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CHAPTER 0.

§0.0 Introduction.

In 1939, Wielandt introduced the concept of subnormality ([W I])
and proved that in a finite group, the join of the two (and hence any
number of) subnormal subgroups is again subnormal. This result does
not hold for arbitrary groups (see CZH], [RS]). After much work
by various authors, Williams [WS1 gave necessary and sufficient
conditions for the join of two subgroups to be subnormal in any group
in which they are each subnormally embedded; a sufficient condition
(CR4D) is that the two subgroups permute (i.e. their join is their

product).

This present work arises from considering what in some sense is
the dual situation to the above, namely: given a group G with sub-
groups H and K, both of which contain X as a subnormal subgroup,
we ask under what conditions is X subnormal in the join <HK> of H
and K ? It makes sense here to assume that G = <HK> , so we do. We
will say that G is a J-group if whenever G = <HK> and X are as
posed, it is true that X is subnormal in G . Unfortunately, apart
from obvious classes such as nilpotent groups, J-groups do not seem to
exist in abundance: Example 1.1 (due to Wielandt) shows that not even
all finite groups are J-groups. Even worse, this example has the finite
group G being soluble (of derived length 3) with X central in H (in
fact H 1s cyclic). All this does not seem to bode well for trying to

find many infinite J-groups (although whether metabelian groups are



J-groups is an open problem). However, in CW4], Wielandt shows that,
if we require that the J-group criteria for a group G is satisfied
only when H and K permute — in which case we say that G is a
W-grcup — then every finite g*oup is indeed a W-group (Theorem

1.3 here). The soluble case of this result is due to Maier ([MR]).

Our aim in this work is to develop Theorem 1.3 in (principally)
three directions, a chapter being devoted to each. W give a general
outline of the themes of each chapter here, insofar as they relate to

Theorem 1.3, giving more details at the beginning of each chapter.

In Chapter 1 we try to find classes of groups X such that every
X-group is a W-group. Stonehewer (CS41) has shown that periodic nil-
potent-by-finite groups are W-groups (as well as other classes: see
Theorem 1.9), utilising a description of triply factorised groups given
by Sysak (CSYD) : such triple factorisations may, in many cases, be
assumed to hold for a W-candidate G by virtue of a useful reduction
lemma (CS43) which is Lemma 1.6 here. Using this, and other,
reductions we are able to show that nilpotent-by-abelian-by-finite
groups of finite (Prufer) rank are W-groups (Theorem 1.26). In
particular, soluble linear groups of finite rank and finitely generated
soluble groups of finite rank are W-groups. The last section (si.5)
of Chapter 1 considers ascendancy, using which the ascendant counter-
part W of W is defined. Again using reductions, we show that locally

soluble groups of finite rank are W-groups (Theorem 1.41).



In Chapter 2 we look at projectivities (i.e. isomorphisms of
subgroup lattices) and consider the effect of projectivities on sub-
normal and ascendant subgroups (see CSH], CZ23). Corollary 2.20 shows,
in particular, that the projective image of a subnormal subgroup of a
finite group has a subnormaliser. The term "subnormaliser" used here
is open to several definitions, from which we have chosen, for better
or worse, the following one: we say that a subgroup X of a group G
has a subnormaliser if there exists a unique largest subgroup S of G
such that X is subnormal in S . The problem with this definition is
that not every subgroup has a subnormaliser, because not every group is
a J-group. Alternative definitions usually define some subgroup
(containing X) which has the distinct advantage of actually existing,
but X will not necessarily be subnormal in (see [SI] for a
discussion of possibilities). Using Corollary 2.20 and results of
CSZ], we can relax the permutability hypothesis of Theorem 1.3 by
requiring that the subgroup lattice of the finite group G = <HK>
admits a projectivity o under which H°> and K° permute (Theorem
2.21). We then identify some other classes of groups contained in
for which this relaxed permutability hypothesis still works. One of
these classes is the class of metabelian groups, which supports the
conjecture that metabelian groups are J-groups. Other identified classes
are those of polycyclic-by-fi nite groups and Cernikov groups (Theorems

2.22, 2.26).

In Chapter 3 we consider K-subnormality (termed C-subnormality

when introduced by Kegel (CK2D)), which is a generalisation of subnormality.



Here K denotes a class of groups which is closed with respect to

forming extensions, homomorphic images and subgroups. A subgroup X

of agroup G is K-subnormal in G if there is a chain of finite

length from X to G, each step of which is either normal (as for
subnormality) or a K-step (by a K-step As B, we mean that B/Ag

is a K-group). Kegel (CK23) shows that in a finite group the K-subnormal
subgroups (K fixed) form a sublattice of the subgroup lattice (Theorem
3.2 here). We consider whether Theorem 1.3 holds with "K-subnormal

in place of "subnormal”; for (finite) soluble groups it does (Theorem
3.12) and we give counter-examples in some non-soluble cases. We define
the subclass WK of W (in such a way that Theorem 3.12 says that UK
contains all finite soluble groups) and identify some non-finite W"-groups,

such as polycyclic groups and soluble Cernikov groups (Theorems 3.15, 3.17).

We use well-known results and definitions without reference.

§0.1 Notation and Terminology.

Our notation and terminology is fairly standard (e.g. as in [RI],
CR3]), but we include this section for convenience and just in case there
are any ambiguities. To save excessive use of brackets, we use the con-
vention that (given there is a choice) a subscript is read before a super-

script (e.g. X° means (X-])° ).

P,IN Z, Q denote (respectively) the set of prime numbers, non-
negative integers, integers, rational numbers.
£ subset or subclass.

(S| denotes the cardinality of the set S .



the cardinality of IN .

the first infinite ordinal

S1 A S2 consists of those elements of which are not in S2 .
n' the set P\n . If n = {p} then we often use p,p’

in place of n, n'
infinite cyclic group.

R A the symmetric and alternating groups of degree n ,
respectively.

GL(n,R) the (multiplicative) group of invertible n*n matrices
over the ring R (which has an identity).

GL(n,p) GL(n,R) in the case R is a field of p elements

(p prime).
Let G be a group with subgroups HK .

<,S,« denote (respectively) proper subgroup, subgroup, normal
subgroup.

X*y means that the groups X and Y are isomorphic,

Aut(G) the automorphism group of G .

n(G) the set of primes occurring in the orders of the periodic
elements of G . If G is periodic
we say that G is a n-group if n(G) £n£P .

M 6> the largest normal n-subgroup of G (n £P)

exp(G) (when G is periodic) denotes the least comnmon multiple
(if it exists) of the orders of the elements of G ;
otherwise exp(G) is infinite.

* 11,(6) denotes the collection of all maximal n-subgroups of G,

which are called Hall (n-)subgroups of G .



Sylp(G) denotes Hal 1p(G) , members being called Sylow
(p-)subgroups of G .
X* the element y'*xy (x,y e G)
Cx.y] the element x \ “xy (x,y e G)
H the group (h9 : h c H} .
<SXIX « *> the subgroup of G which is generated by the subsets

Sx of G, which is called the join of the Sx's .
?
hk denotes the group <H :k e K> and is called the
normal closure of H in <HK>

denotes the group knKH and is called the core of

hk

H in K. If Hf=1,6 we say that H is core-free in
cs,,s2] the subgroup <CS”".SgJ : eSj , S2c S (where
.Sg are subsets of G).

G , G denote the subgroups [G,G] , CG'.G'] respectively.

N<(H) the normaliser of H in K, viz. (kt K: =H

ck(h) the centraliser of H in K, viz. (k eK: [HKk] =1}

Z(G) the centre of G .

L(G) the subgroup lattice of G, i.e. the collection of all
subgroups of G together with the operations intersection
and join.

[G/H] the sublattice of L(G) consisting of the subgroups
which lie between H and G .

Dr H the restricted direct product of the groups (AeA) .

f(e? Y the semi-direct product of groups X and Y, with a

suitably defined action of Y on X.

Xy the standard restricted wreath product of groups X and



y, i.e. XIV=(DrX,)]Y where X=X via
yy y y y
X » X and the action of y is xy =xy”c Xy”
(yyicy . xex)
ABB the tensor product (over Z) of abelian groups A and B .
Rank(G) the (Prifer) rank of G, i.e. the least integer r
(if it exists) such that any finitely generated subgroup
of G can be generated by at most r elements; other-
wise we say that G has infinite rank,
the product of subsets Sj,S2 of G, viz. the set
iS1S2 : S1 £8S, , S2 ¢ S2) H and K are said to

permute if <HK> - HK .

Series.

Let H be a subgroup of a group G and let v be an ordinal.

An ascending series from H to G of length v is a series of subgroups
H-®QiGs..so-G (1)

such that Ga < @I (0 s 6 <v) and such that if B£v is a limit

ordinal, then GE = 0<UOG'2 . The groups GB’H/GB are the factors of the

series. An ascending series (1) is normal if each term Gg is normal in G .

H is ascendant in G , written H asc G orH<v G , if there exists
an ascending series (1) from H to G . If, moreover, this series has
finite length n, thenwe say that Hs subnormal in Gand write

Hsn G or H<nG . If Hsn G, the defect of H in G is the least
integer d such that H G . The normal closure series of H in G

is defined recursively by: Hq =G, sH’ (i cIN Then Hm



We say that H has a subnormaliser (resp. ascendiser) in G if
there exists a unique largest subgroup of G in which H is subnormal

(ascendant).

Classes of groups.

A class of groups X is a collection of groups which contains every
trivial group and every isomorphic image of its members. Members of X
are called X-groups. We always use script capitals to denote classes
of groups. The product of classes of groups X,y is written xy and
consists of all groups G which posess a normal subgroup N* X such

that G/Ncy . Wewrite X ~..Xn for the product (... ((X]X2)X3) )Xn

of classes of groups X.,... X_ . If ncM, Xn denotes the class

- n— » ! n

XX ...X . We use the following classes:

u all groups C cyclic groups

| trivial groups A abelian groups

F finite groups S soluble groups

N nil potent groups

V\é nil potent groups of nil potency class at most ¢ ¢ N .

FioSit finite (resp. soluble) n-groups (n gp) «

(6) the class consisting of all trivial groups and all groups
isomorphic to the group G .

J the class consisting of groups G which satisfy: whenever
G=<HK> and XsnH, Xsn K then X sn G (H,K,X subgroups of G).

MM groups which satisfy the minimal (resp. maximal) condition for
subgroups.

M groups G with a subnormal series whose factors are M-groups or

M-groups. M-groups are called minimax groups.



Hyperabelian groups are groups 6 which possess an ascending normal
series (from 1 to G) with abelian factors. Hypercentral groups are
groups that have an ascending series with central factors. Cernikov
groups are groups which are a finite extension of a (SnM)-group; such
groups are well-known to be a finite extension of a direct product of

finitely many quasicyclic p-groups (various primes p).



Then:

denotes the (unique) largest A-closed subclass of X,

denotes the X-residual of G, i.e. the intersection

of all normal subgroups N of G such that G/NeX ,

denotes the X-radical of G, i.e. the product of all

normal  X-subgroups of G .
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CHAPTER 1.  SUBNORMALITY AND ASCENDANCY.

§1.0 Introduction.

In this chapter we identify certain subclasses of the Wielandt
class W (defined in §1.1) and its ascendant analogue W (§1.5). We
include a proof of Wielandt's theorem (Theorem 1.3) which says that
contains all finite groups, and also his example which shows that J
does not contain F . 81.2 contains reduction results (CS41) which
are useful in the sequel. Also useful is the fact that FW=W
(Proposition 1.10). Theorem 1.9 lists some subclasses of W which

appear in CS4L

§1.3 considers classes of groups related to it and M . Our
main results here are (SnMW5 = Ws (Theorem 1.19) and MMc U
(Proposition 1.15). §1.4 considers (mainly) nilpotent-by-abelian-by-
finite groups (NAF-groups). We prove that NAF-groups of finite rank
are W-groups (Theorem 1.26); this result is improved (at the expense
of the bounds obtained) in Theorem 1.32 by using results of §1.3,
which also give us partial results about soluble groups of finite

rank.

8§15 considers ascendancy and the class W . Our main result
here is that locally soluble groups of finite rank are W-groups
(Theorem 1.41): such groups are hypercentral-by-abellan-by-finite
of finite rank, and we reduce this to the metabelian-by-finite case

(Lemma 1.40) to prove they are W-groups.
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8§11 m and Co.

That a subgroup X of a group G does not, in general, have
a subnormaliser (even if G is finite) can be seen in the following

example of Wielandt ([W43).

11 EXAMPLE

Let p be an odd prime and define subgroups of GL(3,p) by

G=<hxk>, H=<xh>, K=<xk> and X =< , where

Then X has order 2, H is cyclic of order 2p and K is a
dihedral group of order 8. Hence X £ Z(H) and X ¥2 K. But X

is not subnormal in G =<HK> . For, suppose Xsn G . Then Y =Xk
sn G so that Y sn <Y,h> . Now Y normalises <h> and so

<Y,h> = Y<h> has order 2p . If Y sn Y<h> then (since p 2)

we must have CY,<h>] =1 . But [xkh] =h2 1, a contradiction.
Therefore X has no subnormaliser in G . Also, it is not hard to
see that G = (<h> x <hk>) ] K has order 8p2 and is soluble of

derived length 3.
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The above example is particularly good because X is central
in H. As mentioned in Chapter O, it is an open problem whether
metabelian groups are J-groups. We can see, however, that not
every subgroup of a metabelian group has a subnormaliser from the

following example.

1.2 EXAVPLE

For n2 2, let Hn be a dihedral group of order 2n+* , say
H =C 1 X where C, is cyclic of order 2n and X has order 2

(so Xn acts on Cn by inversion). Let G = Dr Hn with subgroup
ns2

X=Dr X . Now X has defect n in H , so that X is sub-
ns2 n n n

normal in ><Hn with defect n for each ns 2. But <XHn:n s2 =G
and X is not subnormal in G ; for otherwise X<r G forsome r eN
and the defect of X in each XHnhis less than r+l , which is a contra-

diction if n>r . Therefore X has no subnormaliser in the met-

abelian group G . It is worth noting, however, that X @av G
(X £XH and for na2 . XH, ... H a"*1 XH, ... HH )
c i n 4 n n+l
O

In Example 1.1, the subgroups H and K do not permute, because
K] =8p f | . This fact 1s not incidental, as we see from the

following theorem. The soluble case was first proved by Maier ([MR]).

1.3 THEOREM (Wielandt CW4J).

Let G be a finite group, generated as the product of subgrouDs
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H and K, both of which contain X as a subnormal subgroup.

Then X is subnormal in G .

Proof.

Suppose the Theorem is false and choose a counter-example G
of minimal order such that |GH| + [X] is also minimal. It is
not hard to see that these minimality conditions imply that Hg =1
and H is maximal in G . Now a subnormal subgroup A of a finite
group is contained in the core of any maximal subgroup which contains
A (Cw3D). Therefore H contains no subnormal subgroups of G .

Hence, by the minimality of |GH| + [X] , X must be a simple group.

Case (1) Xl =ptP

Since G = HK, there exists Hp e Sylp(H) and Kp e Sylp(K)
such that Hpkp ¢ Sylp(G) (see CHU3 VI 4.7). Then XHs Hp and
XK's Kp . Therefore <X, X" > = <x\x">7 is a p-group for all
hcH, k€K. Hence <XX*> is a p-group for all g e G, which

is a sufficient condition to ensure X sn G (CAL] or OW33.

Case (ii) X non-abelian simple.
Let M- im« G: Xns Hn K and X®sn H, Xmsn K) and put
Y* Xmme M>. Then YsnH, Ysn K (tWll) and XsnY

Therefore Y is not subnormal in G and so there exists ge G



.15 -
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the defect of X in G by some function of the defects of X
in H and of X in K . With this is mind, we define subclasses

W of W by:

(ii) Let f :IN li be a function. Then is the class
consisting of groups G e W such that whenever X @n H
and X=>nK in (*) (n cIN), then X nf(n) G
(Whenever we specify the function f = f(n) , it will
be implicit that the variable n plays the same role as

in this definition).

For example, putting f = 1 (constant) we have W. contained
in the class of T-groups (that is, groups in which every subnormal
subgroup is normal). Because F ¢ W (Theorem 1.3), W contains
all finite T-groups. Also, W contains all soluble T-groups
because such groups are metabelian (CR3D 13.4.2) and hence they
are W-groups (Theorem 1.9). We mention that Stonehewer has shown

that Fn V6 cWs ([S53).

If A and B are any subgroups of a group, then A <n AB if
and only if A <n+" <AB> (n cW) . From this it is clear that W
could also be defined as the class consisting of groups G which
satisfy: whenever G « HK and X sn XH, Xsn XK (X,H,K subgroups),
then X sn G . Also, J-groups have an analogous characterisation (recall
that J-groups are groups G which satisfy (*) in 1.4(1) even if H

and K do not permute).



17 -



(iii

(iv)

18 -

Clearly Gj = AH® = AK* , which also proves the
second statement.

As a set, K] = (Hn AK)(K n AH) =AHn AKn KK =
=G nHK . (ii) now follows.

Clearly N is abelian. Also An Hi - AHL = Gl by
(i). Similarly An K &Gl , sothat N<G .
AnHN®ANHI)N s N, so that AAr p. 1 m
Similarly A nkKe =1 . Clearly A v G?, so that
(by (i)), &9 splits as required. Therefore

H 1 KO- GQ/A01 G/A s G/A .

This is clear from (i).

If @ =H KO then G, - HjN~N =H"K, -

The converse is clear.
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1.6 REDUCTION LEWWA (Stonehewer [S41).

Let G be a group with subgroups X,HK and A such that
GmHK, XnnH, X<dn K (n €IN) and A is an abelian i
subgroup of G . Then, using the notation of Lemma 1.5,

GR" HKI - A9 I D » A9 3K9 and Xe <" HO . X9 a" K9 .

Further, if X -m®&® and AX a* G (tm eW) , then
X ]

Suppose the hypotheses of the first part of Lemma 1.6 and also
that G/A e Ws . Then Lemma 1.6 says that to prove X sn G we may

in many cases assume that G=A]J]H=A]K=HK.

The proof of 1.6 will use the following Lemma, which is

essentially in [S4]

1.7 LEMMA

Let G be a group with subgroups X,HK and N such that
G=<HK> , X<nH, X«n K (neIN and N is a normal abelian
subgroup of G . If G mNHn K) then | f. If G- NX

then Ha" G (and KanG) .

Proof of 1,7.

NnHOM=G. Also,

H=HnNHnNK) =HnK)(NnH s KN nH
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Therefore G = K(N nH) , so that
Xa"X(Nml) <"E .

If G=NK then X(Ni K) =M<"B and similarly Ka" G .

(]

Proof of 1.6.

The first part follows from Lemma 1.5. Suppose also that
Xe anG@® and AX a* G . Then

NX a" AX <* G .

Since NX « (N n M)X(N n K)X then by Lenma 1.7, X n2n NX as required.
O

Remark.

Suppose we wish to show that a group G is a J-group; then we
suppose that G = <HK> with Xsn H, Xsn K (X,HK subgroups) and
try to show that X sn G. If G contains a normal abelian subgroup
A , such that G/A e Js , then, in the notation of Lemma 1.5, it is
enough to prove that X0 sn G = A0 ] HO = A0 ] KO where X0 sn HO ,
X0 sn KO . However, we need to show that A s <HMK”> in order to

also have @ = <HO,KO> ; the fact that this might not happen prevents



us from being able to make a real reduction (there is a similar
impediment to the J-analogue of Theorem 1.8). We note that
<«;,k> - (A6 n HO,K9>) 1HY = (A9 n <hJK?>) ] KO, and if

X9 sn <H9,K9> then X sn «Hj.K,» (Lemma 1.7).

The following theorem shows that if we wish to show that
NX ¢ w for some S-closed class X (c w) , then it is enough to
consider AX-groups (and then we could use Lemma 1.6). This theorem
is proved in CS43 using induction on nilpotency class together with
lemma 1.6. We give an alternative proof, whose method will be of use

when we consider ascendancy in §1.5.

1.8 THEOREM.

Let X, V and Z be S-closed classes of groups with Vv and
Z also Q-closed. Suppose that (AnZ)X nvcw . Then
(NnZXnvcls . If (AnZXnVEW then (Ncn ZXnvVc

where g =cf + (c-I)n

Proof.

Let 6 ¢ (Nc nZ)X n V be generated as the product of subgroups
H and K, both of which contain X as a subnormal subgroup of defect
atmost ncW . Let B e NEn Z be a normal subgroup of G such that

t/1il . Let Z (Ot i sc) denote the ith term of the upper central
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series of B. Wewill show that

XZN sn Xz*+i  for Osi sc-1 . (*)

Fix 1 in the range O0s i s c-1 and let bars denote subgroups
of G modulo 20 . Let GQQ=Z* HnZz"+ K, BQ=BnGqg |,
H« HNnG and KQ =KnGQ . Then

*AL vo om oA *0 and ® ' 8 " @ -

®o0 ®m noRo m

Also Zi+1 s Z(B") so that
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eQANZ - AnZ

Hence Ga/(Bg n Hy) « (A n Z)X n VvV c W (by hypothesis), whence

X(Bg n Hj) sn GO (1)

Therefore X sn X Z.+* = XZi+~ , so that XZ. sn XZ™j and (*)

is proved.

From (*), Xsn ZCX =BX . Also G/Be XnVcW so that

BXsn G . Hence Xsn G and the first part of the theorem is true.

Suppose also that (A n Z)X nV is bounded by f . Following

the above proof, we see from (1) that

XZi *n+f XzZi+1 for 0 <i sc-1

Consequently X «(C"1)(n+f>XZc.1 . Since G/Z» e (AnZX nV, we

have XzZc_ ~ G . Therefore X <(c“l)n+cf G, as required.

O

Theorem 1.8, in conjunction with Lemma 1.6 are used in [S4 ]

to prove the following:
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1.9 THEOREM

The following classes of groups are contained 1n W& :

NA , N(PC)F , SnNM (c.f. Proposition 1.15) , SnM (c.f.

Corollary 1.28).

In Lemma 1.6, suppose that G is metabelian and put A =G’
Then H® and K® are abelian (Lemma 1.5 (iv)) and so X9 § G® .
Hence X @n+"G . Then by Theorem 1.8 (with X =A , v=2Z*U) ,

ve see that MA c where f(n) = 3nc + 2¢-n

1.10 PROPOSITION.

W =W . In particular, PAS =W

Proof.

Suppose that G e W is generated as the product of subgroups
H and K, both of which contain X as a subnormal subgroup of
defect at most neli . Let N be a finite normal subgroup of G
such that G/NeW . Then NH mHNH nK) and |NH: H s IN - r ,
say. Therefore H\H has index at most r! in NH . Considering the
group NH/Hnh we see from Theorem 1.3 that XH” «r' NH . But
G/N € W so that NX sn G. Therefore X «n XH\H <r* NX sn G and
so Fdc il
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Si.3 Min, Max and O .

112 LEMVA

Hcli5 .

To prove Lemma 1.12 we need the following results:

1.13 PROPOSITION (Roseblade CREB]).

Let G be a group which satisfies the minimal condition on
subnormal subgroups. If X is a subnormal subgroup of G, then

IG : N6(X)] is finite.

1.14 LEMMA (Amberg [AID, see [S4]).

Let G be a group which is generated as the product of subgroups
H and K. Suppose that HQt KQ are subgroups of H,K respectively
such that |[H: HQ] =r and |K: KQ| =s are finite. Then

IG: HO'KD>l Srs =

Proof.

There exists h”,...,hr ¢ H and k-|,....ks « K such that
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k
J
» hikj <HOKt (*)
By a result of B. Neumann (CNE3) we can omit from the union (*)

all the cosets such that |G : <1-Q,K0>kj| is infinite. Therefore
IG : <Hg,Kg>1J| is finite for some j , whence |G : <Hg,Kg>| is
finite. Factoring by <HO,KO>G , we may assume that G is finite
and so |G| s rs|<HO,KO>| by (*) . Therefore |G: <Hq,KO>| s rs .

O

Proof of 1.12.

Let Gc M be generated as the product of subgroups H and K
both of which contain X as a subnormal subgroup. Then by Proposition
1.13, IH : Na(X)] and [K: NK(X)] are finite. Putting
J = <h(X),Nk(X)> , then |GJ] is finite by Lemma 1.14. Hence
G/lg ¢ F and XJQ sn G (Theorem 1.3). Since X « XJQ we have
X'sn G as required.

O

We note that the proof of 1.12 requires only that H and K
have the minimal condition on subnormal subgroups. We use this fact

in the following result, which supercedes 1.12.
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1.15 PROPOSITION.

NH c(Ds

Proof.

By Theorem 1.8 (with X =M and V* Z=U) it is enough
to prove AMc b? . Let G e AM be generated as the product of
subgroups H and K, both of which contain X as a subnormal
subgroup. Let A be an abelian normal subgroup of G such that
G/AEM. Then AXsn G (Lemma 1.12) and so by Lemma 1.6 we may
assume that G=HK=A]H=A]K. Thus HK c M, so by the

remark above we have X sn G, as required.

Let Xg denote the following class of groups: G is an Xg-
group if and only if G/GFc F and GF is a periodic abelian group
such that for each prime p , the p-component of GF is the direct
product of finitely many quasicyclic p-groups. A result of Amberg
([A3]) Cor.2.8) shows that the soluble product of XQ-groups is an
Xjj-group. Also, Xg c AF c ws (Theorem 1.9) so by Lemma 1.6, we
have S n AXQ c of . Then by Theorem 1.8 (with y» S, Z=U) we

have

1.16 PROPOSITION.

N(S nXg) =S n NXg £ V6 .



Of course, proposition 1.16 is a particular case of the result

that nilpotent-by-"eriodic abeliar)-by-finite groups lie in Ws ([S43).
We now wish to look at (S n I\\IA)WS-groupS. It is not clear whether

or not they all lie in W , but Proposition 1.18 gives us a partial

result in this direction; certain restrictions are imposed which

enable us to meke use of the fact that periodic subgroups of GL(n,Rp)

are finite, where Rp denotes the ring of p-adic integers (see CRID

Cor.3.28). These restrictions present no impediment in NAF-groups

(see lemma 1.21). We will also need the following result

([R1] Lemma 3.13).

1.17 LEMVA

Let A be a normal divisible abelian subgroup of a group G and
suppose that X is a subgroup of G such that [A,sX] = 1, where
seN . If X/X is periodic, then CAX] =1 .

Let G be a Cernikovby-Ws group. By Proposition 1.10, Ge P\§
where Vv denotes the class of divisible abelian groups with min.

In particular, (S n MWS = OAS .

1.18 PROPOSITION.

Let G be a £ernikov-by-Ws group which is generated as the

product of subgroups H and K, both of which contain X as a
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subnormal subgroup of defect at most n (ncw) . If X is
periodic, then X sn 6 . If, moreover, G e v Ws nW") then
X 6 .

Proof.

As mentioned above, G c PAS , so let Aev be a normal sub-
group of G such that G/A e Ws . Then by Lenmma 1.6 (and since

Qv = V) , we may assume that
G» K=A3H» A] K. (*)
If g€Cg(A) then g=ah (@cA,heH and 1=*[ahA] *
= Eh,A] , so that g e AC"NA) . Hence CQ(A) = ACH(A) = AC"(A)
Also, Ch(A) « AH =G and, if bars denote subgroups of G modulo
Ch(A) , we have

5«|-K=A] H« AR, Aev , GAcW .

Since [H,A] nCHA) s AnH=*1, it follows that Cq(A) =1 and

so there is an embedding

H  Aut(A)
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n
Now XsnH and X is periodic, so that X is isomorphic to
a periodic group of automorphisms of A . By the remark before

this proposition,

is finite (1 si sr)

where A A are the primary components of A eV . But
Pi Pr

ncuh)y<s@- 1
1=1 XH Pl H

so that X" is finite.

Let N - M(XCh(A)) . Then N > Njj(X) and
H: N is finite.

From (*), we have H = K and we can see this isomorphism
using $ e Aut (G) which is defined as follows: if g c G then
(by (*)) g can be written uniquely as g =ah =bk where ab c A,
h€H, k« K; then we define gcmak . So H** K and the fixed-
point subgroup for $ is A(H n K) . Therefore [g»A]* * CgMA]

for any gc G, and so

CHA>* s CK(A) *



Also, if S is any subgroup of H then h e NHS) if and only
if h* e Nk(S*) . So by (**),

N© = Nk(XCk(A))

Since IH : N and |K: N are finite, so is |G : J| where
J m <NN*>  (lemma 1.14). Therefore G/Jg « F and XJg sn G
(Theorem 1.3). So it is enough (for the first part of the proposition)

to show that X snJ

XCh(A)Ck(A) is normalised by N and N#& . X sn XCH(A)
implies that XCK(A) sn XCH(A)CK(A) . Therefore X sn XCK(A) sn J

and the first part of the proposition is proved.

Now suppose G c V(US nW) and let BeV be a normal subgroup
of G such that G/Be s niwr . Then BX*f'n'G and (from the first
part) Xsn BX =Gy , say. Then Bn X« GQ and if bars denote sub-
groups of Gg modulo Bn X, we have Gg=B] X and X< &
for some seH . Hence CBSX] s XnB=1, soby Lemma 117
[§.X] =1 i.e. CBX] s XnB. Therefore B normalises X, so
that X < BX 4f"n"G as required.

O

In SlL4we will extend Proposition 1.18 - at the expense of another

restriction on X - to the case where A (in the proof of 1.18) is
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a periodic divisible abelian group of finite rank (so that A may

have infinitely many p-components).

Turning our attention now to the maximal condition, we see from
Theorem 1.9 that (PC)F = (S nM)FcW (this can be shown directly
using a result of Kegel CKI] which says that a subgroup X of a
(PC)F-group G is subnormal if X0 is subnormal in every finite
homomorphic image G6 of G ; then use Theorem 1.3). In fact, we

have

1.19 THEOREM.

(S nMWs . G .

Proof.
Let Ge (S n MWS be generated as the product of subgroups H
and K, both of which contain X as a subnormal subgroup. G has

a series
1«B«Ci G

such that G/CeWw , CeSnM, Be P(C.) and C/BeF . Ve
prove that G e W7 by induction on the Hirsch length h(C) of C .
If h(C) =0 then Ce F and so GeW (Proposition 1.10). Suppose

that h(C) * 1 with the usual induction hypothesis.
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C is finitely generated, so C/Bg e F (and h(Bg) = h(C)) .
Therefore Bg £ pfC") and G/BQ £W (Proposition 1.10). Hence
we may assume that B=C .

Let A be the penultimate term of the derived series of C

(A is torsion-free abelian of finite rank). Then A <G and by

induction,
AX sn G . (1)

By Lenmma 1.6 (and using its notation), it is enough to show that

X0 sn GO , where
GO =AD] HO = A0 ] KO *HO Kj (GO/AO £0s) (2)

(recall 6:G1 -mGj/N where N s A) . Since AOXO = AX/N , it 1s

enough (by (1)) to show that XO sn AOXO .

AD = A/N so we can write

where AO is torsion-free and a| is finite. If a] \ 1 then
h(AO) < h(A) and by induction, X0 sn AOXO .

It remains to consider the case a|] =1 . Let p£IP. Then



GR/(A®P e PWs  from (2),

so by Proposition 1.10,

(A®)p X6 sn G® . (3)
Sinee
|A0X0 : (A®)p XB| = |A® : (A®)p]| = pr
where r =rank (A0) , (3) gives (Ae)pX® <r Therefore
N (A®)P X®) <r .
pclP
Since A®n X® 1 (and A® is free abelian),
n (AR )pX®) =( n (ARP)X® - XB
cP pEP
as required.
[m]

Therefore X® <r s
1.20 COROLLARY.
(P(C u F)WS =ds .

Proof.
((POFX = (PC)(FX)

for any class of groups X so that
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((PC)PHWS = Ws by Propositions 1.19 and 1.10. Also, (PC)F =
=P(CuF) ([RI] 3.1).

§1.4 MF Groups.

121 LEMVA

Let y,Z be S- and Q-closed classes of groups. Let
Gc Wn Z)AF n V be generated as the product of subgroups H and
K, both of which contain X as a subnormal subgroup. Let
KA <B < G be anormal series of G such that A enN n Z,
B/Ac A and G/Be F . Then toprove that Xsn G, we nmayassume
the following:

(iy AcAnz and G=A]H®“A]K =HK.

(ii) Bn Hn K= 1 (assuming (i)).

(iii) B=<BnH, BnK> (assuming (i), (ii)).

Proof.
(i) This is clear from Theorem 1.8 and Lenma 1.6.

(ii) Assume (i) and let J =<BnH,BnK. G/g e F
(Lemma 1.14) and, since BnH.BnKcA

[fi, BnHNK « 1. (1)



Apply Lemma 1.6 with A nlJg in place of A . Then (using the

notation of 1.6 and thinking of O as the identity map),

GL*(AnJG) ] H - AnJQ ]K, =

Put Bl =B nG| <G| . Then by (1),

CAnJG,Bj nH nKA\ =1 .

Hence (B1 nH, nK/J6!= (8 nH nK,"- (B, nKjnKjKs BL nH, nK,

so that B n n < G . Then, if bars denote subgroups of Gl modulo
Bl n Hj nKj ,

G *AnlJ6lilj=AnJdfi]” =ilj» cy
Also n nR «1. Now Xsn Bl n nK])X, sothat X snEj

implies Xsn & . Also, Jg/(A nlg) e A so that G/(A nlq) c AF cws

and (A nJQ)X sn G. Hence (from Lentma 1.6) X sn G implies X sn G .

So we may assume that B* n n =1.
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Since AnlJgeAnZ, BMAnlJgcA and Gj/Bj e F

we may assume that (i) holds and Bn Hn K=1. Then Hn K
embeds in G/B and Hn K is finite, as required.

(iii) Suppose that (i) and (ii) hold. Again, let
J=<BnH BnK and put N=NQ)J) ~ X. Then G/lg e F and

by Lemma 1.23 (which follows this proof),

N=(NnH)N nK) .

G

BrH = JnH

Also, An J <N and (An J)(J nH) =AJ nH)nJ «ABnH) nJ
So, writing Al = An J ,

J=ALd nH) *A(J nK) . *)

Since Xl\g sn G (Theorem 1.3), it is enough to show that Xsn N
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Apply Lemma 1.6 to the group N with abelian normal subgroup Al .
Then (using the notation of 1.6 and thinking of e as the identity

map)
H} - A1 ] H1 - A1) K1 - cVv o, **)
where Hl =A[(N n K) n Nn H and =A(Nn H) nNnK.

Let Bl =BnN , so that Bj =Bn AHL = A®B n HY) . Now
BnH=JnH=A|J n K  nH by (*), sothat BnHs H|], and

BnH =BnH”, BnK=BnKj
Thus Aj(B nHj) =A|(J nH) soby (*), Bl =J and
BlnH =BnNn =BnH.

Hence
Bj = <B* n , Bl n K>

We must check that (i) and (ii) hold in Nj (and then the Lemma
is proved). For (i), the series 1 <A| <Bj < has the required
properties (A* ¢ A n Z, Bj/Aj =J/Aj EA, N/B, - Nj/J ¢ F) and
N. has the triple factorisation (**). For (11).

BjnH. (iKjSBnHnKcF
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1.22 Remarks.

(a) Suppose, with the hypotheses of Lenma 1.21, that
A«WoZzZ, |GBl 5m and X.nH. X a" K (c,m,n elIN) . Then,

in order to prove that there exists anintegerf = f(n,c,m,y) such

that X 6 , we may assume that (i), (ii) and (iii) of 1.21
hold and prove that there exists g = g(n,m,y) eIN such that X 49 G .
To see this, we just follow the proof of Lemma 1.21, noting that
Theorem 1.8 and Lemma 1.6 allow us to make ‘bounded reductions’.

(b)  Suppose the hypotheses of Lemma 1.21, except that
Ge NnZ)AnV)F and B/A eAnV (rather than Ge V , so
that A need not lie in V). Thenwemay still assume that (i),
(ii) and (iii) hold in order to prove Xsn G . Also, if ¢,
m and n are as in (a) above, we can make a similar bounded reduction

from f to g as in (a) (with the same justification).

The following Lemma (used in the proof of Lenma 1.21 (iii)) is

well-known.

1.23 LEMVA

Let G be a group with subgroups Hq, H, Kgq, K such that
G=HK, Hi<H, KggK and HHg (or K/Kq) is periodic.
Put J = 0,KO> and N=NQ)J) . Then N = (N nH)N nK) .
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Proof.

Let g c N. Then g = hk where
hcH, ke K. Then KQ:IJf_l ki1 _

NnK
Jgk =Jh and Hy s HygsJh. Hence

J sJh . But HHO is periodic, so
that hn €J for some nil. Hence
J =J* so that h, and hence k ,

lies in N . The reverse inclusion is clear. g

In order to show that NAF-groups of finite rank lie in Ws

we first have

1.24 LEMVA

Let X be a subnormal subgroup of Hc AF , with defect at
most ncW . Let A be an abelian normal subgroup of H such that
|[HAA] =m is finite. Suppose that X has finite exponent e

u L 3m)n-"
Then X has finite exponent at most eg/ )

Proof.

us«
Weninductianenn ,  the result being clear if n* 1 . So suppose

ni 2 with the usual induction hypothesis. By induction,

exp (XX )) senn , so it is enough to prove that exp (XH) s e31
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X« XHeH.

Then XA « XH and XA has at most m conjugates in H, each of
which is normal in XH and all of which generate >ﬁ . Hence it
is enough to prove that exp(XA) s e . Now XA = X[X,A] =
=X<CXa] : acA>=XXXanA:aeA> . Let aeA . Then
exp(XXa n A) s e2 and since A is abelian, exp(XA) s e.e2 as

required.
O

1.25 LEMVA

Suppose the hypotheses of Lenma 1.24 and also that H has
finite rank r and X has finite order e . Then X is finite

LA

of order at most me
Proof.

Let B=AnXd. Then B is abelian of rank at most r and
exp(B) s exp(XH) s (Lemma 1.24). Therefore |[B] s er"3m

Since |XH: Bl s m, we have the required bound.

Let nF (mcIN) denote the class of finite groups of order at

most m .
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1.26 THEOREM.

Let denote the class of groups of (finite) rank at most
r eK . Then A~cA(nF) © » where f =f(n,c,m,r) . In
particular, nilpotent-by-abelian-by- finite groups of finite rank

are W-groups.

Proof.
Let G e NcA(nF) n be 9enerated as the Product of subgroups
H and K, both of which contain X as a subnormal subgroup of
defect at most ncli . By Remark 1.22(a), it is enough to show
that X G where g =g(n,m,r) elIN and (i), (ii) of Lemma 1.21
hold.
Using the notation of 1.21, IXI = IBX : Bl s m. Also
BnHcA and |H: BnH sm. Bylemma 1.25, XH (and similarly
XK) is finite of order less than a function of nm and r . Hence
X has a finite number g of conjugates in H (or in K) where
9] s 9i(n,m,r) . Let J = <NH(X),NK(XX)> . Then by Lenma 1.14,
IG:Jl s 290 and so G/Jg is finite of order at most gg = gg(n,m,r) eIN .
Hence XJq < 2 G (Theorem 1.3). Since X < XJgq , we may take g = gg+l

O

Suppose (in the notation of Theorem 1.26) that
G| ¢ (A nyr)(nF) . Then, following the proof of 1.26 with G|
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in place of G, we see (using Remark 1.22(b)) that
H=K=G/A c vrtm (1.21(i)), so we can bound the defect of X

in G| by g(hmr+m) . Therefore we have proved

1.27 COROLLARY.

W(A nyr)(nF) £ nw , where f =f(n,c,m,r)

Also we have

1.28 COROLLARY (see Theorem 1.9)

(S n MF E(Is .

Proof.

Let BeS nM. Then by (CR21 p.166), B has finite rank
and B e WAF . Therefore (S n M)F c WAF c ws by Theorem 1.26.

[m]
1.29 COROLLARY.

Let G e WAF . If the abelian subgroups of G have finite
rank, then Gc W .

Proof.

G contains a soluble subgroup B of finite index, and the



abelian subgroups of B have finite rank. By a result of Kargapolov
([KV]), B has finite rank. Therefore G has finite rank and so
G c W by Theorem 1.26.

O

In Theorem 1.31, we will improve the second part of Theorem 1.26
by showing that, if Vv denotes the class of groups of finite rank,
then (N n y)AF ¢ ws , thereby removing the finite rank hypothesis
from the abelian section B/A . The cost of this improvement will
be any bounded result, which we will not be able to have with the

proof used.

1.30 LEMVA

Let Z denote the class of periodic groups of finite rank.
Let Gc (A n 2WS be generated as the product of subgroups H and
K, both of which contain X as a subnormal subgroup. Suppose that

X is periodic and that n = n(X/X') finite. Then X sn G .

Proof.

Let Ae AnZ be a normal subgroup of G such that G/A e W .
By Lemma 1.6, we may assume G=A]H=A]K=HK. For pelP,
let Ap denote the p-component of A . Then Ap B Dp x Fp where

D, Is divisible and is finite.
P P
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NuNAH:Hg(AHnK) and H*Ws . By lemma 1.18, Xsn%H.
p p

Therefore p,sXDs Xn A=1 ( some s cN) , sobylemma 1.17 we
have CDP,X] =1 . Therefore X is centralised by the divisible part

D of A andso (factoring G by D) we may assume that A = DrP F
pc v

For each p e P there exists an epimorphism

ty x]
[Ap.X.X]

which arises from the bilinear mep (ap,xX‘) “mCap,x3 CAp,X,X]

Suppose that penl1l. Then Apfi (X/X') =1, so that
CA X3 =[A XX3 . But XsnA ] X sowe must have %,XB =1.
p p p

Therefore (factoring G by Dr A ) we may assume that A is a
pen" p
n-group and hence finite. Hence G e A6 and X sn G (Proposition

1.10).

We can remove the periodic hypothesis from the class Z of

Lemma 1.30:

1.31 LEMVA

Let Z denote the class of groups of finite rank. Let Ge (A n2Z)Ws
be generated as the products of subgroups H and K, both of which
contain X as a subnormal subgroup. Suppose that X is periodic and

that n * n(x/x') is finite. Then X sn G .
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Proof.

Let AcAnZ be a normal subgroup of G such that G/Ae W .
We prove that X sn G by induction on the torsion-free rank r of A
the result being clear (by Lemma 1.30) if r =0 . So suppose r i 1
with the usual induction hypothesis. By Lenma 1.6, we may assume that

G=A]H=A]K=HK. Let T be the torsion subgroup of A . Then
TH =H(K nTH) «(An

where V denotes the class of periodic groups of finite rank. By

Llemma 1.30, X sn TX , so (factoring G by T) we may assume that
G=A]J]H=A ]K=HK and A is torsion-free. *)

Then (as in the proof of Proposition 1.18) CHA) <G and if bars
denote subgroups of G modulo CHA) , we have G=A ] H=AK=H
and Cfl(A) - 1. Also CR(A) =AnR. Since Xsn (MAJX , it is

enough to prove that X sn G .

Suppose that AnR/ 1 . Then if e is the epimorphism from
G to G/(A nR), we have
G® - AeH° = AO ] K6 - H6R6 and
Xesn HO , X9 sn KB . Let
t9 be the torsion subgroup of A9 .
Then, repeating the argument used for
T above (with H and K interchanged),

we mey assume that Te = 1 . Therefore
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A6 is torsion-free, asis A and AnlL Hence A0 = A/(A n K)
is of torsion-free rank less than that of A . By induction,

X0 sn GO . Since Xsn X(A nK), we have Xsn G (and so

X sn G) . Therefore, we need only consider the case AnK=1.

Since A is torsion-free, we may now assume
(*) holds and CH(A) - CK(A) - 1 .

Since A is torsion-free, there is an embedding A »Afi Q (via

the mapping a+ a 8 1) . Thinking of A as a subgroup of A G Q = A* ,
say, the action of H on A extends to an action on A in the natural
way, viz: (@aqh=ah8qg (aefl,heH, geQ . Therefore
Ch(A ) sm(A) =1 and H (similarly K) acts faithfully on A* .

So we have embeddings
HK - Aut(A*) = GL(r,Q)

Since X is periodic and subnormal in H and K, X4 and XK are
periodic. But periodic subgroups of GL(r,Q) are finite (see [RI]

P«85), whence XH and XK are finite. Putting J = <\H(X),NK(X)>
we have XJQsn G by Lenma 1.14 and Theorem 1.3. Since X « XJQ ,

this completes the proof.

The reduction afforded by Theorem 1.8, when used on some group



G , is not hindered by the additional hypothesis that X (where
X'sn H, Xsn K etc.) belongs to some Q-closed class. Hence

lemma 1.31 remains true if 6 c (Wn Z2WS .

We can now prove

1.32 THEOREM.

Let Z denote the class of groups of finite rank. Then

(N n Z)AF c w*

Proof.

Let Ge (W n Z)AF be generated as the product of subgroups H
and K, both of which contain X as a subnormal subgroup. By Lemma
121 (with Vv =U) we may assume that G e (A n Z)AF and that X
is finite. Since AFcws (Theorem 1.9), X sn G by Lemma 1.31.
Hence G e W .

[m]

It would be interesting to know if W contains the class of
soluble groups of finite rank. Since the proof of Lemma 1.31 (and
Lemmes 1.18, 1.30) work under the (weaker) hypothesis that AX sn G
(rather than G/A e W) , a simple induction yields the following

partial result:

1.33 PROPOSITION.

Let G be a soluble group of finite rank, generated as the product
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of subgroups of H and K, both of which contain X as a sub-
normal subgroup. If X is periodic and n(X/X') is finite (so
that X/X' is a iernikov group), then X sn 6 .

[m]

We shall see in Si.5 (Theorem 1.41) that if we remove the re-
strictions imposed on X in Proposition 1.33, then we can at least
conclude that X is ascendant in G (even if G is locally soluble
of finite rank). We finish this section by identifying two subclasses
of the class of soluble groups of finite rank which will lie in W ,

using well-known results of Mal'cev ([MV]).

DEFINITION.

Let Aj denote the class of abelian groups A which satisfy:
if T/iljdenotes the torsion subgroup of A then T(A) « M and A/T(A)
has finite rank. (A"-groups are otherwise known as abelian groups of
finite total rank. Mal'cev calls them A3~groups). Then define the
class Sj by 5 =PAj . (S* can also be defined as the class of
hyperabelian groups of finite abelian section rank, which contains

elements of only finitely many distinct prime orders: see [R2] 9.3).
Soluble linear groups are nilpotent-by-abelian-by-finite and
5-j-groups are nilpotent-by-abellan-by-finite of finite rank (Mal'cev,

see [RI1] 3.2). Then by Theorem 1.26, we have:
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1.34 COROLLARY.
(1) S, cWws
(ii) Soluble linear groups of finite rank are Ws-groups.

O

sf.g Ascendancy and W .

By considering ascendancy, rather than subnormality, we can

define the class of groups W in an analogous way to W

1.35 DEFINITION.
W is the class of groups consisting of groups G which satisfy
(*)
Whenever G is generated as the product of subgroups "j

H and K, both of which contain X as an ascendant subgroup, >(*)

then X is ascendant in G . 1

Whilst we might expect that it will in general be more difficult
to find W-groups than to find W-groups, ascendancy can sometimes allow
us more freedom than subnormality. For example, the ascendant analogue
of Theorem 1.8 (Theorem 1.37) allows us to meke a reduction from
hypercentral-by-Ws groups to abelian-by-Ws groups. Theorem 1.37 is
used to prove the main result of this section (Theorem 1.41) which says

that locally soluble groups of finite rank are Ws-groups.



Obvious subclasses of W are F and (PC)F ; more generally,
because ascendancy is equivalent to subnormality in M-groups,
WnM*WnMcW . In fact, (ZAM nUc U (Proposition 1.38(i),

ZA = hypercentral groups).

1.36 LEMVA (c.f. Leona 1.6)

Let G be a group with subgroups XHK and A such that G = HK
X* H, X< K (v ordinal) and A is an abelian normal subgroup of
G . Then, in the notation of Lenmm 1.5, gJ = AR ] H=AR] KB
and X® <v HR , X® K® . Also, H® and KR embed in G/A . Further,

1f X0 a“ Gj and AX al G (X,u ordinals), then X at2*« G .

Proof.

The proof of Lemma 1.6 (and Lemma 1.7) works here (with A,jj,v
in place of tm.n respectively).
[m}
Let ZA denote the class of hypercentral groups and (ZA)a the
class of hypercentral groups with hypercentral series of length at most

a (ordinal).

1.37 THEOREM.

Let X,y and Z be S-closed classes of groups with vV and Z also

Q-closed. Suppose that (AnZX nvcW . Then (ZAnZX nVs W =
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Proof.

The proof is essentially that of Theorem 1.8. Let
Ge ((ZA) nZ)X nV be generated as the product of subgroups H
and K, both of which contain X as an ascendant subgroup. Let
B ¢ (ZA)g nz be a normal subgroup of G such that G/Be X . Let
Z& (0 s 8sa) denote the 6- term of the upper central series of

B . Then, as in the proof of 1.8,
XZe asc XZ6+1 (0 s 6 s a)

Therefore Xasc U (XZ..,) XB . Since G/BcW, then XBasc G .
Oseso B

This completes the proof.

1.38 PROPOSITION.
(i) (ZAM nWs c ws . in particular, N(PC)F c fi6 .
(ii) (ZA)A c W5 .

(Hi) P¥mW . In particular PAS =Ws .

Proof.
Let G be a group which is generated as the product of subgroups
H and K, both of which contain X as an ascendant subgroup. We

wish to prove that X asc G .
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(i) Let G« (ZAM n Us . W is Q-closed, so, by Theorem
1.37 and Lenma 1.36, we may assume that Ge AMn Ws and that
HKeM . Therefore XsnH and Xsn K, so that Xsn Gc W .

Hence G e Ws .

(I1) Let Gc (ZA)A . Again by Theorem 1.37 and Lenma 1.36,
we mey assume that G e A2 and that HK e A . Hence X< G
This proves (1i).

(I11) Let Ge Al and let N be a finite normal subgroup of G
such that G/N e W . Then, as in the proof of Proposition 1.10,
INH : Hnnl is finite and XH” sn NH . Therefore X asc NX asc G ,

proving (111).
O

Parts (i), (ii) and (111) of the next lemma are the W-analogues
of Lemmes 1.18, 1.30 and 1.31 (with the hypothesis on X/X1 removed).
Note that, since the class of periodic groups is N-closed and the union
of periodic subgroups is periodic, then the normal closure of an ascendant

periodic subgroup is periodic ([RI] 1.31).

1.39 LEfflA.
Let G be generated as the product of subgroups H and K, both
of which contain X as an ascendant subgroup. Suppose that X is

periodic. Then each of the following imply that X asc G .
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(i) G is a Cernikov-by-U/s group.

(ii) G is a Us-group modulo a periodic abelian subgroup

of finite rank.

(iii) G is a Ws-group modulo a hypercentral subgroup of finite

rank.

(iv) G is a hyperabelian group of finite rank.

Note that for groups of finite rank, the conditions hyperabelian and
locally soluble are equivalent (see CR2] 10.38 Cor.l). Hence, by
(iv) above, W contains the class of periodic locally soluble groups
of finite rank (we will remove the periodic restriction in Theorem
1.41). In particular, W contains the class of Bernikov groups (this

is implied directly by (i) above).

Proof.

(i) Let AeV be a normal subgroup of G such that G/A c (&
(recall that Vv denotes the class of divisible abelian groups with min.
Such an A c V exists by Proposition 1.38(111)). By Lemma 1.36, we
may assume G=HK=A3H=A]K. Then, if bars denote subgroups
of G modulo Ch(A) , we have ﬁ periodic and, following the proof

o

of Lemma 1.18, X is finite and X asc XCK(A) asc XCH(A)CK(A) sn G .

(ii) Let A be a normal periodic abelian subgroup of G such

that A has finite rank and G/A e W . By Lemma 1.36, we may assume
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G=A]H =A]K =HK. For pclIP, let Ap denote the p-component

of A . Then
ApH = HApH n K) ¢ Ons

and by (i) of this lemma, X asc XAP Writing P = {pl,p2,...J and
putting B =<A :lsisr for sr<t, we have
r pi

XBr asc XBr+l (1 s r <«)

Therefore Xasc U (XB .) = XA . Finally, XA asc G (since
*r<u>

G/A £ Ws) , which proves (ii).

(iii) By Theorem 1.37 (with X =Ws , Z = finite rank groups,
y * U) , through which we can carry the hypothesis that X is
periodic, we may assume that there exists a normal abelian subgroup
A of G such that A has finite rank, and G/Ae Us . W can use
the same argument as in the proof of Lemma 1.31 (using (ii) above in
place of Lemma 1.30 to get rid of the torsion subgroup) to embed H
and K in GL(r,Q) where r s rank(A) . Since, in our case, XH
and XK are still periodic, we can repeat the remainder of the proof
of 1.31, thus proving (iii).

e Ld be an ascending normal series of G with
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abelian factors (a ordinal). For 6 sa, consider the group
S1 = fln Rm (B" «jTi *><* " H) .
where bars denote subgroups of G modulo Gg . Since X asc H

then S asc G, (5 RG”"j) . Part (ill) (and (ii) and (1)) of

this lemma remains true if (in its proof) AX asc G (rather than

G/A « (ls) ; "~ 1 is abelian of finite rank, therefore Xasc Gg+* X

(s GI|) . Therefore
GgX asc Gg+l X for O0sB<a

Hence X asc U (Gg+] X) =G, as required.

Hypercentral groups form an N)-closed class (CHAD), so that
(ZA)AF = ZAAF) .

1.40 LEMVA (c.f. Lemm 1.21)

Let y be an S-closed and Q-closed class of groups. Let
G e (ZA)AF nV  be generated as the product of subgroups H and K,
both of which contain X as a subnormal subgroup. Let 1<A«B<G

be a normal series of G such that AeZA, B/Ae A, GBecF
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Then in order to prove X asc G, we may assume the following
conditions hold:

(i) AcA and G=A]H =AIK =HK.

(ii) BnHnK=1 (assuming (i)).

(iii) B=<BnH BnH (assuming (i), (ii)).

Proof.

(i) follows from Theorem 1.37 (with X =AF, Z=u) and
lemma 1.36. For (ii) and (iii), we can use the proofs of Lemma
1.21 (ii), (iii) (with the obvious modifications).

Putting Lemmes 1.39 and 1.40 together, we now have:

1.41 THEOREM.
Let y denote the class of groups of finite rank. Then

LSnycW .

Proof.

Let GELSny . Then Ge (ZAAF ([R2] 8.16). Let G be

generated as the product of subgroups H and K, both of which

contain X as an ascendant subgroup. Then by Lenma 1.40 (and using
its notation) we may assume that X is finite and G=A] H=A] K=HK

Then G/A e AF c ws (Proposition 1.38(1)), so by Lemma 1.39 (iii) we

have X asc G , as required.



Remark.

Let y denote the class of groups of finite rank. As noted
in the above proof, LS nVc (ZAAF . Also, (ZAAnvVvc LS by
(CR2D 10.38 Corollary 1). Therefore (LS)F n V = (ZAAF ny and,

using the above proof, we have (LS)F nVcws .



CHAPTER 2. PROJECTIVITIES.

§2.0 Introduction.

In this chapter we consider projectivities (i.e. isomorphisms
of subgroup lattices) and their effect on subnormal and ascendant
subgroups. §82.1 and 2.2 are preliminary, in which the unary
closure operation u and the class of R-groups (often called
P-groups) are defined. In §2.3 we consider subnormality and pro-
jectivities. Using results of Schmidt (CSH3) and Suzuki (CSZ3),
we give necessary and sufficient conditions for a projectivity of a
finite group lattice to preserve subnormality (Theorem 2.12).
Theorem 2.17 shows that projective images of subnormal subgroups
of Cernikov groups behave in a similar way to the finite case. Using
a result of Zacher ([Z2]), we show that the projective image of an

ascendant subgroup (of any group) has an ascendiser (Corollary 2.19).

In 8§24 we generalise Theorem 1.3 to include the case where
H and K do not permute, but they are such that L(<H,K>) admits
a projectivity o for which H and K° permute (Theorem 2.21).
We define the class Uu so that Theorem 221 says that F c uu
and so that Wu lies between J and W . We then identify some
other subclasses of Wi : the classes of Cernikov groups (Proposition

2.22), metabelian groups (Theorem 2.24) and polycyclic-by-finite
groups (Theorem 2.26) are all contained in Wi .



§2.1 Preliminaries.

A projectivity is defined to be an isomorphism of subgroup

lattices; that is, if G and G are groups, then a mep

is called a projectivity if and only if o is a bijection and whenever
{An : X c A} is a collection of subgroups of G, then

(nA)° = (A°) and <A X e A>° = <A?X e A> . *)
* * X

nA.) n

XeA A XeA

Note that, in this definition, it is sufficient to require that o is
a bijection and that (*) holds whenever |A] =2 . This is because

these (seemingly) weaker conditions are equivalent to the conditions
o is a bijection and o, o preserve subgroup inclusion, (**)

and (**) holds if and only if o is a projectivity; for, suppose
(**) holds and let {A" : X e A) be a collection of subgroups of G .

Let A° Then for XeA, A° sA®> sothat As n A
XeA

« XQAK >

whence A°s ( n Ax)° . Also, for peA, n A £A so that
XeA XA 1 “

(.n \ )° s A® . The remainder of (*)I is proved similarly, and

XeA
clearly (**) holds if o is a projectivity.



Clearly, if o is a projectivity as above, then =G,
Ig=I1g and o"l is a projectivity. Obvious examples of projectivities
are those induced by (any) group isomorphisms, but not every projectivity
is so induced (groups of different prime orders have isomorphic lattices).

So we define the closure operation u as follows.

If X is aclass of groups, uxX is the class of groups given by

G e uX if and only if there exists Gc X and a projectivity

That is, uxX consists of the projective images of X-groups. Whenwe
write G e uX , we will mean that Gc X and a is a projectivity

of L(G) . Note that uX= uu(G) i.e. u is unary.
GeX

Since an infinite group has an infinite number of subgroups,
uF =F . Moreover, if G is a finite group and o a projectivity of
L(G) , then the number of primes (including multiplicities) dividing
the orders of G and G°> are equal (CSZ]). Other u-closed classes
of groups are the classes of soluble groups (CYV]), simple groups
(CZ1]) and perfect groups (CNAD). Also, UuA ¢ A2 (CSzZ3) and, more
generally, given nelIN, there exists f = f(n) eh such that

UAn c_A* (CYVD) . However, uA $A and UW"N as we see from:



2.1  EXAMPLE.

Let 6 be an elementary abelian 3-group
of order 9 and let G be a non-abelian group
of order 6 . Clearly, G and G have iso-

morphic lattices.

The above example, although a simple one, provides a very good
model of how a projectivity can fail to mep either a normal or
ascendant subgroup to the same (in 2.1, any Sylow 2-subgroup of
G is self-normalising). If G is agroup and G°> e u(G) , then
we say that a preserves ascendancy if whenever X is an ascendant
subgroup of G then X° is ascendant in G° . Preservation of sub-
normality and normality are defined similarly, in the obvious way.

Let G be a group and let G°> e u(G) . Then we say that a is

index-preserving if and only if
UVl = |ue:vel  for all subgroups Vs U of G. *)

Suzuki (CSZD 11.6) calls such a projectivity strictly index-preserving
and shows that when G is finite, (*) is equivalent to the condition
that (*) holds when U is cyclic. These conditions are equivalent
even if G is not finite; this was proved by Zacher in CZ 11,using

the following important result.

2.2 THEOREM (Rips [RP], Zacher [Z1])

Let G be a group and G° e u(G) . Then if H is a subgroup of



finite index in G, H° has finite index in G° .
O

Let X be a subgroup of agroup G and let G° e u(G)

Then we will write

to denote the pre-image (under a) of the core (X°) and normal
G

closure X°"G ~ respectively. In [Bull, Busetto proves the

following result (the finite case is due to Schmidt [SH]):

2.3 THEOREM.

Let N be a normal subgroup of a group G and let G° e u(G)

Then Ng and l\ﬁn are normal in G .

O
2.4 REMARK
If H is a subgroup of finite index in a group G and G° e u(G) ,
then Theorems 2.2 and 2.3 imply that H contains a normal subgroup N

of finite index in G such that N° « G° (and |G*N°| is finite).

Hence a induces a projectivity of finite lattices a : L(G/N) -mL(G°/N°)

An index-preserving projectivity of a finite subgroup lattice will

mep a maximal normal subgroup to a normal subgroup ([SZ] Il, 2.6) which



is therefore also maximal normal. So for finite group lattices,
an index-preserving projectivity will map a composition series to

a composition series. Thus we have

2.5 LEMVA ([SHI Lemma 4.1)

Let G be a finite group and let G° c u(G) . If a is index-

preserving, then o preserves subnormality.
0

The converse of Lemma 2.5 is clearly false (G and G° could
have different prime orders); see Theorem 2.12 for necessary and
sufficient conditions for the converse to hold. Lemma 2.5 does not
hold if G is an arbitrary group, even if G is abelian as the
following example shows. However, Rips (CRPD) has shown that for an
arbitrary group G, an index-preserving projectivity will preserve
ascendancy - in fact, if N is a normal subgroup of G then

N° G° (see also Theorem 2.8).

2.6 EXAMPLE. (See LI2D).

Let G=AxH where A is a quasicyclic p-group (p eP)
and H =<h> is an infinite cyclic group. Leta*l| be a p-adic
integer such that a = 1(mod p) (a = 1(mod 4) if p=2) . Let
A , H be isomorphic to A, H respectively and define an action of
H=<h> on A by a* =aa (@aeA) . Put G=A] H. Then there

is an index-preserving projectivity o:L(G) L(G) for which A° =A



and H=H. Then Ho G but H is not subnormal in G

(a-1 is a non-zero endomorphism of A , so that CAH] = A and

-G
H = HAtAH] = G) . Note that Rips' result mentioned above implies

that Hd* G .

The following results will be useful in the sequel.

2.7 THEOREM (CSZ3 I, Theorem 4)

Let G be a periodic group which is the direct product of Hall
subgroups GA (A eA) . If G cu(G) then G- Dr G is a
AeA A

Hall decomposition of G
O

A subgroup M of a group G is said to be modular in G,
written Mmod G, if and only if given any subgroup X of G the
o
mep ox:C<X,M>/M]  CX/XnM] defined by Y x =Y nX is a lattice
isomorphism. Equivalent conditions are that M satisfies the modular

identities

X n <YM> = <Y, Xnv> for all subgroups Y s X and

A n <BM> = <AnB, M> for all subgroups AB with Hs A .

A subgroup X of a group G is said to be permutable in G, written

X per G if and only if XU =UX for all subgroups U of G.



The concepts of modularity, ascendancy and permutability are

linked by the following result.

2.8 THEOREM (Stonehewer [S 3])

Let X be a subgroup of a group G ; then Xper G if and
only if both Xasc G and Xmod G . (In fact, if X per G then

X el G ([S 5J.)
m

An example of an ascendant non-modular subgroup can be found in
a dihedral group of order 8 . A 2-subgroup of z3 is modular but
not ascendant. Clearly, a normal subgroup N of agroup G is

modular (and permutable) in G, and therefore N mod G° for any

G° « u(G)

§2.2 Singular Projectivities.

Following Suzuki (CSZD p.42), we say that a projectivity is
singular if it is not index-preserving. Suppose that G is a group,
G> e u(G) and o is singular. Then there exists subgroups V s U
of G such that |U° : V°] + |UV] <» . By Remark 2.4, V contains
a normal subgroup N of U such that N° « G° and [UN|] , JU%N°|

are finite. Hence the induced projectivity



is a singular projectivity of finite group lattices. Now o induces
a projectivity on the subgroup lattice of each Sylow subgroup of U/N ;
if all such projectivities are index-preserving, so is o . Hence
there is a prime p and a Sylow p-subgroup S/N of U/N such that
°/t(S/N) is sin9ular. Then we say that a is singularat p, o

is p-singular. Further, the Sylow p-subgroups of U/N are cyclic

or elementary abelian (CSZ] 1, Theorem 12).

If, in the above, G is a finite group, then we will take U =G
and N =1, so that the Sylow p-subgroups (when a is p-singular)
of G are cyclic or elementary abelian. Note here that o need not
be singular on every Sylow p-subgroup; for example, if G = e3 and
o is a 3-singular auto-projectivity of L(G) , then o is 2-singular
but ois index-preserving on two Sylow 2-subgroups of G . Also, we
note that if Gis any p-group (p prime) andG® e u(G) , then G
is a p-group if and only if a is index-preserving.

Given a prime p , we define the class of groups R by: a group

G is an Rpgroup if and only if either (a) or (b) hold:

(a) G is an elementary abelian p-group.

(b) G =P1Q where P is a subgroup of type (a)and Q isa
subgroup of prime order q < p whose generator acts faithfully
on P by raising each element of P to one and the same

power r h I(mod p)



We define the class of groups R as R=p up R . (R-groups

are often called P-groups in the literature). The smallest example
of a non-abelian R-group is the Rg-group . R is the u-closure
of the class of elementary abelian groups, and if G is a non-simple
Rp-group so is any projective image of G (see CSZ] 1.3). Note that
if Gc R then every subgroup of G is either normal or self-normalising
in G (if G is of type (b) above, the self-normalising subgroups are
those that contain a subgroup of order q).
Let G be a finite group and suppose that o is a p-singular
projectivity of L(G) (p prime). Let S be a Sylow p-subgroup of
G such that a/”Sj is singular. We say that o is p-singular of
the first kind if there does not exist a (non-abelian) Rp-subgroup
of G which contains S as a proper normal subgroup. If there does
exist such an Rp-subgroup, we say that o is p-singular of the
second kind. (These definitions are independent of our choice of S.)
We collect together some results of CSZ] in the following theorem,

which we use in the sequel.

2.9 THEOREM. (Suzuki CSZ] Propositions 2.7, 2.8, 2.9)

Let G be a finite group and let a be a p-singular projectivity

of L(G) (p prime). Then
(@) o is g-singular of the first kind for some prime q ;

(b) if o is p-singular of the first kind, then G contains

a normal Sylow p-complement;



(c) if o is p-singular of the second kind, then G=Rx t
where R is a non-abelian Hall Ro-subgroup of G con-
taining a Sylow p-subgroup S of G as a proper normal
subgroup (so that S < G)

2.10 LEMVA

Let G be a finite group and suppose that o is a projectivity
of L(G) . If o is p-singular of the second kind, then so is o0"1

(and conversely).

Proof.

Suppose that o is p-singular of the second kind. Then by
Theorem 2.9(c), we can write G =Rx T as a Hall decomposition of
G with R a non-abelian Rp-group. Write R=P ] Q where P is
a p-subgroup and Q has prime order q <p . If R®> were abelian,
it would be a p-group, contradicting the fact that P° is not a p-group.
So R° is a non-abelian Rp-group of order p‘r (where pa = |P| ,
p>reP) . Let Q .. Qo be the conjugates of Q in G

[

P° contains a subgroup of order r , and P°nQ =1 (lsis p“) .
Therefore some Q° = Q° , say, has order p , so we may assume that Q°
has order p (i.e. o~ is p-singular). R° is non-abelian, so o™

is p-singular of the second kind.
O



2.11 LEMMA.

Let G be a group and let G° € u(G) . Suppose that N is
a normal subgroup of G with |GN|] =pclIP . If o is not

p-singular, then N°> <G> and |[G*Na| =p .

Proof.
By Theorems 2.2 and 2.3, N_ <G and |GN | is finite.
G G

Hence o induces a projectivity of finite lattices
8 : i(G/N Q) L(G°/(N°) ) and clearly, 1f 8 is p-singular, so

G G
is o . Therefore we may assume that G is finite; that N° « G°
now follows by ([SZ] Proposition 2.11). Let P be a Sylow p-subgroup
of G , sothat PN=G . Then G° =P°N° and p = |GN|] = |P:PnN «

= |P°:P° n N°| = |G*:N°| , as required.
[m]

The fact that an index-preserving projectivity will map a normal
subgroup of prime index to a normal subgroup (which is implied by 2.11)
is used by Rips [RP] to prove that an index-preserving projectivity

preserves ascendancy.

§2.3 Subnormality and Projectivities.
As we saw in Lenma 2.5, an index-preserving projectivity o of
a finite group lattice will preserve subnormality. The following

result tells us when the converse holds.



2.12 THEOREM.

Let G be a finite group and let G° e u(G) . Let
n = {pi»...,pr) denote the set of primes p e n(G) for which o
is p-singular. Then o preserves subnormality if and only if

the following conditions hold.
(i) G=H] K where H=0",(6) and K is a cyclic n-group.
(ii) o/ is index-preserving and every singularity of o
is of the first kind.
(iii) G>=H 3 K> and, given pen. o is p-singular on
every Sylow p-subgroup of G, their images under o

being isomorphic.

REMARKS.

If n=b in the above then the theorem is true (G =H) by
Lemma 2.5. Also, we note that if o preserves subnormality, then in
(iii), H° need not be a Hall subgroup of G°> (for example, if G
and G° are R~™groups of order 6 and 9 respectively, then in
the above notation, n = {2} and |[H°] * |K°|] = 3); if H is a

Hall subgroup of G° , then o also preserves subnormality (see

Corollary 2.14).

Proof.

By the first remark above, we may assume that n is non-empty.



We first prove the necessity of conditions (i)-(iii), so suppose

o preserves subnormality.

Let pen and suppose (for a contradiction) that o is
p-singular of the second kind. Then by Theorem 2.9(c), 6 =R*T
where R,T are Hall-subgroups of G and R is a non-abelian
Rp-group. Then by Theorem 2.7, Ga = R° * T° is a Hall decomposition
of G . Let P be the unique Sylow p-subgroup of G. P°sn R°
(by hypothesis) and R> e Rp . Hence P° is a p-group, contradicting
the p-singularity of o . Therefore every singularity is of the first

kind. Because H:On,(G) , al is index-preserving and (ii)

(")
holds.

Pick subgroups S. e Syl (G) (1 si sr) such that a/. /c
1 .

pi
is singular. Then by Theorem 2.9(b) (and conjugating by a suitable

g e G) there exists normal p.-subgroups A, of G such that

G=Ai ] Si @sisr. *)

r
Clearly H= nA. and S.sA. for 1sjsr, jfi
i-1 1 J 1

We prove, by induction on r = [ji] , that
«s< -« ]St(1)> 35,(2)>-) 3S,(r) <»
where H = OW,(G) s Oll('H) is index-preserving and t is any

permutation of 1,2,...,r



If r=1, (1) is true by (*) so suppose r a 2 . Let

icil,...  andconsider o. = 0. preserves sub-
Te/t(AL>

normality and if jij = n\ip”) » then by (*), is p-singular

if and only if p< ~ . Put Kj - «,.(Aj) . Then Hj =m«,.(G) =H

and °1/L(Sj) is singular for p* e < By induction,

N *(-<" 1>, 1L, ) -)*thVI) (**)
where is index-preserving and t. is any permutation of
t. e»ir_I5=Ffl,.. .,1-1 ,i+1,.. ,r}. Combining (*) and (**) gives

the desired result (1).

By (1), HSi <G for 1sisr . Also, HSi n HS" - HfSjnHSj) = H

for 1si ~jsr . Hence

G S H srH

Ho* It ST (2)
Let i c {l,..,r} . Suppose, for a contradiction, that S, is not

cyclic. Then S. is elementary abelian and S° is a non-abelian

R -group. Put s° - P° 1Q° «here P°« ) and Q? has prime
pi v s<

order . Then Q. 4 so that «1*1% SiA - G * whence

(Q iV sn G . Therefore Q? is contained in the subnormal subgroup



74

S n (QI1A1)° of S° , which implies that s (QiA<)° . But
now Si =Q~S. nAj) =Q. , a contradiction. Hence S. HH =S.

is cyclic so that G/H is cyclic (from (2)). By the Schur-Zassenhaus
Theorem there exists a n-subgroup K of G such that G=H] K,

and (i) holds.

H< G so that H> mod G° and H° sn G°, whence H° per G
by Theorem 2.8. Letped and let §],S2 eSylp(G) . Since GMH
is abelian, HS » HS2 « G . Therefore |S ® |[H°S" : H°| -
|[H°S] : H°] = |S|]| .Since S and 2 arecyclic, they must be
isomorphic. It remains to be shown that H° < G° (and then (iii)
holds). Since G° - HK® and H° n K » 1, then n(G°) » n(H®) y n(K®)
=n" un(K®) . Now Ka =S° x...x S® where $" is a cyclic Sylow
p~-subgroup of K (Theorem 2.7) and S? is a cyclic g”-group
Pi + ep» 1s1sr) . If some q. ™ , then S? normalises
the subnormal subgroup H° of H°S? . Alternatively, suppose q. e n'
Let Q? be a Sylow g~-subgroup of G° containing S? . Then
1+ Q nH° e Sylq.(H°) > so that Q. nH is anon-trivial q..-group
and |Q?] ag? . If Q? is cyclic, then Q is a cyclic q.-group con-
taining $* . But $' is a p~-group, a contradiction. Therefore Q.
is elementary abelian and |S?] = g. . Now H° sn H°S? and since
|[H°S? : H°| m o , S? must normalise H° . Therefore H° < G° and
we have proved the necessity of (i), (ii) and (iii). In order to prove
the sufficiency of the conditions (i)-(iii), we will use the following

result, due to Schmidt ([SH] Theorem 4.2).



2.13 THEOREM.

Let 6 cF and G° e u(G) . Suppose X is a subnormal subgroup
of G such that X° is not subnormal in G° . Let N be the
maximal normal subgroup of G such that Ns X and NO < G°

Then there exists non-abelian RP_ -groups F(l?/N° of order
i

.n. "1, 1sin, til) such that

. R o - re
(¢ SIWUL1 xx | x— is aHall decomposition of —
N N°

(b) ¢ R - 5{- X'J is a Hall decomposition of s

o ixenis| JXnRj .
(c) n? snG , "Ri-Pim|— 1 ('sls?¥

Proof of 2.12 ctd.

Suppose that conditions (i)-(iii) of Theorem 2.12 hold, but
that o does not preserve subnormality. Let X be a subnormal sub-
group of G such that X° is not subnormal in G°. Then (a), (b),
(c) of Theorem 2.13 hold and (using the notation of 2.13) the
induced project!'vity 6 on L(G/N) is p..-singular for 1si st ;

hence, if P./N is a (unique) Sylow p~-subgroup of G/N , then



Pi/N - TiN/H for any Ti c SylpMG) , P°/N° 2 TA/(T° n N°)

is not a p.-group and so o is p”singular (so that {pl... p~} cn

and there is no conflict of notation). Pl is cyclic (by (i)) and

P-|/N is elementary abelian, so that |PI/N] =p* . Therefore

IRi/N| = p|Sj where pl >s* eP (Pj $ Rl because |P°:N°|] =ql < |[R™N°|).
Let Q°/N° « Sylp~(R°/N®)

Then |Qi/N|] =sj so that o is s-j-singular and, as above, so is o
Therefore pl,sl en < Since Qj/N e Syls® (G/N) we can Plck

S] € Syls (G) such that QYN = SjN/N . Since K is a cyclic Hall

9i
n-subgroup of G, there exists c G such that [S) 7] =1

9 9 / )
But then OQj ,P-j] m [Sj N.TjN] s N, so that P?l - Pl normalises

Qi , a contradiction. Hence o preserves subnormality and Theorem 2.12

is proved.



2.14 COROLLARY.

Let G be a finite group and let G° e u(G) , where <r
preserves subnormality. Then, in the notation of Theorem 2.12,
0“l preserves subnormality if and only if n(H°) nnK°) = &
(that is, H° =0w,(G°)). If, however, there exists ¢ e n(H®) n n(K°)
then a Sylow g-subgroup of G° is elementary abelian of rank at least

two and a Sylow g-subgroup of K° has order q .

Proof.

We use the notation of Theorem 2.12 throughout. We prove the
second part of the corollary first. Let q e n(H®) n n(K°) and pick
Q® € Sylq(G°) such that Q> contains the cyclic Sylow g-subgroup
K> of K° . Suppose, if possible, that Q> is cyclic. Since
1t Q° nH £ SylgH®) and is index-preserving, Q must
be a cyclic g-group. But Ky is a p-group for some p\ q (pen)
which is a contradiction. Therefore Q° is elementary abelian of
rank at least 2. Since K° is also cyclic, K° has order g , which

proves the second part of the corollary.

Suppose that o ”~ preserves subnormality. Then by Theorem 2.12
applied to o'l we must have H° = O~.fGO) . Conversely, suppose that
n(H°) n J(K°) =is . We show that conditions (1)-(11i) of Theorem 2.12
are satisfied for , which then implies that 0”1 preserves

subnormality; H° = so that (i) holds. Clearly o-V~A"n®°) is



index-preserving, and by Lemma 2.10, every singularity of o"
is of the first kind; thus (ii) holds. Since the Sylow subgroups of
K and K° are mepped to each other, (iii) holds. This completes

the proof.
[m}

Lack of a Sylow structure in an arbitrary periodic group G
means that we cannot immediately say anything about the p-subgroups
of G if L(G) admits a p-singular projectivity. For locally finite
groups, however, we have the following Lenina, which shows that (as in
the finite case) an abelian p-group must be of a specific type in order

to admit a singular projectivity.

2.15 LEMVA
Let G be a locally finite group and let G° e u(G) . Suppose
that o is p-singular (p prime). Then one of the following holds:
(i) every p-subgroup of G is elementary abelian;

(ii) every p-subgroup of G is cyclic or quasicyclic.

Proof.

There exists subgroups N,S,U of G such that N< U, N° U° ,
JUN] $ W\f:N° | <», S/N« Sylp(G/N) and SO/N° 1s not a p-group.
Let T be a finite subgroup of S such that S = NT . Suppose, if



possible, that o/~Tj is not p-singular. Then |SIN] = |TTnN| =
= |T°:TOnNO| » |S®:N°] , a contradiction. Hence o/"yj is
p-singular and there exists Tj e Sylp(T) such that T* is not a
p-group.

Let P be a finite p-subgroup of G . If G contains no
elements of order p2 then, since o is p-singular on the finite
lattice L(<P,Tj>) , P must be elementary abelian. If G contains
an element g of order p then, since o is p-singular on the
finite lattice L(<P,T-] ,0>) , P must be cyclic. Therefore either
every p-subgroup of G is elementary abelian (and (i) holds) or every
such subgroup is cyclic (and (ii) holds). This completes the proof.

O

2.16 LEMMA

Let G beagroup and let G° e u(G) . Then (G°)F = (GF)°

If G is a Cernikov group, so is G°

Proof.

The subgroups of finite index in G are in bijective correspondence
(via o) with the subgroups of finite index in G° , by Theorem 2.2.
Hence (G°)F = (GF)° . If G is a Cernikov group, then Gf £S nD .
Since uS =S (C'W) and ud=A (clearly) then (G°)F = (GF)° e SM

and so G° is a Cernikov group.
O



We can exploit the structure of a Cernikov group to say
something about the projective image of a subnormal subgroup;
the relation of the following result to Theorem 2.13 is mede

explicit in the remark after the proof.

2.17 THEOREM.

Let X be asubnormal subgroup of aCernikov group G and
let G «u(G). Then X° is normalised by(G°)F and
X° sn X°(G°)F(G0)"

Proof.

G is a Cernikov group by Lemma 2.16. Let G° = X°(G°)F .
Then & « GF, XngF ®XGF - G, and X° n (Gj)F G . Therefore,
in order to prove that X° is normalised by (G°)F , we may assume
that G=Gl and Xn G- « 1 . By Theorem 1.13, |GNQXX)|] is

finite so that X« GFX =G . Therefore
G=G *X and G = (G°)F 3 X

Define sets of primes =n(cf) \ nx> and Jig = n(GF) n n(x)
Then & =0 (GH *0 (GF) and by Theorem 2.7,
" 12



(G°)F = (0 <GF)° x (0 (GF)*
1 2

(X x0 (GF)° =X » (0 I(GF))°
" .

If =U, then X <G as required, so assume 4

Suppose we have proved that X asc G° . Then, since X nod G°

we have X per G° by Theorem 2.8. But a finite permutable subgroup
is subnormal (CS2.D Theorem F) and then by Theorem 1.13, X < G°
as required. Therefore it is enough to prove X asc G° . By (*),

we may assume that 0 (GF) =1, so that
"l

G\ is a i”r-group.
Suppose, if possible, that o is p-singular for some pe
Then by Lenma 2.15, every p-subgroup of G is cyclic or quasicyclic.
But if Xp c Sylp(X) , then XpOp(G") is a quasicyclic p-group con-
taining a proper infinite subgroup Op(G") » which is impossible.

Therefore

o is not p-singular for pen2 .

For i ¢ 0, define subgroups n.(G") =<g«G”: g™ ~=1 pt n2>

and X. = XilNG?") . Then X =Xgs X| s ... is an ascending chain



of normal subgroups of G and UX =G . Further, for i a0,
1*0 1

X.+j is generated modulo X. by elements of order p c jig =

Therefore (by Lemma 2.11) X? < X?, . Hence X° asc U (X?) =G°
11 *0 1

and the first part of the proposition is proved.

For the second part of the proposition; if X°(GF)° sn G°
there is nothing to prove, and otherwise we can use Theorem 2.13,
applied to the group XG*7GF sn G/GF and (induced) projectivity
o : L(G/G") wL(G°/(GN)°) , to give the desired result (by the

following remark).

Remark.

In CNZD, Napolitani and Zacher prove a similar result to
Theorem 2.13 in the case that X « G and X° is not ascendant in
G°> (even if G is infinite; the finite case is due to Schmidt [SH]).

A consequence of this result (and Theorem 2.13) is that X° , whilst

not being ascendant in G° , is not far off, in the sense that
X° asc Xa(G°)" : in Theorem 2.13 (using its notation), if we put
R° = <R°. R°> , then X° = (X° n R°)(X° n T°) asc X°T° and

We see from the following
theorem that the above con-
sequence also holds for the
projective image of an

ascendant subgroup.



We say that a subgroup L of a group G is ¢-invariant in
G if and only if LT =L for any auto-projectivity t of ¢(G)
Clearly, an ¢-invariant subgroup is characteristic and any projective

image of it is also ¢-invariant.

2.18 THEOREM (Zacher [Z 21 p.66).
Let X be an ascendant subgroup of a group G and suppose that
X° is not ascendant in G° for some G° £ u(G) . Then there exists

an ¢-invariant subgroup L pof G and a set of primes n such that

X° asc X°L° and £ = Dr , where R./L is a Hall R -subgroup
L pEnr P P
of G/L and the induced projectivity on ¢(Rp/L) is p-singular. In
particular, X° asc X°(Ga)" , and acannot be index-preserving.
O
2.19 THEOREM.
Let G be a group generated by subgroups (X e A) , each

of which contains X as an ascendant subgroup. Suppose that

Ga e u(G) where X° asc G° . Then Xasc G .

Proof.
Suppose, for a contradiction, that X is not ascendant in G .

Then by Theorem 2.18 (applied to o””), there exists an ¢-invariant



subgroup L° of G° and Hall Rp-subgroups Ro/L® of
G°/L° (p ¢ n) such that Xasc XL ,

= DrFh and o'l is p-singular on L(R°/L®)
=]

By Theorem 2.7, 4§j * Dr -P- is a Hall decomposition of G/L .
pen L
XLnR

XL
For XeA T

Since %/L is a non-abelian %-group, we must have XL n Rp o }-g(Lan
for all pen, XeA . Therefore XL o <HL : Xe A> =G and so

X asc G, which is a contradiction.

2.20 COROLLARY.

The projective image of an ascendant subgroup of a group has an
ascendiser. In a finite group, the projective image of a subnormal
subgroup has a subnormaliser.

O
Of course, the second part of Corollary 2.20 also follows from

Theorem 2.13 by using a similar proof to that of Theorem 2.19.



§2.4 The Class Wu .

As we saw in Chapter I(S1.1), J eW, Fcw but Fil
On the basis of the following result, we will define an intermediate

class Wi that still catches F ; that is, F and J s sW.

2.21 THEOREM.

Let Gc F be generated by subgroups H and K, both of which
contain X as a subnormal subgroup. Suppose there exists G° e u(G)

such that G° = H°K® . Then Xsn G .

Proof.

Suppose that the Theorem is false and pick a counter-example
such that firstly n = |G| and then d = |GH| + |GK| + [X| is
minimal.

Suppose, if possible, that H is not a maximal subgroup of G
and let M be a proper subgroup of G which properly contains H
Then M =H(M° n K°) , M* <HMnK> and Xsn H, Xsn MK
Hence X sn M by minimality of n . But now G° = MK° , G = <MK>
and Xsn M, Xsn K. Hence X sn G by minimality of d, a con-
tradiction. Therefore H and (similarly) K are maximal subgroups

of G.

If X° is subnormal in both H° and K° then X° sn G° by



Theorem 1.3, whence by Corollary 2.20 we have Xsn G, a
contradiction. So we may assume that X° is not subnormal in H° .
Apply Theorem 2.13 to the subnormal subgroup X of H, with
projectivity o/L"Hj : Then (in the notation of 2.13)

HN « R/N =% R/N X T/N RYN e Rpij) and

where (X n R*)/N has prime order p. (i =1,...,i) and

Pi 4Pj if i 4j - N is (defined as) the largest normal subgroup

of H such that Ns X and N° 4H . Also X*n T#sn Htf. Suppose
that this decomposition of X/N contains more than one direct factor.
Then at least two of the groups XnRj,... XnR* , X n T are proper
(non-trivial) normal subgroups of X and each such subgroup will be
subnormal in both H and K ; by minimality of d , each will be
subnormal in G and therefore their join X is subnormal in G ([W]I]),

a contradiction. Therefore X/N = (XnR")/N and has order p , say.

Further, X = (XnR") ~ A = X . Also, by the minimality of d |,
we have Nsn G. Since H and K are maximal in G, then
N®s HK . Clearly, NWX + X, sowe must have nX=N.
Because |XIN] =p~qg= X : N , , and hence *

is p-singular. We consider the two different types of singularity:



<H,K>

(a) o/L(K) is p-singular of
the first kind.

By Theorem 2.9(b), K=

Therefore

XN K A."G SNNG

Therefore XNG&/NG (order p) is normalised by the p'-group ApNG/NG
kG

P P -
which implies X «2 G, a contradiction.

(b) 1S p-singular of the second kind.

By Theorem 2.9(c), K=R™* B where R is a non-abelian

Rp-subgroup of K and R,B have co-prime orders. Then

and every p-subgroup of K/NG is contained in RNG/NG and is
normal in K/N6 . Therefore XNG < K which, as in case (a), gives

a contradiction. This completes the proof.



We define the class of groups as follows: a group G

is a W-group if and only if (*) holds:

Whenever G is generated by subgroups H and K, n
both of which contain X as a subnormal subgroup, and J> *)
G° e u(G) with G> =hv . then XsnG.

Theorem 2.2] says that F¢ Wi, and clearly J ¢li*t¢c w

2.22 PROPOSITION.

Wi contains the class of Cernikov groups.

Proof.

Let G be a Cernikov group generated by subgroups H and K,

both of which contain X as a subnormal subgroup, and suppose that

G® e u(G) where G° = HK° Since HK e M, X is normalised by

HF and by KF . But G° * H°K® is a Cernikov group (Lemma 2.16),

so by Lemma 1.14 we have (G°)F - (H°®)F(K®)F Therefore GF - HFKF

normalises X . So to prove that Xsn G, we may assume that GF m 1
Now G is finite and Xsn G by Theorem 2.21.

O

Proposition 2.22 will be superceeded by Proposition 2.25, which

says that (AF)Uc tou (Cernikov groups form a u-closed class by Lemma

2.16). Proposition 2.25 is proved using a reduction lemma akin to

Lemma 1.6:
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2.23 LBWA

Let G be a group generated by subgroups H and K, both of
which contain X as a subnormal subgroup. Suppose that G° e u(G)
and G° = HK® . Let A be an abelian normal subgroup of G and put

Gl =AHNAK, H, mHn AK, K, =AKnH and N = (AnH,)(AoK,) . Then
(i) N« G » AH, m AK, = <HL ,K,> and G° = <A°H®> » <A°K°®> - H°K® .

Let bars denote subgroups of G, modulo N . Then Xsn T , X sn and

(ii) G =A]1H =A]K =<H,K> and HAK" embed in G/A ;
(iii) if Xsn @& and AXsn G, then XsnG.

Suppose that A° is an abelian normal subgroup of G>. Then N §G°

and, if bars denote subgroups of G° modulo N° ,
(<v) G7°.r 3 r ]Tg°. and A embed in G°/A° .

Proof.

(i) By lemm 15 (i), NoG, =A4 . Therefore Gl = <A H,°>=
- <A K> . Also. HK° = (H°n<A®, K°>)(<A|11, HP>nK">) -<AQ,H°> n H°K® n <A°K°:
= G° . Therefore G, =<H, K>

(ii) From (1), A's <H,K1> so, by Lemma 1.5(1v),(v), (ii) follows.

(iii) As in the proof of Lemma 1.6, the hypotheses of (iii) imply
that NXsn AKsn G and X sn NK by Lemma 1.7.

(iv) This follows from Lemma 1.5 (iv),(vi).
O

Lemma 2.23 is limited in application by the fact that A° has to be

abelian and normal in G> . This need not bother us when G is metabelian,

as we see from:



2.24 THEOREM.

A2cuU .
< Cu

Proof.
2
Let GeA be generated by subgroups Hand K , both of

which contain K asa subnormal subgroup. Suppose thatG°e u(G)

and G°=hV .Let A =G . Then, by lemma 2.23 (ii) (and using

its notation), Gj = <H" K> and embedin G/A eA . Therefore
X <G . Since AX <G, 2.23(iii) gives Xsn G, as required.

[m]

2.25 PROPOSITION.

(AF)u < ifu .

Proof.

We prove something stronger, that if G e AF and G° e u(G) n AF ,
with G generated by subgroups H and K, both of which contain *
as a subnormal subgroup, and G° = H°K® , then Xsn G. (We do not
require u(G) g AF.) Let GHKX and g” be as posed. Let A,, a|
be abelian normal subgroups of G.g" (respectively) such that |G:A1l
and |G°:Al] are finite. Let B=A, nA? . Then BgcA and |GBQ|

is finite. |G°:B°) | is finite (by Theorem 2.2) and (B°) s A° <A .
G b G° '

By Theorems 2.2 and 2.3, (Br) _ is normal in G and has finite
b G

index in G . Therefore, we may assume A = A" = A , say.



By Lemma 2.23 and Theorem 2.21, we may assume that
G=A]H=A]K =<HK> and G° = A° ] H° = A° ] K° = HK®
Now H1 K1 G/AeF , so that G° - hV is finite. Therefore

G is finite and so X sn G by Theorem 2.21.
[m}

Using results of Baer ([BA]) it can be shown that AF nM s
a u-closed class, and hence (by Proposition 2.25) Af n2c”?

This is superce™ded, though, by the following result.

2.26 THEOREM.

(POF £ W .

Proof.

Let X be a subgroup of a polycyclic-by-finite group G . To
show that Xsn G, it is enough to prove that Xe sn GO for any
finite homomorphic image Ge of G (CK1] Satz 3.4). Suppose that
G is generated by subgroups Hand K, both of which contain X as
a subnormal subgroup, and suppose that G° e u(G) with G° = HK®
Let N be a normal subgroup of G such that G/N is finite. By
Theorems 2.2 and 2.3, G and G° contain normal subgroups of finite

index N and (N°) g respectively. By Theorem 2.21 (applied to
G G
G/N ), wehae XN snG. Therefore XN=XN NsnG. By
G ° G°

Kegel's result (above), we can conclude that X sn G .



Finally, we include the following result, which is a corollary

of Corollary 2.20.

2.27 PROPOSITION.

uWnm) ¢ J

Proof.

Let G° e u(G) where Gc NM . Suppose that G° is generated
by subgroups H°> and K° , both of which contain X° as a subnormal
subgroup. Then X sn G and by Corollary 2.20, X° asc G> e M . There-

fore X° sn G° .



CHAPTER 3. K-SUBNORMALITY.

§3.0 Introduction.

K -subnormality in finite groups was introduced by Kegel (CK2D)
as a generalisation of subnormality. Kegel shows that in a finite
group G, the K-subnormal subgroups form a sublattice of L(G)
(see Theorem 3.2); here K denotes a class of groups which is
closed with respect to forming extensions, homomorphic images and
subgroups  (<P,Q,S>-closure).

This chapter is in three sections. In 8§31 we give preliminary
definitions and results. In §3.2 we consider the relations m
("K-normality”) and sn™ ("K-subnormality”) for variable <P,Q,S>-
closed classes K of finite groups. Distinct classes Kl , K2

*2
with essentially only one exception, correspond to distinct relations

correspond to distinct relations n, , n, (Proposition 3.7) and,
*1

snK? snK2 (Corollary 3.6). Also, we have two results which generalise

well-known characterisations of finite nilpotent and finite Dedekind

groups; if G is a finite group, then every subgroup is K-subnormal
if and only if G is the direct product of a K-group and a nilpotent
group (Theorem 3.4); every subgroup of G is K-normal if and only

if G is either a K-group or a Dedekind group (Theorem 3.8).

In §3.3 we consider if Theorem 1.3 remains true when “"subnormal”

is replaced by "K-subnormal®. That is, if G =HK is a finite group



and X is «subnormal in both H and K, is X «subnormal
in G ? This is true if G is soluble (Theorem 3.12) but false
for arbitrary finite groups G, even if X <K H and X <K K
(Example 3.11).

The definition of «subnormality need not be confined to
finite groups and classes « of finite groups. Thus we can speak
of «subnormality in infinite groups and define the «subnormal
analogue, , of the class U of Chapter 1. is contained
in 1, and we identify some subclasses of bK in Theorem 3.14,
Theorem 3.15 (W* contains all polycyclic groups) and Theorem 3.17

(K contains all soluble Cernikov groups).

§3.1 Preliminaries.

The classes of groups that are closed with respect to forming
extensions, homomorphic images and subgroups are precisely those

classes which are PQS-closed. This follows from

3.1 LEMVA

<P,Q,S> - PQS .

Proof.

Clearly PQS s <P,Q,S> . Using the relations SPs PS, Qs B



and s PQ ([RI] Llenmma 1.12), we have
(PQS)Z = PQSPQS s PQPSQS 5 P2QSQS 5 P2Q2S2 - PQS s (PQS)2

Therefore PQS is a closure operation containing P,Q and S

since <P,Q,S> is the least such closure operation, then

<P.»S> £ PQS .

Suppose that K js a PQS-closed class of finite groups. W

define L* as the class of simple groups which occur as composition

factors of K-groups. Clearly, L~ consists precisely of the simple

K-groups and

K.PLk

Conversely, if L is any class of finite simple groups which is

closed with respect to taking simple sections, then any subgroup of
a PL-group has composition factors which are simple sections of
L-groups. Hence SPL =PL . Also, QPL s PQL =PL so that QPL =PL
Therefore PL Is PQS-closed and LpL - L .

So we can uniquely describe any PQS-closed class K of finite

groups by specifying its simple subgroups L* If L~ consists of



finite n-groups (some ncp) then so does K , and, defining

11(<) (n(LK)) as the set of all primes that occur in the orders

of K-groups (L"-groups), then n(K) =n(L?) and

FnsS .y cKckF
n(<) n(<)
If and K~ are PQS-closed classes of groups, then
Kj n <€ is PQS-closed and nK ) =Lk n LK ' A’so» the

smallest PQS-closed class of groups containing K| and K2 is
P(KL uK®) , because SPsPS, QPsPQ and both S and Q

are unary.

Let K be a PQS-closed class of finite groups. Following
Kegel (CK23), we say that a subgroup X of a finite group G is

K-normal in G, written X<K G or XnK G, if and only if

either X <G or GfXg e K. W say that X is K-subnormal in G,

and write X G or XsnK G, if and only if there exists a chain
of subgroups X = XQs X s ... s Xn =G (n €W) such that
Xi "K Xi+l F°r Osi<n.

For example, taking K =1 in the above definition, then

X0 G (Xsrtj G) if andonly if X< G (X sn G) . At the other



extreme, the statements X<pG, X snp G and X£ G are
equivalent. Also, if Ge K (arbitrary K) then every subgroup

of G is Kwnormal (see Theorem 3.8 for the converse).

We shall consider n* and sn® as relations of finite groups,
and sometimes we shall write n, sn, s in place of m , sn" ,
np (= snp) respectively. We partially order (using "s") the
relations n* and sn® for various K in the natural way; that
is, if Kj and K2 are PQS-closed classes of finite groups, then

we write n. sn. (sn. ssn* ) if and only if whenever X n, G
J 2 *1 *2 *1

(X snr G) for a subgroup X of a finite group G, then Xn, G
L *2

(X sn® G) . Clearly, c implies that n® s n® and
snkk s stV

*1 2

Remark.

Let X be a subgroup of a finite group G and let K be a
PQS-closed class of finite groups. Then K is NQclosed and it is
not hard to see that G" contains all subnormal K-subgroups (in
fact, G contains all K-subnormal subgroups - see below). Note

that Istt <>1s g ; also G/XG i ( s |

We summarise the results of [K2 D in the following theorem.



3.2 THEOREM.

Let K be a PQS-closed class of finite groups, and let G
be a finite group with subgroups X,Y and N such that Ni G
and I<ijl (n eH) . Then

0) Xn» wEY ;

(11) n £ and if NsY then J A implies
I<Jt (meK) ;

(111) if X - X* then Xa" G ;

if X« K then XG« K j

A
=

(v) 1f Ysn*G then <X)Y> snRG .

In particular, the /(-subnormal subgroups of G form a sublattice

of L(G)

Proof.

See Kegel CK2] (the proof of (iii) is also given here, in
Lenma 3.13). We give an alternative proof of (iv) using induction
on n, the result being clear if ns 1. Thecase n =2 is the

crucial one, which we prove in:



3.3 LEMVA
In the notation of Theorem 3.2, suppose that X e K and

X\ v kg e The" xG*K m

Proof.

Suppose that the lemma is false and let 6 be a minimal counter-
example. By the remark above Theorem 3.2, X is not subnormal in
G. If X is not normal in Y, then Y/Xy e K and Ye PSK=K .
But Y G, so that X®s Y~ e K, a contradiction. Therefore
X«Y&G.

Let N be a non-trivial normal subgroup of G . By the minimality
of G (and Theorem 3.2(H)) we have XGN/N e K . Therefore Nt K,

so that G" =1 and
G contains no non-trivial subnormal K-subgroups. (1)

By 3.2(i), X<X*nY X~ . If XA~ G then the minimality of G

XN

implies that XV is a K-group, contradicting (1). Therefore

N =G and so G/N e K for all non-trivial normal subgroups N of

G . Hence

G is a unique minimal normal subgroup of G . (2)



Therefore GK syQsy, sothat Xn GK « GK « G and by (1),

XnG*=1. Therefore

X's 0B(GK) < G .

But XG =G, so that

K k
G £ Z(G) and by (2), G has prime order p, say, and p k n(K)

K
Thus G has p'index in G

, so by the Schur-Zassenhaus theorem,

K L
G=G ] Q for some p'-subgroup Qe K of G . But G s Z(G)

K
so that G=G *Q.

G has order p ,

Proof of 3.2(iv).

We are|induction on

and X = Xq XN <K ...

if n=0 or 1

So suppose

Then by (1),

K Xn-| A Xn =G .

we must have Q = 1, so that

which is clearly a contradiction.

n to prove that X c K where Xe K

The result is clear

n s 2 with the usual inductive

X X
hypothesis. Then X n"~ e K by induction, and X n+* < Xp G .

Therefore X6 = (X n_1)6 e K by Lemma 3.3.

532 nK and sn®

We know that

snK = sn for some PQS-closed class

if we take K= Fp

sn® =sn .

(p prime),

However,

then if

it is not true that if

X

K of finite groups, then K =1J

is a K-normal subgroup



of a finite group G, either X &G or G/Xbe Fp : in either

case, Xsn G, so that snp =sn .

=]
More generally, we ask under what conditions does snr = sn,  imply
*1 *2
that = Kg (where K~ £ F are PQS-closed classes) ?
We first have a result which, in the case K =1, gives the well-

knoan characterisation of finite nilpotent groups as finite groups in

which every subgroup is subnormal.

3.4 THEOREM.

Let K be a PQS-closed class of finite groups. For a finite
group G, the following conditions are equivalent:

(i) Every subgroup of G is /(-subnormal.

(ii) G=Kx N where Ke K and N is nilpotent.

(iii) G =0k * X where K is nilpotent and has co-prime

order to G

Proof.

(i) = (iii). Suppose that (i) holds and let nl = n(G")
and J2 = n(G/GK) . Then for p « JI(K) nn(G) and P c Sylp(G) ,
we have P e Fp c K and, by Theorem 3.2(iv), Ps G . Therefore

n1 o= ji(K) n on(6) and n- n jig = § . &)



Let g « and Q eSylq(G) = If Q* 4 Q then K contains a

non-trivial qg-group, whence Q c¢ Fg s. K . By Theorem 3.2(iv),
is

q e ni , which contradicts (1). Hence Q =Q and (by Theorem

3.2(111)) Qsn G; therefore Q<G . Let
N=<Q: Qe Sylq(G) , q £ H>

Then N =0 (G) is a nilpotent normal subgroup of G and (by (1))
2

NnGr=1. Therefore
G=G, *N*0
k i

is a Hall decomposition of G, and G*£ N. If G*4 N then
there exists g e n(K) n n(N) =JI(K) nn(G) nn(N) , so that
qe n Jig , contradicting (1). Therefore &K =N and (iii)

holds. Clearly, (iii) implies (ii)» so it only remains to prove

(ii) = (i). Suppose that (ii) holds. We prove (i) by induction
on the nil potency class ¢ of N, the result being clear if ¢ =0 .
So suppose ¢ a 1 with the usual induction hypothesis. Let X be a

subgroup of G =K* N and let Z=2Z(N) . Then Zs Z(G) and

KZn N- Z(KnN) =Z, so that

[
7 7

~NZ



By induction, XZ sn® G. Since X4XZ , then XsnK G and

(i) holds. This completes the proof.

Remark.

A finite nil potent group can also be characterised as a finite
group in which every Sylow subgroup is normal, but we cannot append
to Theorem 3.4 the condition that every Sylow subgroup of G

is K-normal. For example, take K = 3j and G =H™* K where

H=Eg and K has order 5 . Then G satisfies (i), (ii), (iii)
of 3.4, but a Sylow 2-subgroup of G is not K-normal in G

(otherwise G e K)

We use Theorem 3.4 to prove that, apart from the exceptions
mentioned at the beginning of this section (§3.1), distinct PQS-
closed classes , K~ of finite groups do indeed give rise to

distinct relations sn*, , snr . This will be a corollary of
*1 *2
3.5 PROPOSITION.

Let , <2 be PQS-closed classes of finite groups and

put nj = n(Kj) , Jig = niKg) = Then the following are equivalent:



(ii) Kj c Kg or K| =Fp for some c JjNJlg (and sn* = sn)

Proof.

Clearly (ii) = (i).

(i) = (ii). Suppose that (i) holds. If Ge kj , then by Theorem

3.4, 6 =6" x G” is aHall decomposition of G and G~ is nil-

*2
K? K?
potent. If also Ge then G eNn F* ¢ > so that G =1

and Ge K2 . Therefore n Fw £ K2 and
K K
(m(. » i =t. «G2,6G, =0 (G), G2=0.<6)sN . (1)

Let n- n(C, « F~) . By (1), K, nF =w, so that |n| s 1

(otherwise K] n F»Z contains the wreath product of two groups of

distinct prime orders, which is not nilpotent). We consider the two

possibilities for |n|
If n=ip} , then pe lljuig andwe claim that Kj =Fp .

Certainly FP c K, , and if Fp + Kj then there exists qe nn

1
Then if H=AIB , where |Al =q ad |[Bl mp ., Wwe have HeK,



and (by (1)) H=0q(H) *Op(H) =« But Op(H) =1 » a contradiction.

Therefore Kj = Fp and (ii) holds.

Finally, if n =is then by (1), c K2 and so (ii) holds.

3.6 COROLLARY.
Let K| and Kg be PQS-closed classes of finite groups. Then

the following conditions are equivalent:

(i) sn*, = snr

*1 *2
(ii) K] =Kg or K| =Fp, Kg = Fq for some p,g cP u {1}
(and sn~ = sn® = sn)
i Kz
Proof.

Suppose that (i) holds. Using Proposition 3.5 twice, we have
the following possibilities:
Kj s Kg or Kj =Fp (p prime), and
<2 £ K or Kz = (@ prime).

Consideration of the 4 possibilities shows that (ii) holds. Conversely,

(ii) => (i) is clear.
[m}



Putting Kj =K and Kg * 1 in Corollary 3.6 shows that
sn® =sn if and only if K=1 or K =Fp (p prime). This
is the only case where a PQS-closed class K of finite groups

is not uniquely determined by the relation sn”

It is natural to ask whether Corollary 3.6 remains true if

we replace sn® with n* . In fact, a stronger result holds:

3.7 PROPOSITION.

Let k| and K2 be PQS-closed classes of finite groups.

Then n, sn, if andonly if K sC, , Hence n, =n, if
* 1 z K1 K2

and only if K| =Kg .

Proof.
Clearly K s K2 implies that n™ s n* . Suppose that
m 5n” . Then sn® s sn® so that by Proposition 3.5 either
Kji £KE or K - Fp (p prime). Suppose, if possible, that £ Kg

Let 6 be a finite p-group which contains a non-normal subgroup X
(for example, G is the wreath product of two groups of order p).

Then G e Fp=K" , so that X G and hence X~ G . Therefore

<2 contains the non-trivial p-group G/XQ , which implies that
= Fp £ <2 » a contradiction. Therefore K c Kg . This completes

the proof.



A finite Dedekind group is (defined to be) a group in which
every subgroup is normal. Such a group is either abelian or is
the direct product of a quaternion group of order 8 and a finite
abelian group which has no elements of order 4 . Theorem 3.8 is

the K-normal analogue of this result.

3.8 THEOREM.

Let K be a PQS-closed class of finite groups and let G be
a finite group. Then every subgroup of G is K-normal in G if

and only if either G £ Kor G isa Dedekind group

Proof.

Suppose that every subgroup of G is K-normal in G . Then
by Theorem 3.4, G=G"* X where &K is nilpotent and has
co-prime order to & . Let X be a subgroup of GK . Suppose
that X *G*. Then X +G, so that G/Xg ¢ K . Therefore
X *Xg and X =& < G, acontradiction. Therefore X < & and
GK is a Dedekind group.

If G is also a Dedekind group then so is G, so suppose
that G" is not Dedekind. Let Y be a non-normal subgroup of &
Then G/Yg e K, whence &K s Ygs G . Therefore & * 1 and

G« K . The reverse implication is clear.



We ask whether (for a PQS-closed class K¢ F) the relations
snk and rK can coincide. Certainly, if K=F then sn" =s =K
Theorem 3.9 shows that this is the only case where sn® and M

are equal.

3.9 THEOREM.

Let K be a .QS-closed class of finite groups. Then sn = n®

if and only if K=F .

Proof.

If K=F then sn® =s =n" . Conversely, suppose that

snK = nK = We show that « = F by stages. We prove:

mw £K Let n - n(C) . Suppose, if possible, that there
exists peP\n . Let G =AIB where AB are groups of order p .
Since sn's sne ad Bsn G, wehave B<KG by hypothesis. But
B+G, so G/BgeK and pen , a contradiction. Therefore

n=P and iy holds.

(ii) K=Fnfor K =F . Suppose not. Then by (i), there
exists non-abelian finite simple groups H and K such that Hk K
and Ke K . Let G=Hx K and consider any non-trivial proper

subgroup X of K. Then X~ K<G so that X G (by



hypothesis). Since K is simple, we must have =1 and
G € K, which contradicts the supposition that Hi K
Therefore (ii) holds.

(iii) K=F. By (ii), it is enough to prove that K $ SaF.
Suppose, for contradiction, that K* «SnP. Consider the group
G = H™* (AiB) where AB are groups of prime order p and H is
isomorphic to Ag , the alternating group of degree 5. Then
B sn (AiB) §G so that B<K G . Now B{ G so G/BQe K and

Bg =1, whence Ge K and He K, a contradiction. Therefore

K- F
O
3.10 COROLLARY.
Let and K2 be PQS-closed classes of finite groups.
Then sn® =n* if and only if =F.
Proof.

Clearly Kj = = F implies sn® =s =n* . Conversely,
suppose that Sn’;;,1 = n:,z . Taking the transitive closure of both
sides of this equation, we have sn® =sn* . Therefore n* =sn* ,
so that K2 = F by Theorem 3.9. Then by Corollary 3.6, n

as required. o



- nho -

Let L be a class of finite simple groups which is closed
under taking simple sections; there are 2© distinct such
X0 R X0
classes (2 is certainly an upper bound, and there are 2
distinct classes of simple abelian groups). Hence there are o
distinct PQS-closed classes K of finite groups, of which (by
Corollary 3.6) only x0 give the same relation sn® (= sn)
X0
Hence, by Proposition 3.7 and Corollary 3.10, there are 2

distinct relations n" or snK

$3.3 The Class bK .

A natural question to ask if if Theorem 1.3 remains true
when “"subnormal” is replaced by "K-subnormal”, where K is any
PQS-closed class of finite groups. The following example shows that
it does not remain true. However it does remain true if we suppose

that the group is soluble (Theorem 3.12).

3.11 EXAMPLE.

If G is a permutation group on the numbers 1,2,...,n and

H is a (proper) transitive subgroup of G then G = Stabg(i)H for



1s1sn ([SC] 13.1.9). Take n ¢5 and let G * AR

(a): n odd. Let h=(1 2 ... n) <G and put H = Ng(<h>)
and K = Stabg(l) =Anj . Then G =<h>K =HK and <h> has
(n-2)1 conjugates in G . Therefore ]H = n(n-1)/2 and
IHnKj = (n-1)/2 . Let L~ consist of all simple groups of finite

order less than n!/2 . Then, putting X m HK , we have X H,

X K but X is not K-subnormal in HK .
(b) : n even. W partition (1,2,...,n} into pairs
Pi *{ai,b.} , 1si sn/2. Then, as in (CSC] 13.1.10), the

set H of elements of G which permute the P.'s is a transitive

proper subgroup of G . Then if K = Stabg(l) , .we have G =HK .

Put X =HK . Since n26, XH . Therefore, if K is as
in (a) , wehave X" H, X K but X is not K-subnormal
in G.

3.12 THEOREM.

Let K be a PQS-closed class of finite groups. Suppose that
G is a finite soluble group which is generated as the product of
subgroups H and K, both of which contain X as a K-subnormal

subgroup. Then X is K-subnormal in G .



Proof.

Suppose that the theorem is false, and consider a minimal
counter-example G such that |GH] + |X] = s is also minimal.

We proceed to derive a contradiction to the existence of such a G .

(i) H is maximal in G . Suppose, for a contradiction,
that there exists a subgroup L lying strictly between H and G .
Then L =L n HK = H(LnK) . By the minimality of G, we have
Xsn"L . But G=LK, so by the minimality of s, Xsn* G,

which is a contradiction. This proves (i), so that |G:H| =(

(q prime, a z 1) .

(ii) H is core-free. Suppose not. The hypotheses of the
theorem hold modulo the group HQ f 1 ,so that XHg sn® G by the

minimality of G . But Xsn® XHQ , which gives a contradiction.

(iii) H contains no non-trivial subnormal subgroups of G .
Suppose not, and let S be a subnormal subgroup of G such that
SsH. Since H is maximal in G, then SGs H, contradicting

(11)

(iv) XH, XK £ K . By Theorem 3.2(iv), it is enough to
prove that X e K . Suppose not. If X =XK then Xsn H, XsnK
by Theorem 3.2(111) so that X sn G by Theorem 1.3: hence X sn* G



a contradiction. Therefore 1< X* <X . Now XK is K-subnormal

in both H and K and, since (XK)A = XK , Theorem 3.2(iii) implies
that XK is subnormal in both H and K . By Theorem 1.3, XK sn G

which contradicts (iii). Hence (iv) holds.

Let A be a minimal normal subgroup of G . Then A is an
elementary abelian p-group (p prime) and G =AH by (i) and (ii).
Then AnH<AH =G and (ii) implies AnH=1 and p=q . W
claim that p * n(K) . For, suppose that p en(K) . Then AeK and
by (iv), AX=A]X e K . Therefore X AX . But AX sn®* AH =G,

whence X sn® G, a contradiction; thus the claim is true.
Let ji =n(xH) u n(XK) . Then p U and by(iv), FnS~cK
H“. < Hall (H) . Then Wr € Ha"w<G> and XH s HIr . Let
Hall, \y . Then XKs and K, is contained in some Hall
n-subgroup H* of G (where gc G) . Writing g=hk (heH keK

ve have
XK's k] » Kj Th shl s H.

Therefore XG = X~ s H and by (ii) we have Xs X® =1, a
contradiction. Therefore the theorem is true.

O

We may still talk of K-subnormality in infinite groups, by



using the same definitions as in the finite case and allowing K

to be any PQS-closed class of groups. Of course, given an infinite
group G, and G/GK will not necessarily belong to K If
we impose the extra condition of R-closure on K (to ensure

G/G e K) then we will have gone too far, because this forces

K* 1 or K=U (free groups are residualy Fp-groups for any
prime p ([I1])). Also, we no longer have a characterisation of K
in terms of . If K consists of periodic groups (n-groups,
say), then K need not equal - for example, K might consist

of soluble n-groups of finite rank.

If K does not consist of periodic groups, then K contains

Fp for all pelP and hence SnHc K . If KE£Snft thenwe
must have Kml , SnM or K*Fn for some ncP (if K
consists of periodic groups then K c F ; 1f K contains non-periodic

groups then K =S n M) . Therefore, if GeSn$ and H G for
some PQS-closed class K , then (because KnSnM is PQS-closed)
either Ge K, H« G or |GH] is finite.

It is not hard to see that the basic properties of K-subnormality
("intersecting” and “factoring”) given in Theorem 3.2 (i)(ii) also
hold in the infinite case. Theorem 3.2 (iil) also holds in general:

the proof of this in the finite case ([K2 ] Lemma4) still works.

For completeness, we give a proof here.



3.13 LEMVA

Let K be a PQS-closed class of groups. Let X be a
K
subgroup of the group 6 and suppose that X =X snK G . Then
Xsn G .

Proof.

Let X = xg <K X1 < *K Xn =G be a K_subnormal series
from X to G . We prove that Xsn G by induction on n, the

result being clear if ns 1 . Suppose that n * 2 with the usual
inductive hypothesis. Then X sn Xnl (by induction) and we suppose,
for a contradiction, that X is not subnormal in G . Let Y = (xn_"g
Then G/Y e K and X $Y . Therefore XnY is a proper normal
subgroup of X and X/(XnY) e K, which contradicts the supposition

that X = XK . Therefore Xsn G .
[m}

We define the class of groups by: if G is a group then

Ge K if and only if (*) holds for any PSQ-closed class of groups K

Then £ W and Theorem 3.12 implies that FnSE£ (if



GeFnS , then the K-subnormal subgroups of G are precisely

the (K n F)-subnormal subgroups). We will identify some other
subclasses of ;in view of Example 3.11, we restrict ourselves
to finding subclasses of nS . Note that is, like W ,

Q-closed, as is

It is not hard to see that Lemma 1.6 and Theorem 1.8 still
hold for sn® in place of sn (where K m PQSK) ; the proofs are
virtually the same and even the bounds still hold. We shall refer
to these K-subnormal results as Lemma 1.6* and Theorem 1.8* .
Using these reductions, and similar proofs to those for W (Theorem

1.9, Proposition 1.10), we have

3.14 THEOREM.

UK contains the following classes: WA, NFnS , (FnSwr
[m}

3.15 THEOREM.

SnHec (.

Proof.

Let K be a PQS-closed class of groups. Suppose that G is

a polycyclic group which is generated as the product of subgroups



H and K, both of which contain X as a /(-subnormal subgroup.
Let K *KnPC . Then, inside G, K,subnormality is equivalent
to /(-subnormality, so we may assume that K = E£EPC . By the
remarks after Theorem 3.12, either K- J (and Xsn G by Theorem
1.9), K- PC (and X G) or Kc FnS . Therefore we may

assume that <=FnS for some n. cp . Consider the
*1 1

/(-subnormal series

Considering all the non-normal steps X* X"~ Y] Yj+n
(O si,j sn-1) in these series, define the set of primes n as
consisting of the primes dividing the orders of the K-groups

Xi+i/(X<)v. . * Y-i/(Y)y. . Then n is a finite subset of n,
1+1 7 1Xi+i J+1° T+ 1

We show that X sn”pn5 j G by induction on the Hirsch length
h=h(G) of G.

If h=0 then G is finite and the result holds by Theorem 3.12
(with F n in place of K) . So suppose h 2 1 with the usual
induction hypothesis. G contains a normal poly-(infinite cyclic)

subgroup B of finite index. Put kKQ = F n and let A be the



penultimate term of the derived series of B . Let N = (AnH)(AnK)
Then N is a normal abelian subgroup of = AHPAK (as in Lemma

1.5), and because AX sn*. G (induction) it is enough, by Lerma
0]

1.6* , to show that XN/Nsn, G/N . But if N=*1,6 then
KO 1
h(G|/N) < h(G) and the result holds by induction. So we may assume

that N=1 and G=Gj , so that
G=ADH=A]K =HK.

Let p tP . Then, by induction, APXsn*, G and if r = rank(A)
*0

then 1AX : APX] divides pr and so APX «E AX . Therefore
*0

APX <r AX for p « P\n

Now An X=1 and P\Jl is an infinite set, so

X = (APX)  AX .

(n  APX = n
pc jp\n pc P\n

Therefore X sn AX sn® G, as required.
*0
[m}

In the light of the above proof, it might be hoped that for a

K-subnormal subgroup X of a polycyclic group G, there is a

K-subnormal series from X to G in which the normal steps are at



at the bottom and the non-normal steps are at the top. If this
were true when h(G) = 0 , then induction would show that it is
true for any polycyclic group G . However, the following is a

counter-example in the case G finite (and soluble).

EXAMPLE.

Let G=(Y ] X) DZ where Y =<y>, X=<x>, Z=<z>
are groups of order 7,3,5 respectively and the actions are given
by yx =y2 ,yZ=y-1 , xz=yx . Let K=Fn . Then
X XY % G but X is not subnormal in G . Also, there is no
subgroup V such that X <V G . For otherwise |GV| =7 ,
V = Ng(X) = < x <y"z> has order 6 and is core-free in G ,

which implies Ge K , a contradiction.

3.16 COROLLARY.

N(S n M) ¢ uK

Proof.

A
Let G € N(SnM) be generated as the product of subgroups H
and K, both of which contain X as a K-subnormal subgroup. To

A
show X sn®* G we may assume that G e ASnM) (Theorem 1.8'). By



lemma 1.6' and Theorem 3.15, we may assume G=A]H=A]K=HK,
where A is an abelian normal subgroup of G such that G/AeS nM.
Now G is the soluble product of polycyclic groups H and K, so
by a result of Lennox and Roseblade ([LR]), G itself is polycyclic.

Then X sn® G by Theorem 3.15.
O

Theorem 3.17 deals with the dual case to 3.15 - that of
v

v
(SnM)-groups. A (SnM)-group G has invariants Aj(G) = rank (G )
and A2(G) =|G : GF| . Define A(G) as the ordered pair (X"(G),X2(G)).

v
The invariants X(G) (for G c SnM) can be ordered lexicographically,
so that X(L) < A(G) for any proper subgroup L of G and
X(G/N) < X(G) for any non-tHvial normal subgroup N of G .

3.17 THEOREM.

SnM=

Proof.

Suppose that the proposition is false and pick a counter-example
Ge (SnM\WK which is minimal with respect to X(G) » (Xj(G),x2(G))
So there exist subgroups X,H,K of G such that Xsn*H, X snK K
but X is not K-subnormal in G . If Hg+ 1 then X(G/Hg) < A(G)
and so XHg sn® G . But X sn® XHg , which gives a contradiction.

Therefore Hg = 1.



Now x/ = XHFXKF (using Lemma 1.14) and X sn™ XH ,

XsnK XMF . 6/GF £ FnS so that XGF snR G (Theorem 3.12).
If XGF were a proper subgroup of G then minimality of X(G)
would give Xsn® G. Hence G = XGF . But now HF < XGF =G
so that HF s H, =1 . Similarly KrF =1, and therefore

GF =HFKF = 1. Hence G =X, a contradiction.

3.18 COROLLARY.

W(SnM) ¢ uk

Proof.

Let Gc N(Snl\\;l) be generated as the product of subgroups H
and K, both of which contain X as a K-subnormal subgroup.
Then by Theorem 1.8°, Theorem 3.17 and Lenma 1.6°, we mey assume
that HK e Snl\\jl . But the soluble product of Cernikov groups is again
Eernikov (CA2] Theorem B). Therefore Ge SnM and Xsn* G by
Theorem 3.17.
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