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ABSTRACT

The dependence of grain boundary energy on boundary orientation 

was studied in copper annealed at 1000°C. Grain boundary orientations 

and the disorientations across the boundaries were measured. A 

rotation matrix notation is used to interpret selected area electron 

channelling patterns observed in a scanning electron microscope. The 

Herring and Shewmon torque terms were investigated using wire 

specimens having a "bamboo" structure. The Herring torque terms were 

determined using the Hess relation. The (110) section of the ¿11 

V-plot (i.e. the variation of grain boundary energy with boundary 

orientation) was evaluated. In this plot, minima in energies were 

found at the (311) and (332) mirror planes. ¿3 and £9 boundaries were 

investigated in sheet specimens. The (110) and (111) sections of the 

£ 3 V-plot were evaluated. In addition to the sharp cusps occurring at 

the ¿3 (ill) planes, the further shallower cusps occur at the 

incoherent ¿3 boundaries with the interfacial planes approximately 

parallel to {322} in one crystal and {11.44} in the other crystal. 

Flat and curved £ 9  boundaries were investigated. The break up o f¿9 

boundaries into two ¿3 boundaries and the relation between the £ 3  and 

¿9 /-plots was also examined. The (110) section of the ¿9 /-plot was

constructed.
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CHAPTER 1: INTRODDCTION

Most practical applications o£ solid materials involve 

polycrystalline aggregates, rather than large single crystals. Such 

an aggregate is made up by a number of generally randomly oriented 

single crystals, more usually referred to as grains, and the junction 

between these grains is known as a grain boundary. In a pure metal 

the differences between adjacent grains are differences in 

crystallographic orientation. In more typical materials of 

technological importance there may also be differences in composition 

between adjacent grains or between grains and boundary regions, or 

variations in lattice dimensions from one grain to another, or in 

combination of all of these properties. A grain boundary is thus a 

region of disorder in the crystal structure. This disorder gives rise 

to various properties which may be either beneficial or deleterious in 

some metallurgical processes. Consequently it is important to study 

the exact nature of these interfaces.

A grain boundary may be described in several ways (e.g. Gifkins 

1969). The choice of an appropriate description is usually governed 

by the property or problem being focused and discussed. A grain 

boundary may be considered as a defect in the crystal structure or as 

a mismatch in the crystal lattice. Its structure and properties can 

then be described in terms of arrays of dislocations, in terms of 

areas of good and bad fit in the structure, or in terms of coincidence 

relationships between the neighbouring crystal lattices.

Alternatively it can be treated as an amorphous region and its 

behaviour and properties studied without specifying the detail of the
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atomic structure.

A grain boundary, as a disordered region, can be regarded as 

having associated with it a deCinite amount of free energy per unit 

area, namely, the grain boundary energy. The magnitude of this energy 

will obviously depend on several factors such as crystal 

disorientation, boundary inclination, temperature and impurity levels. 

The variation with impurity levels may well be brought about by 

segregation of solute atoms to the boundary. Measurements of absolute 

grain boundary energies are rather difficult, as very sensitive 

techniques are required (e.g. Hondros 1969). Instead, such energies 

are usually measured relative to some reference surface or grain 

boundary. Such measurements are often used in preference to direct 

structural studies to yield information about the properties and 

behaviour of grain boundaries and, in fact, also provide a useful 

indirect way of studying the structure of boundaries.

Most experimental measurements of grain boundary energies are 

based on a local equilibrium configuration of some system of 

intersecting interfaces. Such a configuration can be achieved after 

specimens are annealed at high temperatures for sufficiently long 

periods. Extensive studies on the variation of grain boundary energy 

with crystal disorientation have been made (e.g. Gleiter and Chalmers 

1972). This variation leads to the Shewmon torque terms acting on the 

crystals, and causes a change in disorientation (Shewmon 1966). Much 

less work has been done on the variation of grain boundary energy with 

boundary inclination, under a condition of fixed crystal 

disorientation. This variation can conveniently be represented by a
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'tf-plot', exactly like the surface energy of a crystal. The 

dependence on this factor leads to the Herring torque term, which 

describes the couple acting on the boundary plane and tends to rotate 

it towards position of lower energy (Herring 1951). As a result of 

this dependence, in extreme cases, faceting of the grain boundary can 

occur. In faceting, the grain boundary breaks up into segments of 

different orientation, whose total energy is less, even though the 

total area is greater. Also, a boundary can break up into two 

boundaries whose total disorientation equals that of the initial 

boundary, with a new crystal appearing. Again the total energy of the 

two boundaries must be less than that of the original boundary.

It is the objective of this dissertation to report observations 
vAc

on the effect of boundary inclination on^energy of grain boundaries in 

copper. In particular, the Jf-plot of ¿3 boundaries (usually referred 

to as the first order twin boundaries) was studied. The break up of 

£ 9  boundaries (second order twin boundaries) into two £ 3  boundaries 

and the relation between the £ 3  and £ 9 V-plots was investigated, using 

sheet specimens. The Shewmon and Herring torque terms were 

investigated using 'bamboo* structure wire specimens. The £ll K-plot 

was evaluated.

The disorientation across a boundary was expressed in terms of 

the rotation matrix. This was obtained from the orientations of the 

two crystals plotted on a stereographic chart . The orientations were 

obtained using selected area electron channelling patterns (s.a.c.p's) 

observed in the scanning electron microscope (SEM).
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CHAPTER 2: GRAIN BOUNDARY STUDIES

2.1 Importance of grain boundary energy studies

The presence o£ grain boundaries in polycrystalline materials 

has a marked effect on a variety of properties (Gleiter and Chalmers 

1972). During heat treatment they can both initiate and block phase 

transformations, migrate to give recrystallization, act as accelerated 

diffusion paths, and influence the distribution of pores, solute and 

precipitates. Generally speaking, grain boundaries play an important 

role in the development of microstructure. Under service conditions 

the grain boundaries continue to play a significant part. At elevated 

temperatures they can act as sources and sinks for point defects and 

dislocations, and can also slide, thereby helping to initiate failure 

by the nucleation and growth of cavities. These effects are of 

extreme importance in a wide range of materials used under creep 

conditions in, for example, nuclear reactors, power generating plant 

and turbine blading. Grain boundary embrittlement by solute 

segregation and/or precipitation at grain boundaries during heat 

treatment can also lead to premature failure at ambient temperaturos 

by intergranular fracture or stress corrosion cracking. Certain low- 

alloy steels for steam power plant components and aluminium alloys for 

airframes are particularly vulnerable examples. Against this, 

however, the ability of grain boundaries to act as barriers to plastic

flow and crack growth still makes them an indispensable feature of the 
true

microSjture of engineering materials requiring both strength and 

toughness. Grain refinement remains the simplest microstructural 

process that the metallurgist can employ which will increase the
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strength whilst also increasing the toughness.

In recent years, there has been extensive interest in many of 

the grain boundary dependent processes mentioned above. They have 

been increasingly studied in both metallic and non-metallic materials. 

Concurrent with this, there has been a significant development in 

theoretical and experimental techniques towards a better understanding 

of the detailed atomic structure of grain boundaries and of the 

defects which may exist in them. More recently, the direct 

observation of the atomic structure of grain boundaries has become 

feasible owing to the increased point-to-point resolution of modern 

microscopes such as the high-resolution transmission electron 

microscope (HRTEM), and also with the help of the powerful computer 

image simulation (Robinson 1986). Applications of such an improved 

technique have established that not only do the images strikingly 

illustrate structural features of grain boundaries, but they can also 

yield quantitative information on atomic positions. However, pursuing 

this atomic approach is both experimentally and theoretically complex 

since it works well only for special, simple types of boundaries. 

Consequently, this approach is of little use in studying randomly 

occurring boundaries in a wide range of materials, which is generally 

the situation of interest.

Since such direct techniques are limited to certain types of 

specimens, it is, in general, necessary to proceed by indirect methods 

in order to obtain information about W>* structure of a boundary. These 

consist, of necessity, of the observation or measurement of a property 

of a boundary and the comparison of the results with the prediction
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resulting from theories of the structure of grain boundaries. One of 

the few properties which is commonly measured is the energy of a grain 

boundary. As mentioned in the introduction, this quantity depends on 

several parameters and this dependence is obviously very complex. 

Consequently, the majority of investigations into grain boundary 

energy are made by studying the dependence on only one parameter while 

keeping the others fixed. This means that attention is focused on 

more restricted systems. In the simplest case, for example, the 

orientation difference is given by a single angle of tilt and the 

boundary plane is made the symmetry plane, so that the boundary can be 

defined by a single parameter. Otherwise, the measurements only give 

an energy of average grain boundaries, involving a number of rather 

ad-hoc assumptions and simplifications. Again, the extension of these 

restricted situations to the general boundary is rather difficult 

since it seems likely that the properties of grain boundaries in 

specially prepared simple bicrystals may be quite different from those 

of a typical grain boundary in a polycrystalline aggregate. This 

latter type of grain boundary is usually the common form found in 

every day situations.

2.2 Grain Boundary Structure

2.2.1 General geometrical aspects

Since the grains in a single phase polycrystalline specimen are 

generally in many different orientations, thus many different types of 

grain boundary are therefore possible. Various techniques have been

used to determine the orientation of the crystal and several
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descriptions have been employed to describe the orientation 

relationships between the two adjoining crystals. One of the most 

useful techniques which can be used for the determination of the 

crystal orientation is by using the s.a.c.p. observed in the SEM. The 

orientation relationships between the adjacent crystals can be 

described in terms of the rotation matrix. Both, the technique and 

the description, have indeed been used in this work as will be 

discussed fully in chapter 4.

In general, five degrees of freedom are needed to describe the 

orientation relationships between the two grains abutting at a grain 

boundary (e.g. Christian 1975). Two of these are used to define the 

axis of disorientation, one to define the angle of disorientation and 

a further two degrees of freedom to define the orientation of the 

boundary plane with respect to one set of crystal axes. The rotation 

matrix (and consequently the angle-axis pair) constitute a unique 

description of a boundary in the triclinic system. In the other 

crystal classes, there are a multiplicity of choices of tnc angle-axis 

pair, arising from the symmetry within the class. For boundaries 

between cubic crystals there are 24 equivalent descriptions, the 

choice of the most meaningful usually being governed by minimum angle 

of disorientation.

While the axis of rotation will not generally be simply oriented 

with respect to either grain or the grain boundary plane, there are 

two special types of boundary that are relatively simple. These are 

pure tilt and pure twist boundaries. A pure tilt boundary occurs when 

the axis of rotation is parallel to the plane of the boundary, whereas
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a pure twist boundary is formed when the rotation axis is 

perpendicular to the boundary plane. One can visualize these 

boundaries easily with a simple cubic lattice.

It is sometimes suggested (e.g. Christian 1975) that in addition 

to the above five parameters, three further degrees of freedom are 

required to specify the components of any relative translation of the 

atoms of one crystal relative to the atom sites of the other. A ninth 

degree of freedom may be necessary to specify the position of the 

boundary itself. However, of these nine degrees of freedom, only the 

first five can in principle be imposed geometrically on an 

experimental sample and the other four are restricted by the existence 

of the structure of relaxed grain boundaries.

2.2.2 Models

Many of the early theories on grain boundary structure are

covered in the book by McLean (1957) and more recent ones have been 
in

critically reviewed^numerous articles, for example, by Gleiter (1982), 

Sutton (1984) and Fischmeister (1985). Thus only a brief discussion 

of these theories will be presented here.

The description of grain boundaries in terms of arrays of 

dislocations which was developed by Frank (1950) and Read and Shockley 

(1950) is still generally accepted as a satisfactory model for low 

angle boundaries. The arrays of edge dislocations which accommodate 

tilt components and the arrays of screw dislocations which accommodate 

twist components have both been observed many times in many materials.

The extension of the dislocation model to high angle boundaries
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is rather difficult. As the angle of disorientation between the 

grains increases, the separation between the dislocations get smaller. 

This eventually leads to the overlap of the dislocation cores when the 

disorientation exceeds ~10°-15° and results in the loss of identity o{ 

individual defects. Above this angular disorientation the high angle 

grain boundary regime is entered and the dislocation model is no 

longer sufficient.

Various models, which tend to ignore geometry either partially 

or completely, were proposed to explain high angle grain boundary 

structure (McLean 1957). These models were mainly concerned with 

explaining or formulating the behaviour of a boundary sensitive 

property or group of properties. One such model envisaged the grain 

boundary region as a layer of supercooled liquid. This liquid layer 

approach however does not find much support for metallic materials, 

but it may well be relevant to polycrystalline ceramics.

The starting point for all the recent models of grain boundary 

structure in metals and alloys is the transition lattice model due to 

Hargreaves and Hill (e.g. McLean 1957). Here the boundary region is 

thought to be comprised of atoms occupying sites which are transitional 

between those required to define the grains on each side of the 

boundary. Over the years, various estimates for the actual thickness 

of this transition region were put forward but then it has proved 

possible to directly image the boundary region using field ion 

microscopy (FIM) which shows that this region is very narrow (Brandon 

et al. 1964).

A large number of developments of the transition lattice model
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were made (e.g. McLean 1957). Again, the models that arose out of 

these developments tend to concentrate on explanations of boundary 

dependent properties and ignore, at least partially, geometrical 

considerations. The best known models of this type of approach, in 

the current context, is that they recognise a variation in boundary 

structure over the boundary plane and this aspect is common to most of 

the recent models.

However, the models discussed thus far have taken very little 

consequence of the geometry either across the boundary or of the 

boundary region itself. In turn the models so far considered treat 

all high angle boundaries as similar, whereas experimental 

observations suggest that certain boundary geometries are associated 

with special behaviour. Consequently, grain boundaries are usually 

divided into two broad classes, namely, special boundaries and general 

boundaries, as will be discussed in the next section. The geometrical 

models predicting the existence of special boundaries were developed a 

long time ago. The first of these was the coincidence site lattices 

model (CSLs). The historical development of this model is covered in 

the paper by Grimmer et al. (1974).

The CSL model is of importance because it determines the 

periodicity of the atomic structure of the grain boundary. A three- 

dimensional CSL is formed when two interpenetrating crystal lattices, 

with the same lattice parameter, which have one lattice point in 

common, are related by any of a series of special rotations through 

the common points to yield more coincidence sites. The reciprocal 

density of coincidence sites relative to crystal lattice sites is
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denoted by ¿, where ¿is an odd integer. The highest possible degree 

of coincidence in the cubic system, apart from a perfect crystal, is 

for a first order twin for which is ¿3. A number of different 

mathematical notations are available for describing rotations (Lange 

1967). The angle-axis pair relationships for the CSL are relatively 

easily generated. A simple example in two-dimens ion* of £5 for a 

simple cubic lattice generated by a rotation of 36.9° about (001) is 

shown in Fig. (2.1). It can be seen that a CSL is generated which has 

a cell five times bigger than the primitive cell. The primitive unit 

cell of the CSL has, by definition, a volume of £  times that of the 

primitive unit cell of the crystal. Early on it was recognised that 

boundaries having a high density coincidence site lattice orientation 

(i.e. a low value of £  ) were associated with special properties (e.g. 

Aust and Rutter 1956).

It was recognised that some 'spread' in the angle-axis pair 

relationship might be accommodated, in the real case, by invoking 

networks of coincidence site lattice dislocations (Brandon et al., 

1964). Further, the orientation of the boundary plane with respect to 

the coincidence site lattice was expected to be important (Brandon et 

al. 1964). It was suggested that the boundary would attempt to follow 

a densely packed plane in the coincidence site lattice. A further 

consequence of this approach is the suggestion that, if a boundary is 

constrained to lie at an angle to a close-packed plane in the coinci­

dence site lattice, it will therefore tend to take up a stepped 

structure such that it has a maximum area in the densely packed planes

of the coincidence site lattice.



figure 2.1 Formation of a £s coincidence site lattice for a 

rotation of 36.9° about [001] for a simple cubic structure. 

The unit cell of the coincidence site lattice is shown by

broken lines.
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A development of the CSL model was made by Bishop and Chalmers 

(1968) who envisaged a regular repeating pattern of ledges arising 

from deviations from perfect coincidence. This model, the coincidence 

ledge/dislocation model, sees deviations from coincidence primarily in 

terms of ledges. In practice after relaxation the repeating 

structural unit from either starting point becomes identical. This 

structural unit model (e.g. Gleiter 1971) again stresses the 

periodicity of fit-misfit across the boundary plane.

Bollmann (1970) introduced a concept known as the O-lattice. He 

proposed that regions of good atomic fit in a boundary should not be 

identified solely by coincidence of points of the two crystal 

lattices, but also by coincidences of interior cell points. The point 

is considered to be a coincidence if for any cell of one crystal 

lattice the interior coordinates of a point (expressed as a fraction 

of the cell edqes) are identical with the interior coordinates of that 

same point measured relative to a cell of the other crystal lattice. 

Thus a CSL is simply a sublattice of the O-lattice. It turns out that 

there is a large number of O-lattices for a given relative: orientation 

of the two lattices, since there are many transformations which can be 

used to transform one crystal lattice to the other. For a given 

O-lattice, each O-lattice point may be used as an origin for the 

transformation linking the two crystal lattices; the O-lattice is 

therefore a "lattice of origin". The O-lattice spacing is a continu­

ous function of the transformation and this spacing therefore

varies continuously with crystal disorientation, in contrast to the 

discontinuous behaviour of the CSL. The physical significance of this
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approach is best seen in the light of the low angle boundary case.

A boundary with a disorientation that differs slightly from that 

of a coincidence relationship relaxes to the structure of the 

coincidence boundary with a superimposed network of the secondary 

grain boundary dislocations (GBDs). The formal theory for such GBDs 

has been given by Bollmann (1970). The function of the secondary GBD 

is to localize the deviation from the coincidence boundary reference 

structure. Their role is therefore analogous to that of discrete 

primary dislocations preserving the ideal crystal lattice in a low 

angle boundary. However, the Burgers vectors of secondary GBDs are 

not crystal lattice vectors, but vectors of the appropriate 

displacement shift complete (DSC) lattice. The DSC lattice for a 

particular boundary defines all the vector displacements of one 

crystal lattice respect with the second which are possible under the 

condition that the overall pattern of the boundary structure produced 

by the two interpenetrating lattices remains unchanged. The simplest 

way to see the geometrical basis of the DSC lattice is to refer to the 

interpenetrating crystal lattices in which a CSL exists as shown in 

Fig. (2.2). The base vectors of the DSC lattice are shown at the 

centre of the diagram. An important property of the DSC lattice is 

that the lattice spacing in the plane perpendicular to the axis of 

disorientation tend*to vary reciprocally with the spacing of the CSL. 

This means that as the degree of lattice coincidence matching 

decrease, the CSL tends to become large and the DSC lattice tends to 

become smaller.

Secondary GBDs may be employed to form networks referred to as



O
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• CRYSTAL I 
O CRYSTAL II
• COÏNCIDENCE SITE LATTICE 

---- D.S.C. LATTICE

Figure 2.2 Formation of DSC-lattice in the same structure of 

Figure 2.1. The base vectors of the DSC-lattice are shown at

the centre of the diagram.
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secondary O-lattice or 0 2-lattice (Bollmann 1970« Smith and Pond 

1976). The 0 2-lattice formulation requires that the secondary DSC 

Burgers vectors for ¿1 (a single crystal) are identical to the primary 

lattice Burgers vectors and it requires that all primary vectors are 

included as possible DSC vectors. However, for a given rotation 

between two crystal lattices the 0 2-lattice will depend upon the CSL 

chosen as a basis.

A plane matching (PM) model has been introduced by Pumphrey 
(1972). This model proposes that a high angle grain boundary across 

which a single set of low index planes is continuous is one of low 

energy. This could occur in any crystal system provided that the 

planes were sufficiently densely packed, for example, in fee crystals 

the planes are (200), {220} and {ill}. The model does not attach any 

particular importance to the boundary plane.

The difference between CSL and PM models is that while CSL 

requires that only those boundaries at specific disorientation are of 

low energy, the PM model requires that all boundaries created by 

rotations about a low index axis are of relatively low energy. Thus a 

PM boundary may be regarded formally as the limiting case of a CSL 

boundary when £ approaches infinity (Warrington and Grimmer 1974). 

When a set of relatively low index planes is slightly mismatched 

across a boundary, relaxation occurs in such a way as to produce local 

alignment of the planes as far as is possible in the region of the 

interface. Such an array would be analogous to the arrays of 

dislocations which accommodate small angular deviation from 

coincidence disorientations described above. However, in this case,
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it is the alignment of planes which is conserved rather than a pattern 

of two-dimensional atomic matching in the interface. Far from high 

density coincidence orientations, their Burgers vectors will 

presumably be equal to the interplanar spacing measured in the 

boundary plane. Thus the PM description is actually not an indepen­

dent model but is merely another way of representing the line 

structures of certain boundaries which are already well accounted for 

by the more general GBD model.

In recent years, the atomic structure of grain boundaries has 

been studied extensively using computer simulation. Much of this work 

has been reviewed recently by Sutton (1984). In general, the 

procedure has been to find the total energy as a sum of the 

interaction energies between individual atoms. The interaction 

energies, in turn, are derived from a suitable interatomic potential 

function. The minimum energy configuration of the ensemble making up 

the boundary is then found by computer calculation. Despite the 

apparent simplicity of this technique, several difficulties are 

frequently encountered such as proper choice of the interatomic 

potential, problems with non-central forces, establishment of proper 

boundary conditions and finding relaxation techniques capable of deter­

mining the configuration of true minimum energy. Fortunately, from 

the standpoint of determining atomic structure, it appears that the 

results are not highly sensitive to the exact form of the interatomic 

potential. Most of the calculations have been static calculations, 

and therefore refer to the situation at 0°K where entropy effects do 

not contribute. Also, most of the calculations have been made for
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relatively short-period boundaries, since relatively small 

computational cells could be used. Nevertheless, a number of 

interesting results have emerged. In general, the boundary regions 

are very narrow, and crystallinity is maintained almost up to the 

boundary plane in agreement with the direct observations (Brandon et 

al. 1964).

Recent studies of the occurrence of minimum energy boundaries in 

noble metals and noble metal alloys (e.g. Sauter et al. 1977 , Erb et 

al. 1982) indicate that for a full description of the grain boundary 

structure and energy, the change of the electronic structure in the 

boundary should not be disregarded. Also, the effect of temperature, 

pressure, etc. on the boundary structure should not be neglected.

2.2.3 Special and general grain boundaries

In general, the experimental properties of grain boundaries are 
ex/>cc iod

in agreement with the^transition from low angle to high angle 

behaviour. A high angle boundary however is not necessarily without 

order. In particular, certain groups of high angle boundaries will 

have special properties such as structure, energy, diffusion, 

migration, etc., which make them quite different from those of 

disordered boundaries. The former boundaries are usually called 

'special' grain boundaries and the latter 'general' grain boundaries. 

Clear experimental evidence which proves the existence of special 

boundaries has been reviewed by Pumphrey (1976).

Special grain boundaries will occur when two adjoining grains 

have some particular (rational) geometrical relationship. The geo-
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metcical models of grain boundaries discussed in Section (2.2.2) 

allow, to some extent, the correlations of specific properties to the 

existence of intrinsic GBDs which define a well ordered periodic 

intergranular area. According to the CSL model, special grain 

boundaries arise when the two grains are in a relative orientation 

leading to a coincidence site lattice (CSL orientation). It turned 

out that angular coordinates of the boundaries exhibiting special pro­

perties do coincide with the angular values for the CSL with low £,. 

Conventionally, this is attributed to the fact that the grain boundary 

occurring in the CSL with low £ demonstrates a periodic structure and 

lower energy as compared with general boundaries. However, since the 

CSL model depends upon the presence of coincident sites, the number of 

such sites will decrease with increasing values of £ .  Also, for 

boundaries, with higher £. values, the disorientation angles becomes 

close to one another. Thus it is difficult to identify an appropriate 

CSL orientation. So an upper limit of £, has to be set (Emax) in 

order to categorize between special and general boundaries. It is 

regarded as special when £<£max,while it is regarded as general when 

¿>£,max' There are experimental observations which indicate that 

special properties exist for values of £, up to about 33 (Herrmann et 

al. 1976, Goodhew et al. 1978). However, the maximum value of ¿ at 

which a CSL has physical meaning is not known.

The CSL theory would be of limited interest if the special 

structures occurred only at exact CSLs disorientations. In fact the 

properties of the special boundaries are partially maintained for 

small angle deviation from the exact CSLs disorientations. Several
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methods for determination of the deviation from the exact CSL 

disorientation, ,have been demonstrated and several criteria of 

specialness (a significant upper limit of b&j ) have been proposed 

(Deschamps et al. 1987). However, the criteria of specialness must be 

used cautiously because the maximum value of the deviation from the 

exact CSL orientations which can be admitted is far from being well 

established and orientation dependences of grain boundary properties 

have a sharply non-monotonic character with extrema at the special 

angles- Also, the maximum deviation at which the dislocation cores 

have physical existence is not clear at present. Furthermore, the 

analogy with low angle boundaries, however, should be treated with 

caution, as some high angle boundaries may have relaxed structures 

other than dislocation networks.

2.3 Shewmon and Herring torque terms

The central thermodynamic quantity which characterizes 

interfaces in solids is the free energy, a reflection of inadequate 

atomic bonding in the relatively disordered atomic structure of the 

interface. This quantity depends on the crystallographic orientation 

of the interface, temperature and the presence of adsorbed species 

arriving from the matrix. In a wide variety of solid-state phenomena, 

for example, in the formation of equilibrium microstructures, this 

quantity often plays a critical role. For a single component system, 

this interfacial energy Y; at a temperature T can be related to the 

interfacial energy at absolute zero, Y# , by the usual form of 

thermodynamic relation
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where Si is the inter£acial entropy. This entropy term has been

discussed by Ewing (1971) but remains the most difficult factor to

quantify. There are very few measurements available of the variation

of with temperature for any interface. In many cases, the entropy
only

term is small and may be neglected. Therefore, it is^possible to 

evaluate by studying '¿i .

By neglecting the entropy term and impurity effects, the 

interfacial energy therefore depends only on the crystallographic 

orientation. One of the techniques which enable this effect to be 

studied is the sintering experiment due to Shewmon (1966). He has 

suggested that, in the case of two metal single crystal spheres that 

have been sintered together enough to form a boundary, the interfacial 

energy of the system will decrease when the torque terms act on the 

spheres to rotate them relative to one another so as to form a grain 

boundary whose energy is lower than that of the initial stages. In 

this geometry, all five degrees of freedom of the boundary will be 

changed by the movement of spheres so as to decrease the grain 

boundary energy. These torque terms are usually known as the Shewmon 

torque term.

A modification of the Shewmon's experiment has been made by 

Gleiter's group (e.g. Herrmann 1976). In this case a large number of 

small metal single crystal spheres are sintered onto a single crystal

substrate. During the sintering, a neck of the metal growjat the area
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of contact. This neck contains a grain boundary which occupies the 

narrowest part of the neck and lies in a plane close to the plane of 

the substrate. They have shown that most spheres do rotate into CSL 

orientations within experimentally reasonable sintering times.

Under a condition of fixed crystal disorientation the Shewmon 

torque terms cannot act, the grain boundary energy then depends only 

on boundary inclination. This dependence leads fo other types 

of torque terms called the Herring torque terms as will be discussed 

below. The inclination dependence of grain boundary energy is 

conveniently represented geometrically in terms of a '/-plot' exactly 

like in the case of surface energy.

Since the classic treatment of metallurgical microstructures by 

Smith (1948), the interfacesof grains or phases have been considered 

to possess an interfacial energy or an associated interfacial tension 

which acts in all direction in the plane of the interface, exerting a 

'puli' upon the grain edges, and opposed to that of other interfaces 

along their mutual line of intersection. The equilibrium 

configurations that develop in a three-dimensional polycrystalline 

material can therefore be treated as a balancing of interfacial energy 

vectors in the plane of the interfaces, intersecting in a common point 

of reference.

Herring (1951) has treated the general case of intersecting 

interfaces which applies to solid-solid intersections in 

polycrystalline solids, and the intersection of internal Interfaces 

with a free surface (solid-vapour interface). By considering the 

equilibrium condition at a triple junction of resolved interfacial
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energy vectors, he proposed that these vectors can be expressed by an 

equation of the form

where tj denotes a unit vector in the ith interface perpendicular to 

and directed away from the line of intersection; nj = li * tj, where lj

interfacial energy of the ith interface. The associated forces of

performing the cross-product. These forces are the Herring torque 

terms which may be considered as forces which act normal to the 

interfaces (Fig. 2.3) and tend to rotate them toward positions of 

lower energy. Mullins (1963) has shown that this equation is also 

applicable to any number of interfaces meeting in a common line. 

Under certain conditions the Herring torque terms can be neglected, 

then Equation (2.2) reduces to the form of the simple triangle of 

forces which was originally proposed by Smith (1948), that is

o

t
Sin A,

j L
Sin A,

j L
Sin n

(2.3)



Figure 2.3 Equilibrium configuration of intersection of three 

general interfaces. .fl ̂  are the dihedral angles, ^  are the 

interfacial energies and ^ ‘ are the Herring torque terms.



2.4 Bamboo structure

In some cases wire samples are preferred to other geometrical 

types of samples because of the simpler stress system, and because the 

grain boundaries in fine wires are more easily described in the 

geometry of the system, with the result that the grain boundary energy 

contribution can be more accurately determined.

It is well established that one of the main difficulties in 

studying grain boundary properties is the fact that each boundary 

needs five degrees of freedom to describe it. However, to simplify 

the measurements, one can use a ’bamboo structure' wire (Fig. 2.4).

In such a specimen the disorientation across a boundary is fixed for a 

given pair of crystals during the time in which local equilibrium is 

achieved. Thus the problem of describing the boundary reduces to that 

of two degrees of freedom.

A bamboo structure is formed when a fine wire is annealed at 

high temperatures. At such temperatures atomic movement in crystals 

is possible by diffusion. As a result of thermal activation, the 

atoms in the wire are fairly mobile and the grain boundaries migrate. 

Eventually, the wire takes the form at a series of large grains, 

extending across the diameter of the wire and as annealing time 

continues, the boundaries between these grains take up equilibrium 

configurations. The grain boundaries generally do not lie 

perpendicular to the wire axis after the annealing treatment, but 

rather are at apparently random angles to it. Such geometrical 

arrangement of the boundary planes in fact are due to the Herring

torque terms which act on the boundary planes and try to rotate them



Figure 2.4 SEM micrograph showing a "bamboo structure" in a copper

wire annealed at 1000°C in a dry 10% H2: 90% N2 atmosphere.



toward minimum energy positions. Usually the average size of crystals 

in a bamboo structure wire is described by the average length of 

crystals and the diameter of the wire.

2.5 Anisotropies of the grain boundary energy

The experimental observations on grain boundary energies are 

mainly concerned with what is the effect of crystal orientation, 

boundary inclination, temperature and impurities on the energy of 

grain boundaries. Measurements of the boundary energy as a function 

of these parameters provide an important tool on the study of the 

grain boundary structure since the energy of a boundary is one of the 

most useful descriptions of boundary characteristics which can be 

measured relatively easily. Here the anisotropies of the grain 

boundary energy due to those parameters will be discussed. Several 

methods which have been used to measure the grain boundary energy will 

be discussed in the next chapter.

2.5.1 Variation with disorientation.&

The variation of a grain boundary energy with disorientation has 

been studied fairly extensively. This effect on grain boundary energy 

is described by the well-known treatment of Read and Shockley (1950) 

in which the energy expression is derived from the dislocation model
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where k * 0.5 for the [001] twist boundary and (1 - V  ) for the tilt 

boundary, G is the shear modulus, V Poissons ratio, 9 the rotation 

angle, b is the modulus o£ the Burgers vector and A is a constant 

which depends on the core energy of an individual dislocation.

Early measurements of boundary energy as a function of 9 showed 

good agreement with the Equation (2.4), even for angles as large as 

-40° (Read 1953). This was somewhat surprising, because for high 

angle boundaries (0> 15°), the dislocation cores overlap to such an 

extent that the derivation of Equation (2.4) based on linear-elastic 

energy considerations ceases to be valid. It was subsequently found 

that Equation (2.4) does indeed give a good fit to the data for 

low-angle boundaries, and that the apparent fit for high angles is 

fortuitous since it is only obtained by changing the constant E0 and A 

from the values fitted at low angles. This is demonstrated by the 

data for tilt boundaries in copper in Fig. (2.5) (Gjostein and Rhines 

1959). The theoretical curve fit«the data very well up to about 5° or 

6°. If van der Merwe's equation (van der Merwe 1952) is used, the 

experimental data can be described up to about 9°.

In general the ^ - & relations will have several prominent cusps 

at certain disorientation angles which in fact correspond to the 

existence of boundaries of relatively good atomic fit. Two particular 

types of boundary which are characterized by a low energy have long 

been established. The ample evidence for the low energy of low-angle 

boundaries and coherent twin boundaries has been reviewed by Inman and 

Tipler (1963). Little is known, however, on the relations of

high-angle boundaries which are not coherent twins. The shape of this
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Figure 2.5

Variation of grain boundary energy with disorientation for low- 

angle [001] tilt boundaries in copper. Theoretical fits of the 

Read-Shockley equation using either high-angle or low-angle data

»

shown (Gjostein and Rhines 1959) .
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plot is of basic interest as it provides information on the atomic 

structure of the boundaries. In fact, there are experimental 

obscrvo-tior« which show that not all high angle boundaries have the same 

energy and these have been reviewed by Goodhew (1980). He concludes 

that boundaries of locally low energy can often be described in terms 

of CSL orientation relationships and small energy cusps exist around 

many CSL orientations even with high values of £, ; also, there may 

still be low energy boundaries at disorientations not readily 

described by a CSL. The failure to reveal energy cusps in some of the 

earlier studies may have been due to several reasons and has been 

summarized by several authors (Gleiter and Chalmers 1972, Pumphrey 

1976 and Shewmon 1966).

2.5.2 Variation with inclination. 6

There is little experimental information on the directional 

dependence of grain boundary energy. As discussed earlier. Herring's 

complete analysis of equilibrium at three planar interfaces 

intersecting in a line demonstrates the existence of torques which 

tend to rotate the grain boundaries into orientations of lower energy. 

Although this effect is usually neglected in grain boundary studies, 

there are observations which suggest that grain boundary torques are 

as large as those measured for free surfaces.

The cusps discussed in the preceding section were related to the 

curves showing the grain boundary energy versus the disorientation 

relationship. Equally, a plot of the boundary energy versus the 

inclination describes the energy per unit area of a boundary plane
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between two crystals of fixed disorientation when the boundary changes 

its inclination between these crystals driven by the Herring torque 

terms. For a specific inclination this 0 relation may also have 

cusps similar to the & relation. Conveniently, the depth of the 

cusps is characterized by the maximum normalized slope (maximum 

directional torque) of the energy relation, that is

In an older study of metal wires exhibiting a bamboo structure 

Hess (1952) observed that some of the grain boundaries were not 

perpendicular to the wire axis. In such a system, the geometrical 

condition for a minimization of the grain boundary energy is that the 

normalized directional torque ¿ ( S i )  = -tan (f> , where in this case 

<f> was measured with respect to the wire axis. He found that the 

normalized torque terms on random grain boundaries in high purity 

aluminium ranged from 0.10 to 0.29 rad-1, with the majority between 

0.14 and 0.19 rad-1. He also estimated the normalized torque terms on 

the coherent twin boundary in aluminium to be at least 1.7 rad-1.

From studies on boundary morphology in annealed high purity aluminium 

sheet Miller and Williams (1967) found that the grain boundary torque 

varies from zero to about 0.3 rad-1, having a median value of 0.10 

rad-1 and a nodal value of 0.06 rad-1. Gjostein (1969) in reinter­

preting the measurements of Murr (1968), concluded that grain boundary
it wrtorque should be relatively large compared to the ratio ^ (where
lb

is the energy of a coherent twin boundary). Assuming that the energy 

of a random grain boundary is relatively constant, the observed

i
to estimate the grain boundary torque. Basterfieid and Miller (1969)
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showed that the observed wide spread in the energy ratio —*■ could
• b

be accounted Cor by assuming a value oC about 0.1 rad-*- Cor the torque 

oC the grain boundaries. In studies of Caceted high angle <1010> tilt 

boundaries in high purity zinc Cor the disorientation range Crom 31° 

to 36.5° Bishop et al. (1971) Cound that the minimum value Cor the 

normalized torque terms on the facets varies between 0.09 and 0.55 

rad-1.

Gleiter (1970) has studied high angle tilt boundaries in a

copper-aluminium alloy as a Cunction oC boundary inclination. In this

study, a single recrystallized grain at a high angle disorientation

was nucleated to many adjacent subgrains to create a number oC triple
a

junctions. He Cound that the energy of^high angle tilt boundary does 

vary with its inclination, with the symmetrical boundaries having the 

lowest energy. One oC the boundaries studied was approximately at a 

¿3 orientation to the subgrains and a substantial minimum in energy 

was Cound at the symmetrical inclination. The other boundary was at a 

£ 5  orientation and only showed a small minimum at the symmetrical 

orientation. However, the actual magnitude oC torques measured in 

this study are unreliable.

Further evidence which supports the view oC the dependence oC 

the grain boundary energy on boundary inclination is due to the 

experiments oC Masteller and Bauer (1976). In this study the grain 

boundary torque*were estimated from +he displacement oC a boundary in 

high purity aluminium bicrystals. This means that this method is
•iindependent^an attainment oC conCigurational equilibrium. From 

measurements made on certain <110> symmetrical boundaries, they Cound
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that the (111) and (113) twin boundaries are characterized by large 

values of torque at all temperatures investigated, whereas the (112) 

twin boundary is characterized by a large value only at relatively low 

temperatures. They concluded that a qualitative ranking of the 

magnitude of normalized values of torque suggests that the largest 

value is associated with the (111) twin boundary followed by, in order 

of decreasing magnitude, the (113), (112) and (221) twin boundaries 

and the 10° low-angle boundary. In fact, this ranking is in accord 

with progressively decreasing degrees of atomic fit at the boundary as 

predicted from CSL theory. Further, since the magnitude of the 

normalized grain boundary torques is proportional to the depth of the 

cusp in the relations, such cusps, therefore, are consistent with

the significant degree of dependence of grain boundary energy on 

boundary inclination.

2.5.3 Variation with impurity

Segregation of solute atoms to the boundary is especially 

effective in reducing the grain boundary energy. There is some 

evidence (Pumphrey 1976) that the energy of random high angle 

boundaries is reduced much more as the solute concentration is 

increased than the energy of special boundaries, which in turn 

suggests that a preferred segregation of solute atoms at random 

boundaries occurs. In a nominally pure metal, however, the effect of 

solute atoms on grain boundary energy is less or not significant at 

all.

2.5.4 Variation with temperature

Since most techniques which are used to measure the energy of a
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grain boundary are limited to temperatures near the melting point« 

only very little information is known about the temperature dependence 

of the grain boundary energy.

McLean and Mykura (1966) have measured the ratio of coherent 

twin boundary to surface energy in platinum and cobalt over the 

temperature ranges 920°C to 1560°C and 880°C to 1290°C respectively. 

They found that for platinum the ratio decreased from 0.060 at 920°C 

to 0.016 at the melting point, whereas for cobalt the variation was 

less than the experimental error. The temperature dependence of the 

surface energy can be estimated from the semi-empirical Eotvos 

equation (e.g. Hodgson 1972) for the surface tension. The predicted 

coefficient of the surface energy for platinum is much smaller than 

the observed change in the energy. This suggests that the energy of 

coherent twin boundaries varies greatly with temperature.

The thermodynamic treatment of the variation of grain boundary 

energy with temperature indicate* that this in fact is contributed by 

two terms (Gleiter and Chalmers 1972). The first term is the extra 

entropy of a grain boundary compared with the same amount of material 

in the grain interior. The second term comes from the change of the 

solute concentration at a grain boundary as a function of temperature. 

This term exists only for grain boundaries in solid solutions. Both 

terms may be relatively small for special grain boundaries and high 

for random boundaries. Hence the difference in the temperature 

coefficients of the two kinds of grain boundaries should be more 

pronounced in solid solution than in absolutely pure metals.
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CHAPTKR 3: THEORETICAL BACKGROUND

3.1 Methods of grain boundary energy Measurement

Numerous methods have been devised to measure grain boundary 

energies of various types and several reviews of these have appeared 

in the literature (e.g. Gleiter and Chalmers 1972, Hondros 1970, Inman 

and Tipler 1963). In general, the types of experiment performed fall 

into two groups depending on the techniques employed, some give 

absolute values and others produce relative values for pairs of 

interfaces. The latter type of measurements can also be used to 

derive absolute values of one of the energies if the other is known. 

The technique employed in the present work for determining grain 

boundary energies is based on measurements of the equilibrium 

configuration of intersecting interfaces. The experimental 

measurement being made is of the groove angle formed at the 

intersection of a grain boundary with the surface of a specimen.

Other methods will also be discussed briefly. All of these techniques 

will be discussed in terms of the two groups mentioned above.

3.1.1 Relative energies

The methods which are usually used to measure grain boundary 

energies are the relative ones in which the grain boundary energy is 

measured with respect to some standard such as surface energy. At 

high temperatures, rapid atomic movements permit intersecting 

interfaces to approach an equilibrium configuration, consistent with a 

minimum in interfacial energy. Most techniques are based on the 

observation of such an equilibrium configuration and the application
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of Equations (2.2) and (2.3). The basic notion of a triangle of 

forces (Equation 2.3) has widely been applied to various intersecting 

interface arrangements, to yield ratios of interface energies. The 

most commonly used situations are the intersection of three grains, 

grain boundary - surface intersections, coherent twin boundary - 

surface intersections and coherent twin boundary - grain boundary 

intersections.

Aust and Chalmers (1950) prepared tricrystals by controlled 

freezing of molten metal. The sample consists of a bicrystal to which 

a third crystal which has a large orientation difference with the two, 

is added. After annealing at a high temperature the three boundary 

intersection reaches its equilibrium configuration. By assuming all 

the boundaries are perpendicular to the specimen surface, from 

measurements of the angles of intersection, the relative boundary 

energy can then be evaluated using Equation (2.3). Configurational 

equilibrium at twin boundary - grain boundary intersections has been 

studied by a number of investigators, for example, Murr and co-workers 

(e.g. 1969 and 1971), who have used electron microscopy to give 

'three-dimensional' pictures of intersections which thus eliminate the 

need to assume that boundaries are perpendicular to the specimen 

surface.

3.1.1.1 Grain boundary grooving

When metals or alloys are annealed at sufficiently high 

temperatures in vacuum or inert gas atmosphere, the grain boundaries 

will equilibrate with the surface and form a groove along the line of 

intersection of the grain boundary with the surface. The ultimate
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motivation for the formation of the groove is the reduction in 

interfacial energy of the system. Chalmers et al. (1948) were among 

the first to describe this thermal grooving at the intersection of a 

solid-solid interface with the surface as a condition of interfacial 

free energy minimization. Mullins (1957 and 1960) has treated the 

conditions of groove formation theoretically on the basis that solid 

surface energy is independent of crystallographic orientation.

This change in surface profile will take place whenever there 

exists a mechanism by which atoms can be transported at a sufficiently 

fast rate. The possible mechanisms that can contribute to the 

formation of groove profiles are surface diffusion, volume diffusion 

in the solid, volume diffusion in the vapour (or liquid) phase and 

evaporation-condensation. Mullins considered each of these mechanisms 

in turn assuming negligible effect from the others. In practice, it 

would be expected that all four mechanisms operate simultaneously in 

the process of grain boundary grooving, but it is usually found that 

one mechanism is dominant, depending on annealing conditions.

Measurements of groove dimensions and growth rate can be used to

determine the ratios of grain boundary energies to surface energies

and diffusion coefficients from the equation describing groove growth

(e.g. Gjostein 1963). However, because of difficulties in ensuring 
a

that only^ single transport mechanism operates, more reliable results 

are obtained using measurements of the angle formed at the groove root 

in various thermal etching phenomena to determine energy ratios from 

interfacial equilibrium conditions.
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is determined by the application of the Herring equations (Equation 

2.2). For the grain boundary groove depicted in Fig. (3.1), the equi­

librium condition is (resolving forces perpendicular to the general 

specimen surface)

using the symbols as defined in Fig. (3.1). In order to determine 

grain boundary energies from measurements of the profiles of grain 

boundary grooves, certain simplifying assumptions are usually made. 

These are

(i) that the grain boundary is perpendicular to the surface of

i.e. tfp = tfq =■ 'is f - 0
iP ia

and (iii)that the groove is symmetrical.

Therefore, Equation (3.1) then reduces to the simplified form

so that the ratio of the grain boundary energy to surface energy can 

be obtained simply from a knowledge of the dihedral angle D.

Assumption (i) can be satisfied by using extremely thin

the specimen i.e. $ = 0.

(ii) that the anisotropy of the surface energy is negligible

(3.2)

specimens whose thickness is less than the equilibrium grain size at 

the grooving temperature. The grain boundary then tends to line up



Figure 3.1 Equilibrium configuration at the intersection of 

grain boundary with surface showing equivalent forces. Angles 

P and Q are the wedge angles "which can be measured interfero-

metrically.
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normal to the surface. If this is so, assumption (iii) is thus 

unnecessary; otherwise, for asymmetric grooves, the angles P and Q can 

be measured separately. Annealed bulk specimens may not exhibit 

symmetrical intersections in which case, additionally, large unbalance 

torques may exist, arising from the variation of V'j with surface 

orientation and the variation of J* with the orientation of the 

boundary plane (under a condition of fixed crystal disorientation).

As it would be extremely laborious to determine all these parameters 

for a number of individual boundaries, the usual approach has been to 

rely on the fact that, for a large number of random boundaries, the 

torque terms are equally likely to be positive or negative and 

therefore they should not affect the average of a large number of 

ratio measurements, provided there is no marked preferred orientation 

in the specimen.

The accuracy of the method using grain boundary grooveSto 

measure the boundary energy depends mainly on the accurate measurement 

of the groove angle D which may be determined directly on a section of 

the specimen perpendicular to the surface. This technique, however, 

is laborious, and precautions have to be taken to prevent damage to 

the surface cutting and polishing the section. More accurate results 

can be obtained by the use of interference microscopy as described by 

numerous researchers (e.g. Mykura 1954 and 1963, Tolmon and Wood 

1956). The highest accuracy in measuring the groove angle may be 

reached by using the electron microscope to obtain highly magnified 

images of the grain boundary groove (e.g. Inman et al. 1963, McLean

1973).
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The surface torque terms in pure nickel at 1000°C have been 

determined from measurements of the geometry of twin boundary - 

surface intersections (see Section 3.1.1.2) by Hodgson and Mykura 

(1973), using interferometric technique. They found that, except 

within 10° of the (100) pole and 5° of (111) pole, the surface energy 

anisotropy was less than 2% and hence had negligible effect on the 

ratios. They also found that, the average correction to 

individual values of the ^  ratio was 20%, but the effect of the 

surface torque term corrections on the average value of the ratio was 

less than the experimental error in the ratio. However, in their 

studies, anisotropy of grain boundary energy was not taken into 

account since they assumed that the grain boundary runs perpendicular 

to the specimen surface. Possible inclination of the grain boundary 

to the surface can be checked by examining both sides of the specimen, 

but this check still relies on the assumption that the boundary plane 

is flat. Both grain boundary torque terms and boundary inclination

will contribute some error to the ratio.
1.

3.1.1.2 Twin boundary grooving

Annealing twins are a well-known feature of recrystallized 

f.c.c. metals. Mykura (1957 and 1961) first reported on the 

intersection of twin boundaries with a surface in a pure metal, and 

demonstrated that the slope of the if-plot can be determined by 

applying Herring's equation (Equation 2.2) for the equilibrium angles 

at twin boundary-surface intersections. Mykura often observed that at 

the intersection of pairs of coherent twin boundaries with the
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surface, if a groove was formed at one of the junctions, a ridge

formed at the other coherent twin boundary-surface intersection. The

relative magnitudes of the various forces in balance at equilibrium

have a marked effect on the morphology of interfaces (see Section
■fo be.

3.3). The energy of a coherent twin boundary is well known^very small 

( ~ ^ 5 0 ) and may often be smaller than the magnitude of the

surface torque terms due to the anisotropy of the surface energy. 

Consequently, when a pair of twin boundaries is considered (Fig.

3.2), then by symmetry the torque terms at the twin boundary-surface 

intersection will be of opposite sign, and the 'inverted groove' shape 

of one of the twins can occur.

If such a pair of twin boundary-surface intersections (Fig. 3.2) 

is analysed by applying Herring's equation, resolving the forces 

parallel to the twin boundary to eliminate the boundary torque, the 

following expressions result

anal

i .  s Cos A  * 1 * ° * *  6  -  S«w A -  ’iVa s i n  B (3.3a)

i. . - V  Cos a ' -  1H'Cos*' + r f f l ' S iV iA ' f  V k ' s * , * '
>A' i i '

(3.3b)

using the symbols as defined in Fig. (3.2). In order to obtain a 

useful form, it is then necessary to make some simplifying 

assumptions. If it is reasonably assumed that the surface energy is a 

slowly varying function of orientation and because grain Q and grain 

Q' have the same orientation, it follows that



Figure 3.2 Equilibrium configuration at intersection of pair 

of twin boundaries with surface showing equivalent forces

(twin boundary torque omitted) .
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Wo a n d  W* W*'* ) B *e'
lt it also assumed that , where is the average surface

energy. Addition or subtraction between Equations (3.3a) and (3.3b)

followed by suitable algebraic manipulation then yields the expression
Vwhich can then be used to determine the */^ ratios and the surface 

torque terms. This technique has been used by several investigators 

(e.g. Mykura 1961, Hodgson and Mykura 1973).

3.1.2 Absolute energies

Absolute values of the grain boundary energy can be obtained by 

the measurements of dihedral angles between three boundaries or from 

the angle of a surface groove (as described in Section 3.1.1) provided 

that the energy of one Loum/nry or iha. surface energy is known. 

Various methods have been reported in the literature for measuring the 

absolute value of the surface energy of a solid. Among these are the 

zero-creep rate technique (Udin 1952), the capillary depression method 

(Van Vlack 1951), the controlled cleavage method (Gilman 1960), the

helium bubble method (Barnes et al. 1960) and the intersections 
a

between^twin boundary (of known energy) and the surface (see Section 

3.1.1.2). If the absolute value of the surface energy is known then 

the grain boundary energy can then be calculated from the measurement 

of the groove angle.

Astrom (1956) has devised a precise calorimetry technique for 

the determination of absolute values of grain boundary energies. This 

method is based upon the measurement of the total grain boundary
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energy obtained by measuring the energy released during grain growth 

in granules of metals a few millimeters in diameter. While Astrom's 

calorimetric method of measuring grain boundary energy is a very 

attractive one because of its direct approach, it has not been 

extensively utilized by other investigators, primarily because of the 

precision required in obtaining accurate calorimetric results.

Another method of measuring absolute grain boundary energy was used by 

Mullins (1956) who applied a magnetic field to a notched bicrystal of 

bismuth. Because the magnetic susceptibility of bismuth is aniso­

tropic and the grain boundary was trapped at its ends by the notches, 

the applied magnetic field then bowed out the trapped boundary until 

the restoring effect of its tension just balanced the magnetic 

pressure. The grain boundary energy could then be calculated from 

measurements of the boundary curvature on microsections, the crystal 

orientations on each side of the boundary, the magnetic anisotropy, 

and the magnitude of the applied field. Such specialised methods are 

obviously only applicable to a very restricted number of materials.

3.2 Grain boundary faceting

The dependence of grain boundary energy on boundary inclination 

under a condition of fixed crystal disorientation leads in some 

circumstances to the occurrence of grain boundary faceting. Clearly, 

as defined in the introduction, the motivation of the process is to 

reduce the total energy of the system by converting to orientations of 

lower energy. The break up of a grain boundary into segments of 

different orientation is usually referred to as an equilibrium
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facet ing . The splitting of a grain boundary into two boundaries whose 

total disorientation equals that of the initial boundary, with a 

new grain appearing, is usually called a grain boundary dissociation. 

Faceting of this type has to be distinguished from kinetic faceting 

which can occur during the growth of a new grain or phase when slowly 

growing crystal faces become prominent, giving the interface a faceted 

appearance. However, only the former type of faceting will be 

considered here.

Equilibrium faceting at the solid-vapour Interfaces, where it is 

usually termed thermal faceting, has been studied fairly 

extensively and was reviewed by Moore (1963). Much less investigation 

has been made on equilibrium faceting at a grain boundary. The obser­

vation of the faceting of a grain boundary implies that facets (low 

energy boundary planes) exists and such faceting has indeed been found 

in a number of systems on both macroscopic and microscopic scales and 

was reviewed by Balluffi (1979).

The energetics of faceting of a grain boundary can, in 

principle, be investigated graphically using the ^-plot (also called 

the tfulff plot) in a manner exactly analogous to the thermal faceting 

case. Here, the radius vector of the tf-plot represents the 

orientation of the boundary (i.e. the direction of the boundary plane 

normal n) and the magnitude proportional to the grain boundary energy. 

The equilibrium shape of the crystal can then be found through the 

Wulff construction (e.g. Christian 1975). Faceting of a grain 

boundary may then occur when the Wulff-plot contains sufficiently deep 

minima or cusps, and the average boundary inclination corresponds to
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one of relatively high energy. An initial boundary then breaks up 

into low energy facets when the effect of increasing the total area is 

more than compensated for by effects due to the lower energy per unit 

area of the facets.

A systematic method for finding the condition for faceting when 

the ^-plot of surface energy is known has been given by Herring 

(1951). In fact, this is the same for the grain boundary energy case.The. 

Herring criterion for faceting consists of a construction of a sphere 

drawn through the origin of the ^-plot which is tangent to the ^-plot 

at a given orientation of the initial boundary. If the Herring 

tangent sphere lies everywhere inside the tf-plot except at the tangent 

(or contact) point, an initial boundary of the given orientation will 

be stable with respect to a faceted boundary. If, however, the o-plot 

passes inside the tangent sphere at any point, then a faceted boundary 

will be more stable than the initial boundary. Therefore, the Herring 

construction depicts the physical requirement that the singular facets 

(the low-index planes corresponding to the cusp orientations in the 

tf-plot) revealed by faceting have a sufficiently low energy to bring 

about'a reduction in the total grain boundary energy of the system on 

faceting despite the increase in area.

Mullins and Sekerka (1962) have shown vectorially that faceting 

problems can be related to the ^-plot and Wulff equilibrium shape.

Their more generalized treatment confirms the earlier geometrical 

deductions of Herring (1951). They also have defined a polar plot 

called the f-plot. This is the smallest plot that will yield the 

given original Wulff shape under a Wulff construction, that is, it is



-41-

contained in all other 'i- plots leading to the same shape. In other 

words, any ^-plot which lies outside the f-plot will be unstable 

against -faceting. The difference between the ^-plot and the P~plot 

for a given boundary, therefore, gives the maximum reduction in the 

total grain boundary energy that can be achieved by faceting.

The same test for faceting conditions can be made much more 

conveniently using the reciprocal V-plot (the polar plot of ) (Frank 

1963, Meijering 1963). In this case, an 'external tangent plane' is 

used and orientations within the points of contact of the plane on 

this plot are the same unstable orientations as can be found using the 

Herring construction. The great majority of cases of equilibrium 

faceting that have been observed are associated with cusps in the 

tf-plot but this is not a condition for faceting.

The simple example of grain boundary faceting occurs when a

singular facet plane is inclined at an angle oC to the initial grain

boundary plane. By considering Fig. (3.3), where AC represents the

singular facet plane which is crystallographically defined, has an
*•

energy t0 and is inclined at an angle o( to the plane of^initial 

boundary; the plane CE is a (non-low index) continuation facet with an 

energy ^ . The total energy of the faceted boundary can then be 

written as

£fo+ = V» S in  ^ §¡2, *
Sfn P (3 .4)

If the singular plane AC is fixed by the crystal orientation, 

thus, the total energy of the system can change by letting the



Figure 3.3 Section of a faceted grain boundary showing the various 

angles defining the facet crystallography; the low index facet AC 

inclined at an angle o< to the initially flat boundary, the continua­
tion facet CE rotated about D to achieve the equilibrium angle
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continuation plane CE rotate about D to C'E' to achieve the 

equilibrium contact angle 0. By substituting P= ff-* into the Equation 

(3.4) and then differentiating the equation with respect to ^ in order 

to find the minimum value of Etot* this gives

V0 = Cos 0  -  Sin<P ( 3 . 5 )

Therefore, at equilibrium, there is*a definite angle of contact 

between the singular facet and the continuation facet given by
yEquation (3.5) in terms of the relative energy SS and the Herring

> ^torque term rr —  . The angle « does not occur in Equation (3.5)
•f > 0

which means that the contact angle 0 is independent of <X, provided 

that « is in the faceting region (i.e.0>*). If 0< * , then the grain 

boundary will not break up into facets.

When considering a possible rotation of the actual plane away 

from the low index position AC (Fig. 3.3), similar to the rotation of
bjt
>0

index orientation causes difficulty. So by performing a similar 

analysis as was used in obtaining Equation (3.5), the result, there­

fore, can only be represented as an inequality.

> Yà Sin 0 + Cos <f>
*P >0

Equations (3.5) and (3.6) are essentially Herring's equation 

(Equation 2.2) with one of the three interfacial energies equal to

zero. For certain conditions, is small and can be
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neglected, so that Equations (3.5 and 3.6) become approximately

Equations (3.7) and (3.9) were used by a number of investigators 

(e.g. Bishop et al.1971) to estimate the ratio of the facet energies 

of low index to high index facets and the Herring torque terms on the 

faceted boundaries respectively.

Both the Wulff construction for equilibrium shape and the 

Herring criterion for faceting assume that there is a known ^-plot and 

then deduce the equilibrium shape from it. In practice, things go in 

the reverse order, that is, a knowledge of Jf-plots comes from, for 

example, measurements of Herring torque terms which are then 

integrated to give the V-plot (Mykura 1961). The experimental 

measurements are almost always made on specimens which are 

isothermally annealed at a high temperature and then examined at room 

temperature. It is assumed that the high temperature shape can be 

"quenched in" for low temperature examination.

The shape of a macroscopically flat grain boundary will stay 

flat during cooling, provided that the form of the ^-plot is such that 

the faceting condition is not satisfied. The increase in anisotropy 

of the tf-plot with decrease in temperature is such that for a wide

i,- i,Co>* (3.7)

Sin <t> (3-8)

giving (3.9)
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range of orientations, facets will become stable on cooling. The 

stability range for simple facets is, as discussed above, given by 

Equation (3.5). i« Ut- more general case, Gruber (1963) has shown that 

the faceting condition is such that

for facets to be stable. If the inequality is reversed, then an 

initially flat boundary is stable. The range covered by Equation 

(3.10) is usually referred to as a 'spontaneous faceting range'. 

Gjoestein (1963) has shown that Equation (3.7) is equivalent to the

The most frequently observed facet boundary is the first order 

twin (¿3) boundary in f.c.c. metals which very readily facets into a 

common'coherent twin boundary and incoherent twin boundary. Crystal- 

lographically, the coherent twin boundary is the planar interface 

parallel to the (ill) twinning plane, whereas the incoherent twin 

boundary which is not parallel to this twinning plane is also 

frequently planar but the plane of the interface depends on the 

material (e.g. Fullman 1951).

w (3.10)

condition that the magnitude of the slope of a plot of —  (y  a «
versus <K should be greater than unity, i.e.

tX) 1 >1 (3.11)

A grain boundary dissociation has also been observed most 

frequently in the f.c.c. metals. Fullman and Fisher (1951) have noted
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that the dissociation of a grain boundary is possible provided that 

the energy sum of two resultant boundaries is less than the energy of 

the starting boundary. The most commonly observed grain boundary 

dissociation is the second order twin (¿¡9) boundary which splits up 

into two first order twin (^3) boundaries (e.g. Vaughan 1970). It was 

shown that other special boundaries such as £,= 27, 33, 51 and 99 were 

also able to dissociate (Fionova et al. 1981). As a result of 

dissociation low energy special boundaries were formed, most commonly 

including the ¿3 boundary. However, conditions for the process and 

its mechanism are not clear at present. It is not proved for certain 

that new special boundaries in the structure of a polycrystal always 

appear from the dissociation. Nonetheless, a number of mechanisms for 

this process have been proposed (Vaughan 1970 and Fionova et al 1981).

The faceting of grain boundaries has been studied for a number 

of metallic systems of high purity. It is common when the grain 

boundary energy of some grain boundary inclinations has been reduced 

by impurity adsorption, but rare when the specimens are pure. The 

theory of faceting discussed above is independent of the size of the 

facets. When a 'kink energy' for an atom at a point where the 

boundary changes inclination (facet edge) is considered in addition to 

the grain boundary energy, then larger facets are found to be more 

stable than the smaller ones.

3.3 Grain boundary morphology in sheet

When a thin metal sheet is well annealed at high temperatures, a 

number of grains will appear to have a giant size extending through
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the thickness of the specimen due to the recrystallization and grain 

growth processes. A grain boundary groove always occurs along the 

line where a grain boundary intersects the specimen surface. Most 

investigators, while acknowledging the possibility that the grain 

boundary energy may be anisotropic, have usually made the opposite 

assumption, except for such cases as low angle boundaries, where the 

boundary energy is known to vary with disorientation, and twin 

boundaries where the boundary energy must vary strongly with boundary 

direction. However experimental observations have shown that the 

energies of other high angle boundaries do depend upon boundary 

orientation, as briefly reviewed in Section (2.5.2).

Dunn (1966) following Mullins' (1958) earlier analysis, has 

derived an expression for grain boundary mobility in sheet material 

when the driving force for grain growth is supplied by boundary 

curvature and an anisotropy of surface energy. McLean and Mykura 

(1965) have also considered surface energy induced secondary 

recrystallization in platinum sheet and obtained a relation from which 

could be determined whether or not boundaries would migrate under a 

given set of conditions. However, in their studies, the anisotropy of 

grain boundary energy was not taken into account. The anisotropy of 

grain boundary energy (grain boundary torque) is important and must be 

taken into consideration in grain boundary studies since it can have a 

marked effect on grain boundary morphology in sheet.

Consider a stationary grain boundary penetrating a sheet 

specimen for a number of the following simple cases,

(i) If all interfacial energies are assumed to be isotropic, the
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system would attain minimum energy when the boundary was 

perpendicular to the sheet surface.

(ii) If surface energy is alone assumed to be anisotropic, the 

boundary would then become smoothly curved when viewed on a 

plane perpendicular *-o the sheet surface in order to minimize 

the interfacial energy of the system. Mullins (1958) has shown 

that such boundaries (except in the region of triple points) 

should have the catenoid shape developed by suitably anchored 

boundaries, that is the shape assumed by a soap film stretched 

between two parallel circular frames.

(iii) If grain boundary energy (in addition to surface energy) is 

assumed to be anisotropic, the boundary would then attempt to 

straighten and to rotate toward its position of minimum 

interfacial energy, while at the same time attempting to become 

curved as in the case (ii) above. Th«*e phenomena would 

obviously cause complex curvature to be introduced into the 

boundary, as indeed was found to be the case in aluminium sheets 

by Miller and Williams (1967).

Therefore, the anisotropy of both the grain boundary energy and 

surface energy is important in determining the morphology of grain 

boundaries in sheet specimens.
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CHAPTER 4; DISORIENTATION DETERMINATION

Various methods have been used for the determination of the 

crystallographic orientation of single crystal solid specimens. The 

Laue X-ray method is the standard technique for the orientation 

determination of large single crystals (e.g. Cullity 1978), but for 

individual small crystals in a polycrystalline specimen, the selected 

area electron channelling pattern iethni^ue in the scanning 

electron microscope (SEM) is the most useful one. This technique has 

been used extensively in the present work. It seems appropriate, 

before discussing -Hie details of the experimental technique for 

obtaining the s.a.c.p.'s in the SEM and the orientation determinations 

using such patterns, to discuss briefly the general theory and 

applications of s.a.c.p.'s. A detailed discussion on this subject is 

covered in the paper by Joy et al. (1982), who also gives the 

references to the earlier literature.

4.1 General theory, and applications of selected area electron

channelling patterns (a.a.c.p.'s)

The study of crystalline materials in the SEM has been greatly 

advanced by the discovery of electron channelling patterns (e.c.p's) 

from bulk specimens (Coates 1967). These patterns arise because the 

manner in which the incident electron beam is scattered by the 

specimen depends on the angle the beam makes with the crystallographic 

planes within the specimen.

As an electron beam scans the flat surface of a single crystal
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as in Fig. 4.1(a), its angle to the lattice plane changes and thus the 

backscattered signal will vary typically as shown in Fig. 4.1(b).

Major changes in the profile occur whenever the incidence angle @  is 

equal to the Bragg angle i.e. for the values of 6 that satisfy 

the Bragg equation.
2 d  Sin 6 = n > (4.1)

where d is the crystallographic plane spacing, 0 the Bragg angle, n 

the order of the reflection and A the electron wavelength. At point P 

and Q, 0 =0 8» so between these positions the beam incidence angled < 6 3  

and the backscattering signal is seen to be high, while before P and 

after Q,B >0B and the back-scattering signal falls. The 

backscattering signal profile as a function of the beam position 

therefore consists of a bright band of contrast with an angular width 

20b * This is flanked on either side by higher order lines 

corresponding to the 2&b  values obtained in the Equation (4.1) by 

putting n=2,3, etc. The mechanism of contrast formation may be 

explained theoretically by regarding a diffracted beam as consisting 

of two types of superimposed Bloch waves (Joy et al. 1982). Since in a 

real crystal there are many other crystallographic planes running in 

many directions, these contribute analogous changes in signal profile, 

and so complex patterns occur in the image representing the symmetry 

of the lattice about the beam direction. The geometry of the patterns 

is similar to Kikuchi patterns (e.g. Thomas 1970). Tilting or 

rotating of the specimen causes the patterns to move laterally or

rotate respectively, but lateral movement of the specimen does not 

affect the patterns. Although the reflective mode is often used to



Figure 4.1 (a) Changes in the geometry of an incident beam 

during scanning over a flat crystal surface. The incidence 

angle © will vary from being greater than the Bragg angle 0fi 

to being smaller than 0 , and at two symmetric positions P and 

Q, the first-order reflections occur when ft s © b •

Similarly the higher-order reflections occur when 0 =  nftB where 

n = 2, 3, etc. (b) Shows the variation of backscattering signal 

intensity as a function of scan angle 9 results from condition 

in (a) . (Joy 1974) .
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detect channelling patterns, they can also be seen in the emissive and 

absorptive modes.

The great disadvantage of the operating conditions described

thus far is that to achieve a large angle of scan, a low magnification

must be used which in turn necessitates a large single crystal spaomtn

(typically about 3mm in diameter). Consequently it is not suitable

for examining individual grains of interest in polycrystalline

specimens. This limitation can be overcome by using a s.a.c.p. method

where the change in angle of the incident electron beam relative to
*

the lattice plane is obtained with minimal lateral motion of the probe 

occurring. Two methods of producing s.a.c.p.'s have been proposed. 

Coates (1967) suggests that this might be obtained by using a 

stationary electron beam and rocking the specimen. Alternatively, the 

specimen is kept stationary and the beam is rocked about a point on 

the specimen surface. This latter method is the most common technique

used on several types of instruments such as Cambridge Stereoscan and
usinj

Philips. A typical s.a.c.p,of copper  ̂ 30kV incident electrons 
fAeobtained by^rocking beam method, as will be described below, is shown 

in Fig. 4.2. On the pattern are indicated the crystallographic 

orientations of the planes and directions relevant to the pattern.

The electron ray paths in^lower portion of SEM in the normal 

(micrograph) and s.a.c.p. (rocking beam) modes are as shown 

diagrammat ically in Figs. 4.3(a) and (b-d) respectively. In the 

normal mode of operation, the scanning action is performed by using 

two sets of scan coils located between lenses 2 and 3. The angular 

divergence 2« of the final electron probe is controlled by the final



Figure 4.2 A typical selected area electron channelling pattern

(s.a.c.p.) of copper at 30 kV showing crystallographic features of the 

pattern; hkl designates diffracting plane.
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Figure 4.3 Line diagram showing electron optical ray paths in lower 

portion of SEM. (a) normal (micrograph) mode (b) s.a.c.p. mode, in 

focus, (c) s.a.c.p. mode, overfocus, and (d) s.a.c.p. mode, under 

focus (Joy and Booker 1971).



aperture. For the resulting micrograph to be in focus, the final lens 

is adjusted until the electron probe is focussed on the specimen 

surface. In the s.a.c.p. mode, the rocking beam action can be 

achieved by deactivating the lower set of scan coils. Since the 

presence of a small final aperture would restrict the rocking beam 

action, the final aperture slide is usually made to be a large hole.

In this case, the final aperture no longer defines the beam diver­

gence. To limit the beam divergence, a small aperture (~<>Oyum in 

diameter) must be used. This aperture is normally placed at the 

position above the scan coils. The crossover position depends on the 

strength of the final lens. Varying the vertical position of the 

crossover changes the area scanned in the s.a.c.p. mode (Fig.

4.3(b-d). The change in scanned area as a function of crossover 

position can be used to produce a "through-focus series", in which 

the crossover point is sequently placed above, at and below the 

specimen surface (Figs. 4.3 and 4.4).

In Fig. 4.4(a), a x300 magnification micrograph of a typical 

area in a polycrystalline copper is shown. The beam is nearly normal 

to the specimen surface at all points. In the s.a.c.p. mode of 

operation with the crossover point above the surface, a large area is 

scanned, and across this area, the beam-specimen angle changes through 

a considerable angle due to the rocking action (Fig. 4.3(b). Thus the 

grain labelled A in the normal image (Fig. 4.4(a)) can be recognized 

in the s.a.c.p. image (Fig. 4.4(b)). It can be seen that the 

effective magnification of grain A increases as the crossover point is 

brought closer to Lhe specimen surface, and hence the area scanned



( c )  ( d )

Figure 4.4 A typical polycrystalline copper specimen with a small 

twin (labelled A) in the centre of field of view, (a) normal 

(micrograph) mode, (b)-(d) "through-focus series" in the s.a.c.p. 

mode. The "focus" position corresponds approximately to (c).
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decreases. More of the channelling pattern of grain A, located at the 

centre of the image, is observed as the crossover point is brought 

closer and closer to the specimen surface. When the crossover is 

coincident with the surface, the magnification is a maximum; the 

s.a.c.p. of grain A is thus obtained and its orientation relative to 

the beam is found to be about 5° off the [112] pole (Fig. 4.4(c)).

When the crossover point is moved below the specimen surface, the area
***scanned increases and grains surround^ grain A are again observed (Fig.

4.4(d)), but the image is now reversed by 180° from the image of Fig.

4.4(b), since the first scan ray now strikes the left side of the

field first, instead of the right. The through-focus series can be

carried out rapidly, since all that is involved in changing the image

in the sequence illustrated in Figures 4.4(b-d) is to change the

s..engtn of the final lens by approximately O.lamp. The through-focus

series thus provides a rapid means to identify precisely and rapidly

the area from which the s.a.c.p. is obtained.

As discussed above, the selected area from which the pattern is 
A

obtained is^minimum when the crossover is coincident with the specimen 

surface. If the focusing were perfect, this crossover would be 

practically a geometric point and the effective magnification would be 

nearly infinite. However, lens defects, principally spherical 

aberration, cause the crossover to have a finite lateral size. The 

minimum obtainable diameter Dmin of this area is given by

K.n * J C S*3 (4.2)
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where Cs is the final lens spherical aberration coefficient and at is 

the seraiangle of rock. The coefficient Cs is a decreasing function of 

lens excitation, and hence it is advantageous to operate with the 

specimen as close as possible to the pole piece of the final lens, so 

the excitation can be maximized. The interrelationship of the minimum 

selected area size, angle of rock and working distance from the final 

lens has been determined in detail for a particular system by Booker 

and Stickler (1972). The minimum specimen area size from which the 

pattern is arising can be deduced relatively easily when the 

through-focus series is performed as described previously. The 

perfect adjustment produces a pattern from an area of about 5^wm in 

diameter, or even smaller depending on an optimum conditions setting.

The s.a.c.p. technique has been used for a variety of 

applications in material investigations as listed in the papers by 

Davidson (1984) and Schulson (1977). In general, two main types of 

information can be obtained from s.a.c.p.'s. First, from the geometry 

of the patterns, crystallographic orientations, crystal structures, 

lattice parameters, etc., can be determined. These crystallographic 

features can be deduced either by analysis or by comparing the 

patterns with a standard map containing the stereographic unit 

triangle. Second, from the quality of the patterns such as the 

changes in contrast, form and resolution, information can be obtained 

concerning the occurrence of lattice defects at particular specimen

locations



4.2. Experimental technique for obtaining s.a.c.p.'s in the scanning

electron microscope (SBi)

4.2.1 Specimen preparation

High purity copper wire and sheet specimens used in the present 

work were prepared as will be described in Chapter 5 and 6 

respectively.

Since s.a.c.p. comes from relatively near to the surface layer 

(less than lOOnm thick), careful specimen preparation is really 

important. The specimen surface must be as clean as possible and free 

from any mechanical damage. Excessive films, such as oxides, will 

cause a general blurri~ng or loss of contrast of the pattern.

Mechanical damage such as plastic deformation which may be due to 

bending or mechanical polishing leads to line broadening and attendant 

reductions in contrast. It has been reported that if the specimen 

surface has a roughness, a distortion and excessive films SOnm to 

lOOnm in thickness, it is impossible to obtain s.a.c.p. from such area 

of the specimen (Nakagawa 1986). The requirements of a smooth and 

strain free surface are most readily met by chemical or 

electrochemical polishing rather than mechanical polishing. An 

excellent pattern is easily generated when the annealed specimens 

(prepared as described in Chapters S and 6 ) are put in the SZM 
witnout further treatment.

4.2.2 Setting-up procedures

A basic procedure for obtaining s.a.c.p.'s with the SEM has been 

outlined by Joy and Booker (1972). However, the appropriate procedure
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will obviously depend on the type of instrument used. This 

description relates specifically to the Cambridge Stereoscan 250 MK 3. 

When switched to s.a.c.p., the operating mode of the column is quite 

different from normal, so before continuing it will be appropriate to 

make a note here of the notation and the function of the lenses used 

in this mode.

Cj. 1 Current adjusted by the 'spot size' coarse control which 

controls the beam diameter (gun diameter demagnification) 

and also the angular resolution of the s.a.c.p.

C2 : Current adjusted by the 'spot size' fine control, which is 

adjusted so that it produces a beam cross over in the plane 

of the upper scan coils (the lower scan coils are 

automatically switched off when the SEM is switched to the 

's.a.c.p.' mode) and a conjugate point on the specimen 

surface. Adjustment of C2 current focuses the pattern and 

this lens is sometimes known as 'the pattern focusing 

lens'.

C3 : Current adjusted by the 'focus' control which is adjusted 

so that the electron beam pivots precisely on the specimen 

surface. The adjustment of C3 current to achieve this 

condition is at first sight a little complicated and is 

known as setting 'the point of infinite magnification'.

The instrument was also equipped with a backscattered detector 

(BSD) and this is important because for backscattered electrons, the 

image contrast is much greater (40%). The setting-up procedures for 

obtaining s.a.c.p.'s in the particular type of instrument used in this
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work is as 

steps:

( 1)

( 2 )

( 3)

( 4)

( S) 

( 6 ) 

( 7)

( 8 ) 

( 9)

( 1 0 )

( 11)

shown in Fig. 4.5 which can be summarized as the following

The specimen is set normal to the optic axis of the 

microscope (zero tilt) and at working distance (WD) of 5 to 

1 0 mm.

An image is focussed (in normal mode) using C 3 lens 

current. An interesting area is selected and moved to the 

centre of the viewing screen.

A 'small' aperture of diameter about 50um is inserted; the 
setacceleration voltage is^at 40kV (see the problem later) and 

the filament is made to be fully saturated and 

well-centred.

The SEM is then switched to 's.e.p.' (on the 'optibeam' 

control) .

Ci is set to 1 . 0  amp and C2 to 2 . 0  amp.

A normal image is obtained.

Thé 'small' aperture is centred by wobbling 
and focussing in the usual way.

Ci is then set to 1.0 amp and C2 to 0.4 amp.

The gun is aligned by setting the small gun

alignment knobs to zero (both pointing upwards) and the 

knobs of the large gun alignment are adjusted until the 

signal (indicated by the meter) is maximised.

The 'magnification' is set to about X30.

The SEM is then switched to 's.a.c.p.' mode (on the

'optibeam' control)



Emitter

Figure 4.5 Setting-up procedures for obtaining selected area 

electron channelling pattern in the Cambridge Stereoscan 250 MK 3.
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(1 2 ) Ci Is set to 0.7 amp and C2 to 0.4 amp.

(13) The 'point of infinite magnification* is achieved by 

adjusting the C 3 lens current (this was found to be about

1.3 amp when the specimen was at WD = 8mm).

(14) An adequately large amount of contrast is used to obtain a 

good s.a.c.p.

(15) The s.a.c.p. is focussed by adjusting the C2 lens current.

(16) The 'small* aperture is re-aligned by wobbling the C2 lens 

current if the image is desired (optional).

(17) The s.a.c.p. is re-focussed by adjusting the C 2 lens 

current and step (13) is re-checked.

An Instrumental problem
a

To imagers.a.c.p., it is highly desirable to use the maximum 

available electron gun accelerating potential. This has the distinct 

advantage of giving narrower channelling bands 2 © together with higher 

signal levels especially when using the backscattered mode. The 

narrower bands make the orientation determination much easier. In the 

Cambridge Stereoscan 250 Mk 3, this maximum potential is about 40 kV. 

During the earlier stage of the present work, the use of such a 

maximum accelerating potential produced no difficulties. However, 

when a new instrument of the same type was installed, 

considerable instrumental problems arose when using 40 kV. Severe 

discharges in the gun occurred causing further logic circuit problems, 

which meant that a compromise in accelerating potential of about 30 kV 

had to be used for a substantial amount of the work. The setting-up 

procedure given above was similar for all voltages. A later



modification to the anode design enabled higher voltages to be used 

again.

4.3 Orientation determinations using s.a.c.p.'s

4.3.1 The stereographic projection

Since most of our work is dealing with the use of the 

stereographic projection for representing, in two dimensions, the 

three- dimensional relationships between crystals faces, so it is 

appropriate here to discuss briefly its basic properties and general 

features. A detailed explanation on this subject is covered elsewhere 

(e.g. Cullity 1978, Johari and Thomas 1969).

The use of perspective drawings to illustrate the faces 

exhibited by a crystal is unsatisfactory since they are difficult to 

construct and do not yield quantitative information easily. In the 

stereographic projection a sphere is imagined to surround the crystal 

and from the centre of the sphere, normals are drawn to the crystal 

planes. The point at which each normal intersects the sphere is then 

projected back through the equatorial plane, which is the plane of 

projection, to the pole of the lower hemisphere. The points where 

these lines cut the equatorial plane are the stereographic poles of 

the corresponding faces. The stereographic poles of faces whose 

normal cut the sphere in the lower hemisphere will project outside the 

projection of the equator (or primitive circle), but they may also be 

projected inside this circle by using the upper pole as the pole of 

projection.

A complete stereographic projection of some particular set of



poles Is usually called a stereogram. The curves connecting the poles 

are great circles (i.e. circles whose planes pass through the centre 

of the original sphere) or zones. A set of faces whose normals are 

co-planar are said to lie In a zone and the edges formed by their 

intersections are all parallel to a single direction which is called 

the zone axis. It is a property of the stereographic projection that 

all zones project as circles on the stereogram and pass through 

diametrically opposite points on the primitive circle. A small circle 

or projection sphere is the locus of points which are at equal angular 

distances from a point on the sphere. Small circles project as 

circles, but in general the centre of the small circle will not 

project as the centre of the circle on the stereogram.

It is often more convenient to prepare stereograms with the help 

of stereographic nets. A stereographic net is simply a stereographic 

projection of the lines of latitude and longitude of a sphere on to a 

central plane. The most commonly useful stereographic net is the 

Wulff net. This net is available in various sizes, one of which is 

2 0cm diameter graduated at 2° intervals giving an accuracy of about 

1°. The latitude lines on a Hulff net are small circles extending 

from side to side and the longitude lines (meridians) are great 

circles connecting the north and south poles of the net, as also is 

the equator.

In order to construct stereograms with the help of the Wulff 

net, it is most convenient to work on tracing paper over the net, 

using the same scale and centre as the net. Angles between poles are 

measured along the great circles. Thus, to measure angles
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between two poles, the tracing paper is rotated about the centre until 

either (a) the poles both lie on the same meridian, when the required 

angle is the latitude difference measured along that meridian, or (b) 

the poles both lie on the equator of the net, in which case the 

required angle is obtained from the angle scale along the equator.

The zone axis or pole of a great circle can easily be located on the 

stereogram since it is 90° from all points in the zone. The angle 

0  between two poles (hikilj_) and (h2 k2 l2 ) can also be calculated by 

using the formula, for cubic crystals

4.3.2 The Generation and indexing of the unit triangle map

If the zones and poles which make up the channelling pattern can 

be identified and indexed as arising from known crystallographic 

planes, then the orientation of a particular crystal can be 

determined. The simplest way of doing this is by matching the pattern 

from the sample with a reference pattern whose orientation is already 

known. In the case of cubic crystals, this reference pattern is 

usually obtained within the "unit triangle" defined by the [0 0 1]#

[Oil] and [111] poles, which then is usually referred to as a "unit 

triangle map”.

For a given cubic crystal, a unit triangle map can be built up 

by joining together a series of channelling patterns taken from a 

single crystal of the material as it is successively tilted to new

Cor <f> = ♦ Ic, (4.3)
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positions within the unit triangle. For an angle of rock of about 

1 0°, a map can then be assembled from about 15 carefully chosen 

exposures. A map can of course be assembled from a fewer number of 

exposures obtained with a larger angle of rock, but the inevitable 

distortion in the scanning system will bend the lines and bands on the 

pattern and make it difficult to assemble the exposures. Equally, the 

map can also be made from a larger number of exposures obtained with a 

small angle of rock, but in this case, the visibility of detail is 

decreased because of the difficulty of matching up the boundaries 

between exposures.

It might appear, at first, necessary to make a map for every 

particular crystal and accelerating potential of interest. This is 

fortunately not the case. The angles between planes in the cubic 

system are the same for all lattice parameters, so the position of the 

poles on all cubic maps will be the same. However, the visibility of 

any given band or pole will depend on whether the crystal is simple 

cubic, face centred cubic (f.c.c.), body centred cubic (b.c.c.), or 

diamond cubic. There will thus be detailed differences between the 

maps for each of these systems. The appearance of the maps will also 

be a function of the accelerating potential of the microscope and the 

lattice parameter of the specimen.

The channelling pattern obtained from a particular crystal can 

of course be identified by comparing with^different lattice parameter 

but of the same lattice type. However, this method is not justified 

since the detailed structures between the two differ. This is similar

to the case where the pattern and the reference map have the same
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lattice parameter but differ in accelerating potential. A better 

way to identify the unknown pattern is to compare with the reference 

map of the same lattice parameter and accelerating potential. For the 

purposes of the present work, unit triangle maps for copper at 20kV 

and 40kV were generated, as shown in Figs. 4.6 and 4.7 respectively. 

These maps were assembled from a number of exposures taken from 

individual grains in a polycrystalline copper sheet which were 

successively tilted about 1 0° to new positions within the unit 

triangle. Of course, a better way to generate the map is by using 

exposures taken from a hemispherical shape crystal. In this case, the 

mean angle of incidence of the beam to the specimen surface is always 

the same regardless of tilt and such difficulties like uneven 

illumination of the pattern, asymmetric channelling contrast, etc., as 

can be seen in both maps shown in Figs. 4.6 and 4.7, are then 

eliminated. Fig. 4.8 shows the construction of the unit triangle map 

for^f.c.c. system showing major zones and poles which were indexed 

using the following steps:

( i) The major low index poles [001], [Oil] and [111] were 

positioned.

( ii) The important zones were then inserted. The zones which

appeared were those which satisfied the allowed reflection 

rules. For instance, in a f.c.c. crystal, the lowest 

important zones allowed are (111), (200), (220), (311), 

etc., i.e. hkl all odd or all even. The zone (uvw) 

passing through the pole [hkl] must satisfy the Equation

hu * kv lw » 0 (4.4)







bands and poles.
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(iii) The indices of other zones and poles were then identified. 

The pole [hkl] lying at the intersection of the zones (ui 

vi wx) and (U2 V2 W2 ) has indices satisfying the 

simultaneous Equations

hui + kvj + lwi = 0
(4.5)

hU2 +kv2 + 1 « 2 = 0

that is h = (vjW2 - V2W^), k = (w^U2 ~ «2ul) and 1 = (U].V2 - 
ite /ft «/ex

U2V1)• As standard in^Miller^notation, the lowest common 

denominator of the hkl values represents the correct value.

Thus, for example, the (200) and (220) zones intersect at the 

[0 0 2 ] pole and the (1 1 1 ) and (2 2 0 ) zones intersect at [2 2 0 ] 

pole.

4.3.3 Relative rotation between s.a.c.p. and normal micrographs 
tkc

When^ crystallographic orientation of the crystals is to be 

determined using s.a.c.p.'s, both normal and s.a.c.p.'s micrographs 

have to be taken separately. There is a relative rotation between a 

particular crystallographic direction in the s.a.c.p. and the 

corresponding direction in the normal micrograph which occurs because 

of the change in the optical ray paths between the normal and s.a.c.p. 

modes of operation. This ef-fect has been reported for some particular 

types of instruments (Van Essen and Verhoeven 1974, Verhoeven and 

Gibson 1975, Joy and Maruszewski 1975, Davidson 1976). However, the 

magnitude of the rotation varies from one instrument to another as

well as with the exact operating conditions used. It must, therefore,
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be experimentally determined for each microscope to be used, before 

accurate orientation determinations of the crystals are attempted, 

since the correction can be large. The same effect also occurs in the 

Cambridge Stereoscan 250 Mk 3 used in the present work and is reported 

here.

The relative rotation between s.a.c.p. and normal micrographs 

was measured in the following way. A polycrystalline copper specimen 

was set at zero tilt i.e. the specimen surface was set normal to the 

optic axis of the microscope. A particular grain which has a number 

of coherent Ü3 twin boundaries running in many directions was chosen 

and set to be about the centre of the viewing screen. Ordinary micro­

graphs of both sides of the specimen surface which contain this 

particular grain as well as the edge of the specimen were taken. By 

matching the specimen edge, the direction of the boundary plane was 

then determined using the method as will be described in Chapter 6 .

The orientation of this particular grain was then obtained by plotting 

all the <111> poles on the stereographic projection. The orientation 

of the corresponding grain was also determined using the s.a.c.p. as 

will be described in detail in the next section. This work was 

carried out for a number of similar grains at several accelerating 

potentials and working distances.

A possible "tilting effect" between s.a.c.p. and ordinary 

micrograph was also checked. This was done by plotting a particular 

direction of (1 1 1 ) plane, measured from both ordinary and s.a.c.p. 

micrographs, on the stereographic projection with the surface normal 

and the centre of the pattern always coinciding with the centre of the
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stereographic net. As a result, it was found that the corresponding 

poles have the same "tilt angle" (measured in degree on the stereo­

gram). When the relative rotation between s.a.c.p. and ordinary 

micrographs were xaken into consideration, these poles were found to 

coincide. This means that there is no tilting effect between s.a.c.p. 

and ordinary micrograph. In other words, it is always true that at 

zero tilt, the direction of the specimen surface normal is parallel to 

the optic axis of the microscope. This effect was checked several 

times and the same result obtained to an accuracy better than 2°.

There are two types of relative rotation between s.a.c.p. and 

ordinary micrographs. The first type is a variable rotation dependent 

on the working distance. When an angle made between one of the lines 

(or bands) on the s.a.c.p. and any reference directions (e.g. "line 

set" on the display screen) is measured, it is found that there is a 

variation in the angle as a function of working distance. This 

rotation occurs in a clockwise sense as the working distance is 

increased as can be seen in Fig. 4.9. The same effect also occurs for 

the ordinary micrograph. However, the amount of rotation at the same 

working distance for the s.a.c.p. is greater than for the ordinary 

micrograph, thus relative rotation results. The second type is a 

rotation of 180° of the s.a.c.p. with respect to the ordinary 

micrograph. Thus the net relative rotation between the s.a.c.p. and 

micrograph is therefore a combination of these two types of rotation 

which is in a clockwise sense. The result of this effect at 30 kV 

accelerating voltage as a function of working distance and final lens 

(C3 lens) current is shown in Figs. 4.10 and 4.11 respectively. Not
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Figure 4.9 Rotation of s.a.c.p. at 40kV for different "working 

distance" settings (a) 7mm, (b) 9mm and (c) 1 1 mm.
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Figure 4.10 Relative rotation between s.a.c.p. and ordinary 

micrograph as a function of working distance at 30kV. Note that the

relative rotation is in a clockwise sense.
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Figure 4.11 Relative rotation between s.a.c.p. and ordinary

micrograph as a function of final lens current at 30kV. Note that the 

relative rotation is in a clockwise sense.
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much variation of the amount of relative rotation between the two as a 

function of accelerating voltage for the same working distance was 

observed (i.e. less than 2°) as shown in Fig. 4.12. Thus the results 

shown in Figs. 4.10 and 4.11 can also be used if s.a.c.p.'s are taken 

at different accelerating voltages; for example, if s.a.c.p.'s are 

taken at 20 kV or 40 kV instead of at 30 kV.

This rotation effect arises from the presence of stray fields in 

the back bore of the lens in the SEM. The ray paths traversed by the 

beam through this region are different in the s.a.c.p. and normal 

conditions. In general, it would be possible to correct this effect 

by^mechanical or electrical method. However, in practice it is 

simpler to calibrate and allow for the effect without correction at 

the source.

This relative rotation effect must be taken into account when 

accurate absolute orientation determinations are being made, or when 

crystallographic directions of the planes in the specimen are being 

found. However, when just orientations are being compared, as for 

example between two crystals in the same specimen, these effects 

cancel out.

4.3.4 Complete orientation determinations

For many purposes, it is important to define a complete 

orientation of the crystals, particularly when twinning relationships 

or orientation relationships across a boundary are being investigated. 

This can be deduced from s.a.c.p.'s by the following method.

The method consists, in brief, of plotting on the stereographic
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Figure 4.12 Relative rotation between s.a.c.p. and ordinary 

micrograph as a function of accelerating voltage for a given working 

distance. Note that the relative rotation is in a clockwise sense.
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projection the zone axis of one band from the s.a.c.p. together with 

the pole defined by the crossing of this band with one or more 

additional bands. These two poles are then used to plot the positions 

of any other poles desired for the crystallographic analysis. Fig. 

4.13 shows an example of the application of the method to a pattern 

taken from a copper specimen. The bands and poles on the pattern were 

identified and indexed by comparing with the appropriate unit triangle 

map. In order to transfer the chosen band and pole from the pattern 

on to the stereographic projection, it was necessary to locate the 

surface normal and to define one additional reference direction. The 

surface normal of an s.a.c.p. is just the position of the undeflected 

electron beam and corresponds to the centre of the pattern. This 

point was conveniently located from each sequence of the pattern by 

means of a perforated template cut to the shape of the pattern and it 

was always macie to coincide with the centre of the stereographic net 

during the operation. The second reference direction selected for 

this operation was the vertical line running from the top to bottom 

through the centre of the pattern and corresponds to the North-South 

axis on the Wulff net. The appropriate angles and distances which 

define the positions of the chosen band and pole were measured 

relative to the reference directions defined above. For example, as 

shown in Fig. 4.13(b), the angles <f> and y, are measured (to within ♦ 

0 .2°) relative to the centre of the pattern, and the angle 0 (plus 

the rotation correction) is measured (to within + 1 °) relative to the 

vertical line. The linear distances on the pattern were converted 

into angular values in degrees by using the appropriate calibration
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factor (which was determined from the pattern by using the index 

poles ) .

With the notation of Fig. 4.13(b), the (420) zone axis, which is 

normal to the (420) zone, is plotted ©° east of north and (fr° (on a 

great circle) in from the perimeter. With the (420) pole set on the 

east-west axis (equator) of the Wulff net, (127) pole is located 0 °  
west and Y-°south of the origin. Any other desired directions which 

lie in the (420) zone, such as (001) and (122) can then be plotted at 

the appropriate angles from the (127) pole. Care must be taken to 

ensure that these poles are plotted in the correct direction from the 

(127) pole since this last operation defines the third direction 

necessary for the full description of the crystallographic 

orientation. Finally the other poles which are important for 

crystallographic analysis such as .he <1 0 0 > directions can be inserted 

by using standard stereographic techniques. Fig. 4.14 shows the 

stereographic projection of the s-a.c.p. shown in Fig. 4.13(a) 

resulting from the operation described above. It should be recognised 

that the initial choice of the zones and poles for the operation was 

arbitrary, and any other combinations such as (131) and [127] may be 

used. The same result will be obtained to an accuracy set mainly by 

the cumulative error in plotting from the Wulff net as will be 

discussed in Section 4.5.

4.4 Disorientation across a boundary

4.4.1 Rotation matrix

Following Mykura (1980), the relative orientation between two
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crystals can be described by the rotation of one crystal which brings 

its crystal axes into parallelism with those of the other crystal. 

Three independent parameters are needed to define such a rotation. 

There are a number of different mathematical notations available for 

describing rotation (Lange 1967). Following Grimmer et al. (1974), 

the appropriate notation used in the present work to describe the 

orientation relationship between two adjacent grains is the rotation 

matrix.

For a given orientation relation, a 3 x 3 rotation matrix can be 

written as

where the nine elements A^j are column vectors of direction cosines 

between the cartesian axes in one grain and those in the other which 

can be measured as will be described later. The sums of the squares 

of each row and each column are unity. The dot products between 

column vectors are zero, so only three independent parameters are 

involved. By standard matrix procedures it is easily demonstrated 

that the rotation angle 8  is given by

A11 A12 a13
R = A21 A22 a23 (4.6)

A31 a32 a33 l

(4.7)

and the direction of the rotation axis <hkl> is given by

h:k:l » <A3 2 - A23): (AL3 - A31): (A2]_ - A i2) (4.8)

The relative orientation of two cubic crystals can be described
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in 24 different ways, as the three cube axes are equivalent. By 

convention, right-handed coordinate systems are used and the right- 

handed screw direction outward along the rotation axis is the positive 

rotation direction. When the poles of 24 rotation axes are plotted 

onto the stereographic projection, then (in the absence of symmetry) 

one pole falls in each unit triangle. One of the 24 rotation axes 

will (in the absence of special symmetry) be associated with the 

smallest rotation angle 0min. This angle-axis pair is usually chosen 

to describe the orientation relationships.

For C.S.L's of coincidence fraction , the rotation matrix can 

be written as

/ » 1 1 • 1 2 •13

• 22 •23

^  \ «31 •32 •33
where ajj are integers.

To check whether the disorientation between two crystals is a 

C.S.L. or not, the <100> directions of one crystal are measured in the 

coordinate system of <100> directions of the other crystal. These 

angular measurements can be done graphically as shown in Fig. 4.15 in 

which the direction cosines Aij are measured along great circles of

the Wullf net. These values are then written as column vectors in a 3 

x 3 matrix like Equation (4.6). Then, the rotation angle and the 

Miller indices of the rotation axis are computed using Equations 4.7 

and 4.8 respectively. If the leading diagonal contains the three 

largest matrix elements, the angle-axis pair will be the one with the 

smallest rotation angle, otherwise it will be one of the other 23



Figure 4.15 Graphical measurements in the stereographic projection 

of the direction cosines Aij between the <1 0 0> directions of one 

crystal and the < 1 0 0 > directions of the other crystal.
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angle-axis pairs. If the latter is the case« the axes can be 

relabelled (i.e. the matrix permuted) in order to obtain the smallest 

angle and hence the angle-axis pair. Then by checking through the 

table due to Mykura (1980), the corresponding C.S.L. can be 

identified.

The axis and the angle of rotation through which a single 

rotation will cause orientation coincidence of the two grains can also 

be determined by graphical construction in the stereographic 

projection as shown in Fig. 4.16. This axis is defined by the 

intersection of the perpendicular bisectors of the angles between 

corresponding poles. The angle of rotation can then be measured as 

shown in the drawing.

4.5 Accuracy of disorientation determination

The accuracy of disorientation determination using the method

described in the previous section was found to be better than 2°.

This discrepancy of up to 2° was attributable +o several factors.
b u t

Inaccuracy arose during the stereographic analysis,^with careful work 

using 20cm diameter projections, the cumulative errors should be not 

more than 1 °. Electronic aberration leading to "barrel distortions" 

in the CRT display; such distortion can introduce uncertainties in 

orientation determination to 5% or more. The effects of this 

distortion were minimized by performing the stereographic analysis on 

bands and poles which were nearer to the centre of the s.a.c.p. image 

which suffered less distortion. In such a way, uncertainties in the 

angular direction of the bands was generally 0.5° or less, but in the



Figure 4.16 Graphical construction in the stereographic projection 

o£ the axis about which a single rotation o£ angle dp will cause 

coincidence of one crystal with the other..



-72-

case of more diffuse bands it was sometimes as much as 1°. In 

determining absolute orientation using s.a.c.p.'s,ca« should be 

exercised since there is, in general, relative rotation between 

s.a.c.p. and normal micrograph and this effect can amount to several 

degrees as described in Section 4.3.3. Careful measurement showed 

that in the present work, the error due to this effect was never 

greater than 2° and usually less than 1 °.
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CHAPTKR 5: MEASURB4ENT ON GRAIN BOONDARIES IH "BAMBOO STRUCTURE“

COPPER WIRES

5.1 Bxperi ■ental arrangements

5.1.1 Preparation of speciaens

The copper wire used in this work was 99.99% nominal purity and 

of 0.125 ♦ 0.001 mm in diameter, obtained from Goodfellow Metals Ltd. 

Two types of specimen arrangement were employed in order to study the 

crystal and grain boundary orientations. These are the horizontal and 

hanging wires.

The horizontal wire specimens were prepared by cutting the 

straightened wire into several lengths of approximately 30 mm and 

laying them horizontally on a graphite block (Fig. 5.1(a)). This 

block was then placed in a ceramic boat and annealed in a furnace at 

1000 ♦ 5°C in a dry 10% H2 : 90% N2 atmosphere surrounded by a copper 

sheet cover (in order to prevent net evaporation of the specimens).

The furnace used was a split type tube furnace (manufactured by W. C. 

Heraeus GmbH) and the 10% H2 : 90% N2 gas was obtained from British 

Oxygen. In order to obtain a stable bamboo structure, the specimens 

were annealed for 70 - 200 hours.

The hanging wire specimens were prepared using the technique 

similar to the 'zero-creep' experiment. In this technique, a small 

box whose size was approximately 10 x 25 x 40 mm was made by folding a 

piece of the same nominal purity copper sheet. The wire was 

straightened and cut into several pieces approximately of the same 

length as the horizontal wire and hung through a small hole on top of
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Figure 5.1 
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Experimental set-up used for (a) horizontal wires (top 

(b) hanging wires (side view) preparation. The systems were 

ide a furnace and annealed at 1000°C in a dry 10% H2 : 90% N2 

for 70-200 hours.
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the box (Fig. 5.1(b)). A small weight WQ, made from a piece of copper 

sheet of the same nominal purity, was fixed to the bottom of the 

hanging wire in order to keep the wire straight. This box was then 

placed in a ceramic boat and annealed under the same conditions as the 

horizontal wire specimens.

The value of the tensile load WQ (kg. m/sec2) which would just 

counteract the tendency of the wire to reduce its surface area by 

shrinking was found using the simplified expression (Mykura 1966)

W .  (5.1)

where r is the wire radius and is the specific surface energy of 

the solid. For the wire used in the present work, an approximate 

calculation gives WQ « 1 0 -3N. Masses of 50 to 100 ug were used.

5.1.2 Microscopy

The high temperature equilibrium shapes of the specimens were 

then "quenched-in" by cooling to room temperature. The specimens were 

then mounted for inspection in the SEM. It is assumed that the high 

temperature equilibrium shape is maintained during cooling for low 

temperature examination. The disorientation across a boundary was 

determined by using s.a.c.p.'s taken from adjacent individual grains 

in the specimen, as described in Chapter 4. The tilt angle 0 of the 

boundary plane was determined by the method described in the next 

section. The grain boundary groove profiles were measured from highly 

magnified micrographs (Fig. 5.2) taken by using a specimen holder, 

capable of rotating the specimen in the electron beam about the wire 

axis. With care using this method, the groove angles could be 

measured to within ♦ 1 °.



iqure 5.2 A typical SEM micrograph in backscattered mode of a

annealed at 1000°C in a dry 10% H2:in boundary groove in copper



5.1.3 Tilt angle 0 of boundary plane determinations

A typical grain boundary in a bamboo structure wire is assumed 

to be flat and of elliptical shape as shown schematically in Fig. 5.3. 

If A = Tlr2, where r is the radius of the wire, A is the area of the 

boundary plane which is perpendicular to the wire axis (horizontal 

plane), then the area of a grain boundary plane which makes an angle 0  

with the horizontal plane is given by

A
Cos 0

The total grain boundary energy is therefore

(5.2)

e * J i d  ,5.
Cos $

where is the specific grain boundary energy.

As the boundary is at an equilibrium position, the change in 

total grain boundary energy with a small increase in tilt angle d*, 

must be equal and opposite to the change in total grain boundary 

energy due to the accompanying increase in boundary area, that is

>i _
* 0  Cos $ ' /

hence

(5.4)

This relation in fact has been derived by Hess (1952). The left

hand side of the Equation (5.4) is the normalized torque term which



w ir e a x i s

Figure 5.3 A schematic diagram of a "bamboo structure" wire 

defining the tilt angle ̂ , the area of the horizontal plane A =» IT r2 

and the area of the tilt plane wnich makes an angle $ with the 

horizontal plane A^ = A/cos0 where r is the radius of the wire 

(ignoring the depth of the grain boundary groove).



can be determined simply by measuring the tilt angle ^ of boundary 

plane with respect to the wire axis in the following way. When the 

boundary is rotated so that the major axis is perpendicular to the 

line of view as shown schematically in Fig. 5.4(a)» then it is easily 

seen that tan ^ = */D. where D is the diameter of the wire and l is 

the vertical distance as shown in the figure (neglecting the depth of 

the grain boundary groove). Neither l or D changes as the wire is 

rotated, so tan ^ can easily be found for other boundary orientations. 

An example is shown in Fig. 5.4(b). In order to get a good value of 

$, the wires were photographed at 0° and ± 60°, which was achieved by 

rotating the specimen holder in the beam about the wire axis. In this 

way, the value of the normalized torque term could be determined to 

±0.01 in good conditions.

5.1.4 Boundary type determinations

The pure tilt and twist boundaries are defined as described in 

Section 2.2.1. The general grain boundary with the axis of 

disorientation rotation of the two adjacent grains neither 

perpendicular nor parallel to the boundary plane has mixed tilt and 

twist character. The graphical method of determining the boundary 

type is illustrated in Fig. 5.5. The orientation of each crystal was 

determined using the method described in Section 4.3. The stereogram 

was constructed with the centre of the s.a.c.p. micrograph at the 

centre of the stereogram, and with the wire axis as the North-South 

axis of the stereogram. The rotation axis P was found using the 

method described in Section 4.4. The pole 0, which is the pole of the



w ire,,, a x i s

Figure S.4 Normalized torque term determinations; tan = I/O, 

where t is the vertical distance and D is the diameter of the wire: 

(a) the boundary plane parallel to the line of view and (b) the 

boundary plane inclined with respect to the line of view (neglecting

the depth of grain boundary groove).



o  R o t a t i o n  a x i s  
*  N o r m a l  t o  g r a i n  b o u n d a r y

Figure 5.5 Graphical construction in the stereographic projection 

for the determination of the boundary type (tilt, twist): the boundary 

is a pure tilt when «X - 0° and pure twist when 0( * 90° ( 0( is measured

along the great circle PQ).
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boundary plane trace AB (90° away), was plotted from measurements made 

on the geometry of the boundary plane, as described in the above 

section. By measuring the angle« between the rotation axis P and the 

boundary plane trace AB along the great circle PQ, the boundary type 

can be found

C o s1«  s tilt component

or Sin*« = I -C o s e t  3 twist component (5.5)

For a given orientation relationship between two adjacent 

crystals: if the rotation axis P is on the boundary plane trace AB 

(i.e. « = 0), then the boundary is a pure tilt; if the pole P 

coincides with the pole 0, then the boundary is a pure twist; whereas 

if the pole P is anywhere between the boundary plane trace AB and pole 

O, then the boundary is of a mixed tilt and twist type. By using the 

graphical method described above, with care, the boundary type can be 

determined to an accuracy within + 5%.

5.2 Results and discussion

5.2.1 Orientations and Herring torques measured

Of twenty-five grain boundaries (excluding ¿3 boundaries) which 

were fully analysed using horizontal wire specimens, three were found 

to separate adjacent crystals with low angle disorientation, one was 

£, 19b and the others were random high angle boundaries.

Seventy-seven grain boundaries (excluding ¿3 boundaries) were 

fully analysed using hanging wire specimens. Sixteen were low angle 

boundaries. Twenty-seven were CSL boundaries of which five were ¿11, 

three were ¿25b, two each of ¿27b, ¿33a and ¿33c and one each of ¿13b,
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£,17a, ¿19a, ¿19b, ¿21a, ¿27a, ¿29a, ¿29b, ¿31a, ¿31b, ¿37a, ¿41b and 

¿45c. 4

As is generally accepted, the boundary was categorized as a low 

angle type when the rotation angle 6 was found to be less than 15°.

The boundary was classified as special when the relative orientation 

between the two adjoining grains corresponded to any CSL orientation, 

within experimental error (+2°) and when ¿ ¿ 4 5  (i.e. ¿.max)* As 

explained in Section 2.2.3, the ¿max was set because for high values 

of ¿, the rotation angles become so close to one another that it is 

difficult to distinguish between special and random boundaries. 

Consequently, the boundaries which were found to be not in the above 

range were classified as random high angle boundaries.

The much lower frequency of low angle and CSL boundaries found 

in horizontal specimens than in hanging specimens was expected. This 

is probably due to the fact that crystals in horizontal wires are not 

free to rotate into positions of minimum energy because they are 

constrained by the graphite block used during the annealing treatment, 

thus resulting in random boundaries. Crystals in hanging wires are 

quite free to rotate about the vertical axis when the boundary is 

perpendicular to that axis (Pond and Smith (1977) mechanism), but much 

less able to rotate about the two horizontal axes (Shewmon (1966) 

mechanism) as it requires diffusional mass transport and introduces 

gravitational torques (see Section 5.2.2.) to reach equilibrium 

conditions.

The distribution of the normalized (Herring) torque terms 

measured from grain boundaries in horizontal wires is shown in Fig.



5.6(a) and from boundaries in hanging wires in Fig. 5.6(b). The mean 

value of the normalized torque term in horizontal wires was 0.19 +

0.03 rad-1 and in hanging wires was 0.24 ♦ 0.03 rad-1. However, it 

can be seen that, in general, the CSL and low angle boundaries are 

associated with high values of torque, whereas random high angle 

boundaries with low values of torque. Table 1 contains full details 

of typical examples of grain boundaries analysed from both kinds of 

specimens. The details of ¿,11 and ¿25b boundaries are listed in Table 

2 and Table 3 respectively.

One of the 25b boundaries (No. 1 in Table 3) was found to 

incline at 46.6° + 1.5° to the wire axis which has the highest torque 

measured, except for ¿3 boundaries. The orientation of this boundary 

is shown in Fig. 5.7. The other two boundaries have high torques too, 

but the third one was 18° ♦ 2° from the (543) mirror plane (see Table 

3). Of all boundaries analysed in both kinds of specimen, 18% were 

found to rotate toward their mirror planes (<20°), 13% were found to 

incline more than 20° to the wire axis. Only 15% of all boundaries 

analysed were found to be pure tilt and 4% were pure twist type 

(within + 5% experimental error), most of them were mixed tilt and 

twist boundaries with a larger tilt component. This result in fact is 

to be expected for randomly oriented crystals in polycrystalline 

specimens.

One of the most interesting results of this analysis is that the 

¿ 1 1  boundaries were found to be of significant lower energies than 

other special boundaries, except for the coherent twin (¿3) 

boundaries. A detailed analysis of these boundaries will be given in



Figure 5.6 Distribution of normalized torque terms measured in, (a) 

horizontal wires and (b) hanging copper wires, annealed at 1000°C in a 

dry 10% H2 : 90% N2.
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the next section. The commonnest of coherent twin ($3) boundaries in

f.c.c. metals is well known. This type of boundary was studied in

copper sheet specimens as will be discussed in Chapter 6. Nine

boundaries were found to be multiply twinned. Of the higher CSL

boundaries listed above, the £45c is twin-related to ¿15, ¿33a and

¿33c are twins of $11, ¿27a and $27b are twins of ¿9, and ¿21a is a

twin of £.7. This property can be checked graphically or analytically

by using a rotation matrix (see Section 4.4.1).

The distribution of the ratio of grain boundary energy to

surface energy, , for a11 boundaries analysed using horizontal

and hanging wires is shown in Figs. 5.8(a) and 5.8(b) respectively.

These values were computed using Equation (3.2). These evaluations

obviously only give approximate values since both Yfc and ^ were

assumed to be isotropic. Measurements of the anisotropy of in

nickel at 1000°C (Mykura 1961) show that this anisotropy can be as

great as 8% and that surface torques approach 0.3 rad-1 at low index

orientations. Even for more general surface orientations with

relatively low surface energy, the surface torques can be appreciable

in magnitude; for surface orientations having slightly less than 1%

anisotropy in ^  still give rise to torques of 0.05 rad-1. Although
aa*

these are the results for nickel, the results for copper^in fact very 

similar. However, for a large number of random boundaries, the 

surface torques are equally likely to be positive or negative and 

therefore should not affect the average value of a large number of

ratio measurements, provided that there is no marked preferred 

orientation in the specimen used. The grain boundary torque makes no
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contribution to the equilibrium groove shape and hence the ratio of

and provided that the grain boundary is perpendicular to the 

specimen surface. However, when the grain boundary is inclined with 

respect to the surface, as frequently observed in the present work, 

the grain boundary torque will then contribute some significant effect 

to the value of . Nevertheless the values of ratio shown in

the two histograms (Pig. 5.8) give some valuable information on grain 

boundary energies of low angle, CSL and high angle boundaries.

It has been stated that if the grain boundary grooves formed in 

the wires are not opposite to each other, the grain boundaries have 

not yet been equilibrated (Ahmad and Murr 1975). They also said that, 

normally, when the grain boundaries achieve equilibrium, they will 

become normal to the surface and grooves formed in the wire also 

become parallel and opposite to each other. This argument in fact is 

untrue since our result shows that the lower energy boundaries were 

inclined at angles given by the Hess equation (Equation 5.4) to the 

surface of the wire after 70-200 hours annealing.

It has been shown that there is considerable experimental 

evidence for special boundaries retaining their ordered relatively low 

energy structures at the disorientations deviating slightly from the 

exact CSL orientations (Pumphrey 1976). Several criteria for 

estimating the maximum deviation at which a boundary remains special 

have been proposed and adopted. One of the most commonly used is the 

Brandon criterion (Brandon 1966) for which the maximum deviation is 

specified by

AB  s /»•(£.)’ * (5.6)
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In general, his criterion is based on the dislocation core overlapping 

in small angle boundaries where dislocations in the boundary come 

closer to each other with an increasing disorientation. Any such 

criterion is difficult to check experimentally as it is difficult to 

prepare specimens (bicrystals in particular) with predetermined 

deviations from special disorientations. Consequently, the 

characterization of the specialness of a grain boundary using the 

Brandon criterion is in question since it c?n lead to misinterpreted 

results. The value of the maximum deviation given by Equation (5.6) 

for ¿1* 1, 3, 17 and 25 is 15°, -4°, -3.5° and 3° respectively. For 

our purposes, the Brandon criterion is thus not appropriate since we 

are only interested in the exact CSL orientation.

5.2.1.1 Detailed analysis of ¿11 boundaries

There exists a tf-plot for a grain boundary between two adjacent 

crystals of fixed crystal disorientation. The symmetry of the tf-plot 

must be the same as the CSL symmetry. Thus for the ¿11, the symmetry 

of CSL unit cell is orthorhombic (Grimmer et al. 1974, Vlachavas 

1985), for which the three mutually perpendicular symmetry planes are, 

for example, (Oil), (311) and (233).

Of five ¿11 boundaries found, four were within 6°-18° to the 

(311) mirror plane and one was 8° ♦ 2° to the (322) mirror plane (see 

Table 2). The orientation of one of the ¿11 boundaries near the (311) 

mirror plane (no. 1 in Table 2) is shown in Fig. 5.9. The values of 

the torque term of ¿11 boundaries near (311) are shown in Fig. 5.10 

and the grain boundary energy anisotropy obtained (by graphical integ*"«



wire annealed at 1000°C: (a) micrographt(b) and (c) s.a.c.p.'s of the 

two grains and (d) the orientation shown to be ¿11.



F i g u r »  5 . 9 ( d )



near (311) mirror plane. The area under the solid line zero

to 0 is equal to the difference in grain boundary energy of a boundary 

at angle <f> from (311) and a (311) boundary. The torque term for £ll 

boundary 8° from (332) mirror plane is marked by an open triangle.

The area under the broken line gives the difference in energy at (332) 

orientation from those boundaries angle 0 away from that orientation.
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tion) from this torque term curve is shown in Fig. 5.11(a). It can be

seen that the energy of the £ 11 boundary at the (311) plane is 15% +

2% lower than the ¿11 boundary energies away from the mirror plane.

No accurate variation of the torque term and grain boundary energy

anisotropy near (332) and (110) can be deduced because of the lack of

data. If the broken line drawn through the one available point near

the (332) mirror plane, as shown in Fig. 5.10, is used to fit a torque
the

term graph for ¿11 boundaries centred on^(332) orientation, then the 

energy of ¿11 boundary at this mirror plane (obtained by graphical 

integration) is 10% ♦ 3% lower than the energies of £ u  boundaries 

away from it (Fig. 5.11*(b)). There is evidence from the sphere 

sintering experiments that the energy of ¿11 boundary centred on (110) 

orientation is also minimum (Mykura 1979). The (110) section through 

the Y-plot for ¿11 boundary is shown in Fig. 5.12.

In the above analysis, the simplifying assumption was made that 

torque term near^(311) orientation was due to the conical cusp in the 

Y-plot centred on this low index orientation. In some cases the 

assumption of conical cusps centred on low index orientations would be 

quite valid. In other cases, however, it would lead to an error of 

about 30% at some other orientations.

A ¿11 boundary has been reported to be a low energy boundary in 

copper (McLean 1973) and in aluminium (Hasson and Goux 1971). Our 

result for the boundary of the same type in copper annealed at 1000°C 

agrees quite well with the above observations.

5.2.2 ’Kinking* in wires

Some parts of the bamboo structure in hanging wires were found
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to show 'kinking' at some boundaries as can be seen in Fig. 5.13(a).

The occurrence of this geometry can, in principle, be explained in 

terms of the Shewmon torque terms (Shewmon 1966) and the gravitational 

torque (Mykura and Gleiter 1979).

W e  take a Cartesian coordinate system with x and y axes in the 

boundary plane (taken to be normal to the specimen surface) and z axis 

perpendicular to this plane (Fig. 5.13(b)). The Shewmon torque term 

of magnitude A , (where A is the grain boundary area and specifics

the crystal rotation about this axis by the Shewmon mechanism. This

D to E and introduces a gravitational torque mgAy (taking mg to act in 

the z direction), where m is the mass of the wire below the boundary, 

g the acceleration due to gravity and Ay the displacement between the 

centre of the 'top' and 'bottom' boundaries (Fig. 5.13(b)). The 

Shewmon torque will continue to act on the crystal and causes it to 

rotate until it becomes equal to gravitational torque, that is

If the Shewmon torque at the 'bottom' boundary is zero, then

because there is the weight of the bottom wire, the wire will tend to 

straighten back due to the gravitational torque which thus results in

the rotation of the crystal about^x axis) acts about^x axis and drives

a W
(5.7)

'kinking *.



grain boundaries, (b) The terms 

and gravitational torques.



Grain boundary sliding is the relative displacement of crystals

along grain boundaries. This form of motion was found to occur at 
+hlsome boundaries in^copper wires studied. When the weight at the 

bottom of the wire is less than that required for the 'zero-creep' 

condition, then the wire can shorten itself by sliding up an inclined 

boundary (Fig. 5.14). This is energetically favourable as the 

decrease in (surface area x is) is greater than the work done against

gravity.
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CHAPTER 6 ; MEASUREMENT ON SPECIAL BOUNDARIES IN COPPER SHEETS

A number of models have been proposed to explain the formation

of annealing twins in f.c.c. metals (e.g. Kopezky et al. 1985). In

the present work, ¿3 (coherent and incoherent) and £9 boundaries in

copper sheet at 1000°C were investigated. The results of measurements

of Herring torque terms of these boundaries are discussed here. Their
a

tf-plots have been investigated. The criterion for the break-up of^£9 

boundary into two ¿3 boundaries has been examined. The morphology of «. 

£,9 boundary constrained by coherent twin ¿3 boundaries was also 

studied. The £9 rotation matrix is equal to the product of two ¿3 

rotation matrices. The CSL unit cell for £3 is hexagonal, and for £ 9  

is orthorhombic (Grimmer et al. 1974).

6.1 Experimental arrangements

6.1.1 Specimens preparation

The experiments were performed by using 99.99% nominal purity 

copper sheet of 0.05mm and 0.10mm thick, obtained from Goodfellow 

Metals Ltd. The effect of impurity was also studied. For this 

purpose, 0.1mm thick copper sheet 99.999% nominal purity, obtained 

from the same manufacturer, was also used. The sheet materials were 

cut into specimens of about 5mm x 10mm. In order to determine the 

inclination of boundary plane much more easily, by the method 

described in section 6.1.3, the edges of specimens were marked using a 

razor blade. The specimens were then flattened and annealed under the 

same conditionsas the wire specimen (see Section 5.1.1), supported in
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an alumina crucible with a lid of the specimen material to prevent net 

evaporation.

6.1.2 Microscopy

There is no difficulty in cooling the specimens rapidly enough 

so that the high temperature equilibrium shape is retained for 

measurement at room temperature. The specimens were examined 

optically and in a SEM. The disorientation between adjacent grains 

was determined using s.a.c.p.'s taken from each grain as described in 

Chapter 4. In certain cases, the disorientation was obtained by the 

twin-trace technique (Mykura 1958). The grain boundary groove 

profiles and dihedral angles were evaluated from enlarged prints taken 

by using a Baker interference microscope (Hodgson 1972). The wedge 

angles were measured to an accuracy of better than ♦ 10%.

6.1.3 Tilt angle 0 of boundary plane determinations

When a ¿3 twin has an incoherent boundary (as at B in Figure 

6.1(a)), then the area perpendicular to the coherent boundaries A1A2 and 

the specimen surface is the minimum area for the incoherent boundary. 

If this surface is not the local minimum energy interface for the 

incoherent ¿3 boundary, then it will rotate due to the Herring torque 

terms. The Hess relation (Equation 5.4) will apply, as the two 

coherent boundaries are at a fixed separation and the specimen thick­

ness is fixed. The normalized (Herring) torque term could then be 

determined simply by measuring the tilt angle ^ of the boundary plane 

as described below. In order to make measurements easier, almost all
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boundaries chosen for investigation were near to the specimen edge.

By matching the edge of the specimen from photographs taken on both 

sides of the specimen surface, the distance d between^boundary trace 

on the front surface and the projection of the trace of the same 

boundary on the back surface of the specimen (Figure 6.1(b)) could 

then be measured. The specimen thickness t is already known. So the 

inclination angle <f> between the boundary plane and the specimen 

surface could then be evaluated from the expression

ian 0 = 1  (6 . 1)
d

When the interesting boundary was quite far away from the edge 

of the specimen, it was difficult to photograph it and the specimen 

edge together. However, the inclination of the boundary could still 

be determined provided that the directions of^3 {ill} plane normals 

were known (from the orientation of that grain which was obtained by 

using s.a.c.p.).

With care, using the method described above, the tilt angle 0 of 

fA« boundary plane could be determined to an accuracy better than ♦ 3°.

6.2 Condition for a boundary (like B in Piqure 6.1(a)) not to

migrate

The various possible driving pressures for grain boundary 

migration have been discussed by Stuwe (1978). If two crystals have 

different free energies, then the boundary separating them will move 

in a direction which will increase the size of the lower energy 

crystal. The movement of the grain boundary occurs by a diffusional



Figure 6.1 (a) SEM micrograph of a polycrystalline copper sheet

annealed at 1000°C showing: A = coherent ¿3 {ill} planes, B = 

incoherent twin boundary at the end of A, C * step of incoherent twin 

boundary along the side of Ajand D = ¿9 boundary; (b) A schematic 

section of the sheet defining the terms used for the determination of

boundary inclination.
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motion of atoms across the boundary.

The ¿3 twin band which runs across a grain can be regarded as 

being a stable configuration, as both their ends are anchored. When a 

£ 3  twin band ends within a grain (as at B in Figure 6.1(a)), the 

condition whether such a boundary may migrate or not is given by the 

balance force equation which can be written as (ignoring the torque 

terms for a moment)

The effective pressure across the end of the grain (boundary B) is

sufficiently small, then boundary B can be regarded as being 

stat ionary.

The ¿3 twin Q that ends within a grain may disappear during 

annealing by migration of the incoherent boundary at its end (boundary 

B). This may occur if the width w of the band A1 A2 is much smaller 

than the specimen thickness t, so will dominate and the boundary 

will migrate. The condition for the local stability of the steps of 

incoherent twin boundary along the side of coherent £,3 twin boundaries 

(as at C in Figure 6.1(a)) is given by the surface energy term in

band A 1 A2 and t is the specimen thickness. The value of is well 

known to be very small ( —'1 3 0.01 (Robertson and Shewmon 1962)).

F/A, where A is the area of the boundary plane. If this pr< is

Equation (6.2).
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6.3 ¿2. boundaries

6.3.1 Results and discussion

The £.3 twin boundaries selected for investigation were those 

which appeared on both sides of the specimen surface. They were 

assumed to be stationary. It is also assumed that the boundary plane 

is a flat interface.

Twenty-seven ¿3 twin boundaries which have incoherent twin 

boundaries at the end of coherent £3 twin boundaries were analysed.

Of these boundaries, sixteen were measured from 0.10mm thick copper 

sheet of 99.99% nominal purity, five were measured from 0.05mm thick 

copper sheet of the same nominal purity, and the rest were measured 

from 0.10mm thick copper sheet of 99.999% nominal purity.

The incoherent twin boundaries at the end of coherent £3 twin 

boundaries were usually observed to facet into two segments (see 

Figure 6.2). Figure 6.3 shows the orientation of one of the £3 twin 

boundaries appearing in Figure 6.2. The orientations of the two 

segments of incoherent twin boundary (lettered X and Y) are also 

shown. The full details of 8 typical groups of incoherent £3 twin 

boundaries are listed in Table 4.

If it is assumed that the incoherent £3 boundary is in the

minimum area orientation (i.e. perpendicular to the specimen surface

and to the coherent (ill) planes), then the orientation of the

incoherent boundary, as deduced from the crystal orientation, would be

as shown in Figures 6.4 and 6.5. These boundaries were found not to

be in the minimum area orientation, as they were observed to facet and 
io ie.
^inclined at angles which we assume are given by the Hess relation

(Equation 5.4).



Figure 6.2 (a) and (b) SEM micrographs of front and back surfaces

of copper sheet specimen annealed at 1000°C, (c) the trace of one of 

the ¿3 twin systems when seen from (a) with (b) in the proper 

position, as seen through the specimen; X and Y are the two segments 

of incoherent £ 3  twin boundary.





b o u n d a riq u ■; m rograph the

appearing in Figure 6.2 and the corresponding s.a.c.p.'s



.5L

Figure 6.3 (b) The orientation of the £3 twin boundary shown in

Figure 6.3 (a). The orientations of the two segments of incoherent 

twin boundary (lettered X and Y in Figure 6.2) are also shown, 0 would 

be the orientation of the incoherent twin boundary if it is 

perpendicular to the specimen surface and coherent £3 {ill} planes.
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Figure 6.S Distribution of the incoherent ¿3 twin boundaries if 

they were perpendicular to the coherent ¿3 (ill) planes and specimen

surface.
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From all the incoherent ¿3 twin boundaries analysed, 85% were

found to have orientations along <110> zones (Figure 6.6.)- Only 11%

were found to lie on the common (211} planes. Most of them are

clustered around a {322} orientation of one grain and {11.44}*

orientation of the other grain (shortly written as {322}]_/{ll.44}2).

This orientation is about 8° from a common {211} pole. The low 
found

frequency^for {2 1 1 } planes as incoherent twin boundaries indicates 

that such interfaces may also be expected to be marginally unstable 

against faceting.

The occurrence of such clustered orientations may be regarded 

os bein^ due to two mutually perpendicular types of torque term. The 

first torque acts on the vertical plane and rotates it toward a common 

{211} pole along a common <111> zone. The second torque then acts on 

this plane and rotates it along <110> zone away from a common (21l) 

pole. However, in an actual case, these two torques may well act 

simultaneously.

None of the incoherent ¿3 twin boundaries analysed were found to 

have a {110} orientation. The smallest angle between adjacent {110} 

planes that are common to twin crystals is 60°. All the assumed 

vertical planes, including the largest one which is 25° away from a 

common {211} pole, were found to rotate toward a common <110> zone, 

rather than to a common {110} pole. It is assumed that this is due to 

the energy of £3 twin boundary at the {211} orientation being lower 

than the energy of the incoherent boundary at the (110} orientation.

In fact, we deduce later in the next section that 2^10 > 1.15^211 £or 

¿3 boundaries.

•Miller indices greater than 9 are followed by a dot, for example, 
(11,4,4) is written as (11.44)
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The plot of the Herring torque term for incoherent ¿¡3 twin 
iWc

boundar/e* against the angle from£<110> zone is shown in Figure 6.7. As 

the £3 unit cell, and therefore the /-plot, is hexagonal, then the 

{110} planes in the unique <111> zone are mirror planes. Therefore 

these <110> zones are maxima or minima in the /-plot. As the 

incoherent plane rotates toward the <110> zone, the /-plot must have a 

minimum there. A cusped minimum is consistent with our results and 

the torque terms for such a cusped minimum <\n shown in Figure 6.7.

The orientations of the steps of incoherent twin boundary 

alongside a $3 boundary (as C in Figure 6.1) were also investigated.

It was found that all of them were, within experimental error, 

parallel to the incoherent twin boundary at the end of coherent £ 3  

twin boundary in the same grain.

The results from the specimens of nominal purity 99.99% and 

99.999% were indistinguishable, so impurities at this level have 

negligible effect.

The possible objections that may be raised to the technique used 

in determining the orientation of the boundary plane is that it is 

necessary to assume that the boundary is in an equilibrium 

configuration and that it has a flat interface. The latter could be 

checked by sectioning the specimen, normal to both surface and grain 

boundary trace. However, this difficult operation was not attempted. 

The grain boundary examined may not yet be in a local equilibrium 

configuration, as it may still involve in the kinetic process due to 

the Mullins' (1958) grain boundary groove anchoring. However, it 

would be expected that the occurrence of such situations would lead to
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random scatter in the observations, rather than a systematic error.

The crystallographic plane of the incoherent twin boundary 

depends on the material. Our observations in copper at 1000°C appear 

to be quite consistent with the observations made by Fullman (1951). 

His observations on copper, after a prolonged anneal at 1040°C +Kat 

these interfaces were opproxi«v><»*el«j {113)i/(335}2 • These two 

planes however are not exactly parallel and make an angle of about 5° 

with each other in the twinned £3 structure (see Table 5). The 

{322}i/{11.4 4 ) 2 planes of incoherent ¿3 twin boundaries found in the 

present investigation lie between the planes quoted by Fullman.

Sargent (1968) has reported that these interfaces in aluminium r\»-e 

(711)i/(155) 2 and {21l}i/{21l}2. The latter type has also been 

reported by Goodhew et al. (1978) in thin film bicrystals of gold and 

by Matthews (1962) in evaporated silver specimens. Incoherent twin 

interfaces in a 78% Ni-Fe alloy have been reported by Dash and Brown 

(1963) to be (531)i/(351)2 # (ll0)i/(ll0}2 and (533}i/{l7.77)2. The 

{I10)i/{110}2 type has also been reported by Vaughan (1970) in an 

austenitic stainless steel. He also found in the same specimen the 

incoherent twin planes of the type {l3.55)i/{ll.77)2-

6.3.1.1.^-plot and f-plot

When the disorientation between two adjacent crystals is well 

defined and fixed, then the only anisotropy of grain boundary energy 

is associated with the orientation of the boundary plane. It is 

convenient to represent this anisotropy by means of a V-plot. When 

the grain boundary energy is sufficiently anisotropic, it is possible



TABLE 5: Typical sets of parallel plane on a common 

<110> zone in ¿3

parallel plane on 
a common <011> zone

Angle from [211] pole 
along <011> zone

[511]1/[111J2 19.47°

[411]j/[877]2 15.79°

[31.88][766]J 15.21°

[26.77]1/[655)2 14.42°

[722][544]2 13.26°

[16.55]x/ [433]2 11.42°

(311]j/[755]2 10.02°

[11.44][322]2 8 . 05°

[833]j/[20.13.13]2 7.33°

[522]x/ [13.88]2 5.77°

[17.77]x/ [533]J 5.05°

[ 73 3 ] / [ 1 9 . 1 1 . 11 ] 4 . 0 4
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for a high energy boundary to decompose into facets of other 

orientation. According to Herring (1951), the condition that an 

interface be stable thermodynamically is that the orientation must be 

contained on the equilibrium shape. Thus, if a grain boundary facets, 

it is only for the facet orientation that the grain boundary energy 

can be measured. For orientations which disappear on faceting, the 

P-plot represents the minimum possible value of the )f-plot (see 

Section 3.2).
To construct the r~plot for ¿3 boundaries, we start with the 

well-known deep cusps at <111>. The energy of the coherent (111) ¿3 

can be measured in terms of A 11/^ (Figure 6.8), which gives results 

of 0.013 ♦ 0.004. Using a value of Vs= 1.78 Jm-2 (Murr 1972) gives 

^111 * 23 ®J®_2- The sharpness of the cusp can be estimated, by 

analogy with a small angle boundary, in terms of an array of partial 

dislocations, which rotate the boundary plane away from (111). This 

gives the torque terms at (111) to be approximately equal to

E/b, where E is the dislocation line energy and b is the Burgers 

vector. Choosing the values for copper of E * 2 x 10"9 Jm”1, b a* 

10"10m and - 20 mJm“2 gives ^^jttlOOO rad"1, which is so

large that faceting is inevitable (see Section 3.2).

The energy of ¿incoherent ¿3 boundary (which will be

approximately the same for jfcll or ^322/11.44) can *9*ln be measured 
J

in terms of (Figure 6.9). This ratio is about 0.24, which gives

^211 - 430 mJm"2 (or rather ^322/11.44)• This enables us to draw the 

(011) section through the ¿3 f-plot, as shown in Figure 6.10(a); the 

dotted line is drawn because the energy at^(211) orientation is not



( a )

(Magn. x8 00 )

Figure 6.8 (a) Optical micrograph showing a typical pairs of

coherent ¿3 twin boundary in copper annealed at 1000°C* (b) 

interferogram of (a), (Hg light, fringe height - 0.29/*m).



Figure 6.9 

boundary in

(b)

(a) Optical micrograph of a typical incoherent £3 twin
interferogram of (a),

(Hg light, fringe height * 0.29^m).
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reliable.

The (111) section of the T-plot can be estimated from the fact 

that all the measured incoherent ¿3 boundaries rotated to the <110> 

zone (see Figures 6.4 and 6.6). Though none of our specimens had an 

initial orientation exactly on {110}, the boundary within 5° from 

(110} rotated toward {211}. We therefore assumed that the /no is so 

large that it is not part of the /-plot. The (111) section of the 

Wulff shape therefore consists of a hexagon, as shown in Figure 10(b). 

From this plot, it can be shown that (1̂  1*155 (i>e- 1/cos30°)‘
In three dimensions, the form of the ¿3 p-plot looks like a corrugated 

doughnut, with a central depression, which is not quite a hole.

6.4 £,9 boundaries
£.9 can be considered as two successive ¿3 twinnings on different 

(ill} planes. The /and fplots for £ 9  have orthorhombic symmetry.

As the £ 9  relation is the product of two ¿3 relations, a ¿9 boundary 

can break up into two ¿3 boundaries. For this to be energetically 

possible, the ¿9 energy of any given direction must be greater than 

the sum of the two £ 3  energies in the same direction. As we know the 

¿3 r-plot (Figures 6.10(a) and (b)), we can add together two £ 3  

r -plots in the proper orientation relation. This has been done in 

Figure 6.11.

The mirror planes for the ¿9 unit cell are (110), (114) and 

(221), as shown in Figure 6.11. If a hypothetical £ 9  /-plot were 

spherical (as in Figure 6.11), then the region where the £ 9  plot is 

inside the sum of the two £ 3  plots (as at A in 6.11) represents the



[111]
( a )

Figure 6.10 (a) (Oil) and (b) (111) sections through the f-plot and

the Wulff shape for the £3 twin boundaries. Scale: 10mm = 86 mJm-2.





[2 2 1]

Figure 6.11 (b) (114) section through the £9 I"*-plot obtained by

adding together two £3 p-plots in the [llO] and [221] directions and

then drawing an elliptical £3 *■ ¿3 jf-plot through them. Scale 10mm = 
-2172 mJm .
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region where a ¿,9 boundary is stable. Where the jf9 plot is outside 

the sum of the two £3 plots (as at B in Figure 6.11)» the £ 9  boundary 

is unstable and will dissociate into two ¿3 boundaries.

Whereas the incoherent ¿3 boundaries (as at B in Figure 6.1) are 

free to rotate» the £9 boundaries are anchored at one or two lines 

formed by the intersection of £3 {ill} planes (Figure 6.12). The ¿9 

boundaries fixed at both ends by lines in the <110> direction can be 

flat or curved. If they are flat, their orientation must be on the 

<110> zone. If they are curved (twisted) (Figure 6.13), the direction 

of the bending gives the direction of the Herring torque term. The 

other possibility is that the ̂ 9 boundary can break up into two £ 3  

boundaries, as discussed above.

6.4.1 Results and discussion

As for £ 3  boundaries, only those ¿9 boundaries which appeared on 

both sides of the specimen surface were fully analysed.

Of fifteen macroscopically flat i, 9 boundaries measured, six were 

found to have interfaces parallel to a common (221) plane, four were 

oriented parallel to a common (114) plane (one of these is shown in 

Figure 6.14), one was found parallel to a common (110) plane, two were 

found to have inter facial planes of the type {111}\/[115)2 * and one 

each of the type {77l)i/{557}2 (see Figure 6.15) and {447}1 /(0 0 1)2 •

Many more £ 9 boundaries, which show a straight trace on one 

surface, have been observed in the specimens studied. However, they 

were not visible on the other side of the specimen, so the direction 

of the boundary plane could not be determined by the method discussed



Figure 6.12 SEM micrographs showing the anchored ¿9 boundaries, (a) 

at one end and (b) at both ends, formed by the intersection of 

coherent ¿3 {ill} plane*. In (a), the other end of the £9 boundary 

intersects with a high-angle boundary which can move.





Figure 6.14 (a) and (b) SEM micrographs showing the same

macroscopically flat £9 boundary on both sides of the specimen 

surface. AC = £3, AB * £ 3 and BC = £ 9 . (c) the trace of the

boundaries when seen from (a) with (b) in the proper position, as seen

through the specimen.





Figure 6.14 (d) The orientation of the £ 9 (114) i/< 114 >2 boundary 

appearing in Figures 6.14 (a) and (b). O would be the £9 boundary 

plane if it were perpendicular to the surface.
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above. However, by judging from the direction of their line of 

intersection with the surface, most of them also lie in the common 

<110> zone.

The occurrence of the (110), (221) and (114) interfaces of the 

£9 boundaries is connected with the fact that crystallographically 

(110), (221) and (114) are the three mutually perpendicular symmetry 

planes in the £9 relation. They have highest, but different planar 

density of coincident sites(Andreyeva 1980). The observation of the 

£ 9 boundaries which have interfacial planes of the type {lll}i/{ll5}2 

Is consistent with those of Vaughan (1970) and Sukhomlin (1982).

Triangular twins have been observed to occur quite frequently at 

some £9 boundaries in the specimens studied (figures 6.15 and 6.17). 

The crystallography of these twins is such that they are bounded by 

two coherent £ 3  {ill} interfaces and one incoherent £,3 interface. If 

the latter is parallel to a common (211) plane then these triangular 

twins will have a prismatic shape with a <110> direction. Such 

triangular twins are visible on one side of the specimen, as can be 

seen in Figure 6.15, but they are not visible on the other side of the 

specimen. On the latter side, only a faceted ¿,9 is visible. Inside 

the specimen, the ¿¡9 boundary in Figure 6.15 is thought to be as shown 

in Figure 6.16. The £ 9 boundary of the type {77l)i/{557)2 does not 

split up. But when the direction changes it splits into two £ 3  

boundaries. Therefore, the reaction £ 9  5* ¿3 + ¿3 can occur,

depending on the spatial orientation of the boundaries, which exerts a 

direct influence on the energies of the boundaries. Obviously, as 

discussed above, in directions where the energy of a £ 9 boundary is



Figure 6.15 (a) SEM micrograph showing facets of ¿9 boundary, (b)

SEM micrograph on the other side of (a) showing the break-up 

(triangular ¿3 twins) and non break up of the £,9 boundary, (c) The 

trace of the boundaries when seen from (a) with (b) in the proper 

position, as seen through the specimen.





Figure 6.15 (d) The orientation of the ¿9 (771}i/(557)2 boundary

appearing in Figures 6.15 (a) and (b).



Figure 6.

A — ¿ 9
g r a i n  C I g r a i n  B

/ / Z 3 - £ 3

v e r t i c a l  s e c t i o n  a t  Q Q

s u r f a c e  ( a )

• s u r f a c e  ( b )

16 Vertical sections at PP and QQ through specimen shown in

Figure 6.15 (c).



Figure 6.17 (a) SEM micrograph showing typical triangular ¿3 twins

at the £.9 boundary in copper annealed at 1000°C. (b) The triangular

twins and £9 boundaries appearing in the contaminated area in (a), (c) 

The crystallographic of the £9 boundary and triangular twin.
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great e r than the total energy of two f*3 boundaries, it will break up 

into two £ 3 boundaries.

If the incoherent boundary in the split £ 3  + ̂ 3 boundary is 

{322}i/{ll.4 4 ) 2 (Figure 6.17), then instead of prismatic grains, the 

triangular grains will be tetrahedra and the general orientation of 

the £,9 boundary will be tilted away from the <110> zone.

Our observation of triangular twins IS in fact consistent with 

those of the other investigators. For example, twin triangles have 

also been observed by Vaughan (1970) in stainless steel, by Goodhew et 

al. (1978) in thin film bicrystals of gold, by Howell and Bee (1978) 

in pure copper,stainless steel, 70/30 brass and nickel-base 

superalloy. Following Dash and Brown (1963), Vaughan has suggested 

that the triangular twins are formed due to the interaction between 

two £3 boundaries, rather than by the dissociation process.

As for the £,3 boundary, the energy of the ¿9 boundary can again 

be measured in terms of (Figure 6.18). Using this method, we
V»*« /  / 'i nt/ /

obtained that >'is = 0,22 - °-02' / *s= °-23 ± °-02 and
'̂ ni/nS ! =  0.24 + 0.02. Using the value of 1.78 Jm~2 (Murr

1972) gives 392 mJm-2, V(|lf = 410 mJm*2 and 'tm/il? » 430

mJm-2 (all + 10%). The effective "¿9" (i.e. i>3 +¿.3) boundary energy, 

when assumed to consist of segments of (ill), {ill} and 

{322}j_/{ll.44}2 prisms, as shown in Figure 6.17, can be calculated to 

be 0.2S expressed as Because the length of the trace of the £ 9

{771)i/(557}2 and $9 (447)i/{00l)2 is short, so it is difficult to 

obtain their interferojroms • However by using the faceting theory, 

and assuming reasonable torque terms, we can then calculate that



Figure 6.18 (a) Optical micrograph of a typical £.9 boundary in 

copper annealed at 1000°Cj (b) interferogram of (a), (Hg light, 

fringe height * 0.29yum).



-99-

0.25 and

be 0.08 and 0.02 rad-1 respectively). Using the measured and the 

calculated energy values above, we can then replace a hypothetical^ 9

The morphology of these boundaries is rather complicated as they were

observed to curve toward one grain on one side of the specimen surface

and toward the other grain on the other side of the specimen surface

(Figure 6.20). Such curvature of the boundary causes difficulties in

determining an average direction of the boundary plane. However, from

all the boundaries measured, by judging from their average

inclinations and the direction of their line of intersection, three

interfaces were found to lie approximately parallel to a common (221)
p afXtlfa t

plane and the other two interfaces lie approximately^to a common (114) 

plane. The existence of such complex curvature of the £ 9 boundaries 

is expected to be due to the action of grain boundary torque and 

surface energy anisotropy (Miller and William 1967).

V—plot, as drawn in Figure 6.11, with the ¿,9 )f-plot consistent with 

these measurements as shown in Figure 6.19.

Five macroscopically curved£ 9  boundaries have been analysed.



Figure 6.19 (110) section through the £,9 ^-plot. The dotted line

represents the unknown energies. Near the l111Ji/[115)jorientation, 

the boundary breaks up into facets consisting for example of section 

of ¿9 [771Ji/IS5 7 J2 and two £ 3  of [111)i/[115)2 • Scale: 1 0mm = 86



Figure 6.20 (a) and (b) SEM micrographs of front and back surfaces

of copper sheet showing a complex curvature of £9 boundary. (c) The 

trace of the boundaries when seen from (a) with (b) at the proper 

position, as seen through the specimen.





Figure 6.20 (d) The orientation of the curvei

in Figure 6.20 (a) and (b).

>d £ 9 boundary appearing
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CHAPTER 7 ; GENERAL CONCLOSION

Selected area electron channelling patterns (s.a.c.p.'s) are 

easy to generate in the scanning electron microscope (SEM). They 

offer, rapidly and conveniently, detailed crystallographic information

about the specimen from chosen areas of the sample. The most obvious 
use

and widespread ̂  of these patterns is for the determination of 

orientation of crystals. However, there is a relative rotation 

between the s.a.c.p. and the normal micrograph. In the Cambridge 

Stereoscan S 250 MK 3 used, this relative rotation was found to be in 

a clockwise sense, depending on the "working distance” setting, 

between the s.a.c.p. and normal micrographs, and must be added to the 

180° inversion. This relative rotation effect was taken into account 

when accurate absolute orientations determinations were made, and when 

crystallographic directions of the boundary planes in the specimens 

were deduced. When only the disorientation was required, without 

needing to know the boundary plane orientation, then the rotation 

matrix could be determined directly, without taking account of 

relative rotations.

Herring torque terms were measured in high purity copper wires 

having a "bamboo" structure, annealed at 1000°C. In such a specimen, 

the Hess relation (Equation 5.4) applies as the disorientation across 

a boundary is fixed and the boundary plane rotated (due to the Herring 

torque terms) into the minimum energy position. The "hanging" wire 

specimens gave a large number of special boundaries (35% CSL, 21% 

low-angle boundary), as expected from the freedom of the "bamboo" 

crystals to rotate. In comparison the "horizontal" wires were more
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const ra ined and had more random high-angle boundaries. In general, 

the CSL and low-angle boundaries were associated with high value of *he 

torque terms, whereas random high-angle boundaries with low value of 

torque terms. Most of the boundaries measured were found to be of 

mixed tilt and twist types with a larger tilt component. This is to 

be expected for randomly oriented crystals in polycrystalline 

specimens.

The crystals in wire specimens rotate easily about the vertical 

axis, when the boundary plane is perpendicular to that axis, driven by 

the Pond and Smith (1977) mechanism. But they are rather difficult to 

rotate about the two mutually perpendicular horizontal axes (in the 

boundary plane), driven by the Shewmon (1966) mechanism, as it 

introduces diffusional mass transport and gravitational torques. The 

"kinking" observed to occur at many boundaries confirm the effect of 

the Shewmon and gravitational torques.

One of the most interesting conclusions from this analysis is 

that the ¿11 boundaries have been found to have significantly lower 

energy than the other CSL boundaries (except for 2,3 and ¿9 

boundaries). The (110) section of the ¿11 Y-plot was deduced (Figure 

5.12). The occurrence of the cusps at (311) and (332) is as expected. 

These planes are the mirror planes in the ¿11 relation./) cusp at the 

(110) symmetry plane is expected but was not observed.

¿3 and ¿9 boundaries were investigated using high purity copper 

sheet specimens, annealed at 1000°C. The ¿3 boundaries are well known 

to facet into coherent and incoherent boundaries. Thus the proper way 

of analysing such a boundary is by using a p-plot, as it represents
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the minimum possible value of the tf-plot. The Herring torque terms 

for the incoherent twin boundaries (as at B in Figure 6.1(a)) have 

been evaluated by using the Hess relation (Equation 5.4). This 

relation applies as the ¿3 {ill} planes are at a fixed separation and 

the specimen thickness is fixed. As is well known, a sharp cusp occurs 

in the £ 3  f - plot when the interface is parallel to the (ill) twinning 
plane. It is found that a further (shallower) cusp occurs when the 

incoherent ¿3 boundary plane is approximately parallel to the {322} 

plane in one crystal and^{ll.44} plane in the other crystal.

As the £9 relation is equivalent to two ¿3 relations, then in 

some circumstances, the ¿9 boundary can break up into two ¿3 

boundaries. The Hess relation, however, cannot be applied to the ¿9 

boundaries in bhese specimens because the boundary is anchored by 

intersection^^ {ill} planes. But the ¿9 f-plot could still be 

evaluated as the energy of i,9 boundaries can be measured. This plot 

has then been related to the "£3 + £3 " p-plot, in order to yield 

information about the stability of the £ 9 boundary. It is found that 

only those £ 9 boundaries which are near the {ill} orientations in one 

crystal (i.e. {lll}i/{ll5}2) will break up into facets consisting for 

example of section of £ 9  of {77l}i/(557)2 and two £3 of {lll}i/{ll5}2. 

Most of the macroscopically flat £ 9  boundaries were found to lie 

parallel to the common {221} and {114} planes. This is connected with 

the fact that they are mutually perpendicular symmetry planes in the 

£ 9  relation. Whereas some of the ¿9 boundaries are planar interfaces, 

some of the anchored £ 9  boundaries have been observed to have curved 

interfaces. Such curvature is expected to be due to the grain boundary
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torque and surface energy anisotropy.

Although our observations of the £ 9  boundaries are quite 

consistent with those of the other investigators (e.g. Vaughan 1970), 

however there is a difference in the specimen used. In their case, 

the boundaries were observed from specimens which had been sliced from 

bulk specimens. But in our case, the specimen used was a thin sheet 

and therefore we can apply the Hess relation and calculate the Herring 

torque terms.

The dependence of grain boundary energies on crystal 

disorientation is well known. The study of the effect of boundary 

orientation on boundary energies reported here shows that the grain 

boundary torque has indeed made a significant contribution to the 

energies of grain boundaries. However, it should be remembered that 

the crystal geometry is not the sole determinant of the energies of 

grain boundaries, as the electronic interactions are likely to play a 

significant part too (see Maurer and Gleiter 1985).

Many special boundaries can be found in the "hanging" wire 

specimens. Thus, if many more boundaries are measured (for example, 

ten times more than the measured boundaries in this work), it is 

possible to deduce the /-plot of other common special boundaries, as 

well as the /-plot of £ll boundaries reported here. Though the 

material used in the present work is pure copper, the study of the 

same kind can of course be extended to other types of material, for 

example, aluminium, nickel, molybdenum, etc. Furthermore, the effect 

of impurities can also be investigated (e.g. Donald 1976). Higher 

order twin boundaries (e.g. ¿27 and ¿81) have also been observed in
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