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Abstract

We investigate a free boundary problem arising in fluid dynamics, by modelling

multiple incompressible fluids over subdomains with different material quantities, and in the

presence of surface tension reducing chemicals known as surfactants. We construct a free

energy for this system, and we require it obey the second law of thermodynamics, leading

to the formulation of an energy minimisation problem (the sharp problem). This problem

is degenerate, so we regularise it by constructing a new energy of Ginzburg-Landau type,

parametrised by a (small) constant ε > 0 and when ε→ 0 the sharp problem is recovered in

the sense of Γ−convergence. This multi-phase energy is formed from a multiwell potential

and gradient term, and the minimisers are known as phase field variables. The phase field

variables approximate characteristic functions of the subdomains, and the model is rewritten

as functions of them. Beneficially, the energy analysis can be repeated as before to obtain a

diffuse interface model.

We construct and perform numerical analysis of a novel discretisation scheme for

a Cahn-Hilliard Navier-Stokes system. Here we create a fractional-theta coupling scheme

which is importantly proved to be of second order in time. The key property of this scheme

is that it uses weighted operator splitting to separate the different nonlinearities that appear

in a Cahn-Hilliard Navier-Stokes system. That is, the Cahn-Hilliard multiwell potential, the

incompressibility condition and the convection. We discuss stability and the extension to

surfactants. We implement the novel scheme in DUNE (Distributed Unified Numerics En-

vironment), a finite element package and use simulation to run tests to validate the stability

and consistency of the schemes, convergence of the diffuse interface model with respect to

its parametrisation, and flexibility for the code development.
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Chapter 1

Introduction

1.1 General introduction

Surfactants (surface active agents) are chemicals which are identified by their ability to

lower the surface tension along the interfaces between different fluids. The reduction of

surface forces is caused by the chemical structure of the molecules: they are amphiphilic,

that is, they have a hydrophilic (water attractive) head and hydrophobic (water repulsive)

tail. It is therefore beneficial for the surfactant to adsorb to fluid-fluid interfaces, that is,

to form an oriented, single molecule thick layer there. Figure 1.1 displays this process and

furthermore shows the tendency of surfactants to self assemble into complex bulk structures

such as micelles. At high concentrations they may also self assemble to form bilayers [86],

vesicles, and even liquid crystal lattices [132], these structures minimize contact between

the repulsive tails and the surrounding solution. The behaviour and formation of the single

layers along fluid interfaces can vary widely due to solubility of the surfactant in the fluids,

and the interactions between the molecules such as electrostatic forces of polar surfactants.

Having formed these monolayers, the surfactant cannot bond as strongly to other molecules

as the pre-existing liquid-liquid bonds can. It requires less energy to break these bonds,

and the surface tension is reduced. The chemistry of these products are widely known, for

example, these are explained in the introductory chapters of [78, 99].

The importance of manipulation of surface tension can be seen in the change of

force balance within the fluid. Consider a regime where surface forces dominate a fluid’s

evolution. If a surfactant is then added, inertial or viscous forces may dominate over the

now reduced surface tension (possibly by several orders of magnitude, see [110]) leading to

different drivers of evolution and hence an altered macroscopic behaviour. A good review

of Marangoni forces, the induced dynamics due to concentration gradients across liquid

surface films, can be found in [3], other effects such as droplet breakup/tip streaming in

1



Figure 1.1: Schematic displaying surfactant molecular structure, and behaviour in solution
including the adsorption monolayer formation. The image source is given in the Declara-
tion.

[123], and some examples of the surfactants that induce these behaviours in [111].

Surfactants can occur naturally and are vital to a wide range of physical, chemi-

cal and biological systems [125]. Material scientists may also synthesize surfactants from

natural (fatty acids and alcohols) or petrochemical ingredients. The ability to control the

chemical structure and concentrations of the surfactants in a solvent, has lead to a wealth

of commercial products, such as detergents, dispersents, wetting agents, emulsifiers (for

example in oil recovery [115]), and in industries such as agrochemicals, pharmaceuticals

and cosmetics. A more complete view of the vast scale of applications for different species

of surfactant is given in [125].

This thesis focuses on activity of surfactants in a system of more than two fluids.

In many of the industries mentioned, there are applications involving these systems. For

example there is great interest in surfactant effects to water-in-oil-in-water emulsions, in

the food industry for naturally occuring emulsions [83], or in pharmaceutical or cosmetic

industries for prolonging drug release [87, 74]. Surfactants used in enhanced oil recovery

are introduced to stabilize foaming for ternary solutions [107] or non aqueous solutions

[51].

Many surfactant induced phenomena have been examined experimentally in mate-

rial science. More recently in applied mathematics, the simulation of these systems has be-

come possible through developments of mathematical tools and computational techniques

for multiple fluids [63] and for coupled bulk-surface problems. These coupled problems

2



model a system of fluids, each described by the incompressible Navier-Stokes equations in

isothermal conditions, and demarcated by material parameters such as mass density ρ and

dynamic viscosity η ([63]).

In order for Newton’s laws to hold, these equations are supplemented with derived

interfacial force conditions where two fluids meet, and some contact line force conditions if

three of these dividing interfaces meet at a triple junction. From this mathematical perspec-

tive, the aforementioned effects of surfactants on their environment are modelled, through

the form of force balancing conditions and their dependence upon the concentration of ad-

sorbed surfactant at the fluid-fluid interfaces.

1.2 Thesis contributions

The objective of this thesis is to provide new developments towards modelling surfactants

in multi-phase flow in two core areas.

First, we construct a diffuse interface model extending [54] (which investigated

two phase flow with surfactant) to three or more phases. We emphasize the inclusion of

surfactants dissolved in three fluids and adsorbed along interfaces between them. In some

applications surfactant mixtures are used [109], for simplicity we shall only model a single

species of surfactant, however it is a straightforward generalization to multiple surfactants

and is remarked upon when relevant. We also present numerical simulations to support

some analytic results.

Second, we propose a new numerical timestepping scheme for multi-phase flow

with surfactant based on the idea of a fractional time splitting introduced in [26]. The nu-

merical investigation tackles stability and consistency. Supported by numerical benchmark-

ing against several test problems, it demonstrates the scope and accuracy of the scheme. We

also assess the validity of the model we construct in this way, by looking at both qualitative

and quantitative simulation for benchmarks of multi-phase fluid with surfactant.

The fundamental mathematical technique we apply is known as phase field mod-

elling [8]. This is a method for approximating a system with several interacting (usually

time dependent) subdomains that cover a domain of interest by replacing the separating

hypersurfaces between domains with thin interfacial layers of a (small) positive interface

width, denoted by ε throughout. These are described by a phase field variable (or order pa-

rameter) which distinguishes between different phases. In the bulk phases, the phase field

variable takes a near-constant value, and in the interfacial layers, it smoothly changes value

between the different constants. A good introduction to these “diffuse” methods for fluid

flow can be found [8].
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1.2.1 Diffuse interface model of surfactants in multi-phase flow

Many methods exist for accounting for different classes of surfactants. For insoluble surfac-

tants, which are modelled with no bulk presence, one can describe their evolution and be-

haviour purely from their interfacial concentrations. Here, research directions are directed

to methods which accurately and efficiently predict the interface evolution. In particular

techniques that exploit the fact that the interface dimension is one less than the bulk, and

treat the surfactant efficiently with a surface partial differential equation. One popular idea

is that the interface can be tracked explicitly with marker particles (Lagrangian points [45]),

that is, the computational mesh tracks the interface. These may be coupled with a Navier-

Stokes solver, such as an embedded boundary method [84]. One may also use tracking

for the interface but solve for the surfactant using a finite volume method [68, 88]. Another

field of investigation is for solving problems over a fixed grid and employ techniques to cap-

ture or reconstruct the interface, such as volume of fluid methods [73] (relying on volume

conservation to construct the interface), level set methods [138] (a level set of a function

represents the interface [101, 102]) or novel fixed grid methods such as segment projection

methods [79] (the interface is segmented and parametrised by simple functions on chosen

coordinate planes). Finally, one may use a carefully chosen smoothing function that pre-

serves key mathematical structure, and replaces the (sharp) hypersurface with a (diffuse)

thin interfacial region. This technique is known as a phase field model or diffuse interface

model [92], with a more general discussion in [8]. One particular benefit of this method

over any others mentioned (including the level set formulation), is that the approximation

it provides to the free boundary problem is more mathematically grounded. In particular

there is much stronger notion of convergence as our interfacial region shrinks to a hypersur-

face, and this allows for the recovery of the equations for the entire free boundary problem.

We shall utilize this latter method in this thesis, and the corresponding asymptotic analysis

which characterises the recovery will be presented in a forthcoming article [42].

Methods have also been developed for soluble surfactants, that is, where the sur-

factant is present as both an interfacial quantity as a monolayer concentration, and a bulk

quantity dissolved in one or more of the fluids. The difficulty of this extension is twofold:

we must both solve for the bulk surfactants and the behaviours they may exhibit (such as

structure formation [132]), and we must account for kinetics of the surfactant adsorption-

desorption process (the formation of a monolayer along a fluid-fluid boundary). In different

scenarios, either factor may dominate in influencing the system dynamics. Typically the

surfactant is modelled by a surface PDE at the interfaces and also a bulk PDE within each

fluid region where it is soluble. These are coupled by boundary conditions related to the ki-

netics of the adsorption-desorption process. In early attempts, the surfactant was accounted

for only on the interface, under the assumption that sorption dynamics were dominated by
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diffusion and assumption that the concentration of surfactant was near constant in the bulk

[75]. Developments have lead to solving in the bulk regions too. This can be handled with

explicit tracking [32, 98], redistributing mesh methods [14] or embedded boundary methods

[80] as in the insoluble surfactant case, assuming an equilibrium relation for the sorption.

The fixed grid reconstructions and interface capturing methods have also been developed

in this direction - see, for example level set methods [139] and the phase field methods

[46, 127, 92].

Despite the high accuracy of the explicit tracking methods, fixed grid capturing

methods are widely studied as well, as they allow for more complex dynamic geometrical

features to be accounted for naturally. In particular, they may describe fluid systems which

undergo topological changes. This is because the information pertaining to the geometry

of the problem is contained within fields and equations and not within the mesh grids or

computational set up. Problems of geometry then become problems in partial differential

equation theory, and so the library of techniques for differential equations can be utilized to

solve them.

We discuss phase field methods in this thesis, and in this case the aforementioned

fields known as phase field variables are subjected to the Allen-Cahn or Cahn-Hilliard

equations (orginally in [30, 29]). The reformulation not only approximates the geometry

of the original problem but also the accompanying energy framework. In fact, it has been

known [96] that the system energy for the phase field model (or diffuse interface model)

will converge (in the sense of Γ-Convergence [24]) to the system energy of the model it

approximates (the sharp interface model) as the width of the interfacial region tends to

0. In particular, this means that the minimisers of the diffuse interface model energy will

converge strongly to minimisers of the sharp interface model energy. This fact potentially

provides significant benefit over other interface capturing approaches, as it increases the

amount of information that is recoverable through the interface representation, for example,

by preforming an asymptotic analysis. For application of this technique to a Stefan problem

see [49], and for examples of recovered equations from curvature driven evolution see [52].

The governing equations of the previous techniques required an equilibrium rela-

tion known as an isotherm (for example [85], which connected the surface and bulk fields.

Analysis [136, 39, 40] and experiments [76] have shown that this assumption implies that

the rate of any kinetic properties (for example orientation of molecules or effects of inter-

molecular charge forces) can be quick relative to the timescale of diffusion when forming

the surfactant monolayer at interfaces. This is a good approximation for certain non-ionic

surfactants out of mixture, however for ionic surfactants, or larger molecule surfactants,

this equilibrium is not immediately satisfied. The relevant extension to the free energy

framework is presented in [126] and refined regarding energy formulation and asymptotic
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analysis in [54], where a thermodynamically consistent model for soluble surfactant in two

phase flow is considered.

Extending work in [54], we generalize the model of a binary flow found in [1]

to the multi-phase (i.e three or more phases) case and include the presence of a soluble

surfactant. In particular we use a vector phase field (diffuse interface) model construction

and focus our study on the modelling of contact lines or triple junctions where three fluid-

fluid interfaces meet. The model for theM ≥ 3 phases we consider is that of a vector Cahn-

Hilliard type system, which is a partial differential equation over the domain, for order

paramaters (phase field variables) ϕε = (ϕ
(1)
ε , . . . , ϕ

(M)
ε ), parametrized by an interfacial

layer width ε. Their motion is governed by two features of the energy framework. The

first is a smooth multi-well potential that ensures the lowest energy states will take the form

where ϕε approximates ek (the kth standard basis vector) in the fluid region (or “phase”) k.

The second energetic feature is a multi-phase gradient energy that ensures the phase field

variables are regularized enough so that they smoothly transition between values ei and ej
across interfacial layers or contact regions between 3 phases.

We describe fluid flow through the language of continuum mechanics, that is, from

a macroscopic scale - treating molecular effects as negligible. Studying from this viewpoint

involves finding the velocity v(x, t), the pressure p(x, t) at any point in the fluid volume

x ∈ Ω ⊂ Rd, d = 2, 3 and time interval t ∈ [0, T ]. The individual flows (i.e phases) are

assumed incompressible, and so the fluid density ρ(x, t) is assumed constant within the bulk

region of each fluid. The phase fields ϕε describe the geometry, thus the density variation

originates from the dependence ρ ≡ ρ(ϕε), acting as an interpolation over interfacial layers

between bulk density values. Other material quantities that are constant in each fluid phase,

such as viscosity, are attributed a similar dependency η ≡ η(ϕε).

The limiting model when ε→ 0, known as the sharp interface model, also involves

a natural free energy framework. It is a classical description of the system where one as-

sumes that the interfaces between fluids can be represented as hypersurfaces and is the basis

of front tracking approximation methods. It is derived using the same procedure as for the

phase field model: We postulate balance equations for the fluids. These are supplemented

with corresponding interface force balance equations between phases i and j by opposing

surface tension forces σi,j (as in [103]) with bulk fluid pressures and viscous stresses. We

then use the system energy to derive constitutive assumptions and suitable boundary con-

ditions to close the system and ensure thermodynamic consistency. This consistency is the

agreement of the model with the second law of thermodynamics, that is, the decay of the

global system energy over time.

The surfactants are accounted for through the surface tension σi,j ≡ σi,j(c
(i,j))

which depends on the surface concentration c(i,j) of surfactant. The converse coupling
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arises as the surfactants are themselves subject to fluid transport, and will depend on the ge-

ometry of the interfaces. To derive the corresponding approximating phase field model for

the surfactants, we are motivated by the work of [6] and [54] which we extend to multiple

phases. The equivalence between distributional forms for interfaces and contact lines, with

using characteristic test functions of these features allows us to reform our surfactant con-

centration equations in the latter form. We regularize the characteristic functions, using the

carefully chosen distributions, and then construct surfactant dependent free energies which

also satisfy energy decay laws under corresponding conditions. This flexible approach al-

lows for solubility of the surfactant in one or more phases, and receives benefits of the phase

field formulation described earlier.

In Chapter 2 we first present our sharp interface description of the problem in Sec-

tion 2.1. We use mass and momentum balance equations to derive the governing equations,

and close the system with appropriate boundary conditions and constitutive assumptions

that lead to a thermodynamically consistent system seen in Section 2.1.8. In Section 2.1.9

we consider the particular case of local equilibrium of the surfactant potential around inter-

faces and present the resulting model in this case in Section 2.1.10. Finally we state some

choices for the adsorption isotherms under this equilibrium. In Section 2.2 we present the

diffuse interface description of the problem. We follow similar methods as in the sharp in-

terface case and arrive once more at a thermodynamically consistent system seen in Section

2.2.5. We then proceed with the diffuse approximation of the case of local equilibrium of

the surfactant potential and present this model in Section 2.2.7. We finally list some pos-

sible choices for mobilities and multiwell potentials for the phase field model in Section

2.2.8.

1.2.2 A scheme for multi-phase flow

The notion that a fluid interface could have a nonzero thickness, and this thickness could

be determined by an equation of state due to a density profile, dates back to the work of

Rayleigh and van der Waals [112, 113]. The theory was built upon by Korteweg [82],

to construct constitutive laws for the fluid stress tensor in terms of density and density

gradients. The ideas were then reformulated by Cahn and Hilliard [30, 29], with regards

to a more general construct of a phase field variable. One of the earliest approaches for

modelling binary fluids through this phase field approach was the so called “model H”

introduced by [71] which used a Cahn-Hilliard equation with a (soft enforcing) smooth

phase field potential for the phase field coupled to the Navier-Stokes equations with constant

mass density for the fluid mechanics. This construction was formulated with a restriction on

the mass density of the fluids, and more recently was shown to obey a form of the second law

of thermodynamics by [67]. A significant branch of research over the past two decades has
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lead to the extension of this original model to include varying mass densities [93], and more

recently to enforce divergence free velocities ([41, 20]) and also frame indifference and

thermodynamic consistency [1]. These properties greatly improve the quality of numerical

schemes which can be constructed for these models.

Many schemes in the literature currently available for multi-phase flow, are based

on robust schemes for the phase field systems, to which the fluids scheme is then attached.

In practice, the fluid mechanics becomes very expensive to solve accurately especially with

large Reynold’s numbers [134] or large density variations between different phases. We

take a different approach. We inspect the literature ([89]) for a reliable scheme for general

incompressible fluids, and this we then develop into an accurate and efficient scheme for

multi-phase flow, which is shown to be stable in several diverse test problems. We now

describe the current state of the field for these types of fluid systems.

A large class of methods for incompressible flows are corrective schemes (velocity

or pressure), created by Chorin [33, 34] and Temam [128, 129]. In pressure correction, the

most basic scheme comprise two substeps. In the first step, one solves for a velocity field

while treating the pressure with some degree of extrapolation (perhaps using a previous

timestep as the approximation). In the second step, one projects the computed velocity into

a desired solution space - a divergence free Sobolev space.

Numerical boundary layers limit this accuracy to first order, unless one takes more

complex forms of the scheme ([64]) and use more previous timesteps for extrapolation. The

benefits of these schemes are to separate the treatment of the two core difficulties of the

incompressible Navier-Stokes: the incompressibility constraint and the inertial effects. Ve-

locity correction methods are similar (in fact, regarding error analysis, they are equivalent),

but the substep order is reversed compared with the pressure correction. Evidence suggests

they are more stable than pressure correction for second order or higher accuracy [116, 77],

though typically less easy to implement. They still contain boundary layers which limits

accuracy. Consistent [65], and Gauge-Uzawa [100] methods eliminate artificial splitting

errors and results are compared in [64].

There have been generalizations of these splitting techniques for variable density

flows for finite differences by [16, 5], and, additionally, for finite volumes and finite ele-

ments [50, 66]. A novel form of the Navier-Stokes equations is presented in [66], which

conserves kinetic energy in the discrete setting. This property has lead to the development

of an unconditionally stable scheme for three phase Cahn-Hilliard-Navier-Stokes in [95].

The difficulty addressed in this thesis is to create a coupling scheme which allows for the

Cahn-Hilliard system to be transported by a non divergence free velocity field, and for this

scheme to ensure decay of the discrete system energy over time. More recently Gauge-

Uzawa methods have been developed to deal with variable density. In [108] the authors
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have obtained some results for convergence and stability even for higher density ratios. A

two phase flow scheme has been constructed using these techniques by Shen and Yang in

[117, 118, 119].

We wish to investigate another promising class of splitting methods, which solve

time discrete initial value problems by splitting the physical time interval into subintervals

and solving different problems over different subintervals. These can be thought of similar

to Strang splitting [124], and a good introduction can be found in [60]. The key assumption

of these schemes are that the system operator F can be decomposed into F = F1 + F2,

where F1 and F2 are mathematically simpler objects than F . In the incompressible Navier-

Stokes, these will be an operator for the incompressibility (a Stokes type operator) and a

convection type operator for the inertial term (a Burgers type operator). The simplest case

of these splittings, is the Peaceman-Rachford scheme [104], where one splits the nth time

interval [n∆t, (n+ 1)∆t] of size ∆t into two equally sized subintervals about the midpoint

(n + 1
2)∆t. The Peaceman-Rachford scheme [104] solves for a solution with F1 taken

implicitly and F2 taken explicitly in the first half-step, then F2 taken implicitly and F1

taken explicitly in the second step. One can demonstrate from eigenvalue analysis that this

scheme is very accurate, of second (almost third) order accuracy [60] in time, however there

are issues with slow convergence similarly observed in a Crank-Nicholson scheme (which

is in fact a particular case of the Peaceman-Rachford scheme), making it an inappropriate

choice for stiff systems.

A promising scheme from this field (with praise in [134]) is the fractional theta

scheme . This scheme contains three substeps, [n∆t, (n+θ)∆t], [(n+θ)∆t, (n+1−θ)∆t]
and [(n + 1 − θ)∆t, (n + 1)∆t]. Solving for the variable u, the split system operator

F (u) = F1(u) + F2(u) forms the fractional scheme as follows:

1. [n∆t, (n+ θ)∆t], length θ∆t, solve the substep tn → tn+θ,

un+θ − un

θ∆t
+ F1(un+θ) + F2(un) = 0 (1.1)

2. [(n+ θ)∆t, (n+ 1− θ)∆t], length (1− 2θ)∆t, solve the substep tn+θ → tn+1−θ,

un+1−θ − un+θ

(1− 2θ)∆t
+ F2(un+1−θ) + F1(un+θ) = 0 (1.2)

3. [(n+ 1− θ)∆t, (n+ 1)∆t], length θ∆t, solve the substep tn+1−θ → tn+1,

un+1 − un+1−θ

θ∆t
+ F1(un+1) + F2(un+1−θ) = 0 (1.3)
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So the operator F1 is treated implicitly-explicitly-implicitly over the timestep, and F2 is

treated explicitly-implicitly-explicitly. With correct choice of θ one can obtain second order

accuracy, strong A-stability, and thus demonstrate robustness regarding stiff systems. This

method has been applied to the Navier-Stokes equations by [26] and a finite element method

for the spatial discretisation has been analyzed by [81] and [97] for fixed densities. The

stability and accuracy of the scheme have been demonstrated in numerical simulations,

such as [134]. Some of the good properties of the scheme can be shown through a link with

the Augmented Lagrangian formulation for saddle point problems [61].

We present a variable density form of the scheme, and show it still satisfies second

order accuracy with the correct choice of theta. We further couple it to a Cahn-Hilliard

system by using a technique found in [36]. For this coupled system we perform a stability

analysis in the case of matched densities. In the variable density case we show consistency

and verify this complication does not yield loss of accuracy.

In Chapter 3 we present the abstract fractional-theta scheme and then develop the

operator splitting for the fixed density two phase Cahn-Hilliard Navier-Stokes scheme for

the weak time discrete problem in Section 3.1.2. We present the fully discrete scheme in

Section 3.2.1, and investigate stability for the discrete energy in Section 3.2.3. Extensions

to multiple phases and variable density are formed in Section 3.3 and Section 3.4. The proof

that the variable density scheme is of second order accuracy in time is in Section 3.4.2.

1.2.3 Benchmark testing

We additionally provide validation to our modelling framework and our numerical schemes

by using simulation benchmarks for qualitative and quantitative verification in Chapter 4.

We assess the scheme by validating the second order accuracy in time proved in

Chapter 3 and to commenting on stability in Section 4.2. We construct a relaxing liquid

lens problem for three fluids of variable density and comparison of discrete solutions to a

reference solution on a very fine time step resolution gives us orders of convergence, which

we find to be of second order for the velocity.

To assess the validity of the diffuse interface model constructed in Chapter 2, we

investigate the convergence of the surfactant equations as the interfacial width parameter ε

tends to 0. We demonstrate this in Section 4.3.1 by setting up a test problem in which a

flow of surfactant travelling through a stable, relaxed, triple junction. We compare this to

the solution of the corresponding sharp interface solution and observe the convergence. We

also present a qualitative simulation for the convergence as ε is reduced of the marangoni

effect on a triple junction, for a liquid lens in Section 4.3.3. We find that if the interfacial

width is large then interfacial effects are more dominant over inertial effects in the bulk,

we also find the solutions converge as the interfacial width is reduced. As multi-phase flow
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with soluble surfactant is still novel for phase field descriptions, this provides insight into

the size of ε which may be required in for accurate results. We finally demonstrate the

flexibility of the scheme by considering a rising coupled droplet in three space dimensions

with surfactant in Section 4.4. Here we use a qualitative example to demonstrate the effects

of surfactant presence on a variable density multi-phase flow. We run two experiments,

with and without surfactants and observe the changes in behaviour of the droplets that are

captured by the simulation. In particular the surfactants induce a topological change as the

coupled droplet decouples into two disjoint droplets.

The reader is additionally directed to the YouTube channel, where I have records of

some of the videos from simulations in the thesis.

https://www.youtube.com/channel/UC0K4vFNJzPyiHofVOU8aAJg

1.2.4 Software development

The software element to this thesis required substantial effort, and thus, the tools used

throughout were of vital importance. This section highlights the key software that was

developed and used of for the duration of the project. Documentation and cleanup of this

code will shortly be completed, for other users.

The implementation for the numerical schemes were performed using the Dune-

Fem toolbox, part of DUNE(-2.5) Distributed and Unified Numerics Environment. DUNE

is a modular software for solving partial differential equations using methods such as finite

elements, finite volumes and finite differences, of which we use the first extensively in our

code. We direct the reader to www.dune-project.org/modules/dune-fem/ for

the current software webpage, and cite [38] for an overview of the core principals of this

module and accompanying Dune-Fem-Howto module with accompanying documentation

for some example code. The Navier-Stokes solver is already in use by other members of

DUNE development team. The version control and writing of software was managed by

creating a git repository on GitLab and creating a new module where the software and

some supporting documents are kept.

We utilize some external software in the finite element simulations. For grid man-

agement we use ALUGrid, through the module Dune-ALUGrid [4], which provides the

parallelizable adaptive grids that are used in the grid construction. Also linked in are some

external solvers (direct and iterative) for linear systems and corresponding preconditioners.

These use the flexible PETSc interface [12, 11, 13], where we make use of the UMFPACK

SuiteSparse package [37] for serial problems, the MUMPS direct matrix solver [7], and the

HYPRE BoomerAMG preconditioner [47] for parallel problems .

For the visualisations throughout this thesis, ParaView [10] is used to display the so-
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lutions from the simulation, and for graphical output, I have used GNUPlot. I have written

some finite difference simulations (for example in the epsilon convergence tests) in MAT-

LAB and credit is due to the MATLAB and Statistics Toolbox Release 2014a-2016b, The

MathWorks, Inc., Natick, Massachusetts, United States.
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Chapter 2

Models

We begin by deriving a model for multi-phase flow with surfactant. It is an extension of

the work [54] which studied two phase flow with surfactant. Firstly, we fix the notation

and terminology of the thesis. Then we derive a model using local balance laws of mass

and momentum, giving rise to a free energy formulation of the problem. By considering a

suitable free energy, we can pose constitutive assumptions and find closing conditions and

natural boundary conditions for our problem. The summary of this sharp interface model

will be described in Section 2.1.8. We also note an important version of the model, when

it is under the assumption of local chemical equilibrium, which will ease the numerical

simulation. This is summarised in Section 2.1.10.

We approximate the sharp interface model (2.58) – (2.67) with a phase field method-

ology. The construction of the phase field model follows similarly to the derivation of the

sharp interface model, and these links will be noted throughout. The balance laws, free

energy formulation and choices of constitutive assumptions are detailed in subsequent Sec-

tions 2.1.2 to Section 2.1.5 and the summary of the diffuse model approximating (2.58) –

(2.67) can be found in Section 2.2.5. Under a local chemical equilibrium at interfaces, the

model (2.82) – (2.90), also has a diffuse interface counterpart. This is detailed in Section

2.2.7.

The ending of this chapter deals with some more specific choices of key potentials

associated to the diffuse model, and within the chapter we additionally give some examples

of isotherms describing different equilibrium regimes for the model (2.82) – (2.90) .
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2.1 Sharp interface model

2.1.1 Notation and preliminaries

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain and I = (0, T ), T ∈ [0,∞) be a time inter-

val. Assume that Ω is partitioned by moving hypersurfaces Γ(i,j)(t) into M time dependent

open subdomains Ω(k)(t), i, j, k ∈ {1, . . . ,M}. Intersections of three hypersurfaces are

denoted by T (i,j,k)(t) and form triple points (d = 2) or form triple lines (d = 3) ending in

quadruple pointsQ(i,j,k,l)(t), i, j, k, l ∈ {1, . . . ,M}. For simplicity, with regards to T (i,j,k)

we will only talk about triple junctions in the following. Similarly, on the external boundary

∂Ω there are triple points or lines T (i,j,ext)(t) with quadruple points Q(i,j,k,ext)(t) if d = 3.

The unit normal on Γ(i,j)(t) pointing out of Ω(i)(t) into Ω(j)(t) is denoted by ν(i,j)(t) and

by νΩ on ∂Ω. For the conormal of Γ(i,j)(t) in T (i,j,k)(t) pointing into Ω(k)(t) we write

µ(i,j,k)(t), and we write µ(i,j,ext)(t) for it on ∂Ω. Figure 2.1 is a sketch of a configuration

as we have it in mind. Henceforth, for brevity, we omit writing the time dependence of

these objects.

Figure 2.1: We display geometric features of a domain Ω partitioned into three time depen-
dent subdomains Ω(i)(t), separated by interfaces Γ(i,j)(t) which meet at a triple junction
T (i,j,k)(t) and at the boundaries T (i,j,ext)(t). For completeness we display the normals and
conormals to the interfaces

The whole configuration is transported by a continuous velocity field v : [0, T ) ×
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Ω → Rd, i.e., for each point x ∈ Ω(i)(t) there is a point x0 ∈ Ω(i)(0) such that x = ζ(t)

where ζ : [0, t] → Rd is the solution to ∂t̃ζ(t̃) = v(t̃, ζ(t̃)) with initial value ζ(0) = x0,

and similarly for the interfaces, triple junctions, and quadruple points. We assume the fluids

are immiscible, and so interfaces are impermeable. An implication of the properties of v is

that

[v]ji = 0, u(i,j) = v · ν(i,j) on Γ(i,j), (2.1)

where [·]ji = (·)(j) − (·)(i) stands for the jump from domain Ω(i) into Ω(j) across the

interface Γ(i,j) and u(i,j) is the normal velocity of Γ(i,j) in direction ν(i,j). The match

of tangential components of the velocity is typically required for stable viscous fluid-fluid

interfaces [15], although recently it has been shown that polymer fluids are modelled with

slip conditions [105]. Furthermore

u(i,j,k) = P (T (i,j,k))⊥v in T (i,j,k), (2.2)

where u(i,j,k) is the normal velocity of T (i,j,k) and P (T (i,j,k))⊥ is the projection to the plane

normal to T (i,j,k).

Further notation concerns the material velocity for a field w : [0, T )× Ω→ R,

∂
•(v)
t w := ∂tw + v · ∇w. (2.3)

Thanks to the above assumption that velocity transports the interfaces, this operator is well-

defined for fields restricted to a hypersurface Γ(i,j). We denote the surface derivative and

divergence along the hypersurface Γ(i,j) by ∇Γ(i,j) and ∇Γ(i,j) ·, respectively. Some useful

identities such as a transport identity on evolving surfaces and integration by parts formula

on surfaces are provided in Chapter 6.

2.1.2 Balance equations

M ∈ N represents the number of fluids we consider in our system. They are assumed to be

immiscible, incompressible, and Newtonian, and each fluid occupies a subdomain Ω(i)(t).

Denoting by ρ(i) the mass density of fluid i ∈ {1, . . . ,M}, the mass and linear momentum

balances in Ω(i) read

∇ · v = 0, (2.4)

∂t(ρ
(i)v) +∇ · (ρ(i)v ⊗ v) = ∇ · T (i), (2.5)

with a symmetric stress tensor T (i). The symmetry allows for motion to be accounted fully

by the balance of linear momentum and angular momentum can be neglected.
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For simplicity we only consider a single surfactant. Its bulk and surface mass den-

sities are denoted by c(i)(t) : Ω(i)(t) → R and c(i,j)(t) : Γ(i,j) → R, respectively. We

consider only mass balance equations for surfactant and effects on the ambient fluids’ mass

and momentum are neglected. This assumes that we model only a dilute surfactant solution,

and is taken implicitly in much of the literature, for example [19, 138, 137]. A range of ap-

plications for dilute surfactant can be explored in [125]. There are also applications with

high surfactant concentration where this modelling assumption is unsuitable, see [125, 83].

Following the derivation in [54] the surfactant mass balance equations read

∂
•(v)
t c(i) = −∇ · j(i)

c , in Ω(i)(t), (2.6)

∂
•(v)
t c(i,j) + c(i,j)∇Γ(i,j) · v = −∇Γ(i,j) · j(i,j)

c + q
(i,j)
AD in Γ(i,j)(t), (2.7)

where j(·)
c and j(·,·)

c are associated bulk and surface diffusive fluxes and q(i,j)
AD is the adsorp-

tion desorption flux. We determine the form of this sorption flux and a closing condition

for the triple junction in the following calculation.

Let V (t) ⊂ Ω be an arbitrary material test volume, with V ∩ ∂Ω = ∅. Let

νV (x, t) be the external unit normal of of V (t) and µ(i,j)
V (x, t) be the external conormal of

V (t)∩Γ(i,j)(t) in ∂V (t)∩Γ(i,j)(t). Let c(i), c(i,j) represent the concentration of surfactant

dissolved into fluids Ω(i) and interfaces Γ(i,j). This implicitly assumes the surfactants are

soluble in fluid regions and may adsorb to all interfaces (discussion of this assumption is

found in Remark 2.1.1).

We integrate the balance equations (2.6) and (2.7) and sum over all Ω(·), Γ(·,·):

∑
i

∫
V (t)∩Ω(i)(t)

(∂
•(v)
t c(i) + c(i)∇ · v) +

∑
i<j

∫
V (t)∩Γ(i,j)(t)

(∂
•(v)
t c(i,j) + c(i,j)∇Γ(i,j) · v)

(2.8)

=
∑
i

∫
V (t)∩Ω(i)(t)

−∇ · j(i)
c +

∑
i<j

∫
V (t)∩Γ(i,j)(t)

(−∇Γ(i,j) · j(i,j)
c + q

(i,j)
AD ). (2.9)

We have used incompressibility of the fluid (2.4) here. Now we apply the Reynold’s Trans-

port Theorem (6.1) and the Surface Transport Theorem (6.2) to the integrals in (2.8):

d
dt

(∑
i

∫
V (t)∩Ω(i)(t)

c(i) +
∑
i<j

∫
V (t)∩Γ(i,j)(t)

c(i,j)
)
,
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and we apply the Divergence Theorem to the integral of j(i)
c in (2.9) to obtain:

−
∑
i

∫
∂V (t)∩∂Ω(i)(t)

j(i)
c · νV −

∑
i<j

∫
V (t)∩Γ(i,j)(t)

(j(i)
c · ν(i,j) + j(j)

c · ν(j,i)),

and finally we apply the Surface Divergence Theorem (6.4) to the integral of j(i,j)
c in (2.9)

to obtain:∑
i<j

∫
V (t)∩Γ(i,j)(t)

q
(i,j)
AD −

∑
i<j

∫
∂V (t)∩Γ(i,j)(t)

j(i,j)
c · µ(i,j)

V

−
∑
i<j<k

∫
V (t)∩T (i,j,k)(t)

(j(i,j)
c · µ(i,j,k) + j(j,k)

c · µ(j,k,i) + j(k,i)
c · µ(k,i,j)).

As the flux j(i,j)
c is tangential, the curvature term vanishes j(i,j)

c · κ(i,j) = 0. Overall we

obtain:

d
dt

(∑
i

∫
V (t)∩Ω(i)(t)

c(i) +
∑
i<j

∫
V (t)∩Γ(i,j)(t)

c(i,j)
)

(2.10)

= −
∑
i

∫
∂V (t)∩∂Ω(i)(t)

j(i)
c · νV −

∑
i<j

∫
∂V (t)∩Γ(i,j)(t)

j(i,j)
c · µ(i,j)

V (2.11)

+
∑
i<j

∫
V (t)∩Γ(i,j)(t)

(q
(i,j)
AD − [j(·)

c ]ij · ν(i,j)) (2.12)

−
∑
i<j<k

∫
V (t)∩T (i,j,k)(t)

(j(i,j)
c · µ(i,j,k) + j(j,k)

c · µ(j,k,i) + j(k,i)
c · µ(k,i,j)), (2.13)

due to V ∩ ∂Ω = ∅, we do not admit any boundary integrals. The identity reads that the

(instantaneous) change of surfactant mass in the material volume V (t) (2.10) is given by

the surfactant mass flux across ∂V (t) (2.11). In the absence of source or sinks, we wish for

the mass of surfactant to be conserved over the test volume. Therefore we require that there

is no creation or destruction of surfactant during the adsorption-desorption process. With

this in mind, we can determine a form of the sorption fluxes from (2.12):

q
(i,j)
AD = j(i)

c · ν(i,j) + j(j)
c · ν(j,i) = [j(·)

c ]ij · ν(i,j). (2.14)

We additionally define the more convenient one-sided sorption flux q(i,j)
ad from domain Ω(i)

to interface Γ(i,j) through

q
(i,j)
ad := j(i)

c · ν(i,j), (2.15)
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so q(i,j)
AD = q

(i,j)
ad + q

(j,i)
ad . From (2.13), we assume the diffusive surface fluxes obey:

j(i,j)
c · µ(i,j,k) + j(j,k)

c · µ(j,k,i) + j(k,i)
c · µ(k,i,j) = 0 in T (i,j,k). (2.16)

We define a one-sided sorption flux q(i,j,k)
ad interface Γ(i,j) to T (i,j,k) by,

q
(i,j,k)
ad := j(i,j)

c · µ(i,j,k). (2.17)

The assumption (2.16) states that no surfactant mass is created, destroyed or stored in the

triple points if d = 2 nor in triple lines or quadruple points if d = 3. The triple junction

contribution of (2.13) vanishes.

Remark 2.1.1. We have assumed for (2.10) – (2.13) that the surfactant is soluble in each

fluid and adsorbs to all interfaces between fluids. However surfactants may be insoluble

in some region Ω(k) or may not adsorb to some interface Γ(k,l). This is often due to the

compatibility of structures in the fluids and surfactants. Empirically it is measured by the

hydrophile-lipophile balance (HLB) described in [78, 62] which assesses the strength of

the hydrophilic subgroups of a surfactant against the lipophilic subgroup of the surfactant.

For example, adding low HLB surfactants to an oil-water mixture causes water droplets

to disperse in oil; a water-in-oil emulsion. Adding high HLB surfactants causes an oil-in-

water emulsion. Fortunately the model can easily take into account insolubility (see Remark

2.1.5), S and we will show in the following section, that one may simply set c(i) = 0 or

c(i,j) = 0 in the relevant fluid regions or interfaces.

2.1.3 Free energy

In order to close the balance equations and relate the fluxes to the conserved fields we con-

sider an energetic framework. With regards to the surfactant we postulate bulk free energies

gi(c
(i)) and surface free energies γi,j(c(i,j)) which are strictly convex, i.e. g′′i (c(i)) > 0 and

γ′′i,j(c
(i,j)) > 0. The total free energy including the kinetic free energy then is

E :=
∑
i

∫
Ω(i)

(
ρ(i)

2
|v|2 + gi(c

(i))

)
+
∑
i<j

∫
Γ(i,j)

γi,j(c
(i,j)). (2.18)

Related to the surface free energy we define the surface tension

σi,j(c
(i,j)) := γi,j(c

(i,j))− c(i,j)γ′i,j(c
(i,j)). (2.19)

This is well defined due to convexity of γi,j . We now perform a similar derivation as in

Section 2.1.2 for this energy E. Let V (t) ⊂ Ω be an arbitrary material test volume with
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∂V ∩ ∂Ω = ∅; boundary conditions for the problem will be briefly discussed in Section

2.1.7. Let νV (x, t) be the external unit normal of of V (t) and µ(i,j)
V (x, t) be the external

conormal of V (t) ∩ Γ(i,j)(t) in ∂V (t) ∩ Γ(i,j)(t).

For brevity we drop the (x, t) dependence in the notation. Due to the transport

identities (6.1) and (6.2) and the incompressibility of the fluids (2.4):

d
dt

∑
i

∫
V ∩Ω(i)

(
ρ(i)

2
|v|2 + gi(c

(i))

)
+
∑
i<j

∫
V ∩Γ(i,j)

γi,j(c
(i,j))


=
∑
i

∫
V ∩Ω(i)

(ρ(i)v · ∂•(v)
t v + g′i(c

(i))∂
•(v)
t c(i))

+
∑
i<j

∫
V ∩Γ(i,j)

(γ′i,j∂
•(v)
t c(i,j) + γi,j∇Γ(i,j) · v), (2.20)

We insert the balance law (2.5) (noting (2.4)) to replace the velocity term, and the balance

law (2.6) to replace the bulk concentration term. Hereafter we drop the argument of gi:∑
i

∫
V ∩Ω(i)

(ρ(i)v · ∂•(v)
t v + g′i(c

(i))∂
•(v)
t c(i))

=
∑
i

∫
V ∩Ω(i)

(
v · (∇ · T (i)) + g′i(−∇ · j(i)

c )
)
, (2.21)

we further insert the balance law (2.7) (noting the definitions (2.15) and (2.19)) to replace

the surface concentration terms in the second integral. Hereafter we drop the argument of

γi,j :∑
i<j

∫
V ∩Γ(i,j)

(γ′i,j∂
•(v)
t c(i,j) + γi,j∇Γ(i,j) · v)

=
∑
i<j

∫
V ∩Γ(i,j)

(
γ′i,j
(
−∇Γ(i,j) · j(i,j)

c + [j(·)
c ]ij · ν(i,j)

)
+ σi,j∇Γ(i,j) · v

)
. (2.22)
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Define D(v) = 1
2(∇v + (∇v)⊥). Sum (2.21) and (2.22). Use the symmetry of T (i), and

applying (6.4) and j(i,j)
c · κ(i,j) = 0 (the flux is tangential). Then,

∑
i

∫
V ∩Ω(i)

(
v · (∇ · T (i)) + g′i(−∇ · j(i)

c )
)

+
∑
i<j

∫
V ∩Γ(i,j)

(
γ′i,j
(
−∇Γ(i,j) · j(i,j)

c + [j(·)
c ]ij · ν(i,j)

)
+ σi,j∇Γ(i,j) · v

)
=
∑
i

(∫
V ∩Ω(i)

(−D(v) : T (i) +∇g′i · j(i)
c ) +

∫
∂V ∩Ω(i)

(T (i)v − g′ij(i)
c ) · νV

)
+
∑
i

∑
j 6=i

∫
V ∩Γ(i,j)

(T (i)v − g′ij(i)
c ) · ν(i,j)

+
∑
i<j

∫
V ∩Γ(i,j)

(
∇Γ(i,j)γ′i,j · j(i,j)

c + [γ′i,jj
(·)
c ]ij · ν(i,j) −∇Γ(i,j)σi,j · v − σi,jκ(i,j) · v

)
+
∑
i<j

(∫
∂V ∩Γ(i,j)

(γ′i,jj
(i,j)
c + σi,jv) · µ(i,j)

V

+
∑
k 6=i,j

∫
V ∩T (i,j,k)

(−γ′i,jj(i,j)
c + σi,jv) · µ(i,j,k),

with the external conormal µ(i,j)
V , rewriting the double sums we obtain the following form

for (2.20)

d
dt

∑
i

∫
V ∩Ω(i)

(
ρ(i)

2
|v|2 + gi(c

(i))

)
+
∑
i<j

∫
V ∩Γ(i,j)

γi,j(c
(i,j))


=
∑
i

∫
V ∩Ω(i)

(−D(v) : T (i) +∇g′i · j(i)
c ) +

∑
i<j

∫
V ∩Γ(i,j)

∇Γ(i,j)γ′i,j · j(i,j)
c (2.23)

+
∑
i<j

∫
V ∩Γ(i,j)

[
(γ′i,j − g′(·))j

(·)
c

]i
j
· ν(i,j) (2.24)

+
∑
i<j

∫
V ∩Γ(i,j)

(
[T (·)]ijν

(i,j) −∇Γ(i,j)σi,j − σi,jκ(i,j)
)
· v (2.25)

+
∑
i<j<k

∫
V ∩T (i,j,k)

(
σi,jµ

(i,j,k) + σj,kµ
(j,k,i) + σk,iµ

(k,i,j)
)
· v (2.26)

−
∑
i<j<k

∫
V ∩T (i,j,k)

(
γ′i,jj

(i,j)
c · µ(i,j,k) + γ′j,kj

(j,k)
c · µ(j,k,i) + γ′k,ij

(k,i)
c · µ(k,i,j)

)
(2.27)
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+
∑
i

∫
∂V ∩Ω(i)

(
(T (i)νV ) · v − g′ij(i)

c · νV
)

(2.28)

+
∑
i<j

∫
∂V ∩Γ(i,j)

(
− γ′i,jj(i,j)

c · µ(i,j)
V + σi,jµ

(i,j)
V · v

)
. (2.29)

2.1.4 Dynamic sorption

The adsorption-desorption dynamics of the surfactant at interfaces is an important govern-

ing factor to the overall dynamics of the system, and this can be observed by the phase field

approximation we will construct in Section 2.2. The variation in these dynamics which

we investigate in particular are the differences when the rate of adsorption-desorption is

on a comparable timescale to other system motions (discussed here), and when the rate of

adsorption-desorption on some or all interfaces is on a fast timescale compared with the

other system dynamics (discussed in Section 2.1.9).

We are directed by the free energy calculation in Section 2.1.3, as we wish the

energy to be dissipative (upto external forcing) to make consitutive assumptions ensuring

this. In particular, (2.24) and (2.27) direct us to make assumptions on the surfactant fluxes.

In the interface Γ(i,j), due to (2.24), we assume that:

αi,jj
(i)
c · ν(i,j) = −(γ′i,j(c

(i,j))− g′i(c(i))), (2.30)

where αi,j ≥ 0 for each i < j pair, may be a function of (c(i), c(i,j)). In general we permit

that αi,j 6= αj,i , that is, the adsorption rate of surfactant from Ω(i) into Γ(i,j) can differ

from the adsorption rate of surfactant from Ω(j) into Γ(i,j). We can interpret αi,j ≥ 0 as a

factor which relates the adsorption (desorption) at the interface Γ(i,j) from (into) the bulk

to the deviation from chemical equilibrium.

In the triple junctionT (i,j,k), due to (2.27), we assume that:

j(i,j)
c · µ(i,j,k) := βj,k↔i,j(γ

′
i,j(c

(i,j))− γ′j,k(c(j,k))) + βk,i↔i,j(γ
′
i,j(c

(i,j))− γ′k,i(c(k,i))),

(2.31)

where the coefficients βi,j↔A,B ≥ 0 satisfy the following symmetries

βi,j↔A,B = βA,B↔i,j , βA,B↔i,j = βB,A↔i,j , βA,B↔i,j = βA,B↔j,i.

for (A,B) ∈ {(j, k), (k, i)}.
One can see in the Appendix 6.2 how these choices achieve the desired properties.

The choice assumes a linear relation between fluxes, which is not physically derived, but

does allow for interpretation that the βi,j↔A,B ≥ 0 can be viewed as a factor relating

surfactant flux at a junction from interface Γ(i,j) to Γ(A,B) to the deviation from equilibrium.
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Other more complex choices satisfying the symmetries and positivity could be constructed

this investigation is outside the scope of our current study.

Further investigation of the calculations in Section 2.1.3, the terms in (2.23) moti-

vate us to assume the surfactant fluxes have the form

j(i)
c = −M (i)

c ∇g′i(c(i)) in Ω(i), (2.32)

j(i,j)
c = −M (i,j)

c ∇Γ(i,j)γ′i,j(c
(i,j)) in Γ(i,j), (2.33)

with mobilities M (i)
c ≥ 0 and M (i,j)

c ≥ 0 that may be functions of the c(i) and the c(i,j)

respectively. The g′i and γ′i,j are exactly the chemical potentials of the bulk and interfacial

surfactants, thus the evolution of the surfactant is determined primarily by the gradients of

the chemical potentials.

Remark 2.1.2. We may regain Fick’s law for diffusivities of the surfactant by choosing the

mobilities:

M (i)
c := −D 1

g′′i (c(i))
in the bulk, and M (i,j)

c := −D 1

γ′′i,j(c
(i,j))

on the interface.

for a positive constant diffusivity D. Indeed, the chain rule implies

j(i)
c = −Dg

′′
i (c(i))∇c(i)

g′′i (c(i))
= −D∇c(i), and similarly, j(i,j)

c = −D∇c(i,j).

2.1.5 Further constitutive assumptions

We now may make an assumption on the stress tensor T (·) found in (2.5):

T (i) = −pI + 2η(i)D(v), (2.34)

where I denotes the identity. The rate of strain tensor D gives a sign to ensure the dissi-

pation of the free energy term in (2.23), while the fluid pressure p, is seen as a lagrange

multiplier to enforce incompressibility (2.4) without effect the energy dissipation.

At the interfaces Γ(i,j) we assume, due to the term (2.25), that the force balance at

the interface is given by

[T (·)]ijν
(i,j) = σi,j(c

(i,j))κ(i,j) +∇Γ(i,j)σi,j(c
(i,j)), (2.35)

which means that the stresses exerted by the fluids adjacent to the interfaces are counterbal-

anced by intrinsic forces, namely the surface tension forces σi,jκ(i,j) (curvature κ(i,j)) and

the Marangoni forces∇Γ(i,j)σi,j .
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In the triple points or lines, due to the term (2.26), we assume the following balances

of capillary forces:

σi,j(c
(i,j))µ(i,j,k) + σj,k(c

(j,k))µ(j,k,i) + σk,i(c
(k,i))µ(k,i,j) = 0. (2.36)

This triple junction condition is also known as Young’s law, see [57] for a discussion in the

context of general anisotropic surface energies. In particular, it determines the angles at

which the three phases meet in the triple junction. In the case d = 3 the condition (2.36)

also fully determines the configuration and angles at the quadruple junctions Q(i,j,k,l), see

[27] , Section 3, for a discussion.

Condition (2.36) is a local mechanical equilibrium condition which may not always

hold true. One such case of this is in wetting or spreading phenomena, which are of great

relevance in many applications. Therefore this assumption limits the model to the cases

where this does not occur.

Remark 2.1.3. Wetting is characterised by wetting or spreading functions [69]

S(i,j,k) := σi,j(c
(i,j))−

(
σi,k(c

(i,k)) + σj,k(c
(j,k))

)
. (2.37)

If (2.37) is positive, it is energetically favourable for a thin layer of fluid k to exist between

fluids i and j. This causes existence of stable interfaces Γ(i,k), Γ(j,k) and unstable Γ(i,j)

which disappears after suitably long times. In this case the condition (2.36) then cannot

be satisfied but other closing conditions, for instance, involving precursor films have to be

postulated [106]. We will not cover the spreading case in the free boundary problem and the

subsequent asymptotic analysis but note that some phase field models are able to capture

the behaviour (see [21, 22]).

Accounting for all constitutive assumptions (2.68), (2.69), (2.32), (2.33), (2.30),
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(2.31), (2.35), and (2.36) we obtain from (2.23) – (2.29) that

d
dt

∑
i

∫
V ∩Ω(i)

(
ρ(i)

2
|v|2 + gi(c

(i)))

)
+
∑
i<j

∫
V ∩Γ(i,j)

γi,j(c
(i,j))

 (2.38)

=−
∑
i

∫
V ∩Ω(i)

(2η(i)|D(v)|2 +M (i)
c |∇g′i(c(i))|2) (2.39)

−
∑
i<j

∫
V ∩Γ(i,j)

M (i,j)
c |∇Γ(i,j)γ′i,j(c

(i,j))|2 (2.40)

−
∑
i<j

∫
V ∩Γ(i,j)

1

αi,j
(γ′i,j(c

(i,j) − g′i(c(i)))2 +
1

αj,i
(γ′i,j(c

(i,j))− g′j(c(i)))2 (2.41)

−
∑
i<j<k

∫
V ∩T (i,j,k)

βk,i↔i,j(γ
′
i,j(c

(i,j))− γ′k,i(c(k,i)))2

+ βk,i↔j,k(γ
′
j,k(c

(j,k))− γ′k,i(c(k,i)))2

+ βj,k↔i,j(γ
′
i,j(c

(i,j))− γ′j,k(c(j,k)))2 (2.42)

−
∑
i

∫
∂V ∩Ω(i)

M (i)
c g′i(c

(i))∇g′i(c(i)) · νV (2.43)

−
∑
i<j

∫
∂V ∩Γ(i,j)

M (i,j)
c γ′i,j(c

(i,j))∇Γ(i,j)γ′i,j(c
(i,j)) · µ(i,j)

V (2.44)

+
∑
i

∫
∂V ∩Ω(i)

(T (i)v) · νV +
∑
i<j

∫
∂V ∩Γ(i,j)

σi,j(c
(i,j))v · µ(i,j)

V . (2.45)

The terms in (2.39) and (2.40) are dissipative contributions to the change of energy. Terms

(2.41) and (2.42) are the bulk-interface and interface-interface sorption dissipation terms

respectively. Finally, (2.45) represents the work done on V by the external fluid, and (2.43)

and (2.44) list the loss (or gain) of energy due to the surfactant mass fluxes across ∂V .

2.1.6 Distributional form

Our derivation of the surfactant equations is constructed using methods of conservation of

local balance laws over arbitrary test volumes. This is a well recognised form of the equa-

tions, however we shall additionally rewrite the surfactant equations in a formulation using

distributions. In this form it is easier to motivate forms for the phase field equations for

the surfactant. In [6], the author has shown for the two phase case, there is an equivalence

between balance laws written as a differential (in)equality, in a distributional form and in

an integral form over test volumes. We wish to extend the result of [6] to M ≥ 3 phases for
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our surfactant equations, with particular focus on the triple junctions.

We shall derive the distributional form of the equation (2.7), along with (2.30) and

(2.31) for c(i,j). The distributional form for (2.6) is similarly found, so we shall omit these

calculations. The procedure will be to integrate the strong form of the interfacial surfactant

equation (2.7) against any test function ζ ∈ C∞0 ((0, T )× Ω).

Remark 2.1.4. Depending on the choice of the space of ζ’s, one can obtain different fea-

tures of the equation, it is standard first to take ζ ∈ C∞0 ((0, T ) × Ω), which will remove

the boundary and initial conditions from consideration. Typically one would then repeat

the calculations with, for example, ζ ∈ C∞g ((0, T ) × Ω) where g represents the Dirichlet

boundary data ζ|∂Ω = g, which will aid recovery of boundary conditions. We do not present

these calculations.

Integrate (2.7) against ζ ∈ C∞0 ((0, T )× Ω):

0 =

∫ T

0

∫
Γ(i,j)

(
∂
•(v)
t (c(i,j)) + c(i,j)∇Γ(i,j) · v +∇Γ(i,j) · j(i,j)

c

− j(i)
c · ν(i,j) − j(j)

c · ν(j,i)
)
ζ.

Integrating by parts, and noting that j(i,j)
c is tangential along Γ(i,j), so j(i,j)

c · ∇Γ(i,j)ζ =

j
(i,j)
c · ∇ζ, gives:

0 =

∫ T

0

∫
Γ(i,j)

(∂
•(v)
t (c(i,j)ζ) + c(i,j)ζ∇Γ(i,j) · v)− c(i,j)∂

•(v)
t (ζ)− j(i,j)

c · ∇ζ

−
∫ T

0

∫
Γ(i,j)

(
j(i)
c · ν(i,j) + j(j)

c · ν(j,i)
)
ζ +

∫ T

0

∫
∂Γ(i,j)

ζj(i,j)
c · µ(i,j),

where µ(i,j) is the external unit conormal for Γ(i,j). By (6.2), we obtain that:

0 =

∫ T

0

d
dt

(∫
Γ(i,j)

c(i,j)ζ
)
−
∫ T

0

∫
Γ(i,j)

c(i,j)∂
•(v)
t (ζ) + j(i,j)

c · ∇ζ

−
∫ T

0

∫
Γ(i,j)

(
j(i)
c · ν(i,j) + j(j)

c · ν(j,i)
)
ζ +

∫ T

0

∫
∂Γ(i,j)

ζj(i,j)
c · µ(i,j).

Using zero boundary conditions of the test function we get:

0 = −
∫ T

0

∫
Γ(i,j)

c(i,j)(∂tζ + v · ∇ζ) + j(i,j)
c · ∇ζ

−
∫ T

0

∫
Γ(i,j)

(
j(i)
c · ν(i,j) + j(j)

c · ν(j,i)
)
ζ +

∫ T

0

∑
k 6=i,j

∫
T (i,j,k)

ζj(i,j)
c · µ(i,j,k).
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Define the distributions δΓ(i,j) = (L1⊗Hd) Γ(i,j) and τT (i,j,k) = (L1⊗Hd) T (i,j,k) by,

〈δΓ(i,j) , f〉 =

∫ T

0

∫
Γ(i,j)(t)

f(x, t) dHd−1(x) dL1(t), (2.46)

and,

〈τT (i,j,k) , f〉 =

∫ T

0

∫
T (i,j,k)(t)

f(x, t) dHd−2(x) dL1(t), (2.47)

for any f ∈ D∞0 ((0, T )× Ω). We have shown in distribution that,

0 = ∂t(δΓ(i,j)c(i,j)) +∇ ·
(
δΓ(i,j)(c(i,j)v + j(i,j)

c )
)

− δΓ(i,j)(j(i)
c · ν(i,j) + j(j)

c · ν(j,i)) +
∑
k 6=i,j

τT (i,j,k)(j(i,j)
c · µ(i,j,k)), (2.48)

where, due to assumptions (2.30) and (2.31), we take:

δΓ(i,j)j(i)
c · ν(i,j) = δΓ(i,j)

(
− 1

αi,j
(γ′i,j(c

(i,j))− g′i(c(i)))
)
, (2.49)

τT (i,j,k)j(i,j)
c · µ(i,j,k) = τT (i,j,k)

(
βj,k↔i,j(γ

′
i,j(c

(i,j))− γ′j,k(c(j,k)))

+ βk,i↔i,j(γ
′
i,j(c

(i,j))− γ′k,i(c(k,i)))
)
. (2.50)

With corresponding distribution χΩ(i) = (L1 ⊗Hd) Ω(i), defined by

〈χΩ(i) , f〉 =

∫ T

0

∫
Ω(i)(t)

f(x, t) dHd(x) dL1(t), (2.51)

we reformulate (2.6) as,

0 = ∂t(χΩ(i)c(i)) +∇ · (χΩ(i)(c(i)v + j(i)
c )) +

∑
j 6=i

δΓ(i,j)j(i)
c · ν(i,j). (2.52)

We will use these forms to motivate the surfactant equations used in the phase field mod-

elling methodology in Section 2.2.1. Now we shall discuss boundary conditions.

2.1.7 Boundary conditions

By considering test volumes V (t) in the calculation found in Section 2.1.3 with ∂V (t) ∩
∂Ω 6= ∅ we can assess the impact of the boundary conditions on the PDEs considered. In

particular the terms (2.45), (2.43) and (2.44) motivate the following boundary conditions.
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With regards to the velocity, we assume impenetrable boundaries

v · νΩ = 0 on ∂Ω, (2.53)

i.e., the velocity is tangential on ∂Ω. We obtain a stress-free boundary condition, due to the

first term (2.45), by imposing the condition

T (i) · ν∂Ω = 0 on ∂Ω. (2.54)

Defining P ∂Ω = I − νΩ ⊗ νΩ ∈ Rd×d as the projection of Rd to the tangential space

in each point of ∂Ω, and looking at the second term (2.45), we impose the condition at

interfaces Γ(i,j):

P ∂Ωµ
(i,j)
Ω = 0 on ∂Ω ∩ Γ(i,j). (2.55)

This ensures the interfaces intersect with ∂Ω with a 90◦ angle. No-flux conditions for both

the bulk and the surface surfactant are natural conditions due to (2.43) and (2.44), and due

to the boundary condition (2.53), these reduce to

j(i)
c · νΩ = 0 on ∂Ω ∩ ∂Ω(i), (2.56)

j(i,j)
c · µ(i,j)

Ω = 0 on ∂Ω ∩ ∂Γ(i,j). (2.57)

Depending on the application, other boundary conditions may be of relevance. In-

stead of (2.53) and (2.54) one could consider a Dirichlet condition for v, so long as the

boundary data satisfies the incompressibility constraint. In the case of in-flow or out-flow

(2.56) then will read (c(i)v + j
(i)
c ) · νΩ = 0 (which is more clearly seen by viewing the

distributional form (2.52)) and similarly for (2.57). For the surfactant a Dirichlet or a Robin

condition may be of interest, too, and can easily be expressed in terms of the c(i) and the

c(i,j). In all of these cases of non-natural boundary conditions the terms in (2.45) and (2.44)

with V (t) = Ω will not vanish, in general, but may be interpreted as work done by the

boundary condition.

2.1.8 Summary of sharp interface model with general sorption

We summarise the equations governing the evolution of the multi-phase flow with sur-

factant. The problem consists in finding a continuous velocity field v, a pressure p and
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surfactant concentrations c(i), c(i,j) such that in the domains Ω(i)

∇ · v = 0, (2.58)

∂t(ρ
(i)v) +∇ · (ρ(i)v ⊗ v) = ∇ ·

(
− pI + 2η(i)D(v)

)
, (2.59)

∂
•(v)
t c(i) = ∇ ·

(
M (i)
c ∇g′i(c(i))

)
, (2.60)

in the interfaces Γ(i,j)

u(i,j) =v · ν(i,j), [v] = 0, (2.61)

[−pI + 2η(·)D(v)]ijν
(i,j) =σi,j(c

(i,j))κ(i,j) +∇Γ(i,j)σi,j(c
(i,j)), (2.62)

αi,jM
(i)
c ∇g′i(c(i)) · ν(i,j) = (γ′i,j(c

(i,j))− g′i(c(i))), (2.63)

∂
•(v)
t c(i,j) + c(i,j)∇Γ(i,j) · v =∇Γ(i,j) ·

(
M (i,j)
c ∇Γ(i,j)γ′i,j(c

(i,j))
)

+
1

αi,j
(g′i(c

(i))− γ′i,j(c(i,j)))

+
1

αj,i
(g′j(c

(j))− γ′i,j(c(i,j))) (2.64)

and in the triple junctions T (i,j,k)

u(i,j,k) =P (T (i,j,k))⊥v, (2.65)

−M (i,j)
c ∇Γ(i,j)γ′i,j(c

(i,j)) · µ(i,j,k) =βj,k↔i,j(γ
′
i,j(c

(i,j))− γ′j,k(c(j,k)))

+ βk,i↔i,j(γ
′
i,j(c

(i,j))− γ′k,i(c(k,i))), (2.66)

0 =σi,j(c
(i,j))µ(i,j,k) + σj,k(c

(j,k))µ(j,k,i)

+ σk,i(c
(k,i))µ(k,i,j). (2.67)

These equations then are completed with suitable initial conditions and boundary conditions

as discussed in Section 2.1.7.

Remark 2.1.5. In reference to the previous Remark 2.1.1 note that, we have implicitly

assumed that there is always a mass of surfactant present in the whole domain, and so as-

suming that the surfactants are soluble in each fluid and may be adsorbed to any interface.

However, one may account for insolubilities of any c(i)’s by dropping the corresponding

bulk equations (2.60) and any gi terms in (2.64). Similarly, one may account for the non

adsorbant c(i,j) by dropping the corresponding interface equations (2.64) and dropping the

γi,j terms in the triple junctions.
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2.1.9 Instantaneous sorption

We investigate the case where adsorption-desorption dynamics of the surfactant at the inter-

faces and triple junction is on a fast timescale. It may then be considered as instantaneous at

the time scale of the interface and fluid flow dynamics. Here we take for simplicity the case

where this occurs at all interfaces and triple junctions. The statements and assumptions may

be easily adapted for where surfactant chemisty is taken instantaneous at some interfaces

and junctions, but elsewhere is noninstantaneous as before.

The local equilibrium conditions at the interfaces, that arise from the instantaneous

sorption, result in isotherms [43]. These are static relationships (at constant temperature)

between the surfactant concentration in a sublayer close to an interface, with the interfacial

surfactant concentration. They are empirical and attempt to describe factors of the local

chemistry at interfaces, we describe these further, with examples, in Section 2.1.11

In terms of the chemical potentials g′i and γ′i,j the equilibrium conditions read

g′i(c
(i)) = g′j(c

(j)) = γ′i,j(c
(i,j)) in Γ(i,j), (2.68)

and they can be obtained by setting αi,j = 0 in (2.30). In addition, we assume a local

chemical equilibrium at the triple junctions:

γ′i,j(c
(i,j)) = γ′j,k(c

(j,k)) = γ′k,i(c
(k,i)) in T (i,j,k), (2.69)

which can be obtained by letting βi,j↔A,B → ∞ in (2.31). Thus, if we assume that these

equilibria are satisfied at all interfaces and triple junctions, then the chemical potential

defined by:

q :=

g′i(c(i)) in Ω(i),

γ′i,j(c
(i,j)) in Γ(i,j)

(2.70)

is a continuous function on Ω.

The consequences of local equilibrium (2.68) – (2.70) have a significant effect on

the energy analysis. If one performs the energy dissipation calculations of Section 2.1.5,

the term (2.41) vanishes due to (2.68). Similarly, the term (2.42) vanishes due to (2.69).

As free energies are convex as functions of the concentrations, the new description

(2.68)-(2.70) allows for them to be locally inverted to express surfactant bulk and surface

concentrations in terms of q:

c(i,j)(q) = (γ′i,j)
−1(q), c(i)(q) = (g′i)

−1(q). (2.71)
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We can then also express the surface tension as a function of q:

σ̃i,j(q) := σi,j(c
(i,j)(q)) = γi,j(c

(i,j)(q))− q c(i,j)(q). (2.72)

Similarly, for the surfactant fluxes:

j(i)
c = −M (i)

c ∇q in Ω(i), (2.73)

j(i,j)
c = −M (i,j)

c ∇Γ(i,j)q in Γ(i,j), (2.74)

[T (·)]ijν
(i,j) = σ̃i,j(q)κ

(i,j) +∇Γ(i,j) σ̃i,j(q) in Γ(i,j), (2.75)

0 = σ̃i,j(q)µ
(i,j,k) + σ̃j,k(q)µ

(j,k,i) + σ̃k,i(q)µ
(k,i,j) in T (i,j,k). (2.76)

This results in changes in the free energy evolution. From (2.38)-(2.44) we obtain

d
dt

∑
i

∫
V ∩Ω(i)

(
ρ(i)

2
|v|2 + gi(c

(i)(q))

)
+
∑
i<j

∫
V ∩Γ(i,j)

γi,j(c
(i,j)(q))

 (2.77)

=−
∑
i

∫
V ∩Ω(i)

(2η(i)|D(v)|2 +M (i)
c |∇q|2)−

∑
i<j

∫
V ∩Γ(i,j)

M (i,j)
c |∇Γ(i,j)q|2 (2.78)

+
∑
i

∫
∂V ∩Ω(i)

M (i)
c q∇q · νV (2.79)

+
∑
i<j

∫
∂V ∩Γ(i,j)

M (i,j)
c q∇Γ(i,j)q · µ(i,j)

V . (2.80)

+
∑
i

∫
∂V ∩Ω(i)

(T (i)v) · νV +
∑
i<j

∫
∂V ∩Γ(i,j)

σi,jv · µ(i,j)
V . (2.81)

2.1.10 Summary of sharp interface model with instantaneous sorption

Let us summarise the equations governing the evolution of the multi-phase flow with sur-

factant. The problem consists in finding a continuous velocity field v, a pressure p and, due

to (2.68),(2.69) a continuous chemical potential q, such that in the domains Ω(i)

∇ · v = 0, (2.82)

∂t(ρ
(i)v) +∇ · (ρ(i)v ⊗ v) = ∇ ·

(
− pI + 2η(i)D(v)

)
, (2.83)

∂
•(v)
t c(i)(q) = ∇ ·

(
M (i)
c ∇q

)
, (2.84)
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in the interfaces Γ(i,j)

u(i,j) =v · ν(i,j), (2.85)

[−pI + 2η(·)D(v)]ijν
(i,j) = σ̃i,j(q)κ

(i,j) +∇Γ(i,j) σ̃i,j(q), (2.86)

∂
•(v)
t c(i,j)(q) + c(i,j)(q)∇Γ(i,j) · v =∇Γ(i,j) ·

(
M (i,j)
c ∇Γ(i,j)q

)
+
[
M (·)
c ∇q

]i
j
· ν(i,j) (2.87)

and in the triple junctions T (i,j,k)

u(i,j,k) =P (T (i,j,k))⊥v, (2.88)

0 =M (i,j)
c ∇Γ(i,j)q · µ(i,j,k) +M (j,k)

c ∇Γ(j,k)q · µ(j,k,i)

+M (k,i)
c ∇Γ(k,i)q · µ(k,i,j), (2.89)

0 = σ̃i,j(q)µ
(i,j,k) + σ̃j,k(q)µ

(j,k,i) + σ̃k,i(q)µ
(k,i,j). (2.90)

These equations then are completed with suitable initial conditions and boundary conditions

as discussed in Section 2.1.7, where once again surfactant mass densities and fluxes are

expressed in terms of q.

Remark 2.1.6. In the case of instantaneous adsorption in only some of the interfaces and

triple junctions, the equations are modified by setting αi,j = 0 and sending βi,j↔A,B →
∞ in only the terms under equilibrium. This leads to a mixture of boundary conditions

at interfaces: continuity of q imposed at interfaces in local equilibrium; jump conditions

(2.63) imposed at interfaces out of equilibrium; finally, one sided jump conditions where

the interface has a local equilibrium into just one of the neighbouring phases. Similarly for

the triple junction boundary conditions.

The distributional form is simplified from the introduction of the variable q, and by

adding equations (2.48) and (2.52) over all the respective interface and bulk regions Ω(i),

Γ(i,j):

∂
•(v)
t

(∑
i

χΩ(i)c(i)(q) +
∑
i<j

δΓ(i,j)c(i,j)(q)
)

= −∇ ·
(∑

i

χΩ(i)j(i)
c +

∑
i<j

δΓ(i,j)j(i,j)
c

)
.

(2.91)

Remark 2.1.7. In the case of instantaneous adsorption in only some of the interfaces and

triple junctions here, one would simply sum over all the regions under a local equilibrium

condition. The distributional form in other regions would be described with separate equa-

tions, as with (2.48) and (2.52).
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2.1.11 Isotherm relations for instantaneous sorption

The assumption of instantaneous sorption around an interface leads to an local equilibrium

between the surfactant chemical potentials in the bulk and on the interface, described by

(2.68). The equilibrium relation is given by an appropriate sorption isotherm, associating

the c(i)(q) to the c(i,j)(q) through a constant temperature time independent relationship. The

different isotherms are empirical and chosen to represent particular chemical behaviours

which the surfactants may undergo. The simplest and most commonly used relationships

for nonionic surfactants are given below [44]. We describe the relations using an adsorption

rate coefficient K, and c(i,j)
max , the surface tension of a surface with no surfactant present is

given by σ0. We additionally provide the corresponding free energies γi,j − σ0 and gi:

The Henry Isotherm:

Kc(i) =
c(i,j)

c
(i,j)
max

. (2.92)

This linear isotherm is motivated formally by Henry’s gas law, which states (in our context)

that the interfacial coverage of surfactant depends linearly on the concentration of bulk

surfactant. The bulk and surface free energy associated with this isotherm are given by

the Gibbs’ adsorption equation in isothermal equilibrium (see Volume III Chapter 5 of [2])

which states,

g′i(c
(i)) = B ln(Kc(i)), (2.93)

for constant B (dependent only on temperature). Using the equilibrium relations (2.68),

(2.70) and (2.92) we obtain:

gi(c
(i)(q)) = BKc(i)(q)

(
ln(Kc(i)(q))− 1

)
= exp

( q
B

)(
q −B

)
(2.94)

γi,j(c
(i,j)(q))− σ0 =

B

c
(i,j)
max

c(i,j)(q)
(

ln
(c(i,j)(q)

c
(i,j)
max

)
− 1
)

= exp
( q
B

)(
q −B

)
. (2.95)

The Langmuir Isotherm [85]:

Kc(i) =
c(i,j)

c
(i,j)
max − c(i,j)

. (2.96)

This nonlinear isotherm introduces a maximum coverage of the interface in surfactant. The

surface is still assumed homogeneous regarding adsorption, the rate is given proportional

to the available sites with respect to the maximal concentration. The bulk and surface free
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energy associated with this isotherm are given by,

gi(c
(i)(q)) = BKc(i)(q)

(
ln(Kc(i)(q))− 1

)
= exp

( q
B

)(
q −B

)
(2.97)

γi,j(c
(i,j)(q))− σ0 = B

( c(i,j)(q)

c
(i,j)
max − c(i,j)(q)

ln
( c(i,j)(q)

c
(i,j)
max − c(i,j)(q)

)
+ c

(i,j)
max ln(c

(i,j)
max − c(i,j)(q))

)
= exp

( q
B

)
q +Bc

(i,j)
max ln

( c
(i,j)
max

1 + exp
( q
B

))). (2.98)

A Quadratic Isotherm:

We also make use of a nonphysical isotherm relation in implementation for demon-

strative purposes. The bulk and surface free energy are given by:

gi(c
(i)(q)) =

1

2
βi(c

(i)(q))2 =
1

2

q2

βi
(2.99)

γi,j(c
(i,j)(q))− σ0 =

1

2
βi,j(c

(i,j))2 =
1

2

q2

βi,j
(2.100)

for βi > 0, βi,j > 0 chosen constants. For convenience we also state the corresponding

surface tension σ̃i,j(q) and bulk excess free energy λ̃i,j(q) in this :

σ̃i,j(q) = σ0 −
1

2

q2

βi,j
, λ̃i,j(q) = −1

2

q2

βi
. (2.101)

2.2 Diffuse interface model

The goal is now to derive a phase field model to approximate the free boundary problem

which was presented in Section 2.1. As in [54] we postulate abstract balance equations for

the mass of the mass and momentum of the fluid, the mass of surfactant and the newly in-

troduce phase field variables, and close them within an energetic framework by postulating

a suitable free energy density. The phase field model for multi-phase flow is based on [1]

which is extended to multiple phases.

2.2.1 Phase field approach and balance equations

As introduced in Chapter 1, we begin by defining a small length scale ε > 0, the interfacial

thickness parameter, which will characterise the length scales of interfacial layers between
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the different fluids (or more precisely, the different phases of a fluid domain). It is a funda-

mental parameter of the approximation, thus we shall use it as an index for all newly defined

variables depending on ε. As usual in phase field approaches to multi-phase problems we

introduce one phase field variable for each phase (here, the immiscible fluids) which serves

to model its presence. Denoting by ρ(i)
ε the mass density of fluid i we define the phase field

variables by

ϕ(i)
ε :=

ρ
(i)
ε

ρ(i)
, i = 1, . . . ,M. (2.102)

As the fluids are immiscible one will expect that ρ(i)
ε ≈ ρ(i) in the domain of fluid i and

ρ
(i)
ε ≈ 0 elsewhere, with values in between only in the thin layers between the fluid domains

where the fluids mix.

We assume that the phase field obeys the following constraint:

M∑
i=1

ϕ(i)
ε = 1. (2.103)

This assumption is that there there is no excess volume of mixing in these layers. In a small

control volume V , the masses of the fluids are given by M (i) = ρ
(i)
ε V . No excess volume

of mixing means that V coincides with the sum of the volumes V (i) = M (i)/ρ(i) occupied

by the same masses of pure fluids, V =
∑

i V
(i) (dividing by V yields (2.103)).

Remark 2.2.1. One can pick different fields for the order parameters ϕ(i)
ε , such as the ρ(i)

ε

or the mass concentrations ρ(i)
ε /ρε. The essential requirement is that the mass densities ρ(i)

ε

and the total mass density ρε can be expressed in terms of the ϕ(i)
ε .

We introduce the Gibbs’ Simplex

ΣM :=
{
u = (u1, . . . , uM ) ∈ RM :

M∑
i=1

ui = 1, where 0 ≤ ui ≤ 1
}
, (2.104)

as well as

TΣM :=
{
u = (u1, . . . , uM ) ∈ RM :

M∑
i=1

ui = 0
}
, (2.105)

which can be naturally identified with the tangent space on ΣM in each point, we thus have

that ϕε = (ϕ
(1)
ε , . . . , ϕ

(M)
ε ) ∈ ΣM . Note that the corners of the Gibbs’ simplex correspond

to the pure fluids as there one of the phase field variables equals one and all the others are

zero. We write ek = (δ̃k,l)
M
l=1, k = 1, . . . ,M for these corners, where δ̃k,l stands for the

Kronecker symbol. For later use we also introduce 1 = (1, . . . , 1) ∈ RM and note that

vectors u ∈ TΣM are characterised by u · 1 = 0.
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Remark 2.2.2. In practice, the hard constraint ϕ(i)
ε ∈ [0, 1] often is dropped in favour

of a soft penalisation. We allow values outside the interval [0, 1] but it is energetically

unfavourable for ϕ(i)
ε to do this. This penalisation allows for higher regularity in the differ-

ential equations that govern the ϕ(i)
ε ’s.

Denoting by v(i) the velocity of mass particles of fluid i the mass balances for the

fluids read

∂tρ
(i)
ε +∇ · (ρ(i)

ε v
(i)) = 0. (2.106)

In order to describe the motion of the fluid mixture we use the volume averaged velocity,

(see remark 2.2.3):

vε :=
M∑
i=1

ϕ(i)
ε v

(i), (2.107)

which is solenoidal: indeed, using (2.103), (2.102), and (2.106)

∇·vε = ∂t

( M∑
i=1

ϕ(i)
ε

)
+∇·

( M∑
i=1

ϕ(i)
ε v

(i)
)

=
M∑
i=1

1

ρ(i)

(
∂tρ

(i)
ε +∇·(ρ(i)

ε v
(i))
)

= 0. (2.108)

As in the previous section (see (2.3)) we use a material derivative

∂
•(vε)
t w := ∂tw + vε · ∇w, (2.109)

here with respect to the velocity field vε. The species mass balances (2.106) yield that

∂
•(vε)
t ϕ(i)

ε + ϕ(i)
ε ∇ · vε = −∇ · j

ϕ
(i)
ε
, (2.110)

j
ϕ
(i)
ε

= ϕ(i)
ε (v(i) − vε). (2.111)

Note that, because of (2.108), the total mass density

ρε :=
M∑
i=1

ϕ(i)
ε ρ

(i)
ε , (2.112)

satisfies the equation

∂
•(vε)
t ρε + ρε∇ · vε = −∇ · jε with jε =

M∑
i=1

ρ(i)j
ϕ
(i)
ε
. (2.113)

Remark 2.2.3. We have chosen a framework as given by [1]. This constructs a divergence

free (volume averaged) velocity, which is very useful for computations (for issues relating

to compressibility in this case see [20, 41]). The sacrifice as we see is that we do not

35



obtain a mass conservation for the fluids, but instead yield the dissipation shown in (2.113).

There are other methods [20, 41], which prove more admissible for theoretical results [58],

beginning with mass conservation of the fluids. The sacrifice is that the velocity (that is mass

averaged) is not divergence free. These constructions arise when one is considering the

interpolation ρε(ϕε) not to be linear, but a harmonic interpolation. For example, M = 2:

Linear interpolation:

ρ(ϕε) = ρ(1)ϕε + ρ(2)(1− ϕε), (2.114)

Harmonic interpolation:
1

ρ(ϕε)
=

ϕε

ρ(1)
+

1− ϕε
ρ(2)

. (2.115)

The linear interpolation (2.114) may lead to spurious unphysical densities ρε(ϕε) ≤
0 because the Cahn-Hilliard equation doesn’t satisfy a maximum principle [90]. One can

show however that (2.115), due to L∞ bounds of the solution [28], can ensure ρε(ϕε) > 0,

which is a desirable property.

We now assume that the inertia and the kinetic energy which are due to the motion

of the fluids relative to the gross motion given in terms of vε is negligible. This allows

us to continue to work in a framework based on local balance laws, and the second law of

thermodynamics as detailed in [67]. Thus, rather than formulating momentum balances for

the individual velocities v(i) we will formulate the conservation of (linear) momentum in

terms of vε and, within an energetic framework presented further below, make assumptions

on the fluxes j
ϕ
(i)
ε

. With a stress tensor T ε yet to be determined we postulate

∂
•(vε)
t (ρεvε) + ρεvε∇ · vε = ∇ · T ε. (2.116)

In Section 2.1.6 we discussed the distributional form of the surfactant equations in

the bulk and interface regions. In order to approximate these forms of the surfactant equa-

tions using our diffuse interface model, we approximate the distributions δΓ(i,j) , τT (i,j,k) and

χΩ(i) with the help of the phase field variables. Let δi,j(ϕε,∇ϕε) denote an approximation

to δΓ(i,j) which will be picked later on (see (2.129)), and let

ξi(ϕε) :=


0 if ϕε ≤ 0,

1 if ϕε ≥ 1,

ϕ2
ε(3− 2ϕε) else,

(2.117)

denote an approximation of the characteristic function χΩ(i) . The forms that (2.117) can

take are discussed in [122] and the effects on an asymptotic analysis is presented. For that

analysis we require that the function ξi is monotone, and ξi ∈ C1(Ω), with ξi(p) = 0,
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ξi(1 − p) = 1 ∀p ≤ 0 and derivative ξ′i(p) = 0 if p ∈ {0, 1}. The choice (2.117) fulfills

these criteria. By τi,j,k(ϕε,∇ϕε) we denote an approximation to the distribution τT (i,j,k) ,

which will be discussed in Section 2.2.5.

For the general dynamic sorption case Section refsec:nonintad, we take the fol-

lowing ansatz for the form of balance of the surfactant mass densities c(i)
ε , and c(i,j)

ε with

corresponding mass fluxes j(i)
c,ε, j

(i,j)
c,ε and sorption fluxes q(i,j)

ad,ε , q
(i,j,k)
ad,ε over bulk and inter-

facial regions. It is constructed by substituting the distributions ξi, δi,j , τi,j,k into (2.48) and

(2.52) in the place of χΩ(i) , χΓ(i,j) , χT (i,j,k) .

∂
•(vε)
t

(
δi,j(ϕε,∇ϕε)c(i,j)

ε

)
+ δi,j(ϕε,∇ϕε)c(i,j)

ε ∇ · vε +∇ ·
(
δi,jj

(i,j)
c,ε

)
− δi,j(ϕε,∇ϕε)(q(i,j)

ad,ε + q
(j,i)
ad,ε ) +

∑
k 6=i,j

τi,j,k(ϕε,∇ϕε)q
(i,j,k)
ad,ε = 0, (2.118)

∂
•(vε)
t

(
ξi(ϕε)c

(i)
ε

)
+ ξi(ϕ

(i)
ε )c(i)

ε ∇ · vε +∇ ·
(
ξi(ϕ

(i)
ε )j(i)

c,ε)
)

+
∑
j 6=i

δi,j(ϕε,∇ϕε)q(i,j)
ad,ε = 0. (2.119)

We make straightforward regularisations of the adsorption-desorption flux q(i,j)
ad defined in

(2.15) and (2.30) to define q(i,j)
ad,ε . Similarly we regularise q(i,j,k)

ad defined in (2.17) and (2.31)

to define the flux q(i,j,k)
ad,ε :

q
(i,j)
ad,ε = − 1

αi,j
(γ′i,j(c

(i,j)
ε )− g′i(c(i)

ε )), (2.120)

q
(i,j,k)
ad,ε = βj,k↔i,j(γ

′
i,j(c

(i,j)
ε )− γ′j,k(c(j,k)

ε )) + βk,i↔i,j(γ
′
i,j(c

(i,j)
ε )− γ′k,i(c(k,i)

ε )),

(2.121)

with coefficients αi,j and βi,j↔A,B as in (2.30), (2.31).

Remark 2.2.4. The above is a natural generalization of Model A in [54], based on the

two-phase flow model by [1] to multiple phases and surfactant fields.

In the same way, we study the case of instantaneous sorption, detailed in Section

2.1.9, we take the following ansatz for the regularisation of (2.91):

∂
•(vε)
t

(∑
i

ξi(ϕ
(i)
ε )c(i)

ε (qε) +
∑
i<j

δi,j(ϕε,∇ϕε)c(i,j)
ε (qε)

)
+
(∑

i

ξi(ϕ
(i)
ε )c(i)

ε (qε) +
∑
i<j

δi,j(ϕε,∇ϕε)c(i,j)
ε (qε)

)
∇ · vε

+∇ ·
(∑

i

ξi(ϕ
(i)
ε )j(i)

c,ε +
∑
i<j

δi,j(ϕε,∇ϕε)j(i,j)
c,ε

)
= 0. (2.122)
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This is a generalisation of Model C in [54]. We will discuss the instantaneous sorption

approximation later in Section 2.2.6.

Remark 2.2.5. We could have dropped the terms with ∇ · vε in (2.110), (2.116), (2.119)

and (2.118) thanks to (2.108). However, keeping track of them will give a clearer idea

of pressure contributions to the stress tensor from the thermodynamic analysis in Section

2.2.3. In particular, we can identify interfacial terms which will prove beneficial in future

asymptotic analysis.

2.2.2 Free energy

The significance of the small parameter ε is how it features in a Ginzburg-Landau type

energy for the phase field variables which serves to approximate the surface energies of the

various possible interfaces. Let ǎ : ΣM × (TΣM )d → [0,∞) be a gradient potential which

is positive (ǎ(ϕε, X) > 0 whenever X 6= 0), even and two-homogeneous in the second

argument (ǎ(φ, ηX) = η2ǎ(φ,X) for all η ∈ R), and let w̌ : ΣM → [0,∞] be a multi-well

potential satisfying w̌(ϕε) = 0 if and only if ϕε is one of the corners of ΣM . Under some

more regularity and technical assumptions on ǎ and w̌ which we omit for brevity it is shown

in [17] that, as ε→ 0,∫
Ω

(
εǎ(ϕε,∇ϕε) +

1

ε
w̌(ϕε)

)
→

∑
i<j

∫
Γ(i,j)

γ̌i,j(ν
(i,j)), (2.123)

in the sense of a Γ-limit. The relation between the potential and the surface energies is

given by the minimisation problems (see [120, 55])

γ̌i,j(ν
(i,j)) = inf

p

{
2

∫ 1

−1

√
w̌(p)ǎ(p, p′ ⊗ ν(i,j))dy

∣∣∣
p : [−1, 1]→ ΣM Lipschitz , p(−1) = ei, p(1) = ej

}
, (2.124)

where ei, ej ∈ RM are the corners of the Gibbs’ simplex corresponding to the fluids i and

j. Note that this formula holds for some anisotropic surface energies [57] (dependent on

the direction ν(i,j) of the interface) but we here only consider isotropic surface energies.

For naı̈ve choices of ǎ and w̌, minimisers lie in the interior of ΣM rather than along

the edge which connects ei with ej . In numerical simulations so-called third phase con-

tributions then can be observed within the thin interfacial layers [56]. While they may be

considered unphysical, the main issue is that they make the recovery of given surface en-

ergies γ̌i,j difficult, see [121] for an outline of the problem. But suitable potentials have

been discovered which avoid those interfacial third phase contributions (or satisfy the con-

sistency principle introduced in [23] of reducing to a two-phase system given suitable initial
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and boundary data). These potentials also enable the approximation of given surface ener-

gies γ̌i,j , see [57, 56, 21, 23]. The choice of these potentials will be discussed further in

Section 2.2.8, and observations into particular potential choices will be made within.

2.2.3 General sorption model

We build up on these works in order to approximate the energy (2.18). Consider the form

Eε :=

∫
Ω
eε, eε :=

ρε
2
|vε|2 + f(c(·)

ε , ϕε) +
1

ε
w(c(·,·)

ε , ϕε) + εa(c(·,·)
ε , ϕε,∇ϕε), (2.125)

with the contributions

f(c(·)
ε , ϕε) :=

∑
i

ξi(ϕ
(i)
ε )gi(c

(i)
ε ). (2.126)

a(c(·,·)
ε , ϕε,∇ϕε) :=

∑
i<j

γi,j(c
(i,j)
ε )ai,j(ϕε,∇ϕε), (2.127)

w(c(·,·)
ε , ϕε) :=

∑
i<j

γi,j(c
(i,j)
ε )wi,j(ϕε), (2.128)

See [57] for possible choices of the ai,j and the wi,j . We may then define,

δi,j(ϕε,∇ϕε) := εai,j(ϕε,∇ϕε) +
1

ε
wi,j(ϕε), (2.129)

which will be the diffuse approximation of δΓ(i,j) (in the sense of (2.123)) defined in (2.46).

As with the sharp interface model we require thermodynamic consistency in terms

of the dissipation of the energy to be non-negative. We thus have to ensure that

∂
•(vε)
t eε + eε∇ · vε +∇ · jeε ≤ 0, (2.130)

where the free energy density eε is defined in (2.125) and its flux jeε will be defined be-

low. We recall the surface tension σi,j = γi,j(c
(i,j)
ε ) − γ′i,jc

(i,j)
ε from (2.72) and define an

analogous field for the bulk excess free energy by:

λk := gk(c
(k)
ε )− g′i(c(k)

ε )c(k)
ε . (2.131)

In the calculations hereafter we condense calculations with the following notation, for

a,b, c ∈ Rd and M ∈ Rd×d:

(a·M)·b =
∑
i,j

aiMijbj , a·(∇·(b⊗ c)) =
∑
i,j

ai∂j(bicj), (∇·M)·a =
∑
i,j

∂i(Mij)aj .
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We first treat the kinetic energy terms. We rewrite (∗) = 2(∗) − (∗), we apply the product

rule for two functions to the first term, and apply the product rule for three functions to the

second term. This is seen in the following calculation:

∂
•(vε)
t

(ρε
2
|vε|2

)
= 2∂

•(vε)
t

(ρε
2
|vε|2

)
− ∂•(vε)

t

(ρε
2
|vε|2

)
= 2
(vε

2
· ∂•(vε)

t

(
ρεvε) +

ρεvε
2
· ∂•(vε)

t

(
vε)
)

−
(ρεvε

2
· ∂•(vε)

t

(
vε) +

ρεvε
2
· ∂•(vε)

t

(
vε) +

|vε|2

2
· ∂•(vε)

t

(
ρε)
)

= vε · ∂•(vε)
t (ρεvε)−

|vε|2

2
∂
•(vε)
t (ρε).

Insert the balance equations (2.116) and (2.113),

vε · ∂•(vε)
t (ρεvε)−

|vε|2

2
∂
•(vε)
t (ρε)

= vε · (∇ · T ε)− ρε|vε|2(∇ · vε)−
|vε|2

2
(∇ · jε) + |vε|2(∇ · jε) +

|vε|2

2
ρε(∇ · vε).

(2.132)

We provide the differential identities:

−|vε|
2

2
(∇ · jε) = −∇ ·

( |vε|2
2
jε

)
+ (vε · ∇vε) · jε, (2.133)

|vε|2(∇ · jε) = vε · (∇ · (vε ⊗ jε))− (vε · ∇vε) · jε, (2.134)

vε ·
(
∇ · T ε

)
= ∇ ·

(
T⊥ε vε

)
− T ε : ∇vε, (2.135)

vε ·
(
∇ · (vε ⊗ jε)

)
= ∇ ·

(
(vε ⊗ jε)⊥vε

)
− (vε ⊗ jε) : ∇vε. (2.136)

Insert (2.133) and (2.134) into (2.132), to give the following equality:

vε · (∇ · T ε)−
|vε|2

2
(∇ · jε) + |vε|2(∇ · jε)−

|vε|2

2
ρε(∇ · vε)

= vε · (∇ · T ε)−∇ ·
( |vε|2

2
jε

)
+ (vε · ∇vε) · jε + vε ·

(
∇ · (vε ⊗ jε)

)
− (vε · ∇vε) · jε − ρε

|vε|2

2
(∇ · vε),
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then insert (2.135) and (2.136), for the equality:

vε · (∇ · T ε)−∇ ·
( |vε|2

2
jε

)
+ vε ·

(
∇ · (vε ⊗ jε)

)
− ρε

|vε|2

2
(∇ · vε)

= ∇ ·
(

(T⊥ε + (vε ⊗ jε)⊥)vε −
|vε|2

2
jε

)
− (T ε + vε ⊗ jε) : ∇vε − ρε

|vε|2

2
(∇ · vε).

(2.137)

We now deal with the free energy densities that depend on the bulk and interface surfactant

concentration. However, for brevity, we drop dependence on the phase field and surfactant

concentrations from the notation. For the other energy contribution,

∂
•(vε)
t

(
f +

1

ε
w + εa

)
=
∑
i

g′i∂
•(vε)
t (c(i)

ε )ξi + giξ
′
i∂
•(vε)
t ϕ(i)

ε

+
∑
i<j

γ′i,j∂
•(vε)
t (c(i,j)

ε )1
εwi,j + γi,j

∑
k

1
ε∂ϕ(k)

ε
wi,j∂

•(vε)
t ϕ(k)

ε

+
∑
i<j

γ′i,j∂
•(vε)
t (c(i,j)

ε )εai,j

+
∑
i<j

γi,j
∑
k

ε
(
∂
ϕ
(k)
ε
ai,j∂

•(vε)
t ϕ(k)

ε + ∂∇ϕ(k)
ε
ai,j · ∂•(vε)

t (∇ϕ(k)
ε )
)

=
∑
i

g′i∂
•(vε)
t (c(i)

ε ξi) + (gi − g′ic(i)
ε )ξ′i∂

•(vε)
t ϕ(i)

ε

+
∑
i<j

γ′i,j∂
•(vε)
t

(
c(i,j)
ε (1

εwi,j + εai,j)
)

+
∑
i<j

(
γi,j − c(i,j)

ε γ′i,j
)∑

k

1
ε∂ϕ(k)

ε
wi,j∂

•(vε)
t ϕ(k)

ε

+
∑
i<j

(
γi,j − c(i,j)

ε γ′i,j
)∑

k

ε
(
∂
ϕ
(k)
ε
ai,j∂

•(vε)
t ϕ(k)

ε + ∂∇ϕ(k)
ε
ai,j · ∂•(vε)

t (∇ϕ(k)
ε )
)
.

(2.138)

We provide the differential identity:

∂
•(vε)
t (∇ϕ(k)

ε ) = ∇∂•(vε)
t ϕ(k)

ε − (∇vε)⊥∇ϕ(k)
ε ,
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then inserting this and using the definitions (2.129) and (2.19):

(
γi,j − c(i,j)

ε γ′i,j
)
ε∂∇ϕ(k)

ε
ai,j · ∂•(vε)

t (∇ϕ(k)
ε )
)

=σi,j∂∇ϕ(k)
ε
δi,j ·

(
∇∂•(vε)

t ϕ(k)
ε − (∇vε)⊥∇ϕ(k)

ε

)
=∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j∂

•(vε)
t ϕ(k)

ε

)
−∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)
∂
•(vε)
t ϕ(k)

ε

− σi,j∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j : ∇vε.

Therefore, we continue the calculation (2.138) using (2.19) and (2.131)

∂
•(vε)
t

(
f +

1

ε
w + εa

)
(2.139)

=
∑
i

g′i∂
•(vε)
t (ξic

(i)
ε ) +

∑
i<j

γ′i,j∂
•(vε)
t (δi,jc

(i,j)
ε )

+
∑
i

λiξ
′
i∂
•(vε)
t ϕ(i)

ε

+
∑
i<j

∑
k

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
))
∂
•(vε)
t ϕ(k)

ε

+
∑
i<j

∑
k

∇ ·
(
σi,j∂∇ϕ(k)

ε
δi,j∂

•(vε)
t ϕ(k)

ε

)
− σi,j∇ϕ(k)

ε ⊗ ∂∇ϕ(k)
ε
δi,j : ∇vε,

which, when inserting the balance equations (2.118), (2.119) and (2.110), yields

∂
•(vε)
t

(
f +

1

ε
w + εa

)
(2.140)

= −
∑
i

g′i

(
∇ · (ξij(i)

c,ε) + ξic
(i)
ε ∇ · vε +

∑
j 6=i

δi,jq
(i,j)
ad,ε )

)
−
∑
i<j

γ′i,j

(
∇ · (δi,jj(i,j)

c,ε ) + δi,jc
(i,j)
ε ∇ · vε − δi,jq(i,j)

ad,ε − δj,iq
(j,i)
ad,ε

)
−
∑
i<j

γ′i,j
∑
i<j<k

τi,j,kq
(i,j,k)
ad,ε

−
∑
i

λiξ
′
i (∇ · j

ϕ
(i)
ε

+ ϕ(i)
ε ∇ · vε)

−
∑
i<j

∑
k

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
))

(∇ · j
ϕ
(k)
ε

+ ϕ(k)
ε ∇ · vε)

+
∑
i<j

∑
k

∇ ·
(
σi,j∂∇ϕ(k)

ε
δi,j∂

•(vε)
t ϕ(k)

ε

)
− σi,j∇ϕ(k)

ε ⊗ ∂∇ϕ(k)
ε
δi,j : ∇vε
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=∇ ·
[
−
(∑

i

g′iξij
(i)
c,ε +

∑
i<j

γ′i,jδi,jj
(i,j)
c,ε

)
−
∑
k

(
λkξ
′
k +

∑
i<j

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)))
j
ϕ
(k)
ε

+
∑
k

∑
i<j

(
σi,j∂∇ϕ(k)

ε
δi,j∂

•(vε)
t ϕ(k)

ε

)]
+
∑
i

ξi∇g′i · j(i)
c,ε +

∑
i<j

δi,j∇γ′i,j · j(i,j)
c,ε

−
∑
i 6=j

(
g′iδi,jq

(i,j)
ad,ε − γ

′
i,jδi,jq

(i,j)
ad,ε

)
−
∑
i<j

γ′i,j
∑
k 6=i,j

τi,j,kq
(i,j,k)
ad,ε

+
∑
k

(
λkξ
′
k +

∑
i<j

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)))
· j

ϕ
(k)
ε

−
[∑

i

ξig
′
ic

(i)
ε +

∑
i<j

δi,jγ
′
i,jc

(i,j)
ε

]
∇ · vε

−
[∑

k

(
λkϕ

(k)
ε ξ′k + ϕ(k)

ε

∑
i<j

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)))]
∇ · vε

−
∑
k

∑
i<j

σi,j∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j : ∇vε. (2.141)

Defining

jeε := − (T⊥ε + (vε ⊗ jε)⊥)vε −
|vε|2

2
jε

+
(∑

i

g′iξij
(i)
c,ε +

∑
i<j

γ′i,jδi,jj
(i,j)
c,ε

)
+
∑
k

(
λkξ
′
k +

∑
i<j

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)))
j
ϕ
(k)
ε

−
∑
k

∑
i<j

(
σi,j∂∇ϕ(k)

ε
δi,j∂

•(vε)
t ϕ(k)

ε

)
,

then we obtain from (2.137) and (2.141) that

∂
•(vε)
t eε + eε∇ · vε +∇ · jeε
=
∑
i

ξi∇g′i · j(i)
c,ε +

∑
i<j

δi,j∇γ′i,j · j(i,j)
c,ε (2.142)

−
∑
i 6=j

(g′i − γ′i,j)δi,jq
(i,j)
ad,ε −

∑
k 6=i,j

γ′i,jτi,j,kq
(i,j,k)
ad,ε (2.143)

+
∑
k

(
λkξ
′
k +

∑
i<j

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)))
· j

ϕ
(k)
ε

(2.144)
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+
(∑

i

ξiλi +
∑
i<j

δi,jσi,j

)
∇ · vε (2.145)

−
[∑

k

(
λkϕ

(k)
ε ξ′k + ϕ(k)

ε

∑
i<j

(
σi,j∂ϕ(k)

ε
δi,j −∇ ·

(
σi,j∂∇ϕ(k)

ε
δi,j
)))]
∇ · vε (2.146)

−
(
T ε + vε ⊗ jε +

∑
k

∑
i<j

σi,j∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j

)
: ∇vε. (2.147)

2.2.4 Constitutive assumptions and boundary conditions

The calculations resulting in (2.142) – (2.147) motivate the following assumptions to ensure

non-negative dissipation of energy is nonnegative. First we choose the surfactant fluxes due

to the terms of (2.142):

j(i)
c,ε = −M (i)

c ∇g′i(c(i)
ε ),

j(i,j)
c,ε = −M (i,j)

c ∇γ′i,j(c(i,j)
ε ),

with mobilities M (i)
c and M (i,j)

c as in (2.32) and (2.33), respectively. Furthermore we as-

sume that, due to (2.144):

j
ϕ
(k)
ε

:= −
M∑
l=1

L(k,l)∇µ(l)
ε ,

where,

µ(l)
ε := λlξ

′
l +
∑
i<j

(
σi,j(c

(i,j)
ε )∂

ϕ
(l)
ε
δi,j −∇ ·

(
σi,j(c

(i,j)
ε )∂∇ϕ(l)

ε
δi,j
))
, (2.148)

with mobilities L(k,l) that may depend on ϕε and c(·)
ε , c

(·,·)
ε . L(k,l) forms a symmetric posi-

tive semi-definite matrix, and satisfies

M∑
k=1

L(k,l)(ϕε, c
(·)
ε , c

(·,·)
ε ) = 0 ∀ϕε ∈ ΣM , and c(·)

ε ∈ RM , c(·,·)
ε ∈ RM,M , (2.149)

which ensures that (2.103) is fulfilled during the evolution. For the surfactant terms, we

have already chosen the forms for q(i,j)
ad,ε , q(i,j,k)

ad,ε in (2.120) and (2.121) respectively. These

ensure that the terms in (2.143) have the correct sign. In fact, over a small test volume V

these dissipative terms coincide with those obtained if we had written the integrals (2.41),

(2.42) replacing δΓ(i,j) , τT (i,j,k) with δi,j ,τi,j,k. This validates our choice from the perspec-

tive of thermodynamic considerations.

Finally, by considering terms in (2.145) – (2.147), and the defintion (2.148), the
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stress tensor is assumed to be:

T ε := T̄ ε − vε ⊗ jε −
∑
k

∑
i<j

σi,j∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j

+
(∑

k

(
ξkλk − µ(k)

ε ϕ(k)
ε

)
+
∑
i<j

δi,jσi,j

)
I,

with the symmetric tensor:

T̄ ε := − p̃εI + 2η(ϕε)D(vε),

with a pressure p̃ε and where η(ϕε) is a non-negative smooth interpolation function between

the viscosities of the pure fluids, i.e., η(ϕ
(1)
ε , . . . , ϕ

(M)
ε ) = η(i) if ϕ(i)

ε = 1 (and then

ϕ
(j)
ε = 0 for j 6= i by (2.103)).

One can simplify the expression that is multiplying the identity tensor I , by absorb-

ing it into the pressure. We choose to not absorb the terms that are required in the asymptotic

analysis to identify leading order terms in ε in interfacial regions (see the forthcoming [42]).

One can also see this in the two phase case in [54]. Setting

pε := p̃ε −
∑
k

(
µ(k)
ε ϕ(k)

ε − ξkλk
)
,

we obtain

T ε = − pεI + 2η(ϕε)D(vε)− vε ⊗ jε

+
∑
i<j

σi,j

(
δi,jI −

∑
k

∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j

)
. (2.150)

Remark 2.2.6. Notice that the term multiplying the identity tensor in (2.150) is the Ko-

rteweg stress [82]. This can be seen due to the definition of the phase field (2.102) is linear

in the density ρ(i)
ε , and due the definition of δi,j (2.129). In particular, if we take

ai,j(ϕε,∇ϕε) = ai,j(∇ϕε) = ai,j(∇ϕ(1)
ε , . . . ,∇ϕ(M)

ε ) =: ãi,j(∇ρ(1)
ε , . . . ,∇ρ(M)

ε ),

and similarly denote

wi,j(ϕε) =: w̃i,j(ρ
(1)
ε , · · · , ρ(M)

ε ).

Then, due to the two homogeneity of ai,j in∇ϕ(∗)
ε (see Section 2.2.2), within each interfacial
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region the bracketed stress term in (2.150) can be viewed as

δi,jI −
∑
k

∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j =

(∑
k

αk|∇ρ(k)
ε |2 + w̃i,j(ρ

(1)
ε , · · · , ρ(M)

ε )
)
I

−
∑
k

βk∇ρ(k)
ε ⊗∇ρ(k)

ε (2.151)

for constants ak, βk. This form expressed through the fluid density is now more recognisable

as the Korteweg stress term.

Natural boundary conditions in ∂Ω arise from assuming a closed system so there

are no mass and energy fluxes into or out of the domain. For the fluid flow they read as in

the sharp interface model (2.53), (2.54),

vε · νΩ = 0, on ∂Ω, (2.152)

T ε · νΩ = 0 on ∂Ω. (2.153)

For the phase field, the natural conditions are

j
ϕ
(k)
ε
· νΩ = 0, on ∂Ω (2.154)

∂∇ϕ(k)
ε
δi,j · νΩ = 0, on ∂Ω (2.155)

for all k, l = 1, . . . ,M where (2.154) ensures a no-flux condition for the j
ϕ
(k)
ε

and, (see

the asymptotics presented in [54]) (2.155) is related to angles between the interface Γ(i,j)

and the external boundary ∂Ω. In order to guarantee a no-flux boundary condition for the

surfactant mass one may assume that

j(i)
c,ε · νΩ = 0 on ∂Ω, (2.156)

j(i,j)
c,ε · νΩ = 0 on ∂Ω. (2.157)

2.2.5 Summary of diffuse interface model with general sorption

Summarising the phase field equations we have a Cahn-Hilliard type system for the phase

fields of the form

∂
•(vε)
t ϕ(k)

ε = −∇ · j
ϕ
(k)
ε
, (2.158)

j
ϕ
(k)
ε

= −
∑
l

L(k,l)∇µ(l)
ε , (2.159)

µ(l)
ε = λlξ

′
l +
∑
i<j

(
σi,j(c

(i,j)
ε )∂

ϕ
(l)
ε
δi,j −∇ ·

(
σi,j(c

(i,j)
ε )∂∇ϕ(l)

ε
δi,j
))
, (2.160)
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for k, l = 1, . . . ,M . It is coupled to a system of equations for the surfactant

∂
•(vε)
t

(
ξic

(i)
ε

)
= −∇ · (ξij(i)

c,ε)−
∑
j : j 6=i

δi,jq
(i,j)
ad,ε , (2.161)

∂
•(vε)
t

(
δi,jc

(i,j)
ε

)
= −∇ · (δi,jj(i,j)

c,ε ) + δi,jq
(i,j)
ad,ε + δj,iq

(j,i)
ad,ε

+
∑
i<j<k

τi,j,kq
(i,j,k)
ad,ε , (2.162)

j(i)
c,ε = −ξiM (i)

c ∇g′i, j(i,j)
c,ε = −δi,jM (i,j)

c ∇γ′i,j , (2.163)

q
(i,j)
ad,ε = − 1

αi,j
(γ′i,j(c

(i,j)
ε )− g′i(c(i)

ε )), (2.164)

q
(i,j,k)
ad,ε = βj,k↔i,j(γ

′
i,j(c

(i,j)
ε )− γ′j,k(c(j,k)

ε ))

+ βk,i↔i,j(γ
′
i,j(c

(i,j)
ε )− γ′k,i(c(k,i)

ε )), (2.165)

while the fluid flow is subject to the Navier-Stokes system

∇ · vε = 0, (2.166)

∂
•(vε)
t (ρεvε) = ∇ ·

(
− pεI + 2η(ϕε)D(vε)− vε ⊗

∑
k

ρ(k)j
ϕ
(k)
ε

)
+∇ ·

(∑
i<j

σi,j(c
(i,j)
ε )

(
δi,jI −

∑
k

∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j

))
. (2.167)

For completion of the problem, boundary conditions as discussed in Section 2.2.4

and suitable initial conditions have to be imposed.

Remark 2.2.7. We may reform the capilliary forcing of the Navier-Stokes equations using

(2.148). Starting with∑
k

µ(k)
ε ∇ϕ(k)

ε

=
∑
k

∑
i<j

(
−∇ · (σi,j∂∇ϕ(k)

ε
δi,j)∇ϕ(k)

ε + σi,j∂ϕ(k)
ε
δi,j∇ϕ(k)

ε

)
+ λkξ

′
k∇ϕ(k)

ε

=
∑
i<j

(
−∇ · (σi,j

∑
k

∂∇ϕ(k)
ε
δi,j)∇ϕ(k)

ε + σi,j
∑
k

∂
ϕ
(k)
ε
δi,j∇ϕ(k)

ε

)
+
∑
k

λk∇ξk

=
∑
i<j

(
∇ · (−σi,j

∑
k

∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j) + σi,j∇δi,j

)
+
∑
k

λk∇ξk

= ∇ · (
∑
i<j

σi,j(δi,jI −
∑
k

∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j))−

∑
i<j

δi,j∇σi,j +
∑
k

λk∇ξk,
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and rearranging we find that

∇·(
∑
i<j

σi,j(δi,jI−
∑
k

∂∇ϕ(k)
ε
δi,j⊗∇ϕ(k)

ε )) =
∑
k

µ(k)
ε ∇ϕ(k)

ε +
∑
i<j

δi,j∇σi,j−
∑
k

λk∇ξk,

which can be substituted into the momentum equation for Navier-Stokes to give:

∂
•(vε)
t (ρεvε) = ∇ ·

(
− pεI + 2η(ϕε)D(vε)− vε ⊗

∑
k

ρ(k)j
ϕ
(k)
ε

)
+
∑
k

µ(k)
ε ∇ϕ(k)

ε +
∑
i<j

δi,j∇σi,j −
∑
k

λk∇ξk. (2.168)

The form (2.168) is significantly easier to deal with during implementation compared with

(2.167), and more clearly demonstrates the origin and behaviour of the forces acting on the

fluid.

A possible form for τi,j,k that we could take is:

τi,j,k := Ci,j,k(ϕ
(i)
ε )2(ϕ(j)

ε )2(ϕ(k)
ε )2 (2.169)

for a suitable constant Ci,j,k > 0. This is a bubble function that is only present, where all

three phases i, j, k are present. Therefore it is positive in regions where there are third phase

contributions along an interface. The study presented here focuses henceforth, in Section

2.2.6 and Chapter 4, in the case of local equilibrium. This leads to the surfactant equation

(2.122) that does not feature such functions τi,j,k. We shall leave the consideration of the

form of the regularized distribution to future studies.

2.2.6 Instantaneous sorption

For the case of instantaneous sorption, we approximate the energy (2.18) by the following

form:

Eε :=

∫
Ω
eε, eε :=

ρε
2
|vε|2 + f(qε, ϕε) +

1

ε
w(qε, ϕε) + εa(qε, ϕε,∇ϕε). (2.170)

The free energy contributions a(qε, ϕε,∇ϕε), w(qε, ϕε), f(qε, ϕε) are defined as in the

general sorption case, (2.127), (2.128), (2.126), the difference being that we replace c(i)
ε

and c(i,j)
ε , with c(i)

ε (qε) and c(i,j)
ε (qε). We continue through calculations as in Section 2.2.3

to determine the flux jeε satisfying (2.130). We first see that (2.137) remains unchanged.

Then for the surfactant free energies, denote the instantaneous bulk field by:

λ̃k(qε) := gk(c
(k)
ε (qε))− qεc(k)

ε (qε). (2.171)
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The calculations prompt the energy flux definition,

jeε = − (T⊥ε + (vε ⊗ jε)⊥)vε −
|vε|2

2
jε

+ qε
(∑

i

ξij
(i)
c,ε +

∑
i<j

δi,jj
(i,j)
c,ε

)
+
∑
k

(
λ̃kξ
′
k +

∑
i<j

(
σ̃i,j∂ϕ(k)

ε
δi,j −∇ ·

(
σ̃i,j∂∇ϕ(k)

ε
δi,j
)))
j
ϕ
(k)
ε

−
∑
k

∑
i<j

(
σ̃i,j∂∇ϕ(k)

ε
δi,j∂

•(vε)
t ϕ(k)

ε

)
,

which gives the following energy dissipation:

∂
•(vε)
t eε + eε∇ · vε +∇ · jeε

=
∑
i

ξi∇qε · j(i)
c,ε +

∑
i<j

δi,j∇qε · j(i,j)
c,ε

+
∑
k

(
λ̃kξ
′
k +

∑
i<j

(
σ̃i,j∂ϕ(k)

ε
δi,j −∇ ·

(
σ̃i,j∂∇ϕ(k)

ε
δi,j
)))
· j

ϕ
(k)
ε

+
[∑

i

ξiλ̃i +
∑
i<j

δi,j σ̃i,j

]
∇ · vε

−
[∑

k

(
λ̃kϕ

(k)
ε ξ′k + ϕ(k)

ε

∑
i<j

(
σ̃i,j∂ϕ(k)

ε
δi,j −∇ ·

(
σ̃i,j∂∇ϕ(k)

ε
δi,j
)))]
∇ · vε

−
(
T ε + vε ⊗ jε +

∑
k

∑
i<j

σ̃i,j∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j

)
: ∇vε. (2.172)

Equation (2.172) motivates the following constitutive assumptions to ensure energy dissi-

pation:

j(i)
c,ε := −M (i)

c ∇qε,

j(i,j)
c,ε := −M (i,j)

c ∇qε.

The mass flux of the phase field j
ϕ
(k)
ε

, and the fluid stress tensor T ε differ notationally as

c
(·)
ε := c

(·)
ε (qε), c

(·,·)
ε := c

(·,·)
ε (qε) from (2.71).

Finally, the boundary conditions (2.152)-(2.155) remain but we substitute (2.156)

with:

0 = ∇qε · νΩ. (2.173)
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2.2.7 Summary of diffuse interface model with instantaneous sorption

Summarising we have a Cahn-Hilliard type system for the phase fields of the form:

∂
•(vε)
t ϕ(k)

ε = −∇ · j
ϕ
(k)
ε
, (2.174)

j
ϕ
(k)
ε

= −
∑
l

L(k,l)∇µ(l)
ε , (2.175)

µ(l)
ε = λ̃lξ

′
l +
∑
i<j

(
σ̃i,j∂ϕ(l)

ε
δi,j −∇ ·

(
σ̃i,j∂∇ϕ(l)

ε
δi,j
))
, (2.176)

for k, l = 1, . . . ,M . It is coupled to an equation for the surfactant:

∂
•(vε)
t

(∑
i

ξic
(i)
ε (qε) +

∑
i<j

δi,jc
(i,j)
ε (qε)

)
= −∇ · jqε , (2.177)

jqε = −
(∑

i

ξiM
(i)
c ∇qε +

∑
i<j

δi,jM
(i,j)
c ∇qε

)
, (2.178)

while the fluid flow is subject to the Navier-Stokes system:

∇ · vε = 0, (2.179)

∂
•(vε)
t (ρεvε) = ∇ ·

(
− pI + 2η(ϕε)D(vε)− vε ⊗

∑
k

ρ(k)j
ϕ
(k)
ε

)
+∇ ·

(∑
i<j

σ̃i,j

(
δi,j −

∑
k

∇ϕ(k)
ε ⊗ ∂∇ϕ(k)

ε
δi,j

)
I
)
. (2.180)

For completion of the problem, boundary conditions as discussed in Section 2.2.6

and suitable initial conditions have to be imposed.

2.2.8 Forms of the energy functional

We observed in Section 2.2.2 that due to [120, 55], the Ginzburg-Landau energy density

satisfies the reduced minimization problem (2.124). Following the work of [121] we re-

quire further admissibility conditions on the multiwell potential and gradient parts of the

energy density to ensure there is a form of model reduction away from triple junctions. In

particular, we require that within any interfacial region between two phases and away from

a junction, there are contributions from a third phase present.

Multiwell potential admissibility criteria:

w̌(ϕε) ≥ 0, w̌(ϕε) = 0 ⇔ ϕε ∈ {e1, . . . , eM}, (2.181)

w̌(tei + (1− t)ej) = wi,jt
2(1− t)2 ∀t ∈ [0, 1], ∀i, j ∈ {1, . . . ,M}, (2.182)
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where ek are the corners of the Gibbs’ simplex ΣM (2.104) .

Gradient energy admissibility criteria:

ǎ(ϕε, A) ≥ 0, ǎ(ϕε, ηA) = η2ǎ(ϕε, A), ∀ϕε ∈ ΣM , A ∈ (TΣM )d, η ∈ R, (2.183)

and the following function,

ǎi,j(ν
(i,j)) := ǎ(tei + (1− t)ej , (ej − ei)⊗ ν(i,j)), (2.184)

is independent of t ∈ [0, 1], ∀i, j ∈ {1, . . . ,M}.

The admissibility criteria allow the minimization problem (2.124) to be rewritten as

γ̌i,j(ν
(i,j)) = inf

ψ

{∫
R
ǎ(ψ, ∂zψ ⊗ ν(i,j)) + w̌(ψ)dz

∣∣∣
ψ : R→ ΣM Lipschitz , lim

z→−∞
ψ(z) = ei, lim

z→∞
ψ(z) = ej

}
. (2.185)

In [121] the author proves that a function ψ̌ of the form

ψ̌(z) = χ(z)ei + (1− χ(z))ej , where χ(z) =
1

2

(
1 + tanh

(√ w̌i,j

ǎi,j(ν(i,j))

z

2

))
,

satisfies the Euler-Lagrange equations associated to the minimisation problem (2.124). If ψ̌

is also a solution to (2.185) then one can recover the surface energy:

γ̌i,j(ν
(i,j)) =

1

3

√
ǎi,j(ν(i,j))w̌i,j .

In general it is nontrivial to construct the functions a and w satisfying the minimization

problem (2.124) or even (2.185), see [121]; it is easier to find specific forms ǎ, w̌ for a, w,

which satisfy the admissibility criteria (2.181)-(2.184).

Choice of Stinner

The general choices made in [121], are given as follows:

a(ϕε,∇ϕε) =
∑
i<j

bi,j(si,j(ϕ
(i)
ε ∇ϕ(j)

ε − ϕ(j)
ε ∇ϕ(i)

ε ))2,
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where bi,j > 0 with bi,j = bj,i, and si,j : Rd → R, a 1-homogenous function with si,j(ν) >

0, for ν ∈ Sd−1, is an admissible gradient energy density,

w(ϕε) = 9
∑
i<j

bi,j(ϕ
(i)
ε )2(ϕ(j)

ε )2
(

1 +
∑
k 6=i,j

ϕ(k)
ε

)
+
∑
i<j<k

bi,j,k(ϕ
(i)
ε )2(ϕ(j)

ε )2(ϕ(k)
ε )2.

This is a sixth order polynomial potential which is an admissible multiwell potential. For

large enough bijk > 0, additionally one can remove the “third phase contributions” dis-

cussed in Section 2.2.2 for M = 3 phases.

Remark 2.2.8. For M ≥ 4 we observe the presence of other phases in the triple junction.

These will not effect the energy of the system, which relies on interfacial quantities only,

however they can be controlled by adding in higher order terms as a penalty to the potential,

for example, one could use

w(ϕε) = 9
∑
i<j

bi,j(ϕ
(i)
ε )2(ϕ(j)

ε )2
(

1 +
∑
k 6=i,j

ϕ(k)
ε

)
+
∑
i<j<k

bi,j,k(ϕ
(i)
ε )2(ϕ(j)

ε )2(ϕ(k)
ε )2

+
∑

i<j<k<l

bi,j,k,l(ϕ
(i)
ε )2(ϕ(j)

ε )2(ϕ(k)
ε )2(ϕ(l)

ε )2,

for bi,j,k,l > 0 sufficiently large.

Note that we have

γi,j(ν) = bi,jsi,j(ν).

With inclusion of surfactants, one can define bi,j = bi,j(c
(i,j)), then define

a(c(·,·), ϕε,∇ϕε) :=
∑

i,j=1,...,M
i<j

γi,j(c
(i,j)
ε ) |ϕ(i)

ε ∇ϕ(j)
ε − ϕ(j)

ε ∇ϕ(i)
ε |2︸ ︷︷ ︸

=:ai,j(ϕ
(i)
ε ,ϕ

(j)
ε ,∇ϕ(i)

ε ,∇ϕ(j)
ε )

, (2.186)

w(c, ϕε) :=
∑

i,j=1,...,M
i<j

γi,j(c
(i,j)
ε ) (wi,j(ϕ

(i)
ε , ϕ

(j)
ε ) + w̃i,j(ϕε))︸ ︷︷ ︸

=:wi,j(ϕε)

,

f(c, ϕε) :=
∑

i=1,...,M

ξi(ϕ
(i)
ε )Gi(c

(i)
ε ). (2.187)

In particular w and a satisfy the conditions required to form an admissable multiwell po-

tential and admissable gradient term.

Choice of Boyer, Lapuerta and Minjeaud

During subsequent implementation in Chapter 4 we frequently make use of a particular

choice of a, w for an M = 3 phase Cahn-Hilliard system. This is a construction that
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satisfies the admissibility criteria of Section 2.2.8, and can be identified with the model

investigated in [21, 23] with further choice of the mobility matrix (2.159). We take a and w

to be:

w(qε, ϕε) =
∑
i<j

σ̃i,jwi,j(ϕε), a(qε, ϕε,∇ϕε) =
∑
i<j

σ̃i,jai,j(ϕε,∇ϕε), (2.188)

with the following choice for the multiwell potential,

wi,j(ϕε) =12
(

(ϕ(i)
ε )2(ϕ(j)

ε )2 +
∑
k 6=i,j

(
ϕ(j)
ε ϕ(k)

ε (ϕ(i)
ε )2 + ϕ(i)

ε ϕ
(k)
ε (ϕ(j)

ε )2 − ϕ(i)
ε ϕ

(j)
ε (ϕ(k)

ε )2

+
1

3
Λ(ϕ(i)

ε )2(ϕ(j)
ε )2(ϕ(k)

ε )2
))
. (2.189)

We take the constant Λ ≥ 0. This regularisation term is of sixth order and helps to pre-

vent the leaking of third phase contributions between two other phases outside of the triple

junction regions. Note that this is a specific form of (2.187). We choose the gradient term

as:

ai,j(∇ϕε) =
3

8
(|∇ϕ(i)

ε |2 + |∇ϕ(j)
ε |2 −

∑
k 6=i,j

|∇ϕ(k)
ε |2), (2.190)

which is a different construction to (2.186). For the operator L in the setting of Section

2.2.7 we choose a qε dependent matrix defined as follows:

L(k,l)(qε) =

−
McS̄(qε)

3Sk(qε)Sl(qε) , for l 6= k,∑
i 6=l

McS̄(qε)
3Si(qε)Sl(qε) , for k = l.

(2.191)

Where the functions Sk(qε) = σ̃i,k(qε) + σ̃j,k(qε)− σ̃i,j(qε), where Sk(qε) = −S(i,j,k)(qε)

from (2.37) their harmonic average is given by S̄ =
∑3

i=1
3

Si(qε) , and finally we take a

constant mobility parameter Mc. It can be shown that these choices lead to the following

Cahn-Hilliard system for all i = 1, 2, 3

∂tϕ
(i)
ε = ∇ ·

( Mc

Si(qε)
∇µ(i)

ε

)
, (2.192)

µ(i)
ε = −3

4
εSi(qε)∆ϕ

(i)
ε +

4S̄

ε
DiF (ϕε), (2.193)

where,

DiF (ϕε) =
∑
j 6=i

1

Sj(qε)

(
F (ϕε),ϕ(i)

ε
−F (ϕε),ϕ(j)

ε

)
.
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2.2.9 A note regarding asymptotic analysis

The recovery of the sharp interface model (2.58) – (2.36) (with initial and boundary con-

ditions) from the diffuse model (2.158) – (2.167) as ε → 0 is completed in an asymptotic

analysis (a good introduction can be found in [49]). We shall not consider it here as the

focus of this thesis is on the derivation and implementation of schemes for the flows, and

not the reconstruction techniques. The difficulties and details have been carried out and

shall be presented in a forthcoming paper [42] that generalises the work of [54] to M ≥ 3.
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Chapter 3

Numerical Schemes

3.1 Fractional-theta scheme for Cahn-Hilliard Navier-Stokes prob-
lem

In this chapter we derive the numerical scheme for the diffuse interface model of Section

2.2. In particular we focus on the time discretisation for the following two phase Cahn-

Hilliard Navier-Stokes system.

Problem 3.1.1. Find {vε(x, t), pε(x, t), µε(x, t), ϕε(x, t)}, such that:

∂tϕε + vε · ∇ϕε = ∆µε, in Ω× (0, T ),

µε + ε∆ϕε −
1

ε
F ′(ϕε) = 0, in Ω× (0, T ),

∂tvε − η∆vε + vε · ∇vε +∇pε = f + µε∇ϕε, in Ω× (0, T ),

∇ · vε = 0, in Ω× (0, T ),

v = g, on ∂Ω× [0, T ],

∇ϕε · νΩ = 0, on ∂Ω× [0, T ],

∇µε · νΩ = 0, on ∂Ω× [0, T ],

where F (ϕε) is a smooth double well potential with minima at 0 and 1, and f : Ω×[0, T ]→
Rd is a body force. This is complete with initial conditions,

vε(x, t) = vε0(x), ϕε(x, 0) = ϕε0(x),

where {vε0, pε0, µε0, ϕε0} are given functions. To avoid additional boundary terms for the

phase fields, we take g · νΩ = 0, that is, a tangential flow condition for the velocity. This

may be extended to a zero net flow condition where g only satisfies
∫
∂Ω g · νΩ = 0.
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There is substantial literature for time discretisation schemes of this coupled prob-

lem, some examples include [53, 95, 91] (further introduction is given in Section 1.2.2).

The offered schemes are often based on exploitating the thermodynamic framework of the

continuous problem in Section 2.2 for the discrete in time problem. To acheive this, in-

telligent discretisation of the Cahn-Hilliard system is required, but often is coupled to a

simple first order in time (or multistep for formally second order [53]) scheme for Navier-

Stokes. By preserving a discrete energy inequality (reflecting the continuous setting) one

obtains natural unconditional stability for the scheme, however this comes at the cost of a

first order scheme.

The idea of this chapter is to present a second order accurate in time scheme, which

is motivated from a Navier-Stokes solver through a more involved operator splitting tech-

nique than seen in aforementioned literature. The fractional-theta scheme [26, 60] is well

known for its robustness properties compared to other second order accurate methods such

as Crank-Nicholson based schemes, we provide some validation of why this is true with an

example in Remark 3.1.2. A comparison to some other schemes for Navier-Stokes has been

carried out by Turek [134].

We first present the scheme we have chosen in an abstract form. Then we shall for-

mulate the full discretisation scheme, derived from a weak formulation of Problem 3.1.1. In

Section 3.2.3 construct an energy inequality for the coupled scheme for matched densities,

relying upon dependence between the spatial and time discretisation parameters. These re-

strictions are identical to the Navier-Stokes fractional-theta scheme [81]. We consider the

extension to multiple phases in Section 3.3. In Section 3.4 we will construct a scheme for a

flow with different densities in each fluid, and demonstrate that this is indeed second order

accurate in time. We also consider and extension for the inclusion of surfactants in Section

3.5, which we shall use in our implementation. We leave the presentation of numerical

findings for the scheme until Chapter 4.

3.1.1 The abstract scheme

Consider a Hilbert space H, with an initial value problem over the time interval [0, T ]:

du
dt

+ F(u) = 0, u(0) = u0, (3.1)

with F : H → H an operator, u0 given initial value. We take F1 and F2 operators so that

we may nontrivially decompose F = F1 + F2. We say nontrivial to mean that the choices

of Fi should increase the solvability of the following subproblems:

du
dt

+ Fi(u) = f, for i = 1, 2, (3.2)
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where f is a given forcing function. The following scheme was first presented in [26]

motivated by work in [124]. First we set up the time discretisation, take θ ∈ (0, 1
2), let θ̃ =

1− θ, and denote the timestep size by ∆t. We use the notation fk = f(tk) and tk = k∆t.

Let T = N∆t, then for any n ∈ {0, . . . , N − 1} we split the interval [n∆t, (n+ 1)∆t] into

three sub intervals and solve the following time discrete problems:

1. For [n∆t, (n+ θ)∆t], solve the substep tn → tn+θ,

un+θ − un

θ∆t
+ F1(un+θ) = −F2(un). (3.3)

2. For [(n+ θ)∆t, (n+ θ̃)∆t], solve the substep tn+θ → tn+θ̃,

un+θ̃ − un+θ

(θ̃ − θ)∆t
+ F2(un+θ̃) = −F1(un+θ). (3.4)

3. For [(n+ θ̃)∆t, (n+ 1)∆t], solve the substep tn+θ̃ → tn+1,

un+1 − un+θ̃

θ∆t
+ F1(un+1) = −F2(un+θ̃). (3.5)

The form of each of these steps is that of (3.2) with operatorFi and forcing functionFj(u∗),

j 6= i with t∗ the previous time substep.

Remark 3.1.2. Consider the splitting F1 = αA and F2 = βA for a time independent

positive definite symmetric matrix A and nonegative constants α + β = 1. We will briefly

state some analysis from [26, 60] (methods in [94]) for the scheme (3.2) with this choice,

with the aim of determining suitable parameter ranges for α and β. The system operators

for Step 1-3 are given by

1. un+θ = Gθ1u
n where Gθ1 = (I + αθ∆tA)−1(I − βθ∆tA),

2. un+θ̃ = Gθ̃−θ2 un+θ where Gθ̃−θ2 = (I + β(θ̃ − θ)∆tA)−1(I − α(θ̃ − θ)∆tA),

3. un+1 = Gθ3u
n+θ̃ where Gθ3 = Gθ1.

This scheme can be represented by the mulitplicative identity

un+1 = Gθ1G
θ̃−θ
2 Gθ1u

n.

Let λ1 < λ2 < . . . be the eigenvalues of A and u1, u2, . . . be a corresponding basis of

57



orthonormal eigenvectors. Choosing u0
i = ui we have

un+1
i = R(λi)u

n
i =

(1− βθ∆tλi)2(1− α(θ̃ − θ)∆tλi)
(1 + αθ∆tλi)2(1 + β(θ̃ − θ)∆tλi)

uni .

The above rational function R(x) → β
α as x → ∞, so we require α > β for stiff A-

stability. Further inspection reveals that the stronger property of unconditional stability

requires |R(x)| ≤ 1, ∀x ∈ R+ and this is satisfied when also θ ∈ [1
4 ,

1
2), 0 < α < β < 1.

The accuracy of the scheme is found by comparison of

R(x) = 1− x+
1

2
(1 + (β2 − α2)(2θ2 − 4θ + 1))x2 +O(x3),

with the solution of the linear eigenvalue problem: e−x = 1 − x + 1
2x

2 + O(x3). Second

order accuracy is obtained where (β2 − α2)(2θ2 − 4θ + 1) = 0, hence either

θ ∈
(

0,
1

2

)
, α = β =

1

2
, or θ = 1−

√
2

2
, α = 2−

√
2 β =

√
2− 1.

If α = β = 1
2 , a Crank-Nicholson type scheme, one obtains unconditionally stability for

all θ ∈ (0, 1
2) but this has problems with damping stiff systems with large values of λi

λ1
.

The latter case, a θ type scheme, with particular choice of θ that ensures that the substeps

of the scheme all have the same matrix, also has good asymptotic properties as it is “stiff

A-stable” ([26] shows these hold in the range θ ∈ [0.0873 . . . , 1
3 ]).

The most significant area of application for this particular spltting scheme is for

the Navier-Stokes equations. Presented in [26], a detailed analysis of the second order

accuracy is performed in [97] and stability and convergence analysis is carried out by [81].

The splitting is applied to the momentum balance equation, separating the incompressibility

constraint from the convection nonlinearity. Stated in a strong form, the system operator

F = −η∆v + v · ∇v +∇p− f , is split into:

F1 = −αη∆v +∇p− f , F2 = −βη∆v + v · ∇v, (0 ≤)α+ β = 1.

This results in the solving in each full timestep

1. A Stokes type problem (3.3) accounting for the incompressibility constraint and fluid

pressure.

2. A Burgers type problem (3.4) accounting for the convection nonlinearity.

3. A Stokes type problem (3.5), to enforce divergence free velocity at the end of the full
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timestep.

The steps can be seen in the as part of the fully coupled scheme in Section 3.1.2, so

we shall not detail them individually here.

3.1.2 Formulation of the coupled scheme

We focus our analysis on the scheme for time discretisation of the Problem 3.1.1. We seek to

discretise in space using a finite element method in Section 3.2.1, therefore it is convenient

to first write down the weak formulation in the continuous setting. Let Ω be a bounded

domain in Rd for d = 2, 3. For ease of notation in the equations, we encorporate boundary

conditions into the space, for any t > 0:

(H1
g (Ω))d =

{
w(·, t) ∈ (W 1,2(Ω))d

∣∣∣ w(·, t) = g(·, t) on ∂Ω
}
. (3.6)

We now express the weak formulation of the Problem 3.1.1:

Problem 3.1.3. Given initial data {vε0, ϕε0, } ∈ (H1
g (Ω))d × H1(Ω) and functions f ∈

(L2(Ω))d, g ∈ (H1(Ω))d find vε(·, t) ∈ (H1
g (Ω))d, pε(·, t) ∈ L2(Ω)/R andϕε(·, t), µε(·, t) ∈

H1(Ω) such that, for all t ∈ [0, T ]∫
Ω
ζ(∂tϕε + vε · ∇ϕε) = −

∫
Ω
∇µε · ∇ζ, ∀ ζ ∈ H1(Ω),∫

Ω
ε∇ϕε · ∇ζ +

1

ε
F ′(ϕε)ζ =

∫
Ω
µεζ, ∀ ζ ∈ H1(Ω),∫

Ω
ζ(∂tvε + vε · ∇vε) + η∇vε · ∇ζ − pε∇ · ζ =

∫
Ω
ζf + ζµε∇ϕε, ∀ ζ ∈ (H1(Ω))d,∫

Ω
ζ∇ · vε = 0, ∀ ζ ∈ L2(Ω).

Now we construct a scheme for the time discretisation of Problem 3.1.3. We gain

insight into how a coupled approach may work by looking at the methods in [36]. This

arises naturally from using a vector of functions in the framework presented in Section

3.1.1, with one component block for the fluid system, and the other component block for

the Cahn-Hilliard system. First considering the formulation of Problem 3.1.1 we define for
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α, γ ∈ [0, 1] the following operator splitting,

Fluid operator:

F1(vε, pε) = −αη∆vε +∇pε − f ,

F2(vε, ϕε, µε) = −(1− α)η∆vε + vε · ∇vε − µε∇ϕε.

Phase field operator:

G1(ϕε, µε,vε) = −γ∆µε + vε · ∇ϕε,

G2(µε) = −(1− γ)∆µε.

To convey the structure of the coupling within the scheme we state the abstract formulation

of the problem to be understood in a weak sense. This description of the scheme demon-

strates how the splitting works more clearly than seeing the weak formulation directly.

Step 1(a): Find (vn+θ
ε , pn+θ

ε ) ∈ (H1
g (Ω))d × L2(Ω), such that

vn+θ
ε − vnε
θ∆t

+ F1(vn+θ
ε , pn+θ

ε ) = −F2(vnε , ϕ
n
ε , µ

n
ε ), (3.7)

∇ · vn+θ
ε = 0.

Step 1(b): Find (ϕn+θ
ε , µn+θ

ε ) ∈ H1(Ω)×H1(Ω), such that

ϕn+θ
ε − ϕnε
θ∆t

+ G1(ϕn+θ
ε , µn+θ

ε ,vn+θ
ε ) = −G2(µnε ). (3.8)

Step 2(a): Set θ̃ = 1− θ. Find (ϕn+θ̃
ε , µn+θ̃

ε ) ∈ H1(Ω)×H1(Ω), such that

ϕn+θ̃
ε − ϕn+θ

ε

(θ̃ − θ)∆t
+ G2(µn+θ̃

ε ) = −G1(ϕn+θ
ε , µn+θ

ε ,vn+θ
ε ). (3.9)

Step 2(b): Find (vn+θ̃
ε ) ∈ (H1

g (Ω))d × L2(Ω), such that

vn+θ̃
ε − vn+θ

ε

(θ̃ − θ)∆t
+ F2(vn+θ̃

ε , pn+θ̃
ε , ϕn+θ̃

ε , µn+θ̃
ε ) = −F1(vn+θ

ε , pn+θ
ε ). (3.10)

Step 3(a): Find (vn+1
ε , pn+1

ε ) ∈ (H1
g (Ω))d × L2(Ω), such that

vn+1
ε − vn+θ̃

ε

θ∆t
+ F1(vn+1

ε , pn+1
ε ) = −F2(vn+θ̃

ε , ϕn+θ̃
ε , µn+θ̃

ε ), (3.11)

∇ · vn+1
ε = 0.
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Step 3(b): Find (ϕn+1
ε , µn+1

ε ) ∈ H1(Ω)×H1(Ω), such that

ϕn+1
ε − ϕn+θ̃

ε

θ∆t
+ G1(ϕn+1

ε , µn+1
ε ,vn+1

ε ) = −G2(µn+θ̃
ε ). (3.12)

As indicated by the labelling of the different steps, the choices of operators Fi,Gi lead to

a natural decomposition of the three-step scheme into six steps. The later analysis will

still require treating the scheme as a three-step method, however this natural decoupling

greatly improves solvability and simplicity of the scheme. Indeed, the six steps are linear

equations, with two exceptions: the convection term in the Burgers type equation (3.10),

and the choice of time discretisation of the Cahn-Hilliard potential F ′ in Problem 3.1.3

(discussed in Section 3.2.3).

As stability for this scheme relies upon the spatial discretisation, we will proceed

directly into the fully discrete problem.

3.2 Stability analysis for the matched density CHNS scheme

For simplicity of notation we shall neglect all ε subscripts for variables dependent on the

phase field variable ϕε and treat them as independent quanitities.

3.2.1 Fully discrete formulation

Ideally, the stability of a time discretisation scheme can be considered ‘unconditional’.

In this case one may perform an analysis of the discretisation in time without requiring

any dependency on the spatial discretisation, and often first order schemes will yield this

property [95, 53, 119]. However, even for the Navier Stokes problem alone, this scheme

will not yield such a stability result due to the nonlinear treatment of the convection operator

required for second order accuracy [81]. We will setup the spatial discretisation for the

fully coupled problem, and investigate whether the stability constraint assumed in [81] is

sufficient for stability. Two such results for a convection diffusion equation [35] and a

viscoelastic flow [36] have been shown.

The spatial discretisation is taken as a mixed finite element formulation whose

spaces are defined below. The notation H1
h, L2

h denotes (conformal) finite element ap-
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proximations of the spaces H1, L2:

Πh(Ω) = (L2
h(Ω))/R, (3.13)

Xh(Ω) = {wh ∈ (H1
h(Ω))d | wh = g on ∂Ω}, (3.14)

X0h(Ω) = {wh ∈ (H1
h(Ω))d | wh = 0 on ∂Ω}, (3.15)

Vh(Ω) = {wh ∈ Xh | (∇ ·wh, qh) = 0, ∀qh ∈ Πh(Ω)}. (3.16)

The finite element spaces related to the saddle point problem in the Navier Stokes solver

must satisfy an ‘inf-sup’ or Ladyzhenskaya-Babuška-Brezzi condition [59], there exists

ζ ∈ R such that:

inf
qh∈Πh(Ω)

sup
wh∈Xh

(
(qh,∇h ·wh)

|qh||∇wh|

)
≥ ζ > 0, (3.17)

and with a uniform bound of the spatial grid size h over any triangulation Th of Ω:

maxT∈Th h(T )

minT̄∈Th h(T̄ )
≤ C. (3.18)

Examples of such spaces are given by P 2-P 1Taylor-Hood elements or MINI elements [9].

Over the finite element spaces, denote the natural discrete norm on L2
h as | · | that is, over

L2
h(Ωh) and (L2

h(Ωh))d respectively:

|wh| =
(∫

Ωh

(wh)2 dx
) 1

2
, |wh| =

(∫
Ωh

wh ·wh dx
) 1

2 (3.19)

and these satisfy a Poincaré and reverse Poincaré inequality:

C1| · | ≤ |∇ · | ≤ C2h
−1| · |. (3.20)

In the following we assume C1, C2 are 1 for simplicity. We denote the corresponding L2

inner products over Ωh as (·, ·) for simplicity. We have to introduce two trilinear operators,

for u,v,w ∈ (H1(Ωh))d, v, w ∈ H1(Ωh)

b(u,v,w) :=

∫
Ωh

u · ∇v ·w =

∫
Ωh

ui∂ivjwj , b̂(u, v, w) :=

∫
Ωh

wu · ∇v,

where one sums over recurring indices. For the convective term (as in [130] and [131]),

we use the skew symmetric form of the trilinear operator b and the spatial discretisation we

denote as follows.

bh(uh,vh,wh) =
1

2

(
b(uh,vh,wh)− b(uh,wh,vh)

)
∀uh,vh,wh ∈ H1

h((Ωh))d (3.21)
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which is still trilinear, continuous and satisfies

bh(uh,vh,vh) = 0 ∀uh,vh ∈ (H1
h(Ωh))d. (3.22)

The discrete form satisfies the following bound,

bh(uh,vh,wh) ≤ S(h)|uh||∇vh||wh| ∀uh,vh,wh ∈ (H1
h(Ω))d (3.23)

where S(h) = CSh
−1 in two dimensions and S(h) = CSh

− 3
2 in three dimensions for

conforming finite elements, CS independent of the spatial grid size h. Details on the bound

can be found in Appendix 6.3.

Remark 3.2.1. It is possible to formulate this analysis with nonconforming finite elements,

and one cost of this approach appears as an additional exponent S(h) = CSh
−1−δ in 2D.

We will proceed with conforming elements.

The advective operators representing the coupling terms for CHNS are of a similar

form to that of the convective terms. We represent their spatial discretisation as the operator

b̂(uh, vh, wh) for the coupling terms defined as:

b̂(uh, vh, wh) = ((uh · ∇)vh, wh)L2(Ωh), ∀uh ∈ (H1
h(Ωh))d vh, wh ∈ H1

h(Ωh).

(3.24)

This operator can be bounded as follows:

b̂(uh, vh, wh) ≤ T (h)|uh||∇vh||∇wh| ∀uh ∈ (H1
h(Ωh))d, vh, wh ∈ H1

h(Ωh), (3.25)

where T (h) = CTh
−ξ for any ξ > 0 in two dimensions and T (h) = CTh

− 1
2 in three

dimensions for conforming finite elements and CT independent of the spatial grid size h.

Details on the bound can be found in Appendix 6.3.

3.2.2 Stability inequalities

In the continuous time and space setting we have shown in Section 2.2.3 that the global

system satisfies an energy dissipation estimate. This estimate holds true for two phases

and in the case of no surfactant presence. If the numerical approximation can demonstrate

similar properties of its corresponding discrete energy, then we obtain numerical stability.

To construct such a dissipation type inequality, we first find estimates for the substeps of the

scheme (3.7) - (3.12) using the finite element formulation described in Section 3.2.1. These

are gathered in Section 3.2.3 to construct the energy estimate. Before proceeding, we list
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the most basic (in)equalities which we use the most frequently:

Young’s inequality ab ≤ a2

2δ
+
δb2

2
, ∀a, b,∈ R, δ > 0.

Rewriting products (f, g) =
1

2
(|f |2 + |g|2 − |f − g|2), ∀f, g ∈ L2(Ω),

(f, g) = −1

2
(|f |2 + |g|2 − |f + g|2), ∀f, g ∈ L2(Ω).

Cauchy Schwarz (f, g) ≤ |f ||g|, ∀f, g ∈ L2(Ω).

Step 1(a)
Given ϕnεh, µ

n
εh in H1

h, vnh ∈ Xh find vn+θ
h ∈ Vh, such that for all wh ∈ Xh:

(vn+θ
εh − v

n
εh

θ∆t
,wh

)
+ αη(∇vn+θ

εh ,∇wh)− (fn+θ
h ,wh)

= −(1− α)η(∇vnεh,∇wh)− bh(vnεh,v
n
εh,wh) + b̂(wh, ϕ

n
εh, µ

n
εh). (3.26)

Test (3.26) with wh = vn+θ
εh ∈ Vh ⊂ Xh,

1

θ∆t
|vn+θ
εh |

2 + αη|∇vn+θ
εh |

2

=
1

θ∆t
(vnεh,v

n+θ
εh )− (1− α)η(∇vnεh,∇vn+θ

εh )− bh(vnεh,v
n
εh,v

n+θ
εh )

+ b̂(vn+θ
εh , ϕnεh, µ

n
εh) + (fn+θ

h ,vn+θ
εh ). (3.27)

Rewriting products, and applying Young’s inequality and (3.20),

1

2
|vn+θ
εh |

2 +
1

2
|vn+θ
εh − v

n
εh|2 +

1 + α

2
ηθ∆t|∇vn+θ

εh |
2 +

1− α
2

ηθ∆t|∇vnεh|2

≤ 1

2
|vnεh|2 +

1− α
2

ηθ∆t|∇vn+θ
εh −∇v

n
εh|2 − θ∆tbh(vnεh,v

n
εh,v

n+θ
εh )

+ θ∆tb̂(vn+θ
εh , ϕnεh, µ

n
εh) +

θ∆t

η
|fn+θ
h |2 +

1

4
ηθ∆t|∇vn+θ

εh |
2. (3.28)

From (3.22), it holds that bh(vnεh,v
n
εh,v

n+θ
εh ) = bh(vnεh,v

n
εh,v

n+θ
εh −v

n
εh). Then (3.20) and

(3.23) yield,

1

2
|vn+θ
εh |

2 +
(1

2
− 1− α

2h2
ηθ∆t

)
|vn+θ
εh − v

n
εh|2 +

1 + 2α

4
ηθ∆t|∇vn+θ

εh |
2

+
1− α

2
ηθ∆t|∇vnεh|2

≤ 1

2
|vnεh|2 +

θ∆t

η
|fn+θ
h |2 + S(h)θ∆t|vnεh||∇vnεh||vn+θ

εh − v
n
εh|

+ θ∆tb̂(vn+θ
εh , ϕnεh, µ

n
εh), (3.29)
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and applying Young’s inequality:

1

2
|vn+θ
εh |

2 +
(1

4
− 1− α

2h2
ηθ∆t

)
|vn+θ
εh − v

n
εh|2 +

1 + 2α

2
ηθ∆t|∇vn+θ

εh |
2

+
1− α

2
ηθ∆t|∇vnεh|2

≤ 1

2
|vnεh|2 + 2(S(h)θ∆t)2|vnεh|2|∇vnεh|2 + θ∆tb̂(vn+θ

εh , ϕnεh, µ
n
εh) +

θ∆t

η
|fn+θ
h |2.

We finally bound the coupling term using (3.25) and Young’s inequality (ω > 0):

θ∆tb̂(vn+θ
εh , ϕnεh, µ

n
εh)

= θ∆t(b̂(vn+θ
εh − v

n
εh, ϕ

n
εh, µ

n
εh) + b̂(vnεh, ϕ

n
εh, µ

n
εh))

≤ 1

8
|vn+θ
εh − v

n
εh|2 +

2(T (h)θ∆t)2

ε
ε|∇ϕnεh|2|∇µnεh|2

+
T (h)2θ∆t

ωε
ε|∇ϕnεh|2|vnεh|2 + ωθ∆t|∇µnεh|2. (3.30)

We have now arrived at the stability inequality for the first substep of the scheme:

1

2
|vn+θ
εh |

2 +
(1

8
− 1− α

2h2
ηθ∆t

)
|vn+θ
εh − v

n
εh|2 +

1 + 2α

2
ηθ∆t|∇vn+θ

εh |
2

+
1− α

2
ηθ∆t|∇vnεh|2

≤ 1

2
|vnεh|2 + 2(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +

θ∆t

η
|fn+θ
h |2

+
2(T (h)θ∆t)2

ε
ε|∇ϕnεh|2|∇µnεh|2 +

T (h)2θ∆t

ωε
ε|∇ϕnεh|2|vnεh|2 + ωθ∆t|∇µnεh|2.

(3.31)

Remark 3.2.2. Under the assumption that α ≤ 1 and (1 − α)ηθ∆t ≤ 1
4h

2, inequality

(3.31) can be viewed as being of the form

1

2
|vn+θ
εh |

2 − 1

2
|vnεh|2 + {positive terms} ≤ {remainder terms}+ {force terms}. (3.32)

The remainder terms are given by squared L2 norms of computed solutions at n∆t and will

be shown later in full detail. The force terms are given by the squared L2 norm of the body

force. This perspective will be useful in the upcoming Section 3.2.3.

Step 1(b) Given ϕnεh, µ
n
εh in H1

h, vnεh,v
n+θ
εh ∈ Vh find ϕn+θ

εh , µn+θ
εh ∈ H1

h, such that
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∀ψh, ζh ∈ H1
h:

(ϕn+θ
εh − ϕ

n
εh

θ∆t
, ψh

)
+ b̂(vn+θ

εh , ϕn+θ
εh , ψh) + γ(∇µn+θ

εh ,∇ψh) = −(1− γ)(∇µnεh,∇ψh),

(3.33)

ε(∇ϕn+θ
εh ,∇ζh) +

1

ε
(Fθ(ϕ

n
εh, ϕ

n+θ
εh ), ζh) = (µn+θ

εh , ζh). (3.34)

We denote the time discrete approximation of the Cahn-Hilliard potential derivativeF ′(ϕεh)

in each timestep by Fθ(ϕn+k
εh ) or F(θ̃−θ)(ϕ

n+k
εh ) for k ∈ {0, θ, θ̃, 1} and subscripts θ or

(θ̃ − θ) matching the size of the current time substep. We discuss the accuracy of these

discretisations in Section 3.2.3, but for now one may assume that they either satisfy a dis-

sipation inequality or approximate F ′ to a high enough degree to have a negligible error in

calculation of the discrete system energy.

Test (3.33) with ψh = µn+θ
εh and (3.34) with ζh = ϕn+θ

εh − ϕnεh, and perform a

substitution for (ϕn+θ
εh − ϕ

n
εh, µ

n+θ
εh ):

ε(∇ϕn+θ
εh ,∇ϕn+θ

εh −∇ϕ
n
εh) +

1

ε
(Fθ(ϕ

n
εh, ϕ

n+θ
εh ), ϕn+θ

εh − ϕ
n
εh) + γθ∆t|∇µn+θ

εh |
2

= −(1− γ)θ∆t(∇µnεh,∇µn+θ
εh )− θ∆tb̂(vn+θ

εh , ϕn+θ
εh , µn+θ

εh ). (3.35)

Using Young’s inequality and rewriting the inner products, we obtain:

ε

2
(|∇ϕn+θ

εh |
2 − |∇ϕnεh|2) +

1

ε
(Fθ(ϕ

n
εh, ϕ

n+θ
εh ), ϕn+θ

εh − ϕ
n
εh) +

ε

2
|∇ϕn+θ

εh −∇ϕ
n
εh|2

+
3γ − 1

2
θ∆t|∇µn+θ

εh |
2

≤ 1− γ
2

θ∆t|∇µnεh|2 − θ∆tb̂(vn+θ
εh , ϕn+θ

εh , µn+θ
εh ). (3.36)

Apply (3.25) as in (3.30), but with a difference in ϕεh. Then apply Young’s inequality

(assuming ω to be small),

ε

2
(|∇ϕn+θ

εh |
2 − |∇ϕnεh|2) +

1

ε
(Fθ(ϕ

n
εh, ϕ

n+θ
εh ), ϕn+θ

εh − ϕ
n
εh) +

ε

2
|∇ϕn+θ

εh −∇ϕ
n
εh|2

+
3γ − 1

2
θ∆t|∇µn+θ

εh |
2

≤ T (h)θ∆t|vn+θ
εh |(|∇ϕ

n+θ
εh −∇ϕ

n
εh|+ |∇ϕnεh|)|∇µn+θ

εh |+
1− γ

2
θ∆t|∇µnεh|2

≤ T (h)2θ∆t

2ωε
|vn+θ
εh |

2ε|∇ϕnε |2 +
ω

2
θ∆t|∇µn+θ

εh |
2 +

ε

4
|∇ϕn+θ

εh −∇ϕ
n
εh|2

+
(T (h)θ∆t)2

ε
|vn+θ
εh |

2|∇µn+θ
εh |

2 +
1− γ

2
θ∆t|∇µnεh|2. (3.37)
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Remark 3.2.3. We may write (3.37) in a form akin to Remark 3.2.2. Assume γ ≥ 1
3 , and

we have a suitable discretisation Fθ - described in more detail in Section 3.2.3. Then, we

may rewrite (3.37) as:

ε

2
(|∇ϕn+θ

εh |
2 − |∇ϕnεh|2) + (F (ϕn+θ

εh )− F (ϕnεh), 1) + {positive terms} ≤ {remainder}.

Once again this is important in the full energy inequality in Section 3.2.3 and the stability

assumptions within.

We now summarise the inequalities obtained from Step 1, by adding (3.31) and

(3.37) as follows:

(1) Stokes-Cahn-Hilliard Inequality
Under the assumption that α ≤ 1, 1+ω

3 ≤ γ ≤ 1 + ω and (1− α)ηθ∆t ≤ 1
4h

2, and

with suitable choice of discretisation Fθ(ϕnεh, ϕ
n+θ
εh ) we have shown:

1

2
(|vn+θ

εh |
2 − |vnεh|2) +

(1

8
− 1− α

2h2
ηθ∆t

)
|vn+θ
εh − v

n
εh|2 +

1 + 2α

2
ηθ∆t|∇vn+θ

εh |
2

+
1− α

2
ηθ∆t|∇vnεh|2

+
ε

2
(|∇ϕn+θ

εh |
2 − |∇ϕnεh|2) +

1

ε
(Fθ(ϕ

n
εh, ϕ

n+θ
εh ), ϕn+θ

εh − ϕ
n
εh) +

ε

4
|∇ϕn+θ

εh −∇ϕ
n
εh|2

+
3γ − 1− ω

2
θ∆t|∇µn+θ

εh |
2

≤ 2(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +
1− γ + ω

2
θ∆t|∇µnεh|2

+
2(T (h)θ∆t)2

ε
ε|∇ϕnεh|2|∇µnεh|2 +

T (h)2θ∆t

ωε
ε|∇ϕnεh|2|vnεh|2

+
T (h)2θ∆t

2ωε
|vn+θ
εh |

2ε|∇ϕnε |2 +
(T (h)θ∆t)2

ε
|vn+θ
εh |

2|∇µn+θ
εh |

2 +
θ∆t

η
|fn+θ
h |2. (3.38)

We now proceed to the second substep in the time discretisation.

Step 2(a)
Given ϕn+θ

εh , µn+θ
εh ∈ H1

h, vn+θ
εh ∈ Vh find ϕn+θ̃

εh , µn+θ̃
εh ∈ H1

h, such that ∀ψh, ζh ∈
H1
h:

(ϕn+θ̃
εh − ϕ

n+θ
εh

(θ̃ − θ)∆t
, ψh

)
+ (1− γ)(∇µn+θ̃

εh ,∇ψh) =− γ(∇µn+θ
εh ,∇ψh)− b̂(vn+θ

εh , ϕn+θ
εh , ψh),

(3.39)

ε(∇ϕn+θ̃
εh ,∇ζh) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ζh) = (µn+θ̃
εh , ζh). (3.40)
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As with obtaining (3.35) from (3.33)-(3.34), we test (3.39) with ψh = µn+θ̃
εh and test (3.40)

with ζh = ϕn+θ̃
εh − ϕ

n+θ
εh . Perform a substitution for (ϕn+θ̃

εh − ϕ
n+θ
εh , µn+θ̃

εh ):

ε(∇ϕn+θ̃
εh ,∇ϕn+θ̃

εh −∇ϕ
n+θ
εh ) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ϕn+θ̃
εh − ϕ

n+θ
εh )

+ (1− γ)(θ̃ − θ)∆t|∇µn+θ̃
εh |

2

= −γ(θ̃ − θ)∆t(∇µn+θ
εh ,∇µn+θ̃

εh )− (θ̃ − θ)∆tb̂(vn+θ
εh , ϕn+θ

εh , µn+θ̃
εh ), (3.41)

then from Young’s inequality and writing inner products as squared norms,

ε

2
(|∇ϕn+θ̃

εh |
2 − |∇ϕn+θ

εh |
2) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ϕn+θ̃
εh − ϕ

n+θ
εh )

+
ε

2
|∇ϕn+θ̃

εh −∇ϕ
n+θ
εh |

2 +
2− 3γ

2
(θ̃ − θ)∆t|∇µn+θ̃

εh |
2

≤ γ

2
(θ̃ − θ)∆t|∇µn+θ

εh |
2 − (θ̃ − θ)∆tb̂(vn+θ

εh , ϕn+θ
εh , µn+θ̃

εh ). (3.42)

We bound b̂(·, ·, ·) using (3.25) and Young’s inequality for ω > 0:

ε

2
(|∇ϕn+θ̃

εh |
2 − |∇ϕn+θ

εh |
2) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ϕn+θ̃
εh − ϕ

n+θ
εh )

+
ε

2
|∇ϕn+θ̃

εh −∇ϕ
n+θ
εh |

2 +
(2− 3γ)

2
(θ̃ − θ)∆t|∇µn+θ̃

εh |
2

≤ T (h)(θ̃ − θ)∆t|vn+θ
εh ||∇ϕ

n+θ
εh ||∇µ

n+θ̃
εh |+

γ

2
(θ̃ − θ)∆t|∇µn+θ

εh |
2

≤ T (h)2(θ̃ − θ)∆t
2ω

|vn+θ
εh |

2|∇ϕn+θ
εh |

2 +
ω

2
(θ̃ − θ)∆t|∇µn+θ̃

εh |
2

+
γ

2
(θ̃ − θ)∆t|∇µn+θ

εh |
2. (3.43)

We obtain the inequality

ε

2
(|∇ϕn+θ̃

εh |
2 − |∇ϕn+θ

εh |
2) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ϕn+θ̃
εh − ϕ

n+θ
εh )

+
ε

2
|∇ϕn+θ̃

εh −∇ϕ
n+θ
εh |

2 +
(2− 3γ − ω)

2
(θ̃ − θ)∆t|∇µn+θ̃

εh |
2

≤ T (h)2(θ̃ − θ)∆t
2ω

|vn+θ
εh |

2|∇ϕn+θ
εh |

2 +
γ

2
(θ̃ − θ)∆t|∇µn+θ

εh |
2. (3.44)

We have now arrived at the stability inequality for Step 2(a).

Remark 3.2.4. For positivity of the left hand side of (3.44), we require that γ ≤ 2−ω
3 .

Step 2(b)
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Given ϕn+θ̃
εh , µn+θ̃

εh in H1
h, vn+θ

εh ∈ Vh find vn+θ̃
εh ∈ Xh, such that ∀wh ∈ Xh:

(vn+θ̃
εh − v

n+θ
εh

(θ̃ − θ)∆t
,wh

)
+ (1− α)η(∇vn+θ̃

εh ,∇wh) + bh(vn+θ̃
εh ,vn+θ̃

εh ,wh)

− b̂(wh, ϕ
n+θ̃
εh , µn+θ̃

εh )

= −αη(∇vn+θ
εh ,∇wh) + (pn+θ

εh ,∇ ·wh) + (fn+θ,wh), (3.45)

where we take the discretised fluid pressure pn+θ
εh ∈ Πh defined by the following weak

formulation:

(pn+θ
εh ,∇ ·wh) =

(vn+θ
εh − v

n
εh

θ∆t
,wh

)
+ αη(∇vn+θ

εh ,∇wh) + (1− α)η(∇vnεh,∇wh)

+ bh(vnεh,v
n
εh,wh)− b̂(wh, ϕ

n
εh, µ

n
εh)− (fn+θ,wh). (3.46)

Test (3.45) with wh = vn+θ̃
εh ∈ Xh

(vn+θ̃
εh − v

n+θ
εh

(θ̃ − θ)∆t
,vn+θ̃

εh

)
+ (1− α)η|∇vn+θ̃

εh |
2 + bh(vn+θ̃

εh ,vn+θ̃
εh ,vn+θ̃

εh )

− b̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh )

= −αη(∇vn+θ
εh ,∇vn+θ̃

εh ) + (pn+θ
εh ,∇ · vn+θ̃

εh ) + (fn+θ,vn+θ̃
εh ), (3.47)

and by definition bh(vn+θ̃
εh ,vn+θ̃

εh ,vn+θ̃
εh ) = 0. Rewrite inner products as squared norms,

then

1

2
|vn+θ̃
εh |

2 +
1

2
|vn+θ̃
εh − v

n+θ
εh |

2 +
2− α

2
η(θ̃ − θ)∆t|∇vn+θ̃

εh |
2 +

α

2
η(θ̃ − θ)∆t|∇vn+θ

εh |
2

=
1

2
|vn+θ
εh |

2 +
α

2
η(θ̃ − θ)∆t|∇vn+θ̃

εh −∇v
n+θ
εh |

2 + (θ̃ − θ)∆t(pn+θ
εh ,∇ · vn+θ̃

εh )

+ (θ̃ − θ)∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) + (θ̃ − θ)∆t(fn+θ,vn+θ̃

εh ). (3.48)

Due to incompressibility of the velocity vn+θ
εh ,

(pn+θ
εh ,∇ · vn+θ̃

εh ) = (pn+θ
εh ,∇ · (vn+θ̃

εh − v
n+θ
εh )).
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We then evaluate the pressure term from (3.48) using the definition (3.46):

(pn+θ
εh ,∇ · vn+θ̃

εh )

=
(vn+θ

εh − v
n
εh

θ∆t
,vn+θ̃

εh − v
n+θ
εh

)
+ αη(∇vn+θ

εh ,∇(vn+θ̃
εh − v

n+θ
εh ))

+ (1− α)η(∇vnεh,∇(vn+θ̃
εh − v

n+θ
εh )) + bh(vnεh,v

n
εh,v

n+θ̃
εh − v

n+θ
εh )

− b̂(vn+θ̃
εh − v

n+θ
εh , ϕnεh, µ

n
εh)− (fn+θ,vn+θ̃

εh − v
n+θ
εh ).

Rewriting products and using Cauchy Schwarz

(pn+θ
εh ,∇ · vn+θ̃

εh )

≤ 1

θ∆t
|vn+θ
εh − v

n
εh||vn+θ̃

εh − v
n+θ
εh |

− αη

2
(|∇vn+θ

εh |
2 + |∇vn+θ̃

εh −∇v
n+θ
εh |

2 − |∇vn+θ̃
εh |

2)

+ (1− α)η|∇vnεh||∇vn+θ̃
εh −∇v

n+θ
εh | − (fn+θ,vn+θ̃

εh − v
n+θ
εh )

+ bh(vnεh,v
n
εh,v

n+θ̃
εh − v

n+θ
εh )− b̂(vn+θ̃

εh − v
n+θ
εh , ϕnεh, µ

n
εh). (3.49)

We substitute (3.49) into (3.48):

1

2
|vn+θ̃
εh |

2 +
1

2
|vn+θ̃
εh − v

n+θ
εh |

2 + (1− α)η(θ̃ − θ)∆t|∇vn+θ̃
εh |

2 + αη(θ̃ − θ)∆t|∇vn+θ
εh |

2

≤ 1

2
|vn+θ
εh |

2 +
θ̃ − θ
θ
|vn+θ
εh − v

n
εh||vn+θ̃

εh − v
n+θ
εh |+ (θ̃ − θ)∆tbh(vnεh,v

n
εh,v

n+θ̃
εh − v

n+θ
εh )

+ (1− α)η(θ̃ − θ)∆t|∇vnεh||∇vn+θ̃
εh −∇v

n+θ
εh | − (θ̃ − θ)∆tb̂(vn+θ̃

εh − v
n+θ
εh , ϕnεh, µ

n
εh)

+ (θ̃ − θ)∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) + (θ̃ − θ)∆t(fn+θ,vn+θ

εh ). (3.50)

Using weighted Young’s inequality with δ > 0 with (3.20):

1

2
|vn+θ̃
εh |

2 +
1

2
(1− 2δ)|vn+θ̃

εh − v
n+θ
εh |

2 + (1− α)η(θ̃ − θ)∆t|∇vn+θ̃
εh |

2

+ αη(θ̃ − θ)∆t|∇vn+θ
εh |

2

≤ 1

2
|vn+θ
εh |

2 +
(θ̃ − θ)2

2δθ2
|vn+θ
εh − v

n
εh|2 + (θ̃ − θ)∆tbh(vnεh,v

n
εh,v

n+θ̃
εh − v

n+θ
εh )

+
((1− α)η(θ̃ − θ)∆t)2

2δh2
|∇vnεh|2 − (θ̃ − θ)∆tb̂(vn+θ̃

εh − v
n+θ
εh , ϕnεh, µ

n
εh)

+ (θ̃ − θ)∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) + (θ̃ − θ)∆t( 1

2αη
|fn+θ
h |2 +

αη

2
|∇v|2). (3.51)
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Apply (3.23) to the convection term, then use Young’s inequality (weighted by δ > 0):

1

2
|vn+θ̃
εh |

2 +
1

2
(1− 3δ)|vn+θ̃

εh − v
n+θ
εh |

2 + (1− α)η(θ̃ − θ)∆t|∇vn+θ̃
εh |

2

+
α

2
η(θ̃ − θ)∆t|∇vn+θ

εh |
2

≤ 1

2
|vn+θ
εh |

2 +
(θ̃ − θ)2

2δθ2
|vn+θ
εh − v

n
εh|2 +

((1− α)η(θ̃ − θ)∆t)2

2δh2
|∇vnεh|2

+
(S(h)(θ̃ − θ)∆t)2

2δ
|vnεh|2|∇vnεh|2 − (θ̃ − θ)∆tb̂(vn+θ̃

εh − v
n+θ
εh , ϕnεh, µ

n
εh)

+ (θ̃ − θ)∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) +

(θ̃ − θ)∆t
2αη

|fn+θ
h |2. (3.52)

We now bound the velocity difference |vn+θ
εh −v

n
εh|2 by first observing that by incompress-

ibility:

(pn+θ
εh ,∇ · (vn+θ

εh − v
n
εh)) = 0.

Then, using (3.46), we can see that:

|vn+θ
εh − v

n
εh|2 + αηθ∆t(∇vn+θ

εh ,∇vn+θ
εh −∇v

n
εh)

+ (1− α)ηθ∆t(∇vnεh,∇vn+θ
εh −∇v

n
εh)

= −θ∆tbh(vnεh,v
n
εh,v

n+θ
εh − v

n
εh) + θ∆tb̂(vn+θ

εh − v
n
εh, ϕ

n
εh, µ

n
εh)

+ θ∆t(fn+θ,vn+θ
εh − v

n
εh),

and rewriting both inner products, we obtain an inequality

|vn+θ
εh − v

n
εh|2 + (2α− 1)ηθ∆t|∇vn+θ

εh −∇v
n
εh|2 + ηθ∆t|∇vn+θ

εh |
2

≤ ηθ∆t|∇vnεh|2 + (S(h)θ∆t)2|vnεh|2|∇vnεh|2 + 2θ∆tb̂(vn+θ
εh − v

n
εh, ϕ

n
εh, µ

n
εh)

+
θ∆t

η
|fn+θ|2. (3.53)
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Substitute (3.53) into (3.52),

1

2
|vn+θ̃
εh |

2 +
1

2
(1− 3δ)|vn+θ̃

εh − v
n+θ
εh |

2 + (1− α)η(θ̃ − θ)∆t|∇vn+θ̃
εh |

2

+
(α

2
(θ̃ − θ) +

(θ̃ − θ)2

2δθ2

)
∆t|∇vn+θ

εh |
2 +

(2α− 1)(θ̃ − θ)2

2δθ2
ηθ∆t|∇vn+θ

εh −∇v
n
εh|2

≤ 1

2
|vn+θ
εh |

2 +
(θ̃ − θ)2

2δθ2
ηθ∆t|∇vnεh|2 + 2

(S(h)(θ̃ − θ)∆t)2

2δ
|vnεh|2|∇vnεh|2

+
((1− α)η(θ̃ − θ)∆t)2

2δh2
|∇vnεh|2 +

((θ̃ − θ)
δθ

+
1

α

)(θ̃ − θ)∆t
2η

|fn+θ
h |2

+
(θ̃ − θ)2

δθ
∆tb̂(vn+θ

εh − v
n
εh, ϕ

n
εh, µ

n
εh)− (θ̃ − θ)∆tb̂(vn+θ̃

εh − v
n+θ
εh , ϕnεh, µ

n
εh)

+ (θ̃ − θ)∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ). (3.54)

We use (3.25) and Young’s inequality for ω > 0, to bound all coupling terms:

(θ̃ − θ)2

δθ
∆tb̂(vn+θ

εh − v
n
εh, ϕ

n
εh, µ

n
εh)− (θ̃ − θ)∆tb̂(vn+θ̃

εh − v
n+θ
εh , ϕnεh, µ

n
εh)

+ (θ̃ − θ)∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh )

≤
((θ̃ − θ)2

δθ
∆tT (h)|vn+θ

εh − v
n
εh|+ (θ̃ − θ)∆tT (h)|vn+θ̃

εh − v
n+θ
εh |

)
|∇ϕnεh||∇µnεh|

+ (θ̃ − θ)∆tT (h)(|vn+θ̃
εh − v

n+θ
εh |+ |v

n+θ
εh |)|∇ϕ

n+θ̃
εh ||∇µ

n+θ̃
εh |

≤ δ

2
|vn+θ
εh − v

n
εh|2 +

δ

2
|vn+θ̃
εh − v

n+θ
εh |

2

+
(T (h)(θ̃ − θ)∆t)2

ε

((θ̃ − θ)2

2δ(δθ)2
+ 1
)
ε|∇ϕnεh|2|∇µnεh|2

+
(T (h)(θ̃ − θ)∆t)2

ε
ε|∇ϕn+θ̃

εh |
2|∇µn+θ̃

εh |
2 +

T (h)2(θ̃ − θ)∆t
εω

ε|vn+θ
εh |

2|∇ϕn+θ̃
εh |

2

+ ω(θ̃ − θ)∆t|∇µn+θ̃
εh |

2. (3.55)
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We arive at the following inequality:

1

2
|vn+θ̃
εh |

2 +
1

2
(1− 4δ)|vn+θ̃

εh − v
n+θ
εh |

2 + (1− α)η(θ̃ − θ)∆t|∇vn+θ̃
εh |

2

+
(α

2
(θ̃ − θ) +

(θ̃ − θ)2

2δθ2

)
∆t|∇vn+θ

εh |
2 +

(2α− 1)(θ̃ − θ)2

2δθ2
ηθ∆t|∇vn+θ

εh −∇v
n
εh|2

≤ 1

2
|vn+θ
εh |

2 +
(θ̃ − θ)2

2δθ2
ηθ∆t|∇vnεh|2 + 2

(S(h)(θ̃ − θ)∆t)2

2δ
|vnεh|2|∇vnεh|2

+
((1− α)η(θ̃ − θ)∆t)2

2δh2
|∇vnεh|2 +

((θ̃ − θ)
δθ

+
1

α

)(θ̃ − θ)∆t
2η

|fn+θ
h |2

+
δ

2
|vn+θ
εh − v

n
εh|2 +

(T (h)(θ̃ − θ)∆t)2

ε

((θ̃ − θ)2

2δ(δθ)2
+ 1
)
ε|∇ϕnεh|2|∇µnεh|2

+
(T (h)(θ̃ − θ)∆t)2

ε
ε|∇ϕn+θ̃

εh |
2|∇µn+θ̃

εh |
2 +

T (h)2(θ̃ − θ)∆t
εω

ε|vn+θ
εh |

2|∇ϕn+θ̃
εh |

2

+ ω(θ̃ − θ)∆t|∇µn+θ̃
εh |

2. (3.56)

Remark 3.2.5. For positivity of the terms of (3.56), we require the constraint that 0 < δ ≤
1
4 and that α ≥ 1

2 .

Then we summarise step 2 by adding (3.44) and (3.56).

(2) Cahn-Hilliard-Burgers inequality
Under the assumption that γ ≤ 2−3ω

3 , α ≥ 1
2 , 0 < δ ≤ 1

4 , and with suitable

discretisation of F(θ̃−θ)(ϕ
n+θ̃
εh , ϕn+θ

εh ), we have shown:

1

2
(|vn+θ̃

εh |
2 − |vn+θ

εh |
2) +

1

2
(1− 4δ)|vn+θ̃

εh − v
n+θ
εh |

2 + (1− α)η(θ̃ − θ)∆t|∇vn+θ̃
εh |

2

+
(α

2
(θ̃ − θ) +

(θ̃ − θ)2

2δθ2

)
∆t|∇vn+θ

εh |
2 +

(2α− 1)(θ̃ − θ)2

2δθ2
ηθ∆t|∇vn+θ

εh −∇v
n
εh|2

+
ε

2
(|∇ϕn+θ̃

εh |
2 − |∇ϕn+θ

εh |
2) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ϕn+θ̃
εh − ϕ

n+θ
εh )

+
ε

2
|∇ϕn+θ̃

εh −∇ϕ
n+θ
εh |

2 +
(2− 3γ − 3ω)

2
(θ̃ − θ)∆t|∇µn+θ̃

εh |
2

≤ (θ̃ − θ)2

2δθ2
ηθ∆t|∇vnεh|2 + 2

(S(h)(θ̃ − θ)∆t)2

2δ
|vnεh|2|∇vnεh|2

+
((1− α)η(θ̃ − θ)∆t)2

2δh2
|∇vnεh|2 +

((θ̃ − θ)
δθ

+
1

α

)(θ̃ − θ)∆t
2η

|fn+θ
h |2

+
δ

2
|vn+θ
εh − v

n
εh|2 +

(T (h)(θ̃ − θ)∆t)2

ε

((θ̃ − θ)2

2δ(δθ)2
+ 1
)
ε|∇ϕnεh|2|∇µnεh|2

+
(T (h)(θ̃ − θ)∆t)2

ε
ε|∇ϕn+θ̃

εh |
2|∇µn+θ̃

εh |
2 +

T (h)2(θ̃ − θ)∆t
εω

ε|vn+θ
εh |

2|∇ϕn+θ̃
εh |

2

+
T (h)2(θ̃ − θ)∆t

2ω
|vn+θ
εh |

2|∇ϕn+θ
εh |

2 +
γ

2
(θ̃ − θ)∆t|∇µn+θ

εh |
2. (3.57)
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Step 3(a)-3(b)
The calculations involved in Step 3(a) begin identically to those in Step 1(a). We

shall begin where they differ, after an inequality mimicking (3.29) has been reached:

1

2
|vn+1
εh |

2 +
(1

2
− (1− α)

2h2
ηθ∆t

)
|vn+1
εh − v

n+θ̃
εh |

2 +
1 + 2α

4
ηθ∆t|∇vn+1

εh |
2

+
(1− α)

2
ηθ∆t|∇vn+θ̃

εh |
2

≤ 1

2
|vn+θ̃
εh |

2 − θ∆tbh(vn+θ̃
εh ,vn+θ̃

εh ,vn+1
εh ) + θ∆tb̂(vn+1

εh , ϕn+θ̃
εh , µn+θ̃

εh ) +
θ∆t

η
|fn+1
h |2.

(3.58)

We do not bound the the convection operator bh(vn+θ̃
εh ,vn+θ̃

εh ,vn+1
εh ) directly, instead we use

the Burgers’ equation and the pressure equation to rewrite this object. To this end, we note

from (3.22) that bh(vn+θ̃
εh ,vn+θ̃

εh ,vn+1
εh ) = bh(vn+θ̃

εh ,vn+θ̃
εh ,vn+1

εh − vn+θ̃
εh ). Testing (3.45)

with vn+1
εh − v

n+θ̃
εh and rearranging gives:

bh(vn+θ̃
εh ,vn+θ̃

εh ,vn+1
εh )

= −
(vn+θ̃

εh − v
n+θ
εh

(θ̃ − θ)∆t
,vn+1

εh − v
n+θ̃
εh

)
− (1− α)η(∇vn+θ̃

εh ,∇vn+1
εh −∇v

n+θ̃
εh )

− αη(∇vn+θ
εh ,∇vn+1

εh −∇v
n+θ̃
εh ) + b̂(vn+1

εh − v
n+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh )

+ (pn+θ
εh ,∇ · (vn+1

εh −∇v
n+θ̃
εh ) + (fn+θ,vn+1

εh − v
n+θ̃
εh ). (3.59)

We substitute the for the pressure by testing equation (3.46) with vn+1
εh − v

n+θ̃
εh :

− θ∆tbh(vn+θ̃
εh ,vn+θ̃

εh ,vn+1
εh )

=
θ

(θ̃ − θ)
(vn+θ̃
εh − v

n+θ
εh ,vn+1

εh − v
n+θ̃
εh )− (vn+θ

εh − v
n
εh,v

n+1
εh − v

n+θ̃
εh )

+ (1− α)ηθ∆t(∇vn+θ̃
εh −∇v

n
εh,∇vn+1

εh −∇v
n+θ̃
εh )

+ θ∆tbh(vnεh,v
n
εh,v

n+1
εh − v

n+θ̃
εh )− θ∆tb̂(vn+1

εh − v
n+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh )

+ θ∆tb̂(vn+1
εh − v

n+θ̃
εh , ϕnεh, µ

n
εh), (3.60)
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and bound the expressions as before. Substituting this expression into (3.58), we arrive at

1

2
|vn+1
εh |

2 +
(1

2
− (1− α)

2h2
ηθ∆t

)
|vn+1
εh − v

n+θ̃
εh |

2 +
1 + 2α

4
ηθ∆t|∇vn+1

εh |
2

+
(1− α)

2
ηθ∆t|∇vn+θ̃

εh |
2

≤ 1

2
|vn+θ̃
εh |

2 + T (h)θ∆t
(
|vn+1
εh − v

n+θ̃
εh |+ |v

n+θ̃
εh |

)
|∇ϕn+θ̃

εh ||∇µ
n+θ̃
εh |+

θ∆t

η
|fn+1
h |2

+
θ

(θ̃ − θ)
|vn+θ̃
εh − v

n+θ
εh ||v

n+1
εh − v

n+θ̃
εh |+ |v

n+θ
εh − v

n
εh||vn+1

εh − v
n+θ̃
εh |

+ (1− α)ηθ∆t(|∇vn+θ̃
εh ||∇v

n+1
εh −∇v

n+θ̃
εh |+ |∇v

n
εh||∇vn+1

εh −∇v
n+θ̃
εh |)

+ S(h)θ∆t|vnεh||∇vnεh||vn+1
εh − v

n+θ̃
εh |

+ θ∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) + θ∆tb̂(vn+1

εh − v
n+θ̃
εh , ϕnεh, µ

n
εh)

≤ 2θ2

(θ̃ − θ)2
|vn+θ̃
εh − v

n+θ
εh |

2 +
1

4
|vn+1
εh − v

n+θ̃
εh |

2 + 2|vn+θ
εh − v

n
εh|2

+
4((1− α)ηθ∆t)2

h2
|∇vn+θ̃

εh |
2 +

4((1− α)ηθ∆t)2

h2
|∇vnεh|2 +

1

8
|vn+1
εh − v

n+θ̃
εh |

2

+ 4(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +
1

16
|vn+1
εh − v

n+θ̃
εh |

2

+ θ∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) + θ∆tb̂(vn+1

εh − v
n+θ̃
εh , ϕnεh, µ

n
εh). (3.61)

To deal with the difference terms |vn+θ̃
εh −v

n+θ
εh |

2 and |vn+θ
εh −v

n
εh|2 we use the inequalities

(3.56) and (3.53) respectively:

1

2
|vn+1
εh |

2 +
( 1

32
− (1− α)

2h2
ηθ∆t

)
|vn+1
εh − v

n+θ̃
εh |

2 +
1 + 2α

2
ηθ∆t|∇vn+1

εh |
2

+
(

1− 4(1− α)

h2
ηθ∆t

)(1− α)

2
ηθ∆t|∇vn+θ̃

εh |
2

≤ 1

2
|vn+θ̃
εh |

2 + 6(S(h)θ∆t)2|vnεh|2|∇vnεh|2 + θ∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh )

+
(

2ηθ∆t+
4((1− α)ηθ∆t)2

h2

)
|∇vnεh|2 +

2θ∆t

η
|fn+1
h |2

+ θ∆tb̂(vn+1
εh − v

n+θ̃
εh , ϕnεh, µ

n
εh) + 4θ∆tb̂(vn+θ

εh − v
n
εh, ϕ

n
εh, µ

n
εh). (3.62)
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Using (3.25) and Young’s inequality as seen in previous steps, with ω > 0, we have:

θ∆tb̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ) + θ∆tb̂(vn+1

εh − v
n+θ̃
εh , ϕnεh, µ

n
εh) + 4θ∆tb̂(vn+θ

εh − v
n
εh, ϕ

n
εh, µ

n
εh)

≤ T (h)θ∆t|vn+θ̃
εh ||ϕ

n+θ̃
εh ||µ

n+θ̃
εh |+ T (h)θ∆t(|vn+1

εh − v
n+θ̃
εh |+ 4|vn+θ

εh − v
n
εh|)|ϕnεh||µnεh|

≤ T (h)2θ∆t

ωε
ε|vn+θ̃

εh |
2|ϕn+θ̃

εh |
2 + ωθ∆t|µn+θ̃

εh |
2 +

δ

2
|vn+1
εh − v

n+θ̃
εh |

2 +
δ

2
|vn+θ
εh − v

n
εh|2

+
5(T (h)θ∆t)2

δε
ε|ϕnεh|2|µnεh|2,

and so we arrive at an inequality analogous to (3.31):

1

2
|vn+1
εh |

2 +
( 1

32
− δ

2
− (1− α)

2h2
ηθ∆t

)
|vn+1
εh − v

n+θ̃
εh |

2 +
1 + 2α

2
ηθ∆t|∇vn+1

εh |
2

+
(

1− 4(1− α)

h2
ηθ∆t

)(1− α)

2
ηθ∆t|∇vn+θ̃

εh |
2

≤ 1

2
|vn+θ̃
εh |

2 + 6(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +
δ

2
|vn+θ
εh − v

n
εh|2

+
(

2ηθ∆t+
4((1− α)ηθ∆t)2

h2

)
|∇vnεh|2 +

2θ∆t

η
|fn+1
h |2

+
T (h)2θ∆t

ωε
ε|vn+θ̃

εh |
2|ϕn+θ̃

εh |
2 + ωθ∆t|µn+θ̃

εh |
2 +

5(T (h)θ∆t)2

δε
ε|ϕnεh|2|µnεh|2, (3.63)

and, as the analysis for Step 1(b) may be repeated for Step 3(b), the final inequality analo-

gous to (3.37) reads:

ε

2
(|∇ϕn+1

εh |
2 − |∇ϕn+θ̃

εh |
2) +

1

ε
(Fθ(ϕ

n+θ̃
εh , ϕn+1

εh ), ϕn+1
εh − ϕ

n+θ̃
εh )

+
ε

4
|∇ϕn+1

εh −∇ϕ
n+θ̃
εh |

2 +
3γ − 1− ω

2
θ∆t|∇µn+1

εh |
2

≤ 1− γ
2

θ∆t|∇µn+θ̃
εh |

2 +
T (h)2θ∆t

2ωε
|vn+1
εh |

2ε|∇ϕn+θ̃
ε |2

+
(T (h)θ∆t)2

ε
|vn+1
εh |

2|∇µn+1
εh |

2. (3.64)

We summarise the final substep stability inequality by adding (3.63) and (3.64) together:

(3) Stokes-Cahn-Hilliard inequality
Under the assumption that α ≤ 1, γ ≥ 1+ω

3 and (1 − α)ηθ∆t ≤ 1
16h

2, and a
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suitable choice of discretisation Fθ(ϕn+θ̃
εh , ϕn+1

εh ) we have shown:

1

2
(|vn+1

εh |
2 − |vn+θ̃

εh |
2) +

( 1

32
− δ

2
− (1− α)

2h2
ηθ∆t

)
|vn+1
εh − v

n+θ̃
εh |

2

+
1 + 2α

2
ηθ∆t|∇vn+1

εh |
2 +

(
1− 4(1− α)

h2
ηθ∆t

)(1− α)

2
ηθ∆t|∇vn+θ̃

εh |
2

+
ε

2
(|∇ϕn+1

εh |
2 − |∇ϕn+θ̃

εh |
2) +

1

ε
(Fθ(ϕ

n+θ̃
εh , ϕn+1

εh ), ϕn+1
εh − ϕ

n+θ̃
εh )

+
ε

4
|∇ϕn+1

εh −∇ϕ
n+θ̃
εh |

2 +
3γ − 1− ω

2
θ∆t|∇µn+1

εh |
2

≤ 6(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +
δ

2
|vn+θ
εh − v

n
εh|2

+
(

2ηθ∆t+
4((1− α)ηθ∆t)2

h2

)
|∇vnεh|2 +

2θ∆t

η
|fn+1
h |2

+
T (h)2θ∆t

ωε
ε|vn+θ̃

εh |
2|ϕn+θ̃

εh |
2 + ωθ∆t|µn+θ̃

εh |
2 +

5(T (h)θ∆t)2

δε
ε|ϕnεh|2|µnεh|2

+
1− γ

2
θ∆t|∇µn+θ̃

εh |
2 +

T (h)2θ∆t

2ωε
|vn+1
εh |

2ε|∇ϕn+θ̃
ε |2

+
(T (h)θ∆t)2

ε
|vn+1
εh |

2|∇µn+1
εh |

2. (3.65)

The inequality (3.65) combined with (3.57) and (3.38) complete the stability inequalities

for the whole timestep.

3.2.3 A discrete energy inequality

We now have 3 inequalities (3.38), (3.57) and (3.65), which cover one full timestep of

our theta scheme. To combine them we sum these inequalities together. This leads to an

expression similar to (3.32) discussed in Remark 3.2.2. This will yield the following form

for the left hand side of the fully discrete energy dissipation inequality

{Difference in kinetic energy}+ {Difference in CH gradient part}

+ {Difference in CH potential part}+ {Dissipative terms} . (3.66)
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In full detail, given vnεh, ϕ
n
εh, µ

n
εh, we perform the summation to obtain the left hand side of

the energy inequality:

1

2
(|vn+1

εh |
2 − |vn+θ̃

εh |
2) +

1

2
(|vn+θ̃

εh |
2 − |vn+θ

εh |
2) +

1

2
(|vn+θ

εh |
2 − |vnεh|2)

+
ε

2
(|∇ϕn+1

εh |
2 − |∇ϕn+θ̃

εh |
2) +

ε

2
(|∇ϕn+θ̃

εh |
2 − |∇ϕn+θ

εh |
2) +

ε

2
(|∇ϕn+θ

εh |
2 − |∇ϕnεh|2)

+
1

ε
(Fθ(ϕ

n+θ̃
εh , ϕn+1

εh ), ϕn+1
εh − ϕ

n+θ̃
εh ) +

1

ε
(F(θ̃−θ)(ϕ

n+θ
εh , ϕn+θ̃

εh ), ϕn+θ̃
εh − ϕ

n+θ
εh )

+
1

ε
(Fθ(ϕ

n
εh, ϕ

n+θ
εh ), ϕn+θ

εh − ϕ
n
εh)

+
( 1

32
− δ

2
− (1− α)

2h2
ηθ∆t

)
|vn+1
εh − v

n+θ̃
εh |

2 +
1

2
(1− 4δ)|vn+θ̃

εh − v
n+θ
εh |

2

+
(1

8
− δ −

((1− α)

2h2
+

(θ̃ − θ)2

2δθ2h2

)
ηθ∆t

)
|vn+θ
εh − v

n
εh|2

+
1 + 2α

2
ηθ∆t|∇vn+1

εh |
2 + (1− α)

(θ
2

+ (θ̃ − θ)− 4θ2(1− α)η∆t

h2

)
η∆t|∇vn+θ̃

εh |
2

+
(α

2
θ̃ +

θ

2
+

(2α− 1)(θ̃ − θ)2

2δθ2

)
η∆t|∇vn+θ

εh |
2 +

(1− α)

2
ηθ∆t|∇vnεh|2

+
ε

4
|∇ϕn+1

εh −∇ϕ
n+θ̃
εh |

2 +
ε

2
|∇ϕn+θ̃

εh −∇ϕ
n+θ
εh |

2 +
ε

2
|∇ϕn+θ

εh −∇ϕ
n
εh|2

+
3γ − 1− ω

2
θ∆t|∇µn+1

εh |
2 +

(2− 3γ − 3ω

2
(θ̃ − θ)− ωθ

)
∆t|∇µn+θ̃

εh |
2

+
(3γ − 1− ω

2
θ − γ

2
(θ̃ − θ)

)
∆t|∇µn+θ

εh |
2 − 1− γ + ω

2
θ∆t|∇µnεh|2

=
(1

2
|vn+1
εh |

2 +
ε

2
|∇ϕn+1

εh |
2 +

1

ε

∫
Ω
F (ϕn+1

εh ) dx
)

−
(1

2
|vnεh|2 +

ε

2
|∇ϕnεh|2 +

1

ε

∫
Ω
F (ϕnεh) dx

)
− 1

ε

∫
Ω

(F (ϕn+1
εh )− F (ϕnεh))−

(
Fθ(ϕ

n+θ̃
εh , ϕn+1

εh )(ϕn+1
εh − ϕ

n+θ̃
εh )

+ F(θ̃−θ)(ϕ
n+θ
εh , ϕn+θ̃

εh )(ϕn+θ̃
εh − ϕ

n+θ
εh ) + Fθ(ϕ

n
εh, ϕ

n+θ
εh )(ϕn+θ

εh − ϕ
n
εh)
)

dx

+ (HDiss)
n+1
n

= Eε(ϕ
n+1
εh , µn+1

εh ,vn+1
εh )− Eε(ϕnεh, µnεh,vnεh) + (Hcons)

n+1
n + (HDiss)

n+1
n . (3.67)

Where (Hcons)
n+1
n is the consistency error from the approximation of F ′ by Fθ, F(θ̃−θ) and

(HDiss)
n+1
n are dissipative terms. We now look at these terms in greater detail

Form of (HDiss)
n+1
n

We wish to state the conditions on the parameters required for (HDiss)
n+1
n to be

nonnegative. In almost all terms this seen clearly due to the parameter choices and inspec-

tion of (3.67). However, the terms of the form |∇µn+k
εh |

2, appear to have a mismatch of a
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positive k = 1 term and negative k = 0. More precisely we have:

3γ − 1− ω
2

θ∆t|∇µn+1
εh |

2 − 1− γ + ω

2
θ∆t|∇µnεh|2.

This seemingly unmatched term, can be always made positive when we consider the sum∑
n(HDiss)

n+1
n , and one looks at successive timesteps. In particular, the comparison of the

n-term at time n = K and the (n+ 1)-term at time n = (K − 1) reads:

3γ − 1− ω
2

θ∆t|∇µKεh|2 −
1− γ + ω

2
θ∆t|∇µKεh|2.

Choosing γ ≥ 1+ω
2 causes the difference to remain nonnegative in the summation (see

subsequent sections). We now deal with all other contributions of (3.67).

From the conditions gathered throughout Section 3.2.2, we see that (HDiss)
n+1
n is

nonnegative when the parameters α ∈ (1
2 , 1), γ ∈ (1

2 +ω, 2
3−ω) for 0 < ω � 1, δ ∈ (0, 1

16)

and θ ∈ (0, 1
2) and also when the following essential stability constraint on ∆t is satisfied

[81]:

∆t ≈ Ch1+ d
2 . (3.68)

Note, this also gives the quantities S(h)∆t = O(h). For d = 2 we obtain T (h)2∆t =

O(h2−2ξ), for any ξ > 0 and for d = 3 we obtain T (h)2∆t = O(h
3
2 ).

Form of (Hcons)
n+1
n

The consistency term here (by adding and subtracting F (ϕn+θ̃
εh ), F (ϕn+θ

εh ) ) can be

written as: ∫
Ω

(F (ϕn+1
εh )− F (ϕn+θ̃

εh ))− Fθ(ϕn+θ̃
εh , ϕn+1

εh )(ϕn+1
εh − ϕ

n+θ̃
εh )

+

∫
Ω

(F (ϕn+θ̃
εh )− F (ϕn+θ

εh ))− F(θ̃−θ)(ϕ
n+θ
εh , ϕn+θ̃

εh )(ϕn+θ̃
εh − ϕ

n+θ
εh )

+

∫
Ω

(F (ϕn+θ
εh )− F (ϕnεh))− Fθ(ϕnεh, ϕn+θ

εh )(ϕn+θ
εh − ϕ

n
εh).

There are several available approximations for F in this case which we can take for any

accuracy, many more examples are given in [133]:

• Convex (+) Concave (−) splitting f∗(a, b) = F ′+(b) + F ′−(a) - First order accurate,

no consistency error.

• Midpoint approximation f∗(a, b) = F (b)−F (a)
b−a - severe timestep restriction, no con-

sistency error.
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• Taylor expansion f∗(a, b) = F ′(a) + 1
2F
′′(a)(b − a) + 1

3!F
′′′(a)(b − a)2 - Second

order accurate.

We consider hereafter that our discretisation is of a sufficient order to bound the consistency

terms (Hcons)
n+1
n , so they may be treated as negligible.

Form of the energy inequality

We have concluded the discussion for the terms on the left hand side of the energy

inequality. We investigate the entire energy inequality, therefore we now consider the sum

of the inequalities (3.38), (3.57) and (3.65) seeking an expression as follows for the full

inequality:

Eε(ϕ
n+1
εh , µn+1

εh ,vn+1
εh ) + (HDiss)

n+1
n

≤ Eε(ϕnεh, µnεh,vnεh) +HRem(|vnεh|, |∇ϕnεh|) +
θ∆t

αη
|fn+1
h |2, (3.69)

whereHRem, are the non dissipative terms and f∗h are the given body forces. If this inequal-

ity holds for n = 0, . . . ,K for some time K ∈ N, then summing (3.69) over n we may

write down an energy inequality. Given the conditions on parameters γ, α, θ (in particular

(3.68) ),

Eε(ϕ
K+1
εh , µK+1

εh ,vK+1
εh ) +

K∑
n=0

(HDiss)
n+1
n

≤ Eε(ϕ0
εh, µ

0
εh,v

0
εh) +

K∑
n=0

HRem(|vnεh|2, |∇ϕnεh|2) +
K∑
n=0

θ∆t

α
|fn+1
h |2. (3.70)

The aim from this analysis would to be to show that if |∇ϕnεh|2 and |vnεh|2 are bounded by

a constant C, then at time (n+ 1)∆t

HRem(|vnεh|2, |∇ϕnεh|2) ≤ C(1 + gn(h, ε)∆t),

for some nonnegative valued function gn. Showing this for each step, would enable us to

make use of a discrete form of a Gronwall estimate, found in [70]: If,

Eε(ϕ
K+1
εh , µK+1

εh ,vK+1
εh ) + ∆t

K∑
n=0

(HDiss)
n+1
n

≤ Eε(ϕ0
εh, µ

0
εh,v

0
εh) +

K∑
n=0

HRem + ∆t
K∑
n=0

C|fn+1
h |2, (3.71)
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then,

Eε(ϕ
K+1
εh , µK+1

εh ,vK+1
εh ) + ∆t

K∑
n=0

(HDiss)
n+1
n

≤ Eε(ϕ0
εh, µ

0
εh,v

0
εh) + exp

(
∆t

K∑
n=0

gn(h, ε)
)
·
{

∆t
K+1∑
n=0

C|fn+1
h |2

}
. (3.72)

For a stability result one would require the form of gn(h, ε) ≤ C ha

εb
, ideally with a ≥ b.

Unfortunately, the result of this gn(h, ε) we obtain is insufficient for a stability result of

the required form, however we shall detail the exact result obtained and comment on the

shortcomings.

Form of HRem

We assume for this section that the following inductive assumption holds:

|vnεh|2 ≤ Cn, ε|∇ϕnεh|2 ≤ Dn (3.73)

for some constants Cn, Dn. We sum the right hand sides of the inequalities (3.38), (3.57),

and (3.65), ignoring terms which have been previously been absorbed in the dissipation
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term (HDiss)
n+1
n , or from the Navier-Stokes body force terms:{

(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +
2(T (h)θ∆t)2

ε
ε|∇ϕnεh|2|∇µnεh|2

+
T (h)2θ∆t

ωε
ε|∇ϕnεh|2|vnεh|2 +

T (h)2θ∆t

2ωε
|vn+θ
εh |

2ε|∇ϕnε |2

+
(T (h)θ∆t)2

ε
|vn+θ
εh |

2|∇µn+θ
εh |

2

}

+

{
2

(S(h)(θ̃ − θ)∆t)2

2δ
|vnεh|2|∇vnεh|2 +

(T (h)(θ̃ − θ)∆t)2

ε
ε|∇ϕn+θ̃

εh |
2|∇µn+θ̃

εh |
2

+
(T (h)(θ̃ − θ)∆t)2

ε

((θ̃ − θ)2

2δ(δθ)2
+ 1
)
ε|∇ϕnεh|2|∇µnεh|2

+
T (h)2(θ̃ − θ)∆t

2ωε
ε|vn+θ

εh |
2|∇ϕn+θ

εh |
2 +

T (h)2(θ̃ − θ)∆t
εω

ε|vn+θ
εh |

2|∇ϕn+θ̃
εh |

2

}

+

{
6(S(h)θ∆t)2|vnεh|2|∇vnεh|2 +

T (h)2θ∆t

ωε
ε|vn+θ̃

εh |
2|ϕn+θ̃

εh |
2

+
5(T (h)θ∆t)2

δε
ε|ϕnεh|2|µnεh|2

+
T (h)2θ∆t

2ωε
|vn+1
εh |

2ε|∇ϕn+θ̃
ε |2 +

(T (h)θ∆t)2

ε
|vn+1
εh |

2|∇µn+1
εh |

2

}
.

We shall considerHRem by looking only at terms with order strictly less thanO(∆t). These

contributions, are those which cause the Gronwall estimate to grow at a worse rate than

required for stability. Thus we use the stability assumption (3.68), and recall the definition

of S(h) and T (h) from (3.23) and (3.25) to get:{
T (h)2θ∆t

ωε
ε|∇ϕnεh|2|vnεh|2 +

T (h)2θ∆t

2ωε
|vn+θ
εh |

2ε|∇ϕnε |2
}

+

{
T (h)2(θ̃ − θ)∆t

2εω
ε|vn+θ

εh |
2|∇ϕn+θ

εh |
2 +

T (h)2(θ̃ − θ)∆t
εω

ε|vn+θ
εh |

2|∇ϕn+θ̃
εh |

2

}

+

{
T (h)2θ∆t

ωε
ε|vn+θ̃

εh |
2|ϕn+θ̃

εh |
2 +

T (h)2θ∆t

2ωε
|vn+1
εh |

2ε|∇ϕn+θ̃
ε |2

}
+O(∆t). (3.74)

To bound the functions |vn+k
εh |

2, k = θ, θ̃, 1 and |∇ϕn+l
εh |

2, l = θ, θ̃ as functions of |vnεh|2

and |∇ϕnεh|2, we use the inequalities of Section 3.2.2. We begin with the first substep, and
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use inequalities (3.31), (3.37), and the assumption (3.73) to define:

Cn+θ = |vn+θ
εh |

2 ≤ |vnεh|2 +
T (h)2θ∆t

ωε
ε|∇ϕnεh|2|vnεh|2 +O(∆t)

≤ Cn +
T (h)2θ∆t

ωε
CnDn,

Dn+θ = ε|∇ϕn+θ
εh |

2 ≤ ε|∇ϕn+θ
εh |

2 +
T (h)2θ∆t

εω
ε|∇ϕnεh|2|vn+θ

εh |
2 +O(∆t)

≤ Dn +
T (h)2θ∆t

εω
Cn+θDn +O(∆t). (3.75)

In a similar fashion we may define the constants using (3.44), (3.56), along with (3.75):

Dn+θ̃ ≤ Dn+θ +
T (h)2(θ̃ − θ)∆t

ω
Cn+θDn+θ +O(∆t),

Cn+θ̃ ≤ Cn+θ +
T (h)2(θ̃ − θ)∆t

εω
Cn+θDn+θ̃ +O(∆t), (3.76)

and, from (3.63), (3.64), along with (3.76):

Cn+1 ≤ Cn+θ̃ +
T (h)2θ∆t

εω
Cn+θ̃Dn+θ̃ +O(∆t),

Dn+1 ≤ Dn+θ̃ +
T (h)2θ∆t

ωε
Cn+1Dn+θ̃ +O(∆t). (3.77)

In this way, we can now estimate |ϕn+1
εh |

2 and |vn+1
εh |

2 in terms of |ϕnεh|2 and|vnεh|2. One can

see how through (3.77), (3.76) and (3.75), the expression Cn+1 + Dn+1 ≤ P (Cn + Dn)

leads to a choice of sixth order polynomial P in Cn + Dn, to zeroth order in ∆t. The

coefficients of this polynomial can be bounded above by:

Cn+1 +Dn+1 ≤ P (Cn +Dn) ≤ (Cn +Dn)

(
1 +

5∑
i=1

Ai

(T (h)2∆t

ε
(Cn +Dn)

)i)
+O(∆t)

for positive constants Ai. Let Cn+Dn ≤ C, using the stability assumption (3.68) note that

in two dimensions, for 0 < ξ � 1

T (h)2∆t

ε
≤ Ch

2−2ξ

ε
,

and in three dimensions,
T (h)2∆t

ε
≤ Ch

3
2

ε
.
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Thus, as these decay for small h, the polynomial P is dominated by the first terms:

P (Cn +Dn) ≤ (Cn +Dn)(1 + Ā
T (h)2θ∆t

ε
(Cn +Dn)

)
+O(∆t)

for constant Ā. We now define

gn(h, ε) = Ā
T (h)2

ε
, where HRem(|∇ϕεh|2, |vεh|2) ≤ C(1 + gn(h, ε)∆t).

We finally observe that our Gronwall estimate (3.72) will be of the following form. Let

T = (K + 1)∆t. In two dimensions,

Eε(ϕ
K+1
εh , µK+1

εh ,vK+1
εh ) + ∆t

K∑
n=0

(HDiss)
n+1
n

≤ Eε(ϕ0
εh, µ

0
εh,v

0
εh) + exp

(
Ā
h−2ξ

ε

)
·
{

∆t
K+1∑
n=0

C|fn+1
h |2

}
, (3.78)

and in three dimensions,

Eε(ϕ
K+1
εh , µK+1

εh ,vK+1
εh ) + ∆t

K∑
n=0

(HDiss)
n+1
n

≤ Eε(ϕ0
εh, µ

0
εh,v

0
εh) + exp

(
Ā
h−1

ε

)
·
{

∆t
K+1∑
n=0

C|fn+1
h |2

}
. (3.79)

Thus refinement of numerical parameters will lead to blow up. The key idea to be taken

from this section is that one may formulate the problem in terms of a discrete energy in-

equality. This energy (under the parameter choices of Section 3.2.3) is well behaved except

for the coupling terms which link the Cahn-Hilliard and Navier-Stokes. We have simply

bounded these terms individually here, but this is insufficient for Gronwall type estimates.

However there is promise if one could consider differences of these terms. Unfortunately

we were unable to write these in the required form (due to the fourth order nature of the

Cahn-Hilliard equation). In the following remarks, we reflect on the shortcomings of this

analysis and point out the origins of the suboptimality of the estimate.

Remark 3.2.6. It is important to see that the result from the Gronwall inequality is not

improved by taking a stronger stability condition than (3.68). This is because the ∆t ap-

pearing in (3.72) is compensated by summing over the total number of timesteps. Also in

other fields it has been noted that the factor 1
ε appears naturally in Gronwall estimates,

though there is work to create first order schemes which depend only polynomially (rather
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than expontially) on 1
ε , see [48].

Remark 3.2.7. We can identify precisely where the problem in the analysis presents itself.

The error is due to the b̂(·, ·, ·) terms which couple the Cahn-Hilliard and Navier-Stokes

problems together. The treatment of the individual terms separately in each step leads to

the above result. If one instead considers treating them in the pairs (3.7) + (3.8), (3.9) +

(3.10) and (3.11) + (3.12), or even summing over all steps, then one may expect differences

to appear. However the differences are difficult to work with due to the fourth order nature

of the Cahn-Hilliard equation. There could also be scope for this theory to work for Navier-

Stokes coupled to a second order equation (perhaps an Allen-Cahn type equation), but this

is not considered here.

Remark 3.2.8. One may rewrite the coupling terms, and retain second order accuracy

and solvability by exploiting the updates of ϕεh during the timestepping. For example, in

(3.8) one may take the term b̂(vn+θ
εh , ϕnεh, µ

n+θ
εh ) as opposed to b̂(vn+θ

εh , ϕn+θ
εh , µn+θ

εh ). This

retains accuracy so long as in (3.9) the term b̂(vn+θ̃
εh , ϕn+θ̃

εh , µn+θ̃
εh ), and in (3.12) the term

b̂(vn+1
εh , ϕn+θ̃

εh , µn+1
εh ) are also inserted.

This was investigated as the differences between terms within a step become more

comparable as only one variable changes value over each timestep. However the resulting

estimates also lead to difficulties due to terms arising being incomparable with the dissipa-

tion terms.

3.3 Extension to more than two phases

In order to deal with multiple phases we consider here, the following problem in (strong)

form. We denote as in Chapter 2, the notation ϕε = (ϕ
(1)
ε , . . . , ϕ

(M)
ε ) and

µε = (µ
(1)
ε , . . . , µ

(M)
ε ) for the multi phase field variables.

Problem 3.3.1. Let (2 ≤)M ∈ N, find {vε(x, t), pε(x, t), µ(k)
ε (x, t), ϕ

(k)
ε (x, t)} for all

85



k = 1, . . . ,M , such that:

∂tϕ
(k)
ε + vε · ∇ϕ(k)

ε = ∇ ·
( M∑
l=1

Lk,l∇µ(l)
ε

)
, in Ω× (0, T ),

µ(k)
ε + ε∆ϕ(k)

ε −
1

ε

∑
i<j

∂
ϕ
(k)
ε
wi,j(ϕε) = 0, in Ω× (0, T ),

∂tvε − η∆vε + vε · ∇vε +∇pε = f +
M∑
k=1

µ(k)
ε ∇ϕ(k)

ε , in Ω× (0, T ),

∇ · vε = 0, in Ω× (0, T ),

vε = g, on ∂Ω× [0, T ],

∇ϕ(k)
ε · νΩ = 0, on ∂Ω× [0, T ],

∇µ(k)
ε · νΩ = 0, on ∂Ω× [0, T ].

We additionally denote F (ϕε) =
∑

i<j wi,j(ϕε) to be the multiwell potential, and take

a positive definite constant mobility matrix L(·,·) (see Section 2.2.8 for choices of these

functions).

The operator splitting we choose for Problem 3.3.1 is as follows. Define for α, γ ∈
[0, 1] F1(vε, pε) = −α∆vε +∇pε − f ,

F2(vε, ϕε, µε) = −(1− α)∆vε + vε · ∇vε −
∑M

k=1 µ
(k)
ε ∇ϕ(k)

ε .G1(ϕε, µε,vε) = −γ
∑M

k=1∇ · (
∑M

l=1 L(k,l)∇µ(k)
ε ) + vε ·

∑M
k=1∇ϕ

(k)
ε ,

G2(µε) = −(1− γ)
∑M

k=1∇ · (
∑M

l=1 L(k,l)∇µ(l)
ε ).

The structure of the problem follows as in scheme (3.7) - (3.12). To demonstrate the sim-

ilarity between the scheme for multi-phase flow and for 2 phase we shall write down the

weak fully discrete formulation for the Cahn-Hilliard system in the first step.

For Step 1(b), the analogy of (3.33)-(3.34) is as follows. For k = 1, . . . ,M , given

ϕ
(k),n
h , µ

(k),n
h in H1

h, vnεh,v
n+θ
εh ∈ Vh, find ϕ(k),n+θ

h , µ
(k),n+θ
h ∈ H1

h, such that ∀ψ, ζ ∈
H1
h(Ωh),
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(ϕ(k),n+θ
h − ϕ(k),n

h

θ∆t
, ψ
)

+ b̂(vn+θ
εh , ϕ

(k),n+θ
h , ψ) + γ

M∑
l=1

L(k,l)(∇µ(l),n+θ
h ,∇ψ)

= −(1− γ)

M∑
l=1

L(k,l)(∇µ(l),n
h ,∇ψ),

(µ
(l),n+θ
h , ζ) = ε(∇ϕ(l),n+θ

h ,∇ζ) +
1

ε
(Fl(θ)(ϕ

n
εh, ϕ

n+θ
εh ), ζ)

where Fl(θ)(ϕnεh, ϕ
n+θ
εh ) is a discrete approximation in time of the derivative ∂

ϕ
(l)
εh

F (ϕεh).

For each equation indexed by k, we test with ψ = µ
(k),n+θ
h and ζ = ϕ

(k),n+θ
h − ϕ(k),n

h .

Summing the M equations gives:

ε
M∑
k=1

(∇ϕ(k),n+θ
h ,∇ϕ(k),n+θ

h −∇ϕ(k),n
h ) +

(∗)︷ ︸︸ ︷
1

ε

M∑
k=1

(Fk(θ)(ϕ
n
εh, ϕ

n+θ
εh ), ϕ

(k),n+θ
h − ϕ(k),n

h )

+ γθ∆t

M∑
k,l=1

L(k,l)(∇µ(l),n+θ
h ,∇µ(k),n+θ

h )

= −(1− γ)θ∆t
M∑

k,l=1

L(k,l)(∇µ(l),n+θ
h ,∇µ(k),n+θ

h )− θ∆t
M∑
k=1

b̂(vn+θ
εh , ϕ

(k),n+θ
h , µ

(k),n+θ
h ).

For a simple generalisation to multiple phases such as this, with a constant positive definite

symmetric mobility matrix L(·,·), there is not an increase in complexity of the system from

two phases. The analysis follows identically to that of the two phase case, if one can show

that the derivative of the multiwell potential F can be approximated by the term (∗) in a

consistent way. This form however is a natural generalisation of the cases studied in [133]

for the two phase potential.

3.4 Fractional-theta scheme for variable density CHNS prob-
lem

The extension to a variable density is a significant step regarding the analysis and simula-

tion. This is due to delicate interplay between two seemingly opposed balance laws of the

system, the conservation of mass for the fluid:

∂tρ
(i) +∇ · (ρ(i)v(i)) = 0 in Ω(i), (3.80)
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and the incompressibility of the fluid:

∇ · v(i) = 0 in Ω(i). (3.81)

For the matched density ρ(i)(x, t) ≡ C, ∀i = 1, . . . ,M hence (3.80) and (3.81) are equiv-

alent, thus enforcing (3.81) allows them to hold true. For the variable density ρ(i)
ε (x, t),

The system becomes heavily coupled if we solve for both conservations (3.80) and (3.81)

strongly. Instead we enforce one constraint in the strong sense and the other in a weak

sense.

To this end, we reflect the modelling in Section 2.2.1, which we summarise here

briefly for convenience. We choose to enforce the divergence free constraint strongly; we

take a solenoidal velocity (3.81) in the scheme. We then postulate a volume averaged veloc-

ity (2.107) for the motion of the fluid mixture, this then does not lead to mass conservation

(3.80) for the total mass density (2.112), but instead (2.113):

∂
•(vε)
t ρ+ ρ∇ · vε = −∇ · jε with jε =

M∑
i=1

ρ(i)j
ϕ
(i)
ε
.

We take an admissible choice j
ϕ
(k)
ε

=
∑M

l=1 L(k,l)∇µ(l)
ε . We do not preseve the conserva-

tion of total mass of fluid in the diffuse model strongly, however the error is described by an

explicit mass flux in divergence form. Thus the total mass density is completely determined

by ϕε, in fact recall, we take the linear interpolation ρ(ϕε) :=
∑M

i=1 ϕ
(i)
ε ρ(i). If we account

for the extra flux jε we may weakly conserve the density. It is encorporated into the mo-

mentum equation for the Navier-Stokes as in [1], by inserting an additional mass transport

term of∇ · (vε ⊗ jε).

3.4.1 Weak formulation and discretisation

Our weak formulation for the variable density Cahn-Hilliard Navier-Stokes is thus:

Problem 3.4.1. Given initial data {vε0, ϕε0} ∈ (H1
g (Ω))d×H1(Ω) and f ∈ (L2(Ω))d, g ∈

(H1(Ω))d find vε(·, t) ∈ (H1
g (Ω))d, p(·, t) ∈ L2(Ω)/R and ϕε(·, t), µε(·, t) ∈ H1(Ω)
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such that, for all t ∈ [0, T ]∫
Ω
ζ(∂tϕε + vε · ∇ϕε) = −

∫
Ω
∇µε · ∇ζ, ∀ ζ ∈ H1(Ω),∫

Ω
ε∇ϕε · ∇ζ +

1

ε
F ′(ϕε)ζ =

∫
Ω
µεζ, ∀ ζ ∈ H1(Ω),∫

Ω
ζρ∂tvε + ζ(ρvε + jε) · ∇)vε

+

∫
Ω
η∇vε · ∇ζ − pε∇ · ζ =

∫
Ω
ζf + ζµε∇ϕε, ∀ ζ ∈ (H1(Ω))d,∫

Ω
ζ∇ · vε = 0, ∀ ζ ∈ L2(Ω). (3.82)

Remark 3.4.2. The form of incompressible Navier-Stokes in Problem 3.4.1 is based on a

nonconservative strong formulation:

ρ∂t(vε) + ((ρvε + jε) · ∇)vε −∆vε +∇pε = f + µε∇ϕε,

∇ · vε = 0.

One could instead work directly from the more conservative form,

∂t(ρvε) +∇ · ((ρvε + jε)⊗ vε)−∆vε +∇pε = f + µε∇ϕε,

∇ · vε = 0.

however this will lead to a highly coupled system when coupled to the Cahn-Hillard equa-

tion. This is due to the fact that the density (a function ρ = ρ(ϕε)) appears in the time

derivative of the Navier-Stokes problem.

To overcome these difficulties, authors in [66] have used yet another formulation of

Navier-Stokes, and ideas have been adopted in multi-phase flow in [95] where energy esti-

mates for the scheme are exploited to obtain an unconditionally stable first order scheme.

The chosen form is

√
ρ∂t(
√
ρvε) + (ρvε · ∇)vε +

vε
2
∇ · (ρvε)−∆vε +∇pε = f + µε∇ϕε,

where additional terms arise from the following energy equality

d
dt

∫
Ω

1

2
ρ|vε|2 =

∫
Ω

[√
ρ∂t(
√
ρvε) + (ρvε · ∇)vε +

vε
2
∇ · (ρvε)

]
· vε.

This is used in the Gauge-Uzawa type schemes of [100]. It is unclear how one may obtain

higher accuracy from this scheme as this formulation introduces more nonlinearity into the
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problem.

Mimicking the form of Section 3.1.2, we now write down our scheme for Problem

3.4.1. First define the operators for α, γ ∈ [0, 1]F1(vε, pε) = −α∆vε +∇pε − f ,

F2(vε, ρ, ϕε, µε) = −(1− α)∆vε + ((ρvε + jε) · ∇)vε − µε∇ϕε.
(3.83)

G1(ϕε, µε,vε) = −γ∆µε + vε · ∇ϕε,

G2(µε) = −(1− γ)∆µε.
(3.84)

The Cahn-Hilliard system is formed identically to (3.8), (3.9) and (3.12). The variable

density Navier-Stokes has a different semi discrete abstract formulation in the place of

(3.7), (3.10) and (3.11) respectively. The equations, in their place are given below and hold

in a weak sense:

Step 1(a): Find (vn+θ
ε , pn+θ

ε ) ∈ (H1
g (Ω))d × L2(Ω)

ρn
vn+θ
ε − vnε
θ∆t

+ F1(vn+θ
ε , pn+θ

ε ) = −F2(vnε , ϕ
n
ε , µ

n
ε ),

∇ · vn+θ
ε = 0. (3.85)

Step 2(b): Find (vn+θ̃
ε ) ∈ (H1

g (Ω))d × L2(Ω)

ρn+θ̃ v
n+θ̃
ε − vn+θ

ε

(θ̃ − θ)∆t
+ F2(vn+θ̃

ε , ϕn+θ̃
ε , µn+θ̃

ε ) = −F1(vn+θ
ε , pn+θ

ε ). (3.86)

Step 3(a): Find (vn+1
ε , pn+1

ε ) ∈ (H1
g (Ω))d × L2(Ω)

ρn+θ̃ v
n+1
ε − vn+θ̃

ε

θ∆t
+ F1(vn+1

ε , pn+1
ε ) = −F2(vn+θ̃

ε , ϕn+θ̃
ε , µn+θ̃

ε ),

∇ · vn+1
ε = 0. (3.87)

This is not in the framework for the scheme we have previously investigated, as the density

ρn+∗ cannot be absorbed into F1 and F2 by dividing through. This then requires us to show

that the scheme is still of second order. It is however solvable and is still naturally coupled

into the 6 linear stages. The nonlinearities that feature are as in the fixed density case stated

in Section 3.1.2.

Remark 3.4.3. As ρn+∗ no longer features in the time derivative of the fluid solvers, we

anticipate that this may have an effect on the stability of the system. This will need to be
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considered in future investigation, but here we are only concerned with the consistency for

variable density scheme.

3.4.2 Consistency analysis for the variable density scheme

We investigate the accuracy of the variable density scheme, by using the linear combina-

tions in [36]. These allow us to compare unit step lengths and Taylor expansion compar-

isons with exact solutions to investigate the truncation error. Consider the following linear

combination in variational form of the steps above over the time interval [n∆t, (n+ 1)∆t]:{
Step 1(a)+Step 1(b)

}
×θ +

{
Step 2(a)+Step 2(b)

}
×(θ̃ − θ) +

{
Step 3(a)+Step 3(b)

}
×θ

⇐⇒
{

(3.85)+(3.8)
}
×θ +

{
(3.9)+(3.86)

}
×(θ̃ − θ) +

{
(3.87)+(3.12)

}
×θ.

(3.88)

Compare these with the solution (vε, pε, ϕε, µε) of the continuous problem evalu-

ated at the midpoint of the interval tn+ 1
2 = (n + 1

2)∆t, by using Taylor expansions of the

above about tn+ 1
2 . The midpoint is a sensible choice of evaluation for optimal low order

term cancellation between the two schemes, and this is a typical choice for implicit-explicit

schemes.

We first present the Taylor expansions for functions around the different substeps

of the interval [n∆t, (n+ 1)∆t] for convenience. We use the notation

g
n+ 1

2
t =

dg
dt

(t)
∣∣∣
t=tn+1

2
, and g

n+ 1
2

tt =
d2g

dt2
(t)
∣∣∣
t=tn+1

2

to represent the derivative of the solution function evaluated at the midpoint of the interval.

gn = gn+ 1
2 − ∆t

2
g
n+ 1

2
t +

(∆t)2

8
g
n+ 1

2
tt +O((∆t)3),

gn+θ = gn+ 1
2 −

(1

2
− θ
)

∆tg
n+ 1

2
t +

1

2

(1

2
− θ
)2

(∆t)2g
n+ 1

2
tt +O((∆t)3),

gn+θ̃ = gn+ 1
2 +

(
θ̃ − 1

2

)
∆tg

n+ 1
2

t +
1

2

(
θ̃ − 1

2

)2
(∆t)2g

n+ 1
2

tt +O((∆t)3),

gn+1 = gn+ 1
2 +

∆t

2
g
n+ 1

2
t +

(∆t)2

8
g
n+ 1

2
tt +O((∆t)3).

The interests in the following analysis is for second order accuracy, therefore we truncate

expansions after order (∆t)2. We shall now deal with the linear combination terms. Firstly

we deal with terms involving a time derivative.
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Time derivative terms
We collect the terms with time derivatives from the linear combination (3.88), with

test functions ζ ∈ (H1(Ω))d and ζ ∈ H1(Ω).

(ρnvn+θ − ρnvn

∆t
+
ρn+θ̃vn+1 − ρn+θ̃vn+θ

∆t
−ρn+ 1

2v
n+ 1

2
t , ζ

)
+
(ϕn+1 − ϕn

∆t
−ϕn+ 1

2
t , ζ

)
.

(3.89)

Evaluation of these terms individually with their Taylor expansions yields,

ρn(vn+θ − vn)

∆t
=

1

∆t

(
ρn+ 1

2 − ∆t

2
ρ
n+ 1

2
t +

(∆t)2

8
ρ
n+ 1

2
tt

)
·
(

(vn+ 1
2 − (

1

2
− θ)∆tvn+ 1

2
t +

(1
2 − θ)

2(∆t)2

2
v
n+ 1

2
tt )

− (vn+ 1
2 − ∆t

2
v
n+ 1

2
t +

(∆t)2

8
v
n+ 1

2
tt )

)
+O(∆t2)

= θρn+ 1
2v

n+ 1
2

t − θ∆t

2
ρ
n+ 1

2
t v

n+ 1
2

t

+
((1

2 − θ)
2

2
− 1

8

)
∆tρn+ 1

2v
n+ 1

2
tt +O(∆t2),

ρn+θ̃(vn+1 − vn+θ)

∆t
=

1

∆t
(ρn+ 1

2 + (θ̃ − 1

2
)∆tρ

n+ 1
2

t +
(θ̃ − 1

2)2(∆t)2

2
ρ
n+ 1

2
tt )

·
(

(vn+ 1
2 +

∆t

2
v
n+ 1

2
t +

(∆t)2

8
v
n+ 1

2
tt )

− (vn+ 1
2 − (

1

2
− θ)∆tvn+ 1

2
t +

(1
2 − θ)

2(∆t)2

2
v
n+ 1

2
tt )

)
+O(∆t2)

= (1− θ)ρn+ 1
2v

n+ 1
2

t − (θ̃ − 1

2
)(1− θ)∆tρn+ 1

2
t v

n+ 1
2

t

+
(1

8
−

(1
2 − θ)

2

2

)
∆tρn+ 1

2v
n+ 1

2
tt +O(∆t2).

Therefore, the first argument in (3.89) to second order is given by,

(θ + (1− θ)− 1)ρn+ 1
2v

n+ 1
2

t + (−θ
2

+ (θ̃ − 1

2
)(1− θ))∆tρn+ 1

2
t v

n+ 1
2

t +O(∆t2). (3.90)

We notice that,

θ := 1−
√

2

2
=⇒ (3.90) = O(∆t2).

Considering the second term in (3.89) and we see it is clearly O(∆t2) without dependence

on the value of θ.

Spatial derivative terms
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We repeat the above analysis, by taking spatial terms arising in the linear combina-

tion (3.88) and compare them with the operators acting on the exact solution evaluated at

the midpoint of the interval. The resulting consistency error is given here:(
θ(Fn+1

1 + Fn+θ̃
2 , ζ) + (θ̃ − θ)(Fn+θ̃

2 + Fn+θ
1 , ζ) + θ(Fn+θ

1 + Fn2 , ζ)

+ θ(Gn+1
1 + Gn+θ̃

2 , ζ) + (θ̃ − θ)(Gn+θ̃
2 + Gn+θ

1 , ζ) + θ(Gn+θ
1 + Gn2 , ζ)

)
− (Fn+ 1

2 , ζ)− (Gn+ 1
2 , ζ)

= (θFn+1
1 + θ̃(Fn+θ̃

2 + Fn+θ
1 ) + θFn2 − (Fn+ 1

2
1 + Fn+ 1

2
2 ), ζ) (3.91)

+ (θGn+1
1 + θ̃(Gn+θ̃

2 + Gn+θ
1 ) + θGn2 − (Gn+ 1

2
1 + Gn+ 1

2
2 ), ζ) (3.92)

= (θαη∇vn+1 + θ̃αη∇vn+θ − αη∇vn+ 1
2 ,∇ζ) (3.93)

+ (θpn+1 + θ̃pn+θ − pn+ 1
2 ,∇ · ζ) (3.94)

− (θfn+1 + θ̃fn+θ − fn+ 1
2 , ζ) (3.95)

+ (θ̃(1− α)η∇vn+θ̃ + θ(1− α)η∇vn − (1− α)η∇vn+ 1
2 ,∇ζ) (3.96)

+ θ̃b(ρn+θ̃vn+θ̃ + j
n+θ̃

,vn+θ̃, ζ) + θb(ρnvn + j
n
,vn, ζ)

− b(ρn+ 1
2vn+ 1

2 + j
n+ 1

2 ,vn+ 1
2 , ζ) (3.97)

+ θ̃b̂(ζ, ϕn+θ̃, µn+θ̃) + θb̂(ζ, ϕn, µn)− b̂(ζ, ϕn+ 1
2 , µn+ 1

2 ) (3.98)

+ (θγ∇µn+1 + θ̃γ∇µn+θ − γ∇µn+ 1
2 ,∇ζ) (3.99)

+ θb(vn+1, ϕn+1, ζ) + θ̃b(vn+θ, ϕn+θ, ζ)− b(vn+ 1
2 , ϕn+ 1

2 , ζ) (3.100)

+ (θ̃(1− γ)∇µn+θ̃ + θ(1− γ)∇µn − (1− γ)∇µn+ 1
2 ,∇ζ). (3.101)

We have written out (3.91) in a convenient grouping given by equations (3.93) – (3.98),

(respectively (3.92) by the equations (3.99) – (3.100)). We will not consider every term

given in the above expression, but candidate examples for the two types of difference.

First we consider the expression (3.93) + (3.96), note this is also a candidate for
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terms (3.99) + (3.101). Expand terms about the midpoint of the interval:

αη(θ∇vn+1 + θ̃∇vn+θ −∇vn+ 1
2 ) + (1− α)η(θ̃∇vn+θ̃ + θ∇vn −∇vn+ 1

2 )

= αη
(
θ∇
(
vn+ 1

2 +
∆t

2
v
n+ 1

2
t +

(∆t)2

8
v
n+ 1

2
tt

)
+ θ̃∇

(
vn+ 1

2 −
(1

2
− θ
)

∆tv
n+ 1

2
t

+
1

2

(1

2
− θ
)2

(∆t)2v
n+ 1

2
tt

)
−∇vn+ 1

2

)
+ (1− α)η

(
θ̃
(
vn+ 1

2 +
(
θ̃ − 1

2

)
∆tv

n+ 1
2

t +
1

2

(
θ̃ − 1

2

)2
(∆t)2v

n+ 1
2

tt

)
+ θ
(
vn+ 1

2 − ∆t

2
v
n+ 1

2
t +

(∆t)2

8
v
n+ 1

2
tt

)
−∇vn+ 1

2

)
+O(∆t3)

= αη
((θ

2
− θ̃
(1

2
− θ
))

∆t∇vn+ 1
2

t +
1

2

(θ
4

+ θ̃
(1

2
− θ
)2)

(∆t)2∇vn+ 1
2

tt

)
+ (1− α)η

(
θ̃
(
θ̃ − 1

2

)
− θ

2

)
∆t∇vn+ 1

2
t +

1

2

(
θ̃
(
θ − 1

2

)2
+
θ

4

)
(∆t)2∇vn+ 1

2
tt

)
+O(∆t3),

recalling that θ̃ = 1− θ and so (1
2 − θ) = (θ̃ − 1

2). We consider the form for the quadratic

expressions in θ:
θ

2
− (1− θ)

(1

2
− θ
)

= 2θ2 − 4θ + 1.

If θ = 1−
√

2
2 , then 2θ2 − 4θ + 1 = 0, and this is the only root in (0, 1

2). With this choice

of θ, we find that terms (3.93)+(3.96) yield a (second order) power series:(η
2

(
θ̃
(
θ − 1

2

)2
+
θ

4

)
∇vn+ 1

2
tt , ζ

)
(∆t)2 +O(∆t3).

We now consider the following (3.97), which is also a prototype for the terms (3.98) and
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(3.100). Expand terms about the midpoint of the interval.

θ̃(ρn+θ̃vn+θ̃ + j
n+θ̃

) · ∇vn+θ̃ + θ(ρnvn + j
n
) · ∇vn − (ρn+ 1

2vn+ 1
2 + j

n+ 1
2 ) · ∇vn+ 1

2

= θ̃
((
ρn+ 1

2 +
(
θ̃ − 1

2

)
∆tρ

n+ 1
2

t +
1

2

(
θ̃ − 1

2

)2
(∆t)2ρ

n+ 1
2

tt

)
·
(
vn+ 1

2 +
(
θ̃ − 1

2

)
∆tv

n+ 1
2

t +
1

2

(
θ̃ − 1

2

)2
(∆t)2v

n+ 1
2

tt

)
+
(
j
n+ 1

2 +
(
θ̃ − 1

2

)
∆tj

n+ 1
2

t +
1

2

(
θ̃ − 1

2

)2
(∆t)2j

n+ 1
2

tt

))
· ∇
(
vn+ 1

2 +
(
θ̃ − 1

2

)
∆tv

n+ 1
2

t +
1

2

(
θ̃ − 1

2

)2
(∆t)2v

n+ 1
2

tt

))
+ θ
((
ρn+ 1

2 − ∆t

2
ρ
n+ 1

2
t +

(∆t)2

8
ρ
n+ 1

2
tt

)(
vn+ 1

2 − ∆t

2
v
n+ 1

2
t +

(∆t)2

8
v
n+ 1

2
tt

)
+
(
j
n+ 1

2 − ∆t

2
j
n+ 1

2
t +

(∆t)2

8
j
n+ 1

2
tt

))
· ∇
(
vn+ 1

2 − ∆t

2
v
n+ 1

2
t +

(∆t)2

8
v
n+ 1

2
tt

)
− (ρn+ 1

2vn+ 1
2 + j

n+ 1
2 ) · ∇vn+ 1

2 +O(∆t3)

= ∆t
(
θ̃
(
θ̃ − 1

2

)
− θ

2

)(
(ρ
n+ 1

2
t vn+ 1

2 + ρn+ 1
2v

n+ 1
2

t + j
n+ 1

2
t ) · ∇vn+ 1

2

+ (ρn+ 1
2vn+ 1

2 + j) · ∇vn+ 1
2

t

)
+ (∆t)2

(
θ̃
(
θ̃ − 1

2

)2
+
θ

4

)(
(ρ
n+ 1

2
t v

n+ 1
2

t +
1

2
ρ
n+ 1

2
tt vn+ 1

2 +
1

2
ρn+ 1

2v
n+ 1

2
tt ) · ∇vn+ 1

2

+ (ρ
n+ 1

2
t vn+ 1

2 + ρn+ 1
2v

n+ 1
2

t + j
n+ 1

2
t ) · ∇vn+ 1

2
t )

+
1

2
(ρn+ 1

2vn+ 1
2 + j

n+ 1
2 ) · ∇vn+ 1

2
tt

)
+O(∆t3).

If θ = 1−
√

2
2 , then θ̃

(
θ̃− 1

2

)
− θ

2 = 0, and we get the following second order power series

from (3.97):((
θ̃
(
θ̃ − 1

2

)2
+
θ

4

)(
(ρ
n+ 1

2
t v

n+ 1
2

t +
1

2
ρ
n+ 1

2
tt vn+ 1

2 +
1

2
ρn+ 1

2v
n+ 1

2
tt ) · ∇vn+ 1

2

+ (ρ
n+ 1

2
t vn+ 1

2 + ρn+ 1
2v

n+ 1
2

t + j
n+ 1

2
t ) · ∇vn+ 1

2
t )

+
1

2
(ρn+ 1

2vn+ 1
2 + j

n+ 1
2 ) · ∇vn+ 1

2
tt

)
, ζ
)

(∆t)2 +O((∆t)3).

Other terms are either of an identical form to these prototype calculations, or they are sim-

pler than those considered and so can be treated similarly as the terms already considered.

We conclude with the following:

Theorem 3.4.4. The numerical scheme for the Problem 3.4.1 with steps 1a, 2b, 3a defined

by (3.85), (3.86), (3.87) and steps 1b, 2a, 3b defined by (3.8), (3.9), (3.12), and operator
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splitting given by (3.83), (3.84) is of second order accuracy with respect to the timestep, if

θ = 1−
√

2

2
.

3.5 Extension for inclusion of surfactants

In Chapter 4 we implement the full model for multi-phase flow with surfactant derived in

2.1.9. The precise setup of these simulations will be described in Section 4.3.3 and Section

4.4 where they are used. Here we shall detail how the surfactants are encorporated into

the numerical scheme in the case of the quadratic isotherm seen in Section 2.1.11, which

we use in implementation. This can be extended for other isotherm choices however the

quadratic isotherm allows us to deal with linear equations.

We see that the scheme allows for the insertion of the surfactant flow equation in

a way that does not disrupt the second order accuracy of the scheme. By inserting the

definition of the isotherm into the governing equations (2.177)-(2.178) for the surfactant in

the M phase diffuse interface model, we obtain:

∂
•(vε)
t

(( M∑
i

ξi
βi

+
M∑
i<j

δi,j
βi,j

)
qε

)
= ∇ ·

(( M∑
i

ξiM
(i)
c +

M∑
i<j

δi,jM
(i,j)
c

)
∇qε

)
, (3.102)

for positive constants βi, βi,j . For brevity, we define

Ξβ(ϕε) =
M∑
i

ξi(ϕ
(i)
ε )

βi
+

M∑
i<j

δi,j(ϕε,∇ϕε)
βi,j

,

Ξc(ϕε) =

M∑
i

ξi(ϕ
(i)
ε )M (i)

c +

M∑
i<j

δi,j(ϕε,∇ϕε)M (i,j)
c .

We integrate (3.102) against a test function and then, extending from Problem 3.4.1 for

M = 2 phases, we state the following weak problem:

Problem 3.5.1. Given initial data {vε0, ϕε0, qε0} ∈ (H1
g (Ω))d×H1(Ω)×H1(Ω) and f ∈

(L2(Ω))d, g1 ∈ (H1(Ω))d and g2 ∈ H1(Ω), find vε(·, t) ∈ (H1
g1(Ω))d, p(·, t) ∈ L2(Ω)/R
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and ϕε(·, t), µε(·, t) ∈ H1(Ω) and q ∈ H1
g2(Ω) such that, for all t ∈ [0, T ]∫

Ω
ζ(∂tϕε + vε · ∇ϕε) = −

∫
Ω
∇µε · ∇ζ, ∀ ζ ∈ H1(Ω),∫

Ω
ε∇ϕε · ∇ζ +

1

ε
F ′(ϕε)ζ =

∫
Ω
µεζ, ∀ ζ ∈ H1(Ω),∫

Ω
ζ(∂t(Ξβqε) + vε · ∇(Ξβqε)) =

∫
Ξc∇qε · ∇ζ, ∀ζ ∈ H1(Ω),∫

Ω
ζρ∂tvε + ζ(ρvε + jε) · ∇)vε

+

∫
Ω
η∇vε · ∇ζ − pε∇ · ζ =

∫
Ω
ζf + ζµε∇ϕε, ∀ ζ ∈ (H1(Ω))d,∫

Ω
ζ∇ · vε = 0, ∀ ζ ∈ L2(Ω). (3.103)

To discretise this problem in time we wish to follow similar extensions to the

fractional-theta scheme framework as seen in Section 3.4.1. We use the strong form nota-

tion to write the problem in terms of abstract operators. We take the operators F1,F2 from

(3.83) for the fluid equations and operators G1,G2 from (3.84) for the phase field equations.

For simplicity we assume that the mobilities in the Cahn-Hilliard equations are constant.

We additionally construct the operators H1,H1 as follows for the surfactant equations, for

ω ∈ [0, 1] H1(qε,Ξβ,Ξc,vε) = ω∇ · (Ξc∇qε) + vε · ∇(Ξβ∇qε),

H2(qε,Ξc) = −(1− ω)∇ · (Ξc∇qε).
(3.104)

We then extend the system detailed in 3.4.1 in the following manner.

• Step 1

– (a) We solve the variable density Stokes problem (3.85).

– (b) We solve the surfactant equation (3.105).

– (c) We solve the Cahn-Hilliard problem (3.8).

• Step 2

– (a) We solve the Cahn-Hilliard problem (3.9).

– (b) We solve the surfactant equation (3.106).

– (c) we solve the variable density Stokes problem (3.86).

• Step 3

– (a) We solve the variable density Stokes problem (3.87).
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– (b) We solve the surfactant equation (3.107).

– (c) We solve the Cahn-Hilliard problem (3.12).

We use the shortening Ξn∗ = Ξ∗(ϕ
n
ε ) and write the surfactant equations with respect to the

operatorsH1 andH2 as follows:

Step 1(b): Find qn+θ
ε ∈ H1

g2(Ω)

Ξnβ
qn+θ
ε − qnε
θ∆t

+H1(qn+θ
ε ,Ξnβ,Ξ

n
c ,v

n+θ
ε ) = −H2(qnε ,Ξ

n
c ). (3.105)

Step 2(b): Find qn+θ̃
ε ∈ H1

g2(Ω)

Ξn+θ̃
β

qn+θ̃
ε − qn+θ

ε

(θ̃ − θ)∆t
+H2(qn+θ̃

ε ,Ξn+θ̃
c ) = −H1(qn+θ

ε ,Ξn+θ̃
β ,Ξn+θ̃

c ,vn+θ
ε ). (3.106)

Step 3(b): Find qn+θ̃
ε ∈ H1

g2(Ω)

Ξn+θ̃
β

qn+1
ε − qn+θ̃

ε

θ∆t
+H1(qn+1

ε ,Ξn+θ̃
β ,Ξn+θ̃

c ,vn+1
ε ) = −H2(qn+θ̃

ε ,Ξn+θ̃
c ). (3.107)

The scheme is solvable, and none of the steps are strongly coupled. The linearity is no

worse than that of the variable density Cahn-Hilliard Navier-Stokes scheme. We still re-

tain the same ordering of the equations as before, so the velocities which are used by the

surfactant and Cahn-Hilliard equations are always divergence free. This allows us to per-

form integration by parts on the transport terms. In practice we solve the equations by

substituting the transport term in implementation with using the following identity:∫
Ω
vε · ∇(Ξβqε)ζ = −

∫
Ω

Ξβqεvε · ∇ζ,

we have also used the boundary condition vε ·νΩ = 0. This is more convenient in practice as

in discretisation we take ϕ(k)
ε ∈ H1(Ωh), and so do not wish to compute second derivatives

of ϕε.

In fact this scheme retains the second order accuracy. This can be seen by taking

the linear combination (3.88) for the current scheme. In the notation of Section 3.4.2, we

compare with the midpoint of the interval we arrive at the expression:

(3.89) +
(

Ξnβ
qn+θ − qn

∆t
+ Ξn+θ̃

β

qn+1 − qn+θ

∆t
− Ξ

n+ 1
2

β q
n+ 1

2
t , ζ

)
.

This uses an identical discretisation as taken with ∂t(ρvε) and can be dealt with as shown

in the calculation directly following the statement of expression (3.89). The other terms are
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as follows

θ(Hn+1
1 +Hn+θ̃

2 , ζ) + (θ̃ − θ)(Hn+θ̃
2 +Hn+θ

1 , ζ) + θ(Hn+θ
1 +Hn2 , ζ)

− (Hn+ 1
2 , ζ)

= ω(θΞn+θ̃
c ∇qn+1 + (θ̃ − θ)Ξn+θ̃

c ∇qn+θ + θΞnc∇qn+θ − Ξ
n+ 1

2
c ∇qn+ 1

2 ,∇ζ)

+ (1− ω)(θ̃Ξn+θ̃
c ∇qn+θ̃ + θΞnc∇qn − Ξ

n+ 1
2

c ∇qn+ 1
2 ,∇ζ)

−
(
(θΞn+θ̃

β (v · ∇q)n+1 + (θ̃ − θ)Ξn+θ̃
β (v · ∇q)n+θ + θΞnβ(v · ∇q)n+θ,∇ζ)

− Ξ
n+ 1

2
β (v · ∇q)n+ 1

2 ,∇ζ)
)
.

We can show that each set of grouped terms is O((∆t)2) using the techniques of Section

3.4.2 if condition θ = 1−
√

2
2 holds. Therefore, we have shown:

Proposition 3.5.1. The numerical scheme for the Problem 3.5.1 with steps 1a, 2c, 3a de-

fined by (3.85), (3.86), (3.87), steps 1c, 2a, 3c defined by (3.8), (3.9), (3.12), and steps 1b,

2b, 3b defined by (3.105), (3.106), (3.107), the operator splitting given by (3.83), (3.84),

(3.104) is of second order accuracy with respect to the timestep, if

θ = 1−
√

2

2
.
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Chapter 4

Numerical Results

4.1 Preliminaries

This chapter is comprised of several self contained sections, each detailing the motivation,

setup, presentation and discussion of a particular computational test series. These simula-

tions are used both to validate results that have been discussed earlier in the thesis, and to

demonstrate the performance and flexibility of the code package that has been written.

There are two types of convergence of interest, one with respect to scheme pa-

rameters ∆t and h, and one with respect to the modelling parameter ε. More precisely,

the numerical scheme should display numerical convergence to the diffuse interface model

when temporal and spatial grids are reduced, this will demonstrate the results proved in

Chapter 3. We should also obtain the convergence to the sharp interface model as ε → 0,

this will computationally verify the theoretical results of Section 2.2. We are interested in

the rate at which solutions converge with respect to these parameters and account for this

by calculating experimental orders of convergence (EOCs).

Let xtrue be a solution to the problem of interest and let xηi be calculated solutions to

an approximating problem dependent on a finite parameter sequence (ηi)
N
i=0 satisfying ηi =

ηi−1

ki
for i = 1, . . . , N , and ki reduction parameter. The estimated order of convergence in

the norm ‖ · ‖∗ with respect to ηi is given for i = 1, . . . , N :

∗-EOC(ηi) = logki

(‖xηi−1 − xtrue‖∗
‖xηi − xtrue‖∗

)
. (4.1)

The meaning of the value of (4.1) can be seen clearly when one takes f(η) := ‖xη−xtrue‖∗
and considers the ansatz f(η) ≈ Cηp for C independent of η. Evaluating (4.1) under this

assumption leads to ∗-EOC(ηi) = p, and so in this case it would yield exactly the order of

convergence.
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The choice of norm will be made depending on the test we are considering. One

choice is for the norm ∗ in (4.1) to be lp. We use this norm when we will be comparing

different scalar functions which are evaluated along a 1D interval as in Section 4.3.1 for the

surfactant potential q. For a finite data sample y = (yi)
N
i=1 = (f(xi))

N
i=1,

‖y‖l∞ = max
i=1,...,N

(yi), ‖y‖lp =
( N∑
i=1

ypi

) 1
p
. (4.2)

Another choice of norm ∗ for comparison of the full discrete solutions, is the discrete L2
h

norm for vector valued functions (recall (3.19)). For the comparing the phase field solutions,

we will consider the following norm, which acts as a way of summarising the norms for each

of the individual component fields. Consider a function f : Ω → RM with decomposition

f = (fi)
M
i=1 for fi ∈ H1(Ω) a Ω ⊂ Rd, then we use the following shorthand:

‖f‖
L̂2,M
h

=

M∑
i=1

‖fi‖L2(Ω), and ‖∇f‖
L̂2,d×M
h

=

M∑
i=1

‖∇fi‖L2(Ω,Rd). (4.3)

We emphasise the difference here from considering the norms which are used for the ve-

locities. The norm for velocities was defined in Section 3.2.1 and treat the velocity as a

quantity of interest, and not as a collection of components. For a function w : Ω→ Rd:

|w| = ‖w‖L2(Ω,Rd) and |∇w| = ‖∇w‖L2(Ω,Rd×d). (4.4)

The norms are equivalent as they are only finite dimensional, however the separate treat-

ment of the phase fields and velocity can be seen throughout in the way the equations are

constructed. The velocity equations are constructed for the velocity vector field, whereas

the phase field equations have been set up for the individual components. Having differ-

ent choices do not affect the rates of convergence, but are the most natural quantities to

consider.

For ε → 0 convergence studies of diffuse interface approximations, we choose the

discretised solution of the sharp interface problem to be a true solution xtrue of the discrete

problem. For numerical convergence studies we typically take a very fine resolution respect

to the parameter of interest and consider this to be a reference solution for the discrete

problem xrefh .

In Section 4.2 we first present the consistency result for the scheme, showing that

in practice we acheive second order accuracy in time, we also comment on the stability of

the scheme in practice. In Section 4.3.1 we shall establish the convergence of solutions of

the diffuse interface model to the sharp interface model, with particular consideration to
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surfactant effects. Finally, in Section 4.4, we demonstrate the flexibility of the scheme to

a more complex problem, a 3D simulation of a three phase flow with different densities,

viscosities and in the presence of surfactant.

4.2 Second order accuracy in time of the fractional-theta scheme

Figure 4.1: Inital conditions for a lens represented by solid lines. Ω(3) is trapped between
two fluids Ω(2) and Ω(3). The dashed and dotted lines represent snapshots of the of the
relaxation we expect at some time t1 > 0 and t2 > t1 respectively in the absence of
external forces.

We demonstrate the second order accuracy of our numerical scheme for multi-phase

flow (see Chapter 3) by creating a phase field model of an oscillating droplet and refining

the numerical time stepping for fixed spatial parameters fixed. For each choice of timestep

(∆t)i we ran the simulation upto a fixed time T = Ni(∆t)i to obtain computed velocities

vNi
εh at this time. We then compared computed solutions with a reference solution computed

on a very fine resolution time scale.

The sharp interface problem we wish to approximate is initialised by the domain

as shown in solid lines in Figure 4.1. There, two fluid layers represented by Ω(1) and

Ω(2) trap a third phase Ω(3) initially in the shape of a disc. More precisely, the domain is

given by Ω = [−3, 3] × [−2, 2], and time t ∈ [0, T ] and initially, Γ(1,2)(z, 0) is given by
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z ∈
(
(−3,−r) ∪ (r, 3)

)
× {0}, and Γ(1,3)(z, 0), (resp. Γ(2,3)(z, 0) ) given by the upper

(resp. lower) open semicircle of radius r and centred at the origin. T (1,2,3)(z, 0) are at

(±r, 0). In this test we have taken r =
√

5
π (This was chosen as it gives an easy check for

volume conservation for the phases).

The viscosities of each subregion are fixed in time, η(i) = 0.01 for all i = 1, 2, 3.

The fluid densities are different in each region, and given by ρ(1) = 1.0, ρ(2) = 2.0 and

ρ(3) = 1.5. The choice of these values allowed for significant movement of the interfaces

during the course of the simulation. As we are investigating the time discretisation, this will

should give clearer results of the effects on the system dynamics.

The initial velocity is given by v(z, 0) = 0, ∀z ∈ Ω, and the boundary condition

v(z, t) = 0,∀(z, t) ∈ ∂Ω × [0, T ], to observe the effects of density more clearly, we

introduce gravity via the forcing f = −9.8ρ(i)e2 where e2 is the standard basis vector

(0, 1) ∈ R2 . We furthermore assume there are no surfactants present, and fix the surface

tension, σi,j = 1, for (i, j) = (1, 2), (1, 3), (2, 3). It should be emphasised that these

choices of parameters were not physically motivated.

The multi-phase flow equations we wish to solve are given by (2.82)-(2.90), where,

in the absence of surfactant, equations (2.84), (2.87) and (2.89) disappear. The parameters

chosen are enough to define the model in this case.

To create an approximating diffuse interface model, we initialise as follows. Firstly,

to localize the inconsistencies about the triple junctions only, we initialize the phase field

using the profile of an exact solution for the two-phase Cahn-Hilliard equation to represent

the initial hypersurfaces Γ(i,j)(z, 0). Let ε = 0.2 then, for z = (x, y) ∈ Ω:

ϕ(1)
ε (x, y, t = 0) =


1
2(1 + tanh(2y

ε )), for x ∈ [−3,−r) ∪ (r, 3],

1
2(1 + tanh(2(r−1)

ε )), for (x, y) ∈ [−r, r]× (0, 2],

0, otherwise.

ϕ(2)
ε (x, y, t = 0) =


1
2(1 + tanh(−2y

ε )), for x ∈ [−3,−r) ∪ (r, 3],

1
2(1 + tanh(2(r−1)

ε )), for (x, y) ∈ [−r, r]× [−2, 0],

0, otherwise.

along with ϕ(3)
ε = 1− ϕ(1)

ε − ϕ(2)
ε to conserve (2.103). Take initial velocity vε(z, 0) = 0.

In practice we solve a problem to relax the triple junctions due to inconsistency of the initial

conditions, and after this is complete we will begin the test series there.

We solve the system (2.174) – (2.178) for the phase field, and in the absence of

surfactant, this reduces to solving (2.174) – (2.176) with constant surface tension σ̃i,j =

1. We take the choice of Boyer, Lapuerta and Minjeaud for the Cahn-Hilliard potential
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found in Section 2.2.8 with a constant mobility parameter Mc = 0.002 and regularisation

parameter Λ = 5 and subsitute these choices into equations (2.174) – (2.176). For the

Navier-Stokes we solve the system (2.179) – (2.180) using the rewritten force term (2.168).

We take η(ϕε) = 1 and take a linear interpolation for ρ(ϕε) as in Section 2.2.1. We also

take a zero velocity boundary condition for vε as in the sharp interface model for v.

We discretise the diffuse interface model by using the timestepping scheme for vari-

able density flow in Section 3.4.1, for three phases. This requires solving the equations

(3.85), (3.8), (3.9), (3.86), (3.87), (3.12) for each timestep. For this time discretisation

scheme we choose the optimal choice of θ = 1 −
√

2
2 (discussed in Section 3.1.1), and we

choose the parameters α = 2−
√

2 and 1− α =
√

2− 1 implicit-explicit splitting for dis-

sipation in the Navier-Stokes and an identical choice for γ and 1− γ for the Cahn-Hilliard

equations. For the spatial discretisation parameters, we choose a fixed uniform spatial grid

of size 300× 200, which equates to h to be smaller than ε
12 .

The simuation will run as follows. We solve our discrete system first with step

size ∆t = 0.001 until a time T0 = 0.05, this is sufficient to relax the triple junction from

the inconsistency of the initial conditions. We then begin the timestep series. For each

subsequent run i we choose a timestep (∆t)i, and solve steps of the scheme until an end

time T = T0 +Ni(∆t)i, where we shall have computed an approximate solution vNi
εh to the

velocity vε(·, T ). At time T we compare the L2 difference ‖vNi
εh − v

ref
εh ‖L2(Ωh,Rd) with a

reference solution vrefεh . Here we choose T−T0 = 1.05, and the reference vrefεh is computed

by running the simulation with ∆t = 0.001 and N = 1000, it is important that we have

chosen ∆t� (∆t)i.

Snapshots of the progression of the simulation run for the reference solution at times

t = T0, t = T0 + 0.5 and t = T are given in the Figures 4.2, 4.3 and 4.4 respectively. On

the bottom right of each figure ϕ(3)
ε is plotted, with the ϕ(i)

ε = 0.5 level sets for the other

phases. The top right of each figure shows the computed pressure gradient due to gravity

and the dynamics of the system. The left hand diagram shows the vector field of the fluid

flow.

We display the results of the test series for the choices of Ni in Table 4.1, and

Table 4.2. We also display the actual error in the total energy caculated from the test series,

displayed in Figures 4.5 and 4.6.

The purpose of this test series was to demonstrate that the choice of scheme for the

discrete system (with a variable density) was of second order accuracy with regards to the

parameter ∆t. We have proved this in Section 3.4.2 theoretically, and this was of particular

importance as the introduction of the variable density into the scheme, was outside of the

traditional framework for the operator splitting and so required proof. In Table 4.1 we see

that the scheme achieves an order of convergence of in excess of 2 for the velocity vεh in
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Figure 4.2: Figure displaying the state of the system at time t = T0. The bottom right
displays ϕ(3)

ε field, with ϕ(i)
ε = 0.5 level sets in white (appearing in all diagrams). The top

right shows pressure field. The left shows the velocity vector field where the size and colour
of the arrows represent the magnitude of the velocity field.

the discrete L2 norm when calculating an extended range of timesteps. We also observe this

reduces to below 2 when the errors due to the timestepping are reduced. This is perhaps

due to unknown numerical error, or errors due to the approximation in the EOC formula

and may require further investigation. This error could be reduced by running on a finer

mesh, or perhaps running simulations with exact solutions available, or using a much finer

mesh reference solution (but this becomes restrictive due to resources as we are required to

use a fine and uniform spatial mesh).

One can see the actual size of energy errors in Figure 4.6 at this time. For ∇vεh
we see similar behaviour, where the orders of convergence are in excess of 1 until the point

already commented on. We have not performed any analysis to determine the correct rate

of convergence for the velocity gradient. In Table 4.2 we observe idential behaviour for ϕεh
and ∇ϕεh, but these reach peak orders of 4.57 and 4.97 respectively before reduction due

to aforementioned error.

In Figure 4.5 we observe the actual error to the total discrete energy (2.170) (note

this is decreasing when the problem is posed without the presence of gravity), a magnifica-

tion in Figure 4.6 displays the convergence more clearly. The difference in actual values of

the energy in l∞ is very good, within a maximum error of %0.4 from the reference solution

to ∆t = 0.0625 and the error to the solution ∆t = 0.02083 is just %0.002.

The tests conducted were to give validation to the consistency results of Section

3.4.2, however during testing We were able to observe some of the features of stability,

which imply it is significantly better than the theory of Section 3.2. In the case of variable
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Figure 4.3: Figure displaying the state of the system at time t = T0 + 0.5. The bottom right
displays ϕ(3)

ε field, with ϕ(i)
ε = 0.5 level sets in white (appearing in all diagrams). The top

right shows pressure field. The left shows the velocity vector field where the size and colour
of the arrows represent the magnitude of the velocity field.

density (and without the presence of gravity), the discrete energy would always decrease

over time. Also the stability relation (3.68) in two dimensions was, in practice, a more re-

laxed condition, and discrete energy decay persisted with test runs of ∆t ≈ Ch for different

mesh sizes.
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Figure 4.4: Figure displaying the state of the system at time t = T0 + 1. The bottom right
displays ϕ(3)

ε field, with ϕ(i)
ε = 0.5 level sets in white (appearing in all diagrams). The top

right shows pressure field. The left shows the velocity vector field where the size and colour
of the arrows represent the magnitude of the velocity field.

Ni |vNi
εh − v

ref
εh | L2

h-EOC(Ni) |∇vNi
εh −∇v

ref
εh | (L2

h)d-EOC(Ni)

16 0.110741 5.34141 2.68818 7.55768
20 0.0336258 1.74474 0.497787 1.4903
24 0.0244637 1.90179 0.37935 1.22721
28 0.0182475 2.23624 0.313966 1.04965
32 0.0134369 2.53646 0.272905 0.77727
36 0.0100409 2.29003 0.24903 0.57897
40 0.00788835 1.89885 0.234293 0.449098
44 0.00658245 1.53922 0.224476 0.384404
48 0.00575735 – 0.217092 –

Table 4.1: The table displays the results of the timestepping test series where timestep size
is given by (∆t)i = 1

Ni
. We present differences between the computed solution (and their

gradients) for run i and the computed reference solution (with ∆t = 0.001, N = 1000).
The definition of the norms are given in (4.4) and EOC in (4.1). We provide estimated orders
of convergence between subsequence steps.
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Ni ‖ϕNi
εh − ϕ

ref
εh ‖L̂2,3

h
L̂2,3
h -EOC(Ni) ‖∇ϕNi

εh −∇ϕ
ref
εh ‖L̂2,2×3

h
L̂2,2×3
h -EOC(Ni)

16 0.189574 3.32117 1.80561 3.34943
20 0.0903491 3.50728 0.855128 3.45206
24 0.0476665 4.10728 0.455714 3.98944
28 0.0253072 4.76252 0.246384 4.52721
32 0.0133985 4.95185 0.134608 4.57555
36 0.0074775 3.70869 0.0785272 3.48656
40 0.0050589 1.68757 0.0543856 1.90868
44 0.00430728 0.37857 0.0453397 0.834122
48 0.00416771 – 0.04216561 –

Table 4.2: The table displays the results of the timestepping test series where timestep size
is given by (∆t)i = 1

Ni
. We present differences between the computed solution (and their

gradients) for run i and the computed reference solution (with ∆t = 0.001, N = 1000).
The definition of the norms are given in (4.3) and EOC in (4.1). We provide estimated orders
of convergence between subsequence steps.
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Figure 4.5: The figure displays the total discrete energy value Enε , that is, the discretisation
of (2.170) (see Section 3.2.3 for two phase matched density case). For clarity we have not
displayed every solution in the test series, but have captured the full range of accuracies,
and the reference solution is given by the solid black line.

Figure 4.6: A magnified section of Figure 4.5 displaying the right hand edge where the
EOCs in Tables 4.1 and 4.2 were calculated. In this figure, the symbols are placed at every
evaluation of the time stepping scheme

109



4.3 Convergence of DIM to SIM

4.3.1 Surfactant equation through a triple junction

Figure 4.7: Setup for the ε-convergence test for the surfactant equation as considered in
Section 4.3.1.

We demonstrate the convergence of the diffuse surfactant equation (2.177)-(2.178)

to the sharp interface setting (2.87) without being subjected to a multi-phase flow. We

display the configuration for this test in Figure 4.7. The domain is a regular hexagon of

side length 1. It is comprised of 3 subregions Ω(i), i = 1, 2, 3 separated by fixed straight

interfaces Γ(i,j), (i, j) = (1, 2), (1, 3), (2, 3), which meet at a triple junction T (1,2,3) at the

origin.

The sharp interface equation for the surfactant equation (2.87) in the absence of fluid

flow is a surface heat type equation. Here we consider the case where c(2,3)(q) = 0 (the

dashed line in Figure 4.7), and c(i)(q) = 0, ∀i = 1, 2, 3. The interfaces Γ(1,2), Γ(1,3) are

straight lines of length L =
√

3
2 , and we transform the equations for c(1,2)(q) and c(1,3)(q)
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onto the interval [−L,L]. This is shown in Figure 4.7; the interval [−L, 0) is the transforma-

tion of Γ(1,3), (0, L] is the transformation of Γ(1,2) and the triple junction T (i,j,k) is mapped

to 0. We assume a linear relationship in (2.70), that is, we use the quadratic isotherm (2.99)-

(2.101). For (i, j) = (1, 2), (1, 3), take c(i,j)(q) = q
βi,j

for constants βi,j > 0 and moreover

assume the mobilities M (i)
c ,M

(i,j)
c > 0 are constants.

The surfactant is initially absent q(s, 0) = 0, ∀s ∈ [−L,L]. It will be supplied

from s = −L by imposing a Dirichlet condition corresponding to q(−L, t) = qbdry. At

the other boundary s = L we take a homogeneous Neumann boundary condition. In the

long run, the solution will approximate q = qbdry so we stop the test early at a final time

T = 0.01 to ensure gradients still have a significant influence on behaviour.

Application of the above transformation, conditions and assumptions to the equa-

tions (2.89) and (2.87), results in the following problem:

∂tc
(1,3)(q(s, t))−M (1,3)

c ∂ssq(s, t) = 0, ∀(s, t) ∈ [−L, 0]× (0, T ],

∂tc
(1,2)(q(s, t))−M (1,2)

c ∂ssq(s, t) = 0, ∀(s, t) ∈ (0, L]× (0, T ],

q(−L, t) = qbdry, ∂sq(L, t) = 0, ∀t ∈ (0, T ], (4.5)

[M (·,·)
c q′]+−(0, t) = 0, [q]+−(0, t) = 0, ∀t ∈ (0, T ],

q(s, 0) = 0, ∀s ∈ [−L,L].

For the numerical scheme parameters, we perform a 1D linear finite differences

method. In brief, we use a standard second order difference for ∂ss, and backward Eu-

ler difference for ∂s. To enforce the jump condition at 0 and the homogeneous Neumann

boundary condition at L we use one-sided first order differences. (4.5) is solved in MAT-

LAB 2016b, with a grid of N = 4000 points and a timestep ∆t = 2.5 × 10−6. This is

sampled uniformly across the domain at the final time at 400 points for comparison with

the diffuse modelling solution. These parameters ensure a sufficient accuracy for compari-

son with the diffuse interface model.

To approximate the solution of the diffuse interface model, the test is built in two

stages. The first stage involves the relaxation of the phase field to form the triple junction

with a given ε value. To be more precise we define the initial conditions on Ω for the phase

field as,

ϕ(1)
ε (x, y, t = 0) =


1
2(1 + tanh(2x

ε )), for y ≥ 0,

1
2(1 + tanh(2

ε (y +
√

3
3 x))), for {x ≥ −ε} ∩ {y < 0},

0, otherwise.
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ϕ(2)
ε (x, y, t = 0) =


1
2(1 + tanh(−2x

ε )), for y ≥ 0,

1
2(1 + tanh(2

ε (y −
√

3
3 x))), for {x ≤ ε} ∩ {y < 0},

0, otherwise.

along with ϕ(3)
ε = 1 − ϕ(1)

ε − ϕ(2)
ε . The Cahn-Hilliard system (2.174) - (2.180) is solved

in the absence of fluids or surfactant until it reaches a stationary state. That is, we fix

vε = 0 and qε = 0, and choose the functions Li,j , ai,j , wi,j as in Section 2.2.8 and set

σ̃i,j = 1. The second stage involves fixing the final computed phase field solutions, and

then substituting them into equations (2.177)-(2.178). These are then solved with conditions

which imitate the setting of the sharp interface model test. We set ξi = 0 and δ2,3 = 0, and

the surfactant is supplied at the boundary ∂Ωin :=
{

(r,
√

3
2 (r − 1))

∣∣r ∈ (0, 1)
}

, using a

Dirichlet condition qbdry. All other boundaries carry a homogeneous Neumann boundary

condition. We replace the distributions δ1,2, δ1,3 with a regularisation (4.6). This is because

the distributions δi,j decay exponentially outside of the interfacial regions, which may cause

numerical complications due to the problem being almost degenerate in the bulk:

˜δi,j(ϕε,∇ϕε) =

δi,j(ϕε,∇ϕε), if |δi,j(ϕε,∇ϕε)| > Cε2,

Cε2, otherwise.
(4.6)

We found C = 0.001 was sufficient to be comparable to discretisation errors, for all values

of ε. A similar technique of regularisation in the case of degeneracy in the bulk has been

studied by [114]. The problem tackled was to mimic zero diffusion off of a surface into

the embedding domain, and required a regularisation to the phase field. The authors chose

to add a function 0 < δ(ε) � ε to the two phase potential and showed this did not affect

convergence properties ε→ 0 through asymptotic analysis.

We choose discretisation parameters to ensure accuracy is sufficient to observe the

ε-convergence. We use an adaptive spatial grid paramter h, and refine the grid by using a

strategy to bisect any element where |∇ϕ(·)
ε | > Ca

ε , taking Ca = 0.004, hmin ≈ ε
5 , and

the maximum number of adaption levels as 4. This hmin yields approximately 10 elements

across the interface. We choose the time step ∆t = 2.5 × 10−6. At the final time t = T ,

we sample qε uniformly at N = 400 points along the straight lines representing Γ(1,3) and

Γ(1,2).

We perform two test series for demonstration of the ε-convergence test. For the first,

we choose the model parameters β12 = β13 = 1 and set mobilities M (1,2)
c = M

(1,3)
c =

100. The profiles of the surfactant potential qε at time T , for different values of ε, and

the sharp interface model solution are displayed in Figure 4.8. A closer view of the right

hand boundary is displayed in Figure 4.9. We also display information in Table 4.3 using
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the notation defined in (4.1) - (4.2). The maximum error occurs at points furthest from the

source boundary condition, so the difference in value between q and qε at s = L will yield

the ε - error in the discrete L∞ norm stated above.

ε qε(L) ‖ref− qε‖l∞ l∞-EOC(ε) ‖ref− qε‖l2 l2-EOC(ε)

0.08 0.219128 0.003256 0.888345 0.002375 0.868456
0.04 0.217631 0.001759 0.845374 0.001301 0.809466
0.02 0.216851 0.000979 0.795614 0.000742 0.732636
0.01 0.216436 0.000564 – 0.000447 –
ref 0.215872 – – – –

Table 4.3: The table displays the results of the first test series. The value of the surfactant
potential qε is taken at the point

(
0,
√

3
2

)
at different sizes of ε. ‘ref’ is the solution of the

sharp interface problem (4.5) at the point s = L. The notation is defined in (4.1)-(4.2).

We observe in Figure 4.8 that we have excellent agreement across all ranges of

ε to the sharp interface model. Qualitative information for qε is preserved in the diffuse

approximation, in particular the gradient of qε either side of the triple junction is equal.

This condition is strongly enforced in the finite difference scheme for the sharp model,

and weakly by the finite element scheme for the diffuse model. Quantitative analysis can

be seen more clearly in Figure 4.9 and Table 4.3. We observed that there is convergence

of qε as ε is reduced and we determine an estimated convergence order towards the sharp

interface model solution is approximately 0.8 in both l2 and l∞ norms. For the largest value

ε = 0.08 we obtain an accuracy of 1.51% in l∞, and at the finest width of ε = 0.01 we

obtain an error of 0.26% to the sharp interface solution.

For the second test series, we choose the model parameters β12 = 4, β13 = 1 and

set mobilities M (1,2)
c = 25, M

(1,3)
c = 100. This will produce a jump of ∂sq at s = 0.

The profiles of the surfactant potential qε at time T for different values of ε and the sharp

interface model solution are displayed in Figure 4.10. A closer view of the triple junction

region is displayed in Figure 4.11. We display information regarding errors and EOCs in

Table 4.3.

ε qε(L) ‖ref− qε‖l∞ l∞-EOC(ε) ‖ref− qε‖l2 l2-EOC(ε)

0.08 0.127939 0.005887 0.910448 0.005596 0.865238
0.04 0.125184 0.003132 0.927244 0.003072 0.882334
0.02 0.123699 0.001617 0.919096 0.001667 0.852642
0.01 0.122923 0.000871 – 0.000923 –
ref 0.122052 – – – –

Table 4.4: The table displays the results of the second test series. The value of the surfactant
potential qε is taken at the point

(
0,
√

3
2

)
at different sizes of ε. ‘ref’ is the solution of the

sharp interface problem (4.5) at the point s = L. The notation is defined in (4.1)-(4.2).

113



We observe good agreement of the solution across all ε values (4.82% in l∞ for

ε = 0.08 and 0.71% at ε = 0.01). The accuracy is lower than in the first test series, but the

estimated order of convergence is still similar, at around 0.9 in l∞ and 0.85 in l2. Figure

4.11 demonstrates the greatest source of inaccuracy of the model, arising from the jump at

s = 0 in the gradient ∂sq. Thus ε must be small if one requires an accurate description of

the flow near this region.

We have obtained a sublinear convergence for our scheme, this may due to the

asymptotic scaling behaviour of the triple junction. Investigations in [55] have shown that

these regions have the scaling regime of a triangle with sidelengths proportional to εω where

ω ∈ (0, 1). This behaviour could be causing the sublinear convergence but will require

further investigation.
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Figure 4.8: The profile of the computed potential qε at at different ε values and compared
to the solution of the sharp interface problem (4.5). Values were taken at time t = 0.01,
and the diffuse approximation was sampled along the path displayed in Figure 4.7 and
transformed to be displayed over the interval

(
− L,L

)
.

Figure 4.9: A magnified section of Figure 4.8 displaying the right hand end of the profile of
computed potentials. We display the solutions over the interval (L2 , L).
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Figure 4.10: The profile of the qε at different ε values and compared to the solution of the
sharp interface problem (4.5). Values were taken at time t = 0.01, the diffuse approximation
was sampled along a path as in Figure 4.7 and projected onto the interval

(
−
√

3
2 ,
√

3
2

)
.

The triple junction is centred at 0.

Figure 4.11: A section of Figure 4.10 displaying the profile of the computed potential qε at
at different ε values and compared to the solution of the sharp interface problem (4.5). We
display the path only from

(
−
√

3
8 ,
√

3
8

)
to observe the approximation of the triple junction.
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4.3.2 Angles at a triple junction

Figure 4.12: Diagram of a triple junction between three hypersurfaces Γ(i,j) and their
conormals µ(i,j,k). The angles θ(i,j) represent the angles described by the Neumann tri-
angle relation of the surface tensions σi,j , and the angles ψ(k) are the angles between the
corresponding branches Γ(j,k),Γ(k,i).

For this test, we wish to demonstrate the recovery of angles about a triple junction in

the absence of flow, these are predicted by the force balance (2.36). We once again consider

a three phase lens setting as described in Figure 4.1, and as the junctions only touch the

boundary at only one of the branches, this allows for good isolation of boundary effects on

the junction angles.

The domain is rectangular Ω = [−1.75, 1.75] × [−2, 2]. A similar setting is con-

structed in Section 4.2, and so we refer to this for initialisation of the geometrical features,

with the parameter choice r =
√

3
π for the radius the initial disc centred at the origin

representing Ω(3).

We assume for the surfactants that we are within the instantaneous adsorption regime,

that is, we will consider the model summarised in Section 2.1.10. In the absence of the fluid

flow the equations (2.82), (2.83), (2.85), (2.88) disappear and we consider the the model in

this case. We choose the quadratic isotherm of Section 2.1.11, and we choose the parame-
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ters to acheive desired angles, we will go into detail about how these choices were made.

It may be useful to consult Figure 4.12, which displays the triple junction complete

with all angles. Recall the balance (2.36) with instantaneous adsorption leads to:

σ1,2µ
(1,2,3) + σ1,3µ

(1,3,2) + σ2,3µ
(2,3,1) = 0.

With regards to Figure 4.12, centre the triple junction at the origin and orient it such that

the Γ(1,2) interface is the positive x axis. Define θ(i,j) to be the angle anticlockwise from

the positive x axis to µ(i,j,k) for distinct i, j, k = 1, 2, 3. Then the following holds,σ1,2 cos(θ(1,2)) + σ1,3 cos(θ(1,3)) + σ2,3 cos(θ(2,3)) = 0,

σ1,2 sin(θ(1,2)) + σ1,3 sin(θ(1,3)) + σ2,3 sin(θ(2,3)) = 0.
(4.7)

For clarity, we transform θ(i,j) to more meaningful angles. Let ψ(k) be the angle between

hypersurfaces Γ(j,k) and Γ(k,i), for distinct i, j, k = 1, 2, 3. Then:

θ(1,2) = π, θ(1,3) = π + ψ(1), θ(2,3) = π − ψ(2), ψ(1) + ψ(2) = 2π − ψ(3).

For our simulation we set our target angles ψ(1) = π
2 , ψ(2) = 2π

3 , ψ(3) = 5π
6 at the junctions

between the interfaces. Therefore, we have targets θ(1,2) = π, θ(1,3) = 3π
2 , θ(2,3) = π

3 .

From equations (4.7), (in the absence of fluids) we may only solve σi,j upto a ratio. We set

σ1,2 = 1, and solve for σ1,3, σ2,3:

σ1,3 cos
(3π

2

)
+ σ2,3 cos

(π
3

)
= 1, σ1,3 sin

(3π

2

)
+ σ2,3 sin

(π
3

)
= 0,

=⇒ σ1,3 =
√

3, σ2,3 = 2.

These are then the target equilibrium surface tensions for the interfaces between our phases.

To obtain parameters we recall that the surface tension is given by (2.72), that is, σ̃i,j(q) =

σ0 − q2

2βi,j
. We take the constant σ0 = 4 and we choose boundary conditions so that the

surfactant equation reaches a steady state of q = 0.5 in Ω. For long times the surface tension

will converge to σ̃i,j(0.5) thus we require σ̃i,j(0.5) = σi,j , so we set the model parameters

β1,2 = 1
24 , β1,3 = 1

8(4−
√

3)
, β2,3 = 1

16 to obtain the desired angle configuration. We also

take mobilities M (i)
c = 100 ∀i = 1, 2, 3 and M (i,j)

c = 100
βi,j

.

Initially there are no surfactants present in the domain. However at a chosen time

T0, they will be introduced through Dirichlet boundary conditions. We additionally define

a relaxation time Tq to ensure the boundary conditions are smoothly realised by time T0 +

Tq. We apply the following boundary condition for q: Let zL = (−1.75, y) and zR =
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(1.75, y) ∀y ∈ [−2, 2] then,

q(zL, t) = q(zR, t) =


0, for t ∈ (0, T0),

t−T0
2Tq

, for t ∈ (T0, T0 + Tq),

0.5, for t ∈ (Tq, T ).

These are symmetric about the y axis and so will not enforce asymmetric dynamics, they

also give the equilibrium solution to the model as q = 0.5 in Ω. We have now sufficiently

defined parameters for the sharp interface model to be well defined.

To create the diffuse interface approximation of this model we initialise as described

in Section 4.2. This localises the inconsistencies that are present in initialisation around the

triple junction by using the exact profile expected along two phase interfaces. For each ε,

let z = (x, y) ∈ Ω then:

ϕ(1)
ε (x, y, t = 0) =


1
2(1 + tanh(2y

ε )), for x ∈ [−1.75,−r) ∪ (r, 1.75],

1
2(1 + tanh(2(r−1)

ε )), for (x, y) ∈ [−r, r]× (0, 2],

0, otherwise.

ϕ(2)
ε (x, y, t = 0) =


1
2(1 + tanh(−2y

ε )), for x ∈ [−1.75,−r) ∪ (r, 1.75],

1
2(1 + tanh(2(r−1)

ε )), for (x, y) ∈ [−r, r]× [−2, 0],

0, otherwise.

with ϕ(3)
ε = 1− ϕ(1)

ε − ϕ(2)
ε to conserve (2.103).

We solve the system (2.174)-(2.178) for the phase field, and in the absence of the

flow, this reduces to solving (2.174)-(2.176), and (2.177)-(2.178). We take the choice of

Boyer, Lapuerta and Minjeaud for the Cahn-Hilliard potential found in Section 2.2.8 with

a constant mobility parameter Mc = 0.1 and regularisation parameter Λ = 5 and subsitute

these choices into equations (2.174)-(2.176). For the surfactant equations we use the pa-

rameters discussed in the sharp interface model and there are no additional choices to be

made.

We discretise the diffuse interface model by using the timestepping scheme pre-

sented in Section 3.5 extended to multi phase Cahn-Hilliard as discussed in Section 3.3.

We do not solve the for the flow. For this time discretisation scheme we choose the optimal

choice of θ = 1−
√

2
2 (discussed in Section 3.1.1), and we choose the parameters γ = 2−

√
2

and 1 − γ =
√

2 − 1 for the implicit-explicit splitting for dissipation in the Cahn-Hilliard

equations, and an identical choice for ω and 1− ω for the surfactant equations.
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For the spatial discretisation parameters, we wish to utilize adaptive refinement to

reduce the computational demands while maintaining a high enough precision across the

interfacial layers of the phase field. For ε fixed, we use an adaptive spatial grid paramter

h, and refine the grid by using a strategy to bisect any element where |∇ϕ(·)
ε | > Ca

ε , taking

Ca = 0.02, We have observed good accuracy of solutions if we retain hmin ≈ ε
4 , and

the maximum number of adaption levels as 3. This gives the number of elements across

the interface as approximately 8, and the initial grid for Ω should be approximately 7√
2ε

elements in the x-direction and 8√
2ε

elements in the y-direction. Define the time domain,

taking T0 = 0.04, Tq = 0.05 and T = 30. We keep our timestep fixed for this test to

keep the error consistent from initial conditions thus we take ∆t = 0.0025. Now we have

defined all the discretisation parameters for this test series.

In the test series we wish to observe the effect of the surfactants on the angles at the

(left) triple junction. To measure the angles we linearly interpolate between the centre point

of the junction T (1,2,3) (we take ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 ) and the start of the branch Γ(i,j)

(we take the closest point to T (1,2,3) where ϕ(i)
ε = ϕ

(j)
ε = 0.5). In practice these features

were ≈ 4 grid spaces apart across all values of ε. We then measure the angles between

these lines. This is a natural method in a phase field setting, however there may be more

accurate methods available to measure the angles [72].

We run the series for ε = 0.2, 0.1333, 0.1, 0.05. Some snapshots of the lens before

and after the surfactant has been added are given by Figure 4.13 and Figure 4.14 respec-

tively. Magnifications of the junctions at these times are also displayed in Figure 4.15 and

4.16. The angles recorded by the surfactant at time T0 and time T are given in Table 4.5

and Table 4.6. We do not show the energy graphically, but we state the values in the second

columns of Table 4.5 and 4.6 and we observe that they are convergent with respect to de-

creasing ε value. We also note that the energy change per timestep was in the order of 10−6

at the end of the simulation.

ε Eε(T0) ψ(1)(T0) ψ(2)(T0) ψ(3)(T0)

0.2 29.1597 122 121 125
0.1333 29.3045 122 120 118

0.1 29.4038 120 120 120
0.05 29.6846 120 120 120
ref – 120 120 120

Table 4.5: The table displays the measured angles (discussed for the diffuse setting in the
test setup) of the test series at time T0 = 0.4 in the absence of surfactant (in degrees for
readability). The reference is the desired angles which were predicted by the model. We
additionally provide the discrete energy calculated at this time.

From the Figures 4.13 - 4.16 it is possible to see clear differences before and after
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ε Eε(T ) ψ(1)(T ) ψ(2)(T ) ψ(3)(T )

0.2 47.3503 109 126 125
0.1333 47.5829 103 126 135

0.1 47.7436 103 124 133
0.05 47.8575 96 126 141
ref – 90 120 150

Table 4.6: The table displays the measured angles (discussed for the diffuse setting in the
test setup)of the test series at time T = 30 with surfactant present, (in degrees for readabil-
ity). The reference is the desired angles which were predicted by the model.

Figure 4.13: Figure displaying the state of the system at time t = T0. We see the ϕ(·)
ε = 0.5

level sets for each phase field, as well as the ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 level set points. We
have coloured them ε = 0.05 (blue), ε = 0.1 (green), ε = 0.15 (red) and ε = 0.2 (purple).

the surfactant has been added. The surfactant has altered the surface tensions and the system

has attempted to maintain the angle balance whilst also maintaining volume conservation

and the boundary conditions for the Cahn-Hilliard system, causing the change of lens shape.

We observe that all the simulations display the same effect from the surfactant however there

is no observable convergence in the positions of the lens. In the quantitative results we see

in Tables 4.5 and 4.6, the energies between subsequent simulations converged as ε → 0 in

both tests. We also see that there is some convergence of the angles, as at values ε = 0.2

there is poor agreement with the angles both at time T0 and at time T where as this becomes

much stronger as ε is reduced. For stronger quantitative information, the measurements of

angles could be performed with different techniques, as the largest source of error is likely

to be that at more diffuse junctions it is more difficult to use methods that scale with the
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Figure 4.14: Figure displaying the state of the system at time t = T . We see the ϕ(·)
ε = 0.5

level sets for each phase field, as well as the ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 level set points. We
have coloured them ε = 0.05 (blue), ε = 0.1 (green), ε = 0.15 (red) and ε = 0.2 (purple).

size of the triple junction region. Another source of error could still be the inconsistencies

within the triple junctions, and thus one could observe more clear convergence if this was

perhaps further minimised.
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Figure 4.15: Figure displaying the state of the system at time t = T0. We see the ϕ(·)
ε = 0.5

level sets for each phase field, as well as the ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 level set points. We
have coloured them ε = 0.05 (blue), ε = 0.1 (green), ε = 0.15 (red) and ε = 0.2 (purple).

Figure 4.16: Figure displaying the state of the system at time t = T . We see the ϕ(·)
ε = 0.5

level sets for each phase field, as well as the ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 level set points.We
have coloured them ε = 0.05 (blue), ε = 0.1 (green), ε = 0.15 (red) and ε = 0.2 (purple).
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4.3.3 Marangoni effect on a liquid lens

The goals of this simulation are twofold. We wish to demonstrate the capability of our

scheme to simulate the effects of Marangoni forces upon a liquid droplet, and we wish to

observe the convergence behaviour with respect to the interfacial width parameter ε. For

each ε we shall relax a liquid lens then introduce surfactant into the domain forming a

constant gradient. This will induce Marangoni forces along the interfaces and cause the

lens to move. We stop all simulations at some time and compare the relative positions of

the lenses for different epsilon values.

The sharp interface problem that is set up is similar to that which is shown in solid

lines in Figure 4.1. Let Ω = [−2, 4] × [−2, 2] and time t ∈ [0, T ], and consider it split

into three time dependent subdomains separated by hypersurfaces. Initially Γ(1,2)(z, 0) is

given by z ∈
(
(−2,−r) ∪ (r, 4)

)
× {0}, and Γ(1,3)(z, 0), (resp. Γ(2,3)(z, 0) ) given by the

upper (resp. lower) open semicircle of radius r and centred at the origin. T (1,2,3)(z, 0) are

at (±r, 0). In this test we have taken r = 1.

The viscosities and densities of each subregion are fixed in time and matched across

the different regions, take η(i) = 0.01, ρ(i) = 0.1 for all i = 1, 2, 3. The initial velocity

is given by v(z, 0) = 0, ∀z ∈ Ω, and take the boundary condition v(z, t) = 0, ∀(z, t) ∈
∂Ω× [0, T ], with no external body forces, f = 0.

For the surfactants we make the assumption detailed in Section 2.1.9 of a local

chemical equilibrium about the interfaces. We choose the quadratic isotherm of Section

2.1.11 for the study and take parameters σ0 = 1, βi = 1 and βi,j = 0.2 for all i = 1, 2, 3

and (i, j) = (1, 2), (1, 3), (2, 3). The surfactant mobilities we choose as M (i)
c = 10 and

M
(i,j)
c = 50.

Initially there are no surfactants present within the domain, however at a chosen

time T0 we shall introduce them, with a source at the left hand boundary and a sink along

the right hand boundary. We introduce a relaxation time Tq for the flow to the boundary

conditions to be more smoothly realised at T0 + Tq. The boundary conditions are defined

similarly to those in Section 4.3.2. More precisely, we apply the following boundary con-

dition for q:

Let zL = (−2, y) and zR = (−2, y) ∀y ∈ [−2, 2] then,

q(zL, t) =


0, for t ∈ (0, T0),

t−T0
2Tq

, for t ∈ (T0, T0 + Tq),

0.5, for t ∈ (Tq, T ),

and q(zR, t) = 0, for t ∈ (0, T ).

At the other areas of the boundary, q satisfies a Neumann condition. Also note, q ∈ [0, 0.5]

and so the isotherm relationship gives us the surface tension σ̃i,j(q) = σ0− 1
2
q2

βi,j
takes val-
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ues in (0.375, 1). We have defined all the parameters and assumptions to satisfy solving the

sharp interface problem with instantaneous adsorption, given by equations (2.82) - (2.90).

To create a diffuse interface model, we initialise as follows. We localize the incon-

sistencies about the triple junctions only, and so initialise the phase field similarly to Section

4.2, by using the profile of an exact solution for the two-phase Cahn-Hilliard equation to

represent the initial hypersurfaces Γ(i,j)(z, 0). We run separate test runs for different sized

ε so fix this, then for z = (x, y) ∈ Ω:

ϕ(1)
ε (x, y, t = 0) =


1
2(1 + tanh(2y

ε )), for x ∈ [−2,−r) ∪ (r, 4],

1
2(1 + tanh(2(r−1)

ε )), for (x, y) ∈ [−r, r]× (0, 2],

0, otherwise.

ϕ(2)
ε (x, y, t = 0) =


1
2(1 + tanh(−2y

ε )), for x ∈ [−2,−r) ∪ (r, 4],

1
2(1 + tanh(2(r−1)

ε )), for (x, y) ∈ [−r, r]× [−2, 0],

0, otherwise.

along with ϕ(3)
ε = 1− ϕ(1)

ε − ϕ(2)
ε to conserve (2.103). Take initial velocity vε(z, 0) = 0.

We resolve the triple junctions due to inconsistency of the initial conditions, before we

allow the surfactant to enter the system.

We solve the system (2.174)-(2.176) for the phase field model. We take the choice

of Boyer, Lapuerta and Minjeaud for the Cahn-Hilliard potential found in Section 2.2.8

with a constant mobility parameter Mc = 0.005 and regularisation parameter Λ = 5 and

subsitute these choices into equations (2.174)-(2.176). For the Navier-Stokes we solve the

system (2.179)-(2.180) using the rewritten force term (2.168). We take η(ϕε) = 0.01 and

ρ(ϕε) = 0.1. We also take a zero velocity boundary condition for vε as in the sharp inter-

face model for v. We now solve the equations (2.177)-(2.178) for the surfactant, however

there are no additional modelling parameters, and so we choose these as in the sharp inter-

face description.

We discretise the diffuse interface model by using the timestepping scheme pre-

sented for fixed density Navier-Stokes (3.7) - (3.12) extended to multi phase Cahn-Hilliard

as discussed in Section 3.3. We encorporate the surfactant by solving it alongside the Cahn

Hilliard steps of the scheme, in this way we retain the symmetries of the scheme in order

to retain the second order accuracy in time as was described in Section 3.5. For this time

discretisation scheme we choose the optimal choice of θ = 1 −
√

2
2 (discussed in Section

3.1.1), and we choose the parameters α = 2 −
√

2 and 1 − α =
√

2 − 1 for the implicit-

explicit splitting for dissipation in the Navier-Stokes and an identical choice for γ and 1−γ
for the Cahn-Hilliard equations, and for ω and 1− ω for the surfactant equations.
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For the spatial discretisation parameters, we wish to utilize adaptive refinement to

reduce the computational demands while maintaining a high enough precision across the

interfacial layers of the phase field. For ε fixed, we use an adaptive spatial grid paramter

h, and refine the grid by using a strategy to bisect any element where |∇ϕ(·)
ε | > Ca

ε , taking

Ca = 0.02, We have observed good accuracy of solutions if we retain hmin ≈ ε
5 , and

the maximum number of adaption levels as 6. This gives the number of elements across

the interface as approximately 10, and the initial grid for Ω should be approximately 15
4ε

elements in the x-direction and 5
2ε elements in the y-direction. Define the time domain,

taking T0 = 2.4, Tq = 0.05 and T = 10. Then we take the time step size also dependent

on ε, that is, ∆t = ε
10 . Now we have defined all the discretisation parameters for this

test series. We first display the simulation progression with ε = 0.1 then we will present

the convergence results for various values of ε. The demonstration that the simulation can

model the effects of Marangoni forces is displayed in Figure 4.17, Figure 4.18 and Figure

4.19, which capture snapshots of the ε = 0.1 simulation at times t = T0, t = T0 + 0.6 and

t = T0 + 4 respectively. Each displays on the left, the ϕ(i)
ε = 0.5 level sets for i = 1, 2, 3 in

white, the current simulation and in black, a reference solution calculated with no surfactant

presence. On the right they display some velocity streamlines, these are coloured by the

velocity in the x direction as this will be the dominant flow for the Marangoni effects.

The snapshots were chosen to represent the different stages of the simulation. Fig-

ure 4.17 represents the state before surfactant has been added into the system, the black

and white solutions are overlayed, we see that q = 0 on the left figure, and on the right

we note that the velocities are small, in fact the peak velocity magnitude is 0.102. Figure

4.18 is a snapshot shortly after the surfactant has been introduced to the flow, and shows the

significant effects on the velocity stream lines. On the left, we see the surfactant potential

has diffused into the domain, and it is now possible to differentiate between the surfactant

present and non surfactant present simulations, with the white level sets further into the pos-

itive x direction compared with the black. On the right we see velocity of size 2 appearing

along within the interfacial layer due to the surfactant concentration gradient. Finally Fig-

ure 4.19 shows the behaviour a long time after the surfactant has been introduced. On the

left, the surfactant is near to a steady state with a constant decreasing gradient from source

to sink in the x direction, which gives applies a steady Marangoni force on the droplet. It is

clear that the effect this is having on the liquid lens is pushing it in a positive x direction as

the white lens has moved relative to the black. The right displays a near steady x velocity

too, it is pushing the droplet along the interfacial layers at a velocity of around 1.4. Until

the end of the simulation this remained relatively constant.

We now move onto examining the convergence of the solutions with different values

of the discretisation parameter ε. We performed the simulation for ε = 0.2, 0.15, 0.1, 0.05,
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Figure 4.17: Figure displaying the state of the system at time t = T0 for ε = 0.1 test run.
The left displays the ϕ(·)

ε = 0.5 level sets for each phase field over the background showing
surfactant potential (here q = 0). The right displays the velocity stream lines coloured by
their magnitude.

and to evaluate this we present the differences in the coordinates of the triple junction

locations of the lens upto the time T . As we are solving the diffuse problem, we may

determine this by taking the intersection of the points ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 . Figure

4.20 displays the level sets ϕ(·)
ε = 0.5 and triple junction positions for each of the different

ε values at the final time. Figure 4.21 shows the motion of the right hand junction in the

x-coordinate direction until this time.

One can see in these figures that there does appear to be convergence of the solutions

as epsilon is decreased. The behaviour of the larger ε solutions display less oscillations

within 0−24 graphical timesteps of Figure 4.21 and the effects of the surfactant introduced

thereafter is more pronounced. This indicates that the interfacial forces appear to dominate

inertial forces more strongly for larger ε values. This is also validated by Figure 4.22 which

shows that the maximum velocity in the flow when drift occurs increases as ε decreases. A

possible explanation for this ε dependence is that when the interfacial layer is large, there

is a greater volume of the fluid on which the Marangoni forces take effect. Moreover, the

bulk droplet volume relative to the interfacial layer volume is reduced for large interfacial

thickness, and so there is a smaller region for bulk viscous forces to produce inertia to the

motion. This would lead to higher dominance of interfacial forces (governed by surface

tension) over the viscous forces, and so the droplet would move more quickly in the large ε

regime.
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Figure 4.18: Figure displaying the state of the system at time t = T0 +0.6. The left displays
the ϕ(·)

ε = 0.5 level sets for each phase field, the black lines show a reference solution with-
out surfactant. The white shows the effect of the background surfactant potential displayed.
The right displays the velocity stream lines coloured by their magnitude.

Figure 4.19: Figure displaying the state of the system at time t = T . The left displays the
ϕ

(·)
ε = 0.5 level sets for each phase field, the black lines show a reference solution without

surfactant. The white shows the effect of the background surfactant potential displayed.
The right displays the velocity stream lines coloured by their magnitude.
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Figure 4.20: Figure displaying the state of the test series at time t = T . We see the ϕ(·)
ε =

0.5 level sets for each phase field, as well as the ϕ(1)
ε = ϕ

(2)
ε = ϕ

(3)
ε = 1

3 level set points.
From Left to Right, we have the ε = 0.05 (blue), ε = 0.1 (green), ε = 0.15 (red) and
ε = 0.2 (purple).

Figure 4.21: Figure displaying the x-coordinates of the right hand triple junction of each
lens over the period t = 0 to t = T charted in ParaView. The final step is shown by
Figure 4.20. The time step number of the printed solution is τ = 10∆t = 0.1 and so the
surfactant is introduced at T0 = 24τ and final time is T = 65τ . The displayed profiles are
for ε = 0.05 (blue cross), ε = 0.1 (green square), ε = 0.15 (red plus) and ε = 0.2 (purple
circle).
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Figure 4.22: Figure displaying the L2 norm of the velocity over the period t = 0 to t = T .
The surfactant is introduced at t = 2.4, and the final step is shown by Figure 4.20. The
displayed profiles are for ε = 0.05 (blue cross), ε = 0.1 (green square), ε = 0.15 (red plus)
and ε = 0.2 (purple circle).
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4.4 Coupled droplet with surfactant in three dimensions

Figure 4.23: Inital conditions for a coupled bubble represented by solid lines. Ω(1) is
an encapsulating fluid containing a coupled droplet of two fluids Ω(2) and Ω(3). The left
demonstrates the ϕ(1)

ε = 0.5 level set resolution. The middle displays a slice at y = 0 of
ϕ

(1)
ε and the right displays the same slice with initial values for ϕ(2)

ε

We wish to demonstrate the behavioural changes which may be captured by the

code package in 3D. We begin with initial conditions shown in Figure 4.23, here we ob-

serve that we are simulating a coupled droplet in a surrounding fluid. Ω(2) represents one

droplet, Ω(3) represents the other droplet, essentially at time zero these are represented by

two touching hemispheres, separated by a flat surface. Ω(1) represents the surrounding

fluid. We prescribe different densities and viscosities to the fluids and run a simulation with

and without surfactant presence. In particular we wish to observe and increase in necking

(the shrinking of the interface) between the coupled droplet interface, and whether one can

capture a topological change if the necking is significant enough.

The domain is given by Ω = [−2, 2] × [−2, 2] × [−2, 4], and the initial conditions

for the sharp interface model (similarly in Figure 4.23) are given by

Γ(1,2)(w, 0) ∪ Γ(1,3)(w, 0) = {u ∈ Ω | ‖u‖ = 1},

the unit sphere, and the dividing hypersurface,

Γ(2,3)(w, 0) = {u ∈ Ω | ‖u‖ ≤ 1} ∩ {(x, 0, z) |x ∈ [−2, 2], z ∈ [−2, 4]},
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the unit disc in the second coordinate plane. The triple junction line is therefore situated at

T (1,2,3)(w, 0) = {(x, 0, z) | ‖(x, z)‖ = 1, x ∈ [−2, 2], z ∈ [−2, 4]} the unit circle on the

second coordinate plane.

The viscosties and densities of each subregion are taken as η(1) = 0.1, η(2) =

0.05, η(3) = 0.1 and ρ(1) = 0.2, ρ(2) = 0.25, ρ(3) = 0.1. These are chosen so that

the droplet represented by Ω(2) wishes to rise in the surrounding fluid, and the droplet

represented by Ω(3) wishes to sink in the surrounding fluid. We also show that the solver

can cope with different viscosities in the different phases. The initial velocity is given

by v(w, 0) = 0, ∀w ∈ Ω. We take the boundary condition v(w, t) = 0, ∀(w, t) ∈
∂Ω × [0, T ], we take the body force of gravity as f = −9.8ρ(i)e3 for i = 1, 2, 3 the

standard basis vector in the third coordinate direction.

For the surfactants we take the instantaneous adsorption assumption, with the

quadratic isotherm of Section 2.1.11, and we take parameters σ0 = 40, βi = 1.0, ∀i and

β1,2 = β1,3 = 0.00625, β2,3 = 1.0. the surfactant mobilities we take are M (i)
c = 10000

and M (i,j)
c = 10000

βi,j
. As demonstrated in Section 4.3.3, it is sensible to have q = 0 initial

surfactant, and at a time T0 we introduce the surfactant through a dirichlet source condition

smoothly, over a relaxation period Tq.

Let wT = (x, y, 4) ∀x, y ∈ [−2, 2] then,

q(wT , t) =


0, for t ∈ (0, T0),

t−T0
2Tq

, for t ∈ (T0, T0 + Tq),

0.5, for t ∈ (Tq, T ).

We take Neumann boundary conditions for q at all other boundaries. Also note, as q ∈
[0, 0.5], then if q reaches the steady state q̄ = 0.5 everywhere, the isotherm predicts sur-

face tensions of σ̃2,3(q̄) = 39.875 and σ̃1,2(q̄) = σ̃1,3(q̄) = 20. This determines all the

parameters required for solving the sharp interface problem (2.82) – (2.90).

To create the phase field model we once again attempt to localise the consistency

error to be about only the triple junction, to see the intial conditions for the simulation see

Figure 4.23, we use the two phase solution away from the approximation of T (i,j,k)(w, 0),

and we do not detail the exact profiles here, as possibly more consistent approximations

could be used for this discretisation. However the profiles shown in Figure 4.23 were suffi-

ciently accurate for this simulation.

We mimic the initial conditions for the volume averaged velocity as vε(w, 0) = 0

as in the sharp interface model. We also take the initial conditions from the sharp interface

problem for the surfactant.

We solve the system (2.174) – (2.180), for the diffuse interface model. We take the
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choice of Boyer, Lapuerta and Minjeaud for the Cahn-Hilliard potential found in Section

2.2.8 with constant mobility Mc = 0.005 and regularisation parameter Λ = 10 and sub-

situte these choices into equations (2.174) – (2.176). For the Navier-Stokes we solve the

system (2.179) – (2.180) using the rewritten force term (2.168). We take η(ϕε) and ρ(ϕε)

as the linear interpolation between the different constant values in each phase (discussed

in Section 2.2.1. We also take a zero velocity boundary condition for vε as in the sharp

interface model for v. We now solve the equations (2.177) – (2.178) for the surfactant,

however there are no additional modelling parameters, and so we choose these as in the

sharp interface description.

We discretise the diffuse interface model by using the timestepping scheme pre-

sented for variable density Navier-Stokes with surfactant constructed in Section 3.5, ex-

tended to a three phase flow as discussed in Section 3.3. For this time discretisation scheme

we choose the optimal choice of θ = 1 −
√

2
2 (discussed in Section 3.1.1), and we choose

the parameters α = 2−
√

2 and 1− α =
√

2− 1 for the implicit-explicit splitting for dis-

sipation in the Navier-Stokes and an identical choice for γ and 1− γ for the Cahn-Hilliard

equations, and for ω and 1− ω for the surfactant equations.

For the spatial discretisation parameters, we use adaptive refinement to reduce the

computational demands while maintaining a high enough precision across the interfacial

layers of the phase field. Fix ε = 0.12 then, we use an adaptive spatial grid paramter h,

and refine the grid by using a strategy to bisect any element where |∇ϕ(·)
ε | > 0.3, this

have observed good stability of solutions if we retain hmin ≈ ε
3 , and the maximum number

of adaption levels as 8 and minimum as 4. This gives the number of elements across the

interface as approximately 6, and the initial grid for Ω was taken as 12, 12, 18 in the x, y, z

directions. Define the time domain, taking T0 = 0.01, Tq = 0.05 and T = 1.4. We take the

time step size ∆t = 0.0025. Now we have defined all the discretisation parameters for this

test series. The tests with and without surfactant were ran on the TNIS high performance

cluster and both took approximately 5 minutes per timestep at 64 processors.

Some snapshots of the simulation can be seen in the figures produced. We first ob-

serve without the presence of surfactant, in Figure 4.24 we see that the droplet is relaxing

from initial conditions, the left displays the ϕ(1)
ε level set coloured by the ϕ(3)

ε phase (to

show the coupled droplets). The right hand side displays the pressure over a slice with

velocity field given by the coloured glyphs. We observe that the pressure gradient is fairly

minor compared with the interfacial forces. In Figure 4.25 we see much later in the simula-

tion that the droplet begins to turn, and attempts to rise, this is due to the droplet represented

by ϕ(3)
ε (red) is lighter than the surrounding fluid, and droplet ϕ(2)

ε (blue) is heavier than the

surrounding fluid.

We next introduce the surfactant, our parameters allow for the dynamics to take
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place quickly. Figure 4.26 displays the level sets of the surfactant flow, to show how it

enters the domain. Figures 4.27, 4.28, 4.29 demonstrate three key stages of the simulation,

displayed on the left the surfactant is present in the domain, on the right it is absent and the

colouring is as in the previous figures. Figure 4.27 shows that with low surfactant concen-

tration there is little difference between solution behaviour, then by the time the surfactant

is almost fully saturating the domain we observe significant necking between the bubbles

in Figure 4.28 this is due the decrease in surface tension along the interfacial layers repre-

senting Γ(1,2) and Γ(1,3). The parameters chosen ensure that the layer representing Γ(2,3)

has a relatively comparable surface tension in the presence of surfactant and in absence.

Finally we observe that our model captures a resulting topological change in Figure 4.29,

where the necking has become so costly that the interface disappears between the droplets,

we also observe the effects of the variable densities here are more present now the droplets

are detached comparable to the coupled droplet on the right. This effect would not have

been able to be captured in the sharp interface description due to the topological change.

Figure 4.24: Dynamics soon after initial conditions at t = 0.1. The left hand side displays
the ϕ(1)

ε = 0.5 level set coloured by the ϕ(3)
ε phase (shows the differentiation between the

coupled droplets). The right hand side displays the pressure over a slice with velocity field
given by the glyphs - large red arrows are higher velocity.
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Figure 4.25: Dynamics soon after initial conditions at t = 1.4. The left hand side displays
the ϕ(1)

ε = 0.5 level set coloured by the ϕ(3)
ε phase (shows the differentiation between the

coupled droplets). The right hand side displays the pressure over a slice with velocity field
given by the glyphs - large red arrows are higher velocity.

Figure 4.26: Snapshot taken soon after initial conditions at t = 0.04. The level sets of the
surfactant concentration are shown, the inflow concentration is around 0.28 at the top of
the domain, as the snapshot is taken during the relaxation period (T0, T0 + Tq).
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Figure 4.27: Dynamics soon after initial conditions at t = 0.04. Displayed is the ϕ(1)
ε = 0.5

level set coloured by the ϕ(3)
ε phase (shows the differentiation between the droplets). The

left hand side displays the simulation with surfactant present, the right hand side displays
the simulation with no surfactant present.

Figure 4.28: Dynamics soon after initial conditions at t = 0.2. Displayed is the ϕ(1)
ε = 0.5

level set coloured by the ϕ(3)
ε phase (shows the differentiation between the droplets). The

left hand side displays the simulation with surfactant present, the right hand side displays
the simulation with no surfactant present.
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Figure 4.29: Dynamics soon after initial conditions at t = 0.33. Displayed is the ϕ(1)
ε = 0.5

level set coloured by the ϕ(3)
ε phase (shows the differentiation between the droplets). The

left hand side displays the simulation with surfactant present, the right hand side displays
the simulation with no surfactant present.
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Chapter 5

Conclusions

Within this thesis we made contributions to the area of mathematical modelling for a multi-

phase flow with surfactant, and to the development of schemes for multi-phase flow.

With regards to the first aim, we began by setting up a problem for multi-phase

flow with surfactant directly in Section 2.1. Our approach used the theoretical principles

of conservation and extended the work of [54] to multiple phases. We represented moving

interfaces with hypersurfaces transported by a flow and derived mass and momentum bal-

ance equations as partial differential equations over the moving domains. We closed these

equations by considering a free energy formulation, and proposed constitutive assumptions

on the free energies and associated fluxes that ensured the total energy of the system would

be consistent with the second law of thermodynamics. The benefits of this property are

discussed in [1]. For the fluid velocities, we arrived at an incompressible Navier-Stokes

equation. The bulk and surface surfactant concentrations we found satisfied advection dif-

fusion equations in the bulk domains and intefaces respectively, and were coupled by an

adsorption - desorption function that was determined. The sorption process is an important

consideration in the modelling of soluble surfactants and our model required relatively gen-

eral properties on the form of this process. In experimental literature, for example [44], an

assumption of local equilibrium is made between bulk and interfacial surfactants, leading to

equilibrium relationships (isotherms [85]). With this assumption at all interfaces, we con-

structed a model for this case known as instantaneous sorption. This case is well suited to

implementation, as it is less degenerate than the equations in the general case, as all surfac-

tant concentrations are rewritten as functions of a continuous potential existing everywhere.

For this, we additionally provided some isotherms, including one we use in simulations.

Having constructed the sharp interface model, we proceed to develop an approxi-

mating model based on phase fields in Section 2.2. The benefit of our free energy framework

is observed here as we were able to repeat the the same techniques to mimic each step of
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the sharp interface model development through the derivation. We first set up the phase

field variables representing each domain, and used them to postulate equations for the fluid

motion with a new volume averaged velocity [1]. From a distributional formulation for the

surfactants, motivated by the work of [6], we proposed suitable regularisations as functions

of the phase field for these equations too. The free energy of Ginzburg-Landau type was

chosen [17], and we referenced some support for the minimisation problem [56] that arises

using this energy, which helps for the choice of energy densities for the multi-phase prob-

lem. The constitutive assumptions for this energy allowed us to form the general sorption

model which is consistent with the second law of thermodynamics. Finally, we formulated

an instantaneous sorption model using the techniques of the sharp interface model deriva-

tion.

With regards to the second aim, we chose to pursue the development of a second

order accurate scheme for the Navier-Stokes Cahn-Hilliard system arising in Section 2.2.

The idea was to use a second order accurate scheme which has been documented for the

Navier-Stokes equations [26], and then to observe whether this consistency is retained when

it is extended to the coupling with a Cahn-Hilliard problem. We chose to first construct the

scheme with a two phase problem and with a fixed density in all fluids using ideas from [35],

and performed a stability analysis. We were able to show that coupling errors decayed in

every timestep. However we conclude that the decay was insufficient for a stability estimate,

due to the timestepping constraint but made significant progress towards an estimate. It is

important to note that later, in Chapter 4 we observed the scheme is stable in practice, and

in all simulations the energy decayed across every timestep (upto external forces). After

this we considered various extensions, such as to multiple phases, inclusion of surfactants,

and having different densities in the different fluid phases. For the variable density scheme,

using another novel technique for inclusion of the density, we could prove that the second

order accuracy is achieved. For implementation, we used multiple phases and included

surfactants, we showed that in the case of instantaneous adsorption with a chosen isotherm

we can retain second order accuracy as well.

We proceeded in the final chapter to verify the conclusions of the previous chapter

with regards to the aims discussed. This involved significant development of a code to solve

the fully discrete problems using finite element methods discussed in Chapter 3 in C++ in

DUNE (Distributed Unified Numerics Environment). Use of other packages programs for

this research are referenced in Chapter 1. We first discussed the second order accuracy of

scheme for the Navier-Stokes coupling and found for the variable density coupling that the

velocity convergence with an estimated convergence order of rate 2. We also commented on

the stability, and found for this test scenario that it appeared the stability constraint (3.68)

was more restrictive than appeared necessary, the exact relationship would require further
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study. We also commented that the numerical energy decay (upto the action of external

forces) occured in practice for all simulations.

We presented the convergence of the diffuse interface model to the sharp interface

model using several test cases. This was first approached through the simulation to test the

convergence for surfactant with fixed phase field and fluid equations. A triple junction was

relaxed then fixed and a surfactant flow was run through it for a fixed time. The simulation

was a well validated benchmark problem as we could explicitly calculate the sharp interface

solution as the problem reduced to a 1D flow and compared the profile. In particular we

expected this test to demonstrate the convergence (2.177) – (2.178) to (2.87) at the interface

as ε → 0. We showed the accuracy was good for all simulations, and converged with

estimated rate of just less than 1. Next we tested the coupled phase field and surfactant

equation in the absence of the fluid flow towards a steady state. This would demonstrate

in particular the recovery of (2.90). We saw convergence towards desired angles, but noted

drawbacks in measuring angles at large interfacial widths. In this test series we considered

the fully coupled problem for surfactant Cahn-Hilliard Navier-Stokes flow. We did this to

recover the dynamics of (2.75) that is, the force balance of inertial and interfacial forces at

the interface that are prescribed for the sharp interface problem. We observed that in the case

of larger ε value, the simulation overestimated the effects of Marangoni force at the triple

junction, however it appeared to converge for small ε and reflects the care that choosing

the interfacial thickness has on the behaviour of the solution. This novel simulation gives

insight into the choices one must make about the size of ε in simulation.

Finally we demonstrated the flexibility and capability of the scheme. We computed

a coupled droplet in three dimensions and compared the behaviour with and without sur-

factant presence. The results showed that we may capture significant surfactant effects

which alter the behaviour of the system even in three dimensions, and also this simulation

demonstrated the benefits of the diffuse model as it could capture a topological change.
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Chapter 6

Appendix

6.1 Some useful identities

We state some useful identities for calculus on and with moving surfaces (for instance, see

[18] and [31]).

Reynold’s transport identity: For a time dependent domain Ω(t) ⊂ Rd with exterior unit

normal ν and with associated velocity field v (here note necessarily divergence free) and

for a field f(t) : Ω(t)→ R we have that

d
dt

∫
Ω(·)

f(·)
∣∣∣
t

=

∫
Ω(t)

∂tf(t) +

∫
∂Ω(t)

f(t)v(t) · ν(t) =

∫
Ω(t)

∂
•(v)
t f(t) + f(t)∇ · v(t).

(6.1)

For a time dependent hypersurface Γ(t) with velocity v and for a field f(t) : Γ(t)→ R we

have that
d
dt

∫
Γ(·)

f(·)
∣∣∣
t

=

∫
Γ(t)

∂
•(v)
t f(t) + f(t)∇Γ(t) · v(t). (6.2)

Gauss-Green Formula: For an orientable hypersurface Γ with unit normal ν and with out-

ward unit conormal µ on ∂Γ and for any scalar field f : Γ→ R we have that∫
Γ
∇Γf = −

∫
Γ
fκ+

∫
∂Γ
fµ, (6.3)

with the

curvature vector κ = ∇Γ · ν ν.

Equivalently, for any vector field w : Γ→ Rd∫
Γ
∇Γ ·w = −

∫
Γ
w · κ+

∫
∂Γ
w · µ. (6.4)
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6.2 Non equilibrium adsorption constitutive assumptions

The flux,

j(i)
c · ν(i,j) = − 1

αi,j(c(i), c(i,j))
(γ′i,j(c

(i,j))− g′i(c(i))),

is motivated by the energy contribution (2.24), that the following is satisfied

(γ′i,j(c
(i,j))− g′i(c(i)))j(i)

c · ν(i,j) ≤ 0,

which is clearly seen. Similarly the choice of flux,

j(i,j)
c · µ(i,j,k) := βj,k↔i,j(γ

′
i,j(c

(i,j))− γ′j,k(c(j,k))) + βk,i↔i,j(γ
′
i,j(c

(i,j))− γ′k,i(c(k,i))),

is motivated from the contribution (2.27), that the following is satisfied

−(γ′i,j(c
(i,j))j(i,j)

c · µ(i,j,k) + γ′j,k(c
(j,k))j(j,k)

c · µ(j,k,i) + γ′k,i(c
(k,i))j(k,i)

c · µ(k,i,j)) ≤ 0.

By using the balance of forces equation (without loss of generality we use this on the final

term in the above expression), and the defined fluxes

−
(
γ′i,jj

(i,j)
c · µ(i,j,k) + γ′j,kj

(j,k)
c · µ(j,k,i) + γ′k,i

(
− j(i,j)

c · µ(i,j,k) − j(j,k)
c · µ(j,k,i)

))
= −

(
(γ′i,j − γ′k,i)j(i,j)

c · µ(i,j,k) + (γ′j,k − γ′k,i)j(j,k)
c · µ(j,k,i)

)
= −

(
(γ′i,j − γ′k,i)(βj,k↔i,j(γ′i,j − γ′j,k) + βk,i↔i,j(γ

′
i,j − γ′k,i))

+ (γ′j,k − γ′k,i)(βk,i↔j,k(γ′j,k − γ′k,i) + βi,j↔j,k(γ
′
j,k − γ′i,j))

)
= − βk,i↔i,j(γ′i,j − γ′k,i)2 − βk,i↔j,k(γ′j,k − γ′k,i)2 −

(
βj,k↔i,j(γ

′
i,j − γ′k,i)(γ′i,j − γ′j,k)

− βi,j↔j,k(γ′j,k − γ′k,i)(γ′i,j − γ′j,k)
)
.

Using the symmetry βi,j↔j,k = βj,k↔i,j we then obtain,

= −
(
βk,i↔i,j(γ

′
i,j − γ′k,i)2 + βk,i↔j,k(γ

′
j,k − γ′k,i)2 + βj,k↔i,j(γ

′
i,j − γ′j,k)2

)
≤ 0.

The other symmetries of the β’s follow from the arbitrary labelling of i, j, k.

142



6.3 Bounds for b(·, ·, ·)

6.3.1 Useful inequalities

We have used the following Sobolev Embeddings (summarised in [131]), Lp embeddings,

and finite element reverse Poincaré inequality:

Lp Embedding: [135] If Ω is a finite domain, then for any 1 ≤ p < q ≤ ∞,

Lq(Ω) ⊂ Lp(Ω), and furthermore, ‖f‖Lp(Ω) ≤ |Ω|
1
r ‖f‖Lq(Ω) (6.5)

where 1
r = 1

p −
1
q .

Sobolev Embedding Theorems: [131] If Ω is locally lipschitz, then for u ∈ Wm,p(Ω),

m ≥ 1, 1 < p <∞ then define r := 1
p −

m
n ,

• if r = 1
q , |u|Lq(Ω) ≤ c(m, p, n,Ω)|u|Wm,p(Ω),

• if r = 0, |u|Lq(Λ) ≤ c(m, p, n, q,Λ,Ω)|u|Wm,p(Ω), ∀1 ≤ q < ∞ and bounded set

Λ ⊂ Ω̄,

• if r < 0, |u|C0(Λ) ≤ c(m, p, n,Λ,Ω)|u|Wm,p(Ω), for any bounded set Λ ⊂ Ω̄.

In particular for m = 1, p = 2 (i.e r = 1
2 −

1
n ) and without any regularity restrictions on Ω

one obtains

• for n = 2, |u|Lq(Λ) ≤ c(q,Λ,Ω)|u|H1(Ω), ∀1 ≤ q <∞ and bounded set Λ ⊂ Ω̄,

• for n ≥ 3, |u|
L

2n
n−2 (Ω)

≤ c(Ω)|u|H1(Ω).

Inverse Inequality: [25] Let 0 ≤ k ≤ l ∈ N and p, q ∈ [1,∞), then ∃Cinv depending

on k, l, p, q and the space P(K̂) of lagrange polynomials on the reference triangle K̂ of a

triangulation in Rn such that,

‖Dlvh‖Lq(K) ≤ Cinvh
(k−n

p
)−(l−n

q
)

K ‖Dkvh‖Lp(K) ∀vh ∈ P(K).

Which can of course be generalised to the general triangulation if there is some uniform

bound min
K

hK ≥ h. The main choice we see in the following arguements will be:

p = q = 2, l = 1, k = 0 =⇒ ‖Dvh‖L2 ≤ Cinvh
−1‖vh‖L2 .
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6.3.2 Bounds for the convection operator

For the continuous setting [131] gives us some discrete bounds for b(u, v, w): For

n ≥ 2 use Hölder’s inequality∣∣∣∣∫
Ω
ui∂ivjwj dx

∣∣∣∣ ≤ |ui|L4(Ω)|∂ivj |L2(Ω)|wj |L4(Ω).

Thus for the anti-symmetric operator 1
2

(
b(u, v, w)− b(u,w, v)

)
, we obtain the bounds

∣∣∣1
2

(
b(u, v, w)− b(u,w, v)

)∣∣∣ (
=

1

2

n∑
i,j=1

∣∣∣∣∫
Ω
ui∂ivjwj − ui∂iwjvj dx

∣∣∣∣ )
≤ 1

2

n∑
i,j=1

(
|ui|L4(Ω)|∂ivj |L2(Ω)|wj |L4(Ω) + |ui|L4(Ω)|∂iwj |L2(Ω)|vj |L4(Ω)

)
.

Then using Schwarz inequality, we obtain∣∣∣1
2

(
b(u, v, w)− b(u,w, v)

)∣∣∣
≤ 1

2

( n∑
i=1

|ui|2L4(Ω)

) 1
2 ·
( n∑
i,j=1

|∂ivj |2L2(Ω)

) 1
2 ·
( n∑
j=1

|wj |2L4(Ω)

) 1
2 (6.6)

+
1

2

( n∑
i=1

|ui|2L4(Ω)

) 1
2 ·
( n∑
i,j=1

|∂iwj |2L2(Ω)

) 1
2 ·
( n∑
j=1

|vj |2L4(Ω)

) 1
2
. (6.7)

We now use an interpolation inequality for Lp norms: For 1 ≤ r ≤ s ≤ t ≤ ∞, with
1
r = θ

s + 1−θ
t , the following inequality holds

|f |Lr ≤ |f |θLs |f |1−θLt .

Then found in [131] for the L4 norm of a vector valued function.

|v|L4(Ω) ≤ 2
1
4 |v|

1
2

L2(Ω)
|∇v|

1
2

L2(Ω)
, ∀v ∈ H1

0 (Ω), Ω ⊂ R2, (6.8)

|v|L4(Ω) ≤ 2
1
2 |v|

1
4

L2(Ω)
|∇v|

3
4

L2(Ω)
, ∀v ∈ H1

0 (Ω), Ω ⊂ R3. (6.9)
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Therefore, (6.8) followed by Hölder’s inequality gives:

2∑
i=1

|ui|2L4(Ω) ≤ 2
1
2

2∑
i=1

|ui|L2(Ω)|∇ui|L2(Ω)

≤ 2
1
2

( 2∑
i=1

|ui|2L2(Ω)

) 1
2
( 2∑
i=1

|∇ui|2L2(Ω)

) 1
2

≤ 2
1
2 |u|L2(Ω)|∇u|L2(Ω), (6.10)

and similarly we find,(6.9) gives:

3∑
i=1

|ui|2L4(Ω) ≤ 2|u|
1
2

L2(Ω)
|∇u|

3
2

L2(Ω)
, (6.11)

Thus overall we obtain, for n = 2:∣∣∣1
2

(
b(u, v, w)− b(u,w, v)

)∣∣∣ ≤ 2|u|
1
2

L2(Ω)
|∇u|

1
2

L2(Ω)
|∇v|L2(Ω)|w|

1
2

L2(Ω)
|∇w|

1
2

L2(Ω)
, (6.12)

and for n = 3,∣∣∣1
2

(
b(u, v, w)− b(u,w, v)

)∣∣∣ ≤ 4|u|
1
4

L2(Ω)
|∇u|

3
4

L2(Ω)
|∇v|L2(Ω)|w|

1
4

L2(Ω)
|∇w|

3
4

L2(Ω)
. (6.13)

In the spatially discrete case for b(uh, vh, wh), we now may make use of the inverse

Poincaré inequality to obtain, from (6.12):∣∣∣1
2

(
b(uh, vh, wh)− b(uh, wh, vh)

)∣∣∣ ≤ C(Ω)h−1|uh|L2(Ωh)|∇vh|L2(Ωh)|wh|L2(Ωh),

and from (6.13),∣∣∣1
2

(
b(uh, vh, wh)− b(uh, wh, vh)

)∣∣∣ ≤ C(Ω)h−
3
2 |uh|L2(Ωh)|∇vh|L2(Ωh)|wh|L2(Ωh).

We denote the constants Ch−1 and Ch−
3
2 as the stability constant S(h) in computations.

Note that C is independent of h.

6.3.3 Bounds for the coupling operator

The operator for the coupling terms is of a very similar form to that of the convection

operator. We do not use the skew symmetric form of the operator as it does not contain nice

properties due to the fact that the phase field and its potential are not divergence free. We

directly bound the operator b(u, v, w) as follows using Hölder’s inequality. Take 1
p = 1

2−
1
q ,
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then:

n∑
i=1

∣∣∣∣∫
Ω
ui∂iv w dx

∣∣∣∣ ≤ n∑
i=1

|ui|Lp(Ω)|∂iv|L2(Ω)|w|Lq(Ω).

Applying Schwarz inequality,

≤ |w|Lq(Ω)

( n∑
i=1

|ui|2Lp(Ω)

) 1
2 ·
( n∑
i=1

|∂iv|2L2(Ω)

) 1
2
.

The form we wish the bounds to take for the coupling terms are of the form b(uh, vh, wh) ≤
C(Ω)h−k|uh|2|∇vh|2|∇wh|2 for the stability analysis. Thus we take this into account and

apply the interpolation inequality (6.8) for general ϑ ∈ (0, 1), for n = 2, then the Poincaré

inequality on |w|:

n∑
i=1

|ui|Lp(Ω)|∂iv|L2(Ω)|w|Lq(Ω) ≤ C(Ω)|∇w|L2(Ω)|u|ϑL2(Ω)|∇u|
1−ϑ
L2(Ω)

|∇v|L2(Ω). (6.14)

In two dimensions ϑ > 0 is the only condition as due to the Sobolev inequality, as q < ∞
is only required for the embedding with H1(Ω). In three dimensions we require q ≤ 6 for

the embedding theorem and so we take the value q = 6 as our best case, this enforces p = 3

and then θ = 1
2 . Using the interpolation inequality (6.9) for general ϑ ∈ (0, 1) n = 3, then

the Poincaré inequality on |w|

n∑
i=1

|ui|L3(Ω)|∂iv|L2(Ω)|w|L6(Ω) ≤ C(Ω)|∇w|L2(Ω)|u|
1
2

L2(Ω)
|∇u|

1
2

L2(Ω)
|∇v|L2(Ω). (6.15)

Finally, considering the spatially discrete setting with a finite element approximation. We

consider b(uh, vh, wh) and from (6.14) we apply the reverse Poincaré inequality to |uh|∗.
This yields overall,

2∑
i=1

∣∣∣∣∫
Ωh

uih∂ivhwh dx
∣∣∣∣ ≤ C(Ω)h−θ|uh|L2(Ω)|∇vh|L2(Ω)|∇wh|L2(Ω), (6.16)

and from (6.15):

3∑
i=1

∣∣∣∣∫
Ωh

uih∂ivhwh dx
∣∣∣∣ ≤ C(Ω)h−

1
2 |uh|L2(Ω)|∇vh|L2(Ω)|∇wh|L2(Ω). (6.17)

We denote the constants Ch−θ and Ch−
1
2 as the stability constant T (h) in computations.

Note that C is independent of h.
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[133] TIERRA, G., AND GUILLÉN-GONZÁLEZ, F. Numerical methods for solving the

Cahn-Hilliard equation and its applicability to related energy-based models. Archives

of Computational Methods in Engineering 22, 2 (2015), 269–289.

[134] TUREK, S. A comparative study of time-stepping techniques for the incompressible

Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit

projection methods. International Journal for Numerical Methods in Fluids 22, 10

(1996), 987–1011.

[135] VILLANI, A. Another note on the inclusion lp(µ) ⊂ lq(µ). The American Mathe-

matical Monthly 92, 7 (1985), 485–487.

[136] WARD, A. F. H., AND TORDAI, L. Time-dependence of boundary tensions of

solutions i. the role of diffusion in time-effects. The Journal of Chemical Physics

14, 7 (1946), 453–461.

[137] WONG, H., RUMSCHITZKI, D., AND MALDARELLI, C. On the surfactant mass

balance at a deforming fluid interface. Physics of Fluids (1994-present) 8, 11 (1996),

3203–3204.

[138] XU, J., LI, Z., LOWENGRUB, J., AND ZHAO, H. A level-set method for interfacial

flows with surfactant. Journal of Computational Physics 212, 2 (2006), 590–616.

158



[139] XU, K., BOOTY, M. R., AND SIEGEL, M. Analytical and computational methods

for two-phase flow with soluble surfactant. SIAM Journal on Applied Mathematics

73, 1 (2013), 523–548.

159


