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ORIGINAL ARTICLE

Lymphocyte density determined by computational
pathology validated as a predictor of response to
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secondary analysis of the ARTemis trial
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Background: We have previously shown lymphocyte density, measured using computational pathology, is associated with
pathological complete response (pCR) in breast cancer. The clinical validity of this finding in independent studies, among
patients receiving different chemotherapy, is unknown.

Patients and methods: The ARTemis trial randomly assigned 800 women with early stage breast cancer between May 2009
and January 2013 to three cycles of docetaxel, followed by three cycles of fluorouracil, epirubicin and cyclophosphamide once
every 21 days with or without four cycles of bevacizumab. The primary endpoint was pCR (absence of invasive cancer in the
breast and lymph nodes). We quantified lymphocyte density within haematoxylin and eosin (H&E) whole slide images using our
previously described computational pathology approach: for every detected lymphocyte the average distance to the nearest 50
lymphocytes was calculated and the density derived from this statistic. We analyzed both pre-treatment biopsies and post-
treatment surgical samples of the tumour bed.

Results: Of the 781 patients originally included in the primary endpoint analysis of the trial, 609 (78%) were included for
baseline lymphocyte density analyses and a subset of 383 (49% of 781) for analyses of change in lymphocyte density. The main
reason for loss of patients was the availability of digitized whole slide images. Pre-treatment lymphocyte density modelled as a
continuous variable was associated with pCR on univariate analysis (odds ratio [OR], 2.92; 95% CI, 1.78–4.85; P< 0.001) and after
adjustment for clinical covariates (OR, 2.13; 95% CI, 1.24–3.67; P¼ 0.006). Increased pre- to post-treatment lymphocyte density
showed an independent inverse association with pCR (adjusted OR, 0.1; 95% CI, 0.033–0.31; P< 0.001).

Conclusions: Lymphocyte density in pre-treatment biopsies was validated as an independent predictor of pCR in breast cancer.
Computational pathology is emerging as a viable and objective means of identifying predictive biomarkers for cancer patients.

ClinicalTrials.gov: NCT01093235.
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Introduction

Tumour-infiltrating lymphocytes (TILs) have been widely inves-

tigated as a prognostic and predictive biomarker in breast cancer

[1]. However, routine assessment of TILs in the clinical setting is

hindered by poor reproducibility of their manual pathological

evaluation. We previously conducted a systematic analysis of

quantitative pathology metrics in the Neo-tAnGo trial [2] and

found that pre-treatment tumour lymphocyte density was inde-

pendently associated with pathological complete response (pCR)

[3]. Our observations suggest that computational pathology per-

forms as well as pathologist read scores. Moreover, it is auto-

mated, objective and quantitative and may, therefore, facilitate

clinical implementation. In addition, we found that a relative in-

crease in lymphocyte density after treatment was inversely associ-

ated with pCR and that this relationship significantly differed by

taxane sequencing [3], suggesting that in a subset of patients

chemotherapy modulates the post-treatment immune

microenvironment.

The ARTemis trial showed that the addition of bevacizumab

to standard neoadjuvant chemotherapy significantly increased

the proportion of patients with a pCR [4], but this has not im-

pacted on disease-free and overall survival [5]. Here, we tested

whether our original findings could be validated in this inde-

pendent study, and have also conducted exploratory analyses

of associations with disease-free and overall survival.

Methods

Study design

ARTemis was a multicentre phase III randomized controlled trial con-
ducted to test whether the addition of bevacizumab to three cycles of
docetaxel, followed by three cycles of fluorouracil, epirubicin and cyclo-
phosphamide increased the proportion of patients with a pCR [4].
Women with human epidermal growth factor receptor 2 (HER2)-nega-
tive early breast cancer were recruited from May 2009 until January
2013. Of the 800 patients randomized, 781 were available for the pri-
mary endpoint analysis. The primary endpoint was pCR (absence of in-
vasive cancer in both the breast and lymph nodes). Here, whether a
pCR had occurred was either determined based on central pathology re-
view or, where central review was not possible, on histopathology re-
ports [6]. Details of eligibility and follow-up procedures are provided
in the main trial report [4]. The trial was approved by the multicentre
and local research ethics committees. All patients provided written, in-
formed consent. The trial was registered at ClinicalTrials.gov
(NCT01093235). Supplementary Table S1, available at Annals of
Oncology online, details characteristics of patients included in this
analysis.

Computational pathology

Digital whole slide images of haematoxylin and eosin (H&E) stained tis-
sue sections both before and after treatment, were captured using a
Hamamatsu Nanozoomer (Hamamatsu City, Shizuoka Pref., Japan).
Blinded to all pathological and clinical parameters, we used our compu-
tational pathology analysis pipeline to compute cellular metrics from
these images. Supplementary Figure S1, available at Annals of Oncology
online, summarizes the computational pathology workflow. Briefly, the
algorithm segments cell nuclei and, based on a training set of approxi-
mately 1000 objects per category, uses machine learning (support-vec-
tor-machine) to classify cells into three categories: cancer, stromal and

lymphocyte. Finally, based on these classes descriptive cellular metrics
are computed, including cellular density. Here lymphocyte density is
calculated as follows: for every detected lymphocyte in a section, the
average distance R to the 50 nearest lymphocytes (N¼ 50) is calculated
using a K-nearest-neighbour approach.

For each lymphocyte, density is estimated as N/(pR2) and the median
of this value for all detected lymphocytes is taken as the summary statistic
for a given section. The computational pathology approach has been
described in detail previously [3] and the analysis code is available at
http://www.ast.cam.ac.uk/�adariush/files/codes/.

Statistical analyses

We tested for associations between lymphocyte density and pCR using lo-
gistic regression, reporting odds ratios (OR) and 95% confidence inter-
vals (95% CI). Lymphocyte density and change in lymphocyte density
were modelled as continuous variables. Multivariable models were ad-
justed for age, randomization arm, histological grade, estrogen receptor
(ER) status, tumour size and lymph node status at randomization. Age
and histological grade were modelled as continuous variables. Tumour
size (<51 mm versus>50 mm) and lymph node status (negative versus
positive) were modelled as categorical variables. Associations with cat-
egorical clinical variables were tested using Kruskal–Wallis tests.
Associations with overall survival (OS) defined as all-cause mortality,
and disease-free survival (DFS) were tested using Cox proportional-
hazards models, where follow-up commenced from day of surgery. DFS
was calculated to date of first relapse (loco-regional or distant, not
including DCIS); to date of death in women dying without invasive re-
lapse; or to date of censoring in women alive and disease free. Survival
analyses were conducted separately by ER-status to account for known
violations of the proportional-hazards assumption [7]. Statistical ana-
lyses were conducted using Stata SE version 14.2 (Stata Corp, College
Station, TX).

781 randomised patients included in primary
endpoint analysis

126 cases lacking whole
slide images

1 missing data on pCR

45 with data on surgical
excision only

609 cases with data at baseline
biopsy

383 with matched data at both
baseline biopsy and surgical
excision

Univariate analysis:

Multivariable analysis:
557 biopsies density at diagnosis

change in density349 matched

609 biopsies density at diagnosis
change in density

Missing data on clinical
covariates:

52 biopsy cases
34 matched cases

383 matched

Figure 1. Flowchart of patients and samples through analytic
stages.
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Results

Of the 781 patients included in the ARTemis primary analysis,

609 (78%) had computational pathology and baseline outcome

data (Figure 1), where 109 (18%) experienced pCR, a similar pro-

portion to the entire group of 781 patients where 20% experi-

enced pCR. Of these 609, 383 patients had matched pre- and

post-treatment samples to calculate change in lymphocyte dens-

ity; of which 17 (4%) achieved pCR (supplementary Table S1,

available at Annals of Oncology online). Median time at risk for

OS was 3.1 years (range 0.07–6.3 years). Among the 609 patients,

there were 140 DFS events and 98 OS events.

Pre-treatment lymphocyte density was associated with ER sta-

tus (P< 0.001), tumour size (P¼ 0.003), and histological grade

(P< 0.001) (supplementary Figure S2, available at Annals of

Oncology online).

Higher pre-treatment lymphocyte density was associated with

a greater chance of pCR in unadjusted (OR, 2.93; 95% CI, 1.77–

4.85; P< 0.001) and adjusted (OR, 2.13; 95% CI, 1.24–3.67;

P¼ 0.006) analyses (Table 1 and Figure 2). However, there was

no association between pre-treatment lymphocyte density and

survival (OS or DFS) in either ER-positive or ER-negative disease

(supplementary Table S2, available at Annals of Oncology online).

Consistent with our previous observations [3], an increase in

lymphocyte density between pre- and post-treatment was associ-

ated with residual disease (adjusted OR for pCR, 0.1; 95% CI,

0.033–0.31; P< 0.001; Figure 2 and supplementary Table S3,

available at Annals of Oncology online). Change in lymphocyte

density was not associated with OS or DFS in either ER-positive

or ER-negative disease (supplementary Table S2, available at

Annals of Oncology online).

Table 1. Univariable and multivariable logistic regression of lymphocyte density and clinical covariates against pCR

Variable Categories Univariate Multivariate

Odds ratio 95% CI P value Observations Odds ratio 95% CI P value Observations

Median lymphocyte
density

Continuous 2.93 1.77–4.85 0.00003 609 2.13 1.24–3.67 0.006 557

Grade 1,2,3 4.82 2.80–8.29 <0.00001 557 2.80 1.58–4.96 0.0004
ER status Negative, Positive 0.19 0.12–0.30 <0.00001 609 0.29 0.18–0.47 <0.00001
Age Continuous 0.97 0.94–0.99 0.007 609 0.98 0.95–1.00 0.06
Node status Negative, Positive 0.69 0.45–1.04 0.08 609 0.65 0.41–1.05 0.08
Chemotherapy BEVþD FEC, D FEC 0.72 0.48–1.10 0.13 609 0.60 0.38–0.97 0.04
Tumour size <51 mm, >50 mm 0.73 0.42–1.26 0.25 609 1.05 0.56–1.97 0.87

a.u., arbitrary units, FEC, fluorouracil, epirubicin and cyclophosphamide; BEV, bevacizumab; pCR, pathological complete response.
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Figure 2. Association between lymphocyte density, change in lymphocyte density, cellular proportions and chemotherapy response.
Observations are ranked by pre-treatment lymphocyte density scores. Lymphocyte density has been rescaled to between zero and one for il-
lustration. a.u., arbitrary units; pCR, pathological complete response; RD, residual disease.
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Discussion

In this computational pathology analysis of the ARTemis

trial, we have validated our previous observation that higher

pre-treatment lymphocyte density is associated with pCR and

that an increase in lymphocyte density after treatment is

seen in a subset of surgical resection samples with residual

disease.

Pre-treatment lymphocyte density, while predicting pCR inde-

pendent of clinical variables, was not associated with survival.

Although this contrasts with the findings of past studies [8–10], it

should be noted that in these published reports lymphocyte dens-

ity was not quantified using the approach described here. Our

finding should also be interpreted cautiously since analyses were

modestly powered due to small sample sizes and limited follow-

up time.

Our analyses were limited to tissue morphology in H&E

slides. While this is a pragmatic and therefore clinically feasible

approach, it overlooks functional differences in infiltrating

lymphocytes, which have been shown to influence clinical out-

come [11–13]. A second limitation was the incomplete repre-

sentation of post-treatment specimens. A possible explanation

for this, and for the lower proportion of patients with pCR in

this subset, is that slides from surgical samples in which a pCR is

observed are less likely to be digitized since they do not contain

cancer cells. Similarly, we were not able to include all patients

recruited to the trial because some slides were not available for

digitization. Importantly, the findings validate those of our pre-

vious independent study and therefore are more likely to be

generalizable.

Our findings validate pre-treatment lymphocyte density—a

computational pathology metric—as a predictor of pCR. This

highlights that automated quantitative pathology can perform

at a level comparable to pathologist-read scores and may

therefore improve the standard histopathological evaluation of

tumour samples. Such approaches have the additional advan-

tage of being objective and reproducible. Moreover, our find-

ing that an increase in pre- to post-treatment lymphocyte

density is associated with residual disease again highlights

perturbations in the immune microenvironment secondary to,

and presumably caused by, treatment. We speculate that

such a comparative metric could serve as a biomarker to iden-

tify patients likely to respond to post-neoadjuvant

immunotherapy.

Higher pre-treatment lymphocyte density is validated as a pre-

dictor of pCR among women with early stage breast cancer. In

addition, an increase in lymphocyte density following chemo-

therapy is again observed to be associated with residual disease.

Patients with low pre-treatment lymphocyte density may benefit

from more aggressive therapies or enrolment into clinical trials.

In addition, immunotherapies may prove more effective follow-

ing an increase in lymphocyte density following neoadjuvant

chemotherapy.
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