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Abstract
Anthropogenic inputs increase levels of antimicrobial resistance (AMR) in the environment, however, it is unknown how these
inputs create this observed increase, and if anthropogenic sources impact AMR in environmental bacteria. The aim of this study
was to characterise the role of waste water treatment plants (WWTPs) in the dissemination of class 1 integrons (CL1s) in the
riverine environment. Using sample sites from upstream and downstream of a WWTP, we demonstrate through isolation and
culture-independent analysis that WWTP effluent significantly increases both CL1 abundance and antibiotic resistance in the
riverine environment. Characterisation of CL1-bearing isolates revealed that CL1s were distributed across a diverse range of
bacteria, with identical complex genetic resistance determinants isolated from both human-associated and common
environmental bacteria across connected sites. Over half of sequenced CL1s lacked the 3′-conserved sequence ('atypical’
CL1s); surprisingly, bacteria carrying atypical CL1s were on average resistant to more antibiotics than bacteria carrying 3′-CS
CL1s. Quaternary ammonium compound (QAC) resistance genes were observed across 75% of sequenced CL1 gene cassette
arrays. Chemical data analysis indicated high levels of boron (a detergent marker) downstream of the WWTP. Subsequent
phenotypic screening of CL1-bearing isolates demonstrated that ~90% were resistant to QAC detergents, with in vitro
experiments demonstrating that QACs could solely select for the transfer of clinical antibiotic resistance genes to a naive
Escherichia coli recipient. In conclusion, this study highlights the significant impact of WWTPs on environmental AMR, and
demonstrates the widespread carriage of clinically important resistance determinants by environmentally associated bacteria.

Introduction

Antimicrobial resistance (AMR) is a worldwide health
issue, with forecasts of prevalent untreatable infections
within the next decade [1]. Widespread AMR in the
clinic is primarily a result of horizontal gene transfer which

allows the mobilisation of resistance genes between
pathogens and other bacteria [2]. Perhaps the best char-
acterised genetic element associated with AMR is the class
1 integron (CL1), which has been proven to be a proxy
for total AMR load [3]. CL1s are vehicles for adaptive
genes, with the ability to capture and integrate mobile gene
cassettes into a variable region where they are expressed
under a common promoter [4]. Gene cassettes can confer
several phenotypes including resistance to a broad range
of antibiotic classes and the ability to survive exposure
to biocides such as quaternary ammonium compounds
(QACs) [5].

The ability to acquire multi-resistant phenotypes makes
CL1s important genetic elements in the dissemination of
AMR, however, it is likely that to date, their description and
understanding in natural populations have not been fully
explored. CL1s can contain a 3′-conserved segment (CS)
region which has a partially deleted but functional QAC
efflux pump (qacEΔ1) fused to a sulphonamide resistance
gene (sul1) [6]. The terminology 3′ ‘Conserved Segment’ is
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misleading as this sequence is not conserved throughout all
CL1s. Most techniques analysing CL1 gene cassette
diversity focus on amplification through the intI1 to 3′-CS
region, thus, atypical CL1s (CL1s without a 3′-CS region)
and associated gene cassettes are missed [7–9]. Although
limited studies have proved to be successful in amplifying
the atypical CL1 variable region from human and animal
isolates [9–11], to date, there is no established method for
analysing atypical CL1s, nor any studies on their distribu-
tion, prevalence and contribution to AMR in the wider
environment.

Environmental bacteria are increasingly recognised as
playing a role in the development of resistance in the clinic
via mobilisation of novel resistance genes such as the well-
characterised examples of qnr and blaCTX-M [12, 13]. In
addition, environmental reservoirs of AMR can pose a risk
to human health through potential exposure events, such as
during recreational activities in polluted aquatic environ-
ments [14, 15]. Anthropogenic inputs to the environment
are hypothesised to be the drivers of environmental AMR,
with agricultural run-off and waste water treatment plant
effluent (WWTP), both proven to increase AMR load
[16–19]. However, the selective agents driving environ-
mental AMR are not well characterised. Due to the many
resistance genes CL1s contain, their persistence may be
influenced by antibiotic residues, metals or biocides with
selection of one cassette gene ‘co-selecting’ for others
[20, 21]. Despite the importance of environmental bacteria
in the dissemination of AMR, to date, we still do not fully
understand the extent of the spread of resistance genes in
environmentally associated bacteria, how this is impacted
by anthropogenic inputs or the extent to which human-
associated and common environmental isolates share
resistance genes [22].

Our previous work has demonstrated WWTPs to be the
key predictor variable for estimating AMR levels in
aquatic systems [3]. The aim of the current study was to
characterise the role of WWTP effluent in the formation
and persistence of reservoirs of CL1s in the wider envir-
onment, and to broadly understand the distribution of
different CL1 subsets and their contributions to resistance
load in the riverine environment. Through the isolation of
a wide range of Gram-negative bacteria with concurrent
total community DNA analyses, this study provides a
comprehensive investigation of the abundance and
diversity of the unbiased CL1 community in both WWTP-
impacted and unimpacted sediments. Results presented
here demonstrate the impact of WWTP effluent on
CL1 and AMR gene dissemination throughout environ-
mental bacteria (bacteria commonly found in the
environment, not associated with the clinic), highlight a
previously unrecognised source of resistance genes in the
form of atypical CL1s and determine the role of QAC

detergents in the selection and transfer of CL1s and
AMR genes.

Methods

Sampling

Sampling took place in January 2011. Triplicate sediment
core samples were taken from the River Sowe in the West
Midlands, UK, at six different sites. The sites were 300 m,
600 m and 900 m upstream (US) and, 300 m, 600 m and
900 m downstream (DS) of a large urban (450,000 popu-
lation estimate) tertiary WWTP as previously described [16,
19]. Sediment core samples were taken using a custom-
made corer, allowing the top ~5 cm of sediment to be col-
lected [3, 16, 19]. Upstream of the WWTP, geospatial
mapping has previously shown that there were no WWTP
inputs for >10 km, with Arable and Horticulture Grassland,
and Improved Grassland surrounding the upstream river
stretch [3]. Sediment samples were stored at 4 °C post
sampling and processed within 24 h of samples being col-
lected [3].

Total community CL1 analysis

Total community (metagenomic) DNA was extracted from
the triplicate sediment samples taken at the six sample sites
DS3 (furthest downstream of WWTP Finham), DS2, DS1,
US1, US2 and US3 (furthest upstream of WWTP Finham).
DNA was extracted using FASTDNA Spin kit for soil (MP
Biomedicals) as per the manufacturer’s instructions, as
previously described for river sediment [3]. For enumera-
tion of total bacterial load, CL1s and resistance genes at
each sediment site, quantitative PCR (qPCR) was per-
formed using primers targeting the CL1 integrase, 16S
rRNA and QAC resistance genes as published (Supple-
mentary Information) [23]. Molecular prevalence was cal-
culated by dividing the number of target genes by the
number of 16 S rRNA copies, with corrections made for
16S rRNA copy number (mean 2.5 per genome, as
previously described [23]).

Bacterial enumeration and isolation

For cultivation of Gram-negative isolates, sediment from DS
sites was pooled in equal parts (1 g total) and resuspended in
1 mL of PBS buffer, as previously described [16]. This was
repeated for US samples. Chromocult Coliform Agar (Merck
Millipore) was prepared as per the manufacturer’s instruc-
tions and amended with streptomycin (16 mg L−1),
gentamicin (4mg L−1), chloramphenicol (16 mg L−1),
trimethoprim (4mg L−1), sulphachloropyridazine (8mg L−1),
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cefotaxime (2mg L−1) or ceftazidime (16 mg L−1) with
levels of antibiotics chosen in accordance with the standards
set out by British Society for Antimicrobial Chemotherapy
(BSAC) and Clinical and Laboratory Standards Institute
(CLSI) [24]. DS and US samples were plated (200 µL) in
triplicate for each antibiotic on unamended Chromocult and
then incubated for 24 h at 30 °C. Viable plate counts were
taken; blue colonies indicated presumptive Escherichia coli,
pink colonies indicated all other coliforms which were not E.
coli (presumptive coliforms excluding E. coli, PCEs) and
white or other coloured colonies indicated other Gram-
negative bacteria which were not coliforms (non-coliforms).
Controls for performance of Chromocult agar at 30 °C were
performed as previously described [16]. Resistant quotients
(RQs) were calculated using Eq. (1).

Resistant quotient ¼ No: of resistant bacteria

Total no: of bacteria
�100

Non-coliforms, PCEs and E. coli isolates were selected
and purified up to a total of ten colonies for each bacterial
group per selective plate, as previously described [16]. In
cases where numbers were low, the maximum number of
available colonies was selected. For unammended Chro-
mocult plates; 50 non-coliforms, 50 PCEs and 10 E. coli
isolates were selected and purified.

Class 1 integron characterisation and isolate
identification

All isolates were screened for the presence of the CL1
integrase gene (intI1) using primers IntA 5′-
ATCATCGTCGTAGAGACGTCGG-3′ and IntB 5′-
GTCAAGGTTCTGGACCAGTTGC-3′ as published [7].
CL1-containing isolates were initially characterised using
published primers HS915 5′-GTGCCGTGATCGAAATC
CAG-3′ and HS550 5′-CTAGGCATGATCTAACCCT
CGG-3′ [25], with conditions optimised for long-range PCR
(Supplementary Information). PCR products were Sanger
sequenced by Macrogen (Korea). Analysis of non-clinical
CL1s was performed using a modified integron-specific
long-range two-step gene-walking method [26] (Supple-
mentary Information) and sequencing (Macrogen, Korea).
Bacteria were identified by sequencing PCR products
obtained using the universal 16S rRNA primers 27 F 5′-
AGAGTTTGATCMTGGCTCAG-3′ and 1525 R 5′-
AGGAGGTGATCCAGCC-3′, with further identification of
the Enterobacteriaceae by partial sequencing of dnaJ using
primer pair DN1-1F 5′-ATYTRCGHTAYAACATGGA-3′
and DN1-2R 5′-TCACRCCRTYDAAGAARC-3′ as pre-
viously described [15, 27]. Aeromonas spp. were identified
using partial sequencing of gyrB using primer pair gyrB3F
5′-TCCGGCGGTCTGCACGGCGT-3′ and gyrB14R
5′-TTGTCCGGGTTGTACTCGT-3′ [28]. E. coli was

sequence typed using the Achtman multilocus sequence
typing (MLST) scheme [29].

Antimicrobial susceptibility testing

All CL1-positive isolates were tested for their susceptibility
to the antibiotics ciprofloxacin, oxacillin, sulfamethoxazole,
ertapenem, tetracycline, co-amoxiclav, streptomycin, cef-
podoxime, cefuroxime, gentamicin, trimethoprim and
tigecycline. Susceptibility was tested using the
BSAC standardised disc susceptibility method as
published [24].

QAC resistance screening and transfer experiments

Characterising resistance to QAC detergents was performed
as previously described [20] on a panel of CL1-positive
isolates resistant to third generation cephalosporin (3GC) β-
lactam antibiotics. In brief, cultures were inoculated onto
cetyltrimethylammonium bromide (CTAB)-amended nutrient
agar plates at the recommended concentration of 50mg L−1

and incubated for 48 h at 30 °C [20]. E. coli and Pseudo-
monas spp. with no known biocide resistance determinants
were used as control strains. Strains simultaneously resistant
to biocides and 3GCs were selected for further character-
isation. 3GC resistance genes blaCTX-M, blaSHV and blaTEM
and biocide resistance genes qacH, qacE and qacEΔ1 were
screened for as previously described [16, 20, 23]. Screened
strains were then tested for the ability to transfer phenotypic
biocide resistance to a naive E. coli recipient using in vitro
conjugation assays as previously described [16]. In brief,
modified E. coli DH10B (StrRRifR) was used as a recipient
strain for solid conjugal mating assays with biocide-resistant
and cefotaxime-resistant strains used as donors. Transconju-
gants were selected using Luria Broth (LB) (Sigma Aldrich)
plates amended with streptomycin (100mg L−1), rifampicin
(100mg L−1) and CTAB (50mg L−1). Donor strains and
the recipient strain were plated separately onto streptomy-
cin (100mg L−1), rifampicin (100mg L−1) and CTAB
(50 mg L−1) LB selective plates as controls. Selected trans-
conjugants were tested for biocide-resistant and 3GC-
resistant phenotypes as previously described in addition to
being screened for the 3GC genotype observed in the donors
[16, 20, 23].

Statistical analysis

All statistics were performed using Genstat 15th edition SP1
(VSN international). Proportions were compared using
Fisher’s exact test. χ2 test was used for analysis of correla-
tions between antibiotic resistance phenotypes. The
Mann–Whitney U test was used for comparison of popu-
lation numbers.

Dissemination of integrons in the environment



Results

Impact of WWTP effluent on CL1 abundance

A total of 18 samples were collected consisting of six sets of
triplicates taken at 3× 300 m intervals DS and US of Fin-
ham WWTP on the River Sowe [19]. There were no
immediate inputs (>10 km) above the WWTP and previous
chemistry analysis had indicated the US stretch of river to
be low in chemical indicators of sewage [3]. To investigate
the impact of WWTP effluent on CL1 prevalence in the
total sediment communities, qPCR was performed on
metagenomic DNA to quantify total gene prevalence for the
CL1 integrase (intI1) (Fig. 1). WWTP effluent significantly
increased CL1 abundance in river sediments DS (χ2=
65,291, P < 0.0001), with the mean prevalence of combined
DS sites (1.53%), a near fourfold increase on the CL1
prevalence at US sites (0.41%). There were variations in
CL1 prevalence between DS sites depending on distance
from the effluent source, but DS3 was still significantly
higher than the mean US CL1 prevalence (χ2= 994.993, P
< 0.0001), indicating a continued impact of the WWTP on
CL1 prevalence in the bacterial sediment communities ~1
km DS. To understand the relative abundances of different
CL1 subsets, we quantified the qacEΔ1 3′-CS motif to
estimate the prevalence of 3′-CS CL1s in comparison to
lesser studied ‘atypical’ subsets (Fig. 1). As with the total
CL1 community, 3′-CS CL1s had a significantly higher
prevalence DS compared to US (χ2= 42,333.536, P<
0.0001) (Fig. 1), however, a consistent 1:1 ratio of 3′-CS:
atypical CL1s was reported across both DS and US sites.
From this, we can determine that approximately 50% of

CL1s belong to the 3′-CS subset across a range of polluted
and unpolluted environmental sites, with the others being
‘atypical’.

Comparative AMR profiling of river sediment
communities

Changes in the antimicrobial resistant phenotypes of the
bacterial sediment community were investigated by deter-
mining RQs across a range of antibiotics for three bacterial
groups (Gram-negative non-coliforms, E. coli and PCEs (all
other predicted coliforms excluding E. coli)) from DS and
US sites (Fig. 2). A quarter of all bacteria isolated DS were
resistant at clinically relevant breakpoints to streptomycin,
gentamicin, trimethoprim and sulfachloropyridazine.
Resistance profiles were heavily impacted by WWTP
effluent, with RQs for the PCEs significantly higher at DS
sites for all antibiotics except streptomycin, chlor-
amphenicol and ceftazidime (χ2 (Supplementary Table 4) P
< 0.0001), and presumptive E. coli RQs were significantly
higher for all antibiotics at DS sites compared to US sites
(χ2 (Supplementary Table 4) P< 0.0001). For two anti-
biotics (trimethoprim and sulfachloropyridazine), the
selective effect for E. coli was so strong that it enriched the
number of E. coli above what was previously recorded in
the absence of antibiotic selection. In addition to increases
in the percentage of antibiotic-resistant bacteria, DS sites
had more than double the bacterial load of US sites, sug-
gesting a large introduction of antibiotic resistant bacteria
into the DS sites by the WWTP (Supplementary Table 5).

Dissemination of CL1s in sediment communities

Although CL1s have been observed in non-clinical envir-
onments [2, 30], the extent to which they have spread
throughout bacteria not commonly associated with the clinic
remains poorly understood. With culture-independent ana-
lysis suggesting that DS sites had a large increase in the
prevalence of CL1s, we undertook a large isolation effort
from DS and US sites to compare impacted and non-
impacted bacterial communities carrying CL1s. A total of
664 bacteria were isolated and screened for the presence of
CL1s from pooled DS and US samples (348 DS and 316
US). CL1 carriage was significantly increased in DS anti-
biotic resistant isolates (43.28%) compared to US anti-
biotic resistant isolates (21.85%) (χ2= 21.876, P< 0.0001),
supporting culture-independent analyses that CL1 pre-
valence was significantly increased by WWTP effluent at
DS sites. Across DS and US sites, CL1s were recovered
from 26 species across four bacterial families showing the
widespread dissemination of this genetic element (Fig. 3).
Although more species were observed to carry CL1s DS
(22) than US (15), this increase in diversity was not
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statistically significant. In addition to a range of commonly
occurring river sediment bacteria (e.g. Aeromonas
spp., Janthinobacterium sp. and Ochrobactrum sp.), CL1s
were detected in a range of bacteria commonly associated
with the clinic from both DS and US sites, including
E. coli, Klebsiella sp., Citrobacter sp. and Yersinia sp..
MLST was used for further analysis of CL1-bearing
E. coli populations; many STs were unique to each
sediment site, with the pandemic strain ST131 being the
most common DS. Surprisingly, this ST and two others
(73,10) were observed both US and DS. A large
proportion of both DS and US CL1 carrying E. coli had no

known ST, suggesting they are not commonly associated
with the clinic.

Analysis of CL1 gene cassette diversity across
bacterial isolates

To investigate the differences in CL1 gene cassette arrays
DS compared to US, and to further our understanding of the
link between CL1s in common environmental isolates
compared to more clinically associated isolates, we char-
acterised our CL1-containing isolates using a novel two-
step PCR method (Fig. 4). 57 % of 3′-CS CLs were
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successfully amplified and sequenced with eight unique
arrays identified, two of which were novel to this study (C6
and C8) (Fig. 4, Table 1). In addition to 3′-CS CL1s, 10
unique atypical CL1 gene cassette arrays from 20 isolates
were characterised, with three being novel to this study (A5,
A7, A8) (Fig. 4, Table 1). Sixteen different gene cassettes
were found associated with the ten atypical CL1s, giving
rise to ten potential phenotypes including QAC resistance.
This is more than double the number of predicted pheno-
types observed from 3′-CS CL1s (4) despite being from a
smaller sample size. Throughout both atypical and 3′-CS
CL1 gene cassette arrays, genetic linkage of multiple
resistance genes was observed, with as many as three
antibiotic resistance genes carried in one gene cassette array
(Fig. 4), and QAC resistance genes regularly co-carried with
antibiotic resistance genes.

Further analysis of the distribution of unique sequenced
CL1s revealed half of the unique CL1s were shared between
different species and sites (Table 1), with commonly
reported river sediment bacteria frequently carrying iden-
tical CL1s to those observed in clinically associated bacteria
(Fig. 1, Table 1, Supplementary Table 1). In particular this
is exemplified in the atypical CL1s by A10 which was
recovered from Aeromonas media and Citrobacter freundii
at US sites, and the pandemic E. coli clone ST131 at DS
sites. The sharing of CL1s between environmental and
human-associated bacteria was also prevalent in the 3′-CS
CL1s, exemplified by C1 which was recovered at US sites
from A. media and two clinically associated E. coli
STs (ST1193, ST404), and recovered at DS sites from
two clinically associated E. coli STs (ST73 and ST28) and
K. oxytoca.

Supporting our observations from the culture-
independent analyses, 40 % of CL1-bearing isolates con-
tained the 3′-CS motif suggesting at least half of the CL1s at
the tested sites lack the 3′-CS. In addition, the diversity of
hosts recovered containing atypical or 3′-CS CL1s did not
differ significantly between CL1 types with both 3′-CS and
atypical CL1s frequently recovered from human associated
and commonly reported environmental bacteria (Table 1,
Supplementary Table 1). Such results demonstrate that both
common clinically and environmentally associated bacteria
can carry either 3′-CS or atypical CL1s in the riverine
environment, with no CL1 group biased to a particular
bacterial population.

Determining the impact of WWTP effluent and CL1
type on MIC profiles

To determine whether CL1-bearing bacterial isolates DS
were resistant to more antibiotics than CL1-bearing bac-
terial isolates US, MIC susceptibility profiling of individual
CL1-containing isolates was performed to 12 antibiotics
(Fig. 5; Supplementary Table 1). In particular, the Enter-
obacteriaceae showed significant increases in resistance to
ciprofloxacin (χ2= 10.08, P= 0.0015) and streptomycin
(χ2= 6.06, P= 0.014) DS compared to US (Fig. 5). On
average isolates were individually resistant to over 50 % of
tested antibiotics from both DS and US sites (6.45 DS, 6.05
US), demonstrating how CL1-bearing isolates exhibit multi-
resistant phenotypes. Concerningly, some isolates were
simultaneously resistant to as many as 10 of the 12 anti-
biotics tested. A comparison was made between atypical
CL1 profiles and 3′-CS CL1 profiles to investigate if there
were any phenotypic differences between isolates which
carried different CL1 subsets (Fig. 5). Surprisingly despite
the 3′-CS CL1s commonly referred to as being ‘clinical’
CL1s [31], DS atypical CL1-bearing isolates had a higher
prevalence of resistance to more antibiotics than their 3′-

Table 1 Summary of characterised CL1 gene casette arrays

DS species, observed number US species, number
observed

3′-CS CL1s

C1 E. coli ST1193, E. coli ST209, E.
coli ST404, E. coli ST unknown
(2), K. oxytoca

E. coli ST73, E. coli
ST28, A. media (2)

C2 A. media (2), A. salmonicida, E.
coli ST (unknown)

E. coli ST2695

C3 R. ornithinolytica, C. freundii C. freundii

C4 C. freundii R. ornithinolytica

C5 E. coli ST1193, E. coli ST
unknown

None observed

C6 A. media None observed

C7 None observed A. salmonicida (2),
A. media, P. putida,
C. freundii

C8 E. coli ST unknown, A. media (2),
A. salmonicida

None observed

Atypical CL1s

A1 E. coli ST10 E. coli ST73

A2 E. coli ST unknown, E. coli
ST1060

None observed

A3 None observed E. coli ST unknown (2)

A4 None observed E. coli ST unknown (2)

A5 P. gessardi None observed

A6 E. coli ST989 A. media

A7 E. coli ST131 None observed

A8 None observed A. sobria

A9 None observed A. media

A10 E. coli ST131 (2), E. coli ST
unknown, C. freundii

C. freundii

Table of CL1 gene cassette arrays characterised and the bacteria
associated with each one. Bacteria were isolated from aquatic
sediments (DS) and upstream (US) of a WWTP outflow. ST
unknown—does not match to anything in database
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CS counterparts. For example, atypical CL bearing iso-
lates had a significantly higher prevalence of cefpodoxime
(χ2= 4.684, P= 0.0304) and cefuroxime resistance
(χ2= 5.54, P= 0.0196) compared to 3′-CS CLs. Differ-
ences in AMR phenotypes were compared between bac-
terial groups to determine if the human-associated
Enterobacteriaceae had broader AMR profiles than the
common river sediment Proteobacteria (e.g. Aeromonas
spp., Ochrobactrum sp., Janthinobacterium sp., Pseudo-
monas spp.). No significant differences were observed in
the total prevalence of AMR phenotypes between Aero-
monodaceae, Pseudomonadaceae or Enterobacteriaceae
indicating the CL1-containing environmental isolates
were as resistant as their clinical counterparts. This may
be in part due to intrinsic resistance mechanisms com-
monly associated with non-coliforms. Pattern-based ana-
lysis of resistance revealed DS resistant phenotypes
showed significant linkage with the creation of clusters of
resistance (Supplementary Tables 2 and 3), such as erta-
penem which significantly correlated with six other
resistances including ciprofloxacin and gentamicin (Sup-
plementary Tables 2 and 3). US correlations were evident,
though these were different to those observed DS of the
WWTP and often consisted of smaller groups of resis-
tance phenotypes clustering together.

The role of quaternary ammonium compounds in
the selection of environmental AMR

Analysis of chemistry data previously collected at the site
showed a significantly higher abundance of the detergent
marker boron DS compared to US (Mann–Whitney U,
P< 0.05) [3, 32], supporting previous surveillance studies
reporting mg/L quantities of biocidal detergents in waste
water [33–35]. Prior studies have suggested that biocides
such as QACs may select for CL1s based on selection for
the QAC resistance genes qacEΔ1, qacE and qacH [20, 31].
Initially using qPCR methods for enumerating common
CL1 associated QAC resistance genes [23], we tested the
hypothesis that biocides from the effluent are contributing to
elevated CL1 levels in the DS total community (Fig. 1).

QAC resistance genes were significantly more abundant DS
compared to US with the mean qacE prevalence of com-
bined DS sites almost tenfold higher than the mean of the
US combined sites (χ2= 143,796, P < 0.0001), and the
mean qacH prevalence of all sites fivefold higher DS
compared to US (χ2= 5636, P< 0.0001). The impact of
effluent on the abundance of QAC resistance genes was
sustained over 1 km DS of the WWTP with the prevalence
of both qacE and qacH not significantly decreasing with
distance from the WWTP. We next determined whether
increased prevalence of QAC resistance genes observed in
the total community were linked to AMR genes in our
isolates. Four unique QAC resistance genes were contained
in the sequenced CL1 gene cassette arrays (qacE, qacEΔ1,
qacH or qacI), with 11 of the 18 unique CL1 gene cassette
arrays sequenced carrying a QAC resistance gene alongside
a gene cassette conferring an antibiotic resistance pheno-
type. Considering the abundance of each sequenced
CL1 subset (Table 1), this translates to 75 % of
CL1-containing isolates co-carrying a biocide resistance
gene alongside an AMR resistance gene. Furthermore
phenotypic QAC resistance testing of CL1 isolates sug-
gested 89 % were resistant to biocides and grew unimpaired
to 50 mg L−1.

Finally, to test whether a QAC could solely select for the
transfer of an antibiotic resistance gene and phenotype to a
sensitive strain, we selected 48 QAC resistant isolates for
conjugal transfer experiments, which were also resistant to
multiple antibiotics including 3rd generation cephalosporin
(3GC) β-lactams. Isolates with 3GC resistance were pre-
ferentially chosen on the basis that 3GC resistance has been
widely reported across different aquatic environments and is
an antibiotic of high clinical importance [14, 16, 36]. Using
the QAC resistant strains as donors we demonstrated 42 %
could successfully transfer their QAC resistant phenotype to
a naive recipient E. coli, with 75 % (15/20) of the harvested
transconjugants also resistant to clinical levels of the 3GC
antibiotics cefotaxime and ceftazidime [24]. Donors were
screened for the mechanism of 3GC resistance, which
revealed they all carried blaCTX-M. Transconjugants were
confirmed to be positive for the presence of this gene, in
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addition to being positive for CL1s. Thus, in summary, for
15/48 β-lactam and QAC resistant strains, we successfully
demonstrated that QACs select for the mobilisation of both
CL1s and blaCTX-M.

Discussion

In the current global AMR crisis it is essential to understand
the link between the environment and the clinic, and to
identify key selecting factors for AMR gene dissemination.
Here we demonstrate the widespread impact which WWTP
effluent has on increasing both phenotypic and genotypic
levels of AMR in the entire sediment microbial community,
supporting the hypothesis that WWTP effluent is a major
driver of AMR in aquatic environments [3, 16]. Previous
studies have suggested the environmental and human
resistomes are shared [22], we believe this study to be the
first to isolate identical complex genetic resistance deter-
minants from both human associated and common envir-
onmental bacteria across connected sites. Such findings are
clear evidence that the same AMR genes and associated
genetic elements circulate between common environmental
bacteria and human-associated bacteria, supporting the
hypothesis that AMR in the environment is inextricably
linked to AMR in the clinic [37].

CL1s are clinically important genetic elements with the
ability to confer resistance to multiple antibiotics [5];
however, a detailed environmental study of their gene cas-
sette diversity to date has been hampered due to biases
against amplifying variable regions without the 3′-CS [9,
10]. We successfully pioneered a new technique for
studying CL1s with the analysis of CL1 ecology revealing
approximately only half of CL1s in river sediments contain
the classic 3′-CS architecture [4]. This is the first estimate of
the atypical CL1 population in the wider environment, and
supports the argument that the diversity of CL1s and their
associated gene cassettes has to date been underestimated
[9–11], perhaps in part due to a reliance on primer sets
targeting the 3′-CS [7, 8]. In addition to providing genetic
novelty, atypical CL1s were invariably demonstrated to
contribute to isolates AMR profiles as much as their 3′-CS
counterparts.

AMR genes and phenotypes in the riverine environment
are clearly increased in prevalence and abundance by
WWTP effluent as demonstrated in this study and others
prior [3, 16, 19]; having established that this anthropogenic
input drives levels of AMR in riverine systems, we
demonstrated a potential key selection pressure in effluent is
QAC detergents. There are numerous potential mechanisms
by which AMR genes could persist in the environment, for
example sub MIC concentrations of antibiotics can select

for plasmid maintenance [38], and plasmids carrying AMR
genes and CL1s may yield no detectable fitness cost [39].
Here, our findings that QACs detergents could co-select for
the transfer of mobilised antibiotic resistance genes, sup-
ports the hypothesis that pollutants other than antibiotic
residues can select for antibiotic resistance [20, 23, 31].
Recent genomic surveys have proven antibiotic resistance
genes can co-occur frequently with metal resistance genes
[21, 40]. No metal resistance genes were recorded in
sequence data here, however QAC resistance genes were
observed to frequently co-occur with antibiotic resistance
genes, which is likely a reflection of QACs being a greater
selective pressure for adaptive genetic elements at sewage
polluted sites than metals. This hypothesis is supported by
previous observations of QAC resistance genes in detergent
rich and sewage polluted environments [20, 23], observa-
tions of high levels of QACs in sewage [33, 35], previous
reports of high levels of boron (a common detergent mar-
ker) at DS sample sites in this study [3, 15], and our culture-
independent data suggesting a significant increase in pre-
valence of QAC resistance genes in the whole riverine
sediment community 1 km DS of the WWTP.

There are two possible mechanisms by which QAC
resistance gene prevalence could be increased DS of the
WWTP. Selection for QAC resistance genes could be
occurring in the WWTP, with QAC resistant bacteria and
their associated resistance genes being introduced into the
river in the effluent. The introduced resistance genes could
then be selected by QACs in the effluent in the river in situ.
Alternatively, QACs in the effluent could be selecting for
QAC resistance genes already present within the river. In
both of these proposed scenarios, mobilised QAC resistance
genes may be selected for by QACs in the effluent. In
addition to QACs, other factors such as nutrients in the
effluent could also be impacting the microbial ecology of
the river [41].

The main aim of this study was to use CL1s as a marker
genetic element to investigate the extent of AMR gene
dissemination in riverine bacterial communities, and to
understand how and why environmental reservoirs of AMR
form. In conclusion, WWTP effluent was responsible for
large changes in the river sediment bacterial community’s
AMR phenotypes and genotypes. The introduction of
human-associated bacteria by the WWTP effluent played a
key part in changing the resistome of the river; however, the
scale to which CL1s were distributed and shared across
human associated and environmental bacteria is also sug-
gestive of bacteria from different origins sharing mobile
elements. Our study highlighted a key role which QACs
may play in selecting for environmental antibiotic resis-
tance, establishing a clear mechanism for antibiotic resis-
tance gene selection and persistence in the environment in
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the absence of antibiotic selection. Ultimately increased
selection for AMR in the wider environment is a cause for
clinical concern, as it can drive the emergence of novel
resistance genes in clinically associated bacteria as
well as providing a potential health risk though direct
exposure [14, 37].
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