A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/99188

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Geometrical Finiteness
 for Hyperbolic Groups

Brian Hayward Bowditch

Thesis submitted for the cegree or Coctor of Phllosophy at the University of Warwick.

Mathematics institute, University of Warwick, Coventry, CV4 7AL, Linited Kingdom.

June 1988

Declaration

Chapter 0 . and to a large extent, Cnapter 1 , are of an expository nature. Chapters 2, 3, and 4 represent original work except where otherwise acknowledged. No part of this thesis has been previously submitted for any degree.

Summary

In this paper, we describe various definttions of geometrical finiteness for discrete nyperbolic groups in any dimension, and prove their equivalence. This generalises what has been worked out in two and three dimensions by Marden, Beardon, Maskit, Thurston and others. We also discuss the nature of convex fundamental domains for such groups. We begin the paper with a discussion of results related to the Margults Lemma and Bieberbach Theorems.

Acknowledgements

This work was originally an offshoot from the M.Sc. dissertation of Dick Canary and Paul Green, which has been published, in augmented form, as [CEG]. Their paper focusses on other aspects of Thurston's notes [$T 1$], but the start they made on geometrical finiteness was very helpful to me. My greatest debt is to David Epstein, for introducing me to the subject, and for his many suggestions and comments. i would also like to thank the S.E.R.C. for their financial support

Geometrical Finltenead for Hyperholic Groupa
 Brian H. Bowdiseh
 University of Warwick,
 Coventry, CV4 7AL, U.K.

Abstract

.

Let Γ be a group acting properly discontinuously on hyperbolic apece Hn. The airn of thiewortio to elarily the meaning of "Eeometrical fioitenese" for auch groupn. In dimenaion $3_{\text {, }}$ with Γ acting freely, the principal definition in thet Γ ahould posseas a "finite-bided fundamental domain". Verioua definitiona in thia dimenaion have been worked out. Marden |Mar] shown that it in equivalent to the atatement that the quotient manifold, ineludine ita ideal points, can be decomponed into a compact part and atandard aeinhbourhooda of ite cuape ("cuep cylinders" and "cunp tori"). Tharuton |Thi| introdaced two new definitions: that the thict part of the convex cors abould be compact, or that an e-neiebbourhood of the comvex cord abould have finite volome. Finally, Beardon nod Mantit [BeaM] nay that Γ in teometrically finite if and only if ite limit act conainta of (what we call here) conital limit pointa and bounded parabolic fixed pointa.

Whalall invedtinata bera how thent definitiona generalise ta aybitrary diecrete ectiona is n dimensions. Thie matter han aleo bees conidered by Aperaov [Ap1,Ap2|, and to some extent by Weilenberg |We|.

Our central definition (GF1) will be easentially that of Merden, with appropriate defmitione of euap regions. The Beardon and Mankit dencription (an they point out in their paper) feneraligen unchanged (GF2). The aee of finite-ided fuadamental domains runa into problema when $n \geq 4$. The gatoral generalination eeema to be in terma of whet we call "convex call complezen" (GF9), For the frat of Thurnton'a definitiona, we need to clarify what we mean hy the "thick part" of an arbifold. The defimition chosen here (GP4) does not reem particularly natural, but it proven useful in diacuating the final definition (GF5). For thin, we impoes the additional condition that Γ befnitely fenerated. We andpect that thim in unnecenary, and abow it to be unneceasery for manifolds, finite-volume orbifolla, or when $n<3$. In the courae of thin diacugaion, we sive a proof of tha enintence of an embedded ball in a hyperbolic n-orbifold, of uniform radian, dependin: on n, but not on the particular orbifold.

Finally, in Ch.4, we dincuse the existence of finite-aided fundamental domains. We rive (in principle) a completa deacription of when a Dirichlet region ianite-nided, and ahow that in certain ujecial casea, all finite (henceforth abbreviated to GF) manifold with no finite nided Dirichlat dommin.

\section*{Acknow ledgemevta.}

Thit mork man originally an ofinhoot from the Warwick M.Se. dinaertation of Dick Canary and Pav! Green, thich han been published, in ausmented form, an [CanDC]. Their paper focuee on other appecte of Tharitom'a oote |Thi|, but the atart they made on ecometrical finiteneas wan very helpful to me. My freateat debt in to David Epatein, for introducing me to tha abject, and for bia many augatetiona and commeate. I would also like to thank the S.E.R.C. for their fiaancial aupport.

O. Introduetlon.

0.1. Hyperholle space.

Wa begin with a enencal diacuation of byperbolic geometry in order to induce our terminology and notation. More detaila may be found in [Ben, Chapter 7].
 for hyparbolie n-apace. Wa shall denote the metrice on these apacen by $d_{a n h} d_{\text {ewe }}$ and dhyy reapactivaly. Wa shall drop the sufficen whera there can ba no confasion. fo each case, wa write leom X for the group of all
isometriea of X.

A third model for hyperbolic apace we ahall une in the Klain modal. This consinte of the open anit ball with a (mon-conformal) Riemannian metrie, anell that all byperbolic geoderica correapond to euctidean line wegments (sea |Bea, Chapter 7]).

We may chanify aon-trivial inometriea \mathbf{K}^{n} into threa types, namely alliptic, parabolic and hyparbolic an followe.
 theorem tella ua that $6 x\rangle$ mut be non-empty.

 0 -dimegrionaly plama in $\mathbf{H e}$. We call thin cane eltiptic.

 We call thin cam parablic.
 cane, 7 ecta a a tramalation ou I, and (in general) han a rotational component in the arthogonal dizection. We call thin cane loxodromic, and wa call It the laxadromic aris.

Finally, mota that if 7 han three (or mora) fixed pointa in H^{n}, then them munt determina a fred point in H^{m}, wa wara back ia the elliptic came.

0.2. Groupa of Imametrien.

 imagee of itself under ${ }^{1}$ '.

In wuch a dincrele group, the faite-order elementa are pracisoly the alliptic inometrien. Thut, $\boldsymbol{\Gamma}$ acta frely if and only if it in torsion-frea. if Γ acta freely, we may form the quotient manifold $M-\mathbf{H}^{(1)} / \Gamma$ whirb in herita a complate hyparbolic atructare.

More reaurally, if Γ han tornioa, the quotiant $M=\mathbf{H}^{\prime \prime} / \Gamma$ in a complate thyparbolic "orbifold", ne defened by Tharitea [Thl, chaptar 13]. Thas in ta any, thare in a cloend call complay Σ ie M, such that $M \backslash \Sigma$ in an

 curvatare. We shall call E the siapular ath of M.
 $A \subseteq \mathbf{H}_{7}$ at the eat of aecamalation poiats of nome Γ-orbit, i.e.,

$$
4=\left\{y \in \mathbf{H}_{i} \mid \text { share exint } \gamma_{\|} \in \Gamma \text { and } x \in H^{n} \text { with } \gamma_{m} s \rightarrow y\right\} \text {. }
$$

It turna oft that thin deferition in independent of our chaice of a. Moreover, 4 in minimal cloeed r .

 fact, F acte properly diecontinuoully on $\mathrm{H}^{\text {" }} \cup \mathrm{Q}$, wo we may orite

$$
M_{a}=\left(\mathbf{H}^{n} \cup \cap\right) / \Gamma=M \cup M_{r} .
$$

 analytical theory in thin dir ension.

One directinn of research in diacrete hyperbolic croupa, in atudy to the relationahip of various typea of "Gnitenesa" - group theoretic, sopological and eometric. The simpleat group theoretic reatriction io to demand that I be finitely tenerated, and ank what thin tellin un about the topology and geometry of M.

The fret result in pure algebraic.
Selberg Lemma |Sel|, Leik be afield of chatectariatic 0 . Than, any finitely-genarated awbroup of $\mathrm{GL}_{n}(k)$ is virtually toraion-free, (i.e. contains a tornon-free subgroup of finite index)

For a impler proof, see [Cae].
Since Ieom \mathbf{H}^{n} can be represeated an aubgroup of GL $_{n+1}(\mathbf{R})$, the Selberi Lemme can be applied to initely-generated subgroupe of lam H^{n}. Geometrically, this telle nas that we cas rentrice attention to the can =here Γ acta freely on H^{n}. Given thin, may mell anume aleo that Γ preserves orientation. Thia latter reatriction ia melely to amplify the exponition. Thua, for tha reat of tha introduction, walem oshervian atated, walall be taking Γ ta bea finitely-generated, diacrate, toraion-free group of orientation premerving inome triea of \mathbf{H}^{n}

Beyond the Selber Lemme, bitele aetma to be Lnown im general. The main thratt of research in in dimenaion 3 , and we shall give a summary of 3 -dimensional renults in Section 0.3. Finat, wa deacrihe how the 2 -dimenuional caes in trivial from the point of view of finitenesa.

Let M be a complete, orientable, byperbolic arrface with finitely-generated fondamental atoup. Then, it turas out that M consinte of a compact eurface with boundary, tonether with a finite nomber of "cwapa" and "fonnela". A cenp ia (izometric to) a horoball in $\mathrm{H}^{\text {² }}$, quotiented oat by a cyctic parabolic group (FIG 0.1). A funnel conistit of a byberbolic batf-apace quotiented ont by a bxodromic elament (FIG 0.2). We ree that M_{i} ia a dinjoiat union of figitely many circles, which serve to compactify the fonnele in $M_{o}=M \cup M_{i}$. Than the topological ende of M_{C} correnpond precisely to the cuape (FIG 0.3). Wesee that, in any menningfal menee, the geometry of M in only fisitely complicated. Thit ia about the atrongest amertion of fritenction ond could mate.

0.3. Same A-dimenional finitenean reaulta.

1s thir eaction, wa shall give a eummary of some fintenese reanta in 3 dimanionn. It in mot meant to reflect the hintorical development of the sabject.

Let Γ^{\prime} be a discreta, tornion-free, orientation-premerving aubroup of laom \mathbf{H}^{n}. Much of the techaical complication of the aubject arrices from having to deal with parsbolic aubroupa of Γ. Suppoan that $\boldsymbol{T} \in \boldsymbol{\Gamma}$ in parabolic with fixed point p. Let $\Gamma_{\text {, }}$ be the atatiliner of p in Г. In a diacreta group, a parabolice and a lozodromic cannot elare a common fixed point. Thmi, Γ_{p} contista entirely of parabolica. Wh call paparabolie fised point, which wa abbreviate to p.f.g. Wacan lat p be the poist oo in the opper half-apace modal Now,
 act by tranalation. We tee that $\mathrm{r}_{\boldsymbol{r}}$, is inomorphic to aither Z or $\mathbf{Z} \oplus \mathbf{Z}$. Tulinit B to be apy horoball about p_{1} wa may form the quotient B / Γ_{p}. If T_{p} at $Z_{\text {, then }} 8 B / \Gamma_{p}$ im a binfaite anclidean cylindar, and we call
 region" which will be deacribed later in thin eaction. Sea Section 2 for dataila.) If Γ_{F} 鱼 \mathbf{Z} Z thea $8 B / \Gamma_{0}$
 each orbit of parabatic fired pointa. In geveral, one would expect thase cuapa to project to a callection of immerted aubmanifolds is M. However the Margulia Lemma (see Sectiona 1.2, atd 2. (GF4)) talla ua that (in dimenaion 3), by tahing our horobelle amall anough, wean arrenge that the canpa be diejoint and embedded is M. We thall write coup(M) for the diajoint anion of all the cuapa.

The comatruction of thin set of diejoint conpa in walid for infinitely-ganerated groupa. From mow on, however, wa shall ingist that Γ be finitely-generated. Wa firgt ues a purely sopological reanalt.
Thearem [Scots $|S c|]$. $L_{i} t M$ ba a s-manifold wilh finitaly ganeraled fundamental pramp. Then, thera is a
 groupn.
 pretented.

In our case, $M=\boldsymbol{H}^{n} / \Gamma$ in an irreducibla 3-manifold, that in anch embedded 2 -aphere in M bownda a 3 -ball. Becaune of thin, wecan arrange thas δM_{T} containano 2 -apheren, and then the inclunion of M_{T} into M in a homotopy equivalence. Moreover, there in a bijective correapoudence between the boundary componente of M_{T} and the topological endi of M. We deduce that M hen only fritely many ende. In particular, it containa only finitely many \mathbf{Z} e \mathbb{Z}-cuape

In fact (provided that Γ in not cyclic baxodromic), the \bar{Z} 由 \mathbf{Z}-c onpa correapond precinely to the toroidal componente of ∂M_{T}. T1' remainingende correapond to components of genuat leate 2 . The aim now in to underitand aomething of the geometry of thene remaining ends, which wa whll call "non-cumpidal enda".

Now, a Z-cusp is topologically jont a prodact. Thus, we can mame that ench Z-cump lien entirely within some non-cuapidal end. The effect of removing the \mathbf{Z}-cuspe would (in general) be to anbdivide eack each aneh end inta amaller piecen, on which wa may see qualitatively different behaviour. It in therefore necemary to tale account of then Z-cunpa before going on to connider the geometry. Wa can do this by applyinge relative verrion of Scolte'n theorem to $M^{\prime}=M \backslash$ cuap(M).

Theorem (Me). Lat N be as manifold unth boundary, whone fundamental growp in finitely ganerated. Lat S be acompait sulmanifold of $a N$. Then, wn can find atopological care, N_{T}, for N meth that $N_{T} \cap a N=S$.

By uing thie result, togather with an Euler characteriatic angument, one may deduca [FM| that thera are
 of M^{\prime} which meete each $Z \oplus Z$-cuap in the bounding torus, and each Z-cuap in a compact ananler core of ita baundery cylinder. Again, wemay take the inclusion to be a (relative) homotopy equivalence, so that the topological ende of $M^{\prime \prime}$ correspond ta the frontier componenta of M_{T}^{f} in M^{\prime}. We now look for geometric information about the non-cunpidal ende of $M^{\prime \prime}$ (i.e. ende ot ber that $Z \in \mathbb{Z}$-cmapu).

We have already asid that, for $n=3, M_{i}-n / \Gamma$ in a Riemana arofece. A fundamental reavit about M_{i} in the following.
 Then $M_{I}=\cap / \Gamma$ in a Rumann avffece of "finitu typa". That is to say, M_{i} is eonformaily equiselent to a compect anrface with fimitely many panciures.
(For a proof using deformation theory, nea |Sula|.)
Moneover one may show that the puncturen of M_{f} arice only from parabolic elementa of Γ_{i} that i_{i} a amall hoop around a puncture reprenenta a conjugacy clan of parabolic. in Γ.

Wa want la give AhHora' Fiziteneate Theorem a more geomatric interpratation. Wa can do this by uaine the convex bull of the limit eet -a gentaligation of tha Nielean conver region in dimanaion 2. Let Y be tha
 A. Since the constructioa in equivariaut, wa may form the quatiant $\boldsymbol{Y}=\boldsymbol{Y} / \boldsymbol{\Gamma} \subseteq M_{\text {, }}$ whith we call the canvas core of M. The aeareat point retraction of \mathbf{H}^{3} onto \mathbf{Y} axtende continuouly to all of \mathbf{H}^{3}, and therefora given risa to a map from M_{c} ta \hat{F} (een for exampla |Thil). Wa aball denota by q, the reatriction of thim map to M_{f}. Note that $\boldsymbol{q}\left(M_{i}\right)=a \boldsymbol{f}$
 rame 2-plane in \mathbf{H}^{3}). Both thene casen are completely underitood, wo whall aname that sha interior of p in non-ampty. In thin case ona may show that $\partial \hat{Y}$ han the atractura of a complete byparbolic aurface in the induced path matric [Th1]. Moreover qia a homotopy equivalance trom M_{1} to $\boldsymbol{\partial P}$. In fact, by apphying eome hind of emoothing to the nearest point ratraction, one may thaw that q ib homotopic ta a quaticarformal hameomorphiam. (UEM| includer detaike of this in sha cana whan A in coamected.) We dedace that the anface

 compact. Than, each component of $8 \hat{Y}$ correapanda to an and of \boldsymbol{M}^{4}. Sach an end ie topologically a product, being folinted by componenta of $\partial N_{1}(\mathcal{Y})$ for $r>0$, where $N(\mathcal{Y})$ in a uniform r - aeighbourhood of \mathcal{Y}. We enl neeth anda peomatricelly finita (GF). Wa meat that the GF ende of M correapond hijectively to componerta of

 of the froatier of M_{T}. That in the frostiar composenta of M_{T}^{\prime} in M^{\prime} that correapond to GF ende coincide with fratier componente of $N_{4}(Y) \cap M^{*}$.

The teomet rically faite ende, howaver, might not account for all the ende of Me. It may be that an and maken ao impremion on the diecontinuity domsia n , ec that AbYor' Finiteseat Theorem telta at rothing. Such ende were abown to exint by Bert and Maetit |Bar, Man|, their zenmetrically infinite astore beine made
 more seseral meihod of construction.

All the noo-GF ende conatructed ec far have bean "aimply degenerata" an defined by Thanton|Th1 Chapter el. A simply degenerate end torat out to bo juit a prodact topolagically (l.e- homeomarphic to a earfaca timata a halt-opea interval), but ita geometry in inflaite. For example, avary nelebboarhood of the and will camain infoitely many cloned geodacica. Bonahon and Otal conacruct an enampla of an end containing
 have a positive bower bound. In the lacter cane the end hae boended diameter an one tende to infinity. In
 nuch an ead makeen eo imprention on the dincontinnity domain -GF ande have axponeatial growil.
$\mathbf{H}_{\text {, an }}$ an all the examplea constructed so far, anch (nom-caspidal) end in aither geomatrically feite or nimply degenerate, we call M geomatricelly lama. In thin cene, M in topolonically fnina, Le. homeomorphic to the interior of a compact manifold with boundary. Moreover, one can show that the limit nat of ancha group han aisher sero or full 2-dimanaional Labiensua measure (see |Thi| or |Bind) - a proparty conjectured, by Ablori, for all finitely-generated dincrete grouph. Thers are oxamplea, however, whare the limin eet bea Haundorif dimearion equal te 2, whilh neill having caro 2-dimentional Lebeegee manure |Sulat.

It hat bean conjectured that all binitaly-genarated diecrate groupa ure geomatricelly teme. Bosshon

 Then, wa call M "erometricaly foite". In ctin case, we can agume that each end of M^{\prime} is bounded by a

 groupe in the diecumion, wihoer mation apacial quatilatione.)

Clantly, $N_{n}(\mathbb{P})$ meats the boundary of any \mathbf{Z}-curp in a corapact mat. From thie we me that the inter-

 Fuclaina group thowe.)

If M had ne ctuga, one reen that $M_{i}=\Omega / \Gamma$ would give a compretiltation of M to M_{C}. In the
 naighbourhood inomatric to one of two mandard typen - "cuap tori" and "cuop cylindara". Cup cort are
 (FIG O.7). Thie deacription of geomatric finitane (GFI) in dea to Marden (Marj.

be a union of (what wa call bera) comical limit pointa" and "houndad parabolic Smad pointa". Thena will be defined in Saction 2 (GF2). The notion of a comical limit point (aloo calied a "radial limit poisl" at

Fizally, the oritinal and nimpleat definition of geometric Eniteneas (GF9) demanda that Γ should ponena a finiterided convax fuadamental polyhedron. Thin bypothemin was introduced by Ablfora [Ah2], whera ha thaved that the limit aet of anch a gromp muat have either acoro ar fall Labeague measure in H_{7}^{3}

It hat bees known for nome time, from the referancas already cited, that thene five definitiona are all equivalent in dimension 3. Geometrically finite groupa oecur trequestly the aimpleat axamplen of 3-dimenaional hyperbolir groupa. It in conjectured that thay contain en open danat ist of the apace of all fimitely-generated diacrete groopa, given the appropriate fopology (see |Sol5|). The bypotheaie of geornetrical finiteneas hae oftas been oned in tha atody of tha dynamics on limit ecta. Sullivan, for axamples ahowed that tha limit met of a geometrically finite group io either the whole ephere Hf, or elae han Hasedorif dimension atrictly leat tham $\mathbf{2}$ [5 Hb$]$.

D.4. Higher Dlmenaiona.

A nataral quention to ank ia how one should defiae geometric faiteacat in dimensione grater than 3 . Mont authora have talengeometrical fitencea in thia can to mean that the group ohould pooseam anitenided convex fundamental polyhedron - a diract generaliation of Ablform' original defnition. However, in dimention 4 and bigher, thi deffition becomen mora reatrictive than the obvione ganeralimation of the other fonr definitione. It eemm chat thens other definitiong give rise 10 a more natural notion of geamatric finitenem which wasim to elucidate in thin work. All the applicationa of the traditional geomatrical faitemen by potherie reem to be valid for thin alighely more ganeral notion.

The quention of defining esemetric finiteneat in higher dimention hat alyo ben coanidared by Apaname

1. The Margulla Lemma and Bleberbach Thearam.

In thin eection we ohall be diecuming realte ralated to the Margulim Lamma and Biaborbeck Theorame.
 $e(n)>0$ with the following property. Let (x, d) be any amply connected Riamaneian n-manifold, all of

 be bounded by some $\nu(n)$ depending only on n. Wanay that grompe of the form $\Gamma_{f}(x)$ are maiformily mirtuelly nulpotesi
 curvaiure casen, namely E^{n} and \mathbf{H}^{n}, where we can iven aimpla proof of tha Margulin Lemma. A han, in thase canea wa may identify the ailpotant aubgroup an baing geserated by elemante of amall rosational part, and in turniane alwaye to be abaliza. This teal obnarvation la a conequases of nilpotency, rather than dincretanem,

re sloo duscribed in |Th2, Chapler 4| and |Wo|.

1.1. Nilputent Implie Virtually Abelian.

Let $\mathrm{S}^{\boldsymbol{m}}$, E^{n} and H^{m} denote the uait n-aphere, uclidean n-apace and hyperbolic n-apace renpactively,
 denota the entire roup of isometrien of X, and $\mathrm{S}_{\mathrm{im}} \mathrm{P}^{n}$ be the group of actidena amilarities. Throunhovt, wa uite the convention on commutatort that $|x, y|=x y x^{-1} y^{-1}$.

We shall dasl vith the three geometries in turm.

1.1(1). Spherical Geometry.

Let

If wa think of Inom S^{n} acting on E^{n+1}, thin eaye thet T liea in $U\left(S^{n}\right)$ if it moves each vector through an
 defining the metric on E^{n+1}.

 denote thin harmitian form.

Now, lat $w \in C^{+1}$ be any now-trivin] complen vector. Write $w=x+i y$, with $x, y \in E^{m+1}$. Then,

$$
\operatorname{Ra}\left\langle\gamma v_{1} v\right\rangle=\left\langle\nu x_{1} x\right\rangle+(\eta, y) .
$$

If $g \in U\left(S^{n}\right)$, both the terma on the right hand nide ara non-ganative, and at laset one in atrictly positive. It follown that γ liee in $U\left(S^{n}\right)$ if and only if $R(\gamma, \omega\rangle>0$ for each mon-trivial v $\in \mathbf{C}^{\boldsymbol{w}+1}$.

We cal aow prove:

Proof: Complanifying, =aimagine a and β actiaf on $C^{\infty+1}$. We tee that a commates with $\beta^{-1} a \beta_{1}$ mo that thay are aimaleaneownly diagonalinable. Lat V be an cigempace of a. Then $p V$ in an eigenapace of faf f^{-1}. If V fV, than V mans interiact ano-trivially mome ather eigenspeca V ' of Baf f^{-1}, orthogonal to $\mathcal{A V}$. Let
 immediately price to the lemmatalla us that $R a(\phi \nu, v)>0$. Thin contradiction meane shat $\beta V-V$. siace V wa an arbitrary eigenapace of a_{1} wa dadace that a and β are aimultaneaualy dingomaliabla, and hance commute.
-

Proof, Let a and blie in 「nU(S"). By a "neated chain of commetatora" in a and t, we mana amapramian

 commetea with d. Applying Lemma 1.1.1, with $a=\left|\epsilon_{1}, \ldots\right| c_{m}, c_{m+1}|\ldots|$ and $A=f_{1}$, we dedech that a and
 6 -

 We deduce that $\left|\Gamma ;\left(\Gamma \cap U\left(S^{-}\right)\right)\right|<N(n)$, and mo,

1.1 (11), Euclidean Geometry.

To prepara for the lyperhotic cane, it will be unoful to conaider the group Sin E= of anclidean nimilaritien.

 bampoint. Thera in an obvious bijective correupondace between r-dimennional enhapacen of $V\left(\mathrm{E}^{=}\right)$, and foliations of E" by parallel r-planea.

$$
\text { rot } ; \operatorname{Sin} \mathrm{E}^{n} \longrightarrow \text { Inom } \mathrm{g}^{n-1}
$$

We call roty the rotational part of 7 . We defina

$$
U\left(\mathbb{K}^{n}\right)=\left\{\gamma \in \operatorname{Sim} E^{n} \mid \text { rot } \gamma \in U\left(S^{a-1}\right)\right\}
$$

 atabilinar of thio plane. Thim obaervation will allow un ta ane indaction over dimanaioa. Givaly $\mathfrak{y} \in \operatorname{Sim} \mathrm{E}^{m}$, we ahall write

$$
\min 7=\left\{x \in \mathbb{E}^{-n} \mid d(x, \gamma x\} \text { in minimal }\right\}
$$

 of juat a aingle fred paint.

We thall becin fith a lemma.
 nos-ampty, Γ-Imerrant plawe, on which Γ ect by trandation.
 which in not tranalation. Than, min η is a proper aubepace, and ainca Γ ia abelian, it ia Γ-iavariant. The reatit now follown by induction em dimestion. -

 foliation detarminee a arbapace W_{1} of $V\left(E^{n}\right)$, by tuhing tha ath of geodeak raya lyine in any ome leaf. Now,

 $V\left(F^{n}\right)=W_{1}$ e W_{2} o W_{1}. Let m_{4} be the dimension of W_{i}. We shall eny that the decomponition in trivial if $\mathrm{m}_{4}=\mathrm{m}$ for eoman i.

 En. We are now ready for:
 by alementa of $U\left(\Gamma^{-1}\right)$, te. that $\Gamma=\left(\Gamma \cap U\left(\mathbb{R}^{n} \mid\right)\right.$. Wa wane to ahow that Γ ie abalian.

 the decompoaition In mom-trivini, we may ueppone, by induction on dimassion, that anch projection of r
 decompoastion in trivial.

Suppoae $m_{1}=n$. Thin manan that $Z(I)$ in a tranalation troup with no nom-ernpty proper inverinnt
 hence equal to \mathbb{E}^{n}. It followathat γ in a tramelation of \mathbb{E}^{n}. Since tranglatione commute, Γ is abelian

Suppoen $m_{2}=n$. Now $\mathcal{Z}(\Gamma)$ it trivinl. Since Γ ie nilpotent, it in aleo trivial.
 fixed by Γ_{1} wo Γ can be regarded as a auberoup of $\mathbf{R}_{+} \times \operatorname{lnom} S^{\prime}$, whera the fint component mearurea the magnification, and the ecood, the rotational part of an elemens. The projection inta leom S^{n} ia nilpotent and generated by elemente of $U\left(\mathrm{~S}^{*}\right)$. By Corollary 1.1.2, thio projection io abelian. We deduce that Γ in abelian.
\bullet
As in the apherical came, for any gromp I, the index of ($\Gamma \cap U\left(E^{n}\right)$) in Γ in finita, and han a bound dependent only on n. Thun,

Carallary 1.1.0 i Nipotentalgroups of $\mathrm{Sim}_{\mathrm{E}}^{\mathrm{E}}$ are uniformly virtwally abelian.
1.1(iii). Hyperbalic Geometry.

We uball write H^{n} for the ideal ($n-1$)-nphere at infinity of byperbolic apace $H^{n \prime}$, and write He_{C} for
 menn any map which can be represented an a componition of inverniona in ($\mathrm{n}-\mathbf{1}$)-apheres. (We ara allowing Mäbing tragaformationn chat reverna orientation.)

Wemay represent H^{n}, contormally, an a hemisphere Σ of S^{n}. Ieom $H^{\prime \prime}$ then consista of thoas Möbiua tranaformationa which preserva $\boldsymbol{\Sigma}$. Let $\boldsymbol{7}$ be a Möbive tranaformation of S^{*}, with some fixed point y Since
 wa may chack that if a in any other fired point of 7 , then the induced inometrice on $\left(T_{1} S^{-}\right)_{y}$ and $\left(T_{1} S^{n}\right)_{a}$ are conjugate. Thus, 7 detes mibes a conjogency clan in leom S^{n}, which wa shall call rof 7 . Since our rabeat
 RentrictinE to Inom $\mathbf{H}^{\text {" }}$, whera all Möhiua tranformationa have fired pointa, wa may define

$$
U\left(\mathrm{H}^{n}\right)=\left\{\gamma \in \operatorname{lnom} \mathrm{H}^{n} \mid \operatorname{rot} \gamma \subset U\left(\mathrm{~S}^{n}\right)\right\}
$$

Theorem 1.1.7 i $/ f\left[\subset\right.$ laom H^{n} is mipotent, then $\left\langle\Gamma \cap U\left(\mathrm{H}^{-}\right)\right.$) abelion.
Wh begin wish two lemma.

Proof a Let $\boldsymbol{\gamma}$ be any non-trivial element of S . If $\boldsymbol{\gamma}$ ie parabolic, then ite fixed point in prenerved by C ,
 induction on dimemion. For thin, we need to chect the 1-dimennional casa. But it in amily reen that an abelias group of inometrian of the real line muth either act trivially, or by tranalation (thue reapectiag the two "ideel" pointa), or elec connint of an involution with a aisgle Axed point. Firally, if y in lozodromic, then ita axian in r-imariont, and wa are immediately redaced to tha \mathbf{j}-dimannional case.
-

Proof , Let a be the net of pointa fixed by the centra $Z(\Gamma)$. Let $\Gamma^{\prime} ? \boldsymbol{Z}(\Gamma)$ be the aubgrowp that firet
 electivaly on o.

From Lemma 1.1.8, we dian inguinh three paspibilitiea for o. Firatly, if of a aingla point of Hf, thie peint
 Thua, we may easume that we are in the third cam, namely that o conaiste of precinety two pointa, x and $y_{\text {, }}$ is Ry'. If Γ / Γ^{\prime} in trivinl, wa are dose. Therafora wamayappose that Γ / Γ^{\prime} in an involation. Thim meanm

 6x $2(\mathrm{~F})$.

-

Proof of Theorem 1.1.7: By Lemma 1.1.e, ($\left.\Gamma \cap U\left(H^{n}\right)\right)$ Gxen nome point, x_{1} of H_{C}^{n}. $H x \in H^{n}$, wa ara reduced to the apherical care, and if $\mathbf{x} \in \mathbf{H}_{i}^{\eta}$, wa are reduced to the cane of euclidean amilaritien. We obearve that our definitions of the rotationsl part of an isometry (oe similerity) are in arement, so that the theorem followif from Corollary 1.1.2, and Theorem 1.1.4.
\bigcirc
For completenenn, wa atete:
Corollary 1.1.10 I Nilpotent andgroupa of laom H^{n} are uniformly virtually abelian.
Proof, If $\mathrm{F} \subseteq \mathrm{I}$ eom H^{n} in nilpotent, we need that $\mid \Gamma ;\left(\Gamma \cap U\left(\mathrm{H}^{n}\right)\right.$)] in uniformly bounded. But by Lemma 1.1.t, Γ han a fired point in H_{C}°, so the reault followa from the apherical and eaclidean (uimilarity) camen. -

Note that all the abelian subgroupe conatracted in thin section ere normal, wince tha neigbbourhoode $U\left(\mathrm{~S}^{n}\right), U\left(\mathrm{E}^{\mathrm{n}}\right)$ and $U\left(\mathrm{H}^{n}\right)$ ard ail conjugecy invariant.

1.2. Diserete Subgroupa.

In thin aection, we deacribe how nilpotent groupa occur naturally when contidering diacretagroup actions
Let g be a Lie group, and lat | | be any amooth acrm on G, for axample, diatance from the identity in
 nome constant C. Thun, we can find a bounded eymmatric neigh hourhood, $O(G)$ of the identity in G nach that whenever $g, ~ h \in O(G)$, wh have $|g, h| \in O(G)$ and $\|f, A\|<|s| / 2$.

Lemma 1.2.1, $/ f \Gamma$ is a discrata sulgrow of G, then $(\Gamma \cap O(G))$ io nipotant.
Proof, The elemente of Γ have norme bounded below by some number $c>0$, and the elemente of $O(G)$ have morma bounded above by tome number k. If m in any integer greater than $\log _{\mathrm{g}}(\mathrm{k} / \mathrm{c})$, we nee that any m-fold commutator in elementa of $\Gamma \cap O(G)$ will be trivial. By rapented application of tha identity
 in silpotent. \bigcirc

Tha following lamma it a modifed varsiog of one to ba found in |Th2]. It in relavant to our diecuncion of the Margulin Lemme. Fint, we introdnce nome motation. Givan a eubnet X of the L begroup G, we write

 of aymalric eaightaurhoods of the dantily. Suppose K_{1} in cempact, and $\left(K_{1}\right)^{d} \subseteq K_{1}$ for aech i. Tham,

Proof: Let V be a neighbourhood of 1 with $V^{-1} V \subset W$. Since K_{1} in eompact, thera in an appar baund, $t_{\text {, on }}$ on number of right tranalatea V g.g $\in K_{1}$, of V, thet we can pack dinjoinsly into G. Let $N-k+1$.
 mamimal. Note that $p \leq t$. Writa $\Gamma_{N}=\left(\Gamma_{K_{F}} \cap W\right)$. We claim that $\left(\Gamma_{N} a_{1} /,=1, \ldots, p\right)$ includen a complete net of eosets for F_{N} in $\Gamma_{K_{m}}$, so that $\left[\Gamma_{K_{E N}}: \Gamma_{N}\right] \leqslant N_{1}$, required.
 the collection $\left\{V h_{j} \mid j=1, \ldots, k+1\right\}$, where $h_{j}=\prod_{i=1} \mathcal{S}_{i}$, mo that $h_{j} \in\left(K_{N}\right)^{N} \subset K_{1}$. These eete cannot all
 $a \beta a^{-1} \in \Gamma_{N}$. Thus, $\Gamma_{N} h-\Gamma_{N}\left(a \beta a^{-1}\right) a \gamma=\Gamma_{N} h^{\prime}$, where $h^{\prime}=a \gamma$. Wa have reduced the vord-leagth of $h_{\text {. }}$ mo, by induction, $\Gamma_{N} h-\Gamma_{N} h^{\prime \prime}$, with $h^{\prime \prime} \in K_{1}$. But ther, $V h^{n} \cap V a_{i} \neq \boldsymbol{D}_{\text {, for nome }} a_{1}$, wo that $h^{\prime \prime} a_{j}^{-1} \in W$, and $\Gamma_{N} h^{\prime \prime}=\Gamma_{N} a_{i}$. Hence, $\Gamma_{N} h=\Gamma_{N} a_{1}$. -

We again comider the three geometrien in turn.

1.2(i). Spherical Geometry.

Wa writa $U_{0}\left(S^{n}\right)$ for O (lsom $\left.S^{n}\right)$, the neigbbourhood of the identity defined at the beginging of Section 1.2. Since thin etet may be chomew to be erbitrarily amall, wa may appose that $U_{0}\left(S^{n}\right) \subset U\left(S^{n}\right)$, V/o may atho ruppese thet $U_{0}\left(\mathcal{S}^{n}\right)$ in conjugacy inveriniti. Now if Γ in a diverete nubgronp of thom S^{m}, then (Γ n $U_{n}\left(S^{m}\right)$) is nilpotens hy Lemma 1.2.1, and thus abelian by Corollary 1.1.2. It in anily checked that ($\Gamma \cap U_{0}\left(\mathrm{~S}^{\boldsymbol{m}}\right)$) has a finite index in F^{\prime}, which in bounded an Γ virien. Thne we have:

Lemma 1.2.3 (Jordan Lemma) ; Discrete aulgraups of Inom $\mathrm{S}^{\text {n }}$ ara aniformly sirtually deham.
1.2(i1). Euclidean Geometry.

We can ensume that O (Itom $E^{\text {n }}$) hat the form

$$
O\left(\text { lacm } E^{n}\right)-\left\{\gamma \in \operatorname{lsom} E^{n} \mid d(\gamma a, a)<a \text { and rok } \gamma \in U_{n}\right\}
$$

 contaiaed is $U\left(9^{n-1}\right)$. For motational convasienca wa ahall identify U_{1} with the aet $U_{0}\left(S^{\text {m- }}\right)$ of tha Jordan Lemran We set

$$
U_{0}\left(E^{n}\right]=\left\{r \in \text { lsom } E^{n} \mid \text { rot } \eta \in U_{0}\left(S^{n}\right)\right\}
$$

 Lat $D_{r}=\left\{\gamma \in \operatorname{lncm} E^{n} \mid d(\gamma a, a)<r u\right\}$. Lall g_{r} be the dilation of magnification r about a. Connidering

$$
\begin{aligned}
\theta_{r}^{-1} \Gamma_{r} \theta_{r} & =\left(\sigma_{r}^{2} \Gamma_{p r} \cap U_{0}\left(E^{n}\right) \cap D_{1}\right) \\
& =\left(g_{r}^{-1} \Gamma_{g_{r}} \cap O\left(\text { lsom } E^{n}\right)\right)
\end{aligned}
$$

 $\left(\Gamma \cap U_{0}\left(E^{-}\right)\right)=U, \Gamma_{r}$ in abelian. -

 6

Note that rince $U_{0}\left(S^{n}\right)$ in conjugacy invariant in laom S^{n}, the abelian abtroupe wa produce in thia way will be normal Whall write $\nu(n)$ for the bound on their index.

We can any a little mora about the atracture of diecrete euclidesn groupa:
Propoaltion 1.1.6 : Suppase Γ acta praperly discontonvoudy on \boldsymbol{E}^{n}. Then, thera is a plane $\mu \subset \mathbb{E}^{m}$, presarted by Γ, with μ / Γ compact. Moreover, any twa anch aubapaces are parallel, and he ection of Γ commutes with the perpendicular tranalation between them.

Proof: If Γ prencrven each of two planea r_{1} and r_{3}, then is preserven $r_{1} \cap y_{2}$. It therefore maket teven to spealk of a Γ-invariant plase $\mu \neq \boldsymbol{\neq}$ being minimal.

Let μ_{1} and μ_{a} be two nurh minimal planes. Let $\lambda\left(\mu_{i}, \mu_{y}\right\}=\left\{x \in \mu_{i} \mid d\left(x_{1} \mu_{1}\right\}-d\left(\mu_{i}, \mu_{s}\right\}\right\} \subset \mu_{i}$ I precervea $\lambda\left(\mu_{1}, \mu_{1}\right)$. Hence, by minimality, $\lambda\left(\mu_{2}, \mu_{2}\right)=\mu_{a}$. It followe eacily that μ_{1} and μ_{2} munt be parallel.

Given say foo parallel planee in $\mathbb{E n}^{n}$, there in a unique perpandicular translation mapping one to the other. Any isometry that preservea thead two planen munt commate with this tranalation. Wf followe that the ation of Γ on E^{n} munt commate with the perpendicular tranalation rending μ_{1} to μ_{2}.

If now remaine to ahow that if Γ acte minimally on $\mathbf{E}^{\mathbf{n}}$, then it in cocompact. From the Bieberbach theorem, and the discuasion of abelian groapa in Section 1.1 (ii), wa can find a normal abelian aubgroup \boldsymbol{F}^{\prime}, of finite index in $\Gamma_{\text {, }}$ and a plane $r<E^{n}$, on which Γ^{\prime} acti a a cocompact tranglation eroup. There are finitaly many imagen, $\left\{r_{1}, \ldots, r_{h}\right\}$, of r under $\Gamma_{\text {, each }}$ preserved by Γ^{\prime}. Since a cocompact action io minimal, it follown that the r_{i} are all paralkel. We may now find r^{\prime}, parallel to $r_{\text {, }}$ which representa the centre of mana
 \diamond

As in the earlier diecusaion of the abelian cane (Section 1.1 (ii)), it ian eanly reen that the eet of minimal planea in \mathbf{E}^{-r} form a folintion of a hrger, eanonical nubapace.

1.2(iil). Hyperbolic Geometry.

Given $\mathbf{x} \boldsymbol{\in} \boldsymbol{H}^{\boldsymbol{n}}$, wa write

$$
J_{1}(s)=\left\{\gamma \in \operatorname{lnom} H^{n} \mid d(\gamma x, s)<c\right\} .
$$

Let d_{1} be any Riemanmian matric on the mit targant bandla $T_{1} H^{n}$ of F^{n}, iavariant under the action of lem H** Given $x \in \mathbf{H}^{n}$, we wrile

$$
I_{a}^{\prime}(x)=\left\{\gamma \in \operatorname{lsom} H^{n} \mid d_{1}(\gamma U, 0)<e \text { for each unit vector ib baed at } x\right\} .
$$

If Γ in asubsroup of feom H^{n}, we write

$$
\Gamma_{+}(x)=\left\langle\Gamma \cap I_{i}(x)\right\rangle
$$

and

$$
\Gamma_{1}^{\prime}(x)=\left(\Gamma \cap I_{i}^{\prime}(x)\right\rangle
$$

 that $I_{i}^{\prime}(s) \subseteq U\left(H^{n}\right)$. We now have:

Note that, by bomogeneity, this remsinatrae if we fix A_{1}, and chooae x erbitrarily.
We next whow tbat for amall e, $\Gamma_{4}(x)$ in virtually abalian. To thin end, we take $I_{e_{0}}^{\prime}(x)$ to he the aet W of Lemme 1.2.2, and the wete K, to be $H_{1 / \prime}(\mathrm{x})$. The lemma now welle us that, for noms $\boldsymbol{N}>\mathrm{O}_{1}$

$$
\left|\Gamma_{(m)}(s):\left\langle\Gamma_{a(m)}(x) \cap X_{\alpha_{i}^{\prime}}^{\prime}(x)\right\rangle\right| \leqslant N_{1}
$$

-hare $(n)=1 / N$. Thus,

$$
\left[\Gamma_{q(n)}(x): \Gamma_{a(x)}(x) \cap \Gamma_{i}^{*}(x)\right] \leqslant N .
$$

For notational conveniance, wa shall annume that $N \leq p(n)$, the conatant of the Bieberbech Thevrem, and
 *e haves

 inder al moat $u(n)$.

Note that ill $0<e \leq e(n)$, then $\Gamma_{1}(x) \cap \Gamma_{i(m)}^{\prime}(x)$ has index at mont $\nu(n)$ in $\Gamma_{e}(x)$. Hy internecting all conjugate aubyroupa to $\Gamma_{e}(x) \cap \Gamma_{\text {en }}^{\prime}(x)$, we see that $\Gamma_{i}(x)$ containa a normal abelian nubryoup of bounded index, where the bound in independens of the chaica of diecrete auberoup r.
2. Five Defioltona of Geometrical Finitenem.

In thin aection, wa shall give detaits of the five definitions of geometrical finiterear that we intend ta una. Firnt, we clarify a few pointe of terminology, and notation.

By a (diucrete) parabolic grow of hyperbolic isometrien, $\boldsymbol{O}_{1} \mathbf{w}$ mean a diacrete group which fixed a
 with fixed point p. Since no losodomic can sharo a bxed point fith a parabolic in any discreta group, we nee that O conainte entirely of parabolica and elliptica. We may reprenent \mathbf{H}^{n} uning the opper hall-apace model \mathbf{R}^{n} with $p=\infty$. It then followe that G acta as a group of aclidean isometrien of $\partial \mathbf{R}^{n}=\mathbf{E}^{n-1}$. From Proposition 1.2.6, whow that G preserven ame plane in $\partial \mathbf{R}^{\prime \prime}$ whoee quotient by G in cornpact. Moreover, any two auch planea are parallal Wa abill write of for nome choica of anch plane, and write of for the vartical

 Γ will bea parabolic aubgroup. We call pa parabolic fised point, which wa abbreviate to p.if.

GF1 Let Γ be a diecrate group. In Section 0.2, we defined M_{c} at the quotient, by Γ_{1} of hyperbolic epace tonether with the diacontinoity domain, that in $M_{C}=\left(\mathbf{H}^{n} \cup \Omega\right) / \Gamma$. Thun $M_{C}-M \cup M_{1}$, whera $M=\mathbf{H}^{n} / \Gamma$ in a complete hyperbalic manifold and $M_{i}=\Pi / \Gamma$ consiate of "ideal points" of M. Where there in more than one group in quention, we ahall be apecific by writing $M(\Gamma), M_{i}(\Gamma)$ end $M_{C}(\Gamma)$.

Suppoes that Γ and Γ^{t} are two diacrate groupa Suppaee a and at are (topological) ende of $M_{0}(\Gamma)$ and $M_{C}^{\prime}\left(\Gamma^{\prime}\right)$ reapectively. We any that a end a' are equivalent if they admit inometric neifhbouroode. (Hare, we une the lerm "ieometric" boeely, is that the orbifolds in queation may contain ideal pointa. In arying that two auch orbifolde ara inometric, wa mean that thera ia an inometry of the metric parta which axteade to a homenmorphim on the ideal poiste.) Note that if Γ^{\prime} in a parabolic group, then $M_{c}\left(\Gamma^{\prime} \mid\right.$ has preciaely one end (tee the discuacion below).
Defloition 1 , [e GFI if $M_{C}(\Gamma)$ has fisitaly many ends, and ach ameh end is equivalent to tha and of the puotient of a parablicic sroup.

It will be convenient ta give thin definition a met conerete formulation in terme of she atructura of parabolic groupa. Lat $r_{\text {, }}$ be anch a group, Gxing $p=20$ in the uppar hatieapace modal, Re Let

 Since Γ_{p} preserven the euclidean metric, the conntuction is Γ_{p}-equivariant, wo we may form the quotinat $\hat{C}(r)=C(r) / \Gamma_{p}$ Since σ_{I} is compact, $\left(R_{i}^{n} \cup a R_{i} \backslash C(r) \mid / \Gamma_{p}=M_{G}\left(\Gamma_{p}\right) \backslash C(r)\right.$ in relatively compect in

 The reta $\mathcal{C}\left(r_{m}\right)$ giva a naighbourhood basa for the and. Givan any r_{1} wa cell $C(r)$ a atandard paratotice mgion (FIG 2.1), and the quotiant $\mathcal{C}(r)$, atendard eney (FIO 2.2).
 and anch $\mathcal{C} \in \mathcal{C}$ (imometric to) a atandard cunp (FIG 2.3). We shall aee (Chapter 3, GF4 m GF2) that tha cuape \mathbb{C} ara in bijective correapondenca to the orbits of parabolic fixed pointa of Γ.

GP1
Let p be a parabolic fixed point ($p \mathrm{f} . \mathrm{p}$.) of the diecrete groap Γ. Let $\Gamma_{p}=$ atabrp - the atabilieer of p. Wa nay that P in a bounded p.f.p. (b.pfp.) if $(\Lambda \backslash\{p\rangle) / \Gamma_{,}$is compart. Let $p=\infty$ in the spper hall-apace model, and let a, be a miniamal Γ_{p} invariant plane. Then it in not difficule to ees that $\left.(A \backslash\{\infty)\}\right) / \Gamma_{F}$ ia compact if and only if $d_{\text {auc }}\left(y_{1}, \sigma_{f}\right)$ in bounded an y variea in $A \backslash(\infty)$. In other worda, p ie ab.p.f.p. if and

Let $y \in A(\Gamma)$. We any that y in a conical himit point (c.l.p.) if for some (and hence avery) geoderic ray I
 for wome compact $\boldsymbol{K} \subset \mathbf{1 1 "}$. (The term deriven from an alternative deaription, amely that there ahould
 from some geodenic ray - sea FIG 2.5.)
Debpition 21 I is GFA if every point of A is sither a e.t.p. of ab.p.f.g.
Wa shall rea in Ch. 3 that theae two clamer are, in any diecrete group, mutually azelunive. In fact, it it shown im [SueS] that, in any diecrete group, no p.f.p. can aleo be a c.lp. It will follow from the diacuasion in Chapter $\mathbf{3}$ GF4 \Rightarrow GF2 that in the apecial cane of a geometrically finite group, any p.f.p. ia necetarily a b. p.f.p., and thua not a c.l.p.

Beardon and Matrit |BeaM| five naveral equivaient defaitione of c.lp., including one that makee renee

Finally, we remark that, for a GF group, the convergence of orbits under I to c.Lp.a can be chomen to be "uniform". For ua, this meana that the eet K, in the defnition, can be choeen independently of the point y and the ray l. Together with a certain convergence property for the radii of inometric apheren, thim impliea that the limit set of a GF group has either sero or full apherical Lebergue mencure (nea [BeaM, Ap1]). A more geometric proof of thin fact in baeed oa the definition GF5 (see |Tbi|).

GFs

Let \mathbf{r} be a diacrete rroup. We have anid that the bypothenia that Γ ahoold poaseas a finiteraided fuodamental pobyedron im more reatrictive than we weuld like in dimanaion 4 onwarde. In Section 4, wa give an exampie to illuatrate thim point (at hast for the case of Dirichlet domaina). However it il poasibla co modity the criterion wo that it works in all dimennion. The idea in that we ahould ellow ournelven more than one polyhedron to conatitate a fundamental domain for F . The definition in most elearly expreased in terma of what wa ghall call "conver call complexes". A convax call complax ia cell complex in which all the cella are convax, and hence neceasarily polyhedra. It need not quita be a CW-complex since wo only attach celle along their relative boondariea in hyperbolic apace. Thue a faita complax ia complete, but not in general compact. We sive a more formal deacription below.

Let A be a subaet of E^{n}. We call A an open (convex) call if any two diatinct pointa of A lie is the interior of arme cendenic eagment contained eatirely in A. Note that by demandina that the two pointa be distinct, wa allow any one-point set as an open cull Wean that the property of being an open cell ia cloaed under taking finite internactione.
Defloition i A collaction A of A ubered of \mathbb{E}^{n} in "eonvex cell comples" if:
(1) ench aldment of A an an open cell,
(t) Uhe seto of A are ald diojoint,
(5) the collection A in locally finite, (1) $\cup A=E^{n}$,
(5) If $A, B \in A$ and $B \cap A \neq A$, then $B \subseteq A$.

Let A be auch a call complex, and hit $B \in A$. Suppon that zand y ara two pointe of B, and auppose that $E \in A$ for mome cell $A \in A$. Then, from (5), we methat $y \in A$. Thus, $\{A \in \mathcal{A} \mid=\in \mathcal{A}\}$ independent
of the choice of $s \in B$. In particular, from the beal fitenean of A, (2), we wee that sey cell of A meve the clonures of only finitely many other celle.

Now, given two cell complexte A and B, we call $B \not a$ abdivinon of A if each $B \in B$ in a aubet of nome $A \in A$. Any two cell complexes A_{1} and A_{2}, bave \bullet nataral common onbdivision, namely (A_{1}, A_{2}) $\left.=\left|A_{1} \cap A_{1}\right| A_{1} \in A_{1}, A_{2} \in A_{2}\right\}$. In finct $\left(A_{1}, A_{2}\right)$ in minimal with reapect to subdivinion - if in a anbdivinion of both A_{1} and A_{1}, then it in a mbdivinion of $\left(\mathcal{A}_{1}, \boldsymbol{A}_{2}\right)$. We aleo remarla that intersecting a cell complex with an affine ubbupace of E' givel a cell comphar in that aubapace.

All the above propertien are ancily werified from the definition above. However, ra make the analogy -ith CW-complerem more explicit, we ofifr anghtly different datacription of conver cell complerea as followa.
 of E^{n} containing A. We may define the dimention of A, dim A, to be equal to the dimengion of (A). We alea define ri A and rb A to be, rapectively, the relativa interior and the relative boundary of A in (A). Note
 cell if and only if ri $A=A$. By an apen a-cell, we mean an open cell of dimenaiona.

Let A be a collection of convex cellh of E^{n}. Wa write A^{\prime} for met of all i-celle in A. The r-skeleton, $K^{\prime \prime}$, of
 propertien (1)-(4), then property (5) ie equivalent to the following:
(B^{\prime}) If $A \in A^{r}$, then rb $A \subseteq K^{r-2}$.
To aee $\left(5^{\prime}\right) \Rightarrow(5)$, it in enough to nof that if one open cell bien in the relative boundary of another, then ita dimennion mant be strictly leas. To eee $(5)=\left(5^{\prime}\right)$ in a bittlo more complicated. Suppoee that A utiafien (1)-(4) and (B), and let $A \in A^{*}$. Uning (for example) a meamuretheoretic argument, tre tee that
 thes there ia nome point x in the relative boundary of $A \cap B$ in B. By connidering a neiphbourhood of x in $r b A$, we mee that $x \in \operatorname{rb} C$ for some $C \in \mathcal{G}^{-1}$, different from B. But by (\mathbf{s}^{\prime}), we have that rb $C \subseteq \mathbb{K}^{r-2}$. Thir contradiction telle an that $B \subseteq r b A$. In other words, rb A in a union of cloquren of (\quad (-1)-call. We have deduced property (5) in the cane =here $\operatorname{dim} A-\operatorname{dim} B=1$. We niw ase indoction over $\operatorname{dim} A-\operatorname{dim} B$. Let $D \in A$ be an i-cell internectine rb A. From (6^{\prime}), we know that i $\leq r-1$. If $i=r-1$, we are done. U $1<r-1$, then D intersectir rb E ior some $(r-1)$-cell $E \subseteq r b A$. By the induction hypothein, $D \subseteq r b E$. We nee that $D \subseteq$ rb A. Thua we have thown the equivelence of the two deacriptions of convex cell complaxel.

Now, let A be a convar cell complex, and let $U-A^{n}$ be the collection of top-dimensional calle. We claim that U in characterised by the following properties.
(A) U in a collection of open conver anbere of E^{n}.
(b) U in locally finite.
(c) The clonures of all the setr in U cover E^{n}.
(d) The elemente of t are diajoind.

In fact, if ta are tiven anch a collection, me may recover a convex cell complez an follow. Given $x \in \mathbf{E}^{\boldsymbol{n}}$, we write $P(x)=\{U \in U \mid x \in D\}$. Let $\left.A \mid s_{1}\right\}-$ iv $\left.\in E^{n} \mid P(y)=P(x)\right\}$, and les $A(U)=\left\{A(x) \mid x \in E^{n}\right\}$. Then, we chaim that $A(U)$ in a conver cell compler with $A(U)^{n}-U$. The only property that is not immediate in proparty (1), namely that each $A(x)$ in an open cell. For thit, it in enoath to checit that if y and a are diatinct pointa in $\mathrm{E}^{\boldsymbol{e}}$.ith $P(y)=P(y)$, then y and a tia in the interior of a line regment I, with $P(u)=P(y)$ for all

 that wa can find anchatine regment fith a neighbourhood on which the seth of u are a carterian product. We deduce that $\mathcal{A}(U)$ is a call complex, thieh hea U eite collection of top-dimennional celle. Morvover, $A(U)$ ir minimal with reapect to anbdivision. Than, our original A is asmbivinion of $A(U)$.

We atata a refinement of the abova reault.
Propalition 2.1: Let A be canves cell comples. Lat $1 /$ bu a iccally finite collection of opan realla, whase closuras coner the risteletom of A. Suppose that unch $U \in U n \in$ antal of some $A \in A^{\circ}$. Them tharm in a

The propoation may be provan by aimiler argomenta to thoese given abova. In fact, our diecapeion dealt

paper, but ueed cnly to relate the notion of cell complexea with fundamental domains.
One natural way in which convex cell complexer arriee in an follown. Let X be a diecrete aubset of \mathbb{E}^{n} Given $x \in X_{1}$ we define $D_{X}(x)$ to be the ete of painte in E^{m}, nearer to x than to any other point of X, ie.

$$
\left.D_{x}(x)=\left\{y \in E^{n} \mid d(y, x)<d(y, z) \text { for } a l\right] \varepsilon \in X \backslash\{z\}\right\}
$$

It in eanily checked thek the collection of $\operatorname{sel}\left\{D_{X}\{x\} \mid x \in X\right\}$ entiafien all the conditions of being the aet of top-dimenoional celle of some convex cell complex, namely propertice (a)-(d) liated above. Let Ax be the cell complex, minimal with reapect to aubdiviaion with A_{x}^{*}.

Another description of A_{X} as followa. Given any finite subet Y of X, wewrite $D_{X}(Y)$ to be the aet of pointa y for which the ininimal value of $d(z, y)$ with $z \in X$ in attained equally at each point $a \in Y$. Then A it the set of all $D_{X}(Y)$ as Y ranges over all finite subaets of X.

Let A a convex cell complex, with $A \in A$. We call $B \in A$ a face of A if $B \subset A$. We write f(A) for the nel of all faces of A. We call a subat g of A full avbeomples if a face of any alement of g also liea in B. In thin care, we write $|B|$ for the union of all the celle of B. We nee that $|\theta|$ in a closed mubet of E^{n}

We can malke senme of the notion of convex cell complex on certain closed aubete of $\mathbf{E}^{\boldsymbol{n}}$ by replacing property (4) in the definition by the hypothetir that $U B=F$, Examplen are thue full subcomplezen of a given compler A.

Suppore that $A \in \mathcal{A}^{\prime}$ for some complex A. Let (A) be the afine apen of A. It in not difficult to ate that wa may represent A an an interaection of hali-apaces, in (A), determined by the codimention-ona facen of A. Thum each cell of a complex in necenarily the relative interior of a polyhedran, according to the following definition.

Given auch a polyhedron, we may recomitract a conver cell complex $S(P)$ on P by takint, a lowerdimensional facen, the relative interior of the intersectionswith P of the eupporting hyperplanet. We catl auch facea the sides of P. If P in obtained an the cloaura of a cell in a conver cell complex, then $I(P)$ is a nubdivinion of $S(P)$.

Ae an example, conader the temelation of \mathbf{E}^{n} by bi-infnite square prima (each isometrie to $|0,1|^{2} \times$ RI, obtained by stacking the tilen in horisontel layera (F1G 2.6). First, the tilea ara laid parallelly north-mouth, then eant-weat, and so on altermately. Bech tile han infinitely many codimenaion-1 faces fin the ansociated cell complex), but only finitely many codimenaion-1 vider (in fact, four).

So far, we hava talled only about cell complexen in euclidena apace. However, all the abova diacuanion ia valid with EB^{m} replaced by H^{n} To eee this, we note "hat in the Kloin model for hyperbolic apace, hyperbolic, and euclidean convexity coincide.

Now, let Γ be a diacrete group acting on Hn. Let X bea diacrete Γ-invariant aet, and let $A x$ be tha complex derived from X_{1} as deacribed above. The complex A_{X} bas the following propertien.
(i) It in Γ-inveriant.
(ii) The retwire atabiliner of any cell is finite.

Suppone in particular, that $X=\bigcup_{i=1}^{n} \Gamma a_{i}$, whete the orbita Γa_{i} are dijoint, and each point a_{4} han trivial atabilieer in Γ. Then, we call the top-dimennional celle of $A x$ (generahed) Durichiei damaina. Wa writa $A_{r}(\alpha)$ for the complex $A_{x_{1}}$ and wrile $D_{1}(\Omega)$ for $D_{x}\left(a_{i}\right)$ - tha Dirichlet domain about a_{n}, Hera, a repreatente the finite set $\left\{d_{i}, \ldots, d_{n}\right\}$.

More generally, we ray that e conver complex A is asaciated ta Γ ill it alatidiea the two propertien (i)-(ii) above. If wa are given auch a complex A_{1} wa may find a Γ-invariant aubdivimion A_{0} of A with tha property that if any $y \in \Gamma$ preserves, 由etwita, a cell $A \in \mathcal{A}_{0}$, then it firen A pointwine. Thiameanathat Ao projecta to a cell complen in $M=\mathbf{H}^{m} / \Gamma$

One may obtain Aa an follown. For $A \in A^{n}$, let itabr A be the (finite) atabiliter of A in Γ_{1} and let $U(A)$ be the efe of interaections of A with a collection of Dirichlet domainefor atabr A. Given any $\quad \in \in \Gamma$, atar A_{1} we define $U(\mathcal{T} A)=T U(A)$. Performine this conatruction for each orbit of top-dimenaional cell givean an r-invariant collection of convar neta $U-U_{A \in A}, U(A)$, eatiafying tha hypotheeen Proporition 2.1. This tives us a abdivinion A_{1} of A. Let $\left(A_{1} A_{1}\right)$ be the common aubdivision of A and A_{1} all defined above. We can
 further subdiviaion \boldsymbol{A}_{2}. Continuing thin procems inductivaly gives us, after matepe our required aubdivision A_{0}. Note that ench cell of A_{0} in divided into orly finitely many pieces in A_{0}.

We cen relate the complex A_{0} to convex fundamental domaina. Suppose, for a moment, that Γ if orientation-preatrviag, no that the ainerlar eet liee in $K^{4-9}\left(A_{0}\right)$. Lat B^{n} ba a aet of orbit repreaentatives of A_{0}^{*} under Γ. Let $B^{n-1}=\left(F\left(B^{n}\right)\right)^{m-1}$, the set of codimeanion-1 facen. Each faca in \boldsymbol{B}^{m-1} meeta either one or two cellim in g^{n}. Thone that meet only one are pairad under I. Tha ret of face-pairing inometrien generate Γ. If ge han only one element, ay \boldsymbol{R}, then B is ealled a (conver) fundamental polyhedrom. In defaing seometrical finitenes, it has beem urual to demand that the codimension-1 eidee and facea of \boldsymbol{B} coincide (the axiom of aide-pairige - nea|BM|). However, from our poist of view, thin restriction doen not seem particularly natural, and we shall not use it. Nate that, it Γ in atot orientation-preserving, we may have so allow for raflections in codimension- 1 facel.
 $\Gamma \mid \gamma A=A$) finita for all $A \in A$, and with A / Γ (the set of orbits under Γ) finite.

In auch a came, if wo ubdivide of to A_{0} an dencribed above, then A_{0} / Γ will also be finite. Thus, A_{a} projecta to afnite complex im M. We may thur rephrae GF3 by ayine that M may represented by a tunite complez in which cell in inometric to am open conver nat in H". Ae atated at tha beninniag, each cell in altarhed only alone ite relative boundary in $\mathbf{H n}^{n}$.

GF4

 subet of elementaseling freely, i.e. without fixed painta in \mathbf{H}^{n}. Lat $0 \lll<(n)$, where (n) is the Merculin conatant. The set thin $(M)=\{x \mid d(x, \gamma x) \leq e f o r e o m a f \in f r e(\Gamma)\}$ projecta to what we thall call the thin part of the quotient arbifold M, denoted by thin, (M)

We chim that the conaected componenta of thin, (M) have the form thin (M(G)), where G i either a
 i.e. it prenerven, setwite, a geoderic, whoes quotient uader G is compect. Thia in well known is the case Where F in torion-free, and we can use easentially the name reasoning for our more genernl situation. For completesea, te give the argument below.

Let T be a component of thin $\sim(M)$, and let G be the netwien atabiliecr of T in Γ_{1}, 3 that $T=T / G$ in a componeat of thin. (M). We firat nhow that $f \subset$ thin, $(M(G))$. We then show thet G in either parabolic or loxodromic, from which it followa that thing $(M(G)]$ in connectad, and thun equal to T. We can then deduce that $T=$ thin, $\{M\{G]\}$.

For the fret part, connider $\equiv \in T$. There in mma $7 \in$ frea $\Gamma_{\text {, with }} d(x, y x)<a$. Lat I be the reodeaic
 Now any elament of Γ monat either preserve T retwich, or map it onto a dijpiat component. We deduce that $\boldsymbol{\gamma} \in G_{1}$ and wo $\leq \in$ thin, ${ }^{-1}(M(G))$.
 order. From the diacusion of the Marealin Lemma in Section 1 , we may deduce that Γ. (x) in cither a
 $\Gamma_{4}(\lambda(t))$, an the parameter $!$ varies. Suppone at nome time $\mathbb{E}_{0}, \Gamma_{1}(\lambda(t))$ changes from one abgroup G_{1} of Γ to another, $G_{2} \subset \Gamma$. Choose any \& Iying atrictly between and the Margulia conatant a(n). Then G_{1} and C_{2} are both aubproupa of $\Gamma_{0}\left(A\left(t_{0}\right)\right)$. Atain from the Marsulia lemma, wa sea that G_{1} and G_{3} are aither both parabolic with the atama fixed point, or boxodromic with the ame axis. Thus, if $\Gamma_{4}(x)$ in parabolic with
 It ia clear from the firt part of the proof that G containa slemente of iaffite ordar, and no wa mee that G in a parabolic group. In thie cace, note that if $y \in \operatorname{thin},-(M(G))$, then the geodoric joining y to p lien withie thin, $(M(G))$. From thin, it in eany to dedaca that thin $(M(G))$ in congected. Similerly, if $F_{0}(x)$ in a

which we call the corn of the tabe. The tube is a regular neighbourhood of the core in the quatient orbifold A cromesection of the tube ia starlize about ita interrection with the axis. In fact it in a frite union of convex
 eroas-atetion.

We ehall denote by thick (M), the closure of the complement of thin, (M), in M. We eall thick (M) the thict part of M.

Theae definitiona are mot natural when Γ acta freely. Then, thind (M) ia the set of pointa with injectivity radiun at mont $6 / 2$. The definitiona for the orbifold camare not atandard, but are convenient for our purposen

To giva the fourth defnition of geometric finitenena, we need to defina the "convercore" of a hyperbolic orbifold. The definition is the ame an that given for a hyperbolic 3 -manifold in the introduction. Let a be the limit ret of I . The "conver hull", \boldsymbol{Y}, of A is the minimal closed conver subset of $\mathbf{I I}^{n}$ whose clonure \boldsymbol{Y}_{G} in Hy contains A. The conatruction of Y ia beat seen in the Klein model for hypebolic apace (ase [Th1), From thin picture, it in clear that $Y_{d} \cap H_{i}^{n}=A$. Since the conetruction in Γ-equiveriant, we may project Y to asubat, \hat{F}, in the quotient orbifold, M. We call \hat{Y} the convex cont of M (FIG 2.7).

We will dencribe below an alternative way of defining a thick-thin decomposition for orbifolda. The reaulting decomporition ia identical for manifolda, and qualitatively aimilar for other orbifolds. The definition is angeated by the following proponition, which we alao une in dincussing GF5 in Ch.3.
 thick, (M), the lift of thicke (M) to \mathbf{H}_{O}^{n}), then $\Gamma_{i / N}(x)$ is finite

We begin the proof of Proponition 2.1 with the following lemma
Lemma 2.1 : Lei G ba any proup, and $H \leqslant G$, a subgroup with $[G: H]=k . J G=(A), A \subset G$, then $H=\left\langle H \cap\left(A^{2 h+1}\right)\right\rangle$.
(A : in Lemma 11 , if $X \subset G$, we denote by X^{\prime} the eet of those $g \in G$ exprensible an worde of length r in elemenes of $X \cup\{1\} \cup X^{-1}$.)
Proof of Lemma; The proof will be similar to that of Lemma 1.1 .
Given any $h \in H_{1}$ we can write $h=$ Пi $_{i}$ with $g_{1} \in A$. If $p>2 k+1$, coosider the collection $\left\{I h_{,} \mid j=1, \ldots, k+1\right\}$, where $h_{j}=\Pi_{1} g_{i}$. These coneta cannot all be distinct. Tbun, $h=a, \gamma \gamma$ with $H a \beta=H a, a \in A^{*}, \beta \neq 1$, and $\alpha \beta \in A^{k+1}$. We can write $h=\left(a \beta a^{-1}\right) h^{\prime}$ where $h^{\prime}=a \mathrm{~T}$. But afo $a^{-1} \in H \cap A^{2 d+1}$, and h^{\prime} has shorter word-length than h, wo the reault followa by induction. \diamond

Proaf of Proposition: Let $N=2 \nu(n)+1$, where $\nu(n)$ in the bound on index in the Margulin Leinme We

 wa have $I_{i}(x) \cap f_{r e e} \Gamma=$, so that $K \cap I_{n}(x) \subset T$. We write I_{i} for $I_{i}(x)$, etc.

Let $\eta=\pi / N$, wothat $I_{\eta}^{N} \subset I_{a}$. Then $\left|\Gamma_{\eta}: \Gamma_{\eta} \cap K\right| \leqslant \nu(n)$, where $\Gamma_{\eta}=\left\langle\Gamma \cap I_{\eta}\right\rangle=\left\langle\Gamma_{i} \cap I_{\eta}\right\rangle$. Prom the trmena,

$$
\begin{aligned}
\Gamma_{n} \cap K & =\left(\left(\Gamma_{\mathrm{i}} \cap I_{n}\right)^{N} \cap K\right) \\
& \subseteq\left(\Gamma_{\mathrm{a}} \cap I_{n}^{N} \cap K\right) \\
& \subseteq\left(\Gamma_{\mathrm{a}} \cap\left(I_{\mathrm{i}} \cap K\right)\right) .
\end{aligned}
$$

But $J_{n} \cap K \subset T_{1} \varepsilon_{0}\left|\Gamma_{n}\right|<\nu(n)|T|<\infty$
The case when $\Gamma_{\text {, }}$ is lonodromic in aimilar.
-
Suppose that $\eta<\ln (n) / N(n)$, and let $F_{n}(\Gamma]=\left\{x \in \mathbf{H}^{n} \mid \Gamma_{n}(x)\right.$ in infinite $\} \quad F_{n}(\Gamma)$ in cloned in H^{m}, vince medefned our eeta $I_{n}(x)$ to be cloned. It projectito a set which wo denota by thin ${ }_{n}^{\prime}(M)$ in M. We write thick ${ }_{n}^{\prime}(M)$ for the clueure of itn complement in \mathbf{H}_{n}^{n}. For $e<e(n)$, we have the inclunion

$$
\operatorname{thin}_{/} / N(M) \subset \operatorname{thin}_{N N}(M) \subset \text { thin }(M) .
$$

Again, the connected componente of $t h i n_{n}^{\prime}(M)$ are of $t w o t y p e n-t u b e r a n d$ cuspe. In GFs \Rightarrow GF1, we shall aes that if M in GF, then Y nthict, (M) in compact for any e >0, arbitrarily amall. Thia face meana

GP5

Definition $5: \Gamma$ is GFS if it is 反nitely generated and, for some $\eta>0$, the η-neighbourhood, $N_{m}(\hat{Y}(\Gamma))$ of $\hat{Y}(\Gamma)$ hat fimite volume.

We suspect that the asamption of finitegeneration is unnecenary. We show thin to be the case:
(i) if |utabrix)| in bounded for $x \in \boldsymbol{H}^{n}$ (for example, if $[$ acta freely); or
(ii) if $M(\Gamma)$, ituelf, bas Enite volume; or
(iii) if $n<s$.
3. Proofs of Equivalence.

The main cycle of proofi will be:

Wa une GF1 an our central definition, uince most the facta about geometrically finite groupa are moat eanily deduced from this. We include proofs of $1 \Rightarrow 2$ and $1 \Rightarrow 4$ tince they are very much shorter than following the cycle. The only non-eeometric input in an appeal to the Selberg Lemma (Chapter 0) which overcomea a technical difficulty in the proof of $5 \Rightarrow 4$.

CF1 \Rightarrow GFa

Wa have $M_{O}=\hat{N} \cup\left(U^{C}\right)$, where \hat{N} is the piojection of a compact ett $N_{0} \subseteq H^{n} u n$, and \mathcal{C} in a finite net of cuap regions. Let $y \in \mathbb{A}(1)$.

Suppoes that y in the in the fixed point of a parabolic group Γ_{y}, which atabilisea nome cuap region C. Then ($A \backslash(\infty)) / \Gamma_{y}$ is a cloaed aubaet of the relatively campact aet $\left(\mathrm{H}_{\rho} \backslash C\right) / \Gamma_{y}$ and in thus compact. Wh sea that, in this cate, y in a b.p.f.p.

So, uppose that y does not correapond to a cuap region in the way dencribed above. (It in atill conceivable, at the rtate, that y may ba a p.f.p., though thio doen not affect the argument.) Wa mast have $|\boldsymbol{A}| \geq 2$, wo that the conver huld Y meeta H^{n}. We join y to a point $x \in Y \cap \mathbf{H}^{n}$ by a geodenic ray I. Note that $U(\Gamma) \subset Y$. Clearly, t munt leave any cunp region it entern, so the quotient t must accumulate vomewhera in \hat{N}. Hence, Γ t accumalatea nomewhere in $N_{0} \cap Y$, and no, in this case y in a c.l.p.

GP2 \Rightarrow GP1

First some general temark.
Let $K \subseteq H^{n}$ be a closed conven aet. We may define the neareat point refractian $\boldsymbol{p}_{K}: \mathbf{H}^{n} \rightarrow \boldsymbol{K}$, whete

 and for $s \in H_{i} \backslash K_{C,}$ take $\rho_{A}(x)$ to be the uniqua point anch that $K_{C O} \cap B=\left\{\rho_{A}(x)\right\}$ for mome horoball B

Given a eet $X \in H^{n}$, we shall denote by $N_{r}(X)$ the uniform r-neighbourhood of X, i.e. $\{x \in$
 is $K_{1} \subset N_{1}\left(K_{1}\right)$ and $K_{2} \subseteq N_{1}\left(K_{1}\right)$. We thow:

Lemma 5.1 : Given $\lambda>0$, thera ariats $L=L(\lambda)>0$ anch thal if K_{1} and K_{2} ara λ-aear, then

Proof, Given a triagle zy* in H^{2}, poasibly with z an ideal point, if the anglen as y and a are both at least $\pi / 4$, then $d(y, r) \leq L_{2}$, where L_{1} is moma fixed constant. Aloo, given λ_{1} we may find L_{2} mo that any two pointa, a diatance na more than λ apart, aubtend an angle of leas than $\pi / 4$ at any third point, dintant at heret L_{λ} from one of them. Let $L=\max \left(L_{1}, L_{2}\right)$. Then $L>\lambda$.

Suppone now, $x \in H_{C}^{n}$, with $y_{i}=\rho_{1}(x]$ and $d\left(y_{1}, y_{2}\right) \geq L$. Thim meana that $x_{1} y_{1}, y_{z}$ are all dintince. Sisce $y_{2} \in K_{2}$, thera in a point $y_{1}^{\prime} \in N_{A}\left(y_{2}\right) \cap K_{1}$. Similarly, there in somn $y_{2}^{\prime} \in N_{1}\left(y_{1}\right) \cap K_{2}$ (FIG 3.1]. By convexity, the line aegment $y_{1} y_{1}^{\prime}$ lien in K_{1}. Since $d\left(x, y_{1}\right)$ is minimal, the antele $x g_{1} v_{1}^{\prime}$ in at leatit $\pi / 2$. So tha anglos $2 f_{1} y_{2}$ in at least $\pi / 2-\pi / 4=\pi / 4$. Similarly, $x y_{2} y_{1}$ in at least $\pi / 4$. Dut $d\left(y_{1}, y_{2}\right) \geq L_{1}$, contradicting the fect that $x_{1} \boldsymbol{y}_{1}, y_{2}$ form a triangle.

Soppose, more generally, we have a closed conver set X, with $K_{1} \cap N_{\mathcal{L}}(X)$ and $K_{2} \cap N_{L}(X) \lambda$-near. (Note that $N_{L}(X)$ in aleo closed and convex.) Let p_{i}^{\prime} be the retraction onto $K_{i} \cap N_{L}(X)$. Let $x \in$ Fin. By the lemma, $d\left(\rho_{1}^{\prime}(s), \rho_{2}^{\prime}(x)\right)<L$. Suppone $\rho_{1}(x) \in X$. We muat have $\rho_{2}^{\prime}(x)=\rho_{1}(x)$, $0 \phi_{1}(x) \in \operatorname{int} N_{C}(X)$. Hence, $\rho_{2}(x)=\rho_{2}(x)$. In other worda, $\rho_{1}(x) \in X$ impliea that $\rho_{n}(x) \in N_{L}(X)$. We have shown:
Corollary 9.2: Let $X_{1} K_{1}, K_{2} \subseteq \mathbf{H}^{n}$ be closed convex abbeta. // $K_{1} \cap N_{L}(X), K_{2} \cap N_{L}(X)$ are A-near, then $p_{1}^{-1}\left(K_{1} \cap X\right) \subset \rho_{2}^{-1}\left(K_{2} \cap N_{L}(X)\right)$, whera A_{i} is the retraction anto K_{i}.

In proving GF2 \Rightarrow GF1, the firt step will be to conatruct atandard parabolic regione ahout each b.p.f.p. We ahall arrante that these regiona are atrictly invariant under Γ, i.e. they are dinjoint, collectively inveriant under $\Gamma_{\text {, }}$ and the ntabiliner of anrl: agion is equal ea the atabiliner of the corresponding p.f. p. They therefare project to diajoint cuap regione in M. A priori, there may be infinitely many of thene. However, in the eecond part of the proof, we go on to thow that their complement, in M_{G}, ialatively compact, , that there could only have been finitely mary.

Since the conatruction of atandard parabolic regiona about b.p.f.p.a ia valid for any diacrete eroup, we staz it an a eeparate propoaition.
Proponition 3.5 : Let $\overline{1}$ be a ducrete group, and let $P \subset A$ be a Γ-invariant collection of b.p.f.p.a. Then, there exists a collection of cuspregions $(C)(p) \mid p \in P)$, which is etrictly invariant under Γ, i.t. bie regiona are matwally disjoist, and $C(\gamma p)=\gamma C(p)$ for all $\gamma \in \Gamma$ and $p \in P$.
Proof: If Γ in parabolic, the reault in trivial. Hence wa thall asame that $|A| \geq 2$ so that the conver hull, Y, of A meete H^{n}. The retraction py onto Y in clearly equivariant under the action of Y. Let $p \in P$, and let $T(p) \subset H^{n}$ be a Margulis region about p_{n} an defined in Chapter 2 (GF4), i, $T(p)=$ thim, (atabr p). The regiona $\{T(p) \mid p \in P\}$ are strictly invariant in the aence defined above. It follown that this if true of the regions $T(p) \cap Y$ and hence $S(p)-p_{Y}^{1}(T(p) \cap Y)$ sho. We nted thetefore obly to ahow that each $S(p)$ containa a rtandard parabolic region $C(p)$.

Focuring on one such $p=\infty$ in \boldsymbol{R}_{n}^{n}, with atabliser Γ_{p}, welnow that $\left.A(\Gamma) \backslash \infty\right\} \subset Q_{k}-\left\{x \mid d_{\text {anc }}\left(x, \sigma_{i}\right) \leq\right.$
 It is aot difficule to tee that $u(T(p))=\partial R^{\eta}$. Moreover, we can choote horoball, $B(p)$, about p so that $B(p) \cap \nu^{-1} Q_{\perp} \subset T(p)$. Since $Y \subset \nu^{-1} Q_{\downarrow}$, we have that $Y \cap B(p) \subset T(p)$.
 of A. Since $u^{-1} A \subset Y$, wetee that $Y \cap B(p)$ and on $B(p)$ ara λ-near for eome $\lambda>0$ (recalling the motation $a=w^{-1}(\sigma)$. Let $B^{\prime}(\rho)$ be the horoball $=$ ith $\partial B^{\prime}(p)=$ hyperbotic dintance $L(\lambda)$ above $a B(p)$, ia. $B(p)-$ $N_{L}\left(B^{\prime}(p)\right)$. From the corollary to our lemma, wh have the incluaiona $p_{\square}^{-1}\left(\sigma \cap B^{\prime}(p)\right) \subset \rho_{Y}^{1}(Y \cap B(p)) \subset$ $\rho_{Y}^{\prime}(Y \cap T(p))=S(p)\left(F 1 G\right.$ 3.2). Then, $A_{0}^{-1}\left(\sigma \cap B^{\prime}(p)\right)$ is a atandard parabolic region $C(p)$.

Proof of $2 \rightarrow 1$ Let Γ be GF2, and let $P \subset H_{q}$ be thanet of all b.p.f.pa. Let $C-\{C(p) \mid \rho \in P\}$ be the collection of atandard parabolic reationa conatructed as in Proponition 3.3. Let N be the cloa ura, in H" un, of the complement ($\left.H^{n} \cup B\right) \backslash U_{\text {PE }} C(p)$. In the quatient, wa may writa $M_{C}=N \cup \cup C$, where N in the projection of N_{1} and \mathcal{C} is a collection of atanderd cuapa. We want to ahow that \hat{N} ie compact.
 the Dirichlet region about a. The eat P in conven, and ita imegea under Γ are beally finita in $\mathbf{H}^{\prime \prime}$. Hence,
P_{C}, its elonura in \mathbf{H}_{c}^{n}, can contain no c.l.p.
 wnder $\Gamma_{\text {, are }}$ disjoint and locally 6 nite, $P \backslash i n t C(p)$ muth hava finite euclidean diametep. Wa nee that int $C(p)$ ia an open neighbaurhood of p in P_{C}. Thus, $N \cap P_{G}-P_{C} \backslash(\cup, i n t C(p))$ is a closed aubset of P_{C}, and hence
 domain for Γ acting on this aet. It follows that \hat{N} is a quotient of P_{C} ri $N_{\text {, }}$ and in therefore compact.

Finally, auppone thera were an infinte mequence (C_{n}) of diatinct cuap regiona. We talto $x_{n} \in a C_{m} \cap P_{C} \cap$
 Margulin conntant by some cotreaponding parabolic element. Taling a subaequence, wa have $x_{m} \rightarrow y \in$ $\mathbf{H}^{n} \cup \cap . \mathbf{I f}^{\boldsymbol{y}} \boldsymbol{y} \in \mathrm{H}^{n}$, then $\mathrm{C}_{\boldsymbol{t}}(\mathrm{y})$ containe parabolica with different fixed points, contradicting what we know about the structure of $\Gamma,(y)$ from Ch .1 . If $y \in \Omega$, then $\min \left\{d\left(x_{n}, \gamma x_{n}\right) \mid \gamma \in f r e c\{\Gamma)\right\} \rightarrow \infty$, contradieting the choice of I_{n}.
○ $2 \Rightarrow 1$

GF1 \Rightarrow GFs

We bave $M_{C}=\hat{N} \cup(\cup C)_{1}$ where $\mathcal{E}=\left\{C_{1}, \ldots, C_{4}\right\}$. We may write $C_{i}=C_{0} / \mathbf{r}_{\text {, where }} C_{i}=$
 σ_{i} ia the vertical plana above $\left(\sigma_{i}\right)_{r}$. Let $a=\left\{a_{0}, a_{1}, \ldots, a_{i}\right\}$. Let $A r(d)$ be the complex defined in Chapter 2, GF3 (FIG 3.3). We fix our attention on moma C_{i}. It in clear that $C_{i} \cap \Gamma_{\underline{g}}=\Gamma_{i} a_{i}$. Since $\Gamma_{i} a_{i} C C_{i} \cap \sigma_{i 1}$ we rea that the higheat point of Γ (a (home with largent nth euclidean coordinate) are precicely the pointa of $\Gamma_{i} a_{i}$. Thus, if $d_{\text {eud }}\left(x_{i}\left(a_{i}\right)_{1}\right) \geqslant r_{i}^{\prime}$ for some fired $r_{i}^{\prime}>r_{i}$, the neareat pointi of Γ_{a} to x lie in $\Gamma_{i} a_{i}$. Let C_{i}^{\prime} be the rtandard region with radiun r_{i}^{\prime}. Within C_{i}^{\prime}, the complen Ar (a) is identical to that obtained from a_{i}
 product in the directiona orthogonal so σ_{1}. Since $\left(\sigma_{1}\right)_{1} / \Gamma_{1}$ is compact, $A(1) / \Gamma_{i}$ munt be finite. Rewriting $M_{C}=N^{\prime} \cup\left(U_{k=1}^{*} O_{i}\right)$, with N^{\prime} compact, we see that A / Γ is finite.
$\diamond 1 \Rightarrow 3$

GFs - GFI
Firth wa make a few remarta about general conver neta in \mathbf{H}^{n}.
Let $K \subset \mathbf{H}^{*}$ be a convex aet with non-empty interior. Let a $\in K$, and let $T_{1}(a)$ be the unit tangent apace to H^{n} at a. Clearly, K determines a cone in the langent apace at a, which internexta the the unit tangent apace in a rubeet $T_{2}^{K}(a)$. We defina $\omega(K, a)$ to equal $\mu\left(T_{1}{ }^{\text {T}}(a)\right) / \mu\left(T_{1}(a)\right)$, where μ in apherical Lebengue meanure (FIG 3.4). (Alternatively, $\omega(K, a)$ may defined as tha Lebeagun dentity of K at a.) The function $\omega(\mathbb{K},-)$ in etrictly poatitiva and lower eemicontinuous on K. Let K_{r}, be the clonare of K in $\mathbf{F}_{\boldsymbol{m}}^{\boldsymbol{m}}$, and let

 on K_{1} it in posible (for example if $K_{t}=\{y)$) to have $w\left(K_{1}, y\right)=0$. If this is no, we call $v=$ cusp point of K.

We ahall reatrict our attention to the care where K in a finite intersection of closed balf-apacea, and $\operatorname{int} K \notin \mathrm{~d}$. We may write $K_{n}=\bigcap_{i=1}^{*} H_{i}$, where each H_{i} ie a elosed half-apace in ine. Dy ∂H_{i}, we thall mean the clonare, in \mathbf{H}^{n}, of the boundary of $H_{0} \cap \mathrm{H}^{n}$ in \mathbf{H}^{n}.

Suppone firt, that $\bigcap_{i} \partial H_{1} \neq$. If $\bigcap_{1} \partial H_{i}$ containa a point of I^{n}, then it is a (ponibly 0-dimentional)
 hand, $\cap_{i} \partial H$, containa only ideal pointa, it must consint of a single point $y \in H_{f}$, with $\omega(K, y)>0$.

More generally, if \boldsymbol{K} is a Einite-aided conver polyhedron, by considering all pomible intersections of half-upacea H_{i}, we may deduce the following
Lemma s.4: Let K_{G} be afinta-sided convex polyhedron in \mathbf{H}_{C}^{n}. Then, thera eximes finita eet n($\left.K_{C}\right)$ of cuap points in K_{l}, and $\delta\left(K_{C}\right)>0$ anch that for all $x \in K_{C} \backslash \kappa\left(K_{c}\right)$, wat have $w\left(K_{, ~}\right)>\delta\left(K_{C}\right)$.
Proof of $3 \Rightarrow 1, ~ L e t \Gamma$ be GF3. Let A be a Γ-invariant convex cell complen so that A / Γ is finite, and nuch that for aach $A \in A,\{\gamma \mid \gamma A=A\}$ in finite. We atated in Chapter 2 (GF3) that any cell of a convex cell
complex meeta the clonurea of only finitely many other cellh. Since A / Γ in finita, wa may find a fixed constant, k_{1}, fuch that each point of H^{n} meete tha clonarea of at mont k_{1} celle of A. Aleo, the ordere of atabr A are all finite and therefore bounded by soma k_{2}. Thus, for each $z \in \boldsymbol{K}^{n}$ and $A \in A_{1}$ we have $|\{T \mid x \in \boldsymbol{A}\}| \leq k_{1} k_{1}$, and ac at moat $k_{1} k_{2}$ facen of any A can be equivalent under F. It followe that each cell of A han only finitely many facea, and in particular, io (tha isterior of) a faitesided polyhedron.

By bypothenis, A is tocally finite in \mathbf{H}^{m}. Let $y \in \Omega_{\text {, and }} H_{1} \subset \mathbf{H}^{m} \cup \cap$ be a half-apace, containiag y in ite interior. We can innjat that H_{1} in invariant under ntabry, and $H_{1} \cap \gamma_{i} H_{1}=$ if $\gamma \notin$ atabry. Let H_{2} and H_{3} be auccenively amaller (atabry)-invariant half-upacea containing y. Only finitely many cella of A lin entirely within H_{1}. Any cell that meeta both ∂H_{1} and ∂H_{3} alna meeta $\partial H_{2} \cap$ hull $\left(\partial H_{1} \cup \partial H_{3}\right)$, which in a compact aubset of \mathbf{H}^{n} (FIG 3.5). It fallowe that only finitely many celle meet H_{3}. We have whow that \mathcal{A} ia locally finite on \mathbf{H}^{n} UN. Hence, every point of $\mathbf{H}^{n \prime}$ U Ω liee in the cloaure of soma top-dimensional cell.

The set of cloasurea of top-dimensional cella consiats of the image under Γ of \pm fnite ect of polyhedra $\left\{P^{1}, \ldots, P^{A}\right\} . M_{C}$ in thna a quotient of the aet $U_{1}^{\perp} P_{C}^{i} \backslash A(\mathrm{~T})$.

We shall ahow below that each P_{r}^{\prime} can meet A only in a finite net of pointe (a suheet of the aet of canp pointa $\kappa\left(P_{C}^{i}\right)$ of $\left.P_{C}^{d}\right)$, and that each of these points in a b $p f(p$. When we bave done this, the proof of GF1 can be completed as followa. If $C(p)$ in a atandard parabolic region about $p \in P_{j}^{\prime} \cap A$, then int $C(p) \cap P_{r}$ in an open neighbourhood of p in P_{C}^{n}, which we ahall call a cusp. We choone atandard casp regionn for each conjugacy clana of b.p.f.p. meeting nome polyhedron $\boldsymbol{P}_{C}^{\prime}$. Hy taling these regiona amall enough, we can enaure that the cuapn they form in each polyhedron are diajoint. The parabolic regiont C are then themaelvea diajoint. The clonare of each $P_{C}^{\prime} \backslash(\cup C)$ ie compact, and so therefore in the quotient $N=$ cloaure $\left(M_{C} \backslash(\cup C)\right.$), ne required.

We now inventignte $P_{C}^{C} \cap A$. Lat $y \in H_{i}^{\prime}$ lia in the claure of some polyhedron, P_{C}. We want to thow that either $y \in \Omega$ or y ia a b.p.f.p. The atablieer Γ_{Y} of y cannot contain any loxodromic element, ninca atherwise, by applying a loxodromic alement with y an repelling fixed point, we would get a contradiction to the locsl finitenean of A along tha axin of the clement. Therefore, Γ, prenerves wiwian each horomphere about y, and ac Γ_{y} in either a finite or a parabolic group. Let $y=\infty$ in R_{n}^{n}. Let $P(\neq 0)$ be the set of clonures of top-dimensional celle containing y. Wa diutinguish two cases.

Cane 1: y is a cuap point of P (i.e. $\omega(P, y)=0$) for each $P \in P$.
By lemme 3.4, there are only finitely many auch pointe in each polyhedron. It followe that there in a
 high enough, we can ensure that each $B \cap P$ in a vertical priam on $\partial B \cap P$ (i.e. isometric to $(\partial B \cap P) \times(0, \infty))$. It it still poasible that the boundary of auch a prim may be aubdivided into many calle of A. However, we know from the firat paragraph of the proof that each polyhedron han only finitely many facea in A. Thunt by rainige the tevel of ∂B if necemary, we enture that if A in a face of nome $P \in P$, then $A \cap B$ in a vertiral primen (poonbly empty). It now follows that $U(B \cap P)=B$. For if not, consider a codimennicm-1 face A that bound $U(B \cap P)$ im B. We know that A in a vertical prism, and eo the (top-dimengional) polyhedron on each side of A ban ∞ in ite clonure. This contradiete the definition of P.
 polyhedron $P \in P$. Thun, P in the image under γ of mome $Q \in P$. Prom tha finitenens of P / Γ_{m}, and of the setwien atabiliser of each polyhedron, we ace that γ murt lin in one of a 6 nite number of riabt conets of Γ_{y} in Γ. Thingives as an upper bound on the height of the highest point of $\boldsymbol{\gamma} \boldsymbol{B}$ in $\mathbf{R}^{\mathbf{*}}$. Thun by raiaing the lavel of $a B$ atill further, we can arrange that $\gamma B \cap B=$ for all $\gamma \in \Gamma \backslash \Gamma_{y}$. Thus, we have found a atrictly invariani horoball $B \subset U P$. Now, uning B, wa wat to conatruct another strictly invariant region, C, which will ba either a atandard parabolic region or elea a half apace, depending on whether $\Gamma_{\text {, }}$ in parabolic or finite. (fa fact, it turne out that the laster cane cannot arize in Came 1.)

Let of $\subset J R_{q}^{\eta}$ be a minimal Γ_{y}-invariant aubapace. By tha finitenen of P / Γ_{v} there in a bound on the euclidena dimetert of the lower-dimensional face, of the polyhedra in P, whicb do not contain ea. Hence, for soma r_{1} we see that $C=\left\{x \mid d_{\text {uce }}\left(x, \sigma_{f}\right) \geqslant r\right\}$ is contained in $U P$. Tha ntructurn of $C \cap P$ is independent of the vertical coordinate. Since P ia locally finite on $\mathbf{B}_{\text {; }}$, we sea that p must alno be locally fuite os
 a atandard parabolic region. Note that C meetu P. in an (arbitrarily amall) neighbourood of a cuap point.

get a contediction to the hypothetin of Caee 1, though logically we do not need thia.)
Cene 2 , There is some $P \in P_{1}$ containing y, and with $w(K, y)>0$.
 order bounded by $\left.\left|\operatorname{sta} b_{r}(P)\right| / \delta\right)$. Sinea $\left|\Gamma_{y}\right|<\infty$, we can have $w(Q, y)=0$ for only Enitely many $Q \in P$. Otherwine, $-(Q, y)>6$. It follown that ρ in finite. By an argument similar to that in Caed 1 , we show that soma hall-apace, containint y, liea in UP, Thua, $y \in \cap$.
Conelumian : We chose an arbitrary $y \in P_{C}$. If y lies in the limit ret, wamust be in Case 1. Then, y in a b.p.f.p., and the atandard parabolic regiona about y define a base of neighbourhoode for y in Pt. The proof may now be completed at indicated above.
$\Delta 3 \Rightarrow 1$

GFI \Rightarrow GF4

Suppoee Γ in GP1, Let $Y(\Gamma)=h u l l(A(\Gamma))$. If p in a b.p.f.p., we may tate the correaponding parabolic region C o that $C \cap Y(\Gamma)$ in contained in the correaponding Margulia reqion. Writing $M_{C}=\hat{N} \cup(U C)$, we heve that $\hat{P}(\Gamma) \cap$ thick, (M) in contained in $\mathcal{V}_{\text {, and }}$ in thun compert.
$\diamond 1 \Rightarrow 4$

GFA GP2

We have thicke $(M) \cap \hat{Y}(\Gamma)$ compact for some $e \ll(n)$.
Let R be a component of thin $\tilde{y}(M)$, te defined in Ch2, GF4. If R in the lift of a Margulis tubat, then R lies within a uniform neighbourhood of a lozodromic axia. If R in the lift of a Margulin cusp, then it liea in some horoball about the p.f.p. Thun if I ia a geodeaic ray lying entirely within thin ${ }_{\sim}^{\sim}(M)$, ita ideal endpoint is either a loxodromic fixed point, henca a c.l.p., or a p.f.p.

Suppona $y \in \mathbb{A}(\Gamma)$ is neither a parabolic nor a loxodromic fixed point. Join y to $x \in \boldsymbol{Y}(\Gamma)$ by a geoderic ray 1. The n nion of thone parta of I lying outaide thin $\tilde{\sim}_{j}(M)$ ia unbounded. Than, ita projection \boldsymbol{f} munt accumulate in thick $(M) \cap Y(\Gamma)$, and ao y is a c.l.p.

It remaint to show that any p.f.p. of Γ in bounded.

 We show that if p in not bounded, then $S \cap Y$ ie not compact.

Let $\sigma_{l} \subset H_{i}^{\eta}$ be a minimal Γ_{s}-inveriant plane. Suppoee we bave a aequence $\left(x_{n}\right)$ in $A(\Gamma)$ with $d_{\text {ene }}\left(x_{n}, a_{d}\right) \rightarrow \infty$. Let $y_{n} \in d R_{i+2 a}$ lie vertically above x_{n} (FIG 3.6). The byperbolic ball $N_{4}\left(y_{m}\right)$ in a whet of $S=R_{++4} \backslash$ int $R_{\text {. }}$. Talinga aubequonce, we can aname that no ouch ball meete tha image of a different hall under $\Gamma_{\text {. }}$. Since Γ_{p}, in virtually sbelian, it han a torsion-frea aubgroup of index k (eay). Thun,
 convergent aubeequence.
$\diamond 4 \Rightarrow 2$

GFi GFg

 let $X_{r, h}=N_{h}(r) \cap \rho_{r}^{-1} X$. ($N_{h}(v)$ is the uniform h-neighbourhood of r.) Thera in a function $f: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+1}$ for which voln $\left(X_{0, i}\right)=f(h)$ vol, (X), where vol, in the i-dimeanional volume. In particalar, $X_{r, i}$ bea fivita n-volume if and only if X han finite p-volume.

Let $\Gamma_{p}=$ utabrp ba an infinite parabolic group, and o a minimal Γ_{p}-invariant plane containing p. Lat $P=$ dima. We trow that $r \geq 2$, Let C be a atandard parabolic resion. P_{p} acta a a cocompact groap on

 $C \cap N_{n}(o)$. We nee that $\operatorname{vol}\left(\left(C \cap N_{A}(o)\right) / r_{\rho}\right)<\infty$.

Now, suppose that Γ ie GF1, $\eta>0$. For each b.pf.p. p, wan find a region C about p eo that $C \cap N_{\eta} Y \subseteq C \cap N_{2_{\eta}}(\sigma)$. Thun, voln $\left(C \cap N_{\eta} Y\right) / \Gamma_{n}<\infty$. The remaisider of $N_{\varphi} \hat{F}$ in compact, \cos voln $\left(N_{n} \hat{Y}\right)<$ ∞.

Finally, to nee that Γ in finitely generated, note that eseh cuap in copologically a product orbifold $\mathcal{C} \cong \partial \mathcal{C}^{8} \times(0,1)$. Hence, $\Gamma=\pi_{1} \hat{N}$.
-1 $\Rightarrow 5$

GP5 \Rightarrow GP4
Let Γ be GF5. For some $\eta>0$, voln $N_{n} \boldsymbol{Y}(\Gamma)<\infty$. Let $\&<(n)$.
 centred in thicto $(M) \cap P$. Since each of thene balle ia inounetric to a standard ball in \mathbf{H}^{n}, thin packing is finite. By maximelity, the correaponding A_{1}-balle cover thick, $(M) \cap \hat{f}$. Thun, thick $(M) \cap \hat{P}$ ie closed, end covered by finitely many compact sete, and hence in ithelf compact.

Suppose, now, that Γ in any GF5 group. Hy the Selberg Lemma, Γ han a tormion-firee aubgroup of 6 nite inder. This muat act frecly on \mathbf{H}^{n}, so that the volume of an en/2-ball centred on thick, (M) in bounded awny from sera. The proof now worka an before.
$\diamond 5 \Rightarrow 4$

Let Γ bea diacrete group of inometrien of \mathbf{H}^{*}.
In Ch. $2 \mathrm{GF5}$, we atated three casea in which finite generation in atomatically implied by vol $N_{n}(Y)<$ ∞.

Case (i): If thera is some number k, ach that for each $x \in \mathbf{H}^{n}$, $\left|a t a b_{\Gamma}(x)\right| \leq k$, then Γ is $G P$
Proof: Let $\delta<\min (\eta, \mathbb{n}(n) / N(n))$, where $N(n)$ in an defined in Ch. 2 GF4. Let $y \in$ thick $(M) \leq \mathbf{H}^{*}$. We know from Proposition 2.2 that $\Gamma_{a}(y)$ Geen some point of H^{n}. Hence, $\left|\Gamma_{a}(y)\right| \leq K . N_{1 / 4}(y)$ meeta at moal k imagee of itself under Γ. Thum, in the quotient, vol $N_{a j a}(\bar{y})$ is bounded away from sero, for $\theta \in$ thich (M). The argument is now an for free actione on $\mathrm{H}^{\mathbf{n}}$

- Case(i)

Cane (11) :
Theorem 3.5: A finite-wolume completa hyperbolic orbifold (withant bowndary) is geameirically fonite
 In Ch. $2 \mathrm{GF4}$, wa defined thin' (M) to be the projection of the eet $\left\{x \in H^{n}| | \Gamma_{\eta}(x) \mid=\infty\right)$. We eam that GFi was equivalent to the atatement that $\hat{Y}(T)$ nthick $\mathcal{E}_{n}^{\prime}(M(\Gamma))$ be compact, for any $\eta<$ e. Wa aim to show here, thaf if M ban finite voluma, them thick $\mathcal{Z}_{f}^{\prime}(M)$ in compact for a certain $\delta<e$. Wa begin by giving a proof of the following proposition about general hyperbolie orbifolda. Wa whall then build apon aur argument to deduca the main theorem (3.5).

 in tha (uotient).
Proof i Let Γ be a diacrete group with $M-\Pi^{n} / \Gamma$. Given $\pm \in M$, we define the ingectivity gadies,
 etel of Γ in H^{n}, eo that $\Sigma=\bar{\Sigma} / \Gamma=\{ \pm \in M \mid \operatorname{inj}(x)=0\}$. Let L be the union of all the lozodromic axes with
tranalation dintance lean than a n). By tha Maraulia lemma, the colloction of anch axen io loeally finite, to that L ia eloaed. It projection, $L \subset M$ in a diajoint union of arca and aimple clomed curvan.

 under Γ_{1} so it projecte to dacomporition T_{n} of \mathcal{M}. We shall caill the elementiof the decomposition η comparimente. Let $T^{\prime}=T_{n}(X)$ be one anch η-compartment. T in non-empty, so from Ch1, we know that \boldsymbol{X} munt either comint of one or two pointe of H_{f}^{\prime}, or be a plame in \boldsymbol{H} s. We may shue define $\mathbb{d}(T)$ to be the dimenaion of X, with the convention that $d(T)=-1$ if $X \subset$ II; (Thia iw well-defined aigee, if
 in a aubaet of H_{i}^{n} if and only if $\Gamma_{n}(x)$ im infinie. That $d(T)=-1$ if and only if $a \in$ thinif (M). We ree that thin' $(M)=U\left[T \in T_{n} \mid d(T)=-1\right\}$. We write $F_{n}=\left\{T \in T_{n} \mid d(T) \neq-1\right]_{1}$ and $P_{n}=T_{n}\left(\Gamma_{C}\right)$ $=\left\{x \in H^{n} \mid \operatorname{inj}(x)>\eta / 2\right\}$.

If $T=T_{n}(X) \in T_{n} \backslash\left\{P_{n}\right\}_{\text {, }}($ i.e. $d(T)<n)$, wa define a amooth unit vectar field σ_{4} on $T \backslash(\Sigma \cup \Lambda)$ an follows. Far $x \in T \backslash(\Sigma \cup L)$, we define $U_{n}(x)$ to be the unit tangent vector pointing directly awny from hull (X), Le, $m_{n}=-a{ }^{\prime}(0)$, where a in the geodenic arc from $\bar{x}=a(0)$ to th e neareat point on hull (X). (Nota that bullf $(X)=X$, wolese $r_{n}(x)$ im an (infinite) lowodramic group, in which case hall (X) is the lozodromic ayio.) Thingiven as a well-defined vectar $u_{n}(z)$ at $\equiv \in T$. Performing thim conatruction for each $T \in T_{n} \backslash\left(P_{h}\right)$, me get a (onally diecontimuou) piecewise analytir vector feld om $M \backslash\left(P_{n} \cup \Sigma \cup L\right)$. The integral carven ara piecawien seodenic.
 in finite and non-trivial. Let β ba the integral curve through z for the vector field ν_{k}. We tale $\boldsymbol{\beta}(0)=x_{1}$ and write Γ_{0} for $\Gamma_{0}(x)$.

 it in enoily cheched that $\mathcal{J}_{3}(\beta(\theta)]$ alwayamakenan acute angle with $\mathcal{D}_{(}(\beta(t))$. Thia mean that the diatance of $\theta(t)$ from h_{s} increanea at leat ligesty with t. Now, whila $\Gamma_{d}(\dot{\beta}(t))$ remsini conntant and equal to Γ_{0} we see that the injectivity radius inj $(A(t))$ increasen ateadily, and the derivative of the injectivity radiun with reapect
 Now r_{0} and Γ_{1} are both aubgroupa of $\Gamma_{i}\left(\bar{\beta}\left(f_{1}\right)\right)$. Since weare moving away from fux $\Gamma_{i}\left(\bar{\beta}\left(t_{1}\right)\right)$, it in eaty to ese that $\Gamma_{1} \leqslant \Gamma_{0}$. Again, efter another finite diatance, $\Gamma_{z}(\tilde{\beta}(t))$ changes to a third group $\Gamma_{2}<\Gamma_{1}$. Sibea Γ_{6} in finita, it followa that, after a Gnite number of ntepa, washall arriva at a point y, ith $r_{d}(y)=\{1\}$. (Nota that we can eever rua into $\Sigma \cup L$. Wherever the 4 in dincontingoun along $\Sigma \cup L_{\text {, }}$ the vactor bold radiatea away.]

Is is easy to nee, from the form of the componenta of thind (M), that thirif (M) cennot occupy all of M
 Either way, there in momm $y \in H^{n}$ with $\Gamma_{a}(y)$ trivisl.

- Prop. 3.6
 any point $a \in$ ehickid $(M) \backslash(\Sigma \cup L)$ can bo joined to nome $y \in P_{a}$, by a path A with $\Gamma_{f}(\mathcal{A}(t))$ monotosically
 -ith reapect to net inclanion. Each time fix $\Gamma_{a}(P(t))$ changee, ita dimenaion muat atrictly increane. It followa that $\theta(t)$ paseen throughat moat $n+1 \delta$-compartmenta of M. Hence, any point of thiclif (M) ean ba joiaed to Pa by a palb that pasaen through at mons $t-n+1 \delta$-compartmente.

Nom, the collection T_{n} is bocally finite. To mea thim, note thet, for any point $x \in \mathbf{H}^{\prime \prime}$, the eet $\mid \gamma \in$ $\Gamma \mid d(7 x, x)<36\}$ is 6 nite, by the diecretenesa of Γ. So, shert ara only faitely many aandidateat for the generating wat of any group $F_{4}(y)$, with $y \in N_{0}(x)$.
$L_{e t} f_{1}=\left\{T \in T_{s} \mid d(T) \neq-1\right\}$. Wa hnow thet thin coven intsthickid (M).
Now, suppose that M han finite voluma. Wa sim to abow that thic $Y_{4}(M)$ in compact. Cosider the

of itanff under IV. Thin given a panitive lower bouad on the volume of any metric $s / 4$-ball in M, centred on a poist of T, manely $1 / \rho$ timeat the volume of a $\delta / 4$-ball ia $H^{"}$. Since M han finite voluma, we tee that T bat finite diameter, and is thus relatively compact.

We mow think of thiclif(M) junt an a topological apace W. We nommarine whet wa know about W.
W hea a locally figite cover K by compact whete (the cloaren of the δ-compartmenta). Alno, there in a conatant $k(=m+1)$, and a fixed element K_{d} of the cover auch that any point of W ean be joined to K_{a} by a path which in covered by at most k aete from X.

It followa from thia, that K murt itsety be compact. To see thin, think of the elementa of the cover an vertices in en ahatrart graph. Two verticea ara jained by an edge if she correapouding eta intersect. The graph han baite diameter (path condition), and ench vertex han frite degree (compactnean and local finitenens). Thus the graph in finite.

We have shown that thictif (M) ia compact. The diecunsion of GF4 showe ne that M in GP.

- Thmes. 5
 them Γ is GF.

Proof: We deal with the eaean=3($n=2$ in similar). We aint to reduce thin to Case (i), by thowing that |etabr(s)| in baunded for $s \in \mathbf{I I}^{n}$.

Note that wa can anama (by taking an index-2 aubgroup if necemary) that Γ is orientation-prenerving. We shall eleo auppona that $|A(\Gamma)|>2$, otherwied Γ is trivislly GF. We can tatien to be leas than (n), the Margulia conatagt.

Suppose then, that |atabr $(z) \mid$ is unbounded. Fram the Jordan Lemma, we can find arequence $\left(G_{i}\right)$ of finite abeliax anbaroap of Γ_{1} with $\left|G_{1}\right| \rightarrow \infty$. From Lamma 1.3 , uring the fact that $n=\mathbf{3}_{\text {, we }}$ wee that the fixed-point atet of anch G_{1} in a geodenic d_{1} in H^{3}. (Thua, anch G_{i} can he amanmed to be cyclic of harge order.) We can aseume that thene geodenica are all inequivaleat ander Γ,
 Let m be the perpendicular from t_{1} meeting d at a. Note that $m \subset \mathcal{P}(\Gamma)$, and that $G \leq r_{i n}^{\prime \prime}(a)$, where

 C. Note that $N_{n /(}(y) \subset N_{n} \hat{f}(\Gamma)$.

 that $N_{n} \hat{Y}(\Gamma)$ mont have infinite volume.
\diamond Cave(iii)

d. Convex Fundamental Polyhedra.

In dimantion $3_{\text {, }}$ the central defnitions of geomatrical fiateness have traditionally baes in terma of finite-aided fundamental polybedra. In particular, tha following atatemente are all equivalent to geometrical finitenens.

1a (1 b) : Same (each) coavez fundamental polyhedron ban faitely many facen.
2s (2b) : Somd (each) Dirichlat polyhedrom bas finitaly many facas.
Hera we une "facs" is the mense of Chapter 2, GF3. This meane that each polybedron meste only finitely many imagea of itnely under the group.

We can interpret our definition GFS ab being equivalent to the utatement ia without the ammption of convaxity. The remaining definitiona, 1b, 2a and 2 b , no lenger work im higher dimensiong, as following dincuanion shown.
 , A tranalation parallel to r componed with an irrational rotation with r an axio (FIG 4.1). If a \& r , then the Dirichlet domain $D(a)$ about a in infinite-nided.
 t be the ray throutb a, perpendicular to r. Suppose $D(a)$ in finitusided. Then, $D(a)=\bigcap_{7 \in G} H_{p}$ whera $G \subset\left[\right.$ in finite, and H, in the half-apacn $\left\{x \in H^{n} \mid d(x, a)<d(x, y a)\right\}$. Note that 1 in never parallel to ∂H_{7} for $\boldsymbol{y} \neq 1$. It followe that $I E$ inte, where $\Theta \in \Phi$ is tha set of rayn lying in $D(a)$. (We may identify ϕ with the get of raypemanating from a.) Nos, Γ acta on 8 at a mon-diacrate rotation group fixing r. Them, for
 in a Dirichlet domain. Thim proven that $D(a)$ is infinito-nided.
 large per-tive number, and lat $S_{p}=\left\{x \in E^{3} \mid d(x, r)=r\right\}$ be the aurface of a cylinder of radiun about F. Let $S_{\text {, }}$, be the univeras cover of $S_{\text {r }}$. In tho induced Riemanoinn matric, S_{r} is inametric to E^{2}. Thun, the teaselation of \mathbf{E}^{3} determinas $\mathbf{a} \mathbf{C W}$-decomponition of $\mathbf{E}^{\mathbf{2}}$, invariant under $\boldsymbol{a} \mathbf{Z} \oplus \mathbf{Z}$ action. It the generic aitaation, thin decompoaition in combinatarially cquivalent to a regular heragon teanelation of the plane. An we r tende to infinity, the pattern of hexegons changea by an infinite nequence of "Whitehead moves". Thim proceas in beat deacribed with referance to the quotient torue, $S_{r} / \Gamma=\mathbf{E}^{2} / \mathbf{Z} \in \mathbf{Z}$. For a generic $\boldsymbol{r}_{\mathrm{r}}$, thia torue ia decomposed in to two 0 -cell, thrae 1 -cella and one 2 -cell. Aa r becomea critical, one of the 1 -cella collapaea to a ningle point, giving rise (eombinatorially) to a mquare tenselation of \mathbf{E}^{2}. The s-valent vertex then aptiu again into two j-valent verticea to give another henagon tenelation (FIG 4.2). The combinatorial atructure
 contracted by Whitebead mover. Thia requence $i=$, in turn, determined by the contisued fractian expanaion of the rotation angle f , meavred an a fraction of a full rotation. (The aitantion in amalogona to following a geoderic in the madali apace of euclidean tori - see |Ser].) Tha matric atructure of aseh domaja $D(a)$ in aho related to rationsl approximation of 4 . Clearly, the area of the crom sectioa $D(\alpha) \cap S_{\text {r }}$ arown linearly with r , but ita diameter growa mach more quichly is the radial direction than in the direction parallel to r. The relative ratea depend on rational approximationato - tha becter in approximated, the quichar the croes sections fatten out radially. For a quedratic aurd, the radial dismeter gromanamptotically like $\boldsymbol{p}^{3 / 4}$, while the diameter parallel to f growa like $\mathrm{r}^{1 / 4}$.

Now, we may extead our cyclic eroop, Γ, to act on \mathbf{H}^{4} an a parabolic group, with $\mathbf{E}^{3} \subset \mathbf{H}^{4}$ a horouphara about the faed point p. Let a be tha 2-plane apanned by fand p. If a $\in \boldsymbol{H}^{d} \backslash \rho$, the Dirichlet domain $D(a)$ will be inEnita-nided. (With $p-\infty$ in tha upper helf-apace modal, $D(a)$ in a vertical priam on the euclidean Dirichlet domain, D^{\prime}, ie., $D(a)$ in euclidean-inometric to $\left.D^{\prime} \times(0, \infty).\right)$ However, Γ in GF with any of the defnitions of Chepter 2.

We may not find a baif-apace, in \mathbf{H}^{4}, diajoiat from all ita imagea undar Γ_{1} and diajoint from p. Tbin tet projecta to an embedded half apace in the quotient manifold M. By removing this balf apace, and doubling M acran the boandary, we get a new manifold M^{\prime}, with fundamantal groap $Z \boldsymbol{Z}$. Z. Thin gival wa a geomelrically finita action of \mathbf{Z}, \mathbf{Z} on \mathbf{H}^{4} with mofimite aided Dirichlat damain. Thim exampla was comatructed by Apagaov.
Rernark : In the upper half-upace model, wa may find a eaquance (H_{o}) of anch half-apacen, dinjaint in the quotient, \boldsymbol{M}_{1} with diamen $\left(H_{1}\right) \rightarrow$ oo. We replace each half-apace H_{i} with a copy of $M \backslash H_{1}$ to give a new manifold M^{\prime}. On H^{n}, thim ivea un a diectrta, infaitely generated free group, with mo atandard haroball about p. I do not know of any fuitely generated group with thia property. In contrant, we lnow that the GF aroupe have atandard horoballa.

Let Γ be a Gry roap. We hava neam that there in no reason to arpect a Dirichlat domain for Γ to be finitaided. We tay that a pf.p., of Γ in rational if atabr (p), actint om a standard horoaphera, contaias a finite-index tranaletion group. Othermine, wa ay that p in irrational. We shall ahow that if r contains an irrational p.f p, then $D(a)$ will be infnita-sided if wa choose a anywhera on a certain open denne subet of 11". However, if there are aa auch p.fp.e, wa ahow that agy conver fuadamantal domain, P, for r will be a

Gnite-sided polyhedran. Here, we nen the term "finite-ided" in the eene of Chapter 2, GF3; namely that P bhould be a finite intersection of half-apaces. It in ntill poasible that P may meet infinitely many imagen of iteelf under Γ. If P happen to be a Dirichlet dcanain, however, it in fairly easy to ace that for any $\mathcal{j} \in \Gamma_{\text {, w }}$ w mut have $P \cap \gamma P=P n f_{1}$ for wome $(n-1)$-plane θ. In other words, the "facen" and "sidea" of P coincide. Thym, if T containm no irrational p.f.p, then each Dirichlet domain han only fivitely many facen. In fact, ve whall see that in $\mathbf{H}^{\mathbf{2}}$ and H^{3}, there can be no irrational p.f.p.a, and thab each comver fundamentat domain hae finitely many facen. Thir will prove the equivalence of $1 \mathrm{a}, 1 \mathrm{~b}, 2 \mathrm{a}$ and 2 b in thene dimennion:

Delow we give (in principle) a complete description of when a Dirichlet domain is finite-aided. We begin by diacuasing the cuclidean case.

 by tranalation on f_{1}, and by tranalation on r_{7}, then the iwo tranulationa are parallel and have the nama tranglation diatance. Hence, 7 ack by translation on (r_{1}, r_{3})) It thereforemaken sense to define oto be the largeti plane on which some finite-index aubroup of Γ acts an atranelationgroup. Let $\Gamma_{0} \leqslant \Gamma$ be the
 Thus, $g r=F_{1}$ and $g \Gamma_{0 g^{-1}}-\Gamma_{01}$ ie. Γ_{0} in a normal aubgroup of Γ_{1} and r in fired aetwise by Γ.
Proponition 4.1 Suppose $E E^{2}$ in nof fired ty any efemen! of Γ. Then, tha Dirichisi domain $D(a)$ is finite-sided if $a \in r$, and infinite-aided if $a \notin r$.
Proof: Supposa $\in \mathbb{f}$. Then, $D(a)$ is a euclidean product, with an orthogonal plane, of the Dirichbet domain $D(a) \cap$ r of Γ reaticted to r. On this aubapace, Γ han a finite-index tranalation group, so that any convex fundamental domain in finite-nided (nee Lemma 4.2 below).

Suppose a \ddagger r. Let μ be a minimal Γ-inveriant affine aubapace (see Chapter 1). Note that μ im a aubapace of r. Let s be the nearent point in μ to a. Let i be the ray from b through a, and let σ be the plana (μ, a) (FIG 4.3). We have $\mid \subset D(a)$. To sea thin, take any $c \in L$. The imagee of a under Γ all lie a fired diatanee from μ. It followe that the neareat image to c munt be a itgelf, i.e. $e \in D(a)$.
 abgroup of Γ that fixea the plane σ netwise, and preservea the direction of I. (Ona can ree that $\Gamma_{\text {, }}$ is defined independently of the choice of μ, though this is not impotiant for our diacunsion.) By maximality of r, we munt have $\left|\Gamma: \Gamma_{1}\right|=\infty$.

If F_{1} were trivial, the proof could proceed an in the example of an irrational acrew motion dencribed above. $D(a)$ would contain a cone about $h_{\text {, and, aince the action of } \Gamma \text { on the apbere of raya is not discrete }}$ $\left[\left[\Gamma: \Gamma_{1}\right]=\infty\right)$, we could find $\boldsymbol{\gamma} \in \Gamma$ with \boldsymbol{T} arbitrarity close (in direction] to $t_{\text {, so that }}^{\boldsymbol{\gamma}} \boldsymbol{D}(\mathrm{a}) \cap D(\mathrm{a}) \neq \mathbb{0}$.

To deal with the general case, wa write $D(a)=D^{\prime}(a) \cap D^{2}(a)$ with $D^{1}(a)=\cap_{\mathrm{v} \in(\mathrm{T}, \mathrm{n} a)} H_{7}$ and
 cone C centred on I. Now, $D^{\prime}(a)$ contain $\bigcap_{2 \in r_{4}} H_{7}=D^{\prime}$, where D^{\prime} is the Dirichlet domain abont a for the group Γ_{2}

Since σ ia preserved by Γ_{1}, D^{\prime} in a euctidean product, with an orthogonal plane, of the Dirichlet domain
 with the line (l), of the Dirichlet domain $D^{\prime \prime}$ about b for $\mathrm{r}_{1} \mid \mu$.
 (wo that InyC in an infinite ray). For aome $g \in \Gamma_{1}$, we bave $7^{-1} b \in g D^{w}$. Now, $g^{-1} \gamma^{-1 /}$ in a ray, orthogonal to μ, emanating from the point $g^{-1} \gamma^{-1} d$ of $D^{\prime \prime}$. From the previous paragraph, we nee that $g^{-1} \gamma^{-1}!$ lies entirely within D^{\prime}. Hence, wa ree that I C go $D^{\prime} \subset \operatorname{co}^{\prime} D^{\prime}(\mathrm{a})$.

Now $\gamma^{-1} / \cap \subset \neq 0$. Since C in a apherical cona about L_{1} and $g d$ in parallel to l, we nee that $g C$ is juat a

 But $7 g \neq 1$, contradicting the asaumption that $D(a)$ is a Dirichlet domain. \diamond

One may enily generaline the above proporition to the following-
A collection of generalised Diriches domains $\{D,(a)\}$ containe at least one infinita-sided member if and only if soms besepoint $a_{4} \notin T$.

We now want to giva a description of when Dirinthet domain for hyperbolic groupa art finita-aided. Givan . Dirichlet domain, $D(a)$, we need to deacribe which of the p.f.p.a are contained in the cloane, $(D(a)) c$, in He. To do chis, we introduce e constraction anshonom to that of Dirichlat domaina, for p.f.p.a.

Les I' be a diacrete group, end let $P_{0} \subset A$ be an orbit of p.f.p.a. We choose a horohall $B(p)$ aboat each $p \in P_{0}$, wo that the collection $\left\{B(p) \mid p \in P_{0}\right\}$ in atrictly invariant. Given $p \in P_{0}$, we define $U(p)$ to be the eet of pointa nearer to $B(p)$ than to any other horoball; ia. $U(p)=\left\{x \in H^{n} \mid d(x, B(p))<d(x, B(q))\right.$ for all q \& p). Let $U=\left\{U(p) \mid p \in P_{0}\right\}$. Siuce $B(\eta p)=\gamma B(p)$, tise collection $\left\{B(p) \mid p \in P_{0}\right\}$ in determiged by the choice of juat one horoball $B(p)$. It ifearily neen that any choice of $B(p)$ will give rine to the ame collection U. We sho aec that U ia locally finite, and that $U U$ in denee in H^{n}
 if and only if a liea in the clonure $O(p)$ of $U(p)$. This mean that $(I)(a))_{c} \cap P_{0}=\left\{p \in P_{\mathrm{a}} \mid a \in O(p)\right\}$. Ia particular, we nee that $(D(a))_{C} \cap P_{0}=(p)$ if and only if $e \in U(\mathrm{p})$. Prom shin, we wee that ($\left.D(a)\right)_{o}$ cambias only finitely many p.f.p.a im a gives orbit, and generically containa only ond from each orbit.

Now, the collection U eatiefien all the conditions (Chapter 2, GF3, (a)-(d)) to be the ret of tope dimennionsl cella for a conver cell complex. We writa $\mathrm{Br}_{r}\left(\mathrm{P}_{\mathrm{o}}\right)$ for unique such complex which in minimal with reapect to aubdiviaion (sea the comutruction in Chapter 2, GP3). Mora generally, auppoes that PCA conniate of fanitely many orbits of p.f.p.t, $P=\bigcup_{i=1}^{h} P_{\text {f }}$. From Chapter 2, GFs, we that the complexet $B_{\mathrm{T}}\left(P_{i}\right)$ have a minimal common aubdivinion, $B_{\mathrm{r}}(P)=\left\langle\mathrm{B}_{\mathrm{r}}\left(P_{i}\right) \mid i=1, \ldots, k\right\rangle$, obtained by intersecting celle from each complex.

If r acta freely, wa may deacribe the cella of $\mathrm{Br}_{\mathrm{r}}(P)$ an follown. Let $Q \subset P$ befinite, and lat $A(Q)=\{a \in$ $\left.\mathbf{H}^{n} \mid(D(a)) c \cap P=Q\right)$. Them $\theta_{r}(P)$ is the ret of all $A(Q)$ a Q rangen over all finite nubete of P.

Suppona now thas Γ in GF. Then there are only finitely many orbits of p.f.p, wo may let P be the net of all parabolic fixed poista. In thim came, wa write B_{r} for $B_{r}(P)$. Note that if for asy Diricblet domain, whave $\left.(D(a))_{c} \cap \wedge^{-(D(a)}\right)_{c} \cap P$.

We are now in a position ta detcribe when a Dirichlet domain for a hyperbolic troup in finite-sided. This in only ponsible when the group in GF. Let r ba $a \mathrm{GF}$ group, and let $P \subseteq A$ be the eet of all p.f.p.a. Ta each $p \in P$, we may asociate a vicique plens $\rho(p)$ through F_{1} which in maximal with the property that some finitu-index auhgroup of atahr (p) act an a tranulation group on $\mathcal{P}(p) \cap \partial B$, for noma (asd hence eseb) horoball B about p.

Suppase now that the point ain eot fixed by any $\tau \in \Gamma$. Suppoee that a $\in U(p)$, mothat $\{D(a))_{0}$ containa the p.f.p. p, but no other paint in the orbit of p. Let $p=\infty$ in $\mathbf{R}_{\text {\% }}^{n}$, and let \boldsymbol{B} be a loroball about p. Let I be the ray joining a to p. If we choond ∂B high enough, we ree that $D(a) \cap \partial B$ in the Dirichlet domain, about the point $\ln \partial B$, for the action of stab $b_{r}(p)$ on $8 B$. In fact, $D(n) \cap B$ is than a vertical priam on $D(a) \cap B B$; i.e. it is euclidean-inometric to $(D(a) \cap a B) \times[0, \infty)$. Moreovar, it is farly any to mee that the imasee of $D(a)$ under atabr (p) cover eome itasdard parabolic region $C(p)$ about p. From Propoaition 4.1, wa sea that $C(p)$ meeta $D(a)$ in only fisitely many sidea if and only if a $\in p(p)$.

Suppone now, that a lies in a top dimenaional cell of the complex \mathcal{S}_{r}. Thie meana that ($\left.D(a)\right)_{c}$ meeta A in aa arbit-tranavernal, Q, of p.f.p.a. If wa take a atandard parabolic regiona $C(p)$ about aach $p \in Q_{1}$ a abowe, wa sea that $D(a) \backslash U_{j \in Q} C(p)=$ reintively compart. Wa deduce that $D(a)$ ia fieite-uided if and only if

 fact wa may find a convex cell complar mo that the et of a with $D(a)$ finite-aided lies in tha (m - 1)-alelaton)

Uning the generaliation of Proponition 4.1 ataled above, wa see that if a lien in a bower-dimenaional cell of I . We tee shat $D(a)$ in finite-aided if and only if $a \in \cap\{f(p) \mid p \in(D(a) \mid o n A\}$. Note that the met $(D(a))_{g} \cap A$ in determined by the cell of B_{Γ} in whichatien.

Finally, we asy \cap few things about general conver fundamental domains.
Let Γ act diecontinuously on \boldsymbol{H}^{n}. Let $X^{\prime}, \ldots, X^{\dagger}$ be a collection of diajoint open convar aubeta of H^{n}.
 $\mathbf{H}^{\mathbf{n}}$. Thim meana that $\boldsymbol{U}=\left\{\boldsymbol{\gamma} \boldsymbol{X}^{\prime} \mid \boldsymbol{\eta} \in \boldsymbol{\Gamma}_{1}:=1, \ldots, k\right\}$ atinfen all the criteria (Chaptar 2, GFS, (a)-(d)) to be the eat of top-dimencional celly of noma call campler A, which wetake ta be minimal with reapect to suhdivinion. The argament in Chapter $3, G F 3 \Rightarrow G F 1$, (applied to rop-dimenional calb) ahowa that A in
 fundemental domain for the action of Γ on $H^{m} \cup \cap$.

Suppose now, that r^{\prime} in GF. Hy local finitement, noae of the aeta X_{C} esm meet a e.Lp. So, each $X_{\sigma}^{\circ} \cap \mathrm{A}$ conninth of only (bounded) p.f.p.n. We mow that earh $X_{\sigma} \cap A$ in finite, and, moreover, that wam aname that the only atandard parabolic regiona $C(p)$ that meet X_{G}^{B} are thone correnponding to $p \in X_{C} \cap \mathrm{~A}$.

The argument in aimilar to that for local finitene mon $\mathbf{H}^{m} \cup \boldsymbol{\Omega}$. Let C_{1}, C_{2}, C_{3} be three aucceaively amaller ntandard parabolic regiona about p. Any nat X^{\prime} that meeti, both ∂C_{1} and ∂C_{3}, meets alao $\partial C_{2} n$
 finitely many coseta of the form (atabrp) fi.e. \boldsymbol{X}_{G} meete anly finitely many elemeata in the orbit of p. Shrinking C_{3} further to C, we cam asamo that any $\boldsymbol{\gamma} X^{1}$ with $\boldsymbol{\gamma} X_{C}^{j} \cap C \neq$ has $p \in \boldsymbol{\gamma} X_{\boldsymbol{X}}^{\boldsymbol{f}}$.

Let $p=\infty$ in \mathbf{R}_{4}^{n}, and \boldsymbol{B}_{1} a horoball contained in C. Wa muat bave that ach $X^{4} \cap B$ is a vertical priam on $X^{\prime} \cap \partial H$. We ahow below that if p in rational, X_{O} n $8 B$ is finite-sided. (th is ponsibla however that X_{C} กaB meetrinfinitely many other $\boldsymbol{T}^{J} X_{C}^{J} \cap \partial H$ - recall the dintinction between "facea" and "aidea" made in
 Fram thit we shall be able to deduce the equivalence, for $m<3$, of definitions $1 \mathrm{k}, \mathrm{ib}$, 2 a and $\mathbf{2 b}$, mentioned at the etars of thin chapter.
 X_{1}, \ldots, X_{1} togother conatioute a fundamental domain for r. Tham, each X_{i} in (ihe interior of) a fintie sided polyhedron.
(Note that the orbit of a convex ret under a diacrete evclidean group ia necenarily locally finite, it the seta is the orbit are all dinjoint.)
Proof , Wa know that Γ in a frea abelim group. Let $\left\{g_{1}, \ldots, \rho_{r}\right\}$ be a frea tet of generatorn. Let $\Gamma^{t} \leq \Gamma$ be the iubgroup $\left\langle 2 g_{1}, \ldots, 2 g_{2}\right\rangle$, so that $\left|\Gamma ; \Gamma^{\prime}\right|=2^{r}$. The conatruction of the canver call complex from $\{\gamma X$,$\} , enables un ta define the ret \mathcal{S}^{n-1}$ of codimention-1 facen of X_{i}, Each $A \in \mathcal{J}^{n-1}$ correaponde wome
 that if A and B in \boldsymbol{F}^{n-1} have the ame label, then they lin the the amme codimeanion-1 plane of \mathbb{E}^{n}. We
 $\gamma_{n}-\gamma_{1}=2 \mathrm{~g}$. Let $\in \in A, A \in B$. If A and B do not lie in the game plane, then the midpoint $a=(a+b) / 2$ liea in int hull $(\boldsymbol{A} \cup B) \subset X_{3}$. However, for some $u_{1} \cup \in \boldsymbol{X}_{j}$, we sbo have $c=\left(\gamma_{3} u+\gamma_{2} v\right) / 2=\gamma_{1}((u+u) / 2)+g u$ $\in\left(\gamma_{1}+g\right) X_{j}$, by convexity of X_{j}. Thie given ue the contradiction $X_{i} \cap\left(7_{1}+g\right) X_{i}, \boldsymbol{p}_{\boldsymbol{t}}$. \bullet

The teaselation of \mathbb{E}^{3} with square prinms dencrited in Chapter 2, GF3, sives an an example where the X_{i} do not have anite aumber of faces. Note that the tenalation in invariant under a $\mathbf{Z} \oplus \mathbf{Z}$ action, acting vertically and in the NW.SE direction. The problem arisen becaune ench tile meeta inf nitaly many imaget of iself under the $\mathbf{Z} \oplus \mathbf{Z}$ action. However, thia phenomenom cannot occur in euclidean apace of dimenaion lext than 3 . The only can where we get a non-compact quotient in for an infinite cyclic action on \mathbf{E}^{2}, In
 finitely many other tiles. In fact =a may clasify auch tilea according to whether they are compact, or have one or t mo topolonical ande (FIG 4.4].

Now, any inomatry of $E^{\mathbf{1}}$, or \mathbf{E}^{2}, with no fined point, mant be a trannlation. Thua, any diacrete groug action of thene apacet muth have a frite-iadex tranalation aubgroup. Wa see that any diecrete rubgroup
 dimaniona, of the foar deacripione of geometric finitenean atated at the atart of athe chapter.

The quention remaine of whether or not a GF group necemarily has a angle, convar faita-nided for finite-faced) fundamental polyhedron. I nuepect not, but ido nat have a coumterexampla.

Reffrencen.

 753.
|Ah2|L.V.Ahlforn, Fundamental polyhedrona and timit point sets for Klainian groupa: Prac. Nat. Acad. Sci 55 (1980) 251-254.
|Apl] B.N.A pamamov, Geometrically finita provpa of tranaformations of apaca: Siberian Meth. J. 2 \& No. 0 (1982) 771-740 (Englinh tranalation).
|Ap2| B.N.Apaneav, Geomatrically finite hypertalic atrmetures on mamifalds: Ano. Glob. Anelyrin \mathcal{L} Geomarry 1 No. 3 (1983) $\mathbf{1 - 2 2}$ (Englith tranalation).
|BaGS| W Hallinan, M.Gromov, V.Sehroeder, Manifold of monpositize curvalare: Progrean in Mathe. 61. Birlmamer (1985).
|Bea| A.Beardon, Tha geamery of diserate grospa: Geaduate Terie in Matha. 91, Springer-Verlan (1983).
|BeaM| A.Beardon, B. Mantit, Limil erta of Kleinian grompa and finita sided frndamenial poiyhedra: Acta Math. 132 (1974) 1-2.
[Ber] L. Bern, On bowndarica of Teichmīlfer apacta and os Kleisian prompaI: Anr. Math. 81 (1070\} 570-400.
[Bo] F. Bonahon, Bomis dea bariétea Ayparholiques du dimension 3: Anm. Math. 121 (19a6) 71-15a.
|BoO| FBonahon, J.-P.Otal, Varilita hyperboliques égodtaiquea arbritsirement courtea : Bull. London Math. Soc. 20 (1088) 255-281.
|Cas] 1.W.S.Cmenle, Anemieddin theorem for fulda: Bull. Ayntral. Math. Soc. 14 (1976) 193-190 and 479480.
[CanRG| H D.Canary, D.B.A.Epatein, P. Green, Nates on notes of Theratan : Analytic and geometric apecte of hyperbolic apace", L.M.S. Lecture Notes Serice No. 111 , ed. D.B.A.Epatein, Cambride U.P. (1987) 3-92.
|EM|D.B.A.Epetain, A.Marden, Convas Awlls in hyperbolic apace, athearem of Sulivan, and measured pleaied aurfaces: "Analylic and cenmetric apecte of hyperbolic apace", L.M.S. Lectura Notea Serian Ne. 111 , ed. D.B.A.Epstein, Cambridge U.P. (1987) 113-253.
|FM| M. Feisn, D.McCullough, Finitenesa condition for s-manifolda with davndary : preprint.

[H] G.A.Hetland, Frensian gronps and tranaitive horocycles: Duke Math. J. 2 (1936) 530-542.
[J] T. Jurgensen, Compact s-manifalds af conathnt wegatiee ewrwatura filling aeer the cirche i Ann. Math 100 (1977) 61. 72.
|Mar| A.Marden, Tha peometry of finitely fonerated Kleinaan prompa: Ana, Math. pg [1974j 3as-462.
 607-639.
[Mc| D McCullough, Compart aubmanifodda of S-manofolds mith bowndary: Quat. J. Math. 37 (19ab) 292-307.
[Sc] PScott, Compect sudmanifolts of s-manifodd J. Loadon Math. Soc. (2) 7 [1973] 246-250.
 theery", Bombay (1980) 147-184.
|Sar| C.Serien, The etomatry of Martofl mambera: Math. Intellizencer, Vol 7, Na. s (1985) 20-29. [Smli] D.Sullivan, A fimitemes, theorem for cmapa: Acta Math. 14T (1981) 289-299.
[Sm12] D Sullivan, Growdh of positive harmonie functions and Kleinian growg limit ate of raro planar measure and hamedorf dimension ime: "Geometry Sympoaium, Utrecht 1980", Springer Lecture Natea A94 (10e1) ed. E.Leoijenta, D.Seioma, F.Taken, 127-144.
 growpi: Acti Math. 165 (1084) 259-277.
[Sula| D.Sullivan, Quasiconformal homeomorphiuma and dynamica I - Soluition to the Fatur-Julia prolitern for wandering domarns: Ann. Math. 122 (1905) 401-418.
[Sul5] D.Sullivan, Quasicomformai homeomorphisma and dynamica II - Structural atabitily imphies hypertoticily for Kleisian groupa : Acta Math. 155 (1905) 243-260.
[SusS] P.D.Sunatind, G.A.Swarup, Limit eefs of peometrically finite hyperbolic groups : preprint
|Th1] W.P.Tharston, The eeometry and topology of manifolds : notes, Princeton Uaiv. Matha. Departmene (1979).
|Th2| W.P.Tharatom, Myperbohic atructures on S-manifolds $I I$-Surfece groupt and 3 -manifolds which fiber ower the circla : preprint.
 171-214.
|Tu2] P. Tubia, The flewedorff dimenaion of the timil ael of peometrically firuin Kleinion groupa : Acta Math. 152 (1944) 127-140.
[We] N.J.Weilenberg, On the timit set of diucreto Mochies groups with finite sided findamenial polyhedra: unpublished.
[Wo] J.A.Wolf, Spaces of conatant curvatura: Publish or Perish (1974).
(i)

(ii)

$: 70^{\text {dsno }-\mathbb{Z}}$
(iii)

$$
\begin{aligned}
& \begin{array}{c}
\text { ज } \\
\text { है } \\
\text { है }
\end{array}
\end{aligned}
$$

(iv)

Figure 0.7:
Standard cusp regions
cusp torus

cusp cylinder

Figure 2.1 :
A standard parabolic region in the upper half -space model.

$$
n=3, \quad \Gamma_{p} \simeq \mathbb{Z}
$$

$$
\begin{aligned}
H_{c}^{3} & \equiv \mathbb{R}_{0,}^{3} \cup\{\infty\} \\
\Gamma_{r} & =\langle(x, y, t) \mapsto(x, y+1, t)\rangle
\end{aligned}
$$

Figure 2.2:
A standard cusp - the quotient from Figure 2.

Figure 2.3:
A GFI 2-manifold.

$$
M_{c}=N \cup C_{1} \cup C_{2}
$$

Figure 2.4:
A bounded parabolic fixed point in the boundary of the upper half-space model -

$$
n=4, \quad \Gamma_{p} \cong \mathbb{Z}
$$

$$
\begin{aligned}
& \mathbb{R}^{3} \equiv ग \mathbb{R}_{+}^{4} \\
& \Gamma_{p}=\left\langle\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}+1, x_{3}, x_{4}\right)\right\rangle \\
& \Lambda \subseteq Q \cup\{\infty\}
\end{aligned}
$$

Figure 2.5:
A conical limit point upper half-space model.

(vii)

Figure 2.6 :
A convex cell complex in \mathbb{E}^{3}.

Figure 2.7 :
The convex core of a 2 -manifold.

Figure 3.1:
Schematic.

Figure 3.2:
Upper half space model.

(ix)

Figure 3.3:
Generalised dirichlet domains on a 2-manifold.

$$
\underline{a}=\left(a_{0}, a_{1}, a_{2}\right)
$$

Figure 3.4:
The function $\omega(k,-)$ for $k \subseteq \mathbb{E}^{2}$.

Figure 3.5:
Upper half space model $n=2$.

Figure 3.6: Schematic.

$$
(x i)
$$

Figure 4.1:
Irrational screw motion on \mathbb{E}^{3}

Figure 4.2 :
Whitehead move on a torus

(xii)

Figure 4.3 :
(Schematic)

Figure 4.4 :
Two singly -periodic tilings of \mathbb{E}^{2}

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

AUTHOR

Brian Hayward Bowditch

INSTITUTION and DATE

University of Warwlck, 1988

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.
 Boston Spa, Wecherby

