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Abstract

Geometrically frustrated magnetism arises when the competing interactions
are incompatible with the geometry of the lattice. This leads to a large ground state
degeneracy and the system typically has difficulty establishing a unique ground
state, often giving rise complex intermediate magnetic phases and other unusual
phenomena. Recently the rare-earth tetraborides, RB4, family of compounds has
garnered attention as it is a rare experimental realisation of the frustrated Shastry-
Sutherland lattice. Here the R3+ ions form a network of squares and triangles
which is topologically equivalent to the Shastry-Sutherland lattice. The competing
interactions leads to a rich variety of magnetic phase in the RB4 family in both zero
and applied magnetic field.

An investigation into two members of the RB4 family, HoB4 and NdB4 is
presented in this thesis. Both compounds show successive magnetic phase tran-
sitions, where HoB4 orders with an incommensurate magnetic state at 7.1 K and
orders with a non-collinear antiferromagnetic structure at 5.7 K, as well as magneti-
sation plateaux with fractional values of the saturation magnetisation of 1

6 , 1
3 and

3
5 . NdB4 orders at 17 K with a non-collinear antiferromagnetic structure followed
by two distinct incommensurate structures at 7 K and 4.9 K. NdB4 shows a single
magnetisation plateau at 1

5 the saturation magnetisation. Bulk property measure-
ments of magnetisation, magnetic susceptibility, resistivity and heat capacity were
used to maps out and construct the complex phase diagrams of HoB4 and NdB4

with measurements down to 0.5 K and magnetic fields upto 500 kOe. HoB4 shows
six distinct magnetic phases, while NdB4 has five. The stabilised magnetic phases
were determined in zero field using single crystal neutron diffraction measurements
utilising both polarised and un-polarised measurements. While the un-polarised
neutron measurements were extended to investigate the magnetic structures of the
field-induced magnetic structure in both HoB4 and NdB4. Finally inelastic neu-
tron scattering measurements on polycrystalline samples were used to map out the
crystal field scheme in HoB4 and NdB4. Single crystal samples were used to inves-
tigated the low temperature magnetic excitations in HoB4. The initial analysis of
the inelastic neutron studies is presented.

Overall, both HoB4 and NdB4 exhibit a variety of magnetic phenomena, and
their magnetic properties contribute to the understanding of the physics of the RB4

family of compounds.

xviii



Chapter 1

Introduction

The first recorded discovery of a magnetic material was by the Greeks in the 6th

century BC in regards to magnetite (Fe2O3) which was found on the island of Mag-

nesia. However the first utilisation of magnetic materials is credited to the Chinese

with the invention of the compass, which found its way to Europe in the 12th cen-

tury. The study of magnetism then flourished in the 19th with the work by Oersted,

Ampère, Faraday and Maxwell and the development of quantum mechanics in the

20th century laid the foundation of our understanding of magnetism and magnetic

materials [1]. Magnetism and magnetic materials now permeate almost all parts of

modern day life from computers to electrical power generation.

Magnetic moments acting in a cooperative way can give rise to behaviour

quite different to that expected from isolated moments. This, coupled with the

diversity of magnetic interactions present in many real systems leads to a rich va-

riety of phenomena. One of which is magnetic frustration. Frustration occurs in a

magnetic system when the spins are unable to orientate themselves to satisfy all the

competing interactions. This results in the system being unable to find a unique

ground state, often leading to many interesting and unexpected behaviour to arise.

One particular set are geometrically frustrated materials where the frustration is

arising due to the crystal symmetry.

What makes geometrically frustrated magnets of great interest is the wealth

of different behaviour they display. For example, the pyrochlore system shows spin

ice behaviour, where the moments have a “2-in-2-out” arrangement, reminiscent to

the position of hydrogen in ice [2]. It is also possible to excite one of the spins to

change its direction creating a “magnetic charge”, which act independently of one

another and are analogues to magnetic monopoles [3]. The range of physics these

materials provide gives us unrivalled insight. These magnets have also been shown
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to exhibit analogues of solids, glassy and liquid phases. This diversity of phenomena,

coupled with the multitude of experimental probes available for magnets makes them

the obvious choice for investigation.

Many of the basic structures that gives rise to frustration have been exten-

sively studied and now more complicated structures with further interactions are

gaining a lot of attention in the search for unusual physics and to further our under-

standing. One set of compounds are the rare-earth tetraborides, a rare experimen-

tal realisation of the frustrated, square Shastry-Sutherland lattice. The interplay

between the magnetic frustration, antiferromagnetic exchange and quadrupolar in-

teractions has lead to a rich and diverse phase diagram in relatively low magnetic

fields.

The magnetic properties of two rare-earth antiferromagnets, NdB4 and HoB4,

have been investigated and the results are presented in this thesis. The thesis is

broadly comprised of two parts, initially a brief theoretical introduction is given in

chapters 2 and 3, while the experimental techniques used and the results for NdB4

and HoB4 are presented in chapters 4 to 7. The first theoretical chapter is concerned

with the discussion of magnetism, its origin, magnetic order, magnetic interactions

among other topics are outlined and further magnetic frustration is introduced as

well as giving a broad introduction to the magnetic properties of the RB4 family.

The crystal structure and magnetic structure are introduced in chapter 3, where the

theory behind diffraction techniques are also introduced. This chapter primarily

focuses on neutron scattering techniques, which form the foundation for numerous

measurements presented in this thesis.

The bulk of the thesis is concerned with the magnetic properties of HoB4 and

NdB4. The sample preparation, crystal growth, methods and the equipment used

for bulk characterisation measurements, as well as introducing the neutron instru-

ments from large scale facilities (ISIS and the ILL) used are described in Chapter 4.

The results for HoB4 and NdB4 are presented in chapters 5 and 6 respectively.

They both follow a similar structure beginning with characterisation through com-

positional analysis with x-ray diffraction and then bulk magnetic properties using

magnetic susceptibility, magnetisation, heat capacity and resistivity measurements.

The chapters then focus on single crystal neutron diffraction, first with polarised

neutrons and then using un-polarised neutrons in both zero and applied magnetic

field. The initial analysis of the inelastic neutron scattering data is presented before

summarising the chapter. Finally the main results of the investigations into both

HoB4 and NdB4 are reviewed in chapter 7, along with current work and suggestions

for possible future experimental and theoretical work on these compounds.
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Chapter 2

Magnetism, Frustration and the

Shastry-Sutherland Lattice

In this chapter a brief introduction to magnetism is presented. It is by no means an

exhaustive review of the physics involved and will primarily focus on the relevant

parts for the work presented in this thesis. A more complete description of the theory

can be found in texts such as Ref. [4–6]. The chapter is split into three main parts,

the first outlines more conventional magnetism, the second gives an introduction

to frustration and frustrated lattices and the final part focuses on the frustrated

Shastry-Sutherland lattice and gives a broad introduction to the properties of the

RB4 family.

2.1 Introduction to Magnetism

2.1.1 Magnetic Moment

The most fundamental object in solid-state magnetism is the magnetic moment,

µ. Classically this can be equated to a current loop, where an electron orbiting a

nucleus can be approximated as a current, I. A generalised formula for the magnetic

moment moving, in plane, around a loop of arbitrary size can be given by [4]:

µ =
1

2

∫
r× j(r)d3r, (2.1)

where j(r) is current per unit area at a point r and is typically referred to as the

current density. Considering an irregular loop, the current element can be rewritten

I∂l = j∂V , thus giving:
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µ =
1

2

∫
r× j(r)d3r =

1

2

∮
r× Idl = I

∫
dA. (2.2)

Consider a circular orbit, the current can be re-written in terms of velocity

I = qv/2πr, substituting this into equation (2.2) gives:

µ =
q

4πr

∮
r× vdl =

q

4mπr

∫
Ldl, (2.3)

where L is the orbital angular momentum defined as L = r×mv. For the simple case

of a circle, the integral equates to the circumference and the relationship between

the magnetic moment and the angular moment is given by:

µ =
q

2m
L = γL (2.4)

where γ is the gyromagnetic ratio. A measure of the size of the magnetic moment

can be determined from the simplest case of a single electron orbiting a hydrogen

nucleus. This quantity is referred to as the Bohr magneton, µB:

µB =
eh̄

2me
= 9.274× 10−24Am2 (2.5)

However a classical approach is not sufficient to describe the full theory of

magnetism in solid-state materials and quantum mechanics is required for a fuller

description. The orbital angular momentum, L, is given by h̄
√
l(l + 1), where l

is orbital quantum number (l = 0, 1, 2, ...) and h̄ is the reduced Planck constant

and has a value of 1.055× 1034 Js. The electron also possesses an intrinsic angular

momentum referred to as spin, S. Similar to the orbital momentum the magnitude

of the spin is given by h̄
√
s(s+ 1), where s is spin quantum number (s = 1

2).

Atomic states can be described by the total angular momentum J, which is

the sum of the orbital angular momentum and the spin angular momentum given

by:

J = L + S (2.6)

The combination of angular momentum quantum number can be used to

estimated the ground state energy using Hund’s rules. These three empirical rules

are listed below in order of decreasing importance [7]:

(1) Maximise S - Pauli exclusion principle prohibits two electron states from oc-

cupying the same quantum state simultaneously. To minimise the electronic

repulsion, the orbitals are filled with the same spin state before occupying
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them with the other.

(2) Maximize L - Also reduces electron repulsion because if all electron precess

around the nucleus in the same sense, it minimised the chance an electron will

meet its neighbour.

(3) Finally the value of J is found using J = |L − S| if the energy shell is half

filled, while J = |L + S| if it is more that half full. This is linked with the

spin-orbit coupling.

Hund’s rules assume that only the ground state of the atom is populated and cannot

be applied to excited states of atoms. The third rule arises from minimising the

spin orbit coupling in the system. This, however, is only really applicable to 4f

electron systems. For 3d electron systems crystal field effects are typically more

important than the spin orbit coupling and orbital quenching is normally observed

in these systems. Here the orbital angular momentum does not effect the size of the

magnetic moment and only spin is important. This means that S is the important

quantum number for transition metals, while J is the important quantum number

for rare earth metals.

2.1.2 Magnetic Moment in an applied Magnetic Field

Magnetic materials contains vast amount of atoms and if there are unpaired elec-

trons, magnetic moments as well. The magnetisation, M, is defined as the magnetic

moment per unit volume. The magnetisation depends on the size of the applied

magnetic field, H, and the magnetic flux density according to the following expres-

sion:

B = µ0(H + M) (2.7)

where B is the magnetic flux density and is a scaled version of the magnetic field

according to B = µ0H. In special cases, the magnetisation is linearly related to the

applied field:

M = χH (2.8)

where χ is a dimensionless quantity called the magnetic susceptibility. In this special

case there is still a linear relation between B and H, namely:

B = µ0(1 + χ)H = µ0µrH, (2.9)
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Ion Shell S L J gJ µeff(µB)

Nd3+ 4f3 3
2 6 9

2 0.727 3.62
Ho3+ 4f10 2 6 8 1.25 10.60

Table 2.1: The quantum numbers, Landé g value, the effective moment for select
rare earth ions.

where µr is the relative permeability. Materials can be categorised based on the

temperature dependent magnetic susceptibility, χ(T ). If χ < 0 the material is

referred to as diamagnetic. For a diamagnetic substance, a magnetic field induces

a magnetic moment which opposes the applied magnetic field that caused it. The

diamagnetic susceptibility is given by:

χdia = −N
V

e2µ0

6me

Z∑
i=1

〈r2〉. (2.10)

where N is the number of ions (each with Z electrons) and r is the radius of the

atom. In the case of a positive susceptibility (χ > 0) there are a few possibilities,

the first is a paramagnetic state. Here the magnetic moments are randomly oriented

due to the temperature of the system. Application of the field tends to align the

moments. The susceptibility is given by the following expression:

χpara =
nµ0µ

2
eff

3kBT
(2.11)

where n is the number of moments per unit volume and µeff is the effective magnetic

moment of the system and can be calculated according to the L, S and J values of

the system:

µeff = gJµB

√
J(J + 1) (2.12)

where gJ is a constant known as the Landé g-value is determined by:

gj =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(2.13)

The values for quantum numbers as well as gL and µeff are shown in Table 2.1.

The other options are ordered states such as ferromagnetism and antiferro-

magnetism, which are discussed further in section 2.1.5. The trend of the moments

to align with the magnetic field can be seen by considering the energy of the magnetic

moment in field given by:
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E = −µ ·B, (2.14)

as can be seen the energy is minimised when the magnetic moments are aligned

parallel to the field. When all the moments are aligned with the magnetic field the

system is said to have saturated. The saturation magnetisation is given by:

Msat = ngjµBJ = nµsat (2.15)

where µsat is the saturated magnetic moment and is smaller then the effective mo-

ment.

2.1.3 Crystal Electric Fields

In condensed matter, crystalline materials are an assembly of ions and are bound

together by long range electrostatic forces. The electrostatic interactions set-up an

internal electric field referred to as the crystalline electric field (CEF). The size and

nature of the crystal field effects depends crucially on the local environment. This

can be analyzed using the method of Stevens operators [8, 9]:

HCEF =
∑
n,m

Bn
mOnm (2.16)

where Bn
m are the crystal field parameters and Onm are the Steven’s operators. For

many systems the number of crystal field parameters depends greatly on the symme-

try of the system. To determine these parameters it is typical to perform inelastic

neutron scattering to find the position of the crystal field levels. Once these are

known, the experimental data is fitted and the crystal field scheme of the material

can be found. The Wigner-Eckart theorem considers the J–J coupling in a system

and allows the Steven’s operators to be written in terms of J . Thus the crystal

field levels in rare earth compounds depends on the quantum number, J and the

number of levels can be estimated with 2J+1. For ions with a half integer J values,

there are an even number of crystal field levels which pair up and forms Kramer

doublets. However for integer values of J the crystal field can have anywhere up

to 2J + 1 singlet levels, this can lead to large degeneracies at low temperatures

and with the onset of magnetic order, lead to a spontaneous symmetry breaking

of the crystal structure and is referred to as the Jahn-Teller effect. This typically

manifests as a lattice distortion with the typical example being a distortion of the

octahedra, but is not limited to such cases [10]. This thesis presents one of each

case, Neodymium, where J = 9
2 , which is a Kramer ion and thus we expect five
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doublets, while Holmium has J = 8 and can have up to 17 singlet states and thus

susceptible to the Jahn-Teller effect.

2.1.4 Magnetic Interaction

When a collection of magnetic moments are arranged in close proximity to one

another, they are able to exert an influence on the neighbouring moments and

this gives rise to the plethora interesting magnetic phenomena that is observed

in magnetic materials. The first step to describing the magnetic interaction is to

considering the Hamiltonian, H. The Hamiltonian of the Heisenberg model is given

by [11]:

H = −
∑
i,j

JijSi · Sj (2.17)

where Jij is the exchange constant between the ith and jth spins. The exchange

falls into a number of different categories. If the electrons on neighbouring magnetic

atoms interact via an exchange interaction, this is known as direct exchange. While

direct exchange is generally present, it is often not a very important mechanism,

particularly in materials involving rare earth ions. A fuller description needs to takes

account for both the localised and band character of the electrons. This means that

it is necessary to consider indirect exchange interactions in many magnetic materials.

In metals the exchange interaction between the magnetic ions can be medi-

ated by the conduction electrons. A localised magnetic moment spin-polarises the

conduction electrons and in turn this polarisation couples to a neighbouring localised

magnetic moment a distance r away. This is known as the RKKY (Ruderman, Kit-

tel, Kasuya and Yosida) interaction. The coupling takes the form of an r-dependent

exchange JRKKY(r) given by [4]:

JRKKY(r) ∝ cos(2kFr)

r3
(2.18)

where kF is the Fermi wave vector and at large r the interaction is long range

and has an oscillatory dependence on the distance between the magnetic moments.

Depending on the size of the separation it may be either ferromagnetic or antifer-

romagnetic [11].

In addition another example of a magnetic interaction that can be considered

is the magnetic dipolar interaction. Two magnetic dipoles µ1 and µ2 separated by

r have an energy equal to [4]
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Figure 2.1: Various spin arrangements in ordered states (a) ferromagnetic, (b) an-
tiferromagnetic, (c) ferrimagnetic and (d) helimagnetic order.

E =
µ0

4πr3

[
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

]
(2.19)

which depends on the separation and their degree of mutual alignment.

2.1.5 Magnetic Order

In some magnetic materials there is a spontaneous magnetisation in the absence of

an applied magnetic field. This is arising due to the interactions between the mag-

netic atoms (as discussed in the previous section). The spontaneous magnetic order

depends on the temperature of the system with order occurring at low temperatures.

At high temperatures the thermal fluctuations are large enough to overcome the ex-

change interactions and the magnetic moments are considered to exist independently

of one another. This is the paramagnetic regime and the system possesses no order

and the moments are randomly aligned (as was briefly discussed in section 2.1.2).

This gives rise to a characteristic ordering temperature, below which the

magnetic interactions start to dominate and the system orders. The order comes

from minimising the Hamiltonian in equation (2.17). The favoured alignment of the

neighbouring moments depends on the sign of exchange constant, Jij . When Jij > 0

9



Figure 2.2: Inverse magnetic susceptibility curves for paramagnets, ferromagnet and
antiferromagnets.

the energy is minimised when there is a parallel alignment of the spins, while for

Jij < 0 an anti-parallel alignment is favoured. When all magnetic moments have the

same magnitude these exchanges lead to two forms of magnetic order; ferromagnetic

ordering and antiferromagnetic ordering respectively. These two types of magnetic

order are represented in Fig. 2.1(a) and (b).

Depending on the exchange interaction the ferromagnetic and antiferromag-

netic ordering will be of different strengths with an associated temperature at which

the magnetic moments will possess sufficient thermal energy to overcome the ex-

change interactions. Above this temperature the moments become disordered. This

temperature can be quantified via the Curie-Weiss law:

χ =
C

T − θCW
, (2.20)

where the Curie-Weiss temperature, θCW gives an indication of the magnetic or-

dering. A positive value indicates ferromagnetism, while a negative value indicates

antiferromagnetism. The ordering temperatures are referred to as the Curie and

Néel temperatures for a ferromagnet and antiferromagnet respectively. C is the

Curie constant, where C = nµ0g
2
jJ(J + 1)/3kB. In low applied fields and at high

temperatures some magnetic materials will tend to behave like paramagnets, so the

effective moment can be calculated from the Curie constant by using:

µeff =

[
3kB

µ0NAµ2
B

] 1
2 √

χmT (2.21)

which reduces to µeff = 2.827
√
χcgs

m when the molar susceptibility is in the cgs

system of units. The Curie-Weiss temperature and Curie constant can be determined
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from the inverse susceptibility curves, the characteristic curves for a ferromagnet,

antiferromagnet and a paramagnetic are shown in Fig. 2.2.

One of the ways to treat antiferromagnetic order assumes that there are two

interpenetrating sublattices, one of which has the moments pointing up, while the

other points down with equal magnitude. However situations due to the crystal

structure can arise where the two sublattices are not equivalent. This can be due to

ions being in different oxidation states. As different oxidation states have differing

number of electrons, the magnetic moment can then vary between the oxidation

states. Thus the spontaneous magnetisation of the two sublattices may not be equal

and opposite and therefore will not necessarily cancel out. The material will have

a net magnetisation and this phenomenon is known as ferrimagnetism (Fig 2.1(c)).

The sublattices do not necessarily have to have the same temperature dependences

either and thus can have different ordering temperatures.

The above structures can generally be considered as commensurate with the

crystal structure, that is it can be represented with an integral number of crystal-

lographic unit cells. In some systems, incommensurate order can also be achieved.

These structures are normally complicated, and act as an intermediate magnetic

phase before long range order is achieved. An example of this is helical order. The

crystal structure is such that the atoms lie in layers. One of the situations there are

layers of magnetic moments, where there is a ferromagnetic alignment of moments

within the layers. There are then interactions between the layers, which can be de-

scribed by a nearest-neighbour interaction, J1 and next nearest neighbour exchange

constant J2. If the angle between the magnetic moments in successive basal planes

is θ, then the energy of the system can be written as:

E = −2NS2(J1 cos θ + J2 cos 2θ) (2.22)

the energy is minimised when ∂E/∂θ = 0, which gives:

(J1 + 4J2 cos θ) sin θ = 0 (2.23)

This means solutions are either sin θ = 0, that is θ = 0 or θ = π (ferromagnetism or

antiferromagnetism) or:

cos θ = − J1

4J2
. (2.24)

This last solution corresponds to helical order and is favoured over either ferro-

magnetism or antiferromagnetism when J2 < 0 and |J1| < 4|J2|. The exchange

interaction in helical magnets are generally long range such as the indirect RKKY
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Figure 2.3: A spin wave on a line of spins, (a) a perspective view and (b) a view
from above.

interaction, mediated by the conduction electrons.

2.1.6 Excitations

There are a diverse range of excitations possible in solid state systems. In magnetic

systems the most common collective excitations are phonons and magnons. At

any finite temperature the atoms in a lattice undergo thermal vibration. These

vibrations are quantised into discrete packets referred to as phonons. Phonons are

then characterised by a dispersion relation, which relates the angular frequency ω(k)

as a function of wavevector k. The dispersion relation for 1D phonons is given by:

ω(k) =

√
2K

m
(1− cos(ka)) (2.25)

where a is the size of the box the oscillator is in and K is the spring constant, which

represents the bonds between atoms. This dispersion relation is one of multiple

branches and is referred to as the acoustic, the other being the optical branches.

Acoustic phonons have a relation, where ω ∝ k. In particular, at k = 0 their energy

is zero and it increases with increasing k. This shape is characteristic of phonons

and will be observed in the inelastic neutron scattering as an increase in intensity

with increasing k. The optical phonons, on the other hand have non-zero energy at

k = 0 and tend to be flatter modes.

In complete analogy to phonons, long-range ordered magnetic systems will

have quantised fluctuations of the spins, called magnons and are typically charac-

terised by spin waves propagating through the system. The fluctuation can arise

due to a perturbation from the neutron. This can also be thought of in terms of

quantum mechanics, with the neutron causes the spin to fluctuate between spin up

and down (imagine a plucked string), which creates a spin wave [12]. Magnons also
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Figure 2.4: Frustrated plaquettes

have a well defined characteristic dispersion relation, which are different depending

on the type of magnetic order present in the system. For example the dispersion

relation for a one-dimensional chain of spins is given by [4]

ω(k) =
4JS

h̄
(1− cos(ka)) (2.26)

where the spin wave for this is shown in Fig. 2.3.

2.2 Frustration

It was assumed throughout the previous section that the material was able to min-

imise their energy and an ordered state is achieved. However, for some systems

this is not always the case and there is an inability for the system to satisfy all

the competing interactions. This leads to a large ground state dengeneracy, which

normally suppresses long range order [5]. In some cases this can prevent long range

order down to the lowest achievable temperatures [13–15]. The suppression of long

range order leads some systems to exhibit unusual properties and magnetic struc-

tures. This suppression of magnetic order has lead to an empirical measure of the

frustration, by comparison of the Curie-Weiss and Néel temperature [16]:

f =
θCW

TN
(2.27)

where for f > 1 corresponds to frustrated system. While this serves as an indicator,

care must be taken when applying this rule as thermal fluctuations can influence

this ratio and thus f 6= 1 can arise in systems with no frustration which is often

true for antiferomagnets. To be sure of frustration the crystal lattice, symmetries

and interactions should be considered.

Magnetic frustration can manifest in numerous ways and can generally be
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divided into two broad categories; spin glasses and geometric frustration [16]. In

spin glass systems, due to a degree of disorder in the magnetic sites a conflict be-

tween magnetic ions arises, suppressing any conventional long-range order to be

established. However these systems display a distinct magnetic phase below a char-

acteristic “freezing temperature” in which the spins are aligned in random direc-

tions [17]. The second type of frustration is termed geometrical frustration and is

arising due to the lattice itself [16]. Here the structure of the crystal lattice leads

the clashing of the magnetic interaction. This is illustrated by the simplest situation

in which geometric frustration is observed. Considering a triangular arrangement

of magnetic moments coupled by antiferromagnetic nearest neighbour interaction

(Fig 2.4(a)). Atoms 1 and 2 minimise the energy when the moments are aligned

anti-parallel to one another. However, the third moment cannot be anti-aligned to

the other moments simultaneously leading to frustration [18]. The triangular lat-

tices gives rise to geometric frustration, however the type and range of interactions,

among other factors that can give rise to frustration in lattices that would otherwise

not show it [16]. This can be demonstrated by considering the moments arranged

on a square plaquette (Fig 2.4(b)). Although the system is not frustrated when

only nearest neighbour interactions are important, when next nearest neighbour

interactions become important it begins to display frustration [19].

These plaquettes can be extended to form lattices which appear in many real

systems [19]. Typically the geometrically frustrated lattices are based on corner-

or edge-sharing triangles or tetrahedra. The materials based on corner-sharing are

typically more susceptible to frustration and this can be seen by considering the

degeneracy of the system. To understand this, consider the classical nearest neigh-

bour antiferromagnetic Hamiltonian observed in equation (2.17), where the sum

is taken over nearest neighbour bonds only. The spins can be represented in two

ways: the discrete Ising spins that point in one of two directions (up or down) or

the Heisenberg vector spins (S = (Sx, Sy, Sz)) of fixed length and point in any

direction. Considering the latter, the degeneracy can be seen using simple counting

arguments, similar to those used by Maxwell in 1864 [20]. The size of the degeneracy

is given by the number of degrees of freedom in the ground state [20]:

F = D −K, (2.28)

where D is the total number of degrees of freedom and K is the number of constraints

placed upon the system. These arguments are best applied when considering clusters

of q mutually interacting spins. Rewriting the Hamiltonian [21]:
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H =
∑
i,j

JijSi · Sj =
J

2
L2

sum, (2.29)

where Lsum ≡
∑q

i=1 Si is the total spin of the unit. The energy is clearly minimised

when Lsum vanishes, corresponding to the ground state. This places the constraint

that Lx = Ly = Lz = 0. As the length of the vectors are fixed the only free param-

eter is the direction the vector points. This can be described with two parameters

(e.g. Longitude and Latitude). This means there are two degrees of freedom asso-

ciated with the spins. This leads to D − K = 2q − 3. Three of these correspond

to global rotation, meaning 2q − 6 remain [20]. These counting arguments can be

generalised to treat lattices rather than isolated clusters of spins. Minimising the

number of constraints will maximise the ground-state degeneracy and this is seen in

vertex sharing clusters. This means that lattices in which the moments are shared

between more triangles will be less frustrated. For example in the triangular lattice

with edge sharing triangles each moment is shared between 6 triangles, where as in

the corner sharing lattice each moment is only shared between two making it more

frustrated [20].

The large ground state degeneracy raises the question of whether the sys-

tem can freely move between ground states or whether there is an energy barrier

separating them. In each of the ground states the internal energy is identical, this

is not the case for the free energy. Where the internal energy is the quantity that

is normally minimised at low temperature this becomes the free energy. This gives

different entropic weighting to each ground state and if the fluctuations are very

small, a situation can arise where the system effectively spends all of its time fluctu-

ating around a special state [22]. Thus, this is known as order-by-disorder, as order

is induced by thermal fluctuations which are normally associated with disorder in a

system [22].

In general the nearest neighbour Heisenberg Hamiltonian, H is only an ap-

proximation. A more accurate way to represent different models is to apply a per-

turbation such that the Hamiltonian looks like Htot = H +HP , where HP is one

of many possible perturbations. These perturbations could take many forms, such

as further neighbour exchange, single-ion anisotropy, magnetic dipolar interactions,

etc. [21].

There are a large number of frustrated systems in both two and three dimen-

sions and some of these are illustrated in Fig. 2.5. The two dimensional structures

include the simple edge-sharing triangular lattice, and corner-sharing triangular

networks such as the kagomé lattice [23, 24] as well as the honeycomb lattice [25].
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Figure 2.5: A selection of two and three dimensional frustration lattices (a) Trian-
gular, (b) Kagomé, (c) face centred cubic and (d) pyrochlore lattices.

Figure 2.5(c) and (d) shows the three dimensional analogues of the triangular and

kagomé lattice respectively. The face centred cubic structure is frustrated cubic

lattice, a notable example of this is the double perovskites [26, 27], while the py-

rochlore lattice is highly frustrated example of corner sharing tetrahedra [28, 29].

Other corner sharing arrangements in three-dimensions include the garnets [30, 31]

and kagomé staircase [32] compounds. This is just a very narrow cross section of

the frustrated lattices realised in nature showing the depth and the diversity of the

field.

2.3 Shastry-Sutherland Lattice

The Shastry Sutherland lattice (SSL) is a frustrated lattice that can be described

as a square lattice with antiferromagnetic couplings J1 and additional diagonal an-

tiferromagnetic couplings J2 every other square (Fig. 2.6(a)). The Hamiltonian for

such a system is given by [33]:

H = J1

N∑
edges

Si · Sj + J2

N∑
diagonal

Si · Sj . (2.30)

16



Figure 2.6: (a) The Shastry-Sutherland Lattice, (b) demonstration of the frustration
occurring in the SSL when J2 is an antiferromagnetic exchange and (c) zoomed in
view of the exchange interactions observed in the Shastry-Sutherland lattice.

The Hamiltonian can be modified to include an appled magnetic field, B [34]

H = J1

N∑
edges

Si · Sj + J2

N∑
diagonal

Si · Sj −B
N∑
i

Szi . (2.31)

The lattice has been studied extensively with a number of different models,

such as the Heisenberg, Ising and XXZ model. Each have a number of different

regimes that can be investigated. For example consider the quantum limit of the

Heisenberg model. This gives a solution to equation (2.30) as [35]:

|ψG〉 =
∏
α

|S〉α , (2.32)

where α denotes nearest neighbour J1 interaction and |S〉α represents a singlet state

[35]. It has been shown that the nature of this ground state correlations in |ψG〉 is

seen to be liquid like, and thus referred to as the quantum spin liquid phase [36].

For the Ising case, consider Jx = Jy = 0 and B = 0 for spin 1/2. For

the case J1/J2 > 1, the ground state entropy is O(1), while for J1/J2 < 1 the

entropy is O(N). The case where J1/J2 = 1 is much more complex, since more

configurations are allowed. Shastry and Sutherland found it could be mapped to a 10

vertex model containing N/2 sites with two sublattices [36]. The Ising case is where

frustration arises which is demonstrated in Fig. 2.6(b). Here magnetic moments sit

at the vertices of the squares, as the diagonal exchange is antiferromagnetic, the

two spins will align anti-parallel to one another. When additional diagonal bonds

are considered, regardless of the type of nearest neighbour interaction the system is

unable to satisfy the competing interactions, leading to frustration.

The final case is the classical limit for the Heisenberg model, this is applicable

17



for the when S →∞. Due to the large angular momentum of R ions, this case is the

most relevant for the RB4. In zero magnetic field the lowest energy configuration

is for the spins to be coplanar. For the case when J1/J2 > 1, a Neel ordered state

is formed, otherwise a spiral state with an angle φ = π ± arccos(J ′/J) between

nearest neighbour spins [33]. Similar to the helical order outlined in section 2.1.5.

While the lattice only considers nearest and next nearest neighbour interaction a

small perturbation to the Hamiltonian is to include further neighbour interactions,

which are depicted in Fig 2.6(c), where J3 corresponding to a diagonal across the

square and J4 corresponds to an exchange interaction across every other atom.

Considering these further neighbour interactions is incorporated into simple models

such as the anisotropic next nearest neighbour interaction (ANNNI) model. This

model has been important in describing compounds with complex phase diagram

such as CeSb [37]. Despite its relative simplicity it is able to exhibit complex phase

diagrams, which include commensurate, incommensurate phases as well as field

induced features [38].

There have been a few experimental realisation of the Shastry-Sutherland

lattice, however the most notable being SrCu2(BO3)2, where the Cu ions form a

sublattice that is equivalent to the Shastry-Sutherland lattice. SrCu2(BO3)2 drew a

lot of attention due to its interesting magnetic properties including fractional mag-

netisation plateau at 1
8 , 1

4 and 1
3 of the saturated magnetisation [39, 40]. Recently

it was found that the RB4 family was an experimental realisation of the Shastry-

Sutherland lattice.

2.3.1 Rare-Earth Tetraborides

The rare earth tetraborides crystallise into a tetragonal structure with space group

P4/mbm. The lattice can be separated into two parts; a boron and a rare earth

sublattice. The boron sublattice can be described as chains of B6 octahedra that

extend along the c-axis, these octahedral are bonded by pairs of B2 in the ab-plane.

This forms rings between the octahedra (Fig. 2.7(a)) [41].

The rare earth ions sit above and below the boron rings that are between

the octahedral [41]. They form a network consisting of squares and triangles that

is topologically equivalent to the Shastry Sutherland lattice [42], highlighted by the

the solid and dashed lines (Fig. 2.7(b)).

Many metal borides are known to be electron deficient (i.e. the number

of conduction electrons are reduced compared to the number of valence electrons

available). This is due to the strong participation of electrons in the B-B bonds

[43]. However, these materials are metallic and this could suggest there is a strong
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Figure 2.7: (a) Section of RB4 lattice to illustrate the B6 octahedra forming chains,
as well as the rings above and below the R3+ ions. (b) ab plane of RB4 to illustrate
how the SSL mapped t0 the network of squares and triangles formed by the R3+

ions.

variation in the physical principles within the family of compounds [43]. Due to the

metallic nature of the family, the RKKY interaction is believed to be important,

but previous studies have also suggested the quadrupolar interaction also plays a

part [44–46].

The magnetic properties of the RB4 family of compounds were investigated

by Buschow et al. [47]. Here the magnetic susceptibility on polycrysatlline sam-

ples was reported. The predominant ordering is antiferromagnetic with a disparity

between θCW and TN suggesting that frustration could play a role in this family of

compounds [47]. Quite striking is PrB4, which is the exception to the rest of the

RB4 family and orders ferromagnetically at 15 K [48]. Magnetisation studies have

shown Ising like anisotropy appears to be common among the RB4 compounds. The

classical and Ising-like spins further suggests the possibility of frustration [36].

Since the work of Buschow, the members have been studied in detail. Single

crystals have been grown in a variety of methods [49–51]. A review of the early work

was given by Etourneau, however significant insight into the RB4 compounds have

been obtained since the review paper [52]. In particular ErB4, GdB4, DyB4, TbB4

and TmB4 have been studied in depth. ErB4 and GdB4 both order antiferromagnet-

ically at 15.4 K [53] and 42 K [54] respectively. Neutron diffraction experiments on

ErB4 revealed the magnetic structure is a collinear arrangement of the spins point-

ing along the c-axis [55]. The magnetic structure of GdB4 was more controversial

with debate between a collinear and non-collinear ordering in the ab-plane [56–58],

however spherical neutron polarimetry settled the debate indicating non-collinear
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antiferromagnetic order in GdB4 [59]. DyB4, TbB4 and TmB4 all show successive

phase transitions. DyB4 shows two transitions at 20.3 K and 13 K [45, 60], the

magnetic structure was determine to order (upon cooling) with a collinear antifer-

romagnetic structure, while the low temperature phase was found to have static

order with short range correlations forming due to the frustration [55, 61]. TbB4

orders at 44 K [62] with a non-collinear antiferromagnetic with the moments in the

ab-plane [63, 64]. There is a further transition to an incommensurate phase at 23 K,

the structure of which remains undetermined. TmB4 on the other hand shows three

magnetic phase transitions, two at 11.7 K and 10.4 K to incommensurate phases [65]

and then to antiferromagnetically with a non-collinear structure in the ab-plane [66].

Across these studies, the typical ordering within the RB4 family was found to be

antiferromagnetic with a non-collinear structure in the ab-plane.

One of the most striking features of the RB4 family are the presence of mag-

netisation plateaux at fractional values of the saturation magnetisation, which will

be referred to as fractional magnetisation plateaux throughout this thesis. These

fractional magnetisation plateaux are indicative of a magnetic state and are a com-

mon feature to the RB4 family. A 1
2 -plateau is observed in ErB4 [67], DyB4 [60],

TbB4 [68] and TmB4 [69]. TbB4 and TmB4 also displaying further fractional mag-

netisation plateau at 1
3 and 1

8 respectively. The field induce magnetic states in the

RB4 family show a diverse range of structures, these range from a simple ferrimag-

netic structure in ErB4 [70]. TmB4 shows two sets of striped structures, for the 1
2

plateau, there are strips of antiferromagnetic spins separated by equally sized strips

of ferromagnetic spins. There is a similar structure on the 1
8 -plateau, but the antifer-

romagnetic region spans 7 units cells, separated by a single unit cell of ferromagnetic

spins [71]. Finally TbB4 has an expansion of the unit cell in the ab-plane, where half

the cell orders in plane and the other half has a ferromagnetic component, again

making a stripe like structure. The nature of the 1
2 magnetisation plateau state in

DyB4 still remains undetermined.

The final members of the RB4 to be studied are HoB4, NdB4 and SmB4, but

literature is lacking for the latter two. For SmB4 all that is known is that it has

successive phase transitions at 25 and 7 K and orders antiferromagnetic [72]. The

main focus of this thesis is on HoB4 and NdB4 and a description of the previous

work done on both these compounds is presented in chapters 5 and 6 respectively.
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Chapter 3

Scattering Theory

Diffraction of radiation, whether x-ray photons, neutrons or electrons, is an invalu-

able technique in the investigation of crystal (and magnetic) structures. This chapter

serves as a brief overview to the theory of scattering, with a particular focus on neu-

tron scattering. It is by no means an exhaustive review of the subject, but will focus

on the relevant parts for the work presented in this thesis. A more complete coverage

of the theory can be found in texts such as [73–76]. The chapter will begin with a

brief description of the crystal and magnetic structures. The chapter will then move

on to scattering theory beginning with x-ray diffraction, highlighting the diffrac-

tion condition, Bragg’s Law. Neutron scattering will then be considered starting

with neutron production followed by sections on nuclear, magnetic, polarised and

inelastic neutron scattering.

3.1 Crystal and Magnetic Structures

Within solid state materials the crystal structure can be described by the crystal

lattice. The crystal lattice is an infinite set of points, with a periodic structure and

is defined by three basis vector; a, b, and c. Due to the periodic nature any point

in the crystal lattice can be found using the following vector:

R = Ua + V b +Wc (3.1)

where U, V , and W are constants with integer values. The lattice can then be

convolved with atomic basis to create the crystal. In the simplest case this would

be a single element, but can range up to complicated compounds. The structure

can then be described by its base building blocks referred to as the unit cell. The

dimensions are usually denoted with a, b and c in accordance with the basis vectors
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and the angles between them are α, β and γ. The position on the atom in the unit

cell can be described by:

r = xa + yb + zc (3.2)

where xyz are fractional coordinates in the unit cell. Thus any point in the crystal

structure can be described by a translation of the unit cell by combining equa-

tions (3.1) and (3.2) to give:

T = R + r (3.3)

There are six types of three dimensional unit cell; triclinic, monoclinic, othorhombic,

tetragonal, hexagonal and cubic. Depending on the number and position of lattice

points, these six types can be classed as either primitive, face-, body or side-centred

unit cells giving rise to the 14 Bravais Lattices. The position of atoms in the unit

cell can then be described by a set of symmetry operations which further sub divides

the 14 Bravais lattices into 230 space groups, which are most commonly used for

the description of the crystal structure.

For diffraction experiments the reciprocal lattice is more useful as it facilitates

the interpretation of the diffraction data. This forms a new set of basis vectors using

the real lattice vectors. These are given by:

a∗ = 2π
b× c

a · (b× c)
, b∗ = 2π

c× a

a · (b× c)
, c∗ = 2π

a× b

a · (b× c)
(3.4)

Similarly to the real space any point in the reciprocal lattice can be described with

the following vector:

G = ha∗ + kb∗ + lc∗ (3.5)

where hkl are Miller indices and define sets of lattice planes. A full description of

both the crystal and reciprocal lattices can be found in Ref. [74, 77].

In a similar manner to the crystal structure, the magnetic structure can

be described by the periodic repetition of a magnetic unit cell. For simplicity we

use a description based on the nuclear unit cell and a propagation vector, k, that

describes the relations between moment orientations of equivalent magnetic atoms

in different nuclear unit cells [78]. In a commensurate magnetic structure where the

magnetic and crystallographic unit cell are identical giving rise to a propagation

vector of k = (0, 0, 0) ≡ 0. The magnetic unit cell can also be larger than
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Figure 3.1: Schematic of the diffraction process where beams of radiation are scat-
tering by parallel planes of atoms.

the crystallographic unit cell due to a reduction of symmetry. This is the case in a

simple antiferromagnetic structure, where the magnetic unit cell doubles in size. For

example if the antiferromagnetic order propagates along the c-axis, the propagation

vector is given by k = (0, 0 1
2). Additionally there is a situation, where there is no

simple relation between the structural and magnetic cells. This implies a spin density

wave propagating through the lattice in the direction of the incommensuration and

at least one term in the propagation vector would be non-integer.

3.2 Diffraction

The basic diffraction condition can be illustrated using Fig. 3.1. The incoming beams

of radiation are scattered by parallel planes of atoms separated by a distance, d. A

coherent superposition of the waves is achieved when the path difference between

beams scattering from adjacent planes is equal to an integral number of wavelengths,

λ, leading to [74]:

nλ = 2d sin θ, (3.6)

where θ is the angle between the wave and the plane. This is Bragg’s law and

is a consequence of the periodicity of the crystal lattice. This however gives no

information on the spatial arrangement of atoms in the unit cell only whether or

not diffraction occurs. To determine the position of atoms in the unit cell the

intensity needs to be found from the amplitude and phase of the scattered waves
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and is quantified by the structure factor, Fhkl [74]:

Fhkl =
∑
j

fj(Q) exp(2πi(hxj + kyj + lzj)) (3.7)

where fj(Q) is the form factor and is a measure of the scattering power of the jth

atom in the unit cell [74]. The form this takes on depends on the type of radiation

used. In the case of x-rays, the scattering comes from the distribution of electrons

in the system and generally scales with the atomic number, Z, of the atoms. If we

take the electron density as ρel, the the form factor is given by [75]:

f(Q) =

∫
ρel(r) exp(iQ · r) dr (3.8)

In the limit of Q→ 0, the form factor is given by f(Q = 0) = Z. In most diffraction

experiments the intensity of the beams is measured such that Ihkl ∝ |Fhkl|2. The

structure can then be determined through a trial and error method by comparison

of measured and calculated intensities, more detail on this process can be found in

Section 4.1.4.

3.3 Neutron Scattering

The neutron is an uncharged particle that has a number of properties that make

it an invaluable probe in the investigation of numerous physical systems. Unlike

surface specific techniques, such as x-rays and electrons, the neutron interacts weakly

with the atoms meaning the neutron can travel further into the sample allowing

investigation into the interiors of materials. The typical energies of neutrons are a

similar magnitude to crystalline and magnetic excitation in many systems, making

it an ideal tool for the investigation of excitation schemes. The deBrogile wavelength

is a similar order to the atomic spacing allowing diffraction by the crystal structure.

Finally and arguably the most useful property for the present work is the neutron

is a spin-1
2 particle, making the neutron well suited to the study of microscopic

magnetism and sensitive to the magnetic structures in a system

3.3.1 Neutron Production

Neutrons used in scattering experiments are produced by two mechanisms. The

first is utilised by research nuclear reactors, such as the Institut Laue Langevin

(ILL) Grenoble, France. While the second is used at spallation sources such as that

employed by ISIS at the Rutherford Appleton Laboratory, UK.
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Reactor sources produce neutrons through the fission of 235U nuclei. Some

of the neutrons from this process are used to sustain the fission reaction, while the

excess are used for the neutron flux. The neutrons are then moderated to define

the energy of the beam. They undergo inelastic collisions with the nuclei in the

moderator so the neutrons are in thermal equilibrium with the moderator. Typically

moderation by water at 300 K produces “thermal” neutrons, although moderation

by deuterium at 25 K and graphite at 2000 K is used to produce low energy (“cold”)

and high energy (“hot”) neutrons respectively. This process produces a distribution

of wavelengths so it is necessary to monochromate the beam before the instrument

in order to select a narrow wavelength range for the experiment [79]. The exception

to this are time of flight instruments as well as the neutron Laue technique, which

utilises the distribution of wavelengths.

Spallation sources produce neutrons by accelerating protons with a syn-

chotron and colliding them with a heavy metallic target (for example tantalum,

uranium or tungsten). The spallation process is a violent interaction between the

proton and the target nuclei, which results primarily in the emission of neutrons

and light nuclear fragments. The neutrons emerging from the target are moderated

to slow the neutrons. Accelerator sources, such as those used for spallation sources,

typically use pulses of protons and thus produce pulses of neutrons. This lends

itself to time of flight techniques, which elimates the need for monochromators for

selection of wavelength, however they are still utilised as analysers [79].

3.3.2 Neutron Diffraction

This section details the basics behind nuclear neutron scattering. The scattering of

radiation is characterised by the change in momentum, P and energy, E.

P = h̄(ki − kf ) = h̄Q, (3.9)

where Q is the scattering vector. If there is no change in energy between the incident

and scattered beam, we have elastic scattering. The vector diagram for an elastic

scattering event is shown in Fig. 3.2(a). Applying some elementary trigonometry

leads to the following result:

Q =
4π sin θ

λ
(3.10)

where Q = |Q| is the magnitude of the scattering vector. When the scattering vector

is equivalent to a reciprocal space vector, G:
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Figure 3.2: (a) Vector diagram showing elastic scattering (b) Simple geometry of a
scattering experiment.

Q = ki − kf = G, (3.11)

we have diffraction. This is referred to as the Laue condition and indicates when

the beam is diffracted. Using the relationship G = 2π/d and substituting it into

equation (3.10) gives Bragg’s law, indicating that the Laue and Bragg condition

are equivalent. Fig. 3.2(b) shows the geometry of a simple scattering experiment.

A wave of neutrons incident on a nucleus can be represented by the wave-function

ψi = exp(ikz). The scattered wave will be spherically symmetrical and can be

represented by ψsc = − b
r exp(ikr). Here b is the scattering length and represents

the scattering power of the nucleus. The quantity b is complex, the imaginary

component is only important for nuclei that strongly absorb neutrons (such as 103Rh,
113Cd, 157Gd, and 176Lu). However, the majority nuclei are real and unlike the

form factor used in x-ray diffraction, there is no nuclear theory for the scattering

length. The value can vary dramatically between isotopes and the values have to

be experimentally determined [76]. The scattering cross-section of the nucleus can

be defined by [73]:

σ =
outgoing current of scattered neutrons

incident neutron flux
= 4πb2 (3.12)

The cross section is the effective area of the nucleus “seen” by the incident neutron

and gives an indication to the probability of a scattering event occurring. However

in a real experiment only a small area dS is measured and this is referred to as the

partial differential cross section defined by:
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dσ

dΩ
= N2

∣∣∣∣∣∑
n

bn exp(2πiQ · rn)

∣∣∣∣∣
2

= N2

∣∣∣∣∣∑
n

bn exp(2πi(hxn + kyn + lzn))

∣∣∣∣∣
2

= N2|Fhkl|2

(3.13)

where N is the number of unit cells.

The nucleus has a spin, I, which can combine with the neutron of spin-1
2

giving combined spins of I + 1
2 and I − 1

2 . This gives rise to two components of the

scattering cross-section:

σ = σcoh + σincoh (3.14)

where σcoh and σincoh is the cross sections for coherent and incoherent scattering

respectively. These are giving by:

σcoh = 4π(b)2 and σincoh = 4π{b2 − (b)2} (3.15)

The coherent scattering tells us about the correlations between nuclei and gives an

indication to the nuclear structure. While the incoherent scattering has no informa-

tion on structure and gives rise to background scattering.

3.3.3 Magnetic Scattering

While in general the scattering of the neutron is a nuclear process, there is an

exception for magnetic ions, where there is additional scattering arising from the

interaction between the neutron’s magnetic moment and the magnetic moment of

the atom. As the scattering is due to the electrons the magnetic form factor is

similar to that of the x-ray form factor, however the drop off with scattering vector

Q is more dramatic. The magnetic form factor is given by the following equation:

fmag =

∫
ρ(r) exp(ikr)dr, (3.16)

where ρ(r) is the density of magnetic atoms. The atoms may be regarded as having

a magnetic scattering amplitude, p:

p = S

(
e2µN

mec2

)
fmag (3.17)

27



where µN is the nuclear magneton and S is the spin value of the neutron. This

scattering amplitude is the counterpart of the nuclear scattering amplitude b. The

magnitude of which is comparable allowing simultaneous measurement of both the

nuclear and magnetic contribution of a system. Similarly to the nuclear scattering,

the structure factor is given by [73]:

Fmag =
∑
n

qnpn exp{2πi(hxn + kyn + lzn)} (3.18)

where q is the magnetic interaction vector defined by:

q = ε(ε ·K)−K (3.19)

where ε is the unit vector in the direction perpendicular to the scattering vector and

K is a unit vector in the direction of the atomic magnetic moment. This equation

shows that for an atom to make a magnetic contribution to the scattered intensity

there must be a component of the magnetic moment perpendicular to the scattering

vector.

Equation (3.13) and (3.18) can be used to find the total intensity of the

structure factor, Fhkl for a particular (hkl) reflection is given by:

|Fhkl|2 = |Fnuc|2 + |Fmag|2 (3.20)

3.3.4 Polarised Neutron Diffraction

Uniaxial neutron polarisation

To perform a uniaxial neutron experiment the neutron beam needs to be polarised.

Appling a magnetic field the neutron spin then quantized into its two Zeeman states,

either parallel or anti-parallel to the quantization axis giving by the external mag-

netic field. The degree of polarisation can be quantified with [80]:

P =
N+ −N−
N+ +N−

, (3.21)

where N+ and N− are the numbers of neutrons in the parallel and anti-parallel

Zeeman states respectively. For an unpolarised beam, the two states are equal

(i.e. N+ = N−), leading to P = 0, where as if N+ or N− = 0, the beam is fully

polarised and gives P = ±1. Therefore the polarisation of the neutron beam will

vary between 0 ≤ |P | ≤ 1. The neutron interacts with the magnetic moment

according to the magnetic scattering potential, Vm. Within the scattering process
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the the neutron spin state can change. We therefore arrive at the magnetic scattering

amplitudes [80]:

U++
m = 〈+|Vm(Q) |+〉 = M⊥,z(Q)

U−−m = 〈−|Vm(Q) |−〉 = −M⊥,z(Q)

U+−
m = 〈+|Vm(Q) |−〉 = M⊥,x(Q) + iM⊥,y(Q)

U−+
m = 〈−|Vm(Q) |+〉 = M⊥,x(Q)− iM⊥,y(Q)

(3.22)

where M⊥(Q) is the magnetic interaction vector defined by [80]:

M⊥ = Q̂× (M× Q̂) (3.23)

which is the Fourier transform of the magnetisation perpendicular to the scattering

vector. The first two amplitudes do not change the neutron spin state and are

referred to as non spin-flip (NSF) amplitudes, while the latter two involve a change

in spin state and are called spin-flip (SF) amplitudes. These amplitudes lead to the

rule of thumb:

(i) The non spin-flip amplitude is sensitive only to components of the sample

magnetisation, which are parallel to the neutron spin.

(ii) The spin-flip amplitude is sensitive only to components of the sample mag-

netisation, which are perpendicular to the neutron spin.

xyz-polarisation

In order to get full separation of the magnetic, nuclear and spin-incoherent cross

sections analysis of the x, y, and z polarisation measurements must be made. In

this experiment the x and y polarisation are fixed in the experimental set-up while

the angle, α, between the x-axis and the scattering vector Q is referred to as the

Schärpf angle. The magnetic cross section can be calculated in two ways [81](
dσ

dΩ

)
mag

= 2

(
dσ

dΩ

)x
SF

+ 2

(
dσ

dΩ

)y
SF

− 4

(
dσ

dΩ

)z
SF(

dσ

dΩ

)
mag

= 4

(
dσ

dΩ

)z
NSF

+ 2

(
dσ

dΩ

)x
NSF

(
dσ

dΩ

)y
NSF

(3.24)

while the nuclear and the spin-incoherent cross are given by [81]:(
dσ

dΩ

)
nuc

=
1

6

[
2

(
dσ

dΩ

)
TNSF

−
(

dσ

dΩ

)
TSF

]
(3.25)
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(
dσ

dΩ

)
si

=
1

2

(
dσ

dΩ

)
TSF

−
(

dσ

dΩ

)
mag

(3.26)

where the subscripts TNSF and TSF refer to the total non spin-flip and total spin-

flip cross sections respectively.

3.3.5 Inelastic Neutron Scattering

For inelastic scattering, there is a transfer of energy between the sample and the

neutrons. This means the magnitude of wave vectors are no longer equal, |ki| 6= |kf |,
this gives the energy transfer as:

h̄ω = Ei − Ef =
h̄2

2m
(k2
i − k2

f ) (3.27)

The scattering function is related to the total differential cross-section ac-

cording to the following equation:

d2σ

dΩdEf
=
kf
ki
S(Q, ω)

=

∣∣∣∣∣∑
t

∑
n

bn exp(iQ · rn − ωt)

∣∣∣∣∣
2 (3.28)

where S(Q, ω) is the scattering function. We can see that in the case of elastic

scattering (i.e. ω = 0) we obtain the results from equation (3.13). The scattering

function can also be related to the the dynamic susceptibility χ′′(Q, ω) [82]:

S(Q, ω) =
χ′′(Q, ω)

1− exp(−h̄ω/kBT )
(3.29)

where χ′′(Q) is an odd function. Neutrons are capable of exciting transitions be-

tween the energy levels split by the crystal fields. This is due to the neutron scat-

tering from the magnetic field associated with the unpaired f -electrons flipping the

neutron’s spin from +1
2 to −1

2 . In order to conserve angular moments the ionic state

must change by ∆mJ = ±1, which corresponds to the crystal field level transition se-

lection rules. Thus the measured spectrum will give rise to a series of peaks in energy

transfer representing transitions between crystal field levels, phonons and magnetic

excitations. The phonon and magnetic excitations are usually easily distinguished

due to their Q dependence. Intensity from phonons increases with increasing Q,

while the intensity arising from magnetic excitation drops off with Q, according to

30



the magnetic form factor. The intensity of the crystal field level generally decreases

with increasing Q, the decrease corresponding to the neutron’s form form factor.

Typically the energy loss of the neutron is only investigated, However some infor-

mation can be gained from the energy gain of the neutron. The relationship between

the energy gain and loss of the neutron is given by:

S(Q,−ω)︸ ︷︷ ︸
EnergyGain

= exp(−h̄ω/kBT ) S(Q, ω)︸ ︷︷ ︸
EnergyLoss

(3.30)

It can be seen that peaks are only observed in the energy gain part of the

spectrum when the temperature is significant and is usually a similar order to the

temperatures required to thermally populated crystal field levels. Thus, the energy

levels can given an indication to transitions in the spectrum arising due to thermal

population of crystal field levels.
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Chapter 4

Experimental Techniques

4.1 Sample Preparation and Characterisation

4.1.1 Polycrystalline Preparation

Polycrystalline samples were prepared using the Centorr tri-arc furnace. Ingots of

rare earth metal, R, were placed in a water cooled copper hearth with powdered

boron. The equation for the reaction is [41]:

R+ 4B→ RB4, (4.1)

where a 5% excess of boron was added to account for loss during the melting.

Isotopically enriched boron, 11B (99%) was used to reduce neutron absorption. The

reaction chamber was evacuated and flushed with argon several times before melting

under a flow of argon. An arc of current is struck between the copper hearth

and a tungsten electrode, the arc is brought over the sample and used to melt it.

Before preceding, a small piece of titanium was melted, to check for and remove any

presence of air in the reaction chamber. If the titanium is clean, there is no air in

the argon atmosphere and the melt can precede. After each melt the sample was

flipped and re-melted to improve homogeneity. Some member of the RB4 (R = La,

Ce, Pr, Nd, Sm or Yb) family decompose at high temperatures according to [41]:

2RB4 → RB6 +R+ B2. (4.2)

Care was taken with these compounds by melting for shorter periods of time and

using a smaller current to minimise the presence of impurities.
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Figure 4.1: Illustration of the floating zone method. A polycrystalline feed and seed
rod are brought together in the focal point of light from four Xe lamps to create a
molten region between the two. The molten region between the two rods is pulled
through the hot zone, crystallising as it cools.

4.1.2 Single Crystal Growth

The floating zone technique was utilized for the RB4 crystal growth. It is a crucible

free method and allows the growth of high quality crystals of congruently and incon-

gruently melting materials. The principle of the technique is illustrated in Fig. 4.1.

The light from four xenon arc lamps is focused to a central hot zone by four ellip-

tical mirrors. A polycrystalline feed rod is suspended to a rotating shaft above the

hot zone, while a preferably crystalline seed rod is fixed to a shaft below [83, 84].

The feed and seed rods were made by arc melting the polycrystalline samples into

a rod shape ranging between 35 to 70 mm in length with a diameter of 4 mm. The

first crystal growth used a polycrystalline seed rod, while subsequent growths used
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a crystalline sample.

A high temperature optical image furnace (Crystal Systems Inc. Optical

Floating Zone Furnace Model FZT-12000-X-VI-VP) was used and the rods were

fixed within a quartz tube. The chamber was evacuated and flushed several times

with argon and then filled with argon up to a pressure of 5 bars. The tips of

the two rods are brought together establishing a liquid bridge between the two

referred to as the floating zone. The shafts are counter-rotated, this ensuring an even

distribution of heat throughout the molten region as well as ensuring homogeneity

of the composition [83, 84]. The molten region was moved through the hot zone at

a rate of 18 mm h−1, crystallising as the melt cools.

4.1.3 Powder X-ray Diffraction

Composition analysis of the samples was carried out using powder x-ray diffraction

on a Panalytical X-Pert Pro MPD diffractometer. A monochromated Cu Kα1 (λ =

1.54056 Å) source with a standard Bragg-Brentano geometry was used to produce

the diffractograms. When the Bragg condition is satisfied a peak is observed arising

from the coherent scattering of the x-rays from the crystalline planes. The diffrac-

tograms produced depend on the symmetry and lattice parameters of the compound.

The diffractogram is thus unique for each compound and can be used to identify the

sample as well as any impurity phases. The presence of impurities was checked by

performing Rietveld refinements using the Fullprof program [85].

4.1.4 Least-Squares Structure Refinement

The least-squared refinement methods fall into two main categories for checking a

crystal and magnetic structure of a compound. The first is the Rietveld method

which is used for the analysis of powder samples. The method works by minimis-

ing the weighted squared difference between the observed yobs
i and calculated ycalc

i

intensity at a point, i [86, 87]:

X2 =
n∑
i=1

wi{yobs
i − ycalc

i }2, (4.3)

where wi is the statistical weight. The profile of the calculated intensity is made up

of several parameters and can be calculated according to:

ycalc
i = s

∑
hkl

LhklPhklA|Fhkl|2Ω(θ) + bi (4.4)
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where s is the scale factor such that ycalc
i = syobs

i , Lhkl is a correction term which

encompasses Lorentz, polarisation and multiplicity factors, Phkl is a preferred ori-

entation function and A is an absorption correction. Ω(θ) is a peak shape function

which models both instrumental and sample effects (typically a Gaussian, Lorentzian

or Pseudo-Voight function is used), while bi is the background intensity. More in-

formation on the Rietveld method can be found in reference [88].

The second method compares a list of observed structure factors |Fhkl|2obs

to the calculated structure factors |Fhkl|2calc for a particular structural model. In a

similar way to the Rietveld refinements, structural parameters, correction factors,

etc. are refined to minimise the difference between |Fhkl|2obs and |Fhkl|2calc. This

method can be use for both single crystal and powder analysis.

The magnetic structure refinement can be done by using either method. For

a magnetic phase |Fhkl|2 is calculated using the general formula [89]:

F 2
hkl ∝ |F⊥(Q)|2 = |Fm(Q)|2 −

[
Q · Fm(Q)

|Q|

]2

(4.5)

where Fm(Q) is the magnetic structure factor and Q is the scattering vector. The

scattering vector can be written as Q = G+k, where G is the reciprocal lattice vec-

tor and k is the propagation vector. For a given magnetic structure, the distribution

of the magnetic moments can be expanded as a Fourier series:

mlj =
∑
k

Skj exp{−2πik ·Rl} (4.6)

where mlj is the magnetic moment vector of the jth atom in the lth unit cell. The

Fourier term, Skj is a complex vector and obeys the condition, S−kj − S∗kj , to

ensure the magnetic moment is real. In such a case the magnetic structure factor is

given by:

Fm(Q) = pfj(Q)
∑
j

Skj exp{2πiQ · rj} (4.7)

fj(Q) is the magnetic form factor and p = (rcγ/2).

The quality of the fit is accessed using the R-factors. The R-factors quoted

through the thesis are RWP, RBragg[88]

RWP = 100×
[∑n

i=1wi{yobs
i − ycalc

i }2∑n
i=1wi{yobs

i }2

] 1
2

(4.8)
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RBragg = 100×
[

n− p∑n
i=1wi{yobs

i }2

] 1
2

(4.9)

χ2
ν =

[
RWP

Rexp

]2

(4.10)

4.1.5 Laue Diffraction

Before bulk property and neutron measurements could be made single crystal need

to be aligned along a principal axis. A polychromic source of x-rays passes through

a small hole in a CCD (charged-coupled device) plate and is incident on the sample.

The wide range of wavelength means the Bragg condition is satisfied for different

lattice planes and is backscattered by the sample onto the CCD plate. The image

produced reflects the symmetry of the crystal structure and the position of the

crystal. The sample is attached to a 3 axis goniometer and allows rotation to find

highly symmetry directions which coincide with a principal axis.

To identify the different crystal orientations, the Laue images were compared

with simulated patterns generated using OrientExpress, which simulates the x-ray

Laue images using the space group, lattice parameters and positions of the atoms

in the unit cell. Once the desired axis was identified, the sample was glued to an

aluminium plate and faces perpendicular to the axis were cut with a low speed

diamond saw to define the principal axis.

4.2 Bulk Property Measurements

4.2.1 Magnetic Susceptibility and Magnetisation

Temperature dependent magnetisation measurements were made using a Quantum

Design Magnetic Property Measurement System (MPMS), in a temperature range

of 1.8-300 K in fields upto 70 kOe [90]. Fig. 4.2 shows a schematic of the mea-

surement system. It is comprised of three main components; a superconducting

magnet, a superconducting detection coil, which are in a second-order gradiometer

configuration and a superconducting quantum interference device (SQUID).

The sample is attached to a non-magnetic sample holder, connected to a rigid

sample rod, which is brought down vertically into the center of the detection coils.

The superconducting magnet supplies a static vertical magnetic field across the

sample. During the measurements the sample is moved through the coils in a series

of discreet steps and a current is induced in the coils via electromagnetic induction.

The SQUID acts as a highly sensitive current to voltage converter and the output
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Figure 4.2: Schematic of the SQUID magnetometer. The magnetic sample is moved
through a set of detection coils inducing a current, which is then converted into a
measure of the magnetic moment.

voltage is measured as a function of position (See Fig. 4.2). Calibration with a

reference sample of known magnetic susceptibility, then allows the magnetisation of

an unknown sample to be determined from fitting the output voltage with a model

based on the response of a magnetic dipole through a second-order gradiometer.

The temperature ranges were extended down to 0.5 K using an iQuantum 3He low

temperature insert [91].

Field dependent magnetisation measurements were made using an Oxford

Instruments vibrating sample magnetometer (VSM). The sample is attached to a

non-magnetic sample stick and brought to the centre of set of stationary pick-up

coils. A pair of mechanically coupled transducers (similar to loudspeaker) are driven

by a set of coils. This causes the sample rod to vibrate with an amplitude of 1.5 mm

at a frequency of 55 Hz [92]. A static magnetic field supplied by a superconducting

magnet is applied vertically to magnetise the sample. The oscillating sample in-

duces an AC signal in the pick-up coils and the resulting voltage is measured with a

lock-in amplifier. Calibrating with a sample of known magnetic moment allows the
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Figure 4.3: A Schematic of 4 probe measurement. Current is applied across the two
outer wire, while the voltage is measured across a pair of silver wires.

magnetisation of the sample to be determined [92]. High field magnetisation mea-

surements were made using a pulsed magnetic field up to 580 kOe at the Dresden

High Magnetic Field Laboratory (HLD), Germany. Pulse magnets work by supply-

ing a fast pulse of current through a small coil of wire, producing a high magnetic

field. The measurements were carried out on small (typically less than 10 mg) plate-

like samples aligned along a principal axis, such that the field was parallel to the

plate face to minimise the demagnetising factor.

4.2.2 Resistivity

Resistivity measurements were made using a Quantum Design Physical Properties

Measurements System (PPMS). The four probe method was used to measure the

resistivity down to temperatures of 1.8 K and in fields up to 90 kOe. Fine silver wire

(0.05 mm diameter) were attached to the sample using silver paste as illustrated in

Fig. 4.3. An alternating current is passed through the outer wires, while the voltage

is measured across the two inner wires separated by a distance, l. The resistivity is

calculated according to,

ρ =
RA

l
, (4.11)

where R is the resistance and A is the cross sectional area. A current of 10 mA and

a frequency of 113 Hz was used for all measurements.

4.2.3 Heat Capacity

Heat capacity measurements were made using a Quantum Design PPMS in a tem-

perature range of 1.8 and 300 K and in fields of up to 90 kOe. The sample was

prepared by polishing at least one side and mounting it to a platform using Apiezon
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Figure 4.4: A schematic of the experimental set up for making specific heat mea-
surements using the relaxation technique. The sample is adhered to to a platform
with Apiezon grease, a heater in the platform briefly heats the sample and the ther-
mometer measures the pulse and subsequent cooling of the sample. Figure adapted
from Ref. [95]

N grease for both temperature and field dependent heat capacity measurements.

The grease act as an adhesive as well as providing good thermal contact between

the sample and the platform. The platform is suspended by eight thin wires, which

also act as electrical leads to the heater and thermometer. They also provide a ther-

mal link between the sample platform and heat sink, which is kept at a constant

temperature. A schematic of the experimental set-up is shown in Fig. 4.4

The measurements utilizes the relaxation method, which consists of several

stages. The temperature of heat sink and stage is stabilised before power is applied

to the heater for a predetermined time. The heater is then switched off and the

temperature of the sample and stage is allowed to relax towards the initial temper-

ature of the heat sink. The sample temperature is measured for the entire duration

of heating and cooling. The temperature rise and decay curve is then fitted by the

PPMS software using either a single or a pair of exponential functions. The latter is

referred to as the two-tau model, which assumes the sample is not in good thermal

contact with the platform. In this case two time constants are used to fit the data;

τ1 represents the relaxation time of the sample platform and the puck and τ2 is the

relaxation time of the sample platform and sample itself. More information on the

two-tau method is given in [93, 94].
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Figure 4.5: (a)Schematic of the single crystal neutron diffractometer, D10 at the
ILL. (b) Illustration of the Eulerian cradle. This figure was adapted from Ref. [96].

4.3 Neutron Diffraction

4.3.1 D10, Single Crystal Diffractometer, ILL

D10 is a high flux single crystal diffractometer [96]. Its good momentum resolu-

tion and low intrinsic background make it well suited for investigating nuclear and

magnetic structures. A schematic of the experimental set-up on D10 is shown in

Fig. 4.5. Thermal neutrons are monochromated by either a pyrolytic graphite (PG)

or Cu(200) monochromator to produce a neutron beam with an incident wavelength

of 2.36 Å and 1.26 Å respectively. The beam then passes through a PG filter to

reduce the half-lambda contamination. The HoB4 (0.33 g) and NdB4 (0.18 g) sam-

ples were fixed to separate aluminium pins with Kwik Fill two part resin and fitted

into the sample environment.

Two configurations were used for D10, the first is a four-circle set-up used

for zero field measurements. The sample was placed inside a helium flow cryostat,

able to obtain temperatures between 1.6 and 300 K, and mounted to an Eulerian

cradle. The Eulerian cradle has three axes of rotation (ω, φ and χ) for the sample

and is shown Fig. 4.5(b). Using an orientation (UB) matrix any (hkl) value in

the reciprocal lattice can be found. There are a number of scan available, first of

all there are ω scans where the sample is rotated around a small range in ω in a

discreet number of steps. For each step the intensity is measured and the ω scans

creates an intensity peak. The second scan used were φ-scans. Again the sample

is rotated around φ in a number of steps, with the intensity measured at each

step. In this geometry, the reflection will not move in the two dimensional detector
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Figure 4.6: Schematic of the single crystal polarised neutron diffractometer, D7 at
the ILL. This figure was adapted from Ref. [96].

so the intensity is expected to be constant unless there are other effects such as

multiple scattering. The detector is the placed at a value of 2θ which satisfies the

Bragg condition for a particular (hkl) value. A two-axis configuration was used for

measurements in an applied field. The sample was placed in a standard cryomagnet

capable of supplying a vertical magnetic field of up to 60 kOe. For both NdB4 and

HoB4 the magnetic field was applied along the c-axis defining the horizontal (hk0)

scattering plane. Out of plane coverage can be achieved by inclining the detector

by up to 30◦.

A two dimensional 80 × 80 mm2 area detector was used for both configura-

tions. To track magnetic phase transitions, the temperature and field dependence

of the intensity of different (hkl) reflections was measured. This was performed by

either ramping the field or temperature continuously and summing up the counts in

a small area of the detector or by performing an ω scan at various fixed temperatures

and fields.

4.3.2 D7, Polarised Neutron Diffractometer, ILL

D7 is a cold neutron diffractometer with full XYZ polarisation analysis [80, 96]. A

schematic of the D7 diffractometer is shown in Fig. 4.6. A vertically and horizontally

focusing PG monochromater selects a wavelength of either 3.1, 4.8 or 5.8 Å. A
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beryllium filter is used to suppress higher order contamination. Polarisation of the

neutron beam is achieved by first polarising the beam with a high efficiency in the

vertical Z direction using a Co/Ti Schärpf bender-type supermirror. A guide field of

approximately 20 G is present across the entire instrument to ensure the polarisation

efficiency remains intact. A Mexei-type flipper is then used to manipulated the

neutron spins to rotate π radians with respect to the guide field. A set of orthogonal

xyz coils situated around the sample environment, rotate the incoming beam in each

of the x, y and z directions. The x, y and z directions are fixed with respect to the

instrument and only the z direction is parallel and perpendicular to the scattering

vector Q. The diffractometer has 3 banks of 44 3He detectors, covering an angular

range of approximately 132◦. Two independent channels were measured, here called

the non spin-flip (NSF) and the spin-flip (SF) channel. The NSF channel is sensitive

to nuclear scattering and scatter from a component of the magnetic moment parallel

to the polarisation, while the SF channel is only sensitive to the component of the

magnetic moment in the scattering plane and perpendicular to the scattering vector.

Hence, the sum of the NSF and SF channels gives the total intensity that would be

observed in an unpolarised neutron experiment.

The NdB4 (2.79 g) was attached to a thin Al strip and tied in place with

Al wire. The strip was connected to a goniometer to allow fine adjustment to the

sample orientation. The HoB4 sample (1.60 g) was glued to an Al sample holder

using Kwik fill two part resin. For both cases, the crystal was aligned such that the

b-axis was vertical defining a horizontal (h0l) scattering plane. The sample sits in

an standard orange cryostat capable of reaching temperatures down to 1.5 K. Scans

were made by rotating the sample around the vertical access with 1◦ step size. Cal-

ibration measurements were run on vanadium, quartz and an empty sample holder.

Vanadium was used to normalised the detector efficiency, quartz to normalised the

polarisation efficiency, while the empty sample holder determined the background.

In addition, there is a small degree of “leakage” between the NSF and SF channels,

arising from imperfect polarisation of the neutron beam. Although this is corrected

for by the quartz normalisation, the correction does not work well for high-intensity

Bragg peaks. This gives rise to small features corresponding to the exact positions

of nuclear Bragg peaks in the spin-flip channel.

4.4 Neutron Spectroscopy

To perform an inelastic neutron scattering measurement it is necessary to have

knowledge of the incident and scattered energies of the neutron. There are a variety
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Figure 4.7: Distance-time plot to illustrate the principle of time of flight for a direct
geometry chopper spectrometer.

of different techniques to achieve this including the use triple-axis and time-of-flight

(TOF) spectrometers. TOF spectrometers can be split into two broad classes; direct

geometry, were the incident energy is selected and the final energy is calculated from

the total TOF and indirect geometry, where the final energy is selected. For the

work presented here only direct geometry TOF spectrometers were used.

Fig. 4.7 shows a TOF diagram illustrating how a direct geometry spectrom-

eter works. First of all a polychromatic neutron beam is monochromated through

use of either a crystal or a chopper. The monochromated neutron beam scatters

from the sample inelastically, changing the energy and direction of the neutron. The

final energy of the neutron can be calculated from the TOF between the moderator

and the detector. The neutron also transfers momentum to the sample enabling

the neutron to map out the scattering function S(Q,ω). The resolution of direct

geometry instruments depends predominately on two factors. The first is the width

of the pulse from the moderator, which is generally fixed by the properties of the

moderator used. While the second is the opening time of the chopper which depends

on the size of the aperture and rotation speed of the chopper.

4.4.1 MARI, ISIS

MARI (Multi-Angle Rotor Instrument) is a direct geometry chopper spectrometer

(See Fig. 4.8) [97]. A Fermi chopper is magnetically suspended in a vacuum and
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Figure 4.8: A schematic of the time of flight direct geometry spectrometer, MARI
at ISIS. The instrument was used to investigate the crystal field excitations on
polycrystalline samples of RB4. The figure was adapted from Ref. [97].

rotated up to frequencies of 600 Hz. There are four choppers available for use

on MARI, which have a variety of E ranges and resolutions. However, during

the experiment the “S-Chopper” was solely used. This is capable of producing

incident energies between 7-1000 meV and has an energy resolution of ∆E/Ei = 3-

8%. Polycrystalline samples of NdB4 (4.27 g) and ErB4 (4.00 g) were spread out in

an aluminium envelope, flatted and wrapped around a vanadium cylinder and placed

in a CCR (closed cycle refrigerator), which was able to cool the samples down to

5 K. MARI has a bank of 3He detectors situated in the vertical scattering plane,

which covers an angular range of 12-135◦. The wide angular coverage, wide energy

coverage and good resolution make it ideal for the study crystalline field excitations

in magnetic materials.

4.4.2 IN4C, ILL

IN4C is a spectrometer at the ILL and is shown in Fig. 4.9. The incident neutron

beam passes through two rapidly pulsating background choppers [96, 98]. These act

as low bandpass filters, eliminating gamma rays and fast neutrons, which contribute

to the background noise of the spectra. A curved monochromator consisting of an
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Figure 4.9: A schematic of the time of flight direct geometry spectrometer, IN4
at the ILL. The instrument was used to investigate the crystal field excitations on
polycrystalline samples of HoB4. The figure was adapted from Ref. [96].

assembly of 55 crystal pieces focuses the divergent beam onto a small area at the

sample position. The monochromator assembly allows for four separate crystals,

PG(002), PG(004), Cu(220) and Cu(111). For our experiment only the PG(002)

and PG(004) were used to produce a wavelength of 3.06 and 1.61 Å respectively. A

Fermi chopper is used to pulse the incident beam, which is required for the time of

flight technique.

The powdered HoB4 (3.38 g) sample was spread out in an aluminium enve-

lope, flattened and held in a sample holder creating a square window approximately

40 × 40 mm2. The sample was placed in a standard orange cryostat capable of

reaching temperatures down to 1.5 K. A radial collimator was used to minimise

scattering from the equipment. The scattered neutrons are detected by a bank of
3He detectors covering an angular range of 120◦.

4.4.3 IN5, ILL

IN5 is a direct geometry spectrometer, located at the ILL. A schematic of the in-

strument is shown in Fig. 4.10 [96, 99]. A continuous, polychromatic neutron beam

becomes pulsed by the first set of pulsing choppers. Here two counter rotating

choppers remove frame overlap of different pulses and reduced the background. The
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Figure 4.10: A schematic of the time of flight direct geometry spectrometer, IN5
at the ILL. The instrument was used to investigate the low energy excitations on
single crystal samples of HoB4. The figure was adapted from Ref. [96].

pulses are then monochromated by a second set of choppers. Two incident wave-

length of λ = 3.5 and 5 Å were used throughout the experiment. The single crystal

HoB4 (1.6 g) sample was attached to an aluminium sample holder with Kwik Fill

two part resin and orientated so that an b-axis was vertical, defining the horizontal

(h0l) scattering plane. The scattered neutrons are detected by an array of position

sensitive 3He detectors, which cover an angular range of 150◦ and a vertical angular

range of ±20.55◦.
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Chapter 5

Magnetic Properties of HoB4

This chapter is devoted to the study of the magnetic properties of the frustrated

antiferromagnet HoB4. The investigation into the magnetic properties of HoB4

presented in this thesis begins by checking the quality of the crystals grown by

performing x-ray measurements as well as characterising single crystal samples

with lab based measurements such as magnetic susceptibilitiy [47, 100], magneti-

sation [42, 101], heat capacity [100] and resistivity [102]. We then expanded upon

these measurements by performing magnetisation measurements down to lower tem-

peratures of 0.5 K as well as going to higher magnetic fields of 500 kOe. HoB4 shows

successive phase transitions, the first is second order at TN1 = 7.1 K, while the lat-

ter is first order at TN2 = 5.7 K. The field dependent magnetisation measurements

have shown the existence of metastable phases at fractional values of the saturation

magnetisation, Msat, where M/Msat = 1
3 , 4

9 and 3
5 .

The main focus of the chapter is on the neutron scattering measurements.

Previous measurements on polycrystalline samples have revealed the presence of an

incommensurate magnetic phase with a propagation vector (δ, δ, δ′), where δ = 0.022

and δ′ = 0.43 in the intermediate temperature phase as well as a non-collinear anti-

ferromangetic phase with a k = 0 commensurate structure in the low temperature

phase. The investigation also revealed the presence of diffuse scattering in the para-

magnetic and incommensurate phases using polarised neutron measurements. We

have performed zero field measurements with both polarised and un-polarised neu-

trons using single crystals. We also expanded upon the zero-field measurements by

performing neutron diffraction experiments in fields up to 50 kOe to investigate the

magnetic structures of the fractional magnetisation plateaux observed in HoB4.

To better understand the unusual behaviour of HoB4, further inelastic neu-

tron measurements were made on polycrystalline samples to investigate the crys-
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Figure 5.1: Powder x-ray diffractogram of HoB4. The red line corresponds to the
fit from the Rietveld refinement, while the blue line corresponds to the difference
between the observed and calculated intensity. The green dashes correspond to the
expected positions for nuclear Bragg reflections.

talline electric field. Inelastic neutron measurements on single crystal were also

made in order to investigate the low energy magnetic excitations. The initial analy-

sis is presented, however the fitting the crystal fields is quite challenging and is still

an on-going project. The final section of the chapter is devoted to the conclusions

and a careful comparison of the magnetic properties of HoB4 with that of the other

members of the RB4 family.

5.1 Bulk Characterisation

The single crystals were grown as described in section 4.1. It was found that the sin-

gle crystals had a higher purity compared to the initial polycrystalline rods formed.

Thus for polycrystalline samples, part of the single crystal were powdered. The com-

position of the sample was determined by Rietveld refinement of the powder x-ray

diffractogram which is shown in Fig. 5.1. The main phase is HoB4, and there is no

significant presence of an impurity phase. The red line shows the fit, while the blue

curve is the difference between the observed and calculated intensity. The peaks ob-

served in the difference curve are arising due to the fit not estimating the peak shape
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Space Group: P4/mbm
Lattice Parameters: a = b = 7.08 Å, c = 4.01 Å

Ion Wyckoff Position Positions Fractional Coordinates

Ho 4g (x, x+ 1
2 , 0) x = 0.318

B1 4e (0, 0, z) z = 0.196
B2 8j (x, y, 1

2) x = 0.172, y = 0.0506
B3 4h (x, x+ 1

2 ,
1
2) x = 0.0880

Table 5.1: Fractional coordinates and Wyckoff Positions for each site in HoB4 de-
termined from powder x-ray diffraction measurements.

accurately due to the asymmetrical shape of the peak. The structural parameters

have been determined from the refinement and are shown in Table 5.1. While the

determined parameters are in agreement with previous investigations [46, 103], the

fractional x, y, z value depend on the intensity of the peaks, so there should be some

caution with the exact value and the value determined from neutron diffraction are

more reliable (Section 5.2.2).

The quality of the single crystal was checked using the a backscattering Laue

camera (as described in section 4.1.5). Fig. 5.2 shows the Laue photographs of

the [001] and [100]-directions compared to the simulated pattern made using the

OrientExpress software [104]. As can be seen there is good agreement between

the two patterns. During scanning along the crystal it was found there are some

positions where there was doubling up of points or shifting of the Laue pattern.

This was caused be grain boundaries and have multiple grains. However, the grain

were large and allowed good single crystal samples to be isolated.

5.1.1 Magnetic Susceptibility

Fig. 5.3 shows the temperature dependence of the magnetic susceptibility for both

H ‖ c and H ⊥ c in an applied magnetic field of H = 0.1 kOe. For H ‖ c HoB4

shows successive magnetic phase transitions in χ(T ), observed as a broad maximum

at approximately TN1 = 7.1 K and a discontinuous drop at TN2 = 5.4 K. These

transitions define three phases, referred to in this chapter as the high temperature

paramagnetic regime (T > TN1), the intermediate temperature (IT) phase (TN2 <

T < TN1) and the low temperature (LT) antiferromagnetic phase (T < TN2). The

transitions are also observed for H ⊥ c, although the maximum at TN1 is less

pronounced compared to that observed for H ‖ c.
The inverse magnetic susceptibility is shown in the inset of Fig. 5.3. For

H ‖ c, HoB4 exhibits Curie-Weiss behaviour between 50-300 K and was fitted in
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Figure 5.2: Single crystal Laue diffraction photographs of HoB4 showing (a) the
[100] direction compared to the simulated pattern of the [100] direction and (b) the
[001] directions compared to simulated pattern for the [001] direction.
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Figure 5.3: Temperature dependent magnetic susceptibility of HoB4 in a magnetic
field of 0.1 kOe for H ‖ c and H ⊥ c. The inset shows the inverse susceptibility
between 40 and 300 K.
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this range with a least squares linear regression fit [105]. The Curie-Weiss constant

is θCW = -14 K, the negative Curie-Weiss temperature indicates the antiferromag-

netic nature of the magnetic structure. The effective magnetic moment, µeff was

determined to be µeff = 10.6µB, which is in agreement with the value of 10.6µB

calculated using Hund’s rules as described in section 2.1.1 as well as previously

published works [47, 67, 100, 102]. The inverse susceptibility for H ⊥ c, however

does not show Curie-Weiss behaviour at high temperatures and is linear between

50-100 K before curving away. Fig. 5.4 shows how of the temperature dependent

magnetic susceptibility curves evolve in different magnetic fields. For H ‖ c both

ordering temperatures are suppressed by an increasing magnetic field; TN2 is no

longer present above 20 kOe, while TN1 persists up to at least 25 kOe. The value of

the magnetic susceptibility has a similar value for both 20 and 25 kOe suggesting

a stable, field induced magnetic state is formed. For H > 30 kOe the magnetic

susceptibility increases and levels off where the system appears to have reached

saturation.

Fig. 5.4(b) shows the temperature dependent magnetic susceptibility curves

in different magnetic fields for H ⊥ c. Similarly to H ‖ c, the ordering temperature

is suppressed. TN1 can no longer be distinguished above 100 Oe, while TN2 is present

up to at least 20 kOe.

5.1.2 Magnetisation

The samples used were plate-like and arranged to reduce the demagnetisation fac-

tor. The demagnetisation factor did not exceed 0.22, therefore the correction for

an effective field does not exceed 1%. The demagnetisation factor was calculated

by followed the method outline in ref [106]. Fig. 5.5(a) shows the magnetisation

curves for two separate samples at T = 2 K. The first crystal was used for neutron

diffraction measurements on D10 and was found to contain a small HoB2 impurity,

while the second crystal was used for polarised neutron diffraction measurements on

D7 and contains no significant impurity. These will be referred to as D10 and D7

crystal respectively. The D10 crystal magnetisation curve shows a large plateau at

M/Msat = 1
3 with a very small feature occurring at M/Msat ≈ 1

6 , while there is a

slightly more pronounced feature at M/Msat ≈ 3
5 . The derivative (see Fig. 5.5(b)),

dM/dH indicates these features more clearly. These have been observed in previ-

ously published results [42, 102] except for the feature at M/Msat ≈ 1
6 , which is not

observed in either work. The D7 crystal measurements were taken at two slightly

different tilt angles away from the c-axis. Comparing the D10 crystal magnetisation

curve to the two curves shown for the D7 crystal it can be seen that the 1
3 magnetisa-
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Figure 5.4: Temeprature dependent magnetic susceptibility in a a range of magnetic
fields from 0.1 to 40 kOe for (a) H ‖ c and (b) H ⊥ c.

Figure 5.5: Field dependent magnetisation measurements for H ‖ c for two separate
crystal growths. The D10 crystal was found to have a small HoB2 impurity and there
are two slightly different orientations of the D7 crystal. Each curve is subsequently
offset by 0.75µB/Ho ion. (b) Shows the derivative of the magnetisation curves.
Each curve is subsequently offset by 1µB/Ho ion kOe. All magnetisation curves
correspond to the field ramping up.
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tion and one of the two small features is observed in each curve. This suggests that

the appearance of the small features above and below the 1
3 magnetisation plateau

depends heavy on the orientation of the c-axis and the field. Where possible the

tilt away from the field is quoted. The magnetisation curves saturates at approxi-

mately 6.5µB per Ho ion, which is significantly smaller than the effective moment,

µeff = 10.6µB, found from χ−1(T ) measurements as well as the saturation moment

for a Ho ion, predicted to be gJµB = 10µB. For the remainder of this section the

D7 crystal has been used.

Fig. 5.6 shows the field dependent magnetisation curves at different temper-

atures for both H ‖ c and H ⊥ c. Fig. 5.6(a) shows the magnetisation curves at

T = 2 K for H ‖ c and H ⊥ c. The measurements for H ‖ c are in agreement

with those in Fig. 5.5, while H ⊥ c shows a single transitions at 23.5 kOe, which

is highlighted by the derivative, dH/dM . There is no indication of saturation upto

100 kOe for the curve taken where H ⊥ c. There is a large anisotropy between the

two directions favouring the c-axis, the large difference suggesting an Ising charac-

teristic to the spins in the LT phase. The field ramping down is shown as a dashed

line. Both curves show hysteresis around each transition. Increasing the temper-

ature to T = 4 K (Fig. 5.6(b)), the 1
3 -magnetisation plateau becomes significantly

less defined, similarly for the 3
5 -magnetisation feature, both transitions shifting to

lower magnetic fields. The transitions for H ⊥ c is still present, but shifts to a lower

magnetic field of 19 kOe. Again the field ramping down is shown with a dashed line,

there is still hysteresis for both field directions, but it is only pronounced around

the main field induced transition. Increasing the temperature further to T = 6 K

(Fig. 5.6(c)), the H ‖ c curve shows a broad transitions, beginning at 15 kOe, while

there is no obvious transition for the H ⊥ c curve. For both field direction there is

no obvious hysteresis effects.

5.1.3 Low Temperature (3He) Measurements

Fig. 5.7 shows the field dependent magnetisation measurements at T = 0.5, 0.8

and 1 K. The transition to the 1
3 -magnetisation plateau shifts to larger fields with

increasing temperatures, while the feature at M/Msat ≈ 3
5 becomes more pronounced

at lower temperatures compared to the magnetisation curve at T = 2 K shown in

Fig. 5.6. At T = 0.5 K an additional feature appears at a 25.4 kOe corresponding

to M/Msat ≈ 1
2 . This is highlighted by a local minimum in the derivative, dM/dH

shown in Fig. 5.7(b). To investigate this new field-induced state, the temperature

dependent magnetic susceptibility measurements were made in a magnetic field of

25.4 kOe corresponding to the local minimum between two magnetisation jumps
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Figure 5.8: Field dependent magnetisation measurements made on HoB4 at T =
1.5 K with a pulsed magnetic field up to 500 kOe. The inset shows a lower field
range to highlight the fractional magnetisation plateaux. The derivative dM/dH is
shown as the dashed curve. Only curves where the field was ramped up are shown.

in the dM/dH for T = 0.5 K, as well as in fields just above and below it (see

Fig. 5.7(c)). All three susceptibility curves show a broad maximum at around 3.7 K,

which is suppressed to lower temperatures with an increasing magnetic field. At

H = 25.4 kOe, a clear extra feature is observed in χ(T ) at T ≈ 1 K, which is not

seen at either H = 24.6 kOe or H = 27.0 kOe. This observation provides additional

support to the claim that M/Msat = 1
2 might be stabilised in HoB4 in a narrow field

interval at a sufficiently low temperature.

5.1.4 High Field Magnetisation

Field dependent magnetisation measurements in fields up to 500 kOe are shown

in Fig. 5.8. For H ‖ c, at low fields, we observe the 1
3 -magnetisation plateau as

expected. The magnetisation curve levels off at approximately 40 kOe, before up-

turning at approximately 200 kOe, and gradually increasing. This suggests that

the magnetic moments are tilting towards the field direction with increasing field.

Similarly for H ⊥ c we observe the expected transition at H = 30 kOe, while the

magnetisation gradually increases, before levelling off at approximately 200 kOe and

then gradually increasing again, reaching 7µB per Ho ion at 500 kOe. During the
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Figure 5.9: Temperature dependent heat capacity measurements of HoB4 in different
magnetic fields made for the field directions of (a) H ‖ c and (b) H ⊥ c. For both
directions the curves are subsequently offset by 7 J/mol K.
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Figure 5.10: The magnetic contribution of the heat capacity for the two crystal
geometries (a) H ‖ c and (b) H ⊥ c. This was determined by subtracting the heat
capacity of the non-magnetic LuB4 reference compound from the total heat capacity
of HoB4. A comparison of the total heat capacity for both compounds is shown in
the inset.

experiment we have found that upon application of the magnetic field the sample

experienced significant torque and had a tendency to deviate away from the H ‖ c
and H ⊥ c geometries unless firmly attached to a sample holder. These observa-

tions as well as the magnetisation curves suggest that the a or c-axis may not be

the easy magnetisation direction in HoB4 in higher applied fields and that it may

lay somewhere in between.

5.1.5 Heat Capacity

Figure 5.9 shows the evolution of the temperature dependent heat capacity in dif-

ferent magnetic fields for both H ‖ c and H ⊥ c. Fig. 5.9(a) corresponds to heat

capacity measurements where H ‖ c. In zero field there is a lambda-type anomaly

at approximately TN1 = 7 K indicating the second order nature of the transition.

While a sharp spike observed at TN2 = 5.7 K is a first order transition. The sharp

spike arises as the relaxation method used to collect the data is better suited to

detecting second order phase transitions. Increasing the field, TN1 is suppressed to

4.2 K at H = 27.5 kOe. In a field of 35 kOe TN1 is increased to 4.3 K. TN2 is

suppressed to 2.7 and 2.6 K at 17.5 and 20 kOe respectively. This transition is then

increased to 2.8 K in a field of 23 and 27.5 kOe and is no longer visible at 35 kOe.

Figure 5.9(b) shows the heat capacity measurements for H ⊥ c. As expected

it displays two transitions; a second order phase transition at 7.1 K and a first order

phase transition at 5.7 K. Increasing the field we see that the second order transition
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Figure 5.11: Cmag/T (filled squares) curve for HoB4 for (a)H ‖ c and (b)H ⊥ c. The
open circles corresponds to Cmag/T where the nuclear Schottky anomaly (dashed
line) has been subtracted. Cmag/T has been integrated with respect to T giving the
magnetic entropy (red curve).

remains broadly unchanged, while the first order phase transition is suppressed from

5.7 K in zero field to 2.5 K in a field of 40 kOe.

The heat capacity shown in Fig. 5.9 is the total heat capacity and is com-

prised of lattice, electronic and magnetic contributions. The lattice and electronic

contributions of the heat capacity can then be estimated through use of a non-

magnetic isostrutural compound (LuB4 is used in this case, the data for which was

taken from Ref. [107]). The magnetic contribution to the heat capacity can then be

determined by subtracting the heat capacity of the reference compound from the

total heat capacity of the magnetic compound, however the differences in molecu-

lar masses must be accounted for. This can be done by determination of the ratio

r = θ′/θ, where θ′ and θ are the Debye temperatures of the reference compound and

the magnetic compound respectively. This ratio can be estimated with [108, 109]:

r ≈

√
M(HoB4)

M(LuB4)
(5.1)

The re-normalisation ratio can then be used to estimate the lattice contribution by

multiplying the ratio with the temperature values of the non magnetic reference

compound, fitted and the subtracted. This procedure was performed for HoB4 and

the ratio was found to be r = 0.978 and the magnetic heat capacity is shown in

Fig. 5.10 for both H ‖ c and H ⊥ c. The inset in both cases shows a comparison

between the total heat capacity of LuB4 and HoB4 at high temperatures. As both

curves are in zero field we expect the results to be identical and the labels H ‖
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c and H ⊥ c are merely used to indicate the differing geometry of the crystals

used. The insets in Fig. 5.10 show a comparison between the heat capacity of HoB4

and LuB4, in both case the temperature dependence is approximately linear at

high temperatures. This temperature dependence has also been observed in ErB4,

GdB4, TbB4 and DyB4, which is to be expected [110–113]. It was put forward by

ref. [113], that this linear dependence was arising due to differences between the

Debye temperatures of the rare earth and boron sublattices. The LuB4 curves was

fitted with a 7th order polynomial and the resulting curve was subtracted from HoB4

total heat capacity. As can be seen for both directions, we observe the two magnetic

phase transitions, however we also observe two Schottky anomalies at approximately

15 and 33 K. To estimate the energy gap giving rise to the Schottky anomaly we

used the following [114]:

Csh = R

(
δ

T

)
g0

g1

exp(δ/T )

[1 + (g0/g1) exp(δ/T )]2
(5.2)

where R is the ideal gas constant, δ is the energy separation in Kelvin. g0 and g1

is the degeneracy in the ground and first excited state. The Schottky anomalies

are most likely arising from the population of low energy crystal field levels and

Equation (5.2) suggests that the energy separations giving rise to these anomalies

are approximately 33 and 72 K.

We then determined the magnetic entropy by integrating Cmag/T with re-

spect to T , which is shown in Fig. 5.11. Holmium ions are unusual in that there is a

large hyperfine coupling between the nuclear spins and the electronic spins. This hy-

perfine interaction leads to a nuclear Shottky anomaly, which is observed as a peak

at low temperatures, the upturn of which is seen in Fig. 5.11. The anomaly was

estimated from measurements on Ho2GaSbO7 and has been successful in estmating

the anomaly in other Ho compounds such as Ho2Ti2O7 [2, 115]. The estimation of

the anomaly is shown by the dotted line. This was subtracted from the solid points

and the resulting curve is shown as the open symbols.

The entropy reaches 3.21 J/mol K at TN2 and 7.11 J/mol K at TN1. At high

temperatures the entropy levels off to a value of 19.07 J/mol K, which corresponds

to a value of R ln 10. The maximum entropy of a magnetic subsystem is defined as

R ln(2J + 1), where J is the quantum number of the electron angular momentum in

a paramagnetic ion. This means the maximum entropy of Ho ions is R ln 17 (J=8).

This implies that the crystal field splitting in Ho can be upto 17 singlet levels. The

entropy we observe at TN1 is very close to R ln 2, where the entropy reaches R ln 2

between TN2 and TN1 at T = 6.7 K. The entropy reaches R ln 3 at 9.2 K. This is in
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Figure 5.12: Temperature dependent resistivity measurements for (a) H ‖ c and (b)
H ⊥ c each curve is subsequently offset by 2 µΩ − cm. Field dependent resistivity
measurements for (c) H ‖ c and (d) H ⊥ c, each curve is subsequently offset by
3 µΩ− cm.

agreement with previous measurements [113]. The difference between the maximum

allowed entropy and the value of R ln 10 imply large splitting between the crystal

field and that there are relatively high energy crystal field levels.

5.1.6 Resistivity

Fig. 5.12(a) and (b) shows the temperature dependent resistivity measurements for

HoB4 for H ‖ c and H ⊥ c respectively. In zero field the resistivity displays a

linear relationship from high temperatures (not shown) down to the magnetic phase

transition, TN1 indicting the metallic nature of HoB4, consistent with other members

of the RB4 family. For both field arrangements, HoB4 shows two transitions; there is

a drop in the resistivity at TN1 = 6.9 K and a further discontinuous drop at resistivity
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at TN2 = 5.4 K in low magnetic fields. The sudden slope change could be due to

the loss of spin disorder scattering at the antiferromagnetic transition temperature,

which has been suggested for the other members of the RB4 family [62, 72]. For

H ‖ c, both transition temperatures are suppressed with increasing field with TN1

no longer visible above at least 22.5 kOe and TN2 no longer visible above 27.5 kOe.

For H ⊥ c, TN1 remains broadly unchanged, while TN2 is suppressed from 5.4 K at

2.5 kOe to 3.4 K at 22.5 kOe and is no longer visible above this field.

The field dependent resistivity curves for H ‖ c and H ⊥ c are shown respec-

tively in Fig 5.12(c) and (d). At T = 2 K, there is a change of gradient at 18 kOe,

which is consistent with the 1
3 -magnetisation plateau. The resistivity levels off at

approximately 30 kOe, before increasing again at 55 kOe. A similar magnetoresis-

tance is was observed in other Ising-type RB4 family memebers such as ErB4 and

was explained due to conventional orbital magnetiresistance with additional scat-

tering due to magnetic disorder and spin excitations as the plateau state evolves

in magnetic field [116]. The feature is observable up to 4 K, but shifts to lower

magnetic fields. There is a feature at 6 K, which is consistent with the magnetisa-

tion curve in Fig.5.6(c). For H ⊥ c (Fig. 5.12(d)) the resistivity curves at 2, 3 and

4 K show a single transition which shifts to lower fields with increasing tempera-

ture. The magnetoresisteance increases with decreasing temperature is a maximum

at T = 2 K with a value of 1.7% and 1.3%. This is significantly smaller than the

previously published results of 4000% [102]. While the transition temperature and

fields are all consistent with previously published results and characterisation, the

values for the resistivity are larger. This could indicate the presence of cracks, grain

boundaries or impurity in the sample.

5.2 Single Crystal Neutron Diffraction

5.2.1 Polarised Neutron Diffraction

Fig. 5.13 shows the zero-field intensity maps of the (h0l) scattering plane of HoB4.

Using a z-polarisation (parallel to the [010]-direction) the non spin-flip (NSF) and

spin-flip (SF) channels were measured for T = 10, 6.5 and 1.5 K. The paramagnetic

phase at T = 10 K, close to the first magnetic transition is shown in Fig. 5.13(a).

The nuclear Bragg reflections are observed in the NSF channel, while weak features

are also observed corresponding to Bragg positions are observed in the SF channel.

These features are arising due to “leakage” as described in section 4.3.2. A compari-

son of the intensity shows these features are approximately 1% of the intensity of the

NSF counterparts and are easily distinguished from real features. Broad magnetic
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Figure 5.13: Single crystal neutron diffraction maps of (h0l) plane for HoB4 using
the D7 diffractometer. The non spin-flip (left column) and spin-flip (right column)
channels at different temperature (a) 10 K, (b) 6.5 K and (c) 1.5 K are shown.
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features are observed at positions (0 0 0.43), (0 0 1.43), (2̄ 0 0.43) and (2 0 0.43)

corresponding to the incommensurate reflection positions. The first transition oc-

curs at TN1 = 7.1 K indicating these broad features are diffuse scattering arising

from the formation of short range correlations above ordering. There are additional

diffuse magnetic features observed at (1̄00), (100), (1̄01) and (101), again arising due

to short-range correlations forming before the onset of long range antiferromagnetic

order in the LT phase.

Fig 5.13(b) shows the intermediate temperature phase, with an incommen-

surate propagation vector of (δ, δ, δ′), where δ = 0.02 and δ′ = 0.43. D7 is unable

to resolve ±δ separately, however measurements on the D10 diffractometer has al-

lowed us to determine the propagation vector. There is a dramatic increase in the

intensity of the broad features at the incommensurate positions in both the NSF

and SF channels. This suggests that there is a component of the magnetic moment

in the horizontal (h0l) scattering plane as well as one parallel to [010] direction and

is consistent with the proposed incommensurate magnetic structure [46]. There is

also an increase in the intensity of broad features observed at (1̄00), (100), (1̄01)

and (101).

The low temperature phase (Fig. 5.13(c)) shows an increase in the intensity

of the commensurate reflection as well as a dramatic increase in the intensity of the

(100) reflection indicating the onset of long range antiferromagnetic order with a

propagation vector of k = 0. Surprisingly we still observe remnants of the incom-

mensurate reflections down to 1.5 K in both the NSF and SF channels, although

with significantly reduced intensity.

We have taken line cuts through the reciprocal space maps along the [H 0 L]

direction for the NSF and SF channels, where L = 0.43± 0.10 and to illustrate the

temperature evolution of the scattering patterns. Fig. 5.14(a) shows the cuts along

[0 0 L] focusing on the (0 0 0.4) and (0 0 0.6) reflections. At T = 10 K there is

diffuse scattering heralding the onset of the incommensurate magnetic phase. It can

be seen that the incommensurate reflections persist down to 1.5 K.

This behaviour is mirrored in fig. 5.14(b) which shows the line cut [H 0 0.43],

centred on H = 0. A broad diffuse scattering feature centred on (0 0 0.43) is clearly

seen at 10 K. At 6.5 K we see a well defined peak form on top of the diffuse scat-

tering. This two component aspect of the peak suggests there is some disorder

associated with the incommensurate phase, which is consistent with previous mea-

surements [46]. However we observe at 1.5 K the peaks persisting, with reduced

intensity and the diffuse scattering has disappeared. This can also be seen in the

intensity maps (Fig. 5.13) where the broad features are well defined on cooling from

64



Figure 5.14: Line cuts of the z-polarisation intensity maps at 10, 6.5 and 1.5 K for
the incommensurate reflections in the (a) [0 0 L] and (b) [H 0 0.43] directions.
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6.5 to 1.5 K in both the NSF and SF channels. We therefore suggest that the

remnant intensity arises due to the incommensurate magnetic structure becoming

“frozen” at low temperatures.

5.2.2 Neutron Diffraction In Applied Magnetic Field

Applied Field Scans

Single crystal neutron diffraction measurements were made using the D10 diffrac-

tometer at the ILL. The experimental set-up is described in section 4.3.1. Fig. 5.15

compares the intensity of the incommensurate (2.02 1.02 0.43), fractional (hk 1
3) and

integer (hk0) reflections with the field dependent magnetisation curve at T = 2 K.

It is split into 4 stationary phases (grey shading), where the magnetisation remains

approximately constant, separated by mixed transitionary phases (white shading),

where the magnetisation is changing rapidly. The dashed line also represents a very

narrow transitionary state between between phases III and IV.

Phase I has intensity in both the (210) and (100) reflection, the latter is

forbidden by the symmetry of the crystal structure, further indicating the antifer-

romagnetic nature of the phase. The zero field neutron diffraction experiment has

indicated phase I corresponds to a long range, non-collinear antiferromagnetic order.

There is a sharp decrease in the intensity of the (100) reflection at 16 kOe, which

is mirrored in the field dependence of the intensity of the (210) reflection. The in-

commensurate (2.02 1.02 0.43) is the antithesis of the (100) reflection and there is a

dramatic increase in the intensity, as well as a gradual increase in the intensity of the

(h k 1
3)-type reflections. Here the zero field incommensurate phase is re-established

as the dominant phase for a narrow field range (16 < H < 18 kOe), mixed with

the ferrimagnetic phase II. The (2 1 1
3) reflection reaches a maximum in Phase II

at 21 kOe, coinciding with the 1
3 -magnetisation plateau. Although with reduced

intensity the incommensurate reflections persist into phase II as well. Phase III sees

the onset of antiferromagnetic order with an increase in the intensity of the (100),

suppressing the incommensurate reflections. There is a transitionary state where the

intensity of the (100) decreases and the intensity of the (210) and (2.02 1.02 0.43)

reflection increases where both level off in Phase IV. With the gradual decrease of

the intensity of the incommensurate reflection, the levelling off of the intensity of

the (210) reflection and coupled with the high field measurements suggest phase IV

is a polarised phase with the incommensurate phase “frozen-in”. Here the moments

are tilting towards the field direction and the “frozen-in” phase steadily shrinks.

Fig. 5.16(a) shows the field dependence of the intensity of the (2.02 1.02 0.43)
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Figure 5.15: Evolution of (top panel) fractional and (middle panel) integer (hkl)
reflections intensities with magnetic field compared to (bottom panel) the mag-
netisation curve for the magnetic field ramping up at T = 2 K. There are four
stationary magnetic structures, coloured in grey and labelled as Phases I, II, III and
IV, in which magnetisation remains almost constant, while the white regions are
transitionary structures in which magnetisation is rapidly changing. The dashed
line corresponds to a narrow transitionary state between phases II and III.
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Figure 5.16: (a) Field dependence of the intensity of the incommensurate
(2.02 1.02 0.43) reflection at different temperatures. Filled symbols correspond
to the field ramping up, while empty symbols the field ramping down. Each curve
is sequentially by 1500 counts. (b) Temperature dependence of the intensity in-
commensurate reflection (2.02 1.02 0.43) in different fields. A stabilisation of the
incommensurate phase is observed at 20 kOe, while a decrease of the low tempera-
ture intensity with increasing field. Each curve is sequentially offset by 1100 counts.
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reflection at different temperatures. The scan at T = 2 K (shown also in Fig. 5.15)

shows the re-establishment of the zero-field incommensurate phase between 16–

18 kOe and suppressed at between 26–33 kOe with the onset of antiferromagnetic

order. Increasing the temperature to T = 3 K, again we see the re-established

incommensurate phase between 16–18 kOe, however with a lower intensity. The

intensity of the (2.02 1.02 0.43) is suppressed at 26 kOe although it is significantly

less pronounced compared to the base temperature. At T = 4 K, the incommensu-

rate phase appears in a lower field range of 12–19 kOe, the reflections are no longer

suppressed at 26 kOe, suggesting the antiferromagnetic order in Phase IV is not

present above T = 3 K. For temperatures, T ≤ 4 K the incommensurate reflections

persist up to 50 kOe. Finally the T = 5 K corresponds to the overlapping region

of the non-collinear antiferromagnetic order and the incommensurate state. The

incommensurate state is present up to approximately 17 kOe, disappearing in the

paramagnetic regime.

The temperature dependence of the intensity of the (2.02 1.02 0.43) reflection

in different fields is shown in Fig. 5.16(b). The zero field data shows the appearance

of the (2.02 1.02 0.43) reflection between TN2 < T < TN1 corresponding to the

expected incommensurate phase. The transitions are denoted using arrows. On

increasing the field to 10 kOe, the region shifts to lower temperatures. Increasing

further to 20 kOe, which is on the tail-end of the re-established phase we see a

sharp transition with the appearance of the (2.02 1.02 0.43) reflection at 3.5 K.

Increasing the field further to 59 kOe we see the transition becomes much more

gradual, starting at 4.8 K, with the intensity levelling off at approximately 3.2 K.

The levelled off intensity at low temperature then decreases with increasing magnetic

field.

Fig. 5.17 shows the field dependence of the intensity of the (2 1 1
3) reflection

at different temperatures. As can be seen, with increasing temperature, the intensity

dramatically falls and on increasing the temperature further there is a shift of the

peaks to a lower field ranges of 15–27 kOe and 11–19 kOe for T = 3 and 4 K respec-

tively. Interestingly the field range at 4 K overlaps exactly with the incommensurate

phase observed at T = 4 K creating the mixed IT+II transitionary state.

The field dependence of the intensity of the integer (100) and (210) reflections

at different temperatures is shown in Fig. 5.18(a) and (b) respectivly. The low

temperature (T = 1.8 K) is described above in regards to Fig. 5.15. Warming to

3 K, there is little change in the transitions from the non-collinear antiferromagnetic

order for both reflections, however the newly established antiferromagnetic phase at

26 kOe is significantly less pronounced. The non-collinear antiferromagnetic phase
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Figure 5.17: Field dependence of the intensity of (2 1 1
3) reflection at different tem-

peratures. Filled symbols correspond ramping the field up, empty symbols corre-
spond to ramping the field down. The temperature increase between T = 1.8 to
4 K causes a visible shift of the magnetic phase corresponding to 1

3 -magnetisation
plateau to lower fields.

persists up to 5 K the transition field shifting to 12 and 5 kOe for T = 4 and 5 K

respectively. As expected the ferromagnetic (210) reflection levels off at higher fields

with the field value increasing with increasing temperature supporting a polarised

component to the magnetic moment.

Magnetic Structure Determination

In the transitionary state between Phases I and II at H = 17.5 kOe we have collected

the integrated intensities of a set of 120 incommensurate reflections and performed

a magnetic refinements using the model for the zero field incommensurate struc-

ture [46]. The fit (RBragg = 15.84%) is shown in Fig. 5.19(a). We confirmed there

was a component of the magnetic moment in the ab plane as well as along the c-

axis. The moments are tilted from the c-axis by approximately 23◦ compared to 25◦

degrees reported by Okuyama et al. [46] for zero field and the ab plane component

points along the [110] direction (see inset Fig. 5.19(a)). There is an amplitude modu-
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Figure 5.18: Field dependence of the intensity of the (a) (100) and (b) (210) re-
flection at different temperatures. Filled symbols correspond ramping the field up,
empty symbols correspond to ramping the field down.
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lation, which is most prominent along the c-axis as a consequence of the propagation

vector (δ, δ, δ′) being close to commensurate position in the ab-plane.

In order to determine the magnetic structure of Phase II we derived the

irreducible representations for a propagation vector of (0, 0, 1
3). Using a collection

of 127 (h k 1
3)-type reflections, we found the best fit for Phase II arises from a basis

vector with the moments aligned parallel to c-axis. The moments form ferromagnetic

layers in the ab-plane, which stack in an up-up-down arrangement, expanding the

crystallographic unit cell along the c-axis by a factor of three. All the moments have

equal magnitude with one plane pointing in the anti-parallel relative to the other

two layers, thus there is a net magnetisation along the c-axis, which is 1
3 compared

to the magnetisation of a fully polarised state. The comparison of the observed and

calculated intensity for this fit (RBragg = 15.21%) is shown in Fig. 5.19(b), while

the inset shows a schematic of the magnetic structure. The refinements gave a z-

component of the magnetic moment to 1.95µB per Ho ion, which is in agreement

with the value observed in field dependent magnetisation data (Fig. 5.15). This

however does not preclude the presence of a significant ab-plane component. For

both fits, there is a slight spread of intensity around the expected intensity line.

This spread is due to extinction from the sample.

We have attempted a magnetic structure determination of the re-established

antiferromagnetic phase (Phase III). In order to achieve purely magnetic intensity of

the integer position we subtracted the high temperature (30 K), zero-field intensity

of a full collection of integer (hkl) reflections from those at 27 kOe. The intensity of

some reflections, such as the (140) and (330) and their Friedel pairs, had decreased

on cooling down to base temperature, therefore the subtraction returned negative

intensity. The decrease was significant and could not be explained as random error

around a zero value where there was no change to the intensity. As we have a net

magnetisation along the c-axis we would expect the intensity of the (140) and (330)

to either remain constant or for there to be an increase. The most likely explanation

for this decrease in intensity is a structural phase transition.

In order to try and account for the decrease in the intensities on the (140) and

(330) reflections we applied different distortions to the atoms in the unit cell. We

have estimated the intensities for the nuclear reflection using the following equation:

Inuc =

∣∣∣∣∣∑
ρ

bρ exp{2πi(hx+ ky + lz)}

∣∣∣∣∣
2

, (5.3)

where x, y, z refers to the fractional position of the atoms in the unit cell, h,k and

l are the Miller indices and bρ is the scattering length for a particular element. The
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Figure 5.19: Comparison of the calculated and observed intensity for (a) the in-
commensurate phase re-established at T = 2 K in a field of 17.5 kOe and for (b)
Phase II, corresponding to the 1

3 -magnetisation plateau. The inset in both pictures
corresponds to the found magnetic structure.
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Space Group: P4/mbm
Lattice Parameters: a = b = 7.08 Å, c = 4.00 Å

Ion Wyckoff Position Positions Fractional Coordinates

Ho 4g (x, x+ 1
2 , 0) x = 0.319

B1 4e (0, 0, z) z = 0.202
B2 8j (x, y, 1

2) x = 0.177, y = 0.039
B3 4h (x, x+ 1

2 ,
1
2) x = 0.087

Table 5.2: Fractional coordinates and Wyckoff Positions for each site in HoB4,
determined from single crystal neutron diffraction measurements on D10.

unit cell has a single Ho site and three B sites, denoted B1, B2 and B3 and the po-

sitions for each atom is shown in Table 5.2. The x, y and z values were determined

from structural refinement of the single crystal neutron diffraction measurements at

T = 30 K. It was assumed the space group (P4/mbm) and symmetries for each site

remained the same and applied a displacement to the x, y or z values. As there was

a negative intensity after subtraction for both the (140) and (330) reflections a dis-

tortion that resulted in a decrease in the intensity for both reflection simultaneously

was looked for.

To begin we displaced the Ho ions by applying a small change to the Ho

x value. That is x became x + ε, where ε = nx and n is a constant which can

vary between 0 and 1, although large displacements (n > 0.1) are likely to be

unphysical. This displacement corresponds to a slight rotation and expansion of the

square formed by the Ho ions. Fig. 5.20(a) shows how the nuclear intensity evolves

with the displacement. As can be seen this results in a decrease in both the (140)

and (330) reflection after approximately a 10% change in Ho’s x value. While the

intensity does decrease for both reflections, the large displacement to achieve this

suggests this distortion is unlikely to be the cause.

We tried distorting the B octahedra formed by the B2 site atoms. This

was done by applying a x + ε and y + η, where η = −ny for an expansion, while

x− ε and y − η correspond to compression. Fig. 5.20(b) shows the evolution of the

nuclear intensity with change in n. As can be seen again the distortion results in a

simultaneous decrease in the intensity of both reflections.

A small change in the x value of the B3 site such that x became x+ ε. The

distortion for this is shown in Fig. 5.20(c) along with the change in nuclear intensity.

Although this results in a decrease in the (330) reflection, there is a gradual increase

in the (140) intensity, suggesting a change solely to the B3 site atoms is not sufficient

to describe the present data.
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Although further investigation is needed to confirmed the true nature of the

lattice distortion, a distortion in the Ho ions or a compression/expansion of the B2

octahedra can account for the decrease in nuclear intensity. Previous measurements

have revealed the presence of a small monoclinic distortion upon cooling into the

LT phase [46]. There is a change of γ by 0.02◦. Although in this phase there is no

noticeable discrepancy in the intensity of the (140) and (330) reflection. Thus the

distortion becoming more pronounced could also serve as an alternative explanation.

5.2.3 Magnetic Phase Diagrams

We have constructed the magnetic phase diagram for H ‖ c using temperature

and field dependence of the intensity of different reflections from the single crystal

neutron experiment as well as from the magnetic susceptibility, magnetisation and

heat capacity measurements. The phase diagram is shown in Fig. 5.21. As can

be seen, besides the paramagnetic regime, there are six distinct magnetic phases

separated by mixed transtionary phases. In zero-field there are two transitions at

TN1 and TN2 leading to an incommensurate magnetic state (IT) and a non-collinear

antiferromagnetic phase (Phase I) respectively. Application of a magnetic field sup-

presses both TN1 and TN2, while for a narrow field range (16 < H < 18 kOe) at low

temperatures, Phase II+IT acts as an intermediary phase between non-collinear an-

tiferromagnetic phase and the ferrimagnetic up-up-down structure formed in Phase

II. The magnetic structure of Phase III remains undetermined, however the presence

of the (100) reflection in the single crystal neutron data indicated that it is anti-

ferromagnetic in nature. In phase V there is an increase in the ferromagnetic type

reflections, suggesting the moments are tilting towards the magnetic field direction,

while the incommensurate reflections persist up to 59 kOe indicating a polarised

phase with a “frozen-in” phase. Phase IV appears over a small field range below

T < 1 K corresponding to a 1
2 -magnetisation plateau, the nature of this phase is

unknown.

Figure 5.22 shows the phase diagram forH ⊥ c. There are four clearly defined

phases; The paramagnetic (PM), intermediate temperature (IT), an antiferromag-

neticphase I and the field induced phase II. The paramagnetic regime is present

above 7 K, below this we have the incommensurate phase observed as expected,

the transition remaining broadly unchanged with increasing magnetic field. Below

approximately 5.5 K we see the onset of a non-collinear antiferromagnetic ordering.

Interestingly there is only one field induced transition, leading to the magnetic state

denoted as Phase II, this is consistent with the transition to ferrimagnetic ordered

phase observed for H ‖ c. However with the present evidence we cannot be sure
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Figure 5.20: The lattice distortion (left column) applied to (a) the Ho ions and
the B atoms in the (b) B2 site and (c) B3 site. (Right column) The intensity as a
function of size of displacement.
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Figure 5.21: Magnetic phase diagram of HoB4 constructed from neutron diffraction
data for different reflections (squares, filled circles, triangles and diamonds) and
magnetisation (empty circles) measurements. All field dependent measurements
were made by ramping the field up. The labelling of different magnetic structures
is consistent with the one used in Fig. 5.15 for T = 2 K, however, with the in-
creased temperature the magnetic phases tend to overlap. The separation between
the stationary and transitionary phases also becomes less obvious on heating, with
the transitionary Phases II+IT and II+III occupying large portions of the phase
diagram.
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Figure 5.22: Magnetic phase diagram of HoB4 constructed from magnetisation
(squares), resistivity (circles) and heat capacity (triangles) measurements. All
field dependent measurements were made by ramping the field up. The magnetic
phases are the paramagnetic regime (PM), the intermediate temperature (IT), a
non-collinear antiferromagnetic phase I and a field induced phase II.
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whether there is ordering within the ab-plane giving rise to transition or whether it

is arising from a tilt of the moments towards the field direction when the ferrimag-

netic order is established. Finally from the high field magnetisation measurements,

we see that we have entered a partially polarised at around 150 kOe.

5.3 Inelastic Neutron Scattering

5.3.1 Polycrystalline Samples

λ = 3.06 Å (Ei = 8.7 meV)

We have carried out inelastic neutron scattering on polycrystalline samples of HoB4

using IN4 to investigate the crystal field scheme. Fig. 5.23 shows the colour intensity

plots for an incident wavelength of λ = 3.06 Å in a range of temperatures between

1.6 and 80 K. The data in Fig. 5.23(a) and (b) corresponds to the LT phase. The

general features of the plot are the elastic line around E = 0 corresponding to elastic

scattering and is where the Bragg reflections are located. There are then three main

lines located approximately at 2.3, 2.7 and 5.2 meV. The intensity of all three lines

decreases with increasing Q, strongly suggesting they are crystal field levels. The

excitations are also gapped suggesting we have an Ising-like system, which is in

agreement with earlier measurements. These features are also present at 4 K.

The intermediate phase is shown in Fig. 5.23(c), the crystal field level at

5.2 meV has disappeared. There are a couple possibilities for this, the first is

that the peak is arising from a degenerate energy levels which is splitting in the

ordered phase. Alternatively the magnetic order reduces the symmetry and can

make crystal field levels, which the neutron is not sensitive to. The lower energy

crystal field levels are still present, the energy level at 2.7 meV remains stationary,

but the lower energy level have shifted position to approximately 1.3 meV. The

lower of the two crystal field levels becomes more dispersive and the energy level is

no longer gapped, where the excitation comes down to the reflections corresponding

to the low Q incommensurate reflections. The crystal field levels in the magnetic

phases have a modulated intensity, this is most likely arising from the influence of

magnetic order.

The paramagnetic phase in a range of temperatures is shown in Fig. 5.23(d)-

(h). In the colour plots, the detail is difficult to make out, but there is a general

increase in the intensity around all the excitations and new features appearing at

around 4, 5.2 7.5 meV. These are most arising due to secondary transitions from

crystal field levels becoming thermally populated.
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To more accurately determine the position of the excitations and track their

temperature dependence we took line cuts at Q = 1.5±0.5 Å
−1

for all temperatures,

which are shown in Fig. 5.24. To determine the positions the peaks were fitted with

a Gaussian, with fitted peaks at lower temperatures being used as a starting point

for fitting the spectrum at higher temperatures. The fits are shown in Fig. 5.25.

In the low temperature phase, there are two well defined peaks at 2.2 and

2.9 meV as well as a significantly smaller peak observed at 5.5 meV. Warming into

the intermediate phase, we see that the low energy level at 2.2 meV shifts to 1.7 meV,

while the feature at 5.5 meV is no longer visible. Warming further into the paramag-

netic phase, there is a shift in energy by approximately 0.2 meV to lower energies for

both peaks. This is most likely due to a structural phase transitions, which has been

previously observed in neutron diffraction measurements [46]. The energy levels at

1.5 and 2.7 meV are most likely crystal field levels. This is further supported by the

heat capacity measurements where Schottky anomalies (See Fig. 5.10), which cor-

respond to energies of approximately 2.8 and 6.2 meV. The energy level at 2.8 meV

would corresponds to crystal field level in the energy spectrum. While the 6.2 meV

is not observed in the energy spectrum, it could be arising due to a crystal field level,

which is not neutron sensitive or it could be arising due to a transitions between a

populated low energy level to a higher energy level. With increasing temperature

we see a feature begins to appear at approximately 4 meV, this is most like arising

from the first crystal field level becoming thermally populated and then a transition

occurring from there. This would indicate there is a crystal field level at 5.5 meV,

which is observed in the LT phase.

λ = 1.61 Å (Ei = 31.6 meV)

Fig. 5.26 shows the colour intensity plots for an incident wavelength of 1.61 Å in a

range of temperatures between 1.6 and 160 K. Figure 5.26 (a) and (b) correspond

to the low temperature and intermediate temperature phases. They broadly show

the same features. Two lines where, again, the intensity increases with increasing

Q at approximately 10 and 18 meV, which most likely correspond to crystal field

levels. There is then a low intensity feature at approximately 12 meV, where the

intensity increases with Q, which is characteristic of phonons. Finally the elastic

line is broader at low Q, which is made up of many of the features observed with

λ = 3.06 Å, the features are just not resolvable using an incident wavelength of

1.61 Å. The features at 10 meV and around the elastic have a greater intensity in

the low temperature phase compared to intermediate temperature phase.

Fig. 5.26(c)-(h) are all in the paramagnetic phase with each subsequent pic-
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Figure 5.23: S(Q,ω) for λ = 3.06 Å at several temperatures. The low energy
excitations become dispersive in the intermediate temperature phase and further
new features appear as crystal field levels become thermally populated.

81



1 2 3 4 5 6 70

1

2

3

4

5

H o B 4

 1 . 6  K
 4  K
 6  K
 8  K
 1 4  K

c''
 (Q

, w
) 

E n e r g y  T r a n s f e r  ( m e V )

l  =  3 . 0 6  Å( a )

1 2 3 4 5 6 70

1

2

3

4

5

c''
 (Q

, w
)

E n e r g y  T r a n s f e r  ( m e V )

 8  K
 1 4  K
 2 0  K
 4 0  K
 8 0  K

H o B 4

l  =  3 . 0 6  Å( b )

Figure 5.24: Dynamic susceptibility of HoB4 for (a) temperatures between 1.6–14 K
and (b) 8–80 K with an incident wavelength of λ = 3.06 Å.
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Figure 5.25: Gaussian fits of S(Q,ω) of HoB4 in a range of temperatures with an
incident wavelength of λ = 3.06 Å. Blue peaks correspond to crystal field levels,
while green peaks correspond to secondary transitions from thermally populated
energy levels.
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ture increasing in temperature from 8 K upto 160 K. The feature at 10 meV, broad-

ens and the intensity increases with increases with temperature, with the maximum

centred on around 7 meV. There appears to be a subtle increase in the intensity

between 10 and 18 meV. Again this is most likely due to secondary transitions aris-

ing from crystal field becoming populated with the increasing temperature. The

intensity of the crystal field level at 18 meV decreases with increasing temperature.

To investigate these more thoroughly we performed line cuts at Q = 2 ±
0.5 Å

−1
at each temperature. The resultant curves are shown in Fig. 5.27. The fits

have revealed the presence of two crystal field levels in the LT term 10 meV and

17.7 meV, warming into the IT phase there is a shift in the higher energy crystal

field level from 17.7 to 17.0 meV. As with the 3.06 Å data in the paramagnetic

phase the crystal field levels shift to lower energy, with crystal field levels at 9.5 and

17 meV. Warming in the paramagnetic phase peaks appear at 7.5 meV as well as

12.05 meV.

Combining the measurements from 1.61 and 3.06 Å. We have crystal field

levels at 1.4, 2.9, 5.3, 9.5 and 17 meV. From the peaks appearing from the crystal

field levels becoming thermally populated we can estimate that there are further

crystal field levels at 10.8 meV, which is not neutron sensitive. From the maximum

entropy we are expecting a maximum of 17 singlet state. While this gives an upper

bound on the energy levels, it makes determine the crystal field scheme challenging.

We have found five energy levels, that could be singlets, doublets, etc. that we are

unable to resolve. Further refinements and modelling of the crystal field levels is

needed before we can definitively state the crystal field scheme.

5.3.2 Single Crystal Samples

We have carried out single crystal neutron scattering experiment on IN5 in order

to investigate any low lying magnetic excitations in HoB4. The crystal was aligned

and glued such that the [0K0] direction was vertical defining the horizontal (h0l)

scattering plane. Two incident wavelength of 5 and 3.5 Å energies (Ei = 3.3

and 6.8 meV), were used throughout the experiment. Fig. 5.29 shows the energy

spectrum along the [H 0 0.6] and [2 0 L] directions at 10, 6 and 1.6 K with an

incident wavelength of λ = 3.5 Å. As can be seen there are two dispersive bands of

excitations. The higher energy band a low lying crystal field which is observed in

Fig. 5.24. The low energy band in [H 0 0.6] has a parabolic shape while there is a

distinctive “pronged” structure, which go down to the incommensurate reflections

There is a slight increase in intensity of the low energy band cooling from 10 to 6 K.

Interestingly cooling down to 1.6 K we seen the excitation becomes gapped, again
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Figure 5.26: S(Q,ω) for λ = 1.61 Å at several temperatures. The low energy
excitations become dispersive in the intermediate temperature phase and further
new features appear as crystal field levels become thermally populated.
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Figure 5.27: Dynamic susceptibility of HoB4 for (a) temperatures between 1.6–20 K
and (b) 20–160 K with an incident wavelength of λ = 1.61 Å.
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Figure 5.28: Gaussian fits of S(Q,ω) of HoB4 in a range of temperatures with an
incident wavelength of λ = 3.06 Å. Blue peaks correspond to crystal field levels,
while green peaks correspond to secondary transitions from thermally populated
energy levels.
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indicating Ising anisotropy. The parabolic shape observed in the intermediate and

low temperature phases are characteristic of spin-waves. In the high temperature

phase we can observe the two low energy levels observed at 1.5 and 2.9 meV in

the inelastic neutron scattering from IN4. The level at 1.4 meV is quite dispersive

and has a sinusoidal shape, which is not typical for a crystal field level while the

slightly higher crystal field level is flatter, which suggests that it is a crystal field

level. We are able to get an estimate between the exchange interactions along the

[H 0 0] and [0 0 L] directions by finding the ratio of the amplitude of the spin

waves in both directions. As can be seen from section 2.1.6 the dispersion relation

of the spin waves depends on the exchange interaction, J and by comparing the

two amplitudes we can compare the strength between the in-plane Ho ions and

between the planes of Ho ions. Comparing the amplitude we find the ratio to be

approximately J[00L]/J[H00] = 0.94, suggesting the interaction strength is comparable

and the system has to be considered as three dimensional and not two dimensional

like the SSL. This is a rough estimate and to fully describe the dynamics a multi-spin

level model will need to be considered.

In order to investigate the low energy excitation we used a smaller incident

energy (λ = 5 Å) and looked at the energy spectrum along the [00L] direction. As

can be seen in Fig. 5.30, the excitation is gapless in the incommensurate phase and

the “pronged” structure which comes down to the incommensurate reflections in

the elastic line is clearly observed here. Increasing the temperature from 6 to 35 K,

we see the excitation becomes gapped and the intensity decreases. The “prongs”

are no longer visible from 20 K. The crystal field level becomes less dispersive from

10 K to 20 K, although dispersive behaviour is still visible even at 20 K and 35 K,

the intensity decreases upon warming. This is very unusual for a crystalline electric

field and suggests there are strong correlations even in the paramagnetic regime.

5.4 Summary

An investigation into the magnetic properties of the frustrated antiferromagnet,

HoB4 have been presented in this chapter. The magnetic susceptibility and mag-

netisation measurements made using 4He are in agreement with those presented in

Ref. [102] and shows successive magnetic phase transitions at 7.0 and 5.6 K. Curie-

Weiss behaviour is observed for H ‖ c giving an effective moment of 10.6µB and

the Curie Weiss temperature of -14 K indicates the presence of an antiferromag-

netic exchange. Single crystal neutron diffraction measurements have shown the

appearance of incommensurate reflections corresponding to a propagation vector of
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Figure 5.29: Energy spectrum of (left column) [H 0 0.6] and (right column) [2 0 L] at
different temperatures (a) 1.6 K, (b) 6 K and (c) 10 K using an incident wavelength
of 3.5 Å.
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Figure 5.30: Energy spectrum of the [0 0 L] direction at different temperatures (a)
35 K, (b) 20 K, (c) 10 K and (d) 6 K using an incident wavelength of 5 Å.
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(δ, δ, δ′) where δ = 0.022 and δ′ = 0.43, polarised neutron measurements have shown

the presence of diffuse scattering around these reflections. The peaks themselves are

resolution limited situated on a top of a diffuse background. This two component

aspect is indicative of some sort of disorder in the system. Single crystal magnetic

refinements using intensities from the incommensurate magnetic phase obtain with

the D10 diffractometer have shown that the moments are tilted away from the c-axis

by 43◦, with the component of the magnetic moment in the basal plane pointing par-

allel to the [110] direction. There is then an amplitude modulation along the c-axis

and a much broader modulation along the [110] direction. In the low temperature

phase single crystal neutron diffraction measurements have shown the appearance of

the antiferromagnetic (100) reflection below 5.6 K, magnetic refinement finding the

structure to be a non-collinear antiferromagnet with a k = 0 propagation vector.

Here the ordering can be completely described by a single unit cell suggesting that

only the exchange interactions between the in plane moments (i.e. J1 and J2 in

Fig. 2.6(b) in section. 2.3) are the important interactions at low temperatures, im-

plying that the Shastry-Sutherland lattice is applicable to this low temperature, zero

field magnetic phase. Polarised neutron measurements on the D7 diffractometer in

the low temperature phase show that the incommensurate reflection persists down

to 1.5 K, although with a significantly reduced intensity suggesting it is “frozen-in”

at low temperatures. This incommensurate phase is re-established with the appli-

cation of a magnetic field over a narrow field range (16-18 kOe) and is observed in

the field dependent magnetisation as a small feature occurring at 1
6 the saturation

magnetisation. The incommensurate phase itself does not have a net magnetisa-

tion, however in this field range reflection of the type (hk 1
3) are also observed. This

implies that in this transitionary phase region order with the ferrimagnetic phase

(Phase II), while parts are order with the re-established incommensurate structure.

The magnetisation curve for H ‖ c shows a main fractional plateau of 1
3 the

saturation magnetisation and two smaller features at 1
6 and 3

5 , which depends on the

orientation of the magnetic field with the c-axis. There is a large difference between

the magnetisation curves for H ‖ c and H ⊥ c at low temperatures and a large

magnetic field is required to bring the magnetisation curves to a similar magnitude

suggesting an Ising anisotropy. Neutron diffraction measurements using D10 have

revealed that the 1
3 -magnetisation plateau has a propagation vector of

(
0, 0, 1

3

)
,

while magnetic refinements have shown that HoB4 orders in the 1
3 -magnetisation

plateau by forming ferromagnetic sheets in an up-up-down arrangement. This is at

odds with many of the predicted structures for the 1
3 -plateau state from modelling

the SSL. These structures order in plane and have a variety of structures such as
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the “umbrella” structure where the moments are rotated 120◦ to each other, tilted

towards the vertical axis to form a spiral-like structure, which propoagates through

the lattice [117], however in most cases the favoured structure is an up-up-down

structure, in which each triangle has a collinear arrangement of the spins/moments

with two of them pointing along the magnetic field and one opposite to it [33]. Un-

like the low temperature zero field magnetic phase, inter-plane interactions are now

important and it appears the SSL is not well suited to describing the physics of

this field induced phase. The magnetic structure of the 3
5 feature currently remains

undetermined due to a structural phase transition, neutron diffraction measure-

ments have shown that over the field range the feature is present, the intensity of

the (100) increases strongly suggesting the onset of antiferromagnetic order with a

k = 0 commensurate structure. As the magnetic structure remains undetermined

the applicability of the SSL is unknown at present. Field induced lattice distortion

has been observed in ErB4 as well [118]. It would be interesting to perform x-ray

diffraction measurements in an applied field to determine the nature of the struc-

tural phase transition and factor it into the magnetic refinement so that magnetic

structure can be determined.

The low temperature magnetic susceptibility and magnetisation measure-

ments have revealed the presence of a new field induced magnetic phase transition

in a field of H = 25.4 kOe, below 1 K. This corresponds to a fractional magneti-

sation plateau of 1
2 the saturation magnetisation. The 1

2 plateau is quite common

in the RB4 family, observed in ErB4 and TmB4 arising from a ferrimagnetic [70]

and striped structure respectively [71]. DyB4 also displays a 1
2 -plateau, but the

magnetic structure remains undetermined [60]. The nature of the 1
2 plateau phase

remains unknown in HoB4 and it would be interesting to perform single crystal

neutron diffraction measurements on it to determine the magnetic structure. A

number of theoretical works have been done into the RB4 lattice by considering

the SSL. There are some notable examples which include both a 1
3 and 1

2 plateau.

The presence of both the 1
3 and 1

2 plateau generally arises when considering further

interactions. These include the RKKY interaction, dipolar interaction and long

range interaction, J3 and J4 (see Fig. 2.6 in section 2.3). With the inclusion of the

RKKY interaction both plateaux are observed at relatively high temperatures and

cooling suggests the appearence of a 1
4 -plateau [119]. Considering dipolar interac-

tions, simulations predict the 1
3 plateau for a small contribution, however when the

dipolar interaction becomes more significant the 1
2 appears [120]. This behaviour

is mirrored for the long range interactions, where when J3 and J4 become impor-

tant, the 1
2 plateau appears [121]. The only other member of the RB4 family that
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displays both the 1
2 and 1

3 plateau is TbB4, similarly to HoB4, TbB4 orders with

a non-collinear antiferromagnetic structure in plane [64]. High field magnetisation

revealed the presence of the 1
2 and 1

3 as well as other values [68, 122], which neutron

diffraction studies revealed that the plateau has an in plane magnetic structure [123].

Thus HoB4 contrasts the other members of the RB4 family by having inter-planer

interactions.

Finally we have looked into the energy level scheme of HoB4 using heat

capacity and inelastic neutron scattering. The magnetic entropy reaches a value of

R ln 10, less than the maximum entropy allowed of R ln(2J + 1) = R ln 17. The

difference is due to large scale splitting in the crystal field scheme. The inelastic

neutron scattering measurements on polycrystalline samples revealed the presence

of crystal field levels at 1.4, 2.9, 5.3, 9.5, 10.8 and 17 meV and the missing crystal

fields likely are not neutron sensitive. Further refinements and modelling of the

crystal field scheme is needed, it would be beneficial to consider the crystal field

parameters of other RB4 family members to build up a coherent model of the family

and accurate predict the location of the crystal fields. The single crystal inelastic

neutron scattering measurements revealed that the low energy crystal field levels are

dispersive implying it is not a simple crystal field level and dispersion is significant

up to 35 K, where strong magnetic correlations persist into the paramagnetic regime.

The intermediate temperature shows clear spin waves allowed a comparison of the

exchange interactions between the a- and c- axis indicated they have an almost

identical strength. This means it can not be considered a two dimensional system

and adds further opposition to the use of the SSL in HoB4. Fitting the spin waves

and dispersion will allow the exchange parameters to be determined and can perhaps

understand the ordering in HoB4.
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Chapter 6

Magnetic Properties of NdB4

Despite the plethora of interesting and unusual behaviour observed in the other

members of the RB4 family, NdB4 has been relatively neglected with dedicated

investigation having only recently been performed. Structural analysis using sin-

gle crystal x-ray diffraction [124] determined it has a tetragonal crystal structure

(P4/mbm). Characterisation with magnetic susceptibility and heat capacity mea-

surements on polycrystalline and single crystal [44, 47] have revealed successive

phase transitions at TN1 = 17.0, TN2 = 6.2 and TN3 = 4.9 K, defining three mag-

netic phases. It was originally suggested that the first transition at TN1 arose due

to quadrupolar ordering. However recent single crystal neutron diffraction experi-

ment [125] have revealed it orders antiferromagnetically with a k = 0 commensurate

structure. It has been determined to have an “all-in/all-out” order where the mo-

ments on four Nd ions in the unit cell are in the ab-plane and point into the square

formed by the Nd ions, cooling causes the the moments to rotate in the ab-plane

slightly. While on the other hand the subsequent phases below TN2 and TN3 were

found to be incommensurate with a propagation vector of (δ, δ, δ′) and (δ′′, 0, δ′)

respectively where δ = 0.14, δ′ = 0.4 and δ′′ = 0.2. However the magnetic structure

for these phases remains undetermined [125].

In this chapter we report the results of a comprehensive investigation into

NdB4 with both polycrystalline and single crystal samples. First of all we have

characterised the sample performing magnetic susceptibility, heat capacity, resistiv-

ity and magnetisation measurements, the latter revealing a field induced magnetic

phase, which has a fractional value of 1
5 the saturation magnetisation. We have

extended these measurements down to temperatures of 0.5 K and in fields up to

500 kOe, revealing an unusual non-monotic temperature dependence the transition

to the field induced magnetic state, where we observe a re-entrant phase transition
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Figure 6.1: Rietveld refinement of the powder x-ray diffractogram of NdB4 to de-
termine structural parameters. data points and Rietveld fit are shown in the upper
curve, while the lowest curve is the difference between the observed and calculated
intensity. The set of vertical dashes correspond to the expected nuclear Bragg po-
sitions of NdB4.

where the field induced state returns to the zero field antiferromagnetic order upon

cooling.

We have also performed single crystal neutron diffraction experiments in

order to determine the zero field magnetic structures of each phase, which was then

expanded to include the use of polarised neutrons, where the diffuse scattering was

also investigated. Neutron diffraction experiments in field were then performed in

order to determine the structure of the field induced phase on the magnetisation

plateau observed.

Finally we have performed inelastic neutron measurements on polycrystalline

samples to investigate the crystal field levels. Determining the crystal field scheme

is currently under way and the initial analysis is presented.
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Space Group: P4/mbm
Lattice Parameters: a = b = 7.21 Å, c = 4.10 Å

Ion Wyckoff Position Positions Fractional Coordinates

Nd 4g (x, x+ 1
2 , 0) x = 0.186

B1 4e (0, 0, z) z = 0.112
B2 8j (x, y, 1

2) x = 0.0453, y = 0.155
B3 4h (x+ 1

2 , x,
1
2) x = 0.089

Table 6.1: Fractional coordinates and Wyckoff Positions for each site in NdB4, de-
termined through the Rietveld refinement of NdB4 powder x-ray diffraction pattern.

6.1 Bulk Characterisation

Polycrystalline and single crystal samples of NdB4 were made as detailed in sec-

tion 4.1.1. Similarly to HoB4 polycrystalline samples were made by powdering single

crystals. The composition of the sample was checked using powder x-ray diffraction.

The diffractogram and the Rietveld refinement (red line) is shown in Fig. 6.1. The

difference curve (blue line) shows a number of peaks around the Bragg reflections

where the fit is not predicting the intensity well. The diffractogram shows the pres-

ence of a few small impurity peaks arising from the decomposition of NdB4 to NdB6.

The structural parameters from the Rietveld refinement are shown in Table 6.1 and

are in agreement with previous measurements [124]. Similarly to HoB4, while the

fractional xyz values are in agreement with previous literature, the discrepancies

in the intensities mean we should be cautious in the value and the values from the

neutron diffraction study in section 6.2.2 are more accurate. The grown crystals had

patches of blue, which is arising due to NdB6 [126] and was confirmed to be NdB6

using EDAX (energy-dispersive x-ray spectroscopy). The NdB6 formed a polycrys-

talline coating on the crystal as well as clusters within the crystal which were easily

isolated for the single crystal and thus we expect the NdB6 impurity to be small

in the single crystal samples. Fig. 6.2 shows Laue photographs along the principal

axis of NdB4 compared to simulated patterns. The simulated patterns were created

using the OrientExpress software [104] As can be seen there is good agreement be-

tween the observed and simulated patterns, however scanning along the rod gave

indications that the rod was made up of a few similarly aligned crystals, similar to

HoB4. The grains were large enough to isolate to give reasonably sized crystals for

neutron experiments.
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Figure 6.2: Single crystal Laue diffraction photographs of NdB4 of (a) the [100]
and (b) the [001] directions compared to simulated patterns from the OrientExpress
software.

6.1.1 Magnetic Susceptibility

The temperature dependent magnetic susceptibility of NdB4 is shown in Fig. 6.3.

For H ‖ c NdB4 shows two magnetic phase transitions, seen as a broad maximum at

approximately TN2 = 7 K, followed by a small discontinuous drop at TN3 = 4.2 K.

Both transitions are also observed for H ⊥ c, while an additional transition is

seen at TN1 = 17 K. This defines three magnetic phases; the high temperature

(TN2 < T < TN1), the intermediate temperature (TN3 < T < TN2) and the low

temperature (T < TN1) phases, which are denoted HT, IT and LT respectively.

The insets on Fig. 6.3 shows the inverse magnetic susceptibility. Curie-Weiss

behaviour is observed for both H ‖ c and H ⊥ c and the data was fitted between

(50–300 K) with a least squares linear regression fit [105]. The effective moment

and the Curie-Weiss temperatures were determined from the fit and are shown in

Table 6.2. The effective moment is in agreement with the value predicted by Hund’s

rules, while the negative Curie-Weiss temperature indicates the antiferromagnetic

nature of NdB4’s phase transitions. The determined values are in agreement with

previously published results [44, 47].

Fig. 6.4 shows the temperature dependent magnetic susceptibility curves

and how they evolve in increasing magnetic fields. For H ‖ c the broad maximum

at TN2 = 7 K is suppressed with increasing field and is no longer obvious above

30 kOe. The second transition observed is a discontinuous drop at TN3 = 4.2, as
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Figure 6.3: Temperature dependent magnetic susceptibility of NdB4 in a field of
H = 1 kOe for (a) H ‖ c and (b) H ⊥ c, shading indicates the different magnetic
phase and the inset shows the inverse susceptibility, χ−1.
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Figure 6.4: The temperature dependent magnetic susceptibility curves of NdB4

in different magnetic field for (a) H ‖ c and (b) H ⊥ c. Each curve in (b) is
subsequently offset by 0.002 emu/mol-Oe.

was the case for H = 1 kOe (see Fig. 6.3). At H = 15 kOe, the transition is

heralded by a significant increase in the magnetic susceptibility, most likely arising

due to a field induced magnetic phase. The transition at TN3 to the field induced

state, remains broadly unchanged up to 25 kOe, before being further suppressed at

H = 30 kOe to T = 2.9 K and is no longer present at H = 40 kOe. For H ⊥ c,

TN2 and TN3 are both suppressed, but not to the same extent as that of H ‖ c, with

both transitions visible up to 40 kOe and the temperatures changing by only 0.2

and 0.4 K respectively between 5 and 40 kOe. TN1 remained broadly unchanged

with increasing the field with the transition being suppressed to 15.7 K at 40 kOe.

TN1 (K) TN2 (K) TN3 (K) µeff (µB) θCW (K)

H ‖ c - 7 4.2 3.76 -15.9
H ⊥ c 17 6.5 4.2 3.73 -27.4

Table 6.2: The magnetic transitions temperatures for both H ‖ c and H ⊥ c found
from the magnetic susceptibility, including the effective moment, µeff , and Curie-
Weiss constant, θCW calculated from the inverse magnetic susceptibility.
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Figure 6.5: Field dependent magnetisation measurements of NdB4 for H ‖ c (black)
and H ⊥ c (red) taken in each of the three magnetic phases at temperatures of (a)
2 K, (b) 6 K and (c) 10 K. Solid curves correspond to the field being ramped up,
while dash-dot curves are the field ramping down.

6.1.2 Magnetisation

The samples used were plate-like and arranged to reduce the demagnetisation fac-

tor. The demagnetisation factor did not exceed 0.2, therefore the correction for an

effective field does not exceed 1%. The demagnetisation factor was calculated by

following the method outline in ref [106]. We have performed field dependent mag-

netisation measurements for H ‖ c and H ⊥ c. Both are shown in Fig. 6.5. The low

temperature phase at T = 2 K for H ‖ c shows a magnetisation plateau occurring

at a fractional value of the saturation magnetisation, M/Msat = 1
5 and the curve

appears to have reached saturation at 2µB/Nd ion, which is smaller than the satu-

rated moment predicted by gJµBJ = 3.27µB and the value obtain from the magnetic

susceptibility. This difference could be due to strong crystalline electric fields. The

curve shows hysteresis upon ramping the field down, first of all it appears to reach a

meta-stable state ramping down from saturation and then a further hysteresis effect
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Figure 6.6: The evolution of the field dependent magnetisation measurements in
temperatures between 0.5 and 10 K for H ‖ c.

from the 1
5 -plateau. Tracking the evolution of the field dependent magnetisation

curves with temperature, we can see that the 1
5 -magnetisation is present only in the

low temperature phase and is no longer present at 6 K (IT phase), where we see

a broad upturn and then levelling off at 1.75µB. The curve at T = 10 K increases

linearly reaching 1.4µB at 70 kOe. There is no obvious hysteresis upon ramping

down the field for either curve at 6 K and 10 K For H ⊥ c there is a general curve

upwards for all temperatures below TN1 and the curve has not reached saturation

by 100 kOe. Comparing the magnetisation between H ‖ c and H ⊥ c suggests

the easy axis in small magnetic fields is the c-axis. The large difference between

the between the magnetisation of the two direction is characteristic of Ising-type

anisotropy, which seems to be a common trait amongst the rare earth tetraborides,

being seen in HoB4 as well as ErB4. There is no obvious signs of hysteresis for any

of the curves, where H ⊥ c.

6.1.3 Low Temperature (3He) Measurements

The magnetisation measurements were extended to low temperatures, which can be

seen in Fig. 6.6. The curve shows a single magnetisation plateau at M/Msat = 1
5 ,
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consistent with the higher temperature measurements. Interestingly, the field in

which the transition occurs increases with decreasing temperature, which is the same

for increasing temperatures as well, suggesting that at low temperature the field

induced magnetic state is returning to the zero field antiferromagnetic phase. While

the temperature dependence of the latter transitions remains broadly unchanged,

the temperature dependence of the critical field of the transition to the plateau

appears to be non-monotonic. The value of the transitions decreases to 14 and

to 12 kOe for 0.9 and 2 K respectively before increasing to 15 kOe at 3 K, with

the plateau becoming less defined. While the transition to saturation begins with

a gradual up turn at approximately H = 26 kOe before a more significant jump

at approximately 29 kOe. Increasing the temperature further to T = 4 K, the

magnetisation plateau becomes significantly less pronounced and differentiating the

magnetisation curve (not shown) reveals the two transitions. The first transition

shifts to 24 kOe, while the latter transition remains at approximately 30 kOe. In

all the low temperature phase curves there is a further, smaller transition located

at approximately M/Msat = 0.24. The magnetisation curve at T = 6 K (in the

intermediate temperature phase) shows no discernible transition, linearly increasing

towards saturation. The exact nature of the plateaux phases is still an open question,

however single crystal neutron diffraction on D10 has revealed a structure that

propagates along the c-axis, similar to HoB4 [127] and will be discussed in more

detail in Section 6.2.4.

To investigate this unusual temperature dependence of the field induced

phase, magnetic susceptibility measurements at 10, 15 and 20 kOe were made, as

shown in Fig. 6.7. The susceptibility curve at H = 10 kOe shows a broad maximum

at T = 6.8 K and a discontinuous drop at T = 4.2 K. These correspond to transi-

tions to the incommensurate intermediate and low temperature phases. Increasing

the field to 15 kOe the broad maximum is suppressed to T = 6.7 K, while there is

now a discontinuous jump at T = 3.3 K, which is the magnetisation plateau state.

Cooling further reveals a discontinuous drop in the susceptibility at T = 1.5 K.

Temperature dependent susceptibility at lower fields shows no indication of a new

phase, suggesting the transition at T = 1.5 K in Fig. 6.7 goes from the field induced

state back to the zero field antiferromagnetic state. Increasing the field to 20 kOe,

TN2 is further suppressed to 6.2 K, while TN3 increases to 3.6 K. It can also be

seen that the lower, novel transition is suppressed with the transition beginning at

T ≈ 0.5 K, but we are unable achieve temperatures to see the entire transition.
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Figure 6.7: Temperature dependent magnetic susceptibility at H = 10, 15 and
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0.03 emu/mol-Oe.
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6.1.4 High Field Magnetisation

Figure 6.8 shows the field dependent magnetisation measurements up to 500 kOe

and T = 1.5 K for H ‖ c and H ⊥ c using a pulsed magnetic field. For H ‖ c, we

observe the expected 1
5 -magnetisation plateau at 14 kOe and then the transition to

saturation at 30 kOe. The magnetisation then remains approximately constant at

2µB per Nd ion up to 500 kOe. The difference between the saturated moment and

expected moment could be arising due to strong crystalline electric field effects. For

H ⊥ c on the other hand, the magnetisation is linear up to approximately 70 kOe,

with a gradual up turn in the value showing a distinct change in gradient at approx-

imately 150 kOe. Above the transition the magnetisation increases, surpassing the

magnetisation of H ‖ c at 350 kOe, the magnetisation continues to increase with no

suggestion of saturation, achieving 2.6µB per Nd ion by 500 kOe. There is no clear

indication to the direction of the easy axis, this suggests that the easy axis could be

off-axis and not along one of the principal axes.

High field measurements were also made in the HT phase at 8 K. For H ‖ c,
we see a gradually increase and saturating at approximately 1.85µB. For H ⊥ c,

we see a similar behaviour to that of 1.5 K, There is a general increase an a kink

at a lower field at approximately 130 kOe. As with the low temperature curve, the

nature of this phase transition is currently unknown.

6.1.5 Heat Capacity

The temperature dependent heat capacity in different magnetic fields for both H ‖ c
andH ⊥ c is shown in Fig. 6.9. ForH ‖ c (Fig. 6.9(a)) three transitions are observed;

TN1 = 17 K, TN2 = 6.2 K and TN3 = 4.8 K, all of which were also seen in the magnetic

susceptibility. The transitions at TN1 and TN2 are second-order phase transitions,

while TN3 is a first order phase transition. The curves for H ‖ c and H ⊥ c in a

field of H = 0 kOe (Fig. 6.9(b)) is expected to be identical. However, we see that

TN1 is different, this is because the PPMS used has difficulty measuring first order

phase transitions as was also the case for HoB4 (Sec. 5.1.5). Upon increasing the

field for H ‖ c, TN1 remains broadly unchanged up to 35 kOe, while both TN2 and

TN3 are suppressed. There is a broad transition at T = 5 K for H = 35 kOe, which

correspond to the system tending towards a polarised state.

Figure 6.9(b) shows the heat capacity for H ⊥ c. Again, three transitions

are observed, two lambda-like anomalies at TN1 and TN2 and a sharp peak at TN3.

Unlike for H ‖ c the transitions remain at approximately the same temperature

upon increasing field with TN1 only being slightly suppressed from 17 K to 15.9 K
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Figure 6.8: Field dependent magnetisation measurements forH ‖ c andH ⊥ c, made
using a pulsed magnetic field up to 500 kOe for two temperatures, (a) T = 1.5 K
and (b) T = 8 K.
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Figure 6.10: Field dependent specific heat measurements of NdB4 for H ‖ c at
T = 1.9 K.

at 55 kOe.

Figure 6.10 shows the field dependent heat capacity for H ‖ c at T = 1.9 K.

It shows two transitions at approximately 11 and 33 kOe, which is consistent with

the 1
5 -magnetisation plateau phase observed in Fig. 6.6. The heat capacity then

gradually decreases down to zero with increasing magnetic field. This behaviour is

expected at low temperatures, states with low energy become more probable, the

degree of alignment of the mangetic moments parallel to an applied magnetic field

increases and the entropy falls. At low temperatures and sufficiently high field all

the magnetic moments will align with the magnetic field to save energy. In this case

there is only one way of arranging the moments, so the entropy is zero and thus,

heat capacity is also zero [4].

Figure 6.11 shows the magnetic contribution of the heat capacity of NdB4.

This was determined by subtracting the total heat capacity of the non-magnetic

LuB4 using the same process that was used for HoB4 outlined in Sec. 5.1.5. The

normalisation ratio, r for NdB4 and LuB4 was determined to be r = 0.863. As both

curves are in zero field we expect the results to be identical and the labels H ‖ c
and H ⊥ c are merely used to indicate the differing geometry and the crystals used.

The insets in Fig. 6.11 shows the total heat capacity of NdB4 and LuB4, as expected

from HoB4 and a variety of other RB4 members [110–113] the heat capacity is linear
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Figure 6.11: Temperature dependence of the magnetic contribution of the specific
heat measurements for (a) H ‖ c and (b) H ⊥ c. The inset shows the total heat
capacity at high temperatures for NdB4 and the non-magnetic LuB4.

down to low temperatures.

For both plots, we observe the three expected transitions, additionally we

observe a Schottky anomaly at approximately 55 K, again using Equation (5.2) we

estimated the energy gap and found the Schokkty anomaly would correspond to an

energy gap of approximately 120 K. The insets show a comparison between the total

heat capacity of NdB4 to the total heat capacity of LuB4 at high temperatures.

We then determined the magnetic entropy by numerically integrating Cmag/T

with respect to T , which is shown in Fig. 6.12. The red curve shows the entropy,

there are a number of kinks in the curve correspond to each of the three transi-

tion temperatures. The entropy reaches 1.83 J/mol K at TN3, 3.50 J/mol K at

TN2 and 8.47 J/mol K at TN1. At high temperatures the entropy levels off to

a value of 10.0 J/mol K. The maximum allowed entropy for Nd ions in RB4 is

R ln(2J + 1) = R ln 10 (J = 9
2). As 2J + 1 gives an even value, Nd is a Kramer ion

meaning that we are expecting the crystal field scheme to be made up for five dou-

blets. The entropy reaches R ln 2 by 10.5 K and just surpasses R ln 3 at 21.5 K before

levelling out. The difference between the maximum entropy and the maximum we

observe is arising due to a large splitting of the crystal field levels.

6.1.6 Resistivity

Temperature dependent resistivity measurements are shown in Fig. 6.13 for bothH ‖
c and H ⊥ c. NdB4 has a high residual resistance ratio value (RRR; ρ(300 K)/ρ(2 K)

= 100) re-enforcing the high quality of the sample. For both field directions the re-
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Figure 6.12: Temperature dependence of the magnetic contribution of the heat
capacity divided by the temperature. The red curve shows the magnetic entropy,
which was determined by integrating the Cmag/T with respect to T .

sistivity curves are linear down (not shown) to the first transition, TN1, indicating

the metallic nature of NdB4 which is the case in the other RB4 family members.

There is a sudden drop at TN1 = 17 K, with two further features at TN2 = 6.8 K and

TN3 = 4.9 K. The sudden slope change could be due to the loss of spin disorder scat-

tering at the antiferromagnetic transition temperature, which has been suggested

for other members of the RB4 family [62, 72]. The evolution of the temperature

dependence in field for H ‖ c is shown in Fig. 6.13(a). Similarly to the magnetic

susceptibility and heat capacity, the transitions at TN2 and TN3 are suppressed with

increasing field, while TN1 remains unchanged. TN3 becomes significantly more pro-

nounced for H = 17.5, 22.5 and 27.5 kOe, which corresponds to the transitions into

the 1
5 -magnetisation plateau phase observed in Fig. 6.6. The transition becomes

very broad above 27.5 kOe as the system tends towards a polarised state. The

measurements for H ⊥ c are shown in fig. 6.13(b). As expected from the previous

characterisation, we observe the three transitions at TN1, TN2 and TN3, which do

not change significantly between 0 ≤ H ≤ 37.5 kOe.

The field dependent resistivity measurements forH ‖ c is shown in Fig. 6.13(c).

As can be seen there is magnetoresitance at all temperatures, the magnetoresistence

(defined by MR(H,T ) = [ρ(H,T ) − ρ(0, T )]/ρ(0, T )) gradually increases from 50%

to 71% from 20 K to 8 K. It further increases to 130% in the intermediate tem-

perature phase (6 K), before dramatically increasing in the low temperature phase

to 414%, 766% and 1200% for 4, 3 and 2 K respectively. Large magnetoresistences

have also be observed in HoB4 [102] and GdB4 [54]. The curves at T = 2 and

3 K shows features which mirror the plateau observed in the magnetisation mea-
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Figure 6.13: Temperature dependent resistivity measurements of NdB4 made for
(a) H ‖ c and (b) H ⊥ c. Each curve is subsequently offset by 2 and 3 µΩ − cm
respectively. Field dependent resistivity measurements made for (c) H ‖ c and (d)
H ⊥ c. Each curve is subsequently offset by 2.5 µΩ− cm.

surements shown in Fig. 6.6. A plateau is also observed at T = 6 K, the constant

resistivity most likely arising as the system goes from the intermediate to the high

temperature phase.

The field dependent resistivity curves for H ⊥ c are shown in Fig. 6.13(d),

as can be seen there are no noticeable features at any temperature, consistent with

the magnetisation measurements. Similarly to H ‖ c there is a magnetoresistence,

which gradually increases from 22% to 73% upon cooling from 20 to 8 K. There is

an increase to 212% at 6 K and further increases in the low temperature to 549%

and 2140% at 4 K and 2 K respectively.
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Figure 6.14: Single crystal neutron diffraction maps of (h0l) plane for NdB4 using the
D7 diffractometer. Full xyz polarisation analysis was used to separate the intensity
maps into (a) total scattering, (b) nuclear coherent, (c) nuclear spin incoherent
scattering and (d) magnetic scattering.
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6.2 Single Crystal Neutron Diffraction

6.2.1 Polarised Neutron Diffraction

Figure 6.14 shows the zero-field intensity maps of the (h0l) scattering plane of NdB4

in the paramagnetic regime at T = 30 K. Full xyz-polarisation analysis was used

to separate the total intensity map (a) into nuclear coherent scattering (b), nuclear

incoherent scattering (c) and the magnetic scattering (d). As can be seen there are

Bragg reflections at (201), (200), (201), (001), (001), (201) and (201). These are all

expected by the crystal symmetry of NdB4, however there are additional features

appearing only in the nuclear coherent scattering at
(

3
4 0 1

)
,
(

3
4 0 1

)
,
(

3
4 0 1

)
and(

3
4 0 1

)
as well as

(
0 0 1

2

)
and

(
0 0 1

2

)
. It is suspected that these are arising due

to a small NdB6 impurity. Although the well defined positions would suggest the

presence of a co-aligned NdB6 crystal, which is quite unusual.

In addition it can be seen that there is structure to the background, which

can be observed in all the intensity maps and is most prominent in the nuclear

incoherent scattering map (Fig. 6.14(c)). This structure is arising due to shape of

the sample. The sample was a rod shape, so when making the intensity maps by

rotating the sample, there are angles where the beam is hitting the cross section,

while there will also be geometries where it is hitting along the rod. This means the

amount of crystal a neutron travels through depends on the rotation of the sample.

Therefore there is a higher chance of secondary events like multiple scattering, etc.

which will increase the background for certain angles. This gives rise to an angular

dependence of the intensity. To try and account for this we used a box smoothing

algorithm on the total scattering intensity maps. The algorithm works by taking a

detector element and then averaging 10 detector elements either side of the chosen

element for each theta. The algorithm then moves along one element and repeats

the process, producing a smoothed map. We performed the smoothing algorithm at

a sufficiently high temperature (30 K) to ensure we were in the paramagnetic regime

and were not going to observe any magnetic signal. This smoothed map was then

used to account for the shape in the intensity, by dividing the maps in the magnetic

phases, which should eliminate the shape and should reveal any diffuse signal that

is hidden within the signal.

Figure 6.15 shows the intensity maps of the (h0l) scattering plane using

only a z-polarisation (parallel to the [010]-direction). The NSF and SF channels

were measured at T = 30, 12, 6 and 1.5 K. Figure 6.15(a) shows the z-polarisation

reciprocal space map for T = 30 K, this is the paramagnetic regime and we expect

to only see nuclear Bragg peaks, which is what we observed. Much like for HoB4 in
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section 5.2.1 “leakage” from the Bragg peaks in the NSF channel is observed in the

SF channel. The leakage features are 3% of the intensity.

The HT magnetic phase at T = 12 K is shown in Fig. 6.15(b). There is the

appearance of the (100), (101) and (101) reflections, which are not allowed by the

crystal symmetry suggests the onset of antiferromagnetic order. The (100) reflection

is only present in the spin-flip channel, implying that there is a significant c-axis

component to the antiferromagnetic phase. This is because the SF channel would

be sensitive to a component to the magnetic moment along the a and/or c-axis,

as NdB4 has a tetragonal crystal structure, if the magnetic moment was along the

a-axis, we would also expect to see intensity on the (100) in the NSF channel as

well. This finding is at odds with the structure suggested in ref. [125], which put for-

ward that the moments sit only in the ab-plane. Diffuse scattering is also observed

around
(
201

2

)
and

(
201

2

)
is most likely arising due to short range correlation form-

ing, heralding the on-set of the magnetic structure in the intermediate temperature

phase.

The IT phase at T = 6 K is shown in Fig. 6.15(c). We observe the appear-

ance of some incommensurate reflections at (1.85 0 0.4), (2.15 0 0.4), (1.85 0 0.6)

and (2.15 0 0.6) as well as those at the equivalent negative L values. While these

appear at K = 0, D7 detectors can detect a small out of plane component and fur-

ther measurements on D10 (see section 6.2.2) reveal that these reflection actually

correspond to a propagation vector of (δ, δ, δ′), where δ = 0.15 and δ′ = 0.4. Again

these incommensurate reflections are only observed in the spin-flip channel suggest-

ing there is a significant c-axis component to the magnetic phase. Diffuse scattering

can still be observed around the incommensurate reflections.

The LT phase at 1.5 K is shown in Fig. 6.15(d). First of all the interme-

diate temperature phase incommensurate reflections shift positions to (1.8 0 0.4),

(2.2 0 0.4), (1.8 0 0.6) and (2.2 0 0.6). While there is the appearance of additional

reflections appearing at (0.4 0 0.2), (0.4 0 0.2), (0.6 0 0.2) and (0.6 0 0.2) as well as

equivalent reflections appearing for L = ±1. The diffuse scattering observed in the

high and intermediate phases is no longer present suggesting the low temperature

phase is ordered.

Figure 6.16(a) shows the line cuts along [1.4 0 L] and [1.8 0 L] in the SF

channel. It illustrates the positions of the incommensurate reflections suggesting

two propagation vectors of (δ′, 0, δ′′) and (δ′′, 0, δ′), where δ′′ = 0.2 and δ′ = 0.4.

Diffuse scattering can be observed in 12 K line cut around the incommensurate

reflection. This is most likely arising due to short range correlation forming before

the onset of the intermediate temperature phase. Although small, diffuse scattering
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Figure 6.15: Single crystal neutron diffraction maps of (h0l) plane for NdB4 using
the D7 diffractometer. The non spin-flip (left column) and spin-flip (Right column)
channels at different temperatures (a) 30 K (b) 12 K, (c) 6 K and (d) 1.5 K are
shown.
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Figure 6.17: Temperature dependence of the intensity of the Bragg reflections al-
lowed by the nuclear symmetry of NdB4 (a) (210) and (b) (001) and the anti-
ferromagnetic reflections (c) (100) and (d) (101). Shading indicates the separate
magnetic phases.

can also be observed at 6 K, where the incommensurate peaks are not resolution

limited, suggesting that we have short range order. This diffuse scattering has

disappeared in the low temperature phase and only the incommensurate reflections

remain suggesting there is long range order.

6.2.2 Zero Field Measurements

Integer (hkl) reflection scans

Fig. 6.17 shows the temperature dependence of the intensity of a selection of integer

(hkl) reflections. (210) is allowed by the symmetry of the crystal. As can be seen

the intensity of the (210) reflection at TN1 = 17 K, starts to gradually increasing

until it levels off in the IT phase. (001) is also allowed by the nuclear symmetry, the

intensity remains approximately unchanged throughout the HT and IT phase, while

there is a significant increase in the intensity in the LT phase. Interestingly, magnetic

intensity on this reflection can only be attributed to a ferromagnetic component in
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the ab-plane, however polarised neutron experiments on this sample using the D7

diffractometer, showed no depolarisation of the beam, typical of a ferromagnetic

signal as well as no magnetic contribution in the spin-flip channel. This suggests that

there is a structural phase transition occurring in the LT phase. (100) and (101) are

both purely magnetic reflections, (100) suggests the ordering is antiferromagnetic, in

agreement with previous measurements [125]. We can see there is a gradual increase

in the HT, with more of an upturn in IT, with an obvious transition into the LT

phase. While the (101) reflection intensity, shows a transition into the HT, which

increases and levels off into the IT and LT phases. There are a few possibilities for

this sudden increase, the first is a structural phase transition to a tetragonal system

with a reduced symmetry where the (100) is allowed by the crystal structure. The

second possibility is that there is a rearrangement of the magnetic moment, either to

different commensurate structure or for the moments to further tilt towards the c-

axis. The final option is that both are occurring. The polarised neutron on D7 shows

an increase in the intensity of the (100) reflection, showing that there is a magnetic

contribution to this increase, ruling out a increase due to purely a structural change.

Incommensurate reflection scans

The temperature dependence of the intensity of a selection of incommensurate re-

flection is shown in Fig. 6.18. As can be seen (1.85 0.15 0.4) is part of only one

set of incommensurate reflections in the intermediate temperature phase. This cor-

responds to a propagation vector of (δ, δ, δ′), where δ = 0.15 and δ′ = 0.4. This

propagation vector is in agreement to that observed in Ref. [125], where they found

δ = 0.14 and δ′=0.4 instead. In the low temperature phase we observe the ap-

pearance of the incommensurate reflections, (0.2 0 0.4), (0.6 0 0.2), (0 0.6 0.4) and

(-2 0.18 0.4) these correspond to propagation vector of q1 = (δ′, 0, δ′′), q2 = (δ′′, 0, δ′),

q3 = (0, δ′, δ′′), q4 = (0, δ′′, δ′), where δ′′ = 0.2. Due to the tetragonal symmetry

of the unit cell, we would expect q3 and q4 from q1 and q2 respectively as we do not

expect there to be a preferred direction between the a and b-axis. However, it is

interesting that between q1 and q2 we see a swap in δ′ and δ′′, as there should be no

relation between the a and c-axis. This can be overcome if one set of incommensu-

rate reflections are harmonics of the other set. Looking at intensity maps at 1.5 K

(Fig. 6.15(d)), a clearer picture can be seen of the layout of the incommensurate

reflections. If the propagation vector is described as (100)±(δ′′, 0, δ′), then the

reflections that correspond to (δ′, 0, δ′′) can be described as second order harmonics

and so forth. This gives us two possibilities:
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Figure 6.18: Temperature dependence of the intensity of a selection of incommensu-
rate reflections from NdB4. Fill symbols corresponding to the temperature ramping
and continuously measuring the intensity, while empty symbol correspond to stab-
lising and measuring the intensity at a particular temperature.
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(1) The (100) is a forbidden nuclear reflection in the LT phase and we have a

multi-k magnetic structure formed of q1 and q2.

(2) Due to a structural phase transition, the (100) reflection is allowed. Then

k = (δ′, 0, δ′′) and the other satellites are either 2nd or 3rd harmonics.

Returning to the line cuts made from the intensity maps in Fig. 6.19 we can compare

the intensity of the (100) reflection between the three magnetic phases. As can be

seen there is a very small increase in the intensity of the (100) reflection in the NSF

channel between the HT and IT phase and and a similarly small increase in the

SF channel. The NSF intensity is approximately 20% the intensity of the SF peak,

suggesting it is not arising due to leakage. There is no significant increase between

the in the intensity of the (100) between the IT and LT in the NSF channel, despite

the large increase in intensity for the SF intensity, lending strength that it may be

a real peak. This suggests that the second options is the correct one. However

the increase is very small and D7 is not well suited for intensity measurements,

which means we cannot say definitively that this is the case based on a peak that is

barely distinguishable from the background and further measurements will need to

be made.

6.2.3 Zero Field Magnetic Structure Determination

In order to determine the magnetic structures of NdB4 a good baring on the struc-

tural parameters is needed. To do this we collected a set of 112 integer (hkl) at

T = 25 K. As a starting point the parameters from the powder x-ray pattern were

used and refined to best match the calculated and observed intensities. The struc-

tural parameters were determined from the fit (RBragg = 9.17%) and are shown in

table. 6.3. These parameters are in agreement with Ref. [124]

High Temperature Phase (TN2 < T < TN1)

For the high temperature phase we found an antiferromagnetic k = 0 commensu-

rate magnetic structure. To determine the magnetic structure we have collected the

intensities of a set of 112 integer (hkl) reflections and to find the magnetic inten-

sity subtracted the nuclear intensity from each reflection. There are 12 irreducible

representations for a k = 0 structure [55], which are shown in Fig. 6.20. From mea-

surements on D7, we can eliminate the ferromagnetic structures (F, H-1 and H-2) as

there was no depolarisation of the neutron beam. In addition we can also eliminate

any structures that predict the intensity on the (100) coming from an ab-component
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Figure 6.19: Line cuts from along the [1 0 L] direction for NdB4 taken using the D7
polarised neutron diffractometer. Measurements were made for three temperatures,
1.5, 6 and 12 K using the two channels (a) non-spin-flip and (b) spin-flip.

Space Group: P4/mbm
Lattice Parameters: a = b = 7.21 Å, c = 4.10 Å

Ion Wyckoff Position Positions Fractional Coordinates

Nd 4g (x, x+ 1
2 , 0) x = 0.184

B1 4e (0, 0, z) z = 0.205
B2 8j (x, y, 1

2) x = 0.039, y = 0.179
B3 4h (x+ 1

2 , x,
1
2) x = 0.089

Table 6.3: Fractional coordinates and Wyckoff Positions for each site in NdB4, de-
termined through the magnetic refinement of NdB4 single crystal neutron diffraction
pattern.
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Figure 6.20: The irreducible representations of a k = 0 commensurate structure.
The picture is taken from ref. [46].

(A, B, H-3 and H-4). This leaves the representations of C, D, E and G. We tried

each of the remaining representations and mixture there within to find the best fit.

In doing so we found the best fits arose from a combination of D and E or C and E,

these are shown in Fig. 6.21(a) and (b) respectively. We have also tried the struc-

ture proposed in ref. [125]. This fit is very similar to the other two fits, however our

refinements always returned zero tilt in the ab-plane and thus zero intensity on the

(100)-reflection. While our ab-plane structure is the same we find the intensity on

the (100) is not arising from a tilting of the moments in the ab-plane, but from a

tilt of the moments towards the c-axis, which is consistent with what was observed

on D7.

As can be seen, the magnetic refinements fail to predict the intensities of

a number of different reflections. This was a problem in all the refinements, so in

order to investigate this we performed ψ-scans (see section 4.3.1), that is we chose

a reflection and rotated around ψ while measuring the intensity. This was to check

for the presence of multiple scattering. If there is multiple scattering we would

expect to observe a variation in the intensity with rotation around ψ. The ψ-scans

for (010) and (050) are shown in Fig. 6.22(a) and (b) respectively. These reflection

were chosen to determine if there was a Q dependence to the multiple scattering.

As can be seen there is a huge variation in the intensity as a function of ψ, which

appears to be random as well as no clear indication of any Q dependence. Further

to determine whether this is arising due to the magnetic ordering we performed a

small ψ scan at two different temperatures. These are shown in Fig. 6.22(c) and

(d). There is no significant temperature dependence between the two suggesting it

is due to the sample itself. We currently believe these fluctuations are arising due to

significant multiple scattering in the crystal. Due to the large changes in intensity
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The inset shows the resultant magnetic structure.
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at different ψ values, magnetic refinements have become a significant challenge.

Intemediate Temperature Phase (TN3 < T < TN2)

The intensities of 363 incommensurate reflections corresponding to a propagation

vector of (δ, δ, δ′) were collected using the D10 diffractometer. From the experiment

on D7 we know that the incommensurate reflections are arising from a significant c-

axis component. From the irreducible representations calculated from Basireps [128,

129] only one was predominantly along the c-axis and compared the calculated and

observed intensities. The best fit (RBragg = 41.34%) is shown in Fig. 6.23(a). As

can be seen the fit is not particularly good, there is a positive trend with the fit

line central to all the points. As with the the high temperature phase, multiple

scattering and extinction effects are a significant problem in this system. This can

be seen in Fig. 6.23(b), where the intensities for each reflection are plotted against

sin θ/λ. Reflections and their Fridel pairs, which should nominally have the same

intensity dramatically differ, which can be seen as lines of observed intensity at

constant values of sin θ/λ. The proposed structure has an amplitude modulation,

which propagates along the [110]-direction at an angle of 66.4◦ to the c-axis. It is

more clearly understood, by breaking it down into the three axis. Along the a and

b-axis there is a repeating unit cell every 20 unit cells, while along the c-axis, there

is a repeating unit cell every five cells. While this is the best fit and is consistent

with the polarised neutron measurements. Due to the difficulty in fitting the data

due to multiple scattering and extinction, we are unable to definitively say whether

or not this is the true magnetic structure and further measurements are needed to

clarify this.

Low Temperature Phase (T < TN3)

For the low temperature phase we have two components, the commensurate and

incommensurate reflections, which were treated separately. First of all considering

the commensurate structure we collected a set of intensities of 95 integer (hkl) re-

flections and performed a magnetic refinement using a mixture of the irreducible

representation. The best fit (RBragg = 22.17%) shown in Fig. 6.24 was achieved

by mixing irreducible representations D and E, comparing the low and high tem-

perature commensurate phase we see that they are formed by the same irreducible

representations, however there is a greater c-axis component explaining the increase

in the intensity of the (100) reflection in the SF channel.

For the incommensurate structure we collected a set of 120 intensities of
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Figure 6.22: psi scans between psi=-90 and 90◦ at T = 25 K for the (a) (010) and
(b) (050) reflections. Smaller psi-scans between -90 and -70◦ were taken for the
(010) reflection at(c) 25 K and (d) 2 K.
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Figure 6.24: Comparison of the observe and calculated magnetic intensities at
T = 2 K.

incommensurate reflections corresponding to a propagation vector of (0, δ′′, δ′).

The best fit (RBragg = 15.62%) is shown in Fig. 6.25(a). The magnetic structure is

shown in Fig. 6.25(b). The moments are aligned along the c-axis, consistent with

the D7 measurements. There is an amplitude modulation along the c-axis, with

the moments changing direction between layers. While there is a much broader

modulation along the a or b-axis (depending on the propagation vector).

6.2.4 In Applied Magnetic Field

Fig. 6.26(a) shows the temperature dependence of the intensity of the antiferromag-

netic (010) reflection and the Bragg (210) reflection in different magnetic fields. As

can be seen there is an increase in the intensity at T = 17 K, which is present up

to 50 kOe, with the transition temperature not changing significantly across this

field range. There is a further transition in zero field at 4.9 K, where there is a

dramatic increase in the intensity, most likely arising from a re-arrangement of the

spins changing the commensurate phase. This phase is no longer present above

20 kOe.

The temperature dependence of the (210) reflection is shown in Fig. 6.26(b).

As can be seen there is an increase in intensity at T = 17 K, with the onset of

antiferromagnetic ordering, this gradually increases and levels off. There is then a
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Figure 6.25: Comparison of the observe and calculated magnetic intensities at
T = 2 K and the incommensurate magnetic structure.
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transition observed for 20 and 30 kOe corresponding to a transition to the 1
5 -plateau,

while above 30 kOe, the intensity just increases, suggesting a polarised state. The

consistent increase in the intensity of the (210) and the (010) reflection at 17 K

suggests the commensurate antiferromagnetic phase that is observed at zero field

also permeates in all phases up to 50 kOe.

Fig. 6.27 shows the temperature and field scans of a number of incommen-

surate reflections. Fig. 6.27(a) shows the (-1.85 0.15 0.4), which is associated with

the propagation vector (δ, δ, δ′), where δ = 0.15 and δ′ = 0.4, this is present only

in the intermediate temperature phase. In zero field, we can see the reflection is

present between 4.2 and 6.8 K, consistent with the other measurements. Increas-

ing the field to 10 kOe, the region shifts to lower temperature, with the reflections

appearing between 4.1 and 6.2 K. Increasing the field to 20 kOe, again the tran-

sitions temperature are further suppress to a temperature range of 3.6 and 5.8 K.

Finally at H = 50 kOe, the intensity of the incommensurate reflection decreases

and is suppressed to the temperature region between 3.1 and 4.1 K. The intensity

of the incommensurate region decreases with increasing field, this implies that there

is a soft transition where the incommensurate component of the phase gradually

becomes polarised and shrinks.

Fig.6.27(b) shows the intensity of incommensurate reflection corresponding

to the low temperature phase. First of all the (0 -1.8 -0.4) corresponds to the zero

field low temperature phase with a propagation vector of (0, δ′′, δ′), where δ′′ = 0.2.

As can be seen it is present until approximately 13 kOe, giving way to the reflections

(1 -2 -0.4) and (2 1 0.2). Whether these reflections correspond to two separate

propagation vectors at (0, 0, δ′) and (0, 0, δ′′) or whether the the reflection is a

harmonic of the other is not known at present. Both reflection, however, correspond

to the unit cell increasing by a factor of 5 along the c-axis. The reflections are

present up until 30 kOe, where there is a dramatic decrease in the intensity of both

reflections, interesting, there is a small plateau in the intensity, which lasts until

33 kOe, where the intensity decreases to zero. The small plateau corresponds to

the small feature observed at M/Msat = 0.24, further supporting that it is a real

feature.

6.2.5 Magnetic Phase Diagrams

Figure 6.28 and 6.29 show the magnetic phase diagrams of NdB4 constructed from

magnetisation, heat capacity and resistivity measurements for H ‖ c and H ⊥ c.
For H ‖ c, Fig. 6.28(a) the magnetic phase diagram contains five distinct

magnetically ordered phases (labelled with roman numerals I to V) as well as a
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paramagnetic (PM) phase. The high-temperature phase I remains largely unaffected

by application of a magnetic field. The magnetisation curves suggest no sign of

saturation up to 100 kOe. The incommensurate intermediate temperature phase II

seems to disappear in fields above 30 kOe. The low-temperature zero-field phase

III transforms to phases IV and V in an applied field with the unusually shaped

magnetic transition line between phases III and IV showing a clear minimum at

approximately 2 K. Phase V corresponds to the fully polarised phase.

For H ⊥ c, the phase diagram (Fig. 6.29) contains three distinct ordered

states (labelled with roman numerals I to III) as well as the PM phase. Apart from a

slight reduction of the transition temperatures (particularly for the PM to the phase

I transition) on application of magnetic field, all three ordered phases remain largely

unaffected by application of magnetic field. This is further re-enforced with by the

high field measurements up to 500 kOe, which for the H ⊥ c shows no indication

of saturation in phases I and III. As the small “kink” is present in the high field

magnetisation curves for both the low and high temperature phase, implies that the

transition is associated with the commensurate structure and is not involved in loss

of the incommensurate structure. It could be the case the that gradual transition

observed in the high field measurements is the system gradually tending towards a

purely commensurate phase. However without further measurements to determine

the high field structure no concrete conclusion can be drawn.

6.3 Inelastic Neutron Scattering

6.3.1 Ei = 12 meV

Inelastic neutron scattering measurements were made on NdB4 using MARI at ISIS.

Figure 6.30 shows the colour intensity plots at 5, 10 and 20 K. These correspond to

the IT, HT and paramagnetic phases. A CCR was used during the experiment and

was unable to achieve temperatures below 5 K, so we were unable to investigate the

LT phase at present. The three intensity plots show two main features, the first is

the elastic line, the second is an energy level centred on approximately 4.5 meV at

5 K. Increasing the temperature, the energy level becomes less dispersive at 10 K and

further 20 K. The final temperature sees a shift in the energy level to approximately

3 meV. The intensity of energy level present in all three temperatures remains

constant with Q, suggesting they are crystal field levels.

In order to more accurately determine the energy of the crystal field as well

as track the temperature dependence of the features we have taken line cuts at

Q = 1.5±0.5 Å
−1

. Figure 6.31 shows the energy transfer for NdB4 at different
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Figure 6.30: Colour intensity plots from inelastic neutron measurements on NdB4.
Each measurement was taken in a differnt magnetic phase (a) IT at 5 K, (b) HT at
10 K and (c) the paramagnetic regime at 20 K using an incident energy of 12 meV.
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Figure 6.31: Dynamic susceptibility of NdB4 taken at temperatures between 5–20 K
using an incident energy of 12 meV.
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Figure 6.32: Gaussian fits of S(Q,ω) of NdB4 in a range of temperatures with an
incident energy of 12 meV. Blue peaks correspond to crystal field levels, while green
peaks correspond to secondary transitions from thermally populated energy levels.
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temperatures with an incident energy of 12 and 24 meV. As NdB4 is a Kramer ion,

we are expecting five doublet energy levels. Beginning with an incident energy of

12 meV, there are two energy levels with energies 3.6 and 5 meV at 5 K (Fig. 6.31(a)).

These are most likely arising due to energy level splitting from the onset of magnetic

order in the system. There is also a shoulder to the elastic line at around 1.5 meV.

Increasing the temperature to 10 K, the splitting is no longer obvious and the

shoulder has disappeared. Increasing the temperature further to 20 K into the

paramagnetic phase the single peak shifts to lower energies of 2.9 meV. As can be

seen the peak shape is a little unusual, possibly due to two overlapping energy levels.

6.3.2 Ei = 24 meV

The incident energy was changed to 24 meV and the colour intensity maps are shown

in Fig. 6.33. As for an incident energy of 12 meV, three of the magnetic regimes

were investigated; The IT (5 K) and HT (10 K) and the paramagnetic regime (20–

150 K). At 5 K (Fig. 6.33(a)) there are three main lines approximately situated at

4, 14 and 18 meV. These features are mirrored in the measurements taken at 6 K

(Fig. 6.33(b)). Further warming into the paramagnetic phase, the crystal field level

at 4 meV has become more dispersive, while the energy level at 14 meV has shifted

to 12 meV. At 50 K a line is starting to appear at around 19 meV, which is like a

secondary transition from the thermal population of lower energy crystal field level.

There is then a “blob” of intensity at high Q at around 7 meV. This is generally

characteristic of phonons. These features are also present for 100 and 150 K, which

are shown in Fig. 6.33(e) and (f) respectively.

As before we have taken line cuts at 1.5±0.5 Å
−1

to track the features more

accurately. We can again see the peak at low energy, but there is also a well defined

peak at 12.47 meV, which is most likely due to a second crystal field level. There is

a third peak where the intensity increases up to 150 K, it is difficult to determine

whether this is arising due to population of the either the first or second energy

level so it could suggest a crystal level at either 17.72 or 27.57 meV. There is also

an increase in the intensity of the background at around 5 meV, so it is more likely

that there is a crystal field level at 17.72 meV, but with the present data we are

unable to determine this for sure.

6.3.3 Ei = 110 meV

Figure 6.36 shows the colour intensity maps using an incident energy of 110 meV at

5 and 20 K. Figure 6.36(a) shows the measurements taken in the magnetic IT phase.
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Figure 6.33: Colour intensity plots from inelastic neutron measurements on NdB4.
Each measurement was taken in a differnt magnetic phase (a) IT at 5 K, (b) HT at
10 K and the paramagnetic regime at (c) 20 K, (d) 50 K, (e) 100 K and (f) 150 K
using an incident energy of 24 meV.
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Figure 6.34: Dynamic susceptibility of NdB4 for temperatures between 20–150 K
using an incident energy of 24 meV.

There are a number of features in the plot. There is an energy level at approximately

17 meV, which was observed for an incident energy of 24 meV. There are further

features at approximately 20, 40, 70 and 90 meV. The intensity of these latter

features increases with Q, which is characteristic of phonons. The paramagnetic

regime at 20 K is shown in Fig. 6.36(b). The features observed at 5 K are also

present at 20 K, with no apparent changes to the intensity. There are no more

apparent crystal field levels at higher energies. From the three incident used, we

have found the presence of phonons at 20, 40, 70 and 90 meV. This would gives us

3 of the 4 transitions we are expecting, with energies E = 2.9, 12.5 and 17.7 meV.

The Schottky anomaly observed in the heat capacity correspond to an energy of

10.3 meV, which we do not observe in the inelastic neutron scattering data. This

gap is similar to that between the first and second energy level and could be arising

due to a transition after the first energy level has become populated. With this

energy level included we have a possibility of the 4 transitions we would expect to

observe, however further modelling and refinement is needed.
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Figure 6.35: Gaussian fits of S(Q,ω) of NdB4 in a range of temperatures with an
incident energy of 12 meV. Blue peaks correspond to crystal field levels, while green
peaks correspond to secondary transitions from thermally populated energy levels.
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Figure 6.36: Colour intensity plots from inelastic neutron measurements on NdB4.
Each measurement was taken in a different magnetic phases (a) IT at 5 K and (b)
the paramagnetic regime at 20 K using an incident energy of 110 meV.
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6.4 Summary

An investigation into the magnetic properties on the frustrated antiferromagnet

NdB4 has been presented in this chapter. Magnetic susceptibility and heat capacity

measurements have revealed the presence of three magnetic phase transitions at

17.0, 6.9 and 4.2 K respectively and are in line with those presented in ref. [44].

For both H ‖ c and H ⊥ c the inverse magnetic susceptibility shows Curie-Weiss

behaviour at high temperatures and the effective moment was found to be 3.73µB

and 3.76µB while the Curie-Weiss temperatures were -15.9 and -27.4 K strongly

suggesting the presence of antiferromagnetic exchange, as is the case for most of the

members of the RB4 family.

Neutron diffraction measurements have revealed the appearance of the (100)

reflection further supporting antiferromagnetic ordering. Magnetic refinements have

suggested that the magnetic structure has an all-in structure where the moments

point into the square formed by the Nd ions. The intensity of the (100) is arising

due to an out of plane antiferromagnetic component which is at odds with the

commensurate structure put forward by ref [125]. This commensurate structure

is prevalent through all three magnetic phases, where the intermediate and low

temperature phases also has an incommensurate component too. The ordering is in

a single unit cell and can be described with a J1 and J2 exchange interaction and

thus by the SSL. This structure is very similar to the other members of the RB4

family, which in zero field tend to order in plane, with no expansion of the magnetic

unit cell compared to the crystallographic unit cell [46, 61, 62, 66].

The intermediate temperature phase has a propagation vector of (δ, δ, δ′),

where δ = 0.15 and δ′ = 0.4. Magnetic refinements revealed there was an amplitude

modulation along the [110] direction at an angle of 66.7◦ to the c-axis with all

the moments point parallel to the c-axis, which is supported by polarised neutron

measurements on D7. Further experiments on the polarised neutron diffractometer,

D3 performed by Navid Qureshi also support this, finding that the reflections arising

from the propagation vector of (δ, δ, δ′) had only a c-axis component.

In the low temperature phase we observe a separate set of reflections arising

from the propagation vectors (δ′′, 0, δ′) and (δ′, 0, δ′′). There is still some uncer-

tainty arising from the propagation vector for this incommensurate component in

the low temperature phase. There are two possible options, first of all there is a

multi-k structure with the two vectors list above, the second option is structural

phase transition allows a nuclear component to the (100) reflection and all the re-

flections can be described with a propagation vector of (δ′′, 0, δ′). There is evidence
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for a structural phase transition due to an increase in the intensity of the (001)

reflection, which due to symmetry arguments cannot have any magnetic intensity

on it unless it is ferromagnetic. This is further supported by measurements on D7

and D3. Measurements on the (100) reflection using D3 have also been inconclu-

sive, there appears to be magnetic and nuclear signal, but the nuclear component is

small and could be arising due to multiple scattering. Treating the two propagation

vectors separately the magnetic refinements revealed the incommensurate compo-

nent is along the c-axis and has an amplitude modulation along the c-axis and a

much broader modulation along the a-axis. This is supported by measurements on

D7 and D3 and measurements on these instruments suggest the other set of incom-

mensurate reflections has a very similar component, lending strength to the second

option of the propagation vector. However, further measurements are needed for a

conclusive answer. Magnetically induced lattice distortions have also been observed

in HoB4 [46], TbB4 and ErB4 [130].

Field dependent magnetisation measurements have revealed the presence of

a magnetisation plateau at 1
5 the saturation magnetisation. The nature of this field

induced phase remains undetermined. However, neutron diffraction measurements

revealed it had a propagation vector of (0, 0, δ′′) and similar to HoB4 there is an

expansion of the magnetic unit cell along the c-axis. This again suggests the inter-

planer interactions are important and the SSL is not well suited to describing the

physics of NdB4. NdB4 is unusual in that it shares no other fractional plateaux

with the other members of the RB4 family, most having either a 1
3 or 1

2 plateau. In

addition, to date, no theoretical study has predicted the presence of a 1
5 -plateau.

The nature of this field induced phase still remains undetermined and magnetic

refinements have offered no insight into the magnetic structure.

Finally we have investigated the crystal field scheme of NdB4. Inelastic

neutron scattering measurements have revealed the presence of three crystal field

levels at 2.9, 12.5 and 17.7 meV, while heat capacity measurements show a Schottky

anomaly, which implied a further transition at 4.5 meV. This would be in line

with the five doublets we are expecting from the maximum entropy, but further

determination of the crystal field parameters and modelling is needed before we can

definitively confirm this is the crystal field scheme.
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Chapter 7

Conclusion

Since the initial characterisation by Buschow et al. [47], the RB4 family has offered a

rich variety of magnetic phases, order and later a chance to study the physics of the

Shastry-Sutherland lattice as it is a rare experimental realisation of the lattice. In

this thesis, the results of an investigation into the magnetic properties of two geomet-

rically frustrated compounds, HoB4 and NdB4, has been presented. The structure of

RB4 compounds consists of a R3+ sublattice ions, which forms a network of squares

and triangles. This network topologically maps to the Shastry-Sutherland lattice,

however the applicability of the Shastry-Sutherland lattice has come into question

with the neutron diffraction experiments on both HoB4 and NdB4 revealing inter-

planer interactions are important. To date HoB4 and NdB4 are the only members of

the RB4 family, where the field induced phases do not order in the ab-plane. HoB4

and NdB4 has a magnetic structure in field that propagates along the c-axis with

propagation vectors of (0, 0, 1
3) and (0, 0, 0.2) respectively.

HoB4 single crystal samples were grown and the crystals have been charac-

terised by bulk property measurements and these have revealed a wealth of mag-

netic phases and anisotropic behaviour. The field dependent magnetisation mea-

surements at low temperatures show the presence of plateaux at 1
6 , 1

3 , 3
5 and the

newly discovered 1
2 . Single crystal neutron diffraction measurements revealed that

the 1
6 corresponds to the re-establishment of the zero-field incommensurate magnetic

structure with propagation vector of (δ, δ, δ′) where δ = 0.02 and δ′ = 0.43. The
1
3 -plateau phase was found to have a propagation vector of (0, 0, 1

3) and magnetic

refinements revealed the structure to be ferrimagnetic with layers of ferromagnetic

spins arranged in an up-up-down structure along the c-axis. The 3
5 was found to be

accompanied by a field induced structural phase transition, however the nature of

this transition as well as the magnetic structure remain undetermined. We currently
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have plans to perform powder x-ray diffraction measurements in an applied mag-

netic field to determine the nature of this phase transition and further single crystal

x-ray diffraction measurements. Once these experiments have been performed, the

structure can be accounted for and the magnetic structure of the 3
5 plateau phase

determined. Finally the magnetic structure of the 1
2 remains a mystery and fur-

ther neutron diffraction measurements to be performed. However due to the phases

proximity of the 1
2 phase to the 3

5 phase, the field induced structural change may

also be a problem.

NdB4 single crystal samples were grown and the crystals have been char-

acterised by bulk property measurements, and these have revealed a rich phase

diagram with three distinct zero field phase and a single field induced phase which

corresponds to 1
5 the saturation magnetisation. The zero field phases were studied

with single crystal neutron diffraction measurements revealed the high temperature

phase has a k = 0 structure, which is prevalent through all phases. The structure of

which has an “all-in” arrangement where the spins point to into the square formed

by the Nd ions in the basal plane, the antiferromagnetic reflections arising from a

c-axis component. This and HoB4 align very well with the other members of the

RB4, where the predominant ordering is non-collinear in the ab-plane. The inter-

mediate temperature phase was found to have a propagation vector of (δ, δ, δ′),

where δ = 0.15 and δ′ = 0.4. While the propagation vector in the low temperature

phase of NdB4 remains an open question current evidence suggests that there is a

structural phase transition and the propagation vector is (δ′, 0, δ′′), where δ′′ = 0.2

and further reflection arising are due to higher order harmonics. There are a number

of avenues open to confirming this. As the latter propagation vector depends chiefly

on there being a nuclear component to the (100) reflection we can perform x-ray

diffraction measurements on powder or single crystal samples. Alternatively we can

expand upon the work by Navid Qureshi on the D3 diffractometer and arrange the

sample such that the [100] direction is parallel to the x-direction. The x-axis is

arrange such that it run parallel to the scattering vector, Q. Hence performing x-

polarisation measurements will then only be sensitive to any nuclear component on

the (100) reflection. Magnetic refinement for the intermediate temperatures phase

find an amplitude modulation along the [110] direction at an angle of 66.7◦ to the

c-axis with all the moments point parallel to the c-axis. While the low temperature

phase refinements have shown the moments are aligned parallel to the c-axis with an

amplitude modulation along the c-axis and a broader modulation along the a-axis.

However, all the magnetic refinements have been plagued with multiple scattering

with a significant spread of intensity for the same reflections. This has made refine-
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ments challenging and an improvement to this fits could be achieved by performing

further neutron diffraction experiments and accounting for the multiple-scattering.

Inelastic neutron scattering measurements on polycrystalline samples have

revealed the positions of a selection of crystal field levels have been found at 1.4, 2.9,

5.3, 9.5 and 17 meV for HoB4. However single crystal inelastic neutron scattering

measurements have suggested that the lowest observed energy level may not be

a simple crystal field level as it shows significant dispersive behaviour, persisting

the paramagnetic regime, well above the ordering temperature of HoB4 giving a

strong indication that there are strong correlations present even at 35 K in HoB4.

The intermediate temperature phase shows a unusual spin wave dispersion, where

a comparison of exchange interaction suggest the strength of the antiferromagnetic

coupling between the a- and c-axis are identical, further suggesting the SSL is not

ideal for HoB4. The next steps would be to attempt fitting the crystal field levels

and excitation in an attempt to understand the interaction scheme. The crystal

field levels in NdB4 have been found to be 2.9, 12.5 and 17.7 meV. We are part

of an on going collaboration to determine the crystal field scheme for the RB4

family, with inelastic neutron scattering measurements for TmB4 and ErB4 also

have been collected. Fitting and modelling the crystal field schemes will give us a

greater understanding of the magnetic properties of these compounds. Single crystal

inelastic neutron scattering measurements have been performed on NdB4 (not shown

in this thesis). Some initial analysis was perform but the was significant spurious

signal, which coupled with the weak scattering from the NdB4 made it difficult to

draw any real conclusions and it would be interesting to repeat this experiment.

Whilst the work of this thesis has added to the current knowledge and under-

standing of the RB4 it has equally highlighted the complexity of the magnetism and

competing interactions in HoB4 and NdB4 and the need for further investigations

to reach a more complete understanding of the system and the family as a whole.
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