then

D(W,Ai) < Ls(W,AiG
′(D(W,Ai))), so that households will not be net buyers of labor.

Proposition 2: A householdi is net labor supplier if and only if Ai < φ(pW ) < φ(W )

Proof: A household with Ai = D(pW, φ(pW )) will supply and demand Dw units of la-

bor but because pW < W we have D(pW, φ(pW )) < D(W,φ(W )) and φ(pW ) < φ(W ).

For a household with Ai < φ(pW ), we will have D(pW,Ai) < Ls(pW,AiG
′(D(pW,Ai))),

so that the household will be a net labor supplier. Net labor suppliers will always face

an e�ective marginal wage of piW . For a household with Ai > φ(pW ), we will have

D(piW,Ai) > Ls(pW,AiG
′(D(piW,Ai))), so that the household will not be a net labor

supplier.

Proposition 3: For Ai ∈ [φ(pW ), φ(W )], household i is neither net supplier or buyer

of labor.

Proof: This follows directly from the �rst two propositions. For Ai ∈ [φ(pW ), φ(W )],

labor supply and demand D will solve D = Ls(AiG
′(D), AiG(D)). Note that for Ai ∈

[φ(pW ), φ(W )], the labor supply and demand will satisfy AiG
′(D) ∈ [piW,W ].

Hence the three possible solutions to the utility maximization problem correspond to di�er-

ent values for the productivity factor Ai. The most productive households (e.g. those with

most land) are net labor buyers and the marginal productivity on their farm is the market

wage. The least productive households (e.g. those with little land) are net labor sellers and

the marginal productivity on their farm is equal to wage labor earnings pW . Households

with intermediary levels of productivity will not participate to the market (this last case

contracts to a single productivity level if p = 1.)

A.3.3 Compensating Variation Derivation

Let us �rst consider households with low productivity levels Ai < φ(pW ). The equation

equating expenditure to income writes

e(pW, ui) = πi(pW ) + pWT + (Wg − pW )Lgi + zi
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We derive the change in zi required to maintain the equality, and therefore maintain the

same utility level, following a change in Lg. We do this by di�erentiating Equation A.3.3

with respect to Lg:

de(pW, ui)

dLg
= pπ′i(pW )

dW

dLg
+ pT

dW

dLg
+ (Wg − pW )

dLgi
dLg
− pLgi

dW

dLg
+ dzi

By the envelope theorem de(pW,ui)
dW

= p(T − Lsi ) and π′i(pW ) = −Di. Using these results and

re-arranging yields:

−dzi = (Lsi − L
g
i −Di)pW

dW/W

dLg
+ (Wg − pW )dLgi

= Net Casual Labor Earnings × dW/W

dLg
+ (Wg − pW )dLgi

For households with high productivity levels Ai > φ(W ) the equation equating expenditures

to income writes:

e(W,ui) = πi(W ) +WT + (Wg −W )Lgi + zi

Using the same demonstration as before, but replacing p with 1, we �nd that:

−dzi = (Lsi − L
g
i −Di)W

dW/W

dLg
+ (Wg −W )dLgi

= Net Casual Labor Earnings × dW/W

dLg
+ (Wg −W )dLgi

Finally, for households with intermediary productivity levels Ai ∈ [φ(pW ), φ(W )], the

equation equating expenditures with revenues writes:

e(W̃i, ui) = πi(W̃i) + W̃iT + (Wg − W̃i)L
g
i + zi

where W̃i is the shadow wage which does not depend on W. The program only a�ects

households welfare through direct participation, and the compensating variation has the

simple form:

−dzi = (Wg − W̃i)dL
g
i

However, since these households do not buy or sell labor on the market, their net casual
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labor earnings are zero, and we can also write:

−dzi = Net Casual Labor Earnings × dW/W

dLg
+ (Wg − W̃i)dL

g
i

Which completes our demonstration.

A.3.4 Impact of Government Hiring on the labor market equilibrium

The market clearing condition imposes that labor supply of households with low productivity

and labor demand of households with high productivity are equal. It writes:

p

φ(pW )∫
A

[Lsi (pW )−Di(pW )− Lgi ]dAi =

A∫
φ(W )

[Di(W )− Lsi (W ) + Lgi ]dAi (4)

To determine the impact on wages of public sector hiring we need to di�erentiate the market

clearing condition with respect to Lg. We use Leibnitz integral rule which yields for the

left-hand side of equation 4:

dp
∫ φ(pW )

A
[Lsi (pW )−Di(pW )− Lgi ]dAi

dLg
= [Lsi (pW, φ(pW ))−Di(pW, φ(pW ))− Lgi ]φ′

dW

dLg

+p

φ(pW )∫
A

d[Lsi (pW )−Di(pW )− Lgi ]
dLg

dAi

By de�nition, net labor demand of households with productivity levels φ(pW ) is zero, so

that [Lsi (pW, φ(pW ))−Di(pW, φ(pW ))− Lgi ] = 0. Hence the �rst term is null.

A similar simpli�cation can be made for φ(W ), while di�erentiating the right-hand side

of equation 4. Hence the derivative of 4 with respect to Lg writes:

p

φ(pW )∫
A

[dLsi (pW )

dLg
− dDi(pW )

dLg
− dLgi
dLg

]
dAi =

A∫
φ(W )

[
dDi(W )

dLg
− dLgi
dLg
− dLsi (W )

dLg
]dAi (5)

Let us �rst consider households which are net labor suppliers (Ai < φ(pW )). Public hiring

a�ects labor supply through its e�ect on the equilibrium wage and through its e�ect on non-
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labor income. We decompose the derivative of Lsi with respect to Lg in two components:

dLsi (pW, yi)

dLg
=
dLsi (pW, yi)

dW
|yi
dW

dLg
+
dLsi (pW, yi)

dyi

dyi
dLg

where
dLs

i

dW
|yi is the derivative of household i's labor supply with respect to the wage

holding non-labor income �xed. The slutsky decomposition yields:

dLsi (pW, yi)

dW
|yi = p

dLsi
dW
|u +

dLsi
dyi

pLsi

where
dLs

i

dW
|u is the substitution e�ect, i.e. the partial derivative of labor supply with respect

to the wage holding utility constant. We have that:

dysi
dLg

= pπ′i(pW )
dW

dLg
+ (Wg − pW )

dLgi
dLg
− pLgi

dW

dLg

= −pDi
dW

dLg
+ (Wg − pW )

dLgi
dLg
− pdW

dLg
Lgi

where the second equality follows from the envelope theorem for the pro�t function π′i(W ) =

−Di.

Hence, for households with Ai < φ(pW ), we can rewrite the derivative of the labor supply

with respect to public hiring as:

dLsi (W, yi)

dLg
= p[

dLsi
dW
|u +

dLsi
dyi

(Lsi −Di − Lgi )]
dW

dLg
+
dLsi
dyi

(Wg − pW )
dLgi
dLg

Public hiring a�ects labor demand only through its e�ect on the equilibrium wage.

Hence the derivative of the labor demand with respect to public hiring writes: dDi(pW )
dLg =

pD′i(pW ) dW
dLg

Hence, the impact of public sector hiring on the net labor supply of households with
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Ai < φ(pW ) is given by the following expression:

p

φ(pW )∫
A

[
dLsi (pW )

dLg
− dDi(pW )

dLg
− dLgi
dLg

]dAi = p2
φ(pW )∫
A

[
dLsi
dW
|u +

dLsi
dyi

(Lsi −Di − Lgi )]
dW

dLg
dAi

+ p

φ(pW )∫
A

dLsi
dyi

(Wg − pW )
dLgi
dLg

dAi

− p2
φ(pW )∫
A

D′i(pW )
dW

dLg
dAi − p

φ(pW )∫
A

dLgi
dLg

dAi (6)

Using similar arguments, we can write the impact of public sector hiring on the net labor

demand of households with Ai > φ(W ) as:

A∫
φ(W )

[
dDi(W )

dLg
+
dLgi
dLg
− dLsi (W )

dLg
]dAi = −

A∫
φ(W )

[
dLsi
dW
|u +

dLsi
dyi

(Lsi −Di − Lgi )]
dW

dLg
dAi

−
A∫

φ(W )

dLsi
dyi

(Wg −W )
dLgi
dLg

dAi

+

A∫
φ(W )

D′i(W )
dW

dLg
dAi +

A∫
φ(W )

dLgi
dLg

dAi (7)

Plugging equations 6 and 7 into 5 and re-arranging yields:

dW

dLg
=

E1 − E2

−E3 + E4

(8)

Where:

E1 = p

φ(pW )∫
A

dLgi
dLg

dAi +

A∫
φ(W )

dLgi
dLg

dAi

is the direct crowding out e�ect of public employment on wage labor (for the poorest house-
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holds) and self-employment (for the richest households), E1 > 0

E2 = p

φ(pW )∫
A

[
dLsi
dyi

(Wg − pW )]
dLgi
dLg

dAi +

A∫
φ(W )

[
dLsi
dyi

(Wg −W )]
dLgi
dLg

dAi

is the e�ect on aggregate labor supply through non-labor income E2 < 0. Hence E1 − E2 is

positive as long as the income e�ect is not positive and large.

E3 = p2
φ(pW )∫
A

D′(pW )dAi +

A∫
φ(W )

D′(W )dAi

is the e�ect on aggregate labor demand through a change in the wage, E3 < 0.

E4 = p2
φ(pW )∫
A

[
dLsi
dW
|u +

dLsi
dyi

(Lsi −Di − Lgi )]dAi +

A∫
φ(W )

[
dLsi
dW
|u +

dLsi
dyi

(Lsi −Di − Lgi )]dAi

is the e�ect on aggregate labor supply through a change in the wage. If leisure is not a

luxury good, an increase in the wage should increase labor supply, so that E4 > 0. Hence

government hiring increases the equilibrium wage because E1−E2 > 0, −E3 > 0 and E4 > 0.

The e�ect is stronger when demand is less elastic (small −E3), when labor supply is less

elastic to the wage (small E4).

Assuming that p = 1 we obtain the following

dW

dLg
=

∫ A
A

dLg
i

dLg
dAi −

∫ A
A

[
dLs

i

dyi
(Wg −W )]

dLg
i

dLg
dAi

−
∫ A
A
D′(W )dAi +

∫ A
A

[
dLs

i

dW
|u +

dLs
i

dyi
(Lsi −Di − Lgi )]dAi

From this equation, we see that an increase in government hiring will raise wages as long

as the income e�ect is not positive and larger than one (
∫ A
A
Lsyi(Wg − W )dAi < 1). The

increase will be larger if demand is less elastic (small −D′(W )) or if labor supply is less

elastic (small
∫ A
A

(dLs
i

dW
|u +

dLs
i

dyi
(Lsi − L

g
i −Di)

)
dAi).

In the special case where p = 1, the model indicates how empirical estimates of the

impact of government hiring on employment and wages can be used to compute the labor

demand elasticity. In a frictionless labor market, the change in aggregate private sector

employment can be written as: dD
dLg = D′(W ) dW

dLg , where D
′(W ) =

∫ A
A
D′i(W )dAi. Hence, in
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this framework, we can compute the elasticity of labor demand as the ratio of the percentage

change in the wage divided by the percentage change in employment.

A.3.5 Impact on Household Consumption

In this section, we derive the impact of a workfare program on household consumption. The

impact on consumption is di�erent from the impact on welfare because it also includes labor

supply e�ects. Household consumption is given by:

ci = πi(W̃i) + W̃iL
s
i (W̃i, yi) + (Wg − W̃i)L

g
i (9)

Assuming a small change in Lg ({Lgi }), we totally di�erentiate 9 to obtain:

dci
dLg

= (Wg − W̃i)
dLgi
dLg

+ W̃iL
s
yi(Wg − W̃i)

dLgi
dLg

+ (Lsi −Di − Lgi )
dW

dLg

+ W̃i

[dLsi
dW
|u + Lsyi(L

s
i + T − Lgi −Di)

]dW
dLg

The �rst term is the income gain due to participation in public works. The impact of this

increase in income on labor supply is captured by the second term. It is negative if leisure is

a normal good. Together, these �rst two terms yield the increase in consumption that would

be observed by matching participants and non-participants in program areas.

The two last terms express the �indirect bene�t�, i.e. income gains accruing to households

through equilibrium e�ects. The third term is the change in income due to the equilibrium

change in the wage (holding labor supply constant). The last term captures the labor supply

response due to the change in income from the equilibrium change in the wage. It is composed

of a positive substitution e�ect and an income e�ect, which could be negative for households

that are net buyers of labor.

A.3.6 Imperfect Competition

We assume that the marginal productivity of labor is equal to the wage rate. Some have

noted the presence of market power on the part of employers Binswanger and Rosenzweig

(1984). If employers have market power then government hiring may actually increase private
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sector wages and employment. We refer the interested reader to Basu et al. (2009), who

provide a full analysis. Here, we sketch the main intuition and discuss the implications

for the interpretation of the empirical results. A monopsonistic employer with production

function F (L) facing an inverse labor supply curve W (L) sets the wage and employment

such that:

F ′(L∗) = W (L∗) +W ′(L∗)L∗ (10)

This is the well-known result that the marginal productivity of labor will be above the wage

rate if employers exercise their market power. The extent of the distortion depends on the

slope of the labor supply curve (W ′(L)). If the selection rule used by the government to hire

workers under the workfare program shifts W ′(·) down (makes labor supply more elastic),

then all things equal, L∗ must increase to maintain the equality in Equation 10. Since the

workfare program also reduces the available workforce, the net e�ect on private sector work

is ambiguous.

For the present analysis, the important issue is whether, given the rise in wages due to

the program, Equation 2 still captures the welfare impact of the program under imperfect

competition. For labor suppliers, the welfare impact is the same. For labor buyers, however,

Equation 2 no longer correctly captures the welfare impact of the program since the welfare

impact now depends on how the inverse labor supply function changes, which in turn will

be a function of the particular rationing rule used by the government.

A.4 Data Appendix

A.4.1 National Sample Survey Organisation: Employment Surveys

Sample: The main data source used in this paper is the National Sample Survey rounds 55,

61, 64 and 66. These surveys are conducted on an irregular basis roughly every two years.

They are �thick� rounds, with a sample size of roughly 70 thousand rural households.24 The

surveys are strati�ed by urban and rural areas of each district. The survey is conducted from

July to June, and in each district, surveying is divided into four sub-rounds each lasting three

months. Although the sample is not technically strati�ed by sub-round, the NSSO states

that it attempts to distribute the number of households surveyed evenly within each district

sub-round.

24Two additional Rounds 60 and 62, have been conducted which we do not use in the analysis, because
they are �thin� rounds, with roughly 35 thousand rural households.
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Table A.1 presents evidence on how the sample is distributed throughout the years in

practice. For employment outcomes, a district is missing in a given quarter if no household

was interviewed. From Table A.1 we see that in 1999-00, between 16 and 20 districts were

missing per quarter, which is due to two separate issues. First, �ve districts were not at all

surveyed, second, despite NSSO e�ort to distribute interviews in a given district during the

whole year a few districts have been surveyed in some quarters only. This methodological

issue was �xed in the later rounds, as can be seen in Table A.1. In 2004-05 and 2007-08,

which are the years we use in our main speci�cation, we have observations for almost all 497

district-quarters but one or two. In 2009-10, four districts are missing because they could

not be matched unambiguously with 2007-08.

For casual wages, a district is missing in a given quarter if no household was surveyed or

if no prime-age adult reported doing casual work in the past week. As a result the proportion

of missing observations is larger for wages than for the employment variables. The fraction

of missing observations is as high as seven percent for the �rst quarters of the survey year

1999-00, but not more than four percent for the years 2004-05 and 2007-08. One might

worry that by reducing private employment the program may increase the probability that

a district is missing in a given quarter. However, this does not seem to be a major concern

given that the fraction of early districts among non-missing observations is constant across

quarters.

Outcomes: Our main outcomes are individual measures of employment and wages, which

are constructed as follows. The NSS Employment Survey includes detailed questions about

the daily activities for all persons over the age of four in surveyed households for the most

recent seven days. We compute for each person the fraction of days in the past seven days

spent in each of four mutually exclusive activities: non-government work, public works, not

in the labor force, and unemployed. Individuals who worked in casual labor over the past

seven days are asked their total earnings from casual labor. For each individual we compute

average earnings per day worked in casual labor. We perform a similar computation using

days spent doing salaried labor to construct our measure of daily salaried earnings.

Individual controls For the purpose of our analysis of the impact of NREGA on casual

labor earnings, we include workers characteristics as controls in our main speci�cation. In-

dividual controls include dummy variables for age groups (31-40, 41-50, 51-60), education

levels (below primary, primary, middle, secondary or higher), caste (ST, SC, OBC), religion

(Muslim, Other), gender (Female) and marital status (Married). The omitted category is
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single, illiterate, hindu males, aged 18-30 and belonging to general caste.

A.4.2 District Controls

Table 1 provides a list of district controls and their sources. Here, we describe how the

district controls are constructed.

Census A number of the district controls are computed from the primary census abstract

of 2001. In all cases, we use information for rural areas only, which we then aggregate to the

district level. We compute �fraction of scheduled tribes� and �fraction of scheduled castes� by

dividing by total population. �Population density� is obtained by dividing total population

by total area. �Literacy rate,� �male labor force participation ratio� and �female labor force

participation ratio� are respectively computed by dividing the number of literate persons,

of male workers and of female workers respectively by total population aged six and over.

�Fraction of labor force in agriculture� is obtained by dividing the number of rural individuals

who report working as cultivators or agricultural laborers as their main or secondary occu-

pation by the total number of workers. Finally, we use information from the census village

directory to compute �irrigated cultivable land per capita� and �non irrigated cultivable land

per capita.�

Agricultural Productivity: We compute agricultural productivity per worker for each

agricultural year in each district using two sources of data. First, the Ministry of Agri-

culture publishes yearly data on output and harvest prices of 36 grain and cash crops in

every district 25. This allows us to compute the value of agricultural production for every

district-year. Second, we use National Sample Survey data to estimate the number of (self

employed and wage) workers active in agriculture for every district-year. NSS survey years

match exactly the Ministry of Agriculture de�nition of agricultural years (July-June). Hence,

dividing output value by the number of agricultural works yields agricultural productivity

per worker for each NSS survey year.

Rainfall To control for monthly rainfall at the district level over the period 1999-2010, we

use data from the Tropical Rainfall Measuring Mission (TRMM), which is a joint mission

between NASA and the Japan Aerospace Exploration Agency (JAXA). The TRMM Muli-

Satellite Precipitation Analysis provides rainfall data for every three hours at a resolution

25Data is available at http://eands.dacnet.nic.in/.
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of 0.25 by 0.25 degree grid-cell size. Rainfall measurement are made by satellite and cali-

brated using monthly rain gauge analysis data from the Global Precipitation Climatology

Project (GPCP).26 The data is then scaled up to obtain mean monthly rainfall for every cell.

The match between TRMM data and Indian districts was made by Thiemo Fetzer (Fetzer,

2013). On average there are 6 grid-cells per district. We compute cumulative rainfall in each

district-month as the sum of rainfall since July 1st, and express it as percentage deviation

from the 1998-2011 mean for this district-month.

Other district controls "Pre-election year" is a dummy for whether state assembly or

Panchayati Raj (local) elections are to be held in the following year. To construct this

control, we used online reports from the Electoral Commission of India27 and from the State

Election Commissions of each states. �PMGSY Road Construction� is an estimate of the

number of km of road built under the national rural roads construction program Pradhan

Mantri Gram Sadak Yozna. We use online reports on each road built under the scheme to

compute for each district quarter the average number of km completed per quarter over the

last �ve quarters.28

A.4.3 ARIS-REDS Household Hired Labor

For our calibration exercise in Section 6, we require estimates of labor hired by households,

information which is not available in the NSS Employment Surveys. For this reason, we

use the ARIS-REDS survey data, collected by the National Council of Applied Economic

Research (Delhi) in 1999-00.29 The ARIS-REDS survey covers a nationally representative

rural sample of Indian households, with detailed information on household expenditures, on

household members' employment income and on operating costs of households' farm and

non-farm businesses.

For each household, we sum all income earned by prime-age household members from

casual labor and total labor costs for farm and non-farm businesses. For each consumption

quintile, we then compute the total casual payments as a fraction of total casual earnings for

all households across all quintiles. Let eqt and p
q
t denote casual earnings and casual payments,

respectively, for households in consumption quintile q at date t. We compute for each quintile

f q2000 =
pq2000∑
q e

q
2000

. The resulting fractions are reported in the sixth row of Table 6. As expected

26Data is available at http://trmm.gsfc.nasa.gov/
27http://www.eci.nic.in/ecimain1/index.aspx
28http://pmgsy.nic.in/
29http://adfdell.pstc.brown.edu/arisredsdata/readme.txt

57



the fraction of total casual earnings paid by households in the lower quintiles is much lower

than the fraction paid by households in the upper quintiles. These fractions sum to less

than one across consumption quintiles because some casual labor earnings come from urban

employers.

In order to estimate casual labor payments by households of each consumption quintile

in 2004-05, we make the assumption that casual labor payments made by each consumption

quintile as a fraction of total earnings is constant over time, i.e. f q2005 = f q2000. We then

multiply total casual labor earnings from the NSS Employment Survey by the fractions in

row six for each consumption quintile to obtain our estimate of casual labor payments by

quintile: p̂q2005 = f q2005 ∗
∑

q e
q
2005. Our estimates are shown in row seven of Table 6

A.4.4 Weighting

The NSSO provides sample weights which ensure that the weighted mean of each outcome

is an unbiased estimate of the average of the outcome for the population National Sample

Survey O�ce (2010). For the purpose of our analysis, we re-weight observations so that

the sum of all weights within each district is constant over time and proportional to the

rural population of the district as estimated from the NSS Employment Surveys. When

we use NSSO survey weights without reweighting, the results are almost identical to our

main results (results not shown). As compared to using ordinary least squares without any

weighting, our approach allows us to make sure that our results are not driven by smaller

districts with few observations for casual wages. More concretely, let wi be the weight for

person i, and let Ωdt be the set of all persons surveyed in district d at time t. Then the new

weight for person i is wi × ωd∑
i∈Ωdt

wi
where ωd is the population weight for district d.

We also present estimates of our main speci�cation without using any sample weight (see

A.3). The estimated wage e�ects increase, which suggests that smaller districts experience

larger changes in wages. Perhaps surprisingly, standard errors decrease slightly as compared

to the estimation with sample weights. Whether the use of weights enhances precision

or not depends on the variance structure of the error term (Solon et al., 2013). On the

one hand, smaller districts have fewer observations per quarter, hence taking into account

di�erences in sample size across districts may increase precision. On the other hand, since

labor market outcomes are highly correlated within districts, the district error may represent

a large share of the variance of the error term, and the use of weights may harm precision.

Following Solon et al. (2013) suggestion, we implemented a Breush Pagan test by regressing

the squared error term on the inverse of the district sample size. The test con�rms both the
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presence of heteroskedasticity, and the importance of the district error in the variance of the

error term, with the latter e�ect dominating the former.

A.4.5 Construction of District Panel

During the period covered by the analysis, some districts split while other districts merged

together. Constructing the district panel requires matching districts both over time as well

as across data sets. Fortunately, the NSS district de�nitions for surveying stayed constant

from 2004 to 2008, despite splits and merges. We therefore use the NSS district de�nitions

from this period and match other data sets to these. We �rst match the NSS 1999-2000

to 2004-05 and 2007-08 data. All districts could be matched between the two surveys but

for �ve districts missing in 1999-00. However about �fty of them had split between 1999-00

and 2005-05. We adopt the following procedure If a given district has split in x districts

(x is most of the time equal to two, sometimes three), we duplicate observations from that

district x times so that one set of observation can be matched with one of the newly created

district. In order to keep the total weight of that district constant, we divide each weight

in the 1999-00 data-set by x. We next match the NSS 2009-10 data: all districts but four

could be matched unambiguously with districts in NSS 2004-05 and 2007-08 data. In two

occurrences, two districts were split to create a third one, making it impossible to match

observations from the new districts to a speci�c district. We remove these districts from

2009-10 data. We further match NSS data with Census 2001 survey, NREGA phases 2005,

ARIS-REDS 1999-00 survey, PMGSY road construction data from 2001 to 2010

A.5 Alternative speci�cations

Berg et al. (2013) and Zimmermann (2013) estimate the labor market impact of the program

using empirical strategies di�erent from ours. In this section, we describe how we apply their

strategy to our data and compare the resulting estimates with their �ndings.

A.5.1 Berg et al. (2013)

Berg et al. (2013), use monthly wage time series over the whole 2000-2010 period to estimate

the e�ect of the program using two alternative speci�cations. The �rst is a di�erence-in-

di�erences strategy similar to ours. The second is a trend break model. In order to compare

our results with Berg et al. (2013), we use all four survey years (from 1999-00 to 2009-10)

from the NSS data and estimate the e�ect of the program using two di�erent speci�cations.

59



First, We estimate our main speci�cation without controls and using the four rounds:

Yidt = βTdt + ηt + µd + εidt

This speci�cation estimates the program impact using two di�erence-in-di�erences. The

impact of the program is identi�ed based on the di�erence between changes in outcomes in

early districts and in late districts between 2004-05 and 2007-08 and the di�erence between

changes in outcomes in late districts and in early districts between 2007-08 and 2009-10.

The results are presented in the �rst column of table A.8. We �nd a signi�cant increase in

time spent on public works, a signi�cant decrease in private sector work, and a signi�cant

3.4% increase in casual wages. Findings from this speci�cation are consistent with our main

results and our estimates for the 2007-08 to 2009-10 period presented in Table A.5.

Second, we rede�ne the treatment variable Tdt as the number of months since the program

was launched in district d. We also include a district speci�c time trend δd and estimate the

following equation:

Yidt = βTdt + δdt+ ηt + µd + εidt

This speci�cation identi�es the program e�ect as a break in trends when the program was

launched. As Table A.8 shows, the estimates provide strong evidence that the program

had a positive e�ect on time spent in public works, a negative e�ect on time spent in pri-

vate sector employment, and a positive e�ect on casual wages, with an estimated e�ect of

0.27% per month. Adding district-speci�c trends changes the magnitude of the coe�cients

but not their sign or their statistical signi�cance. These results are close to Berg et al. (2013).

A.5.2 Zimmermann (2013)

Zimmermann (2013) uses a regression discontinuity design to identify the e�ect of the pro-

gram on employment and wages. The selection of early districts was based on a backwardness

ranking made by the Planning Commission for an earlier program (Planning Commission,

2003). Hence within each state, and taking the number of early districts as given, one can

use each district's backwardness rank to predict its assignment to early or late phases. One

can then estimate the e�ect of the program by comparing 2007-08 outcomes between early

and late phase districts close to the cut-o�, controlling for the backwardness rank.

The identifying assumption of this regression discontinuity framework is that absent the

program, districts to the left and the right of the cut-o� would have had the same labor

market outcomes. An important threat to this strategy is manipulation of the assignment
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of districts to early and late phases. In this context, it seems unlikely that the backward-

ness index itself was manipulated, since it was de�ned years before NREGA was invented.

However, the number of early districts in each state (and hence the state level cut-o�) was

the result of an intense political bargain, and is unlikely to be exogenous (Gupta, 2006). We

hence have some concerns regarding the validity of the regression discontinuity approach.

We �rst assess whether the algorithm accurately predicts whether a district is in early

or late phases. Since the ranking is only available for 17 states, Himachal Pradesh and

Uttarkhand are excluded from the sample. The prediction is accurate for 95% phase 1

districts, 81% of phase 2 districts and 84% of phase 3 districts. This suggests that the

Planning Commission ranking was not perfectly followed for the assignment of districts

into implementation phases. Political considerations likely explain why there was imperfect

compliance, and why the regression discontinuity design is �fuzzy� (Gupta, 2006).

We follow Zimmermann (2013) and control for the outcome level at baseline (in 2004-05)

Y 05
ds and state �xed e�ects µs in the speci�cation. We also restrict the sample to phase

two and three districts (phase 1 districts are far from the cut-o�) and estimate di�erent

polynomials of the district rank Rds to the left and to the right of the state speci�c cuto�

κs. If Y
08
ids denotes the outcome for individual i in district d and state s in year 2007-08, the

estimating equation is:

Y 08
ids = βTds + δ0Y

05
ds + δ1Rds ∗ (Rds > κs) + δ2Rds ∗ (Rds < κs)

+ δ3(Rds)
2 ∗ (Rds > κs) + δ4(Rds)

2 ∗ (Rds < κs) + µs + εid

Table A.9 presents the estimated program impact using this approach. We focus here

on the �exible speci�cation, which allows for a di�erent slope to the right and to the left

of the cuto�, which is Zimmermann (2013)'s preferred speci�cation. We �nd a positive but

insigni�cant e�ect of the program on time spent on public works (0.51 and 0.35 percentage

points for the linear and quadratic speci�cation respectively), a negative but insigni�cant

e�ect on time spent doing private sector work (-0.8 and -1.5 percentage points), and positive

e�ects on private sector wages (6 and 11%). These estimates are reasonably close to those

of our preferred speci�cation, and never signi�cantly di�erent from them. The estimation is

however very noisy, and none of these estimates is signi�cant.
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Figure A.1: Unexplained heterogeneity in employment provision across States
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Source: National Sample Survey (NSS) 2007-2008.
The sample is composed of all rural adults in early phase districts.
We compute state-level averages of residuals from a regression of time spent on public works 
on district controls presented in Table 1. All estimates are computed using sample weights. 
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Table A.1: Balance of District Panel

Q3 Q4 Q1 Q2
Jul-Sep Oct-Dec Jan-Mar Apr-Jun

(1) (2) (3) (4)
Employment Variables

1999-00 478 478 483 482
2004-05 497 496 494 495
2007-08 496 497 495 497
2009-10 495 495 494 495

Casual Wages
1999-00 462 465 474 473
2004-05 478 480 479 481
2007-08 480 483 487 483
2009-10 475 475 476 479

Each cell shows the number of districts with non-missing 
observations per district-quarter. There are 497 districts in the 
panel. The NSS attempts to survey an equal number of villages in 
each districts during each quarter. During thick rounds (1999-
2000, 2004-05, 2007-08, 2009-10), this is generally possible. 
Casual wages are only available for district-quarters during which 
at least one respondent reports working in casual labor. Five 
districts were not surveyed in 1999-2000.
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Table A.2: Main Speci�cation estimated without controls

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5) (6)

Program X Dry 0.964*** -1.947*** 1.623*** -0.640* 0.0353* 0.0460**
(0.246) (0.640) (0.452) (0.369) (0.0197) (0.0232)

Program X Rainy 0.206*** -0.00801 0.653 -0.851** 0.00496 0.0215
(0.0768) (0.586) (0.455) (0.391) (0.0198) (0.0260)

Observations 356,636 356,636 356,636 356,636 64,167 64,167
District Controls No No No No No Yes
Worker Controls No No No No No No

Each column presents the results of a separate regression. All regressions include district and year-
quarter fixed effects. In columns 1 through 5, the sample is composed of all adults aged 18 to 60  
interviewed from July 2004 to June 2005 and from July 2007 to June 2008. The unit of 
observation is a person. The outcomes are defined as in Table 3. Program is a dummy variable 
equal to one for early districts during July 2007 to June 2008.  Dry is a dummy variable equal to 
one for the first two quarters of the year. Rainy is a dummy variable equal to one for the second 
two quarters of the year. District controls are listed in Table 1. District controls that do not vary 
over time are interacted with a dummy for 2007-08 (post-program). Worker controls are listed in 
the notes of Table 3. All estimates are computed using sampling weights. Standard errors in 
parentheses are adjusted for correlation of the errors at the district level. ***, **, and * indicate 
significance at the 1, 5, and 10% levels. 
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Table A.3: Main Speci�cation estimated without Sample Weights

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings

(1) (2) (3) (4) (5)

Program X Dry 1.110*** -1.402** 0.449 -0.157 0.0679***
(0.254) (0.639) (0.470) (0.376) (0.0207)

Program X Rainy 0.466*** 0.265 -0.206 -0.526 0.0563**
(0.159) (0.624) (0.496) (0.371) (0.0219)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents the results of a separate regression. All regressions include district 
and year-quarter fixed effects. In columns 1 through 5, the sample is composed of all 
adults aged 18 to 60  interviewed from July 2004 to June 2005 and from July 2007 to June 
2008. The unit of observation is a person. The outcomes are defined as in Table 3. 
Program is a dummy variable equal to one for early districts during July 2007 to June 
2008.  Dry is a dummy variable equal to one for the first two quarters of the year. Rainy is 
a dummy variable equal to one for the second two quarters of the year. District controls 
are listed in Table 1. District controls that do not vary over time are interacted with a 
dummy for 2007-08 (post-program). Worker controls are listed in the notes of Table 3.  All 
estimates are computed without sampling weights. Standard errors in parentheses are 
adjusted for correlation of the errors at the district level. ***, **, and * indicate 
significance at the 1, 5, and 10% levels. 
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Table A.4: Main Speci�cation controlling for changes in outcomes between 1999-00 and
2004-05

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5)

Program X Dry 1.163*** -1.666** 0.329 0.235 0.0543**
(0.297) (0.731) (0.505) (0.443) (0.0210)

Program X Rainy 0.457*** 0.274 -0.630 -0.0305 0.0386
(0.174) (0.740) (0.548) (0.536) (0.0235)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents the results of a separate regression. All regressions include district and 
year-quarter fixed effects. Each regression also includes the change in average outcome in 
the district between 1999-00 and 2004-05. The sample is composed of all adults aged 18 to 
60  interviewed from July 2004 to June 2005 and from July 2007 to June 2008. The 
outcomes are defined as in Table 3. Program is a dummy variable equal to one for early 
districts during July 2007 to June 2008.  Dry is a dummy variable equal to one for the first 
two quarters of the year. Rainy is a dummy variable equal to one for the second two 
quarters of the year. District controls are listed in Table 1. District controls that do not vary 
over time are interacted with a dummy for 2007-08 (post-program). Worker controls are 
listed in the notes of Table 3. All estimates are computed using sampling weights. Standard 
errors in parentheses are adjusted for correlation of the errors at the district level. ***, **, 
and * indicate significance at the 1, 5, and 10% levels. 
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Table A.5: Changes in outcomes in late relative to early phase districts between 2007-08 and
2009-10, when the program is extended to late phase districts

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5)

Program 0.00569*** -0.0106** 0.00838** -0.00297 0.0340**
(0.00139) (0.00488) (0.00362) (0.00299) (0.0171)

Program X Dry 0.00948*** -0.0203*** 0.0132*** -0.00191 0.0489**
(0.00247) (0.00612) (0.00412) (0.00344) (0.0191)

Program X Rainy 0.00190** -0.000908 0.00353 -0.00403 0.0191
(0.000741) (0.00547) (0.00409) (0.00396) (0.0190)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls No No No No No
Worker Controls No No No No No

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5)

Program 0.00804*** -0.00710 -0.00101 0.000695 0.0496**
(0.00215) (0.00662) (0.00482) (0.00435) (0.0202)

Program X Dry 0.0114*** -0.0163** 0.00349 0.00201 0.0568***
(0.00291) (0.00734) (0.00504) (0.00448) (0.0207)

Program X Rainy 0.00425** 0.00336 -0.00612 -0.000810 0.0412*
(0.00172) (0.00747) (0.00551) (0.00541) (0.0232)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents the results of a separate regression. All regressions include district and year-quarter 
fixed effects. Each regression includes 1999-00 to 2004-05 changes in outcome in each district. The sample is 
composed of all adults aged 18 to 60  interviewed from July 2004 to June 2005 and from July 2007 to June 
2008. The outcomes are defined as in Table 4 and 5. Program is a dummy variable equal to one for early 
districts during July 2007 to June 2008.  Dry is a dummy variable equal to one for the first two quarters of the 
year. Rainy is a dummy variable equal to one for the second two quarters of the year. District controls are 
listed in Table 1. District controls that do not vary over time are interacted with a dummy for 2007-08 (post-
program). Worker controls are listed in the notes of Table 5. Star states is a dummy variable equal to one for 
districts within star states. Other states is a dummy variable equal to one for districts that are not in star 
states. See Table 2 for a description of star states. All estimates are computed without sampling weights. 
Standard errors in parentheses are adjusted for correlation of the errors at the district level. ***, **, and * 
indicate significance at the 1, 5, and 10% levels. 
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Table A.6: Main Speci�cation controlling for state speci�c time e�ects

Public Private Unemployed Not in Labor 
Force

Log Deflated 
Daily Casual 

Earnings
(1) (2) (3) (4) (5)

Program X Dry 1.083*** -1.864** 0.833 -0.0520 0.0424**
(0.285) (0.743) (0.544) (0.465) (0.0198)

Program X Rainy 0.333 0.170 -0.127 -0.376 0.0101
(0.208) (0.785) (0.581) (0.531) (0.0224)

Observations 356,636 356,636 356,636 356,636 64,167
District Controls Yes Yes Yes Yes Yes
Worker Controls No No No No Yes

Each column presents the results of a separate regression. All regressions include district 
and year-quarter fixed effects, as well as a dummy for each state interacted with a 
dummy for 2007-08.B41  The sample is composed of all adults aged 18 to 60  interviewed 
from July 2004 to June 2005 and from July 2007 to June 2008. The outcomes are defined 
as in Table 3. Program is a dummy variable equal to one for early districts during July 
2007 to June 2008.  Dry is a dummy variable equal to one for the first two quarters of the 
year. Rainy is a dummy variable equal to one for the second two quarters of the year. 
District controls are listed in Table 1. District controls that do not vary over time are 
interacted with a dummy for 2007-08 (post-program). Worker controls are listed in the 
notes of Table 3. All estimates are computed using sampling weights. Standard errors in 
parentheses are adjusted for correlation of the errors at the district level. ***, **, and * 
indicate significance at the 1, 5, and 10% levels. 
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Table A.7: Program e�ect on wages for men and women

Whole sample Male Workers Female Workers
(1) (2) (3)

Program 0.0202 0.0177 0.0481***
(0.0127) (0.0184) (0.0152)

Program X Dry 0.0353** 0.0321** 0.0630***
(0.0151) (0.0151) (0.0235)

Program X Rainy 0.00496 0.00285 0.0347
(0.0152) (0.0153) (0.0225)

Observations 44,278 19,889 64,167
District Controls No No No
Workers Controls No No No

Whole sample Male Workers Female Workers
(4) (5) (6)

Program 0.0403*** 0.0421** 0.0292
(0.0166) (0.0221) (0.0201)

Program X Dry 0.0488*** 0.0516*** 0.0381
(0.0162) (0.0177) (0.0250)

Program X Rainy 0.0304 0.0313 0.0186
(0.0187) (0.0199) (0.0277)

Observations 44,278 19,889 19,889
District Controls Yes Yes Yes
Workers Controls Yes Yes Yes

Log Deflated Casual Wages

Each column presents results from a separate regression. All regressions 
include district and year-quarter fixed effects. The sample is composed of all 
adults aged 18 to 60 interviewed from July 2004 to June 2005 and from July 
2007 to June 2008.  Program is a dummy variable equal to one for early 
districts during July 2007 to June 2008. Dry is a dummy variable equal to 
one for the first two quarters of the year. Rainy is a dummy variable equal 
to one for the second two quarters of the year. District controls are listed in 
Table 1. District controls that do not vary over time are interacted with a 
dummy for 2007-08 (post-program). All estimates are computed using 
sampling weights. Standard errors in parentheses are adjusted for 
correlation of the errors at the district level. ***, **, and * indicate 
significance at the 1, 5, and 10% levels. 
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Table A.8: Trend break speci�cation

(1) (2) (3)

Program 0.00425***
(0.00133)

Months in the Program 0.000126*** 6.75e-05***
(2.39e-05) (2.21e-05)

Observations 692,651 692,651 692,651
District Trends No No Yes

(1) (2) (3)

Program -0.00973**
(0.00421)

Months in the Program -0.000168*** -0.000148***
(4.81e-05) (4.34e-05)

Observations 692,651 692,651 692,651
District Trends No No Yes

(1) (2) (3)

Program 0.0363**
(0.0141)

Months in the Program 0.00352*** 0.00268***
-0.000136 -0.000115

Observations 125,339 125,339 125,339
District Trends No No Yes

PUBLIC WORKS

Private Sector Work

Log Deflated Casual Wages

Each column presents results from a separate regression. All regressions 
include district and year-quarter fixed effects. The sample is composed of all 
adults aged 18 to 60 interviewed from July 1999 to June 2000, from July 2004 
to June 2005,  from July 2007 to June 2008 and from July 2009 to June 2010.  
Program is a dummy variable equal to one for early districts during July 2007 
to June 2010 and for late districts during July 2009 to June 2010. "Months in 
the Program" is equal to the number of months since  NREGA was launched, 
i.e. February 2006, April 2007 and April 2008 for districts in first, second and 
third phase respectively. The specification is described in Section A.5 in 
Appendix. No control is included. All estimates are computed using weights 
proportional to district population. Standard errors in parentheses are 
adjusted for correlation of the errors at the district level. ***, **, and * 
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Table A.9: Regression discontinuity

Panel A
(1) (2) (3) (4) (5)

Predicted NREGA 0.00367 0.00309 0.00507 0.00238 0.00346
(0.00250) (0.00315) (0.00357) (0.00334) (0.00524)

Observations 1,063 1,063 1,063 1,063 1,063

Panel B
(1) (2) (3) (4) (5)

Predicted NREGA -0.00611 -0.00416 -0.00849 -0.00483 -0.0151
(0.00642) (0.00881) (0.0112) (0.00939) (0.0183)

Observations 1,063 1,063 1,063 1,063 1,063

Panel C
(1) (2) (3) (4) (5)

Predicted NREGA -0.126*** -0.00295 0.0630 -0.00517 0.113
(0.0261) (0.0366) (0.0474) (0.0410) (0.0885)

Observations 872 872 872 872 872

Baseline Control Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Linear Slope No Yes Yes Yes Yes
Quadratic Slope No No No Yes Yes
Flextible Specification No No Yes No Yes

Dependent Variable: Public Sector Work

Dependent Variable: Private Sector Work

Dependent Variable: Log Deflated Daily Casual Earnings

Each column presents results from a separate regression. A unit of observation is a district-
quarter. The sample is composed of all adults aged 18 to 60 interviewed from July 2007 to 
June 2008 living in second and third NREGA phase districts.  Predicted NREGA is a dummy 
variable equal to one if the district rank according to the Planning Commission Backwardness 
Index is lower than the state specific cut-off for early phases. The specification is described 
in Section A.5 in Appendix. Flexible Specification allows for different slopes to the right and 
to the left of the cutoff. All estimates are computed using weights proportional to district 
population.  Standard errors in parentheses are adjusted for correlation of the errors at the 
district level. ***, **, and * indicate significance at the 1, 5, and 10% levels. 
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