A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/98268

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
(1)

MODULES OVER GROUP ALGEBRAS WHICH ARE FREE ON RESTRICTION TO A MAXIMAL SURGROUP

ROBERT CHARLES ANDREWS

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF WARWICR

MATHBMATICS IMSTITUTE

CONTENTS

INTRODUCTION		$v i$
NOTATION		I
CHAPTER O PRELIMINARY RESULTS		1
0.0	Profective modules	3
0.1	Choulnard's eheorem	12
CHAPTER 1 PERIODIC RESOLTTIONS AND BOCRSTETM OPEPATORS		16
1.0 Cyclic groups		18
1.1 Periodic resolutions		20
1.2 Serre groupe		23
1.3 Example - 0_{8}		27
1.4 Connection Eith Bocksteln oparators		32
CHAPTER 2 ALMOST SPLIT SEOUENCES		36
2.0 The construction of almoat aplit sequences		38
2.1	The almast aplit sequence of a module which is	
	frem on restriction to some maximi subgroup	43
2.2 Further rasulte on almost split saquances		51
2.3	The structure of x_{V} when V is frea on	
	reatriction to a maximal subgroup	58
2.4 Tereinal modules		65
CHAPTER 3 CARLSON VARIETIES		71
3.0 Essential subgroupa		73
3.1 The constants $\lambda_{H}(\mathrm{~V})$		77
3.2 Tha elementary abolian group of order p^{2}		80
3.3	Application to the general cane	88

3.4	An alternative description of $M_{H}(V)$	91
3.5	Dade's lemen	95
3.6	Subspaces determinad by subgroupa	99
3.7	Modulea which are free on reatriction to	
	a maxial subgroup	102
3.8	The elamentary abelian casa	108
CHAPTER 4	THE SET OF PEPMITIED VAPIETIES	111
4.0	The sat Y_{G}	113
4.1	Pseudo-apecial groupa	115
4.2	The modules U_{y} when (G) is cyclic	119
4.3	The atructure of pasudo-apacial aroupa	123
4.4	Some calculations	129
4.5	A condicion for U_{y} to be pariodic	133
4.6	The exponent p casa	137
4.7	Conclusiona	142
4.8	Defining equations for Y_{G}	144
CHAPTER 5	EXAMPLES	152
5.0	Split products	154
5.1	Elamantary abelian graupa	197
5.2	The cerelnal machies of alamentary abolian	
	groups	161
5.3	Restricted and induced modules	165
5.4	Group and field automorphiame	169
APPENDIX A	THE KLEIN FOUR-GROUP	171
APPENDIX B	RELATIONS BETWEEN BOCESTEINS	186
REFEREMCES		198

ACKNOMLEDGPENTS Thia work wan aupported finaneseliy by the Scienca and Enininearing Reanemeh Council (Studentahip 84301530).

I mould like to thank ey mparviator, Sandy Green, lar hia moral mupport.

DECLARATION None of che mearial In thile theoie hae heen uaed before.

DEDICATION To Anmie, Tone, Giria and Mick. Thank you.

(v)

SUMMARY

Considar the following aituationi k will be an agabraically cload fiald of charactariatic pand G vill be tinite p-group, vill ba non-projective, indecomponalla kG-module which Ia free on rentriceion to mone marimal aubgroup of G. Dur purpoee in doing thia is ta inventigate Chouinard'atheorem - eli the proofa of which heve been cohomological in nature - in repreaentation-thearetic way. Thia theorem mat bew to be equivalent to meying that, if G id not elementary abelian, V cannot be free on reatriction to all themenimel aubroupa of G.

It ia shown how to conatruct an aract sequence:

$$
0 \longrightarrow \mathrm{~V} \longrightarrow \mathrm{P} \longrightarrow \mathrm{P} \longrightarrow \mathrm{~V} \longrightarrow 0
$$

Hth P projective. Fro thid an mleogt aplit maquence,

$$
0 \longrightarrow \mathrm{~V} \longrightarrow \mathrm{H} \longrightarrow \mathrm{~V} \longrightarrow \mathrm{O}_{\mathrm{N}}
$$

1. conetructed. It in shom that X can have at mont two indecoposabla buganda.

If denotel the Frattini lubgroup of G, than V iw free on raticiction to .

 kG. It is shown that $T(7)$ is alway a line.

He define Y_{G} to be the union of all the 11 not $T(V)$ an V una over all the kG-adules with the propartien abave. It in whom thet IG is the whole of $\mathrm{J} / \mathrm{J}^{2}$ if and only if G is deeantary bbilan. It la alag whom that, when G ia one of a particular clana of p-色roupa - the pamodo-apecial groupa - which forin the
 of a gequence of homogeneous palynoiala with coefficienta in the fiald of p elamente. Indead, apecific conmeruction for theme polyncoiale in given.

INTRODUCTION

Consider the following reault, due to Chouinard:

Lec k be a field of characteristic p and G be a finite group, A kG-module 1s projective if and only if it in free on restriction to all rae elementary abelian p-subgroups of G.

Chouinard'a proof of thie, and all aubmequant proofm (ame [Ch]. [ABE] otc.), have raliad haavily on cohomological techniqued and, in particular, on a proponition of Serre (Propoltion (4) of [Ser]) which ve my atate an fallava:

Urite $E^{(}(G)$ for the cohomology group, Ext ${\underset{F}{p}}^{G}\left(F_{p}, F_{g}\right)$, and let:

$$
B, E^{I}(G) \longrightarrow E^{2}(G)
$$

be the Bockatein operator. Then, if G is not elamentary abelian, there exist nonzero elements, $E_{1}, E_{2} \ldots \ldots$, of $^{\boldsymbol{I}}$ (G) stuch that the cup-product

$$
B\left(z_{1}\right) B\left(z_{2}\right) \ldots B\left(z_{m}\right) \in E^{2(}(G)
$$

equals 0.

The proof of chi由 ramit involvea, among other thingig, algabraic variatian and Sten rod operntora; cartainly it aeabe to have very iletle to do with the original problea. The mativation behind the reacarch leading to thia
 (which ia, efter all, aimple repreaentation-theorical reault) by aigple representiotion-theoretical meana. In Chapter 1 we ahow how the deduceion of Chouinard'曾 theorem from Serre'a propoaition my be strippad of moat of lte cohoalogy, however the later reault reapina an obecacla.

A ntraight-forward raduction ghow that we may conaider tha followine
 P, and G will be finita p-aroup; vill be supposed to be non-projective. indecomponale $k G$-module which ia free on reatriction to mome mazimal mubgroup of G. Chouinard'e theoren ia than equivalent to maging that, if G in not elepancary abelian, V cannot be free on riantriction to all the mainal aubgroupa of G. Thua, as a mbisdiary queation, we ank: what propertien does V have in tha mituation abova?

In Chapter 1 it id shown how to conatruct me exect equence:

$$
0 \longrightarrow \mathrm{~V} \longrightarrow \mathrm{p} \longrightarrow \mathrm{P} \longrightarrow \mathrm{~V} \longrightarrow \mathrm{O}
$$

with P projective. Thue V in pariodic of pertod 1 or 2 . Thite twontep projective ramolution mutoentically brioga to mind tha conatruction theorea for blmont mplit 由equencea: thia fa invêtigeted in Chapter 2. It in shown there how to conatruct, for anch masimal aubroup, $H_{\text {, }}$ of G, an eract aequanca:

$$
0 \longrightarrow v \longrightarrow X_{H} \longrightarrow v \longrightarrow 0
$$

Hhich is (1) manat aplit if V in free on remeriction to H,
(2) aplit otherviag.

Furthersore, the conmected component of the Auslender-Reiten quiver containing V in inveatigated. Thia is shown to have the foria:
1.a. there erista sequence, $V_{n}(n=1,2, \ldots)$ of non-projective, indecopoabla kG-modulam which are free on pantriction to some maximal wubroup of G, weh that thare are sleant mplit mequencea:

$$
\begin{gathered}
0 \longrightarrow v_{1} \longrightarrow v_{2} \longrightarrow v_{1} \longrightarrow 0 \\
0 \longrightarrow v_{n} \longrightarrow v_{n-1}=v_{n+1} \longrightarrow v_{n} \longrightarrow 0
\end{gathered}
$$

 v_{2}, v_{3}, \ldots.

Chapter: 3 and 4 are concerned with the following obearvation: let be the Frettini uigroup of G, that ia, the interaection of all the maximal aubgroupe of G, then V ia frea on rastriction to © He may regard the aet of
 so there ia a Carleon variety, $Y(\overline{7})$ - thim mat be regaried ae aubat of J / J^{2} where J danoten the augeentation ideal of $k G$. The min reault proved in Chapter 3 in that $Y(7)$ ialwaya lina in $\mathrm{J} / \mathrm{J}^{2}$.

Each aubgroup, H, of G detarminen a aubapace, S_{H} of $\mathrm{J} / \mathrm{J}^{2}$. When H ia a mavimal aubgroup, S_{H} id hyperplane; V ia free on reatriction to H if and oniy if the inne $Y(\mathbb{V})$ interaecta S_{H} Exivialiy. Thua we define Y_{G} to ba the union of all the varietien $\mathbf{Y}(\mathbb{V})$ ve runs over all the indecompomble kG-module which are free on rastriction to marimal aubgroup of G. Chouinard'e theorean then equivilent to showing thet, if G if not elmentary abelian,

$$
Y_{G} \leq \bigcup_{H} S_{H}
$$

- where the untion 1 a over all the maximal aubgroupa of G.

In Cheptar 4 the conetreinta, if any, on Y_{G} are invantigated. It in ahown that the minieal counter-arampla to Chouinard'e theoren in one of particular claea of p-groupa, which wa call pasudo-special - theae baing defined by the fact that the Frattini aubgroup $\boldsymbol{(G)}$ (a the unique elnimal noreal aubroup of G. The etructure of these groupa mat be very accurately dascribed, ao apecific calculationa are posaibla.

If $g_{1}, \ldots . g_{n}$ is a minimel ent of generatora for G then $\left(g_{1}-1\right)+J^{2} \ldots \ldots$ $\left(g_{n}-1\right)+J^{2}$ ia a k-basin for J / J^{2}. Uaing thia basis, any polynomial in n variableat with coefficiente in the field of p elemente, $f\left(X_{1}, \ldots, X_{n}\right)$, an be used to define a hyperaurfoce. $\mathrm{S}(\mathrm{f})$, of $\mathrm{J} / \mathrm{J}^{2}$. It it ahown ther if G ia
 1a mhom to be extendible to ganaral groupa ta giva:
Y_{G} is the whole of J / J^{2} if and anly if G ia elerantary abelian.

 these polynowiale. The reault juat mentioned iapliam that not all thee polynomial ara zero. But it may be shown that the hyparplanes S_{H} for H maximal mubroup of G art preciang the aubapacea of the form $S(f)$ where it
 theorem if and only if the ideal of $\mathrm{F}_{\mathrm{p}}\left[\mathrm{I}_{1} \ldots \ldots . \mathrm{I}_{\mathrm{n}}\right]$ generated by $\mathrm{f}_{1} \ldots \ldots \ldots$..... contain: producz of nonzera ilnear polynoeimin. Therefore we heve alethad whereby, with mufficient patiance, wey deteraina whather a givan peadompecial group atiafien Chouinard"e theorem; however general approach is, at the moment, elusive.

There are aevaral examplem in the tert. Chaptar 5 ia devoted to conatructing examplen of non-projactive, Indacompoable kG-adulen which are frea on
 to shav thet:

$$
\mathbf{v}_{G} \geq \bigcup S_{H}
$$

- the union being over all the sementary abilian aubgroupa of Gi in fiect, Chouinerd'叟 theorem show that equality holda. Appendix A in devoted to an ertanded example: it ia ahown how theorea of Benton and Carlan bay be ued to prove the wil-known clalaification theorat for the indecompoable modulea of the ©lein 4-group over an algabraically eloged fiald of characteriatic 2.

NOTATION

Throughout, k will be fiald of characterigtic p. For a finitedimensional $k-a i g a b r a, A$ (which will generally te the group algebrs, kG, for ane finite group, G) we let und A denote the catagory of all finitaly-generated, left, unital A-modulea and all A-1inaar mapa between auch modulas. We shall use the terim A-module to dealgnate an object of mod A.

If U and V are A-modulea than ve lat $(U, V)_{A}$, or aiaply (U, V) when there can be no confuaion about which algebra in meant, denote the met of all morphingal
 of $U W 11$ be danoted by 1_{U}.

Note that there are induced k-1indar functors:

$$
\begin{aligned}
& (U,-)_{A}, \bmod A \longrightarrow \bmod k, \\
& (-, V)_{A}: \bmod A \longrightarrow \bmod k,
\end{aligned}
$$

which are covariant and contravariant reapactively.

We shall aleo use the following notation:
(a) A mill hleo be uned to denote the A-module given by tha left regular repramemtation,
(b) The Jacobaon redical of A will be denoted by $J(A)$,
(c) The diract an of the A-adulan U and V fill be denoted by aither $U=V$ or U ev.
(d) U|V wil aignify that U is a direct mumand of V,
(e) [U|V] will denote the mitiplicity of an indecompoable A-modula, U, in V - thie is well-defined by the Krull-Schaidt thearew,
(\&) The socle of U - that is to eay, tha au of all the minime submodule of U - will be denoted by moc (U),
(g) Siailarly, the radical of 0 (the inter maction of the sarimal aumoduleal) will be denoted by Rad (U),
(h) dich U will denote the dimenaion of U an a-mpace.
 followine:
(1) The triviel, one-dimenaional kG-modula vill be denoted by k G^{*}
(1) Aug (kG) will denote the augmantation ideal of kG.
(tr) The mboodule of G-fired pointe of U will be denoted by U^{f}.
(1) The minima projective cover of U vill be vriten as P_{U}.

(n) Ext K_{KG} (U,V) M11 denote the cohomology groupe (eee [CBE] or [McL]).

If U and V are $k G$-modulea then we mey regard tha censor product, U v, at kG-module by ueing tha diagonal action of G:

$$
g \cdot(u \in v)=d u g^{g} \quad(u \in U, v \in V, g \in G)
$$

and ertending k-1inearly to the whola of kG. Siailarly the mace of all
 followng action of G :

$$
f: L \leadsto g f\left(g^{-1} u\right) \quad\left(f \in(U, V)_{k}, u \in U, g \in G\right)
$$

The dual module of U, U^{ω}, chen aquala $\left(U_{,} k_{G}\right)_{k}$.

Recall that wa define the complex repremantation ring (or Green ring) of kG to be the compler vector apaca with the set of inoporphisia clageea of
 clang containing V, which will be denoted by [V], mag be identified vith the following alment of the mace juat dafined:

$$
\sum_{[0]}[U \mid v] \cdot[U]
$$

 The tenmor product then inducen a C-algebre deructure on the repreapentation ring. We shall denote thin algebra by h_{k} (G).

The dual opace oparator inducen an elgebra automorphiea of A_{k} (G) which we

If H is auberoup of G then we hava covarignt functore:

> reed $\operatorname{mad} \mathrm{kG} \longrightarrow \bmod \mathrm{kH}$.
> ind $1 \bmod \mathrm{kH} \longrightarrow \bmod \mathrm{kG}$.
 Inducad module, $k G G_{k H} V^{\prime}$

A
(o) $|G|$ تill denote the ordar of G_{1}
(p) $|G: H|$ will dinate the inder of H in G,
(q) The Frattini eubgroup of $G-t h a t$ is, the intereection of wil the maxieal aubgroup of G - w111 he denoted h_{F} (G),
(r$)$ The cantre of $G 11$ bie denoted by $\mathbf{Z}(G)$,
(a) The abgroup genarated by $I \in G$ vill be denoted by $\langle x\rangle$,
(t) The diract product of G and H will be denoted by GiH.

We ghell also adopt the bar convention whan talking bbout factor groupar
Suppoie that N ie norgal aubgroup of G, then we ghell write the natural
$\operatorname{map} G \rightarrow G / N$ an $G B$. In particular, $G-G / N$.

Othar notation that ve accept an atendard:

N 1athe aet of poaitive intageri $1,2,3, \ldots$,
Z ia the int of integera $\ldots,-2,-1,0,1,2, \ldots=0$

(x111)

C ia the field of conplaz numbera, Fpis the field of p elementa.

Other notation wll be introduced in the tezt. However, for convenience. ve giva here an inder of the more comonly uad tarm:

Introduction

Thia first chapter contiaina mose of the preliginary work thet wehall require and a aimple reduction of Chouinard"a theorein. Inevitably, not all the standard reaulea chat ve bhall ume are proved here: many will be quoted in the text without conasit. [CAR] 1a the clasaic work for the remultin on represencation theory, although [Ben] and [Lan] both coviar the ground in a Eairly conciae manner; the remulta on group theory may be found in any gtandard text, for example, [Ha].

0.0 Projective adulee

In thiafirat mection, whall prove number of preliainary rasulce concerned moatly with the propertien of tha projective modulen af aome group Algebra, kG. Mont of the remultare will known and wa bhall not eive apecific referanc由日. G will be en erbitrary finite group and kill be any field of characterietic p. Tha ciage $p=0$ ia not initieliy excluded, but we mall obeerve the convention that the trivial group, 1 , ie the undque 0 -aubgroup of G.
 group alebra, kG, then yrite:

$$
\mu_{\mathrm{X}}=\sum_{\mathrm{X} \in \mathbb{X}} \mathrm{x} \cdot
$$

With thil notation. the following ia eanily proved:

$$
\left.g \gamma_{H}=\mu_{\left(\mathrm{gH}^{-1}\right.}\right)^{2}
$$

(b) If heH then $h \mu_{H}=H_{H}$,

$$
x\langle x\rangle=(x-1)^{q-1}
$$

Nota that, in perticular, if H ia moreal mubgrap of G and V ie a kG-odula then (a) given that $\mathrm{H}_{\mathrm{H}} \mathrm{V}^{\mathrm{V}}$ is a mbeodule of V. Part (b) further ahowe

A Eilpla colculation show that $\left(\mathrm{KG}^{\mathrm{G}}=\mathrm{k}_{\mathrm{G}}\right.$ and that:

$$
\operatorname{Aug}_{\mathrm{B}}(k G)-\left\{\xi c k \mid \mu_{G}=0\right\}
$$

Lepen 0.0.2 If P_{1} denoten the projective cover of the trivial module, kg,
then $P_{1} \not P_{1}^{*}$. Furthermore, the multiplicity of P_{1} in an arbitrary kG-module, V. equali di ${ }_{k} \mathrm{H}_{\mathrm{G}} \mathrm{V}$.

Proof Conaidering the aumantation map $k G \longrightarrow K_{G}$, we met that wat magard
 concained within P_{1}. Therefore wa hava a monorphian $k_{G} \rightarrow P_{1}$ t thia inducas an epimorphism $P_{1}^{*} \rightarrow k_{G}$, thus, by the uniqueness of projective covers, P_{1} a P_{1}^{*}, Note siso that, by atandard reault, P_{1} haa a unique ninimal mubodule. Thie must therefore be kH_{G}.

For the aecond part of the reale it bufficea to masume that in

 be an isomorphian, Uaing thia and the fact, provad abova, that $\mu_{G} P_{1}=\mu_{G}$ vi have:

$$
\operatorname{dim}_{k} \mu_{G} V= \begin{cases}1 & \text { if } V \backsim P_{1} \\ 0 & \text { othervise }\end{cases}
$$

Thue the reault follome

Propapition 0,0.3 The followng are equivalent for fe(U,V);
(畨) I factor: throuth projective module,
(b) $f \in \mathrm{H}_{\mathrm{G}}(\mathrm{U}, \mathrm{v})_{k}$.

(d) $E \in I(h, V)$ where $h i U \longrightarrow P^{\prime}$ ia any fired monomphim with P^{\prime} projective.

Proof We firatly whow thet (a) impliee (b). So mupposie that f factore sa the
componite $U \rightarrow P \rightarrow Y$ where P in projective. Note that P in ediract
aumend of $x^{\text {th }}$ for mowe k-apace, x. Thus f factora at:

$$
U \xrightarrow{U} \xrightarrow{t} x^{t G} \xrightarrow{H} H
$$

where $m=1_{p}$. Thus it aufficea to assuact that $P=X^{i G}$. There exiat k-linaar mapa $\mathrm{H}_{1}: \mathrm{U} \longrightarrow \mathrm{X}$ and $\mathrm{s}_{1}: \mathrm{X} \longrightarrow \mathrm{V}$ uuch that:

$$
\begin{aligned}
& (u)-\sum_{g \in C} g a_{1}\left(g^{-1} u\right) \\
& g(8-x)=g_{1}(x) .
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\mu_{G}\left(s_{1} u_{1}\right): u & \sum_{g \in G} g s_{1} a_{1}\left(g^{-1} u\right) \\
& =\sum_{g \in G} g\left(g \in a_{1}\left(g^{-1} u\right)\right) \\
& =\operatorname{sex}(u)=f(u)
\end{aligned}
$$

Hence f e $\mathcal{H}_{G}(\mathbb{U}, V)_{k}$, an requirad.
We now ahow that (b) impliee (c). Suppose that $f=\mu_{G}$ for some at $(U, V)_{k}$ Define a $\mathrm{u} \longrightarrow\left(\mathrm{V}_{\mathrm{h} 1}\right)^{\text {tc }}$ by:

$$
g(u)=\sum_{g \in G} g e\left(g^{-1} u\right)
$$

and $\mathrm{E}:\left(\mathrm{v}_{\mathrm{B} 1}\right)^{\mathrm{AC}} \longrightarrow \mathrm{y}$ by:
$g(g-v)=g v_{1}$

Siailarly (b) iaplian (d) and trivially (c) or (d) iaplien (a), thue the reault follow.

Corallery 0.0.4 The following are equivalent for a kg-adule. v:
(a) V ie projective,
(b) $\mu_{G}(v, v)_{k}=(v, v)$,
(c) $\mu_{G}(V, V)_{k}$ containa an automorphian of V.

Proof To how that (a) impliam (b), take $g=1 y$ in (0.0 .3)(c) to five that
 Suppome thet (c) holdw, then (0.0 .3) whowa that tharie exiata a projective module, P, and maps $V \longrightarrow P \longrightarrow V$ the composite of wich is an automorphiam of V. Thue V ia a direct mumand of P and so id projective. Hence (c) implies (a) and the raault ia proved.

For any kG-modules U, V wa know that $H_{G}(U, V)_{k} *(U, V)_{k}^{G}=(U, V)$. We ahell mrite:

$$
(u, v]=(U, v) / \mu_{G}(U, v)_{k} .
$$

Lenea $0,0,5$ Lat U be ak-module with no projective aumanda. Then:
(a) the only $\quad \mathrm{U} \longrightarrow \mathrm{k}_{\mathrm{G}}$ which factora through a projective module is the zaro mp.
(b) $\left[\mathrm{U}, \mathrm{k}_{\mathrm{G}}\right\rceil$ ($\left.\mathrm{P}_{\mathrm{U}}, \mathrm{k}_{\mathrm{G}}\right)$ there P_{U} denotea the projective cover of U .
(c) $\left[\mathbf{k}_{G}, C \mathbb{C D}\right]\left(\mathbf{k}_{G}, P_{U}\right)$.

Proof Note that $\mu_{G}\left(U_{i} k_{G}\right)_{k} \mu_{G} U^{*}$. Hut U^{*} has no projective aumanda, thum, $\mathrm{by}_{\mathrm{y}}(0.0 .2)$, $\mathrm{P}_{\mathrm{G}}{ }^{*}=0$. Hence (a) followil from (0.0.3). Moreovar we hava thar $\left[U, K_{G}\right]=\left(U, k_{G}\right)$. To prove (b), note that any elemant of (U, K_{G}) gives an element of (P_{U}, k_{G}) by conposition with the egimorphisa $P_{U} \longrightarrow U$; but an ia projectiva-free, thum any map $P_{U} \longrightarrow k_{G}$ ia zaro on of (by (a)) and aco arime

- thum (b) ia aleo proved.
 applied to the projective-free module (aU) of which P_{U}^{*} ia a projective cover.

The next ramult ahow that we may ganerally reduce to the case when G ia a p-group.

Leapa 0.0 .6 Lat P be Sylow p-aubgroup of G. Then mg-module, V, is projectiva if and only if $V_{f p}$ ie projective.

Proof If V ie projective then mo, trivially, in Vf. Conversely, auppose tha'-
 given by:

$$
\begin{aligned}
& v \longmapsto \frac{1}{|G: P|}\left(\sum_{y \in T} g g^{-1} v\right) \\
& g \in v \geqslant-g v .
\end{aligned}
$$

(where T ia left erenaveral for P in G) the composite of wich in v^{\prime}. Thus V if direct au and of the projective module $\left(V_{\phi p}\right)^{\text {tis }}$, and hence in itaelf projective.

Note that in the case $g=0$ we have $P=1$ so that every kG-adule 1a projective. Hance ve anaune for the reat of thia aection that $p \mathbf{O}$ and that G 1* a p-group. The following lemag aumarisea the isportant elementary facta about thid Bituation.

Leane 0.0.7 (a) For any nanzero kG-modula, V, we have $v^{G} 0$.
(b) K_{G} in the unique inple kG -module.
(c) $J(k G)=A u g(k G)$,
(d) kG ie indecomparable.
(e) A kC-module in projective if and only if it ia free.
(f) For any $k G$-module, $v, \operatorname{soc}(v)=v^{G}$.

Proof (a) We may regard V as (not necessarily finitely-generated) Fp-oodule. Let V_{1} be a nonzero, finitely-generated $F_{p} G$-submodule of V, then, in particular, V_{1} ia a finite-dimenaional F_{p}-mace and wo is a finite aer with p^{n} aleanta for some $n>0$. Consider the action of G on V_{1}; becmuma G ia p-group all the orbite will have length a power of p. Thum the number of orbite of length one (1.e. the number of G-fixed pointe of v_{1}) ie divisible by p. Hence $0 \& v_{1}^{G} \leqslant v^{G}$.
(b) tollove trivially from (a), and (c) and (f) follow from (b). (b) alao implian that kHG is the unique aintalal submodule of kG. so (d) followa by noting thar decomposable module will have at least two minimal submodulea. (■) follow from (d) and the Krull-Schaidt theoras when ve recall that any projective module ia diract sumand of a free module.

Proponition 0.0.8 For any kG-module, V:

$$
\operatorname{din}_{k} \mu_{G} V \leqslant \frac{1}{1}(\operatorname{dig}, V) \leqslant \operatorname{din}_{k} v^{G}
$$

with either equality holding if and only if V is free.

Proof we can urite $V=F=V_{0}$ whera F is free and V_{0} has no frae direct sumands. The multiplicity of $k G$ in V is then:

$$
\frac{1}{r G}(\operatorname{dig} F)
$$

but it in almo equal to ding $\mu_{G} V$ by (0.0.2) ($P_{1} \neq \mathrm{kG}$ by (0.0.7)(d)).
 entablimhed for the firat insquality.

For tha aecond inequality, thare eziet an exact equence:

$$
0 \longrightarrow v \xrightarrow{\theta} F^{\prime} \longrightarrow w \longrightarrow 0
$$

where F^{\prime} ia free and W hat no frae diract sumand. By (0.0.2), $\mu_{0} W=0$: thu* $\mu_{G}{ }^{\text {F' }} \leqslant \mathrm{Im}$. Hence wo aee that:

$$
\mu_{G} F^{\prime}=\left(F^{\prime}\right)^{G}=\theta\left(v^{G}\right)
$$

-o that:

$$
d i m_{k} v^{G}=d i E_{k} \mu_{G} F^{\prime}=\frac{1}{|G|}\left(d i a_{k} F^{\prime}\right)
$$

But diEk V dime F^{\prime} with equality holding iff V is frae. Thu the ramult ia also proved for the aecond inequality.

Coroliery 0.0.10 Lat \hat{k} be an axtenation field of k. For a kG-modula, v,
 ig module if and only if V ia a frat kG-module.

Proof The rabk of μ_{G} an a 11 near tranaformition 1a unchanged by extending
 so the result follow uaing the firat inequality in (0.0 .8).

We maty eabily eztend (0.0.10) to ganeral groupal let p ba Sylaw p-aubgroup of G chen $(0,0,6)$ give that V ia projective iff V ip projective. But a kP-adula is projective iff it ia fret, by (0.0.7). Thue va projective
 free $1 f f Y_{\text {fp }}$ is free. Thu:
© ia projectiva thG-modula iff V ia projective.

(c) UV ia frae if and only if:

$$
d \ln _{k}(U, V)=\frac{1}{1}\left(d m_{k} U\right)\left(d m_{k} V\right) .
$$

 V V. $\quad(V, V)_{k}$ í freathen $P_{G}(V, V)_{k}=(V, V)_{k}^{G}=(V, V)$. Thu: ia free by (0.0.4).
(b) followit from (a) and the isomarphinal

$$
\mid G \operatorname{din}_{k}(U, V)_{k}^{G}=\operatorname{dig}_{k}(U, v)_{k}
$$

- by (0.0.B). 自ut $(U, V)_{k}^{G}=(U, V)$ and:

$$
d i m_{k}(U, V)_{k}=\left(d i m_{k} U\right)\left(d 1 E_{k} V\right)
$$

eo (c) i■ provad.

[^0]Theoren 0.0 .12 Lat N be noral subproup of G and vrite $G-G / N$. For any $k G$-module, V, ve mequrd $\mu_{N} V$ an atomodule which va chall danote V.

Suppome that V if free on reatriction to N, then V ia free kG-madule if

$\mu_{G} \bar{V}=\mu_{G}{ }^{V}$. Thue apply (0.0.8): ∇ in a free $k \in$-adula iff:

$$
\operatorname{dim}_{k} \mu_{G}{ }^{\eta}=\frac{1}{\mid G / \mathbb{N}^{d i g}}{ }^{d} \eta
$$

that if to eay, iff:

$$
d 1 s_{k} \mu_{G}^{v}=\frac{1}{G_{G}} \operatorname{din}_{k} v
$$

- praciealy the condition (0.0.8) givel for V to be free.

We mhall alao need tha follovine aimpla rapult. The notation ia am in (0.0.12).

 UeV ia frea on reatriction to N and:

$$
(U V)=U \cap \nabla
$$

 ratult eality follow .

10.1 Chouinard' thegrem

Choulnard, in [Ch], proved a result that will be of particular intereat.

Chouinard'a thaoren AkG-module is projective if and only if it
if free on restriction to all the eleaentary abelian p-aubgroupa of G .

Note that any projective module ia projective, and hence free (by (0.0.7)), on reatriction to any p-aubgroup of G. Thus one implication ia trivial. For the converae, we may apply number of elementary raductionat
(1) It mificea to asmume that G in a p-group. For lot P ba Sylow p-aubgroup of G, then any kG-module which in free on reatriction to all the elamentary abalian p-aubgroupa of G in alac free on reatriction to all the eleantary abelian augroupa of P. Thum, if Chouinard's theore holda for p-groupa, it is projective en a kP -modula, and hence, by (0.0.6), an kG -modula.
(2) It sufficas to asaume that k ialgebraically closed. If V ia $k G$-module which ia free on reatriction to all the elementary abelian p-aubgroupa of G then
 fret on ratriction to all the elementary abolian aubgroupa of G, ao if Chouinard'a theorem holda for algobraically cloned fielda then $\hat{\mathbf{V}}$ if a free traodule. Hence (0.0.10) givan that V ia a free kG-module.

So now suppone that we try to prove Chouinard'e theorem for p-groupa by induction on the ordar of G. The reault if trivial if G ia alementary abelian, so ve may asaume othervise. Suppome that V ia a non-projectiva kG-module which ia frac on reatriction to all the elesentary abalian mugroupa of G, then the aame conditiona hold with reapect to one of the non-projective indecomposable aumends of $V_{\text {; }}$ thum it muffices to gasume that V ia indecomporabla. Inductively, V is free on reatriction to all the proper aubgroupa of G. Thus it ufficea to prove:

Chouinard'e theoren - Second veraion Let k benalgabraically clomed field of charactariatic p. We call a finite p-group, G, Chouinard aroub if there do not exist non-projective, indecomponable kG-modulea which are free on reatriction to all the maximal aubroupa of G. Then any group which ia not elementary abelian ia Chouinard group.

Moreover, this veraion it itplied by the firat, so the two formulationa are equivalent.

Am an example, let un prove that any cyclic p-group of order at lamet p^{2} Ia a Chouinard group. Lat G be much a group of ardar $p^{n}(n>1)$ and choomea generator $x, H=\left\langle\boldsymbol{m}^{P}\right\rangle$ is tha uniqua maimal mubgroup of G, it has ordar
 indecompomala kG-module which ia free on reatriction to H .
V is the direct sum of number of copiem of $k H$, thus $q \mid d i z v$. Since V ia not projective, (0.0 .2) gives that $H_{G} V=0$, that is to ary, uning $(0.0 .1)(d)$.

$$
(x-1)^{\left(p^{n}-1\right)} v=0
$$

Thu: the minimu polymodal of x on V divides $(X-1)^{\left(p^{n}-1\right)}$ and hence in $(x-1)^{T}$ for some $T \& g^{\square}-1$. Using the fact that V is indecomposable. the
 diagonel. In particular, $r=d i m, V$, mo that q / r. Hance ve can write $r=q u$ for some $\leqslant p-1$. Thus $q(p-1) \geqslant r$ so that:

$$
(x-1)^{q(p-1)} y=\left(x^{q}-1\right)^{(p-1)} v=0
$$

But $E=\left\langle x^{q}\right\rangle$ is a aubgroup of G of order p, so the equation abova Eiayit that $\mu_{E} V=0$. Hence V is not frae on rateriction to E - a contradiction ince $\mathrm{E} \leqslant \mathrm{H}$. Thus:

Prodoaition 0.1.1 Any cyclic p-group of order at least p ${ }^{2}$ ia a Chouinard group.

Later wa shall give de leagt two further proofa of thie proposition. Meanwhile we prove an elemantary reduction theorem. The mathoda uaed are essentially those of [Cal] Blighty extended.

Theorem 0.1.2 Any p-group which has a Chouinard factor group in itealf

 . Chouinard group. Chouinard group. Suppoae that V ia an indecompambla to-module which in free on reatriction to all the maximal aubgroups of G. We cannot have $G \mathbf{m}$ mo N la contained within sone maximal mubgroup of G; in particular, V if free on restriction to N. Thual we consider cha kG-module $V=\mu_{\mathrm{N}} \mathrm{V}$ as in (0.0.12). The maximal subgroupa of G corraapond to the asimal aubgroupa of G containing N: thus ∇ i官 free on reatiction to all the maximal bubgroups of G. Sinca 1 a Chouinard group this ipplies that F ia projective. Thum V ig projective and the rasult follow

Coroilerv 0.1.3 If G is a pagroup for which the derivad mubgroup is proparly contained within the Frattini aubgroup, then G ia a Chouinard group.

Corgilary 0.1,4 Any abelian p-group which ia not elementary abelian ia a Chouinard group.

Proofe Before proving (0.1.3), we remark that the derived aubgroup of G, G^{\prime}. If alwaya contained in the Frattini aubgroup. If the incluaion iag arict than G/G' is an abelian group shich ia not elementary mbilian. Thus (0.1.2) shous
thet it eufficen to prove (0.1 .4).
Ang abelian group ia the direct product of cyelic groupa. If it in not elamentary ablian than one of thase factora will have ordar at laast p^{2}. Thu (0.1 .4) followa from $(0.1 .2)$ and (0.1 .1).

Remark There ia alight abbiguity in the definition above as to-whethar the trivial group ia a Chouinard group. On tha one hand thare are no non-projective kl-modulea; on the other, it make no menee to talk about marimal aubgroupa of 1. We make the convention (tacitly anaumed in the proof of (0.1.2)) that 1 is not Chouinard group. Sinea 1 ie certainly aleantary abalian, thid makea no difference ta the validity of Chouinard'e theorem,

CHAPTER 1

PERIODIC RESOLUTIONS
AND
BOCKSTEIN OPERATORS

tineraduction

Suppose thet V it ag-modula which ia frea on rentriction to ame meximal dubgroup of the p-group, G. In chie chapter we ahow how to conderuct An enact equance:

$$
0 \longrightarrow \mathrm{~V} \longrightarrow \mathrm{P} \longrightarrow \mathrm{P} \longrightarrow \mathrm{~V} \longrightarrow 0
$$

with P projective. We alao discuma how thia conatruction is related to the Bockintein epa:

$$
B: \operatorname{Ext}_{F_{p}{ }^{G}}^{1}\left(F_{p}, F_{p}\right) \longrightarrow \operatorname{Ext}_{F_{p}{ }^{2}}\left(F_{p}, F_{p}\right)
$$

and show how the reault of Serre conceraing the cup-product of certinin elumenta of If B me bead to prova Chouinard" theorem.

11.0 Cyclic grouga

Lat C be cyclic p-group. There i䡒 a vell-known periodic projective ramolution for k_{C} demcribed, for erapla, in [CAE]. Ohoose m ganarator, m, for C and conaider the maquance:

$$
\begin{equation*}
0 \longrightarrow \mathbf{k}_{\mathrm{c}} \rightarrow \mathrm{kC} \rightarrow \mathrm{k} \mathrm{C} \longrightarrow \mathrm{k}_{\mathrm{C}} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where tha mapa are given by:
$\pm 1 \longmapsto \mu_{\mathrm{C}}$,
(1 $1 \longmapsto \pi-1$,
8: 1 $\longmapsto 1$.
and are extended kC-1inearly. Note that Auf (kC) $=(x-1) t C$, thet id to may

 Thus k_{C} is pariodic of pariod one or two. It ham pariod one iff in B ia 1aonorphic to ${ }_{C}$, that in to mat, iff
1.a. Chan order 2. In this case $\mu_{C}=z-1$ athe dequence above iv the join of two copies of the eequence:

$$
0 \longrightarrow \mathrm{k}_{\mathrm{c}} \longrightarrow \mathrm{kc} \longrightarrow \mathrm{k}_{\mathrm{c}} \longrightarrow 0 .
$$

In general, the aequence (1) dependa on the choica of tha ganerator, i. Suppoae that we choode anothar generator, $x^{\prime \prime}$. and conatruct the corramponding aequence. The end eapar, and a, wil be unchanged, but the cantral map $B^{\prime} 1 \mathrm{KC} \longrightarrow \mathrm{KC}$ vill begiven by $1 \longmapsto \mathrm{~g}^{\prime}-1$. Now, weay complete the conntative diagreap

Lempa $1,0,1$ There enime a vith $x=\left(x^{\prime}\right)^{\text {a }}$. With thia notation, the map - in tha diagram equala al g°

Proof Note that is uniqualy deterninad up to tha addition of apactoring through kC. Hence, by (0.0 .5), e ia determined uniqualy. We ahall conatruct a particular diagran.

$$
\begin{aligned}
& \text { We matake } \quad=1 \text { rac }{ }^{\text {i then }}
\end{aligned}
$$

so that wa may define d^{\prime} by:

$$
1 \longmapsto 1+\pi^{\prime}+\ldots+\left(z^{\prime}\right)^{-1}
$$

Hence:
and tha rasult ia seen to follow.

1．1 Periodic Renolutione

Suppoie that H iv maxal aubgroup of a p－group，G．H it then noreal of indax p_{1} so conaider the cyelic group $C=G / H$ ．The eaquence of kC－modulan， （1）．givan in the previoual mection may be regarded as a mequance of kG－module by letting H ect trivially．Thim takes the form

$$
\begin{equation*}
0 \longrightarrow k_{G} \longrightarrow k(G / H) \longrightarrow k(G / H) \xrightarrow{\longrightarrow} k_{G} \longrightarrow 0 \tag{2}
\end{equation*}
$$

where the mape are given by：
a $11 \longrightarrow P_{G / B}$ ．
© ：Hっ（ $\mathrm{H}-1$ ） H ，
$\mathrm{B}, \mathrm{H} \longmapsto 1$ ．
Hare $\boldsymbol{B H}$ is tha choice of genarator for G／H，eo can be chamen from any of tha elpeanta of $\mathrm{G}-\mathrm{H}$ ．If g^{\prime} in anothar choica than（1．0．1）gives that there

where a in dafined by $\left(B^{\prime}\right)^{-6}$ e H ．
The min usefulven of the mequence（2）lien in the following realti
 co H ，then $k(G / H) \oplus v$ if free．

$$
\text { Mare conczetely, if } \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{y}} \text { is free kH-bele for } V \text {, then: }
$$

$$
\mathrm{H} v_{1} \ldots \ldots \text {, } \mathrm{H} \text { 靣 }
$$

in free kG－bailin for $k(G / H)$ 光 V ．

Proof If ue Juat wiah to prove the firat atatemant then note that k(G/H)
 required.

For the concrate veraion, it mufficen, by dimanalona, to ohow that $H \mathrm{H}_{\mathbf{1}}$,

$$
\sum_{i=1}^{\infty} k_{i}\left(B \| v_{i}\right)=0
$$

for ane H_{1} ekG. Write each S_{1} ae:

$$
\xi_{i}=\sum_{j=0}^{-1}{ }^{j} 2_{i j} \quad \text { for some } B \in G-H, q_{i j} \in k H
$$

then:

Thus, for each 1 ,

$$
s^{j}\left(\sum_{i=1}^{n} \imath_{i j} v_{1}\right)=0
$$

an required.

Tensor the mequance, (2), by V co obtain:

$$
0 \longrightarrow v \longrightarrow k(G / H) \bullet v \longrightarrow k(G / H) \in v \longrightarrow v \longrightarrow 0 .
$$

By (1.1.1) thila il a two-step projective rasolution for V. We can improve on thín in the c ase $p=2$ by talking the aequance:

$$
0 \longrightarrow k_{G} \longrightarrow k(G / H) \longrightarrow k_{G} \longrightarrow 0
$$

and tenaoring thia by V to get a one-atep projective recolution. Thua:

Theorpan 1,1,2 Lat V be non-projective, indecomposable hG-adula which 1a frem on remtriction ta monemimal bubaroup of G. Then V id periadic of period one or two. In the caea $p=2$, the pariod im alvage one.

Thif method ia uned to prove the mane reault, Letman 2.5, in [Ca2], mid seen to be generally well known.

51.2 Serra proude

Lat ua for the moment reatrict our metention to the fiald of pleadnta. F_{p}. For afixed p-@roup, G, take binimi Ficprojective renolution:

$$
\cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow F_{p} \longrightarrow 0
$$

If $\left(\mathrm{H}_{1}, \ldots, H_{n}\right)$ ia an a-tupla of eximal aubgroupa of G then, for ath 1 , ve choose $H_{1} \in G-H_{1}$ and conalder the aequence:

$$
0 \longrightarrow F_{P} \longrightarrow F_{p}\left(G / H_{1}\right) \longrightarrow F_{p}\left(G / H_{i}\right) \longrightarrow F_{p} \longrightarrow 0
$$

thera the central map ia givan by $H_{i} \longmapsto\left(\varepsilon_{i}-1\right) H_{i}$, we my atring thead eequancen together by identifying the left-hand F_{p} of one mequence with the right-hand F_{p} of the nert. Complete the camutative DIAGram 1 (aee over). Thim deternine map at $\Omega^{2=} F_{p} \longrightarrow F_{p}$ depending, up to mulciplication by a nonzero ecalar, only on ($\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}$).

Call G a Serre group if thare eriate an m-tuple, (H_{1}, \ldots, H_{1}), for some ouch that the correaponding wap $\Omega^{2} F_{p} \longrightarrow F_{i}$ vero.

Theorat 1,2.1 Any Serre group is a Chouinard group.

Proof Lat G be Serre group and auppoce that Diegran 1 is auch that $M=0$. Let V be non-projective, indecomposable KG-adule which ia free on reatriction
 a diagram:

(herce" - 2m-1)

DIAGRAM 1

* ie uniqualy datarinimed by thia diagrana using (0.0 .5)(a). We Bat gage che effact of changing the choice of the elemente, E_{1}, of G- H_{i} by uaing tha ertenaion of (1.0.1) mentionad in $\mathbf{6 1 . 1 :}$ it ia to multiply at by a monzaro acalar. Thu籴 whether or not $\pm=0$ 1. independent of thin choice.

whare the lower equence ilaminimal projective reagiution of kg (ube (0.0.10) to bow that it ia minimal). Now tenmor thig diagrag by V. V if free on reatriction to each of H_{1}, \ldots, H_{m} oo. ie in the previous eaction, the cop row

Therefora 1_{v} factora through the projective module $k\left(G / H_{1}\right)$ © . Hence v ia projective - a contradiction.

$$
0 \longrightarrow F_{p} \longrightarrow F_{p} G \longrightarrow F_{p} G \xrightarrow{\Delta} F_{p} \longrightarrow 0
$$

sa in f1.0, whare the mapa are given byi

$$
\begin{aligned}
& a: 1 \longmapsto P_{G} \\
& \bullet: 1 \longmapsto Y-1
\end{aligned}
$$

$$
x: 1 \longmapsto 1 .
$$

Let H - $\left\langle x^{\rho}\right\rangle$ be the unique meximel mbgroup of G and complata the diegran:

where the central bap in the uppar bequanca is given by $H \rightarrow(x-1) R$.

$\Sigma^{\prime}(1)=B^{\prime}\left(\mu_{G}\right)=\mu_{G}{ }^{H}=0$
 eo that $1=0$. Thu G ia Sarra aroup, and hance Ghouinard eroup, tharaby siving another proof of (0.1.1).

The nezt mettion deala with alighty lase trivial ermple.

© 1.3 Exanole - 0_{8}

$$
G=\left\langle x, y \mid x^{2}-y^{2}-(x y)^{2}\right\rangle
$$

be the quaternion group, Q_{g}, G ha three eaziml aubgroupa, $\langle x\rangle,\langle y\rangle$ and $\langle\pi\rangle$, each of which ia cyclic of order 4. The mubroups of order 2 of thele three groupe coincide, thul (0.1.1) iaplian that if kg-module it free on ramtriction to one of the mandel abgroupa of G, then it ia frea on reatriction to then

We piva two proafia of the fact that 6 is Chouinurd group. Tha tirat ethod i家 brute forcie. Write:

$$
5=x-1,2=y-1
$$

for the eleaentia of ICG. Now:

$$
Z^{2}=y^{2}-1=x^{2}-1=\xi^{2}
$$

-o that, in particular, $25^{2}=5^{2} 2$. Alia:

$$
\begin{aligned}
2^{5} & =y-y+1-x^{3} y-x-y+1-\left(z^{3}-1\right) y-(x-1) \\
& =\left(\xi+5^{2}+5^{3}\right)(1+2)-5-\left(8+\xi^{2}\right)_{2}+\xi^{2}+\xi^{3}+\mu_{G}
\end{aligned}
$$

- for note that 3^{3} ? $-\mu_{6}$.
 and that is non-projective, Indecompoemble lag-module which ia free on reetriction to H (and thue to all the emieal eubgroupa of G). Talke free

$$
2^{V} \in A u g(k A) . V=E v .
$$

Thus ve mex vice:

$$
2^{v_{i}}-\sum_{j=1}^{m}\left(a_{i j} v_{j}+b_{i j} \frac{5}{2}_{j}+c_{i j} i^{3} v_{j}\right)
$$

for some conatanta, $a_{i j}, b_{i j}, c_{i j}$ in k. Now:

$$
\begin{aligned}
& E^{3} v_{i}=2^{2} v_{i}-\sum_{j}\left(a_{i j} 2^{5 v} v_{j}+b_{i j} 2^{2} v_{j}+c_{1 j} j^{2} v_{j}\right. \\
& \text { - } \sum_{j}\left(\varepsilon_{1 j}\left(\left(\xi+\xi^{2}\right) v_{j}+\xi^{2} v_{j}+\xi^{3} v_{j}+\mu_{G} v_{j}\right)+v_{i j} \xi^{2} v_{j}{ }^{\prime}\right) \\
& =\sum_{j}\left(a_{i j}\left(\xi^{2}+\xi^{3}\right) v_{j}+\left(\left(a_{1 j}+b_{i j}\right) \xi^{2}+a_{i j}\right)_{2}{ }_{2} j_{j}\right. \\
& \text { " } \sum_{j}\left(a_{i j}\left(\xi^{2}+\xi^{3}\right) v_{i}+\left(\left(a_{i j}+b_{i j}\right) \xi^{2}+a_{i j}\right)\left(\sum_{r}\left(a_{j r} r^{3}+b_{j r} r^{2}+c_{j r} \xi^{3}\right) v_{r}\right)\right) \\
& -\sum_{j} a_{i j}\left(r^{2}+5^{3}\right) v_{j}+\sum_{j, r}\left(a_{i j}{ }_{j r} s^{2}+a_{i j} b_{j r} r^{3}+\left(a_{i j}+b_{i j}\right) a_{j r} r^{3}\right) v_{r} .
\end{aligned}
$$

Thu if A denotea the merin (a_{ij}) and B the merin (b_{ij}) then thia impliea that $I=A+A^{2}$ and $O=A+A B+(A+B) A$. Hence thera exist ($\quad A B$) Erricea A, B with:

$$
\begin{aligned}
& A^{2}+A=1 \\
& A B+B A=I
\end{aligned}
$$

- will show that thase equationagiva contridiction.

By conjugating euitably, ve my asoum that A ia in ite Jordan canonical form. If A_{1} is a constituent Jordan block then $A_{1}^{2}+A_{1}=I$. Write $A_{1}=$ an

$$
\left|\begin{array}{cccc}
a & 1 & & \\
& a & 1 & \\
& & \cdots & \\
& & & a \\
& & & \\
& & a
\end{array}\right|
$$

then:

$$
A_{1}^{2}+A_{1}=\left|\begin{array}{cccccc}
b & 1 & 1 & & & \\
& b & 1 & 1 & & \\
& & \cdots & \cdots & \cdots & \\
& & & b & 1 & 1 \\
& & & & b & 1 \\
& & & & & b
\end{array}\right|
$$

where $b=a^{2}+a$. The only way that thia can be the identity mintix in if A_{1} 1a a (1×1) eatrix and $a^{2}+\frac{1}{6}=1$.

Thue A Aa diagonal matix with the diagonal entriea eatiefying $\mathbf{x}^{2}+X=1$. Thu* we man mane that:

$$
A=\left[\begin{array}{ll}
a_{1} I_{1} & \\
& \\
& a_{2} I_{2}
\end{array}\right]
$$

where ${ }_{i}(1-1,2)$ are the roate of $\mathrm{I}^{2}+X-1$ and I_{i} are identity matricen of variou* alzed. Hrite:

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

in compatible block form. Then the equation $A B+B A=I$ implies that:

$$
\left[\begin{array}{ll}
a_{1} \mathrm{~B}_{11} & a_{1} \mathrm{~B}_{12} \\
a_{2} \mathrm{~B}_{21} & \omega_{2} \mathrm{~B}_{22}
\end{array}\right]+\left[\begin{array}{ll}
a_{1} \mathrm{~B}_{11} & a_{2} \mathrm{~B}_{12} \\
a_{1} B_{21} & a_{2} \mathrm{~B}_{22}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{I}_{1} & \\
& I_{2}
\end{array}\right]
$$

๓o $1_{1}=1_{2}=0$. Thum $A=0$. Hance $a=0-$ contradiction.

Thum G fa a Chouinard eroup.

The aecond approach to proving thie face ia to whow that G ie asere group. There is a-atep pariodic projective ramolution of k_{G} givan, for axampla, in [CAE]. The dataila are givan in DIAGRAM 2.

DIAGRAM 2

In the projective resolution, P denotes the free $\mathrm{F}_{2} \mathrm{G}$-module on two symbols, a and b. The maps are given by:

$$
\begin{aligned}
\delta_{0}: 1 & \longmapsto 1, \\
\delta_{1}: a & \longmapsto x-1, b \longmapsto y-1, \\
\delta_{2}: a & \longmapsto(x-1) a+(y-1) b, \\
& b \longmapsto(x y-1) a+(x-1) b, \\
\delta_{3}: & 1 \longmapsto(x-1) a+(x y-1) b, \\
\delta_{4}: & 1 \longmapsto \mu_{G} .
\end{aligned}
$$

The maps in the upper sequence are given by:
$\alpha: 1 \longmapsto \mu_{G / H}=(y-1) H$,
B : $\mathrm{H} \longmapsto(y-1) \mathrm{H}$,
$8: \mathrm{H} \longmapsto 1$
Thus we may define α_{0} by $1 \longmapsto H$. Then:

$$
\begin{gathered}
\alpha_{0} \partial_{1}: a \longmapsto(x-1) H=0, \\
b \longmapsto(y-1) H,
\end{gathered}
$$

so define α_{1} by $a \longmapsto 0, b \longmapsto \mathrm{H}$. Now:

$$
\alpha_{1} \delta_{2}: a \longmapsto(y-1) H
$$

$$
b \longmapsto(x-1) H=0,
$$

so define α_{2} by $a \longmapsto \mathrm{H}, \mathrm{b} \longmapsto 0$. Then:

$$
\alpha_{2} \partial_{3}: 1 \longmapsto(x-1) \mathrm{H}=0
$$

Thus α_{3}, and hence α_{4}, may be taken to be zero
maps. Therefore G is a Serre group.

(31)

Remark The fact that Q_{g} is a Chouinard group ia proved in [Cal]. Tha method uned there fabialar to the "brute forca" eathod given bove, but appeale to the cleanficietion theorean for indecompoable modules of the Klein 4-group (aee Appandix A).

©1.4 Connectian with Bockgtain operazora

Writa $E^{(G)}$ (G) the cohonology group:

$$
E^{G}(G)=\operatorname{Ex}_{F_{p} G}\left(F_{p}, F_{p}\right) .
$$

We whall think of $E^{(G)}$ (G) two wayt: the detaila may be found in [McL].
(1) Uaing (0.0.5), there ia an isomorphian $E(G) \pm\left(\Omega^{\rho} T_{p}, F_{p}\right)$-thia eathod ia particularly ueeful when ve are conalderine the Fo-apaca atructure of the cohomology ring:

$$
\mathbf{E}^{*}(G)=\oplus_{0} E^{m}(G)
$$

(2) We mat mian think of $E^{(G)}$ (G) the eat of all equivelence claeaes of aract asquancea of $F_{p} G$ madulas:

$$
\begin{equation*}
0 \longrightarrow \mathbb{F}_{\mathrm{p}} \longrightarrow \mathrm{x}_{\mathrm{m}} \longrightarrow \ldots \longrightarrow \mathrm{x}_{1} \longrightarrow \mathbb{F}_{\mathrm{p}} \longrightarrow 0 \tag{1}
\end{equation*}
$$

 meane of the diagrem:

where the lower maquance is ainimal projective remolution - two aequancee are than equivelent if they are asaigned the nam map. Thie if particulariy uneful when we are coneldering the cup-product in E (G). The product of the image of eequence (1) with the image of the eaquance:

$$
0 \longrightarrow \mathbb{F}_{\mathrm{p}} \longrightarrow \mathrm{Y}_{\mathrm{n}} \longrightarrow \ldots \longrightarrow \mathrm{Y}_{1} \longrightarrow \mathbf{F}_{\mathrm{p}} \longrightarrow 0
$$

1s julat the ienge of the join of the two eequences:

$$
\begin{aligned}
0 \longrightarrow \mathbb{F}_{\mathrm{p}} \longrightarrow \mathrm{y}_{\mathrm{n}} \longrightarrow \ldots & \longrightarrow \mathrm{y}_{1} \longrightarrow x_{\mathrm{m}} \longrightarrow \ldots x_{1} \longrightarrow \mathbb{F}_{\mathrm{p}} \longrightarrow 0
\end{aligned}
$$

With thi notation, we derive characteriantion of tha inge of the Bockilein map:

$$
\mathrm{B}: \mathrm{E}^{1}(\mathrm{G}) \longrightarrow \mathbb{E}^{2}(\mathrm{G}) .
$$

See [Ca4] or [Pic] for the same ramit, although nat nacasaarily expraamed in the mana teran.

 $\mathrm{F}^{\prime}, \mathrm{G} \longrightarrow \mathrm{F}^{+}$via the rule:

$$
f^{\prime}(x)=E(x-1)
$$

- To check the detaile: given fwe have:

$$
\begin{aligned}
f^{\prime}(x y) & =f(x y-1)=f((x-1)+(y-1)+(x-1)(y-1)) \\
& =f(x-1)+f(y-1)+(x-1) f(y-1) \\
& =f^{\prime}(x)+f^{\prime}(y)
\end{aligned}
$$

So lat E be a nonzero el memt of $E^{1}(G)$. We regard z a nonzaro group homomorphimin $G \longrightarrow F_{D}^{t}$ ao that H-kar z ia anisai bubroup of G. Write $\boldsymbol{G}=\mathrm{G} / \mathrm{H}$ and lat be the natural homomorphime $G \longrightarrow \mathbf{G} \rightarrow$ E Eactora am:

$$
\mathrm{G} \xrightarrow{\bullet} \overline{\mathrm{G}} \xrightarrow{\mathrm{z}^{*}} \mathbb{F}_{\mathrm{P}}^{+}
$$

 $\phi_{1}^{*}: \mathrm{E}^{1}(\mathrm{C}) \longrightarrow \mathrm{E}^{1}(\mathrm{G})$.

The Bocketein operator ie naturid, thua there in comotativa diagran:

where the horizontal maps are tha Bockatein operatoriand the vertical mapa are thoae induced by ϕ. Thus $B(z)=\phi_{2} B\left(z^{\prime}\right)$.

Uaing the properties of cyclic groupa we have:

$$
\begin{aligned}
& E^{1}(G)=\left(\operatorname{Aug}\left(F_{p} G\right), F_{p}\right)=F_{p} \\
& E^{2}(G)=\left(S^{2} F_{p}, F_{p}\right)=\left(F_{p}, F_{p}\right)=F_{p}
\end{aligned}
$$

and $B \neq 0$. Thus, choosing any nonzero element, e, of $E^{2}(G)$ chara eximta nonzero cef rith $B\left(z^{\prime}\right)=c e$.

But we may tale e to be the image of the Bequence:

$$
0 \longrightarrow F_{p} \longrightarrow F_{p} \overline{F_{p}} \longrightarrow F_{p} \longrightarrow F_{p} \longrightarrow 0
$$

so that $f_{2}^{*}(e)$ is the image of:

$$
0 \longrightarrow F_{p} \longrightarrow F_{p}(G / H) \longrightarrow F_{p}(G / H) \longrightarrow F_{p} \longrightarrow 0
$$

Now $B(z)=\phi_{2}^{\phi} B\left(z^{\prime}\right)=c \phi_{2}^{*}(e)$. To conclude:

Theoren 1.4.1 If z ia any nonzero element of $E^{1}(G)$ then $B(z)$ ia Aonzero acalar multiple of the image in $E^{2}(G)$ of the sequence:

$$
0 \longrightarrow F_{p} \longrightarrow F_{p}(G / H) \longrightarrow F_{p}(G / H) \longrightarrow F_{p} \longrightarrow 0
$$

for mome maximi aubgroup, H, of G.

In viev of this, let ue re-exaline our definition of Serre groupa. Gin
 auch that the cup-product, $B\left(z_{1}\right) B\left(z_{2}\right) \ldots B\left(z_{0}\right)$, qquala O. Thua Proposition (4) of [Sar] maye that:

Thaoren 1.4.2 Every group which ia not eleantary abelimn ia a Ser aroup.

Hence thifend (1.2.1) imply that every group which ia not elementary abialian 1a a Chouinard group. That ia to ay Chouinard'a cheorae hoida.

Thim in, broady apaning, Chouinard'a proof etripped of ita cohomological guiae. Sarra'a realt ramina atumbing-block howaver.

CHAPTER 2

Introduction

Ua have hom, given non-projective, indecomposieble kG-module. V. which ia fram on raitriction to mazien subgroup of G, hav to conitruct a twonatep projective remolutions

$$
0 \longrightarrow V \longrightarrow P \longrightarrow \mathrm{P} \longrightarrow \mathrm{~V} \longrightarrow 0
$$

But the congtruction of almogt oplit aquqencel (akatched, for completenean, in 12.0) raquiren just thi - two-meap projective rasolution. Tharafore In thic chapter voply this to V to obtain an almose aplit mequance of the forin:

$$
0 \longrightarrow \mathbf{v} \longrightarrow \mathbf{x} \longrightarrow \mathbf{v} \longrightarrow 0
$$

We ala inveatipate the decompoaition of Into indecopoable bumenda, and the irraducibla mape involvint V.

62.0 The conetruction of elpont oplit eequancea

 equivalant (aec $\mathbf{1} 2.2$ for deteila). So, an mact mequence:

$$
0 \longrightarrow \mathrm{U} \longrightarrow \mathrm{x} \longrightarrow \mathrm{v} \longrightarrow 0
$$

ia ald to be alaoge aplit if the following conditiona hold:
(1) U and v ara indecompoasble,
(2) the sequance doan not aplit.
 f' ρ for some $\mathbf{f '}^{\prime}: X \longrightarrow \boldsymbol{W}$.
 Aumlander and Reitenl see [ARR] or, for mare auccinct conatruction, [Gb]. He whall follav the exiatence proof eiven, for axemple, in [Ben] or [Lan], edapted elighty. Although buicaliy tha mame, thia avoida the general category-theory argumente of the orifinal. Wh whall mkip over any of tha detaile of the proof.

The firat atap is to prove that. for general kG-adulee, U and V, chere in a matural k-igonorphifa:

$$
\begin{equation*}
D[U, V] \oplus[\mathbf{v}, \mathbf{\Omega U}] \tag{1}
\end{equation*}
$$

where D danotea the dual apacs. Applising chia tuice we have that [U,V] ia naturally imomorphic to [$\Omega \mathrm{V}, \mathrm{QV}]$ i indeed we may demonatrate a particular 1anorphiae - for $f(U, V)$ dafina $f^{\prime \prime}$ by the diagram:

[' i鼻 detereined vp to the addition of a that factore through projective
 which ia readily checked to be an imomorphian. In the caep Uav thia clearly give aring homomorphiem:

$$
[U, U] \boxminus[\Omega U, \Omega U] .
$$

 Not aurpriaingly, litete work showa that wean,

Now let V ba n non-projective, indiecomponable kG-adule, and take en enect mequenc曾:

$$
0 \longrightarrow n^{2} v \longrightarrow P_{1} \xrightarrow{\Delta} P_{0} \xrightarrow{B} v \longrightarrow 0
$$

 -bimodule imomorphian:

$$
\begin{equation*}
[V, U]=[V, \Omega V] \text { © }[V, V] \text {. } \tag{2}
\end{equation*}
$$

Since if indecemponile, (V,V) in locel ring. Thu [V, V] hag unique aazimal laft [V,V]-qubsodule. Tharefore (2) ivivat that [V, U] han e unique
 [V,V]-oodule, soc [V,U], 1* aimpla.

Note that, becaued the image of G in [Y,U] in nonzero, the lover aequence doen not eplit: furthermore, both ita end-terim, V and $f^{2} V$. are indecoepoable. To whov that thif eequence ia actualiz aleoat oplit, lat $f: \Omega^{2} v \longrightarrow H$ be any map. Forn the diapram:

then f ia eplit monomorphisa

- the inducad mp [w, $\left.r^{2} v\right] \longrightarrow\left[O^{2} v, o^{2} v\right]$ [V,v] ia aurjectiva
* che induced map:

$$
f:[V, U] \oplus D[V, V] \longrightarrow D\left[W, \sigma^{2} v\right] \backsim D\left[o^{-1} W, \Omega V\right] _\left[V, \Omega^{-1} W\right]
$$

1s injectiva
 homamorphie

- I'e doan nat factar through *
- I does not factor through ρ.
 $0 \longrightarrow \mathrm{n}^{2} V \longrightarrow \mathrm{I} \longrightarrow \mathrm{V} \longrightarrow 0$ ia almoat aplit. To conclude:

Theoren 2.0.1 For any non-projective, indecomponble kG-module, V, there 1曾 an almant aplit equanca:

$$
0 \longrightarrow n^{2} v \longrightarrow 0 \longrightarrow 0
$$

Regark The reason for our monewhat perverse choice of the dafinition of
 then the pull-back diagrate, (3), needs to be repleced by a puah-out diagram; hovever, I for one find the former aaler to calculace.

PAGINATION ERROR

rentriction to no mexieal aubroup

Lat ue now apply the construction given in the previou aection to the camat when is a non-projective, indacompoabla kG-module thich if free on
 projective remolution:

$$
0 \longrightarrow \mathbf{v} \longrightarrow P \longrightarrow P \longrightarrow \mathbf{P} \longrightarrow \mathbf{P}
$$

for come projective module, P.
Note that the Jucobmon radical of the andonorphian ring of $V, J(V, V)$, ia nilpotent. Thue we cannot have that $J(V, V) V=V, f$ for if thia vera act then ve would have $J(V, V)^{n} v=V$ for all n, eo that, tming n sufficiently large, $V=0-a$ contradiction. Hence wey choose an epieorphim:

$$
1: V \longrightarrow \mathbf{k}_{G}
$$

祭uch thet:

$$
\begin{equation*}
J(v, v) v \leqslant \operatorname{ker} \phi . \tag{1}
\end{equation*}
$$

Wa almofix an lemant, v_{0}, of V auch that $\phi\left(v_{0}\right) \notin 0$.

New let H be any maximal bubgroup of G, not necemerily one with V being free on rantriction to H . Chooge geG-H ao that, an in fi.1, we have an exack eequence:

$$
\begin{equation*}
0 \longrightarrow k_{G} \longrightarrow k(G / H) \longrightarrow k(G / H) \xrightarrow{\bullet} k_{G} \longrightarrow 0 \tag{2}
\end{equation*}
$$

whare the mapa are given by:
$*: 1 \longrightarrow \mu_{G / M}$,
\& : H $\longrightarrow(\mathrm{B}-1) \mathrm{H}$.
$8: \mathrm{H} \longmapsto 1$.

 - acelar, vrite:

$$
\theta_{H}(v)-\phi(v) \mu_{G}\left(H \in v_{O}\right) .
$$

Now wan fori the pull-hack:

where the upper aequence in tha reault of tenmoring (2) by V.

Leter 2.1.1 The aequance $0 \rightarrow V \longrightarrow X_{H} \longrightarrow V \longrightarrow 0$ is eithar eplite

 diagrean:

The aequence we are interanted in ia then given by another pull-back diagrag:

We claim that the imge of IG_{H} is in moc [V,U]. If it ib zero than the pullback aplita. Othervilat, in in the pravioul section, it is an almot aplit
sequance.
 impliea that $\delta \theta_{H}$ maga v into $U=k e r a-f o r \mu_{G}=0$. Hence va may regard ${ }^{3 \theta_{H}}$ an an aldment of (V, U) and conaidar ite iage in [V, U] which we denote by θ.

To ohow that O if in $\operatorname{soc}[V, U]$, lat f be an element of (V, V). If if in $J(V, V)$ - i.a. if if a non-automorphian - then:

$$
\theta_{H} f: v \longmapsto \phi(f) \mu_{G}=0 \quad \text { aince } f v \in J(v, v) v \text { \& ker } 4
$$

Hence the [V,V]-aubeodule of [V,U] genarated by θ conaiate of 0 and the images of all $3 \theta_{H^{\prime}} f$ for f an aromphim of V. Any nonzero aubmodule of
 aubmodule nimo containe the image of $\left(1 \theta_{\mathrm{f}} \mathrm{f}\right) \mathrm{f}^{-1}$ - that in to say, θ.

Hence we have mown that $O[V, V]$ ia aither aimple or zaro. Thue it ia contained vithin aco $[V, U]$, mequirad.

We have explicit formula for all the ana in the pull-back diagram, (3), hence ve now proced to calculate concrete raliaation of the pull-back.

$$
\begin{aligned}
& z_{H}-\left\{(\bullet, v) \in(k(G / H) \in v)=v \mid\left(8 \cdot I_{V}\right)=-\theta_{H}(v)\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& 0: x_{H} \longrightarrow v \text { in given by }(0, v) \bullet-v \text {, }
\end{aligned}
$$

Wa my wite aseral eleaent of $k(G / H)$ ov uniquely in the form:

$$
e=\sum_{i=0}^{p-1} g^{i} H \oplus w_{i} \quad \text {-ith } w_{i} \in V .
$$

We now calculate that:

$$
\begin{aligned}
\left(s * 1_{v}\right) e & =\sum_{i=0}^{p-1}(g-1) g^{i} H \bullet v_{i} \\
& =\sum_{i=0}^{p-1} s^{1} H \in\left(v_{i-1}-v_{i}\right)
\end{aligned}
$$

where v_{-1}. Aleos

$$
\begin{aligned}
\theta_{H}(v) & =\phi(v) \mu_{G}\left(H \bullet v_{0}\right)-\phi(v)\left(1+g+\ldots+g^{p-1}\right) \mu_{H}\left(H \in v_{0}\right) \\
& =\sum_{i=0}^{R-1} g^{i} H \phi(v) g^{i} \mu_{H} v_{0} .
\end{aligned}
$$

Thus (s © $\left.1_{v}\right)=-\theta_{H}(v)$ iff:

$$
w_{1-1}-v_{1}=\psi(v)_{g}^{1} \mu_{H_{0}} v_{0} \quad \text { for ell } 1
$$

1ff

$$
w_{1}=w_{0}=\phi(v)\left(g+s^{2}+\ldots \ldots+g^{1}\right)_{\mu_{H} v_{0}} \quad \text { for } 1=1,2, \ldots, p-1
$$

$$
\begin{aligned}
& =\sum_{i=0}^{p-1} s^{1} H\left(v_{0}-\phi(v)\left(s+i^{2}+\ldots \ldots+B^{1}\right)_{H_{H} v_{0}}\right) \\
& =H_{C H} v_{0}-\phi(v) \omega_{0} \quad \text { for some } v_{0} \in v .
\end{aligned}
$$

where:

$$
e_{0}=\sum_{i=1}^{p-1} g^{i} H \oplus\left(g+g^{2}+\ldots \ldots+g^{1}\right)_{\mu_{H} v_{0}} .
$$

Nota that * ia a conatant alement of $k(G / H)$ © . Ua raadily ealculate that:

$$
h_{0}=e_{0} \quad \text { for all } h \in \text { h. }
$$

Furthereore:

$-\sum_{i=2}^{p-1} s^{1} H \bullet\left(s+g^{2}+\ldots+s^{1}-s\right) H_{H} v_{0}+H \bullet\left(\varepsilon^{2}+s^{3}+\ldots+s^{p}\right)_{H_{H} v_{0}}$

$=0-\mu_{G / H}{ }^{8} \mu_{H}{ }^{2} O$.
The map tivev $\longrightarrow x_{\mathrm{H}}$ given by:

$$
\psi(v, v)=\left(\mu_{G / H} \bullet v-\phi(v)_{0}, v\right)
$$

1a m k-isomorphian by whet was proved above. Let ua calculate the action of G
on $X_{1 H}$ in terme of this map.

$$
\begin{aligned}
& h . \phi(w, v)=h\left(\gamma_{G / H} v v-\phi(v)_{0}, v\right) \\
& =\left(p_{G / H} \bullet h v-\phi(v) h_{0}, h v\right) \\
& =\left(\mu_{G / H} \otimes h=-\phi(h v)_{0}, h v\right)=\phi(h w, h v) \quad \text { for } h \in H_{1} \\
& g \cdot \psi(v, v)=g\left(\mu_{G / H} \bullet v-\phi(v)_{0}, v\right) \\
& \text { - (} \left.\mu_{G / H} \cdot \mathrm{gv}-\phi(v)_{\mathrm{g}}^{\mathrm{g}} \mathrm{o}, \mathrm{gv}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\phi\left(g v+\phi(v)_{S_{P}} M_{0} \cdot g^{v}\right) \text {. }
\end{aligned}
$$

Finally the eapa $p: v \longrightarrow x_{H}, \sigma: X_{H} \longrightarrow v$ ara given by

$$
\begin{aligned}
& \rho(v)=\left(\mu_{G / H} v, 0\right)=\phi(v, 0) . \\
& \sigma(\phi(v, v))=\sigma\left(\mu_{G / H} v-\phi(v)_{0}, v\right)=v .
\end{aligned}
$$

He moy atate all this an:

$$
\psi: V \in v \longrightarrow \mathbf{I}_{\mathrm{H}}
$$

with the action of g beine given byi

$$
g \cdot t(w, v)=\phi\left(g v+\phi(v)_{i \mu_{H} v_{0}}, g v\right)
$$

Thempa $v \longmapsto \phi(v, 0), \phi(v, v) \longmapsto \geqslant$ give an bact requence:

$$
0 \longrightarrow v \longrightarrow x_{H} \longrightarrow v \longrightarrow 0
$$

which is either aplit or almont aplit.

If we rentrict the apimorphian $1 V \longrightarrow \mathrm{k}_{\mathrm{G}} \mathrm{to} \mathrm{H}$ than it givera projective cover of k_{H}. Thu there it a free kH-binim, v_{1}, \ldots, v_{n}, for y queh that:

$$
k \operatorname{kar} \phi=A u_{g}(k H) v_{1} \in \mathrm{kH}_{2} \in \ldots \operatorname{kH}_{n} \text {. }
$$

 thua $v_{0}, v_{2}, \ldots, v_{n}$ is also a free $k H$-basis for V. Thus we may assume that $v_{1}=v_{0}$.

 the idantity alame to 1 and the other elemence of G to 0 and ia artended l-11nearly. For fe(F,F) werite:

$$
t(t)-\sum_{i} x\left(t_{i} f\left(e_{1}\right)\right)
$$

Lance $2,1,3$ If f_{1}, ℓ_{2} are lamente of (F, F) then $t\left(f_{1} f_{2}\right)=r\left(f_{2} f_{1}\right)$.

Proof We my urite:

$$
f_{i}\left(a_{i}\right)=\sum_{j} \xi_{i j}^{(m)} e_{j} \quad \text { for some } s_{i j}^{(m)}=k G
$$

Then:

$$
f_{1} f_{2}\left(e_{i}\right)=\sum_{j} \stackrel{5}{i j}_{(2)}^{f_{1}}\left(e_{j}\right)=\sum_{j, m} \sum_{i j}^{(2)_{j}} \xi_{j e}^{(1)} e_{m}
$$

so that:

$$
k\left(f_{1} f_{2}\right)=\sum_{i, j} x\left(\xi_{i j}^{(2)} \xi_{j i}^{(1)}\right)
$$

Sibilarly $t\left(f_{2} f_{1}\right)$ ia givan by corresponding equation with $\bar{F}_{i j}^{(1)}$ and $\xi_{i j}^{(2)}$ interchanged. But $x\left(\xi_{1} \xi_{2}\right)=x\left(\xi_{2} \xi_{1}\right)$, thum the ranult is meen to follow.

Conaidering the pull-back diagran. (3), wa aee that tha aequence in (2.1.2) aplite if and only if $\left.\theta_{H}=(1) l_{V}\right) f$ for sone $f: V \longrightarrow F$. Aasume that this happena, than:

$$
\begin{aligned}
& =t\left(f\left(s-1_{v}\right) \cdot\left(8 \in 1_{v}\right)\right) \\
& =0 \\
& \text { by (2.1.3). } \\
& \text { ainee } 88=0 \text {. }
\end{aligned}
$$

But:

$$
\begin{aligned}
t\left(\theta_{H}\left(B-l_{v}\right)\right) & =\sum_{i} x\left(\sigma_{1} \theta_{H}\left(B \in 1_{v}\right)\left(H \theta_{1}\right)\right) \\
& =\sum_{i} x\left(w_{1} \theta_{H}\left(v_{1}\right)\right) \\
& =x w_{1}\left(\phi\left(v_{1}\right) \mu_{G} e_{1}\right) \\
& =\phi\left(v_{1}\right) x\left(\mu_{G}\right)=\phi\left(v_{1}\right) \psi 0 .
\end{aligned}
$$

Thual ve have a contradiction.

Thaoren 2.1. If V ia frea on reatriction to H than the aequence givan

in (2.1.2) in almont aplit.

We will latar how that the converan aleo holde when V in mbolutely indeconpoables that the equenca iaplit if V ia not free on raticiction to H .

He now damonatrate various reaulte on alant aplit maquances. Moat can be Eound in [ABR].
 sequence and that $E: W$ - V in not mplit apimorphiam. Form the pull-back diagran:

If g in a mplit monomorphism than factore through σ. Othervien, $g=g$ ' g for some $g^{\prime}: X \longrightarrow Y$. Complete the diagran:

Since f ia not aplit epimorphian than ff' ia not an automorphime of V; thua It ia nilpotent, eo that we have comutative diagram:

Hance 1_{U} factore through ρ - contradicting the fact that g is not aplit.
To conclude: if f ia not a aplit apinorphian then it factorathrough σ. Thie eatabliahea the equivalence of the definition that ve have uned and that unually given. It also provas:

Lemma 2.2.1 If $0 \longrightarrow \mathrm{U} \longrightarrow \mathrm{X} \longrightarrow \mathrm{V} \longrightarrow 0$ is an almost split sequence then so te the dual elequence, $0 \longrightarrow \mathrm{v}^{*} \longrightarrow \mathrm{x}^{*} \longrightarrow \mathrm{U}^{*} \longrightarrow 0$.

Theoran. 2.2.2 For any non-projective, indecompoeable kG-aodule, V, there 1. - unique (up to isomorphian) almont mplit mequence:

$$
0 \longrightarrow \mathbf{U} \longrightarrow \mathbf{x} \longrightarrow \mathbf{y} \longrightarrow 0 .
$$

In fact, u ■ $n^{2} v$.

Proof Eximence follove from (2.0.1). To prove uniqueneas, suppoee that $0 \longrightarrow U_{1} \longrightarrow X_{i} \rightarrow v \longrightarrow$ an almont aplit aquance for $1=1.2$. Since the σ_{i} are not aplit epimorphimen we may conimiruct a comenative diagran:

A. above, $\sigma_{1} \alpha_{2}$ i当 not nilpotant, thum it is an avtomorphim of U_{1}. Therefore

It in acmetima conveniont to think of almost aplit aequencem in tarna af an inner product on the complez reprementation ring. Ak (G). Thim wain firet dane by Banson in [BAP]. Define the Bilinear form by uaing the equation:

$$
([U],[V])=d 1 l_{k}(U, V)
$$

for $k G$-modulea, U and V, and extending c-bilinearly. Also, for non-projective, indecompoable kG-module, V, write:

$$
g(v)=\left[x_{v}\right]-[v]-\left[\Omega^{2} v\right] \cdot A_{k}(G)
$$

whare $0 \longrightarrow \mathrm{I}^{2} v \longrightarrow x_{y} \rightarrow v \longrightarrow 0$ ia the (uniqua) almost aplit aequance with V as ite right-hand tara.

Note almo that for any indecomposable $k G$-madule, $V,(V, V) / J(V, V)$ is a diviaion algabra over k. Ue urite (V) for the dimenion of thia algabra. In the cane whenk ia algabraically cloned walvaya hava that $\mathrm{a}(\mathrm{y})=1$.

Propogition 2.2.3 Let U,V be indecomposable kG modulan with von-projactive, then:
(a) ([u].g(v)) $= \begin{cases}-(v) & \text { if } u \text { © } v_{1} \\ 0 & \text { otherwise. }\end{cases}$
(b) $(g(v),[u])= \begin{cases}-a\left(a^{2} v\right) & \text { if } u=\Omega^{2} v . \\ 0 & \text { othervine. }\end{cases}$

Proof (a) Wa have an exact sequanca:

$$
0 \longrightarrow\left(U, x^{2} v\right) \longrightarrow\left(U, x_{v}\right) \xrightarrow{(U, \sigma)}(U, v)
$$

Thue, taking dimenaiona:

But In (\mathbb{U}, σ) in the aet of all mape $U \longrightarrow V$ which factor through σ, that is to say, all much mapa which are not aplit epinorphisan.

If U is not imomorphic to V then there are no mplit apimorphiman $u \longrightarrow y$ so that Im (U, O) in the whole of (U, V). However if U is isomorphic to V then If ($U, 0$) ia (isomorphic to) the apace of all non-automorphiman of $V, J(V, V)$. Thu in either case the reault followa from the equation above.
(b) Uning (2,2.1) move have:

$$
(g(v),[U])=\left(\left[U^{\dagger}\right], B^{(v)}\right)=\left(\left[U^{\oplus}\right], g\left(\left(a^{2} v\right)^{\oplus}\right)\right)
$$

so that the realit ia an eany coneaquence of (a).

A atriking corollary of thia ie that $(-,-)$ ia nonaingular bilinear form on $A_{1}(G)$. We shall now indtcate a proof of thile.

Suppoie that $x \in A_{k}(G)$ in auch that $(X, y)=0$ for all $y \in H_{k}(G)$. We can write I in the form:

$$
=\sum_{[0]} c_{v}[0] \quad\left(c_{v} \in c\right)
$$

where the sum in over all imomorphita clageen of indecomponable kG-modulen. If V ia non-projective and indecompomble than:

$$
0=(x, g(v))-\sum_{i U]} c_{U}([U], g(v))=-c_{v^{a}}(v)
$$

mo that $c_{V}=0$. Thum is a linuar combination of the isomorphim clasaed of the projective indecomponable kG-adulem. Note that if U,V are auch modules then (U , moc (V)) $=0$ unlean U■V. Thus:

$$
0=\left(x_{1}[\sec (v)]\right\rangle=\sum_{U]} c_{U}([U] \cdot[\sec (V)])=c_{V} d i \operatorname{ma}_{k}(V, \operatorname{soc}(V))
$$

- 0 that $c_{v}=0$ in thia case too. Thual $x=0$.
 for ally wo that, by what wave juat proved, $\mathrm{z}=0$. Thue $\mathrm{m}=0$. Thia complatea the proof that (,--) in nonaingular.

A concapt closely rolated to that of almant aplit anquancen ia now dafinad:
 irreducible if i ia not an ianorphime but if it factora an componite
 epimorphien. The connection between the two concep* 1 given by:

Propolition 2.2,4 Let V be mon-projective, indecopoiabla kG-vodula and:

$$
0 \longrightarrow \operatorname{d}^{2} v-t \rightarrow x_{v} \leftrightarrow v \longrightarrow 0
$$

be an almont mplit aequenca, If U i贯 any indecompaable kf-adule than:
(a) $f: U \longrightarrow V$ ia irreducible if and anly if if ot far momeplit monomorphime i: $\mathbf{U} \longrightarrow \mathbf{I}_{\mathbf{V}}$.
 epimorphime $\boldsymbol{I}_{\mathbf{V}} \longrightarrow \mathbf{U}$,
In particular, chere enimit an irreducible map $U \longrightarrow Y$ if and only if thare emiata on* $n^{2} V \longrightarrow U=$ both conditiona are equivalent to U|XV,

Proof We shall prove (b); the dual migtenent, (a), will then follou from (2.2.1). Suppoee firat that it $\Omega^{2} V \longrightarrow U$ if irraducible. Baceuse fin not aplit

$$
\nabla \rho-t-h g-h g^{\prime} \rho
$$

 a choose $1: U \longrightarrow \pi_{V}$ wieh $w i=1_{U}$. Then;

$$
h_{g^{\prime}} i=1_{U}+f^{\prime} \sigma_{1}
$$

but f'di is non-atomorphime of the indecompoeable module, U: thum hg'i is An automorphien of U. Hance h is aplit opimorphim. Thue fia irraducible. D
 kernel or monomorphial with an Indecomponabla cokernel.

Proof Lat is U—ov be in irreducible map. The factorieacions

$$
\mathrm{U} \longrightarrow \mathrm{U} / \mathrm{ker} \mathrm{f} \backsim \operatorname{In} \mathbb{f} \longrightarrow \mathrm{~V}
$$

 then wite ker $f=U_{1}+U_{2}$: then f factorm en

$$
v-v / U_{1} \xrightarrow{h} v /\left(U_{1}-U_{2}\right) \geqq v
$$

 indacomponable ve eea that either $U_{1}-0$ or $U_{2}=0$ i thu ker I in indecompoable. Tha cane when f ia momophien mag be vieilarly dealt with.
 $k G$ module, P, then V P/aoc (P).
(b) X_{y} has no indecomposable direct antande of dimaneion diag or disk $d^{2} v$.

4 4 7

 mubodule of P, moc (P), ia contained iv kerf. Thu f factora as:

$$
P \longrightarrow P / \operatorname{moc}(P) \xrightarrow{h} V .
$$

(b) If U ia an indecompoabla tutand of I_{y} then thare oxiat icreducible mape iv - U, U—V by (2.2.4). Thaea are either monomorphiam or

(57)

epimorphisms but not isomorphisms. Thus U cannot have dimension $\operatorname{dim}_{k} V$ or
$\mathrm{dim}_{\mathrm{k}} \mathrm{R}^{2} \mathrm{v}$.

maximal auberoun

 We heve shown how to construct an almodt aplit eaquanca:$$
0 \longrightarrow v \longrightarrow \mathbf{I}_{\mathbf{y}} \longrightarrow v \longrightarrow 0
$$

when V is a non-projective, indecompoenbla kG-godula which ia free on reatriction to \quad marimal mbgraup of G. We nov conaider the decompoition of x_{y} into indecompoabla modulea. To do thie ve apply the aralyia of wabb. [Web], of the Auslander-Raitan quiver, wich, in thi apacial cala, may be conaiderably aimplified. Howavar, we do alaune that k ig migebraicaliy cionad and ayclude the case whan G ie cyclic of order p - for than all the kG-modulea me frea on restriction to the only mazimal ubproup of G - namely, the identity guberoup.

Let A denote tha met of all imomphinin clamean. [V], of mon-projective。
 of \mathbf{G}.
 then [U]eA.

Proof Clearly U í frea on reatriction to the mane mazimi mubroupa an V ia. The only problem, tharafore, in it U ie projective. Bacauee ve ere dealing
 so thit H_{G} it frace on reatriceion to a earieal auberoup of G. The only way
 excluded.

The nezt leme ia whan the fact chet k ia algabraically cloaed become vital. It doan not hold for general ilalde.

Proof Thia is trivial when U © V. Otherwian:

$$
\begin{aligned}
(g(U) \cdot g(v)) & =\left(\left[x_{V}\right]-2[U], g(V)\right)=-\left[v \mid x_{V}\right] \\
& =\left(g(U),\left[x_{V}\right]-2[V]\right)=-\left[U \mid x_{V}\right]
\end{aligned}
$$

uaing (2.2.3).

Hence we may define a graph atructure on A by joining [U] and [V] by $\left[U \mid X_{V}\right]=\left[V \mid X_{U}\right]$ undirected edgen. The relationahip of this with the auslander -Reiten quiver in clear. He alao define map:

$$
d: A \longrightarrow \mathbf{N} \quad \text { by } \quad d[V]=d i e_{k} V
$$

Thie then atiofiea:
(1) $2 d[V]=\sum d[U]$, the sum being over all edgea [V]o-o [U].
(2) If ve have an edge [V]a-o[U] then $d[V] \not d[U]$.

The firnt result ia proved by taking dimensions in tha almost aplit sequence $0 \longrightarrow V \longrightarrow X_{y} \longrightarrow V \longrightarrow 0$ bearing (2.3.1) in aind. The second reault follow from (2.2.6)(b), for we have an irreducible map $v \longrightarrow U$.

Lemen 2.3.3 For any subgraph. B, of A, the varter of B with minimal d-value 1s Joined to the reat of B by at moat one edge.

Proof Let [V]eB be a vartex of minimal d-value. We have:

$$
2 d[v] \geqslant \sum d[U]
$$

the mun being over all edgea [V]o © [U] in B. By minieality, d[V] d d[U]
for auch edgen; moraovar the inequality ia etrict by property (2) above. Thue
 an requirad.

Theorem 2, 3.4 Any connected component, B, of A is ither finite or han the fors $0 \longrightarrow 0-\mathrm{C}$

Proof Applying (2,3.3) to the various two-verter bubgrapha of B, we see that B containa no multiple adgen. Similarig. it contain no clowed loopa. Thum if B is infinite chen eithar evary vertez of 8 hag at mon two edgea attachad to

In the former cana, (2.3.3) ahow that mome vertet of B will have only one adge attechad to iti eoreovar for B to be infinite, lil the other verticae muat have two edgan. Thua B mat be of the form o-c.

In the later capal proparty (1) above givae:

$$
\begin{aligned}
& 2 d\left[Y_{0}\right] \rightarrow d\left[V_{1}\right] \\
& 2 d\left[V_{0}^{*}\right] \rightarrow d\left[V_{1}\right] \\
& 2 d\left[V_{1}\right]>d\left[V_{0}\right]+d\left[V_{0}^{\prime}\right]+d\left[V_{2}\right]
\end{aligned}
$$

thu: heve that $d\left[V_{1}\right] \geqslant d\left[V_{2}\right]$, the inequality being in fact etrict by proparty (2). But apply (2.3.3) to the aubgraph:

$$
\left[v_{1}\right] \propto\left[v_{2}\right]\left[v_{3}\right]\left[v_{4}\right] \cdot \cdots ;
$$

the vertaz of minimal d-value in attached by at mont one edge, thuil it mut be
$\left[v_{1}\right]$. Thile contradicte $d\left[v_{1}\right]>d\left(v_{2}\right)$.

Prodonition 2.3.5 A han no non-eapty, finite, connected component. B.

Froof Lat B denote the C-1inear apan of B in $\mathrm{A}_{\mathbf{k}}(\mathrm{G})$. By (2.3.1), if [v]e B then $g(v) \& B$ (becauce E in componant, any indecomponala mumand of X_{V} ie connacted to [V] and is thuie in B). Dafine:

$$
x=\sum_{[V]_{E}}-\left(\operatorname{dic}_{k} v^{G}\right)_{g}(v) \in B
$$

Then for [U] © B .

$$
\begin{aligned}
(x,[u]) & =\sum_{[v]}-\left(\operatorname{dig}_{\mathbf{k}} v^{G}\right)(g(v),[U]) \\
& =d i E_{k} v^{G}=\operatorname{dig}_{k}\left(k_{G},[v]\right) \\
& =\left(\left[k_{G}\right],[u]\right) .
\end{aligned}
$$

 I O. We can write:

$$
\mathrm{s}=\sum_{(V)} c_{v}[V] \quad \text { - where } c_{v} e c \text { and }[V] \text { rune over } B \text {. }
$$

choose U auch that $C_{\mathcal{I}} \not 0$, then:

$$
0 \neq-c_{U}=(x, I(U))=\left(\left[k_{G}\right], E(U)\right)=-\left[U \mid k_{G}\right]
$$

 an wave hantradiction. (See [Bea] pl61 for thic proof,)

Thua way tranalate (2.3.4) and (2.3.5) back into tare of almot aplit enequancea to obtain:

Theoran 2,3,6 Lat k be an algbraically cloaded fiald of charactariatic p and G be a finite p-group of order at lagat p^{2}. The non-projective, indecomponable

 mplit mequencea:

$$
\begin{gathered}
0 \longrightarrow v_{1} \longrightarrow v_{2} \longrightarrow v_{1} \longrightarrow 0 \\
0 \longrightarrow v_{n} \longrightarrow v_{n-1} \times v_{n+1} \longrightarrow v_{n} \longrightarrow 0 \quad(n>1) .
\end{gathered}
$$

 then there are indecomposable kG-moduled of arbiersrily large dimension. In particuler, G cannot be cyclic, for then $k G$ if of finite-representation typa. Thus if G ia a cyclic p-group of order at laat p^{2} then thera do not axiet any non-projective, indecompomble kG-modulas which are fre on ramtriction to the unique maxime aberoup of G. Thim given our third (and final) proof of (0.1.1).

Let ua now conaider irreducibla mapa $U \longrightarrow V$ where either U or V ia a

 in (2.3.1), both U and have thit mana proparty. Furthareora [U] and [V] ara connucted ly an edge in A. ed they belon to tha man connected companant of A. (2.3.6) givan that there exiets a equance $v_{n}(n=1,2, \ldots, \ldots$ euch that either:
(1) $U \neq V_{n}, y \approx V_{n+1}$ for mamen, or (2) $U \geq V_{n+1}$, vis V_{n} for mame 0 . By dimaneions, in cene (1) the irraducibla mop wil be monomorphian, and in case (2), an epimorphime (baar (2.2.5) in mind),

Lat ue conaider irreducible monomprphimen $V_{n} \longrightarrow Y_{n+1}$. We know that thase have indecompomable cokernale, but ve clain that the cokernela ara ectually leonorphic to V_{1}.

The proof it by induction on n. For $n=1$ we haven almog aplit eaquence:

$$
0 \longrightarrow \mathrm{v}_{1} \xrightarrow{\dagger} \mathrm{~V}_{2} \xrightarrow{\Delta} \mathrm{~V}_{1} \longrightarrow 0
$$

chua any irreducible mp $V_{1} \longrightarrow V_{2}$ has tha fori ag for some automarphin, a, of v_{2}. So conaider the equence:

$$
0 \longrightarrow v_{1} \xrightarrow{\leftrightarrow} v_{2} \xrightarrow{\Delta v^{*}} v_{1} \longrightarrow 0
$$

 Let:

$$
0 \longrightarrow v_{\mathrm{n}} \xrightarrow{t} \mathrm{x} \xrightarrow{ } \mathrm{v}_{\mathrm{n}} \longrightarrow 0
$$

 nown in the diagrang below, vith:

 eapa. By dimanaiona, f' in a momorphif and fig' are epimorphimen. Aleo:

$$
g f+f^{\prime} g^{\prime}=\sigma\left(1 \#+1^{\prime} w^{\prime}\right)_{g}=\alpha_{x \rho}=0
$$

Inductivaly, we have an eract aequanca:

$$
0 \longrightarrow v_{n-1} \xrightarrow{t} v_{n} \xrightarrow{n} v_{1} \longrightarrow 0
$$

$$
\left(h_{g}\right) f=-h f^{\prime} g^{\prime}=0
$$

 n.dinim V_{1}, so thay are the aame. Thua we have an exact mequance:

$$
0 \longrightarrow v_{\mathrm{n}} \xrightarrow{\longrightarrow} v_{\mathrm{n}+1} \xrightarrow{\longrightarrow} v_{1} \longrightarrow 0 .
$$

So the reault is proved.
We ma mumariae thia and the dual reait ans

Theoran 2.3.7 The only irraducible mape involving non-projective, indecomponable kG-modulen which ara free on reatiction to mome maimal mubroup of G, are given, up to imomorphite, follovis

Lat $v_{n}(n=1,2, \ldots .$.$) be an in (2.3.6), then. for aach n$, there ara Irreducible monctorphition $V_{n} \longrightarrow V_{n+1}$ with cokernel V_{1}, and irreducible epleorphi $v_{n+1} \Longrightarrow v_{n}$ with karnal v_{1}.
\$2.6 Terainal modulan

If V IE non-projective, indecompoable kG-adule then there ia a unique almont aplit sequence:

$$
0 \longrightarrow n^{2} v \longrightarrow x_{v} \longrightarrow v \longrightarrow 0 ;
$$

let ue call V a terginal module if X_{v} ia indacompoable. In the came dealt with in the previous mection. namely whan k ia algabraically cload and V is fras on ratriction to amimal abgroup of G (2.3 .6) givea that $V V_{M}$ for mone N, where $V_{n}(n=1,2, \ldots)$ in a sequance of much modulen much that chera are almost apliz eaquancea:

$$
\begin{gathered}
0 \longrightarrow v_{1} \longrightarrow v_{2} \longrightarrow v_{1} \longrightarrow 0 \\
0 \longrightarrow v_{n} \longrightarrow v_{n-1}=v_{n+1} \longrightarrow v_{n} \longrightarrow 0 \quad(n>1)
\end{gathered}
$$

Now, clearly, v ia cerminal if and only if $N=1$. (2.3.7) thu givea that the cerminal madulea are clangified an the cokernala of irreducible monomorphiana or an the kernela of ifreducible epinorphien.

We now uee tha conetruction of $\mathbf{1 2 . 1}$ to show how, given a tarinal module, V. which in free on rettriction to mome mainal aubroup, H, of G, wa mind
 rachult may be summarised as:

Theorer 2.4.1 There erimte aequance of epimorphime:

$$
\phi_{n}: v \longrightarrow k_{G} \text { vith } J(v, v) v \text { a kar } \phi_{n}
$$

and aleaente $v_{n} \in V$ with $\phi_{n}\left(v_{n}\right) * 0$ auch that, if we define a kC-module, v_{n}, by eana of ath-imonorphime:

$$
\psi_{n}: \underbrace{v e \ldots e v}_{n \text { copies }} \longrightarrow v_{n}
$$

and the action of $\mathrm{g}:$

$$
\begin{aligned}
& 8 \cdot \psi_{n}\left(v_{1}, \ldots, v_{n}\right) \\
& -\psi_{n}\left(g v_{1}+\psi_{1}\left(w_{2}\right) \delta \mu_{H} v_{1} \cdots \cdots \cdot\left(v_{n-1}+\psi_{n-1}\left(w_{n}\right) \mu_{H} v_{n-1} \cdot g v_{n}\right),\right.
\end{aligned}
$$

then V_{n} ia an indecompomable $k G$ module which ia free on rentriction to H, much that there are almont aplit sequencea above

Moreover, the mapa $a_{n}: V_{n} \longrightarrow V_{n+1}$ aiven by:

$$
\psi_{n}\left(v_{1}, \ldots, v_{n}\right) \mapsto \psi_{n+1}\left(v_{1}, \ldots, \psi_{n}, 0\right)
$$

ara irraducibla moncoorphisem .

Proaf The proof id by induction on n. Far $n=1$ we may taka $V_{1}=V, \psi_{1}=1_{V}$. For $n=2$ the reault follow fron (2.1.2) and (2.1.4); moravar aince in tarminal, \mathbf{v}_{2} ia indacompombla. So ansume that $n>2$ and that we have already
 above with the requirad propertien.

Len是 $J\left(v_{n}, v_{n}\right) v_{n} \geqslant\left\{\psi_{n}\left(v_{1}, \ldots, w_{n}\right) \mid v_{1} \ldots, v_{n-1} \in v, v_{n} \in J(v, v) v\right\}$.

Proof We know that there ia an irreducible ap $\boldsymbol{a}_{\mathrm{n}-1}: \mathrm{v}_{\mathrm{n}-1} \longrightarrow \mathrm{v}_{\mathrm{n}}$, thu (2.2.4) givas that thare ia another irraduciblemap $A V_{n} \longrightarrow v_{n-1}$ which.
 of V_{n} (aince it factare through V_{g-1}), thua:

$$
\begin{align*}
J\left(v_{n}, v_{n}\right) v_{n} & \geqslant I \varepsilon_{n-1}=\text { In } a_{n-1} \\
& =\left\{\phi_{n}\left(v_{1} \ldots \ldots, v_{n-1}, 0\right) \mid v_{1}, \ldots, v_{n-1} \in v\right\} \tag{1}
\end{align*}
$$

$$
\text { For } f \in J(V, v) \text { ve defina } f^{\prime}: V_{n} \longrightarrow y_{n} b y:
$$

$$
f^{\prime}: \psi_{n}\left(v_{1}, \ldots e_{n}\right) \longmapsto \psi_{n}\left(0, \ldots, 0, f\left(v_{n}\right)\right) .
$$

We claid that f^{\prime} lagk-linear and hence non-automorphise of v_{n}. Thit vould 1■ply that:

$$
J\left(V_{n}, V_{n}\right) V_{n}=\left\{\psi_{n}(0 \ldots, 0, w) \mid w \in J(V, V) V\right\}
$$

which, combined vith (1), vould eive the ramult of the leana.
The only problem in ahoving that f^{\prime} ie kG-1imear ia the action of g. But:

$$
\begin{aligned}
& g \cdot f^{\prime}\left(\psi_{n}\left(v_{1}, \ldots . \omega_{n}\right)\right)=g \cdot \psi_{n}\left(0, \ldots, 0, f\left(v_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =t_{n}\left(0, \ldots, 0,0, f\left(8 w_{n}\right)\right)
\end{aligned}
$$

- for note that $f\left(v_{n}\right)$ e $J(V, V) V \leqslant k e r \psi_{n-1}$. Howavar:

$$
\begin{aligned}
f^{\prime}\left(g+\phi_{n}\left(v_{1}, \ldots, w_{n}\right)\right) & =f^{*}\left(\psi_{n}\left(7, \ldots, v_{n}\right)\right) \\
& =\psi_{n}\left(0, \ldots .0, f\left(w_{n}\right)\right)
\end{aligned}
$$

mo the clain in etablimhed, and the lamea proved.

Wa are now in adaition to epply the conetruction of (2.1.2) to V_{n}. Thin v11. by (2.1.4), five un an almot aplit maquanca. Whare raquired to choome:

and (2) an elemant, v_{0}, of v_{n} with $\phi\left(v_{0}\right) \geqslant 0$.
 with $J(V, V) V \leqslant k e r \boldsymbol{S}_{n}$ auch that:

$$
\phi\left(\phi_{n}\left(v_{1}, \ldots, w_{n}\right)\right)=\phi_{n}\left(v_{n}\right) .
$$

Thua we ma amume that v_{0} has the form $\psi_{n}\left(0, \ldots, 0_{n}\right)$ for aom v_{n} ev with $f_{\mathrm{n}}\left(\mathrm{v}_{\mathrm{n}}\right) \neq 0$.

Define a kG-madule, 1 , by meana of ak-inomorphime:

$$
\psi: v_{n} \oplus V_{n} \longrightarrow I
$$

with the action of being given byi

$$
g \cdot \psi(v, v)=\psi\left(\mathrm{g}^{v}+\phi(v)_{\left.\mathrm{EH}_{H^{v}} 0, \mathrm{gv}\right) .}\right.
$$

 sequence:

$$
0 \longrightarrow v_{n} \xrightarrow{\rho} v_{n} \longrightarrow 0
$$

Note that $\quad 3 \mu_{H} v_{0}=8 \phi_{n}\left(0, \ldots, 0, \mu_{H}{ }_{n}\right)$

$$
=\phi_{n}\left(0, \ldots, 0, \phi_{n-1}\left(\mu_{H} v_{n}\right)_{B H_{H}}^{v} n-8 \psi_{H} v_{n}\right)
$$

$$
=\phi_{\mathrm{n}}\left(0, \ldots, 0, \Delta \mu_{\mathrm{H}}^{\mathrm{v}}{ }_{\mathrm{n}}\right)
$$

Define i: $\mathrm{V}_{\mathrm{n}-1} \longrightarrow \mathrm{I}$ by:

$$
f(v)=\psi\left(0, a_{n-1}(v)\right)
$$

We readily chack that if kG-1ineer (again, the only problem in the ection of
 epimorphien; thum 1 1a aplit monorphisal. Datine $V_{n+1}=$ coker i then:

$$
x \approx v_{n-1} x v_{n+1}
$$

But (2.3.6) implian that X han ar mone two indecomponable aumanda. Thu: V_{n+1} munt be non-projective, indacompoabla $k G$-module which in fras on reatriction to H. Writa:

$$
\psi_{n+1}\left(v_{1}, \ldots, v_{n+1}\right)=\left\langle\left(\phi_{n}\left(\psi_{1}, \ldots, w_{n}\right), \phi_{n}\left(0, \ldots, 0, v_{n+1}\right)\right)+I=1\right.
$$

The metion of g if given by:
$\theta \cdot \phi_{n+1}\left(w_{1}+\ldots, w_{n+1}\right)$
$=\left\langle\left(g \psi_{n}\left(\pi_{1}, \ldots, \psi_{n}\right)+\phi\left(\psi_{n}\left(0, \ldots, 0, \psi_{n+1}\right)\right)_{H} \mu_{H} v_{0} \cdot g \psi_{n}\left(0, \ldots, 0, w_{n+1}\right)\right)+I=1\right.$

$$
\left.\psi_{n}\left(0, \ldots, g v_{n+1}\right)\right)+I I 1
$$

$$
=\psi_{n+1}\left(g w_{1}+\psi_{1}\left(v_{2}\right) g \mu_{H} v_{1} \ldots g g w_{n}+\psi_{n}\left(w_{n+1}\right) g \mu_{H} v_{n}+g w_{n+1}\right)
$$ epieorphis. thua an itaraducible.

Hence we hava conatructad $\varphi_{n}, v_{n}, \psi_{n+1}, \psi_{n+1}, n_{n}$ with the required propertien. Thua the result follow.

Tha following lean giver a practical vay of idantifying at laant some terminal modulea:

Lomen 2.4.2 Lat va mon-projective kG-adula which ial free on reatriction to somanmimal mubroup of G. Suppose that V han a unique maximal mbnodule. then in Indecomparable and terninal.

Proof It in trivial that V ia indecompoosble (a decompoamblamodula will have at leant two maximi qubnodulea). To mat that it ie terminal, let $V_{n}(n=1,2, \ldots)$ be aequence of kf-module with the properties outined in (2.3.6) such that
 $\left(g\left(v_{n}\right),\left[k_{G}\right]\right)=0$. But 1

$$
g\left(v_{n}\right)= \begin{cases}{\left[v_{2}\right]-2\left[v_{1}\right]} & \text { if } n=1 \\ {\left[v_{n+1}\right]+\left[v_{n-1}\right]-2\left[v_{n}\right]} & \text { otherwiee }\end{cases}
$$

so that, inductivaly, $\left(\left[v_{n}\right] .\left[k_{G}\right]\right)=n\left(\left[v_{1}\right],\left[k_{G}\right]\right)$. Sinca v has anique maxima submodule ve have:

$$
\left(\left[v_{N}\right],\left[k_{G}\right]\right)=d i g_{k}\left(v, k_{G}\right)=1
$$

Thue $N\left(\left[V_{1}\right],\left[k_{G}\right]\right)=1$. Hence $N=1$, as required.

We telay mentions

Lemen 2.4.3 Lat be non-projective kG-module which ia fres on ragriction

$$
v_{0}=\left\{v \in V \mid \mu_{H} v=0\right\} \quad A u g(k H) v_{0}
$$

If M ia any manal ubmodule of V then G ecte trivisily on V / M. Thus $V_{0} \leqslant M_{0}$ Thue tha meimel aubodulen of V ore In $1-1$ correapondance with those of v/V 0 會 $H_{H} V_{\text {. Becaune }}$ G/H id cyclic, all the indecompomble $k(G / H)$-adulen have - unique maimel anbeodule. Thua ding $\left(V, k_{G}\right)$ oquals the nubber of indeconpoable

In the cand whan V hat anique maxienl mubmodule. $(2,4,1)$ maty be mimplified. Lat M be the manmal abmodula, than we may take all the fna
 to be che same element of $\mathrm{V}-\mathrm{M}$.

Introduction

Let V be non-projactiva, Indecompoable kG-module which it fret on reatriction to mome maxial mbgroup of G. Then, in particular, V ia frae on rantriction to the Frattini abgroup, of G - for ien, by definition,

 The main reault of thil chapter may be araced as:

$$
Y(\nabla) \text { if a ine. }
$$

Our devalopment of thit macerisi incorporates mont of Carlaon'a fundamantal realita. These are to be found in i3.5, which runi parallel with the originel. Tha min difference is the conetente, $\boldsymbol{\lambda}_{H}(V)$, introduced in 3.1 ; theae anable un to moid any cohomological argument. .

3.0 Easential atgroupa

Let A be a finite-dimenaional k-algebra. We call a subgroup, G, of the group of unith of A an essential subgroup if the elementa of G foria a k-bais for A. Note that, if G ise en easential bubgroup then we can identify with the group algebra, kG; indeed an easential aubgroup exiata if and only if is a group algebra.

In chis aection we shall inventigate the propertias of emential augroupa in the special case when dim A in power of p it.e. when any eamentiol aubgroup is a p-group. Most of the result贯 are to be found in [Ca3].

If U and V are A-modules and G is an mamentiml mubroup of A, than veig m regard U U an an A-atodule by letting G act diagonally and uning the identific--ation of A with $k G$. Taking different esaentisi mugroups does not in general give isomorphic tenaor products; however:
 with reapect to the didgonal action of G_{1} if and oniy if it if free with reapect to the diagonal action of G_{2}.

Proof Since each G_{1} it a p-group me may apply (0.0.11): UVV is free Mth respect to the digonal action of G_{1} iff:

$$
\operatorname{dig}_{k}(U, v)=\frac{\left(d i E_{k} U\right)\left(d i m_{k} V\right\rangle}{d i m_{k} A}
$$

- for note that dick $A=\left|G_{1}\right|$. But thi eriterion is indepandent of 1 , so the result follows.

Write J for the Jacobmon radical of A. If G ig an edential mubgroup of

A then, under the identification of A with $k G$, J corremponde to thag agmantation
 easantial subgroup is a subgroup of tha gubgroup, $1+J$, of the full group of unita of A. We also have the following well-known rearit:

Proposition $3,0,2$ Let be the Frattini aubgroup of G and write $G(G /$, Regard G as an Fp-vector apace, then we way conaider tha k-apaces

$$
S-k \theta_{p} G_{p}
$$

The tap $g \backsim E-1, G \longrightarrow J$ then inducea ak-imomorphian $S \longrightarrow J / J^{2}$.

Proof We show firatiy that the given map inducan a group homoorphime, a, $G \longrightarrow\left(\mathrm{~J} / \mathrm{J}^{2}\right)^{+}$. Because the itage of thin map 1alementary bbalian, will be contained in ker a. Thus we have a group homomorphise (F -1 inear map) $G \longrightarrow J / J^{2}$ which we thy readily extend to a k-innear map:

$$
: S \longrightarrow J / J^{2}
$$

To show that a a group honomorphian:

$$
\begin{aligned}
a(g h) & =\left(g^{h}-1\right)+J^{2} \\
& =(g-1)(h-1) \div(g-1)+(h-1)+J^{2} \\
& =a(g) \div a(h)
\end{aligned}
$$

- for note that $(g-1)(h-1)$ e j^{2}.

Thus it only remand to shou that in an isooorphisu. To do thim we will constuct an inverse arp. J - Aug (kG) ia ak-opace with basia $\{g-1 \mid g e G-1\}$. So define $f: J \longrightarrow S$ by $g-1 \mapsto Z$ and extending k-linamig. Note that:

$$
\begin{aligned}
(g-1)(h-1) & =(g h-1)-(g-1)-(h-1) \\
& \rightarrow(g h) g^{-1} h^{-1}=\text { I. }
\end{aligned}
$$

We now agaune that has fized emential aubgroup. Go, which ia elementary abelian of order p^{n}. Uaing the identification of J with Aug ($k G_{0}$), we readily see that:
(a) if $\mathbb{B} \in J$ then $(1+j)^{p}=1+1^{p}=1$.
(b) $0, \mu_{G_{0}} \in J^{n(p-1)}$.
(c) Jie nilpotent, indeed $J^{n\left(p^{-1}\right)+1}=0$.

In thim case we way completely determine tha emantial mugroupa of A:

Theoram 3.0 .3 Lat $\xi_{1} \ldots \ldots, F_{n}$ be a k-haial for J madulo J^{2}, then:

$$
G=\left\langle 1+\xi_{1}, \ldots \ldots, 1+\xi_{n}\right\rangle
$$

1a mementiml subgroup of A. Moreavar every easential subgroup is of thi form.

Proof Suppose firatly that G ia en eanantal aubgroup of A, Take a minimal set of generatora, $\mathrm{Q}_{1} \ldots \ldots \mathrm{~m}_{\mathrm{m}}$ for G_{m} then, in the notation of (3.0.2), $\overrightarrow{\mathrm{B}}_{1}, \ldots, \overline{\mathrm{~g}}_{\mathrm{m}}$ 1a an Fpbay for G and hence a k-basis for S. Thum $g_{1}-1, \ldots, g_{m}-1$ in a k-bagie for J modulo J^{2}. In particular, $\quad=d i{ }_{k}\left(J / J^{2}\right)$ but taking $G=G_{0}$ 。 wa see that thif dimanaion alao equals n. Thum $m=n$ and G indeed of the form stated.

Now lat $\xi_{1} \ldots \ldots \xi_{n}$ and G be in in the meatement of the theorem. Take minimal set of genambiorm $h_{1} \ldots \ldots h_{n}$ for G_{0} then we can writa:

$$
\left(h_{1}-1\right)=\lambda_{11} 3_{1}+\ldots .+\lambda_{1 n^{3}} n+y_{1}
$$

where $\xi_{i} \in J^{2}$ and $\left(\lambda_{1 j}\right)$ is a nonaingular ($n \geq n$) atrix with coefficiente in k.
Define $\phi: A \longrightarrow A$ by $h_{i} \longrightarrow 1+H_{i}$, thie then ertenda to melgebra
homanorphim aince $1+E_{1} \ldots, 1+\xi_{n}$ ara unite of order p which comete with anch other. 甘rite:

$$
i_{1}=\lambda_{11}\left(h_{1}-1\right)+\ldots+\lambda_{i n}\left(h_{n}-1\right)
$$

-o that $\phi\left(2_{1}\right)=h_{1}-1\left(\bmod j^{2}\right)$. Then:

$$
\phi\left(q_{1}^{p-1} \cdots q_{n}^{p-1}\right)=\left(h_{1}-1\right)^{p-1} \ldots\left(h_{n}-1\right)^{p-1} \bullet H_{0}\left(\bmod J^{n(p-1)+1}\right)
$$

- hovever, $J^{n(p-1)+1}=0$ ao thia congruance ia actually an equality. Hote that $2_{1}^{p-1} \cdots 2_{n}^{p-1}$ ia an element of $J^{n(p-1)}={ }^{k} H_{G_{0}}$, but ita image undar $\&$ ia nonzero to it must equal $\lambda \mu_{G_{0}}$ for some $\lambda * 0$. Thus:

$$
\phi\left(\mu_{G_{0}}\right)-\frac{1}{\lambda} \mu_{G_{0}}
$$

 dimaniona, an algabra autcoorphign of A. But $f\left(G_{0}\right)=G$, thua G ia an enential subgroup of A.

Chooae abopace, L, of J vith $J=L a J^{2}$ than dafina, for an a-module V :

$$
Y_{L}(V)=\{0\} \cup\left\{\leq \in L \mid V_{\psi(1+5\rangle} \text { in not frees }\right\}
$$

(bee [Ca3]). We rafar to $Y_{L}(V)$ aa the Carlson variety of V (with reapect to L).

(a) $\quad \operatorname{dig}_{k} f^{p-1} v<\frac{1}{p} d i E_{k} V$.
(b) $\quad \operatorname{din}_{k} Y V<\left(1-\frac{1}{v}\right) d i e_{k} V$.
etrict inequality holding in aither caed 18 and anly if y e $Y_{L}(V)$. In particular, therefore, $Y_{L}(V)$ ia cloned under scalar guleiplication.

Proof (a) in imadiate fron (0.0.g). For (b), ve my wite $V_{1<1+1) ~ a n ~ a d i r e c t ~}^{\text {a }}$
aut of indeconpomble modulan, $V_{1} \& \ldots, V_{r}$. Each V_{1} has dimenmion at moat p, thu* $r>\frac{1}{\rho} d i m_{k} v$, equality holding iffeach v_{i} hal digenaion p, that if, iff V ie frea on ratriction to $\langle 1+\xi\rangle$. But ξV_{i} han dimanaion one leme than V_{i}, ao:

$$
\operatorname{din}_{k} I v=\operatorname{dig}_{k} v-r
$$

Now, nubitituting for r givae the reanit.

3.1 The conetanta $X_{H}(V)$

We now incroduca the min tool that wa shall uat in thia chapter. Let k be afield of charmeterigtic p and G be finite p-group. We ouppone that is a non-projective, bealutely indecomponebla kG-aodule which in frae on reatriction
 concerned with io when k ia algobriaicalif cloaed, when "aboolutely indecompoamble" may be replaced by juat "indecompoinblan".

For each maieal aubgroup; H, of G we chooge fired element e $\mathcal{C}-\mathrm{H}$ and conaider the eaquences:

$$
\begin{equation*}
0 \longrightarrow k_{G} \longrightarrow k(G / H) \longrightarrow k(G / H) \longrightarrow k_{G} \longrightarrow 0 \tag{1}
\end{equation*}
$$

 when $H=H_{0}$) this giver two-rtap projective resolution of V. In anj cane we my complete the comutative diagrem:

A Ia uniquely datarinigd up to the iddition of a map vich factora through the projective modula $k\left(G / H_{0}\right)$, which, mince v ie not projective, ia non-

 vrita λ_{H} or $\lambda_{H}(V)$ for thil ecalar.

Note that the acalare $\lambda_{H}(V)$ depend on:
(1) the choice of H_{0} from thome manimal mubgroupy of G reatrieted to wich \mathbf{V} iefree,
(2) the choice of the elemente geG-H,
thue care will be taken to emphaiae when any change in thase paramatera haa occurred.

If V i曾 fres on reetriction to H then both aequencas in the defining diagrat are projective reaclutione, thue if an automorphiat. That ia to eay, $\lambda_{H}(V)$
 rentriction ta H. The proof of thia iet etaight-forverd whan $p=2:$

An In (1.1. asquence (1) is the jain of two copian of the maquance:

$$
0 \rightarrow \mathbf{k}_{\mathbf{G}} \longrightarrow \mathbf{k}(\mathrm{G} / \mathrm{H}) \longrightarrow \mathbf{k}_{\mathbf{G}} \longrightarrow 0
$$

thu ve may complete the diagrane

 uniquely deternined. He havel

 But $V_{+H} \mid\left(\left(V_{t H}\right)^{i G}\right\rangle_{H H}$ thua V in free on reatriction to H.

This completes the proof for $p=2$. A general proof will be given in $\mathbf{3} \mathbf{3} \mathbf{3 .}$ Hovavar, we my remark here that it mificea to asame that k is algebraically cloaed. For let \hat{k} be an algebraic clomure of k and write \hat{v} for the kG-module k V. Because V is abmolutely indecompasabla, ia indecompoabile and (0.0 .10) given that \hat{V} im non-projective but in free on reatriction to H_{0}. Applyine $k h_{k}$ - co cha diagram defining $\lambda_{H}(v)$ we obtain a comutative diagran:

Now $\left(1_{\hat{k}}-a\right)-\lambda_{H}(v) 1_{V}=1_{k} \cdot\left(a-\lambda_{H}(V) I_{V}\right)$ is nilpotent. Therefore:

$$
\lambda_{H}(\bar{v})=\lambda_{H}(v) .
$$

Thus, if we can prove the reault for algebraically clomed fielda, we will hava:

$$
\lambda_{H}(v)+0 \quad \Leftrightarrow \quad \lambda_{H}(\hat{V}) * 0
$$

- V ia free on reatriction to H
- V ia frea on reatriction to H.

13.2 The Elementary belian troup of order ${ }^{2}$

We now inventigate what will turn out to te the mont important mpecial case. Let k be an algebraically clobed fiald of charactarietic p and:

$$
E=\left\langle x, y \mid E^{p}=y^{p}=1, y y=y x\right\rangle
$$

be an alamentary abelian group of order p^{2}. Write X and Y for the aubgroupa generated by x and y rapaciavely. The firat two reaulta are lifted diractly from [Ch2] mid our (3.2.5) ahould bo compared utth Corollary 3.3 of that paper. Carlen appala to the clanaification of indecompoable $k E$-module in the caen $p=2$, although the proof ha give for p odd alao seem to work in thi calain. (Sea Appendiz A if I am vrong about this.)

Lepep 3,2.1 Lat be tha direct mam of a projectiva and pariadic ke-bodula. If we ioc (W) then we cen write:

$$
==(x-1)^{p-1} w^{\prime}+(y-1)^{p-1} v^{n}
$$

for ane w^{\prime}. w^{n} e W such that $(x-1)^{p-1} w^{\prime}$ and $(5-1)^{p-1} w^{H}$ are in aoc (W).

Proof We have an ezact aequance:

$$
\ldots \xrightarrow{\mathrm{d}} \mathrm{~F}_{\mathrm{n}} \longrightarrow \ldots \xrightarrow{\mathrm{~h}_{1}} \mathrm{~F}_{1} \xrightarrow{a} \mathrm{k}_{\mathrm{E}} \longrightarrow 0
$$

where F_{n} if the free kE-module on $a_{1} \ldots \ldots, a_{n} ;$ in themap defined by $a_{1} \geqslant 1$ and $\delta_{n} F_{n+1} \longrightarrow F_{n}$ ia given by:
(1) $n=2 m+1$

$$
\begin{array}{ll}
a_{1} \longmapsto(x-1) a_{1} \\
n_{2 j} \longmapsto(y-1) a_{2 j-1}+(x-1)^{p-1} a_{2 j} & (j=1,2, \ldots, m) \\
a_{2 j+1} \longmapsto(y-1)^{p-1} a_{21}+(x-1) a_{2 j+1} & (1=1,2, \ldots, n) \\
a_{2 a+2} \longmapsto(y-1) a_{2 m+1} &
\end{array}
$$

(2) $n=2 n$

$$
\begin{aligned}
& n_{1} \longmapsto(x-1)^{p-1} a_{1} \\
& n_{2 j} \longmapsto(y-1) a_{2 j-1}-(x-1) a_{2 j} \quad\left(j-1,2, \ldots . .{ }_{2 j}\right) \\
& n_{2 j+1} \longrightarrow(y-1)^{p-1}{ }_{2 j}-(z-1)^{p-1}{ }_{2 j+1} \quad(j+1,2 \ldots \ldots m-1) \\
& { }_{2 m+1} \longrightarrow(y-1)^{p-1}{ }_{2 m}
\end{aligned}
$$

With thie notacion, define:

$$
\theta_{j}: F_{2 m+1} \longrightarrow W \quad(J=1,2, \ldots, \cdot+1)
$$

by:

$$
a_{1} \longmapsto \begin{cases}v & \text { if } 1=2 \mathrm{j}-1 \\ 0 & \text { othervies },\end{cases}
$$

than, aince E acte trivially on M, G_{j} ia seen to be zaro on $X_{2 a+1}$ and thus to

But:

$$
\begin{aligned}
& \therefore\left[\Omega^{2} W^{*} \cdot k_{c}\right. \text {) }
\end{aligned}
$$

(see 10.0 for notation), and, by the definition of W. dien $\left[g^{2} w^{*}, k_{E}\right]$ in bounded independentiy of m. Thus, tit weme auficiently large, the imagea
 to may, there ariat elemante $\lambda_{1}, \ldots, \lambda_{m+1}$ of k, not all zero, such that

$$
-\lambda_{1} \phi_{1}+\ldots \ldots+\lambda_{m+1} \phi_{0+1}
$$

factora as $\mathrm{K}_{2 \mathrm{~m}} \xrightarrow{\text { incl }} \mathrm{F}_{2 \mathrm{~m}} \xrightarrow{\mathrm{f}} \mathrm{H}$ tor mone f . Thus:

$$
f \delta_{2 m}=\delta_{2 m}=\lambda_{1} \theta_{1}+\ldots .+\lambda_{m+1}^{\theta_{m+1}}
$$

Choose 1 with x_{y} othen:

$$
\begin{aligned}
f \delta_{2 m}\left(a_{2 j-1}\right) & =(y-1)^{p-1} f\left(a_{2 j}\right)-(x-1)^{p-1} f\left(a_{2 j+1}\right) \text { or }(x-1)^{p-1} f\left(a_{1}\right) \\
& =\lambda_{1} \theta_{1}\left(a_{2 j-1}\right)+\cdots+\lambda_{m+1} \theta_{m+1}\left(a_{2 j-1}\right) \\
& =\lambda_{j} w .
\end{aligned}
$$

Thus we have expressed w in the form $(x-1)^{p-1} w^{\prime}+(y-1)^{p-1} w^{\prime \prime}$. Now:
also:

$$
\begin{aligned}
0=(y-1) w & =(y-1)(x-1)^{p-1} w^{\prime}+(y-1)^{P_{w}} w^{\prime \prime} \\
& =(y-1) \cdot(x-1)^{p-1} w^{\prime}
\end{aligned}
$$

so that $(x-1)^{p-1} w^{\prime}$, and hence $(y-1)^{p-1} w^{\prime \prime}$, is an element of $W^{G}=\operatorname{soc}(W)$.

Theoren 3.2.2 If V in an indacompoanble pariodic kE-module then V ig frea on remtriction to elther Y or Y.

Proof Let $W=(V, V)_{k}$ than W astiafiee the conditiona of (3.2.1) and moc (W) 1. Juat (V, V). Thu take $w=1 v$ in the lemen to show that:

$$
I_{V}=f^{\prime \prime}+f^{\prime \prime} \quad \text { for mone } f^{\prime}, f^{n} e(V, V) \text { with } f^{\prime} \varepsilon \mu_{X^{W}}, f^{m} e \mu_{Y^{W}} .
$$

Since (V, V) in a local ring, either f^{\prime} or $f^{\prime \prime}$ ia an automorphim; thual by (0.0 .4) the reault follow.

With this notation, we aupone, without lomin of generality, that V frea on reatriction to Y. Thu wa conaider the aequence:

$$
0 \longrightarrow k_{E} \longrightarrow k(E / Y) \longrightarrow k(E / Y) \longrightarrow \mathbf{k}_{E} \longrightarrow 0
$$

where the central map iagivan by Y r-me $(x-1) Y$. Whan tenacred by V, this gives a two-step projective resolution of v.

We nov, in the notation of 53.0. take $A=k E$ and $L=k(x-1) \in k(y-1)$ and calculate $Y_{L}(V)$.
 define $t, 2 \in L$ by meana of the equatione:

$$
\begin{aligned}
& x-1-\lambda_{11}^{5}+\lambda_{12} 2 \\
& y-1-\lambda_{21} 5+\lambda_{22} 2
\end{aligned}
$$

then $\vec{E}=\langle 1+3,1+2\rangle$ in an Eamantial aubgroup of A by $(3,0.3)$. Alao urite $\bar{Y}=\langle 1+2\rangle$, then ve hava an eract asquence of k ह-modulem, which ere alao A-modulem undar the identification of A with kE:

$$
0 \longrightarrow k_{E} \longrightarrow k(\hat{E} / \bar{Y}) \longrightarrow k(\bar{E} / \bar{Y}) \longrightarrow k_{E} \longrightarrow 0
$$

In wich the mapa are given by:

$$
1 \longmapsto \mu_{\mathrm{E} / \mathrm{Y}}, \overline{\mathrm{Y}} \longmapsto \mathrm{\xi} \overline{\mathrm{Y}}, \overrightarrow{\mathrm{Y}} \longmapsto 1 .
$$

We tensor thia aequance by V (uaing the diagonel action of E) and ume the projective rasolution above to obtain a comutative diagram:

 V dependa only on the matrix ($\lambda_{1 j}$). Thut we hava a wil-defined map:

$$
c: G L(2, k) \longrightarrow \mathbf{k} .
$$

For example, if in the 2×2 identity matrix than $c(I)=1$ for the two sequences in the diagram (1) are identical in thie cane. We alao conaider the matriz:
$R=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
In thim case $E=E, \bar{Y}=\bar{X}$ and the map $k(\overline{\mathrm{~B}} / \hat{Y}) \longrightarrow k(\overline{\mathrm{E}} / \overline{\mathrm{Y}})$ is given by
$X \leadsto(y-1) x$. Thue $c(R)=X_{X}(V)$ where λ_{X} ia calculated uaing Y an the maximal subgroup rewticted to which V is free, $x \in E-Y, y \in E-X$.

Recurining to the general case we have:

Lemme 3,2,3 If V in free on reatiction to \mathcal{F} then $c\left(\lambda_{i j}\right) \neq 0$.
 Thus by (3.0.1), $k(\vec{E} / \bar{Y})$ © y in also free with reapect to the diagonal action of E. Hence the upper sequence in (1) is a projective reteolution of V. Thus a in an automorphism, and the result followa.

We now consider the projective resolution of k_{E} given in the proof of (3.2.1) and, in particular, the firat few terma. We shall conatruct a particular commutative diagran:

Clearly we may rake $A_{0}{ }^{1} a_{1} \longmapsto \bar{Y}$: now calculate $\mathrm{X}_{1} \mathrm{~B}_{\mathrm{O}}$:

$$
\begin{aligned}
& a_{1} \longmapsto(x-1) \bar{Y}=\left(\lambda_{11} 3+\lambda_{12}\right) \bar{Y}=\lambda_{11} \overline{3} \bar{Y} \\
& \left.a_{2} \longmapsto(y-1) \bar{Y}=\left(\lambda_{21}\right)^{2}+\lambda_{22}\right) Y=\lambda_{21} \bar{Y} \bar{y}
\end{aligned}
$$

hence we may define s_{1} by:

$$
a_{1} \longmapsto \lambda_{11} \overline{\mathrm{y}} \quad, \quad a_{2} \longmapsto \alpha_{21} \frac{\tilde{\mathrm{Y}}}{}
$$

Write $b_{1}=J_{2}\left(a_{i}\right)$ for $1=1,2,3$ then:

$$
\begin{aligned}
& s_{1}\left(b_{1}\right)=\lambda_{11}(x-1)^{p-1} p=\lambda_{11}\left(\lambda_{11}^{p-1} s^{p-1}+{ }_{2}(\ldots)\right)_{\bar{p}} \\
& \text { - } \lambda_{11}^{p} \mu_{E} / \bar{q} \\
& A_{1}\left(b_{2}\right)=\lambda_{11}(y-1) Y-\lambda_{21}(x-1) \bar{Y}=\left(\lambda_{11} \lambda_{21}-\lambda_{21} \lambda_{11}\right) \bar{Y} \\
& \text { - } 0 \\
& s_{1}\left(b_{3}\right)=\lambda_{21}(y-1)^{p-1} \bar{\gamma}-\lambda_{21}\left(\lambda_{21}^{p-1} p^{p-1}+2(\ldots)\right) \hat{F}
\end{aligned}
$$

hence:

$$
s_{2}=\lambda_{11}^{p} \phi_{1}+\lambda_{21}^{p} \phi_{2}
$$

where $\phi_{j}(j=1,2)$ are as in the proof of (3.2.1) if we identify k_{E} with $k w$.

Now wa alg have a fixed comitative diagram:

Write $\psi_{j}=\left(\mathcal{H}_{1} 1_{V}\right)$ and tensor the diagram (2) by V : attaching the diagram (3) to thin we see that we may take:

$$
\alpha=\lambda_{11}^{P} \psi_{1}+\lambda_{21}^{P} \phi_{2}
$$

in the diagram (1).
Taking ($A_{i j}$) to be the identity matin, I, we ane that $\phi_{1}-1_{V}$ ia a non-automorphife of V. Similarly, taking the matrix R defined above, $\phi_{2}{ }^{-\lambda} x_{x} v$ 1* a non-automorphisa. Therefore:

Lemma $3.2 .4 \quad c\left(\lambda_{i 1}\right)=\lambda_{11}^{P}+\lambda_{21}^{P} \lambda_{X}(V)$.

So let $\lambda=\lambda_{X}(y)^{1 / p}$ be the (unique) pith root of λ_{X} in k, and write:

$$
20=(x-1)+x(y-1) .
$$

If $\lambda_{x}=0$ then by (3.2.3), V is not free on reatriction to x. Thum $g_{0}=x-1$ if in $Y_{L}(V)$. If $\lambda_{X} * 0$ then coneider the mariz:

$$
\left|\begin{array}{rr}
\lambda & 0 \\
-1 & \lambda
\end{array}\right|
$$

then $t=\frac{1}{\lambda}(x-1), 2=\frac{1}{\lambda}{ }^{2} 0$. Uaing (3.2.4), the value of c at thiv matrix is $\lambda^{p}+(-1) \mathbb{B}_{X}=0$. Hence by (3.2.3), V ia not free on reatriction to $\langle 1+2\rangle$; thum 2, and hence $20=M_{2}$, is in $Y_{L}(V)$.
 q_{1} is any point in L outaide thia line then q_{0} and q_{1} form a basie for L. Lat $\bar{E}=\left\langle 1+2_{0}, 1+q_{1}\right\rangle$ that \bar{E} ia an atazntial aubgroup of $k E$. Now V is an indacompomble, periodic $k \tilde{E}$-module, thua by the reasoning of (3.2.2) it 1 a free on reatriction to elther $\left\langle 1+\eta_{0}\right\rangle$ or $\left\langle 1+q_{1}\right\rangle$. But v ia not free on redtriction to $\langle 1+2\rangle$, thul $i t$ muat be free on reatriction to $\left\langle 1+2_{1}\right\rangle$: that 1s to say $\rho_{1} \in Y_{L}(V)$. Thua we have chat $Y_{L}(V)=k q_{0}$.

We sumarise this aa:

Thearan 3.2 .5 Lat V be a non-projective, indecomposable kE-adule which ia free on reatriction to Y. We calculate $\lambda_{X}{ }^{(V)}$ uning the elementa $x \in \mathbb{E}-Y$, $y \in E-X$. Let $L=\mathbf{k}(x-1) \cdot k(y-1)$ then:

$$
Y_{L}(v)=k\left((x-1)+\lambda(V)^{1 / p}(y-1)\right)
$$

PAGINATION ERROR

©3．3 Application to the ageral cape

Now lat k be an algebraically clamad field of characteriatic p and G ba －finite pogroup．Assume that V in non－projective，indecampoable kG－module which if free on reatriction to momemimal mberoup，H_{0} ，of G mein 13．1． In calculating the conatante $\lambda_{H}(V)$ it ouffical to mane that H o H_{0} ，for
 abelian group af order p^{2} ．Ae in（ 0.0 .12 ），way conaidar the kE－modula． $U=\mu_{N} V$ ；thia ia free on reatriction to H_{0} / E and ham no projective eumanda，if f, for $\mu_{E}{ }^{\mathrm{V}}=\mu_{\mathrm{G}} \mathrm{V} \cdot 0$ ．

Leman 3.3 .1 Let $G_{0} \in G-H_{0}$ ，$E G-H$ ba the elementa chosen to calculate
 that x and generate E．If λ_{1}, λ_{2} are elementa of k_{1} not both zera，than U i曾 fre⿻ fo rentiction to：

$$
\left\langle 1+\lambda_{1}(x-1)+\lambda_{2}(y-1)\right\rangle
$$

if and only if $\lambda_{2}^{p}+\lambda_{H}(V) \lambda_{1}^{p}$ ．
 Hence g^{\prime} and，aisilarly，g_{0}^{\prime} do exiat and x and y are deen to have the property claired．

Lat W be indecomponable aumand of U ，then W ia free on reatriction to $H_{0} / E=\langle y\rangle$ ．Hence ve are in the attuation of（3．2．5）．We clain that $\lambda_{X}\left({ }^{(H)}\right)$ equali角 $\lambda_{H}(V)$ so thet：

$$
Y_{L}(W)=k\left((x-1)+A_{H}(V)^{1 / p}(y-1)\right)
$$

 equale thia ine．Thus the rasult follow，

Thum we wuat prove the claiw. Thare eximt mapa $w \rightarrow \mathbb{U} \rightarrow \mathbf{W}$ with - 1_{W}. Multiply the defining diagram for $A_{H}(v)$ by μ_{N}, noting that N acta trivially on $k\left(G / H_{0}\right)$ and $k(G / H)$ a that we may apply (0.0.13) to show that there if a commantive diagram:

and $Y \longmapsto\left(g_{0}-1\right) H_{0} / E=\left(g_{0}^{\prime}-1\right) H_{0} / E=(x-1) Y$
reapectively. We can write $\quad\left(\lambda_{H}(V)\right]_{0}+$ where $\frac{1}{}$ milpotent.
Now we have:

 of (U,U) form an ideal (the radical). Thus, for m sufficiently large.

$$
(m 8 i)^{m+1}=\operatorname{men}_{(i n}(i)^{\square} i=0
$$

Hence mid is a non-automorphian of and the reault follows.

Theorem 3.3.2 V in frea on rantriction to H if and only if $\lambda_{H}(V) * 0$.

Proof The result ie trivial for $H=H_{0}$. Otherwise, in the notation of (3.3.1), V ia free on reatriction to H iff U im free on reatriction to (x). But, taking $\lambda_{1}=1, \lambda_{2}=0$ in (3.3.1), thia happena iff $\lambda_{H}(v) * 0$.

Aa mentionad in 3.1, thie result extende to the case when k ia not necemarily algabraically clomed but V in abmolutely indecompasable.

$\$ 3$.

An alternative description of $\lambda_{H}(V)$

Let V he an in 3.1. Chooae an pimorphiam $4: V \longrightarrow \mathbf{k}_{G}$ auch that $J(V, V) V$ ker and an element $v_{0} \subset V$ with $\phi\left(v_{0}\right) \neq 0$. For each maximal aubgroup. H, of G we may construct the exact sequance:

$$
0 \longrightarrow v \longrightarrow X_{H} \longrightarrow v \longrightarrow 0
$$

an in (2.1.2), the element $g e G-H$ in the atatemant of thia theorem being the mame as ia uad to calculate $\lambda_{H}(V)$. This aoquence is aither aplit or almon aplit. It is almot mplit when V iafree if free on reatriction to H. for example whan $H=H_{0}$. In either case we may conatruct comutative d1agram:

Writa $=\lambda I_{y}+\delta$ where $\lambda e k$ and $\delta i!$ non-automorphime of V. Becaume the lover sequanc: in almot plit we can write $\mathrm{K}=\mathrm{d}_{0}$ for some $\delta_{1} X_{H_{0}} \longrightarrow \mathrm{~V}$. Now lat $a^{\prime}=a-\rho^{\delta}$ than:

$$
\begin{aligned}
& \alpha a^{\prime}=\alpha a-\alpha \rho \delta=o_{0} \\
& \alpha^{\prime} \rho_{0}=m \rho_{0}-\rho^{d} \rho_{0}=\rho(s-B)=\rho \cdot \lambda l_{v}
\end{aligned}
$$

thum we have comatative diagram:

The ecalar λ 1手 uniquely determined: if λ^{\prime} vere another possible value then ($\left.\boldsymbol{\lambda}-\lambda^{\prime}\right)^{1} y$ would factor through $\rho 0$ and hence be non-automorphian of v
(aince $\rho_{0}{ }^{\text {ie }}$ not eplit). The only way thin can happen ie if $\lambda=\lambda^{\prime}$.

Theorem 3.4.1 $\lambda=\lambda_{H}(V)$.

Corollary 3.4.2 The equence $0 \longrightarrow v \longrightarrow X_{H} \longrightarrow v \longrightarrow 0$ in:
(a) almost aplit if V is free on restriction to H,
(b) aplit otharwiae.

Proof of Corollary (a) follows from (2.1.4). Conversaly if the aequence ia almoar aplit then the map m in the diagram above will be an automorphian of $V(e f .(2.2 .2))$. Thua $\lambda * 0$. Hence by (3.4.1) and (3.3.2), Vin frim on reatriction to H. Part (b) now follova uaing (2.1.2) if V if not free on rentriction to H then the sequence ia not manost aplit, therefore it muat ba oplit.
 for V auch that $v_{1}=v_{0} \cdot k\left(G / H_{0}\right)$ ev ia then the frae $k G$-modula on the elemente $\mathrm{H}_{0} \mathrm{v}_{1} \ldots \ldots, \mathrm{H}_{0} \oplus \mathrm{v}_{\mathrm{n}}$. Thum we may conatruct a comutative diagram:

where 3 is given by:

$$
\mathrm{H}_{0} \oplus v_{i} \longmapsto H \in v_{i} \quad(1=1,2, \ldots, n) .
$$

Note that, by conatruction, $\boldsymbol{\xi}_{\mathrm{H}_{\mathrm{O}}}=\boldsymbol{\theta}_{\mathrm{H}}$.
Hence we have two complative diagrame:
(1)

(2)

so that we have diagram:

Thu 2-A1v factorm through $\rho 0$ and therefors is a non-automorphiam of V. But thia gives the result aimply by the dafinicion of $\boldsymbol{\lambda}_{H}(v)$.

Noce The only point ve nead to be alightly caraful about in the proof above if that we need to be mure that the centrml apa in the four-module aequencea are consiatant. Hovever this is enmured by uaing the asme elementigeg-hin the calculation of $\lambda_{H}(v)$ an the equence $0 \longrightarrow V \longrightarrow X_{H} \longrightarrow V \longrightarrow 0$.

Lat um aranine (3.4.2): V ia not free on reatriction to H if and only if the sequence:

$$
0 \longrightarrow v \longrightarrow x_{H} \xrightarrow{\theta} v \longrightarrow 0
$$

splita; that ia to say, if and only if there exime a kG-homomorphiam T: $V \longrightarrow X_{H}$ with $\sigma T=1_{V}$.

The mequence certainly plita on reatriction to H, so we may choone a

$$
T(v)=(s(v), v)
$$

for mome kH-automorphian, i, of V convaraly, any map of thim form will

$$
g^{T}(v)=T\left(g^{v}\right) \quad \text { for } 11 v \geq V
$$

But \ddagger

$$
\begin{aligned}
& g T(v)=g \cdot \phi(\mathbb{g}(v), v)=\phi\left(g \mathrm{~g}(v)+\phi(v) g \mu_{H} v_{0}, g v\right) . \\
& \nabla(g v)=\phi(\mathrm{g}(\mathrm{gv}) \cdot g v) .
\end{aligned}
$$

Thual:

Corollary 3.4.3 V la not free on reatriction to H if and only if there

$$
\Delta(g v)=\sin (v)+\phi(v) g \mu_{H^{v}} 0 \quad \text { for allvev. }
$$

33.5 Dada'a lemen

Let us now return to the notation of 13.0: let he the group algebra of an elementary abelian p-itroup ovar an algebraically closed field of characterimetic p. k. Urite J for the radical of A and let L be aubapace of J ach that $J=L \oplus J^{2}$. We shall follow the general davelopment of [Ca3], taking over some proofa entirely and adapting others alightly. The firat reault falla into the former category.

Leman 3.5.1 (1) $Y_{L}(U=V)=Y_{L}(U) \cup Y_{L}(V)$.
(iv) $Y_{L}(U \in V) \in Y_{L}(U) \cap Y_{L}(V)$.

Proof (1) 1atrivial. For (i1), lat I (and write $\mathrm{C}=\langle 1+\boldsymbol{l}\rangle$. If v if free on reatriction to C then we prove, by induction on dian that U U ia aleo free on reatriction to C. Thia ia trivial if $U=0$; ocherwite, way choome a maximal aubodule, U_{O}, of U . We then have an mact mequance:

$$
0 \longrightarrow \mathrm{U}_{0} \oplus v \longrightarrow \mathrm{U} \longrightarrow \mathrm{v} \longrightarrow \mathrm{v} \longrightarrow 0
$$

Inductivaly, both and tarae of thia eequance are free on rameriction to $C_{\text {, }}$ thus so in the middle term.

Thia ioplien that $Y_{L}(U \in V) \& Y_{L}(V)$. But ofellarly $Y_{L}(U \in V)=Y_{L}(U)$, oo the reault followe.

The nast result wae firat proved in [Da] uning easentioliy elementary techniguea, Our proof hat more in comon uith that givan in [Ca3]. Mont of the apade-work has already been dona in 3.2 .

Theoren 3.5.2 (Dade's leaea) Viafrea if and only if $Y_{L}(V)=\{0\}$.

Proof Suppone firacig that V ie frae. Let I be nonzero element of L, then,

 Hance $1 \not Y_{L}(V)$ and the reault follow.

The converiee in proved by induction on n, where p^{n} a dim h_{k}. The case $n=1$
 1: an enemtiml wubroup of A. So auppose that $n \geqslant 2$ and that $Y_{L}(V)=\{0\}$. Uaing (3.5.1)(1), it mificea to ameume that V in indecomporable. Take ak-bamia $I_{1} \ldots . . t_{n}$ for L and define:

$$
\begin{aligned}
& N=\left\langle 1+Y_{3} \cdots \cdots, 1+\xi_{n}\right\rangle, \\
& s^{\prime}=1+\xi_{1} \cdot s_{0}^{\prime}=1+\xi_{2}, \\
& H=\left\langle s_{0}^{\prime}, N\right\rangle, H_{0}=\left\langle s^{\prime}, N\right\rangle_{4} \\
& G=\left\langle s_{0}^{\prime}, B^{\prime}, N\right\rangle_{0}
\end{aligned}
$$

Then Gia an easantial mubroup of A; almo, inductively. V in freat on ractiction to H_{0}. Asaume that V i尚 not free; then we are in the aituation of (3.3.1). Write:

$$
\xi=\lambda_{H}(V)^{1 / P_{V_{1}}}+\xi_{2}
$$

 ia fres on rantriction to $H^{\prime} / N=\langle(1+J) N\rangle$ - contradicting the result of (3.3.1). Thue V mut be free.

Proponition 3.5 .3 UGV in free if and only if $Y_{L}(U) \cap Y_{L}(V)-10$.

Remark Note thit, by (3.0.1), it does not miter which emeentisi subgroup of the chooen to ect diagonally on the teneor product. The proof of this remit ia lifted directly fron [CB3].

Praof If the intereection of the two varietien in zero then U U is free by (3.5.1)(11) and (3.5.2). Converady mppose that in a nonzero element of $Y_{L}(U) \cap Y_{L}(V)$ and writa $C=\langle 1+B\rangle$. Then there aniat non-projectiva, indecompoable
$k C$-mumanda U_{0}, V_{0} of $U_{i} V$ reapectivaly. Note that becauae C ia cycllc of ordar p, U_{0} and V_{0} have dimenaion leas than p. By (3.0.3) there exiata an eamential subgroup. G, of A containini C. Tf we let G act diagonally on $U \mathbb{V}$ then U_{0} V V_{0} isa direct sumand of $(U \cup V)_{d C}$. Bue this sumand ia not free (for ita dimenaion is not diviaible by p), thua U iv in not free wich respect to the diagonal action of G, or, therefore, any other eamential mugroup of A. \square

He now invastigate how $Y_{L}(V)$ variam with L. For $I ⿷ J=J^{2}$ define module $U_{g}=I^{p-1} A$.

Lemes $3,5,4$ If $Y, Y^{\prime} \in J-J^{2}$ then U_{f} is frae on reatriction to $\left\langle 1+\mathbb{I}^{\prime}\right\rangle$ if and only if ξ^{\prime} and r^{\prime} are lineariy independent modulo J^{2}.

Pronf If they are inearly indapandent then (3.0.3) shaw that there exiata an amaential aubroup, G, of A containing both $C=\langle 1+\zeta\rangle$ and $C^{\prime}=\left\langle 1+\xi^{\prime}\right\rangle$. Then

Convaraely, auppose that 3 and 5^{\prime} are linearly dependent modulo J^{2}. Choone L^{\prime} with $J=L^{\prime}$ - J^{2} and $f^{\prime} \in L^{\prime}$. Then any element of $L^{\prime}-k Y^{\prime}$ ia linaarly independent of modula J^{2} and $\begin{aligned} & \text { ao, by the firat part of the proof, if not in }\end{aligned}$ $Y_{L},\left(U_{j}\right)$. Thue $Y_{L},\left(U_{l}\right)$ ia containad within the ine $k y^{\prime} ;$ but U_{g} ia not free, so (3.5.2) showa that $Y_{L},\left(U_{g}\right)$ is not zero. Thus it wut be the whole inne. In particular. U_{s} ia not free on reatriction to $\left\langle 1+\mathbb{I}^{\prime}\right\rangle$.
 reatriction co $\langle 1+j\rangle$ if and only if it is frea on ratriction to $\left\langle 1+j^{\prime}\right\rangle$.

Proof Choose aubapaca of dimenaion $n-1, L^{\prime \prime}$, such that:

$$
J=\left(k I \cdot L^{n}\right) \cdot J^{2}
$$

and write $L=k I$ - $L^{\prime \prime}, L^{\prime}=k 3^{\prime}-L^{\prime \prime}$ ac that L and L^{\prime} are both complemente to J^{2} in J.

Uaing (3.5.4), $Y_{L}\left(U_{Y}\right)=k!, Y_{L}\left(U_{L}\right)=k J$, Hence use (3.5.3):

$$
\text { V } Y_{L}(V) \quad Y_{L}\left(U_{G}\right) \cap Y_{L}(V) \text { in nonzero }
$$

* U_{3} eV ia not free

Thus the reault follown.
ㅁ

Hence, if we regard $Y_{L}(V)$ al a ubate of J / J^{2} by idantifing L with J / J^{2} in the obviauø way, then the result in independent of L. We shall denote thie aet by $Y(V)$. Thus:

$$
Y(V)=\{0\} \cdot\left\{\left[+J^{2} e J / J^{2} \mid v_{t\langle 1+B\rangle} \text { is not free }\right\}\right.
$$

- thia being wall-dafined by (3.5.5).

We ahall need the following rawit, the proof of which ia virtually the satie as that of (3.5.5) :

Leara 3, 5, 6 Lat $3 \in J-J^{2}$ then:

$$
Y\left(U_{t}=v\right)= \begin{cases}k\left(t+J^{2}\right) & \text { if } t+J^{2} \in Y(V) \\ 10 t & \text { otherwise }\end{cases}
$$

©3. 6 Subpacalaterained by aubgouge

Lat us introduce the notation that we whall be umine for the ramainder of this chapter, k will be an algebraically cloead field of characterigtic p and G will be finitie p-group. will denote the Frattini abgroup of G and we ahall write $G=G / E$. Take a minimal aet of generatorg g_{1}, \ldots, B_{n} for G and brite:

$$
H_{1}=\left\langle g_{1}, \ldots, g_{1-1}, \frac{g_{1+1}}{} \ldots \ldots g_{n}\right\rangle
$$

 then choosing the repreancatives of $G-H$ as in 3,1 we choone g_{i} to represent $G=H_{1}$.
 The natural bap $G \rightarrow E$ induces k-imomorphian $J / J^{2} \longrightarrow J / J^{2}$.

Proof Apply (3.0.2) taG: the mp $k \in J / J^{2}$ givan by $B+(g-1)+j^{2}$ 1a k-isomorphisen. But ve mag alao apply (3.0.2) to G; the Fratitini aubgroup of Cin trivial, eo wa have a k-isomorphian $k \in G \longrightarrow J / J^{2}$ given by $\bar{g} \longrightarrow(\bar{g}-I)+J^{2}$. Thua the map $(g-1)+j^{2} \longrightarrow(\bar{g}-I)+J^{2}$ is a k-inomorphian $J / J^{2} \longrightarrow J / J^{2}$, a曾 required.

Suppose that Via akG-odule which in frae on reatriction to I. We agy
 so there 1 a Carleon variety, $Y(0)$. Thi is a aubet of $\mathrm{J} / \mathrm{J}^{2}$, but by (3.6.1) we my regard it an aubset of $\mathrm{J} / \mathrm{J}^{2}$ in anatural way. We aball alternate between theae two viewpointa whout giving the matter too meh thought.

For any aubaraup, H, of G we let S_{H} denote the k-aubapace of $\mathrm{J} / \mathrm{J}^{2}$ spanned by all elemanta of the form $(\mathrm{h}-1)+\mathrm{j}^{2}$ with hef.

Lenen 3.6.2 Lat $h_{1} \ldots \ldots, h_{r}$ be ainimi mat of generatora for H modula

 1somorphime a: $k \in G \longrightarrow J / J^{2}$ given in (3.0.2). The imomorphime
 1.a. if ve think of al an F_{p}-apaca, $h_{1} \ldots \ldots, h_{r}$ in an F_{p}-bania for \boldsymbol{H}. Thum

In particular thia igpliea that $\left(e_{1}-1\right)+J^{2} \ldots \ldots\left(s_{n}-1\right)+j^{2}$ in a k-bomia for $\mathrm{S}_{\mathrm{G}}=\mathrm{J} / \mathrm{J}^{2}$.

The following is the extenmion of Dade'a leman to this eituations

Theoren 3.6.3 Lat V be k-modula wich in free on reatriction to and H be any mubgroup of G. V ia free on ratriction to H if and only if:

$$
Y(\eta) \cap S_{H}=\{0]
$$

Proof Lat h_{1}, \ldots, h_{r} be an in (3.6.2). $Y(V) \cap S_{H}=[0]$ ift V ia free on reftriction to all nomzero eleanta of

$$
k\left(\kappa_{1}-I\right) \bullet \ldots \bullet k\left(\Gamma_{r}-I\right)
$$

 reatiction to \mathbb{P}. But ($0,0,12$) given that thim occura iff V in free on restriction to He. Thue the result followa.

A came that vill be of particular interaet ia that wan H ia a manimal ubgroup of G. (3.6.2) shows that S_{H} fa hyperplane (1.a. aubapace of co-dimancion one) of J / J^{2}, but ve bleo have the following deacription:

Theoran 3.6.4 If $c=\left(c_{1}, \ldots, c_{n}\right)$ is nonzaro elumant of F_{p}^{n} than lec $\mathrm{S}(\mathrm{c})$ denote the hyperplane:

$$
\left\{\sum_{1} \lambda_{1}\left(\theta_{1}-1\right)+J^{2} \mid \sum_{1} c_{i} \lambda_{1}=0\right\}
$$

of $\mathrm{J} / \mathrm{J}^{2}$.
(a) Let H be animal auberoup of G and chooea $g \in G-H$. Defina $c_{1} \in F_{p}$ by $g_{i} \in\left(g_{B}\right)_{i}(1=1,2, \ldots, n)$ then $S_{H}=S\left(c_{1} \ldots \ldots, c_{n}\right)$.
 of G with $S(c)=S_{H}$.

Proof (a) Write $g_{1}=\left(g_{i}\right)_{1} \quad\left(h_{1}=H\right)$ then:

$$
\sum_{i} \lambda_{1}\left(g_{1}-1\right)+J^{2}=\sum_{i} c_{1} \lambda_{1}(s-1)+\sum_{i} \lambda_{1}\left(h_{1}-1\right)+j^{2}
$$

is an element of S_{H} iff $\sum_{i} c_{1} A_{1}=0$.
(b) Urite $c=\left(c_{1}, \ldots, c_{n}\right)$ and let r be meh that $c_{r} p$. Conaidering $e_{r}^{-1} \subseteq$, we eny amana that $c_{r}=1$. Defina:

$$
h=\left\langle e_{1} g_{r}^{-c_{1}}, \mid i+r\right\rangle
$$

 $S_{\mathrm{H}}=\mathbf{S}(\underline{\mathrm{g}})$.

Coroliary 3.6.5 If V ia frea on reatriction to and $Y(V)$ in a line then v ie free on reatriction to one of the mbaroupa $H_{1} \ldots \ldots H_{n}$.

Proof Let $\sum \lambda_{1}\left(\varepsilon_{1}-1\right)+J^{2}$ be nonzaro alemant of $Y(V)$ then $\lambda_{i}=0$ iff thim element is in $S_{H_{i}}=S(0, \ldots, 0,1,0, \ldots, 0)$. Thim happene iff v is not free

53.7 Modulen which ara free on reatriction to enial aubsoup

Nov lat V be a non-projective indecoepoable kG-modula wich if fram on reatriction to same mazieal subgroup. H_{0}, of G as in 3,1 . The following ang he considered to be the min theorea of thie chapter:

(b) $Y($ V) in the 1 ina:

$$
k\left(\sum_{i=1}^{n} \lambda_{H_{i}}(V)^{1 / P}\left(g_{i}-1\right)+J^{2}\right)
$$

 much thet, if H_{i}^{\prime} is the garimal mubgroup

$$
\left\langle\otimes_{1}^{\prime} \ldots . . \varepsilon_{1-1}^{\prime} \cdot \mathbb{I}_{1+1}^{\prime} \ldots \ldots \varepsilon_{n}^{\prime}\right\rangle
$$

$(1=1,2, \ldots, n)$, itare on reatriction to one of $H_{1}^{*} \ldots \ldots H_{n}^{\prime}$. Without loel of generality, V ia frea on rentriction to H; We make choica, pomibly diffarent
 of G, in which g_{i}^{\prime} ia tha representative of $G-H_{i}^{\prime}$. Procaed an in 3.1 with thic

Nota that, because it is free on ragtriction to ademien abgroup, V ia
 to asy, by Dade's lemma, $Y(V)$ IOH. Lat I be any nonzaro eleant of $Y(V)$ thin wa can writa ${ }^{\prime}$ in the fori $\mathbf{f}^{\prime}+\mathrm{J}^{2}$ where:

$$
r=\lambda_{1}\left(\vec{g}_{1}^{\prime}-\bar{I}\right)+\cdots+\lambda_{n}\left(\bar{B}_{n}^{\prime}-I\right)
$$

for some $\lambda_{1} e k$. We clain that $\left.\lambda_{1}=\lambda_{1} M_{H_{1}^{\prime}}\right)^{1 / p}$ for all 1 .
Note that $\lambda_{H}^{\prime}=1$ mo thet the rasult is trivisi for $1=1$. It is also trivial if $\lambda_{1}=\lambda_{1}$ - 0 . So asaune ocheryiae and apply (3.3.1) with Hi in
place of H_{0} and H_{i}^{+}in place of H. Than

$$
N=H_{i}^{\prime} \cap H_{i}^{\prime}=\left\langle g_{2}^{\prime}, \ldots, g_{i-1}^{\prime}, \Delta, s_{i+1}^{\prime} \ldots \ldots g_{n}^{\prime}\right\rangle
$$

and we my take $x=g_{1}^{\prime N}, y=g_{i}^{\prime N} . \operatorname{By}(3,0.3),\left\langle 1+\Gamma^{\prime}, N\right\rangle$ ia marimal aubgroup of an easential subgroup of kC. ∇ ia not frea on reatriction to $\langle 1+\boldsymbol{\eta} \boldsymbol{\gamma}$ and hance not to $\left\langle 1+I^{\prime}, N\right\rangle$. Thun the image of $\left\langle 1+I^{\prime}\right\rangle$ in $k(G / F)$ doee not act franly
 that $\lambda_{i}^{p}=\lambda_{H_{i}^{\prime}}^{\prime} \cdot \lambda_{1}^{p}$ and the clain in proved.

Hance in theme circumatancen we have that:

$$
\begin{equation*}
Y(\nabla)=k\left(\sum_{i=1}^{n}\left(\lambda_{H_{i}^{\prime}}\right)^{1 / P}\left(e_{i}^{p}-1\right)+J^{2}\right) \tag{1}
\end{equation*}
$$

Now let un prove the rasult:
 reault above showe that $Y(V)$ is a line. Hence (3.6.5) gives that V is free on reatriction to one of $H_{1} \ldots \ldots H_{n}$.
(b) Apply the reault bova vith $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}$ as the set of ganeratora. By (a), V in free on rentriction to one of H_{1}, \ldots, H_{n}; without lome of genermity. H_{1}. We do not need to change the raprasentatival for $G-H$; the only difference in calculating the conatenta $H_{p}^{(V)}$ and $\lambda_{H}^{\prime}(V)$ ia that H_{0} is the basa in one, H_{1} in the othar. Thue conimider the diagran:

$$
\alpha^{\prime} \omega-\lambda_{H_{1}} \lambda_{H^{\prime}}{ }^{l} v
$$

But cia ia a mitable map to calculate λ_{H}; hence:

$$
\lambda_{H}(v)=\lambda_{H_{1}}(v) \cdot \lambda_{H}^{\prime}(v) .
$$

But, because V is free on restriction to $H_{1}, \lambda_{H_{1}}(V)$ is a nonzero constant. Thus tha reault ia geen to follow by aubarituting into (1).

Corollarg 3.7.2 Let H be amaidal aubgroud of G and choose $g \in G-H$. Define $c_{i} \in F_{p}$ by $g_{1} \in(g H) C_{i}$. Then V is free on reatriction to H if and only if:

$$
c_{1} \lambda_{H_{1}}(V)+\ldots+c_{n} \lambda_{H_{n}}(v) \not 0 .
$$

Corollary 3.7.3 V is fre on rentriction to all the mamimal subgroupa of G if and only if $\lambda_{H_{1}}$ (V) ,, $\lambda_{H_{n}}$ (V) are F_{D}-linearly indapandent.

Proofe Uaing (3.6.4)(a), (3.6.3) and (3.7.1)(b), Via free on reatriction to H iff $c_{1} \lambda_{H_{1}}^{1 / p}+\ldots+c_{n} \lambda_{H_{n}^{1 / p}}^{1 / p} 0$. But thi in zero iff ita pth power iv zero, thue the raault follow on naring that $c_{i}^{p}=c_{i}$.
(3.7.3) followi frow (3.7.2) and (3.6.4)(b).

In fact ve can prove an improved veraion of (3.7.2) if i in the element of $G-H$ used in calculating $\lambda_{H}(v)$ than:

$$
\lambda_{H}(v)=c_{1} \lambda_{H_{1}}(v)+\ldots+c_{n} \lambda_{H_{n}}(v) .
$$

The reault of (3.7.2) followatrivially from thia and (3.3.2).

Proof We may asaume, without loan of generality, that V ie free on rabtriction to H_{1}. The reault in trivial if $H=H_{1}$ mosamme othervime. Aa in (3.3.1) there

$$
H_{i}^{\prime}=\left\langle s_{1}^{\prime}, \ldots, s_{i-1}^{\prime}, \|, s_{i+1}^{\prime}, \ldots, g_{n}^{\prime}\right\rangle
$$

$(1=1,2, \ldots, n)$ so that each H_{i}^{\prime} in a maximal aubgroup of G and $H_{i}^{*}=H_{1}, H_{2}^{\prime}=H$. We may change the representatives of $G-N$ for N a maximal subgroup of G mo that g_{i}^{\prime} represencs $G-H_{i}^{\prime}$. Also let H_{1} be taken in place of H_{0} to calculate the constanta $\lambda_{N}^{\prime}(V)$. (3.7.1)(b) with $g_{1}^{\prime}, \ldots, g_{n}^{\prime}$ in place of g_{1}, \ldots, g_{n} and H_{1} in place of H_{0} gives:

$$
\left.y(\nabla)=k\left(t+J^{2}\right) \quad \text { there } t=\sum_{i=1}^{n}{Q_{i}}_{H_{i}}\right)^{1 / p}\left(g_{i}^{\prime}-1\right)
$$

If we think of $\bar{G}_{1} \ldots \ldots \overline{8}_{n}^{\prime}$ as an F_{p}-banis for G we aee that there is a nonaingular $n \geq n$ matrix $\left(c_{i j}\right)$ with entriea in F_{p} auch that:

$$
\begin{equation*}
\bar{g}_{1}=\prod_{j=1}^{n}\left(\overline{8}_{j}^{\prime}\right)^{c} i j \tag{1}
\end{equation*}
$$

$(1=1,2, \ldots, n)$. The i gomorphise of (3.0.2) gives that:

$$
\left(g_{1}-1\right)+j^{2}=\sum_{j=1}^{n} c_{i j}\left(s_{j}^{\prime}-1\right)+j^{2}
$$

so by (3.7.1)(b) the following in a nonzaro elament of $Y(\bar{V})$,

$$
\sum_{i, j} c_{i j} j_{H_{i}}^{1 / p}\left(s_{j}^{\prime}-1\right)+J^{2}
$$

so thim equala $e\left(I+J^{2}\right)$ for some $0 \neq c \in k$. Since $\left(g_{1}^{\prime}-1\right)+J^{2} \ldots,\left(g_{n}^{\prime}-1\right)+J^{2}$ ara k-1inearly indepandent, this gives for $1=1,2, \ldots, n$:

$$
\begin{equation*}
e\left(\lambda_{H_{j}^{\prime}}^{\prime}\right)^{1 / p}=\sum_{i=1}^{n} c_{i j} \lambda_{H_{i}}^{1 / p} \tag{2}
\end{equation*}
$$

(1) givea that $B_{1} H_{1}-\left(g_{1}^{\prime} H_{1}\right)^{C}{ }_{11}=\left(e_{1} H_{1}\right)^{C_{11}}$ so that $c_{i 1}$ equale 1 if 1-1 and 0 orherviee. Subarituting this into (2) and noting that $\lambda_{H_{i}^{\prime}}^{\prime}=1$ gives that $c=\lambda_{H_{1}}^{1 / p}$.
(1) alao given that $\mathrm{g}_{\mathrm{j}} \mathrm{H}=\left(\mathrm{g}_{2}^{\mathrm{H}} \mathrm{H}^{\mathrm{C}} \mathbf{1 2}=\left(\mathrm{g}_{\mathrm{g}}\right)^{\mathrm{C}} 12\right.$ so that, in the notation of (3.7.2), $c_{12}=c_{i}$. Subatituting into (2) givea:
but $c_{1}^{p}=c_{1}$ so:

$$
\lambda_{H_{1}} \lambda_{H_{2}^{\prime}}^{\prime}=\sum_{1=1}^{n} c_{1} \lambda_{H_{1}} .
$$

But $H_{1}^{\prime}=H_{1}, \mathbb{B}_{1}^{\prime} H_{1}^{\prime}=g_{1} H_{1}, H_{2}^{\prime}=H, g_{2}^{\prime} H_{2}^{\prime}=g H$ wo we are in praciaely the sate altuntion al aiven by the diagran in the proof of (3.7.1)(b). Thue, at thera, we have that $\lambda_{H_{1}} \lambda_{H_{2}^{\prime}}^{\prime}=\lambda_{H}$. Hance:

$$
\lambda_{H}(V)=\sum_{i=1}^{n} c_{1} \lambda_{H_{i}}(V) \quad \text { - an required. }
$$

Remark Corollary 3.7.2, its improved veraion, and Corollary 3.7.3 aleo hold in the mora general case when k if not naconearily algebraically cloned but V ia aboolutaly indecompomble. Aa in \{3.1, we may ertend the acalara to an algabraic clomura of k. k . to gat a $\mathrm{k} G$-modula. $\dot{\mathrm{V}}$, with $\lambda_{H}(\dot{V})=\lambda_{H}(\mathrm{~V})$. The realeal in quation all hold for O, thum they munt also hold for V.

The acalary $\lambda_{H_{1}}$ (V) $\ldots, \lambda_{n_{n}}$ (V) all 11 e in k, ac for V to butree on reatriction to all the masiml subgrouga of $G,(3.7 .3)$ ahowa that the dimenaion of k an an F_{p}-opace wuat be at leant n . Thus we get the following fairly feable reault:

Corollery 3.7.4 There cannot be minalutely indecompanable kG-adule which ia free on ratatiction to all the maimel mubroupa of G but in not ftealf projective, unleas k has at leant $|\mathbf{C}|$ elemants.

（100）

13．日 The eleantiary abelian cana

We ay follov［Ca2］in extending（3．2．2）to general elementary abelian groups：

Prodoaition 3．8．1 Let G beleantery ablian and V be the diract sum of a projective and a periodic kGGodule．Then V ia free on remtriction to －maximal mubgroup of mone anantial aubgroup of $k G$ ．

Proaf Tha proof ia by induction on $\mid \mathrm{cf}$ ．The rebult ia trivial whan G haa order p．So aeauge that $|\boldsymbol{L}|>\mathrm{D}^{2}$ and let H be any maimal mubroup of C ．
 emantial mubgroup of $k H$ ．We maty choose in eatential mbgroup，G ，of kG conteining N ．Lat $U=F_{N} V$ be regarded an $k\left(G^{\prime} / N\right)$－module，chen U Ia randily mean to be the direct ato of projective and pariadic module． G^{\prime} / H ham order p^{2} нo，applying（3．2．2）and（3．2．5），tha Carlan variety of U 1a the union of finite number of linea，one for ench indecompoable periodic mumand．Bechu＊e k in infinite，wie may choome ine which intergacte the Carlan variaty of U trivially．Thim lina correaponda to amyal bubgroup

 kG rentricted to wich V it If㤟包．

If V ie in face an indecompasabla，periodic kG－module then（3．B．1） ahowe that vo can apply（3．7．1）（b）to V to show that $Y(V)$ in a lina $=1 t$ doem not macter that，in the acateant of the theorem，G in replacad by anothar amential mugroup．Hence（3．6．5）shown that in fact Vim frem on reatriction to arimal abgroup of G ．Thum we have the following reanlt， also due to Carlson，［Ca］］：

Theoret 3.8.2 Lat G be elementary abelian and V be an indacomparable, periodic kG-adule. Then:
(a) V is free on reatriction to mome mimal aubgroup of G,
(b) the Carlaon variety of V ia a line. In particular, V muat have pariod 1 or 2.

Suppoae that we tried to une this reault to prova (3.7.1) in the genaral case, We would certainly have that ∇ is a modula for the elementary abelian group, G, which in free on reatriction to some maimal aubgroup. Hovever we do rot in ganaral have that ∇ in indecomposable, so the beat we can any ia $Y(V)$ ia the union of a finite number of linef. The proof that these innea coincide would involve at laat aE much work ae our original one.

To wee that in not alvaya indecomposabla we need the following lemas

Lemea 3. B. 3 Suppose that G if not elementary abolian, Ler:

$$
0 \longrightarrow v \longrightarrow \mathrm{x} \longrightarrow \mathrm{v} \longrightarrow 0
$$

be the almot aplit sequence with V al ita right-hand tera, than the induced maquence:

$$
0 \longrightarrow V \longrightarrow \boldsymbol{i} \longrightarrow \nabla \longrightarrow 0
$$

-plita.

Proof Becauace 1 , the inclumion map $1: \mu_{8} V \longrightarrow V$ is not aplit
 apa $\mu_{1} v$ into $\mu_{4} X$. The componite of 1^{1} yith the reatriction:

$$
\vec{\sigma} \cdot \mu_{e^{2}} \bar{\longrightarrow} \mu_{4} y
$$

is the identity map on $\mu_{1} \mathrm{~V}$. Thue:

$$
0 \longrightarrow \mu_{2} v \longrightarrow \mu_{2} x \longrightarrow \mu_{2} v \longrightarrow 0
$$

 kc-adulen.

So let $V_{B}(n=1,2, \ldots$.$) be as in (2.3.6). The ramult above readily$ shows that F_{n} is ifomorphic to the direct un of n copies of ∇_{1},

Therefore, whan G ia not eletentary abalian, V ia indecompoable only $1 f V$ is teriminel. Whether the convarae halde ile an open quation. If it did then it would help un out of our difficultien in trying to deduce (3.7.1) from (3.8.2): wa vould have $Y\left(\nabla_{n}\right)=Y\left(\nabla_{1}\right)$ for all n, and, becauea V_{1} id indecomponabla, that $Y\left(\nabla_{1}\right)$ ia $\quad 11$ ne. Thus we would have that $Y(V)$ is alwaym ine. Precialy which line in not inportant in moat applicationa
 the proof.

(112)

Introduction

We have show that $Y(V)$ is alvays 褁 11 ne $1 \pi \mathrm{~J} / \mathrm{J}^{2}$. We now lat Y_{G} danote the union of all theme lines an V runa over the various non-projective,
 and ask what conmtrainta, if any, are there on $\mathbf{Y}_{\mathbf{G}}$?

A reduction ia made to particular clasa of p-groupa, the pabudo-mpecial groups (a rather unfortunate name of aixed Latin mon Greak elemanta, oocallad becaube the concept of a peaudo-mpecial group ia generaliation of that of an extra-apacisi group, but in different from that of apacial group). The etructure of theate sroupa me very mecurataly defined, mo spectic calculationa invalving thea are poasible. Ueing thia raduction ware able to prova that Y_{G} ia the wole of J / J^{2} if and only if G ia elumentary abelian.

It is alao shown that, 12 G is praudo-apecial. Y_{G} it an Fpariety - that 1 : che solution aet of a serian of polynomial with conficienta in the field of p elementa.
§4.0 The set X_{G}
We continue with the notation of $\$ 3.6$, Define Y_{G} to be the subset of $\mathrm{J} / \mathrm{J}^{2}$ given by the union of all the variatian, $Y(P)$, ala V ruma over the indecompoable kG-modules which are free on ratriction ta maximal mugroup of G. Note that $Y(0)$ equala (0) if V is projective and is a line otherwime.

Theoren 4.0.1 If 4 is a k G-modula which is free on reatriction to then,

 53.5. We may regard U_{g} ala kG-module by latting act trivially. Conaidar $U_{1} \mathrm{~W}$: thia ia frea on reatriction to and (0.0 .13) givea that

$$
\overline{U_{g} \otimes W}=U_{8} \oplus W .
$$

Thue, by (3.5.6),

$$
Y\left(U_{I} \otimes W\right)=\left\{\begin{array}{l}
k\left(z+J^{2}\right) \\
\{0\}
\end{array}\right.
$$

$$
\text { if } t+J^{2} \in Y(\bar{W}) \text {. }
$$ otherviae.

Thum, if V in an indecomponeble direct sumand of $U_{y} \in W_{\text {, }} V$ in free on rateriction to and $Y(V)$ ia aithar $\{0\}$ or $k\left(l+J^{2}\right)$. Hence V ia free on reaticiction co mon mital mbgroup of G - it in free if $\mathbf{Y}(\mathbb{V})=\{0\}$.
 $Y(\nabla)$'s as V runs over all the indecomposable aumanda, thum thif too ia contained within Y_{G}.

Now the reault abova askes it claar that $Y(\mathbb{C})$ if the union of the varietiea $Y\left(\sigma_{1} \|\right)$ an runs ovar $J J^{2}$. Thue $Y(\mathbb{D}) \in Y_{G}$, ae required. Corollary $4,0,2$ It G in elementary abalian then Y_{G} ia the whole of $\mathrm{J} / \mathrm{J}^{2}$.

Proof Put $\mathbf{w}=k_{G}$ in (4.0.1). In thia case $=1$ (mo in indeed free on rentriction to .

Thia notation enablaa ue toxprana conditiong for projactivity in a fairly aconomical form. For exaple

Proposition 4.0.3 Let 旦 be ofe of eubgroupa of G. Than:

$$
Y_{G} \in \bigcup_{H E H} s_{H}
$$

if and only if there in no non-projective kG-modula which if frae on rastriction to H for all H EH

Proof If the condition on Y_{G} holde, let y be kG-module which is frede on reatriction to all the He's. Then V da free on rateriction to and $Y(V) \cap S_{H}=\{0\}(b y(3.6 .3))$. Thum $Y(V)$ intaracta Y_{G} trivially and so munt

Converaely, let V te nan-projective indecompanable kG-modula which ia free on reatriction to mam mintml aubgroup of G. V mum be non-projactiva
 uthin S_{H}. Thut the condition on Y_{G} holda.

A en example of the application of thi remult, wa heve that Gin a Chouinard eroup if and only if:

$$
\bar{T}_{G} \in \bigcup_{H} S_{H}
$$

- the union being over all the maimal mbgroupa of G.

3.1 Patudo-gogial groupa

Suppose that we attempted to prove Chouinimrd's theorea by induction on the order of G : let G be aroup of winimal ordar which in neithar elementary abelian nor a Chouinard group. If N in any non-trivial noral subgroup of G then, by minimality, G/N in either elemantary abelian or Chouinard group. The latter poasibility ia excluded by (0.1.2), an we muat have that G / N ia elementary abelian and, consequently, that $N \geqslant$. Therefore, because G ian not elementary abelian, it a non-trivial normal subgrour of G thich ia contained within all the other non-trivial normal subgroupa. Thua wa are motivated to make the following definition:

A finite p-group, G, if eaid to be pseudo-spectal if the Frattini subgroup, E = (G), is the unique minimal normal aubgroup of G.

Now turn to the general came. Any non-trivial noreal aubgroup of a p-group intersecte the centre of the group non-trivisily. Thus any miniani normal subgroup ia contained within the cencre. Hence we have:

Lamen 4,1,1 The minimal noreal bubgroupa of pegroup, G, are praciaely the mubgrouplo of the centre of $G, Z(G)$, of order p. In particular, G hala

Leman 4.1.2 If Gim not elematary abolian than thara orintem normal mugroup, N, of G with $N \leqslant$ much thet the Friteini mbgroup of G/N is a minimal normal subgroup. In fact, $\quad(G / N)=\| / N$.

Proof Becaume G is not alamentary bbelian, we have that \boldsymbol{t} (1. Let M be the
 by conjugation to permute the elementa of H . im in $1-1$ correapondence uith
 alge of M it congruent to 1 modulo p. Tha aize of each of the orbita of G on H dividea the order of G, and hence ia powar of p. Min the diejoint union of theas orbite, mo therg mut be an orbit of aize one. That it, there in a maximal mubgroup, N, of thich ia normal in G. The maxiasi mbgroupa of G/N
 the reault eanily follown.

Theor䡒血 4.1.3 Let G be p-group which io not elemencary belian, Thare

P/M ie peaudo-ipecial with Frattini auberoup E/N,
E / N 1. alementary mblian,
G / M in the direct product of P / N and E / N.

Proof Let N be an in the prioula lema. By conaidering G/M, it aufficea ta
 We readily see that we tay wite $Z(G)=E n C$ where C ia cyclic and containa

and

$$
\begin{aligned}
& Z(G)=Z(E)=Z(P)=E \times Z(P) \\
& (G)=Z(E)=Z(P)=E(P)
\end{aligned}
$$

 reault follawa.

With the notation of thie theoren, G / C it the diract product of P / A and ER/C. Thum (3.6.2) maken it clear thati

$$
\mathrm{J} / \mathrm{J}^{2} \cdot \mathrm{~S}_{\mathrm{P}} \cdot \mathrm{~S}_{\mathrm{E}}
$$

Write J^{\prime} for the augmentation idasi of $k(P / N)$. (3.0.2) showa that tha map $x \longmapsto x-1$ Inducat ak-isomor phise $k \in Q \longrightarrow J / J^{2}$ whera

$$
Q=(P / W) / R(P / K)=(P / N) /(\mathbb{C} / N)=P / /=P
$$

 Thu there ita natural k-imamorphiea betwean J " $/ J^{2}$ and S_{p}. Hence wan mat regard the subset, $Y_{P / N}$: of $J^{\prime} / J^{\prime 2}$ as a aubeet of S_{P}. If thie in done then:

Theoran 4.1.4 $\quad \mathbf{Y}_{G} \in \mathrm{Y}_{\mathrm{P} / \mathrm{N}} \in \mathrm{S}_{\mathrm{E}}$.

Proof Lat V be non-projective, indecompomble kG-module wich in free on reatriction to sone mand aubroup of G. Wa may write:

$$
Y(\nabla)-k\left(t_{1}+b_{2}+J^{2}\right)
$$

where I_{1} \& Aug ($k P$), $\boldsymbol{I}_{2} \in \operatorname{Aug}(k E)$. It aufficea to whow that the image of \boldsymbol{s}_{1} in J^{\prime} / J^{2} if in $Y_{P / W}$. Thia lat trivial if $\xi_{1}+J^{2}=0$, so as ume otherviae. Then $Y(V) \cap S_{E}=\{0\}$ a, by (3.6.3), V ia free on rantriction to EA, and hance to E .

Let $U=\mu_{E}{ }^{V}$ be regarded an $k(G / E)$-aodule. The Frattini aubgroup of G/E equala Re/E mo:

$$
\mu_{E(G / E)^{U}}=\mu_{E D} V .
$$

This implies that U ie free on rastriction to (G/E). Thua we conaidar the Carlaon variety of $\left.\mu_{\text {(}}^{\text {(G/B }}\right)^{\mathrm{U}}$.

Because $y_{1}+J^{2} * 0$, the group generated by $E X$ and $\Gamma_{1}+I_{1}+\xi_{2}$ in contained
within mome mancial subgroup of te (see (3.0.3)). Thim group doea not act frelely on η fince $\left\langle\overline{\Gamma+I_{1}+I_{2}}\right\rangle$ doen not. Thua the inage of $\left\langle 1+I_{1}+y_{2}\right\rangle$
 have that the iegge of f_{1} is in the Carlaon variety of Prem/E) ${ }^{U}$, and hance in $Y_{G / E}$.

Now, we may identify P / N with $(G / N) /(E / N)$ 亩 G / E, so the reaule ia seen to follow.

Thig theoret enables us to reduce to the case when G is ppeudo-mpeciel. He procasd in the following aectiona to invantigate Y_{G} in thie case. This is done by conaidaring the modulen. Uy, introduced in the proof of (4.0.1).

4.2 The aodulea U_{f} when (G) is cicitc

We anaume in this action that G ia, auch that the Frattini aubgroup of G ia mon-trivial cycilc group. In particular, thie includen the caen when G is paudo-apecial.

Fix Ie $J-J^{2}$ and let $U=U_{1}$ be an in (4.0. (3.3.4) givee that, whan conmidered as a k-module, u ham Carlson variety $k\left(t+J^{2}\right)$. Thus, ae in (3.6.5), U in free on reatriction to mome manimal aubgroup, F, of \mathbf{C}

- indeed, by dimenaiona. $\mathrm{Y}_{\mathrm{f}} \mathrm{m}$ kh. Therafora:

$$
U_{\mathrm{H}} \equiv \mathrm{kR} \equiv \mathrm{k}_{4}^{\mathrm{tH}}
$$

Choose $U_{0} \subset U$ auch that $U=k R_{0}$.
 of ks-modulen:

$$
0 \longrightarrow k_{i} \longrightarrow k \geqq k_{i} \longrightarrow k_{i} \longrightarrow 0
$$

In wich the central ap in siven by $1 \rightarrow a-1$. Inducing this aequance up to K given an exact maquance of kH -modulea:

$$
0 \longrightarrow \mathrm{U}_{\mathrm{H}} \longrightarrow \mathrm{kH} \longrightarrow \mathrm{kH} \longrightarrow \mathrm{U}_{\mathrm{tH}} \longrightarrow 0
$$

In wich the mapere biven by:

$$
u_{0} \longmapsto \mu_{5}, 1 \longmapsto e=1,1 \longmapsto u_{0}
$$

Note also that, because 1 , U ia not free on reatriction to H. Thua U_{w} 1a periodic.

Nov take the aequence:

$$
0 \longrightarrow \mathbf{k}_{\mathrm{G}} \longrightarrow \mathrm{k}(\mathrm{G} / \mathrm{H}) \longrightarrow \mathrm{k}(\mathrm{G} / \mathrm{H}) \longrightarrow \mathbf{k}_{\mathrm{G}} \longrightarrow \mathbf{0}
$$

and tensor it by U to obtaina

$$
\begin{equation*}
\mathrm{0} \longrightarrow \mathrm{U} \longrightarrow \mathrm{P} \longrightarrow \mathrm{P} \longrightarrow \mathrm{U} \longrightarrow \mathrm{0} \tag{1}
\end{equation*}
$$

where $P=k(G / H) \in U \quad\left(\mathrm{U}_{4 \mathrm{H}}\right)^{1 \mathrm{G}}$ ■ $\mathrm{k}^{\text {G }}$.

Reatricting (1) to H and uning the projective resolution of $U_{\text {B }}$ above, we say form the comutative diagran of kH -modulea:

 may take 8 and $\begin{aligned} & \text { a } \\ & \text { to } \\ & \text { be }\end{aligned}$

Wa are now in pobition to prove the man reault of thin aaction.

Theoren 4.2.1 Suppose that G ham a non-trivial, cyclic Frattimi ubgroup and that $l_{e} J-J^{2}$ iv auch that U_{1} is periadic whan ragarded aa a kG-module. Than $\mathrm{s}+\mathrm{J}^{2} \not \mathrm{Y}_{\mathrm{G}}$.

Proof We any forn the comutativa diagram of $k G$-modulen:

where the laver aequance ia a projective ramolution of U and the upper maquence in the join of r copian of the mequance, (1). faetricting to H and comaring with (2) show that a factore through a projective kH-modula. Thu: Is a non-automorphial of the indecompomble module, $\mathrm{U}_{2 \mathrm{H}}$, and in hence nilpotent.

If we form aledlar diagran to (3), but timet long, then the effect on the lefthand map ia to replace a by an . But, taking a mificiantly large, $s^{*}=0$. Thum it aufficas to aname that $a=0$ in (3).

Lat 4 be any kG-module which ia frea on rantiction to Wa tanaor the

diagram (3) by W to obtain:

But each $F_{i} \oplus W$ is projective, as is P OW - for this is isomorphic to $\mathrm{k}^{\dagger} \mathrm{G} \otimes \mathrm{W} \equiv\left(\mathrm{W}_{\mathrm{LI}}\right)^{\dagger \mathrm{G}}$ - thus both sequences in this diagram are projective resolutions of $U \oplus W$. The only way this can happen is if $U \otimes W$ is projective. Therefore:

$$
Y\left(U_{Z} \otimes W\right)=\{0\}
$$

so that, as in the proof of $(4.0 .1), \xi+J^{2} \upharpoonleft Y(\bar{W})$. Hence we have the required result.

Corollary 4.2.2 Suppose that G is either a cyclic group of order at least p^{2} or the quaternion group, Q_{8}. Then $Y_{G}=\{0\}$. Therefore a kG-module is free if and only if it is free on restriction to the Frattini subgroup of G.

Proof We readily see that G satisfies the required conditions in these cases. Furthermore, the trivial module, \mathbf{k}_{G}, is periodic (see $\$ 1.0$ and $\mathbf{\$ 1 . 3 \text {). Hence }}$ every kG-module is periodic, so the result easily follows from (4.2.1).

There is not much hope of extending Theorem 4.2.1 to any more general class of groups. For, if U_{y} is to be periodic, it must be periodic or projective on restriction to $\mathbf{~}$. But \mathbf{t} acts trivially on U_{t}, so we must have that k_{k} is either periodic or projective. This happens only if is cyclic or generalised quaternion (see [CAE]). The only case not dealt with in the former case is that with $\mathbf{T}=1$, i.e. with G elementary abelian. But (4.0.2) then gives that $\mathbf{g}+\mathrm{J}^{2}$ is always an element of Y_{G}. The latter case - the class of groups with a generalised quaternion Frattini subgroup - does not seem a promising object for study.

In fact. (4.2.2) daea not give a differant proof of Chouinard'e theorea for cyclic groupa from those already given. For when G ia cyclic, $U_{y} k_{G}$ so that, in thia case, the proof is equivalent to ahowing that G ia a Serre group (nee (1.2).

Obviously (4.2.1) means that we are gotng to be interested in projective resolution of the module, Us. The following lemmagivea amall atap in this direction.

Lemea 4.2 .3 (a) The epimorphisa $k G \longrightarrow U$, given by $1: U_{0}$, han kernel kG(e-1) * kGI.
(b) The element, $u_{1}=F_{5} y^{p-1}$, of $k G$ genergtea a mbadule isomorphic to U.

Proof Inducing the projective remolution for $k_{\text {g }}$ bbove up to G given uat an exact sequence:

$$
\mathbf{0} \longrightarrow k \mathbb{k} \longrightarrow k G \longrightarrow \mathbf{k G} \longrightarrow \mathbf{k G} \longrightarrow 0
$$

in which the maps are given by:

$$
\mathrm{I} \longmapsto \mu_{\mathrm{E}}, 1 \longmapsto \mathrm{e}-1,1 \longmapsto \mathrm{I}
$$

(a) The given ep la the composite of the map $k G \rightarrow k \bar{G}$ above - which
 Becaume kG in free an $k\langle\overline{1}+\bar{B}\rangle$-module, the latter in readily meen to have kernel kGI. Thut the kernel of the given map 1 a $k G(0-1)+k G B$, an claited.
(b) We may regard U as the aubmodula of kG generated by \boldsymbol{g}^{p-1}. The reault followe on mapping by the monomorphise $k \mathbb{K} \longrightarrow \mathrm{KG}$ given obove.

14.3 The etructura of pagdo-epacial riouph

Before ze can attempt to apply (4.2.1), wemed to know bit mare Bbout the etructure of paeudo-apecial groupe. If G im paeudo-mpecial then we have the following facte:
(1) End $G /$ both have axponent p, aco G but have exponent dividing p^{2}
(2) $Z(G)$ ia eyclic with an ita (unique) mbinroup af arder p.
(3) The derived subgroup, G*. of G 1: a norial aubgroup which it
 In the former case G ia abelian and thua, using (1) and (2), cyclie of order p^{2}.

Thui G falla into one of two clasaes:
(由) $Z(G)=G^{*}=$ *, 1.e. G 1s extritspecial.
or (b) $Z(G)$ it cyclic of order p^{2}.
 apacial groupa given, for example, in [Gor], to pando-opecial proupe. The

 bilinear form on G.
(b) For podd, the map $G \longrightarrow$ given by $\longrightarrow \boldsymbol{z}^{p}$ is group homomorphian. Thua either G hae exponent p or the alementa of order p for a manimal aubgroup of G.
(c) For $p=2$, G bluage hai mponent 4.

 Now:

$$
[x y, z]=y^{-1}\left(x^{-1} z^{-1} x z\right) z^{-1} y z=[x, z][y, z]
$$

- using the fact that $G^{\prime} \leqslant \boldsymbol{Z}(G)$. Thua $\langle-$,$\rangle in aaen to be ilnase in tha firat$
 $[x, x]=1$ implias that $\langle\overline{\mathrm{I}}, \bar{I}\rangle=0$ - that is to any, $\langle-$,$\rangle ia epmplactic.$
(b) For ifyeG we prove inductively that:

$$
(x y)^{1}=y^{1} y^{1}[y, x]^{(} \text {where } a+2+\ldots+(1-1) \text {. }
$$

The inductive atep in mallowa:

$$
\begin{aligned}
(x y)^{1+1} & =x y, x^{1} y^{1}[y, y]^{e} \\
& =x^{1+1} y\left(y^{-1} y^{-1} y x^{1}\right) y^{-1}, y^{1+1}[y, x]^{0} \\
& =x^{1+1}\left[y, x^{1}\right] y^{1+1}[y, x]^{0} \\
& =x^{i+1} y^{1+1}[y, x]^{0+1}
\end{aligned}
$$

- u*ing (a) and the fact thet $G \prime 4 Z(G)$. Thum thim result is eatablished.

Subatituting $i=p$, whave that $=1+2+\ldots+(p-1)=10(p-1)$ is divialble by p (aince p ia odd). Since G ' has exponent p, thia implian that
 The kernel of thim mp, nemely the nat of all elemanta of G of order p (plua the identity elenent), is then a mberoup with index dividing |*|=p. Thue the remult of part (b) follow.
(c) Suppoas that G ham exponent 2. For $x, y \in G$ we have:

$$
[x, y]=x^{-1} y^{-1} x y=x y x y=(x y)^{2}-1 .
$$

Thua G muat be elamantary abelian - contradiction. Hence G mute have expenant 4.

We naed to knov a litele of tha ganaral theory of ayplactic forme. Let V be vector apace ovar aome field, $x_{\text {, and }}\langle-,-\rangle$ be aymplactic form on V. If U is a mbapace of V then we vite:

$$
\begin{gathered}
U^{\wedge}=\{v \in V \mid\langle v, u\rangle=0 \text { for all ue } u\}, \\
\operatorname{Rad} U=U \in U^{2}
\end{gathered}
$$

so that U^{+}and Rad U are both mubapacan of V. If Rad $U=0$ than va ay that $\langle-$,$\rangle 1a nonsinqular on U, A$ two-dimensional aubapace of V in cellad a
 <-, -> if noneingular on any hyperbolic plana.

$$
\operatorname{dig}_{E} U+\operatorname{dig}_{E} U^{\perp}>\operatorname{din}_{E} V
$$

Thue, if $\langle-,-\rangle$ tia nonaingular on $U, v=u \in u^{\perp}$.

$$
u^{1}=\bigcap_{i=1}^{r}\left(K u_{1}\right)^{2}
$$

 and wo has dimangion at least digy $V=1$. Thua u^{1} has dimanaion ge leater din. $V-r$, and the reale follown.
 $\left\langle H_{1}, H_{j}\right\rangle=0(1,1)$ such that:

$$
V=(\operatorname{Rad} V) \oplus H_{1} \in H_{2} \text { © } \ldots . H_{\square}
$$

Praaf The proof ia by induction on dim V. The reatult if trivial if Rad V is the whola of v, so aswe otherviea. Tharathan eximt $u, v e V$ with
$\langle u, v\rangle$ ．Thu u and $\frac{1}{\langle u, v\rangle} v$ epan \quad ajperbolic plane，$H_{1},(4,3,2)$ givan that $V=H_{1}$ ．H_{1}^{L} and，inductivaly，we can write：

$$
H_{1}^{2}=\left(\operatorname{Rad} H_{1}^{2}\right) \bullet H_{2} \bullet \ldots . H_{\square}
$$

 contained within H_{1}^{\perp} for $1+1$ ，ve furcher have that $\left\langle H_{1}, H_{i}\right\rangle=0$ ．Thue $\mathrm{H}_{1}, \mathrm{H}_{2} \ldots \ldots \mathrm{H}_{\mathrm{E}}$ are mucually perpandicular hyperbolic planes wich：

$$
v \cdot\left(\operatorname{Rad} H_{1}^{+}\right) \cdot H_{1} \bullet H_{2} \oplus \ldots \cdot H_{m}
$$

But：

$$
\operatorname{Rad} v=V^{\perp}=\left(\mathrm{H}_{1} \cdot H_{1}^{\perp}\right)^{\perp}-H_{1}^{\perp} n\left(H_{1}^{\perp}\right)^{\perp}-\operatorname{Rad} H_{1}^{\perp}
$$

ac that we have in fact Grittan V in the required form．

Corollary $4,3.4$ Lat G ba pasada－opecial p－group．Thera exiat aubroupe． $P_{1}\left(1-1,2, \ldots, \omega^{(1)}\right)$ of G entiffing：
（a）Each P_{i} ia extra－apecial of order p^{3} with $I_{i}\left(P_{i}\right)=$ ，
（b）$\left[P_{i}, P_{j}\right]-1$ for $1+1$ ，
（C）$Z(G) \wedge\left(P_{1} P_{2} \ldots \ldots P_{0}\right)=$ ，
（d）$P_{1} \cap\left(Z(G) P_{1} \ldots \ldots P_{1-1} P_{1+1} \ldots . P_{1}\right)=$ 果 for anch 1_{1} such thet $G=Z(G) P_{1} P_{2} \ldots P_{\text {．}}$ ．

Froof Thin is siaply a mattar of mplying（4．3．3）to the eyplactic forim givan in（4．3．1）（a）．Rad 6 is mean to be juat $Z(G)$ ．Each of the hyparbalie plane日，H_{i} ，ia the subgroup of G generated by \bar{z} and $\overline{\mathcal{F}}$ for mamelementa，
 the propertiag given in（a）．$\left\langle H_{1}, H_{j}\right\rangle=0$ implien that $\left[P_{1}, P_{j}\right]=1$ ．

The fact that G is the diract 品 of Rad G and the H_{i}^{\prime} impliea that：

$$
G=2(G) \times P_{1} \times F_{2} \geq \ldots \pm F_{n}
$$

from which the remining atatement mraciear.

Thi result enables ue co incroduce some notation that will be uaed in the following sectiong, G will be pseudo-mpecial group with Frattini mubgroup,晏, generated by e, say. We my wita G in the form givan in (4.3.4). For each

$$
\left[x_{1}, \bar{y}_{1}\right]=e
$$

Note that I_{1} and \bar{y}_{1} comute with I_{1} and y_{j} for $i \neq 1$. Write:

$$
g_{21-1} \cdot \mathbf{x}_{1} \cdot \mathbf{E}_{21}=\mathbf{J}_{1}
$$

We then have two casea:
(a) If G í extra-mpecial, vrita $n=2$. Then g_{1}, \ldots, B_{n} is a mingal解 of generators for G.
(b) When $Z(G)$ is cyclic of order $p^{2}, g_{1} \ldots \ldots g_{2}$ only generate $P_{1} P_{2} \ldots P_{\text {m }}$. Thua choose a generator, $z, ~ f o r ~ Z(G)$ auch that $z^{P}=$. Write $n=2=1$ and $g_{n}=2$. Then g_{1}, \ldots, g_{n} is minimil wet of generators for G.

Hance ve have chomen particularly well-behaved ainimal set of generatora for G; indeed the only thing to prevent us witing down a prementation for 6 in teriag of these generatora is that we have no information at prement about the pth poweri of the $g_{i}{ }^{\prime}$ a. This ag be rectified as followi

Now wita:

$$
a_{1}=a\left(x_{1}\right), b_{1}=a\left(y_{1}\right)
$$

Than G id in fact coapletely deternined by n and the conatint $B_{1} a_{1}$ and b_{1} $(1=1,2, \ldots, n)$.

Every nonzero element of $\mathrm{J} / \mathrm{J}^{2}$ may be written in the form $\mathrm{t}+\mathrm{J}^{2}$ whera:

$$
1=\sum_{i=1}^{n}\left(a_{1}\left(x_{1}-1\right)+s_{1}\left(y_{1}-1\right)\right)+x(z-1)
$$

(the final tern in to ba ignored tn the case when G in extra-mpeciai). Here
 shall inveatigate what conditions on these clemente auffice for U_{1} to be pariodic. Thim will, uning (4.2.1), give ua condiciona which must be gatiofied for $\boldsymbol{\xi}+J^{2}$ to be an element of Y_{G}.
4.4 Sone calculatione

Bafore we go any furthar we need to do a coupla of moderately unpleasant calculationa. The firat two latata are taken almor without change from [Ca5]. Let P be en extra-apacial group of order p^{3} with Fraveini aubgroup E Take amaratora, x and y, for P and arite $=[x, y]$. We whall coneider the alement:

$$
\xi=e(x-1)+s(y-1)
$$

of $\mathbf{k P}$.
We need one further piece of notation. Recall that, for $1=1,2, \ldots, p-1$, tha binomial comficient, (P), in divieible by p. Write:

$$
T_{1}=\frac{1}{p}\binom{P}{i}
$$

$t=\sum_{i=1}^{p-1} R_{i} \alpha^{i} B^{p-i} x^{i} y^{p-i}$.
 coefficient of $\alpha^{i} s^{p-i}$ in the expansion of $(\alpha x+B y)^{p}, w_{i}$, equals the sum of 11 (${ }_{1}$) poasibla vorde containing 1 g'e and ($p-1$) g'a. Nota that aach such word may be expressed in the form $e^{j_{x} y^{p}}{ }^{p-1}$ for some $j=0,1, \ldots, p-1$.

Lat un conaider the effect on a conetituant word of y_{i} of moving the left-mog latter, etap by etep, to the right-hand end:
 by a factor of [x,y]: pansing each of the (i-1) other g'a has no offect. Thue the total effect is to multiply by $[x, y]^{p-1}$.

Sieilarly, if the firat letter is " y ", the offect is to multiply by $[y, x]^{i}$.

Thua in both casea the affact ia to mitiply by $\mathbf{e n}^{-1}$. But thil operation
clearly just parmuteal the conatituent worde of w_{i}. Thia whowe that the number of morde equal to $\int^{1} x^{2} y^{p-1}$ equal the number equal to $e^{j-1} x^{1} y^{p-1}$ for each 1 . Thum for $1=1,2 \ldots, \ldots p-1$ thare puat be an equal number of the $\binom{p}{1}$ wardal equal to $e^{j} x^{1} y^{p-1}$ for each j. Therefore:

$$
v_{1}=R_{1}\left(1+\infty+\ldots+e^{p-1}\right) x^{1} y^{p-1}=R_{1} p_{E^{x}} x^{p-1}
$$

Finally, $0=y^{p}$ and $y_{p}=x^{p}$, ac the ratult follow.

Leme 4.6.2 If ta an the pravious leam then there exiata quap
 seap then:

$$
t(q)=A^{p}-a \theta^{p}
$$

- $\sum_{i=1}^{p-1} n_{1} n^{1+1} e^{p-1} z^{1+1} p^{p-1}\left(1-e^{1}\right)$
$+\sum_{1=1}^{p-1} R_{1} 4^{1} e^{p-1+1}=^{1} y^{p-1+1}\left(e^{p-1}-1\right)$
- (e-1)q
whera:

$$
\begin{aligned}
& q=-\sum_{i=1}^{p-1} R_{1} e^{i+1} s^{p-1} x^{i+1} y^{p-1}\left(1+e+\ldots+e^{i-1}\right) \\
&+\sum_{i=1}^{p=1} R_{1} e^{i} e^{p-1+1} n^{i} y^{p-1+1}\left(1+\theta^{\left.p+\ldots+e^{p-1-1}\right)}\right.
\end{aligned}
$$

Now:

$$
\begin{aligned}
s(q) & =\sum_{i=1}^{-1} R_{1} i^{i+1} a^{p-1} 1+\sum_{i=1}^{p} R_{1} a^{1} e^{p-i+1}(p-i) \\
& -(\alpha+B)\left(\sum_{i=1}^{p-1} i R_{i} a^{i} a^{p-1}\right) .
\end{aligned}
$$

(131)

But $\quad \mathrm{R}_{\mathrm{i}}=\frac{1}{\mathrm{p}}\binom{\mathrm{P}}{\mathrm{i}}=\binom{\mathrm{p}-1}{i-1}$ ao:

$$
\begin{aligned}
a(q) & =-\alpha(\alpha+a)\left(\sum_{1=1}^{p-1}(p-1) a_{1-1}^{1-1} A^{p-1)-(1-1)}\right) \\
& =-\alpha(\alpha+B)\left((\alpha+a)^{p-1}-a^{p-1}\right) \\
& =\alpha^{p}(\alpha+B)-\alpha(\alpha+a)^{p} \\
& =\alpha^{p} B-\alpha^{p} .
\end{aligned}
$$

We now apply thase reaults to the aituation deacribed at the end of the previoum section. With this notation we have:

Theoran $4,4.3$ (a) $3^{p} \cdot \sum_{i=1}^{D}\left(a_{i}^{p}\left(x_{i}^{p}-1\right)+a_{i}^{p}\left(y_{i}^{p}-1\right)\right)+y^{p}(e-1)+P_{i}^{t}$ where:

$$
t=\sum_{i=1}^{m} \sum_{j=1}^{p-1} R_{j} \mu_{i}^{1} s_{i}^{p-j} x_{i}^{j} y_{i}^{p-j}
$$

 denotea the augmentation map then:

$$
A(q)=\sum_{i=1}^{E}\left(\alpha_{i}^{p} \mu_{1}-\alpha_{i} p_{i}^{p}\right)
$$

Proof Write $s_{1}=\alpha_{1}\left(x_{i}-1\right)+A_{i}\left(y_{i}-1\right)$, oo that ξ_{i} is in the form to which (4.4.1) and (6.4.2) apply. We have that:

$$
s=s_{1}+\ldots+s_{m}+z(z-1)
$$

and that each of the terma in thia sum commuten with each of the othera. Thua:

$$
t^{P}=s_{1}^{P}+\cdots+\xi_{n}^{P}+\gamma^{P}\left(z^{P}-1\right)
$$

But we can vrita:

$$
s_{1}^{p}=\alpha_{i}^{P}\left(x_{i}^{p}-1\right)+\Delta_{i}^{P}\left(y_{i}^{p}-1\right)+\mu_{1} t_{i}
$$

where:

$$
c_{1}=\sum_{j=1}^{p-1} R_{j} e_{1}^{j} s_{1}^{p-1} n_{1}^{j} \bar{p}_{i}^{p-1}
$$

Thus, noting that $\varepsilon=\varepsilon_{1}+\ldots+\varepsilon_{0}$, the realt of part (a) followe.
Uaing the conterivity relatione we have thar:

$$
x t-t \xi=\sum_{i=1}^{D}\left(L_{1} t_{i}-t_{i} b_{i}\right)=\sum_{i=1}^{n}(+-1) q_{i}
$$

where q_{1} ia an in (4.6.2). Thum, letting $q=q_{1}+\ldots+q_{m}$, part (b) ia aleo proved.

Note that $e^{a}-1=(e-1)\left(1+a+\ldots+a^{-1}\right)$ and that $a\left(1+a+\ldots+e^{-1}\right)$ equal. a. Thua (4.4 .3)(a) showe that \mathbb{B}^{p} can be written in the form:

$$
(\Omega-1)=+\mu_{\boldsymbol{t}} t
$$

whera:

$$
a(a)=\sum_{i=1}^{m}\left(a_{1} a_{i}^{p}+b_{i} a_{i}^{p}\right)+\delta^{p}
$$

But $\mu_{4} t=(e-1) \cdot(e-1)^{p-2} t$ and:

$$
\left((0-1)^{p-2} t\right)= \begin{cases}0(t)=\sum_{i=1}^{n} a_{i} p_{i} & \text { if } p=2 \\ 0 & \text { othervise. }\end{cases}
$$

Therefore:

Corollary $4.4 .4 \quad t^{\text {D }}=(e-1) u$ where (u) equala:
(a) $\sum_{i=1}^{m}\left(a_{1} \mu_{i}^{2}+g_{1} s_{1}+b_{i} s_{1}^{2}\right)+r^{2} \quad$ if $p=2$,
(b) $\quad \sum_{i=1}^{D}\left(a_{i} \alpha_{i}^{p}+b_{i} s_{i}^{p}\right)+\delta^{p} \quad$ if p ia odd.

Remark The terma involving x in (4.4.3) and (4.4.4) are to be ignored in the case when G ia extra-apecial.

f4.5 A condition for to to be periodic

Let un continue with the notiotion of the previour section. We vite $i^{D}=(e-1) u$ in (4.4.4). Suppone that u in unit in ifg. Then:

$$
-1-u^{-1} 3^{p}
$$

© that KG(e-1) \leqslant kGS. Thus (4,2,3)(a) 1apliee that the epimorphime

$$
k G \longrightarrow U=U_{1} \text { given by } 1 \longmapsto u_{0}
$$

han kernal kGI. Hence ve have in eract eaquance:

$$
k G \longrightarrow \mathrm{f} \boldsymbol{\mathrm { f }} \mathrm{C} \longrightarrow \mathrm{u} \longrightarrow 0
$$

$$
f\left(u_{1}\right)=\mu_{2} t^{p}=0
$$

Thun kerf containg a mbooduly isomorphic to U. But, by dimeneiona, thic is the wole of kerf. Hance we have conatructed an eriect mequance:

$$
\mathbf{0} \longrightarrow \mathrm{U} \longrightarrow \mathbf{k} \mathbf{G} \longrightarrow \mathbf{k} \longrightarrow \mathrm{U} \longrightarrow \mathbf{0}
$$

To conclude:

Theoren 4.5.i If 4 is unit then U_{3} is periodic.

Corollary 4.5.2 If $\mathrm{B}+\mathrm{J}^{2} \in \mathrm{Y}_{\mathrm{G}}$ then $\mathrm{a}(\mathrm{u})=0$.

Proof Thi follow from (4.2.1), (4.5.1) and the fact that $1(u) * 0$ if and only if u is unit.

Alternative proof tee mave a mecond proof of (4.5.2) mich is independent

Amaume that u ib a unit．Then：

$$
\begin{aligned}
& v^{p}=1+y^{p}=1+(e-1) u * 1 \\
& v^{p^{2}}=1+(e-1)^{p} u^{p}=1 .
\end{aligned}
$$

Hence win a unit of order p^{2} ．Let V be any kG－module which if free on redtriction to We have that：

$$
\left(v^{p}-1\right)^{p-1} v=(e-1)^{p-1} u^{p-1} v=\mu_{1} v
$$

－the last equality holding because u ia a unit．Thia has dimancion $\frac{1}{p} d i m_{k} V$ ． mo（0．0．8）implian that V ia free on remtriction to 《w ．But the efcile group of order p^{2} in a Chouinard group，so V must ba free on redtriction to 《v〉， Thus：

$$
d i m_{k} \psi_{\langle w\rangle} v=\left(1 / p^{2}\right) d i a_{k} v
$$

But $P_{\langle u\rangle} V=(w-1)^{p-1}\left(w^{p}-1\right)^{p-1} v=s^{p-1} \mu_{1} V$ so the rasult above iapliea that：

$$
\operatorname{dim}_{k} I^{p-1} \nabla=(1 / p) d i \varepsilon_{k} \nabla
$$

so that $3+J^{2} \quad Y(\nabla)$ ．Thus the result follow．

Dafine alynodal in n variables with coefficients in Fp by aeting $F\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{m}, Z\right)$ equal to：

$$
\begin{array}{ll}
\sum_{i=1}^{n}\left(a_{i} x_{i}^{2}+x_{1} y_{1}+b_{1} y_{i}^{2}\right)+z^{2} & \text { if } p=2 \\
\sum_{i=1}^{m}\left(a_{1} x_{i}+b_{1} y_{1}\right)+z & \text { if } p \text { is odd }
\end{array}
$$

（The term involving Z is to be ignorad when G is axtra－bicecial．）Wricing

$$
a(u)= \begin{cases}c & \text { if } p=2 \\ c^{p} & \text { if } p \text { in odd }\end{cases}
$$

Thum wo maxpreas (4.3.2) an:

Thit reault ia obviounly only of intarant whan F ia not the zero polynomial. Suppose that $T=0$. We buat have that p is odd and that G in
 ienomphic co the aztra-apecial eroup of order p^{3} and exponent p. Thus G hat exponent p. This case vill be conaidered in the next bection. We mate in the reat of thia aection that G has exponenc p^{2}. so that $F \boldsymbol{p}_{0}$.

When p in odd, (4.5.3) and (3.6.4)(b) imply thats

$$
\begin{equation*}
\mathrm{Y}_{G} \in \mathrm{~S}_{H} \tag{1}
\end{equation*}
$$

 t. $\mathrm{ge} \mathrm{G}-\mathrm{H}$ of ordar p . Lat C be the ghgroup generated by gi and conalder
 decompoitilot given:

$$
\left(\mathrm{k}_{\mathrm{C}}^{*}\right)_{\mathrm{H}}-\mathrm{k}_{\mathrm{C}}^{\mathrm{A} H} \text { - } \quad \mathrm{kH}
$$

 Thif contradicte (1). Hance we have proved:

Thaorep 4.5 .4 Let p be odd and G be paoudo-apacial group of exponent p^{2}. The slemente of G of ordar p for a maximal bubgroup, H, with the property that kG-adule ia fred if and only if it in frat on reatriction to H .
(4.5.3) doea not imply any much pleamant rapult in the case pm2. The follouing example doan hovever idd another Chouinard eroup ta our lint.

Erample Let G be imomorphic to the dihedral group of order 8 ,

$$
D_{8}=\left\langle x, y \mid x^{4}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle
$$

 givan by:

$$
F(X, Y)=X^{2}+X Y=X(X+Y)
$$

 if an element of S_{H} for either $H=\left\langle x^{2}, y\right\rangle$ or $\left.H=\left\langle x^{2}, x\right\rangle\right\rangle$ (ned (3.6.4)), Thus akG-adule if free if and only if it in frea on reatriction to both $\left\langle x^{2}, y\right\rangle$ and $\left\langle x^{2}, \bar{y}\right\rangle$. In particular, G ia a Chouinard group.

Now assume that p in odd and that G in extra-mpecial of erponent p. Let q be as in (4.4.3)(b). We bhall prove:

Theore宜 4.6 .1 If q ia unit then U_{3} ia periodic.

Using thit, we will be able to prova the analogoug gtatement to (. .5.3), but with the zero polynomial. F, being replaced by the nonzero polynomial, F^{\prime}, given by:

$$
F^{\prime \prime}\left(X_{1}, \ldots, X_{1} * Y_{1}, \ldots . Y_{-}\right)=\sum_{i=1}^{\sum}\left(X_{1}^{P} Y_{1}-X_{1} Y_{1}^{P}\right)
$$

The proof of (4.6.1) in adaptad from [Ca5], where the raault in proved In the cose $\quad=1$. Beformbarking on the proof, let un note that, in this cas觡, F^{*} aplita al a product of 1inear factora:

$$
F^{\prime}(X, Y)=Y(X-Y)(X-2 Y) \ldots(X-(P-1) Y) Y
$$

so that, as in the example, D_{g}, dale with in the previoum mection, G in a Chouinard grotup.

Proof of (4.6.1) The proof conalata of actually condructing projective resolution of $U=U_{\text {s }}$. Let u firitiy prove a lease :

Lepas $4.6,2$ With the notation of (4.4.3) we have that, for $1=1,2, \ldots p-1$.

$$
\left(8^{1} t-t \xi^{1}\right)(0-1)^{p-2}=1 t^{i-1} e \mu_{4}
$$

Proof

$$
s^{1} t-t s^{1}=\sum_{j \infty}^{i-1} s^{j}(t z-t 3) s^{1-1-j}
$$

$=\sum_{j=0}^{1-1} f_{q(e-1)}^{1^{1-1-j} .}$
Thue the reault followa on aultiplying by $(e-1)^{\mathrm{p}-2}$. (Note that HikG in famorphic to $k \mathbb{C}$ and ia hanca comentative.)

Now lat F be the fret kG-modula on two genaratara, and b. For $1-1,2, \ldots, p-1$, let U_{i} be the aubodule of F generated by:

$$
u_{11}=t^{1} a-(a-1) b
$$

$$
\text { and } \quad u_{12}=t(e-1)^{p-2} a-s^{p-1} b .
$$

Lene 4.6.3 dig $\mathrm{U}_{1} \geqslant\left(1+\mathrm{p}^{-2}\right) \mid \mathrm{Gl}$.

Proof Lat the meimal ubsroup H be as in 8.2 . Then the elemanta $H_{H^{3}}{ }^{j}$ $(1=0,1, \ldots, p-1)$ are k-1inearly independent.

Let W_{1} be the wh-wubodule of U_{1} generared by the elaments J_{11} $(J=0,1, \ldots, p-1-1)$ and $t_{u_{i=}}(J=0,1, \ldots, i-1)$. Note that:

$$
\begin{aligned}
& \mu_{H}\left(\mathbf{i}^{j} u_{i 1}\right)=\mu_{H} 5^{1+j_{a}} \\
& \mu_{H}\left(t^{j} u_{i 2}\right)=-\mu_{H} t^{p-1+j_{b}}
\end{aligned}
$$

 $p \mid$ | \mid | $=|G|$.

Lat $\quad t(e-1)^{p-2} u_{11}-s^{1} u_{12}$
$=\left(t I^{I}-I^{1} t\right)(a-1)^{p-2} d-\left(t \mu_{a}-t^{P}\right) b$

- $-1 i^{1-1} q \mu^{2}$.

Conmider g^{-1} : thic in an element of U_{i} on which actatrivially. Thum, if W_{2} danotan tha kH-aubmodule of v_{i} ganarated by $q^{-1} w_{\text {, }}$, wa have:

$$
w_{2}=k H\left(q^{-1} v\right) \text { and } \mu_{H^{\prime}}\left(q^{-1} v\right)=-1 \mu_{H^{b^{1-1}}} \cdot 0
$$

so that $\mathbf{W}_{2} \mathrm{k} \mathrm{H}$.

Now we claig that W_{1} and W_{2} intarsect erivially. If not, W_{1}^{H} and W_{2}^{H} would interaect non-trivially, implying that:

$$
\mu_{B}\left(q^{-1} v\right) \subset \mu_{H} W_{1}
$$

- a contradiction. Thus $\mathrm{W}_{1}+\mathrm{H}_{2}$ 1a a kH-aubsodule of U_{i} of dimanaion $|G|+|R|=\left(1+p^{-2}\right)|G|$. Hence we hava the reault.
(4.2.3)(a) implien that we heve an exact aequence:

$$
\mathrm{F} \xrightarrow{\mathbf{I}} \mathrm{kG} \longrightarrow \mathrm{U} \longrightarrow \mathbf{0}
$$

where f ia given by $a \longmapsto e-1, b \longmapsto\}$. But;

$$
\begin{aligned}
& \left.f\left(u_{11}\right)=\xi(e-1)-(e-1)\right\}=0 \\
& f\left(u_{12}\right)=t \mu_{t}-\xi^{p}=0
\end{aligned}
$$

so that U_{1} ia containad within kerf. But kerf has dimension:

$$
2|G|-\left(|G|-d i a_{k} U\right)-\left(1+p^{-2}\right)|G|
$$

so (4.6 .3) impliam that U_{1} must be the whole of the kernel. Thua:

Lepla 4.6 .4 There is an exact aequences

$$
0 \longrightarrow \mathrm{U}_{1} \longrightarrow \mathrm{~F} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{U} \longrightarrow 0
$$

Thus $\operatorname{dig}_{\mathrm{x}} \mathrm{u}_{1}-\left(1+p^{-2}\right) \mid \operatorname{di}$.

Leapa 4.6.5 For each $1=1,2, \ldots, p-2$ there if an exact sequence:

$$
0 \longrightarrow \mathrm{U}_{i+1} \longrightarrow \mathrm{~F} \longrightarrow \mathrm{~F} \longrightarrow \mathrm{U}_{i} \longrightarrow 0
$$

Moreover, diak $U_{i}=\left(1 \neq p^{-2}\right)|G| \quad(i=1,2, \ldots, p-1)$.

Proof We may anaume inductively that diE $U_{i}=\left(1+p^{-2}\right)|G|$. Define an epimorphism $f: E \longrightarrow U_{1}$ by $a \longmapsto u_{11}, b \longmapsto u_{12}$. We readily check that kerf containa the elementix:

$$
w_{1}=s^{p-1}-(e-1) b
$$

and

$$
w_{2}=(\xi t+i q(e-1))(e-1)^{p-2} a-j^{1+1} b
$$

Let W be the sumodule of F generated by w_{1} and v_{2}.
Let W_{1} be the $k H$-aubmodule of W generated by $\mathbf{y}_{1}(\mathrm{~J}=0.1, \ldots, i-1)$ and $\mathrm{s}_{\mathrm{w}_{2}}(\mathrm{~J}=0,1, \ldots, p-1-2)$ then, by a similar argument to that eaployed in (4.6.3). W N_{1} ia free of dimenaion ($\mathrm{p}-1$) $|\mathrm{H}|$.

Let $v-\xi^{i} u_{1}$. Because the eyclic group, it, ecte frem on F, the fact that $\mu_{\mathbf{L}^{*}}=0$ iaplies that $v=(0-1) w^{\prime}$ for aome $w^{\prime \prime}$ F. Now:

$$
\mu_{H^{\prime}}=\mu_{H^{\prime}}(e-1)^{p-2} v=-\mu_{H}^{\mathbf{s}^{1} b}
$$

- thia in not an element of $\mu_{H} W_{1}$, so w^{\prime} generatea a free kH-bubaodule of F which intersecte W_{1} trivially. acte freely on kH' wo:

$$
(e-1) k H v^{\prime}=k H w^{\prime}
$$

1a a submodule of W of dimention $\left(1-p^{-1}\right)|H|$. But this submodule of W interancta W_{1} trivially, thue W must have dimension at least:

$$
(p-1)|H|+\left(1-p^{-1}\right)|B|=\left(1-p^{-2}\right)|c| .
$$

Henca, by a dimenaiona argument, wis the whole of ker f. Thua we have an exact sequence:

$$
F \longrightarrow \mathrm{~F} \longrightarrow \mathrm{U}_{1} \longrightarrow 0
$$

where $f{ }^{\circ}$ Ia given by $a \longmapsto \forall_{1}, b \longmapsto w_{2}$. A simple calculation showa that $\mathrm{U}_{\mathrm{i}+1}$ \& kerf'. Another dimanmiona argumant ubing (4.6.3) whowa that equality wint hold. Hance the reault follows.

Lema 4.6.6 There is an exact mequenc:

$$
0 \longrightarrow \mathrm{U} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{~F} \longrightarrow \mathrm{U}_{\mathrm{p}-1} \longrightarrow 0
$$

Proof We may define an epinorphiam f: $\mathrm{F} \longrightarrow \mathrm{U}_{\mathrm{p}-1}$ by $\mathrm{a} \longmapsto \mathrm{a}$ $b \longmapsto u_{p-i, 2}$, Let:

$$
v=5 a-(e-1) b
$$

then $f(v)=0$, By aimilar argument to that uad in (4.6.5) we aed that the
 dimension $(p-1)|H|$, and that $\xi^{p-1} v$ generatea a kH-aubsodule of dimenaion ($1-p^{-1}$)|H| which intersect曾 the firat aubsodule trivially. Thum, by mother dimenimiona argument, kerf f kGw.

Define an epimorphimm $f^{*}: k G \longrightarrow k G w$ by $1 \longmapsto$. ker f^{\prime} containe the element $\mu_{8} 5^{p-1}$ and hence ham mubmodule imomorphic to U (bee (4.2 .3)(b)). By dimensions, this submodule ithe thole of ker f *. Thus the reault follows.

Combining tha raaulta of $(4.6 .4),(4.6 .5)$ and $(4.6 .6)$, we see that there 1a an exact saguance:

$$
0 \longrightarrow \mathrm{U} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{~F} \longrightarrow \ldots \mathrm{~F} \longrightarrow \mathrm{kG} \longrightarrow \mathrm{U} \longrightarrow \mathrm{H}
$$

which in a $2 p$-atep prajactive reaolution of U. Henca the reault of (4.6.1) ia eatablished.
14.7 Concluelone

Let un mumariee (4.5 .3) and the analogoua reanlt provad in the pravioun alaction. Lat G be a penudo-apacial p-group and pick the minimal eet of
 homogeneous polynomial, $F\left(X_{i}, \ldots, X_{n}\right)$, with coefficientio in F_{p}, much that:

$$
\begin{equation*}
\sum_{1=1}^{n} \lambda_{1}\left(g_{1}-1\right)+J^{2} e T_{G} \quad+F\left(\lambda_{1} \ldots \ldots \lambda_{n}\right)=0 \tag{1}
\end{equation*}
$$

The degree of F equale:

$$
\begin{array}{cl}
2 & \text { if } p=2, \\
p+1 & \text { if } p \text { in odd and } G \text { has exponent } p, \\
1 & \text { if } p \text { in odd and } G \text { has exponent } p^{2} .
\end{array}
$$

 for G. Let $F^{\prime}\left(\mathbf{X}_{1}, \ldots, X_{F}\right)$ be tha polynomial corresponding to P / N and diefine:

$$
F\left(X_{1}, \ldots, X_{n}\right)=F^{\prime}\left(X_{1} \ldots \ldots X_{r}\right)
$$

(4.1.6) then ippliad that (1) holde for G with thia F.

Note that, because F ia nonzero. Y_{G} cannot be the whole of $\mathrm{J} / \mathrm{J}^{2}$. Thu wa madd the convarae statement to (4.0.2):

Theoren 4.7.1 Lat G be a general p-group. Then ${ }^{T} G$ is tha whola of $\mathrm{J} / \mathrm{J}^{2}$ if and only if G ia elementary ablian.

Althouth we have only proved (1) for a mpecific eat of generatora for

 $\left(g_{1}-1\right)+J^{2} \ldots \ldots\left(g_{n}-1\right)+J^{2}$ to $\left(\|_{1}-1\right)+j^{2} \ldots \ldots\left(E_{n}-1\right)+J^{2}$ correapande to

$$
t-\sum_{i=1}^{n} \lambda_{i}^{\prime}\left(s_{i}^{i}-1\right)+j^{2}=\sum_{i=1}^{n} \lambda_{i}\left(g_{1}-1\right)+j^{2}
$$

where:

$$
\lambda_{i}=\sum_{j=1}^{n} c_{i j} \lambda_{j}^{\prime}
$$

 polynomal wth coefficianta in F_{p} of the ama dagrea al F.

We ray atate thia an

Theored 4.7.2 Lat G ba a-group which ia not eleatitary abelian. Take
 homogeneoum polynomial, $F\left(\bar{X}_{1}, \ldots, X_{n}\right)$, with coefficienta in F_{p} of degree at mos:

$$
\left\{\begin{array}{cl}
2 & \text { if } p=2 \\
p+1 & \text { if } p \text { ie odd }
\end{array}\right.
$$

tuch that:

$$
\sum_{i=1}^{n} \lambda_{1}\left(s_{1}-1\right)+J^{2} e Y_{G}+P\left(h_{1}, \ldots, h_{n}\right)=0
$$

(144)

-4.8 Definine equacions for Y_{C}

Assume that G id poevdo-spectal. We have shown that Y_{G} if contsined within some hypersurface defined by a polynobial with coefficients in F (Theorme 4.7.2): now we shov that more can be said on thia muject. The key to our approach ib the following surpriaing rasult:

Theoree 4.8 .1 Suppose that $f: \boldsymbol{a i}_{G} \longrightarrow k_{G}$ ia an epimorphiam for some $r \neq 0$ such that kerf is free on reatriction to Then:

$$
Y(\overline{\text { ker } f})=Y_{G}
$$

Proof Let $\mathrm{f} \exists \mathrm{J}-\mathrm{J}^{2}$ and write $\mathrm{U}=\mathrm{U}$. We have an exact sequence:

$$
\begin{equation*}
0 \longrightarrow(\operatorname{ker} f) \quad U \longrightarrow \mathbf{I}^{\mathrm{F}} \mathrm{k}_{\mathrm{G}} \| \mathrm{U} \longrightarrow \mathrm{U} \longrightarrow 0 \tag{1}
\end{equation*}
$$

Now:

$$
\begin{aligned}
& \xi+J^{2}+Y_{G} \quad t \quad J^{2} * Y(\overline{\operatorname{Rer} I}) \\
& \Rightarrow Y(\overline{(k \operatorname{erf})}-\mathbf{U}) \\
& \text { - (kerf) U is free } \\
& \Rightarrow \quad \Omega^{\mathbf{r}} \mathrm{k}_{\mathrm{G}} \text {-U } \quad \mathrm{U}=\mathrm{projective} \\
& \text { - } \Omega_{\mathbf{r}}^{\mathbf{U}} \text { ■ U } \\
& \text { - U Im periodic } \\
& \Rightarrow \quad \mathbf{y}+\mathrm{J}^{2} * \mathbf{Y}_{G} \\
& \text { by (4.0.1), } \\
& \text { as in (4.0.1), } \\
& \text { by (3.5.2), } \\
& \text { using (1), } \\
& \text { by (4.2.1). }
\end{aligned}
$$

thus all the statementa in thia chain of ioplicationa are equivalent.

The obvious question is therefare, does such map, f, exist ? The ansurer ia given by the following reault. The proof ia fairiy long and involvea some vaguely cohomological materi畧l, it ia posponed until the end of the eection.

Theorem 4.8.2 There exi贯t m mop, f, with the properties outifned in (4.8.1) for $r=2 \mid G: \overline{1}$.

Corollary 4.8.3 U_{F} is periodic if and only it $\mathrm{t}+\mathrm{J}^{2}$ \& Y_{G}, If it in periadic than ita pariod dividee $2 \mid G:$.

Proof Thia followa fron the chain of implications in the proof of (4.8.1). Note that we may take $\mathrm{r}=2 \mathrm{IG}$: Bl_{1} by (4.8.2).

We may even got rid of the myteriou* map, f. Note that $\mu_{\text {e }}$ actatrivially
 trivial, no have:
 variety of thia ia Y_{G}.

Note how thi conatruction differa fron that of (0.0.12) - $s^{5} k_{G}$ ia not free on reatriction to

Let V be an $F_{p} G$-module inamorphic to the diract am of $n^{2|G i|_{p}} F_{p}$ and a free Fp-module; for example, ve my take:

 (4.8.4) given:

$$
Y\left(W^{\prime}\right)=Y_{G} .
$$

 reapect to thia banis. Then thia basia ia alac k-bale for W^{\prime}, so A_{i} alao representa the action of $\bar{E}_{i}-I$ on W '.

Let:

$$
t=\sum_{i=1}^{n} \lambda_{i}\left(\bar{a}_{1}-I\right)
$$

where the $\lambda_{i}{ }^{\prime}$ a are elementa of k, not all zaro. (3.0.4) givea that $t+J^{2}$ ia an element of $Y\left(W^{\prime}\right)=Y_{G}$ if and only if $\boldsymbol{f}^{\prime} H^{\prime}$ hat dimansion lame than d, where $d=\left(1-\frac{1}{p}\right) d_{i=} W^{\prime}$, that in to may, if and only if all the $d y d$ winora of any matix repramenting the action of 1 on W vanish. But with raspact to the banie above, \boldsymbol{y} ia represenced by:

$$
\lambda_{1} A_{1}+\ldots .+\lambda_{n} A_{n}:
$$

recill that aach A_{i} has entriea in F_{p}, ao that any fized dyd binor of thia matrix fil given by $F\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $F\left(X_{1}, \ldots, I_{n}\right)$ is homogeneoue polynomial of degree d (unlee $F=0$) wich confficiantio in F_{p} which is independent of $\lambda_{1}, \ldots . \lambda_{n}$, Lat F_{1}, \ldots, F_{s} be all the nonzero polynomiale erieing from d ind -inore in thim way, then $1+J^{2} \in Y_{G}$ if and only if

$$
F_{1}\left(\lambda_{1}, \ldots, \lambda_{p}\right)=0 \quad \text { for all } 1
$$

Note that, bacausa X_{G} ie not the whole of J / J^{2}, there guat ba at leaet one nonzero polynomial. F_{1} "

Lat un atate the result juat proved an:

Theoren 4.8.5 If 6 is paeudo-apecial then there erint nonzero homogeneoua polynomela with confficiente in $F_{p}, F_{1}\left(X_{1}, \ldots, X_{n}\right)(1=1,2, \ldots, 0)$, auch that Y_{G} is the subaet of $\mathrm{J} / \mathrm{J}^{2}$ given by all pointa

$$
\sum_{j=1}^{n} \lambda_{j}\left(e_{j}-1\right)+j^{2}
$$

with $F_{1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0$ for all 1 .

We may erpreas thim mocinctiy by aying that Y_{G} ia homoneneoua variety defined by earien of polynoniala with conficienta in F_{p}.

Propoition 4.8.6 Lat $F_{1} \ldots, F_{\text {, }}$ the in (4.8.5): define I to be the ideal of $F_{p}\left[X_{1}, \ldots, X_{n}\right]$ generated by F_{1}, \ldots, F_{s}. Suppone that I containa a product of nonzero linear polynomiala, than G ia a Choulnard group.
 in x_{1}, \ldots, x_{n}. Then $5+J^{2} \& Y_{G} \neq f_{i}\left(\lambda_{1} \ldots, \lambda_{n}\right)=0$ for same $1 * 5+J^{2}$ e S_{H} for some mien mbgroup, H, of $G(b y$ (3.6.4)). Thuas

$$
Y_{G} \llbracket \bigcup_{H} S_{H} \text { (zhe union being over all marimal aubgrovpa of } G \text {) }
$$

that fa to asy, G in a Choulnard group.
He may ramark that the convarde laco holda. Lat f be the product of all the nonzero linaar polynomial in X_{1}, \ldots, X_{n} with coefficienta in F_{p}, then the fact that Y_{G} ie contained within the union of all the S_{H} 'a iapliee that;

$$
\left.f\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0 \quad \text { for } a l l\right\}+J^{2}=Y_{G}
$$

Thus, by Hilbert'a Nullatellenatz, acme powar of f is an eleaent of I. The converae atatement ia thus proved.

Thua we have very concrete vay to prove Chouinard'e theorela
(1) It bufficea to asmane that G ia pasudo-apecial (nea (la.1),

 represencerion for V.
(3) Calculate the polynomiala $F_{1}, \ldots, F_{\text {a }}$ as above.
(4) Show that the ideal of $F_{p}\left[X_{1}, \ldots, X_{n}\right]$ generated by $F_{1}, \ldots, F_{\text {. }}$ containe a product of nonzero ilnear producta.

Proof of Theorer 4. B .2

We now cone to tha pootponed proof of (4.8.2); it will be recalled that thin theorem etatad that there ia an apimorphian:

$$
f: \Omega^{2\left|G: n^{\prime}\right|} k_{G} \longrightarrow k_{n}
$$

ach that ker f if free on reatriction to

$$
0 \longrightarrow k_{N} \rightarrow Q_{r-1} \longrightarrow \ldots \rightarrow Q_{0} \longrightarrow k_{N} \longrightarrow 0
$$

 prove the ranult: take the mequence bova for $N=G$ and fori the diagrem:

where the lower aequence ia minieal projectiva remolution of k g then both sequanctill in thia diagran ma, on reitriction to projective remolutione of
 to prove the exiatence of the eequence move.

The proof ia by induction on INI. For $N=$ w way take the mame

$$
0 \longrightarrow k_{3} \longrightarrow k_{i} \longrightarrow k_{i} \longrightarrow k_{i} \longrightarrow 0
$$

(recall that in cyclic).
So asmume that N. Wa may choose H to ta marimal abgroup of N

$$
0 \longrightarrow k_{H} \longrightarrow \tilde{4}_{\mathrm{r}-1} \longrightarrow \ldots \ldots \mathrm{Q}_{0} \longrightarrow \mathrm{k}_{\mathrm{H}} \longrightarrow 0
$$

(149)

where $r=2 \mid H i d i$ and anch Q_{i} iv frem on reatriction to A. Dofine $Q_{r}=k_{H}$, $Q_{i}=0(1>r)$ sothat there ia an ezact aquence of kilmodulea:

$$
\underline{g}: \ldots \rightarrow q_{2} \longrightarrow q_{1} \longrightarrow q_{0} \longrightarrow k_{H} \longrightarrow 0
$$

 by letting z permute the factora on stap cyclicilly right to left. Fore the correaponding memi-direct product:

$$
S=(H \equiv H \geq \ldots . \ldots H) C
$$

(ao that S it the ureath product. $H \& C$). We ake \underline{X} into aequance of kS-madulea by defintige the action of z an:

$$
x\left(x_{n_{1}} \bullet x_{n_{2}} \bullet \ldots \theta x_{n_{p}}\right)=(-1)^{d}\left(x_{n_{2}} \oplus \ldots \theta x_{n_{p}} \leqslant x_{n_{1}}\right)
$$

where $x_{n_{1}} \in Q_{n_{1}}, d=n_{1}\left(n_{2}+\ldots+n_{p}\right)$. Thia may be chacked to make \underline{X} into an exact mequance of $k S$-modulen:

$$
\cdots \longrightarrow x_{2} \longrightarrow x_{1} \longrightarrow x_{0} \longrightarrow k_{S} \longrightarrow 0
$$

We my ragard N an aubgroup of S an followat fiz $g e N-H$ and identify IeN with:

$$
\left(h_{0}, \ldots, h_{p-1} .^{*}\right) \text { es }
$$

where $m\left(H_{0}\right)^{*}$ and $h_{1} \in H$ ie definad by the equarion $g^{1}=h_{1} g^{j} \quad(0<1<p)$. Note that, because in contained within both H and $Z(G)$. It if identifiad vith ($\mathrm{x}, \ldots, \mathrm{n}, 1$) c S .

Thus we my, by rentriction, regard $\underline{\underline{X}}$ as aequance of kN-modulea. (For chie condervetion see [Ev].) Nota that the action of is juat the diegonal action on the factors of $X=9 * \ldots$. . \underline{x}.

An a k-apace, X_{i} ia the direct aum of all terme of the forms

$$
q_{n_{1}} \cdot Q_{n_{2}} \cdot \ldots \in q_{n_{p}} \quad \text { with } n_{1}+n_{2}+\ldots+n_{p}=1
$$

 hava:
(a) $x_{1}=0$ for $1>$ a.
(b) $X_{s}-k_{N}$.
(c) eact of the aumanda abova of Y_{i} when $1<3$ ham efactor Q_{1} for some $\mathrm{j}<\mathrm{r}$, which in therafore fre on reatriction to $\mathrm{I}_{\text {; }}$ this showa that thif aumand in a fran k-aubodule $c I X_{1}$ (ainca acta diagonally), and hence that x_{i} fe free on reatriction to
Hence we have an aract eaquence of kN-adulem:

$$
0 \longrightarrow k_{N} \longrightarrow x_{0-1} \longrightarrow \ldots \rightarrow x_{0} \longrightarrow k_{N} \longrightarrow 0
$$

where each X_{i} in free on reatriction to This hat the requirad form, so the reault in proved.

PAGINATION ERROR

EXAMPLES

(153)

Thi chapter deala aninly with exmplea of non-projective, indecompoable $k G$-modulea which are free on restriction to mome maximal aubgroup of G. Several resulta relating to che met Y_{G} but not properiy belonging in Chapear 4 are alao provad. These may be uned to conatruct further examples from thoae already given.

3.0 Solit productie

Suppose chat Gian p-group which ham a manieal aubroup. H, auch thet the group ervenaloni

$$
1 \longrightarrow \mathrm{H} \longrightarrow \mathrm{G} \longrightarrow \mathbf{2}_{\mathrm{p}} \longrightarrow 1
$$

eplita: 1.e. there in aubroup, C, of G of order p auch that $G=H C$, HnC. 1. Chooge generator, g, for C. Aasume that C in not the whola of G.

Lat U be one of the $p=1$ non-projective, indecompoasble kC-moduleal Lat $V=U^{\text {GG }}$. We have:
(1) V ia not projective - for U|V ${ }_{\mathrm{L}}$.
 hat enique maimal mubmodula (indeed, it ia unimerial), mo thim ham diemeion one,
(3) V is frem on raticiction to H - there ia only on double comet, $H_{g} C=g H C=G$, the Mackey decompoaition given:

$$
v_{t H} \quad\left(U_{4+C}\right)^{t H}=\left(U_{H 1}\right)^{f H}
$$

Thu V 1e tarinal module - aee (2.4.2). Let ua apply (2.4.1) to V. Thare exiate $u \in U$ much that:

$$
u,\left(\frac{1}{d}-1\right) u \ldots . .
$$

 1 ($(-1)^{1} u(1=0,1, \ldots, d-1)$ form free kH-taniv for V.

$$
1 \otimes(8-1)^{1} u \longmapsto \begin{cases}1 & \text { if } 1=0 \\ 0 & \text { otharwias. }\end{cases}
$$

and all the v_{n} 'a to be tqual ta E^{-1} (1-it).
V_{n} is then the frea $k H$-module on the elemente aif $(1=1,2, \ldots, n$; $\mathrm{f}=1,2, \ldots, \mathrm{~d})$, where:

$$
e_{i j}=\phi_{n}\left(0, \ldots, 0,1 \bullet(\varepsilon-1)^{j-1} u, 0, \ldots, 0\right)
$$

- the nonzero entry being in the ith coordinate. Now:

$$
\begin{gathered}
(g-1) \theta_{i j}=\psi_{n}\left(0, \ldots, 0, \phi\left(1 \otimes(g-1)^{j-1} u\right) g \mu_{H^{g}}(1 \otimes a),\right. \\
\left.(g-1)\left(1 \bullet(g-1)^{j-1} u\right), 0, \ldots, 0\right)
\end{gathered}
$$

$-\psi_{n}\left(0, \ldots, 0, \phi\left(1 \oplus(g-1)^{j-1} u\right) \mu_{H}(1 \otimes u)\right.$.
$\left.1 \bullet(g-1)^{1} u, 0, \ldots, 0\right)$.

The irreducible map $\alpha_{n}{ }^{1} v_{n} \longrightarrow v_{n+1}$ is given by ${ }_{i j} \longmapsto \boldsymbol{e}_{i j}$ ($1=1,2, \ldots, n ; j=1,2, \ldots, d$) , so it ie just the incluation.

To conclude:

Let V, De the (infinite-dieenaional) $k G$ module with free kH-basia ali $(i=1,2, \ldots, j=1,2, \ldots, d)$ with the action of g being givan by:
$d=1$

$$
\begin{aligned}
& (g-1) e_{i 1}=\left\{\begin{array}{l}
\mu_{H}^{e}{ }_{i-1,1} \\
0
\end{array}\right. \\
& (g-1) e_{i j}=\left\{\begin{array}{l}
e_{12}+\mu_{H} e_{i-1,1} \\
e_{i 2} \\
e_{1,1+1} \\
0
\end{array}\right.
\end{aligned}
$$

$$
\text { if } i>1
$$

$$
\text { if } i=1
$$

$d>1$

$$
\begin{aligned}
& \text { if } \mathrm{g}=1,1>1, \\
& \text { if } \mathrm{g}=1,1=1, \\
& \text { if } \mathrm{l}<\mathrm{g}<\mathrm{d}, \\
& \text { if } \mathrm{g}=\mathrm{d} \text {, }
\end{aligned}
$$

Let V_{n} be the mbmodule generated by ${ }_{1 j}(1=1,2, \ldots, \ldots ; j=1,2, \ldots, d)$. The modulea V_{n} then have the properties outlinad in (2.3.6). Tha incluaion maps $\mathrm{v}_{\mathrm{n}} \longrightarrow \mathrm{T}_{\mathrm{n}+1}$ ara irreducible.

Uasin the almoat eplit aequencal involving the V_{n} 's, ve see that:

$$
Y\left(\nabla_{1}\right)=Y\left(\nabla_{2}\right)=\cdots=Y\left(\nabla_{n}\right)=\ldots
$$

Thus it auffices to calculate $Y(\mathbb{V})$. V ia not free on reatriction to $C=$ - it id not free on reatriction to C - so V ib not free on reatriction to
 (by (3,0,2)). Thue we hava constructed a nonzero elemant of the line, $Y(V)$. Hence:

$$
Y(\nabla)=k\left((g-1)+J^{2}\right)-S_{C}
$$

The initisl condraint on G, that it should be a aplit product, it not as artificial an it might at firat aeew. Suppoan that G id any p-group auch that there is a non-projective kG-module which ia frae on ratriction to some maximbl ubgroup, H, of G. Choulnard'a theorem gives that this module ia non-projective on remtiction to some aletentary abelian subgroup, E, of G. Clearly we cannot have E4H, so choose $g \in E-H$. g then has order p. By the marimality of $H, G=H\langle g\rangle$. This, considering orderm, impliea that H a $\langle g\rangle=1$. Thuis G 1a tha aplit product of H by < 8\rangle.

Thi enablas ue to state:

Theorea 5.0.1 Lat G be a p-group and H be amamal mubgroup of G. There exista non-projective kG -module which ia free on restriction to H if and on1y if the group extension:

$$
1 \longrightarrow \mathrm{H} \longrightarrow \mathrm{G} \longrightarrow \mathrm{Z}_{\mathrm{p}} \longrightarrow 1
$$

splite.

S3.1 Elementary ablian eroupa

 There in on emential aubgroup, G^{\prime}, of $k G$ containing C - indaed G^{\prime} aplita an the diract product of \mathbf{C} and a mainal aubgroup. Thum we ara in a poaition to apply the conatruction of tha previoun anction. We let U be one of the $p-1$ non-projective, indecompoasble kC-modul事, i.e.

$u-5^{1} \mathrm{kC}$

for mane $1=1,2, \ldots, p-1$, and conmider $V=\mathcal{J}^{\prime}$, Clearly:
$V-\mathbf{E}^{\mathbf{t}_{k G}}{ }^{\boldsymbol{q}}=\mathbf{1}^{\mathbf{i} k G}$
(cf. the moduleal $U_{\mathbf{S}}$).

 maniel bubgroup of $\mathbf{G}_{\mathbf{\prime}}$
(2) $5^{1} k G$ ia terainal and, using the calculation in 5.0 , we maty vite down mequance of modulen with the propertiee outilined in (2.3.6) with ite firat member imomorphic to tifG.
(3) dig, $\left.b^{1} \mathrm{GG}=\left(1-\frac{1}{p}\right) \right\rvert\, G$.
(4) tha bract saquance $0 \longrightarrow 8^{D-1} \mathrm{kC} \longrightarrow \mathrm{kC} \longrightarrow \mathbf{s}^{\mathbf{1}} \mathrm{kC} \longrightarrow 0$, wam Induced up to G^{\prime}. howa that $a\left(B^{1} k G\right)$ g $\boldsymbol{p}^{D-1} k G$.

Thu we have a large number of examplea. The quation ariada an to whan

Proof The isomorphian implian that $\xi_{1}^{p-1} \xi_{2}^{1}=0$. Hance we cen urica

$$
v_{1}^{1}\left(u_{1} u_{2}-1\right)=0
$$

so that $u_{1} u_{2}-1$ \& $\int_{1}^{p-1} k G \leqslant A u_{g}(k G)$. Thus $u_{1} u_{2}$, and hence u_{2}, is anit. This provel the rebult.

Let $P(1)$ be the improved atatement:

Then:

Lemp 5.1.2 (䡒) $P(1)$ holda,

(b) If $P(1)$ holda then so does $P(p-1)$.
(c) If $P(1)$ holda mind $1 \mid 1$ then $P(1)$ holda

Proof (a) followe imadiately from (5.1.1). To prove (b):

$$
\begin{aligned}
& +E_{1}^{1} k G \quad 5_{2}^{1} \operatorname{kg} \quad \text { (b) (4) abova) } \\
& \bullet t_{1}=\xi_{2} u \text { for aome unit. } u \text { (by } P(1) \text {) }
\end{aligned}
$$

thut $P(p-1)$ holda. To prove (e):

$$
\begin{aligned}
& -\xi_{1}^{1}=t_{2}^{1} u(1 / 1) \\
& \text { - } \boldsymbol{B}_{1}^{1} \mathrm{kG}-\mathbf{t}_{2}^{\frac{1}{k G}} \\
& -\xi_{1}=z_{2} u^{\prime} \text { for somen unit, } u^{\prime} \quad(b y P(1))
\end{aligned}
$$

no $P(J)$ holde.
 some unit ue kC.

Proof One itmplication ia trivial. For the other it buffices to fhow that $P(1)$ holda for all i. Asoume otherviae, and pick 1 minimal such that $P(1)$ does not hold. Let be maximal with rempect to mi<p.
$P(m i)$ doeat not hold by part (c) of the previous leman. Thus, by part (b), P(p-mi) doas not hold. So, by the minimglity of $1, p-m i>1$. But the marimality of w givea $(2+1) 1>p$. Thus:

$$
p=(m+1) 1
$$

so that $1=1$, contradicting (5.1.2)(a).

Notethat $X_{1}=I_{2}$ for some unit, u implien that $k\left(g_{1}+J^{2}\right)$ equala $k\left(1{ }_{2}+J^{2}\right)$. Hovever the converse does not hold in general:

$$
\left.\left\{\xi_{u} \mid \text { u id anit }\right\}=\{c\}+E \mid 0 \pm c \in k, \xi \in\right\}
$$

thum we require that $3, J$ ia the vhole of J^{2}.

Lemma $5,1,4 \quad 3, J=J^{2}$ if and only if G han order por 4.

Proof By (3.0.2), dian $j^{2}-p^{n}-1-n$ where $p^{n}=|G|$. The map $J \longrightarrow \mid J$ given by E-- \$t is a kGepinorphien with kernel,

$$
\xi^{\mathrm{P}-1} \mathrm{kG} \cap \mathrm{~J}=3^{\mathrm{p}-1} \mathrm{kG}
$$

of dimendion $\frac{1}{p}|C|$. Thus dilak $X J=p^{n}-1=p^{n-1}$.
We know that $3 J \leqslant J^{2}$; by dimensiona, equality holda iff $p^{n-1}=n$. We readily check that the only alutiona to this are $n=1$ and $n=2, p=2$. Thus the result follow.

If we are not in the amceptional cases. let F_{1} be any element of $\mathrm{J} / \mathrm{J}^{2}$. We can choose s_{2} with $k\left(s_{2}+J^{2}\right)=k\left(s_{1}+J^{2}\right)$ but with ξ_{2} not being of the for: $\xi_{1} u$ for anit, u. Conaider the modulea $\quad \frac{1}{1} \mathrm{kG}$ and $\frac{1}{2} \mathrm{kG}$:

- they are both terninal,
- they have the adae diaenimion,
- they have the ame Cariaon variaty.
but they ere not imonorphic.

Of tha exceptianal camer: the firat, when G ia cyclic of order p, ie too miaple to be of any riel interent (indead the conatruction of (2.4.1)
 dealt vith in Appendix A. It in whovithat the careinal kG-modulea are in 1-1 correspondence with the ate of 14 nee in $\mathrm{J} / \mathrm{J}^{2}$ - tha correapondence buing given by the Carimon variety. By what wa have thove above, thia reaule does not axtend tc more general alamentary abolian groupa. Aghin, the realt that
 non-projactive, indecompomablekg-module which ie free on reatriction to lome maimel mbgroup may ba obtained from one of theae modula uning the conatruction given in $\$ 5.0$, doee not extend to more general groupa. Thie problee ia addrased in the following 曾ection.

\$5.2 The tarainal nodulan of elamentert ahalien eroupa

Let G be any non-cyclic alamentary abelian group. The problam of clameifying all the non-projective, indecompoemble kG-aodulan which are free on reatriction to some entimel mbgroup obyious reduces to that of clabeifying all buch module which aze terninal. We hava already conatructed a large clata of such terninal modulea, $\mathbf{g}^{1} k G\left(1-1,2, \ldots \ldots, p-1,1, j-j^{2}\right)$. In the caet when G ie the Klain 4 -group, every terninal modula belange to thi clabi thus ve abk, doea this raault extend to general elamentary

 subgroup, H, of G. Then v (${ }^{p-1} k G$ for mame $\} \in J=J^{2}$.

Proof Choowe vev with V a kHv. Let g be an elemant of $G-H$ then we can writa :

$$
(8-1) \cdot v=8 v \quad \text { for sone } f \in k H
$$

Write $3=(e-1)-y$ e J note that J / J^{2} in the direct aum of S_{H} and $k\left((z-1) \leftarrow j^{2}\right)$, mo 1 ciennot ba milenent of j^{2}.
 fect thet $\boldsymbol{K} v=0$ implien that $K k G \leqslant k e r f$. By dimensiona, we muat have:
act reteult follovi.

Propolition 5.2 .2 Lat V be mon-projective kg-odule which in frae on

 $3 \in J-J^{2}$.

Pragi Ue have on epimarphisa kG $\longrightarrow V$ given by apping 1 ko any elament outaide the maximal aubmodule of V. The kernel of thig map, W, iw free on reatriction to H. We have an exact eequence of $\mathbf{k}(\mathbf{G} / \mathrm{H})$-modulea:

$$
0 \longrightarrow \mu_{H} \mathrm{~N} \longrightarrow \mathbf{k}(\mathrm{G} / \mathrm{H}) \longrightarrow \mu_{H} \mathbf{v} \longrightarrow \mathbf{0}
$$

thut dian $H_{H} V$ and dim $H_{K} W$ ara poaitive integera vith aum p. If p-2 or 3 thim imples that either $\mu_{H} V$ or $\mu_{H} W$ has dimenaion one - that in to any, either V or W atisfies the condition of $(5,2.1)$ and hence in imonorphic to

$$
\mathrm{ay} \quad \mathrm{w}=\mathrm{s}^{\mathrm{P}^{-1}} \mathrm{kG}
$$

흡 Kk. Thus the rasult follow

Thus when $p=2,3$ we have proved that all the tarminal modulea of a particular sart - those with a unique mayial bubadule (aee (2.4.2)) - are of the required form. For all ocher valuen of p, we do not even have thia, an the following exawple shova.

Suppose that $p>5$. Let H be amaimal abgroup of G and g be any element of G-H. Writa $=\mathrm{g}-1$ ckG. Let V be the free kH-modula on two generatoris, v_{1} and v_{2}. Wa man V into $k G$ module by defining the action of g as followit

$$
\begin{aligned}
& \text { 3.v } v_{1}=v_{2} \cdot \\
& \text { 3. } v_{2}=\mu_{H} v_{1} .
\end{aligned}
$$

To check that chis in a valid action, we need only check that $5^{\mathrm{P}} \mathrm{v}_{1}$. 0 . But:

80

$$
\begin{aligned}
& \mathbf{1}^{3} v_{1}=\overline{5}^{2} v_{2}-3 \mu_{H} v_{1}=\mu_{H} v_{2} \\
& 5^{4} v_{1}-3^{3} v_{2}-3 \mu_{H} v_{2}=H_{H}^{2} v_{1}-0
\end{aligned}
$$

- the reault then followa because $p>4$. Indead we have $f^{p-1} v=0$.

Clearly $\mu_{H}{ }^{V}$ is isomorphic to the 2-dimenaional indecompoasble

Hance, by (2,4.2), V in indecomposable and tarainal. Bacaume $\mathrm{P}^{\mathrm{P}=1} \mathrm{~V}=0$,
the ine $Y(V)$ mut be equal to $k\left(3+j^{2}\right)$:

$$
\xi=\sum_{j=0}^{p-1} 2_{j} \xi^{j} \quad \text { for some } \quad 2 j \in k H
$$

We hava that $k\left(E+J^{2}\right)=Y(V)=Y\left(J^{1} k G\right)-k\left(\xi+J^{2}\right)$ thua:

$$
\xi=c=\left(\operatorname{lod} j^{2}\right) \text { for mone ofetk. }
$$

Hence $\%_{0}$ Aug (LH) ${ }^{2}, 2_{1}-\mathrm{cL}$ ang (HH). Note that:

$$
\begin{aligned}
5^{2}-20 & +22_{0}\left(21+22_{2}^{2}+25^{3}\right)+22_{1}^{2}+2 n_{1} 8_{2} 5^{3} \\
& +\left(\text { term involving } 5^{4}\right. \text { and highar) }
\end{aligned}
$$

50:

$$
\begin{aligned}
0-3^{2} v_{1} & =2_{0}^{2} v_{1}+2 \varepsilon_{0} q_{1} v_{2}+\left(2 q_{0}^{2} q_{2}+2_{1}^{2}\right) \mu_{H} v_{1}+\left(2 q_{0} q_{3}+22_{1} 2_{2}\right) \mu_{H} v_{2} \\
& =\left(2_{0}^{2}+c^{2} \mu_{H}\right) v_{1}+2 q_{1}\left(q_{0}+2_{2} \mu_{H}\right) v_{2}
\end{aligned}
$$

thus:

$$
\boldsymbol{i}_{0}^{2}+c^{2} \mu_{\mathrm{H}}-0,{ }^{2} \eta_{1}\left(2_{0}+2_{2} \mu_{H}\right)=0
$$

But \mathcal{R}_{1} in a unit, eo the latter equation implies that $2_{0}=-2_{2} \mu_{H}$. Thus:

$$
c^{2} H H=-20 \quad-2 \frac{2}{2} \mu_{H}^{2}-0
$$

- contradicting the fact thet co.

$3 \in J-J^{2}, 1=1,2, \ldots, p-1$.

S5.3 Reatricted and induced modulae

Now let G be general p-group and N be auberoup of G. The incluation map $N \longrightarrow G$ given rime to k-algebra homomorphise $k N \longrightarrow k G$ which, in turn, Inducen a k-linear map:

$$
{ }^{1} M: J^{\prime} / J^{\prime 2} \longrightarrow J / J^{2}
$$

where J^{\prime} denotea che augmentarion ideal of kN . The inage of i_{m} ia juat the aubapaca S_{N} intraduced in $\mathbf{5} 3.6$.

If U I: a kN -module which ia free on reatiction to the Frattini aubgroup
 variety, which we all denote by $\left.Y^{\prime}\left(\mu_{(N)}\right)^{U}\right)$, mien is a abeet of $\mathrm{J}^{\prime} / \mathrm{J}^{2}$.

Theoren 5.3.1 Lat V be a kG-module which fe free on restriction to mome
 aubgroup of N, and,

$$
i_{N}\left(Y^{\prime}\left(\mu_{I}(N)^{V)}\right) Y(V)\right.
$$

Proof Note chat if V ie free on reatriction to tha eaxieal aubgroup H than fis is free oo ratriction to HNN. But HAN ia aither the vhole of N or a maimen augroup of it. Thua the firat atatemant ia trivial.

For the macond atatenant, it aufficea to aamume that V ia indecompoable and in not free on restriction to N - in the later case ve vould have that
 explicit expremeion for the line, $Y(V)$, in terma of the conatanta $\lambda_{H}(V)$ ((3ee (3.7.1)(b)).

Lat U be any non-projactive, indecompoasble direct aumand of V_{iN}.

is mapped onto $Y(\nabla)$ by i_{N}. This will suffice to prove the result.
We trivially see that $(N) \leqslant \pi N$. Thus we may choose a minimal set of generators, h_{1}, \ldots, h_{r}, for N such that h_{s+1}, \ldots, h_{r} generate $\boldsymbol{I} \boldsymbol{n} N$ modulo
 $\left(g_{i}=h_{i}\right.$ for $\left.i=1,2, \ldots, s\right)$. Now define the maximal subgroups, $H_{i}(i=1,2, \ldots, s)$, as in $\$ 3.6$.

Note that $H_{i} \geqslant N$ for $i>s$. Thus V cannot be free on restriction to H_{i} in this case. Thus (3.7.1)(a) gives that V is free on restriction to one of H_{1}, \ldots, H_{s}; without loss of generality, we may assume that V is free on restriction to H_{1}. Let us use H_{1} as the base in calculating the constants, $\lambda_{H_{i}}$ (V) $(i=1,2, \ldots, n)$. By $(3.3 .2)$, we know that $\lambda_{H_{i}}$ (V) $=0$ for $i>s$.

If we take the sequence:

$$
0 \longrightarrow k_{G} \longrightarrow k\left(G / H_{i}\right) \longrightarrow k\left(G / H_{i}\right) \longrightarrow k_{G} \longrightarrow 0 \quad(i<s)
$$

in which the central map is given by $H_{i} \longmapsto\left(\mathrm{~g}_{\mathrm{i}}-1\right) \mathrm{H}_{\mathrm{i}}$, and restrict it to N we obtain:

$$
0 \longrightarrow k_{N} \longrightarrow k\left(N / M_{i}\right) \longrightarrow k\left(N / M_{i}\right) \longrightarrow k_{N} \longrightarrow 0
$$

where the central map is given by $M_{i} \longmapsto\left(g_{1}-1\right) M_{i}$. Here:

$$
\begin{aligned}
M_{i} & =N \cap H_{i}=\left\langle g_{1}, \ldots, g_{i-1}, \text { 事期, } g_{i+1}, \ldots, g_{s}\right\rangle \\
& =\left\langle h_{1}, \ldots, h_{i-1}, ?(N), h_{i+1}, \ldots, h_{r}\right\rangle
\end{aligned}
$$

Note that U is free on restriction to M_{1} and that the $M_{i}{ }^{\prime} s$ are in precisely the right form to apply $(3,7,1)$ to U.

Take the defining diagram for $\lambda_{H_{i}}$ (V):

Reatrictina to $H_{\text {, we mata }}$ fora diagreal

nini - $\boldsymbol{\mu}_{1}{ }^{(V))_{U}}$ ie nilpotent (cf. the proof of (3.3.1)), thum:

$$
\lambda_{H_{1}}(v)=\lambda_{H_{1}}(v)
$$

But $(3.7 .1)(b)$ sivee that:

$$
\begin{aligned}
& Y(V)=k\left(\sum_{i=1}^{n}{\lambda_{i}}_{1 / p}^{\left.\left(s_{i}-1\right)+j^{2}\right)}\right.
\end{aligned}
$$

Thus the reaule followa on noting that:

$$
i_{W}\left(h_{1}\right)= \begin{cases}e_{1} & \text { for } 1<\theta_{1} \\ 1 & \text { for } 1>\end{cases}
$$

Suppose now that U In non-projective, indecomponale kN-module thich is free on reatriction to come maimal mubgroup of N. With the notation bove,

$$
\left(u^{N G}\right)_{H_{1}} \cdot\left(U_{M_{1}}\right)^{2 H_{1}}
$$

 1. Indecomponable - see [Gr]). (3.3.1) than givea:

$$
I_{N}\left(Y^{4}\left(H_{(N)} U\right)\right)=Y(V)
$$

Theoren $5,3.2 \quad i_{N}\left(Y_{M}\right) \leq Y_{G}$.

Corollery 5.3.3 $Y_{G}: U_{N} S_{N}$ where the union iaver all the elamentary sbelian aubgraupa of \mathbf{G}.

Proof This follow eanily from (5.3.2) and (4.0.2).

In fact, Ghouinard'e theorea givea that a kG module ia projective if and only if it ia free on rameriction to N for all elementary abelian abgroupa, N, of G. Thua (4.0.3) shoud that the oppoite incluaion to that in (5.3.2) holde. Hence wo hava equelity.

The mathod of inducin象 modulas up from eubroupa, particularly
 for genaral groupa than thom already givan.

35.4

Group and field autonorphian

Lat it belther an autonorphie of the group G or of the field k. We may extend a to ring avtomorphiaalaf of by defining:

$$
\alpha\left(\sum_{g \in G} \lambda_{g} g\right)= \begin{cases}\sum_{g \in G} \lambda_{g} \alpha(g) & \text { if acte on } G, \\ \sum_{g \in G}\left(\lambda_{g}\right) g & \text { if acta on } k .\end{cases}
$$

Given a kG module, U, wa matine another module, which wil be danoted by W, to have the mame underlying abelian group an wht with tha betion of kG being given by:

It in readily checked that this doea man $W^{\text {min }}$ into a kGodula of the mane dimenion an
 - when a is a group automorphien thia ia becaume ia charmeteriatic aubgroup
 is aimply becaume (1) - 1 - therafare:

Hence $W^{\text {d }}$ in free on reditriction to $\begin{gathered}\text {. For } \\ i\end{gathered} \in J-J^{2}$,

$$
\begin{aligned}
& \text { * } \quad a(5)+J^{2} \div\left({ }^{2}\right) \text {. }
\end{aligned}
$$

Thus, if $\alpha: J / J^{2} \rightarrow J / J^{2}$ is the map induced by α,

$$
\alpha^{*}\left(T\left(\mathbb{Q}^{*}\right)\right) \quad Y(\Phi) .
$$

 to (replace aby in the argument abova), and clearly:

$$
\left(u^{a^{\prime}}\right)^{\omega} \pm W
$$

So. replacing W by $w^{\text {b }}$ in the equation sbova, we have:

$$
e^{*}(Y(\theta))=Y\left(\theta^{\theta^{\prime}}\right) .
$$

A conemquence of thit and the asider equation in:
 a induce a map $\& J J / J^{2} \longrightarrow J / J^{2}$ auch that:

$$
m^{*}\left(Y_{G}\right)=Y_{G} .
$$

(171)

APPENDIX A

THE KLEIN FOUR-GROUP

A vell-knoun aleget alit equance

 field of charactarimtic p and G be any finite sroup. Lat p be projactive, indecomposable kG-module and write U for the inple module, moc (P). We ahall anaume that U. P. We know that thare are exact aequancea:

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{U} \longrightarrow P \longrightarrow \Omega^{-1} u \longrightarrow 0 \\
& 0 \longrightarrow \mathrm{U} \longrightarrow \mathrm{U} \longrightarrow \mathrm{U} \longrightarrow 0
\end{aligned}
$$

which we mey join to foria a two-itap projectiva ramalution of $\boldsymbol{\Omega}^{-1} U$. Thue we have the firat ingrediant we nead for the conatruction of an almont aplit aequance with $\Omega^{-1} U$ an 1ti right-hand teri (gee 82,0). For the eecond, note that P, and hence $\Omega^{-1} U$, has unique mieal mubodule, the factor madula by which if isomorphic to U. Thue $\left(\Omega^{-1} U, U\right)$ (U,U) wo that we have bimodule 1momarphiae :

$$
\left[\Omega^{-1} u, v\right] \backsim[u, u] \backsim\left[\Omega^{-1} u, \Omega^{-1} u\right] .
$$

Hence any nonzero elemat of $\left(\mathrm{R}^{-1} \mathrm{U}, \mathrm{U}\right)$ generaten acc $\left[\Omega^{-1} \mathrm{U}, \mathrm{U}\right]$. Thum we my tak the mp "g" of 2.0 to be that induced by the netural epiporphian I: P U. Now fori the pull-biacti

then $x=\left\{(x, y) \in P+\Omega^{-1} U \mid f(x)=\theta(y)\right\}$
$-\{(x, z+U) \mid \pi, z \in P$. $f(I) \in E(z)\}$.
Thua X 1a the direct eum of the aubmodulan:

$$
\begin{aligned}
& x_{1}=\{(x, x+U) \mid x \in P\} \cup P \\
& x_{2}=\{(0, z+U) \mid z c k e r f \in \operatorname{Rad}(P) / \operatorname{coc}(P) .
\end{aligned}
$$

and
had (P)/ace (P) in unally called the heart of P and ia denoted by $H(P)$. To conclude, we have nhown that there in on almat aplit mequence:

$$
0 \longrightarrow \operatorname{Rad}(P) \longrightarrow P \propto H(P) \longrightarrow P / \operatorname{soc}(P) \longrightarrow 0
$$

- for note that the and teren are juat $\mathrm{g}^{t 1} \mathrm{U}$.

A rapult of Benaon and Carlaan

We now sumarise mone of the ramite proved in [BAC]. To aimplify matere alighely, we shell asoune that k ia an alabbraically closed field of characteriatic pand that G is a p-group. The following romult in proved uaing masentialiy elementary techniquen (proof omited):

Theoran A. 1 Let U, V be indecompaenble kGadulan. Then:

$$
\left[k_{G} \mid U^{*} \otimes v\right]= \begin{cases}1 & 1 f U \backsim v, p+d i e_{E} U, \\ 0 & \text { orherwise. }\end{cases}
$$

Now we have that:

$$
\left.\left[\Omega^{-1} k_{G} \mid u^{*} \in v\right]=\left[k_{G} \mid \alpha u^{*} \cdot v\right)\right]=\left[k_{G} \mid u^{*} \in \Omega\right]
$$

 and (2.2.3) give:

$$
\begin{aligned}
\left(\left[U^{\bullet} \cdot v\right], g\left(\Omega^{-1} k_{G}\right)\right) & =\left([v],[U] \cdot g\left(n^{-1} k_{G}\right)\right) \\
& = \begin{cases}-1 & \text { if } U E \Omega V, p t d i e_{k} U_{1} \\
0 & \text { otharwiec. }\end{cases}
\end{aligned}
$$

Let ua now conielder two caleal
 v, and thua $\left(x,[U]-g\left(\Omega^{-1} k_{G}\right)\right)=0$ for $11 \quad x \in A_{k}(G)$. But $(-,-)$ ina nomeingular bilintar fore on $H_{k}(G)$, tharefore:

$$
[U] \cdot g\left(\Omega^{-1} k_{G}\right)=0
$$

(2) p Idign U then ([V],[U]. $\left.g\left(\Omega^{-1} k_{G}\right)\right)=-\left[Q^{-1} U \mid V\right]-\left([V], g\left(\Omega^{-1} U\right)\right)$. Again, because $(-,-)$ ie nonaingular, thia implies that:

$$
[U] \cdot g\left(\Omega^{-1} k_{G}\right)=g\left(\Omega^{-1} U\right)
$$

By what ve proved ahove we know that there in an almat aplit sequenca:

$$
0 \longrightarrow \mathrm{Nk}_{\mathrm{G}} \longrightarrow \mathrm{kG} \otimes \mathrm{H}(\mathrm{kG}) \longrightarrow \mathrm{n}^{-1} \mathrm{k}_{\mathrm{G}} \longrightarrow 0
$$

 modulo projective modulae, thua:

$$
\left.[U] \cdot g^{\left(\Omega^{-1} k_{G}\right.}\right)=[H(k G) \in U]-\left[\Omega^{-1} U\right]-[\Omega U]+c[k G]
$$

for mane $c \mathbb{Z}$. Tharafore the renulte bove give:

Theoren A. 2 Lat it be an indecompoable kG-module. Working modulo projectiven, H(kG) © is imomorphic to:
(1) $\Omega^{-1} U=\infty$ if $p \mid d i{ }_{\text {k }} U$.
(2) the aiddla term of the almost aplit sequence:

$$
0 \longrightarrow \mathbf{n} \longrightarrow \mathbf{I} \longrightarrow \Omega^{-1} \mathrm{U} \longrightarrow 0
$$

if pldick \mathbf{U}.

Application to the Elan fonr-group

Now let k be an mebraically closed field of characteristic 2 and

$$
G=\left\langle x, y \mid x^{2}-y^{2}=(x y)^{2}-1\right\rangle
$$

be the Klein four-group. Theoran A. 2 may be uned to give complete clamaification of the imomorphian clasean of indecompanemb kG-modulen. This clameification it of courge well-known, having firet been daternined by Balev in [Raliland, independently, by Heller and Reiner in [H\& ${ }^{2}$]. The approach uaed in both these papara is to molve the equivalent problem of cianaifying paira of matricen X, Y with coefficiente in k atiofing:

$$
x^{2}=Y^{2}=0, x y=r X
$$

(Almo aee [Cal.) The key to our approach liae in the following observation:

Proof Rad (kG) in panned by $x-1, y-1, \mu_{G}$ moc (kG) equale k μ_{G}. Note that:

$$
\begin{aligned}
& (x-1) \cdot(x-1)=(y-1) \cdot(y-1)=0 \\
& (y-1) \cdot(x-1)=(x-1) \cdot(y-1)=\mu_{G}
\end{aligned}
$$

so that G acte trivially on $\operatorname{Rad}(\mathrm{kG}) / \mathrm{soc}(\mathrm{kG})$ and the reault follows.

So let U be an indacompoeable kG-aodule and apply Thearem A. 2. We have two casea:
 Hanca U is elthar projective (in which came 1 茴 $k G$) or pariodic of period one. He raturn to the caese where U if pariodic belov.
(2) dig U odd then the middla tario of the monat eplit maquence:

$$
0 \longrightarrow \mathbf{n} \longrightarrow \mathbf{n}^{-1} u \longrightarrow 0
$$

1. isomorphic to $U=U=P$ for some projactive module, P. But (2.2.6)(a) aives
 choose U of minimal dimanion not imoorphic to my of these syzyiea. Wa have an almoat split aequencat

$$
0 \longrightarrow \mathrm{U} \longrightarrow \mathrm{U}=\mathrm{U} \longrightarrow \Omega^{-1} \mathrm{U} \longrightarrow 0
$$

and dienc $\Omega^{t l} U \geqslant$ dig U. Thus equality of dimenmiona mume hold, contradicting (2.2.6)(b).

Thuat the only indecomponable $k G$ modulen of odd dimenaion are $\boldsymbol{a}^{\boldsymbol{n}} \mathbf{k}_{\mathrm{G}}(\mathrm{n} \in \mathbb{Z})$. A" © bonus wa mimo have that the mimot aplit aequancen involving thane modulea are:

$$
\begin{gathered}
0 \longrightarrow d^{n+1} k_{G} \longrightarrow d^{n} k_{C}=g^{n} k_{G} \longrightarrow d^{n-1} k_{G} \longrightarrow 0 \\
0 \longrightarrow n_{G} \longrightarrow k_{G}=k_{G} \oplus k_{G} \longrightarrow n^{-1} k_{G} \longrightarrow 0
\end{gathered}
$$

The Deriodic kG-godulee

Now return to the caad above, where U ia an indecoapoable kG-module which if pariodic of period ona. He could quote (3.2.2) to ahow imediately
 a aimplifiad, melf-contained proof of thif fact.

$$
\operatorname{moc}(v)=(x-1) v+(y-1) v
$$

Proof Lat M = Rad (kG) iv noting that, modulo projactive modulan, $M \boxminus$ © $■ V$. Thu (0.0 .2) mhow that:

$$
\begin{aligned}
& d m_{k} \mu_{G}=t\left(d i g_{k} M-d i m_{k} V\right) \\
& =1 \Delta 1 a_{k} V=n \text {. aay. }
\end{aligned}
$$

But each eleant of M may be written uniqualy in the fore:

$$
-(x-1) e v_{1}+(y-1) \bullet v_{2}+\mu_{G} \omega v_{3} \quad v i t h \quad v_{1} c V .
$$

A aimple calculation (bearing in mind that $\mu_{G}{ }^{V}=0$) showe thati

$$
\mu_{G}=\mu_{G}\left((x-1) v_{1}+(y-1) v_{2}\right) .
$$

Thum, writing $v_{0}=(x-1) V+(y-1) V$, we have that $\mu_{G}{ }^{M}=\mu_{G} V_{0}$ so that, in particular, dig. $v_{0}=n$.

Conalder the incluation ead $1: \sec \left(V^{*}\right) \longrightarrow V^{*}$. Thia inducea an epimorphian $L^{*}: V \longrightarrow \operatorname{sac}\left(V^{*}\right)^{*}$ with kernel V_{1}, eay. G ecte trivially on V / V_{1}; thua $(x-1) V$ and $(y-1) V$ are contained in v_{1}. Hence $V_{0} \leqslant V_{1}$. Now:

$$
n=\operatorname{dig}_{k} v_{0} \& \operatorname{dic}_{k} v_{1}=2 n-d i m_{k} \operatorname{soc}\left(v^{*}\right)^{*}
$$

๓

$$
\operatorname{din}_{k} \sec (v)=d i a_{k} \sec \left(v^{*}\right) \leqslant \pi=d i \cos _{k} v_{0} \text {. }
$$

But erivially $V_{0} \leqslant V^{G}=\operatorname{moc}(V)$ bo, by dimanaiona, the reault followa. 0

Theorem A. 3 U in frem on rentriction to either $\langle x\rangle$ or $\langle y$.
 has no projective mumande. V claarly matiafiea the conditiona of Leman A.4, thus:

$$
\begin{aligned}
(U, U) & =\sec (U, U)_{k}=\operatorname{soc}(V)+\operatorname{soc}(P) \\
& =(x-1) V+(y-1) V+\mu_{G} P .
\end{aligned}
$$

Hence we can wite $1_{U}=f+f^{\prime}+f^{m}$ where $f \in(\underline{f}-1) v, f^{\prime} \in(y-1) V, f^{\prime \prime} \in \mu_{G} P$. Note that $f, f^{\prime}, f^{\prime \prime}$ are all eleaenta of the lacal ring (U, U) and that their aum 1a an automorphien. Thua one of them muat be an mutomorphian of U. Thia
impliae that $\mu_{H}(U, U)_{k}$ containe an autamarphign for $H=\langle r\rangle,\langle y\rangle$ or G. Thus (0.0.4) given the reault.
 $u_{1} \ldots . . u_{n}$ for U, thens

$$
u_{1} \ldots \ldots, u_{n},(y-1) u_{1} \ldots \ldots,(y-1) u_{n}
$$

$$
\left[\begin{array}{ll}
I & I \\
& I
\end{array}\right]
$$

Nota that the etrix raprementing must conauta vith that repreaenting y and hance heve the form:

$$
\left\lceil\left.\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
& \mathbf{A}
\end{array} \right\rvert\,\right.
$$

 thet A - I furchermore, conjugating by ateriz of the fort

$$
\left[\begin{array}{ll}
\mathbf{P} & \\
& \mathbf{P}
\end{array}\right]
$$

wey anaum that B in in ita Jordan cenonical form.
(U,U) 1/ the sat of mil matrices comeuting with thomepreaenting and y, 1.e. all thoite of tha form:

$$
E=\left[\begin{array}{ll}
C & D \\
& C
\end{array}\right] \quad \text { weh } B C=C D
$$

If D conaiate of more than one Jordan black than theremeiata $C \in O, I$ wth $B C=C B, C^{2}+C$. Thut

$$
\left[\begin{array}{ll}
C & \\
& c
\end{array}\right]
$$

La a nontrivial idempotent in (U,U) - contradicting the fact that U in indecompasable. Convaraely, if B ie aingle Jorden block and the eatrin E above atiaflam $E^{2}=E$, than $B C=C, C^{2}=C, D=C D+D C$ sothat C equale 0 oz I and, therefore, D. 0 . Thu the only idempotenta of U in thie cane era 0 and 1_{U} - that ia to asy, U id indacomponabla.

Thus the indecompoasble kG-modulea which are free on rastriction $c o$ 〈y> are given by raprasentationa of the fore:

$$
x \longmapsto\left[\begin{array}{cc}
I & J_{n}(\lambda) \\
& I
\end{array}\right], y \longmapsto\left[\begin{array}{ll}
I & 1 \\
& 1
\end{array}\right]
$$

there $J_{n}(\lambda)$ if the $n=n$ Jordan block:

$$
\left|\begin{array}{llll}
\lambda & 1 & & \\
& \cdots & & \\
& & \lambda & \\
& & & 1 \\
& & & \lambda
\end{array}\right| .
$$

Lat de denota the module given by thia repreaentation by $V_{n, \lambda}$.
Write $L=k(I-1) \quad k(y-1)$ and let uan calculate $T_{L}\left(V_{n, \lambda}\right)$. Let
 metif:

$$
\left[\begin{array}{ll}
0 & 2 \\
& 0
\end{array}\right]
$$

where 2 in the $n x+m e t i z$ with $\left(c_{1} \lambda+c_{2}\right)^{\prime}$ on the diagonal, c_{1} 'a on the mupra-diagonal and O^{\prime} alewhera. (0.0 .8) givee that v_{n} is free on reatriction to $\langle 1+5\rangle$ iff Z han rank 0 - that ia to may, iff $c_{1} \lambda * c_{2} * O$. Therefora:

$$
Y_{L}\left(v_{m, h}\right)=k((x-1)+\lambda(y-1))
$$

Sianlarly the indecomponbla kG-module which are frae on rentriction to $\langle x\rangle$ are the $V_{n, \lambda}^{\prime}$ 'a given by the rapresentationa:

$$
x \longmapsto\left[\begin{array}{ll}
I & I \\
& I
\end{array}\right], y \longmapsto\left[\begin{array}{cc}
I & J_{n}(\lambda) \\
& I
\end{array}\right] .
$$

We have that:

$$
Y\left(V_{n, \lambda}^{\prime}\right)=k(\lambda(x-1)+(y-1))
$$

 the liat above; indeed juat conaidering dimenmiona and Carlan varietion shama that $V_{n, \lambda}^{\prime} V_{n, 1 / \lambda}$. Thum the oniy new modulea to add to the liat are the $V_{n, 0}^{\prime}{ }^{\prime}=$ which, by analogy fith the ianorphian juar givan, wa may denote by $v_{n, \infty}$

To conclude: the periodic kG-modulea are the $V_{n, \lambda}$ for $n=1,2, \ldots$ and $\lambda \in P^{1}(k)=k u f(y)$. The Carlion varieties are given by

$$
y_{L}\left(y_{n, \lambda}\right)=\left\{c_{1}(x-1)+c_{2}(y-1) \mid c_{2} / c_{1}-\lambda\right\} .
$$

Note that, if we ideatify the projective $11 \pi{ }^{(1)}(t)$ with the wet of linem in L in the obviaus m, then $Y_{L}\left(V_{n_{e} \lambda}\right)$ is juat tha line corrasponding to λ.

Theoran A. 6 The indecompomble rG-modulea ara of three typee:
(1) the projactive module, kG,
(ii) the periodic modules, $y_{n, \lambda}\left(n=1,2, \ldots t \lambda \in P^{1}(k)\right)$,
(ii1) the ayzyies of the trivial module, $\boldsymbol{\Gamma}^{\Gamma} k_{G}(n \in \mathbb{Z})$.
Let un liat some of the important propertien of these modulea:
(a) Dimenaion
(1) $d i e_{k} k=G=4$.
(1i) ding $v_{n, \lambda}=2 n$.
(1ii) ditan $\Omega_{k}^{n} k_{G}=2|n|+1$.
(b) Carlan variety ($J=A u g(k G))$
(i) $Y(k G)=\{0\}$.
(ii) $Y\left(v_{n, \lambda}\right)=\left\{c_{1}(x-1)+c_{2}(y-1)+J^{2} \mid c_{2} / c_{1}=\lambda\right\}$.
(1i1) $Y\left(\Omega^{n} k_{G}\right)=\mathrm{J} / \mathrm{s}^{2}$.
(c) Almost aplit aequencea

$$
\begin{aligned}
& \text { (11) } 0 \longrightarrow v_{n, \lambda} \longrightarrow v_{n-1, \lambda} \mu v_{n+1, \lambda} \longrightarrow v_{n, \lambda} \longrightarrow 0 \quad(n \neq 1) \\
& 0 \longrightarrow v_{1, \lambda} \longrightarrow v_{2, \lambda} \longrightarrow v_{1, \lambda} \longrightarrow 0_{n} \\
& \text { (111) } 0 \longrightarrow \Omega^{\mathrm{m}+1} \mathbf{k}_{\mathrm{G}} \longrightarrow \Omega^{n} k_{G} \boldsymbol{\Omega}^{n} k_{\mathrm{C}} \longrightarrow \Omega^{n-1} \mathbf{k}_{\mathrm{G}} \longrightarrow 0 \quad(\mathrm{n} \bullet 0) \\
& 0 \longrightarrow \mathrm{nk}_{\mathrm{G}} \longrightarrow \mathrm{kG}=\mathrm{k}_{\mathrm{G}}=\mathrm{k}_{\mathrm{G}} \longrightarrow \mathrm{~S}^{-1} \mathrm{k}_{\mathrm{G}} \longrightarrow 0
\end{aligned}
$$

(d) Dual module

$$
\begin{aligned}
& \text { (i) } k G^{*} \bullet k G, \\
& \text { (ii) }\left(v_{n, \lambda}\right)^{*} \equiv \psi_{n, \lambda}, \\
& \text { (iii) }\left(\Omega^{n} k_{G}\right)^{*} \cong \Omega^{-n_{k}} k_{G}
\end{aligned}
$$

Proof The oniy iteme that we have yet to prove ara the fallovinel
(a)(1i1) maty be proved by taking dimeniliona in the almoet eplit aequencea (c)(111) and uain in induction.
(b)(iil) is obvioule: module of odd dieangion cinnot ba free on rateriction to any aubgroup of order 2.
(c)(11) the modulan which are frat on reatriction to mome minal mubroup

 reault follow .
(d)(il) ia claar ueing Carlaon varietiae and dimenaiona.

Remark By conaidering their dimenainan and their Carlan variotiellat se thet the modulas givan sbove are pairwite non-imomorphic.

Irraducible Apat

Theorea $A .6(c)$ and (2.2.4) whow that the irreducible mapa bacwan the indecompanable kG-modulamere of five typen -
(1) monomarphitan $V_{n, \lambda} \longrightarrow V_{n+1, \lambda}$ "
(2) epimorphimen $V_{n+1, \lambda} \longrightarrow V_{n, \lambda}$.
(3) emomorghian $\boldsymbol{n k}_{\mathrm{G}} \longrightarrow \mathrm{kG}$ 。
(4) an epimorphise $\operatorname{lrG} \longrightarrow \mathbf{R}^{-1} \mathrm{~K}_{\mathrm{G}}$.
(5) maps $\Omega^{n+1} k_{G} \longrightarrow \Omega_{G} k_{G}$ wich ara epiacrphimele for $n \rightarrow 0$ and monomorphiang orhervile,
(man know that on irroducible map in aithar monomorphise or an apimorphime we have deterained which abova by uning dimenaionc).

By (2.2.5) the cokernala or karnela of themempe (eccording an whather they

(in casan (1), (2) and (5)) or ona (in catee (3) and (4)). The only module of dimanaion one ia the trivial module. ${ }_{G}$, ao thia ia the cokernal in cane (3) and the kernel in case (4). The indecompamble modules of dimenaion two ara
 is allowed an the cokernel/karnal in the camat (1), (2) and (5) ?

Caman (1) and (2) (2.3.7) or a ample orguant uaing Carlaon varietiea ahowa that the irraducible eapa in thase cames ara:

$$
\begin{aligned}
& \text { (1) monooorphimas } V_{n+\lambda} \longrightarrow v_{n+1, \lambda} \text { with cokernel } v_{1, \lambda} \text {, } \\
& \text { or (2) epteorphiman } V_{n+1, \lambda} \longrightarrow v_{n, \lambda} \text { with kernel } v_{1, \lambda} \text {. }
\end{aligned}
$$

Cane (5) We claim that, for all $n \notin \mathbb{Z}$ and all $\mu \in \mathbb{P}^{1}(k)$, thera axiete an 1rreducible map $\Omega^{n+1} k_{G} \longrightarrow \Omega^{n} k_{G}$ with cokarnal/kernel imomorphic to $V_{1, \mu}$.

Proof The dual of an irreducible asp ia alacirieducible, thum an irreducible epieorphite $\Omega^{n+1} k_{G} \longrightarrow \Omega^{n} k_{G}$ rith kernel $V_{1_{2} \mu}(n \geqslant 0)$ sivee riee ta an irreducible monomorphien $\Omega^{n_{k}} \mathbf{k}_{G} \longrightarrow \Omega^{-0-1} k_{G}$ vith cokernal $V_{1, p}$. Thue it aufficee to amame that $n \geqslant 0$.

Suppone that ve have an exact anquence:

$$
0 \longrightarrow v_{1, \mu} \longrightarrow R^{n+1} k_{G} \xrightarrow{f}{R^{n}}_{G} \longrightarrow 0
$$

whare fieirraducible. Applying tha Hellar operator to thia equence ia radily aeen to give another ezact aquance:

$$
0 \longrightarrow v_{1, \mu} \longrightarrow s^{n+2} k_{G} \xrightarrow{f^{\prime}} n^{n+1} k_{G} \longrightarrow 0
$$

where f^{\prime} in irreducible. Thue it muffices to asoune that $n=0$.
Hence wuat conider irreducible apa $\Omega k_{G} \longrightarrow \mathbf{k}_{G}$, that is to my mapa:

$$
\Omega k_{G} \xrightarrow{\mapsto} \mathrm{kG}=\mathrm{k}_{\mathrm{G}}=\mathrm{k}_{\mathrm{G}} \xrightarrow{*} \mathrm{k}_{\mathrm{G}}
$$

whera ρ is the map from the almost aplit asquence with Ωk_{G} an ite left-hand teria and the eplit epimorphime.

The congtruction given move mawn that, if widentify mag vith Rad (kG). ρ it the diract mum of the inclumion Rad (kG) \rightarrow mG and the natural map $\operatorname{Rad}(k G) \longrightarrow \operatorname{Rad}(\operatorname{kg}) / \operatorname{loc}(k G) \quad k_{G} \mathbf{k}_{G}$. Thue writes

$$
\bar{y}=\lambda_{1}(x-1)+\lambda_{2}(\bar{y}-1)+\lambda_{y_{G}}
$$

for ageneral alement of Rad (kG), than we my cake:

$$
\rho(3)=\left(5, x_{1}, \lambda_{2}\right) .
$$

If c_{1} and c_{2} are elenente of k, hot both zero, then the map:

$$
\cdots: k G=k_{G}{ }^{a} k_{G} \longrightarrow k_{G} \cdot\left(1, \lambda_{1}, \lambda_{2}\right) \longmapsto c_{1} \lambda_{1}+c_{2} \lambda_{2}
$$

$$
t-c_{2}(x-1)+c_{1}(y-1)
$$

 mp has kernel $v_{1_{4}} \mu$ where $\mu=c_{1} / c_{2}$.

By chooming c_{1} and c_{2} ouitably we mamume that μ ia any oiven elemant of $p^{1}(k)$. Thue the reault followin.

We mag aumariee thia infortation by uee of the "Ertended AurlanderRaiten quiver" ${ }^{\text {eiven }}$ blow. The solid linea betwen the wodule indicate the irreducible mpa; the dotted linea ehow the cokernela/karneis of the irraducibla mepm. Nate that thil diagran in connected. The ganeral problam of invantinating
 Obvioualy the ertended AR-quiver wil not alwing be connacted - far manple, fG may have mare than one block - mo what can we ain bout them modulan in the varioua connacted componante?
(185)

TIIE EXTENDED AUSLANDER-REITEN OUIVER OF THE KLEIN $4-G R O U P$ OVER AN ALG, CLOSED FIELD OF CHARACTERISTIC 2
Note There is one vertical
component for each $\lambda \in \mathrm{P}^{1}(\mathrm{k})$.

APPENDIX B

Introduction

Thie Appendix ia devotad to aketching how the concept of the conatante $\lambda_{H}(V)$ gaty bextended to give ak-algebre homomorphien:

$$
\bigoplus_{m=0}^{\infty} E x t_{k C}^{2 m}\left(k_{G}, k_{G}\right) \longrightarrow k[x] .
$$

A brief discumeion of thi concept ahowe it to be ralated to the cohomogy variety of V, firit introduced by Quillen, and a variaty used by Serra in his papar. [Ser].

Notation

 the same cohomology group as in 1.4 and aimilarly vrite:

$$
E_{G}^{m}(G)-E x t_{k G}^{\infty}\left(k_{G}, k_{G}\right) .
$$

Let:

$$
E(G)=\bigoplus_{-0}^{\infty} E^{2 \omega}(G) \quad \text { and } \quad E_{k}(G)=\bigoplus_{0}^{\infty} E_{k}^{2 \sigma}(G)
$$

be the corraeponding even cohomology ringa. Note that the extenaion of acalara from Fion to k inducen homomphime

$$
T: E(G) \longrightarrow E_{G}(G)
$$

V will be non-projective, indecompomble kG-module which ia free on
 realution of V :

$$
\begin{equation*}
0 \longrightarrow \mathbf{v} \longrightarrow P \longrightarrow P \longrightarrow \mathbf{p} \longrightarrow 0 \tag{1}
\end{equation*}
$$

obtained by tenmorina the aequance:

$$
0 \longrightarrow k_{G} \longrightarrow k\left(G / H_{0}\right) \longrightarrow k\left(G / H_{0}\right) \longrightarrow k_{G} \longrightarrow 0
$$

by V.

Ve my think of $\sum_{k}^{2}(G)$ an baing the eet of equivalunce clasamas of exact equances of the form:

$$
\begin{equation*}
0 \longrightarrow k_{G} \longrightarrow x_{2 m} \longrightarrow \ldots x_{1} \longrightarrow k_{G} \longrightarrow 0 \tag{2}
\end{equation*}
$$

Given auch adequance, we mar for the diagram:

where tha upper eequence in the ragult of tenaoring (2) by V and the lower in the jain of m copiam of (1). f in dacermined by (2) up to the addition of a map which factoria through P; thuil the inge of f in [V,V] is uniquely deter辟ned.

Lamea B. 1 Mapping (2) to tha inge of finducen k-1imemr map:

$$
c_{c}: E_{k}^{2}(G) \longrightarrow[V, V]
$$

 diagran:

where the lower mequince in animal projectiva rasolution of k_{G},
We matyeo form the didgrome

Tancorine the firat diagran by and ataching tha acond, weat thet meat mat

-defined k-1inear mad $E_{k}^{2 m}(G) \longrightarrow(V, V)$.

Proof Thia ie an eady connequance of the two diagrane (over).

Henca, if we dafine $t_{0}: F_{k}(G) \longrightarrow[y, V][x]$ by mopping $x \in F_{k}^{2(G)}$ to

([V,V][X] denotas the ring of polynomial in X with coefficienta in the k-algebra, [Y, V].)

Define amap $\mathrm{er}:(V, V) \longrightarrow k$ by meteing $\mathrm{tr}(\mathrm{f})$ equal to the unique
 checked to be an alabra homomorphiam.

Any andomorphime of y which factora through a projective module ia non-autamorphime, and hence in in the kernal of tr. Thum tr induces a
 way to a $k=1$ gabra homomorphime $[V, V][I] \longrightarrow k[X]$. Dafina:

$$
\Lambda: R_{k}(G) \longrightarrow k[I]
$$

to be the componite of thil map and $\mathrm{A}_{\mathrm{o}}{ }^{-}$
Let b_{H} denote the image in $\mathrm{E}_{\mathrm{k}}^{2}(G)$ of the eequence:

$$
0 \longrightarrow k_{G} \longrightarrow k(G / H) \longrightarrow k(G / H) \longrightarrow k_{G} \longrightarrow 0 \text {. }
$$

then 1

$$
\Lambda\left(b_{H}\right)=\lambda_{H}(v) \bar{X} .
$$

In particular, taking $H=h_{0}$, wee that $X \in I=A$. Thu A ia aurjective.
(191)

thome containing ker A. But:

$$
\operatorname{ker} \Lambda=\left\{x \in E_{k}(G) \mid \Lambda_{0}(x) \in \operatorname{kertr}\right\}
$$

We may orita a genaral blement of $E_{k}(G)$ in the form:

$$
x=\sum_{m=0}^{\infty} x_{m} \quad v i t h x_{m} \in E_{k}^{2 m}(G)
$$

where only finitely many x 'em nonzero. Then:

$$
\Lambda_{0}(x)-\sum_{m=0}^{\infty} x_{m}\left(x_{m}\right) x^{m}
$$

 if and only if all the $\alpha_{p}\left(x_{m}\right)$'s ard nilpatent. Thuan
x cker A - thara ie mith $a_{m}\left(x_{0}\right)^{p^{3}}-0$ for all

* there is atith

$$
\sum_{n=0}^{\infty} x_{m}\left(x_{m}\right)^{p^{s}} x^{m p^{s}}-\left(\sum_{m=0}^{\infty} \alpha_{m}\left(x_{m}\right) x^{m}\right)^{p} \cdot 0
$$

(aea Lem H.2)

* $\quad \Delta_{0}(x)^{p^{p}}=A_{0}\left(x^{p^{p}}\right)=0 \quad$ for sone -

So if I ia m ideal of $E_{k}(G)$ containing ker A_{0} and $z e k e r \wedge$ then, for wome
 Thum $\mathbf{I}+\mathrm{I}=0$. Hence we have mown that I containa ker A . Thual che clain above 1e antablished.

Thu $\left.X_{G}(V) V^{*}\right)$ is the eet of maxien ideale of $E_{G}(G)$ conteining ker A.

 the principal ideala $(x-c) k[x]$ with c ak. Thum:

$$
x_{c}\left(v \bullet v^{*}\right)-\left\{\operatorname{ker} A_{c} \mid c \in k\right\}
$$

where Λ_{c} in the composita $E_{k}(G) \xrightarrow{A} k[X] \rightarrow k$ where the latter map in given by $X \longmapsto c$. Thus winve:

Theoree $B .3 \quad X_{G}\left(V V^{*}\right) k$.

In fact it may be shown that $X_{G}(V)=I_{G}\left(V V^{\text {(}}\right.$) so that thsa result may be thought of me being anslogous to Theorea $3.7 .1(b)$. To what eztent Avrunin and Scott' work connecting the cohomology variety $X_{G}(W)$ with the Carlaon variety $Y(W)$ for elementary bbelian groups bay be extended to genaral groupa is a quention for posible further rewarch.

Relations between BockstieinE

Write b_{1} for the imase of the sequence:

$$
0 \longrightarrow F_{p} \longrightarrow F_{p}\left(G / H_{1}\right) \longrightarrow F_{p}\left(G / H_{1}\right) \longrightarrow F_{p} \longrightarrow 0
$$

In $E^{2}(G)$, then we may define a ring homomorphiam:

$$
F: F_{p}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow E(G) \text { by } F\left(\bar{X}_{1}\right)=D_{1}
$$

mo that kar F it che ideal of relationa betwean the b_{i}. Thit ideal mag be umed to define variety in J / J^{2},

$$
B_{G}=\left\{\sum_{i=1}^{n} \lambda_{1}\left(g_{1}-1\right)+j^{2} \mid f\left(\lambda_{1} \ldots . . \lambda_{n}\right)=0 \quad \text { for sll } f \in \operatorname{ker} F\right\}
$$

It ia this variety which is considered by Serra in the proof of his propasition, [Ser], except that thera it ie regarded an oubaet of k^{n} rather than of J / J^{2}. He ia able to prove:

Theorem $B, 4$ (s) B_{G} ia the union of a number of rational mubsaces,
(b) If G is not elementary abelian then B_{G} is not the vhole of $\mathrm{J} / \mathrm{J}^{2}$. \square

Corollary B. 5 If G ia not elementary abelian than:

$$
B_{G}=\bigcup_{H} S_{H}
$$

- the union being over all the maximal aubgoupa of G.

Proof The theoram iaplies that in thila casa B_{G} i亩 the union of a nuber of proper rational aubapaces. But any proper rational aubepace is concained within a rational hyperplane of $\mathrm{J} / \mathrm{J}^{2}$. Now $(3.6 .4)$ gives that the racional hyperplanam of J / J^{2} are preciaely the wubapaces S_{H} for H a maximal aubgroup of G. Thus the reault followe.

Now lat V be above. Then for f cker F we have:

$$
\begin{aligned}
& f\left(b_{1} \ldots \ldots b_{n}\right)=0 \quad \text { in } E(G) \\
& \left.f\left(r\left(b_{i}\right) \ldots \ldots, b_{n}\right)\right)=0 \quad \text { in } E_{k}(G) \\
& A f\left(r\left(b_{1}\right) \ldots, \ldots\left(b_{n}\right)\right)=0 \quad \text { in } k[x],
\end{aligned}
$$

But:

$$
A f\left(T\left(b_{1}\right), \ldots, T\left(b_{n}\right)\right)=f\left(A T\left(b_{1}\right), \ldots, A r\left(b_{n}\right)\right)
$$

and:

$$
A T\left(b_{1}\right)=\lambda_{H_{1}}(V) X .
$$

Tharafore, for 11 cek, we have:

$$
f\left(c \lambda_{R_{1}}(V), \ldots c \lambda_{R_{n}}(V)\right)=0
$$

so that:

$$
f\left(c^{1 / P_{\lambda_{H_{1}}}(v)^{1 / P}} \ldots \ldots, c^{\left.1 / R_{\lambda_{H_{n}}}(v)^{1 / P}\right)}=0\right.
$$

Hence (3.7.1)(b) ipplias that $Y(\%)$ a B_{G}. Henca we have proved:

Theore日 B. $6 \quad Y_{G}=B_{G}$.
Note that Chouinard'e theoram follow from thia and Corollary 由.s. The precian ralationahip between Y_{G} and B_{G} id another aram for poanble future research; it aeman not unreamonable to conjecture that $Y_{G}=B_{G}$.
Perhapa almo thia laada un to conmidar that Sarra'a proof in not an unrelated to the rapreantation theory an might at figat have been thaught.

It Ia pity thet we heve betn unable to complate non-cohomalogicul prooi of Chouinard' chaoret to dete. However, thinge are not vithout hope. Lat ue indicate three waye in which we might hope to complete the proof by ahowing thet a general pieudo-mpecial group, G, in a Chouinard group.
 not sees a very attractive propooition.
(2) We could try to ohow that G ia tha union of mumbr of rational aubapacea of $\mathrm{J} / \mathrm{J}^{2}$ (poadibly uaing $(4,8,4)$). This vould be analogoun to part (a) of Theorea B.4 in the same vay ab (4.7.1) ia analogoun to part (b). We could then complate the proot by proving Corollary B. 5 with Y_{6} in place of ${ }^{B}{ }_{G}$.
(3) He could try to prove that Ug ia poriodic for larger ranga of valuan of 3 than in (4.5.1) and (4.6.1). (See (4.8.3).) For egaple, it vould muffice co show that U_{8} ia periodic wan $X+J^{2}$ ia not an element of che union of the subapace S_{H} for H basien subgroup of G.

REFERENCES

[ABE] J.L.Alperin \& L.Evens "Representations, resolutions, and Qurlien'a dimension cheore" J. Pure appl. Alg. 22 (1981) pl-9.
[AAR] M.Aumlandar a l.Reiten *Representation theory of Artin algabras IIIt almoat mplit sequances" Com. Alg. 3(3) (1975) p239-294.
[Aas] G.Avrunin a L.Scote "Quillen atratification for modules" Invent. Math. 66 (1982) p277-286.
[Bally V. Balav "Represantations of the group $Z_{2} \times Z_{2}$ in a field of cheracteristic 2" (Russian) Dokl. Akad. Nauk. SSSk 141 (1961) p1015-8.
[Ban] D.J.Banaon "Modular repreaentation theory: New trenda and athode" LMM 1081. Springer-Varlag 1984.
[BAC] D.J.Benmon J.F.Carlean "Wilpotent elements in the Green ring" (preprint).
[BAP] D.J.Banmon \& R.A.Parker "The Grean ring of afinite group" J. A1g. 87 (1984) p290-331.
[Ca1] J.F.Carleon "Frae modulee over some modular ring" J. Auv. Math. Sec. 21 (1976) p49-55.
[Ca2] J.F.Carimon "The dimangions of periodic modulea over modular group a1gebrae" I11.J. Math. 23 (1979) p295-306.
[Ca3] J.F.Carleon The varietiet and the cohomology ring of a module" J. A1g. B5 (1983) p104-143.
[Ca4] J.F.Carlaon "The dimensions of modules and their reatrictions over sodular group algebras" J. Alg. 69 (1981) p95-104.
[Ca5] J.F.Carlmon "Periodic modules with large periods" Proc. AMS 76 (1979) p209-215.

(199)

[CAE] H.Cartan S.Eilanberg "Homologicalalgebra" Princeton Univ. 1956.
[Ch] L.Choulfard 'Profectivity and relative projectivity ovar group ringa" J. Pure Appl, Alg. 7 (1976) p278-302.
[Co] S.B.Conlon "Certain representation algebras" J. Aus. Math. Soc. 5 (1965) p83-99.
C.W.Curtia 8 I.Reiner "Represantation theory of finite groups and associative algobras" Uiley-Intaracience 1962.
[Da] E.C.Dade Endopermutation modules over p-groups $I I^{\prime \prime}$ Ann. Marh. 108 (1978) p317-346.
[Ev] L.Evens "The cohomology ring of a finite group" Trana, AMS 101 (1961) p224-239.
[Gab] P.Gabriel "Auslander-Raiten sequences and rapraantation-finite algebran" in LNA 831, Springer-Varlag 1980.
[Gor] D.Goranatein "Finite groups" Harper \& Row 1968
[Gr] J.A.Grean "On the indecomposable representations of afinite group" Math. Z. 70 (1959) p430-445.

【Ha】 M.Hall "Theory of groups" MacMillan 1959.
[HAR] A.Heller * I.Reinar "Indecomposable repramentations" I11. J. Math. 5 (1961) p314-323.
[Lan] P.Landrock "Finite group algebras and their modules" LMS Lecture

(McL
S.MacLane "Homology" Springer-Verlag 1974.
[Pic] C.Picaronny "Sur un thbordea da Carlson" C. R. Acad. Sc. Paria 299. 1.18 (1984) p899-902.

【Ser] J-P.Sarre "Sur 1a dimenaion cohomoloficue dea groupal profinfa* Topolofy 3 (1965) p613-420.
[Web]
P.J. Mebb "The Auslander-Reiten quiver of Ainite group" Math. Z. 179 (1982) p97-121.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

MODULES OVER GROUP ALGEBRAS
TITLE
WHICH ARE FREE ON RESTRICTIOM
TO A MAXIMAL SU日GROUP

AUTHOR
ROBERT CHARLES ANDREUS
INSTITUTIONand DATE
UNIVERSITY OF WARWICR 1987

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

\square

[^0]: Aa with the praviou result, (0.0 .11) (a) and (b) materended to general groupa by replacing the word "frean by "projectiva".

 The follarine congtruction wan mentioned above and vill prove useful on - numbar of occaniogei

