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CHAPTER 0.

§0.0 Introduction.

In 1939, Wielandt introduced the concept of subnormality ( [W l])  

and proved that in a f in ite  group, the jo in  of the two (and hence any 

number o f) subnormal subgroups is again subnormal. This result does 

not hold for a rb itrary groups (see CZH], [R S ]). After much work 

by various authors, Williams [WS1 gave necessary and sufficient 

conditions for the jo in  of two subgroups to be subnormal in any group 

in which they are each subnormally embedded; a sufficient condition 

(CR4D) is that the two subgroups permute ( i .e .  their jo in  is th eir 

product).

This present work arises from considering what in some sense is 

the dual situation to the above, namely: given a group G with sub­

groups H and K , both of which contain X as a subnormal subgroup, 

we ask under what conditions is X subnormal in the jo in  <H,K> of H 

and K ? I t  makes sense here to assume that G = <H,K> , so we do. We 

w ill say that G is a J-group i f  whenever G = <H,K> and X are as 

posed, i t  is true that X is subnormal in G . Unfortunately, apart 

from obvious classes such as nilpotent groups, J-groups do not seem to 

exist in abundance: Example 1.1 (due to Wielandt) shows that not even 

a ll f in ite  groups are J-groups. Even worse, this example has the fin ite  

group G being soluble (of derived length 3) with X central in H (in  

fact H 1s c y c lic ). A ll this does not seem to bode well for trying  to 

find many infin ite  J-groups (although whether metabelian groups are



J-groups is an open problem). However, in CW4], Wielandt shows that, 

i f  we require that the J-group c rite ria  for a group G is satisfied 

only when H and K permute —  in which case we say that G is  a 

W-grcup —  then every f in ite  g**oup is indeed a W-group (Theorem 

1.3 here). The soluble case of th is  result is due to Maier ([M R]).

Our aim in this work is to develop Theorem 1.3 in (p rin c ip a lly ) 

three directions, a chapter being devoted to each. We give a general 

outline of the themes of each chapter here, insofar as they relate to 

Theorem 1.3, giving more details at the beginning of each chapter.

In Chapter 1 we try  to find classes of groups X such that every 

X-group is a W-group. Stonehewer (CS41) has shown that periodic n i1- 

potent-by-finite  groups are W-groups (as well as other classes: see 

Theorem 1 .9 ), u tilis in g  a description of t r ip ly  factorised groups given 

by Sysak (CSYD) : such trip le  factorisations may, in many cases, be 

assumed to hold for a W-candidate G by virtue of a useful reduction 

lemma (CS43) which is Lemma 1.6 here. Using th is , and other, 

reductions we are able to show th a t nilpotent-by-abelian-by-finite  

groups of f in ite  (Prufer) rank are W-groups (Theorem 1.26). In 

particular, soluble linear groups of finite  rank and fin ite ly  generated 

soluble groups of f in ite  rank are W-groups. The last section ( s i .5) 

of Chapter 1 considers ascendancy, using which the ascendant counter­

part W of W is defined. Again using reductions, we show that locally 

soluble groups of f in ite  rank are W-groups (Theorem 1.41).
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In Chapter 2 we look at projectivities ( i .e .  isomorphisms of 

subgroup lattices) and consider the effect of pro jectiv itie s on sub­

normal and ascendant subgroups (see CSH], CZ23). Corollary 2.20 shows, 

in particular, that the projective image of a subnormal subgroup of a 

f in ite  group has a subnormaliser. The term "subnormaliser" used here 

is open to several defin ition s, from which we have chosen, for better 

or worse, the following one: we say that a subgroup X of a group G 

has a subnormaliser i f  there exists a unique largest subgroup S of G 

such that X is subnormal in  S . The problem with this definition is 

that not every subgroup has a subnormaliser, because not every group is 

a J-group. Alternative definitions usually define some subgroup 

(containing X) which has the d istin ct advantage of actually existing, 

but X w ill not necessarily be subnormal in (see [S I ]  for a 

discussion of p o s s ib ilitie s ). Using Corollary 2.20 and results of 

CSZ], we can relax the permutability hypothesis of Theorem 1.3 by 

requiring that the subgroup lattice  of the f in ite  group G = <H,K> 

admits a pro jectiv ity  o under which H° and K° permute (Theorem 

2.21). We then identify some other classes of groups contained in 

for which this relaxed permutability hypothesis s t i l l  works. One of 

these classes is the class of metabelian groups, which supports the 

conjecture that metabelian groups are J-groups. Other identified classes 

are those of p o lycyc lic -by -fi nite groups and Cernikov groups (Theorems 

2. 22, 2 .26).

In Chapter 3 we consider K-subnormality (termed C-subnormality 

when introduced by Kegel ( CK2D)), which is a generalisation of subnormality.
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Here K denotes a class of groups which is closed with respect to 

forming extensions, homomorphic images and subgroups. A subgroup X 

of a group G is K-subnormal in G i f  there is a chain of finite  

length from X to G , each step of which is either normal (as for 

subnormality) or a K-step (by a K-step A s B , we mean that B/Ag 

is a K-group). Kegel (CK23) shows that in a f in ite  group the K-subnormal 

subgroups (K fixed) form a sublattice of the subgroup lattice  (Theorem 

3.2 here). We consider whether Theorem 1.3 holds with "K-subnormal" 

in place of "subnormal"; for ( f in it e )  soluble groups i t  does (Theorem 

3.12) and we give counter-examples in some non-soluble cases. We define 

the subclass WK of W (in  such a way that Theorem 3.12 says that U>K 

contains a ll fin ite  soluble groups) and identify some non-finite W^-groups, 

such as polycyclic groups and soluble Cernikov groups (Theorems 3.15, 3.17).

We use well-known results and definitions without reference.

§0.1 Notation and Terminology.

Our notation and terminology is  fa ir ly  standard (e .g . as in [R l ],  

CR3]), but we include this section for convenience and just in case there 

are any ambiguities. To save excessive use of brackets, we use the con­

vention that (given there is a choice) a subscript is read before a super­

script (e .g . X° means (X-|)° ) .

P , IN, Z , Q denote (respectively) the set of prime numbers, non­

negative integers, integers, rational numbers.

£ subset or subclass.

I SI denotes the cardinality of the set S .
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S1 ^ S2 
n '

l n , A n n

GL(n,R)

GL(n,p)

Let G

< , s ,

X * Y 

Aut(G) 

n(G)

M 6>
exp(G)

* 11, ( 6 )

the cardinality of IN . 

the f i r s t  infin ite  ordinal

consists of those elements of which are not in S2 . 

the set P\n . I f  n = {p } then we often use p,p' 

in  place of n, n' . 

i n fi ni te cycl ic  group.

the symmetric and alternating groups of degree n , 

respectively.

the (m ultiplicative) group of invertible n*n matrices 

over the ring R (which has an ide ntity).

G L(n,R ) in the case R is a fie ld  of p elements 

(p prime).

be a group w ith  subgroups H,K .

«  denote (respectively) proper subgroup, subgroup, normal

subgroup.

means that the groups X and Y are isomorphic, 

the automorphism group of G .

the set of primes occurring in the orders of the periodic 

elements of G . I f  G is periodic 

we say that G is a n-group i f  n(G) £ n £ P . 

the largest normal n-subgroup of G (n £ P) .

(when G is periodic) denotes the least common multiple 

( i f  i t  exists) of the orders of the elements of G ; 

otherwise exp(G) is in fin ite .

denotes the collection of a ll maximal n-subgroups of G , 

which are called Hall (n-)subgroups of G .
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Sylp(G) denotes Hal 1p(G) , members being called Sylow 

(p-)subgroups of G .

X* the element y'^xy (x ,y  e G) .

Cx.y] the element x \  ^xy (x ,y  e G) .

H9 the group (h9 : h c H} .

<Sx :x « *> the subgroup of G which is generated by the subsets

hk

Sx of G , which is called the jo in  of the Sx 's .
I?

denotes the group <H :k e K> and is called the

hk

normal closure of H in <H,K>

denotes the group knK H and is  called the core of 

H in K . I f  H|f = 1 , we say th a t H is core-free in K.

c s ,,s 2] the subgroup <CS^.SgJ : e S-j , S2 c Sg> (where 

.Sg are subsets of G).

G' , G" denote the subgroups [G,G] , C G '.G '] respectively.

Nk(H) the normaliser of H in K , v i z .  (k t K : = H)

c k ( h)
Z(G)

the centraliser of H in K , v iz .  (k e K : [H ,k ] = 1}. 

the centre of G .

L(G) the subgroup lattice of G , i . e .  the collection of all 

subgroups of G together with the operations intersection 

and join.

[G/H] the sublattice of L(G) consisting of the subgroups 

which lie  between H and G .

Dr H
AeA 
X ]  Y

the restricted direct product of the groups (A e A) . 

the semi-direct product of groups X and Y , with a 

suitably defined action of Y on X .

XlY the standard restricted wreath product of groups X and



\

A B B

Rank(G)

y , i .e .  XlV = ( Dr X„) ] Y where X = X via
y«y y y  y

x »  Xy and the action of y is xy = xyy  ̂ c Xyy^

(y .y j c y . x e x) .

the tensor product (over Z ) of abelian groups A and B . 

the (Prüfer) rank of G , i .e .  the least integer r 

( i f  i t  exists) such that any fin ite ly  generated subgroup 

of G can be generated by at most r  elements; other­

wise we say that G has in fin ite  rank, 

the product of subsets S j,S 2 of G , v iz . the set 

iS1S2 : S1 £ S, , S2 c S2) 

permute i f  <H,K> -  HK .

H and K are said to

Series.

Let H be a subgroup of a group G and le t  v be an ordinal.

An ascending series from H to G of length v is a series of subgroups 

H -  GQ i  G, s . . .  s Gv -  G (1)

such that Ga < GaV l (0 s 6 < v ) and such that i f  B £ v is a lim it

ordinal, then G„ = U G„ . The groups G„.,/G„ are the factors of the 
B o<0 K B+l B

series. An ascending series (1 ) is normal i f  each term Gg is normal in G .

H is ascendant in G , written H asc G or H <v G , i f  there exists

an ascending series (1 ) from H to G . I f ,  moreover, this series has 

fin ite  length n , then we say that H is subnormal in G and write

H sn G or H <n G . I f  H sn G , the defect of H in G is the least

integer d such that H G . The normal closure series of H in G

is defined recursively by: Hq = G , s H ’ ( i  c IN) Then H ■



We say that H has a subnormaliser (resp. ascendiser) in G i f

there exists a unique largest subgroup of G in which H is  subnormal 

(ascendant).

Classes of groups.

A class of groups X is a collection of groups which contains every 

t r iv ia l group and every isomorphic image of its  members. Members of X 

are called X-groups. We always use s c rip t capitals to denote classes 

of groups. The product of classes of groups X,y is  w ritten xy and 

consists of a ll groups G which posess a normal subgroup N * X such 

that G/N c y . We w rite  X ^ .  ..X n for the product ( . . .  ( (X] X2 )X3)  )Xn

of classes of groups X . , . . .  ,X . I f  n c M , Xn denotes the class
■*—  n — ► i n
XX . . .X  . We use the following classes:

u a ll groups C cyclic  groups

I tr iv ia l groups A abelian groups

F fin ite  groups S soluble groups

N n il potent groups

Wc nil potent groups of nil potency class at most c c N .

F ,Sit’ it fin ite  (resp. soluble) n-groups (n £ P )  •

( 6) the class consisting of a ll t r iv ia l <groups and all groups

isomorphic to the group G .

J  the class consisting of groups G which sa tis fy : whenever

G = <H,K> and X sn H , X sn K then X sn G (H,K,X subgroups of G).

M,M groups which satisfy the minimal (resp. maximal) condition for

subgroups.

M groups G with a subnormal series whose factors are M-groups or

M-groups. M-groups are called mlnimax groups.
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Hyperabelian groups are groups 6 which possess an ascending normal 

series (from 1 to G) with abelian factors. Hypercentral groups are 

groups that have an ascending series with central factors. Cernikov 

groups are groups which are a fin ite  extension of a (SnM)-group; such 

groups are well-known to be a fin ite  extension of a direct product of 

f in ite ly  many quasicyclic p-groups (various primes p ).



Then:

XA denotes the (unique) largest A-closed subclass of X ,

GX denotes the X-residual of G , i .e .  the intersection

of a ll normal subgroups N of G such that G/N e X , 

Gx denotes the X-radical of G , i .e . the product of a ll

normal X-subgroups of G .



CHAPTER 1. SUBNORMALITY AND ASCENDANCY.

§1.0 Introduction.

In this chapter we identify certain subclasses of the Wielandt 

class W (defined in §1.1) and its  ascendant analogue W (§ 1 .5 ). We 

include a proof of Wielandt's theorem (Theorem 1.3) which says that 

contains a ll f in ite  groups, and also his example which shows that J 

does not contain F . §1.2 contains reduction results (CS41) which

are useful in the sequel. Also useful is the fact that FW = W 

(Proposition 1.10). Theorem 1.9 lis ts  some subclasses of W which 

appear in CS4L

§1.3 considers classes of groups related to ift and M . Our 

main results here are (SnM)W5 = Ws (Theorem 1.19) and MM c U 

(Proposition 1.15). §1.4 considers (mainly) nilpotent-by-abelian-by-

fin ite  groups (NAF-groups) .  We prove that NAF-groups of fin ite  rank 

are W-groups (Theorem 1 .26); this result is improved (a t the expense 

of the bounds obtained) in Theorem 1.32 by using results of §1.3, 

which also give us partial results about soluble groups of fin ite  

rank.

§1.5 considers ascendancy and the class W . Our main result 

here is that locally soluble groups of fin ite  rank are W-groups 

(Theorem 1.41): such groups are hypercentral-by-abellan-by-finite 

of fin ite  rank, and we reduce this to the metabelian-by-finite case 

(Lemma 1.40) to prove they are W-groups.

-  11 -
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§1.1 III and Co.

That a subgroup X of a group G does not, in general, have 

a subnormaliser (even i f  G is f in ite ) can be seen in the following 

example of Wielandt ( [ W43) .

1.1 EXAMPLE.

Let p be an odd prime and define subgroups of GL(3,p) by 

G = <h,x,k> , H = <x,h> , K = <x,k> and X = <x> , where

Then X has order 2, H is cyclic  of order 2p and K is a 

dihedral group of order 8. Hence X £ Z(H) and X *j2 K . But X 

is not subnormal in G = <H,K> . For, suppose X sn G . Then Y = Xk 

sn G so that Y sn <Y,h> . Now Y normalises <h> and so 

<Y,h> = Y<h> has order 2p . I f  Y sn Y<h> then (since p 2) 

we must have CY,<h>] = 1 . But [x k,h ] = h2 (= 1 , a contradiction. 

Therefore X has no subnormaliser in G . Also, i t  is not hard to 

see that G = (<h> x <hk>) ]  K has order 8p2 and is soluble of 

derived length 3.

□
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The above example is  particularly good because X is central 

in H . As mentioned in  Chapter 0, i t  is an open problem whether 

metabelian groups are J-groups. We can see, however, that not 

every subgroup of a metabelian group has a subnormaliser from the 

following example.

1.2 EXAMPLE.

For n 2 2 , le t Hn be a dihedral group of order 2n+  ̂ , say

H = C ]  X where C is  cyclic of order 2n and X has order 2
n n n n  n

(so Xn acts on Cn by inversion). Let G = Dr Hn with subgroup
ns 2

X = Dr X . Now X has defect n in H , so that X is sub- 
ns2 n n n

normal in XH with defect n for each n s 2 . But <XH :n s 2> = G n n
and X is not subnormal in  G ; for otherwise X <r G for some r  e IN 

and the defect of X in each XHn is less than r+1 , which is a contra­

diction i f  n > r  . Therefore X has no subnormaliser in the met­

abelian group G . I t  is  worth noting, however, that X <aw G

(X £  XH. and for n a 2 . XH, . . .  H a"* 1 XH, . . .  H H , )  .c i  n z n n+l

□

In Example 1.1, the subgroups H and K do not permute, because 

IHK| = 8p f |G| . This fa c t 1s not incidental, as we see from the 

following theorem. The soluble case was f i r s t  proved by Maier ([M R ]).

1.3 THEOREM (Wielandt CW4J).

Let G be a finite  group, generated as the product of subgrouDs
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H and K , both of which contain X as a subnormal subgroup. 

Then X is  subnormal in G .

Proof.

Suppose the Theorem is false and choose a counter-example G 

of minimal order such that |G:H| + |X| is also minimal. I t  is 

not hard to see that these minimality conditions imply that Hg = 1 

and H is  maximal in G . Now a subnormal subgroup A of a fin ite  

group is contained in the core of any maximal subgroup which contains 

A (CW3D). Therefore H contains no subnormal subgroups of G . 

Hence, by the minimality of |G:H| + |X| , X must be a simple group.

Case (1 ) |X| = p t P .

Since G = HK , there exists Hp e Sylp(H) and Kp e Sylp(K) 

such that HpKp c Sylp(G) (see CHU3 VI 4 .7 ). Then XH s Hp and

XK s Kp . Therefore <X,X^ > = <x\x^>^ is a p-group for all 

h c H , k € K . Hence <X,X^> is a p-group for a l l  g e G , which 

is a sufficient condition to ensure X sn G (CAL] or CW33) .

Case ( i i ) X non-abelian simple.

Let M -  im « G : Xm s H n K and X® sn H , Xm sn K) and put 

Y * <Xm:m e M> . Then Y sn H , Y sn K (tW ll) and X sn Y . 

Therefore Y is not subnormal in G and so there e xists  g e G



-  15 -
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the defect of X in G by some function of the defects of X 

in H and of X in  K . With this is  mind, we define subclasses 

Wf of W by:

( i i )  Let f  : IN li be a function. Then is the class 

consisting of groups G e W such that whenever X «an H 

and X ->n K in (* ) (n  c IN) , then X nf(n ) G .

(Whenever we specify the function f = f(n ) , i t  w ill 

be im p lic it that the variable n plays the same role as 

in this d efin ition ).

For example, putting f  = 1 (constant) we have W. contained 

in the class of T-groups (that is ,  groups in which every subnormal 

subgroup is normal). Because F c W (Theorem 1 .3 ), Wj contains 

a ll f in ite  T-groups. Also, W-j contains all soluble T-groups 

because such groups are metabelian (CR3D 13.4.2) and hence they 

are W-groups (Theorem 1 .9). We mention that Stonehewer has shown 

that F n W5 c W3 ( [S53).

I f  A and B are any subgroups of a group, then A <n AB i f  

and only i f  A <n+  ̂ <A,B> (n c W) . From this i t  is clear that W 

could also be defined as the class consisting of groups G which 

satisfy: whenever G «  HK and X sn XH , X sn XK (X,H,K subgroups), 

then X sn G . Also, J-groups have an analogous characterisation (recall 

that J-groups are groups G which satisfy (* ) in 1.4(1) even i f  H 

and K do not permute).



-  17 -
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( i )  Clearly Gj = AĤ  = AK̂  , which also proves the 

second statement.

( i i )  As a set, K] = (H n AK)(K n AH) = AH n AK n HK = 

= Gj n HK . ( i i )  now follows.

( i i i ) Clearly N is  abelian. Also A n Hi - AH1 = G1 by

( i ) .  Simi la r ly  A n K| «3 G1 , so that N < G .

( i v ) A n H,N ■ (A n H1)N s N , so that A9 r' H? -  1 ■

Sim ilarly A9 n Ke = 1 . C lea rly A9 v G? , so that

(by ( i ) ) ,  G9 splits as required. Therefore 

H9 1 K0 -  G0/A0 1 G,/A s G/A .

(v ) This is clear from ( i ) .

( v i )  I f  G9 = H9 K0 then G, -  H jN ^N  = H ^K, -  .

The converse is clear.

□
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1.6 REDUCTION LEMMA ( Stonehewer [S41) .

Let G be a group with subgroups X,H,K and A such that

G ■ HK , X nn H , X <in K (n € IN) and A is an abelian i

subgroup of G . Then, using the notation of Lemma 1.5,

G® " H9K9 -  A9 I H9 »  A9 3 K9 and Xe <" H9 . X9 a" K9 .

Further, if X9 - m G9 and AX a* G (t,m  e W) , then

X g .

Suppose the hypotheses of the f i r s t  part of Lemma 1.6 and also 

that G/A e Ws . Then Lemma 1.6 says that to prove X sn G we may 

in many cases assume that G = A ] H = A ] K = H K .

The proof of 1.6 w ill use the following Lemma, which is 

essentially in  [S4  ] .

1.7 LEMMA.

Let G be a group with subgroups X,H,K and N such that 

G = <H,K> , X <n H , X « n K (n e IN) and N is a normal abelian 

subgroup of G . I f  G ■ N(H n K) then I  f  . I f  G -  NX 

then H a" G (and K an G) .

Proof of 1 ,7 .

N n H O NH = G . Also,

H = H n N(H n K) = (H n K)(N n H) s K(N n H) .
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Therefore G = K(N n H) , so that 

X a" X(N ■ I )  <" E .

I f  G = NX then X(N i  K) = M <" B and sim ilarly K a" G .

□

Proof of 1.6.

The f ir s t  part follows from Lemma 1.5. Suppose also that 

Xe am G® and AX a* G . Then

NX a" AX <* G .

Since NX «  (N n M)X(N n K)X then by Lemma 1.7, X n2n NX as required.

□

Remark.

Suppose we wish to show that a group G is a J-group; then we 

suppose that G = <H,K> with X sn H , X sn K (X,H,K subgroups) and 

try  to show that X sn G . I f  G contains a normal abelian subgroup 

A , such that G/A e J s , then, in the notation of Lemma 1.5, i t  is 

enough to prove that X0 sn G0 = A0 ]  H0 = A0 ]  K0 where X0 sn H0 ,

X0 sn K0 . However, we need to show that A s <H^,K^> in  order to 

also have G0 = <H0,K0> ; the fact that this might not happen prevents



us from being able to make a real reduction (there is  a sim ilar 

impediment to the J-analogue of Theorem 1 .8 ). We note that 

< « ; ,k;> -  (A6 n <H9,K9>) 1 H9 = (A9 n <hJ,K?>) ]  K9 , and i f  

X9 sn <H9 ,K9> then X sn «H j.K ,» (Lemma 1 .7 ).

The following theorem shows that i f  we wish to show that 

NX c w for some S-closed class X (c w) , then i t  is  enough to 

consider AX-groups (and then we could use Lemma 1 .6 ) .  This theorem 

is proved in CS43 using induction on nilpotency class together with 

Lemma 1.6. We give an alternative proof, whose method w ill be of use 

when we consider ascendancy in §1.5.

1.8 THEOREM.

Let X, V and Z be S-closed classes of groups with V and 

Z also Q-closed. Suppose that (A n Z)X n V c w . Then 

(N n Z)X n V c 01s . I f  (A n Z)X n V £ Wf then (Nc n Z)X n V c

where g = cf + (c - l )n  .

Proof.

Let 6 c (Nc n Z)X n V be generated as the product of subgroups 

H and K , both of which contain X as a subnormal subgroup of defect 

at most n c W . Let B e N£ n Z be a normal subgroup of G such that 

t / l i l  . Let Z( (0 t  i  s c ) denote the i th term of the upper central



22 -

series of B. We w ill show that

XẐ  sn XZ^+i for 0 s i s c-1 . (* )

Fix 1 in the range 0 s i s c-1 and le t  bars denote subgroups 

of G modulo Ẑ  . Let GQ = Z^+  ̂ H n Z^+-| K , BQ = B n Gq ,

H0 «  H n Gq and KQ = K n GQ . Then

®o ■ n o Ro  ■  * ^ 1  ” 0  ■ ^  *0 a n d  ®0 ’  8 "  ®0 •

Also Zi+1 s Z(B^) so that

Now
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e Q(A n Z) -  AnZ .

Hence Gq/(B q n Hq ) c. (A n Z)X n V c W (by hypothesis), whence

Therefore X sn X Z.+  ̂ = XZi+  ̂ , so that XZ.. sn XZ^+j and (* ) 

is proved.

From (* ),  X sn ZCX = BX . Also G/B e X n V c W so that 

BX sn G . Hence X sn G and the f ir s t  part of the theorem is true.

Suppose also that (A n Z)X n V is bounded by f  . Following 

the above proof, we see from ( 1 ) that

XZi *n+f XZi+1 for 0 < i s c-1 .

Consequently X «(C "1 ) ( n+f>XZc . 1 . Since G / Z ^  e (A n Z)X n V , we 

have XZc_-j ^  G . Therefore X <(c“l ) n+cf G , as required.

Theorem 1 .8 , in conjunction with Lemma 1.6 are used in [S4 ]

X(Bq n Hq) sn G0 ( 1 )

□

to prove the following:
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1.9 THEOREM.

The following classes of groups are contained 1n Ws :

NA , N (PC)F , S n N M  (c .f .  Proposition 1.15) , S n M (c .f .  

Corollary 1 .28).
□

In Lemma 1.6, suppose that G is  metabelian and put A = G' . 

Then H® and K® are abelian (Lemma 1.5 ( i v ) ) and so X9 <j G® .

Hence X «â n+^G . Then by Theorem 1.8 (with X = A , V = Z * U) , 

we see that MQA c where f (n )  = 3nc + 2c-n .

1.10 PROPOSITION.

FW = W . In particular, FWS = Ws .

Proof.

Suppose that G e W is  generated as the product of subgroups 

H and K , both of which contain X as a subnormal subgroup of 

defect at most n e li . Let N be a fin ite  normal subgroup of G 

such that G/N e W . Then NH =■ H(NH n K) and |NH : H| s |N| -  r  , 

say. Therefore HNH has index at most r! in NH . Considering the 

group NH/Hnh we see from Theorem 1.3 that XH^ « r ' NH . But 

G/N € W so that NX sn G . Therefore X «n XHNH <r ‘ NX sn G and 

so Fid c ill

□
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S i.3 Min, Max and 0/ .

1.12 LEMMA.

H c l i 5 .

To prove Lemma 1.12 we need the following results:

1.13 PROPOSITION ( Roseblade CRB]) .

Let G be a group which satisfies the minimal condition on 

subnormal subgroups. I f  X is a subnormal subgroup o f G , then 

|G : N6 (X)| is  fin ite .

□

1.14 LEMMA ( Amberg [AID, see [S 4 ]).

Let G be a group which is  generated as the product of subgroups 

H and K. Suppose that HQt KQ are subgroups of H,K respectively 

such that |H : HQ| = r  and |K : KQ| = s are f in ite . Then

|G : <H0’ K0>I S rs •

Proof.

There exists h ^ , . . . ,h r  c H and k -| , . . . ,k s « K such that
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s
G = HK -

i “l i
u

k
‘J

» hi kj  <H0,Kt' i kj  <Ho’ V (* )

By a result of B. Neumann ( CNE3) we can omit from the union (*)

f in ite . Factoring by <H0 ,K0>G , we may assume that G is  finite  

and so |G| s rs|<H0 ,K0>| by (* ) . Therefore |G : <Hq ,K0>| s rs .

both of which contain X as a subnormal subgroup. Then by Proposition 

1.13, IH : Nh (X)| and |K : NK(X)| are fin ite . Putting 

J = <Nh(X ),N k(X)> , then |G:J| is  f in ite  by Lemma 1.14. Hence 

G/Jg c F and XJQ sn G (Theorem 1 .3 ). Since X «  XJQ we have 

X sn G as required.

We note that the proof of 1.12 requires only that H and K 

have the minimal condition on subnormal subgroups. We use this fact 

in the following res u lt, which supercedes 1 . 12 .

k i
a ll the cosets such that |G : <HQ,K0> J | is in fin ite . Therefore 

|G : <Hq ,Kq> J | is  f in ite  for some j  , whence |G : <Hq ,Kq>| is

□

Proof of 1.12.

Let G c M be generated as the product of subgroups H and K

□
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1.15 PROPOSITION.

NH c(Ds .

Proof.

By Theorem 1.8 (with X = M and V * Z = U) i t  is enough 

to prove AM c b? . Let G e AM be generated as the product of 

subgroups H and K , both of which contain X as a subnormal 

subgroup. Let A be an abelian normal subgroup of G such that 

G/A £ M . Then AX sn G (Lemma 1.12) and so by Lemma 1.6 we may 

assume that G = H K = A ] H = A ] K .  Thus H,K c M , so by the 

remark above we have X sn G , as required.

□

Let Xq denote the following class of groups: G is an Xq-  

group i f  and only i f  G/GF c F and GF is  a periodic abelian group 

such that for each prime p , the p-component of GF is  the direct 

product of fin ite ly  many quasicyclic p-groups. A result of Amberg 

([A 3 ]) Cor.2 .8 ) shows that the soluble product of XQ-groups is  an 

Xjj-group. Also, Xq c AF c ws (Theorem 1.9) so by Lemma 1.6, we 

have S n AXQ c of . Then by Theorem 1.8 (with y »  S , Z = U) we 

have

1.16 PROPOSITION.

N(S n Xq ) = S n NXq £ W5 .

□



Of course, proposition 1.16 is a particular case of the result

that nilpotent-by-^eriodic abeliar)-by-finite  groups lie  in Ws ( [S 4 3).
v

We now wish to look at (S n M)Ws-groups. I t  is not clear whether 

or not they a ll lie  in Ws , but Proposition 1.18 gives us a partial 

result in this direction; certain restrictions are imposed which 

enable us to make use of the fact that periodic subgroups of GL(n,Rp) 

are f in ite , where Rp denotes the ring of p-adic integers (see CRID 

Cor.3.28). These restrictions present no impediment in NAF-groups 

(see Lemma 1.21). We w ill also need the following result 

( [R l ]  Lemma 3.13).

1.17 LEMMA.

Let A be a normal d iv isib le  abelian subgroup of a group G and 

suppose that X is  a subgroup of G such that [A ,sX] = 1 , where 

s e N . I f  X/X' is periodic, then CA,X] = 1 .

□

Let G be a Cernikovby-Ws group. By Proposition 1.10, G e PWS 

where V denotes the class of d iv is ib le  abelian groups with min.

In particular, (S n M)WS = 0WS .

1.18 PROPOSITION.

Let G be a £ernikov-by-Ws group which is generated as the 

product of subgroups H and K , both of which contain X as a
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subnormal subgroup of defect at most n (n c W) . I f  X is 

periodic, then X sn 6 . I f ,  moreover, G e V (Ws n W^) then

X 6 .

Proof.

As mentioned above, G c PWS , so le t  A e V be a normal sub­

group of G such that G/A e Ws . Then by Lemma 1.6 (and since 

QV = V )  , we may assume that

G »  HK = A 3 H »  A ]  K . (* )

I f  g € Cg(A ) then g = ah (a c A , h e H) and 1 * [ah,A] * 

= Eh,A] , so that g e AC^(A) . Hence CQ(A) = ACH(A) = AC^(A) . 

A lso, Ch (A) « AH = G and, i f  bars denote subgroups of G modulo 

Ch (A ) , we have

5 « HK = A ] H « AR , A e V , G/A c WS .

Since [H ,A ] n CH(A) s A n H * 1 , i t  follows that Cq(A) = 1 and 

so there is an embedding

H Aut(A) .
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_n
Now X sn H and X is periodic , so that X is isomorphic to 

a periodic group of automorphisms of A . By the remark before 

this proposition,

is f in ite  (1 s i s r )

where A A are the primary components of A e V . But
Pi Pr

n C.u <5„ ) < CB (A) -  1 .
1=1 XH P1 H

so that X" is f in ite .

Let N -  Nh(XCh(A )) . Then N > Njj(X) and 

|H : N| is f in it e .

From (* ),  we have H = K and we can see this isomorphism 

using $ e Aut (G) which is  defined as follows: i f  g c G then 

(by (* ))  g can be w ritten uniquely as g = ah = bk where a,b c A , 

h € H , k « K ; then we define g* ■ ak . So H* * K and the fixed- 

point subgroup for $ is  A(H n K) . Therefore [g»A ]^ * Cg^.A] 

for any g c G , and so

CH(A >* s CK(A) *
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Also, i f  S is any subgroup of H then h e NH(S ) i f  and only 

i f  h* e Nk(S*) . So by (**),

N* = Nk(XCk(A )) .

Since IH : Nl and |K : N^l are f in ite , so is |G : J| where 

J  ■ <N,N^> (Lemma 1.14). Therefore G/Jq « F and XJg sn G 

(Theorem 1 .3 ). So i t  is enough (fo r the f ir s t  part of the proposition) 

to show that X sn J .

XCh (A)Ck(A) is normalised by N and N4* . X sn XCH(A)

implies that XCK(A) sn XCH(A)CK(A) . Therefore X sn XCK(A) sn J 

and the f ir s t  part of the proposition is proved.

Now suppose G c V(US n Wf ) and le t B e V be a normal subgroup 

of G such that G/B e IVs n lt/f  . Then BX *f ' n'G and (from the f irs t  

p art) X sn BX = Gq , say. Then B n X «  GQ and i f  bars denote sub­

groups of Gq modulo B n X , we have Gq = B ]  X and X < Gq 

for some s e H . Hence CB,SX] s X n B = 1 , so by Lemma 1.17 

[§ ,X ] = 1  i .e . CB,X] s X n B . Therefore B normalises X , so 

that X < BX 4f ^n^G as required.

□

In SI.4 we w ill extend Proposition 1.18 -  at the expense of another 

re s tric tio n  on X -  to the case where A (in  the proof of 1.18) is
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a periodic d ivisible  abelian group of fin ite  rank (so that A may 

have in fin ite ly  many p-components).

Turning our attention now to the maximal condition, we see from 

Theorem 1.9 that (PC)F = (S n M)F c Ws (th is  can be shown d irectly 

using a result of Kegel CKl] which says that a subgroup X of a 

(PC)F-group G is subnormal i f  X0 is subnormal in every fin ite  

homomorphic image G6 of G ; then use Theorem 1 .3 ). In fact, we 

have

1.19 THEOREM.

(S n M)W5 .  01s .

Proof.

Let G e (S n M)WS be generated as the product of subgroups H 

and K , both of which contain X as a subnormal subgroup. G has 

a series

1 « B «  C i  G

such that G/C e Ws , C e S n M , B e  P (C .) and C/B e F . We 

prove that G e W^by induction on the Hirsch length h(C) of C .

I f  h(C) = 0 then C e F and so G e Ws (Proposition 1.10). Suppose 

that h(C) * 1 with the usual induction hypothesis.
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C is f in ite ly  generated, so C/Bg e F (and h(Bg) = h (C )) . 

Therefore Bg £ pfC^) and G/BQ £ W5 (Proposition 1.10). Hence 

we may assume that B = C .

Let A be the penultimate term of the derived series of C 

(A is torsion-free abelian of fin ite  rank). Then A < G and by 

induction,

AX sn G . (1)

By Lemma 1.6 (and using its  notation), i t  is  enough to show that 

X0 sn G0 , where

G0 = A0 ]  H0 = A0 ]  K0 * H0 Kj (G0/A0 £ 0s ) (2)

(recall 6 :G1 -»■ Gj/N where N s A) . Since A0X0 = AX/N , i t  1s 

enough (by (1 ) )  to show that X0 sn A0X0 .

A0 = A/N so we can wri te

where A0 is torsion-free and a| is fin ite . I f  a| \  1 then 

h(A0) < h(A) and by induction, X0 sn A0X0 .

I t  remains to consider the case a| = 1 . Let p £ IP . Then
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G®/(A®)P e FWS from (2 ),  so by Proposition 1.10, 

(A®)p X6 sn G® .

Si nee

| A0X0 : (A® )p X® | = | A® : (A®)p | = pr 

where r  = rank (A0) , (3 ) gives (Ae) pX® <r A®X®

n ((A®)P X®) <r A®X® . 
p c IP

Since A® n X®= 1 (and A® i s  free abelian),

n ((A® ) p X®) = (  n (A®)P)X® -  X® .
p C P  p € P

Therefore X® <r  A®X® , as required.

1.20 COROLLARY.

(P(C u F))WS • «Is .

( 3 )

Therefore

□

Proof.

( ( PC) F)X = (PC)(FX) for any class of groups X so that
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( (PC) F)WS = Ws by Propositions 1.19 and 1.10. Also, (PC)F = 

= P(C u F) ( [R l ]  3 .1 ) .

□

§1.4 M F Groups.

1.21 LEMMA.

Let y,Z be S- and Q-closed classes of groups. Let 

G c (W n Z)AF n V be generated as the product of subgroups H and 

K , both of which contain X as a subnormal subgroup. Let 

1 < A  < B < G be a normal series of G such that A e N n Z ,

B/A c A and G/B e F . Then to prove that X sn G , we may assume

the following:

( i )  A c A n Z  and G = A ] H “ A ] K  = HK.

( i i )  Bn H n K = 1 (assuming ( i ) ) .

( i i i )  B = <B n H , B n K> (assuming ( i ) ,  ( i i ) ) .

Proof.

( i )  This is clear from Theorem 1.8 and Lemma 1.6.

( i i )  Assume ( i )  and le t J  = <B n H , B n K> . G/Jg e F

(Lemma 1.14) and, since B n H . B n K c A  ,

[ J fi , B n H n K]  «  1 . ( 1 )
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G

B

A

Apply Lemma 1.6 with A n Jg in  place of A . Then (using the 

notation of 1.6  and thinking of 0 as the ide ntity  map),

G1 * (A n JG) ] H1 -  (A n JQ) ]  K, = .

Put B| = B n G| < G| . Then by (1 ),

CA n JG , B.j n H| n K^] = 1 .

Hence (B1 n H, n K, J6! = ( 8, n H, n K , ) ^ -  (B , n Kj n K j)Kls  B1 n H, n K, 

so that B̂  n n < Gj . Then, i f  bars denote subgroups of G1 modulo 

B1 n Hj n Kj ,

G, * A n J6 ]  ilj = A n Jfi ] ^  = ilj ^  c y .

Also n n Rj • 1 . Now X sn (B1 n n K] )X , so that X sn Ej

implies X sn Ĝ  . Also, Jq/(A n Jg) e A so that G/(A n Jq ) c AF c ws 

and (A n JQ)X sn G . Hence (from Lemma 1 .6 ) X sn Ĝ  implies X sn G . 

So we may assume that B̂  n n = 1 .
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Since A n Jg e A n Z , B^/(An Jg) c A and G-j/Bj e F , 

we may assume that ( i )  holds and B n H n K = 1 . Then Hn K 

embeds in G/B and Hn K is f in ite , as required.

( i i i )  Suppose that ( i )  and ( i i )  hold. Again, le t 

J  = <B n H, B n K> and put N = NQ( J )  ^ X . Then G/Jg e F and 

by Lemma 1.23 (which follows this proof),

N = (N n H)(N n K) .

G

H

NnH

BnH = JnH 

1

Also, A n  J  < N and (A n  J ) ( J  n H) = A (J  n H) n J  «  A(B n H) n J 

So, writing A| = An J  ,

J  = A1(J  n H) * A] ( J  n K) . (* )

Since XN0 sn G (Theorem 1 .3 ), i t  is enough to show that X sn N 
G
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Apply Lemma 1.6 to the group N with abelian normal subgroup A1 . 

Then (using the notation of 1.6 and thinking of e as the ide ntity  

map)

H} -  A1 ] H1 -  A1 ) K1 -  c V , (**)

where H| =A|(N n K) n N n H and = Â  (N n H) n N n K .

Let B| = B n Nj , so that B-j = B n A^H1 = A^(B n H^) . Now 

B n H = J  n H = A |(J n K) n H by (* ) ,  so that B n H s H|, and

B n H  = B n H ^ ,  B n K = B n Kj .

Thus Aj(B  n H j) = A|( J  n H) so by (* ) ,  B] = J  and

B| n H| = B n N.| n = B n H .

Hence

B-j = <B̂  n , B.| n K̂ >

We must check that ( i )  and ( i i )  hold in N-j (and then the Lemma

is proved). For ( i ) ,  the series 1 < A.| < B.j < has the required

properties (A  ̂ c A n Z, B-j/Aj = J/A-j £ À , N,/B, - Nj/J c F) and

N. has the trip le  factorisation (** ) .  For ( 1 1 ) .

B jn H .  ( i K j S B n H n K c F  .

□



-  39 -

1.22 Remarks.

(a ) Suppose, with the hypotheses of Lemma 1.21, that

A « Wc o Z , |G:B| 5 m and X . nH . X a" K (c,m,n e IN) . Then,

in order to prove that there exists an integer f = f(n ,c ,m ,y ) such

that X 6 , we may assume that ( i ) ,  ( i i )  and ( i i i )  of 1.21 

hold and prove that there exists g = g (n ,m ,y) e IN such that X «j9 G . 

To see this, we just follow the proof of Lemma 1.21, noting that 

Theorem 1.8 and Lemma 1.6 allow us to make 'bounded reductions'.

(b ) Suppose the hypotheses of Lemma 1.21, except that

G e (N n Z) (A n V)F and B/A e A n V (ra th e r than G e V , so

that A need not lie  in V ). Then we may s t i l l  assume that ( i ) ,

( i i )  and ( i i i )  hold in order to prove X sn G . Also, i f  c , 

m and n are as in (a ) above, we can make a sim ilar bounded reduction 

from f to g as in (a ) (with the same ju s tif ic a tio n ).

The following Lemma (used in the proof of Lemma 1.21 ( i i i ) )  is 

well-known.

1.23 LEMMA.

Let G be a group with subgroups Hq , H, Kq, K such that 

G = HK , Hq < H , Kq <j K and H/Hq (o r  K/Kq ) is periodic.

Put J  = <H0,K0> and N = NQ(J )  . Then N = (N n H)(N n K) .
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Proof.

Let g c N . Then g = hk where 

k- 1 k' 1h c H , k e K . Then KQ = Kj =

Jgk = J h and Hq s Hq s J h . Hence 

J  s Jh . But H/H0 is periodic, so 

that hn € J  for some n i l .  Hence 

J = J* so that h , and hence k , 

lies in  N . The reverse inclusion is clear. g

In order to show that NAF-groups of fin ite  rank lie  in Ws , 

we f i r s t  have

1.24 LEMMA.

Let X be a subnormal subgroup of H c AF , with defect at 

most n c W . Let A be an abelian normal subgroup of H such that

|H:A| = m is  fin ite . Suppose that X has fin ite  exponent e .
u (3m)n~̂

Then X has fin ite  exponent at most ev

Proof.
us«

We^inductianenn , the result being clear i f  n * 1 . So suppose 

n i  2 w ith the usual induction hypothesis. By induction, 

exp (X^X ) )  s e ^ ^  , so i t  is enough to prove that exp (XH) s e3"1

K

NnK
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when

X «  XH «• H .

Then XA «  XH and XA has at most m conjugates in H , each of 
H Hwhich is normal in X and a ll of which generate X . Hence i t  

is enough to prove that exp(XA) s e^ . Now XA = X[X,A] =

= X<CX,a] : a c A> = X<XXa n A : a e A> . Let a e A . Then

exp(XXa n A) s e2 and since A is abelian, exp(XA) s e.e2 as 

required.
□

1.25 LEMMA.

Suppose the hypotheses of Lemma 1 .24 and also that H has 

finite  rank r  and X has fin ite  order e . Then X  ̂ is  finite

r t
of order at most me ' '

Proof.

Let B = A n XH . Then B is abelian of rank at most r  and 

exp(B) s exp(XH) s (Lemma 1 .2 4 ). Therefore |B| s er ^3m̂

Since |XH: B| s m , we have the required bound.

□

Let mF (m c IN) denote the class of finite  groups of order at

most m .
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1.26 THEOREM.

Let denote the class of groups of (f in ite ) rank at most 

r  e K . Then ^cA(mF) ° » where f  = f(n ,c ,m ,r ) . In

p articular, nilpotent-by-abelian-by-  f in ite  groups of f in ite  rank 

are W-groups.

Proof.

Let G e NcA(mF) n be 9enerated as the Product of subgroups 

H and K , both of which contain X as a subnormal subgroup of 

defect at most n c li . By Remark 1 .22 (a ), i t  is enough to show 

that X G where g = g (n ,m ,r) e IN and ( i ) ,  ( i i )  of Lemma 1.21 

hold.

Using the notation of 1.21, IXI = IBX : B| s m . Also 

B n H c A and |H : B n H| s m . By Lemma 1.25, XH (and s im ila rly  

XK) is f in ite  of order less than a function of n,m and r  . Hence 

X has a f in ite  number g  ̂ of conjugates in H (o r in K) where 

9] s 9i (n ,m ,r ) . Let J = <NH(X ),N K(X)> . Then by Lemma 1.14,

|G : J l s 2g  ̂ and so G/Jq is  fin ite  of order at most gg = gg(n,m ,r) e IN . 

Hence XJq < 2 G (Theorem 1 .3 ). Since X < XJq , we may take g = gg+l .

□

Suppose (in  the notation of Theorem 1.26) that 

G.| c (A n yr ) ( mF) . Then, following the proof of 1.26 with G-|
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in  place of G , we see (using Remark 1.22(b)) that 

H = K = G/A c Vr+m (1.21( i ) ) ,  so we can bound the defect of X 

in G.| by g(n,m,r+m) . Therefore we have proved

1.27 COROLLARY.

Wc (A n yr ) ( mF) £ n Ws , where f = f(n ,c ,m ,r) .

□

Also we have

1.28 COROLLARY (see Theorem 1.9)

(S n M)F E (IIs .

Proof.

Let B e S n M . Then by (CR21 p.166), B has fin ite  rank 

and B e WAF . Therefore (S n M)F c WAF c ws by Theorem 1.26.

□

1.29 COROLLARY.

Let G e WAF . I f  the abelian subgroups of G have fin ite  

rank, then G c Ws .

Proof.

G contains a soluble subgroup B of fin ite  index, and the



abelian subgroups of B have fin ite  rank. By a result of Kargapolov 

([K V ]), B has fin ite  rank. Therefore G has fin ite  rank and so 

G c Ws by Theorem 1.26.

□

In Theorem 1.31, we w ill improve the second part of Theorem 1.26 

by showing that, i f  V denotes the class of groups of fin ite  rank, 

then (N n y)AF c ws , thereby removing the fin ite  rank hypothesis 

from the abelian section B/A . The cost of this improvement w ill 

be any bounded result, which we w ill not be able to have with the 

proof used.

1.30 LEMMA.

Let Z denote the class of periodic groups of finite  rank.

Let G c (A n Z)WS be generated as the product of subgroups H and 

K , both of which contain X as a subnormal subgroup. Suppose that 

X is periodic and that n = n (X /X ')  f in ite . Then X sn G .

Proof.

Let A e A n Z be a normal subgroup of G such that G/A e Ws . 

By Lemma 1 .6 , we may assume G = A ] H = A ] K = H K .  For p e IP , 

le t  Ap denote the p-component of A . Then Ap B Dp x Fp where

D„ Is d ivisible  and is  f in ite . 
P P
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Now A H = H(A H n K) and H * WS . By lemma 1.18, X sn A H . 
p k p ' P

Therefore CDp,sXD s X n A = 1 ( some s c N) , so by Lemma 1.17 we

have CD ,X] = 1 . Therefore X is  centralised by the d ivisible  part 
P

D of A and so (factoring G by D) we may assume that A = Dr F
p c P v

For each p e P  there exists an epimorphism

ty x]
[Ap,X,X]

which arises from the bilinear map (ap,xX‘ ) -*■ Cap,x3 CAp,X,X] .

Suppose that p e n 1 . Then Ap fi (X/X' )  = 1 , so that

CA ,X3 = [A ,X,X3 . But X sn A ]  X so we must have CA ,X3 = 1 . p p p P

Therefore (factoring G by Dr A ) we may assume that A is a 
pen' p

n-group and hence f in it e . Hence G e FWS and X sn G (Proposition

1 . 1 0 ) .  □

We can remove the periodic hypothesis from the class Z of 

Lemma 1 .3 0 :

1.31 LEMMA.

Let Z denote the class of groups of f in ite  rank. Let G e (A n Z)WS 

be generated as the products of subgroups H and K , both of which 

contain X as a subnormal subgroup. Suppose that X is periodic and 

that n * n (x /x ' )  is  f in ite . Then X sn G .
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Proof.

Let A c A n Z be a normal subgroup of G such that G/A e Ws . 

We prove that X sn G by induction on the torsion-free rank r of A 

the result being clear (by Lemma 1.30) i f  r  = 0 . So suppose r i  1 

with the usual induction hypothesis. By Lemma 1.6, we may assume that 

G = A ] H = A ] K = H K .  Let T be the torsion subgroup of A . Then

TH = H(K n TH) « ( A n  .

where V denotes the class of periodic groups of f in ite  rank. By 

Lemma 1.30, X sn TX , so (factoring G by T ) we may assume that

G = A ] H = A  ] K = H K  and A is torsion-free. (*)

Then (as in the proof of Proposition 1.18) CH(A) < G and i f  bars 

denote subgroups of G modulo CH(A) , we have G = A ] H = AK = HK 

and Cfl(A) -  1 . Also CR(A ) = A n R . Since X sn (^(AJX , i t  is 

enough to prove that X sn G .

Suppose that A n R / 1 . Then i f  e 

G to G/(A n R) , we have 

G® -  AeH° = A0 ]  K6 -  H6R6 and 

Xe sn H9 , X9 sn K® . Let 

t 9 be the torsion subgroup of A9 .

Then, repeating the argument used for 

T above (with H and K interchanged), 

we may assume that Te = 1 . Therefore

is the epimorphism from
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A6 is torsion-free, as is A and A n L  Hence A0 = A/(A n K) 

is of torsion-free rank less than that of A . By induction,

X0 sn G0 . Since X sn X(A n K) , we have X sn G (and so 

X sn G) . Therefore, we need only consider the case A n K = 1 .

Since A is torsion-free, we may now assume

(*) holds and CH(A ) -  CK(A) -  1 .

Since A is torsion-free, there is an embedding A -»• A fi Q (via  

the mapping a + a 8 1) . Thinking of A as a subgroup of A G Q = A* , 

say, the action of H on A extends to an action on A in the natural 

way, v iz : (a a q )h = ah 8 q (a e fl , h e H , q e Q) . Therefore 

Ch(A ) s Ch (A) = 1 and H (s im ila rly  K) acts fa ith fu lly  on A* .

So we have embeddings

H,K -  Aut(A*) = G L(r,Q ) .

Since X is periodic and subnormal in H and K , XH and XK are 

periodic. But periodic subgroups of GL(r,Q) are fin ite  (see [R l]

P• 8 5 ), whence XH and XK are fin ite . Putting J  = <NH(X ),N K(X)> 

we have XJQ sn G by Lemma 1.14 and Theorem 1.3. Since X «  XJQ , 

this completes the proof.

The reduction afforded by Theorem 1.8, when used on some group



G , is not hindered by the additional hypothesis that X (where 

X sn H , X sn K e tc .) belongs to some Q-closed class. Hence 

Lemma 1.31 remains true i f  6 c (W n Z)WS .

We can now prove 

1.32 THEOREM.

Let Z denote the class of groups of fin ite  rank. Then 

(N n Z)AF c w* .

Proof.

Let G e (W n Z)AF be generated as the product of subgroups H 

and K , both of which contain X as a subnormal subgroup. By Lemma 

1.21 (with V = U) we may assume that G e (A n Z)AF and that X 

is f in ite . Since AF c ws (Theorem 1 .9 ), X sn G by Lemma 1.31. 

Hence G e Ws .

□

I t  would be interesting to know i f  Ws contains the class of 

soluble groups of finite  rank. Since the proof of Lemma 1.31 (and 

Lemmas 1.18, 1.30) work under the (weaker) hypothesis that AX sn G 

(rather than G/A e Ws) , a simple induction yields the following 

partial result:

1.33 PROPOSITION.

Let G be a soluble group of finite  rank, generated as the product
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o f subgroups of H and K , both of which contain X as a sub­

normal subgroup. I f  X is  periodic and n(X/X')  is f in ite  (so 

that X/X' is a iernikov group), then X sn 6 .

□

We shall see in S i.5 (Theorem 1.41) that i f  we remove the re­

strictions imposed on X in Proposition 1.33, then we can at least 

conclude that X is ascendant in G (even i f  G is lo c a l ly  soluble 

o f finite  rank). We finish this section by identifying two subclasses 

of the class of soluble groups of f in ite  rank which w ill lie  in Ws , 

using well-known results of Mal'cev ([M V ]).

DEFINITION.

Let A-j denote the class of abelian groups A which satisfy: 

i f  T/iljdenotes the torsion subgroup of A then T(A) « M and A/T(A) 

has fin ite  rank. (A^-groups are otherwise known as abelian groups of 

f in ite  total rank. Mal'cev calls them A3~groups). Then define the 

class S.j by 5-j = PAj . (S  ̂ can also be defined as the class of

hyperabelian groups of fin ite  abelian section rank, which contains 

elements of only f in ite ly  many d istin ct prime orders: see [R2] 9 .3).

Soluble linear groups are nilpotent-by-abelian -by-fin ite  and 

5 -j- groups are nilpotent-by-abel1an-by-finite  of finite  rank (Mal'cev, 

see [R l] 3 .2 ). Then by Theorem 1.26, we have:
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1.34 COROLLARY.

( 1 )  S ,  c  Ws

( i i )  Soluble lin e a r groups of f in ite  rank are Ws-groups.

□

sf.g  Ascendancy and W .

By considering ascendancy, rather than subnormality, we can 

define the class of groups W in an analogous way to W :

1.35 DEFINITION.

W is the class of groups consisting of groups G which satisfy

(* ) :

Whenever G is generated as the product of subgroups ''j

H and K , both of which contain X as an ascendant subgroup, >(*) 

then X is  ascendant in G . ]

Whilst we might expect that i t  w ill in general be more d iff ic u lt  

to find W-groups than to find W-groups, ascendancy can sometimes allow 

us more freedom than subnormality. For example, the ascendant analogue 

of Theorem 1.8 (Theorem 1.37) allows us to make a reduction from 

hype rcen tra l-by-W s groups to abelian-by-Ws groups. Theorem 1.37 is 

used to prove the main result of this section (Theorem 1.41) which says 

that lo ca lly  soluble groups of fin ite  rank are Ws-groups.



Obvious subclasses of W are F and (PC)F ; more generally, 

because ascendancy is equivalent to subnormality in M-groups, 

W n M * W n M c W  . In fact, (ZA)M n U c Ul (Proposition 1 .3 8 (i) ,

ZA = hypercentral groups).

1.36 LEMMA (c . f .  Leona 1.6)

Let G be a group with subgroups X,H,K and A such that G = HK, 

X *»v H , X <av K (v ordinal) and A is an abelian normal subgroup of 

G . Then, in the notation of Lemma 1.5, gJ = H®K® = A® ] H® = A® ] K® 

and X® <v H® , X® K® . Also, H® and K® embed in G/A . Further, 

1f X0 a“ Gj and AX a1 G (X,u ord inals), then X a'1-2*“«  G .

Proof.

The proof of Lemma 1.6 (and Lemma 1.7) works here (w ith  A,jj, v 

in place of t.m .n  respectively).

□

Let ZA denote the class of hypercentral groups and (ZA)a the 

class of hypercentral groups with hypercentral series of length at most 

a (o rd in al).

1.37 THEOREM.

Let X ,y  and Z be S-closed classes of groups with V and Z also 

Q-closed. Suppose that (A n Z)X n V c W . Then (ZA n Z)X n V s. WS •
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Proof.

The proof is  essentially that of Theorem 1.8. Let 

G e ( ( ZA) n Z)X n V be generated as the product of subgroups H 

and K , both of which contain X as an ascendant subgroup. Let 

B c (ZA)q n z be a normal subgroup of G such that G/B e X . Let 

Z& (0 s 8 s a) denote the 6—  term of the upper central series of 

B . Then, as in the proof of 1 .8 ,

XZe asc XZ6+1 (0 s 6 s a) .

Therefore X asc U (X Z .., )  
Oseso B 

This completes the proof.

XB . Since G/B c W , then XB asc G .

0

1.38 PROPOSITION.

( i )  (ZA)M n Ws c ws . in particular, N(PC)F c ft/s .

( i i )  (ZA)A c Ws .

( H i )  FW ■ W . In p articu lar FWS = Ws .

Proof.

Let G be a group which is  generated as the product of subgroups 

H and K , both of which contain X as an ascendant subgroup. We 

wish to prove that X asc G .
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( i )  Let G « (ZA)M n Us . Ws is  Q-closed, so, by Theorem 

1.37 and Lemma 1.36, we may assume that G e AM n Ws and that 

H,K e M . Therefore X sn H and X sn K , so that X sn G c Ws . 

Hence G e Ws .

( I I )  Let G c (ZA)A . Again by Theorem 1.37 and Lemma 1.36,
2

we may assume that G e A and that H,K e A . Hence X < G .

This proves (1 i) .

( I I I )  Let G e Fill and le t  N be a fin ite  normal subgroup of G 

such that G/N e W . Then, as in the proof of Proposition 1.10,

INH : HnnI is fin ite  and XH^ sn NH . Therefore X asc NX asc G , 

proving ( 1 1 1 ) .

□

Parts ( i ) ,  ( i i )  and (111) of the next lemma are the W-analogues 

of Lemmas 1.18, 1.30 and 1.31 (with the hypothesis on X/X1 removed). 

Note that, since the class of periodic groups is N-closed and the union 

of periodic subgroups is periodic, then the normal closure of an ascendant 

periodic subgroup is periodic ( [R l ]  1.31).

1.39 LEfflA.

Let G be generated as the product of subgroups H and K , both 

of which contain X as an ascendant subgroup. Suppose that X is 

periodic. Then each of the following imply that X asc G .
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( i )  G is a Cernikov-by-U/s group.

( i i )  G is a U/s-group modulo a periodic abelian subgroup 

of f in it e  rank.

( i i i )  G is a Ws-group modulo a hypercentral subgroup of fin ite

rank.

( i v )  G is a hyperabelian group of fin ite  rank.

Note that for groups of fin ite  rank, the conditions hyperabelian and 

lo c a lly  soluble are equivalent (see CR2] 10.38 C o r . l ) .  Hence, by

( i v )  above, W contains the class of periodic locally soluble groups 

of f in it e  rank (we w ill remove the periodic restriction in Theorem 

1 .41). In particular, W contains the class of Bernikov groups (this 

is im plied directly by ( i )  above).

Proof.

( i ) Let A e V be a normal subgroup of G such that G/A c (t/s 

(re ca ll that V denotes the class of d iv isib le  abelian groups with min. 

Such an A c V exists by Proposition 1.38(111)). By Lemma 1.36, we

may assume G = HK = A 3 H = A ] K .  Then, i f  bars denote subgroups 
-Hof G modulo Ch(A) , we have X periodic and, following the proof 

_ o
of Lemma 1.18, X is f in ite  and X asc XCK(A) asc XCH(A)CK(A) sn G .

( i i )  Let A be a normal periodic abelian subgroup of G such 

that A has fin ite  rank and G/A e Ws . By Lemma 1.36, we may assume
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G = A ] H  = A ] K  = H K . For p c IP , le t Ap denote the p-component 

of A . Then

ApH = H(ApH n K) c OWs

and by ( i )  of this lemma,

putting B = <A : 1 s i s 
r pi

X asc XA 

r> for
P

Writing P  = {p 1 ,p2, . . . J  and 

s r  < to , we have

XBr asc XBr+1 (1 s r  < « )  .

Therefore X asc U (XB . )  = XA . F ina lly, XA asc G (since
l*r<u>

G/A £ Ws) , which proves ( i i ) .

( i i i )  By Theorem 1.37 (with X = Ws , Z = fin ite  rank groups, 

y *  U) , through which we can carry the hypothesis that X is 

periodic, we may assume that there exists a normal abelian subgroup 

A of G such that A has fin ite  rank, and G/A e Uls . We can use 

the same argument as in the proof of Lemma 1.31 (using ( i i )  above in 

place of Lemma 1.30 to get r id  of the torsion subgroup) to embed H 

and K in GL(r,Q) where r  s rank(A) . Since, in our case, XH
K

and X are s t i l l  periodic, we can repeat the remainder of the proof 

of 1.31, thus proving ( i i i ) .

<1 *> Let be an ascending normal series of G with
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abelian factors (a ord inal). For 6 s a , consider the group

S1 = fl n R ■ (B " «¡Ti *><* "  H) .

where bars denote subgroups of G modulo Gg . Since X asc H 

then S asc G, (5  R G ^ j )  . Part ( i l l )  (and ( i i ) and (1 ))  of

th is  lemma remains true i f  (in  its  proof) AX asc G (rather than 

G/A « (¡Is ) ; ^ 1  is abelian of fin ite  rank, therefore X asc Gg+  ̂ X

( s G.|) . Therefore

GgX asc Gg+1 X for 0 s B < a .

Hence X asc U (Gg+] X) = G , as required.

□

Hypercentral groups form an NQ-closed class (CHAD), so that 

(ZA)AF = ZA(AF) .

1.40 LEMMA (c . f . Lemma 1.21)

Let y be an S-closed and Q-closed class of groups. Let 

G e (ZA)AF n V be generated as the product of subgroups H and K , 

both of which contain X as a subnormal subgroup. Let 1 < A « B < G 

be a normal series of G such that A e ZA , B/A e A , G/B e F .
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Then in  order to prove X asc G , we may assume the following 

conditions hold:

( i ) A c A and G = A ] H  = A l K  = H K .

( i i )  B n H n K = 1 (assuming ( i ) ) .

( i i i )  B = <B n H, B n H> (assuming ( i ) ,  ( i i ) ) .

Proof.

( i )  follows from Theorem 1.37 (with X = AF , Z = u) and 

Lemma 1.36. For ( i i )  and ( i i i ) ,  we can use the proofs of Lemma 

1.21 ( i i ) ,  ( i i i )  (with the obvious modifications).

□

Putting Lemmas 1.39 and 1.40 together, we now have:

1.41 THEOREM.

Let y denote the class of groups of fin ite  rank. Then 

LS n y c Ws .

Proof.

Let G £ LS n y . Then G e (ZA)AF ([R2] 8 .16). Let G be 

generated as the product of subgroups H and K , both of which 

contain X as an ascendant subgroup. Then by Lemma 1.40 (and using 

its notation) we may assume that X is fin ite  and G = A ]  H = A ] K = HK 

Then G/A e AF c ws (Proposition 1 .3 8 (1 )), so by Lemma 1.39 ( i i i )  we 

have X asc G , as required.

□
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Remark.

Let y denote the class of groups of f in ite  rank. As noted 

in the above proof, LS n V c (ZA)AF . Also, (ZA)A n V c LS by 

( CR2D 10.38 Corollary 1 ). Therefore (LS)F n V = (ZA)AF n y and, 

using the above proof, we have (LS)F n V c ws .
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CHAPTER 2. PROJECTIVITIES.

§2.0 Introduction.

In this chapter we consider pro jectivities ( i .e .  isomorphisms 

of subgroup la ttic e s ) and their effect on subnormal and ascendant 

subgroups. §§2.1 and 2.2 are preliminary, in which the unary 

closure operation u and the class of R-groups (often called 

P-groups) are defined. In §2.3 we consider subnormality and pro- 

je c tiv it ie s . Using results of Schmidt ( CSH3) and Suzuki (CSZ3) ,  

we give necessary and su fficient conditions for a p ro jectivity of a 

fin ite  group la ttice  to preserve subnormality (Theorem 2.12).

Theorem 2.17 shows that projective images of subnormal subgroups 

of Cernikov groups behave in a sim ilar way to the finite  case. Using 

a result of Zacher ( [ Z 2 ] ) ,  we show that the projective image of an 

ascendant subgroup (o f any group) has an ascendiser (Corollary 2 .19 ).

In §2.4 we generalise Theorem 1.3 to include the case where 

H and K do not permute, but they are such that L(<H,K>) admits 

a pro jectiv ity  o for which H° and K° permute (Theorem 2 .21 ).

We define the class U>u so that Theorem 2.21 says that F c u u 

and so that Wu lies between J  and W . We then identify some 

other subclasses of Wu : the classes of Cernikov groups (Proposition 

2.22), metabelian groups (Theorem 2.24) and p olycyclic -by-fin ite  
groups (Theorem 2.26) are a ll contained in Wu .
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§2.1 Preliminaries.

A p ro jectivity is defined to be an isomorphism of subgroup 

la ttice s ; that is , i f  G and G are groups, then a map

o : L(G) L(fi)

is called a p ro jectiv ity  i f  and only i f  o is a b ijection  and whenever 

{A^ : X c A} is  a collection of subgroups of G , then

( n A.)° = n (A°) and <A. :X e A>° = <A?:X e A> . (* )
XeA A XeA * * X

Note that, in this d efin ition , i t  is sufficient to require that o is 

a bijection and that (* ) holds whenever |A| = 2 . This is because 

these (seemingly) weaker conditions are equivalent to the conditions

o is a bijection and o, o~  ̂ preserve subgroup inclusion, (**)

and (**) holds i f  and only i f  o is a p ro je ctiv ity ; fo r, suppose 

(**) holds and le t {A^ : X e A) be a collection of subgroups of G .

Let A° « n K >
XeA

. Then for X e A , A° s A° so that A s n A. 
XeA

whence A° s ( n
XeA

Ax )° . Also, for p e A , n A. £ A so 
X.A 1 “

that

( n 
XeA \ )° s A° . The remainder of (*)I is proved s im ila rly , and

clea rly  (**) holds i f  o is a p ro je ctiv ity .
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C learly, i f  o is a p ro jectiv ity  as above, then G° = G , 

lg = lg and o" 1 is a p ro je c tiv ity . Obvious examples of projectivities 

are those induced by (any) group isomorphisms, but not every projectivity 

is so induced (groups of different prime orders have isomorphic la ttic e s ). 

So we define the closure operation u as follows.

If  X is a class of groups, uX is the class of groups given by 

G e uX i f  and only i f  there exists G c X and a projectivity 

o : L(G) L (g ) .

That is , uX consists of the projective images of X-groups. When we

write G° e uX , we w ill mean that G c X and a is a p ro jectivity

of L(G) . Note that uX= u u(G) i .e .  u is unary.
GeX

Since an in fin ite  group has an in fin ite  number of subgroups, 

uF = F . Moreover, i f  G is a fin ite  group and o a pro jectiv ity  of 

L(G) , then the number of primes (including m u ltip lic itie s ) dividing 

the orders of G and G° are equal (C S Z]). Other u-closed classes 

of groups are the classes of soluble groups (CYV]), simple groups 

( CZ 1 ] )  and perfect groups (CNAD). Also, uA c A2 (CSZ3) and, more 

generally, given n e IN , there exists f  = f (n ) e h  such that 

uAn c_A^ (CYVD) . However, uA $ A and uW ^ N as we see from:
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Let 6 be an elementary abelian 3-group 

of order 9 and le t G be a non-abelian group 

of order 6 . C learly, G and G have iso­

morphic la ttices .

The above example, although a simple one, provides a very good 

model of how a pro jectiv ity  can fa il to map either a normal or 

ascendant subgroup to the same (in  2 .1 , any Sylow 2-subgroup of 

G is self-norm alising). I f  G is a group and G° e u(G) , then 

we say that a preserves ascendancy i f  whenever X is an ascendant 

subgroup of G then X° is ascendant in G° . Preservation of sub­

normality and normality are defined s im ila rly , in the obvious way.

Let G be a group and le t G° e u(G) . Then we say that a is 

index-preserving i f  and only i f

|U;V| = |U°:V°| for a ll subgroups V s U of G . (*)

Suzuki (CSZD I I . 6 ) calls such a p ro jectiv ity  s tr ic t ly  index-preserving 

and shows that when G is fin ite , (* ) is equivalent to the condition 

that (*) holds when U is c yc lic . These conditions are equivalent 

even i f  G is not fin ite ; this was proved by Zacher in CZ 11,using 

the following important result.

2 . 1  E X A M P L E .

2.2 THEOREM (Rips [RP], Zacher [Z l ] )

Let G be a group and G° e u(G) . Then i f  H is a subgroup of
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fin ite  index in G , H° has finite  index in G° .

□

Let X be a subgroup of a group G and le t G° e u(G) . 

Then we w ill write

to denote the pre-image (under a) of the core (X°) and normal
G

closure X°^G  ̂ respectively. In [B u ll,  Busetto proves the 

following result (the f in ite  case is due to Schmidt [S H ]):

2.3 THEOREM.

Let N be a normal subgroup of a group G and le t G° e u(G) .
G°Then N g and Nu are normal in G .

G □
2.4 REMARK.

If  H is a subgroup of finite  index in a group G and G° e u(G) , 

then Theorems 2.2 and 2.3 imply that H contains a normal subgroup N 

of fin ite  index in G such that N° «  G° (and |G°:N°| is f in it e ).

Hence a induces a p ro je c tiv ity  of f in ite  lattices a : L(G/N) -»■ L(G°/N°)

An index-preserving pro jectiv ity  of a f in ite  subgroup lattice  w ill 

map a maximal normal subgroup to a normal subgroup ([SZ] I I ,  2 .6) which
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is  therefore also maximal normal. So for f in ite  group la ttice s , 

an index-preserving p ro jectivity w ill map a composition series to 

a composition series. Thus we have

2.5 LEMMA. ([SHI Lemma 4.1)

Let G be a fin ite  group and le t G° c u(G) . I f  a is  index­

preserving, then o preserves subnormality.

0

The converse of Lemma 2.5 is clearly false (G and G° could 

have different prime orders); see Theorem 2.12 fo r necessary and 

su fficien t conditions for the converse to hold. Lemma 2.5 does not 

hold i f  G is an arb itrary group, even i f  G is  abelian as the 

following example shows. However, Rips (CRPD) has shown that for an 

a rb itrary group G , an index-preserving p ro je c tiv ity  w ill preserve 

ascendancy -  in fact, i f  N is a normal subgroup of G then 

N° G° (see also Theorem 2.8).

2.6 EXAMPLE. (See LI2D).

Let G = A x H where A is a quasicyclic p-group (p e P)  

and H = <h> is an in fin ite  cyclic group. Let a * l be a p-adic 

integer such that a = 1 (mod p) (a = 1 (mod 4) i f  p = 2) . Let 

A , H be isomorphic to A, H respectively and define an action of 

H = <h> on A by a^ = aa (a e A) . Put G = A ] H . Then there 

is an index-preserving pro jectiv ity  o :L(G ) L(G ) for which A° = A
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and H° = H . Then H o G but H is  not subnormal in G 

(a-1 is a non-zero endomorphism of A , so that CA,H] = A and 

-G _
H = HtA.H] = G) . Note that Rips' result mentioned above implies 

that H «1“ G .

The following results w ill be useful in the sequel.

2.7 THEOREM (CSZ3 I ,  Theorem 4)

Let G be a periodic group which is the direct product of Hall

subgroups GA (A e A) . If  G° c u(G) then G° -  Dr G° is a
AeA A

Hall decomposition of G° .
□

A subgroup M of a group G is said to be modular in G , 

written M mod G , i f  and only i f  given any subgroup X of G the
o

map ox:C<X,M>/M] CX/XnM] defined by Y x = Y n X is a lattice

isomorphism. Equivalent conditions are that M satisfies the modular 

identities

X n <Y,M> = <Y, XnM> for a ll subgroups Y s X and 

A n <B,M> = <AnB, M> for a ll subgroups A,B with H s A .

A subgroup X of a group G is said to be permutable in G , written 

X per G i f  and only i f  XU = UX for a ll subgroups U of G .
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The concepts of modularity, ascendancy and permutability are 

linked by the following result.

2.8 THEOREM (Stonehewer [S 3 ])

Let X be a subgroup of a group G ; then X per G i f  and 

only i f  both X asc G and X mod G . (In  fact, i f  X per G then 

X «w+1 G ([S  5 J .)
□

An example of an ascendant non-modular subgroup can be found in 

a dihedral group of order 8 . A 2-subgroup of z3 is modular but 

not ascendant. C learly, a normal subgroup N of a group G is 

modular (and permutable) in G , and therefore N° mod G° for any 

G° « u(G) .

§2.2 Singular P ro je c tiv itie s .

Following Suzuki (CSZD p.42), we say that a pro jectivity is 

singular i f  i t  is not index-preserving. Suppose that G is a group, 

G° e u(G) and o is singular. Then there exists subgroups V s U 

of G such that |U° : V°| + |U:V| < »  . By Remark 2.4, V contains 

a normal subgroup N of U such that N° «  G° and |U:N| , |U°:N°| 

are fin ite . Hence the induced p ro jectiv ity
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is a singular p ro jectiv ity  of f in ite  group la ttice s . Now o induces 

a p ro jectiv ity  on the subgroup la ttice  of each Sylow subgroup of U/N ; 

i f  a ll such projectivities are index-preserving, so is o . Hence 

there is a prime p and a Sylow p-subgroup S/N of U/N such that 

°/t(S/N) is sin9u la r. Then we say that a is singular at p , o 

is p-singular. Further, the Sylow p-subgroups of U/N are cyclic 

or elementary abelian (CSZ] I ,  Theorem 12).

I f ,  in the above, G is a f in ite  group, then we w ill take U = G 

and N = 1 , so that the Sylow p-subgroups (when a is p-singular) 

of G are cyclic or elementary abelian. Note here that o need not 

be singular on every Sylow p-subgroup; for example, i f  G = e3 and 

o is  a 3-singular auto-projectivity of L(G) , then o is  2-singular 

but o is  index-preserving on two Sylow 2-subgroups of G . Also, we

note that i f  G is any p-group (p prime) and G° e u(G) , then G°

is a p-group i f  and only i f  a is index-preserving.

Given a prime p , we define the class of groups R by: a group 

G is an Rp-group i f  and only i f  e ither (a ) or (b ) hold:

(a ) G is an elementary abelian p-group.

(b ) G = P 1 Q where P is  a subgroup of type (a ) and Q is a

subgroup of prime order q < p whose generator acts fa ithfu lly 

on P by raising each element of P to one and the same 

power r  h l(mod p) .
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We define the class of groups R as R = p u p  Rp . (R-groups 

are often called P-groups in  the lite ra tu re ). The smallest example 

of a non-abelian R-group is the Rg-group . R is the u-closure 

of the class of elementary abelian groups, and i f  G is a non-simple 

Rp-group so is any projective image of G (see CSZ] 1 .3 ). Note that 

i f  G c R then every subgroup of G is either normal or self-normalising 

in  G ( i f  G is of type (b ) above, the self-normal ising subgroups are 

those that contain a subgroup of order q ).

Let G be a f in ite  group and suppose that o is a p-singular 

pro jectiv ity  of L (G) (p prime). Let S be a Sylow p-subgroup of 

G such that a / ^ Sj is  singular. We say that o is p-singular of 

the f i r s t  kind i f  there does n o t  exist a (non-abelian) Rp-subgroup 

of G which contains S as a proper normal subgroup. I f  there does 

exist such an Rp-subgroup, we say that o is p-singular of the 

second kind. (These definitions are independent of our choice of S .)

We collect together some results of CSZ] in the following theorem, 

which we use in the sequel.

2.9 THEOREM. (Suzuki CSZ] Propositions 2.7 , 2 .8, 2.9)

Let G be a f in ite  group and le t a be a p-singular projectivity 

of L(G) (p prime). Then

(a ) o is q-singular of the f i r s t  kind for some prime q ;

(b ) i f  o is p -singular of the f i r s t  kind, then G contains 

a normal Sylow p-complement;
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(c ) i f  o is p-singular of the second kind, then G = R x t  

where R is a non-abelian Hall Rp-subgroup of G con­

taining a Sylow p-subgroup S of G as a proper normal 

subgroup (so that S < G) .

□

2.10 LEMMA.

Let G be a fin ite  group and suppose that o is a projectivity 

of L(G) . I f  o is p-singular of the second kind, then so is o"1 

(and conversely).

Proof.

Suppose that o is p-singular of the second kind. Then by

Theorem 2 .9 (c ), we can write G = R x T as a Hall decomposition of

G with R a non-abelian Rp-group. Write R = P ] Q where P is

a p-subgroup and Q has prime order q < p . I f  R° were abelian,

i t  would be a p-group, contradicting the fact that P° is not a p-group.

So R° is a non-abelian Rp-group of order p“ r (where pa = |P| ,

p > r e P ) . Let Qj ........ .. Q o be the conjugates of Q in G .
P°

P° contains a subgroup of order r  , and P° n Q° = 1 ( I s i s  p“ ) . 

Therefore some Q° = Q° , say, has order p , so we may assume that Q° 

has order p ( i .e .  o~  ̂ is p -s ing ular). R° is non-abelian, so o"^

is p-singular of the second kind.

□
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Let G be a group and le t  G° € u(G) . Suppose that N is 

a normal subgroup of G with |G:N| = p c IP . I f  o is not 

p-singular, then N° < G° and |G°:Na | = p .

Proof.

By Theorems 2.2 and 2.3, N _ < G and |G:N | is f in ite .
G G°

Hence o induces a p ro jectiv ity  of fin ite  lattices

8 : i-(G/N Q) L(G°/(N°) ) and c le a rly , 1f 8 is p -singular, so
G G

is o . Therefore we may assume that G is fin ite ; that N° «  G° 

now follows by ([SZ ] Proposition 2.11). Let P be a Sylow p-subgroup 

of G , so that PN = G . Then G° = P°N° and p = |G:N| = |P:PnN| « 

= |P°:P° n N°| = |G°:N°| , as required.
□

The fact that an index-preserving p ro jectivity w ill map a normal 

subgroup of prime index to a normal subgroup (which is implied by 2. 1 1 ) 

is  used by Rips [RP] to prove that an index-preserving p ro jectiv ity  

preserves ascendancy.

§2.3 Subnormality and P ro je c tiv itie s .

As we saw in Lemma 2.5, an index-preserving p ro jectiv ity  o of 

a fin ite  group lattice  w ill preserve subnormality. The following 

result te lls  us when the converse holds.

2 . 1 1  L E M M A .
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Let G be a f in ite  group and le t G° e u(G) . Let 

n = { p i » . . . , p r ) denote the set of primes p e n(G) for which o 

is p-singular. Then o preserves subnormality i f  and only i f  

the following conditions hold.

( i )  G = H ]  K where H = 0 ^ ,(6 ) and K is a cyclic n-group.

( i i )  o/ is  index-preserving and every singularity of o

is of the f i r s t  kind.

( i i i )  G° = H° 3 K° and, given p e n . o is p-singular on 

every Sylow p-subgroup of G , their images under o 

being isomorphic.

REMARKS.

I f  n = b in the above then the theorem is true (G = H) by 

Lemma 2.5. Also, we note that i f  o preserves subnormality, then in

( i i i ) ,  H° need not be a Hall subgroup of G° (fo r  example, i f  G 

and G° are R^-groups of order 6 and 9 respectively, then in 

the above notation, n = {2 } and |H°| * |K°| = 3 ); i f  H° i s  a 

Hall subgroup of G° , then o~  ̂ also preserves subnormality (see 

C oro llary 2.14).

Proof.

2 . 1 2  T H E O R E M .

By the f ir s t  remark above, we may assume that n is non-empty.
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We f irs t  prove the necessity of conditions ( i ) - ( i i i ) ,  so suppose 

o preserves subnormality.

Let p e n  and suppose (fo r  a contradiction) that o is

p-singular of the second kind. Then by Theorem 2 .9 (c ), 6 = R * T

where R,T are Hal 1-subgroups of G and R is a non-abelian

Rp-group. Then by Theorem 2 .7 , Ga = R° * T° is a Hall decomposition

of G° . Let P be the unique Sylow p-subgroup of G . P° sn R°

(by hypothesis) and R° e Rp . Hence P° is  a p-group, contradicting

the p-singularity of o . Therefore every s ingularity is of the f ir s t

kind. Because H = 0 ,(G ) , a/, . is index-preserving and ( i i )
n *- ( “ )

holds.

Pick subgroups S. e Syl (G) (1 s i s r )  such that a / .  /c .
1 pi

is singular. Then by Theorem 2 .9 (b ) (and conjugating by a suitable 

ĝ  e G) there exists normal p.j-subgroups A., of G such that

G = Ai ] Si (1 s i s r )  . (*)

r
Clearly H = n A. and S. s A. for 1 s j  s r  , j  f  i . 

i-1 1 J 1

We prove, by induction on r  = |j i| , that

« • < - « "  ] St ( 1)> 3 S, ( 2 ) > - )  3 S , ( r )  < »

where H = 0 ,(G ) , o/ . is  index-preserving and t is any 
w l (H)

permutation of 1 ,2 , . . . , r  .
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If  r  = 1 , (1 ) is true by (*) 

i c i l , . . .  r> and consider o.. = 

normality and i f  jij = n\ip^) »

so suppose

’ °/t(A 1> '
then by (* ),

r  a 2 . Let 

o. preserves sub- 

is p-singular

i f  and only i f  p <  ^  . Put Kj -  « „ . (A j )  . Then Hj =■ « „ . (G )  = H 

and °1/L (S j) is singular for p  ̂ e • By induction,

N  * ( - < "  I * , , , ! , } ) !  - ) * t l , V l )  (**)

where is index-preserving and t .. is any permutation of

t. •• » i r _l5 = f l , . .  .,1-1 , i + l , . .  , r } .  Combining (* ) and (**) gives

the desired result ( 1 ) .

By (1 ) ,  HSi < G for 1 s i s r  . Also, HSi n HS  ̂ -  HfSjnHSj) = H 

for 1 s i ^ j  s r  . Hence

G S, H srH
H * I T  “I T  ' ( 2 )

Let i c { l , . . , r }  . Suppose, for a contradiction, that S, is not 

c y c lic . Then S.. is elementary abelian and S° is a non-abelian

R -group. Put 
pi

S° -  P° 1 Q° «here P° «
v s <

) and Q? has prime

order . Then Q.. 4 so that « 1 * 1 * Si Ai -  G * whence

( Q i V  sn G° . Therefore Q? is contained in the subnormal subgroup



74

S’  n (Q1A1)° of S° , which implies that s (Qi A<)° . But

now Si = Q^(S. n A.j) = Q. , a contradiction. Hence S.. H/H = S.

is cyclic  so that G/H is cyc lic  (from (2 ) ) .  By the Schur-Zassenhaus 

Theorem there exists a n-subgroup K of G such that G = H ] K , 

and ( i )  holds.

H < G so that H° mod G° and H° sn G° , whence H° per G°

by Theorem 2.8. Let p e Jl and le t  S] ,S2 e Sylp(G) . Since G/H

is abelian, HS] »  HS2 «  G . Therefore |Ŝ | ■ |H°S  ̂ : H°| -

|H°S| : H°| = |S|| . Since S  ̂ and S2 are c y c lic , they must be

isomorphic. I t  remains to be shown that H° < G° (and then ( i i i )  

holds). Since G° -  H°K° and H° n K° »  1 , then n(G°) » n(H°) y n(K°) 

= n' u n(K°) . Now Ka = S° x . . .x  S® where Ŝ  is  a cyclic Sylow 

p^-subgroup of K (Theorem 2 .7) and S? is  a cyclic  q^-group 

(Pi + e p  » 1 s 1 s r )  . I f  some q.. n* , then S? normalises 

the subnormal subgroup H° of H°S? . Alternatively, suppose q. e n' . 

Let Q? be a Sylow q^-subgroup o f G° containing S? . Then 

1 + Q? n H° e Sylq.(H°) > so that Q. n H is a non-triv ial q..-group 

and |Q?| a q? . I f  Q? is  c y c lic , then Qi is a cyclic  q.-group con­

taining Ŝ  . But Ŝ  is a p^-group, a contradiction. Therefore Q. 

is elementary abelian and |S?| = q.. . Now H° sn H°S? and since 

|H°S? : H°| ■ q̂  , S? must normalise H° . Therefore H° < G° and 

we have proved the necessity of ( i ) ,  ( i i )  and ( i i i ) .  In order to prove 

the sufficiency of the conditions ( i ) - ( i i i ) ,  we w ill use the following 

result, due to Schmidt ([SH ] Theorem 4 .2).
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Let 6 c F and G° e u(G) . Suppose X is a subnormal subgroup

of G such that X° is not subnormal in G° . Let N be the

maximal normal subgroup of G such that N s X and N0 <i G° .

Then there exists non-abelian R -groups R?/N° of order 
Pi 1

2 . 1 3  T H E O R E M .

1 (Pi « p . n. ^ 1 , 1 s i  n ,  t i l )  such that

(•) 5 I . Ü 1
N° N°

R°
x x  l

N°
T° r° 

x —  is a Hall decomposition of —  , 
N° N°

(b ) G R1 
if ‘  T T

.  Rt x 
•• T T  " J  is a Hall decomposition of ,

(c ) X° n ? sn G° ,
iX°nlS| jXnRj .

'  Ri -  Pi ■ |— 1 ( ' s 1 s *)

Proof of 2.12 ctd.

Suppose that conditions ( i ) - ( i i i )  of Theorem 2.12 hold, but 

that o does not preserve subnormality. Let X be a subnormal sub­

group of G such that X° is not subnormal in G°. Then (a ), (b ), 

(c ) of Theorem 2.13 hold and (using the notation of 2.13) the 

induced project!'vity ô on L(G/N) is p..-singular fo r 1 s i s t  ; 

hence, i f  P../N is  a (unique) Sylow p^-subgroup of G/N , then
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Pi /N -  Ti N/H for any Ti c Sylp^(G) , P°/N° 2 T^/(T° n N°)

is not a p..-group and so o is  p ^sin g ular (so that {p1 ....... p^} c n

and there is  no conflict of notation). P1 is cyclic  (by ( i ) )  and

P-|/N is elementary abelian, so that |P-|/N| = p̂  . Therefore

|Rj/N| = p-|S-j where p1 > s  ̂ e JP (P-j $ R1 because |P°:N°| = q1 < |R^:N°|).

Let Q°/N° « Sylp^(R°/N°) .

Then |Qi/N| = s.j so that o is s-j-singular and, as above, so is o . 

Therefore p1 ,s1 e n • Since Qj/N e Syls  ̂ (G/N) we can P1ck

S] € Syls (G) such that Q^/N = SjN/N . Since K is a cyclic Hall

9i
n-subgroup of G , there exists c G such that [S-j ,T^ ] = 1 .

9i 9i g /
But then CQ-j ,P-j] ■ [Sj N .TjN ] s N , so that P] 1 -  P] normalises

Qj , a contradiction. Hence o preserves subnormality and Theorem 2.12 

is proved.

□



7 7

Let G be a f in ite  group and le t  G° e u(G) , where < r  

preserves subnormality. Then, in the notation of Theorem 2.12, 

o“1 preserves subnormality i f  and only i f  n(H°) n n(K°) = &

(that is ,  H° = 0w,(G ° )). I f ,  however, there exists q e n(H°) n n(K°) 

then a Sylow q-subgroup of G° is elementary abelian of rank at least 

two and a Sylow q-subgroup of K° has order q .

Proof.

We use the notation of Theorem 2.12 throughout. We prove the 

second part of the corollary f i r s t .  Let q e n(H°) n n(K°) and pick 

Q° € Sylq(G°) such that Q° contains the cyclic  Sylow q-subgroup 

K° of K° . Suppose, i f  possible, that Q° is  cyclic . Since 

1 t Q° n H° £ Sylq(H°) and is index-preserving, Q must

be a cyclic  q-group. But Kq is  a p-group for some p \  q ( p e n )  

which is a contradiction. Therefore Q° is elementary abelian of 

rank at least 2. Since K° is also c y c lic , K° has order q , which 

proves the second part of the corollary.

Suppose that o  ̂ preserves subnormality. Then by Theorem 2.12 

applied to o' 1 we must have H° = O^.fG0) . Conversely, suppose that 

n(H°) n JI(K°) = is . We show that conditions (1 )-(1 1 i)  of Theorem 2.12 

are satisfied for , which then implies that o”1 preserves

subnormality; H° = so that ( i )  holds. Clearly o- V ^ ‘̂ n°) is

2 . 1 4  C O R O L L A R Y .
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index-preserving, and by Lemma 2.10, every singularity of o" 

is of the f i r s t  kind; thus ( i i )  holds. Since the Sylow subgroups of 

K and K° are mapped to each other, ( i i i )  holds. This completes 

the proof.

□

Lack of a Sylow structure in an arbitrary periodic group G 

means that we cannot immediately say anything about the p-subgroups 

of G i f  L(G ) admits a p-singular p ro jectiv ity . For locally fin ite  

groups, however, we have the following Lenina, which shows that (as in 

the finite  case) an abelian p-group must be of a specific type in order 

to admit a singular projecti v ity .

2.15 LEMMA.

Let G be a locally f in ite  group and le t G° e u(G) . Suppose 

that o is  p-singular (p prime). Then one of the following holds:

( i )  every p-subgroup of G is elementary abelian;

( i i )  every p-subgroup of G is cyclic  or quasicyclic.

Proof.

There exists subgroups N,S,U of G such that N < U , N°« U° , 

|U:N| $ \ \ f  :N° | < » ,  S/N « Sylp(G/N) and SCT/N° 1s not a p-group. 

Let T be a f in ite  subgroup of S such that S = NT . Suppose, i f



possible, that o / ^ T j is  not p -singular. Then |S:N| = |T:TnN| =

= |T°:T0nN0 | » |S°:N°| , a contradiction. Hence o / ^ y j is 

p -s ing ular and there exists T-j e Sylp(T )  such that T *  is not a 

p-group.

Let P be a fin ite  p-subgroup of G . I f  G contains no 
2

elements of order p then, since o is  p-singular on the fin ite  

la ttic e  L(<P,Tj>) , P must be elementary abelian. I f  G contains 

an element g of order p then, since o is p-singular on the 

f in ite  la ttic e  L(<P,T-| ,g>) , P must be cyclic . Therefore either 

every p-subgroup of G is elementary abelian (and ( i )  holds) or every 

such subgroup is cyclic  (and ( i i )  holds). This completes the proof.

□

2.16 LEMMA.

Let G be a group and le t G° e u(G) . Then (G°)F = (GF)° .

I f  G is  a Cernikov group, so is  G° .

Proof.

The subgroups of fin ite  index in G are in bijective correspondence 

(v ia  o ) with the subgroups of fin ite  index in G° , by Theorem 2.2. 

Hence (G ° )F = (GF)° . I f  G is a Cernikov group, then Gf £ S n D . 

Since uS = S ( CYV□ ) and utó = Ài (c le a rly ) then (G°)F = (GF)° e SnM

and so G° is a Cernikov group.
□
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We can exploit the structure of a Cernikov group to say 

something about the projective image of a subnormal subgroup; 

the relation of the following result to Theorem 2.13 is made 

e xp lic it in the remark after the proof.

2.17 THEOREM.

Let X be a subnormal subgroup of a Cernikov group G and

le t G° « u(G) . Then X° is  normalised by (G°)F and

X° sn X°(G°)F (G0)" .

Proof.

G° is a Cernikov group by Lemma 2.16. Let G° = X°(G°)F .

Then GF «  G F , X n gF •> XGF -  G, and X° n (G j)F •> Ĝ  . Therefore, 

in order to prove that X° is normalised by (G°)F , we may assume 

that G = G1 and X n GF «  1 . By Theorem 1.13, |G:NQ(X)| is

fin ite  so that X «  GFX = G . Therefore

G = GF * X and G° = (G°)F 3 X

Define sets of primes = n ( c f ) \  n(x> and Jig = n(GF ) n n(x) .

Then GF = 0 (G F) * 0 (GF) and by Theorem 2.7,
’ l ’ 2
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(G°)F = (0 <GF))°  X (0 (GF))°
1 2

(X x 0 (GF))°  = Xo » (0 (GF))°
"1 " l

I f  = U , then Xo < G° as required, so assume 4

Suppose we have proved that Xo asc G° . Then, since Xo mod G° ,

we have Xo per G° by Theorem 2.8. But a fin ite  permutable subgroup

is subnormal (CS2.D Theorem F) and then by Theorem 1.13, Xo < G°

as required. Therefore i t  is enough to prove Xo asc G° . By (* ),

we may assume that 0 (GF) = 1 , so that 
"l

G  ̂ is a i^-group.

Suppose, i f  possible, that o is p-singular for some p e .

Then by Lemma 2.15, every p-subgroup of G is  c y c lic  or quasicyclic. 

But i f  Xp c Sylp(X) , then XpOp(G^) is a quasi c yc lic  p-group con­

taining a proper in fin ite  subgroup Op(G^) » which is  impossible. 

Therefore

o is not p-singular for p e n2 .

For i ¿ 0 , define subgroups n. (G^) = < g « G ^ :  g ^   ̂ = 1,  p t n2> 

and X.. = X il^(G^) . Then X = Xq s X| s . . .  is  an ascending chain
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of normal subgroups of G and U X. = G . Further, for i a 0 , 
1*0 1

X..+j is generated modulo X.. by elements of order p c jig •

Therefore (by Lemma 2.11) X? < X? , . Hence X° asc U (X?) = G° 
1 1  1*0 1

and the f irs t  part of the proposition is proved.

For the second part of the proposition; i f  X°(GF)° sn G°

there is nothing to prove, and otherwise we can use Theorem 2.13,

applied to the group XG*7GF sn G/GF and (induced) projectivity

o : L(G/G^) ■* L(G°/(G^)°) , to give the desired result (by the

following remark).

In CNZD, Napolitani and Zacher prove a similar result to 

Theorem 2.13 in the case that X «  G and X° is not ascendant in 

G° (even i f  G is in f in ite ; the finite  case is due to Schmidt [S H ]). 

A consequence of this result (and Theorem 2.13) is that X° , whilst 

not being ascendant in G° , is not far o ff , in the sense that 

X° asc Xa(G°)" : in  Theorem 2.13 (using its  notation), i f  we put

R° = <R°........ R°> , then X° = (X° n R°)(X° n T°) asc X°T° and

□

Remark.

We see from the following 

theorem that the above con­

sequence also holds for the

projective image of an 

ascendant subgroup.
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We say that a subgroup L of a group G is  ¿-invariant in 

G i f  and only i f  LT = L for any a uto -p ro jectivity  t of ¿(G) . 

Clearly, an ¿-invariant subgroup is characteristic  and any projective 

image of i t  is also ¿-invariant.

2.18 THEOREM (Zacher [ Z 21 p.66) .

Let X be an ascendant subgroup of a group G and suppose that 

X° is not ascendant in G° for some G° £ u(G) . Then there exists 

an ¿-invariant subgroup L of G and a set of primes n such that
p

X° asc X°L° and £ = Dr , where R_/L is  a Hall R -subgroup 
L p £ n r  P P

of G/L and the induced pro jectivity on ¿(Rp/L) is p-singular. In

particular, X° asc X°(Ga )" , and a cannot be index-preserving.

□

2.19 THEOREM.

Let G be a group generated by subgroups (X e A) , each

of which contains X as an ascendant subgroup. Suppose that 

Ga e u(G) where X° asc G° . Then X asc G .

Proof.

Suppose, for a contradiction, that X is not ascendant in G . 

Then by Theorem 2.18 (applied to o”^ ) ,  there exists an ¿-invariant
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subgroup L° of G° and Hall Rp-subgroups Rp/L° of 

G°/L° (p c n) such that X asc X L ,

G° Rn -1
_  = Dr and o is p-singular on L(R°/L°) . 
L pen L P

By Theorem 2.7, -jj

For X e A XL
T  "

* Dr -P- is a Hall decomposition of G/L . 
pen L

XLnR

Since R /L is a non-abelian R -group, we must have XL n R o H LnR 
P P p X p

for a ll p e n , X e A . Therefore XL o <H^L : X e A> = G and so

X asc G , which is a contradiction.

□

2.20 COROLLARY.

The projective image of an ascendant subgroup of a group has an 

ascendiser. In a fin ite  group, the projective image of a subnormal 

subgroup has a subnormaliser.
□

Of course, the second part of Corollary 2.20 also follows from 

Theorem 2.13 by using a sim ilar proof to that of Theorem 2.19.



§2.4 The Class Wu .

As we saw in Chapter l ( S l . l ) ,  J  e  W , F c w but F i  J  .

On the basis of the following res u lt, we w ill define an intermediate 

class Wu that s t i l l  catches F ; that is , F and J  s. s W .

2.21 THEOREM.

Let G c F be generated by subgroups H and K , both of which 

contain X as a subnormal subgroup. Suppose there exists G° e u(G) 

such that G° = H°K° . Then X sn G .

Proof.

Suppose that the Theorem is false and pick a counter-example 

such that f irs t ly  n = |G| and then d = |G:H| + |G:K| + |X| is 

minimal.

Suppose, i f  possible, that H is  not a maximal subgroup of G 

and le t M be a proper subgroup of G which properly contains H . 

Then M° =* H°(M° n K°) , M * <H,MnK> and X sn H , X sn MnK .

Hence X sn M by minimality of n . But now G° = M°K° , G = <M,K> 

and X sn M , X sn K . Hence X sn G by minimality of d , a con­

tradiction . Therefore H and (s im ila rly ) K are maximal subgroups 

of G .

If  X° is subnormal in both H° and K° then X° sn G° by
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Theorem 1.3, whence by Corollary 2.20 we have X sn G , a

contradiction. So we may assume that X° is not subnormal in H° .

Apply Theorem 2.13 to the subnormal subgroup X of H , with

p ro jectiv lty  o/L^Hj : Then (in  the notation of 2.13)

H/N «  R./N * ...*  R./N x T/N (R./N e R ) and 
I K 1 P-j

where (X n R̂  )/N has prime order p.. ( i  = l , . . . , i )  and 

Pi 4 Pj i f  i 4 j  - N is (defined as) the largest normal subgroup 

of H such that N s X and N° <i H° . Also X*n T#sn Htf. Suppose 

that this decomposition of X/N contains more than one direct factor. 

Then at least two of the groups XnR.j, . . .  .XnR^ , X n T are proper 

(n o n -triv ia l) normal subgroups of X and each such subgroup w ill be 

subnormal in  both H and K ; by minimality of d , each w ill be 

subnormal in G and therefore their jo in  X is subnormal in G ( [W l]),  

a contradiction. Therefore X/N = (XnR^)/N and has order p , say.

Further, X*̂  = (XnR^)  ̂ A = X . Also, by the minimality of d ,

we have N sn G . Since H and K are maximal in G , then 

N® s HnK . C learly, N̂ nX + X , so we must have n X = N .

Because |X:N| = p ^ q = |X° : N°| , , and hence *

is p -singular. We consider the two different types of singularity:
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<H,K>

(a ) o/L(K) 

the f i r s t  kind.

is p-singular of

By Theorem 2 .9 (b ), K =

Therefore 

XN° , K A„"G SnNG

Therefore XNG/NG (order p) is normalised by the p'-group ApNG/NG

. _ _ __  , k,G
P P

which implies X «2 G , a contradiction.

(b ) 1S p-singular of the second kind.

By Theorem 2 .9 (c ), K = R * B where R is a non-abelian 

Rp-subgroup of K and R,B have co-prime orders. Then

and every p-subgroup of K/NG is contained in RNG/NG and is 

normal in K/N6 . Therefore XNG < K which, as in case (a ),  gives 

a contradiction. This completes the proof.

□



We define the class of groups as follows: a group G 

is a Wy-group i f  and only i f  (* ) holds:

Whenever G is generated by subgroups H and K , ^

both of which contain X as a subnormal subgroup, and > (*) 

G° e u(G) with G° = hV .  then X sn G . J
Theorem 2.2 ]  says that F ç Wu , and clea rly  J  ç liî  ç w .

2.22 PROPOSITION.

Wu contains the class of Cernikov groups.

Proof.

Let G be a Cernikov group generated by subgroups H and K , 

both of which contain X as a subnormal subgroup, and suppose that 

G° e u(G) where G° = H°K° . Since H,K e M , X is normalised by 

HF and by KF . But G° * H°K° is a Cernikov group (Lemma 2.16), 

so by Lemma 1.14 we have (G°)F -  (H°)F(K°)F . Therefore GF -  HFKF

normalises X . So to prove that X sn G , we may assume that GF ■ 1 

Now G is fin ite  and X sn G by Theorem 2.21.

□

Proposition 2.22 w ill be superceeded by Proposition 2.25, which 

says that (AF)U c ti>u (Cernikov groups form a u-closed class by Lemma 

2.16). Proposition 2.25 is proved using a reduction lemma akin to 

Lemma 1 .6 :

-  8 8  -
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2.23 LEMMA.

Let G be a group generated by subgroups H and K , both of 

which contain X as a subnormal subgroup. Suppose that G° e u(G) 

and G° = H°K° . Let A be an abelian normal subgroup of G and put 

G1 = AH n AK, H, ■ H n AK, K, = AK n H and N = (AnH,)(AoK,) . Then

( i )  N «  G]  »  AH, ■ AK, = <H1 ,K,> and G° = <A°,H°> »  <A°,K°> -  H°K° . 

Let bars denote subgroups of G, modulo N . Then X sn TTJ , X sn and

( i i )  G, = A ]  H, = A ]  K, = <H,,K,> and H^,K^ embed in G/A ;

( i i i )  i f  X sn G*, and AX sn G , then X sn G .

Suppose that A° is an abelian normal subgroup of G° . Then N° <j G° 

and, i f  bars denote subgroups of G° modulo N° ,

(<v) G7°. r  3 r  ]  Tq°. and ^  embed in G°/A° .

Proof.

( i )  By Lemma 1.5 ( i ) ,  N o G, = AH.'1 "  1i o uo
Therefore G1 = <A ,H,°>=

-  <A ,K,> . Also. H°K° = ( H°n<A°, K°>)(<A°, H°>nK°>) -<A0 ,H°> n H°K° n <A°,K°: 

= G° . Therefore G, = <H, ,K,> .

( i i )  From (1 ),  A s <H,,K1> so, by Lemma l .5 (1 v ) , (v ) ,  ( i i )  follows.

( i i i )  As in the proof of Lemma 1.6, the hypotheses of ( i i i )  imply 

that NX sn AK sn G and X sn NK by Lemma 1.7.

( iv )  This follows from Lemma 1.5 ( i v ) , ( v i  ) .

□

Lemma 2.23 is limited in application by the fact that A° has to be 

abelian and normal in  G° . This need not bother us when G is metabelian,

as we see from:



2.24 THEOREM.

A2 c U .
-  u

Proof.
2

Let G e A be generated by subgroups H and K , both of

which contain K as a subnormal subgroup. Suppose that G°e u(G)

and G° = hV  . Let A = G' . Then, by Lemma 2.23 ( i i )  (and using

its notation), G.j = <Ĥ  ,K^> and embed in G/A e A . Therefore

X < G1 . Since AX < G , 2 .2 3 (i i i )  gives X sn G , as required.

□

2.25 PROPOSITION.

(A F)u <= i#u .

Proof.

We prove something stronger, that i f  G e AF and G° e u(G) n AF , 

with G generated by subgroups H and K , both of which contain * 

as a subnormal subgroup, and G° = H°K° , then X sn G . (We do not 

require u(G) g A F .) Let G,H,K,X and g” be as posed. Let A , , a| 

be abelian normal subgroups of G.g"  (respectively) such that |G:A11 

and |G°:A|| are f in ite . Let B = A, n A? . Then Bg c A and |G:BQ|

is f in ite . |G°:(B°) | is  f in ite  (by Theorem 2.2) and (B°) s A° < A .
G b G° '

By Theorems 2 .2  and 2 .3 ,  (Br ) _ is normal in G and has fin ite  
b G°

index in G . Therefore, we may assume Â  = Â = A , say.
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By Lemma 2.23 and Theorem 2.21, we may assume that 

G = A ] H = A ] K  = <H,K> and G° = A° ]  H° = A° ]  K° = H°K° .

Now H 1 K 1 G/A e F , so that G° -  hV  is f in it e .  Therefore 

G is fin ite  and so X sn G by Theorem 2.21.
□

Using results of Baer ([B A ]) i t  can be shown that AF n M is 

a u-closed class, and hence (by Proposition 2.25) A f n 2 c ^  .

This is superce^ded, though, by the following re s u lt.

2.26 THEOREM.

( PC) F £ U/u .

Proof.

Let X be a subgroup of a p o ly cyc lic -b y -fin ite  group G . To

show that X sn G , i t  is enough to prove that Xe sn G0 for any

fin ite  homomorphic image Ge of G ( CK1] Satz 3 .4 ) .  Suppose that

G is generated by subgroups H and K , both of which contain X as

a subnormal subgroup, and suppose that G° e u(G) with G° = H°K° .

Let N be a normal subgroup of G such that G/N is  fin ite . By

Theorems 2.2 and 2.3, G and G° contain normal subgroups of fin ite

index N and (N°) g respectively. By Theorem 2.21 (applied to 
G G

G/N ) , we have XN sn G . Therefore XN = XN N sn G . By 
G° G° G°

Kegel's result (above), we can conclude that X sn G .

□
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F in a lly , we include the following result, which is 

of Corollary 2.20.

2.27 PROPOSITION. 

u(WnM) ç J  .

Proof.

Let G° e u(G) where G c NnM . Suppose that G° 

by subgroups H° and K° , both of which contain X° 

subgroup. Then X sn G and by Corollary 2.20, X° asc 

fore X° sn G° .

a corollary

is generated 

as a subnormal 

G° e M . There-

□
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CHAPTER 3. K-SUBNORMALITY.

§3.0 Introduction.

K -subnormality in fin ite  groups was introduced by Kegel ( CK 2 D) 

as a generalisation of subnormality. Kegel shows that in a fin ite  

group G , the K-subnormal subgroups form a sublattice of L(G)

(see Theorem 3 .2 ); here K denotes a class of groups which is 

closed with respect to forming extensions, homomorphic images and 

subgroups (<P,Q,S>-closure).

This chapter is in three sections. In §3.1 we give preliminary

definitions and results. In §3.2 we consider the relations n^

("K-norm ality") and sn^ ( "K-subnormality") for variable <P,Q,S>-

closed classes K of f in ite  groups. D istinct classes K1 , K2

correspond to d istinct relations n„ , n., (Proposition 3.7) and,
*1 *2

with essentially only one exception, correspond to d istin ct relations 

snK^’ snK2 (Corollary 3 .6 ). Also, we have two results which generalise 

well-known characterisations of f in ite  nilpotent and fin ite  Dedekind 

groups; i f  G is a fin ite  group, then every subgroup is K-subnormal 

i f  and only i f  G is the direct product of a K-group and a nilpotent 

group (Theorem 3 .4 ); every subgroup of G is K-normal i f  and only 

i f  G is either a K-group or a Dedekind group (Theorem 3.8).

In §3.3 we consider i f  Theorem 1.3 remains true when "subnormal" 

is replaced by "K-subnormal". That is , i f  G = HK is  a fin ite  group
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and X is «-subnormal in both H and K , is X «-subnormal 

in G ? This is true i f  G is  soluble (Theorem 3.12) but false 

for arb itrary fin ite  groups G , even i f  X <K H and X <K K 

(Example 3.11).

The definition of «-subnormality need not be confined to 

fin ite  groups and classes «  of fin ite  groups. Thus we can speak 

of «-subnormality in in fin ite  groups and define the «-subnormal 

analogue, , of the class U o f  Chapter 1. is contained 

in It) , and we identify some subclasses of l»K in Theorem 3.14, 

Theorem 3.15 (W  ̂ contains a ll polycyclic groups) and Theorem 3.17

( l»K contains a ll soluble Cernikov groups).

§3.1 Preliminaries.

The classes of groups that are closed with respect to forming 

extensions, homomorphic images and subgroups are precisely those 

classes which are PQS-closed. This follows from

3.1 LEMMA.

<P,Q,S> -  PQS .

Proof.

Clearly PQS s <P,Q,S> . Using the relations SP s PS , SQ s QS
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and QP s PQ ( [R l] Lemma 1.12), we have

(PQS)Z = PQSPQS s PQPSQS 5 P2QSQS 5 P2Q2S2 -  PQS s (PQS)2

Therefore PQS is a closure operation containing P,Q and S 

since <P,Q,S> is the least such closure operation, then

<P,Q»S> £ PQS .
0

Suppose that K is a PQS-closed class of fin ite  groups. We

define L^ as the class of simple groups which occur as composition

factors of K-groups. 

K-groups and

Clearly, L^ consists precisely of the simple

K . P L k .

Conversely, i f  L is any class of f in ite  simple groups which is 

closed with respect to taking simple sections, then any subgroup of 

a PL-group has composition factors which are simple sections of 

L-groups. Hence SPL = PL . Also, QPL s PQL = PL so that QPL = PL 

Therefore PL Is PQS-closed and LpL -  L .

So we can uniquely describe any PQS-closed class K o f  finite  

groups by specifying its  simple subgroups L^ . I f  L^ consists of



-  9 6

fin ite  n-groups (some n c p )  then so does K , and, defining 

II(<) (n(LK) )  as the set of a ll primes that occur in the orders

of K-groups (L^-groups), then n(K) = n (L^) and

F n S .¡y. c K c F
n ( < )  n ( < )

I f  and K^ are PQS-closed classes of groups, then 

Kj n /<£ is PQS-closed and nK ) = Lk  n LK ' A^so» the

smallest PQS-closed class of groups containing K-| and K2 is 

P(K1 u K^) , because SP s PS , QP s PQ and both S and Q

are unary.

Let K be a PQS-closed class of f in ite  groups. Following 

Kegel (CK 2 3 ), we say that a subgroup X of a fin ite  group G is 

K-normal in G , written X <K G or X nK G , i f  and only i f

either X < G o r G/Xq e K . We say that X is K-subnormal in G , 

and write X G or X snK G , i f  and only i f  there exists a chain

of subgroups X = XQ s X] s . . .  s Xn = G (n € W) such that 

Xi "*K Xi+l F°r  0 s i < n .

For example, taking K = I in the above definition, then 

X Oj G (X s rtj G ) i f  and only i f  X < G (X sn G) . At the other



-  9 7  -

extreme, the statements X <p G , X snp G and X £ G are 

equivalent. Also, i f  G e K (a rb itra ry  K) then every subgroup 

of G is K-normal (see Theorem 3 .8  for the converse).

We shall consider n  ̂ and sn^ as relations of fin ite  groups,

and sometimes we shall write n, sn, s in place of n̂  , sn  ̂ ,

np (= snp) respectively. We p a rt ia lly  order (using "s") the

relations n  ̂ and sn^ for various K in the natural way; that

is , i f  K.j and K2 are PQS-closed classes of f in ite  groups, then

we write n,. s n,. (sn,. s sn*, ) i f  and only i f  whenever X n„ G
_ J _____2 *1 *2 *1

(X snr  G) 
*1

for a subgroup X of a f in it e  group G , then X n„ G 
*2

(X sn^ G) . Clearly, c im plies that n^ s n^ and

snk- s srV 
*1 2

Remark.

Let X be a subgroup of a f in ite  group G and le t K be a 

PQS-closed class of fin ite  groups. Then K is NQ-closed and i t  is 

not hard to see that G  ̂ contains a l l  subnormal K-subgroups (in  

fact, G contains a ll K-subnormal subgroups -  see below). Note 

that I s t  t  <=> I  s S{  ; also G/XG i  (  s I  .

We summarise the results of [K 2  D in  the following theorem.



3.2 THEOREM.

Let K be a PQS-closed class of fin ite  groups, and le t  G 

be a fin ite  group with subgroups X,Y and N such that N i  G

and I < ¡ 1 (n  e H) . Then

0 ) X n »  ■>£ Y ;

( 1 1 ) ^  £  and i f  N s Y then J  

l < J t  (m e K ) ;

^  implies

( 1 1 1 ) i f  X -  X* then X a" G ;

<1v) i f  X «  K then XG « K j

(v ) 1f Y sn^ G then <X,Y> snR G .

In particular , the /(-subnormal subgroups of G form a sublattice

of L(G) .

Proof.

See Kegel C K 2 ] (the proof of ( i i i )  is also given here, in 

Lemma 3.13). We give an alternative proof of ( i v )  using induction 

on n , the result being clear i f  n s 1 . The case n = 2 is the

crucial one, which we prove in:
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3.3 LEMMA.

In the notation of Theorem 3.2, suppose that X e K and

x \  v "k  g • The" xG * K ■

Proof.

Suppose that the lemma is false and le t 6 be a minimal counter­

example. By the remark above Theorem 3 .2 , X is not subnormal in 

G . I f  X is not normal in Y , then Y/Xy e K and Y e  PSK = K . 

But Y G , so that X® s Y^ e K , a contradiction. Therefore 

X «  Y ♦ G .

Let N be a non-trivial normal subgroup of G . By the minimality 

of G (and Theorem 3 .2 (H ) )  we have XGN/N e K . Therefore N t  K , 

so that G^ = 1 and

G contains no n on -triv ia l subnormal K-subgroups. (1)

By 3 .2 ( i ) ,  X < X** n Y X  ̂ . I f  X^ ^ G then the minimality of G 

(X^limplies that Xv '  is a K-group, contradicting (1 ). Therefore

X^ = G and so G/N e K for a ll non-triv ial normal subgroups N of 

G . Hence

G is a unique minimal normal subgroup of G . ( 2 )
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K K KTherefore G s yQ s y , so that X n G «  G «  G and by (1 ),

X n G* = 1 . Therefore X s C6(GK) < G . But XG = G , so that

K k
G £ Z(G) and by (2 ) ,  G has prime order p , say, and p k n(K) .

K
Thus G has p'-index in G , so by the Schur-Zassenhaus theorem,

K L,
G = G ] Q for some p'-subgroup Q e K of G . But G s Z(G)

K
so that G = G * Q . Then by (1 ) ,  we must have Q = 1 , so that 

G has order p , which is c learly a contradiction.

□

Proof of 3 .2 (iv ) .

We a re | induction on n to prove that X c K where X e K 

and X = Xq X̂  <K . . .  <K Xn_-| ^  Xn = G . The result is  clear 

i f  n = 0 or 1. So suppose n s 2 with the usual inductive 
X X

hypothesis. Then X n”  ̂ e K by induction, and X n~̂  < Xp G . 

Therefore X6 = (X n_1)6 e K by Lemma 3.3.

□

53.2 nK and sn^ .

We know that sn  ̂ = sn . However, i t  is not true that i f  

snK = sn for some PQS-closed class K of fin ite  groups, then K = J 

i f  we take K = Fp (p prime), then i f  X is a K-normal subgroup
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of a fin ite  group G , either X «3 G or G/Xr e F : in  eitherG p
case, X sn G , so that snp = sn .

P

More generally, we ask under what conditions does snr = sn„ imply
*1 *2

that = Kg (where K^, £ F are PQS-closed classes) ?

We f ir s t  have a result which, in  the case K = I , gives the w ell- 

known characterisation of fin ite  nilpotent groups as fin ite  groups in 

which every subgroup is subnormal.

3.4

group

THEOREM.

Let K be a PQS-closed class of fin ite  groups. For a finite  

G , the following conditions are equivalent:

( i )  Every subgroup of G is  /(-subnormal.

( i i )  G = Kx N where K e K and N is nilpotent.

( i i i )  G = Gk * GK where GK is nilpotent and has co-prime 

order to G^ .

Proof.

( i )  => ( i i i ) .  Suppose that ( i )  holds and le t n1 = n(G^) 

and JI2 = n(G/GK) . Then for p « JI(K) n n(G) and P c Sylp(G) , 

we have P e Fp c K and, by Theorem 3 .2 ( iv ) ,  P s G  ̂ . Therefore

n 1 = j i ( K )  n  n ( G )  a n d  n -j n  j ig  = $  . ( 1)
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Let q « and Q e Sylq(G) • I f  Q *  4 Q then K contains a

non-trivial q-group, whence Q c Fq s. K . By Theorem 3 .2 ( iv ) ,
is

q e ni , which contradicts (1 ). Hence Q = Q and (by Theorem 

3.2(111)) Q sn G ; therefore Q < G . Let

N = <Q : Q e Sylq(G) , q £ H?> .

Then N = 0 (G) is a nilpotent normal subgroup of G and (by (1 ))
2

N n G^ = 1 . Therefore

G = G„ * N * 0 (G) * 0 (G)
k. ir-| *2

is a Hall decomposition of G , and G* £ N . I f  G* 4 N then 

there exists q e n(K) n n(N) = JI(K) n n(G) n n(N) , so that 

q e n Jig , contradicting (1 ). Therefore GK = N and ( i i i )  

holds. C learly, ( i i i )  implies ( i i )» so i t  only remains to prove

( i i )  => ( i ) .  Suppose that ( i i )  holds. We prove ( i )  by induction 

on the n il potency class c of N , the result being clear i f  c = 0 . 

So suppose c a 1 with the usual induction hypothesis. Let X be a 

subgroup of G = K * N and le t Z = Z(N) . Then Z s Z(G) and 

KZ n N -  Z(KnN) = Z , so that

G _ KZ N
7 7”  7  '
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By induction, XZ sn^ G . Since X <1 XZ , then X snK G and

( i )  holds. This completes the proof.

□

Remark.

A fin ite  nil potent group can also be characterised as a fin ite  

group in which every Sylow subgroup is normal, but we cannot append 

to Theorem 3.4 the condition that every Sylow subgroup of G 

is K-normal. For example, take K = 3j and G = H * K where

H = Eg and K has order 5 . Then G satisfies ( i ) ,  ( i i ) ,  ( i i i ) 

of 3 .4 , but a Sylow 2-subgroup of G is not K-normal in G 

(otherwise G e K) .

We use Theorem 3.4 to prove that, apart from the exceptions

mentioned at the beginning of this section (§ 3 .1 ), d istinct PQS-

closed classes , K^ of fin ite  groups do indeed give rise to

d is tin ct relations sn*, , snr  . This w ill be a corollary of 
*1 *2

3.5 PROPOSITION.

Let , < 2  be PQS-closed classes of fin ite  groups and 

put n.j = n (K j) , Jig = niKg) • Then the following are equivalent:

( i )  sn*, s snr 
*1 2
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( i i ) K.j c Kg or K.| = Fp for some c JljNJIg (and sn^ = sn)

Proof.

Clearly ( i i )  => ( i ) .

( i ) => ( i i ) . Suppose that ( i )  holds. If  G e K-j , then by Theorem

3.4, 6 = 6^ x G  ̂ is a Hall decomposition of G and G  ̂ is ni 1 - 
*2

K? K?
potent. I f  also G e then G e N n F  ̂ c > so that G = 1 

and G e K2 . Therefore n Fw £ K2 and

K K
(  ■ ( .  »  i  = t .  «  G 2 , G„ = 0  (G ), G 2 = 0 . <G) s N . (1 )

Let n -  n((C, «  F ^ )  . By (1 ) ,  K, n F^, = w , so that |n| s 1

(otherwise K. n F , contains the wreath product o f two groups of I »2

distinct prime orders, which is not nilpotent). We consider the two 

possibilities fo r  |n|

If  n = ip }  , then p e lljUig and we claim that K.j = Fp .

Certainly F c K, 
P 1

, and i f  Fp + Kj then there exists q e n n.

Then i f  H = AIB , where |A| = q ;and |B| ■ P ., we have H e K,
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and (by (1 ) )  H = 0q(H) * 0p(H) • But 0p(H) = 1 » a contradiction. 

Therefore K-j = Fp and ( i i )  holds.

Fina lly, i f  n = is then by (1 ),  c K2 and so ( i i )  holds.

□

3.6 COROLLARY.

Let K.| and Kg be PQS-closed classes of fin ite  groups. Then 

the following conditions are equivalent:

( i ) s n* ,  = s n r
*1 *2

( i i )  K] = Kg or K.| = Fp , Kg = Fq for some p,q c P u {1 }

(and sn~ = sn^ = sn) . 
i KZ

Proof.

Suppose that ( i )  holds. Using Proposition 3.5 twice, we have 

the following p ossib ilities:

K-j s Kg or Kj = Fp (p p rim e ), and

< 2  £ Kj or K2 = (q prim e).

Consideration of the 4 possibilities shows that ( i i )  holds. Conversely,

( i i )  => ( i )  is clear.
□
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Putting K-j = K and Kg * I in Corollary 3.6 shows that 

sn^ = sn i f  and only i f  K = I or K = Fp (p prime). Th is 

is the only case where a PQS-closed class K of f in ite  groups 

is not uniquely determined by the relation sn^ .

I t  is natural to ask whether Corollary 3.6 remains true i f  

we replace sn^ with n  ̂ . In fact, a stronger result holds:

3.7 PROPOSITION.

Let K-| and K2 be PQS-closed classes of fin ite  groups.

Then n,, s n„ i f  and only i f  K, s C, , Hence n„ = n., i f  
*1 *2 1 Z K1 K2 

and only i f  K-| = Kg .

Proof.

Clearly K̂  s K2 implies that n^ s n^ . Suppose that 

n̂ 1 5 n ^  . Then sn^ s sn^ so that by Proposition 3.5 e ith e r 

Kj £ K£ or K̂  -  Fp (p prime). Suppose, i f  possible, that £ Kg

Let 6 be a f in ite  p-group which contains a non-normal subgroup X 

(fo r example, G is the wreath product of two groups of order p ). 

Then G e Fp =K^ , so that X G and hence X ^  G . Therefore 

<2  contains the non-trivial p-group G/XQ , which implies that 

= Fp £ < 2  » a contradiction. Therefore K̂  c Kg . This completes 

the proof.
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A f in ite  Dedekind group is (defined to be) a group in which 

every subgroup is normal. Such a group is either abelian or is 

the d irect product of a quaternion group of order 8 and a finite  

abelian group which has no elements of order 4 . Theorem 3.8 is 

the K-normal analogue of this result.

3.8 THEOREM.

Let K be a PQS-closed class of fin ite  groups and le t G be 

a f in ite  group. Then every subgroup of G is K-normal in G i f  

and only i f  either G £ K or G i s a  Dedekind group

Proof.

Suppose that every subgroup of G is K-normal in G . Then 

by Theorem 3.4, G = Ĝ  * GK where GK is nil potent and has
K

co-prime order to GK . Let X be a subgroup of G . Suppose 

that X * G* . Then X + G , so that G/Xg c K . Therefore 

GK * Xg and X = GK < G , a contradiction. Therefore X < GK and
K

G is a Dedekind group.

If  Gk is also a Dedekind group then so is G , so suppose 

that G  ̂ is not Dedekind. Let Y be a non-normal subgroup of GK 

Then G/Yg e K , whence GK s Yg s G  ̂ . Therefore GK * 1 and 

G « K . The reverse implication is clear.

□
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We ask whether (fo r a PQS-closed class K ç F) the relations 

sr\K and nK can coincide. Certainly, i f  K = F then sn^ = s = nK 

Theorem 3.9 shows that this is the only case where sn^ and n  ̂

are equal.

3.9 THEOREM.

Let K be a .QS-closed class of f in ite  groups. Then sn^ = n  ̂

i f  and only i f  K = F .

Proof.

If  K = F then sn^ = s = n  ̂ . Conversely, suppose that 

snK = nK • We show that « = F by stages. We prove:

m  w £ K Let n -  n((C) . Suppose, i f  possible, that there

exists p e P\n . Let G = AlB where A,B are groups of order p .

Since sn s sn< and B sn G , we have B <K G by hypothesis. But

B + G , so G/Bq e K and p e n , a contradiction. Therefore

n = P and i n holds.

( i i ) K = F n £  or K = F . Suppose not. Then by ( i ) ,  there 

exists non-abelian f in ite  simple groups H and K such that H k K 

and K e K . Let G = H x K and consider any non-trivial proper 

subgroup X of K . Then X ^  K < G so that X G (by



hypothesis). Since K is simple, we must have = 1 and 

G € K , which contradicts the supposition that H i  K .

Therefore ( i i )  holds.

( i i i ) K = F . By ( i i ) ,  i t  is enough to prove that K $ S a F .  

Suppose, for contradiction, that K * «SnP. Consider the group 

G = H * (AiB) where A,B are groups of prime order p and H is 

isomorphic to Ag , the alternating group of degree 5. Then 

B sn (AiB) <j G so that B <K G . Now B {  G so G/BQ e K and 

Bq = 1 , whence G e K and H e K , a contradiction. Therefore 

K -  F .

□

3.10 COROLLARY.

Let and K2 be PQS-closed classes of f in ite  groups.

Then sn^ = n^ i f  and only i f  = F .

Proof.

Clearly Kj = = F implies sn^ = s = n^ . Conversely,

suppose that sn*, = n*, . Taking the transitive  closure of both
K1 *2

sides of this equation, we have sn^ = sn^ . Therefore n  ̂ = sn^ , 

so that K2 = F by Theorem 3.9. Then by Corollary 3.6, ^  ,

as required. □
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Let L be a class of fin ite  simple groups which is closed

xounder taking simple sections; there are 2 d is tin ct such

xo X0
classes (2 is certain ly an upper bound, and there are 2

xod istin ct classes of simple abelian groups). Hence there are 2 

d istin ct PQS-closed classes K of fin ite  groups, of which (by 

Corollary 3.6) only x0 give the same relation sn^ (= sn) .

xo
Hence, by Proposition 3.7 and Corollary 3.10, there are 2 

d is tin ct relations n^ or snK .

$3.3 The Class b>K .

A natural question to ask i f  i f  Theorem 1.3 remains true 

when "subnormal" is replaced by "K-subnormal", where K is any 

PQS-closed class of fin ite  groups. The following example shows that 

i t  does not remain true. However i t  does remain true i f  we suppose 

that the group is soluble (Theorem 3.12).

3.11 EXAMPLE.

I f  G is a permutation group on the numbers l , 2 , . . . , n  and 

H is a (proper) transitive  subgroup of G then G = Stabg(i)H for
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1 s 1 s n ([SC] 13.1 .9 ). Take n ¿ 5  and le t G * AR .

( a )  : n odd. Let h = (1 2 . . .  n) < G and put H = Ng(<h>) 

and K = Stabg(l) = An_j . Then G = <h>K = HK and <h> has 

(n -2 )l conjugates in G . Therefore ] H] = n (n -l)/ 2  and

1 HnKj = (n -l)/2  . Let L^ consist of a ll simple groups of finite  

order less than n !/2  . Then, putting X ■ HnK , we have X H , 

X K but X is not K-subnormal in HK .

( b )  : n even. We partition ( l , 2 , . . . , n }  into pairs

Pi * {a i ,b .}  , 1 s i s n/2 . Then, as in (CSC] 13.1.10), the 

set H of elements of G which permute the P .'s  is a transitive 

proper subgroup of G . Then i f  K = Stabg(l) , . we have G = HK . 

Put X = HnK . Since n 2 6 , X H  . Therefore, i f  K is as 

in (a ) , we have X ^  H , X K but X is not K-subnormal 

in G .

3.12 THEOREM.

Let K be a PQS-closed class of fin ite  groups. Suppose that 

G is a fin ite  soluble group which is generated as the product of 

subgroups H and K , both of which contain X as a K-subnormal 

subgroup. Then X is K-subnormal in G .
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Proof.

Suppose that the theorem is false, and consider a minimal 

counter-example G such that |G:H| + |X| = s is also minimal.

We proceed to derive a contradiction to the existence of such a G .

( i )  H is maximal in  G . Suppose, for a contradiction, 

that there exists a subgroup L lying s t r ic t ly  between H and G . 

Then L = L n HK = H(LnK) . By the minimality of G , we have

X sn^ L . But G = LK , so by the minimality of s , X sn^ G , 

which is a contradiction. This proves ( i ) ,  so that |G:H| = q°

(q prime, a z 1 ) .

( i i )  H is core-free. Suppose not. The hypotheses of the

theorem hold modulo the group HQ f 1 , so that XHg sn^ G by the

minimality of G . But X sn^ XHQ , which gives a contradiction.

( i i i ) H contains no n o n -triv ia l subnormal subgroups of G .

Suppose not, and le t S be a subnormal subgroup of G such that

S s H . Since H is maximal in  G , then SG s H , contradicting

( 11) .

( i v )  XH, XK £ K . By Theorem 3 .2 ( iv ) ,  i t  is enough to 

prove that X e K . Suppose not. If  X = XK then X sn H , X sn K 

by Theorem 3.2(111) so that X sn G by Theorem 1.3: hence X sn^ G
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a contradiction. Therefore 1 < X* < X . Now XK is K-subnormal 

K ^  Kin both H and K and, since (X ) = X , Theorem 3 .2 ( i i i )  implies 

that XK is subnormal in both H and K . By Theorem 1.3, XK sn G 

which contradicts ( i i i ) .  Hence ( i v )  holds.

Let A be a minimal normal subgroup of G . Then A is an 

elementary abelian p-group (p prime) and G = AH by ( i )  and ( i i ) .  

Then A n H < AH = G and ( i i )  implies A n H = 1 and p = q . We 

claim that p * n(K) . For, suppose that p e n(K) . Then A e K and 

by ( i v ) ,  AX = A]X e K . Therefore X AX . But AX sn^ AH = G , 

whence X sn^ G , a contradiction; thus the claim is true.

Let ji = n ( x H ) u n(XK) . Then p U and b y ( i v ) ,  F n S ^ c K

H <IT Hall ,(H )  . Then H € Hallir w<G> and XH s H . Letir
Hall,. w . Then XK s and K isn contained in  some Hall

n-subgroup H  ̂ of G (where g c G) . W riting g = hk (h e H, k e K) 

we have

XK s kJ » Kjj lh s hJ s H .

Therefore XG = X ^  s H and by ( i i )  we have X s X® = 1 , a 

contradiction. Therefore the theorem is true .

□

We may s t i l l  talk of K-subnormality in  infin ite  groups, by



using the same definitions as in the f in ite  case and allowing K 

to be any PQS-closed class of groups. Of course, given an infin ite
K

group G , and G/G w ill not necessarily belong to K I f  

we impose the extra condition of R-closure on K (to ensure 

G/G e K) then we w ill have gone too fa r, because this forces 

K *  I  or K = U (free groups are residualy Fp-groups for any 

prime p ( [ I I ] ) ) .  Also, we no longer have a characterisation of K 

in terms of . I f  K consists of periodic groups (n-groups, 

say), then K need not equal -  for example, K might consist 

of soluble n-groups of fin ite  rank.

I f  K does not consist of periodic groups, then K contains 

Fp for a ll p e IP and hence S n H c K . I f  K £ S n ft then we 

must have K ■ I  , S n M  or K * F n for some n c P  ( i f  K 

consists of periodic groups then K c F ; 1f K contains non-periodic 

groups then K = S n M) . Therefore, i f  G e S n $ and H G for 

some PQS-closed class K , then (because K n S n M is PQS-closed) 

either G e K , H «  G or |G:H| is f in ite .

I t  is not hard to see that the basic properties of K- sub norma 1 i ty 

("intersecting" and "factoring") given in Theorem 3.2 ( i ) ( i i )  also 

hold in the infin ite  case. Theorem 3.2 ( i i 1) also holds in general: 

the proof of this in the fin ite  case ([K 2  ] Lemma 4) s t i l l  works.

For completeness, we give a proof here.
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3.13 LEMMA.

Let K be a PQS-closed class of groups. Let X be a
K

subgroup of the group 6 and suppose that X = X snK G . Then 

X sn G .

Proof.

Let X = xq <K X1 •‘ ‘ *K Xn = G be a K_subnormal series 

from X to G . We prove that X sn G by induction on n , the 

result being clear i f  n s 1 . Suppose that n * 2 with the usual 

inductive hypothesis. Then X sn Xn l  (by induction) and we suppose, 

for a contradiction, that X is not subnormal in G . Let Y = ( xn_^)g 

Then G/Y e K and X $ Y . Therefore X n Y is  a proper normal

subgroup of X and X/(XnY) e K , which contradicts the supposition 

that X = XK . Therefore X sn G .

We define the class of groups by: i f  G is a group then

G e (UK i f  and only i f  (* ) holds for any PSQ-closed class of groups K

Then £ W and Theorem 3.12 implies that F n S £  ( i f

□
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G e F n S , then the K-subnormal subgroups of G are precisely 

the (K n F)-subnormal subgroups). We w ill identify some other 

subclasses of ; in view of Example 3.11, we re stric t ourselves 

to finding subclasses of n S . Note that is , like W , 

Q-closed, as is .

I t  is not hard to see that Lemma 1.6 and Theorem 1.8 s t i l l  

hold for sn^ in  place of sn (where K ■ PQSK) ; the proofs are 

v irtu a lly  the same and even the bounds s t i l l  hold. We shall refer 

to these K-subnormal resul ts as Lemma 1 .6* and Theorem 1.8 * .

Using these reductions, and sim ilar proofs to those for W (Theorem 

1.9, Proposition 1 .10 ), we have

3.14 THEOREM.

UK contains the following classes: WA , NF n S , (F n S)W^ .

□

3.15 THEOREM.

S n H c (il̂  .

Proof.

Let K be a PQS-closed class of groups. Suppose that G is 

a polycyclic group which is generated as the product of subgroups
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H and K , both of which contain X as a /(-subnormal subgroup.

Let K * K n PC . Then, inside G , K,-subnormality is equivalent

to /(-subnormal i t y ,  so we may assume that K = £ PC . By the

remarks after Theorem 3.12, either K -  J (and X sn G by Theorem

1 .9 ), K -  PC (and X G) or K c F n S . Therefore we may

assume that < = F n S for some n. c p  . Consider the 
*1 1

/(-subnormal series

" * X0 “ k  X1 " K -----  °K Xn = H and

X “  Y0 “ (t V1 -  ■ •••  vn -  K (0  s "  < - )  •

Considering a ll the non-normal steps X̂  X ^  , Yj Yj+^

(0 s i , j  s n -1 ) in  these series, define the set of primes n as

consisting of the primes dividing the orders of the K-groups

Xi+i/(X <)v  * Y - i / ( Y . ) y  Then n is a finite  subset of n.
1 + 1 1 Xi+i J + l J Yj+ i i

We show that X sn^pn5 j G by induction on the Hirsch length

h = h(G) of G .

If  h = 0 then G is fin ite  and the result holds by Theorem 3.12 

(with F n in place of K) . So suppose h 2  1 with the usual 

induction hypothesis. G contains a normal p o ly -(in fin ite  cyclic ) 

subgroup B of fin ite  index. Put KQ = F n and let A be the
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penultimate term of the derived series of B . Let N = (AnH)(AnK) .

Then N is a normal abelian subgroup of = AHnAK (as in Lemma

1 .5 ), and because AX sn*. G (induction) i t  is enough, by Lemma 
0

1.6* , to show that XN/N sn, G,/N . But i f  N * 1 , then 
K0 1

h(G|/N) < h(G) and the result holds by induction. So we may assume 

that N = 1 and G = G-j , so that

G = A D H = A ] K  = HK.

Let p t P  . Then, by induction, APX sn*, G and i f  r  = rank(A)
*0

then IAX : APX| divides pr and so APX «£ AX . Therefore
*0

APX <r  AX for p « P\n .

Now A n X = 1 and P\J1 is an infin ite  set, so

Therefore

X = ( n AP)X = n (APX) 
pc jp\n pc P \n

X sn AX sn^ G , as required. 
*0

AX .

□

In the lig h t of the above proof, i t  might be hoped that for a 

K-subnormal subgroup X of a polycyclic group G , there is a 

K-subnormal series from X to G in which the normal steps are at
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at the bottom and the non-normal steps are at the top. I f  this 

were true when h(G) = 0 , then induction would show that i t  is 

true for any polycyclic group G . However, the following is a 

counter-example in the case G f in ite  (and soluble).

EXAMPLE.

Let G = (Y ]  X) D Z where Y = <y> , X = <x> , Z = <z> 

are groups of order 7 ,3,5  respectively and the actions are given 

by y x = y 2 , y Z = y -1 , xz = yx . Let K = F n . Then

X XY *» G but X is  not subnormal in G . Also, there is no 

subgroup V such that X < V G . For otherwise |G:V| = 7 ,

V = Ng(X) = <x> x <y^z> has order 6 and is core-free in  G , 

which implies G e K , a contradiction.

3.16 COROLLARY.

N(S n M) c uK .

Proof.

A
Let G € N(SnM) be generated as the product of subgroups H 

and K , both of which contain X as a K-subnormal subgroup. To
A

show X sn^ G we may assume that G e A(SnM) (Theorem 1 .8 ') .  By
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Lemma 1.6' and Theorem 3.15, we may assume G = A ] H = A ] K = H K ,  

where A is an abelian normal subgroup of G such that G/A e S n M . 

Now G is the soluble product of polycyclic groups H and K , so 

by a result of Lennox and Roseblade ([L R ]) ,  G its e lf  is polycyclic. 

Then X sn^ G by Theorem 3.15.
□

Theorem 3.17 deals with the dual case to 3.15 -  that of
v v

(SnM)-groups. A (SnM)-group G has invariants A-j (G) = rank (G ) 
and A2(G) =|G : GF| . Define A(G) as the ordered pair (X^(G),X2(G )). 

v
The invariants X(G) (fo r G c SnM) can be ordered lexicographically, 

so that X(L) < A( G) for any proper subgroup L of G and 

X(G/N) < X(G) for any n on -tH via l normal subgroup N of G .

3.17 THEOREM.

S n M =

Proof.

Suppose that the proposition is false and pick a counter-example 

G e (SnM)\WK which is minimal with respect to X(G) »  (X-j (G) ,x2 (G )) . 

So there exist subgroups X,H,K of G such that X sn^ H , X snK K 

but X is not K-subnormal in  G . If  Hg + 1 then X(G/Hg) < A(G) 

and so XHg sn^ G . But X sn^ XHg , which gives a contradiction. 

Therefore Hg = 1 .
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Now x /  = XHFXKF (using Lemma 1.14) and X sn^ XHF ,

X snK XMF . 6/GF £ F n S s o  that XGF snR G (Theorem 3.12).

I f  XGF were a proper subgroup of G then minimality of X(G) 

would give X sn^ G . Hence G = XGF . But now HF < XGF = G 

so that HF s H, = 1 . Sim ilarly KF = 1 , and therefore 

GF = HFKF = 1 . Hence G = X , a contradiction.

□

3.18 COROLLARY.

W(SnM) c uK .

Proof.
v

Let G c N(SnM) be generated as the product of subgroups H

and K , both of which contain X as a K-subnormal subgroup.

Then by Theorem 1 .8 ', Theorem 3.17 and Lemma 1 .6 ',  we may assume 
v

that H,K e SnM . But the soluble product of Cernikov groups is again 

Eernikov (CA2] Theorem B). Therefore G e SnM and X sn^ G by 

Theorem 3.17.
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