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Smoothness and Poisson structures of Bridgeland
moduli spaces on Poisson surfaces

Chunyi Li and Xiaolei Zhao

December 9, 2016

Abstract

Let X be a projective smooth holomorphic Poisson surface, in other words, whose anti-
canonical divisor is effective. We show that moduli spaces of certain Bridgeland stable ob-
jects onX are smooth. Moreover, we construct Poisson structures on these moduli spaces.

Keywords. Poisson structure, Stability condition, Moduli of complexes

Introduction

It is proved by Mukai in [Mu84] that the moduli space of stablesheaves on an abelian or a
projective K3 surface is smooth and has a natural symplecticstructure. This construction has
been generalized in two directions. On the one hand, the symplectic structure can be generalized
to (holomorphic) Poisson structures. In the paper [Tyu88],the author showed that a Poisson
structure on the surface will naturally determine an antisymmetric bivector field on the moduli
space of stable sheaves. Bottacin [Bo95] then proved that such a bivector field satisfies the
closure condition and endows the moduli space with a naturalPoisson structure.

On the other hand, instead of coherent sheaves, one may consider moduli spaces of objects
in Db(X), the bounded derived category of coherent sheaves on the surfaceX. These moduli
spaces attract much attention recent years, mainly based onthe development of Bridgeland sta-
bility conditions. Among many applications, these moduli spaces provide interesting birational
models of moduli spaces of sheaves. Generalizing Mukai’s result, Inaba [Ina11] proved that
whenX is an abelian or a projective K3 surface, the moduli space of objectsE in Db(X) satis-
fying Ext−1(E,E) = 0 and Hom(E,E) = C is smooth and can be equipped with a symplectic
structure, hence a holomorphic symplectic manifold.

In this paper we provide a unified generalization of these twodirections.

Theorem (Theorem 2.4 and 3.2). For a smooth projective surface X equipped with a Poisson
structure s∈ H0(X,−KX), the moduli space of stable objects1 in Db(X) is smooth and is endowed
with a Poisson structureθs induced by s.

1Strictly speaking, we only consider the Bridgeland stability condition given by the tilting construction, whose
kernel of the central charge satisfies the Bogomolov inequality. See Definition 1.3 for details.
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There are two new features in our theorem. First, Inaba’s smoothness result only requires
Ext−1(E,E) = 0 and Hom(E,E) = C. However, in our situation there is no natural numerical
condition on the objects to guarantee the smoothness of the moduli spaces. Instead, we need to
work with Bridgeland stable objects in an essential way. Note that for a stable objectE, E⊗KX

may not be stable with respect to the same stability condition. So different from the sheaf case,
the smoothness of moduli of stable objects does not directlyfollow from Serre duality and slope
comparison. Our method generalizes our earlier work [LZ13,LZ16] on P2, but avoids the use
of full strong exceptional collections, which exist forP2 but not necessarily for general Poisson
surfaces. The current method is suggested by Arend Bayer.

Second, in order to check the closure condition of the Poisson structures, [Bo95] reduced
the question to an open dense subset parametrizing locally free sheaves. For moduli spaces of
stable objects, such open sets may not exist. Instead we compute the deformation theory of
objects in terms of complexes, and show the closure condition.

Future work. In a series of celebrated works [BM13, BM14], the authors prove that the
minimal model program of the moduli space of coherent sheaves on projective K3 surfaces can
be run on the space of Bridgeland stability conditions via wall-crossing. One of the main tech-
nical point in the work is the so called positivity lemma, i.e., to show that each moduli space of
Bridgeland stable objects carries a canonically nef divisor. An analogue result is also achieved
for Abelian surfaces in [Yo12, MYY11] by showing the positivity lemma using Fourier-Mukai
transforms.

Generalizing these results to other surfaces becomes difficult. Besides the positivity lemma,
it involves at least two extra difficulties. First, it is not clear in general whether the moduli
space still behaves nicely after wall-crossing. For example, higher dimensional component may
appear after wall-crossing, and this leads to reducible moduli spaces with bad singularities.
Secondly, it is not known in general for which Chern classes there exist stable sheaves. This
makes it hard to decide when the moduli space is non-empty, and to give a criterion on the
actual walls for the moduli spaces.

Based on previous work [ABCH13, CHW14, DP85], we solve theseproblems, and gener-
alize the result in [BM13, BM14] to the projective plane in [LZ13, LZ16]. The next natural
step is to consider Poisson surfaces. In particular, this paper treats with the first difficulty as
mentioned above, and it is the starting point of future studyon the MMP for moduli spaces of
sheaves on a Poisson surface via wall-crossing.

In another direction of a slightly different flavor, [Hi12] provides a systematic way to deform
the complex structure on a holomorphic Poisson variety. In the case of moduli spaces of sheaves
on a Poisson surfaceX, these Poisson deformations produce new varieties that canbe realized
as moduli spaces of objects on a ‘non-commutative’ surface.In the ideal cases, stability con-
ditions exist for these ‘non-commutative’ surfaces, and one can run MMP for these deformed
moduli spaces via wall-crossing. The models appearing in this procedure are expected to corre-
spond to the Poisson deformations of moduli spaces of Bridgeland stable objects on the original
surfaceX, with respect to the Poisson structures we construct in thispaper. An example of this
appeared in [LZ13], and our result in the current paper can beused to study the general case.
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Notation

Throughout the paper we will work over the complex number field C. All results may hold for
algebraically closed field of characteristic 0. The only necessary change in the argument is in
the last section, where analytic neighborhood should be replaced by small étale sites. We will
leave this for the readers to check.

1 Stability conditions

1.1 Geometric stability conditions

In this section we introduce Bridgeland stability conditions on surfaces. Let (X,H) be a po-
larized smooth projective surface, whereH is an ample divisor onX. Let D ∈PicR(X) be a
divisor with real coefficient satisfyingH.D = 0. Consider the bounded derived category Db(X)
of coherent sheaves onX.

Now let V be a three dimensional real vector space. Denote the Grothendieck group of
Db(X) by K(X), and the twisted Chern character exp(−D).ch by chD. For any objectF in Db(X),
we write

ṽ(F) = (v0(F), v1(F), v2(F)) :=
(

H2.chD
0 (F),H.chD

1 (F), chD
2 (F)
)

.

This defines a map ˜v : K(X)→ V.
Now we consider the real projective spaceP(V) with homogeneous coordinate [v0, v1, v2],

we view the locusv0 = 0 as the line at infinity. The complement forms an affine real plane,
which is referred to as the{1, v1

v0
,

v2
v0
}-plane. We callP(V) the projective{1, v1

v0
,

v2
v0
}-plane. When

ṽ(F) , 0, we usev(F) to denote the corresponding point in the projective{1, v1
v0
,

v2
v0
}-plane. In

particular, when ch0(F) , 0, v(F) is in the (affine){1, v1
v0
,

v2
v0
}-plane.

Remark 1.1. In this article, in all arguments on the{1, v1
v0
,

v2
v0
}-plane, we assume thev1

v0
-axis to

be horizontal and thev2
v0

-axis to be vertical. The term ‘above’ means ‘v2
v0

coordinate is greater
than’. Other terms such as ‘below’, ‘to the right’ and ‘to theleft’ are understood in the similar
way. In this paper we always use l to denote a line segment and Lto denote a line.

Now, we follow [BM13, Br08] and recall the construction of geometric stability conditions
on X.

Definition 1.2. A stability conditionσ on Db(X) is calledgeometricif it satisfies the support
property and all skyscraper sheaves k(x) areσ-stable of the same phase.
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1.2 Potential walls and phases

For a torsion-free sheafF, recall that the (H-)slope ofF is given by
H.chD

1 (F)

H2.chD
0 (F)
=

H.ch1(F)
H2.ch0(F) . Fix

a real numbers, a torsion pair of coherent sheaves onX is given by:

Coh≤s: subcategory of Coh(X) generated byH-semistable sheaves of slope≤ s.

Coh>s: subcategory of Coh(X) generated byH-semistable sheaves of slope> s and tor-
sion sheaves.

We may define the tilting heart Coh#s := 〈Coh≤s[1], Coh>s〉.

Proposition and Definition 1.3. For two real number s and q such that q> 1
2 s2, there exists a

geometric stability conditionσs,q := (Zs,q,Coh#s) on Db(P2), where the central charge is given
by

Zs,q(E) := (−v2(E) + q · v0(E)) + i(v1(E) − s · v0(E)).

In this case,Ker(Zs,q) consists of the characters corresponding to the point(1, s, q) in the pro-
jective{1, v1

v0
,

v2
v0
}-plane. We writeφs,q for the phase function ofσs,q.

For the proof thatσs,q is indeed a geometric stability condition, we refer to [BM13] Corol-
lary 4.6 and [Br08]. Here the phase functionφs,q can be also defined for objects in Coh#s:

φs,q(E) :=
1
π

Arg (Zs,q(E)).

It is well-defined in the sense that it coincides with the phase function onσs,q-semistable objects.

Remark 1.4. The definition ofσs,q here, though appears in a different from, is essentially the
same as the usual one such as that in [ABCH13]. We refer to [LZ16] for a detailed comparison
between these two setups.

Remark 1.5. Given a point P= (1, s, q) with q > 1
2 s2, we will also writeσP, CohP(X) and ZP

for the stability conditionσs,q, the tilt heartCoh#s(X) and the central charge Zs,q respectively.

1.2 Potential walls and phases

We collect some well-known and useful results about the potential walls in this section. First
we have the following description of the potential wall, i.e. the locus of stability conditions for
which two given characters are of the same slope.

Lemma 1.6(Potential walls). Let P= (1, s, q) be a point with q> 1
2s2; E and F be two objects

in CohP(X) such that̃v(E) andṽ(F) are not zero, then

complex numbers ZP(E) and ZP(F) are on the same ray

if and only if

v(E), v(F) and P are collinear in the projective{1, v1
v0
,

v2
v0
}-plane.
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1.2 Potential walls and phases

If F is a σP-stable object, then two potential walls of it do not intersect in the region q> 1
2s2,

unless they are identical.

Proof. ZP(E) andZP(F) are on the same ray if and only ifZP(aṽ(E)−bṽ(F)) = 0 for somea, b ∈
R+. This happens only whenv(E), v(F) and KerZP are collinear in the projective{1, v1

v0
,

v2
v0
}-plane.

For the second statement, note that by the Bogomolov inequality for σP-stable objects, we
have

(H2.chD
0 (F)) · chD

2 (F) ≤ (H.chD
1 (F))2.

Sov(F) is in the regionq ≤ 1
2s2, and by the first statement, this is the only intersection point of

potential walls ofF. �

Note that this statement holds even whenE, F are torsion, i.e. ch0 = 0. The second
statement is first observed by Bertram, and appears in print in [Mac14].

We make some notations for lines and rays on the (projective){1, v1
v0
,

v2
v0
}-plane. Consider

objectsE andF such that ˜v(E) andṽ(F) are not zero, and letσs,q = σP be a geometric stability
condition. LetLEF be the straight line on the projective{1, v1

v0
,

v2
v0
}-plane acrossv(E) andv(F).

LEP, also denoted asLEσ, is the line acrossv(E) andP. We uselEF to denote the line segments
on the{1, v1

v0
,

v2
v0
}-plane whenv(E) andv(F) are not at infinity.

HP is the right half plane with eitherv1
v0
> s, or v1

v0
= s and v2

v0
> q. l+PE is the ray along

LPE starting fromP and completely contained inHP. LE± is the vertical wallLE(0,0,1). lE+ is the
vertical ray alongLE(0,0,1) from E going upward.lE− is the vertical ray alongLE(0,0,−1) from E
going downward.

Lemma 1.7. Let P = (1, s, q) be a point with q> 1
2s2, E and F be two objects inCoh#s. The

inequality
φs,q(E) > φs,q(F)

holds if and only if the ray l+PE is above l+PF.

Proof. By the formula ofZs,q, the angle between the raysl+PE andlP− at the pointP is πφs,q(E).
The statement follows from this observation. �
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•
E

F •

P
•

l+PF

l+PE

v1
v0O

v2
v0

1
2s2 − q = 0

Figure: comparing phases atσP.

2 Smoothness of Bridgeland moduli spaces

2.1 Bounds on phases of stable factors

In this section we prove a lemma on bounding phases of stable factors of a given object when
deforming the stability condition. This is first proved forP2 in [LZ13, LZ16], and the current
version of the lemma, which works for the general situation,is suggested to us by Bayer.

Lemma 2.1(Bayer). Suppose P and Q are two points in the{1, v1
v0
,

v2
v0
}-plane with q> 1

2s2. Let
E be aσP-stable object inCohP, A and B be the intersection points of the line Lv(E)P and the
parabola q= 1

2s2. Denote the stable factors of E with respect toσQ by Ei, then for each factor,
the phaseφQ(Ei) lies in betweenφQ(A) andφQ(B).

Remark 2.2. The phaseφQ(A) is the real number1
π
Arg (l+PQ, lQ−) up to an integer. It is explicitly

given by

φP(E) +
1
π

˜Arg A(lAQ, lAP).

Here ˜Arg A(lAQ, lAP) is the degree of the rotation from lAQ to lAP clockwisely, and it belongs to
(−π, π).

Proof. We will focus on the case whenP andQ are both to the left ofv(E), andQ lies below the
line Lv(E)P. The other cases can be proved similarly. Also assume thatA is the left intersection
point andB is the right one.
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2.2 Smoothness

A
•

B
•

•
E

P
•

R
•

•
Q

l−

l+

•
ER

i

l+QB

l+QA

l−QA

l−QB

v1
v0O

v2
v0

1
2s2 − q = 0

DeformingP to Q.

Deform the stability condition along the line segmentlPQ. If E remains stable atσQ, then
by the picture and Lemma 1.7, the statement holds clearly.

If E is destabilized at certain pointR on lPQ, we consider any stable factorER
i of E with

respect toσR. By Lemma 1.6,v(ER
i ) lies on the lineLv(E)R. By the Bogomolov inequality,v(ER

i )
lies in the regionq ≤ 1

2s2. Sov(ER
i ) lies on the two doted raysl− and l+. Note that it is clear

from the picturel− is contained in the region between raysl−QA andl−QB, andl+ is contained in the
region between raysl+QA and l+QB. So by Lemma 1.7, we know thatφQ(ER

i ) lies betweenφQ(A)
andφQ(B).

Now continue deforming the stability condition alonglRQ, and repeat the argument forER
i .

This completes the proof. �

2.2 Smoothness

In this section we prove the smoothness of moduli spaces of stable objects on surfaceX whose
canonical bundle has certain negativity. As before, we fix anample divisorH and a real divisor
D with H.D = 0. Through this section, we assume thatH.KX < 0. Note that this condition
always holds when−KX has nontrivial sections.

We first have the following lemma.

Lemma 2.3. For a stability conditionσP = σs,q with q > 1
2s2, and aσP-stable object E, we

have that
Ext2(E,E) = 0.

Proof. By Serre duality, Ext2(E,E) = Hom(E,E ⊗ K). We have that

v1(E ⊗ K) = v1(E) + H.K,

and

v2(E ⊗ K) −
1
2

v1(E ⊗ K)2
= v2(E) −

1
2

v1(E)2.

7



2.2 Smoothness

So the pointv(E ⊗ K) is by movingv(E) to the left by−H.K along the parabolaq − 1
2s2
= C,

whereC = v2(E) − 1
2v1(E)2.

Also move the pointP to the left by−H.K along the parabola of the formq − 1
2s2
= C′

passing throughP, and denote this new point byQ. It follows from the definition of stability
conditions thatE ⊗ K isσQ-stable.

•
E

•
E ⊗ K

•
A

•
B•

B′

•
A′

•
P

•
Q

φQ(B)

φQ(A)

v1
v0

O

v2
v0

1
2s2 − q = 0

1
2s2 − q = C

C′

Compare the slopes ofφQ(E)min andφQ(E ⊗ K).

Now we are ready to prove the lemma. We first treat the case whenP is to the left ofv(E).
Denote the intersection points ofLv(E)P andq− 1

2s2
= 0 by A andB; and denote the intersection

points of Lv(E⊗K)Q andq − 1
2s2
= 0 by A′ and B′. If the line segmentslAB and lA′B′ have an

intersectionR, then bothE andE ⊗ K areσR-stable. In addition, by 1.7,φR(E) > φR(E ⊗ K).
Therefore,

Hom(E,E ⊗ K) = 0.

In the case that the line segmentslAB and lA′B′ do not intersect each other,B′ is to the left of
A. It is easy to see from the picture thatφQ(E ⊗ K) is smaller than bothφQ(A) andφQ(B). By
Lemma 2.3, the stable factors ofE with respect toσQ have phases betweenφQ(A) andφQ(B).
So we must have

Hom(E,E ⊗ K) = 0.

If P is to the right ofv(E), we consider the shifted derived dualD(E) := E∨[2]. It is a
standard result (see for example [BM14]) thatD(E) is stable with respect toσ−s,q, with the
sameH andD replaced by−D. Now we reduce to the first case, and have that

Hom(D(E),D(E) ⊗ K) = Hom(E,E ⊗ K) = 0.

In the case that the slope ofE is s, by the locally finiteness of walls, there is an open neighbor-
hood ofP such that for anyP′ in the neighborhood,E isσP′-stable. So we finish the proof.�

Now we can state our first main theorem.
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Theorem 2.4. For a stability conditionσP = σs,q with q > 1
2s2, the moduli stack ofσP-stable

objects with a given character is smooth.

Proof. By [Ina02, Lie06], there exists a deformation theory for complexes, similar to the ordi-
nary one for coherent sheaves. In particular, the Zariski tangent space to the moduli space at an
objectE is given by Ext1(E,E), and the obstructions lie in Ext2(E,E).

By Lemma 2.3, we have Ext2(E,E) = 0, so there exists no obstruction class. SinceE is in
a heart with respect to a t-structure, Exti(E,E) = 0 for i ≤ −1. Due to the argument in Lemma
2.3,φP(E) > φP(E ⊗ K)max. By Serre duality, t Exti(E,E) ≃ (Hom(E,E ⊗ K[2 − i]))∗ = 0 for
i ≥ 3. SinceE is stable, we know hom(E,E) = 1. So ext1(E,E) = 1− χ(E,E) only depends on
the character, hence is constant over the stable locus. Thisproves the smoothness of the moduli
stack of stable objects. �

3 Poisson structures on Bridgeland moduli spaces of Poisson
surfaces

Recall that a (holomorphic) Poisson structure on a compact complex manifoldM is given by a
bivector fieldθ ∈ H0(M,∧2T M) satisfying a closure condition. Such aθ induces a homomor-
phism of vector bundlesB : T∗M → T M, with

〈θ, α ∧ β〉 = 〈B(α), β〉

for 1-formsα, β. We define an operator̃d : H0(M,∧2TX) → H0(M,∧3TX) by

d̃θ(α, β, γ) =B(α)θ(β, γ) + B(β)θ(γ, α) + B(γ)θ(α, β)

− 〈[B(α), B(β)], γ〉 − 〈[B(β), B(γ)], α〉 − 〈[B(γ), B(α)], β〉

for 1-formsα, β, γ, where [·, ·] is the commutator of vector fields. As stated in Proposition1.1
in [Bo95], the closure condition forθ is given by

d̃θ = 0.

Now let X be a smooth projective surface. Since the closure conditionholds automatically,
X carries a non-zero (holomorphic) Poisson structure if and only if −KX has sections. Through
this section we assume thatX is a Poisson surface and−KX is nontrivial. Moreover, we fix a
Poisson structures ∈ H0(X,−KX).

Choose a geometric stability condition onX as that constructed in Definition 1.3, and let
M be the moduli space of semistable objects of a given character. Assume that we are in the
situation of Theorem 2.4. We want to show thatM has a canonical Poisson structureθ = θs.

As shown in [Ina11], the universal familyE of M exists in a local analytic neighborhood
of M × X. Let p : M × X → M andq : M × X → X be the projection maps. The rela-
tive extension sheafExt1

OM
(E , E ) is independent of the choice of the universal family in local

analytic neighborhood, and extends to a globally well-defined sheaf. We have the canonical
identification

T M � Ext1OM
(E , E ).

9



Similarly, we have
T∗M � Ext1OM

(E , E ⊗ q∗KX).

In order to define the Poisson structure, for any stable object E, consider the following map

θ(E) : Ext1(E,E ⊗ KX) × Ext1(E,E ⊗ KX)→ Ext2(E,E ⊗ K2
X)
·s
−→ Ext2(E,E ⊗ KX)

Tr
−→ C,

where the first map is given by the identification Ext1(E,E ⊗ KX) � Ext1(E ⊗ KX,E ⊗ K2
X) and

the Yoneda product, the second map is induced by tensorings ∈ H0(X,−KX), and the third map
is the trace map from Serre duality.

Lemma 3.1. The mapθ(E) is antisymmetric.

Proof. By taking a locally free resolutionE• of finite length for the objectE, the mapθ(E) is by
taking the hypercohomology functorH in the degree (1, 1) piece on the complexes of sheaves:

Hom•(E•,E•⊗KX)×Hom•(E•,E•⊗KX)
◦
−→ Hom•(E•,E•⊗K2

X)
·s
−→ Hom•(E•,E•⊗KX)

tr
−→ KX.

As introduced in Chapter 10 [HL10], the trace map is defined bysetting tr|Hom(Ei ,E j⊗KX) = 0
when i , j, and tr|Hom(Ei ,Ei⊗KX) = (−1)itrEi . For any homogeneous local sectionsa andb in
Hom•(E•,E• ⊗ KX), we have

tr ((a ◦ b) · s) = (−1)dega degbtr ((b ◦ a) · s) .

Now as in the proof of Lemma 10.1.3 [HL10], letT : A•⊗B• → B•⊗A• andT : H(A•)⊗H(B•)→
H(B•) ⊗ H(A•) be the twist operatora ⊗ b 7→ (−1)dega degbb ⊗ a for homogeneous elementsa
andb. We have the following commutative diagram:

H(Hom•(E•,E• ⊗ KX)) ⊗ H(Hom•(E•,E• ⊗ KX)) H(Hom•(E•,E• ⊗ KX)) ⊗ H(Hom•(E•,E• ⊗ KX))

H(Hom•(E•,E• ⊗ KX) ⊗ Hom•(E•,E• ⊗ KX)) H(Hom•(E•,E• ⊗ KX) ⊗Hom•(E•,E• ⊗ KX))

H2(KX) H2(KX)

µ

T

H(T)

µ

tr ((− ◦ −) · s) tr ((− ◦ −) · s)

id

We may take the degree (1, 1) piece in the first row, thenH1(Hom•(E•,E•⊗KX)) =Ext1(E,E⊗
KX) andθ(E) is the composition map on each column. Since the twist operator changes the signs
in this case,θ(E) is anti-symmetric. �

This fiber-wise defined map extended globally by the method analogous to Proposition
2.2 and 2.5 in [Mu84] or Proposition 4.1 in [Bo95]. The associatedB : Ext1(E,E ⊗ KX) →
Ext1(E,E) is induced bys ∈ H0(X,−KX).

Theorem 3.2.Adopt the notation as above and the smoothness assumption onM, thenθ defines
a Poisson structure on M.

10



Proof. We need to show the closure condition:d̃θ = 0. As this is a local condition, we only need
to prove it in any open setU. By possibly shrinkingU, we can assume that there exists universal
family E overU × X. By abuse of notations, we still letp : U × X→ U andq : U × X→ X be
the projection maps.

LetO(1) be an ample line bundle onX, such thatO(1)⊗KX is also ample. Consider the ample
sequence generated byO(1). We can take a resolutionV• → E , whereV• = {Vi ⊗ q∗O(−mi), di}

andVi are vector spaces.
For a vector fieldu on U, we would like to expressu explicitly under the isomorphism

TU(U) ≃ Ext1OU
(E , E ). Note that the derivationDu : OU → OU can be canonically extended to

a derivation

Du : V∨i ⊗ Vi+1 ⊗ q∗OX(mi −mi+1) ⊗ p∗OU → V∨i ⊗ Vi+1 ⊗ q∗OX(mi −mi+1) ⊗ p∗OU .

So we have a well-defined mapDu(di) : Vi ⊗ q∗O(−mi) → Vi+1 ⊗ q∗O(−mi+1). It is shown in
[Ina11] that

di+1 ◦ Du(d
i) + Du(d

i+1) ◦ di
= 0,

and therefore

{Du(d
i) : Vi ⊗ q∗O(−mi)→ Vi+1 ⊗ q∗O(−mi+1)} ∈ Ext1OU

(E , E ).

For a 1-formα onU, with the given resolutionV• → E , α can be represented by

{αi : Vi ⊗ q∗O(−mi)→ Vi+1 ⊗ q∗O(−mi+1) ⊗ q∗KX}.

Now there are two ways to represent the vector fieldB(α). On the one hand, by above discus-
sion,B(α) can be represented by{DB(α)(di) : Vi ⊗ q∗O(−mi)→ Vi+1⊗ q∗O(−mi+1)}. On the other
hand, by the definition ofB, B(α) is given by{sαi : Vi ⊗ q∗O(−mi) → Vi+1 ⊗ q∗O(−mi+1)}. So
we have

DB(α)(d
i) = sαi.

Now for 1-formsα, β, γ, we have the following computation

d̃θ(α, β, γ) = B(α)〈B(β), γ〉 + B(β)〈B(γ), α〉 + B(γ)〈B(α), β〉

− 〈[B(α), B(β)], γ〉 − 〈[B(β), B(γ)], α〉 − 〈[B(γ), B(α)], β〉

= DB(α)(DB(β)(d
i+1) ◦ γi) + DB(β)(DB(γ)(d

i+1) ◦ αi) + DB(γ)(DB(α)(d
i+1) ◦ βi)

− [DB(α),DB(β)](d
i+1) ◦ γi − [DB(β),DB(γ)](d

i+1) ◦ αi − [DB(γ),DB(α)](d
i+1) ◦ βi

= DB(β)(d
i+1) ◦ DB(α)(γ

i) + DB(γ)(d
i+1) ◦ DB(β)(α

i) + DB(α)(d
i+1) ◦ DB(γ)(β

i)

+ DB(β)DB(α)(d
i+1) ◦ γi

+ DB(γ)DB(β)(d
i+1) ◦ αi

+ DB(α)DB(γ)(d
i+1) ◦ βi.

Note thatγ is a 1-form, we have

γi+1 ◦ di
+ di+1 ◦ γi

= 0,

Applying DB(α), we get

DB(α)(γ
i+1) ◦ di

+ di+1 ◦ DB(α)(γ
i) + DB(α)(d

i+1) ◦ γi
+ γi+1 ◦ DB(α)(d

i) = 0.

11
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As we have seen,{DB(α)(di)} ∈ Ext1OU
(E , E ). Similar to Lemma 3.1, it is easy to check that

DB(α)(d
i+1) ◦ γi

+ γi+1 ◦ DB(α)(d
i) = 0.

Hence
DB(α)(γ

i+1) ◦ di
+ di+1 ◦ DB(α)(γ

i) = 0,

and{DB(α)(γi)} ∈ Ext1OU
(E , E ⊗ q∗KX).

Now we have

DB(β)(d
i+1) ◦ DB(α)(γ

i) + DB(α)DB(γ)(d
i+1) ◦ βi

= sβi+1 ◦ DB(α)(γ
i) + DB(α)(sγ

i+1) ◦ βi

= s
(

βi+1 ◦ DB(α)(γ
i) + DB(α)(γ

i+1) ◦ βi)

= 0.

The last vanishing follows from Lemma 3.1 of the anti-symmetry of θ. Similarly we have van-
ishing for the other two pairs in the last expression ofd̃θ(α, β, γ). So we prove that̃dθ(α, β, γ) =
0, andθ is a Poisson structure. �

References

[ABCH13] D. Arcara, A. Bertram, I. Coskun, and J. Huizenga. The minimal model program
for the Hilbert scheme of points onP2 and Bridgeland stability.Adv. Math., 235:580–626,
2013.

[BM13] A. Bayer and E. Macrı̀. MMP for moduli of sheaves on K3svia wall-crossing: nef and
movable cones, Lagrangian fibrations.Invent. Math., 198(3):505–590, 2014.

[BM14] A. Bayer and E. Macrı̀. Projectivity and birational geometry of Bridgeland moduli
spaces.J. Amer. Math. Soc., 27(3):707–752, 2014.

[Br08] T. Bridgeland. Stability conditions onK3 surfaces.Duke Math. J., 141(2):241–291,
2008.

[Bo95] F. Bottacin. Poisson structures on moduli spaces of sheaves over Poisson surfaces.
Invent. Math., 121(2):421–436, 1995.

[CHW14] I. Coskun, J. Huizenga and M. Woolf The effective cone of the moduli space of
sheaves on the plane.eprint arXiv:1401.1613.

[DP85] J.-M. Drezet and J. Le Potier. Fibrés stables et fibr´es exceptionnels surP2. Ann. Sci.
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