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Smoothness and Poisson structures of Bridgeland
moduli spaces on Poisson surfaces

Chunyi Li and Xiaolei Zhao
December 9, 2016

Abstract

Let X be a projective smooth holomorphic Poisson surface, irratioeds, whose anti-
canonical divisor is #ective. We show that moduli spaces of certain Bridgelanoletab-
jects onX are smooth. Moreover, we construct Poisson structuresese timoduli spaces.

Keywords. Poisson structure, Stability condition, Moduli of compex

Introduction

It is proved by Mukai in[[Mu84] that the moduli space of stableaves on an abelian or a
projective K3 surface is smooth and has a natural symplstiicture. This construction has
been generalized in two directions. On the one hand, the lggtipstructure can be generalized
to (holomorphic) Poisson structures. In the paper [Tyu8&}, author showed that a Poisson
structure on the surface will naturally determine an amisyetric bivector field on the moduli
space of stable sheaves. Bottacin [Bo95] then proved thedt awbivector field satisfies the
closure condition and endows the moduli space with a naRo@son structure.

On the other hand, instead of coherent sheaves, one mayleonsbduli spaces of objects
in D°(X), the bounded derived category of coherent sheaves on tfecsX. These moduli
spaces attract much attention recent years, mainly bastéee@evelopment of Bridgeland sta-
bility conditions. Among many applications, these modphses provide interesting birational
models of moduli spaces of sheaves. Generalizing Mukassltelnaba([lnall] proved that
whenX is an abelian or a projective K3 surface, the moduli spacebjefatsE in D°(X) satis-
fying Ext"}(E,E) = 0 and HomE, E) = C is smooth and can be equipped with a symplectic
structure, hence a holomorphic symplectic manifold.

In this paper we provide a unified generalization of thesedimections.

Theorem (Theoreni Z¥ and_3.2for a smooth projective surface X equipped with a Poisson
structure se H(X, —Ky), the moduli space of stable obj&hs DP(X) is smooth and is endowed
with a Poisson structurés induced by s.

1strictly speaking, we only consider the Bridgeland stapdondition given by the tilting construction, whose
kernel of the central charge satisfies the Bogomolov inéiyu&lee Definitio 1.3 for details.
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There are two new features in our theorem. First, Inaba’sosinmess result only requires
Ext1(E, E) = 0 and HomE, E) = C. However, in our situation there is no natural numerical
condition on the objects to guarantee the smoothness of taelivspaces. Instead, we need to
work with Bridgeland stable objects in an essential way.eNbat for a stable objeé, E ® Ky
may not be stable with respect to the same stability condio diferent from the sheaf case,
the smoothness of moduli of stable objects does not diréatyw from Serre duality and slope
comparison. Our method generalizes our earlier woork [LZT3.6] on P?, but avoids the use
of full strong exceptional collections, which exist f8f but not necessarily for general Poisson
surfaces. The current method is suggested by Arend Bayer.

Second, in order to check the closure condition of the Paoissauctures,[[Bo95] reduced
the question to an open dense subset parametrizing locadlysheaves. For moduli spaces of
stable objects, such open sets may not exist. Instead weuterttpe deformation theory of
objects in terms of complexes, and show the closure comditio

Future work. In a series of celebrated works |[BM13, BM14], the authorsvprthat the
minimal model program of the moduli space of coherent sreanerojective K3 surfaces can
be run on the space of Bridgeland stability conditions vi#l-a@ssing. One of the main tech-
nical point in the work is the so called positivity lemma, j#® show that each moduli space of
Bridgeland stable objects carries a canonically nef dividm analogue result is also achieved
for Abelian surfaces in [Yol2, MYY11] by showing the positiwlemma using Fourier-Mukai
transforms.

Generalizing these results to other surfaces beconfiédsudl. Besides the positivity lemma,
it involves at least two extra fliculties. First, it is not clear in general whether the moduli
space still behaves nicely after wall-crossing. For exantgbher dimensional component may
appear after wall-crossing, and this leads to reducibleut@paces with bad singularities.
Secondly, it is not known in general for which Chern clas$esé exist stable sheaves. This
makes it hard to decide when the moduli space is non-emptyt@give a criterion on the
actual walls for the moduli spaces.

Based on previous work [ABCH183, CHW14, DP85], we solve thasdlems, and gener-
alize the result in[[BM13, BM14] to the projective plane in413,[LZ16]. The next natural
step is to consider Poisson surfaces. In particular, thieptaeats with the first diculty as
mentioned above, and it is the starting point of future stoyhe MMP for moduli spaces of
sheaves on a Poisson surface via wall-crossing.

In another direction of a slightly eferent flavor,[[Hi12] provides a systematic way to deform
the complex structure on a holomorphic Poisson varietyhércase of moduli spaces of sheaves
on a Poisson surfacé, these Poisson deformations produce new varieties thateaealized
as moduli spaces of objects on a ‘non-commutative’ surfacehe ideal cases, stability con-
ditions exist for these ‘non-commutative’ surfaces, and oan run MMP for these deformed
moduli spaces via wall-crossing. The models appearingigptitocedure are expected to corre-
spond to the Poisson deformations of moduli spaces of Biadigestable objects on the original
surfaceX, with respect to the Poisson structures we construct imptgier. An example of this
appeared in [LZ13], and our result in the current paper camsied to study the general case.
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Notation

Throughout the paper we will work over the complex numbedfigl All results may hold for
algebraically closed field of characteristic 0. The onlyes=sary change in the argument is in
the last section, where analytic neighborhood should bacef by small étale sites. We will
leave this for the readers to check.

1 Stability conditions

1.1 Geometric stability conditions

In this section we introduce Bridgeland stability condisoon surfaces. LetX(H) be a po-
larized smooth projective surface, whetfleis an ample divisor orX. Let D ePic(X) be a
divisor with real cofficient satisfyingH.D = 0. Consider the bounded derived categoPyX)
of coherent sheaves of

Now letV be a three dimensional real vector space. Denote the Guitedngroup of
D°(X) by K(X), and the twisted Chern character exp{.ch by ct’. For any objecF in DP(X),
we write

U(F) = (Vo(F). a(F). va(F)) 1= (H2.chB(F), H.ch(F), ch(F)).

This defines a map "K(X) — V.

Now we consider the real projective spd®@/) with homogeneous coordinateyvy, V],
we view the locusyy = 0 as the line at infinity. The complement forms aﬁraa real plane,
which is referred to as thgl, 2 s }-plane. We calP(V) the projective{1, 2, 2}-plane. When
U(F) # 0, we usev(F) to denote the correspondlng point in the prolec(ﬂ/q/—1 Z1_plane. In
particular, when c§(F) # 0, v(F) is in the (dfine){1 plane.

i

Remark 1.1. In this article, in all arguments on thgl, 2 v “21.plane, we assume tﬁjé axis to
be horizontal and thé,/L axis to be vertical. The term ‘above’ mear¥s toordinate is greater
than’. Other terms such as ‘below’, ‘to the right’ and ‘to thedt’ are understood in the similar
way. In this paper we always use | to denote a line segment dadleénote a line.

Now, we follow [BM13,[Br08] and recall the construction ofayeetric stability conditions
onX.

Definition 1.2. A stability conditiono on DP(X) is called geometricif it satisfies the support
property and all skyscraper sheavgskare o-stable of the same phase.



1.2 Potential walls and phases

H.ch2(F) _ H.chy(F) Fix

For a torsion-free shed, recall that the (H-)slope d¥ is given bsz.chg(F) = Wch®"

a real numbes, a torsion pair of coherent sheavesXrs given by:

Cohs: subcategory of ColX) generated byi-semistable sheaves of sloges.

Coh.s: subcategory of CobX) generated byd-semistable sheaves of slopes and tor-
sion sheaves.

We may define the tilting heart Cah= (Coh.4[1], Coh.s).

Proposition and Definition 1.3. For two real number s and g such thabq%sz, there exists a
geometric stability conditionrsq := (Zsq, Cohis) on DP(P?), where the central charge is given
by

Zso(E) 1= (-V2(E) + - Vo(E)) + i(Va(E) — s Vo(E)).
In this caseKer(Zs,) consists of the characters corresponding to the p@ns, g) in the pro-
jective(l, &, 2}-plane. We writeps for the phase function afs,.

VoV_o

For the proof thatrsq is indeed a geometric stability condition, we referto [BjCdrol-
lary 4.6 and[[Br08]. Here the phase functipg, can be also defined for objects in Ggh

$solE) 1= TATG (ZeqfE)).

Itis well-defined in the sense that it coincides with the gHasction ornors-semistable objects.

Remark 1.4. The definition obrs4 here, though appears in agrent from, is essentially the
same as the usual one such as that in [ABCH13]. We refer to6l #i a detailed comparison
between these two setups.

Remark 1.5. Given a point P= (1, s, g) with q > %sz we will also writeop, Cohp(X) and 2
for the stability conditiorvrsq, the tilt heartCohy(X) and the central charge« respectively.

1.2 Potential walls and phases

We collect some well-known and useful results about them@tiewalls in this section. First
we have the following description of the potential wall, itke locus of stability conditions for
which two given characters are of the same slope.

Lemma 1.6(Potential walls) Let P = (1, s, g) be a point with ¢> %sz; E and F be two objects
in Cohp(X) such that/(E) and¥(F) are not zero, then

complex numbersg{E) and Z(F) are on the same ray

if and only if

Vi Ve
> Vo Vo

V(E), V(F) and P are collinear in the projectiviel }-plane.



1.2 Potential walls and phases

If F is a op-stable object, then two potential walls of it do not intextsia the region o> %sz,
unless they are identical.

Proof. Z-(E) andZp(F) are on the same ray if and onlyZg(aV(E) —bV(F)) = 0 for somea, be
R.. This happens only wher{E), v(F) and KeZp are collinear in the projectivd, 2 v “Z1_plane.

For the second statement, note that by the Bogomolov inggtal op- _stable objects we
have

(H2.ch5(F)) - chp (F) < (H.chy (F))*.

Sov(F) is in the regiom < %sz and by the first statement, this is the only intersectiom{pai
potential walls ofF. |

Note that this statement holds even whenF are torsion, i.e. ¢h= 0. The second
statement is first observed by Bertram, and appears in priMac14].

We make some notations for lines and rays on the (projec{iuéé, z—é}-plane. Consider
objectsk andF such thaw(E) andV(F) are not zero, and Ie;tSq = op be a geometric stability
condition. LetLgr be the straight line on the projectivé, 2, }-plane across(E) andv(F).
Lep, also denoted alsg,, is the line across(E) andP. We usel er to denote the line segments
on the{1, zl, Vé} plane wherv(E) andv(F) are not at |nf|n|ty

Hp is the right half plane with elthe¥— > s, ort =sand > q. I} is the ray along
Lpe starting fromP and completely contalned Hp. LE+ is the vertlcal wallLgo,.1). le+ is the
vertical ray along-g(01) from E going upward.le_ is the vertical ray alond.gqg-1) from E

going downward.

Lemma 1.7. Let P = (1, s,q) be a point with g> %sz, E and F be two objects i@ohy. The
inequality
$sq(E) > ¢sq(F)

holds if and only if the rayj. is above f.

Proof. By the formula ofZsq, the angle between the ralfs andlp_ at the pointP is ¢ q(E).
The statement follows from this observation. O
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Figure: comparing phasesap.

2 Smoothness of Bridgeland moduli spaces

2.1 Bounds on phases of stable factors

In this section we prove a lemma on bounding phases of stablers of a given object when
deforming the stability condition. This is first proved féf in [LZ13,[LZ16], and the current
version of the lemma, which works for the general situatissuggested to us by Bayer.

Lemma 2.1(Bayer) Suppose P and Q are two points in lﬁez—; z—i}-plane with g> %sz. Let

E be aop-stable object irCohe, A and B be the intersection points of the ling:J> and the
parabola g= %sz. Denote the stable factors of E with respecti9by E, then for each factor,
the phasesq(E;) lies in betweerpo(A) and¢q(B).

Remark 2.2. The phas@q(A) is the real numbe%Arg (I5 lo-) up to aninteger. Itis explicitly
given by
1 -
¢p(E) + ;Arg Allag, lap).
HereAFg allao, 1ap) is the degree of the rotation fromd to Iap clockwisely, and it belongs to
(=m, ).

Proof. We will focus on the case whdhandQ are both to the left of(E), andQ lies below the
line Lygp. The other cases can be proved similarly. Also assumeAtimthe left intersection
point andB is the right one.



2.2 Smoothness

DeformingP to Q.

Deform the stability condition along the line segmésd. If E remains stable atq, then
by the picture and Lemma 1.7, the statement holds clearly.

If E is destabilized at certain poift on|pq, we consider any stable fact&® of E with
respect targ. By LemmaLBy(EF) lies on the linel,g)r. By the Bogomolov inequality(EF)
lies in the regiom < 3s°. SoV(EF) lies on the two doted rayls andl*. Note that it is clear
from the picturd ™ is contained in the region between rdyg andl,;, andl™ is contained in the
region between rayig,, andlg. So by Lemma1l7, we know that(EF) lies betweenpo(A)
andegq(B).

Now continue deforming the stability condition alokg, and repeat the argument f&F.
This completes the proof. |

2.2 Smoothness

In this section we prove the smoothness of moduli spacesblesbbjects on surfacé whose
canonical bundle has certain negativity. As before, we firaple divisoH and a real divisor
D with H.D = 0. Through this section, we assume thhKyx < 0. Note that this condition
always holds wherKy has nontrivial sections.

We first have the following lemma.

Lemma 2.3. For a stability conditionop = 054 With g > %sz and aop-stable object E, we
have that
Ex(E,E) = 0.

Proof. By Serre duality, EX{(E, E) = Hom(E, E ® K). We have that
Vi(E® K) = vy (E) + H.K,
and 1 1
Vo(E ® K) — §vl(E ® K)? = w(E) - Evl(E)Z.
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2.2 Smoothness

So the poinv(E ® K) is by movingv(E) to the left by—H.K along the parabolg — %52 =C,
whereC = V,(E) - 2v,(E)2.

Also move the poinP to the left by—H.K along the parabola of the foriop— %52 =C
passing througl, and denote this new point i. It follows from the definition of stability
conditions thaE ® K is og-stable.

$o(A) \ Crig_q=0

Compare the slopes @&(E)min and¢o(E @ K).

Now we are ready to prove the lemma. We first treat the case Wheto the left ofv(E).
Denote the intersection points bfig)r andq - %52 = 0 by A andB; and denote the intersection
points of Lygek)o andq — %52 = 0 by A andB'. If the line segment$,g andl,p have an
intersectiorR, then bothE andE ® K areog-stable. In addition, by Il %r(E) > #r(E ® K).
Therefore,

HomE,E® K) =0.

In the case that the line segmehtg andl, g do not intersect each othds, is to the left of
A. Itis easy to see from the picture tha§(E ® K) is smaller than botlpo(A) and¢o(B). By
Lemma 2.8, the stable factors Bfwith respect targ have phases betwee(A) and¢q(B).
So we must have

HomE,E®K) =0.

If P is to the right ofv(E), we consider the shifted derived dua(E) := E"[2]. Itis a
standard result (see for example [BM14]) tiix(E) is stable with respect to_sq, with the
sameH andD replaced by-D. Now we reduce to the first case, and have that

Hom(D(E), D(E) ® K) = Hom(E, E® K) = 0.

In the case that the slope Bfis s, by the locally finiteness of walls, there is an open neighbor
hood ofP such that for any’ in the neighborhood is op/-stable. So we finish the proof.o

Now we can state our first main theorem.
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Theorem 2.4. For a stability conditionop = o5q With q > %sz, the moduli stack ofp-stable
objects with a given character is smooth.

Proof. By [Ina02,/Lie06], there exists a deformation theory for gdexes, similar to the ordi-
nary one for coherent sheaves. In particular, the Zarisigeat space to the moduli space at an
objectE is given by Ext(E, E), and the obstructions lie in EXE, E).

By LemmaZ.B, we have EXE, E) = 0, so there exists no obstruction class. Sids in
a heart with respect to a t-structure, &t E) = 0 fori < —1. Due to the argument in Lemma
2.3, #e(E) > ¢p(E ® K)max. By Serre duality, t EX(E, E) ~ (Hom(E, E ® K[2 — i]))* = O for
i > 3. SinceE is stable, we know horif, E) = 1. So ext(E, E) = 1 - x(E, E) only depends on
the character, hence is constant over the stable locuspiiduss the smoothness of the moduli
stack of stable objects. O

3 Poisson structures on Bridgeland moduli spaces of Poisson
surfaces

Recall that a (holomorphic) Poisson structure on a compaoptex manifoldM is given by a
bivector fieldd € HO(M, A?T M) satisfying a closure condition. Suchganduces a homomor-
phism of vector bundleB : T*M — T M, with

0, A B) =(B(a),B)
for 1-formse, 8. We define an operatal: HO(M, A2T X) — HO(M, A3T X) by

do(a. B.7) =B(a)0(B,7) + B(B)O(y, @) + B(y)6(a. B)
—([B(a). B(B)]. ) = ([B(B). B)]. @) - ([B(»). B(a)]. )

for 1-formsa, B, v, where [, -] is the commutator of vector fields. As stated in Propositidh
in [Bo95], the closure condition faris given by

do = 0.

Now let X be a smooth projective surface. Since the closure conditidais automatically,
X carries a non-zero (holomorphic) Poisson structure if anig ib —Kyx has sections. Through
this section we assume thétis a Poisson surface anreKy is nontrivial. Moreover, we fix a
Poisson structure € HO(X, —Ky).

Choose a geometric stability condition &has that constructed in Definitidn 1.3, and let
M be the moduli space of semistable objects of a given charagssume that we are in the
situation of Theorem 214. We want to show tivithas a canonical Poisson structére 6s.

As shown in[[Inall], the universal famil§ of M exists in a local analytic neighborhood
of Mx X. Letp: Mx X - Mandqg: M x X — X be the projection maps. The rela-
tive extension sheaﬁxtcl)M (&, &) is independent of the choice of the universal family in loca
analytic neighborhood, and extends to a globally well-azfisheaf. We have the canonical
identification

TM = &xty (&, 6).
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Similarly, we have

In order to define the Poisson structure, for any stable bBjeconsider the following map

0(E) : EXt'(E, E ® Kx) x Ext}(E, E ® Kx) — EX(E, E® K2) > Ext(E, E ® Kx) e,

where the first map is given by the identification H& E ® Kx) = Ext'(E ® Kx, E® KZ) and
the Yoneda product, the second map is induced by tensering®(X, —-Kx), and the third map
is the trace map from Serre duality.

Lemma 3.1. The ma(E) is antisymmetric.

Proof. By taking a locally free resolutioB* of finite length for the objedE, the map(E) is by
taking the hypercohomology functérin the degree (11) piece on the complexes of sheaves:

Hont (E*, E*®Kx) x Hont (E*, E* @ Ky) > Honf (E*, E* ©K2) > Hont (E*, E*®Kyx) — Ky.

As introduced in Chapter 10 [HL10], the trace map is defineds@ing ttyomei eicky) = O
wheni # j, and tfyome eisky = (—1)'trg. For any homogeneous local sectianandb in
Hont(E*, E* ® Ky), we have

tr((@aob)-s) = (—1)%02%Ptr (bo a) - 9).

Now as in the proof of Lemma 10.1/3[HL10], [€t: A°*®B* — B*®A°® andT : H(A*)®H(B*) —
H(B*) ® H(A®) be the twist operataa ® b — (—1)ie92desby @ g for homogeneous elemerds
andb. We have the following commutative diagram:

H(Hont(E*, E* ® Ky)) ® H(Hont(E*, E* ® Kx))

H(Hont(E*, E* ® Kx)) ® H(Hont(E*, E* ® K)

7 7
H(Homt(E*, E* ® Kyx) ® Hont(E®, E* ® Ky)) H(T) H(Hont(E*, E* ® Kx) ® HonT(E*, E* ® Ky))
tr((-c-)-9) tr((=o-)-9)
H2(K») d H2(Ky)

We may take the degree, () piece in the first row, thei*(Hont (E*, E°*®Kx)) =Ext}(E, E®
Kx) andd(E) is the composition map on each column. Since the twist apechanges the signs
in this cased(E) is anti-symmetric. |

This fiber-wise defined map extended globally by the methaogous to Proposition
2.2 and 2.5 in[[Mu84] or Proposition 4.1 in [Bd95]. The assteilB : Ext/(E, E ® Kyx) —
Ext}(E, E) is induced bys € HO(X, —K).

Theorem 3.2. Adopt the notation as above and the smoothness assumptidnttend defines
a Poisson structure on M.

10



Proof. We need to show the closure conditiai®: = 0. As this is a local condition, we only need
to prove itin any open sét. By possibly shrinkindgJ, we can assume that there exists universal
family & overU x X. By abuse of notations, we still Igt: U x X - U andq: U x X - X be

the projection maps.

LetO(1) be an ample line bundle of) such thaO(1)®Ky is also ample. Consider the ample
sequence generated 8y1). We can take a resolutiart — &, whereV* = {V, ® ¢°O(-m;), d'}
andV; are vector spaces.

For a vector fieldu on U, we would like to express explicitly under the isomorphism
Ty(U) = Ex%U (&, &). Note that the derivatioD, : Oy — Oy can be canonically extended to
a derivation

Du : Viv ® Vi+1 ® CI*Ox(m - m+1) ® p*OU - Viv ® Vi+1 ® q*Ox(m - m+1) ® p*OU

So we have a well-defined mdp,(d") : V; ® ¢°O(-m) — Vi;1 ® g°O(-m1). It is shown in
[Inall] that _ _ _ _
d|+1 ° Du(dl) + Du(d|+1) o dl — O,

and therefore
{Du(d) : Vi® g'O(-m) — Vi1 ® 'O(-Mm;,1)} € Ext, (£, &).
For a 1-forma on U, with the given resolutiovV* — &, @ can be represented by
(@ : Vi® qO(-m) — Vi1 ® 0°O(-m1) ® g Kx}.

Now there are two ways to represent the vector fi&ld). On the one hand, by above discus-
sion,B(a) can be represented bRg(d) : Vi ® G°O(-m) — Viy1 ® °O(—my1)}. On the other
hand, by the definition oB, B(a) is given by{se' : Vi ® *O(-m)) — Vi1 ® q°O(-m,1)}. So
we have
DB((,)(di) = Sozi.
Now for 1-formse, 8, v, we have the following computation

dé(a. B.7) = B(a)(B(B), ) + BBXB(), @) + B(y)(B(a). )
—([B(@), B(B)]. v) — {[B(B), B()]. @) — {[B(y), B(a)]. B
= Da(e)(Da(e)(d™h) 0 ') + Digg) (D (d™*h) o @') + Dgyy(Dgay (d*) 0 B)
— [Dggw), De@l(d*?) 0 ' — [Deg), Deg)l(d'*) o @' - [Dgyy), De@l(d™*h) o B
= Dgg(d™*") o Deie)(¥') + Dey(d™) o Degg)(@') + Dpy (d*) o Dgy)(B)
+ DB(ﬁ)DB(a)(di+1) °© Yi + DB(y)DB(ﬁ)(di+1) od + DB(a)DB(y)(di+1) Oﬁi~

Note thaty is a 1-form, we have
)/i+l o di + C|i+l o )’i — O,
Applying Dg,), we get

DB(a)(7i+1) od +d*o DB(a)(Vi) + DB(a)(di+1) © Vi + 7i+1 o DB(a)(di) =0.

11
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As we have seerDg,)(d")} € Exl‘éU (&, &). Similar to Lemma 31, it is easy to check that

DB(a)(di+1) © yi + 7i+l © DB(a)(di) =0
Hence _ o _
DB(a)(7'+1) od +d*to De)(¥) =0

and{Dg(,) ()} € Exty, (£, & ® q'Kx).
Now we have

D) (d™?) 0 Di(ay(y') + DDy (@) o 8
— S6>|+l o DB(a)(Yl) + DB(a)(S')’I+1) O,BI
= S(8"" 0 Dg(e)(y') + D@ (') o 8)
=0.

The last vanishing follows from Lemnia 8.1 of the anti-synuyef 6. Similarly we have van-
ishing for the other two pairs in the last expressionéfr, 3, y). So we prove thadd(e, 3, y) =
0, andd is a Poisson structure. |
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