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Abstract: In the context of antibacterial drug discovery resurgence, novel therapeutic targets and new 

compounds with alternative mechanisms of action are of paramount importance. We focused on UDP-N-

acetylenolpyruvylglucosamine reductase (i.e. MurB), an underexploited target enzyme that is involved in early 

steps of bacterial peptidoglycan biosynthesis. On the basis of the recently reported crystal structure of MurB in 

complex with NADP+, a pharmacopohore model was generated and used in a virtual screening campaign with 

combined structure-based and ligand-based approaches. In order to explore chemical space around hit 

compounds, further similarity search and organic synthesis was employed to obtain several compounds with 

micromolar IC50 values on MurB. The best inhibitors in the reported series of 5-substituted tetrazol-2-yl 

acetamides were compounds 13, 26 and 30 with IC50 values of 34, 28 and 25 µM, respectively. None of the 

reported compounds possessed in vitro antimicrobial activity against S. aureus and E. coli. 
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Introduction 

Recently, resurgence in antibacterial drug discovery can be observed, especially in the context of emerging 

resistant bacteria.[1] Resistant and multi-drug resistant pathogens are reported globally in general community and 

hospitals, which makes novel antibacterial discovery an immediate and important endeavour.[2] A steady stream 

of innovative molecular scaffolds, revisits of the older data, unification of interdisciplinary drug-discovery 

approaches and utilisation of underexploited therapeutic targets are decisive approaches in our pursuit of novel 

drugs.[3-5] Among the most important and underutilised therapeutic targets in antibacterial drug discovery are 

early steps of bacterial cell wall biosynthesis.[6]  

Peptidoglycan is a key component of bacterial cell wall. It provides bacteria with the necessary structural 

integrity to withstand the osmotic pressure gradient between the cytoplasm and the cell exterior. It is composed 

of alternating disaccharide units of N-acetyl muramic acid (MurNAc) and N-acetyl glucosamine (GlcNAc) that 

are cross-linked with short peptide chains.[7] Peptidoglycan biosynthesis requires approximately 20 reactions, 

catalysed by different enzymes.[8] Each enzyme in this pathway is essential and unique for bacteria and thus 

important and selective target for the discovery of new antibacterial agents.[9,10]    

In this work, we have focused on the UDP-N-acetylenolpyruvylglucosamine reductase or MurB.[11] The enzyme 

reduces the enolpyruvyl moiety of UDP-N-acetyl glucosamine-enolpyruvate (UDP-GlcNAc-EP), produced by 

MurA (Figure 1). MurB contains one molecule of non-covalently bound flavin adenine dinucleotide (FAD) that, 

during the catalytic process, serves as a hydride transfer mediator between β-nicotinamide dinucleotide 

phosphate (NADPH) and the enolpyruvyl substrate. First, NADPH binds to the enzyme and transfers the 4-pro-

S hydrogen to N-5 atom of the enzyme-bound FAD, then NADP+ dissociates from the enzyme. In the second 

half-reaction, substrate UDP-GlcNAc-EP binds to MurB with the following hydride transfer from FADH2 to 

vinyl ether of the UDP substrate, forming UDP-N-acetyl muramic acid (UDP-MurNAc).[12] 

 

Figure 1: Catalytic consecutive and two-step mechanism of MurB. 

There are only few MurB inhibitors present in the literature and compounds 1 and 2 (Figure 2) were among the 

first reported. Imidazolinone 2 is a result of optimisation campaign where the heterocycle core replaced the 

starting 4-thiazolidinone moiety. Both heterocycles were designed to mimic the diphosphate moiety of UDP-

GlcNAc-EP substrate.[13, 14] Compound 3 (Figure 2) was identified by high-throughput (HTS) screening as MurB 

inhibitor with low micromolar Kd value. [15] Furthermore, alkyl pyrazolidinedione derivatives were found as 

good inhibitors of S. aureus and E. coli MurB (e.g. 4, Figure 2).[16, 17] A series of phenyl thiazolyl urea (e.g. 5, 

Figure 2) and carbamate analogues inhibited the enzyme in the low micromolar range.[18] Most published MurB 

inhibitors possessed promising antibacterial activities, however, when tested in the presence of 4% bovine 

serum albumin, their activities were lost, indicating high-protein binding properties of compounds. No novel 

inhibitors of MurB have been reported in the last decade, while the compounds described above were not 

pursued further due to their unfavourable physico-chemical properties. Therefore we sought to identify novel 

compounds with improved physico-chemical properties and greater optimisation potential. Overall, MurB is an 
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attractive target in antibacterial drug discovery and herein we here report a successful pharmacophore-based in-

silico study that led to the discovery of novel structural class of MurB inhibitors. 

 

Figure 2: Previously described MurB inhibitors present in the scientific literature. 

Methods and Materials 

Pharmacophore preparation and Virtual Screening: Protocol consisted of pharmacophore modelling, 

compound collection from ZINC version 12, database preparation and virtual screening.[19] Pharmacophore 

models can be described as representation or 3D-arrangement of the chemical features and steric limitations, 

postulated as necessary for a small molecule to interact with its target.[20] These features are presented in Figure 

3 and Figure 4. MurB with non-covalently bound FAD and active site defined as space occupied by NADP 

(PDB IDs: 4JAY, 4JB1) was used in an automatic generation of three-dimensional structure-based 

pharmacophore using an effective LigandScout (Software-Entwicklungs und Consulting GmbH, Maria 

Enzersdorf, Austria) software package. Ten or less pharmacophoric features were used for pharmacophore 

generation with additional generation of exclusion volume spheres on the basis of available space at the active 

site. Resulting models are depicted in Figure 3.[21] 

   

Figure 3: Left: pharmacophore, created on the basis of NADP, chain A (PDB ID: 4JAY) with superposed 

shared pharmacophore with UDP-GlcNAc-EP (PDB ID: 2MBR). Middle: pharmacophore, created with 

superposed NADP. Right: pharmacophore, created with added exclusion sphere coat representing the available 

space in the active site (yellow – planar/aromatic with tolerance sphere of 1.5 Å, red – H-bond acceptor with 

vector and tolerance sphere of 1.5 Å, green – H-bond donor with vector and tolerance sphere of 1.5 Å, centered 

red sphere – ionisable feature with tolerance of 2.15 Å, grey – exclusion spheres with tolerance of 1 Å). 

The created pharmacophore was validated with the superposition and analysis of MurB in complex with UDP-

GlcNAc-EP.[22] Upon structural analysis, NADP (PDB ID: 4JB1; Figure 4) presents the nicotinamide terminal 

moiety in the close proximity to the FAD flavin mononuleotide N-5 atom and Glu335 and Ser239 residues, 

consecutively enabling the transfer of hydride for the reduction of FAD. Similar positioning can be observed for 

the substrate UDP-GlcNAc-EP (PDB ID: 2MBR) where the terminal carboxyvinyl moiety occupies the same 

space and the alkene fragment is positioned in close proximity to the N-5 atom of FAD(H2) and Glu325 and 

Ser229 residues, for final substrate reduction towards UDP-MurNAc and NADP. Other terminus of both 

substrates diverged positionally and uridine diphosphate or adenine diphosphate nucleotides were observed at 

distinct binding modes for UDP-GlcNAc-EP and NADP, respectively. Using LigandScout software, a three 

dimensional pharmacophore for UDP-GlcNAc-EP in the active site was created, aligned to preceding 

pharmacophore model based on nicotinamide dinucleotide phosphate and a shared pharmacophore created, i.e. 

pharmacophore where individual pharmacophoric elements are shared by multiple structures. The produced 

final shared 3D pharmacophore model was superimposed on the starting pharmacophore model and was found 

to be nearly identical apart from terminal H-bond donor/acceptor motif typical of terminal carboxamide (Figure 

1, left).[23] The final production pharmacophore model based on the MurB in complex with NADP+ (PDB ID 
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4JAY) was thus refined by removing features, adjusting the tolerance sphere size and definition of exclusion 

spheres around the nicotinamide adenine dinucleotide phosphate (Figure 4). 

  

Figure 4: Left: superposition of UDP-GlcNAc-EP (blue, PDB ID: 2MBR) and NADP (cyan with coloured atom 

types, PDB ID: 4JAY); FAD can be observed in almost identical binding mode. Right: calculated 

pharmacophore: hydrophobic 46.571907, -5.837457, 11.458156; ionisable 45.4222 -11.2288 11.2484; ionisable 

45.8758 -13.7696 11.946; HBA 52.896 -10.663 12.334, 50.177 -10.402 13.677; HBA 53.257 -9.782 15.791, 

50.177 -10.402 13.677; HBA 47.614 -13.199 7.989, 47.208 -13.871 11.119; HBA 43.817, -13.738, 7.969, 

45.229 -11.925 9.78; HBA 47.614 -13.199 7.989, 45.229 -11.925 9.78; HBA 43.132 -3.175 13.229, 45.933 -

2.903 13.325; HBD 47.234 -3.916 14.773; 46.564 -1.598 16.459. 

Compounds were collected from ZINC 12 as Drugs Now subset (11 538 905 compounds) and database for the 

virtual screening protocol was prepared with consecutive filtering steps. First, the database was checked for 

PAINS (pan-assay interference compounds) and known and predicted aggregators were filtered out using 

FILTER software from OpenEye (OpenEye Scientific Software, Inc., Santa Fe, NM, USA; 

www.eyesopen.com). [24,25] Database was further pruned to eliminate structural faults, metals (metal complexes) 

and reactive functional groups that would pose frequent-hitter and high reactivity problems.[26] Molecules with 

molecular mass between 250-800 Da were retained to obtain a final collection of 4 755 936 compounds. Three-

dimensional conformer database was prepared with OpenEye (OpenEye Scientific Software, Inc., Santa Fe, 

NM, USA; www.eyesopen.com) OMEGA2 omega-fast protocol. Maximum number of conformations was set at 

25, rms threshold of 0.8 was used and energy window of 10 with 4000 max pool size with ring and nitrogen 

enumeration, molecules were used as reported in ZINC database without calculating all possible tautomer 

structures and ionizations.[27] Final LigandScout ldb database was created using Idbgen software from 

Inte:Ligand (Software-Entwicklungs und Consulting GmbH, Maria Enzersdorf, Austria) (Figure 5). 

 

Figure 5: Preparation of ZINC database for virtual screening step using LigandScout. 

Virtual screening was performed using Inte:Ligand LigandScout software with Pharmacophore-Fit scoring 

function. Exclusion spheres were considered in the calculation with minimum of three required pharmacophoric 

features. Top ranked and commercially available compounds were purchased (Table 1) and biologically 

evaluated as described below. Amongst 12 purchased and biologically evaluated compounds a hit compound 13 

was identified, and IC50 value was determined to be 34 µM on MurB.  

 

Molecular docking: Compounds were evaluated by FILTER 2.5.1.4 software (OpenEye Scientific Software, 

Inc., Santa Fe, NM, USA; www.eyesopen.com) for possible aggregation properties. 3D conformer library was 

generated with OMEGA2 2.5.1.4 software from OpenEye with 3000 maximum conformations per compound, 

rms of 0.5 and considered all possible stereoisomers of compounds.[27] Receptor was prepared from X-ray 

crystal structure of MurB in complex with NADP+ (PDB ID: 4JAY) active site, chain A with Make Receptor 

3.2.0.2 software from OpenEye (OpenEye Scientific Software, Inc., Santa Fe, NM, USA; www.eyesopen.com) 
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with FAD molecule in-place. Box with the volume of 7791 Å3 (17.00 × 25.00 × 18.33 Å) around NADP+ ligand 

was defined and balanced shape potential calculated. Pocket volume was 1403 Å3 and no constraints were used 

in docking runs. First, NAP co-crystalized substrate was extracted from the receptor and re-docking experiment 

was performed for validation of experiment. 3D conformer library for the NAP substrate (PDB ID: 4JAY) was 

prepared using Omega2 from OpenEye (3000 conformations, RMS 0.5, flipper true parameters) and the 

substrate was re-docked with HYBRID 3.2.0.2 from OpenEye OEDocking module with high resolution docking 

parameter enabled. Reproduction of experimentally determined binding mode (PDB ID: 4JAY) with an RMSD 

of 0.605 Å was successful. Then, an enrichment study was performed using a 3D conformer library of reported 

tetrazoles and a libraray of 1000 decoy molecules prepared by Schrödinger (Omega2 from OpenEye, validation 

experiment parameters).[28] Both libraries were docked for further binding mode studies and all active 

compounds (25, 18, 22, 30, 26 and 13) were ranked at the top 6 % of the entire decoy-test library. 

 

Analogue identification: With the OpenBabel software, a path-based fingerprint FP2 which indexes linear 

fragments of up to 7 atoms (similar to the Daylight fingerprints) was calculated for the main ZINC compound 

vendor catalogues (namely Enamine, ChemBridge, Vitas-M and Princeton Biomolecular Research) and fast 

search index created for the compound databases . Finally the created databases were searched for compounds 

with similar chemical space to the query compound 13.[29]  

 

Cloning, overproduction and purification of MurB from E. coli: The E. coli murB gene was amplified from 

a DH5α strain (Invitrogen) using the primers 5’- GCGTGAATTCATGAACCACTCCTTAAAACCC-3’ and 5’- 

CTACAAGCTTTCATGAAATTGTCTCCACTGCGC -3’. The primer upstream of the start codon (underlined) 

contained an engineered EcoRI site (in bold). The primer 3’ to the gene contained an engineered HindIII site (in 

bold). The amplified product was digested by EcoRI and HindIII and inserted between the compatible EcoRI 

and HindIII sites in vector pET2130 (T7 promoter), generating a plasmid that encodes MurB with a His6 N-

terminal extension. The construction was verified by DNA sequencing (Eurofins-MWG). Plasmid 

pET2130::murBEc was transformed into E. coli BL21(DE3) (Novagen) for expression experiments.[30] 

 

An overnight preculture of E. coli BL21(DE3) harbouring pET2130::murB was used to inoculate 1 liter of 2YT 

supplemented with 100 μg mL-1 ampicillin. The culture was incubated at 37°C with shaking until the optical 

density at 600 nm reached 0.8. Isopropyl ß-D-thiogalactopyranoside was added at a final concentration of 1 mM, 

and incubation was continued for 3 h at 37°C with shaking. The cells were harvested at 4°C, and the pellet was 

washed with cold 20 mM phosphate buffer, pH 7.2, containing 1 mM dithiothreitol (buffer A). Bacteria were 

resuspended in buffer A (10 mL) and disrupted by sonication in the cold. The resulting suspension was 

centrifuged at 4°C for 30 min at 200,000 g and the pellet was discarded. The supernatant was kept at -20°C. 

The His6-tagged MurB protein was purified on Ni2+-nitrilotriacetate-agarose following the manufacturer’s 

recommendations (Qiagen). All procedures were performed at 4°C. The supernatant was mixed for 1 h with the 

polymer, which had previously been washed with buffer A containing 0.3 M KCl and 10 mM imidazole. The 

washing and elution steps were performed with a discontinuous gradient of imidazole (20-300 mM) in buffer A 

containing 0.3 M KCl. Protein contents were analyzed by sodium dodecyl sulfate-polyacrylamide gel 
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electrophoresis. Relevant fractions were pooled and dialyzed against buffer A. Glycerol (10% final 

concentration) was added for storage of the protein at -20°C.  

 

MurB inhibition assay: The inhibition of MurB enzyme was measured with a continuous assay by monitoring 

the oxidation of NADPH.[30] The reaction mixture with final volume of 200 µL contained 50 mM Tris-HCl (pH 

8.0), 10 mM KCl, 100 µM NADPH, 50 µM UDP-GlcNAc-EP, and 100 µM of compound dissolved in DMSO. 

All of the compounds were soluble in the final assay mixture containing 2% of DMSO (v/v). The reaction was 

initiated by the addition of enzyme. The decrease in absorbance at 340 nm was monitored over 10 min at 37 °C. 

The residual activity was calculated with respect to a similar assay without the inhibitors. All the experiments 

were performed in triplicates. The IC50 values were determined at seven different concentrations of inhibitor and 

were calculated from the fitted regression equations using the logit-log plot.  

For the most active compound 30, Ki determinations were performed under similar assay conditions as 

described above. First, the concentrations of NADPH (25, 50, 75, 100 and 200 µM) were varied at fixed 

concentration of UDP-GlcNAc-EP (50 µM). Then the concentrations of UDP-GlcNAc-EP (25, 50, 75 and 100 

µM) were varied at fixed concentration of NADPH (100 µM). The concentrations of compounds 30 were 0, 10, 

20, 30, 50, 75 and 100 µM. All experiments were performed in triplicates. The resulting data was analysed using 

the SigmaPlot 12 software and fitted to competitive, uncompetitive, non-competitive and mixed type inhibition 

models. The mode of inhibition and Ki values were chosen from the best ranking model, as calculated by the 

software. A representative graph depicting the best fit model for compound 30 is shown in Figure 6. 

Figure 6: Lineweaver-Burk diagram of non-competitive binding mode of compound 30 versus NADPH. The 

concentrations of NADPH (25, 50, 75, 100 and 200 µM) were varied at fixed concentration of UDP-GlcNAc-EP 

(50 µM). The concentrations of inhibitor were 0, 10, 20, 30, 50, 75 and 100 µM. 

 

Microbiological evaluation: The antimicrobial activities for compounds were determined by broth 

microdilution in Luria Broth Miller (LB) against S. aureus (ATCC 29213) and E. coli (ATCC 25922). All of the 

experminents were performed according to CLSI guidelines and European Committee for Antimicrobial 

Susceptibility Testing recommendations.[31] Bacterial suspension of specific bacterial strain equivalent to 0.5 

MacFarland turbidity standard (approximately 1 × 108 CFU/mL) was diluted with LB broth to obtain a final 

inocolum of 5 × 105 CFU/mL in the assay. The compounds were dissolved in DMSO and then diluted 40-fold in 

LB, just before use. Bacterial suspension and test compound solution were mixed together in the 96-well plate 

(final volume, 200 µL) and incubated for 18-24 h at 37 °C. Optical density was measured at 600 nm and was 

used for evaluating the antimicrobial activity of tested compounds by comparing to untreated control. The MIC 

values were determined as the lowest dilutions of the compounds showing no turbidity.  

 

Reagents and analytics: All of the chemicals used were obtained from commercial sources (Acros, Aldrich, 

Alfa Aeser, Fluka), and were used without further purification. Solvents were used without purification or 

drying, unless otherwise stated. Reactions were monitored using analytical thin-layer chromatography plates 

(Merck, silica gel 60 F254, 0.25 mm), and the compounds were visualized with ultraviolet light and ninhydrin 

staining reagent. Silica gel grade 60 (particle size 0.040-0.063 mm; Merck, Germany) was used for flash-column 

chromatography. 1H and 13C NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer in 
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CDCl3 and DMSO-d6, solvents respectively, with TMS as the internal standard. Mass spectra were obtained 

with a VG-Analytical Autospec Q mass spectrometer (Centre for Mass Spectrometry, Institute Jožef Stefan, 

Ljubljana). Melting points were determined using a Reichert hot-stage microscope, and are uncorrected. HPLC 

analyses were performed on a Thermo Scientific Dionex UltiMate 3000 system (Thermo Fisher Scientific Inc., 

Waltham, MA, USA), using an Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm), at a flow rate of 1.5 

mL/min, temperature 25 °C and injection volume of 10 µL. The eluent was a mixture of 0.1% TFA in water (A) 

and acetonitrile (B). The gradient was 10% B to 90% B in 15 min, then 90% B for 5 min. The purity of the 

tested compounds was established to be ≥95%. 

 

Chemistry: Hit compound 13 (Table 2) was resynthesized along with four additional compounds (18, 24, 25 

and 30; Table 2). Key 5-(4-chlorophenyl)-1H-tetrazole intermediate 13a (Figure 7) was prepared by treatment of 

nitrile with sodium azide and ammonium chloride. N-Chloroacetamides were synthesized from different anilines 

and chloroacetyl chloride. All 2,5-disubstituted tetrazoles were obtained from N-chloroacetamides and tetrazole 

in ethanol in the presence of KOH. Finally, nitriles were converted to amides using alkaline hydrogen peroxide 

(Figure 7).[32] 

 

Figure 7: Synthesis of tetrazoles. Reagents and conditions: (a) NaN3, NH4Cl, DMF, 120 °C, 18 h; (b) 

chloroacetyl chloride, TEA,  DCM, 0°C - rt, 6 h; (c) KOH, EtOH, reflux, 16 h; (d) 30% H2O2, 1 M NaOH, 

DMSO, 0 °C - rt, 4 h. 

5-(4-Chlorophenyl)-1H-tetrazole (13a): To a solution of 4-chlorobenzonitrile (3.0 g, 21.8 mmol) in DMF (15 

mL), NaN3 (1.56 g, 24.0 mmol) and NH4Cl (1.28 g, 24 mmol) were added. The reaction mixture was stirred at 

120 °C for 16 h. The mixture was cooled to room temperature, and 1 M HCl (50 mL) was added. The formed 

white solid was filtered off, washed with water, and dried at 60 °C for 18 h. Yield = 94%; 1H NMR (400 MHz, 

DMSO-d6): δ 8.60 (d, 2H, J = 8.6 Hz, 2 × Ar-H), 8.08 (d, 2H, J = 8.6 Hz, 2 × Ar-H) ppm. 

 

General procedure for synthesis of compounds 24a, 25a and 30a: To a solution of different anilines (8.5 mmol) 

in DCM (25 mL), TEA (2.35 mL, 16.9 mmol) was added and the mixture was cooled to 0°C. Chloroacetyl 

chloride (0.750 mL, 9.35 mmol) diluted in DCM (10 mL) was added dropwise and the mixture was stirred for 6 

h at room temperature. To the reaction mixture, DCM (50 mL) was added and it was washed with water (50 

mL), 1 M HCl (2 × 50 mL), saturated aqueous NaHCO3 (50 mL) and brine (50 mL), dried with Na2SO4, and 

evaporated under reduced pressure. The solid was used without further purification.  

2-Chloro-N-(3-cyanophenyl)acetamide (24a):Yield = 61%; 1H NMR (400 MHz, CDCl3): δ 4.22 (s, 2H, CH2), 

7.46-7.50 (m, 2H, 2 × Ar-H), 7.73-7.76 (m, 1H, Ar-H), 8.00-8.01 (m, 1H, Ar-H), 8.34 (bs, 1H, NH) ppm.  

2-Chloro-N-(4-cyanophenyl)acetamide (25a): Yield = 66%; 1H NMR (400 MHz, DMSO-d6): δ 4.32 (s, 2H, 

CH2), 7.76-7.83 (m, 4H, 4 × Ar-H), 10.74 (bs, 1H, NH) ppm. 
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2-Chloro-N-phenylacetamide (30a): Yield = 73%; mp = 138-141°C (lit. 136-139 °C [32]); 1H NMR (400 MHz, 

DMSO-d6): δ 4.25 (s, 2H, CH2), 7.09 (t, 1H, J = 7.4 Hz, Ar-H), 7.33 (t, 1H, J = 7.9 Hz, Ar-H), 7.59 (d, 2H, J = 

7.8 Hz, 2 × Ar-H), 10.30 (bs, 1H, NH) ppm. 

General procedure for synthesis of compounds 24, 25 and 30: To a solution of KOH (3.75 mmol) in ethanol (20 

mL), 5-(4-chlorophenyl)-1H-tetrazole (2.5 mmol) and chloroacetamides (24a, 25a or 30a, 2.5 mmol) were 

added and the mixture was heated under reflux for 16 h. The reaction was cooled to room temperature and water 

(50 mL) was added. The formed precipitate was filtered off and recrystallized from ethanol to obtain pure final 

compounds. 

2-(5-(4-Chlorophenyl)-2H-tetrazol-2-yl)-N-(3-cyanophenyl)acetamide (24): Yield = 51%; white solid, mp = 

209-211°C; 1H NMR (400 MHz, DMSO-d6): δ 5.84 (s, 2H, CH2), 7.58-7.61 (m, 2H, 2 × Ar-H), 7.66 (d, 2H, J = 

8.6 Hz, 2 × Ar-H), 7.81-7.84 (m, 1H, Ar-H), 8.05-8.06 (m, 1H; Ar-H), 8.09-8.12 (d, 2H, J = 8.4 Hz, 2 × Ar-H), 

11.02 (bs, 1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ 55.36, 111.78, 118.48, 122.06, 123.97, 125.54, 

127.65, 128.13, 129.49, 130.50, 135.35, 138.90, 163.38, 163.62 ppm. ESI HRMS m/z calcd. for C16H11ClN6O 

[M-(H)]+ 337.0605, found 337.0604. HPLC: tR = 10.183 min (99% at 254 nm). 

2-(5-(4-Chlorophenyl)-2H-tetrazol-2-yl)-N-(4-cyanophenyl)acetamide (25): Yield = 46%; white solid, mp = 

228-230 °C; 1H NMR (400 MHz, DMSO-d6): δ 5.85 (s, 2H, CH2), 7.66 (d, 2H, J = 8.6 Hz, 2 × Ar-H), 7.77 (d, 

2H, J = 8.8 Hz, 2 × Ar-H), 7.83 (d, 2H, J = 8.8 Hz, 2 × Ar-H), 8.10 (d, 2H, J = 8.6 Hz, 2 × Ar-H), 11.10 (bs, 1H, 

NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ 55.45, 105.87, 118.84, 119.43, 125.53, 128.13, 129.49, 133.49, 

135.35, 142.28, 163.38, 163.78 ppm. ESI HRMS m/z calcd. for C16H11ClN6O [M-(H)]+ 337.0605, found 

337.0609. HPLC: tR = 10.197 min (100% at 254 nm). 

2-(5-(4-Chlorophenyl)-2H-tetrazol-2-yl)-N-phenylacetamide (30): Yield = 58%; white needles,  mp = 210-

212°C; 1H NMR (400 MHz, DMSO-d6): δ 5.79 (s, 2H, CH2), 7.12 (t, 1H, J = 7.4 Hz, Ar-H), 7.35 (t, 2H, J = 7.9 

Hz, 2 × Ar-H), 7.60 (d, 2H, J = 8.3 Hz, 2 × Ar-H), 7.66 (d, 2H, J = 8.5 Hz, 2 × Ar-H), 8.11 (d, 2H, J = 8.5 Hz, 2 

× Ar-H), 10.66 (bs, 1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ 55.42, 119.30, 124.01, 125.60, 128.13, 

128.96, 129.48, 135.31, 138.15 162.83, 163.33 ppm. ESI HRMS m/z calcd. for C15H12ClN5O [M-(H)]+ 

312.0652, found 312.0655. HPLC: tR = 10.320 min (100% at 254 nm). 

General procedure for synthesis of compounds 13 and 18: To a cooled (0 °C) solution of nitrile (0.080 mg, 

0.236 mmol) in DMSO, 30% H2O2 (0.5 mL) and 1 M NaOH were added (0.70 mL, 0.700 mmol). The reaction 

mixture was stirred for 4 h at room temperature. It was quenched with saturated aqueous Na2SO3. The formed 

precipitate was washed with water and recrystallized from ethanol to obtain pure final compounds. 

3-(2-(5-(4-Chlorophenyl)-2H-tetrazol-2-yl)acetamido)benzamide (compound 13): Yield = 59%; white solid, mp 

= 244-246 °C; 1H NMR (400 MHz, DMSO-d6): δ 5.87 (s, 2H, CH2), 7.36 (bs, 1H, CONH2a), 7.40 (t, 1H, J = 7.8 

Hz, Ar-H), 7.59 (d, 1H, J = 8.8 Hz, Ar-H),  7.65 (d, 2H, J = 8.5 Hz, 2 × Ar-H), 7.82 (dd, 1H, J1 = 7.8, J2 = 1.9 

Hz, Ar-H), 8.03 (bs, 1H, CONH2b), 8.11 (d, 2H, J = 8.5 Hz, 2 × Ar-H), 8.19 (t, 1H, J = 1.9 Hz, Ar-H), 11.21(bs, 

1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ 55.48, 119.06, 121.99, 122.68, 125.61, 128.14, 128.68, 

129.47, 135.03, 135.28, 138.31, 163.09, 163.31, 167.58 ppm. ESI HRMS m/z calcd. for C16H13ClN6O2 [M-(H)]+ 

355.0737, found 355.0717. HPLC: tR = 7.883 min (100% at 254 nm). 
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 4-(2-(5-(4-Chlorophenyl)-2H-tetrazol-2-yl)acetamido)benzamide (compound 18): Yield = 66%; white solid, mp 

= 252-255 °C; 1H NMR (400 MHz, DMSO-d6): δ 5.94 (s, 2H, CH2), 7.28 (bs, 1H, CONH2a), 7.66 (d, 2H, J = 8.6 

Hz, 2 × Ar-H), 7.71 (d, 2H, J = 8.8 Hz, 2 × Ar-H), 7.86 (d, 2H, J = 8.8 Hz, 2 × Ar-H), 7.90 (bs, 1H, CONH2b), 

8.11 (d, 2H, J = 8.6 Hz, 2 × Ar-H), 11.31 (bs, 1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ 55.57, 118.56, 

125.60, 128.13, 128.45, 129.39, 129.46, 135.28, 140.89, 163.32, 163.37, 167.26 ppm. ESI HRMS m/z calcd. for 

C16H13ClN6O2 [M-(H)]+ 355.0710, found 355.0707. HPLC: tR = 7.860 min (100% at 254 nm). 

 

Identity and purity of screening hits: 

2-(5-(4-Chlorophenyl)-2H-tetrazol-2-yl)-N-(4-methyl-3-nitrophenyl)acetamide (26): 1H NMR (400 MHz, 

DMSO-d6): δ 2.38 (s, 3H, CH3), 5.85 (s, 2H, CH2), 7.57 (s, 2H, 2 × Ar-H), 7.67 (d, 2H, J = 8.6 Hz, 2 × Ar-H), 

7.83 (s, 1H, Ar-H), 8.10 (d, 2H, J = 8.6 Hz, 2 × Ar-H), 10.81 (bs, 1H, NH) ppm. ESI MS m/z calcd. for 

C16H13ClN6O3 [M-(H)]+ 372.07, found 370.92, [M+(Na)]+ 394.72. HPLC: HPLC: tR = 11.514 min (92% at 254 

nm). 

 

Results and Discussion 

Virtual Screening: Pharmacophore models are widely used as virtual screening filters and can be applied in 

ligand-based and structure-based design scenarios where compound databases are mapped to the pharmacophore 

model and key interactions are postulated for the hits of such VS studies.[33] With the help of recently available 

crystal structure information on MurB enzyme in complex with NADP+ (PDB IDs: 4JAY, 4JB1) and available 

enzymatic data on MurB in complex with the substrate UDP-GlcNAc-EP (PDB ID: 2MBR), the pharmacophore 

model was designed in a mixed ligand-based and structure-based manner. The pharmacophore model was used 

in a subsequent filtering step where previously curated ZINC-based LigandScout ldb conformer database was 

screened to identify an initial hit compound 13. The details are described in Methods and Materials chapter. 

 

Ligand-based drug design and biological evaluation: As the hit compound 13 showed promising inhibitory 

activity in low micromolar range (IC50 value of 34 µM), additional in silico analogue identification step was 

performed. From the compounds with highest similarity to 13, available compounds 19-23 and 26-29 were 

obtained as presented in Table 2. Furthermore, we have decided to resynthesize VS screening hit 13 and to 

synthesize additional compounds 18, 24, 25 and 30 in order to analytically validate the studied structures and 

perform an initial structure-activity relationship study on the tetrazole compound set (Table 2). All additional 13 

compounds were evaluated in vitro for their inhibition of E. coli MurB enzyme. The results are presented as 

residual activities (RAs) of MurB in the presence of 100 µM of each compound. For the compounds with RAs 

lower than 50%, the IC50 values were determined. It can be observed that para-chlorophenyl analogues display 

IC50 values from 25 to 90 µM with poorly tolerated chlorine atom replacements and relocations. The terminal 

para-carboxamide functional group is evidently not essential and can be replaced with nitrile or 4-methyl-3-

nitro derivatized phenyl ring. This observation is in accordance with Gilbert et al. where structurally similar 
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series of pyrazolidine-3,5-dione inhibitors of MurB roughly occupied the same pocket above the FAD N-5 atom 

with the para-chlorophenyl moiety. [17] 

 

The steady state analysis of enzyme kinetics was performed for the most potent compound 30. The best model 

revealed non-competitive binding of inhibitor with respect to NADPH, with Ki value of 63 ± 10 µM. The 

models of inhibition with respect to UDP-GlcNAc-EP showed no correlation. The positive control (compound 

5) was evaluated under the same conditions as our compounds and it inhibited MurB with an IC50 value of 20 ± 

2 µM (literature value 11.4 µM). [18] 

 

Molecular docking: Compounds 25, 18, 22, 30, 26 and 13 were the highest ranking and all shared similar 

predicted binding mode (Figure 8, c). The polar tetrazole core occupies the space of triphosphopyridine 

nucleotide sugar and phosphate, extending with the acetamido moiety towards the FAD N-5 atom, and Glu335 

and Ser239 residues. Terminal para-chlorophenyl ring attached to the position 5 of the tetrazole core is 

favorable for inhibitory activity as relocation or substitution of chlorine atom led to inactive compounds. Similar 

observation was interestingly also reported by Gilbert et al. in the study of structurally similar series of 

pyrazolidine-3,5-dione inhibitors of MurB.[17] For reference, pyrazolidine-3,5-dione compound 7f (Figure 8, c) 

reported by Kutterer et al., was also docked in our system where similar binding mode to tetrazole compounds 

was observed (Figure 8, c). Contrasting to para-chlorophenyl compounds, relocation of chlorine to ortho-

position on phenyl ring or substitution of chlorine atom with ortho-methyl substituent resulted in a slightly 

altered binding mode according to our molecular docking study. It can be postulated that π-π stacking of para-

chlorophenyl moiety between Tyr196 and Tyr264 residues is favorable with additional interactions between 

ligand tetrazol-acetamido central moiety towards Asn243 and Lys272 (Figure 8, b). Reported inhibitor 7f by 

Kutterer et al. branches the scaffold with additional para-chlorophenyl moiety that extends towards Asn243, but 

our reported tetrazoles can favorably reach deeper in the main pocket towards FAD, where a carboxamde or 

similar functional group can interact with FAD. Compounds could be therefore described as structural 

continuation of 1,2-bis(4-chlorophenyl) pyrazolidine-3,5-diones reported beforehand.[16] We also compared the 

docked poses of our tetrazole compounds and aligned them to the starting pharmacophore model. We observed a 

good correlation between common binding mode of tetrazole compounds and essential structural features 

imposed by the starting pharmacophore model used in VS scenario (Figure 8, d). 

 

Figure 8: a) Binding mode of compound 13 depicted in yellow; b) 2D projection of compound 13 in the active 

site with key interactions; c) Common binding mode observed for tetrazole compounds depicted yellow with 

superimposed docked pose of compound 7f reported by Kutterer et al. (depicted in magenta); d) Aligned docked 

poses for reported tetrazole compound series to the developed pharmacophore model used in the first step for 

VS campaign.  
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Conclusion 

In conclusion, a novel series of 5-substituted tetrazol-2-yl acetamido inhibitors of MurB have been identified 

through combined structure-based and ligand-based drug design methods. Several low micromolar inhibitors 

have been reported with compounds 13 (Figure 8, a), 26 and 30 displaying IC50 values of 34, 28 and 25 µM, 

respectively. If none of the tested compounds possessed in vitro antimicrobial activity against S. aureus and E. 

coli, the reported series nevertheless lends itself to further optimisation studies as similar scaffolds are reported 

in literature bearing antibacterial activity.[34] Furthermore, reported series is also of interest for biological 

evaluation of the compound effects on bacterial virulence. After a thorough analysis of the research field, this 

study is relevant in the context of antibacterial drug discovery, as there were few inhibitors reported up to date. 

Additional studies would enable further structure-activity relationship data, experimental insight into the binding 

modes and possible optimization towards antibacterial activity. 

 

Abbreviations 

FAD flavin adenine dinucleotide 

NADPH β-nicotinamide dinucleotide phosphate

MurNAc N-acetyl muramic acid 

PEP phosphoenolpyruvate 

UDP uridine 5’-diphosphate 

UDP-GlcNAc UDP-N-acetyl glucosamine 

UDP-GlcNAc-EP UDP-N-acetyl glucosamine-enolpyruvate

HBD H-bond donor pharmacophoric feature 

HBA H-bond acceptor pharmacophoric feature 

VS virtual screening 
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Figure Legends and Tables 

Figure 1: Catalytic consecutive and two-step mechanism of MurB. 

Figure 2: Previously described MurB inhibitors present in the scientific literature. 

Figure 3: Left: pharmacophore, created on the basis of NADP, chain A (PDB ID: 4JAY) with 

superposed shared pharmacophore with UDP-GlcNAc-EP (PDB ID: 2MBR). Middle: 

pharmacophore, created with superposed NADP. Right: pharmacophore, created with 

added exclusion sphere coat representing the available space in the active site (yellow – 

planar/aromatic with tolerance sphere of 1.5 Å, red – H-bond acceptor with vector and 

tolerance sphere of 1.5 Å, green – H-bond donor with vector and tolerance sphere of 1.5 Å, 

centered red sphere – ionisable feature with tolerance of 2.15 Å, grey – exclusion spheres 

with tolerance of 1 Å). 

Figure 4: Left: superposition of UDP-GlcNAc-EP (blue, PDB ID: 2MBR) and NADP (cyan with 

coloured atom types, PDB ID: 4JAY); FAD can be observed in almost identical binding 

mode. Right: calculated pharmacophore: hydrophobic 46.571907, -5.837457, 11.458156; 

ionisable 45.4222 -11.2288 11.2484; ionisable 45.8758 -13.7696 11.946; HBA 52.896 -

10.663 12.334, 50.177 -10.402 13.677; HBA 53.257 -9.782 15.791, 50.177 -10.402 13.677; 

HBA 47.614 -13.199 7.989, 47.208 -13.871 11.119; HBA 43.817, -13.738, 7.969, 45.229 -

11.925 9.78; HBA 47.614 -13.199 7.989, 45.229 -11.925 9.78; HBA 43.132 -3.175 13.229, 

45.933 -2.903 13.325; HBD 47.234 -3.916 14.773; 46.564 -1.598 16.459. 

Figure 5: Preparation of ZINC database for virtual screening.  

Figure 6: Lineweaver-Burk diagram of non-competitive binding mode of compound 30 versus 

NADPH. The concentration of NADPH (25, 50, 75, 100 and 200 µM) was varied at fixed 

concentration of UDP-GlcNAc-EP (50 µM). The concentrations of inhibitor were 0, 10, 20, 30, 50, 75 

and 100 µM. 
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Figure 7: Synthesis of tetrazoles. Reagents and conditions: (a) NaN3, NH4Cl, DMF, 120 °C, 18 h; (b) 

chloroacetyl chloride, TEA,  DCM, 0°C - rt, 6 h; (c) KOH, EtOH, reflux, 16 h; (d) 30% H2O2, 1 M 

NaOH, DMSO, 0°C - rt, 4 h. 

Figure 8: a) Binding mode of compound 13 depicted in yellow; b) 2D projection of compound 13 in 

the active site with key interactions; c) Common binding mode observed for tetrazole compounds 

depicted yellow with superimposed docked pose of compound 7f reported by Kutterer et al. (depicted 

in magenta); d) Aligned docked poses for reported tetrazole compound series to the developed 

pharmacophore model used in the first step for VS campaign. 
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Table 1: Top scoring and commercially available compounds after VS and biological evaluation. 

 

No Structure 
VS 

scorea 

RA 

(%)b 
No Structure 

VS 

scorea 
RA (%)b 

6 

 

95.37 100 12 

 

95.25 71 

7 

N N
NH

N

N S
O

N
H

F

 

95.34 / 13 

 

95.32 

22 

 IC50 = 

34 ± 4 

µM 

8 

 

95.31 100 14 

 

95.42 97 

9 

 

95.67 100 15 

 

95.34 71 

10 

 

75.41 100 16 

 

94.33 100 

11 

 

95.59 83 17 

 

94.70 78 

a Pharmacophore b Residual activity (in %) of the enzyme at 100 μM tested compound. 
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Table 2: Structural analogues of the hit compound 13 and their biological evaluation on MurB enzyme. 

 

No Structure RA (%)b or 

IC50 (µM)c 

No Structure RA (%)b or 

IC50 (µM)c 

13 

 

34 ± 3 µM 24 
 

51 ± 5 µM 

18 
 

90 ± 8 µM 25 
 

76% 

19 

 

75% 26 
 

28 ± 3 µM 

20 

 

84% 27 

 

79% 

21 

 

98% 28 

 

82% 

22 

 

71% 29 

 

70% 

23 
 

62% 30 
 

25 ± 2 µM 

 

b Residual activity (%) of the enzyme at 100 μM tested compound. c IC50 (µM) determined from 7 concentrations and curve fitted with 

logit-log plot.  
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