A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/99117

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

SUBNORMALITY, ASCENDANCY AND PROJECTIVITIES

Peter S. Allen

Thesis submitted for the degree of Doctor of Philosophy in mathematics.

Mathematics Institute
University of Warwick
Coventry CV4 7AL.

CONTENTS.

CHAPTER O. INTRODUCTION AND NOTATION. 1
0.0 Introduction 1
0.1 Notation and Termi nology 4
CHAPTER 1. SUBNOPMALITY AND ASCENDANCY. 11
1.0 Introduction 11
$1.1 \quad \omega$ and Co. 12
1.2 Reductions 17
1.3 Min, Max and ω 25
1.4 NAF Groups 35
1.5 Ascendancy and * 50
CHAPTER 2. PROJECTIVITIES. 59
2.0 Introduction 59
2.1 Preliminaries 60
2.2 Singuiar Projectivities 66
2.3 Subnormality and projectivities 70
2.4 The class w_{u} 85
CHAPTER 3. K-SU日NORMALITY. 93
3.0 Introduction 93
3.1 Preliminarles 94
$3.2 \quad n_{K}$ and $s n_{K}$ 100
3.3 The Class w_{K} 110
REFERENCES 122

Acknowledgements.

First and foremost, I wish to thank my supervisor, Dr. S.E. Stonehewer, for his helpful advice and encouragement, without which this thesis would never have been written.

Many thanks to I. Pimenidou for doing the graphics and for her support. Also, thanks to P. McAllister for the excellent typing. And thanks to Mr. Thamotherum, wherever he may be. Finally, thanks to the S.E.R.C. for providing a grant for the period 1983-86.

All the results presented in this thesis are original, except where otherwise explicitly stated.

CHAPTER 0.

so.0 Introduction.

In 1939. Wielandt introduced the concept of subnormality ([W1]) and proved that in a finite group, the join of the two (and hence any number of) subnormal subgroups is again subnormal. This result does not hold for arbitrary groups (see [ZH], [RS]). After much work by various authors, Williams [WS] gave necessary and sufficient conditions for the join of two subgroups to be subnormal in any group In which they are each subnomally embedded; a sufficient condition ([R4]) is that the two subgroups permute (i.e. their join is their product).

This present work arises from considering what in same sense is the dual situation to the above, namely: given a group G with subgroups H and K, both of which contain X as a subnomal subgroup, we ask under what conditions is X subnormal in the joln $\langle H, K\rangle$ of H and K ? It makes sense here to assume that $G=\langle H, K\rangle$, so we do. We will say that G is a J-group if whenever $G=\langle H, K\rangle$ and X are as posed, it is true that X is subnomal in G. Unfortunately, apart from obvious classes such as nilpotent groups, J-groups do not seem to exist in abundance: Example 1.1 (due to Wielandt) shows that not even all finite groups are J-groups. Even worse, this example has the finite group G being soluble (of derived length 3) with X central in H (in fact H is cyclic). All this does not seem to bode well for trying to find many infinite J-groups (although whether metabelian groups are

J-groups is an open problem). However, in [W4]. Wielandt shows that, If we require that the J-group criteria for a group G is satisfied only when H and K permute - in which case we say that G is a \boldsymbol{W}-grcup - then every finite group is indeed a w-group (Theorem 1.3 here). The soluble case of this result is due to Maier ([MR]).

Our aim in this work is to develop Theorem 1.3 in (principally) three directions, a chapter being devoted to each. We give a general outline of the themes of each chapter here, insofar as they relate to Theorem 1.3, giving more detalls at the beginning of each chapter.

In Chapter 1 we try to find classes of groups x such that every K-group is a \mathbb{W}-group. Stonehewer ([S4]) has shown that periodic nil-potent-by-finite groups are $\boldsymbol{\omega}$-groups (as well as other classes: see Theorem 1.9). utilising a description of triply factorised groups given by Sysak ([SY]) : such triple factorisations may, in many cases, be assumed to hold for a w-candidate G by virtue of aseful reduction lemma ([S4]) which is Lemma 1.6 here. Using this, and other, reductions we are able to show that nilpotent-by-abelian-by-finite groups of finite (Prufer) rank are w-groups (Theorem 1.26). In particular, saluble ilnear groups of finite rank and finitely generated soluble groups of finite rank are $\boldsymbol{\psi}$-groups. The last section (s1.5) of Chapter 1 considers ascendancy, using which the ascendant counterpart ψ of ω is defined. Again using reductions, we show that locally soluble groups of finite rank are \mathbb{W}-groups (Theorem 1.41).

In Chapter 2 we look at projectivities (i,e. isomorphisms of subgroup lattices) and consider the effect of projectivities on subnormal and ascendant subgroups (see [SH], [Z2]). Corollary 2.20 shows, In particular, that the projective image of a subnormal subgroup of a finite group has a subnormaliser. The term "subnormaliser" used here is open to several definitions, from which we have chosen, for better or worse, the following one: we say that a subgroup X of a group G has a subnormaliser if there exists a unique largest subgroup S of G Such that X is subnormal in S. The problem with this definition is that not every subgroup has a subnormaliser, because not every group is a J-group. Alternative definitions usually define some subgroup S_{I} (containing X) which has the distinct advantage of actually existing, but X will not necessarlly be subnomal in S_{1} (see [S1] for a discussion of possibilities). Using Corollary 2.20 and results of [S2], we can relax the permutabllity hypothests of Theorem 1.3 by requiring that the subgroup lattice of the finite group $G=\langle H, K>$ admits a projectivity σ under which H^{0} and K^{σ} permute (Theorem 2.21). We then Identify some other classes of groups contained in for which this relaxed permutability hypothesis still works. One of these classes is the class of metabelian groups, which supports the conjecture that metabellan groups are J-groups. Other identified classes are those of polycyclic-by-finite groups and Cernikov graups (Theorems 2.22, 2.26).

In Chapter 3 we consider K-subnormality (termed C-subnormality when introduced by Kegel ([K2]), which is a generalisation of subnomality.

Here K denotes a class of groups which is closed with respect to forming extensions, homomorphic images and subgroups. A subgroup x of a group G is K-subnormal in G if there is a chain of fintte length from X to G, each step of which is either normal (as for subnormality) or a K-step (by a K-step $A \leq B$. we mean that B / A_{B} is a K-group). Kegel ([K2]) shows that in a finite group the K-subnomal subgroups (K fized) form a sublattice of the subgroup lattice (Theorem 3.2 here). We consider whether Theorem 1.3 holds with "K-subnormal" in place of "subnormal"; for (finite) soluble groups it does (Iheorem 3.12) and we give counter-examples in some non-soluble cases. We define the subclass W_{K} of ω (in such way that Theorem 3.12 says that \boldsymbol{w}_{K} contains all finite soluble groups) and 1 dentify some non-finite W_{K}-groups, such as polycyclic groups and soluble Cernikov groups (Theorems 3.15, 3.17).

We use well-known results and definitions without reference
s0.1 Notation and Terminology.

Our notation and terminology is fairly standard (e.g. as in [R1], [R3]), but we include this section for convenience and just in case there are any amblguities. To save excessive use of brackets, we use the convention that (given there is a choice) a subscript is read before a superscript (e.g. x_{1}^{0} means $\left.\left(x_{1}\right)^{0}\right)$.
$P, \mathbb{N}, \mathbb{Z}, Q$ denote (respectively) the set of prime numbers, nonnegative integers, integers, rational numbers. subset or subclass.

```
    the cardinality of }\mathbb{N}\mathrm{ .
    the first infinite ordinal
S
    the set P\n , If }|=(p)\mathrm{ then we often use p.p'
    in place of n, n'.
    infinite cycllc group.
    the symmetric and alternating groups of degree n ,
    respectively.
GL( }n,R\mathrm{ ) the (multiplicative) group of invertible n*n matrices
    over the ring R (which has an identity).
GL(n,p) GL(n,R) in the case R is a field of p elements
        (p prime).
Let G be a group with subgroups H,K.
&, s. denote (respectively) proper subgroup, subgroup, normal
    subgroup.
    x#y
Aut(G) the automorphism group of G .
\Pi(G) the set of primes occurring in the orders of the periodic
    elements of G. If G}\mathrm{ is periodic
    we say that G is a п-group if n(G)\subseteq\pi\subseteqP.
    O
exp(G)
Hall_(G) denotes the collection of all maximal n-subgroups of G ,
    which are called Hall ( }\pi-)\mathrm{ subgroups of G .
```

SyIf (G)	denotes Hall (G), members being called Sylow ($p-$) subgroups of G.
x^{y}	the element $y^{-1} x y \quad(x, y \in G)$.
[x, y]	the element $x^{-1} y^{-1} x y \quad(x, y \in G)$.
H^{9}	the group [$h^{9}: h \in H$].
- $S_{\lambda} ; \lambda \in A>$	the subgroup of G which is generated by the subsets
	S_{λ} of G. which is called the join of the S_{λ} 's
H^{K}	denotes the group $\left\langle H^{k}: k \in K\right\rangle$ and is called the
	normal closure of H in $\langle H, K\rangle$.
${ }^{H} \mathrm{~K}$	denotes the group $W_{K} K^{H^{k}}$ and is called the core of
	H in K . If $H_{K}=1$, we say that H is core-free in K.
$\left[S_{1}, S_{2}\right]$	the subgroup $<\left[\mathrm{S}_{1}, \mathrm{~S}_{2}\right]: \mathrm{S}_{1} \in \mathrm{~S}_{1}, \mathrm{~S}_{2} \in \mathrm{~S}_{2}$, (where
	S_{1}, S_{2} are subsets of G).
G^{\prime}, G' ${ }^{\prime \prime}$	denote the subgroups [G,G], [G', G^{\prime}] respectively.
$\mathrm{N}_{\mathrm{K}}(\mathrm{H})$	the normaliser of H in K, viz. $\left\{k \in K: H^{k}=H\right.$)
$C_{K}(H)$	the centraliser of H in $K, ~ v i z . ~\{k \in K:[H, k]=1\}$.
Z(G)	the centre of G .
L(G)	the subgroup lattice of G, i.e, the collection of all
	subgroups of G together with the operations intersection
	and join.
[G/H]	the sublattice of $L(G)$ consisting of the subgroups
	which lie between H and G.
$\begin{aligned} & \mathrm{Dr} \mathrm{H}_{\lambda} \\ & \mathrm{A} \in \Lambda \\ & \mathrm{X}] \mathrm{Y} \end{aligned}$	the restricted direct product of the groups H_{λ} (λ c A)
	the semi-direct product of groups X and Y, with a
	sultably defined action of Y on X.
XIY	the standard restricted wreath product of groups x and

Y. i.e. $\left.X i Y=\left(\underset{y \in Y}{ } \operatorname{Dr}_{y} X^{\prime}\right)\right] r$ where $X \geqslant X_{y}$ via
$x=x_{y}$ and the action of Y is $x_{y}^{y_{1}}=x_{y y_{1}} \in x_{y y_{1}}$ $\left(y, y_{1} \in Y, X \in X\right)$.
$A-B$
Rank(G)
the tensor product (over \mathbb{Z}) of abellan groups A and B.
the (Prüfer) rank of G, i.e. the least integer r (1f it exists) such that any finitely generated subgroup of G can be generated by at most r elements; otherwise we say that G has infinite rank.
$S_{1} S_{2}$ the product of subsets S_{1}, S_{2} of G, viz. the set $\left\{S_{1} S_{2}: S_{1} \in S_{1}, S_{2} \in S_{2}\right\}$. H and K are said to permute if $\langle H, K\rangle=H K$.

Series.
Let H be a subgroup of a group G and let v be an ordinal. An ascending series from H to G of length v is a series of subgroups

$$
\begin{equation*}
H=G_{0} \leq G_{1} \leq \ldots \leq G_{v}=G \tag{1}
\end{equation*}
$$

such that $G_{\rho} \& G_{\beta+1}(0 \leq \beta<v)$ and such that if $\quad(0 \leq v$ is a limit ordinal, then $G_{\theta}=\underset{a<\beta}{U} G_{K}$. The groups $G_{\beta+1} / G_{\theta}$ are the factors of the series. An ascending series (1) is normal if each term G_{B} is normal in G
H is ascendant in G, written H asc G or $H \|^{\nu} G$, if there exists an ascending series (1) from H to G. If, moreover, this serles has finite length n, then we say that H is subnomal in G and write H sn G or $H \sin ^{n}$. If $H \sin G$, the defect of H in G is the least integer d such that $H q^{d} G$. The nombl closure series of H in G is defined recursively by: $H_{0}=G, H_{i+1}=H^{H_{1}}(1 \in \mathbb{N})$, Then $H=H_{n}$

If and only if $H 0^{n} G$. Also, $H_{n}=H\left[G,{ }_{n}{ }^{H]}\right.$ where $\left[G, n_{n}{ }^{H]}=\right.$ - $\left.[\ldots, \ldots[G,+H], H]^{n} \ldots,{ }_{H}\right]$.

We say that H has a subnomaliser (resp. ascendiser) in G if there exists a unique largest subgroup of G in which H is subnomal (ascendant).

Classes of groups.
A class of groups x is a collection of groups which contains every trivial group and every isomorphic image of its members. Members of x are called x -groups. We always use script capitals to denote classes of groups. The product of classes of groups x, y is written $X y$ and consists of all groups G which posess a normal subgroup $N \in X$ such that $G / N \in V$. We write $x_{1} x_{2} \ldots x_{n}$ for the product $\left(\ldots\left(\left(x_{1} x_{2}\right) x_{3}\right) \ldots\right) x_{n}$ of classes of groups x_{i}, \ldots, x_{n}. If $n \in \mathbb{N}, x^{n}$ denotes the class $\underset{x x}{\ldots} \rightarrow$. We use the following classes:

Hyperabelian groups are groups G which possess an ascending normal series (from 1 to G) with abelian factors. Hypercentral groups are groups that have an ascending series with central factors. Cernikoy groups are groups which are a finite extension of a (SnM)-group; such groups are well-known to be a finite extension of a direct product of finitely many quasicyclic p-groups (various primes p).

Operations.

An operation A assigns to each class of groups x a class of groups $A X$ in such a way that $A I=I$ and if y is a class containing X, then $X \subseteq A X \subseteq A Y$. A closure operation is an operation A such that $A^{2}=A$. We say that A is unary if $A X=\bigcup_{G \in X} A(G)$ for each class X. We use the following closure operations:
$S \quad S X$ consists of all subgroups of X-groups.
$P \quad P X$ consists of all groups G which possess a series of finite length whose factors are X-groups.

Q \quad QX consists of all homomorphic images of X-groups.
$L \quad L X$ consists of all groups G, every finite subset of which is contained in an X-subgroup (of G).
$N_{0}, N \quad X$ is N_{0}-closed (N-closed) if the product of any pair (any collection) of normal X-subgroups is an X-group.
$R \quad X$ is R-closed if it is closed with respect to forming subcartesian products.
P, L and R are read as "poly", "locally" and "residually" respectively.
Let G be a group, X a class of groups and A a unary closure operation.

Then:

$x^{\text {A }}$	denotes the (unique) largest A -closed subclass of x
G^{x}	denotes the X -residual of G , i.e. the intersection
	of all normal subgroups N of G such that $G / N \in X$
G_{x}	denotes the X -radical of G, i.e. the product of all
	nommal X-subgroups of G

CHAPTER 1. SUBMORMALITY AND ASCENDANCY.

51.0 Introduction.

In this chapter we identify certain subclasses of the Wielandt class (defined in 51.1) and its ascendant analogue (51.5). We include a proof of Wielandt's theorem (Theorem 1.3) which says that contains all finite groups, and also his example which shows that I does not contain F. 51.2 contains reduction results ([S4]) which are useful in the sequel. Also useful is the fact that $F W=W$ (Proposition 1.10). Theorem 1.9 lists some subclasses of w which appear in [S4].
51.3 considers classes of groups related to A and $\underset{\sim}{M}$. Our main results here are $(S \cap \hat{M}) \omega^{s}=\omega^{s}$ (Theorem 1.19) and $N M \leq \omega$ (Proposition 1.15). 1.4 considers (mainly) nilpotent-by-abelian-byfinite groups (NAF-groups). We prove that NAF-groups of finite rank are W-groups (Theorem 1.26); this result is improved (at the expense of the bounds obtained) in Theorem 1.32 by using results of 51.3 , which also give us partial results about soluble groups of finite rank.
51.5 considers ascendancy and the class w. Our main result here is that locally soluble groups of finite rank are ω-groups (Theorem 1.41): such groups are hypercentral-by-abelian-by-finite of finite rank, and we reduce this to the metabelian-by-finite case (Lemma 1.40) to prove they are \hat{W}-groups.

51.1 W and Co.

That a subgroup X of a group G does not, in general, have a subnomaliser (even if G is finite) can be seen in the following example of Wieland ([W4]).

1.1 EXAMPLE.

Let p be an odd prime and define subgroups of GL($3, p$) by $G=\langle h, x, k\rangle, H=\langle x, h\rangle, K=\langle x, k\rangle$ and $x=\langle x\rangle$, where

$$
x=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad h=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad k=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Then X has order 2, H is cyclic of order $2 p$ and K is a dihedral group of order 8 . Hence $x \leq z(H)$ and $x e^{2} K$. But x is not subnomal in $G=\langle H, K\rangle$. For, suppose $X \leqslant n G$. Then $Y=X^{k}$ sng so that Y sn < Y,h>. Now Y nomalises $\langle h\rangle$ and so <Y,h> $=Y$ Yh> has order 2p. If Y sn Y <h> then (since $p+2$) we must have $[Y,<h>]=1$. But $\left[x^{k}, h\right]=h^{2}+1$, a contradiction. Therefore x has no subnomaliser in G. Also, it is not hard to see that $\left.G=\left(\langle h\rangle x\left\langle h^{k}\right\rangle\right)\right] K$ has order $8 p^{2}$ and is soluble of derived length 3.

The above example is particularly good because x is central In H. As mentioned in Chapter 0 , it is an open problem whether metabelian groups are J-groups. We can see, however, that not every subgroup of a metabelian group has a subnormaliser from the following example.

1.2 EXAMPLE

For $n \geq 2$, let H_{n} be a dihedral group of order 2^{n+1}, say $\left.H_{n}=C_{n}\right] X_{n}$ where C_{n} is cyclic of order 2^{n} and X_{n} has order 2 (so X_{n} acts on C_{n} by inversion). Let $G=\underset{n \geq 2}{\mathrm{Dr}_{n}} H_{n}$ with subgroup $X=\operatorname{Dr}_{n \geq 2} X_{n}$. Now X_{n} has defect n in H_{n}. so that x is subnormal in $X H_{n}$ with defect n for each $n \geq 2$. But $<X H_{n}: n \geq 2,-G$ and X is not subnormal in G; for otherwise $X e^{r} G$ for some $r \in N$ and the defect of X in each $X H_{n}$ is less than $r+1$, which is a contradiction if $n \rightarrow r$. Therefore x has no subnomaliser in the metabelian group G. It is worth noting, however, that $X a^{\omega} G$ $\left(x d^{2} X H_{2}\right.$ and for $n \geq 2, X H_{2} \ldots H_{n}{ }^{n+1} X H_{2} \ldots H_{n} H_{n+1}$).

In Example 1.1, the subgroups H and K do not permute, because $|H K|=8 p| | G \mid$. This fact is not incidental, as we see from the following theorem. The soluble case was first proved by Maler (MMR]).

1.3 THEOREM (Wielandt [W4]).

Let G be finite group, generated as the product of subgrouns
H and K, both of which contain X as subnormal subgroup. Then X is subnormal in G.

Proof.
Suppose the Theorem is false and choose a counter-example G of minimal order such that $|G: H|+|X|$ is alsominimal. It is not hard to see that these minimality conditions imply that $H_{G}=1$ and H is maximal in G. Now a subnormal subgroup A of a fint te group is contained in the core of any maximal subgroup which contains A ([H3]). Therefore H contains no subnormal subgroups of G. Hence, by the minimality of $|G: H|+|X|$, X must be a simple group.

Case (1) $|x|=0 \in P$
Since $G=H K$, there exists $\left.H_{p} \in S y\right]_{p}(H)$ and $K_{p} \in S y 1_{p}(K)$ such that $H_{p} K_{p} \in S y 1_{p}(G)$ (see [HU] VI 4.7). Then $X^{H} \leqslant H_{p}$ and $X^{k} \leq k_{p}$. Therefore $\left\langle x, x^{k h^{-1}}\right\rangle=\left\langle X^{h}, x^{k}\right\rangle^{-1}$ is a p-group for all $h \in H, k \in K$. Hence $\left\langle X, X^{g}\right.$, is a p-group for all $g \in G$, which is a sufficient condition to ensure $X \operatorname{sn} G$ ([AL] or [W3]).

Case (11) x non-abelian simple.
Let $M=\left\{m \in G: X^{m} \leq H \cap K\right.$ and $\left.x^{m} \operatorname{sn} H, x^{m} \leq n K\right\}$ and put
$Y=\left\langle X^{m}: m \in M\right\rangle$. Then Y sn $H, Y \sin ([W 1])$ and $X \operatorname{sn} Y$
Therefore Y is not subnormal in G and so there exists $g \in G$
such that $g \in<Y^{9}, Y \gg Y$ ([W3]). Write $g=h k$ ($h \in H, k \in K$).
Then $\left.k h \in<Y^{h}, y^{k^{-1}}\right\rangle=\left\langle x^{m h}, x^{m k^{-1}}: m \in M\right\rangle \leq N_{G}(Y)$ because a nonabelian simple subnormal subgroup of a group nomalises every subnormal subgroup ([W2]). Therefore $\gamma^{k}=\gamma^{h^{-1}}$, whence $m k \in M(o 11 m \in M)$. But this means that $Y^{k}=Y$ and hence $Y^{g}=Y$, contradicting the existence of g.

As mentioned in Chapter 0, it is not known if Theorem 1.3 holds when G is an arbitrary group. We wish to show that Theorem 1.3 does hold when G belongs to certain classes of groups other than F. Accordingly, we define the Wielandt class of groups (and its derivatives) as follows:

1.4 Definitions.

(i) W is the class of groups consisting of groups G which satisfy (*) :

H and K , both of which contain X subgroup, then X is subnomal in G

It may happen that if $G \in W$, then in (*) we can always bound (above)
the defect of x in G by some function of the defects of X in H and of X in K. With this is mind, we define subclasses ω_{f} of ω by:
(ii) Let $f: \mathbb{N}+\mathbb{N}$ be a function. Then W_{f} is the class consisting of groups $G \in W$ such that whenever $X \quad \|^{n} H$ and $X a^{n} K$ in $(*)(n \in I N)$, then $X \propto^{f(n)} G$ (Whenever we specify the function $f=f(n)$, it will be implicit that the variable n plays the same role as in this definition).

For example, putting $f=1$ (constant) we have w_{1} contained in the class of T-groups (that is, groups in which every subnomal subgroup is nomal). Because $F \subseteq W$ (Theorem 1.3), W_{1} contains all finite T-groups. Also, W_{1} contains all soluble T-groups because such groups are metabelian ([R3] 13.4.2) and hence they are W-groups (Theorem 1.9). We mention that S tonehewer has shown that $F \cap N_{5} \subseteq W_{3}$ ([55]).

If A and B are any subgroups of group, then $A A^{n} A^{B}$ if and only if $A a^{n+1}<A, B>(n \in N)$. From this it is clear that w could also be defined as the class consisting of groups G which satisfy: whenever $G=H K$ and $X \sin X^{H}, X \operatorname{sn} X^{K} \quad(X, H, K$ subgroups). then $X \operatorname{sn} G$. Also, J-groups have an analogous characterisation (recall that J-groups are groups G which satisfy (*) in 1.4 (i) even if H and K do not permute).

§1.2 Reductions.

We will repeatedly make use of certain reductions in the sequel, so we present them here (Lemma 1.6 and Theorem 1.8). Essentially, Lemma 1.5 appears in [S4].

1.5 LEMMA.

Let G be a group with subgroups A, H, K where A is abelian and $A \triangleleft G=\langle H, K\rangle$. Define subgroups $G_{1}=A H \cap A K, H_{1}=H \cap A K$. $K_{1}=K \cap A H$ and $N=(A \cap H)(A \cap K)$. Then:
(i) $G_{1}=A H_{1}=A K_{1}$. Also $G_{1}=\left\langle H_{1}, K_{1}\right\rangle$ if and only if $A \leq\left\langle H_{1}, K_{1}\right\rangle$.
(ii) $G_{1}=H_{1} K_{1}$ if and only if $G_{1} \subseteq H K$ (subset).
(iii) $N=\left(A \cap H_{1}\right)\left(A \cap K_{1}\right)$ is a normal abelian subgroup of G_{1}.

Let θ be the natural epimorphism from G_{1} to G_{1} / N. Then:
(iv) $\left.\left.G_{1}^{\theta}=A^{\theta}\right] H_{1}^{\theta}=A^{\theta}\right] K_{1}^{\theta}$ and $H_{1}^{\theta}, K_{1}^{\theta}$ each embed in G / A.
(v) $G_{1}^{\theta}=\left\langle H_{1}^{\theta}, K_{1}^{\theta}\right\rangle$ if and only if $A \leq\left\langle H_{1}, K_{1}\right\rangle$.
(vi) $G_{1}^{\theta}=H_{1}^{\theta} K_{1}^{\theta}$ if and only if $G_{1}=H_{1} K_{1}$.

Proof

Diagram when $A \leq\left\langle H_{1}, K_{1}\right\rangle$.

(1) Clearly $G_{1}=A H_{1}=A K_{1}$, which also proves the second statement.
(ii) As a set, $H_{1} K=(H \cap A K)(K \cap A H)=A H \cap A K \cap H K=$ $=G_{1} \cap H K$. (ii) now follows.
(iii) Clearly N is abelian. Also $A \cap H_{1} \odot A H_{1}=G_{1}$ by (i). Similarly $A \cap K_{1} \triangleleft G_{1}$, so that $N \triangleleft G$.
(iv) $A \cap H_{1} N=\left(A \cap H_{1}\right) N=N$, so that $A^{\theta} \cap H_{1}^{\theta} \neq 1$

Similarly $A^{\theta} \cap K^{\theta}=1$. Clearly $A^{\theta} \& G_{i}^{\theta}$, so that
(by (i)), G_{1}^{θ} splits as required. Therefore $H_{1}^{\theta} \cong K_{1}^{\theta} \approx G_{1}^{\theta} / A^{\theta} \cong G_{1} / A \leq G / A$.
(v) This is clear from (i).
(vi) If $G_{1}^{\theta}=H_{1}^{\theta} K_{1}^{\theta}$ then $G_{1}=H_{1} N K_{1} N=H_{1} N K_{1}=H_{1} K_{1}$. The converse is clear.

1.6 REDUCTION LEMMA (Stonehewer [S4]).

let G be a group with subgroups X, H, K and A such that $G=H K, X a^{n} H, X \Delta^{n} K \quad(n \in N)$ and A is an abelian nomal subgroup of G. Then. using the notation of Lemma 1.5, $\left.G_{1}^{\theta}=H_{1}^{\theta} K_{1}^{\theta}=A^{\theta}\right] H_{1}^{\theta}=A^{\theta} \quad K_{1}^{\theta}$ and $X^{\theta} \Delta^{n} H_{1}^{\theta}, X^{\theta} \theta^{n} K_{1}^{\theta}$.

Further, if $X^{\theta} \sigma^{m} G_{1}^{\theta}$ and $A X \theta^{\ell} G(i, m \in N)$, then $x-4^{l+m+2 n} G$.

Suppose the hypotheses of the first part of Lemma 1.6 and also that $G / A \in W^{5}$. Then Lemma 1.6 says that to prove X sn G we may in many cases assume that $G \equiv A J H=A J K=H K$.

The proof of 1.6 will use the following Lemma, which is essentially in [S4].

1.7 LEMMA.

Let G be a group with subgroups X, H, K and N such that $G=\langle H, K\rangle, X \Delta^{n} H, X \Delta^{n} K(n \in \mathbb{N})$ and N is a normal abelian subgroup of G. If $G=N(H \cap K)$ then $X e^{2 n} G$. If $G=N X$ then $H \otimes^{n} G$ (and $K \otimes^{n} G$).

Proof of 1.7

$$
\begin{aligned}
N \cap H \triangleleft N H & =G . A l s o, \\
H & =H \cap N(H \cap K)=(H \cap K)(N \cap H) \leq K(N \cap H) .
\end{aligned}
$$

```
Therefore G=K(N\capH), so that
    X&n}x(N\capH)&\mp@subsup{&}{}{n}G
If G=NX then }X(N\capH)=H\mp@subsup{A}{}{n}G\mathrm{ and similarly K On G
```

Proof of 1.6.
The first part follows from Lemma 1.5. Suppose also that $X^{\theta} \&^{m} G_{1}^{\theta}$ and $A X \& \&^{\ell} G$. Then

$$
N X a^{m} A X a^{2} G .
$$

Since $N X=(N \cap H) X(N \cap K) X$ then by Lemma $1.7, X \&^{2 n} N X$ as required. [

Remark.

Suppose we wish to show that a group G is a J-group; then we suppose that $G=\langle H, K\rangle$ with $X \leq n H, X \in n K \quad(X, H, K$ subgroups) and try to show that $X \operatorname{sn} G$. If G contains a normal abellan subgroup A, such that $G / A \in J^{s}$, then, in the notation of Lemma 1.5 , it is enough to prove that $\left.\left.x^{\theta} \sin G_{1}^{\theta}=A^{\theta}\right] H_{1}^{\theta}=A^{\theta}\right] K_{1}^{\theta}$ where $x^{\theta} \operatorname{sn} H_{1}^{\theta}$, $x^{\theta} \leq n K_{1}^{\theta}$. However, we need to show that $A \leq\left\langle H_{1}, K_{1}\right\rangle$ in order to also have $G_{1}^{e}=<H_{1}^{\theta}, K_{1}^{\theta}$, the fact that this might not happen prevents
us from being able to make a real reduction (there is a similar impediment to the J-analogue of Theorem 1.8). We note that $\left.\left.\left\langle H_{1}^{\theta}, K_{1}^{\theta}\right\rangle=\left(A^{\theta} \cap\left\langle H_{1}^{\theta}, K_{1}^{\theta}\right\rangle\right)\right] H_{1}^{\theta}=\left(A^{\theta} \cap\left\langle H_{1}^{\theta}, K_{1}^{\theta}\right\rangle\right)\right] K_{1}^{\theta}$, and if X^{θ} sn $\left\langle H_{1}^{\theta}, K_{1}^{\theta}\right\rangle$ then X sn $\left.<H_{1}, K_{1}\right\rangle$ (Lemma 1.7).

The following theorem shows that if we wish to show that $N X \leq W$ for some $s-c l o s e d$ class $X(\leq W)$, then it is enough to consider Ax-groups (and then we could use Lemma 1.6). This theorem is proved in [S4] using induction on nilpotency class together with Lenma 1.6. We give an altemative proof, whose method will be of use when we consider ascendancy in $\$ 1.5$.

1.8 THEOREM.

Let x, y and z be s-closed classes of groups with y and
z also Q-closed. Suppose that $(A \cap Z) X \cap V \leq W$. Then
$(N \cap Z) X \cap Y \subseteq w^{s}$. If $(A \cap Z) x \cap V \leq w_{f}$ then $\left(N_{c} \cap Z\right) x \cap y \leq w_{g}$ where $g=c f+(c-1) n$.

Proof.
Let $G \in\left(N_{c} \cap Z\right) X \cap y$ be generated as the product of subgroups H and K, both of which contain X as a subnormal subgroup of defect at most $n \in \mathbb{N}$. Let $B \in N_{C} \cap Z$ be a normal subgroup of G such that $G / B \in X$. Let $Z_{i}(0 \leq i \leq c)$ denote the $i^{\text {th }}$ term of the upper central
series of B. We will show that

$$
\begin{equation*}
x Z_{1} \sin x Z_{i+1} \text { for } 0 \leq 1 \leq c-1 . \tag{*}
\end{equation*}
$$

Fix i in the range $0 \leq 1 \leq c-1$ and let bars denote subgroups of G modulo Z_{i}. Let $G_{0}=Z_{i+1} H \cap Z_{i+1} K, B_{0}=B n G_{0}$, $H_{0}=H \cap G_{0}$ and $K_{0}=K \cap G_{0}$. Then

$$
\bar{G}_{0}=\bar{R}_{0} R_{0}=\bar{Z}_{i+1} \bar{H}_{0}=\overline{Z_{i+1}} \overline{K_{0}} \text { and } \overline{B_{0}}=\bar{B} n \overline{G_{0}}
$$

Also $\overline{\mathbf{Z}_{\mathbf{i}+1}} \leq \mathbf{Z}\left(\overline{\mathbf{B}_{0}}\right)$ so that

$$
\overline{\mathrm{B}_{0}} \cap \overline{H_{0}} \triangleleft \overline{\mathrm{Z}_{\mathrm{i}+1}} \overline{H_{0}}=\overline{\mathrm{G}_{0}}
$$

Now

$$
\frac{\overline{G_{0}}}{\overline{B_{0}}} \cong \frac{\bar{G}_{0} \bar{B}}{\bar{B}} \leq \frac{\bar{G}}{\bar{B}} \cong \frac{G}{B} \in x \text { and }
$$

$$
\frac{\overline{B_{0}}}{\overline{B_{0}} \cap \overline{H_{0}}}=\frac{\overline{z_{i+1}}\left(\overline{B_{0}} \cap \overline{H_{0}}\right)}{\overline{B_{0}} \cap \overline{H_{0}}} \cong \frac{\overline{z_{i+1}}}{\overline{z_{i+1}} \cap \overline{H_{0}}} \in Q(A \cap Z)=A \cap Z .
$$

Hence $\overline{G_{0}} /\left(\overline{B_{0}} \cap \overline{H_{0}}\right) \in(A \cap z) X \cap y \leq W$ (by hypothesis), whence

$$
\begin{equation*}
\bar{X} f^{n} \bar{x}\left(\overline{B_{0}} \cap \overline{H_{0}}\right) \operatorname{sn} \overline{G_{0}} \tag{1}
\end{equation*}
$$

Therefore $\bar{x} \operatorname{sn} \bar{x} \overline{z_{i+1}}=\overline{x z_{i+1}}$, so that $x z_{i}$ sn $x z_{i+1}$ and (*) is proved.

From $\left(^{*}\right.$), $X \sin Z_{c} X=B X$. Also $G / B \in X \cap Y \leq W$ so that BX sn G. Hence $X \operatorname{sn} G$ and the first part of the theorem is true.

Suppose also that $(A \cap 2) X \cap V$ is bounded by f. Following the above proof, we see from (1) that

$$
x Z_{i} d^{n+f} x Z_{i+1} \text { for } 0 \leq i \leq c-1
$$

Consequently $x{ }_{a}(c-1)(n+f)_{X Z}{ }_{c-1}$. Since $G / Z_{c-1} \in(A n Z) x \cap y$, we have $x Z_{c-1} \&^{f} G$. Therefore $x(c-1) n+c f(G$, as required.

Theorem 1.8, in conjunction with Lemma 1.6 are used in [S4] to prove the following:
1.9 THEOREM.

The following classes of groups are contained in w^{5} : $N A, N(P C) F, S \cap N K$ (c.f. Proposition 1.15), $S \cap \AA$ (c.f. Corollary 1.28).

In Lemma 1.6, suppose that G is metabelian and put $A=G^{\prime}$. Then H_{1}^{θ} and K_{1}^{θ} are abelian (Lemma 1.5 (iv)) and so $X^{\theta} \circ G_{1}^{\theta}$. Hence $x a^{2 n+2} G$. Then by Theorem 1.8 (with $x=A, y=z=u$). we see that $N_{c} A \subseteq W_{f}$ where $f(n)=3 n c+2 c-n$.
1.10 PROPOSIIION.

$$
F w=w, \text { In particular, } F w^{5}=w^{5}
$$

Proof.
Suppose that $G \in W$ is generated as the product of subgroups H and K, both of which contain X as a subnormal subgroup of defect at most $n \in \mathbb{N}$. Let N be a finite normal subgroup of G such that $G / N \in W$. Then $N H=H(N H \cap K)$ and $|N H: H| \leq|N|=r$, say. Therefore $H_{N H}$ has index at most r ! in NH. Considering the group $N H / H_{N H}$ we see from Theorem 1.3 that $X H_{N H}{ }^{\circ} \mathrm{r}$! NH. But $G / N \in W$ so that $N X$ sn G. Therefore $X \otimes^{n} X_{N H} \alpha^{r!} N X$ sn G and so FW $\subseteq \omega$

Ta prove Lemma 1.12 we need the following results:

1.13 PROPOSITION (Roseblade [RB]).

Let G be a group which satisfies the minimal condition on subnormal subgroups. If X is a subnormal subgroup of G, then |G: $N_{G}(x)$ I finite.
1.14 LEMMA (Anberg [A1], see [S4]).

Let G be a group which is generated as the product of subgroups
H and K. Suppose that H_{0}, K_{0} are subgroups of H, K respectively
such that $I H: H_{0} \mid=r$ and $I K: K_{0} I=s$ are finite. Then
$\left|G:<H_{0}, K_{0}>\right| \leq r s$.

Proof.

There exists $h_{1}, \ldots, h_{r} \in H$ and $k_{1} \ldots \ldots, k_{5} \in K$ such that

$$
\begin{align*}
& G=H K={\underset{i=1}{u}}_{\substack{s}}^{\substack{j=1}}\left(h_{i} H_{0} K_{0} k_{j}\right)=\underset{i, j}{u}\left(h_{i}<H_{0}, K_{0}>k_{j}\right) \\
& =u_{i, j} h_{i} k_{j}<H_{0}, k_{0}>{ }^{k}, \tag{*}
\end{align*}
$$

By a result of B. Neumann ($[N E]$) we can omit from the union (*) all the cosets such that $I G:\left\langle H_{0}, K_{0}\right\rangle^{k_{j}} I_{I}$ is infinite. Therefore IG: $\left.<H_{0}, K_{0}\right\rangle^{K_{j}}$ is finite for some J. whence IG: $<H_{0}, K_{0}>1$ is finite. Factoring by $\left.{ }_{<H_{0}}, K_{0}\right\rangle_{G}$, we may assume that G is finite and so $|G| \leq r s\left|<H_{0}, K_{0}>\right|$ by (*). Therefore $\left|G:<H_{0}, K_{0}>\right| \leq r s$.

Proof of 1.12.

Let $G \in M$ be generated as the product of subgroups H and K, both of which contain x as a subnormal subgroup. Then by Proposition 1.13, $\left|H: N_{H}(X)\right|$ and $\left|K: N_{K}(X)\right|$ are finite. Putting $J=\left\langle N_{H}(X), N_{K}(X)\right\rangle$, then $|G: J|$ is finite by Lemma 1.14. Hence $G / J_{G} \in F$ and $X_{G} \operatorname{sn} G$ (Theorem 1.3). Since $X \& X_{G}$ we have X sn G as required.

We note that the proof of 1.12 requires only that H and K have the minimal condition on subnomal subgroups. We use this fact in the following result, which supercedes 1.12 .

1.15 PROPOSITION.
 $N M \leq W^{5}$.

Proof.
By Theorem 1.8 (with $x=M$ and $y=z=u$) it is enough to prove $A M \subseteq W^{s}$. Let $G \in A M$ be generated as the product of subgroups H and K, both of which contain X as a subnormal subgroup. Let A be an abelian normal subgroup of G such that $G / A \in M$. Then $A X \operatorname{sn} G$ (Lemma 1.12) and so by Lemma 1.6 we may assume that $G=H K=A] H=A] K$. Thus $H, K \in M$, so by the remark above we have X sn G, as required.

Let x_{0} denote the following class of groups: G is an $x_{0}{ }^{-}$ group if and only if $G / G^{F} \in F$ and G^{F} is a periodic abelian group such that for each prime P, the p-component of G^{F} is the direct product of finitely many quasicyclic p-groups. A result of Amberg ([A3]) Cor.2.8) shows that the soluble product of x_{0}-groups is an x_{0}-group. Also, $X_{0} \subseteq A F \subseteq w^{s}$ (Theorem 1.9) so by Lemma 1.6, we have $s \cap A x_{0} \subseteq W^{5}$. Then by Thearem 1.8 (with $y=S, z=u$) we have
1.16 PROPOSITION.

$$
N\left(s \cap x_{0}\right)=s \cap N x_{0} \subseteq w^{5} .
$$

Of course, proposition 1.16 is a particular case of the result
that nilpotent-by-(eriodic abeliar)-by-finite groups lie in w^{s} ([S4]).
We now wish to look at (S $\cap M$) W^{5}-groups. It is not clear whether or not they all life in ω^{5}. but Proposition 1.18 gives us a partial result in this direction; certain restrictions are imposed which enable us to make use of the fact that periodic subgroups of $\operatorname{GL}\left(n, R_{p}\right)$ are finite, where R_{p} denotes the ring of p-adic integers (see [R1] Cor.3.28). These restrictions present no impediment in NAF-groups (see Lenma 1.21). We will also need the following result ([R1] Lemma 3.13).
1.17 LEMMA.

Let A be a normal divisible abelian subgroup of a group G and suppose that X is a subgroup of G such that $\left[A_{1} X X=1\right.$, where $s \in \mathbb{N}$. If X / X is periodic, then $[A, X]=1$.

Let G be a Cernikov-by- ω^{s} group. By Proposition $1.10, G \in D w^{s}$ where D denotes the class of divisible abelian groups with min. In particular, $(S \cap M) \omega^{s}=D_{\omega^{s}}$.
1.18 PROPOSITION.

Let G be a Cernikov-by- W^{5} group which is generated as the product of subgroups H and K, both of which contain X as a

Subnormal subgroup of defect at most $n(n \in N)$. If X is periodic, then $x \in n G$. If, moreover, $G \in D\left\langle w^{s} n w_{f}\right)$ then $X e^{f(n)+1} G$

Proof
As mentioned above, $G \in D W^{5}$, so let $A \in D$ be a normal subgroup of G such that $G / A \in w^{s}$. Then by Lemma 1.6 (and since $Q D=D)$, we may assume that

$$
\begin{equation*}
G=H K=A] H=A] K \text {. } \tag{*}
\end{equation*}
$$

If $g \in C_{G}(A)$ then $g=a h \quad(a \in A, h \in H)$ and $I=[a h, A]=$
$=[h, A]$, so that $g \in A C_{H}(A)$. Hence $C_{G}(A)=A C_{H}(A)=A C_{K}(A)$ Also, $C_{H}(A)$. $A H \approx G$ and, if bars denote subgroups of G modulo $C_{H}(A)$, we have

$$
\bar{G}=\overline{\mathbf{H K}}=\bar{A}] \bar{H}=\bar{A} \bar{K}, \quad \bar{A} \in D, \bar{G} / \bar{A} \in W^{S}
$$

Since $[H, A] \cap C_{H}(A) \leq A \cap H=1$, it follows that $C_{\bar{H}}(A)=1$ and so there is an embedding

$$
\overline{\mathrm{H}} \rho A u t(\mathbb{K})
$$

Now \bar{X} sn \bar{H} and \bar{X} is periodic, so that $\bar{X}^{\bar{n}}$ is isomorphic to a periodic group of automorphisms of A. By the remark before this proposition,

$$
\frac{\overline{\mathrm{X}}^{\overline{\mathrm{H}}}}{\mathrm{C}_{\overline{\mathrm{X}}^{\mathrm{H}}}\left(\overline{\mathrm{~A}}_{\mathrm{p}_{i}}\right)} \text { is finite }(1 \leq i \leq r)
$$

where $A_{P_{1}}, \ldots, A_{P_{r}}$ are the primary components of $\bar{A} \in D$. But

$$
\sum_{i=1}^{r} C_{\bar{X}} \bar{H}\left(\bar{A}_{P_{i}}\right) \leqslant C_{\bar{H}}(\bar{A})=1
$$

so that \bar{x}^{n} is finite.
Let $N=N_{H}\left(X C_{H}(A)\right)$. Then $\stackrel{N}{N}=N_{\bar{H}}(\bar{X})$ and

$$
|H: N| \text { is finite. }
$$

From (*). we have $H \geqslant K$ and we can see this isomorphism using $\phi \in A u t(G)$ which is defined as follows: if $g \in G$ then (by (*)) g can be written uniquely as $g=a h=b k$ where $a, b \in A$. $h \in H, k \in K$; then we define $g^{\phi}=a k$. So $H^{\phi}=K$ and the fixedpoint subgroup for ϕ is $A(H \cap K)$. Therefore $[g, A]^{\phi}=\left[g^{\phi}, A\right]$ for any $g \in G$, and so

$$
\begin{equation*}
C_{H}(A)^{\phi}=C_{K}(A) \tag{**}
\end{equation*}
$$

Also, if S is any subgroup of H then $h \in N_{H}(S)$ if and only if $h^{\phi} \in N_{K}\left(S^{\dagger}\right)$. So by (**),

$$
N^{\phi}=N_{K}\left(X C_{K}(A)\right)
$$

Since $|H: N|$ and $\left|K: N^{\phi}\right|$ are finite, so is $|G: J|$ where $J=\left\langle N_{,} N^{\phi}\right\rangle$ (Lemma 1.14). Therefore $G / J_{G} \in F$ and $X J_{G} \operatorname{sn} G$ (Theorem 1.3). So it is enough (for the first part of the proposition) to show that $X \operatorname{sn} J$.
$\mathrm{XC}_{H}(A) C_{K}(A)$ is nomalised by N and $N^{\Phi}, X \sin X C_{H}(A)$
implies that $X C_{K}(A) \operatorname{sn} X C_{H}(A) C_{K}(A)$. Therefore $X \operatorname{sn} X C_{K}(A) \sin d$ and the first part of the proposition is proved.

Now suppose $G \in D\left(w^{s} \cap W_{f}\right)$ and let $B \in D$ be a normal subgroup of G such that $G / B \in W^{s} n W_{f}$. Then $B x f^{\prime} n_{G}$ and (from the first part) $X \operatorname{sn} B X=G_{0}$, say. Then $B \cap X \subset G_{O}$ and if bars denote subgroups of G_{0} modulo $B \cap X$, we have $\left.\overline{G_{0}}=\bar{B}\right] \bar{X}$ and $\bar{X} a^{5} \bar{G}_{0}$ for some $s \in \mathbb{N}$. Hence $[\bar{B}, \bar{X}] \leq \bar{X} \cap \bar{B}-1$, so by Lemma 1.17 $[\bar{B}, \bar{X}]=1$ i.e. $[B, X] \leq X \cap B$. Therefore B normalises X, $\quad \mathrm{X} 0$ that $X \& B X \&^{f(n)_{G}}$ as required.

In 51.4 we will extend Proposition 1.18 - at the expense of another restriction on x - to the case where A (in the proof of 1.18) is

- Neriodic divisible abelian group of finite rank (so that A may have infinitely many p-components).

Turning our attention now to the maximal condition, we see from Theorem 1.9 that $(P C) F=(S \cap M) F \leq W^{s} \quad$ (this can be shown drectly using a result of Kegel [K1] which says that a subgroup x of a (PC)F-group G is subnomal if X^{θ} is subnomal in every finite honomorphic image G^{θ} of G; then use theorem 1.3). In fact, we have
1.19 THEOREM
$(S \cap \hat{M}) W^{s}=W^{s}$.

Proof.
Let $G \in(S \cap \hat{M}) w^{s}$ be generated as the product of subgroups H and K, both of which contain X as a subnormal subgroup. G has a series

```
1&B&C&G
```

such that $G / C \in W^{s}, C \in S \cap \hat{M}, B \in P\left(C_{\infty}\right)$ and $C / B \in F$. We prove that $G \in W^{S}$ by induction on the Hirsch length $h(C)$ of C. If $h(C)=0$ then $C \in F$ and so $G \in W^{s}$ (Proposition 1.10). Suppose that $h(C) \geq 1$ with the usual induction hypothesis.
C is finitely generated, so $C / B_{G} \in F$ (and $\left.h\left(B_{G}\right)=h(C)\right)$. Therefore $B_{G} \in P\left(C_{\infty}\right)$ and $G / B_{G} \in W^{S} \quad$ (Proposition 1.10). Hence we may assume that $B=C$.

Let A be the penultimate term of the derived series of C (A is torston-free abelian of finite rank). Then $A \& G$ and by induction,
$A x \sin$.

By Lemma 1.6 (and using its notation), it is enough to show that $x^{\theta} \sin G_{1}^{\theta}$. where

$$
\begin{equation*}
\left.\left.G_{1}^{\theta}=A^{\theta}\right] H_{1}^{\theta}=A^{\theta}\right] K_{1}^{\theta}=H_{1}^{\theta} K_{1}^{\theta}\left(G_{1}^{\theta} / A^{\theta} \in W^{s}\right) \tag{2}
\end{equation*}
$$

(recall \quad : $G_{1} \rightarrow G_{1} / N$ where $N \leq A$). Since $A^{\theta} X^{\theta}=A X / N$, it is enough (by (1)) to show that $x^{\theta} \operatorname{sn} A^{\theta} x^{\theta}$.

$$
\begin{gathered}
A^{\theta}=A / N \text { so we can write } \\
A^{\theta}=A_{1}^{\theta} \times A_{2}^{\theta}
\end{gathered}
$$

where A_{1}^{θ} is torsion-free and A_{2}^{θ} is finite. If $A_{2}^{\theta} 1$ then $h\left(A^{\theta}\right)<h(A)$ and by induction, $x^{\theta} \operatorname{sn} A^{\theta} x^{\theta}$.

It remains to consider the case $A_{2}^{\theta}=1$. Let $p \in P$. Then
$G^{\theta} /\left(A^{\theta}\right)^{p} \in F W^{s}$ from (2), so by Proposition 1.10,

$$
\begin{equation*}
\left(A^{\theta}\right)^{P} x^{\theta} \operatorname{sn} G_{1}^{\theta} . \tag{3}
\end{equation*}
$$

Since

$$
\left|A^{\theta} x^{\theta}:\left(A^{\theta}\right)^{P} x^{\theta}\right|=\left|A^{\theta}:\left(A^{\theta}\right)^{P}\right|=p^{r}
$$

where $r=\operatorname{rank}\left(A^{\theta}\right),(3)$ gives $\left(A^{\theta}\right)^{P x^{\theta}} \|^{r} A^{\theta} x^{\theta}$. Therefore

$$
\mathbb{p} \in \mathbb{P}\left(\left(A^{\theta}\right)^{p} x^{\theta}\right) \otimes^{r} A^{\theta} x^{\theta} .
$$

Since $A^{\theta} \cap X^{B}=1$ (and A^{θ} is free abellan),

Therefore $x^{\theta}{ }_{4}^{r} A^{\theta} x^{\theta}$, as requitred.
1.20 COROLLARY.

$$
\left(P(C \cup F) w^{s}=w^{s}\right.
$$

Proof.

$$
((P C) F) X=(P C)(F X) \text { for any class of groups } X \text {, so that }
$$

$((P C) F) w^{s}=W^{s}$ by Propositions 1.19 and 1.10. Also, (PC)F $=$ $=P(C \cup F) \quad([R 1] 3.1)$.
[
51.4 NAF Groups.
1.21 LEMPA.

Let y, z be S - and Q-closed classes of groups. Let
$G \in(N \cap 2) A F \cap y$ be generated as the product of subgroups H and K, both of which contain X as a subnormal subgroup. Let
1 - $A \backsim B-G$ be normal series of G such that $A \in N \cap Z$.
$B / A \in A$ and $G / B \in F$. Then toprove that X sn G, we may assume the following:
(i)
and $G=A] H=A] K=H K$.
(1i) $B \cap H \cap K=1$ (assuming (1)).
(iii) $B=\langle B \cap H, B \cap K$ iassuming (1), (ii)).

Proof.

(i) This is clear from Theorem 1.8 and Lemma 1.6.
(ii) Assume (1) and let $J=\left\langle B \cap H, B \cap K>, G / J_{G} \in F\right.$
(Lemma 1.14) and, since $B \cap H, B \cap K \in A$.

$$
\begin{equation*}
\left[J_{G}, B \cap H \cap K\right]=1 \tag{1}
\end{equation*}
$$

Apply Lemma 1.6 with $A \cap J_{G}$ in place of A. Then (using the notation of 1.6 and thinking of a as the identity map),

$$
\left.\left.G_{1}=\left(A \cap J_{G}\right)\right] H_{1}=\left(A \cap J_{G}\right)\right] K_{1}=H_{1} K_{1} \text {. }
$$

Put $B_{1}=B \cap G_{1} \odot G_{1}$. Then by (1),

$$
\left[A \cap J_{G}, B_{1} \cap H_{1} \cap K_{1}\right]=1
$$

Hence $\left(B_{1} \cap H_{1} \cap K_{1}\right)^{G_{1}}=\left(B_{1} \cap H_{1} \cap K_{1}\right)^{H}=\left\langle B_{1} \cap H_{1} \cap K_{1}\right\rangle^{K_{1} \leq B_{1} \cap H_{1} \cap K_{1} \text {, }}$ so that $\mathrm{B}_{1} \cap \mathrm{H}_{1} \cap \mathrm{~K}_{1} \in \mathrm{G}_{1}$. Then, if bars denote subgroups of G_{1} modulo $\mathrm{B}_{1} \cap \mathrm{H}_{1} \cap \mathrm{~K}_{1}$.

$$
\left.\left.\bar{G}_{1}=\overline{A \cap J}_{G}\right] \bar{H}_{1}={\overline{A \cap J_{G}}}\right] \overline{K_{1}}=\bar{H}_{1} \bar{K}_{1} \in \forall .
$$

Also $\overline{B_{1}} \cap \bar{H}_{1} \cap \overline{K_{1}}=1$. Now $X \operatorname{sn}\left(B_{1} \cap H_{1} \cap K_{1}\right) X$, so that \bar{X} sn \bar{G}_{1} imples $X \operatorname{sn} G_{1}$. Also, $J_{G} /\left(A \cap J_{G}\right) \equiv A$ so that $G /\left(A \cap J_{G}\right)=A F \leq w^{s}$ and $\left(A \cap J_{G}\right) X \operatorname{sn} G$. Hence (from Lemma 1.6$) \quad \bar{X}$ sn \vec{G}_{1} implies $X \operatorname{sn} G$. So we may assume that $\mathrm{B}_{1} \cap \mathrm{H}_{1} \cap \mathrm{~K}_{1}=1$.

Since $A \cap J_{G} \in A \cap Z, B_{1} /\left(A \cap J_{G}\right) \in A$ and $G_{1} / B B_{1} \in F$, we may assume that (i) holds and $B \cap H \cap K=1$. Then $H \cap K$ embeds in G / B and $H \cap K$ is finite, as required.
(11i) Suppose that (1) and (ii) hold. Again, let $J=\langle B \cap H, B \cap K\rangle$ and put $N=N_{G}(J) \geq X$. Then $G / J_{G} \in F$ and by Lemma 1.23 (which follows this proof).

$$
N=(N \cap H)(N \cap K)
$$

Also. $A \cap J=N$ and $(A \cap J)(J \cap H)=A(J \cap H) \cap J=A(B \cap H) \cap J=J$. So, writing $A_{1}=A \cap J$,

$$
\begin{equation*}
J=A_{1}(J \cap H)=A_{1}(J \cap K) \tag{*}
\end{equation*}
$$

Since $X N G_{G} \operatorname{sn} G$ (Theorem 1,3), it is enough to show that X sn N.

Apply lemma 1.6 to the group N with abelian normal subgroup A_{1}. Then fusing the notation of 1.6 and thinking of θ as the identity map)

$$
\begin{equation*}
\left.\left.N_{1}=A_{1}\right] H_{1}=A_{1}\right] K_{1}=H_{1} K_{1} \in y \text {. } \tag{**}
\end{equation*}
$$

where $H_{1}=A_{1}(N \cap K) \cap N \cap H$ and $K_{1}=A_{1}(N \cap H) \cap N \cap K$
Let $B_{1}=B \cap N_{1}$. so that $B_{1}=B \cap A_{1} H_{1}=A_{1}\left(B \cap H_{1}\right)$. Now
$8 \cap H=J \cap H=A_{1}(J \cap K) \cap H$ by (*), so that $8 \cap H \leq H_{1}$, and

$$
B \cap H=B \cap H_{1}, B \cap K=B \cap K_{1} .
$$

Thus $A_{1}\left(B \cap H_{1}\right)=A_{1}(J \cap H)$ so by $\left({ }^{*}\right), B_{1}=J$ and

$$
\mathrm{B}_{1} \cap \mathrm{H}_{1}=\mathrm{B} \cap \mathrm{~N}_{1} \cap \mathrm{H}_{1}=\mathrm{B} \cap \mathrm{H} .
$$

Hence

$$
B_{1}=\left\langle B_{1} \cap H_{1}, B_{1} \cap K_{1}\right\rangle .
$$

We must check that (i) and (it) hold in N_{1} (and then the Lemma is proved). For (i), the series $1 \& A_{1} \& B_{1} \& N_{1}$ has the required properties $\left(A_{1} \in A \cap 2, B_{1} / A_{1}=J / A_{1} \in A, N_{1} / B_{1}=N_{1} / J \in F\right)$ and N_{1} has the triple factorisation (**). For (ii), $B_{1} \cap H_{1} \cap K_{1} \leq B \cap H \cap K \in F$.
1.22 Remarks.
(a) Suppose, with the hypotheses of Lemma 1.21, that
$A \in N_{c} \cap 2$, $|G: B| \leq m$ and $X \Delta^{n} H, X o^{n} K(c, m, n \in \mathbb{N})$. Then, in order to prove that there exists an integer $f=f(n, c, m, y)$ such that X of f. we may assume that (i). (ii) and (iii) of 1.21 hold and prove that there exists $g=g(n, m, y) \in \mathbb{N}$ such that $x{ }_{s}{ }^{g} G$. To see this, we just follow the proof of Leama 1.21, noting that Theorem 1.8 and Lemma 1.6 allow us to make 'bounded reductions'.
(b) Suppose the hypotheses of Lemma 1.21, except that $G \in(N \cap Z)(A \cap y) F$ and $B / A \in A \cap y$ (rather than $G \in Y$, so that A need not lie in V. Then we may still assume that (i), (ii) and (iii) hold in order to prove X sn G. Also, if C, m and n are as in (a) above, we can make a similar bounded reduction from f to g as in (a) (with the same justification).

The following Lemma (used in the proof of Lemma 1.21 (iii)) is well-known.
1.23 LEMMA.

> Let G be a group with subgroups H_{0}, H, K_{0}, K such that $G=H K, H_{0} \& H, K_{0} \& K$ and H / H_{0} (or $\left.K / K_{0}\right)$ is periodic. Put $J=<H_{0}, K_{0}>$ and $N=N_{G}(J)$. Then $N=(N \cap H)(N \cap K)$.

Proof.
Let $g \in N$. Then $g=h k$ where $h \in H, k \in K$. Then $K_{0}=K_{0}^{k^{-1}} \leq J^{k^{-1}}=$ $J^{g k^{-1}}=J^{h}$ and $H_{0}=H_{0}^{h} \leq J^{h}$. Hence $J \leq J^{h}$. But H / H_{0} is periodic, so that $h^{n} \in J$ for some $n \geq 1$. Hence $J=J^{h}$ so that h, and hence k.

lies in N. The reverse inclusion is clear.

In order to show that NAF-groups of finite rank lie in W^{s}. we first have
1.24 LEMMA.

Let X be a subnomal subgroup of $H \in A F$. with defect at most $n \in \mathbb{N}$. Let A be an abelian normal subgroup of H such that $|H: A|=m$ is finite. Suppose that X has finite exponent e. Ihen x^{H} has finite exponent at most $e^{(3 \pi)^{n-1}}$.

Proof.
We/ínductiononn, the result being clear if $n=1$. So suppose $n \geq 2$ with the usual induction hypothesis. By induction, $\exp \left(X^{\left(X^{H}\right)}\right) \leq e^{(3 m)^{n-2}}$. so it is enough to prove that $\exp \left(X^{H}\right) \leq e^{3 m}$
when

$$
X \& X^{H} \& H
$$

Then X^{A} a X^{H} and X^{A} has at most m conjugates in H, each of which is normal in X^{H} and all of which generate x^{H}. Hence it is enough to prove that $\exp \left(X^{A}\right) \leq e^{3}$. Now $X^{A} \equiv[X, A]=$ $=X<[X, a]: a \in A>=X\left\langle X X^{a} \cap A: a \in A>\quad\right.$ Let $a \in A$. Then $\exp \left(x x^{a} \cap A\right) \leq e^{2}$ and since A is abelian, $\exp \left(X^{A}\right) \leq e . e^{2}$ as required.

1.25 LEMMA

Suppose the hypotheses of Lerma 1.24 and also that H has finite rank r and x has finite order e. Then x^{H} is finite of order at most me ${ }^{r(3 n)^{n-1}}$

Proof.

Let $B=A \cap X^{H}$. Ihen B is abelian of rank at most r and $\exp (B) \leq \exp \left(X^{H}\right) \leq e^{(3 m)^{n-1}} \quad$ (Lemma 1.24). Therefore $|B| \leq e^{r(3 m)^{n-1}}$ Since $\left|X^{H}: B\right| \leq m$, we have the required bound.

Let ${ }_{m}^{F}(m \in \mathbb{N})$ denote the class of finite groups of order at most m.
1.26 THEDREM.

Let y_{r} denote the class of groups of (finite) rank at most $r \in \mathbb{N}$. Then $N_{c} A\left({ }_{m} F\right) \cap y_{r} \equiv W_{f}$, where $f=f(n, c, m, r)$. In particular, nilpotent-by-abelian-by - finite groups of finite rank are W-groups.

Proof.
Let $G \in N_{c} A\left({ }_{m}{ }^{F}\right) \cap Y_{r}$ be generated as the product of subgroups H and K, both of which contain X as a subnormal subgroup of defectat most $n \in \mathbb{N}$. By Remark 1.22(a), it is enough to show that $x \&^{g} G$ where $g=g(n, m, r) \in \mathbb{N}$ and (i). (ii) of Lemma 1.21 hold.

Using the notation of $1.21,|X|=|B X: B| \leq m . A l s o$ B $n H \in A$ and $|H: B n H| \leq m$. By Lemma 1.25, X^{H} (and similarly X^{K}) is finite of order less than a function of n, m and r. Hence x has a finite number g_{1} of conjugates in H (or in k) where $g_{\boldsymbol{1}}=g_{\eta}(n, m, r)$. Let $J=\left\langle N_{H}(X), N_{K}(X)\right\rangle$. Then by Lemma 1.14, IG: J| $\leq 2 g_{1}$ and so G / J_{G} is finite of order at most $g_{2}=g_{2}(n, m, r) \in \mathbb{N}$. Hence $X_{J_{G}}{ }^{9}{ }^{9} G$ (Theorem 1.3). Since $X \& X J_{G}$, we may take $g=g_{2}+1$.

Suppose (in the notation of Theorem 1.26) that $G_{1} \in\left(A \cap V_{r}\right)\left({ }_{m} F\right)$. Then. following the proof of 1.26 with G_{1}
in place of G, we see (using Remark $1.22(b)$) that
$H=K=G / A \in Y_{r+m}(1.21(1))$, so we can bound the defect of X
in G_{1} by $g(n, m, r+m)$. Therefore we have proved
1.27 COROLLARY.

$$
N_{c}\left(A \cap Y_{r}\right)\left(\frac{F}{m}\right) \subseteq W_{f} \cap W^{s} \text {, where } f=f(n, c, m, r)
$$

Also we have
1.28 COROLLARY (see Theorem 1.9)

$$
(S \cap \vec{M}) F \subseteq w^{s}
$$

Proof.
Let $B \in S n \bar{\mu}$. Then by ([R2] p.166), B has finite rank and $B \in M A F$. Therefore $(S \cap \bar{M}) F \leq N A F \leq w^{S}$ by Theorem 1.26.

\square

1.29 COROLLARY.

Let G MAF, If the abelian subgroups of G have finite rank, then $G \in w^{5}$

Proof.

abelian subgroups of B have finite rank. By a result of Kargapolov \{[KV]). 8 has finite rank. Therefore G has finite rank and so $G \in \mathbb{w}^{S}$ by Theorem 1.26.

In Theorem 1.31, we will improve the second part of Theorem 1.26 by showing that, if y denotes the class of groups of finite rank, then $(N \cap V) A F \subseteq W^{S}$, thereby removing the finite rank hypothesis from the abelian section $8 / A$. The cost of this improvement will be any bounded result, which we will not be able to have with the proof used.
1.30 LEMMA.

Let 2 denote the class of periodic groups of finite rank.
Let $G \in\langle A \cap Z\rangle U^{S}$ be generated as the product of subgroups H and K, both of which contain X as a subnomal subgroup. Suppose that X is periodic and that $\pi=\pi\left(x / x^{\prime}\right)$ finite. Then X sn G.

Proof.
Let $A \in A \cap Z$ be a normal subgroup of G such that $G / A \in W^{S}$
By Lemma 1.6. we may assume $G=A] H=A] K=H K$. For $P \in \mathbb{F}$, let A_{p} denote the p-component of A. Then $A_{p}=D_{p} \times F_{p}$ where D_{p} is divisible and F_{p} is fint te.

Now $A_{p} H=H\left(A_{p} H \cap K\right)$ and $H=w^{5}$. By lemma 1.18, $x \sin A_{p} H$ Therefore $\left[D_{p \prime s} X\right] \leq X \cap A=1$ (some $s \in N$), so by Lemma 1.17 we have $\left[D_{p}, x\right]=1$. Therefore x is centralised by the divisible part

For each $p \in P$ there exists an epimorphism

$$
\theta_{p}: A_{p} \otimes \frac{x}{x^{\prime}}+\frac{\left[A_{p}, x\right]}{\left[A_{p}, x, x\right]}
$$

which arises from the bilinear map $\left(a_{p}, x x^{\prime}\right) \rightarrow\left[a_{p}, x\right]\left[A_{p}, x, x\right]$
Suppose that $p \in \pi^{\prime}$. Then $A_{p}\left(X / X^{\prime}\right)=1$, so that $\left[A_{p}, X\right]=\left[A_{p}, X, X\right]$. But X sn $\left.A_{p}\right] X$ so we must have $\left[A_{p}, X\right]=1$
 π-group and hence finite. Hence $G \in F w^{s}$ and X sn G (Proposition 1.10).

We can remove the periodic hypothesis from the class 2 of Lemma 1.30 :

1.31 LEMMA.

Let 2 denote the class of groups of finite rank. Let $G \in(A \cap Z) \omega^{s}$ be generated as the products of subgroups H and K, both of which contaln X as a subnomal subgroup. Suppose that X is periodic and that $\pi=\pi\left(x / x^{\prime}\right)$ is finite. Then $X \operatorname{sn} G$.

Proof.
Let $A \in A \cap 2$ be a normal subgroup of G such that $G / A \in w^{s}$. We prove that x sn G by induction on the torsion-free rank r of A, the result being clear (by Lema 1.30) if $r=0$. So suppose $r \geq 1$ with the usual induction hypothesis. By Lemma 1.6, we may assume that $G=A J H=A J K=H K$. Let T be the torsion subgroup of A. Then

$$
T H=H(K \cap T H) e(A \cap V) \omega^{S} \text {. }
$$

where y denotes the class of periodic groups of finite rank. By Lemma 1.30, X sn $T X$, so (factoring G by T) we may assume that

$$
\begin{equation*}
G=A] H=A] K=H K \text { and } A \text { is torsion-free. } \tag{*}
\end{equation*}
$$

Then (as in the proof of Proposition 1.18) $C_{H}(A) \& G$ and if bars denote subgroups of G modulo $C_{M}(A)$, we have $\left.G=\bar{A}\right] \bar{H}=\overline{A K}=\bar{H} \bar{K}$ and $C_{\mathcal{H}}(\bar{K})=1$. Also $C_{\bar{R}}(\bar{A})=\bar{A} \cap \bar{K}$. Since $x \operatorname{sn} C_{H}(A) X$, it is enough to prove that X sn G.

Suppose that $\vec{A} \cap \vec{K} \notin 1$. Then if $\vec{\theta}$ is the epimorphism from G to $G /(\bar{A} \cap \bar{K})$, we have
$\left.\bar{G}^{\theta}=\bar{A}^{\theta} \bar{H}^{\theta}=\bar{A}^{\theta}\right] \bar{K}^{\theta}-\bar{H}^{\theta} K^{\theta}$ and
\bar{X}^{θ} sn $\bar{H}^{\theta}, \bar{X}^{\theta}$ sn \bar{K}^{θ}. Let
ψ^{θ} be the torsion subgroup of A^{θ}. Then, repeating the argument used for T above (with H and K interchanged), we may assume that $\bar{T}^{\theta}=1$. Therefore

A^{θ} is torsion-free, as is \bar{A} and $\bar{A} \cap \bar{K}$. Hence $\bar{A}^{\theta}=A /(\bar{A} \cap \bar{K})$ is of torsion-free rank less than that of \bar{A}. By induction, $\bar{X}^{\theta} \operatorname{sn} \bar{G}^{\theta}$. Since $\bar{X} \operatorname{sn} \bar{X}(\bar{A} \cap \bar{K})$, we have $\bar{X} \operatorname{sn} G$ (and so $X \operatorname{sn} G$) . Therefore, we need only consider the case $A \cap \vec{K}=1$. Since A is torsion-free, we may now assume
(*) holds and $C_{H}(A)=C_{K}(A)=1$.

Since A is torsion-free, there is an embedding $A \rightarrow A \subseteq Q$ (via the mapping $a \rightarrow a \in 1$. Thinking of A as a subgroup of $A Q Q=A^{*}$. say, the action of H on A extends to an action on A^{*} in the natural way, viz: $(a q)^{h}=a^{h} Q(a \in A, h \in H, q \in Q)$. Therefore $C_{H}\left(A^{*}\right) \leq C_{H}(A)=1$ and H (similarly K) acts faithfully on A^{*}. So we have embeddings

$$
H, K \rightarrow A u t\left(A^{*}\right) \cong G L(r, Q) .
$$

Since X is periodic and subnormal in H and K, X^{H} and X^{K} are periodic. But periodic subgroups of $\mathrm{GL}(\mathrm{r}, \mathrm{Q})$ are finite (see [RI] p.85), whence X^{H} and X^{K} are finite. Putting $J=\left\langle N_{H}(X), N_{K}(X)\right.$, we have $X_{G} J_{G}$ sn G by Lemma 1.14 and Theorem 1.3. Since $X \in X_{G}$. this completes the proof.

Remark.

The reduction afforded by Theorem 1.8, when used on some group

G . is not hindered by the additional hypothesis that X (where X sn H, X sn K etc.) belongs to some Q-clased class. Hence Lemma 1.31 remains true if $G \in(N \cap 2) \omega^{s}$.

He can now prove
1.32 THEOREM.

Let z denote the class of groups of finite rank. Then $(N \cap Z) A F \subseteq W^{S}$.

Proof.

Let $G \in(N, i 2) A F$ be generated as the product of subgroups H and K. both of which contain X as a subnormal subgroup. By Lemma 1.21 (with $Y=U$) we may assume that $G \in(A \cap Z) A F$ and that X is finite. Since $A F \leq W^{5}$ (Theorem 1.9), X sn G by Lemma 1.31. Hence $G \in W^{s}$.

D

It would be interesting to know if w^{5} contains the class of soluble groups of finite rank. Since the proof of Lerma 1.31 (and Lemmas $1.18,1.30$) work under the (weaker) hypothesis that $A x$ in G (rather than $G / A \in W^{5}$), a simple induction yields the following partial result:

1.33 PROPOSITION.

Let G be a soluble group of finite rank, generated as the product

```
Of subgroups of }H\mathrm{ and }K\mathrm{ , both of which contain }X\mathrm{ as a sub-
normal subgroup. If }X\mathrm{ is periodic and }\pi(X/\mp@subsup{X}{}{\prime})\mathrm{ is finite (so
that }X/\mp@subsup{X}{}{\prime}\mathrm{ is a Cernikov group), then }X\operatorname{snG}
```

\square
 strictions imposed on x in Proposition 1.33, then we can at least conclude that X is ascendant in G (even if G is locally soluble of finite rank). We finish this section by Identifying two subclasses of the class of soluble groups of finite rank which will lie in w^{s}, using well-known results of Mal'cev ([MV]).

DEFINITION.

Let A_{1} denote the class of abelian groups A which satisfy: if $T(A)$ denotes the torsion subgroup of A then $T(A) \& M$ and $A / T(A)$ has finite rank. (A, -groups are otherwise known as abelian groups of finite total rank. Mal'cev calls them A_{3}-groups). Then define the class S_{1} by $S_{1}=\mathrm{PA}_{1}$. S_{1} can also be defined as the class of hyperabellan groups of finite abelian section rank, which contains elements of only finitely many distinct prime orders: see [R2]9.3).

Soluble linear groups are nilpotent-by-abelian-by-finite and S_{1}-groups are nilpotent-by-abellan-by-finite of finite rank (Mal'cev, see [R1] 3.2). Then by Theorem 1.26, we have:
1.34 COROLLARY.
(1) $\quad S_{1} \subseteq w^{5}$
(1i) Soluble linear groups of finite rank are w^{5}-groups.
\square

51.5 Ascendancy and

 wBy considering ascendancy, rather than subnormality, we can define the class of groups w in an analogous way to w :
1.35 DEFINITION.
ω is the class of groups consisting of groups G which satisfy (*) :

Whenever G is generated as the product of subgroups
H and K, both of which contain X as an ascendant subgroup, (*)
then X is ascendant in G.

Whilst we might expect that it will in general be more difficult to find W-groups than to find $(\mathbb{W}$-groups, ascendancy can sometimes allow us more freedom than subnomality. For example, the ascendant analogue of Theorem 1.8 (Theorem 1.37) allows us to make a reduction from hyperaantral-by- w^{s} groups to abelian-by- w^{s} groups. Theorem 1.37 is used to prove the main result of this section (Theorem 1.41) which says that locally soluble groups of finite rank are W^{s}-groups.

Obvious subclasses of are F and (PC)F; more generally, because ascendancy is equivalent to subnormallty in \hat{M}-groups,
$\omega \cap \hat{M}=\hat{\omega} \cap \hat{M} \subseteq \hat{\omega}$. In fact, (2A) $\hat{M} \cap \omega \leq \vec{\omega}$ (Proposition 1.38(1) ZA = hypercentral groups).
1.36 LEMMA (c.f. Lemma 1.6)

Let G be a group with subgroups X, H, K and A such that $G=H K$, $X \|^{v} H, X$ a K (u ordinal) and A is an abelian normal subgroup of G. Then, in the notation of Lemma 1.5, $\left.\left.G_{1}^{\theta}=H_{1}^{\theta} K_{1}^{\theta}=A_{1}^{\theta}\right] H_{1}^{\theta}=A_{1}^{\theta}\right] K_{1}^{\theta}$ and $x^{\theta}{ }^{\nu} H_{1}^{\theta}, x^{\theta} a^{\nu} K_{1}^{\theta}$. Also, H_{1}^{θ} and K_{1}^{θ} enbed in G / A. Further, if $X^{\theta} \&^{\mu} G_{1}^{\theta}$ and $A X \otimes^{\lambda} G\left(\lambda_{0} \mu\right.$ ordinals), then $X \otimes^{v .2+u+\lambda} G$.

Proof.

The proof of Lemma 1.6 (and Lemma 1.7) works here (with λ, μ, v in place of $\boldsymbol{i}, \boldsymbol{m}, n$ respectively).

\square

Let $Z A$ denote the class of hypercentral groups and $(2 A)_{\alpha}$ the class of hypercentral groups with hypercentral series of length at most a (ordinal).
1.37 THEOREM.
 Q-closed. Suppose that $(A \cap Z) X \cap V \leq \vec{W}$. Then (ZA $\cap Z) X \cap y \subseteq \mathcal{W}^{s}$.

Proof.

The proof is essentially that of Theorem 1.8. Let
G e $\left((Z A)_{a} \cap Z\right) X \cap Y$ be generated as the product of subgroups H
and K, both of which contain X as an ascendant subgroup. Let
B e (2A) $n Z$ be a normal subgroup of G such that $G / B \in X$. Let
$Z_{B}(0 \leq \beta \leq a)$ denote the $\beta^{\text {th }}$ term of the upper central series of B. Then, as in the proof of 1.8 ,

```
            XZ 
Therefore }X\mathrm{ asc }\underset{0\leq\beta\leq\alpha}{U}(X\mp@subsup{Z}{B+1}{\prime})=XB. Since G/B\inW, then Xs asc G .
This completes the proof.
```

\square
1.38 PROPOSITION.
(i) $\quad(2 A) \hat{M} \cap W^{5} \subseteq w^{5}$. In particular, $N(P C) F \subseteq w^{5}$
(1i) $(Z A) A \leq \bar{w}^{s}$.
(111) Fiw = $\dot{\omega}$ - In particular $F \tilde{w}^{\mathbf{s}}=\tilde{\omega}^{s}$.

Proof.
Let G te a group which is generated as the product of subgroups H and K, both of which contain X as an ascendant subgroup. We wish to prove that X asc G.

```
(i) Let \(G \in(Z A) \hat{M} n w^{5}\). \(W^{s}\) is Q-closed, so, by Theorem 1.37 and Lemma 1.36 , we may assume that \(G \in A \hat{H} n W^{s}\) and that \(H, K \in \hat{M}\). Therefore \(X \sin H\) and \(x \operatorname{sn} K\). so that \(x \sin G w^{s}\). Hence \(G \in W^{s}\).
(ii) Let \(G \in(Z A) A\). Again by Theorem 1.37 and Lemma 1.36, we may assume that \(G \in A^{2}\) and that \(H, K \in A\). Hence \(x \in G\) This proves (1i).
(iii) Let \(G \in F W\) and let \(N\) be a finite normal subgroup of \(G\) such that \(G / N e w\). Then, as in the proof of Proposition 1.10, \(\left|N H: H_{N M}\right|\) is finite and \(X H_{N H} \leq n N H\). Therefore \(X\) asc NX asc \(G\). proving (iii).
```

Parts (i). (ii) and (iii) of the next lemma are the \vec{W}-analogues of Lemmas $1.18,1.30$ and 1.31 (with the hypothesis on X / X^{\prime} removed). Note that, since the class of periodic groups is N-closed and the union of periodic subgroups is periodic, then the normal closure of an ascendant periodic subgroup is periodic ([R1] 1.31).

1.39 LEMMA.

Let G be generated as the product of subgroups H and K, both of which contain x as an ascendant subgroup. Suppose that x is periodic. Then each of the following imply that X asc G.
(i) G is a Cernikov-by- El s group.
(ii) G is a ω^{s}-group modulo a periodic abellan subgroup of finite rank.
(iii) G is a \bar{w}^{s}-group modulo a hypercentral subgroup of finite rank.
(iv) G is a hyperabelian group of finite rank.

Note that for groups of finite rank, the conditions hyperabelian and locally soluble are equivalent (see [R2] 10.38 Cor.1). Hence, by (fv) above, w contains the class of periodic locally soluble groups of finite rank (we will remove the periodic restriction in Theorem 1.41). In particular, w contains the class of Cernikov groups (this is implied directly by (i) above).

Proof.

(i) Let $A \in D$ be a normal subgroup of G such that $G / A \in \mathbb{W}^{s}$ (recall that D denotes the class of divisible abelian groups with min. Such an $A \in D$ exists by Proposition 1.38(11i)). By Lemma 1.36, we may assume $G=H K=A] H=A] K$. Then, If bars denote subgroups of G modulo $C_{H}(A)$, we have $\bar{X}^{\bar{H}}$ periodic and, following the proof of Lemma 1.18. $\bar{X}^{\bar{H}}$ is finite and X asc $X C_{K}(A)$ ase $X C_{H}(A) C_{K}(A)$ in G
(ii) Let A be nomal periodic abellan subgroup of G such that A has finite rank and $G / A \in \omega^{s}$. By Lemma 1.36, we may assume
$G=A] H=A] K=H K$. For $p \in \mathbb{P}$, let A_{p} denote the p-component of A. Then

$$
A_{p} H=H\left(A_{p} H \cap K\right) \in D W^{s}
$$

and by (i) of this lemma, X asc X_{p}. Writing $P=\left\{p_{1}, p_{2}, \ldots\right\}$ and putting $B_{r}=\left\langle A_{p_{i}}: 1 \leq 1 \leq r\right\rangle$ for $1 \leq r<\omega$, we have

$$
\mathrm{XB}_{r} \operatorname{asc} X B_{r+1} \quad(1 \leq r<\omega) .
$$

Therefore X asc $\underset{\mid \leq r<\omega}{U}\left(X B_{r+i}\right)=X A$. Finally, $X A$ asc G (since G/A $-\mathbb{W}^{s}$), which proves (11).
(ii1) By Theorem 1.37 (with $x=w^{s}, z=$ finite rank groups. $y=u$), through which we can carry the hypothesis that x is periodic, we may assume that there exists a nomal abellan subgroup A of G such that A has finite rank, and $G / A \in W^{s}$. We can use the same argument as in the proof of Lemma 1.31 (using (11) above in place of Lemma 1.30 to get rid of the torsion subgroup) to embed H and K in $G L(r, Q)$ where $r \leq \operatorname{rank}(A)$. Since, in our case, X^{H} and X^{K} are $s t i l l$ periodic, we can repeat the remainder of the proof of 1.31 , thus proving (111).
(iv) Let $\left\{G_{B}\right\}_{0 s B s a}$ be an ascending normal series of G with
abelian factors (a ordinal). For $\mathrm{a} \leq \mathrm{a}$, consider the group

$$
\bar{G}_{1}=\overline{G_{B+1}} A \cap \overline{G_{B+1}} \bar{K}=\left(\hat{H} \cap \overline{G_{B+1}} \bar{K}\right)\left(\bar{K} \cap \overline{G_{B+1}} \bar{H}\right) \text {. }
$$

where bars denote subgroups of G modulo G_{β}. Since \bar{X} asc \bar{H} then $\bar{X}{\overline{G_{B+1}}}$ asc $\bar{G}_{j}\left(\leq \bar{H} \overline{G_{B+1}}\right)$. Part (iii) (and (ii) and (i)) of this lemma remains true if (in its proof) $A X$ asc G (rather than $\left.G / A \in \dot{\omega}^{s}\right): \overline{G_{\beta+1}}$ is abelian of finite rank, therefore \bar{x} asc $\overline{G_{\beta+1}} \bar{x}$ $\left(\leq \bar{G}_{1}\right)$. Therefore

$$
G_{B} X \text { asc } G_{B+1} X \text { for } 0 \leq \beta<a \text {. }
$$

Hence X asc $\underset{B<\alpha}{U}\left(G_{\beta+1} X\right)=G$, as required.

Hypercentral groups form an N_{0}-closed class ([HA]), so that $(Z A) A F=Z A(A F)$.
1.40 LEMAA (c.f. Lemma 1.21)

Let Y be an S-closed and Q-closed class of groups. Let
$G \in(Z A) A F \cap V$ be generated as the product of subgroups H and K. both of which contain X as a subnormal subgroup. Let $I \& A$ a B
be a normal series of G such that $A \in Z A, B / A \in A, G / B \in F$

Then in order to prove X asc G, we may assume the following conditions hold:
(i) $A \in A$ and $G=A] H=A] K=H K$.
(11) $B \cap H \cap K=1$ (assuming (i)).
(iii) $B=\langle B \cap H, B \cap H\rangle$ (assuming (i), (ii)).

Proof.
(1) follows from Theorem 1.37 (with $X=A F, Z=u$) and Lemma 1.36. For (ii) and (ili), we can use the proofs of Lemma 1.21 (ii). (iii) (with the obvious modifications).
-

Putting Lemmas 1.39 and 1.40 toge ther, we now have:
1.41 THEOREM.

Let y denote the class of groups of finite rank. Then $\operatorname{LS} \cap v \leq \omega^{5}$

Proof.
Let $G \in L S n y$. Then $G \in(Z A) A F$ ([R2] 8.16). Let G be generated as the product of subgroups H and K, both of which contain X as an ascendant subgroup. Then by Lemma 1.40 (and using its notation) we may assume that X is finite and $G=A] H=A] K=H K$. Then G/A $\in A F \subseteq \mathbb{W}^{5} \quad($ Proposition $1.38(1))$. 50 by Lenma 1.39 (111) we have X asc G, as required.

Remark.
Let \boldsymbol{y} denote the class of groups of finite rank. As noted in the above proof, $L S \cap y \subseteq(Z A) A F$. Also, $(Z A) A \cap y \leq L S$ by ([R2] 10.38 Corollary 1). Therefore (LS)F $\cap y=(Z A) A F \cap y$ and, using the above proof, we have (LS)F $n y \subseteq w^{s}$.

CHAPTER 2. PROJECTIVITIES

52.0 Introduction.

In this chapter we consider projectivities (i.e. isomorphisms of subgroup lattices) and their effect on subnormal and ascendant subgroups. $\$ 52.1$ and 2.2 are preliminary, in which the unary closure operation u and the class of R-groups (often called P-groups) are defined. In 52.3 we consider subnormality and projectivities. Using results of Schmidt ([SH]) and Suzuki ([SZ]), we give necessary and sufficient condttions for a projectivity of a finite group lattice to preserve subnomality (Theorem 2.12). Theorem 2.17 shows that projective lmages of subnormal subgroups of Cernikov groups behave in a similar way to the finite case. Using a result of Zacher ([Z2]). we show that the projective image of an ascendant subgroup (of any group) has an ascendiser (Corallary 2,19).

In 52.4 we generalise Theorem 1.3 to include the case where H and K do not permute, but they are such that $L(\langle H, K\rangle)$ admits a projectivity a for which H^{σ} and K^{a} permute (Theorem 2.21). we define the class ω_{u} so that Theorem 2.21 says that $F \leq \omega_{u}$ and so that W_{u} lies between J and W. We then identify some other subclasses of w_{u} : the classes of Cernikov groups (Proposition 2.22), metabelian groups (Theorem 2.24) and polycyclic-by-finite groups (Theorem 2.26) are all contained in \mathbf{w}_{u}.
52.1 Preliminaries.

A projectivity is defined to be an isomorphism of subgroup lattices; that is, if G and G are groups, then a map

$$
0: L(G)+L(G)
$$

is called a projectivity if and only if o is a bijection and whenever (A, $A_{\lambda} \lambda \in A$) is a collection of subgroups of G, then

$$
\begin{equation*}
\left(\cap_{\lambda \in A} A_{\lambda}\right)^{0}=\prod_{\lambda \in A}\left(A_{\lambda}^{\sigma}\right) \text { and }\left\langle A_{A}: \lambda \in A\right\rangle^{O}=\left\langle A_{\lambda}^{\sigma}: \lambda \in A\right\rangle \tag{*}
\end{equation*}
$$

Note that, in this defintion, it is sufficient to require that a is a bijection and that (*) holds whenever $|A|=2$. This is because these (seemingly) weaker conditions are equivalent to the conditions
a is a bijection and $\sigma_{1} a^{-1}$ preserve subgroup inclusion, (\#*)
and (**) holds if and only if σ is a projectivity; for, suppose (**) holds and let $\left\{A_{\lambda}: \lambda \in A J\right.$ be a collection of subgroups of G. Let $A^{\sigma}=\cap_{\lambda \in A}^{n}\left(A_{\lambda}^{a}\right)$. Then for $\lambda \in A, A^{\sigma} \leq A_{\lambda}^{O}$ so that $A \leq \sum_{\lambda \in A}^{n} A_{\lambda}$, whence $A^{\sigma} \leq\left(\underset{\lambda \in A}{n} A_{\lambda}\right)^{\sigma}$. Also, for $\mu \in A, \prod_{\lambda \in A} A_{\lambda} \leq A_{\mu}$ so that $\left(\underset{\lambda \in A}{n} A_{\lambda}\right)^{\sigma} \leq A^{\sigma}$. The remainder of $\left(^{*}\right)$ is proved similarly, and clearly (*※) holds if o is a projectivity.

Clearly, if a is a projectivity as above, then $G^{d}=G$, $1_{G}^{a}=1_{\bar{G}}$ and σ^{-1} is a projectivity. Obvious examples of projectivities are those induced by (any) group isomorphisms, but not every projectivity is so induced (groups of different prime orders have isomorphic lattices). So we define the closure operation us follows.

If X is a class of groups, $u x$ is the class of groups given by Geux if and only if there exists $G \in x$ and a projectivity $\sigma: L(G)+L(\bar{G})$.

That is, $u x$ consists of the projective images of x-groups. When we write $G^{d} \in U X$, we will mean that $G \in X$ and O is a projectivity of $L(G)$. Note that $u X=\underset{G \in X}{u} u(G)$ 1.e. u is unary.

Since an infinite group has an infinite number of subgroups, $u F=F$. Moreover, if G is a finite group and o a projectivity of $L(G)$, then the number of primes (including multiplicities) dividing the orders of G and G^{σ} are equal ([SZ]). Other u-closed classes of groups are the classes of soluble groups ([YV]), simple groups ([Z|]) and perfectgroups ([NA]). Also, $u A \leq A^{2}$ ([SZ]) and, more generally, given $n \in \mathbb{N}$, there exists $f=f(n) \in \mathbb{N}$ such that $W^{n} \subseteq_{-} A^{f}([Y Y])$. However, $U A \neq A$ and $u N \neq N$ as we see from:

2.1 EXAMPLE.

Let G be an elementary abelian 3 -group of order 9 and let \bar{G} bea non-abelian group of order 6 . Clearly, G and G have isomorphic lattices.

The above example, although a simple one, provides a very good model of how a projectivity can fail to map either a normal or ascendant subgroup to the same (1n 2.1, any Sylow 2-subgroup of G is self-normalising). If G is a group and G $G u(G)$, then we say that o preserves ascendancy if whenever x is an ascendant subgroup of G then X^{σ} is ascendant in G^{σ}. Preservation of subnormality and normality are defined similarly, in the obvious way.

Let G be a group and let $G^{\sigma} \in u(G)$. Then we say that σ is index-preserving if and only if

$$
|U: V|=\left|U^{\sigma}: V^{\sigma}\right| \text { for all subgroups } V \leq U \text { of } G \text {. }
$$

Suzuki ([SZ] Ill.6) calls such a projectivity strictly index-preserving and s hows that when G is finte, (*) is equivalent to condition that (*) holds when U is cyclic. These conditions are equivalent even if G is not finite; this was proved by Zacher in [2 1 , using the following important result.
2.2 THEOREM (R1ps [RP], Zacher [21])

Let G be a group and $G^{0} \in u(G)$. Then if H is a subgroup of
finite index in G. H^{σ} has finite index in G^{a}.

```
Let }X\mathrm{ be a subgroup of a group }G\mathrm{ and let }\mp@subsup{G}{}{0}\inU(G)
```

Then we will write

$$
X_{G^{\sigma}}, X^{G^{\sigma}}
$$

to denote the pre-image (under O) of the core $\left(X^{\sigma}\right)_{G}^{a}$ and normal closure $X^{a\left(G^{a}\right)}$ respectively. In $[B U]$. Busetto proves the following result (the finite case is due to Schmidt [SH]):
2.3 THEOREM.

Let N be a normal subgroup of a group G and let $G^{\circ} \in u(G)$. Then $N_{G^{o}}$ and $N^{G^{\sigma}}$ are normal in G.

2.4 REMARK.

1f H is a subgroup of finite index in a group G and $G^{a} \in U(G)$, then Theorems 2.2 and 2.3 imply that H contains a nomal subgroup N of finite index in G such that $N^{\sigma} \leqslant G^{\sigma}$ (and $\left|G^{\sigma}: N^{\sigma}\right|$ is finite). Hence a induces a projectivity of finte lattices $\bar{\sigma}: L(G / N) \rightarrow L\left(G^{a} / N^{a}\right)$.

An index-preserving projectivity of a finite subgroup lattice will map a maximal normal subgroup to a nonmal subgroup ([S2] 11, 2.6) which
is therefore also maximal normal. So for finite group lattices, an index-preserving projectivity will map a composition series to a composition series. Thus we have
2.5 LEMMA. ([SH] Lemma 4.1)

Let G be a finite group and let $G^{a} \in u(G)$. If a is indexpreserving, then a preserves subnomality.

The converse of Lemma 2.5 is clearly false $\left(G\right.$ and G° could have different prime orderd; see Theorem 2.12 for necessary and sufficient conditions for the converse to hold. Lemma 2.5 does not hold if G is an arbitrary group, even if G is abellan as the following example shows. However, Ryps ([RP]) has shown that for an arbitrary group G , an index-preserving projectivity will preserve ascendancy - in fact. if N is a normal subgroup of G then $N^{d} d^{j} G^{o}$ (see also Theorem 2.8).

2.6 EXAMPLE. (See [12]).

Let $G=A \times H$ where A is a quasicycilic p-group ($D \in P$) and $H=\langle h\rangle$ is an infinite cyclife group. Let $\alpha \neq 1$ be a p-adic integer such that $a=1(\bmod p)(a \equiv 1(\bmod 4) \quad 1 f p=2)$. Let \bar{A}, \bar{H} be isomorphyc to A, H respectively and define an action of $\bar{H}=\langle\bar{h}\rangle$ on \bar{A} by $\overline{a^{-}}=\bar{a}^{\hat{a}} \quad(\bar{a} \in \bar{A})$. Put $\left.\bar{G}=\bar{A}\right] \hat{H}$. Then there is an index-preserving projectivity $0: L(G)+L(\bar{G})$ for which $A^{o}=A$
and $H^{0}=\bar{H}$. Then H a G but \bar{H} is not subnomal in \bar{G} (a-1 is a non-zero endomorphism of A, so that $[\bar{A}, \bar{H}]=A$ and $\left.\bar{H}^{\bar{G}}=\bar{H}[\bar{A}, \bar{H}]=\bar{G}\right)$. Note that Rips' result mentioned above implies that $H \mathbb{\&}^{\omega} \bar{G}$.

The following results will be useful in the sequel.

2.7 THEOREM ([S2] I, Theorem 4)

Let G be a periodic group which is the direct product of Hall subgroups $G_{\lambda}(\lambda \in A)$. If $G^{0} \in u(G)$ then $G^{\sigma}=\operatorname{Dr}_{\lambda \in A} G_{\lambda}^{0}$ is a Hall decomposition of $\mathbf{G}^{\mathbf{o}}$

I
A subgroup M of a group G is said to be modular in G, written M mod G, if and only if given any subgroup X of G the $\operatorname{map} \sigma_{X}:[e X, M>/ M]+[X / X \cap M]$ defined by $\gamma^{0}=Y \cap X$ is a lattice isomorphism. Equivalent conditions are that M satisfies the modular 1 dentities

```
\(X \cap\langle Y, M\rangle=\langle Y, X \cap M\rangle\) for all subgroups \(Y \leq X\) and
\(A \cap\langle B, M\rangle=\langle A n B, M\rangle\) for all subgroups \(A, B\) with \(M \leq A\)
```

A subgroup X of a group G is said to be permutable in G, written X per G if and only if $X U=U X$ for all subgroups U of G

The concepts of modularity, ascendancy and permutability are linked by the following result.

2.8 THEOREM (Stonehewer [S 3])

Let X be a subgroup of a group G i then X per G if and only if both x asc G and $X \bmod G$. (In fact, if X per G then $X ه^{\omega+1} G\left(\left[\begin{array}{ll}5 & \text { G }\end{array}\right)\right.$

An example of an ascendant non-modular subgroup can be found in a dihedral group of order 8 . A $2-5$ ubgroup of Σ_{3} is modular but not ascendant. Clearly, a nomal subgroup N of a group G is modular (and permutable) $1 \mathrm{~m} G$, and therefore $N^{\sigma} \bmod G^{\sigma}$ for any $G^{\sigma} \in u(G)$
2.2 Singular Projectivities.

Following Suzuki ([S2] p.42), we say that a projectivity is singular if it is not index-preserving. Suppose that G is a group, $G^{0} \in U(G)$ and a is singular. Then there exists subgroups $V \leq U$ of G such that $\left|U^{\sigma}: v^{\sigma}\right|||U: V|<\omega$. By Remark 2.4, v contains a normal subgroup N of U such that $N^{\sigma} \in G^{\sigma}$ and $|U: N|,\left|U^{\sigma}: N^{\sigma}\right|$ are finite. Hence the induced projectivity

$$
\vec{\sigma}: L\left(\frac{U}{N}\right) \rightarrow L\left(\frac{U^{a}}{N^{2}}\right)
$$

is a singular projectivity of finite group lattices. Now $\vec{\sigma}$ induces a projectivity on the subgroup lattice of each Sylow subgroup of U / N : if all such projectivities are index-preserving, so is $\vec{\sigma}$. Hence there is a prime p and a Sylow p-subgroup S / N of U / N such that $\sigma L_{L(S / N)}$ is singular. Then we say that o is singular at p, o is p-singular. Further, the Sylow p-subgroups of U / N are cyclic or elementary abellan ([SZ] I, Theorem 12).

If, in the above, G is a finite group, then we will take $U=G$ and $N=1$, so that the Sylow p-subgroups (when o is p-singular) of G are cyclic or elementary abelian. Note here that o need not be singular on every Sylow p-subgroup; for example, if $G \geqslant \Sigma_{3}$ and - is a 3 -singular auto-projectivity of $1(G)$, then σ is 2 -singular but a is index-preserving on two Sylow 2-subgroups of G. Also, we note that if G is any p-group (p prime) and $G^{\sigma} \in u(G)$, then G^{a} is a p-group if and only if a is index-preserving.

Given a prime p, we define the class of groups R_{p} by: a group G is an R_{D}-group if and only if either (a) or (b) hold:
(a) G is an elementary abelian p-group.
(b) $G=P] Q$ where P is a subgroup of type (a) and Q is a subgroup of prime order $q<p$ whose generator acts faithfully on P by ralsing each element of P to one and the same power $\mathbf{r} \equiv 1(\bmod \mathbf{p})$.

We define the class of groups R as $R=\sum_{p} \mathcal{P}_{p} R_{p}$ (R-groups are often called P-groups in the literature). The smallest example of a non-abellan R-group is the R_{3}-group r_{3}. R is the u-closure of the class of elementary abelian groups, and if G is a non-simple R_{p}-group so is any projective image of G (see [SZ] 1.3). Note that If $G \in R$ then every subgroup of G is et ther nomal or self-nomalising in G (if G is of type (b) above, the self-nomalising subgroups are those that contain a subgroup of order q).

Let G be a finite group and suppose that o is a p-singular projectivity of $L(G)$ (p prime). Let S be a Sylow p-subgroup of G such that $\sigma / L(S)$ is singular. We say that σ is p-singular of the first kind if there does not exist a (non-abelian) R_{p}-subgroup of G which cantains S as a proper nomal subgroup. If there does exist such an R_{p}-subgroup, we say that a is p-singular of the second kind. (These definitions are independent of our choice of S.)

We collect together some results of [SZ] in the following theorem, which we use in the sequel.
2.9 THEOREM. (Suzuki [SZ] Prapositions 2.7. 2.8, 2.9)

Let G be finite group and let a be a p-singular projectivity of $L(G)$ (p prime). Then
(a) σ is q-singular of the first kind for some prime q :
(b) if a is p-singular of the first kind, then G contains a normal Sylow p-complement;
(c) If O is p-singular of the second kind, then $G=R \approx T$ where R is a non-abelian Hall R_{p}-subgroup of G containing a Sylow p-subgroup S of G as a proper normal subgroup (so that $S \triangleleft G$).
2.10 LEMMA.

Let G be a finite group and suppose that O is a projectivity of $L(G)$. If a is p-singular of the second kind, then so is o^{-1} (and conversely).

Proof.

Suppose that o is p-singular of the second kind. Then by Theorem 2.9(c), we can write $G=R \times T$ as a Hall decomposition of G with R a non-abelian R_{p}-group. Write $\left.R=P\right] Q$ where P is a p-subgroup and Q has prime order $q<p$. If R^{σ} were abellan, it would be a p-group, contradicting the fact that P^{σ} is not a p-group. So R^{σ} is a non-abeltan R_{p}-group of order $p^{a} r$ (where $p^{a}=|P|$, $p>r \in P)$. Let $Q_{1} \ldots \ldots, Q_{p}$ be the conjugates of Q in G p^{σ} contains a subgroup of order r, and $p^{\sigma} n Q_{i}^{\infty}=1\left(1 \leq 1 \leq p^{a}\right)$. Therefore some $Q_{i}^{0}=Q_{1}^{0}$, say, has order p, so we may assume that Q^{σ} has order p (i.e. σ^{-1} is p-singular). R^{a} is non-abelian, so σ^{-1} is p-singular of the second kind.

2.11 LEMMA.

Let G be a group and let $G^{0} \in U(G)$. Suppose that N is a normal subgroup of G with $|G: N|=p \in \mathbb{I P}$. If o is not p-singular, then $N^{\sigma} \propto G^{\sigma}$ and $\left|G^{\sigma}: N^{\sigma}\right|=p$.

Proof.
By Theorems 2.2 and 2.3, $\mathrm{N}_{\mathrm{G}^{\circ}} \circ \mathrm{G}$ and $\left|\mathrm{G}: \mathrm{N}_{\mathrm{G}^{\mathrm{o}}}\right|$ is finite. Hence o induces a projectivity of finite lattices $\hat{\sigma}: L\left(G / N_{G^{\sigma}}\right) \rightarrow L\left(G^{\sigma} /\left(\mathcal{N}_{G^{\sigma}}\right)^{a}\right)$ and clearly, if $\hat{\sigma}$ is p-singular, so is 0 . Therefore we may assume that G is finite; that $N^{0} \& G^{0}$ now follows by ([SZ] Proposition 2.11). Let P be a Sylow p-subgroup of G, so that $P N=G$. Then $G^{\sigma}=P^{\sigma} N^{\sigma}$ and $P=|G: N|=\left|P: P_{n} N\right|=$ $=\left|P^{\sigma}: P^{\sigma} \cap N^{\sigma}\right|=\left|G^{\sigma}: N^{\sigma}\right|$, as required.

The fact that an index-preserving projectivity will map a normal subgroup of prime index to a normal subgroup (which is implied by 2,11) is used by Rips [RP] to prove that an index-preserving projectivity preserves ascendancy.

S2.3 Subnomality and Prajectivities.
As we saw in Lemma 2.5, an index-preserving projectivity o of a finite group lattice will preserve subnomality. The following result tells us when the converse holds.

2.12 IHEOREM.

Let G be a finite group and let $G^{\sigma} \in U(G)$. Let
$\pi=\left\{p_{1} \ldots \ldots, p_{r}\right\}$ denote the set of primes $p \in \pi(G)$ for which σ
is p-singular. Then σ preserves subnomality if and only if
the following conditions hold.
(1) $G=H] K$ where $H=O_{\pi}(G)$ and K is cyclic \quad-group.
(ii) $\quad \sigma /_{L(H)}$ is index-preserving and every singularity of σ is of the first kind.
 every Sylow p-subgroup of G, their images under o being isomorphic.

REMARKS.
If $\Pi=a$ in the above then the theorem is true $(G=H$) by Lemma 2.5. Also, we note that if o preserves subnormality, then in (ili). H^{σ} need not be a Hall subgroup of G° (for example, if G and G° are R_{3}-groups of order 6 and 9 respectively, then in the above notation, $\pi=\{2\}$ and $\left|H^{a}\right|=\left|K^{a}\right|=3$); if H^{σ} is a Hall subgroup of G^{0}, then σ^{-1} also preserves subnormality (see Corollary 2.14).

Proof.
By the first remark above, we may assume that π is non-empty.

We first prove the necessity of conditions (i)-(1ii), so suppose
d preserves subnomality.

Let $P \in \pi$ and suppose (for a contradiction) that o is $p-s i n g u l a r$ of the second k ind. Then by Theorem $2.9(c), G=R \times T$ where R, F are Hall-subgroups of G and R is a non-abellan R_{p}-group. Then by Theorem 2.7, $G^{\sigma}=R^{\sigma} \times T^{\sigma}$ is a Hall decomposition of G^{σ}. Let P be the unique Sylow p-subgroup of $G . p^{o} \sin R^{o}$ (by hypothesis) and $R^{\sigma} \in R_{p}$. Hence P^{0} is a p-group, contradicting the p-singularity of 0 . Therefore every singularity is of the first kind. Because $H=0_{\pi^{\prime}}(G), ~ o L_{L(H)}$ is index-preserving and (ii) holds.

$$
\text { Pick subgroups } S_{i} \in S y l_{p_{i}}(G)(1 \leq 1 \leq r) \text { such that } o /_{i\left(S_{p_{i}}\right)}
$$

is singular. Then by Theorem $2.9(b)$ (and conjugating by a suttable g_{i} e G there exists normal $P_{j}^{\prime}-s u b g r o u p s \quad A_{i}$ of G such that

$$
\begin{equation*}
\left.G=A_{i}\right] S_{i} \quad(1 \leq 1 \leq r) \tag{*}
\end{equation*}
$$

Clearly $H \cong \prod_{i=1}^{r} A_{i}$ and $S_{j} \leq A_{i}$ for $1 \leq j \leq r, j \notin i$.
We prove, by induction on $r=|\pi|$, that

$$
\begin{equation*}
\left.\left.\left.G=\left(\ldots\left((H] S_{T(1)}\right)\right] S_{T(2)}\right) \ldots\right)\right] S_{T(r)} \tag{1}
\end{equation*}
$$

where $H=\theta_{H^{\prime}}(G), \quad \sigma / L(H)$ is index-preserving and T is any permutation of $1,2, \ldots, r$.

$$
\begin{align*}
& \text { If } r=1 \text {, (1) is true by (*), so suppose } r \geq 2 \text {. Let } \\
& 1 \in\{1, \ldots r\} \text { and consider } o_{i} " \sigma / L\left(A_{i}\right) \text {. } o_{i} \text { preserves sub- } \\
& \text { normality and if } \pi_{i}=\pi \backslash\left(p_{i}\right) \text {, then by (*), } \sigma_{i} \text { is p-singular } \\
& \text { if and only if } p \in \pi_{i} \text {. Put } H_{i}=O_{\pi_{i}}\left(A_{i}\right) \text {. Then } H_{i}=O_{N^{\prime}}(G)=H \\
& \text { and } \sigma_{i} / L\left(S_{j}\right) \text { is singular for } p_{j} \in \|_{i} \text {. By induction, } \\
& \left.A_{i}=\left(\ldots(H) S_{T_{1}\left(i_{1}\right)}\right) J \ldots S_{T_{1}\left(i_{r-1}\right)}\right) \tag{**}
\end{align*}
$$

where $\sigma_{i} / L(H)$ is Index-preserving and τ_{i} is any permutation of $\left\{1_{1}, \ldots .1_{r-\}}\right\}=\{1, \ldots, i-1, i+1, \ldots, r\}$. Combining (*) and (**) gives the desired result (1).

$$
\begin{aligned}
& B y(1), H S_{i} \& G \text { for } 1 \leq i \leq r \text {. Also, } H S_{i} \cap H S_{j}=H\left(S_{i} \cap H S_{j}\right)=H \\
& \text { for } 1 \leq i \notin j \leq r \text {. Hence }
\end{aligned}
$$

$$
\begin{equation*}
\underset{H}{G}=\frac{S_{1} H}{H} x_{+\ldots} \times \frac{S_{r} H}{H} \tag{2}
\end{equation*}
$$

Let $i \in\{1, \ldots, r\}$, Suppose, for a contradiction, that S_{i} is not cyclic. Then S_{i} is elementary abelian and S_{i}^{0} is a non-abelian $R_{p_{i}}$-group. Put $\left.S_{i}^{\sigma}=P_{i}^{\sigma}\right] Q_{i}^{\sigma}$ where $p_{i}^{\sigma}=\theta_{p_{1}}\left(S_{i}^{\sigma}\right)$ and Q_{i}^{σ} has prime order $q_{i}<P_{i}$. Then $Q_{i} \& S_{i}$ so that $Q_{i} A_{i} \in S_{i} A_{i}=G$, whence $\left(Q_{1} A_{1}\right)^{0} \operatorname{sn} G^{\sigma}$. Therefore Q_{i}^{σ} is contained in the subnormal subgroup
$s_{i}^{\sigma} \cap\left(Q_{1} A_{j}\right)^{\sigma}$ of S_{i}^{0}, which implies that $5_{i}^{0} \leq\left(Q_{i} A_{i}\right)^{0}$. But now $S_{i}=Q_{i}\left(S_{i} \cap A_{i}\right)=Q_{i}$ a contradiction. Hence $S_{i} H / H \geqslant S_{i}$ is cyclic so that G / H is cyclic (from (2)). By the Schur-Zassenhaus Theorem there axists a π-subgroup K of G such that $G=H] K$, and (i) holds.
$H \triangleleft G$ so that $H^{\sigma} \bmod G^{0}$ and $H^{\sigma} \operatorname{sn} G^{\circ}$. whence H^{σ} per G° by Theorem 2.8. Let $p \in \pi$ and let $S_{1}, S_{2} \in S_{y} l_{p}(G)$. Since G / H is abellan, $H S_{1}=H S_{2}$ \& G. Therefore $\left|S_{1}^{\sigma}\right|=\left|H^{\sigma} S_{1}^{\sigma}: H^{\sigma}\right|=$ $\left|H^{\sigma} S_{2}^{\sigma}: H^{\sigma}\right|=\left|S_{2}^{\sigma}\right|$. Since S_{1}^{σ} and S_{2}^{σ} are cyclic, they must be isamorphic. It remains to be shown that $H^{0} \& G^{d}$ (and then (iii) holds). Since $G^{\alpha}=H^{\alpha} K^{\alpha}$ and $H^{\alpha} \cap K^{\sigma}=1$, then $\pi\left(G^{\sigma}\right)=\pi\left(K^{\sigma}\right) \cup \pi\left(K^{\alpha}\right)=$ $=\Pi^{\prime} \cup \pi\left(K^{\sigma}\right)$. Now $K^{\sigma}=S_{i}^{0} \times \ldots \times S_{r}^{0}$ where S_{i} is a cyclic sylow p_{i}-subgroup of k (Theorem 2.7) and S_{i}^{0} is a cyclic q_{i}-group (p_{i} 中 $q_{i} \in \mathbb{P}$, $1 \leq i \leq r$). If some $q_{i} \leqslant \pi^{\prime}$, then S_{i}^{o} normalises the subnormal subgroup H^{d} of $H^{d} S_{i}^{a}$. Alternatively, suppose $q_{i} \in n^{\prime}$. Let Q_{i}^{o} be a Sylow q_{i}-subgroup of G^{σ} containing S_{i}^{0}. Then $1 \neq O_{i}^{o} \cap H^{a} \in S y \chi_{Q_{i}}\left(H^{\sigma}\right)$, so that $Q_{i} \cap H$ is a non-trivial Q_{i}-group and $\left|q_{i}^{\sigma}\right| \geq q_{i}^{2}$. If Q_{i}^{σ} is cyclic, then Q_{i} is a cyclic q_{i}-group containing S_{i}. But S_{i} is a p_{i}-group, a contradiction. Therefore Q_{i} is elementary abelian and $\left|S_{i}^{\sigma}\right|=q_{i}$. Now H^{σ} sn $H^{\sigma} S_{i}^{\sigma}$ and since $\left|H^{\sigma} S_{i}^{\sigma}: H^{\sigma}\right|=q_{i}, S_{i}^{\sigma}$ must normalise H^{σ}. Therefore H^{σ} a G^{σ} and we have proved the necessity of (i). (il) and (iii). In order to prove the sufficiency of the conditions (i)-(iii), we will use the following result, due to Schmidt ([SH] Theorem 4.2).

2.13 THEOREM.

Let $G \in F$ and $G^{0} \in u(G)$. Suppose X is a subnormal subgroup of G such that X^{σ} is not subnormal in G^{σ}. Let N be the maximal normal subgroup of G such that $N \leq X$ and $N^{\sigma} \odot G^{\sigma}$ Then there exists non-abelian $R_{p_{i}}$-groups R_{i}^{d} / N^{0} of order $p_{i}^{n_{i}} q_{i} \quad\left(p_{i}, q_{i} \in P, n_{i} \geq 1,1 \leq 1 \leq e, q \geq 1\right)$ such that
(a) $\frac{G^{\sigma}}{N^{\sigma}}=\frac{R_{1}^{\sigma}}{N^{\sigma}} \times \ldots \times \frac{R_{i}^{\sigma}}{N^{\sigma}} \times \frac{T^{\sigma}}{N^{\sigma}}$ is a Hall decomposition of $\frac{g^{\sigma}}{N^{\sigma}}$.
(b) $\frac{G}{N}=\frac{R_{1}}{N} \times \ldots \times \frac{R_{\ell}}{N} \times \frac{T}{N}$ is a Hall decomposition of $\frac{G}{N}$.
(c) $\quad x^{\sigma} \cap T^{\sigma} s n G^{\sigma},\left|\frac{x^{\sigma} \cap R_{i}^{\sigma}}{N^{\sigma}}\right|=q_{i}<p_{i}=\left|\frac{X \cap R_{i}}{N}\right|(1 \leq i \leq \ell)$.

Proof of 2.12 ctd .

Suppose that conditions (i)-(1ii) of Theorem 2.12 hold, but that σ does not preserve subnormality. Let X be a subnomal subgroup of G such that X^{a} is not subnormal in G^{d}. Then (a), (b), (c) of Theorem 2.13 hold and (using the notation of 2.13) the induced projectivity \hat{a} on $L(G / N)$ is $p_{i}-s i n g u l a r$ for $1 \leq i \leq \ell$; hence, if P_{i} / N is a (unique) Sylow p_{1}-subgroup of G / N, then
$P_{i} / N=T_{1} N / N$ for any $T_{i} \in \operatorname{Syl}_{p_{i}}(G), P_{i}^{o} / N^{\sigma} \approx T_{i}^{0} /\left(T_{i}^{\sigma} \cap N^{0}\right)$
is not a p_{i}-group and so a is p_{i}-singular (so that $\left\{p_{1} \ldots . . p_{2}\right\} \subseteq \pi$
and there is no conflict of notation). P_{1} is cyclic (by (i)) and P_{1} / N is elementary abelian, so that $\left|P_{1} / N\right|=p_{1}$. Therefore $\left|R_{1} / N\right|=P_{1} s_{1}$ where $p_{1}>s_{1} \in P \quad\left(P_{1} \nmid R_{1}\right.$ because $\left.\left|P_{1}^{0}: N^{0}\right|=q_{1}<\left|R_{1}^{0}: N^{a}\right|\right)$. Let $G_{1}^{\sigma} / N^{\sigma} \cdot S_{y} 1_{p_{1}}\left(R_{1}^{\sigma} / N^{\sigma}\right)$.

Then $\left|Q_{1} / N\right|={ }^{5} 1$ so that \hat{o} is 5_{j}-singular and, as above, so is a. Therefore $p_{1}, s_{1} \in \Pi$. Since $0_{1} / N \in S y 1_{s_{1}}(G / N)$ we can pick $S_{1} \in S_{y}{ }_{5_{1}}$ (G) such that $Q_{1} / N=S_{1} N / N$. Since K is a cyclic Hall II-subgroup of G. there exists $g_{1} \in G$ such that $\left[S_{1}^{q_{1}}, T_{1}\right]=1$. But then $\left[C_{1}^{g_{1}}, P_{1}\right]=\left[S_{1}^{g_{1}} N, T_{1} N\right] \leq N$, so that $P_{1}^{g_{1}^{-1}}$, p_{1} normalises Q_{1}, a contradiction. Hence o preserves subnormality and Theorem 2.12 is proved.

2.14 COROLLARY.

Let G be finite group and let $G^{\circ} u(G)$, where σ preserves subnormality, Then, In the notation of Theorem 2.12, σ^{-1} preserves subnormality if and only if $\Pi\left(H^{\sigma}\right) n \pi\left(K^{\sigma}\right)=$ a (that is. $H^{\sigma}=O_{\pi^{\prime}}\left(G^{\sigma}\right)$). $I f$, however, there exists $q \in \Pi\left(H^{a}\right) \cap \Pi\left(K^{\sigma}\right)$ then a Sylow q-subgroup of G° is elementary abelian of rank at least two and a Sylow q-subgroup of K^{0} has order q .

Proof.

We use the notation of Theorem 2-12 throughout. We prove the second part of the corollary first. Let $q \in \pi\left(H^{\sigma}\right) \cap \pi\left(K^{\circ}\right)$ and pick $Q^{\sigma} \in S y l_{q}\left(G^{\sigma}\right)$ such that Q^{σ} contains the cyclic sylow q-subgroup K_{q}^{0} of K^{α} - Suppose, if possible, that Q^{d} is cyclic. Since $1 \notin Q^{\sigma} \cap H^{\sigma} \in S y 1_{q}\left(H^{\sigma}\right)$ and $a^{-1} / L\left(H^{\circ}\right)$ is index-preserving. Q must be a cyclic q-group. But k_{q} is a p-group for some $p \nmid q$ ($p \in \pi$) which is a contradiction. Therefore Q° is elementary abelian of rank at least 2. Since K_{q}^{a} is also cyclic, K_{q}^{a} has order q, which proves the second part of the corollary.

Suppose that a^{-1} preserves subnormality. Then by Theorem 2.12 applied to σ^{-1} we must have $H^{a}=O_{N^{\prime}}\left(G^{\sigma}\right)$. Conversely, suppose that $\pi\left(H^{\sigma}\right) \cap \pi\left(K^{\sigma}\right)=d$. We show that conditions (i)-(iii) of Theorem 2.12 are satisfied for a^{-1}, which then implies that a^{-1} preserves subnormality; $H^{\sigma}=O_{*}$ (G) so that (1) holds. Clearly $\sigma^{-1} / L_{(}^{\prime}\left(H^{0}\right)$ is

Index-preserving, and by Lemma 2.10, every singularity of o 0^{-1} Is of the first kind: thus (i1) holds. Since the Sylow subgroups of K and K^{0} are mapped to each other, (iii) holds. This completes the proof.

Lack of a Sylow structure in an arbitrary periodic group G means that we cannot immediately say anything about the p-subgroups of G if L(G) admits a p-singular projectivity. For locally finite groups, however, we have the fallowing Lemma, which shows that (as in the finite case) an abelian p-group must be of apecific type in order to admit a singular projectivity.
2.15 LEMMA.

Let G be a locally finite group and let G^{d} e $u(G)$ - Suppose that o is p-singular (p prime). Then one of the following holds:
(i) every p-subgroup of G is elementary abelian;
(1i) every p-subgroup of G is cyclic or quasicyclic.

Proof.

There exists subgroups N.S.U of G such that $N \& U, N_{0}{ }^{\circ} U^{\circ}$, $|U: N| \&\left|U^{\sigma}: N^{\sigma}\right|<\infty, S / N \in S y I_{p}(G / N)$ and S^{σ} / N^{σ} is not a p-group. Let T be a finite subgroup of S such that $S=N T$. Suppose, if
possible, that $\sigma / L(T)$ is not p-singular. Ther $|S: N|=|T: T n N|=$

- $\left|T^{\sigma}: T^{0} \cap N^{\sigma}\right|=\left|S^{\sigma}: N^{\sigma}\right|$, contradiction. Hence $\sigma / L(T)$ is
p-singular and there exists T_{1} e $S y l_{p}(T)$ such that $T_{1}{ }^{\sigma}$ is not a p-group.

Let P be a finite p-subgroup of G. If G contains no elements of order p^{2} then, since a is p-singular on the finite lattice $L\left(\left\langle P, T_{1}\right\rangle\right)$, p must be elementary abelian. If G contains an element g of order p^{2} then, since o is p-singular on the finite lattice $L\left(\left\langle P, T_{j}, g\right\rangle\right)$, P must be cyclic. Therefore either every p-subgroup of G is elementary abelian (and (i) holds) or every such subgroup is cyclic (and (ii) holds). This completes the proof.
2.16 LEMMA.

Let G be a group and let $G^{\sigma} \in u(G)$. Then $\left(G^{\sigma}\right)^{F}=\left(G^{F}\right)^{\sigma}$ If G is a Cernikov group, so is G^{σ}.

Proof.

The subgroups of finite index in G are in bijective correspondence (via a) with the subgroups of finite index $1 \pi G^{d}$, by Theorem 2.2. Hence $\left(G^{0}\right)^{F}=\left(G^{F}\right)^{0}$. If G is a Cernikov group, then $G^{F} \in S \cap M$. Since $u S=S([Y V])$ and $U M=\frac{M}{M}$ (clearly) then $\left(G^{\sigma}\right)^{F}=\left(G^{F}\right)^{\sigma}$ E SnM and so G^{σ} is a Cernikay group.

We can exploit the structure of a Cernikov group to say something about the projective image of a subnormal subgroup i the relation of the following result to Theorem 2.13 is made explicit in the remark after the proof.

2.17 THEOREM.

Let X be a subnormal subgroup of a Cernikov group G and let $G^{d}\left(u(G)\right.$. Then X^{σ} is normalised by $\left(G^{\sigma}\right)^{F}$ and $x^{\sigma} \operatorname{sn} x^{a}\left(G^{\sigma}\right)^{F}\left(G^{\sigma}\right)^{m}$

Proof.

$$
G^{d} \text { is a Cernikov group by Lemma 2.16. Let } G_{1}^{\sigma}=X^{G}\left(G^{\sigma}\right)^{F}
$$

Then $G_{1}^{F}=G^{F}, X \cap G_{1}^{F} \times X G_{1}^{F}=G_{1}$ and $X^{G} \cap\left(G_{1}^{\sigma}\right)^{F}+G_{1}^{\sigma}$. Therefore, in order to prove that X^{0} is normalised by $\left(G^{0}\right)^{F}$, we may assume that $G=G_{1}$ and $X \cap G^{F}=1$. By Theorem 1.13, $\left|G: N_{G}(X)\right|$ is finite so that $X \circ G^{F} X=G$. Therefore

$$
\left.G=G^{F}=X \text { and } G^{G}=\left(G^{\sigma}\right)^{F}\right] X
$$

Define sets of primes $\pi_{1}=\pi\left(G^{F}\right) \backslash \pi(X)$ and $\pi_{2}=\Pi\left(G^{F}\right) \cap \pi(x)$. Then $G^{F}=0_{\pi_{1}}\left(G^{F}\right) \times 0_{\pi_{2}}\left(G^{F}\right)$ and by Theorem 2.7.

$$
\left.\begin{array}{l}
\left(G^{\sigma}\right)^{F}=\left(0_{\pi_{1}}\left(G^{F}\right)\right)^{0} \times\left(0_{\pi_{2}}\left(G^{F}\right)\right)^{0} \text { and } \tag{*}\\
\left(x \times 0_{\pi_{1}}\left(G^{F}\right)\right)^{0}=x^{0} \times\left(0_{\pi_{1}}\left(G^{F}\right)\right)^{0} .
\end{array}\right\}
$$

If $\pi_{2}=0$, then $X^{\circ} \& G^{\circ}$ as required, so assume \mathbb{B}_{2} 中 Suppose we have proved that X^{σ} asc G^{σ}. Then, since $x^{\sigma} \bmod G^{\circ}$. we have X^{0} per G^{0} by Theorem 2.8. But a finite permutable subgroup is subnormal ([52] Theorem F) and then by Theorem 1.13, $X^{\circ} \& G^{\sigma}$ as required. Therefore it is enough to prove $\boldsymbol{K}^{\text {a }}$ asc $G^{\text {a }}$. By (*), we may assume that $0_{\mathbb{N}_{1}}\left(G^{F}\right)=1$, so that

$$
\mathrm{G}^{F} \text { is a } \Pi_{2} \text {-group. }
$$

Suppose, if possible, that a is p-singular for some $p \in \mathbb{R}_{2}$. Then by Lemma 2.15, every p-subgroup of G is cyclic or quasicyclic. But if $X_{p} \in S y l_{p}(X)$, then $X_{p} O_{p}\left(G^{F}\right)$ is a quasicyelic p-group containing a proper infinite subgroup $O_{p}\left(G^{F}\right)$. Which is impossible. Therefore
o is not p-singular for $p \in \Pi_{2}$.
For $1 \geq 0$, define subgroups $\Omega_{i}\left(G^{F}\right)=\left\langle g \in G^{F}: g\left(P^{i}\right)=1, P \in \Pi_{2}\right\rangle$ and $x_{i}=X \Omega_{i}\left(G^{F}\right)$. Then $X=x_{0} \leq x_{1} \leq \ldots$ is an ascending chain
of normal subgroups of G and $\underset{i \geq 0}{\bigcup_{i}} X_{i} G$. Further, for $i \geq 0$, X_{i+1} is generated modulo X_{i} by elements of order $p \in \mathbb{H}_{2}$. Therefore (by Lemma 2.11) $X_{i}^{\sigma} \triangleleft X_{i+1}^{\sigma}$. Hence X^{σ} asc $\underset{i \geq 0}{U}\left(X_{i}^{\sigma}\right)=G^{\sigma}$ and the first part of the proposition is proved.

For the second part of the proposition; if $X^{\sigma}\left\langle G^{F}\right)^{a}$ in G^{a} there is nothing to prove, and otherwise we can use Theorem 2.13, applied to the group $X^{F}{ }^{F} / G^{F}$ sn G / G^{F} and (induced) projectivity $\dot{\sigma}=L\left(G / G^{F}\right) \rightarrow L\left(G^{\sigma} /\left(G^{F}\right)^{\sigma}\right)$, to give the desired result (by the following remark).
[

Remark.
In [NZ], Napolitani and Zacher prove a similar result to Theorem 2.13 in the case that $x \in G$ and X^{0} is not ascendant in G^{0} (even if G is infinite; the finite case is due to Schmidt [SH]). A consequence of this result (and Theorem 2.13) is that x^{σ}, whilst not being ascendant in G^{σ}. is not far off, in the sense that x^{σ} asc $x^{\sigma}\left(G^{\sigma}\right)^{\prime \prime}:$ in Theorem 2.13 (using its notation). if we put $R^{\sigma}=\left\langle R_{1}^{\sigma}, \ldots, R_{2}^{\sigma}\right.$, , then $X^{\sigma}=\left(X^{\sigma} \cap R^{\sigma}\right)\left(X^{\sigma} \cap T^{\sigma}\right)$ ase $X^{\sigma} T^{\sigma}$ and $G^{\sigma} / T^{\sigma} \cong R^{\sigma} / N^{\sigma} \in A^{2}$.
We see from the following theorem that the above consequence also holds for the projective image of an ascendant subgroup.

We say that a subgroup L of a group G is L-invariant in G if and only if L^{*} - L for any auto-projectivity $\%$ of $L(G)$ Clearly, an L-invariant subgroup is characteristic and any projective image of it is also L-invariant.

2.18 THEOREM (Zacher [2 2] p.66).

Let X be an ascendant subgroup of a group G and suppose that x^{σ} is not ascendant in G^{σ} for some $G^{\sigma} \in U(G)$. Then there exists an L-invariant subgroup L of G and a set of primes n such that
 of G / L and the induced projectivity on $L\left(R_{p} / L\right)$ is p-singular. In particular, $X^{\sigma} \operatorname{asc} X^{0}\left(G^{0}\right)^{\prime \prime}$, and a cannot be Index-preserving.
[

2.19 THEOREM.

Let G be a group generated by subgroups $H_{\lambda} \quad(\lambda \in \Lambda)$, each of which contains x as an asendant subgroup. Suppose that $G^{\sigma} \in U(G)$ where X^{σ} asc G^{a}. Then X asc G.

Proof.
Suppose, for a contradiction, that X is not ascendant in G. Then by Theorem 2.18 (applied to 0^{-1}). there exists an L-invariant
subgroup L^{0} of G^{d} and $H a l l R_{p}$-subgroups R_{p}^{J} / L^{a} of G^{σ} / L^{σ} ($P \in \pi$) such that X asc $X L$.

$$
\frac{G^{\sigma}}{L^{\sigma}}=\operatorname{Dr}_{p \in \pi} \frac{R_{n}^{\sigma}}{L^{\sigma}} \text { and } o^{-1} \text { is p-singular on } L\left(R_{p}^{a} / L^{o}\right) \text {. }
$$

By Theorem 2.7, $\frac{6}{L}=\underset{p \in \Pi}{L} \frac{R}{L}$ is a Hall decomposition of G / L.

Since R_{p} / L is a non-abelian R_{p}-group, we must have $X L \cap R_{p}$ a $H_{\lambda} \operatorname{L\cap } R_{p}$
for all $p \in \pi, \lambda \in A$. Therefore $X L \&<H_{\lambda} L: \lambda \in A>=G$ and so X asc G. which is a contradiction.

2.20 COROLLARY.

The projective image of an ascendant subgroup of a group has an ascendiser. In a finite group, the projective image of a subnormal subgroup has a subnormaliser.

Of course, the second part of Corollary 2.20 also follows from Theorem 2.13 by using a similar proof to that of Theorem 2.19.

s2.4 The Class w_{u}

As we saw in Chapter $\mathbf{1}(\$ 1.1) . J \subseteq \mathbb{W}, F \subseteq \mathbb{W}$ but $F \underline{j}$ On the basis of the following result, we will define an intermediate class W_{u} that $s t i l l$ catches F; that is, $F \subseteq w_{u}$ and $J \subseteq W_{u} \subseteq W$.

2.21 THEOREM.

Let $G \in F$ be generated by subgroups H and K, both of which contain X as a subnomal subgroup. Suppose there exists $G^{0} \in u(G)$ such that $G^{\circ}=H^{\sigma} K^{\sigma}$. Then X sn G.

Proof.
Suppose that the Theorem is false and pick a counter-example such that firstly $n=|G|$ and then $d=|G: H|+|G: K|+|X|$ is minimal.

Suppose, if possible, that H is not a maximal subgroup of G and let M be a proper subgroup of G which properly contains H Then $M^{\sigma}=H^{\sigma}\left(M^{\sigma} \cap K^{\sigma}\right), M=\langle H, M n K\rangle$ and $X \operatorname{sn} H, X \operatorname{sn} M n K$. Hence X sn M by minimality of n. But now $G^{d}=M^{\sigma} K^{\sigma}, G=\mathbb{M}, K>$ and $X \leq n M$, $X \operatorname{sn} K$. Hence $X \operatorname{sn} G$ by minimality of d, a contradiction. Therefore H and (similarly) K are maximal subgroups of G .

If X^{σ} is subnomal in both H^{σ} and K^{σ} then X^{σ} in G^{a} by

Theorem 1.3, whence by Corollary 2.20 we have X sn G, a contradiction. So we may assume that X^{d} is not subnomal in H^{d}. Apply Theorem 2.13 to the subnormal subgroup X of H, with projectivity $\sigma / L(H)$: Then (in the notation of 2.13)
$H / N=R_{i} / N \times \ldots \ldots R_{i} / N \neq T / N \quad\left(R_{i} / N \notin R_{D_{i}}\right)$ and

$$
\frac{X}{N}=\frac{X \cap R_{1}}{N} \times \ldots \times \frac{X \cap R_{\ell}}{N} \times \frac{X \cap T}{N} \quad(\varepsilon \geq 1)
$$

where $\left(X \cap R_{j}\right) / N$ has prime order $p_{i} \quad(i=1, \ldots, 2)$ and $p_{1} \neq p_{j}$ if $1 \neq j, N$ is (defined as) the largest nomal subgroup of H such that $N \leq X$ and $N^{\sigma} \& H^{\sigma}$. Also $X^{\sigma} \cap T^{\text {© }} \mathrm{sn} H^{\sigma}$. Suppose that this decomposition of X / N contains more than one direct factor. Then at least two of the groups $X_{\cap} R_{1}, \ldots, X_{n} R_{f}, X \cap T$ are proper (non-trivial) normal subgroups of x and each such subgroup will be subnormal in both H and K : by minimallty of d, each will be subnormal in G and therefore their join X is subnormal in G ([W1]), a contradiction. Therefore $X / N=\left(X \cap R_{1}\right) / M$ and has order p, say. Further, $X^{H}=\left(X \cap R_{1}\right)^{R_{1} \ldots R_{2}{ }^{\top}}=X$. Also, by the minimality of d. we have $N s n G$. Since H and K are maximal in G, then $N^{G} \leq$ Hnk. Clearly, $N^{G} n X \& X$, so we must have $N^{G} \cap X=N$. Because $|X: N|=p \nmid q=\left|X^{a}: N^{\sigma}\right|, \sigma / L(X)$. and hence $\sigma / L(X)$. is p-singular. We consider the two different types of singularity:
(a) $\sigma / L(K)$ is $p-s i n g u l a r$ of
the first kind.

By Theorem 2.9(b), $\left.K=A_{p}\right] S_{p}$
where $A_{p}=O_{p},(K)$ and $S_{p} \in S y I_{p}(K)$.
Therefore

$$
\left.\frac{X N^{G}}{N^{G}} \operatorname{sn} \frac{K}{N^{G}}=\frac{A_{n} N^{G}}{N^{G}}\right] \frac{S_{n} N^{G}}{N^{G}}
$$

Therefore $X N^{G} / N^{G}$ (order p) is nomalised by the p^{\prime}-group $A p N^{G} / N^{G}$ and so (choosing 5_{p} such that $\left.X N^{G} \leq S_{p} N^{G}\right) X N^{G} \cdots \hbar$. Swi $X N^{G}+H$, which implies $x a^{2} G$, contradiction.
(b) $\sigma / L(K)$ is p-singular of the second kind.

By Theorem 2.9(c), $K=R \times B$ where R is a non-abelian R_{p}-subgroup of K and $R_{1} B$ have co-prime orders. Then

$$
\frac{K}{N^{G}}=\frac{R N^{G}}{N^{G}} \times \frac{B N^{G}}{N^{G}}
$$

and every p-subgroup of K / N^{G} is contalned in $R N^{G} / N^{G}$ and is nomal in K / N^{G}. Therefore $X N^{G} \& K$ which, as incase (a), gives a contradiction. This completes the proof.

[^0]Theorem 2.21 says that $F \subseteq w_{u}$, and clearly $J \subseteq w_{u} \subseteq w$

2.22 PROPOSITION.

w_{u} contains the class of Cernikov groups.

Proof.
Let G be Cernikov group generated by subgroups H and K, both of which contain as subnormal subgroup, and suppose that $G^{\sigma} \in U(G)$ where $G^{\circ}=H^{\circ} K^{\circ}$. Since $H, K \in M, X$ is normalised by H^{F} and by K^{F}. But $G^{\circ}=H^{0} K^{\sigma}$ is a C尸ernikov group (Lemma 2.16), so by Lemma 1.14 we have $\left(G^{\sigma}\right)^{F}=\left(H^{\sigma}\right)^{F}\left(K^{0}\right)^{F}$. Therefore $G^{F}=H^{F} K^{F}$ nomalises X. So to prove that $X \operatorname{sn} G$, we may assume that $G^{F}=1$. Now G is finite and $X \operatorname{sn} G$ by Theorem 2.21.

0

Proposition 2.22 w111 be superceeded by Proposition 2.25, which says that $(A F)^{U} \subseteq W_{u}$ (Cernikov groups form a u-closed class by Lemma 2.16). Proposition 2.25 is proved using a reduction lemma akin to Lemma 1.6 :

2.23 LEMMA

Let G be a group generated by subgroups H and K, both of which contain x as a subnormal subgroup. Suppose that G © $G^{0}(G)$ and $G^{\sigma}=H^{\sigma} K^{\sigma}$. Let A be an abelian normal subgroup of G and put $G_{1}=A H \cap A K, H_{1}=H \cap A K_{2} K_{1}=A K \cap H$ and $N=\left(A n H_{1}\right)\left(A \cap K_{1}\right)$. Then
 Let bars denote subgroups of G_{1} modulo N. Then $\bar{X} \operatorname{sn} \bar{H}_{1}, \bar{X}$ sn $\overline{K_{1}}$ and
(11) $\left.\left.G_{1}=A\right] \overline{H_{1}}=A\right] \overline{K_{1}}=\left\langle\overline{H_{1}}, \overline{K_{1}}\right\rangle$ and \bar{H}_{1}, K_{1}^{-}embed in G / A;
(111) if $\bar{X} \sin \bar{G}_{j}$ and $A X \sin G$, then $X \sin G$.

Suppose that A^{σ} is an abelian normal subgroup of G^{σ}. Then N^{σ} © G^{σ} and, if bars denote subgroups of G_{1}^{σ} modulo N^{σ}.
(iv) $\left.\left.G_{1}^{-\sigma}=\bar{A}^{\sigma}\right]{\overline{H_{1}}}^{\sigma}=\bar{A}^{\sigma}\right] \bar{K}_{1}^{\sigma}={H_{1}}^{\sigma} K_{1}^{\sigma}$ and H_{1}^{σ}, \bar{K}_{1}^{σ} embed in G^{σ} / A^{σ}.

Proof.
(1) By Lemma 1.5 (i). $N \neq G_{1}=A H_{1}-A K_{1}$. Therefore $G_{1}^{0}=\left\langle A^{d}, H_{1}^{O}\right\rangle=$ $=\left\langle A^{\sigma}, K_{1}^{\sigma}\right.$. Also, $\left.H_{1}^{\sigma} K_{1}^{\sigma}=\left(H^{\sigma} \cap\left\langle A^{\sigma}, K^{\sigma}\right\rangle\right)\left\langle\left\langle A^{\sigma}, H^{\sigma}\right\rangle \cap K^{\sigma}\right\rangle\right\rangle=\left\langle A^{\sigma}, H^{\sigma}\right\rangle \cap H^{\sigma} K^{\sigma} \cap \in A^{\sigma}, K^{\sigma}$.
$=G_{1}^{a}$. Therefore $G_{1}=\left\langle H_{1}, K_{1}\right\rangle$
(ii) From (i), $A \leq\left\langle H_{1}, K_{1}\right\rangle$ so, by Lemma $1.5(t v),(v)$, (11) follows.
(i1i) As in the proof of Lemma 1.6 , the hypotheses of (iii) imply
that $N X$ sn $A K \operatorname{sn} G$ and X sn $N K$ by Lemma 1.7.
(Iv) This follows from Lemma 1.5 (iv).(vi).

Lemma 2.23 is 1 inited in application by the fact that A° has to be abelian and normal in G^{d}. This need not bother us when G is metabelian. as we see from:
2. 24 THEOREM.
$A^{2} \subseteq \omega_{u}$.

Proof.
Let $G \in A^{2}$ be generated by subgroups H and K, both of which contain K as a subnomal subgroup. Suppose that $G^{\circ} \in U(G)$ and $G^{d}=H^{G^{d}}$. Let $A=G^{\prime}$. Then, by Lemma 2.23 (11) (and using its notation). $\overline{G_{1}}=\left\langle H_{1}, K_{1}\right\rangle$ and H_{1}, K_{1} embed $i n G / A \in A$. Therefore $\bar{X} \triangleleft \overrightarrow{G_{1}}$. Since $A X \triangleleft G, 2.23(i i 1)$ gives $X \operatorname{sn} G$, as required.

2.25 PROPOSITION.

$$
(A F)^{U} \subseteq W_{u}
$$

Proof

We prove something stronger, that if $G \in A F$ and $G^{\circ} \in U(G) \cap A F$, with G generated by subgroups H and K, both of which contain X as a subnormal subgroup, and $G^{\sigma}=H^{\sigma} K^{\sigma}$, then X sn G. (We do not require $u(G) \subseteq A F$.$) Let G, H, K, X$ and G^{σ} be as posed. Let A_{1}, A_{2}^{σ} be abelian normal subgroups of G, G^{σ} (respectively) such that $|G: A|$ and $\left|G^{\sigma}: A_{2}^{d}\right|$ are finite Let $B=A_{1} \cap A_{2}$. Then $B_{G} \in A$ and $\left|G: B_{G}\right|$ is finite. $\left|G^{\sigma}:\left(B_{G}^{\sigma}\right)_{G}^{a}\right|$ is finite (by Theorem 2.2) and $\left(B_{G}^{\sigma}\right)_{G^{\sigma}} \leq A_{Z}^{\sigma} \in A$. By Theorems 2.2 and 2.3. $\left(B_{G}\right)_{G}{ }^{\sigma}$ is normal in G and has finite index in G. Therefore, we may assume $A_{1}-A_{2}-A$ say.

By Lenma 2.23 and Theorem 2.21. we may assume that
$G=A] H=A J K=\langle H, K\rangle$ and $\left.\left.G^{\sigma}=A^{\sigma}\right] H^{\sigma}=A^{\sigma}\right] K^{\sigma}=H^{\sigma} K^{\sigma}$ Now $H \xlongequal[\cong]{\cong} K^{2} G / A \in F$, so that $G^{\sigma}=H^{\sigma} K^{\sigma}$ is finite. Therefore G is finite and so X sn G by Theorem 2.21.

Using results of Baer ($[B A]$) it can be shown that $A F \cap \hat{M}$ is a u-closed class, and hence (by Proposition 2.25) AF $n \hat{M} \leq W_{u}$ This is supercefded, though, by the following result.
2.26 THEOREM.

$$
(P C) F \subseteq w_{u} .
$$

Proof.
Let X be a subgroup of a polycyclic-by-finite group G. To show that $X \operatorname{sng}$. it is enough to prove that $X^{\theta} \operatorname{sn} G^{\theta}$ for any finite homomorphic image G^{θ} of G ([K1] Satz 3.4). Suppose that G is generated by subgroups H and K, both of which contain X as a subnormal subgroup, and suppose that $G^{\sigma} \in U(G)$ with $G^{\sigma}=H^{\sigma} K^{\sigma}$ Let N be a normal subgroup of G such that G / N is finite. By Theorems 2.2 and 2.3, G and G^{σ} contain normal subgroups of finite index $N_{G^{\sigma}}$ and $\left(N^{\circ}\right)_{G^{\sigma}}$ respectively. By Theorem 2.21 (applied to
 Kegel's result (above), we can conclude that $X \operatorname{sn} G$.

Finally, we include the following result, which is a corollary of Corollary 2.20.

2.27 PROPOSITION.

$u(N \cap \hat{H}) \subseteq J$

Proof.
Let $G^{d} \in U(G)$ where $G \in N \cdot \hat{M}$. Suppose that G^{d} is generated by subgroups H^{σ} and K^{σ}, both of which contain X^{σ} as a subnormal subgroup. Then $X \sin G$ and by Corollary 2.20. X° asc $G^{\circ} \in \hat{M}$. Therefore X^{σ} sn G^{σ}.

CHAPTER 3. K-SUBNORMALITY.

53.0 Introduction.
K-subnormality in finite groups was introduced by Kegel ([K 2]) as a generalisation of subnormality. Kegel shows that in a finite group G , the K-subnormal subgroups form a sublattice of L(G) (see Theorem 3.2); here K denotes a class of groups which is closed with respect to forming extensions, homomorphic images and subgroups (\quad P, Q, S>-closure).

This chapter is in three sections. In 13.1 we give preliminary definttions and results. In 13.2 we consider the relations n_{K} ("K-normality") and $s n_{K}$ ("K-subnormality") for variable <P, Q, S closed classes K of finite groups. Distinct classes K_{1}, K_{2} correspond to distinct relations $n_{K_{1}}, \Pi_{K_{2}}$ (Proposition 3.7) and, with essentially only one exception, correspond to distinct relations $s n_{K_{1}}, s n_{K_{2}}$ (Corollary 3.6). Also, we have two results which generalise well-known characterisations of finite nilpotent and finite Dedekind groups; if G is a finite group, then every subgroup is K-subnormal if and only if G is the direct product of a K-group and a nilpotent group (Theorem 3.4); every subgroup of G is K-normal $1 f$ and only if G is either a K-group or a Dedekind group (Theorem 3.8).

In 53.3 we consider if Theorem 1.3 remains true when "subnormal" is replaced by "K-subnormal". That is, if $G=H K$ is a finite group
and X is K-subnormal in both H and K, is X-subnormal in G ? This is true 1f G is soluble (Theorem 3.12) but false for arbitrary finite groups G, even if $X{ }_{K} H$ and $X a_{K} K$ (Example 3.11).

The definition of K-subnormality need not be confined to finite groups and classes k of finite groups. Thus we can speak of K-subnormality in infinite groups and define the K-subnormal analogue, W_{K}, of the class W of Chapter 1 . W_{K} is contained in $\boldsymbol{\omega}$. and we identify some subclasses of W_{K} in Theorem 3.14, Theorem 3.15 (\mathbf{w}_{K} contains all polycycilc groups) and Theorem 3.17 (w_{K} contains all soluble C̄ernikov groups).

13.1 Preliminaries.

The classes of groups that are closed with respect to forming extensions, homomorphic images and subgroups are precisely those classes which are PQS-closed. This follows from

3.1 LEMMA.

$$
\langle P, Q, S\rangle=P Q S .
$$

Proof.
Clearly $P Q S \leq\langle P, Q, S\rangle$. Using the relations $S P \leq P S, S Q \leq Q S$
and $Q P \leq P Q$ ([RI] Lemma 1.12), we have
$(P Q S)^{2}=P Q S P Q S \leq P Q P S Q S \leq P^{2} Q S Q S \leq P^{2} Q^{2} 5^{2}=P Q S \leq(P Q S)^{2}$.

Therefore $P Q S$ is a closure operation containing P, Q and S; since <P, Q, S, is the least such closure operation, then $=P, Q, S>\leq P Q S$.

Suppose that K is a PQS-closed class of finite groups. We define L_{K} as the class of simple groups which occur as composition factors of K-groups. Clearly, L_{K} consists precisely of the simple K-groups and

$$
K=P L_{K}
$$

Conversely, if L is any class of finite simple groups which is closed with respect to taking simple sections, then any subgroup of a PL-group has composition factors which are simple sections of L-groups. Hence $S P L=P L$. Also, $Q P L \leq P Q L=P L$ so that $Q P L=P L$. Therefore PL is PQS-closed and $L_{P L}=L$.

So we can uniquely describe any PQS-closed class K of finite groups by specifying its simple subgroups L_{K}. If L_{K} consists of
finite Π-groups (some $\Pi \subseteq P$) then so does K, and, defining $\pi(K)\left(\pi\left(L_{K}\right)\right)$ as the set of all primes that occur in the orders of K-groups (L_{K}-groups), then $\pi(K)=\pi\left(L_{K}\right)$ and
$F \cap S_{\Pi(K)} \subseteq K \leq F_{\Pi(K)}$

If K_{1} and K_{2} are PQS-closed classes of groups, then $K_{1} \cap K_{2}$ is $P Q S-c l o s e d$ and $L_{\left(K_{1} \cap K_{2}\right)}=L_{K_{1}} \cap L_{K_{2}}$. Also, the smallest $P Q S-c$ losed $c l a s s$ of groups containing K_{1} and K_{2} is $P\left(K_{1} \cup K_{2}\right)$, because $S P \leq P S, Q P \leq P Q$ and both S and Q are unary.

Let K be a $P Q S$-closed class of finite groups. Following Kegel ([K2]), we say that a subgroup X of a finite group G is K-normal in G, written $X{ }_{K} G$ or $X{n_{K} G \text {, if and only if }}^{G}$ either $X \& G$ or $G / X_{G} \in K$. We say that X is K-subnormal in G, and write $x{ }_{K}^{n} G$ or $x \operatorname{sn}_{K} G$, if and only if there exists a chain of subgroups $X=X_{0} \leq X_{1} \leq \ldots \leq X_{n}=G \quad(n \in N)$ such that $x_{j} * x_{1+1}$ for $0 \leq 1<n$.

For example, taking $K=1$ in the above definition, then $X 0_{1} G \quad\left(X s n_{I} G\right)$ if and only if $X \& G(X s n G)$. At the other
extreme, the statements $X a_{F} G, X \leq n_{F} G$ and $X \leq G$ are equivalent. Also, if $G \in K$ (arbitrary K) then every subgroup of G is K-normal (see Theorem 3.8 for the converse).

We shall consider n_{K} and $s n_{K}$ as relations of finite groups, and sometimes we shall write $n_{1} s n_{1} s$ in place of $n_{1}, s n_{1}$. n_{F} ($=s n_{F}$) respectively. We partially order (using "s") the relations n_{K} and $s n_{K}$ for various K in the natural way; that is, If K_{1} and K_{2} are PQS-closed classes of finite groups, then we write ${ }^{n_{1} \leq n_{1}} n_{2}\left(5 n_{K_{1}} \leq 5 n_{K_{2}}\right)$ if and only if whenever $X n_{K_{1}} G$ ($K \sin _{K_{1}} G$) for a subgroup x of a finite group G, then $X n_{K_{2}} G$ ($X \operatorname{sn}_{K_{2}} G$). Clearly, $K_{1} \subseteq K_{2}$ implies that $n_{K_{1}} \leq \pi_{K_{2}}$ and $s n_{K_{1}} \leq s n_{K_{2}}$.

Remark.
Let X be a subgroup of a finite group G and let K be a PQS-closed class of finite groups. Then K is $N_{0}-c l o s e d$ and it is not hard to see that G_{K} contains all subnormal K-subgroups (in fact, G contains all K-subnormal subgroups - see below). Note that $X^{G} \in K \lll X_{k}$; also $G / X^{G} \in K \Leftrightarrow G^{K} \leq X$.

We summarise the results of [K2] in the following theorem.

3.2 THEOREM.

Let K be a PQS-closed class of finite groups, and let G be a finite group with subgroups X, Y and N such that $N \& G$ and $X ه_{K}^{n} G(n \in N)$. Then

$$
\begin{equation*}
X \cap Y \oplus_{K}^{n} Y ; \tag{1}
\end{equation*}
$$

(ii) $\quad \frac{N X}{N} ه_{K}^{n} \frac{G}{N}$ and if $N \leq Y$ then $\underset{N}{Y} \overbrace{K}^{m} \frac{G}{N}$ implies

$$
Y \nabla_{K}^{m} G(m \in N):
$$

(1ii) if $X=X^{k}$ then $X \otimes^{n} G$;
(iv) If $x \in K$ then $x^{G} \in K$;
(v) if $Y \operatorname{sn}_{k} G$ then $\langle X, Y\rangle s n_{k} G$.

In particular, the K-subnormal subgroups of G form a sublattice of $L(G)$.

Proof.

See Kegel [K2] (the proof of (iii) is also given here, in Lemma 3.13). We give an alternative proof of (iv) using induction on n, the result being clear if $n \leq 1$. The case $n=2$ is the cruclal one, which we prove in:
3.3 LEMMA.

In the notation of Theorem 3.2, suppose that $X \in K$ and $X^{4} K^{Y}{ }^{4} K^{G}$. Then $X^{G} \in K$

Proof.

Suppose that the lemma is false and let G be a minimal counterexample. By the remark above Theoren 3.2, X is not sutnomal in G. If X is not normal in Y, then $Y / X_{Y} \in K$ and $Y \in P S K=K$ But $Y{ }_{K} G$, so that $X^{G} \leq Y^{G} \in K$, a contradiction. Therefore $X \subset Y \neq G$

Let N be a non-trivial normal subgroup of G. By the minimality of G (and theorem $3.2(11)$) we have $X^{G} N / N \in K$. Therefore $N d K$. so that $G_{K}=1$ and

G contains no non-trivial subnermal K-subgroups.

By 3.2(1), $X \in X^{G} \cap y^{9}{ }_{K} x^{G}$. If $x^{G} \& G$ then the minimality of G imples that $X^{\left(X^{G}\right)}$ is a K-group, cantradicting (1). Therefore $X^{G}=G$ and so $G / N \in K$ for all non-trivial normal subgroups N of G . Hence

Therefore $G^{K} \leq Y_{G} \leq Y$, so that $X \cap G^{K} \& G^{K} \& G$ and by (1), $X \cap G^{K}=1$. Therefore $X \leq C_{G}\left(G^{K}\right) \& G$. But $X^{G}=G$. so that $G^{K} \leq Z(G)$ and by (2), G^{K} has prime order p, say, and $p \|(K)$. Thus G^{K} has p^{-}-index in G, so by the Schur-Zassenhaus theorem, $\left.G=G^{K}\right] Q$ for some D^{\prime}-subgroup $Q \in K$ of G. But $G^{\kappa} \leq \mathbb{Z}(G)$ so that $G=G^{K} \times Q$. Then by (1), we must have $Q=1$, so that G has order p, which is clearly a contradiction.

Proof of 3.2 (iv).

We arefinduction on n to prove that $x^{6} \in K$ where $x \in K$ and $x=X_{0}{ }_{K} X_{1}{ }^{\circ} K \cdots{ }_{K}{ }_{K} X_{n-1}{ }^{\circ}{ }_{K} X_{n}=G$. The result is clear if $n=0$ or 1. So suppose $n \geq 2$ with the usual inductive hypothesis. Then $x^{x_{n-1}} \in K$ by induction, and $x^{x_{n-1}} \otimes x_{n-1}{ }^{0} \kappa^{G}$. Therefore $x^{G}=\left(x^{X_{n-1}}\right)^{G} \in K$ by Lemma 3.3.
$53.2 n_{K}$ and $s n_{K}$
We know that $s n_{7}=s n$. However, it is not true that if $s n_{K}=s n$ for some $P Q S-c l o s e d$ class K of finite groups, then $K=I$; If we take $K=F_{P}$ (p prime), then if X is a K-normal subgroup
of a finite group G, either $X \& G$ or $G / X_{G} \in F_{p}$: in either case, $X \sin$, so that $\operatorname{sn}_{F_{p}}=s n$.

More generally, we ask under what conditions does $s n_{K_{1}}=s n_{K_{2}}$ imply that $K_{1}=K_{2}$ (where $K_{1}, K_{2} \subseteq F$ are PQS-closed classes)? We first have a result which, in the case $K=I$, gives the wellknown characterisation of finite nilpotent groups as finite groups in which every subgroup is subnormal.
3.4 IHEOREM.

Let K be a PQS-closed class of finite groups. For a finite group G, the following conditions are equivalent:
(1) Every subgroup of G is K-subnomal.
(11) $G=K * N$ where $K \in K$ and N is inipotent.
(i1i) $G=G_{K} \times G^{K}$ where G^{K} is nilpotent and has co-prime order to G_{K}.

Proof.
(1) B (111). Suppose that (1) holds and let $\pi_{1}=\pi\left(G_{K}\right)$ and $\pi_{2}=n\left(G / G_{K}\right)$. Then for $p \in n(K) \cap \pi(G)$ and $P \in S y 1_{p}(G)$, we have $P \in F_{p} \leq K$ and, by Theorem 3.2(iv), $P \leq G_{K}$. Therefore

$$
\begin{equation*}
\pi_{1}=\pi(K) \cap \Pi(G) \quad \text { and } \quad \Pi_{1} n \pi_{2}= \tag{1}
\end{equation*}
$$

Let $Q \in \pi_{2}$ and $Q \in S_{y} 1_{q}(G)$, If $Q^{K} \neq Q$ then K contains a non-trivial 9 -group, whence $Q \in F_{q} \subseteq K$. By Theorem $3.2(i v)$. $q \in \pi_{1}$, which contradicts (1). Hence $Q^{k}=Q$ and (by Theorem 3.2(iii)) $Q \operatorname{sn} G$; therefore $Q \triangleleft G$. Let

$$
N=\left\langle Q: Q \in S y l_{q}(G), q \in \Pi_{2}\right\rangle .
$$

Then $N=O_{n}(G)$ is a nilpotent normal subgroup of G and (by (1)) $N \cap G_{K}=1$. Therefore

$$
G=G_{K} \times N=0_{\pi_{1}}(G) \times 0_{\pi_{2}}(G)
$$

is a Hall decomposition of G, and $G^{K} \leq N$. If $G^{k} \neq N$ then there exists $q \in \pi(K) n \pi(N)=\pi(K) \cap \pi(G) \cap \pi(N)$, so that $q \in \Pi_{1} \cap \pi_{2}$, contradicting (1). Therefore $G^{K}-N$ and (iii) holds. Clearly, (iii) implies (ii), so ft only remalns to prove (ii) \Rightarrow (i). Suppose that (id) holds. We prove (i) by induction on the nilpotency class c of N, the result being clear if $c=0$ So suppose $c \geq 1$ with the usual induction hypothesis. Let x be a subgroup of $G=K \times N$ and let $Z=Z(N)$. Then $Z \leq Z(G)$ and $K Z \cap N=Z(K \cap N)=Z$, so that

$$
\frac{G}{Z}=\frac{K Z}{Z}=\frac{N}{Z}
$$

By induction, $X Z \operatorname{sn}_{K} G$. Since $x \in X Z$, then $X \operatorname{sn}_{K} G$ and (1) holds. This completes the proof.

[

Remark.
A finite nilpotent group can also be characterised as a finite group in which every Sylow subgroup is normal, but we cannot append to Theorem 3.4 the condttion that every Sylow subgroup of G is K-normal. For example, take $K=F_{\{2,3\}}$ and $G=H \times K$ where $H \cong \Sigma_{3}$ and K has order 5 . Then G satisfies (i), (11), (iii) of 3.4. but a Sylow 2-subgroup of G is not K-normal in G (otherwise $G \in K$).

We use Theorem 3.4 to prove that, apart from the exceptions mentioned at the beginning of this section (s3.1). distinct PQSclosed classes K_{1}, K_{2} of finite groups do indeed give rise to distinct relations $s n_{K_{1}}, s n_{K_{2}}$. This will be corollary of

3.5 PROPOSITION.

Let K_{1}, K_{2} be $P Q S-c l o s e d ~ c l a s s e s ~ o f ~ f i n i t e ~ g r o u p s ~ a n d ~$ put $\pi_{1}=\pi\left(K_{1}\right), \pi_{2}=\pi\left(K_{2}\right)$. Then the following are equivalent:

$$
\begin{equation*}
s n_{K_{1}} \leq s n_{K_{2}} \tag{1}
\end{equation*}
$$

(ii) $K_{1} \subseteq K_{2}$ or $K_{1}=F_{p_{1}}$ for some $p_{1} \in \pi_{1} \backslash n_{2}$ (and $s n_{K_{1}}=s n$).

Proof.
Clearly (ii) = (1).
(1) $=$ (ii). Suppose that (i) holds. If $G \in K_{1}$, then by Theorem 3.4, $G=G_{K_{2}} \times G^{K_{2}}$ is a Hall decomposition of G and $G^{K_{2}}$ is nilpotent. If also $G \in F_{\pi_{2}}$ then $G^{K_{2}} \in N \cap F_{\pi_{2}} \subseteq K_{2}$, so that $G^{K_{2}}=1$ and $G \in K_{2}$. Therefore $K_{1} \cap F_{\pi_{2}} \subseteq K_{2}$ and

$$
\begin{equation*}
G \in K_{1} \Rightarrow G=G_{K_{2}} \times G^{K_{2}}, G_{K_{2}}=0_{n_{2}}(G), G^{K_{2}}=0_{n_{2}}(G) \in N \tag{1}
\end{equation*}
$$

Let $\pi=\pi\left(K_{1} \cap F_{\pi_{\frac{1}{2}}}\right)$. By (1), $K_{1} \cap F_{\pi_{\frac{1}{2}}} \subseteq N$, so that $|0| \leq 1$ (otherwise $K_{1} \cap F_{\pi_{2}^{\prime}}$ contains the wreath product of two groups of distinct prime orders, which is not nilpotent). We consider the two possibilities for $|\pi|$.

If $n=\{p\}$, then $p \in \Pi_{1} \backslash \Pi_{2}$ and we claim that $K_{1}=F_{p}$.
Certainly $F_{p} \leq K_{1}$, and if $F_{p} \neq K_{1}$ then there exists $q \in \pi_{1} n_{n} n_{2}$.
Then if $H=A 1 B$, where $|A|=q$ and $|B|=P$, we have $H \in K_{1}$
and (by (1)) $H=O_{q}(H) \times o_{p}(H)$. 时 $O_{p}(H)=1$, a contradiction. Therefore $K_{1}=F_{p}$ and (id) holds.

Finally, if $\pi=$ then by (1). $K_{1} \subseteq K_{2}$ and 50 (i1) holds.
3.6 COROLLARY.

Let K_{1} and K_{2} be $P Q S$-closed classes of finite groups. Then the following conditions are equivalent:
(1)

$$
\begin{aligned}
& \text { (i) } s n_{K_{1}}=s n_{K_{2}} \\
& \text { (ii) } K_{1}=K_{2} \text { or } K_{1}=F_{p}=K_{2}=F_{q} \text { for some } p_{1} q \in \mathbb{P} \cup\{1] \\
& \text { (and } 5 n_{K_{1}}=s n_{K_{2}}=s n \text {). }
\end{aligned}
$$

Proof,
Suppose that (i) holds. Using Proposition 3.5 twice, we have the following passibilities:

$$
\begin{aligned}
& K_{1} \leq K_{2} \text { or } K_{1}=F_{p} \text { (p prime). and } \\
& K_{2} \leq K_{1} \text { or } K_{2}=F_{q} \text { (q prime). }
\end{aligned}
$$

Consideration of the 4 possibilities shows that (ii) holds. Conversely, (1i) \rightarrow (i) is clear.
Putting $K_{1}=K$ and $K_{2}=1$ in Corollary 3.6 shows that $s n_{K}=s n$ if and only if $K=1$ or $K=F_{p}$ (p prime). This Is the only case where a PQS-closed class K of finite groups is not uniquely determined by the relation $s n_{K}$.
It is natural to ask whether Corollary 3.6 remains true if we replace $5 \pi_{K}$ with m_{K}. In fact, a stronger result holds:
3.7 PROPOSITION.
Let K_{1} and K_{2} be $P Q S$-closed classes of finlte groups. Then $n_{K_{1}} \leq n_{K_{2}}$ if and only if $K_{1} \leq K_{2}$. Hence $n_{K_{1}}=n_{K_{2}}$ if and only if $K_{1}=K_{2}$.
Proof.
Clearly $K_{1} \leq K_{2}$ implies that $n_{K_{1}} \leq n_{K_{2}}$. Suppose that $n_{K_{1}} \leq n_{K_{2}}$. Then $s n_{K_{1}} \leq s n_{K_{2}}$ so that by Proposition 3.5 either $K_{1} \subseteq K_{2}$ or $K_{1}-F_{p}$ (p prime). Suppose, if possible, that $K_{1} \& K_{2}$. Let G be finite p-group which contains a non-normal subgroup x (for example, G is the wreath product of two groups of order p). Then $G \in F_{p}=K_{1}$, so that $X{ }_{K_{1}} G$ and hence $X{ }_{K_{2}} G$. Therefore K_{2} contalns the non-trivial p-group G / X_{G}. which implies that $K_{1}=F_{p} \subseteq K_{2}$, a contradiction. Therefore $K_{1} \subseteq K_{2}$. This completes the proof.

A finite Dedekind group is (defined to be) a group in which every subgroup is nomal. Such a group is either abellan or is the direct product of a quaternion group of order 8 and a finite abelian group which has no elements of order 4 . Theorem 3.8 is the K-nomal analogue of this result.

3.8 THEOREM

 a finite group. Then ever: subgroup of G is K-normal in G if and only if either $G \in K$ or G is a Dedekind group

Proof.

Suppose that every subgroup of G is K-normal in G. Then by Theorem 3.4, $G=G_{K} \times G^{K}$ where G^{K} is nilpotent and has co-prime order to G_{K}. Let x be a subgroup of G^{K}. Suppose that $X \notin G^{K}$. Then $X \notin G$, so that $G / X_{G} \in K$. Therefore $\mathbf{G}^{K} \leq X_{G}$ and $X=G^{K} \in G, \quad$ contradiction. Therefore X a G^{K} and G^{K} is a Dedekind group.

If G_{K} is also a Dedekind group then so is G, so suppose that G_{K} is not Dedekind. Let Y be a non-normal subgroup of G_{K}. Then $G / Y_{G} \in K$, wence $G^{K} \leq Y_{G} \leq G_{K}$. Therefore $G^{K}=1$ and GeK. The reverse implication is clear.

We ask whether (for a PQS-closed class $K \subseteq f$) the relations $\mathbf{s} n_{K}$ and n_{K} can coincide. Certainly, if $K=F$ then $s n_{K}=s=n_{K}$; Theorem 3.9 shows that this is the only case where $s n_{K}$ and n_{K} are equal.
3.9 THEOREM.

Let K be a QS-closed class of finite groups. Then $s n_{K}=n_{K}$ if and only if $K=F$

Proof.

```
    If K=F then }s\mp@subsup{n}{K}{}=s=\mp@subsup{n}{K}{}\mathrm{ . Conversely, suppose that
s\mp@subsup{n}{K}{}=\mp@subsup{n}{K}{}. We show that K=F by stages. We prove:
    (i)FpS\subseteqK
exists p\inP\I . Let G = AlB where A,B are groups of order P
Since snss\mp@subsup{n}{K}{}\mathrm{ and }B|nG, we have B a \(B \not G\), so \(G / B_{G} \in K\) and \(p \in \pi\), a contradiction. Therefore \(\pi=P\) and (i) holds.
```

(11) $K=$ Fng or $K=F$. Suppose not. Then by (i), there exists non-abellan finite simple groups H and K such that $H \& K$ and $K \in K$. Let $G=H \times K$ and consider any non-trivial proper subgroup X of K. Then $X a_{K} K \oplus G$ so that $X{ }_{K} G$ (by
hypothesis). Since K is simple, we must have $X_{G}=1$ and $G \in K$, which contradicts the supposition that $H \mid K$

Therefore (1i) holds.
(111) $K=F$. By (i1), it is enough to prove that $K \& S \cap F$. Suppose, for contradiction, that $K=$ SnF. Consider the group $G=H \times(A|B\rangle$ where A, B are groups of prime order p and H is isomorphic to A_{5}, the alternating group of degree 5 . Then
 $B_{G}=1$, whence $G \Subset K$ and $H \in K$, a contradiction. Therefore $K=F$

D

3.10 COROLLARY.

Let K_{1} and K_{2} be PQS-closed classes of finite groups.
Then $s n_{K_{1}}=n_{K_{2}}$ if and only if $K_{1}=K_{2}=F$.

Proof.
Clearly $K_{1}=K_{2}=F$ implies $s n_{K_{1}}=s=\pi_{K_{2}}$. Conversely, suppose that $5 n_{K_{1}}=n_{K_{2}}$. Taking the transitive closure of both sides of this equation, we have $s n_{k_{1}}=s n_{k_{2}}$. Therefore $n_{k_{2}}=s n_{k_{2}}$, so that $K_{2}=F$ by Theorem 3.9. Then by Corollary 3.6, $K_{1}=K_{2}$. as required.

```
Let L be class of finite simple groups which is closed under taking simple sections; there are \(2^{X_{0}}\) distinct such classes \(\left(2^{x_{0}}\right.\) is certainly an upper bound, and there are \(2^{x_{0}}\) distinct classes of simple abellan groups). Hence there are \(2^{x_{0}}\) distinct PQS-closed classes \(K\) of finite groups, of which (by Corollary 3.6) only \(x_{0}\) give the same relation \(s n_{k}(=s n)\). Hence, by Proposition 3.7 and Corollary 3.10, there are \(2^{X_{0}}\) distinct relations \(\boldsymbol{n}_{K}\) or \(\mathbf{s}_{\boldsymbol{K}}\).
```

s3.3 The Class W_{k}.

A natural question to ask if if Theorem 1.3 remains true when "subnomal" is replaced by "K-subnomal", where K is any PQS-closed class of finite groups. The following example shows that it does not remain true. However it does remain true if we suppose that the group is soluble (Theorem 3.12).

3.11 EXAMPLE.

$$
\text { If } G \text { is a permutation group on the numbers } 1,2, \ldots, n \text { and }
$$

H is a (proper) transitive subgroup of G then $G=S t a b{ }_{G}(1) H$ for

```
1\leqi\leqn {[SC] 13.1.9}, Take n\geq5 and let G\congAN
    (a): n odd. Let }h=(12\ldots,n)<G\mathrm{ and put H= NG(<h>)
and K=Stab}\mp@subsup{G}{}{(1)}\mp@subsup{\sum}{n-1}{}\mathrm{ . Then G = Ah>K = HK and ah> has
(n-2): conjugates in G. Therefore }|H|=n(n-1)/2 an
|Hnkl = (n-1)/2. Let }\mp@subsup{L}{K}{}\mathrm{ consist of all simple groups of finite
order less than n!/2 . Then, putting }X=H=HK, we have X N % K , 
X o}kK\mp@code{but }X\mathrm{ is not K-subnormal in HK
    (b): n even. We partition {1,2,\ldots.,n} into pairs
p
set H}\mathrm{ of elements of G which permute the }\mp@subsup{P}{i}{
proper subgroup of G . Then if K=Stab
Put }x=H\mathrm{ Hok . Since }n\geq6,x&1.\mathrm{ . Therefore, if }k\mathrm{ is as
```



```
In G.
```


3.12 THEOREM.

Let K be a PQS-closed class of finite groups. Suppose that G is a finite soluble group which is generated as the product of subgroups H and K, both of which contain X as a K-subnomal subgroup. Then X is K-subnormal in G.

Proof.
Suppose that the theorem is false, and consider a minimal counter-example G such that $|G: H|+|X|=s \quad 1 s$ also minimal. We proceed to derive a contradiction to the existence of such a G.
(1) H is maximal in G . Suppose, for a contradiction, that there exists a subgroup L lying strictly between H and G Then $L=L n H K=H(L n K)$. By the minimality of G, we have $X s n_{K} L$. But $G=L K$, so by the minimality of $s, X s n_{K} G$, which is a contradiction. This proves (i). so that $\mid G: H I=q^{\alpha}$ (q prime, $a \geq 1$).
(ii) H is core-free. Suppose not. The hypotheses of the theorem hold modulo the group $H_{G} \neq 1$, so that $X H_{G}{ }^{s n_{K}} \mathbf{G}$ by the minimality of G. But $X \leq n_{K} X_{G} H$, which gives a contradiction.
(i11) H contains no non-trivial subnormal subgroups of G. Suppose not, and let S be a subnormal subgroup of G such that $S \leq H$. Since H is maximal in G, then $S^{G} \leq H$, contradicting (1i).
(iv) $\mathrm{X}^{\mathrm{H}}, \mathrm{X}^{\mathrm{K}} \in \mathrm{K}$. By Theorem 3.2(iv), it is enough to prove that $x \in K$. Suppose not. If $X=X^{K}$ then X sn $H, X \operatorname{sn} K$ by Theorem 3.2(11i) so that $X \sin G$ by Theorem 1.3: hence $X s n_{k} G$,
a contradiction. Therefore $1<x^{K} \leqslant x$. Now x^{K} is K-subnormal
In both H and K and, since $\left(X^{K}\right)^{K}=X^{K}$. Theorem $3.2(1 i i)$ implies that X^{K} is subnormal in both H and K. By Theorem 1.3, X^{K} sn G which contradicts (111). Hence (fv) holds.

Let A be a minimal nomal subgroup of G. Then A is an elementary abelian p-group (p prime) and $G=A H$ by (i) and (ii). Then $A \cap H \& A H=G$ and (il) implies $A \cap H=1$ and $p=q$. We claim that $p k n(K)$. For, suppose that $p \in n(K)$. Then $A \in K$ and by (Iv), $A X=A] X \in K$, Therefore $X{ }_{K} A X$. But $A X s n_{K} A H=G$, whence $x s n_{K} G$, a contradiction; thus the claim is true.

$$
\text { Let } \pi=\pi\left(x^{H}\right) \cup \pi\left(x^{K}\right) \text {. Then } p: \pi \text { and by (iv). } f n S_{\pi} \leq K \text {. }
$$

Let $H_{\pi} \in \operatorname{Hall} \|_{\pi}(H)$. Then $H_{\pi} \in \operatorname{Hall} \|_{\pi}(G)$ and $X^{H} \leq H_{\pi}$. Let $K_{\pi} \in \operatorname{Hall} N_{n}(K)$. Then $X^{K} \leq K_{n}$ and K_{n} is contained in some Hall II-subgroup H_{π}^{g} of G (where $g \in G$). Writing $g=h k \quad(h \in H, K \in K$) we have

$$
x^{K} \leq k_{\pi}^{k^{-1}}-k_{\pi}^{g^{-1} h} \leq H_{\pi}^{h} \leq H .
$$

Therefore $X^{G}=X^{K H} \leq H$ and by (1i) we have $X \leq X^{G}=1$, a contradiction. Therefore the theorem is true.
using the same definitions as in the finite case and allowing K to be any PQS-closed class of groups. Of course, given an infinite group G, G_{K} and G / G^{k} will not necessarily belong to K. If we impose the extra condition of R -closure on K (to ensure $G / G^{K} \in K$) then we will have gone too far, because this forces $K=I$ or $K=U$ (free groups are residualy F_{p}-groups for any prime p ([11])). Also, we no longer have a characterisation of K in terms of L_{K}. If K consists of perlodic groups (Π-groups, say), then K need not equal S_{π}-for example, K might consist of soluble π-groups of finite rank.

If K does not consist of periodic groups, then K contains F_{p} for all $p \in \mathbb{P}$ and hence $S n \hat{M} \leq K$. If $K \subseteq S \cap \hat{M}$ then we must have $K=I, S \cap \hat{M}$ or $K=F \cap S$ for some $\pi \subseteq \mathbb{P}$ (if K consists of periodic groups then $K \subseteq F$; if K contains non-periodic groups then $K=S \cap \hat{M}$). Therefore, if $G \in S \cap \hat{H}$ and $H{ }^{0} K G$ for some $P Q S$-closed class K, then (because $K \cap S \cap \hat{M}$ is PQS-closed) either $G \in K, H \& G$ or $|G: H|$ is finite.

It is not hard to see that the basic properties of K-subnomality ("intersecting" and "factoring") given in Theorem 3.2 (1)(it) also hold in the infinite case. Theorem 3.2 (iii) also holds in general: the proof of this in the finite case ([K2] Lemma 4) still works. For completeness, we give a proof here.

3.13 LEMMA.

Let K be a PQS-closed class of groups. Let x be a subgroup of the group G and suppose that $X=X^{K} \operatorname{sn}_{K} G$. Then $X \operatorname{snG}$.

Proof.
Let $X=X_{0}{ }^{a_{K}} X_{1}{ }^{4} K \ldots{ }_{K}{ }_{K} X_{n}=G$ be a K-subnormal series from X to G. We prove that $X \operatorname{sn} G$ by induction on n, the result being elear if $n \leq 1$. Suppose that $n \geq 2$ with the usual inductive hypothesis. Then $X \operatorname{sn} X_{n-1}$ (by induction) and we suppose, for a contradiction, that X is not subnomal in G. Let $Y=\left(X_{n-1}\right)_{G}$. Then $G / Y \in K$ and $X \$ Y$. Therefore $X \cap Y$ is a proper nomal subgroup of X and $X /(X \cap Y) \in K$. which contradicts the supposition that $x=x^{k}$. Therefore $X \operatorname{sn} G$.

We define the class W_{K} of groups by: $1 f G$ is a group then $G \in \mathbb{U}_{K}$ if and only if (*) holds for any PSQ-closed class of groups K :

> whenever G is generated as the product of subgroups H and K, both of which contain X as a K-subnormal subgroup, then X is K-subnormal in G.

Then $W_{K} \leq W$ and Theorem 3.12 imples that $F \cap S \subseteq W_{K}$ (if
$G \in F n S$, then the K-subnormal subgroups of G are precisely the (K n F)-subnormal subgroups). We will identify some other subclasses of W_{K}; inview of Example 3.11. we restrict ourselves to finding subclasses of $W_{K} \cap S$. Note that W_{K} is, like W. Q-closed, as is W_{K}^{s}.

It is not hard to see that Lemma 1.6 and Theorem 1.8 still hold for $s n_{K}$ in place of $s n$ (where $K=P Q S K$); the proofs are virtually the same and even the bounds still hold. We shall refer to these K-subnormal resulis as Lemma 1.6' and Theorem 1.8'. Using these reductions, and similar proofs to those for W (Theorem 1.9. Proposition 1.10), we have

3.14 THEOREM.

W_{K} contains the following classes: NA, NF $\cap S$, (Fn S) W_{K}

$$
\square
$$

3.15 THEOREM.

$$
\sin \subseteq \omega_{K} .
$$

Proof.
Let K be a PQS-closed class of groups. Suppose that G is a polycyclic group which is generated as the product of subgroups
H and K, both of which contain X as a K-subnomal subgraup, Let $K_{1}=K \cap P C$. Then, inside G, K_{1}-subnormality is equivalent to K-subnomality, so we may assume that $K=K_{1} \subseteq P C$. By the remarks after Theorem 3.12, either $K-I$ (and $X \sin G$ by Theorem 1.9). $K=P C$ (and $X{ }^{6} K G$) or $K \subseteq F \cap S$. Therefore we may assume that $K=F \cap S_{\pi_{1}}$ for some $\pi_{1} \leqslant P$. Consider the K-subnormal series

$$
\begin{aligned}
& x=X_{0}{ }_{K} X_{1}{ }^{4} K \cdots{ }_{K} X_{n}=H \quad \text { and } \\
& x=Y_{0}{ }_{K}{ }_{K} Y_{1} \& \ldots{ }_{K} Y_{n}=K \quad(0 \leq n<\infty) .
\end{aligned}
$$

Considering all the non-nomal steps $X_{i}{ }_{K}{ }_{K} X_{i+1}, Y_{j}{ }_{K}{ }_{K} Y_{j+1}$ ($0 \leq i, j \leq n-1$) in these series, define the set of primes n as consisting of the primes dividing the orders of the K-groups $X_{i+1} /\left(X_{i}\right)_{X_{i+1}}, Y_{j+1} /\left(Y_{j}\right)_{Y_{j+1}} \quad$ Then $I I$ is a finite subset of Π_{1}. We show that $X \operatorname{sn}\left(F \cap S_{\pi}\right) G$ by induction on the Hirsch leng th $h=h(G)$ of G.

If $h=0$ then G is finite and the result holds by Theorem 3.12 (with $F \cap S_{\text {, }}$ in place of K). So suppose $h \geq 1$ with the usual induction hypothesis. G contains a normal poly-(infinite cyclic) subgroup B of finite index. Put $K_{0}=F \cap S_{\pi}$ and let A be the
penultimate term of the derived series of B. Let $N=(A \cap H)(A \cap K)$. Then N is a nomal abelian subgroup of $G_{1}=A H n A K$ (as in Lemma 1.5). and because $A X \operatorname{sn}_{r_{0}} G$ (induction) it is enough, by Lemma 1.6^{\prime}, to show that $X N / N \operatorname{sn}_{K_{0}} G_{1} / N$. But if $N \& 1$, then $h\left(G_{1} / N\right)<h(G)$ and the result holds by induction. So we may assume that $N=1$ and $G=G_{1}$, 50 that $G=A] H=A] K=H K$.

Let $p \in P$. Then, by Induction, $A^{D} X \leq n_{K_{0}} G$ and if $r=\operatorname{rank}(A)$, then $\left|A X: A^{p} X\right|$ divides P^{r} and so $A^{P_{X}} \theta_{K_{0}}^{r} A X$. Therefore

$$
A P_{X}{ }^{r} A X \text { for } p \in P \backslash \pi
$$

Now $A \cap X=1$ and $P \backslash I I$ is an infinite set, so

$$
X=\left(\underset{p \in P \backslash \Pi}{n} A^{P}\right) X=\sum_{p \in{ }^{n} P \backslash \pi}\left(A^{p} X\right) \&^{r} A X .
$$

Therefore $X \operatorname{sn} A X s n_{K_{0}} G$, as required.

In the light of the above proof, it might be hoped that for a
K-subnomal subgroup X of a polycycifc group G, there is a
K-subnormal series from X to G in which the normal steps are at
at the bottom and the non-normal steps are at the top. If this were true when $h(G)$. 0 . then induction would show that it is true for any polycyclic group G. However, the following is a counter-example in the case G finite (and soluble).

EXAMPLE.

```
    Let G=(Y ] X) J Z where Y = <y>, X = <x\rangle, Z = <Z\rangle
are groups of order }7,3,5\mathrm{ respectively and the actions are given
by }\mp@subsup{y}{}{x}=\mp@subsup{y}{}{2},\mp@subsup{y}{}{2}=\mp@subsup{y}{}{-1},\mp@subsup{x}{}{2}=yx\mathrm{ . Let }K=F\cap\mp@subsup{S}{{3,7)}{}\mathrm{ . Then
X % XY & G but X is not subnormal in G. Also, there is no
subgroup V such that }X&V\mp@subsup{|}{K}{\prime}G\mathrm{ . For otherwise |G:V|=7 ,
V= N
which implies G EK, a contradiction.
```

3.16 COROLLARY.
$N(S \cap \hat{M}) \leq W_{K}$.

Proof:

Let $G \in N(S \cap \hat{M})$ be generated as the product of $s u b g r o u p s i$ and K, both of which contain X as a K-subnomal subgroup. To show $X s n_{K} G$ we may assume that $G \in A(S \hat{M} \hat{M})$ (Theorem $\left.1.8^{\prime}\right)$. By

Lemma 1.6' and Theorem 3.15, we may assume $G=A] H=A] K=H K$, where A is an abelian normal subgroup of G such that $G / A \in S \cap \hat{M}$. Now G is the soluble product of polycyclic groups H and K, so by a result of Lennox and Roseblade ([LR]), G itself is polycyclic. Then $x s n_{K} G$ by Theorem 3.15.

Theorem 3.17 deals with the dual case to 3.15 - that of (S \cap_{M}^{M})-groups. A (SnH)-group G has invariants $\lambda_{1}(G)=r a n k\left(G^{F}\right)$ and $\lambda_{2}(G)=\left|G: G^{F}\right|$. Define $\lambda(G)$ as the ordered pair $\left(\lambda_{1}(G), \lambda_{2}(G)\right)$. The invariants $\lambda(G)$ (for $G \in S \cap M$) can be ordered lexicographically, so that $\lambda(L) \times \lambda(G)$ for any proper subgroup L of G and $\lambda(G / N)<\lambda(G)$ for any non-trivial normal subgroup N of G.

3.17 THEOREM.

$\sin \subseteq W_{K}$.

Proof.

Suppose that the proposition is false and pick a counter-example $G \in(S \cap M) \backslash W_{K} \quad$ which is minimal with respect to $\lambda(G)=\left(\lambda_{1}(G)_{1} \lambda_{2}(G)\right)$. So there exist subgroups $X, H_{,} K$ of G such that $X s n_{K} H, X s n_{K} K$ but x is not K-subnomal in G. if $H_{G} \neq 1$ then $\lambda\left(G / H_{G}\right)$ \& $\lambda(G)$ and so $X H_{G} s n_{K} G$. But $X s n_{K} X H_{G}$, which gives a contradiction. Therefore $H_{G}=1$.

Now $X G^{F}=X H^{F} X_{K}{ }^{F}$ (using Lemma 1.14) and $X S_{K} X H^{F}$. $X S n_{K} X M^{F}$. $G / G^{F} \in F \cap S$ so that $X G^{F} s n_{K} G$ (Theorem 3.12). If $X G^{F}$ were a proper subgroup of G then minimality of $\lambda(G)$ would give $X \leq n_{K} G$. Hence $G=X G^{F}$. But now $H^{F}=X G^{F}=G$ so that $H^{F} \leq H_{G}=1$. Similarly $K^{F}=1$, and therefore $\mathbf{G}^{\boldsymbol{F}}=\mathbf{H}^{\boldsymbol{F}} \mathbf{K}^{\mathbf{F}}=1$. Hence $\mathrm{G}=\mathrm{X}$, a contradiction.
3.18 COROLLARY.

$$
N\left(S_{n} M^{\breve{H}}\right) \subseteq w_{K} .
$$

Proof:
Let $G \in N(S \cap N)$ be generated as the product of subgroups H and K, both of which contain X as a K-subnormal subgroup.

Then by Theorem 1.8', Theorem 3.17 and Lemma 1.6', we may assume that H, K © SnM. But the soluble product of Cernikov groups is again Eernikov ([A2] Theorem 日). Therefore $G \in S N$ and $X S n_{K} G$ by Theorem 3.17.

REFERENCES

[A]]
Amberg, B. Artinian and noetherian factorised groups, Rend. Sem. Mat. Univ. Padova 55 (1976), 105-122.
[A2] \qquad Factorisations of infinite soluble groups, Rocky Mount. J. Math. 7 (1977), 1-17.
[A3] \qquad Soluble products of two locally finite groups with min-p for every prime p, Rend. Sem. Mat. Univ. Padova 69 (1983), 7-17.
[AL] Alperin, J. and Lyons, R. On conjugacy classes of p-elements, J. Algebra 19 (1971), 536-537.
[BA] Baer, R. The significance of the system of subgroups for the structure of the group, Amer. J. Math. 61 (1939). 1-44.
[BU] Busetto, G. Sottogruppi nomalt e proiettivita, Rend. Sem. Mat, Undv. Padova, 67 (1982), 105-110.
[HA] Hall, P. The Frattini subgroups of finitely generated groups. Proc. London Math. Soc. (3) 11 (1961), 327-352.
[HU] Huppert, B. Endliche Gruppen I, Springer-Verlag (1967).
[I1] Iwasawa, K. Einige Sätze über freie Gruppen, Proc. Imp. Acad. Tokyo 19 (1943), 272-274.
[12] \qquad On the structure of infinite M-groups, Japanese J. Math. 18 (1943). 709-728.
[K1] Kegel, O. Uber den Normalisator von subnormalen und erreichbaren Untergruppen, Math. Annalen 163 (1966). 248-258.
[K2] _ Untergruppenvertände endlicher Gruppen, die den Subnormal teilerverband echt enthalten, Arch. Math. 30 (1978), 225-228.
[KV] Kargapolov, M. On soluble groups of finite rank. Algebra 1 Logika 1 (1962), 37-44.
[LR] Lennox. J. and Raseblade, J. Soluble products of polycyclic groups, Math. Z. 170 (1980), 153-154.
[MR] Maier, R. Um problema da teoria dos subgrupos subnormais, Bol. Soc. Bras, Math. 8.2 (1977), 127-130.
[MV] Mal'cev, A. On certaln classes of infinite soluble groups, Mat. Sbornik N.S. 28/70 (1951) 567-588 = Amer. Math. Soc. Trans 1. (2) 2 (1956). 1-21.
[NA〕 Napolitani, F. Isomorfismi reticalari e gruppi perfetti, Rend. Sem. Mat. Univ. Padova, 67 (1982), 181-184.
[NE] Neumann, B. Groups covered by permutable subsets, J. London Math. Soc. 29 (1954), 236-248.
[N2] Napolitani, F. and Zacher, G. Uber das Verhalten der Normalteiler unter Projektivitäten, Math. 2. 83 (1983), 371-380.
[R1] Robinson, D. Finiteness conditions and generalised soluble groups Part 1. Springer-Verlag (1972).
[R2] Fintteness conditions and generalised soluble groups Part 2, Springer-Verlag (1972).
[R3] \qquad A course in the theory of groups, Springer-Verlag (1982).
[R4] \qquad Joins of subnomal subgroups, 111 inois J. Math. 9 (1965). 144-168.
[RB] Roseblade, J. On certain subnomal coalftion classes, J. Algebra 1 (1964). 132-138.
[RP] Rips, E. Unpublished.
[RS] Roseblade, J. and Stonehewer, S. Subjunctive and locally coalescent classes of groups, J. Algebra 8 (1968) 423-435.
[S1] Stonehewer, S. Subnomal subgroups of groups, Oxford Univ. Press (1986).
[S2] Permutable subgroups of infinite groups, Math. Z. 125 (1972) 1-16.
[S3] Modular subgroups of Infinite groups, Symposia Mathematica 17 (1976), 207-214.
[S4] Subnormal subgroups of factorised groups, Proc. Bologna Conf., to appear.
[S5] ——_ Unpublished.
[SC] Scott, W. Group theory, Prentice-Hal1 (1964).
[SH] Schmidt, R. Normal subgroups and lattice isomorphisms of findte groups, Proc. London Math. Soc. (3) 30 (1975), 287-300.
[SY] Sysak, Y. Products of infinlte groups, preprint no. 82.53, Akad. Nauk Ukr. SSR, Inst. Mat. Kiev (1982).
[SZ] Suzuki. M. Structure of a group and the structure of tits lattice of subgroups. Springer-Verlag (1956).
[WI] Wielandt, H. Eine Verallgemeinerung der Invarienten Untergruppen, Math. Z. 45 (1939), 209-244.
[H2] \qquad Uber den Normalisator der subnormalen Untergruppen, Math. Z. 69 (1958), 463-465.
[143] \qquad Kritirien für subnormalität in endichen Gruppen, Math. 2. 138 (1974), 199-203.
[W4] \qquad Subnomalităt in factorisierten endichen Gruppen, J. Algebra 69 (1981), 305-311.
[WS] Williams, J. Conditions for subnormality of a join of subnormal subgroups, Proc. Cambridge Philos. Soc. 92 (1982), 401-417.
[yv] Yakovlev, 日. Lattice isomorphisms of solvable groups, Algebra 1 Logika 9 (1970), 349-369.
[21] Zacher, G. Una caratterizzazione reticolare della finitezza dell'indice di un sottogruppo in un gruppo, Rend. Acc. Naz. Lincei 69 (1980), 317-323.
[22] \qquad Sulle immagini def sottogruppi nomall relle proiettività, Rend. Sem. Mat. Unlv. Padova 67 (1982), 39-74.
[ZH] Zassenhaus, H. The theory of groups, Chelsea (1958) $2^{\text {nd }}$ ed.

087420

\square

[^0]: We define the class of groups w_{u} as follows: group G
 Is a W_{u}-group if and only if (*) holds:

 Whenever G is generated by subgroups H and K.
 both of which contain X as a subnormal subgroup, and
 $G^{\sigma} U(G)$ with $G^{\sigma}=H^{\sigma} K^{\sigma}$. then $X \operatorname{sn} G$.

