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Summary

In th is paper, we describe various definitions of geometrical 
finiteness fo r discrete hyperbolic groups In any dimension, and 
prove their equivalence. This generalises what has been worked 
out in two and three dimensions by Marden. Beardon, Maskit, 
Thurston and others. We also discuss the nature of convex 
fundamental domains fo r such groups. We begin the paper with 
a discussion of resu lts related to the Margulls Lemma and 
Bieberbach Theorems.
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A b s tr a c t .

Let T be a group acting properly discontinuous!/ on hyperbolic space H " . The aim o f  this work is to 
clarify the meaning o f  “geometrical finiteness”  for such groups. In dimension 3, with T acting freely, the 
principal definition is that T should possess a “ finite-sided fundamental dom ain". Various definitions in this 
dimension have been worked out. Marden [Mar) shows that it is equivalent to the statement that the quotient 
manifold, including its ideal points, can be decom posed into a compact part and standard neighbourhoods 
o f  its cusps ( “ cusp cylinders" and “cusp tori"). Thurston [ThI] introduced tw o new definitions: that the 
thick part of the convex core should be com pact, or that an «-neighbourhood o f  the convex core should have 
finite volume. Finally, Beardon and Maskit [BeaM] say that T is geometrically finite if and only if  its limit 
set consists of (what we call here) conical limit points and bounded parabolic fixed points.

We shall investigate here how these definitions generalise to arbitrary discrete actions in n dimensions. 
T h is  matter has also been considered by Apanasov [Apl,A p2], and to some extent by Weilenberg |We|.

Our central definition (G F l) will be essentially that o f  Marden, with appropriate definitions o f  cusp 
regions. The Beardon and Maskit description (as they point out in their paper) generalises unchanged (GF2). 
The use of finite-sided fundamental domains runs into problems when n >  4. The natural generalisation 
seems to be in terms o f  what we call “convex cell complexes" (G F3). For the first o f  Thurston’s definitions, 
we need to clarify what we mean by the “ thick part" of an orbifold. The definition chosen here (GF4) does 
n ot seem particularly natural, but it proves useful in discussing the final definition (GF5). For this, we 
impose the additional condition that T be finitely generated. W e suspect that this is unnecessary, and show 
it to  be unnecessary for manifolds, finite-volume orbifolds, or when n  <  3. In the course o f  this discussion, 
we give a proof o f  the existence o f  an embedded ball in a hyperbolic n-orbifold, o f  uniform radius, depending 
on  n, but not on the particular orbifold.

Finally, in Ch.4, we discuss the existence o f  finite-sided fundamental domains. We give (in principle) 
a complete description o f  when a Dirichlet region is finite-sided, and show that in certain special cases, all 
convex fundamental domains are finite-sided. We give an example (due to  Apanasov) o f  a geometrically 
finite (henceforth abbreviated to G F) manifold with no finite sided Dirichlet domain.

A ck n ow led g em en ts .
This work was originally an offshoot from  the Warwick M .Sc. dissertation of Dick Canary and Paul 

Green, which has been published, in augmented form, as [CanEG]. Their paper focuses on other aspects 
o f  Thurston’s notes [Thl], tu t the start they made on geometrical finiteness was very helpful to me. My 
greatest debt is to  David Epstein, for introducing me to the subject, and for his many suggestions and 
comments. I would also like to  thank the S.E.R.C. for their financial support.

O. In trod u ction .

0 .1 . H y p erb o lic  S p a ce .

We begin with a general discussion o f  hyperbolic geometry in order to  induce our terminology and 
notation. More details may be found in [Bea, Chapter 7|.

We shall write S "  for the unit n-sphere in euclidean space. We write E "  for euclidean n-space, and H " 
for hyperbolic n-space. We shall denote the metrics on these spaces by <f,,a, and respectively. We 
shall drop the suffices where there can be no confusion. In each case, we write Isom X  for the group o f  all



isometries of X .
W e can represent H n conformally mm -he open unit ball in R "  with infinitessimal metric dhvp =  ^ r d , HC, 

where r  is the euclidean distance from the centre. This is the Poincari model. The closed unit ball gives 
a canonical compactification o f  H n, which we denote by H £ . We write H ?  for the (n  -  l)-sphere o f  ideal 
points, so that H £  =  H n U H " . Any isometry 7  G Isom H " can be extended to  act conformally on H " .

Another conformal representation of H "  is as the upper half-space in R n; that is, I t "  =  { *  e  I t "  | x n >  
0 } ,  where x „  is the last coordinate of x. The metric is given infinitessimally by dhpp =  ^ -d ,ue. Writing 
3 R "  =  { i  E R "  | x „  =  0 } , we may identify H "  as 5 R £  U { 00 } ,  where the ideal point 00 compactifies 
R "  U 3 R "  into a balL Note that if 7  €  Isom H " fixes 00 , then it acts as a euclidean similarity on 3 R " .

A  third model for hyperbolic space we shall use is the Klein model. This consists o f  the open unit ball 
with a (non-conformal) Riemannian metric, such that all hyperbolic geodesics correspond to euclidean line 
segments (see [Bea, Chapter 7j).

W e may classify non-trivial isometries H "  into three types, namely elliptic, parabolic and hyperbolic as 
follows.

Let 7  be an isometry o f  H " . We write 6x 7  for  the set o f  fixed points o f  7  in H ".. Brouwer's fixed point 
theorem tells us that fix 7  must be non-empty.

Suppose that there is some point x  in 6x 7 0  H " . We may take x to be the centre o f  the ball in 
the Poincari model. Then, 7  acts as a euclidean rotation on the ball, and we see that 6x 7  is a (possibly 
0-dimensional) plane in H ".. We call this case elliptic.

If 7  is not elliptic, then 6x 7  is a subset o f  H " .  Suppose that 6 x 7  consists o f  just a single point in H ". 
W e may take this point to be 00 in the upper half space model, R "  . Now, since 7  has no fixed point in d R " , 
it must act as a euclidean isometry of dR!J. M oreover, it must preserve setwise each horosphere about 00 . 
W e call this case parabolic.

Suppose that 7  fixes precisely two points, x  and y, in H 7 . Let l be the geodesic joining x to  y. In this 
case, 7  acts as a translation on I, and (in general) has a rotational component in the orthogonal direction. 
W e call this case lozodromie, and we call l  the loxodromic axis.

Finally, note that if  7  has three (or more) fixed points in H " ,  then these must determine a fixed point 
in H " ,  so we are back in the elliptic case.

0 .2 . G r o u p «  o f  Isom etries .

Let T be a subgroup o f  I som H ". It is an elementary result that T is a discrete subgroup if and only if 
it acts properly discontinuously on I I " ,  that is to  say, each compact subset o f  H "  meets only finitely many 
images o f  itself under I\

In such a discrete group, the finite-order elements are precisely the elliptic isometries. Thus, T acts 
freely if and only if it is torsion-free. If T acts freely, we may form the quotient manifold M  — H"/r which 
inherits a complete hyperbolic structure.

M ore generally, if T has torsion, the quotient M  =  H n/ r  is a complete hyperbolic “orbifold*, as defined 
by Thurston (T h l, chapter 13). That is to say, there is a closed cell complex £  in M , such that Af\E  is an 
(incomplete) hyperbolic manifold. The set E can be defined as the projection o f  the set o f  all fixed points 
o f  elliptic elements of T, Le., E =  U-,er(®x 'Tn  H " ) / I \  A neighbourhood o f  a point o f  E may or may not be 
topologically singular, but it will always be geometrically singular. In an orientable 2-orbifold, for example, 
E consists of a discrete set o f  cone singularities, which may be thought o f  as points o f  concentrated positive 
curvature. We shall call E the singular set o f  A /.

Let T C Isom H " be discrete. The action o f  T may be extended to H £ , and we may define the limit set 
A C H "  as the set o f  accumulation points o f  some T-orbit, i.e.,

A =  (y  €  H "  | there exist 7 *  €  T and x  e  H "  with 7 „ x  —• y }.

It turns out that this definition is independent o f  our choice o f  x . Moreover, A is a minimal closed V- 
invariant set, and T acts properly discontinuously on its complement O in H " . The set f l =  H "\A  is called 
the discontinuity domain. (It is possible for il  t o  be empty.) We may form the quotient orbifold A // — (l/T
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o f  i) . Since T acta conformally on H " , we tee that M ,  inherit* a (singular) conformal structure from fl. In 
fact, T acts properly discontinuously on H "  U Q, so we may write

m c  =  (H B u  n)/r =  M u M ,.

Note that when n =  3, A»',- is a Riemann surface (in  general not connected). This fact gives rise to a rich 
analytical theory in this dir tension.

One direction o f  research in discrete hyperbolic groups, is study to the relationship o f  various types 
o f  ‘ finiteness” —  group theoretic, topological and geometric. The simplest group theoretic restriction is to 
demand that T be finitely generated, and ask what this tells us about the topology and geometry o f  M .

The first result is pure algebraic.

S e lb e r g  L em m a  |Selj. Let k  be a field o f  characteristic 0. Then, any finitely-generated subgroup o f  GLn(fc) 
is virtually torsion-free, (i.e. contains a torsion-free subgroup o f  finite index).

For a  simpler proof, see [Cas].
Since Isom H "  can be represented as a subgroup o f  G Ln+ i(R .), the Selberg Lemma can be applied to 

finitely-generated subgroups o f  Isom H " . Geometrically, this tells us that we can restrict attention to  the 
case where T acts freely on H n. Given this, we may as well assume also that I* preserves orientation. This 
latter restriction is solely to  simplify the exposition. Thus, for the rest o f  the introduction, unless otherwise 
stated, we shall be taking T to be a finitely-generated, discrete, torsion-free group of orientation preserving 
isometries o f  H n.

Beyond the Selberg Lemma, little seems to  be known in general. The main thrust o f  research is in 
dimension 3, and we shall give a summary o f  3-dimensional results in Section 0.3. First, we describe how 
the 2-dimensional case is trivial from the point o f  view o f  finiteness.

Let M  be a complete, orientable, hyperbolic surface with finitely-generated fundamental group. Then, 
it turns ou t that M  consists o f  a  compact surface with boundary, together with a finite number of “cusps* 
and ‘ funnels*. A cusp is (isometric to) a horoball in H 3, quotiented out by a cyclic parabolic group (FIG 
0.1). A funnel consists o f  a hyberbolic half-space quotiented out by a  loxodromic element (FIG  0.2). We see 
that M i is a disjoint union o f  finitely many circles, which serve to compactify the funnels in M e  =  M  U M i. 
Thus the topological ends o f  M e  correspond precisely t o  the cusps (FIG 0.3). We see that, in any meaningful 
sense, the geometry o f  M  is only finitely complicated. This is about the strongest assertion o f  finiteness one 
could make.

0 .3 . S o m e  3 -d im en sion a l fin iteness results.

In this section, we shall give a summary of some finiteness results in 3 dimensions. It is not meant to 
reflect the historical development of the subject.

Let T be a discrete, torsion-free, orientation-preserving subgroup o f  Isom H ". Much o f  the technical 
com plication o f  the subject arrises from having to deal with parabolic subgroups o f  I*. Suppose that 7  €  T 
is parabolic with fixed point p. Let Tp be the stabiliser o f  p in I*. In a discrete group, a parabolic and a 
loxodromic cannot share a common fixed point. Thus, Tp consists entirely o f  parabolics. We call p a parabolic 
fixed point, which we abbreviate to p.f.p. We can let p be the point 00 in the upper half-space model. Now, 
r „  acts freely as % group o f  isometries on d R *  3  E 3. This dimension is special in that such a group must 
act by translation. We see that Tp is isomorphic to  either Z  or Z ®  Z. Taking l i  to  be any horoball about 
p, we may form  the quotient B/Tp. If 3  Z , then BB/Tp is a bi-infinite euclidean cylinder, and we call 
B/Tp a  Z -cusp (FIG  0.4). (N ote that a Z-cusp is not quite the same as a “ cusp cylinder* or ‘ standard cusp 
region* which will be described later in this section. See Section 2 for details.) If Tp 2! Z ©  Z  then BB/Tp 
is a euclidean torus, and we call B/Tp a Z  ©  Z-cusp (FIG  0.5). We may define such cusps to  correspond to 
each orbit o f  parabolic fixed point*. In general, one would expect these cusps to project to  a collection of 
immersed submanifolds in M . However the Margulis Lemma (see Sections 1.2, and 2.(G F4)) tells us that (in 
dimension 3), by taking our horoballs small enough, we can arrange that the cusps be disjoint and embedded 
in M . We shall write cusp(A f) for the disjoint union o f  all the cusps.
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T he construction o f  this set o f  disjoint cusps is valid for infinitely-generated groups. From now on, 
however, we shall insist that T be finitely-generated. We first use a purely topological result.

T h e o r e m  (Scott [Sc)). Let M  be a 3-manifold with finitely-generated fundamental group. Then, there it  a 
compact submanifold M T o f  M , such that the inclution M-p Af induces an isomorphism o f  fundamental 
groups.

W e call M t  > topological core tor M. With Af =  H " /r ,  we deduce immediately that T is finitely 
presented.

In our case, M  =  H n/ r  is an irreducible 3-manifold, that is each embedded 2-sphere in Af bounds a 
3-ball. Because o f  this, we can arrange that d M r  contains no 2-spheres, and then the inclusion of M t  into M  
is a hom otopy equivalence. Moreover, there is a bijective correspondence between the boundary components 
o f  M t  and the topological ends o f  M . We deduce that M  has only finitely many ends. In particular, it 
contains only finitely many Z  © Z-cusps.

In fact (provided that T is not cyclic loxodromic), the Z  ©  Z-cusps correspond precisely to the toroidal 
com ponents of dM p- T* e remaining ends correspond to  components of genus at least 2. The aim now is to 
understand something o f  the geometry o f  these remaining ends, which we shall call "non-cuspidal ends*.

Now, a Z -cusp is topologically just a  product. Thus, we can assume that each Z -cusp lies entirely within 
some non-cuspidal end. The effect o f  removing the Z-cusps would (in general) be to subdivide each each 
such end into smaller pieces, on which we may see qualitatively different behaviour. It is therefore necessary 
to  take account o f  these Z-cusps before going on to consider the geometry. We can do this by applying a 
relative version of Scott’s theorem to  M ' =  M \cusp(Af).

T h e o r e m  [M e]. Let N  be a 3-manifold with boundary, whose fundamental group is finitely generated. Let S 
be a com pact submanifold o f  d N . Then, we can find a topological core, Np$ for  N  such that N y f id N  =  S . 

B y using this result, together with an Euler characteristic argument, one may deduce (FM| that there are 
only a finite number of Z-cusps —  a resu’ t due originally to Sullivan [Sull|. We may now take a core M'T 
o f  M '  which meets each Z  ©  Z-cusp in the bounding torus, and each Z-cusp in a com pact annular core of 
its boundary cylinder. Again, we may take the inclusion to  be a (relative) homotopy equivalence, so that 
the topological ends of M ' correspond to the frontier components o f  M f  in M '. We now look for geometric 
information about the non-cuspidal ends o f  M ' (i.e. ends other that Z  ©  Z-cusps).

We have already said that, for n =  3, M /  — f l /T  is a Riemann surface. A fundamental result about M ; 
is the following.
A b lfo r s ’  F in iten ess T h e o r e m  (A hl.Sull). Let 1' be a finitely-generated discrete subgroup o f  Isom H 3. 
Then M i  =  i l / r  is a Riemann surface o f  *finite type*. That is to say, M i is conformally equivalent to a 
com/act surface with finitely many punctures.

(For a  p roof using deformation theory, see [Sul4|.)
M oreover one may show that the punctures o f  A f/ arise only from parabolic elements o f  T; that is, a 

small loop  around a puncture represents a conjugacy class o f  parabolics in T.
We want to give Ahlfors’  Finiteness Theorem a more geometric interpretation. We can d o this by using 

the convex hull o f  the limit set —  a generalisation of the Nielsen convex region in dimension 2. Let Y  be the 
smallest convex set in H 3 whose closure, Y c ,  in contains the limit set A. Then, Ya meets H ] precisely in 
A. Since the construction is equivariant, we may form the quotient ^  =  Y/V Q M , which we call the convex 
core o f  M . T he nearest point retraction o f  H 3 onto Y  extends continuously to  all o f  H * , and therefore gives 
rise to  a m ap from M e  to ^  (see for example (Thlj). We shall denote by q, the restriction o f  this map to 
M ,.  N ote that q(M ,) =  3 ? .

It is possible for f  to have empty interior, but if so, then T is either abelian or “ fuchsian" (i.e. preserves 
some 2-plane in H 3). Both these cases are completely understood, so we shall assume that the interior o f  f  
is non-empty. In this case one may show that i f  has the structure o f  a complete hyperbolic surface in the 
induced path metric |Thl|. Moreover q is a homotopy equivalence from M /  to  d f .  In fact, by applying some 
kind o f  smoothing to the nearest point retraction, one may show that q is homotopic to  a quasiconformal 
homeomorphism. ([EM] includes details o f  this in the case when A is connected.) We deduce that the surface 
i f  also has finite conformal type and thus finite hyperbolic area. In other words, we can restate Ahlfors’



Finiteness Theorem to  say that d f '  should have finite 2-dimensional area. (In fact the discussion applies 
equally well if T has torsion, and then d ?  becomes a finite-area orbifold.)

The parabolic cusps o f  the hyperbolic surface d P  are essentially the connected components o f  d f '  n  
cusp(A f). In fact the cusps o f  dH  must lie inside Z-cusps o f  Af. The remainder o f  d f ,  namely d ¥  n  A /', is 
com pact. Thus, each component o f  d V  corresponds to an end o f  A f'. Such an end is topologically a product, 
being foliated by components o f  dNrf t )  for r  >  0, where ATr ( ^ )  is a uniform r-neighbourhood o f  We call 
such ends geometrically finite (GF). We see that the G F ends o f  A f correspond bijectively to  components o f 
d f ,  and thus to components o f  A f/. (W e may think o f  A f/ as the limit o f  the surfaces dN r{ $ )  as r tends to 
oo .) If we fix some t) >  0, we can m odify the topological core Afj., so that dN r, ( f r) n  A#' becomes a subset 
o f  the frontier of M r-  That is the frontier components o f  M'T in M ' that correspond to GF ends coincide 
with frontier components o f  N n[Y )  O M '.

The geometrically finite ends, however, might not account for all the ends o f  A f I t  may be that an end 
makes no impression on the discontinuity domain fl, so that Ahlfors’  Finiteness Theorem tells us nothing. 
Such ends were shown to exist by Bers and Maskit [Ber,Mas|, their geometrically infinite nature being made 
explicit by Greenberg [Gj. Jorgensen later described more concrete examples [J|. Thurston (Th2) gives a 
more general method o f  construction.

All the non-GF ends constructed so far have been "simply degenerate" as defined by Thurston |Thl 
Chapter 9|. A  simply degenerate end turns out to  be just a product topologically (i.e. homeomorphic to  a 
surface times a half-open interval), but its geometry is infinite. For example, every neighbourhood o f  the end 
will contain infinitely many closed geodesics. Bonahon and O tal construct an example of an end containing 
closed geodesics o f  arbitrarily small length (BoO). There are also examples where lengths of closed geodesics 
have a positive lower bound. In the latter case the end has bounded diameter as one tends to  infinity. In 
general, one may say that the volume o f  a  simply-degenerate end grows at most linearly. This explains why 
such an end makes no impression on the discontinuity domain —  G F  ends have exponential growth.

If, as in all the examples constructed so far, each (non-cuspidal) end is either geometrically finite or 
simply degenerate, we call M  geometrically tame. In this case, M  is topologically finite, Le. homeomorphic 
to  the interior o f  a compact manifold with boundary. M oreover, one can show that the limit set o f  such a 
group has either sero or full 2-dimensional Lebesgue measure (see [Thl] or |Bo|) —  a property conjectured, 
by Ahlfors, for all finitely-generated discrete groups. There are examples, however, where the limit set has 
Hausdorff dimension equal to 2, while still having sero 2-dimensional Lebesgue measure [Sul2|.

It has been conjectured that all finitely-generated discrete groups are geometrically tame. Bonahon 
[Bo| has proven this under the hypothesis that for any free-product decomposition r  S  A • B, there is some 
parabolic in T not conjugate to  any element of A or B . Otal has recently claimed the result for T 9! Z  • Z.

We now restrict attention to  the case where all the ends o f  M ' =  M \cusp(Af) are geometrically finite. 
Then, we call M  "geometrically finite” . In this case, we can assume that each end o f  A f' is bounded by a 
com ponent o f  dNn( $ ) ,  which means that we can take the topological core Afj. to  be equal to Nn($)C \M ' =  
A f,,(P )\cusp(A f). In other words, geometric finiteness says that JV ,(^ )\cusp(Af) is compact. This is more 
or less the definition o f  geometric finiteness (GF4) due to  Thurston (T h l Chapter 8) (see Section 2(G F4)). 
(Taking the ^-neighbourhood of the convex core allows us to include Fuchsian groups and cyclic loxodromic 
groups in the discussion, without making special qualifications.)

Clearly, Nn[ f )  meets the boundary o f  any Z-cusp in a com pact set. From this we see that the inter­
section o f  A , ( r )  with any Z-cusp has finite volume. (In fact the intersection will be contained in some 
r-neighbourhood o f  a totally geodesic 2-dimensional cusp —  see FIG 0.6.) Since each Z  <9 Z-cusp has finite 
volume, we arrive at Thurston’s second definition o f  geometric finiteness (GF5), namely that Nn( f )  should 
have finite volume. (For the definition G F4, it is enough to  insist that ? \ cu sp (A f) be compact. For GF5, 
however, it is essential to  take some uniform neighbourhood o f  as the example of an infinitely generated 
Fuchsian group shows.)

If M  had no cusps, one sees that A // =  f l /T  would give a compactification o f  Af to W<;. In the 
general case, the topological ends o f  M o  correspond precisely to the cusps. In fact, each end of M o  has a 
neighbourhood isometric to one of tw o standard types —  "cusp tori" and "cusp cylinders". Cusp tori are 
the same as Z  ©  Z-cusps, whereas a cusp cylinder is an enlargement o f  a Z-cusp to  include a portion o f  Af/ 
(FIG  0.7). This description o f  geometric finiteness (G F l)  is due to Marden (Mar|.

A fourth description (GF2), due to Beardon and Maskit |BeaM], demands that the limit set should
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be a union o f  (what we call here) “conical limit points* and “bounded parabolic fixed points*. These will 
be defined in Section 2 (GF2). The notion o f  a conical limit point (also called a “ radial limit point* or 
“ approxim ation point*) originates in [H|, and has proven useful to  the study o f  dynamics on limit sets.

Finally, the original and simplest definition o f  geometric finiteness (GF3) demands that T should possess 
a finite-sided convex fundamental polyhedron. This hypothesis was introduced by Ahlfors [Ah2], where he 
showed that the limit set of such a group must have either sero or full Lebesgue m< » • « "  »  h ;

It has been known for some time, from the references already cited, that these five definitions are 
all equivalent in dimension 3. Geometrically finite groups occur frequently as the simplest examples o f  
3-dimensional hyperbolic groups. It is conjectured that they contain an open dense set o f  the space o f  all 
finitely-generated discrete groups, given the appropriate topology (see (Sul5|). The hypothesis o f  geometrical 
finiteness has often been used in the study o f the dynamics on limit sets. Sullivan, for examples showed that 
the limit set o f  a geometrically finite group is either the whole sphere H j,  or else has Hausdorff dimension 
strictly  less than 2 [Sul3|.

0 .4 . H ig h e r  D im ensions.

A natural question to  ask is how one should define geometric finiteness in dimensions greater than 3. 
M ost authors have taken geometrical finiteness in this case to  mean that ‘ he group should possess a finite­
sided convex fundamental polyhedron —  a direct generalisation o f  Ahlfors’  original definition. However, 
in dimension 4 and higher, this definition becomes more restrictive than the obvious generalisations o f  the 
other four definitions. It seems that these other definitions give rise to  a more natural notion o f  geometric 
finiteness which we aim to elucidate in this work. A ll the applications o f  the traditional geometrical finiteness 
hypothesis seem to  be valid for this slightly more general notion.

T he question o f  defining geometric finiteness in higher dimensions has also been considered by Apanasov 
[A p l,A p2 ], as well as by Weilenberg |We] and Tukia |Tul). In [Tu2], Tukia generalises, to  dimension n, 
Sullivan’s result about the Hausdorff dimension o f  the limit set. Thus, the limit set o f  a G F  group is either 
equal to H " ,  or else has Hausdorff dimension less than n — 1.

1 . T h e  M a rgu lia  L em m a a n d  B ie b e rb a ch  T h eorem .

In this section we shall be discussing results related to the Margulis Lemma and Bieberbach Theorems. 
O ne form o f  the Margulis Lemma says the following. Given any positive integer n, we can find some 
c (n )  >  0  with the following property. Let (Jf, d) be any simply connected Riemannian n-manifold, all o f  
whose sectional curvatures lie in the closed interval [0, lj . Let I* be any discrete group o f  isometries acting 
on X ,  and x  6  X  be any point. Let r , (x )  be the group generated by those elements o f  q  6  T such that 

* )  <  « (n ). In symbols, r , (x )  =  (7  €  T | d (q (x ), x) <  <(n)). Then, r , (x )  is virtually nilpotent (Le. it 
contains a nilpotent subgroup o f  finite index). Moreover, the index o f  the nilpotent subgroup in r «(x ) can 
be bounded by some i/(n ) depending only on n. We say that groups o f  the form r « (x )  are uniformly virtually 
nilpotent.

A proo f o f  this result may be found in (BaGSj. In this section, we shall restrict attention to the constant 
curvature cases, namely E™ and H ” , where we can give a simple p roof o f  the Margulis Lemma. Also, in these 
cases we may identify the nilpotent subgroup as being generated by elements o f  small rotational part, and it 
turns out always to  be abelian. This final observation is a consequence o f  nilpotency, rather than discreteness, 
so we begin with a discussion o f  nilpotent groups o f  isometries in the geometries Sn, E "  and H " . We shall 
prove that nilpotent subgroups o f  Isom s ’*, S im E ", and IsornH " are uniformly virtually abelian. This fact 
seems to  be well known, though I know o f  no explicit reference. However all the essential ingredients may 
be found in (Th2, Chapter 4j. We shall go on to  show how nilpotent groups arise out o f  discrete isometry 
groups. In the course o f  the discussion we deduce some o f  the classical Bieberbach Theorems. These results
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are also described in (Th2, Chapter 4j and (Wo).

1 .1 . N ilp o te n t  im p lies  V ir tu a lly  A belian .

Let S'*, E ”  and H B denote the unit n-sphere, euclidean n-space and hyperbolic n-space respectively, 
w ith metrics d,,,*, d,ue, and d/,vp. We shall omit the suffices where there can be no confusion. Let Isom X  
denote the entire group o f  isometries of X , and Sim E "  be the group o f  euclidean similarities. Throughout, 
we use the convention on commutators that [x,y| =  x y x ~ ty ~ l .

W e shall deal with the three geometries in turn.

1 .1 (1 ). S p h er ica l G eom etry .

Let
I f(S ")  =  ( l £  Isom S " | d(~tx,x) <  x /2  for all *  G S“ } .

If we think o f  Isom S" acting on En + l, this says that 7  lies in U (S ") if it moves each vector through an 
acute angle. In other words, (7 v ,v ) >  0  for each non-trivial vector v G E B+1, where ( ,  ) is the inner product 
defining the metric on E n+1.

Let 7  6  Isom S". By complexifying, we can extend 7  to act on C n+1. Now, 7  preserves the standard 
herm itian form on C B +l, Le. the form that restricts to the inner product on E "+1. W e also use ( , )  to 
denote this hermitian form.

N ow , let v G C " + 1 be any non-trivial complex vector. Write v =  *  +  iy , with x ,y  G E n+I. Then, 

Re(7 v ,w ) -  (7 * ,* )  +  < iy ,y ).

I f  7  €  i / ( S " ) ,  both the terms on the right hand side are non-negative, and at least one is strictly positive. It 
follows that 7  lies in U(S ") if and only if Re(7V, v) >  0 for each non-trivial v G C " +1.

W e  can now prove:

Lepam a 1 .1 .1  : Let 0  G t f(S ")  and a  G Isom S". I f  a  commutes with [a,0\, then a  commute* with 0 .

P r o o f  :  Complexifying, we imagine a  and 0  acting on C " +1. We see that a  commutes with 0 ~ l a 0 ,  so that 
they are simultaneously diagonalisable. Let V  be an eigenspace o f  or. Then 0 V  is an eigenspace o f  0 a 0 ~ l . 
If V  yi p V , then V  must intersect non-trivially some other eigenspace V ' o f  0 a 0 ~ l , orthogonal to  0 V . Let 
"  €  V n V '  be non-sero. Then 0 v  lies in f)V , so that {0 v , v) =  0. However, since 0  lies in l f (S n), the discussion 
im m ediately prior to the lemma tells us that Re(^v, v) >  0. This contradiction means that 0 V  — V . Since 
V  was an arbitrary eigenspace o f  a , we deduce that a  and 0  are simultaneously diagonalisable, and hence 
com m ute.
❖

C o r o l la r y  1.1 .2  : / / T  C Isom S" it nilpotent, then ( m i f ( S " ) )  is abelian.

P r o o f  : Let a and 6 lie in r n l f ( S " ) .  By a ‘ nested chain o f  commutators* in a and 6, we mean an expression 
o f  the form  d — (e*, |e2, . . .  [eB,c n+i|...]) , where each ct is either a or b. We take J to be o f  maximal length, 
n, such that d ft 1 . This means that d commutes with both a and b. It follows that [c2, . . .  [c„, e«+ i| .. -| 
com m utes with d. Applying Lemma 1.1.1, with a  =  (ca, . . .  [c „ ,c n + i ) . . . )  and 0  =  Cj, we deduce that a  and 
0  com m ute, so that d =  1. We have contradicted the assumption that n >  1, and to a  must commute with

O
Let V  be an open symmetric neighbourhood o f  the identity in Isom S" such that V a Q  i / ( S " ) .  There is 

an upper bound N (n) on the number of disjoint translates o f  V  by Iaom S" that we can embed in IsomS". 
W e deduce that |f : (m U(Sn))\ <  W (n), and so,



C o ro lla r y  1 .1 .3  : Nilpotent subgroup» o f  Isom S'* are uniformly virtually abelian.

1.1(11). E u clidea n  G eom etry .

T o  prepare for the hyperbolic case, it will be useful to  consider the group Sim E "  o f  euclidean similarities. 
Let ♦  be the set of parallel classes o f  (semi-in finite) geodesic rays in E ". We shall embed as the unit 
(n  — l)-sphere in an inner-product space V (E n), which we can imagine as euclidean space with a preferred 
basepoint. There is an obvious bijective correspondence between r-dimensional subspaces o f  K (E B), and 
foliations o f  E "  by parallel r-planes.

The group Sim E " acts isometrically on 4 , so identifying 4  with S '*- 1  gives us a homomorphism 

rot : S iinE " — ► Isom s'*- 1 .

We call rot 7  the rotational part o f  7 . We define

U (E n)  =  { 7  6  Sim E "  | rot 7  €  i f  (S'*- 1 ) } .

Note that if we embed Em as a plane in E n, then i / ( E ”*) may be obtained by intersecting U (E n) with the 
stabiliser o f  this plane. This observation will allow us to  use induction over dimension. Given 7  e  S im E ” , 
we shall write

min 7  =  ( *  e  En | d(x, 7 1 ) is minimal).

Then, min 7  is a plane in E "  on which 7  acts either trivially or by translation. O f course, min 7  may consist 
o f  just a single fixed point.

T h e o r e m  1 .1 .4  : //I *  C Sim E ”  is nUpotent, then (m l / ( E " ) )  is abelian.

We shall begin with a lemma.

Lecnm a 1 .1 .5  : Let I* be an abelian subgroup o f  Sim E'*. Let r(r) =  Q ^ p in in y . Then, r(r) is a 
non-empty, I*-invariant plane, on which T acts by translations.

P r o o f  : If T is already a translation group, then r (r )  =  E n, and we are done. Otherwise, choose any 7  €  I' 
which is not a translation. Then, min 7  is a proper subspace, and since I* is abelian, it is I'-invariant. The 
result now follows by induction on dimension.
o

In fact, our plane r (r )  has a natural foliation by (in general) smaller T-invariant planes, namely the set 
o f  m inimal T-invariant planes. That is to say, each leaf is obtained as the affine span o f  some T-orbit. This 
foliation determines a subspace W t o f  V '(E "), by taking the set o f  geodesic rays lying in any one leaf. Now, 
Wi lies in a larger subspace W ' o f  V (E n), determined by r ( r )  itself. Let W2 be the orthogonal complement 
of W i in W ',  and W3 be the orthogonal complement o f W ' in V [E n). This gives us a canonical decomposition 
V (E H) =  W i ©  W 2 ©  W3. Let mi be the dimension o f  W,-. We shall say that the decomposition is trivial if 
mi =* n for som e i.

If m , — n, then T is a pure translation group, and the directions o f  translations span E ". If m a — n, 
then each point o f  E " is a fixed point of I*, thus I* is trivial. If m 3 =  n, then T has a unique fixed point in 
E**. We are now ready for:

P r o o f  o f  T h e o r e m  1 .1 .4 : Let I* be a nilpotent subgroup o f  Sim E n. We shall assume that 1 'is generated 
by elements o f  U (E n), Le. that r =  (F n  U (E ” )). We want to  show that T is abelian.

Let Z (r )  be the centre o f  T. From the preceding discussion, Z(V ) determines a decomposition W , © 
W2 ©  W 3 o f  P (E " ) .  Since this is canonical, it is respected by the whole group T. Thus T splits as a 
•ubgroup o f  S iinE "“  x  S im E ”** x  S im E ”**, and the projection o f  T onto each component is nilpotent. If 
the decom position is non-trivial, we may suppose, by induction on dimension, that each projection o f  T



is abelian. It then follow« that T itself is abelian. We need therefore deal only with the cases when the 
decom position is trivial.

Suppose m i =  n . This means that Z (T )  is a translation group with no non-empty proper invariant 
plane in E " . Consider any 7  €  I\ Since 7  commutes with everything in Z (T ), min 7  is Z(r)-invariant, and 
hence equal to  En. It follows that 7  is a translation o f  E ". Since translations commute, T is abelian. 

Suppose m j  =  n. Now Z(T ) is trivial. Since I* is nilpotent, it is also trivial.
Finally, suppose m 3 — n. In this case, Z (T )  has a unique fixed point in E '\ This point must be 

fixed by T, so T can be regarded as a subgroup of R + x  Isom S", where the first component measures the 
magnification, and the second, the rotational part o f  an element. The projection into Isom S " is nilpotent 
and generated by elements o f  ¿ /(S *). B y Corollary 1.1.2, this projection is abelian. We deduce that T is 
abelian.
0

As in the spherical case, for any group I*, the index o f  ( r  n  l / (E n))  in T is finite, and has a bound 
dependent only on n. Thus,

C o ro lla r y  1 .1 .0  : Nilpotcnt subgroups o f  S im E n art uniformly virtually abelian.

1.1(111). H y p e r b o lic  G eom etry .

We shall write H "  for the ideal (n  — l)-sphere at infinity o f  hyperbolic space H " , and write HJt for 
the compactification o f  hyperbolic space as H "  U H " . By a Möbius transformation on the sphere S " , we 
mean any map which can be represented as a composition o f  inversions in (n  — l)-spheres. (W e are allowing 
Möbius transformations that reverse orientation.)

We may represent H " , conformally, as a hemisphere £  o f  S " . Isom H "  then consists o f  those Möbius 
transformations which preserve E. Let 7  be a M öbius transformation o f  Sn, with some fixed point y  Since 
7  acts conformally, it induces (after scaling) an isometry o f  the unit tangent space (T iS n) v at y. Moreover, 
we may check that if  s  is any other fixed point o f  7 , then the induced isometries on ( T iS " ) ,  and (T|Sn) ,  
are conjugate. Thus, 7  dete. mines a conjugacy class in Isom S'*, which we shall call rot 7 . Since our subset 
I /(S n) o f  Isom S "  is invariant under conjugacy, it makes sense to demand that rot 7  should lie in t /(S " ). 
Restricting to  Isom H r>, where all Möbius transformations have fixed points, we may define

U (H " )  =  { 7  e  Isom H "  I rot 7  C  lf(S “ ) } .

T h e o r e m  l . l .T  : I fT  C Isom H 11 is nilpotent, then ( r  n  l / ( H ’*)) is abelian.

We begin wish tw o lemmas.

L em m a 1 .1 .8  : / / T  C  Isom IT* is abelian, then fix T, the set o f  points fixed by T, consists o f  either one
or two points in H ” , or else is a subspaee o f  H £  (i.e . the closure, in H " , o f  a plane in H n).

P r o o f  : Let 7  be any non-trivial element o f  T. If 7  is parabolic, then its fixed point is preserved by T, 
so that T has a unique fixed point. If 7  is elliptic, then 6x 7  is a proper T-invariant subspace, and we use 
induction on dimension. For this, we need to check the 1-dimensional case. But it is easily seen that an 
abelian group o f  isometries o f  the real line must either act trivially, or by translation (thus respecting the 
two “ ideal” points), or else consist o f  an involution with a single fixed point. Finally, if 7  is loxodromic, then 
its axis is T-invariant, and we are immediately reduced to  the 1 -dimensional case.
0

L em m a 1 .1 .0  : Suppose T C Isom H "  is nilpotent, then T has a fixed point in H " .

P r o o f  : Let o  be the set of points fixed by the centre Z (r ) .  Let T ' 2  Z (T )  be the subgroup that fixes 
o  pointwise. Since o  is canonical with respect to  T, T ' is normal in T. Thus T/T'  is nilpotent, and acts 
effectively on 0 .

0



Prom Lemma 1.1.8, we distinguish three poeribilitiea for a. Firstly, if  a  is a single point o f  H " , this point 
is fixed by T, and we are done. Secondly, if  a  is a proper subspace o f  H " ,  we use induction on dimension. 
Thus, we may assume that we are in the third case, namely that a  consists o f  precisely two points, z  and 
y, in H " . If r / r '  is trivial, we are done. Therefore we may suppose that r / V  is an involution. This means 
that there is some f  6  T  that swaps z  and y. Now, each element o f  Z (I )  fixes z  and y, and commutes with 
7 . We see that Z ( r )  must fix pointwise the geodesic joining z  and y. This contradicts the definition of a  as
fixZ(r).
0

P r o o f  o f  T h e o r e m  1 .1 .T : By Lemma 1.1.9, ( r n l / ( H " ) )  fixes some point, z , o f  H £ . If z  e  H n, we 
are reduced to the spherical case, and if  z  e  H ’/ ,  we are reduced to  the case o f  euclidean similarities. We 
observe that our definitions of the rotational part o f  an isometry (or similarity) are in agreement, so that 
the theorem follows from  Corollary 1.1.2, and Theorem 1.1.4.
0

For completeness, we state:

C oro lla ry  1 .1 .1 0  : Nilpotent subgroups o f  Isom H "  arc uniformly virtually abelian.

P r o o f  : If r  C  Isom H n is nilpotent, we need that [T : ( r n i / ( H n))| is uniformly bounded. But by Lemma 
1.1.8, T has a fixed point in H £ , so the result follows from the spherical and euclidean (similarity) cases.
O

Note that all the abelian subgroups constructed in this section are normal, since the neighbourhoods 
U (S "), t /(E " )  and i / ( H n) are all conjugacy invariant.

1.2. D iscre te  S u b g ro u p s .

In this section, we describe how nilpotent groups occur naturally when considering discrete group actions. 
Let g be a Lie group, and let | | be any smooth norm on G , for example, distance from the identity in 

some Riemannian metric. For any g, h €  G , sufficiently near the identity, we will have |jy,Aj| <  C|y||A|, for 
some constant C . Thus, we can find a bounded symmetric neighbourhood, 0 (G )  o f the identity in G  such 
that whenever g, h  G 0 ( G ) ,  we have [g, A) e  O (G ) and |[y,A]| <  jy|/2.

Lem m a 1 .2 .1  : IJT  it  a discrete subgroup o f  G , then ( r n O ( C ) )  is nilpotent.

P r o o f  : The elements o f  T have norms bounded below by some number e >  0, and the elements of 
O (C ) have norms bounded above by some number k. If m  is any integer greater than log3 (fc /c), we see 
that any m -fold com m utator in elements o f  m O ( C )  will be trivial. By repeated application o f  the identity 
[zy, s| *■ (z, |y, z)][y, s|(z, *|, we deduce that any m-fold commutator in (r n O (G ) )  is trivial. Thus, (rn O (Q ))  
is nilpotent.
0

The following lemma is a modified version o f  one to  be found in (Th2|. It is relevant to  our discussion 
o f  the Margulis Lemma. First, we introduce some notation. Given a subset X  o f  the Lie group G , we write 
X r for those g e  G  expressible as words o f  length r, in elements o f  X  together with their inverses (in X - 1 ),
i.e., inductively, X 1 — X U ( l )  U X “ 1, X r =  X r - , X * . If T is a subgroup o f  G , we write I*x for (I* n  X ).

L em m a 1 .2 .2  : Let G  be a Lie group, with W  a neighbourhood o f  the identify. Let K t , i  e  N be a sequence 
o f  symmetric neighbourhoods o f  the identity. Suppose K 1 is compact, and ( K t )4 Q K t for each i. Then, 
there exists some J f e N  such that for any discrete group I* ¡J G , (T x *  : ( I V «  H W)| <  N .



P r o o f  : Let V  be a neighbourhood o f  I with V  'P C  W . Sine« K i  ia com pact, there ia an upper bound,
k, on the number o f  right tranalatea V g,g  e  K t , o f V , that we can pack diajointly into G. Let N  -  k +  1.

Suppose that T <  G  ia discrete. Let =  1 , . . . ,  p )  be a diajoint packing with a< e  I V W n  K i,  and p
maximal. Note that p <  k . Write I V  =  (IV ,, n  W ). W e claim that (IV a,|« =  1 , . . .  ,p }  includes a complete 
set o f  coaets for I V  in VK h , so that (I**, : I V )  <  N , as required.

T o aee this, consider VN h  with h  6  TKm. Write K -  I ] L i  9i, with ft e  T  n  K N . If /  >  k  +  I, consider 
the collection {V h j\ j  =  1, . . . , *  +  1 }, where h,■ =  f l i . i  f t . so that A,- e  (K n ) N C  K t .  These sets cannot all 
be disjoint. Thus, we can write A =  a0~i, with afi e  K t and V a n V a f i  ?  0. Now, a 0 a ~ l €  V ~ l V  C  W , so 
a p a ~ l €  I V  Thus, I V  A — I V ( a 0 a - , )a 7  =  I V  A ', where A' =  0 7 . We have reduced the word-length o f  A, 
so, by induction, IV A  — IV A " , with A" e  K i.  But then, P A "n  P o t- j i  0, for some a,, so that A"a T l e  W , 
and r « A "  =  I V  a*. Hence, I V  A =  rjyai.
❖

We again consider the three geometries in turn.

l .  3(1). S p h er ica l G e o m e tr y .

We write l/o (S n) for 0 (I so m S "), the neighbourhood o f  the identity defined at the beginning o f  Section
1.2. Since this set may be chosen to be arbitrarily small, we may suppose that i /0 (S ")  C l /(S " ). We may also 
suppose that if0 (S ")  is conjugacy invariant. Now if T is a discrete subgroup o f  Isom S", then (I*f! i /o (S " )) 
is nilpotent by Lemma 1.2.1, and thus abelian by Corollary 1.1.2. It is easily checked that ( r  n  l /o(S“ )) has 
a finite index in I*, which is bounded as T varies. Thus we have:

Lem m a 1 .2 .3  (J o r d a n  L em m a ) : Discrete subgroups o /I so m S n ore uniformly virtually abelian.

1.2(11). E u clidea n  G e o m e tr y .

We can assume that O (lsom  En) has the form

0(Isom  En) — ( 7 6  Isom E "  | ¿ (7 0 , a) <  e and rot 7  e  U\ )

where e >  0, a  is some point o f  En, and Ui is some neighbourhood o f  the identity in Isom S"- * that is 
contained in £/(S " - ‘ ). For notational convenience we shall identify Ui with the set l /0 (S "- ‘ ) o f  the Jordan 
Lemma. We set

ff0(E " )  =r { r  G Isom E "  | rot 7  e  l /0 (S " )}.

P rop os it ion  1 .2 .4  : Suppose that r  is a discrete subgroup o f  Isom E " ;  then ( m t / 0 (E " ))  is abelian.

P r o o f  : T o  begin with, we do not know that (T  D l /o (E " ) )  is finitely generated, so we proceed as follows. 
Let Dr =  ( 7  G Is rm E " | d(-ja,a) <  re). Let g, be the dilation o f  magnification r about a. Considering 
r r -  ( r  n  U0{E " )  n  D r), we see that

ft" 1 r,ft = (ft *rft n t/o(E~) n 0,)
-  ( f t - T f t  n O (Iso m E "))

which is nilpotent (Lemma 1.2.1) and hence abelian (Theorem 1.1.4). Thus, r ,  is abelian for all r, and so 
( r n  l /0(E " ))  -  U , r r is abelian.
0

Again, it is easily seen that (I* n  t /„(E n)) has bounded index in T, so we have:

T h eorem  1.2 .5  (D le b e r b a c b )  s Discrete subgroups o f  Isom E " are uniformly virtually abelian.
❖
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Note that since l /o (S " )  is conjugacy invariant in Isom S ", the abelian subgroups we produce in this way 
will be normal. We shall w rite i/(n) for the bound on their index.

W e can say a little more about the structure o f  discrete euclidean groups:

P r o p o s it io n  1 .2 .0  i Suppose T acts properly discontinuously on E n . Then, there ie a plane /a C E n, 
preserved by T, with p /T  compact. M oreover, any two such subspaces are parallel, and the action o f  T 
commutes with the perpendicular translation between them.

P r o o f  : If T preserves each o f  two planes ri and r2, then it preserves f i  n  r j. It therefore makes sense to 
speak o f  a r-invariant plane p  ft 0 being minimal.

Let p i and p 2 be tw o such minimal planes. Let A (p^ .p,) =  { x  G p< | ci[x, p .) — d(p<,py)} C p,-. T 
preserves A(p,, p ,) .  Hence, b y  minimality, A (p ,, p , )  =  p^. It follows easily that p i and pa must be parallel.

Given any two parallel planes in E n, there is a unique perpendicular translation mapping one to the 
other. Any isometry that preserves these two planes must commute with this translation. It follows that 
the action of T on E "  must commute with the perpendicular translation sending p i to  p 3.

It now remains to  show that if T acts minimally on E ", then it is cocom pact. From the Bieberbach 
theorem, and the discussion o f  abelian groups in Section l .l ( i i ) , we can find a normal abelian subgroup T', 
o f  finite index in T, and a  plane r  <  E n, on which T' acts as a cocom pact translation group. There are
finitely many images, { r » ........ r* }, o f  r  under I*. each preserved by T '. Since a cocom pact action is minimal,
it follows that the n  are all parallel. We may now find r ', parallel to r , which represents the centre o f  mass 
o f  the u  in any transverse plane. T preserves r ',  so, by minimality, r '  =  E" =  r . Hence, En/r  is compact. 
❖

As in the earlier discussion of the abelian case (Section l .l ( i i ) ) ,  it is easily seen that the set o f  minimal 
planes in E "  form a foliation o f  a larger, canonical subspace.

1.2(111). H y p e rb o lic  G e o m e tr y .

Given x  G Hn, we write
/• (f )  =  ( t  G Isom H "  | d (-jr, * ) <  « } .

Let d\ be any Riemannian metric on the unit ta n ; -nt bundle T iH n o f  H n, invariant under the action o f  
Isom H " . Given x  G H " ,  we write

! ,'(* )  =  { i €  Isom H "  | di('r«7, 0) <  e for each unit vector if based at x } .

If r  is a subgroup o f  Isom H " , we write

r . ( . ) - < r n  / . ( * ) )

r;(*) = <rn /;(,)>.
Now we may suppose that O ( ls o m lln) has the form I f  lx )  for some t i  >  0 and x  G H " . We also assume 
that J,',(x) S  C /(H "). W e now have:

P r o p o a it io n  1.2 .7  s I f  T is a discrete subgroup o f  Isom H " , (Asa TJt (x ) =■ ( m / . ' j x ) )  is abelian.

Note that, by homogeneity, this remains true if we fix <i, and choose x  arbitrarily.
We next show that for small «, Tt (x) is virtually abelian. T o this end, we take J€', (x )  to  be the set W  

o f  Lemma 1.2.2, and the sets K ,  to be 7 i /r (x ). The lemma now tells us that, for some Af >  0,

|r,(n)(s) : ( r (( „ ) (x )  n / ¿ ( x ) ) ]  <  Af,

where «(n ) -  \/N. Thus,
| r . ,a ) ( . ) : r . (« , ( * ) n r ; , ( * ) )  <  s .
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For notational convenience, we shall assume that N  <  i/(n ), the constant o f  the Bieberbach Theorem, and 
that we have chosen the metric on T iH "  so that <1 =  <(n). W eca li«(n ) the Margulit constant. In summary,

T h e o r e m  1.2 .8  (M a rg u lis  L em m a) : For all n , there exist <(n) >  0  and i/(n ) €  N  such that i f T i t  any 
diecrete subgroup o f  Iso mil™ , and *  6  H n, then r , ( n)(x ) has an abelian tubgroup (~  r j j n)(x )  n r ,| „| (i )J  o f  
index at most i/(n).

Note that if 0 <  c <  c (n ) , then r ,(x )  n r j ( nj(x ) has index at most i/(n ) in r((s). By intersecting all 
conjugate subgroups to  I\ (x )  D rj|B)(x), we see that I*( (x) contains a normal abelian subgroup of bounded 
index, where the bound is independent o f  the choice o f  discrete subgroup I\

2 . F iv e  D efin ition s o f  G e o m e tr ic a l F initeness.

In this section, we shall give details of the five definitions of geometrical finiteness that we intend to  
use. First, we clarify a few points o f  terminology, and notation.

By a (discrete) parabolic group o f  hyperbolic isometries, G, we mean a discrete group which fixes a 
unique point in H " , i.e. (~)1( 6* 1 =  (p ), where p e  H " . In this case, G  must contain at least one parabolic
with fixed point p. Since no loxodomic can share a fixed point with a  parabolic in any discrete group, we see 
that G  consists entirely o f  parabolics and elliptics. We may represent H "  using the upper half-space model 
R "  with p — 00. It then follows that G  acts as a group o f  euclidean isometries o f  3 R "  =  E n _ l. From 
Proposition 1.2.6, we know that G  preserves some plane in d R "  whose quotient by G  is compact. Moreover, 
any two such planes are parallel. We shall write <7/  for some choice o f  such plane, and write <r for the vertical 
euclidean half-space with <r n  d R "  =  <r/. Thus, <r is the hyperbolic subspace spanned by <7/  and p. Now, if 
r  is any discrete subgroup o f  H " , and 7  e  T is any parabolic, with fixed point p, then the stabiliser o f  p is 
T will be a parabolic subgroup. We call p  a parabolic fixed point, which we abbreviate to p.f.p.

G F 1  Let r  be a discrete group. In Section 0.2, we defined M e  as the quotient, by T, of hyperbolic space 
together with the discontinuity domain, that is M e  =  (H"Uil)/r. Thus M o  — M  UM i, where M  =  H "/r 
is a complete hyperbolic manifold, and M/ =  0 /1?  consists of ‘ ideal points”  o f  M . Where there is more than 
one group in question, we shall be specific by writing M(r), Af/(r) and A fc (F ).

Suppose that T and P  are two discrete groups. Suppose c  and s' are (topological) ends o f  Af0- ( r )  and 
M ‘C ( V )  respectively. W e say that e and e ' are equivalent if they admit isometric neighbouroods. (Here, we 
use the term ‘ isometric* loosely, in that the orbifolds in question may contain ideal points. In saying that 
two such orbifolds are isom etric, we mean that there is an isometry o f  the metric parts which extends to  a 
homeomorphism on the ideal points.) Note that if T ' is a parabolic group, then A fc (r ')  has precisely one 
end (see the discussion below ).

D efin ition  1 : T u  G F I i f  Afc ( r )  hat finitely many ends, and each inch end it equivalent to the end o f  
the quotient o f  a parabolic group.

It will be convenient to  give this definition a moi • concrete formulation in terms o f  the structure 
o f  parabolic groups. Let r p be such a group, fixing p =  x> in the upper half-space model, R " . Let 
a  be a r-invariant vertical plane with <7//rr compact. Let C (r ) =  { *  €  R "  U 3 R "  | d,M(x,<ri) >  r ) .  
Thus, R ’J u 3 R " \ C ( r )  is an open uniform r neighbourhood of <r/ in the euclidean metric on R "  U 3 R " .  
Since Tp preserves the euclidean metric, the constuction is r p-equivariant, so we may form the quotient 
¿ ( r )  =  C(r)/Tp. Since «7/  is compact, ( R "  u 3 R " \ C ( r ) ) / r ,  =  * f c ( r , )\ (J ( r )  is relatively compact in 
M o (r p). If we take a sequence (r„ ) tending to infinity, then the sets M c ( r p) \<?(rH) give a relatively 
compact exhaustion o f  M o (T p). Since each &(rn)  is connected, we see that M a(T p) has precisely one end. 
The sets ¿ ( r n) give a  neighbourhood base for the end. Given any r, we call C [r )  a itandard parabolic region 
(FIG  2.1), and the quotient 6 (r), a itandard eutp  (FIG  2.2).
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W e may now say that T is G F 1 if and only if we can write M e  =  l^ U  ((j£ )>  with A  com pact, t  finite, 
and each <? G t  (isometric to) a standard cu»p (FIG 2.3). We shall see (Chapter 3, GF4 => G F 2) that the 
cusps 6  are in bijective correspondence to the orbits o f  parabolic fixed points o f  I*.

W e write N  for the lift o f  f t  to  H £ .

G F 2
Let p  be a parabolic fixed point (p.f.p.) of the discrete group I*. Let Tp =  stabpp —  the stabiliser o f  p. 

We say that P  is a bounded p .f.p . (b.p .f.p .) if ( A \ { p ) ) /r p is compact. Let p  =  oo in the ipper half-space 
model, and let <r/ be a mininmal Tp invariant plane. Then it is not difficult to see that ( A \ { o o } ) / r p is 
compact if and only if deuc(y, a/) is bounded as y  varies in A \ {oo ). In other words, p  is a b.p.f.p. if and 
only if A (r )\ {o o )  C Q r =  ( x  G 3 R 1}  | dIac( i , f f j )  <  r }  for some r (FIG  2.4).

Let y  G A(T). We say that y  is a conical limit point (c.l .p .)  if for some (and hence every) geodesic ray l 
joining some point o f H n to  y, the orbit Tl o f l accumulates somewhere in H -‘ , Le., |{-j G T\-jln K  f  f)| =  oc 
for some compact K  C I I " . (The term derives from an alternative desription, namely that there should 
exist a sequence ~in G T, and a point x G Hn, with 7 „ x  tending to  y, while remaining a bounded distance 
from some geodesic ray —  see FIG 2.5.)

D e fin it ion  2 : T is G F t i f  every point o f  A it either a c.l.p. or a b.p.f.p.

We shall see in Ch.3 that these two classes are, in any discrete group, mutually exclusive. In fact, it is 
shown in [SusS| that, in any discrete group, no p.f.p. can also be a c.Lp. It will follow from the discussion 
in Chapter 3 GF4 => GF2 that in the special case o f  a  geometrically finite group, any p.f.p. is necesserily a 
b.p.f.p., and thus not a c.l.p.

Beardon and Maskit |BeaM| give several equivalent definitions o f  c.l.p ., including one that makes sense 
in H " . This gives GF2 as a definition o f  geometric finiteness intrinsic to the action o f  T on H " .

Finally, we remark that, for a G F  group, the convergence o f  orbits under T to  c.Lp.s can be chosen to  
be "uniform*. For us, this means that the set K ,  in the definition, can be chosen independently o f  the point 
y and the ray l. Together with a certain convergence property for the radii o f  isometric spheres, this implies 
that the limit set of a G F  group has either sero or full spherical Lebesgue measure (see (BeaM .ApI)). A 
more geometric proof o f  this fact is based on the definition GF5 (see (T h lj).

G F 3
Let T be a discrete group. W e have said that the hypothesis that T should possess a finite-sided 

fundamental polyhedron is more restrictive than we would like in dimension 4 onwards. In Section 4, we 
give an example to illustrate this point (at least for the case o f  Dirichlet domains). However it is possible to  
modify the criterion so that it works in all dimensions. The idea is that we should allow ourselves more than 
one polyhedron to constitute a fundamental domain for I\ The definition is most clearly expressed in terms 
of what we shall call “ convex cell com plexes'. A convex cell complex is cell complex in which all the cells 
are convex, and hence necessarily polyhedra. It need not quite be a CW -com plex since we only attach cells 
along their relative boundaries in hyperbolic space. Thus a finite com plex is complete, but not in general 
compact. We give a more formal description below.

Let A be a subset o f  E ". W e call A an open (convex) cell if any tw o distinct points o f  A  lie in the 
interior o f  some geodesic segment contained entirely in A. Note that by demanding that the tw o points be 
distinct, we allow any one-point set as an open ce ll W e see that the property of being an open cell is closed 
under taking finite intersections.
D efin ition  : A collection A o f  subsets o f  E " is "convex cell complex"  if:
(1 ) each element o f  A is an open cell,
( t )  the sets o f  A are all disjoint,
(3 ) the collection A is locally finite,
(4 )  I M  =  E »,
(5 ) I f  A ,B  G A and B r A j t $ ,  then B  Q A.

Let A be such a cell complex, and let B  G A. Suppose that x and y  are two points o f  B , and suppose 
that x  G A  for some cell A G  A. Then, from (5), we see that y G A. Thus, {A  G A \ x  G A )  is independent
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of the choice o f  x 6  B. In particular, from the local finiteneee o f  A, (2), we see that any cell o f A meets the 
closures o f  only finitely many other cells.

Now, given two cell complexes A and B, we call B a  subdivision o f A if  each B  G B is a subset of 
some A €  A. Any two cell com plexes Ai  and A3, have a natural common subdivision, namely ( A i, A3 ) 
=  { Ai n  A t \ A i €  A i,A i  €  A a ) . In fact (A t, A ]) is minimal with respect to subdivision —  if B is a 
subdivision o f  both Ai and A3 , then it is a subdivision o f  (A\, A3) . We also remark that intersecting a cell 
complex with an affine subspace o f  E n gives a cell complex in that subspace.

A ll the above properties are easily verified from the definition above. However, to make the analogy 
with CW-complexes more explicit, we offer a slightly different description o f  convex cell complexes as follows.

Suppose that A  C E ”  is a convex set. We write (A ) for the affine span o f  A , i.e. the smallest subspace 
of E "  containing A. We may define the dimension of A, dim A , to  be equal to the dimension of (A ). W e also 
define ri A  and rb A  to be, respectively, the relative interior and the relative boundary o f  A in (A ). N ote 
that ri A is always nonempty, provided A is nonempty. Moreover, it is not difficult to  see that A is an open  
cell if and only if r iA  =  A. By an open i-etll, we mean an open cell o f dimension ».

Let A be a collection o f  convex cells of E n. We write A' for set of all t-cells in A . The r-skeleton, K T, o f 
A is the union of all t-cells with t <  r , Le. K T =  U I(L M ')- We now claim that, if  we know that A satisfies 
properties ( l ) - (4 ) ,  then property (5 ) is equivalent to the following:
(S') If A €  A ', then rb A  £  K r~ x.

T o  see (5 ')  => (S), it is enough to not that if one open cell lies in the relative boundary of another, 
then its dimension must be strictly less. T o see (5) => (S ') is a little more complicated. Suppose that A 
satisfies ( l ) - (4 )  and (5), and let A 6  A '. Using (for example) a measure-theoretic argument, we see that 
(U  Ar_1) n r b  A  is a dense subset o f  d A . Suppose that B  €  A r _ 1  intersects rb A. If B  is not a subset o f  r b  A , 
then there is some point x in the relative boundary of A  n B  in B . By considering a neighbourhood o f  x  in 
rb A , we see that x €  r b C  for some C  €  Ar~ l , different from  B . But by (S '), we have that r b C  £  K T~ a. 
This contradiction tells us that B  £  rb A . In other words, r b A  is a union o f  closures o f  (r  — l)-cells. W e 
have deduced property (5) in the case where dim A -  dim B  =  1. W'c new use induction over dim A — d im  B . 
Let D  €  A  be an t-cell intersecting r b A . From (5 '), we know that t <  r — 1. If « =  r  — 1, we are done. If 
t <  r — 1, then D  intersects r b £  for some (r  — l)-cell E  £  rb A . B y the induction hypothesis, 0 £ r b £ .  W e 
see that D  £  rb A. Thus we have shown the equivalence o f  the two descriptions o f  convex cell complexes.

Now, let A be a convex cell complex, and let U — A "  be the collection o f  top-dimensional cells. We 
claim that U is characterised by the following properties.
(a) U is a collection of open convex subsets o f  En.
(b) U is locally finite.
(c) The closures of all the sets in U cover E n.
(d) The elements o f  U are disjoint.
In fact, if we are given such a collection, we may recover a convex cell complex as follows. Given x €  E " ,  we 
write P (x )  -  {U  e  U | x  6  0 ) .  Let A (x )  *- (* e  E " | P (y ) =  P (x )> , and let A(U ) -  (A (x )  | x  €  E " ) .  Then, 
we claim that A(U) is a convex cell complex with A(U)H — U- The only property that is not immediate is 
property (1), namely that each A (x )  is an open celL For this, it is enough to check that if y and s are distinct 
points in E " with P (y ) =  P (y ) , then y  and s lie in the interior o f  a line segment i, with P (u ) =  P (y )  for all 
u €  /. In fact, if T  is the translation o f  E "  sending y to  *, then it is not difficult to  see that, for some « >  0, 
we will have JV ,(*)n t/ — T (N ,[y )r\ U ), for any U € U .  (AT, denotes a uniform «-neighbourhood.) This means 
that we can find such a line segment with a neighbourhood on which the sets o f  U are a cartesian product. 
We deduce that A(U) is a cell com plex, which has U as its collection o f  top-dimensional cells. M oreover, 
A(U) is minimal with respect to  subdivision. Thus, our original A is a subdivision o f  A(U).

We state a refinement o f  the above result.

P r o p o s it io n  2 .1  : Let A he a convex cell complex. Let U he a locally finite collection o f  open r-cells, whose 
closures cover the r-skeleton o f  A . Suppose that each U  €  U is a subset o f  som e A  €  A '.  Then there is  a
natural subdivision, B, o f  A , such that BT *  U and B' =  A* fo r  i » f + l ........s .

The propoeition may be proven by similar arguments to  those given above. In fact, our discussion dealt 
with the special case when A =  { E n } and r *» n. We shall not give details here, since it is not central to  the
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paper, but used cnly to relate the notion o f  cell complexes with fundamental domains.
One natural way in which convex cell complexes arrise is as follows. Let X  be a discrete subset o f  E " . 

Given i € X , w e  define £>x(*) to be the set of points in E " , nearer to  x  than to any other point o f  X ,  Le.

D x (* )  = { y  G E "  | d (y ,x ) < d (y ,s )  for all * e X \ {* > ).

It is easily checked that the collection o f  sets ( D x (* )  | x  G X )  satisfies all the conditions o f  being the set of 
top-dimensional cells of some convex cell complex, namely properties (a )-(d ) listed above. Let A x  b e  the 
cell complex, minimal with respect to  subdivision with A x-

Another description o f  A x  as follows. Given any finite subset Y  o f  X ,  we write D x (Y )  to  be the set of 
points y for which the minimal value o f  d (x ,y ) with x G X  is attained equally at each point x e  Y . T hen  A 
is the set o f  all D x (Y )  as Y  ranges over all finite subsets o f  X .

Let A  a convex cell complex, with A  G A. We call B  €  A a [ace o f  A  if B  C A . We write 7 (A ) for the 
set o f  all faces o f  A. We call a subset 8 o f  A * full tubcomplex if a face o f  any element o f  8  also lies in 8 - In 
this case, we write |0| for the union o f  all the cells o f  8 . W e see that |S| is a closed subset o f  E n.

We can make sense o f  the notion o f  convex cell com plex on certain closed subsets o f  En by replacing 
property (4) in the definition by the hypothesis that (J 8  =  F. Examples are thus full subcomplexes o f  a 
given com plex A.

Suppose that A e  Ar for some com plex A. Let (A )  be the affine span of A. It is not difficult to  see that 
we may represent A as an intersection o f  half-spaces, in (A ),  determined by the codimension-one faces o f  A. 
Thus each cell o f  a complex is necessarily the relative interior o f  a polyhedron, according to  the following 
definition.
D efin ition  : An "r-dimensional polyhedron" is a (countable) intersection o f  closed half-spaces o f  Er , P  =  
P|o€i4 Ha , where the sets P  n  d H a are locally finite. We insist that P  have non-empty interior in E r .

Given such a polyhedron, we may'reconstruct a convex cell complex S (P )  on P  by taking, as lower­
dimensional faces, the relative interiors o f  the intersections with P  of the supporting hyperplanes. W e call 
such faces the sides of P . If P  is obtained as the closure o f  a  cell in a convex cell complex, then 7 ( P )  is a 
subdivision o f  S (P ).

As an example, consider the tesselation o f E "  by bi-infinite square prisms (each isometric to [0, l )a x  R ),  
obtained by stacking the tiles in horisontal layers (FIG 2.6). First, the tiles are laid parallelly north-south, 
then east-west, and so on alternately. Each tile has infinitely many codimension-1 faces (in the associated 
cell complex), but only finitely many codimension- 1  sides (in fact, four).

So far, we have talked only about cell complexes in euclidean space. However, all the above discussion is 
valid with E "  replaced by H ” . T o  see this, we note *hat in the Klein model for hyperbolic space, hyperbolic 
and euclidean convexity coincide.

Now, let r  be a discrete group acting on H ". Let X  be a discrete T-invariant set, and let A x  •>« the 
complex derived from X , as described above. The com plex A x  has the following properties.
(i) It is T-invariant.
(ii) The setwise stabiliser o f  any cell is finite.

Suppose in particular, that X  =  (J?=i r a ,, where the orbits I'a* are disjoint, and each point has 
trivial stabiliser in I*. Then, we call the top-dimensional cells o f  A x (generalised) Dirichlet domains. We 
write Ap(a) for th« complex A x ,  and write D ,(q)  for Dx(<*i) —  the Dirichlet domain about a,. Here, a 
represents the finite set { a 4, . . . ,  afc) .

More generally, we say that a convex complex A is associated to T if it satisfies the two properties ( i)- ( i i )  
above. If we are given such a com plex A, we may find a r-invariant subdivision Ao o f  A with the property 
that if any 7  e  T preserves, setwise, a cell A  G Ao, then it fixes A  pointwise. This means that Ao projects to 
a cell complex in A/  =  H '* /r .

One may obtain A0 as follows. For A  G A ", let stabp A  be the (finite) stabiliser o f  A in T, and let U (A ) 
be the set o f  intersections o f  A with a collection of D irichlet domains for stabp A. Given any 7  6  r\stabp A, 
we define U (iA )  =  7 U(A). Performing this construction for each orbit of top-dimensional cell gives us a 
T-invariant collection of convex sets U — UxeS* ^ (A ), satisfying the hypotheses Proposition 2.1. This gives 
us a subdivision A\ o f  A. Let (A ,A \) be the common subdivision o f  A and A 1 as defined above. W e can
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now cut up all the codimention- 1  cells in (A , Ai) in a similar way. Applying Proposition 2 . 1  again gives us a 
further subdivision Aj. Continuing this process inductively gives us, after n steps our required subdivision 
Ao. Note that each cell o f  Ao is divided into only finitely many pieces in Ao-

We can relate the complex Ao to  convex fundamental domains. Suppose, for a moment, that T is 
orientation-preserving, so that the singular set lies in K n~*(Ao)- Let 8 "  be a set o f  orbit representatives 
o f  Aq under I\ Let Bn~l =  ( /(S '* ) ) '* - 1 , the set of codimcnsion-1 faces. Each face in Bn_l meets either 
one or two cells in Bn. Those that m eet only one are paired under I*. The set o f  [ace-fairing  isometries 
generate I*. If S'* has only one element, say P, then B  is called a (convex) fundamental polyhedron. In 
defining geometrical finiteness, it has been usual to demand that the codimension-1 sides and faces o f  B  
coincide (the axiom of side-pairings - see |BM|). However, from our point of view, this restriction does not 
seem particularly natural, and we shall not use it. Note that, if T is not orientation-preserving, we may have 
to allow for reflections in codimension- 1  faces.
D efin ition  3 : I* is GFS i f  there exists o convex cell complex A on  I I ” , preserved under T, with { 7  G 
T | 7 A =  A ) finite [or all A G  A, and with A/T (the set o f  orbits under T ) finite.

In such a case, if we subdivide A  to  Ao as described above, then Ao/T will also be finite. Thus, Ao 
projects to a finite complex in M . W e may thus rephrase G F 3 by saying that M  may represented by a  hm te 
complex in which cell is isometric to  an open convex set in H " . As stated at the beginning, each cell is 
attached only along its relative boundary in H n.

G F 4
Let r  be a discrete group o f  isometries of H " . We define free(r) =  { 7  G T | fix(7 ) D H n =  0} to be the 

subset o f  elements acting freely, i.e. w ithout fixed points in H " .  Let 0 <  t  <  <(n), where c (n ) is the Margulis 
constant. The set thin~(M ) =  (x| d (z ,7 z )  <  t  for some 7  G free(T )} projects to what we shall call the thin 
part of the quotient orbifold M , denoted by thin.(Af).

We claim that the connected com ponents of thin<(Af) have the form th in ,(A f(G )), where G  is either a 
parabolic group, Le. fixes a unique point in H " , or else is, what we shall call here, a “ loxodromic group*, 
i.e. it preserves, setwise, a geodesic, whose quotient under G  is compact. Thi* is well known in the case 
where T is torsion-free, and we can use essentially the same reasoning for our more general situation. For 
completeness, we give the argument below .

Let T  be a component of th in ~ (A f), and Jet G  be the setwise stabiliser o f T  in T, so  that T  =  T/G  is a 
component o f  thin«(M ). We first show that f c  th in ~ (M (G )).' We then show that C  is either parabolic or 
loxodromic, from which it follows that th in~(A f(G )) is connected, and thus equal to  T . We can then deduce 
that T  =  th in ,(A /(6')).

For the first part, consider x  G T . There is some 7  G free T, with d(x, 7 x) <  f . Let l be the geodesic 
segment joining x to 7 X. For any y  G / ,  we have d(y, ■yy) <  d (x , 7 1 ) <  e. Thus I C  th in~(A f), and so 7 x  G T . 
Now any element o f  T must either preserve T  setwise, or map it onto a disjoint component. We deduce that 
7  €  G, and so x  G thin~(Af (<?)).

For the second part, we fix z  G T . Now, r,(x) =  (7  €  T | d (x ,y x )  <  t) contains an element of infinite 
order. From the discussion of the Margulis Lemma in Section 1, we may deduce_that r t(x) is either a 
parabolic or a loxodromic group. Now, let 7  G G. We join x  to 7 1  by a path A C T .  Consider the groups 
r ,(A (0 ) , a* the parameter t varies. Suppose at some time toi P«(A(t)) changes from one subgroup G 1  o f  T 
to another, G 2 C I*. Choose any c' lying strictly between e and the Margulis constant <(n). Then G\ and 
Ga are both subgroups of IY (A (t0) ) .  Again from the Margulis lemma, we see that G , and G 2 are either 
both parabolic with the same fixed poin t, or loxodromic with the same axis. Thus, if r,(x) is parabolic with 
fixed point p, then T ,(yx) is also parabolic with fixed po irt p. But, r « (7 i )  =  7 r , ( x ) 7 - 1 , and so 7 p  =  p. 
It is clear from the first part o f  the p roo f that G  contains elements o f  infinite order, and so we see that 
G  is a parabolic group. In this case, note that if y  G th in ~ (A /(G )), then the geodesic joining y to p  lies 
within th in~(A /(G )). From this, it is easy to  deduce that th in~(A f(G )) is connected. Similarly, if T ,(x )  is a 
loxodromic group, then so is G. Again, we may see that th in~ (A /(G )) is connected, since the shortest path 
from any point of thin~(A f(C )) to  the axis lies within th in ~ (A /(C )). This completes the proof o f  the claim .

If G  is parabolic, we call T  =  th in ,(A f(G )) a Margulis cusp. If C  is loxodromic, we call T  a Margulis 
tube. In the latter case, the quotient o f  the loxodromic axis is either a short arc, or a short closed geodesic,
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which we call the core of the tube. The tube is a regular neighbourhood o f  the core in the quotient orbifold. 
A cross-section o f  the tube is starlike about its intersection with the axis. In fact it is a finite union o f  convex 
sets, since the tube is a finite union o f  sets o f  the form {x  £  H n | d(x, -yz) <  t)/G , each of which has convex 
cross-section.

We shall denote by thick« (A f), the closure o f  the complement o f  thin«(A /), in AS. We call thick« (Af) 
the tKiek part o f  Af.

These definitions are m ost natural when T acts freely. Then, thin« (A f) is the set o f  points with injectivity 
radius at most t /2 . The definitions for the orbifold case are not standard, but are convenient for our purposes.

T o give the fourth definition o f  geom etric finiteness, we need to  define the “convex core* o f  a hyperbolic 
orbifold. The definition is the same as that given for a hyperbolic 3-manifold in the introduction. Let A be 
the limit ret o f  I*. The “ convex hull", K , o f  A is the minimal closed convex subset o f  H "  whose closure Yo 
in H "  contains A. The construction o f  Y  is best seen in the Klein model for hypebolic space (see (T h lj). 
From this picture, it is clear that Y,; n  H "  =  A. Since the construction is T-equivariant, we may project Y 
to a subset, in the quotient orbifold, A f. We call f  the convex core of M  (FIG  2.7).

D efin ition  4 : r  is GF4 if, for tom e t  <  <(n), < >  0, f '( I ' )  n  thick« (A f(T )) it compact.

We will describe below an alternative way o f  defining a thick-thin decom position for orbifolds. The 
resulting decomposition is identical for manifolds, and qualitatively similar for other orbifolds. The definition 
is suggested by the following proposition, which we also use in discussing GF5 in Ch.3.
P r o p o s it io n  2.1 s For each n there is some N  =  W (n), such that i f  *  £  H n lies in the in terior o f  
thick~(Jtf) (the lift o /th ick ,(A S) to H £ ) ,  then r , /w (x ) is finite.

We begin the proof o f  Proposition 2.1 with the following lemma.
L em m a 2.2  : Let G  be any group, and H  <  G , a subgroup toith \G : H\ =  k. I f  G  =  (A ), A  C  G , then
H  =  ( 7 f n ( A a*+1)).

(As in Lemma 1.1, if X  C G , we denote by X r the set o f  those g £  G  expressible as words o f  length r in 
elements o f  X U {1 }  U X ~ * .)

P r o o f  o f  L em m a : The proof will be similar to that of Lemma 1.1.
Given any h £  / / ,  we can write A =  fJ i with g, £  A. If p >  2k +  1, consider the collection 

{ / /A ,| / =  l , . . . , f c  +  1), where Ay =  f l j Hi- These cosets cannot all be distinct. Thus, A =  a ß ' j  with 
H a ß  =  H a, a  £  Ak, ß  £  1, and a ß  £  A *+ l . We can write A =  (a ß a ~ x)K' where A ' =  a~i- But 
a ß a - 1  €  / /  D As*+1, and A' has shorter word-length than A, so the result follows by induction.
O

P r o o f  o f  P r o p o s it io n  : Let N  =  2u (n ) +  1, where i/(n) is the bound on index in the Margulis Lemm a. We 
fix x £  int th ick ''( A /), and consider I \ (s )  =  ( m  J«(x)). From Chapter 1, we know that I\(x) contains an 
abelian subgroup K, with (r«(x ) : K\ <  */(n). Let T  be the torsion subgroup of K .  Since x  £  in tth ick i '(A f), 
we have /« (x )  n freeT  =  0, so that K  D 7«(x) C  T. We write I ,  for /< (x), etc.

Let n =  c/N, so that I f  C  7«. Then [1%, : T , n  K\ <  i/(n ), where r , = ( m  7 „) =  (I\ n  7 , ) .  FYom the

r , n K  = ((r, n In)N n K)
£ (r ,n 7 "n /f>
£ <r« n (7, n *)).

But 7« n  K  C  T, so |r,| <  i/(n)|r| <  oo.
The case when P« is loxodromic is similar.

0
Suppose that tf <  <(n)/AT(n), and let P , ( r )  =  (x  £  H “  | T ,(x )  is infinite } .  F , ( r )  is closed in H ” , since 

we defined our sets 7 ,(x )  to  be closed. It projects to a set which we denote by thin'T(A f) in A f. W e write 
th ick^ A f) for the cloture o f  its complement in H " . For c <  <(n), we have the inclusions

th in « /* (A f)  C thin'yjy(Af) C thin«(Af).
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Again, the connected components o f  thin^fM ) are o f  two types - tubes and cusps. In G F 4  => GF1, we 
shall see that if M  is GF, then Y  n  thick, (Af) is compact for any c >  0, arbitrarily small. T h is fact means 
that we can reformulate GF4 by demanding that f  n th ick(,(Af) be compact for some fj <  «(n )/A T (n).

G F 5

D efin ition  5 : T is GF5 i f  it is finitely generated and, for some tj >  0, the rj-neighbourhood, r ) ) of
f ( r )  has finite volume.

We suspect that the assumption o f  finite-generation is unnecessary. We show this to  be the case:
(i) if |stabr(x)| is bounded for x  €  H *  (for example, if T acts freely); or
(ii) if A /(r ) , itself, has finite volume; or
(iii) if »  <  3.

3. P r o o fs  o f  E quivalence.

The main cycle of proofs will be:

We use GF1 as our central definition, since most the facts about geometrically finite groups are most 
easily deduced from this. We include proofs o f  1 => 2 and 1 => 4 since they are very much shorter than 
following the cycle. The only non-geometric input is an appeal to  the Selberg Lemma (C hapter 0) which 
overcomes a technical difficulty in the proof o f  5 =>■ 4.

G F 1  =» G F 2
We have M e  =  f t  U ((J d), where f t  is the projection o f  a  com pact set So  Q H "  U f l, and C is a finite 

set o f  cusp regions. Let y  €  A(I').
Suppose that y is the is the fixed point o f  a parabolic group Ty, which stabilises some cusp  region C. 

Then ( A \ { o o } ) /r y is a closed subset of the relatively compact set ( H £ \ C ) /r y, and is thus com pact. We 
see that, in this case, y is a b.p.f.p.

So, suppose that y  does not correspond to  a cusp region in the way described above. (It is still 
conceivable, at ths stage, that y may be a p.f.p., though this does not affect the argument.) We must 
have |A| > 2, so that the convex hull Y  meets H n. We join y  to  a point x 6  Y  n  H "  by a geodesic ray I. 
Note that (J(ri) C Y . Clearly, < must leave any cusp region it enters, so the quotient f  must accumulate 
somewhere in f t .  Hence, Tl accumulates somewhere in No n  Y , and so, in this case y  is a c.l.p.

G F 2  =* G F 1
First some general remarks.
Let K  C H n be a closed convex set. We may define the nearest point retraction p x  : H "  —» K ,  where 

p /c(x) is the nearest point o f  K  to  z. This map extends continuously t o  ideal points, p x  : H * —» K<;, where 
K c  is the closure of K  in H ".. We may describe the extension as follows. For x 6  K c  n H " ,  take P x l* )  — *i 
and for x 6  H " \ l f c ,  take P x (* )  to be the unique point such that K c  n  B  =  (p x (x ) }  for som e horoball B 
about y. Notice that if, for a pair K , L  o f  convex sets, ^ n t ( x )  =  y  6  intK ,  then Pl [* ) — !/-

Given a set X  C H " , we shall denote by Af,(Jf) the uniform r-neighbourhood o f X ,  i.e. ( x  € 
H " | d {x ,X )  <  r ). We shall say that two closed convex sets, K t and Afj, are A-near (for som e A >  0) 
if K t C  N y(K o)  and K 3 Q N x (K t ). We show:

Lem m a 3.1  i Given A >  0 , there exists L  =  L (A) >  0 such that i f  K\ and K 3 are A-near, then
< L for all z  e  II£., where pi =  p x , ■

\
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P r o o f  : Given > triangle xya  in Ha, possibly with x  an ideal point, if the angles at y and a  are both at 
least * /4 ,  then d (y ,i)  <  £ j ,  where £ »  is some fixed constant. Also, given A, we may find £3 so  that any 
two points, a distance no more than A apart, subtend an angle o f  less than w/4 at any third poin t, distant 
at least £ 3  from one of them. Let £  =  m a x (£ j , £3). Then £  >  A.

Suppose now, z  G H£, with y< =  p ,(z )  and <f(yi,y3 ) >  £ . This means that z , y i, y? are all distinct. 
Since ya G K 3, there is a point y{ G Alj,(y7) n  f f i .  Similarly, there is some y j  e  Wj,(yi) n K 3 (FIG  3.1). By 
convexity, the line segment yjy( lies in / f i -  Since d (z ,y  1 )  is minimal, the angle z$ iy( is at least jr /2 . So the 
angle x$xy7 is at least x /2  — x /4  =  x /4 .  Similarly, zjfoyi is at least x /4 . But d (y i,y 3)  >  £ 1 , contradicting 
the fact that z, yt , y3 form a triangle.

O
Suppose, more generally, we have a closed convex set X , with K x n  Nl [X )  and K 3 D N l ( X )  A-near. 

(Note that N ^ (X )  is also closed and convex.) Let pj be the retraction onto K i n  NL(X ).  Let z  G H ” . By 
the lemma, ¿ (¿ ¡{ x ) ,  p'2(x ))  <  £ . Suppose p i ( z )  G X . We must have p\(x) =  p i(z ), so p^(z) e  in tW t(A ). 
Hence, ps(*) =  Pa(*)- In other words, p i(x )  G X  implies that ps(z) G Nl (X ) .  We have shown:
C oro lla ry  3.3 : Let X, K i t K 3 Q H "  be eloaed convex subsets. I f  K x n  N L(X ) , K 7 n  NL(X )  are \-near, 
then p f * ( / f j  n X ) C p j l (K 7 n  N l (X \ ), where pi is the retraction onto K <.

In proving GF2 => GF1, the first step will be to construct standard parabolic regions about each b.p.f.p. 
We shall arrange that these regions are strictly invariant under T, Le. they are disjoint, collectively invariant 
under T, and the stabiliser o f  each region is equal to the stabiliser o f the corresponding p.f.p. They  therefore 
project to  disjoint cusp regions in M . A priori, there may be infinitely many o f  these. However, in the second 
part of the proof, we go on to show that their complement, in M o, is relatively compact, so that there could 
only have been finitely many.

Since the construction of standard parabolic regions about b.p.f.p.s is valid for any discrete group, we 
stae it as a separate proposition.

P rop os it ion  3.3 : Let r  be a discrete group, and let P  C  A be a r-invariant collection o f  b .p.f.p.a. Then, 
there exists a collection o f  cusp regions (C (p ) | p G P ) ,  which is strictly invariant under T, i .e . the regions 
are mutually disjoint, and C{~tp) =  7 C (p ) fo r  all 7  G T and p G  P .

P r o o f  : If T is parabolic, the result is trivial. Hence we shall assume that |A| >  2 so that the convex hull, 
Y ,  of A meets H '\ The retraction py  on to Y  is clearly equivariant under the action o f  I*. Let p  G P , and 
let T(p) C  H "  be a Margulis region about p, as defined in Chapter 2 (G F4), Le. T (p) =  th in~ (stabr p). 
The regions (T (p ) | p G P )  are strictly invariant in the sense defined above. It follows that this is true of 
the regions T (p ) n  Y  and hence S(p) — P y 'tT (p ) n  Y )  also. We need therefore only to show that each S(p) 
contains a standard parabolic region C (p ).

Focusing on one such p =  00 in R "  , with stabliser r p, we know that A (r )\ (oo ) C Qk — {z|deue( z ,  o/) <  
A) C 3 R " ,  where o/ is a minimal r p-invariant plane. Let v : R "  —» R "  be vertical euclidean projection. 
It is not difficult to see that v(T(p)) =  d R " .  Moreover, we can choose a horoball, B (p), about p, so  that 
B (p )r \ v -l Q k C T(p). Since Y  C  v ~ l Q k, we have that Y  n  B (p) C T(p ).

We have assumed that A ^  (o o ) . Hence each point o f  <r/ lies within some bounded euclidean distance 
of A. Since v~l K C Y , we see that Y  n  B (p ) and u n f l (p )  are A-near for some A >  0 (recalling the notation 
o  =  v~to / ) .  Let B '(p) be the horoball with dB '(p )  a hyperbolic distance £(A ) above dB (p), i.e. B (p) -= 
Nl (B '(p) ). From the corollary to our lemma, we have the inclusions p~l [at~\ B'(p))  C  P y X(Y  n  B (p ))  C 
P yX(Y  n  T (p )) =  S(p) (FIG 3.2). Then, p ~ l [ o n  fl '(p ))  is a standard parabolic region C(p).

0

P r o o f  o f  2 --> 1 : Let T be GF2, and let P  C  H" be the set o f  all b.p.f.p.s. Let C — (C (p ) | p  G P )  be the 
collection of standard parabolic regions constructed as in Proposition 3.3. Let N  be the closure, in l i "  U f), 
of the complement (Hn U n)\Up€/» <^(p)- In *•>« quotient, we may write Ma  =  where f t  is the
projection o f  N , and <J is a collection o f  standard cusps. We want to  show that f t  is compact.

Let a lie in N  n  H"\£, where N  is the lift o f  f t  to H" U fl, and £  is the singular set. Let P  =  D {a )  be 
the Dirichlet region about a. The set P  is convex, and its images under T are locally finite in H". Hence,
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P c, iU closure in H £ , can contain no c.I.p..
Suppose Pc  meets a b.p.f.p., p  =  oo  in R £ .  (H £ \ in tC (p ))/rp is compact. Since the images o f  f^intC (p) 

under Tp are disjoint and locally finite, P \ in tC (p) must have finite euclidean diameter. We see that intC(p) 
is an open neighbourhood o f  p in Pc . Thus, N  n  Pn  --  P c\ (U p ¡ntO(p)) is a closed subset o f  P c ,  and hence 
a compact subset o f  H n U fi. P c \ A, being the closure o f  a Dirich'H  region in H n U O, is a  fundamental 
domain for T acting on this set. It follows that d  is a quotient o f  P c  f l N , and is therefore com pact.

Finally, suppose there were an infinite sequence (C „ )  o f  distinct cusp regions. We take x „  G d C n r\P cH 
H " , with d(zn, 7 „ x „ )  <  e(n) for some parabolic ~/n stabilising C „.  (Here <(n) is the M argulis constant.) 
Margulis constant by some corresponding parabolic element. Taking a subsequence, we have x „  —* y G 
H ”  U 0 . If y  e  H n, then r ,(y )  contains parabolics with different fixed points, contradicting w hat we know 
about the structure o f  I\(y) from C h .l. If y  G ft ,  then m in{d(xn, 7 Zn))7  6  free (r)) —♦ oo, contradicting the 
choice of z n.
0 2 => 1

G F 1  => G FS
We have M o  =  A  U (U ¿ ) ,  where £  =  (<?i........<?*}. We may write =  < 7 ,/r , where <7< =

(x|dcuc(x, ( o ,) / )  >  r , }  C R "  U 3 R ” , and I\ is the stabiliser o f  oo. Choose oo G N  and a< G int<7* n < 7 where 
Oi is the vertical plane above (<r<)/. Let a  =  ( a 0, a f , ., a *}. Let A r(a) be the complex defined in Chapter
2, GF3 (FIG 3.3). W e fix our attention on som e C,-. It is clear that n  T a =  I\a,-. Since I\a< C  n  <r,-, 
we see that the highest points of Ta (those with largest nth euclidean coordinate) are precicely the points 
o f  TjOj. Thus, if d ,ue(x, (cr,)/) >  r{ for som e fixed rj >  r,-, the nearest points of Ta to  x  lie in  I\a ,. Let C{ 
be the standard region with radius rj. W ithin CJ, the complex ^ r (s )  i* identical to that obtained  from at 
for the group I\, i.e. C'( r\Ar (a) =  C \n  A r ,(«< ) . Write ^ (») =  Ar,(«< ). Since y, fixes <r,, A (i)  is a euclidean 
product in the directions orthogonal to a ,. Since ( d « ) / /r /  is compact, ^ (« )/I\  must be finite. Rewriting 
M a  =  with f l ’  compact, we see that A/T is finite.

0 1 = » 3

G F S  -> G F 1
First we make a few remarks about general convex sets in H ".
Let K  C H * be a  convex set with non-em pty interior. Let a G  K ,  and let 7 i (a )  be the unit tangent space 

to H "  at a. Clearly, K  determines a cone in the tangent space at a, which intersects the the unit tangent 
space in a subset ^ ( a ) .  We define u ( f f ,a )  to  equal >i(T|t (o )) /p (T i  (o )) , where p  is spherical Lebesgue 
measure (FIG 3.4). (Alternatively, w (K ,a )  may defined as the Lebesgue density o f  K  at a.) T h e  function 
w ( / f , - )  is strictly positive and lower semicontinuous on K .  Let Kc. be the closure o f  K  in H ” , and let 
K i =  K c  n  H y. We may extend u  to  a funtion on K c  as follows. If y  G K i  =  K c  n  H " ,  we consider the 
tangent space to  H "  at y, and measure the proportion o f  unit tangent vectors to H "  lying in K j .  Note that 
on K i  it is possible (for example if K i  =  { y } )  to  have u (K ,  y) =  0. If this is so, we call y a cusp  point o f K.

We shall restrict our attention to the case where K  is a finite intersection o f  closed half-spaces, and 
in t /f  ^ t .  We may write K c  =  D ?= i #(• where each / / j  is a closed half-space in H ".. B y d H u  we shall 
mean the closure, in H " ,  of the boundary o f  H j n  H n in H a.

Suppose first, that (")* 3 / / ,  0. If f"|< d l l i  contains a point o f  H " , then it is a (possibly 0-dimensional)
plane w C  H " ,  and in this case, w (K , z )  takes a fixed, strictly positive value for all x  G w. If, o n  the other 
hand, f ) ( dH, contains only ideal points, it must consist o f  a single point y  G H /> with u ( / f ,  y )  >  0.

More generally, if K  is a finite-sided convex polyhedron, by considering all possible intersections of 
half-spaces Hi, we may deduce the following.
Lem m a 3 .4  : Let K c  <» finite-sided c onvex polyhedron in H £ . Then, there exists a finite s e t  k ( K c ) « /  
cusp points in K/, and f ( / f o )  >  0  such that fo r  all x  G K c \ n ( K c ) ,  *>* have u (K , x) >  S ( K c )■

P r o o f  o f  3 =» 1 : Let T be GF3. Let A be a I'-invariant convex cell complex so that A/T is finite, and 
such that for each A G  A, ( t Ii ^  =  A )  is finite. We stated in Chapter 2 (GF3) that any cell o f  a convex cell
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complex meet« the closures o f  only finitely m any other cells. Since A/T is finite, we may find a fixed constant, 
k i, such that each point o f  H n meets the closures o f  at most kt cells o f  A. Also, the orders o f  stabpA are all 
finite and therefore bounded by some fca. Thus, for each x  G H n and A  G A, we have |{'y|z G T^}| <  A1 A3, 
and so at most fciJkg faces of any A can be equivalent under I*. It follows that each cell o f  A  has only finitely 
many faces, and in particular, is (the interior o f )  a finite-sided polyhedron.

By hypothesis, A is locally finite in H n. Let y  G 0 , and H i C  H n U f l be a half-space, containing y 
in its interior. We can insist that H i is invariant under stabpy, and H i D 7 / f j  =  0 if 7  ^  stabp y. Let / / j  
and H3 be successively smaller (stabpy)-invariant half-spaces containing y. Only finitely m any cells of A lie 
entirely within H i. Any cell that meets both d H i  and dHs also meets dH ?  n  h u ll(d //l U d H s), which is a 
compact subset o f  H n (FIG 3.5). It follows that only finitely many cells meet II3. We have shown that A is 
locally finite on H n U fl. Hence, every point o f  H "  u f l  lies in the closure o f  some top-dimensional cell.

The set of closures o f  top-dimensional cells consists of the image under T o f  a finite set o f  polyhedra 
{ P l , . . . ,  P k) . M e  is thus a quotient o f  the set ( jJ  f^ .\ A (r).

We shall show below that each P}. can m eet A only in a finite set o f  points (a  subset o f  the set of cusp 
points k (Pq ) o f  P c )  1 and that each o f  these points is a b.p.f.p. W hen we have done this, the proof o f GF1 
can be completed as follows. If C (p ) is a standard parabolic region about p G P';  n A, then intC [p) n P}. 
is an open neighbourhood of p in P&, which we shall call a cusp. We choose standard cusp  regions for 
each conjugacy class o f  b.p.f.p. meeting some polyhedron P£. By taking these regions small enough, we can 
ensure that the cusps they form in each polyhedron are disjoint. The parabolic regions C are then themselves 
disjoint. The closure o f  each P cM U ^ l ■> com pact, and so therefore is the quotient H  =  d osure(A fc\ (U ^ ))i 
as required.

We now investigate Pq  O A. Let y  G H ?  lie in the closure o f  some polyhedron, P c-  W e want to  show 
that either y G D or y is a b.p.f.p.. The stabliser Ty of y cannot contain any loxodrom ic element, since 
otherwise, by applying a loxodromic element with y as repelling fixed point, we would get a contradiction 
to the local finiteness o f  A along the axis o f  the element. Therefore, Tv preserves setwise each horosphere 
about y, and so Ty is either a finite or a parabolic group. Let y  =  00  in R " .  Let P  ( j t  0 ) be the set of 
closures of top-dimensional cells containing y. W e distinguish two cases.

C ase  1 : y  is a cusp point o f P  (i.e. u (P ,y )  =  0) for each P  G P.
By lemma 3.4, there are only finitely many such points in each polyhedron. It follows that there is a 

horoball B  for which (B  D P)/ry is finite. (B y B  D P , we mean ( f l f l  P  \ p  G P } .)  Thus, if w e take dB  to be 
high enough, we can ensure that each B n P  is a  vertical prism on d B n P  (i.e. isometric t o  ( d f ln P )  x  [0,00)). 
It is still possible that the boundary o f  such a prism may be subdivided into many cells o f  A. However, we 
know from the first paragraph o f  the proof that each polyhedron has only finitely many faces in A- Thus, 
by raising the level o f  d B  if necessary, we ensure that if A is a face o f  some P  G P , then A D f l i i »  vertical 
prism (possibly empty). It now follows that ( J ( R n P )  =  B. For if not, consider a codimension- 1  face A  that 
bounds (J (fl n  P ) in B . We know that A is a vertical prism, and so  the (top-dimensional) polyhedron on 
each side o f  A has 00 in its closure. This contradicts the definition o f  P .

Suppose now that, for some -y G T\ry, we have - ¡B n B  /  0. Since B C (J P | W e  see that -yf? meets some 
polyhedron P  6  P . Thus, P  is the image under -y o f  some Q  G P . From the finiteness o f  P/T y, and o f  the 
setwise stabiliser o f  each polyhedron, we see that -y must lie in one o f  a finite number o f  right cosets of Ty in 
r . This gives us an upper bound on the height o f  the highest point o f  ~iB in R " . Thus by raising the level of 
OB  still further, we can arrange that qrB  n  f i  =  0 for all 7  G r\ T y. Thus, we have found a strictly invariant 
horoball B  C (J P . Now, using B, we want to  construct another strictly invariant region, C ,  which will be 
either a standard parabolic region or else a half space, depending on whether Ty is parabolic or finite. (In 
fact, it turns out that the latter case cannot arise in Case 1.)

Let 0 /  C 5 R 1J be a minimal r y-invariant subspace. By the finiteness of P / l ’ y, there is a bound on the 
euclidean diameters o f  the lower-dimensional faces, o f  the polyhedra in P , which do not contain 00. Hence, 
for some r, we see that C  =  ( z  | <f,ue(z , <r/) >  r )  is contained in (J P . The structure o t C n P  is independent 
o f  the vertical coordinate. Since P is locally finite on R " ,  we see that P must also be locally finite on 
C n d R " .  Therefore the limit set does not m eet G n d R " .  If Fv is parabolic, then y  is a b.p .f.p ., and C  is 
a standard parabolic region. Note that C  meets P*. in an (arbitrarily small) neighbourood o f  a cusp point. 
If r y is finite, then C  is a half space, with C  f l  P  finite. Thus y  G O. (Now, it is fairly easy to see that we
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get a contadiction to the hypothesis o f  Case 1, though logically we do not need this.)

C a s e  2 : There is some P  e  P , containing y, and with u/(K,y) >  0.
Let 6 =  min^f(i’c )  >  0 (see Lemma 3.4). We know that u (P , y) >  6, so that Tv m ust be finite (its 

order bounded by |stabr(P)|/i). Since |rv| <  oo, we can have u (Q ,y )  =  0  for only finitely many Q  6  P. 
Otherwise, w(Q, y) >  6 . It follows that P is finite. B y an argument similar to  that in Case 1, we show that 
som e half-space, containing y, lies in [J P . Thus, y €  O.

C o n c lu s io n  : We chose an arbitrary y e  Pq . I f  y  lies in the limit set, we must be in Case 1. Then, y is a 
b.p .f.p ., and the standard parabolic regions about y  define a base o f  neighbourhoods for y in P The proof 
may now be completed as indicated above.
O  3 => 1

G F 1  => G F 4
Let <(n) be the Margulis constant, and t  >  0  be any number less than <(n).
Suppose T is GF1. Let F (T ) =  hull(A(T)). If p  is a b.p.f.p., we may take the corresponding parabolic 

region C  so that C n  V (T ) is contained in the corresponding Margulis region. Writing M e  =  ( ( j£ ) ,  we
have that ^ ( r )  f> thick«(M )  is contained in f t ,  and is thus compact.
O  1 => 4

G F 4  G F 2
W e have thick«(M )  n  f ( r )  compact for som e < <  t(n).
Let A  be a component o f thin~(Af), as defined in Ch2, GF4. If A  is the lift o f  a Margulis tube, then A 

lies within a uniform neighbourhood of a loxodrom ic axis. If A  is the lift o f  a Margulis cusp, then it lies in 
som e horoball about the p.f.p. Thus if I is a geodesic ray lying entirely within th in~ (A /), its ideal endpoint 
is either a  loxodromic fixed point, hence a c .Lp., or a p.f.p.

Suppose y 6  A(T) is neither a parabolic nor a loxodromic fixed point. Join y to  *  e  K (T ) by a geodesic 
ray /. The union o f  those parts o f  I lying outside thin~(Af) is unbounded. Thus, its projection t  must 
accum ulate in thick«(A/) n  Y (T), and so y  is a c.I.p.

It remains to  show that any p.f.p. o f T is bounded.
Let S >  0 be such that < +  4 i <  «(n ). Let p =  oo in R "  be a p.f.p. Let A«, A« + 24, A «+M be the 

corresponding Margulis regions. The shell 8  —• (A . + «»\ in t ff ,) /r p embeds as a closed subset o f  thick«(A/). 
W e show that if p is not bounded, then 8  D Y  is not compact.

Let <r/ C H ? be a minimal Tp-invariant plane. Suppose we have a sequence ( z „ )  in A(T) with 
d«wc(x n, c7/ )  —» oo. Let yn G 3 Al+ 24 lie vertically above x H (FIG 3.6). The hyperbolic ball W«(yn) is a 
subset o f  S =  A«+4s\intA«. Taking a subsequence, we can assume that no such ball meets the image of a 
different ball under Tp. Since Tp is virtually abelian, it has a torsion-free subgroup o f  index k  (say). Thus, 
each (£/2 )-ball meets at most k  images o f  itself. It follows that the quotient sequence 6  Y  O §  has no 
convergent subsequence.
0  4 =» 2

G F 1  G F 5
Suppose r is an r-plane in H " . Let p , : H n —» r be the nearest point retraction. For X  C  r  and A > 0, 

let XT'h =  JVa(e) n p , l X .  (Af*(r) is the uniform A-neighbour hood o f  r .) There is a function /  : R +  —• R +, 
for which vol«,(Jfria) =  / ( A )vob(Jf), where vol* is the t-dimensional volume. In particular, X r,K has finite 
n -volum e if and only if X  has finite r-volume.

Let Tp =  stabpp be an infinite parabolic group, and a a minimal Tp-invariant plane containing p. Let 
r =  dim o. We know that r >  2. Let C  be a standard parabolic region. Tp acts as a cocom pact group on 
d C  n  a, so we can find a compact K  C d C  i l » C  H "  with ) =  d C  n o .  K ‘  =• h u ll(/f , p) has finite
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e-volume, so K'm k has finite n-volume. Note that C  =  and so the images o f  K'a h under Tp cover
C n N h(a ). We Me that v o U ((C n  JVh( o ) ) / r p) <  oo.

Now, suppose that T is G F l, 7  >  0. For each b.p.f.p. p, we can find a region C  about p  so that 
C c\ N nY  £  C n JV j,(o ). Thus, v o In fC n A ^ y j/r^  <  00 . The remainder o f  is com pact, so  v o l„ ( iV ,f )  <
00 .

Finally, to  see that T  is finitely generated, note that each cusp is topologically a product orbifold 
6  a  d 6  x  [0 ,1). Hence, T =  * , # .
O 1 =* 5

G F 5  ->• G F 4
Let r  be GF5. For some 7  >  0, v o l „ N ,^ ( r )  <  00 . Let t  <  <(n).
Suppose, first, that P act.- freely. Let <| <  t ,  7 . Take a maximal packing o f  Nn( Y )  with ci/2-bails 

centred in thick«(Af) n  f - . Since each o f  these balls is isometric to a standard ball in H n , this packing is 
finite. By maximality, the corresponding C]-balls cover thick«(Af) n  P .  Thus, thick«(Af) n  ^  is closed, and 
covered by finitely many compact sets, and hence is itself compact.

Suppose, now, that T is any GF5 group. B y the Selberg Lemma, T has a  torsion-free subgroup o f finite 
index. This must act freely on H n, so that the volume o f  an < i/2-ball centred on thick<(Af ) is bounded away 
from sero. The proof now works as before.
0  5 => 4

Let r  be a discrete group o f  isometries o f  H " .
In Ch.2 GF5, we stated three cases in which finite generation is automatically implied b y  v o l , i f , ( y )  <

C a s e  (1) : I f there is tom e number k, such that for  each  x G  H n, |sta6r (x)| <  k , then T  i t  G F .

P r o o f  : Let 6 <  min(7 ,<(n)/JV(n)), where N [n )  is as defined in Ch.2 G F4. Let y  G th ick~ (A f) Ç H ". We 
know from  Proposition 2.2 that r*(y) fixes some point o f  H'*. Hence, |r«(y)| <  k. Nt /t (y )  meets at most k 
images o f  itself under T. Thus, in the quotient, vol„JVs/4 (p) is bounded away from sero, for  ÿ  G thick«(Af). 
The argument is now as for free actions on H n.
O C ase(i)

C a s e  (11) :

T h e o r e m  3.5  : A finite-volume complete hyperbolic orbifold (without boundary)  it geom etrically finite.

Let 7  <  « =  *(n)/7V(n), where <(n) is the Margulis constant, and N(rt) is as defined in Proposition 2.2. 
In C h .2  G F4, we defined thin^(Af) to be the projection of the set ( x  G H "  | |rq(x)| =  0 0 } .  We saw that 
G F 4 was equivalent to  the statement that f ’ (T ) D thickq(A f (T)) be com pact, for any 7  <  t. W e aim to show 
here, that if M  has finite volume, then th ick^A f ) is com pact for a certain 6 <  e. We begin b y  giving a proof 
o f  the following proposition about general hyperbolic orbifolds. We shall then build upon ou r  argument to 
deduce the main theorem (3.5).

P r o p o s it io n  3.0 : Given n, there it tom e univertal 6 >  0, tuch that fo r  any d itcrete tubgroup T o f  
Isom H ", there it tome x  G H n for which r * (x )  IS trivial, (to  that N f /a(x ) is an embedded hyperbolic 6/2-ball 
in the quotient).

P r o o f  : Let T be a discrete group, with M  — H " /I \  Given x  G A f, we define the injectivity radiut, 
in j(x) =  jin in (d (x ,7 z) | 7  G T ). (This is usually defined only for manifolds.) We write Ë  for the singular 
set o f  T  in H " , so that E  =  t/ T  =  (x  G Af | in j(x) =  0 ) . Let L  be the union o f  all the loxodrom ie axes with

24



translation distance less than <(n). By the Margulis lemma, the collection o f  each axes is locally finite, so 
that L is closed. It projection, L C Af is a disjoint union o f  arcs and simple closed curves.

Let ij <  < =  <(n)/7V(n). We define a decom position o f  Af into disjoint pieces as follows. Given X  C  H £ , 
let 0  =  { *  €  H " | f ix r , (* )  =  X } .  Let f „  =  { f „ ( X )  \ X  C  I I "  and T ^ (X ) ft 0 } .  Clearly, f ,  is invariant 
under T, so it projects to  a decomposition Tn o f  Af. W e shall call the elements o f  the decomposition r;- 
compartment). Let T  =  Tn(X )  be one such »7-compartment. T  is non-empty, so  from C h i, we know that 
X  must either consist of one or two points o f  H ? , o r  be a plane in H ".. We may thus define d(T ) 
be the dimension of X , with the convention that d (T )  =  - 1  if X  C  11?. (This is well-defined since, 
Tn( X i )  =  Tn(X i),  then X t and X 2 are equivalent under I\) Suppose x  G T  lifts to x  G H n. Then, fixr,,(x) 
is a subset of H ? if and only if l\,(x) is infinite. Thus d(T) =  - 1  if and only if x  e  thin'^Af). We see 
that thin',,(Af) -  ( J { r  €  Tn | d(T ) =  - 1 } .  We write 7„  =  ( T  G T„ | d (T ) ft —1>, and Pn =  Tn(H?.) 
=  { x  G H "  | inj(x) >  t)/2}.

I f  T  =  Tn(X )  G Tn\ {P a} ,  (i.e. d(T) <  n ), we define a smooth unit vector field on T \ (E u L )  as 
follows. For x  G T \ (E  U L), we define vn(x ) to  be the unit tangent vector pointing directly away from 
h u ll(X ), i.e. v,, =  - a '( 0 ) ,  where a  is the geodesic arc from  x  =  a(0) to  the nearest point on hull(X). (Note 
that hull(X ) =  X , unless r,(x) is an (infinite) loxodrom ic group, in which case hull(X ) is the loxodromic 
axis.) This gives us a well-defined vector vn(x) at x  G T . Performing this construction for each T  G T ,\ {P ,} , 
we get a (usually discontinuous) piecewise analytic vector field on M\(Pn U £  UL). The integral curves are 
piecewise geodesic.

Now, we fixe =  c (n )/W (n ), and choose any 6 <  e. Suppose x G Af\(thini(A f) U P j U E u £ ), so that Ts(x) 
is finite and non-trivial. Let 0  be the integral curve through x  for the vector field vt . W c take 0(0) =  x, and 
write I\> for Ts(x).

Imagine following the integral curve P  in H n. A t time t, we have r « (^ (t ) )  C  r ,(^ (t )) . Let ht =  
h u llfixr4(^ (t)), and h , =  hullfix l\ (^ (t)). Now, ht , and ht are both subspaces of H ra, and hf  C ht . Thus, 
it is easily checked that Sf(P[t)) always makes an acute angle with 0 ,(P (t)). T h is  mean that the distance of 
P(t) from  ht increases at least linearly with t. Now, while T4(^ (t)) remains constant and equal to To, we see 
that the injectivity radius in j(^ (t)) increases steadily, and the derivative o f  the injectivity radius with respect 
to t is non decreasing. Thus, after a finite distance, at ^ ( t i ) ,  say, r 4(^ (t)) must change to a new group T j. 
Now r 0 and Tj are both subgroups of r t(^ (t i) ). Since we are moving away from  fix r t(^ (t i)), it is easy to 
see that T i <  I V  Again, after another finite distance, r ,(^ (t ) )  changes to  a third group r 3 <  T j. Since To 
is finite, it follows that, after a finite number o f  steps, we shall arrive at a point y, w ith T4(y) =  { l } .  (Note 
that we can never run into E u  L. Wherever the rf, is discontinuous along E u £ ,  the vector field radiates 
away.)

It is easy to see, from the form of the components o f  thin4(A f), that thin4 (A f) cannot occupy all o f  Af. 
E U L is a lower-dimensional object, so either intth ick4 (A /) C Pf , or we can find some point x as above. 
Either way, there is some y  G H "  with T4(y) trivial.
O Prop.3.6

Now, think of Af as cut into ¿-compartments. W e have shown that P t  #  S. In fact, we have shown that 
any point x  G thick4(A f)\ (E  U L) can be joined to  som e y  G Pt, by a path 0  with T «(^ (t)) monotonically 
decreasing (i.e. if t' >  t, then r * (^ (t '))  <  r«(/9 (t))). Consequently, fix r« (^ (t ))  is monotonically increasing 
with respect to set inclusion. Each time fixr4 (/9(()) changes, its dimension must strictly increase. It follows 
that 0 ( t )  passes through at most n +  1 ¿-com partm ents o f  Af. Hence, any point o f  thick4 (Af) can be joined 
to Pt by a path that passes through at most k — n  +  1 ¿-compartments.

Now, the collection Tt is locally finite. T o  see this, note that, for any point x  G H'*, the set { 7  G 
T | d (7 X , x) <  $¿1 is finite, by the discreteness o f  T. So, there are only finitely many candidates for the 
generating set o f  any group r 4 (y), with y  G N t(x ).

Let 7t =  {T  G Tt | d(T ) - 1 ) .  We know that this covers intthkk4(A f).
Now, suppose that Af has finite volume. We aim  to  show that thick^(Af) is com pact. Consider the 

¿-com partm ent T  G >4. We have T  =  f t ( o )  for some plane a  C  H £- Let stabp(<r) be the subgroup o f  T that 
fixes a  pointwise. Let p  =  |stabp(o)|. For any x  G T , f s ( x )  C  stabp(<7), so Af4/ 4 (x ) meets at most p images
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o f itself under I*. This gives a  positive lower bound on the volume o f  any metric ¿ / 4-ba ll in M , centred on a 
point o f  T , namely 1 /p  times the volume of a ¿/4-ball in H n. Since M  has finite volum e, we see that T  has 
finite diameter, and is thus relatively compact.

W e now think of thick* (AS) just as a topological space W . We summarise what we know about W .
W  has a locally finite cover K  by compact subsets (the closures of the ¿-com partm ents). Also, there is 

a constant k  (=  n +  1), and a fixed element Ko o f  the cover such that any point o f  W  can be joined to Ko 
by a path which is covered by at most k  sets from K.

It follows from this, that K  must itself be com pact. T o  see this, think o f  the elements o f  the cover 
as vertices in an abstract graph. T w o vertices are joined b y  an edge if the corresponding sets intersect. 
The graph has finite diameter (path condition), and each vertex has finite degree (compactness and local 
finiteness). Thus the graph is finite.

W e have shown that thicV*(AS) is compact. The discussion of GF4 shows us that M  is GF.
O  Thm .3.5

C a se  ( i i i )  : Z-et T be a discrete subgroup o f  IsomH'*, with r» =  2 or  3. //vol„ATni ' ( r )  <  oo , for some 7  >  0, 
then T is GF.

P r o o f  : W e deal with the case n =  3 ( »  =  2 is similar). W e aim to reduce this to  C ase (i), by showing that 
|stabr(z)| is bounded for * e  IP*.

Note that we can assume (by taking an index-2 subgroup if necessary) that T is orientation-preserving. 
We shall also suppose that |A(F)| >  2, otherwise T is trivially GF. We can take 7  to  be less than <(n), the 
Margulis constant.

Suppose then, that |stabr (z)| is unbounded. From the Jordan Lemma, we can find a sequence (<?,-) of 
finite abelian subgroups o f  I\ with ¡<7.-1 —» 00. From Lem m a 1.3, using the fact that n  =  3, we see that the 
fixed-point set o f  each G, is a geodesic /, in H 3. (Thus, each G , can be assumed to  b e  cyclic o f  large order.) 
We can assume that these geodesics are all inequivalent under I*.

Let G  =  Gi be one such group, with fixed-point set l. Since |A| >  2, we can  choose some t e  A\f. 
Let m  be the perpendicular from t, meeting l at a. N ote that m  C ^ ( r ) ,  and that G  <  T "(a), where 
r¡,'(z j =  r „ ( x )  n  r ; (n)( i ) .  r " (x )  has index at most i/(n) in  in rn(x). (see the discussion o f  the Margulis 
Lemma C h .l) . It is not difficult to see that we can find a point y  €  m , with r"^ 3 (y ) trivial, but with T"(y) 
a non-trivial subgroup o f  T "(o ). Thus, l  =  fix r"(y ), and N n/^(y) meets at most i/(n) images of itself under 
T. Note that N „/# (y) C N n9(T ).

Performing this construction for each group G,-, we obtain a sequence o f  points y< €  H " . In the quotient, 
the (7 / 8 )-balls A n/*(y .) are disjoint (since fixr"(y i) =  /<), and their volumes are bounded  below. This means 
that Wn^ ( r )  must have infinite volume.
0  Case(iii)

4. C o n v e x  F undam ental P o lyh ed ra .

In dimension 3, the, central definitions of geometrical finiteness have traditionally been in terms of 
finite-sided fundamental polyhedra. In particular, the fo'lowing statements are all equivalent to geometrical 
finiteness.

la  ( lb )  : Som e (each) convex fundamental polyhedron has finitely many faces.
2a (2b) : Som e (each) Dirichlet polyhedron has finitely many faces.

Here we use “face" in the sense o f  Chapter 2, GF3. This means that each polyhedron meets only finitely 
many images o f  itself under the group.
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W e can interpret our definition GF3 as being equivalent to  the statement la  w ithout the assumption of 
convexity. The remaining definitions, lb , 2a and 2b, no longer work in higher dimensions, as the following 
discussion shows.

First, consider on E 3, an infinite cyclic group T o f  irrational screw motions with axis r , i.e. T is generated 
. / a translation parallel to r  composed with an irrational rotation with r as axis (FIG  4.1). If a ^  r, then 
the Dirichlet domain D (a) about a is infinite-sided.

T o  see this, let *  be the (n  -  l)-sphere o f  parallel classes o f  rays in E " . Suppose that a £  r, and let 
l be the ray through a, perpendicular to  r. Suppose D (a ) is finite-sided. Then, D (a )  =  P l £ C where 
G  C T is finite, and / / ,  is the half-space {x  £  H n | d(x, o ) <  d (x ,q o ) } .  Note that l is never parallel to 3H 1  
for 7  f t  l .  It follows that l £  int8 , where 0  C ♦  is the set o f  rays lying in D (a ). (W e may identify <& with 
the set o f  rays emanating from a.) Nos, T acts on as a non-discrete rotation group fixing r. Thus, for 
some 7  €  T, we have intert-yint©  ft 0, so that D (a) n  i D ( a )  f t  0, contradicting the assumption that D(a) 
is a Dirichlet domain. This proves that D (a ) is infinite-sided.

We m ay get a picture o f  how the domains 7 D (a ), for 7 6  F, tesselate E 3, as follows. Let r  be some 
large per'five  number, and let i ,  =  { 1  €  E3  | d(x, r )  =  r }  be the surface o f  a cylinder o f  radius r about 
r. Let Sr b e  the universal cover o f  Sr. In the induced Riemannian metric, S , is isometric to E2. Thus, 
the tesselation of E 3 determines a CW -dccomposition o f  E 3, invariant under a Z $ Z  action. In the generic 
situation, this decomposition is combinatorially equivalent to  a regular hexagon tesselation o f  the plane. As 
we r tends to  infinity, the pattern of hexagons changes by an infinite sequence o f  “ W hitehead moves’ . This 
process is best described with reference to the quotient torus, Sr/T == E 3/ Z  ®  Z . For a generic r, this torus 
is decom posed into two O-cells, three 1-cells and one 2-cell. A s  r becomes critical, one o f  the 1-cells collapses 
to a single point, giving rise (combinatorially) to a square tesselation o f  E3. T he 4-valent vertex then splits 
again into tw o 3-valent vertices t o  give another hexagon tesselation (FIG 4.2). The combinatorial structure 
o f  the tesselation { 7 D(a) | 7  €  T, far away from r , is thus determined by the sequence o f  1 -cells which get 
contracted b y  Whitehead moves. This sequence is, in turn, determined by the continued fraction expansion 
of the rotation angle 0, measured as a fraction o f  a full rotation. (The situation is analogous to following 
a geodesic in the moduli space o f  euclidean tori —  see (Ser).) The metric structure o f  each domain D(a) is 
also related to  rational approximation o f  6. Clearly, the area o f  the cross section Z?(a) D Sr grows linearly 
with r , but its diameter grows much more quickly in the radial direction than in the d irection parallel to r. 
The relative rates depend on rational approximations to  0 —  the better 0 is approxim ated, the quicker the 
cross sections flatten out radially. For a quadratic surd, the radial diameter grows asymptotically like r3''4, 
while the diameter parallel to r  grows like r 1/ 4.

Now, we may extend our cyclic group, I\ to act on H 4 as a parabolic group, with E 3 C  H 4 a horosphere 
about the fixed point p. Let p be the 2-plane spanned by r  and p. If a £  H 4\p, the Dirichlet domain D(a) 
will be infinite-sided. (With p — 00 in the upper half-space m odel, D (a) is a vertical prism on the euclidean 
Dirichlet domain, D ', i.e., D(a) is euclidean-isometric to  D ' x  (0, 00) .)  However, T is G F  with any o f  the 
definitions o f  Chapter 2.

We may now find a half-space, in H 4, disjoint from all its images under T, and disjoint from p. This 
set projects to  an embedded half space in the quotient manifold M . B y removing this half space, and 
doubling M  across the boundary, we get a new manifold A / ',  with fundamental group  Z  • Z . This gives 
us a geometrically finite action o f  Z  • Z  on H 4 with no finite sided Dirichlet domain. This example was 
constructed by Apanasov.

R em a rk  : In the upper half-space model, we may find a sequence (//< ) o f  such half-spaces, disjoint in the 
quotient, A /, with diam<uc( / / , )  -♦ 00. We replace each half-space //,• with a copy  o f  M \ H i  to give a new 
manifold A /'. On H " , this gives us a discrete, infinitely generated free group, with n o  standard horoball 
about p. I d o  not know of any finitely generated group with this property. In contrast, we know that the 
GF groups have standard horoballs.

Let T be a GF group. We have seen that there is no reason to  expect a Dirichlet domain for T to be 
finite-sided. W e say that a p.f.p., p of T is rational if stabp(p ), acting on a standard horosphere, contains a 
finite-index translation group. Otherwise, we say that p is irrational. We shall show that if f  contains an 
irrational p .f.p ., then D(a) will be infinite-sided if we choose a  anywhere on a certain open dense subset of 
H " . However, if  there are no such p.f.p.s, we show that any convex fundamental dom ain, P , for T will be a
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finite-sided polyhedron. Here, we use the term "finite-sided” in the sense of C hapter 2, GF3; namely that P  
should be a finite intersection of half-spaces. It is still possible that P  may meet infinitely many images of 
itself under T. If P  happens to be a Dirichlet domain, however, it is fairly easy to see that for any 7 6  P, we 
must have P O ~ iP  =  P n a ,  for some (n  — l)-p!ane a. In other words, the “ faces” and “ sides* of P  coincide. 
Thus, if T contains no irrational p.f.p.s, then each Dirichlet dom ain has only finitely many faces. In fact, we 
shall see that in H 3 and I I3, there can be no irrational p.f.p.s, and that each convex fundamental domain 
has finitely many faces. This will prove the equivalence o f  la , lb ,  2a and 2b in these dimensions.

Below we give (in principle) a complete description o f  when a Dirichlet domain is finite-sided. We begin 
by discussing the euclidean case.

Let r  act d»continuously by isometries on E ” . Suppose the subgroup <  T acts on the plane u  < E " 
as a translation group, s' =  1,2. The group Ti n  P j acts as a translation group on ( r i . r j ) .  (If 7  acts 
by translation on ri, and by translation on r3, then the tw o translations are parallel and have the same 
translation distance. Hence, i  acts by translation on ( f i , r a) .)  It therefore makes sense to define r to be 
the largest plane on which some finite-index subgroup o f  P acts as a translation group. Let Po <  T be the 
subgroup o f  all elements acting by translation on r. If g  G P, then j}Po!7- 1  is a translation group on gr. 
Thus, gr =  r , and gTog~l — Po, Le. Po is a normal subgroup o f  P, and r is fixed setwise by P. 
P ro p o s it io n  4 .1  : Suppose a G E n is not fixed by any elem ent o f  P. Then, the Dirichlet domain D(a) is 
finite-sided i f  a  G r , and infinite-sided i f  a $  r.

P r o o f  : Suppose a G r . Then, D (a) is a euclidean product, w ith an orthogonal plane, o f  the Dirichlet 
domain D (a )  O r  o f  T restricted to r. On this subspace, T has a finite-index translation group, so that any 
convex fundamental domain is finite-sided (see Lemma 4.2 below ).

Suppose a  r. Let |i be a minimal P-invariant affine subspace (see Chapter 1). Note that p  is a 
subspace o f  r . Let & be the nearest point in p  to a. Let l  be the ray from b through a, and let a  be the plane 
(p , a) (FIG 4.3). We have l C D (a ). T o see this, take any e G l. The images o f  a  under T all lie a fixed 
distance from  p . It follows that .he nearest image to e must b e  a itself, i.e. c G D (a ).

Suppose D (a )  were finite-sided, D (a) =  where G  is a finite subset o f  T. Let T* <  T be the
subgroup o f  T that fixes the plane o  setwise, and preserves the direction o f  l. (One can see that Tj is deGned 
independently o f  the choice of p , though this is not im portant for our discussion.) By maximality of r, we 
must have ( r  : T ij =  oo.

If r i  were trivial, the proof could proceed as in the exam ple o f  an irrational screw motion described 
above. D (a )  would contain a cone about I, and, since the action  o f  P on the sphere of rays is not discrete 
(|r : Ti) =  o o ) , we could find 7  6  T with i f  arbitrarily close (in  direction) to /, so that iD (a )  n D(a) /  0.

T o deal with the general case, we write D[a )  =  D l (a ) n  D 3 (a) with D l (a ) =  n ,e ( r ,n o )  R-i 
D 3(a) =  n , c W l ) H t  As before, D 3 (a) contains a cone about /, which we can take to be an open spherical 
cone C  centred on /. Now, D l (a) contains f")ie r  =  &'< where D ' is the Dirichlet domain about a for 
the group P i.

Since a  is preserved by T i, D ' is a euclidean product, with an orthogonal plane, o f  the Dirichlet domain 
D 'r\ o , o f  T i lo  about a. Since I’ i fixes the direction l, we see that D 'n tr ,  in turn, is a euclidean product, 
with the line ( /) ,  o f the Dirichlet domain D "  about b for Pi|p.

As before, P acts as a non-discrete group on the sphere o f  rays. So, we can find 7  G T\Pi with lO ^C  /  0 
(so that I n - i C  is an infinite ray). For some j e T i . w e  have ~i~1b G g D ". Now, y_ , 7 _ , f is a ray, orthogonal 
to p, emanating from the point g~ l 't~ l b of D ". From the previous paragraph, we see that g~ ‘ y ~ t l lies 
entirely w ithin D ‘ . Hence, we see that I C 7 gD" C 7 g D '(a ).

Now 7 ~ l l n  C  jt 9. Since C  is a spherical cone about /, and gl is parallel t o  /, we see that gC  is just a 
translate o f  C .  Thus 7 “ * /D gC  - /  0, and so /  n  7 gD 2(a) yt 0.

We have shown that l intersects both 7 gD l (a) and 7 j D l (a ) . So, 7 gD (a) meets the interior o f  D (a). 
But ~ig j t  1, contradicting the assumption that D(a ) is a Dirichlet domain.

❖
One may easily generalise the above proposition to  the following.

A collection o f  generalised Dirichlet domains (D ,(a ) }  contains at least one infinite-sided member if and only 
i f  some basepoint a, £  r.
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We now want to give a description o f  when Dirichlet domains for hyperbolic groups are finite-sided. 
Given a Dirichlet domain, D(a), we need to  describe which o f  the p.f.p .s are contained in the closure, 
(.D(a))<7 , in H £ . T o  do this, we introduce a construction analogous to  that o f  Dirichlet domains, for p.f.p.s.

Let I' be a discrete group, and let Po C A be an orbit o f  p .f.p.s. We choose a horoball B (p) about each 
p G Po, so that the collection {£(p )| p  G Po} is strictly invariant. Given p  G Po, we define U(p) to be the set of 
points nearer t o  B [p )  than to any other horoball; Le. U(p) =  { *  G H "  |d(x, B (p ) )  <  d(x, B (q)) for all q =£ p }. 
Let U =  (U (p )  | p G P0}- Since B(~ip) =  'lB (p), the collection { B (p) | p G P0}  is determined by the choice o f 
just one horoball B (p ). It is easily seen that any choice o f  B (p) will give rise to  the same collection U. We 
also see that U is locally finite, and that (JU is dense in H ".

Suppose that a  G H n is not fixed by any 7  G I*. Then, we sec that [D { a ) ) a  contains the point p.f.p. p, 
if and only if a  lies in the closure 0(p ) o f  U(p). This means that [D [a ) )o  n  Po =  {p  G Po | o G 0 (p ) } .  In 
particular, we see that (D (a))c  O P0 =  {p }  if and only if a  G l /(p ) . From  this, we see that (D (a))c  contains 
only finitely many p.f.p.s in a given orbit, and generically contains only one from each orbit.

Now, the collection U satisfies all the conditions (Chapter 2, G F3, (a ) -(d ) )  to  be the set o f  top­
dimensional cells for a convex cell complex. We write flr(Po) for unique such complex which is minimal 
with respect to  subdivision (see the construction in Chapter 2, G F 3). M ore generally, suppose that P C  A 
consists o f  finitely many orbits of p.f.p.s, P  =  U?=i f t .  From Chapter 2, G F 3, we see that the complexes 
B r (ft )  have a minimal common subdivision, Br(P) =  (B r(P i) | *’  =  1, • • ■ , A), obtained by intersecting cells 
from each complex.

If T acts freely, we may describe the cells of B r(P) as follows. Let Q  C P  be  finite, and let A [Q ) =  (a  6  
H n | (D (a )) c  n  P  = Q }. Then B r(P) “  the set of all A (Q ) as Q  ranges over all finite subsets o f  P.

Suppose now that T is GF. Then there are only finitely many orbits o f  p.f.p., so we may let P  be the 
set o f  all parabolic fixed points. In this case, we write 8r  for f lr (P ). N ote that if for any Dirichlet domain, 
we have ( D [a ))o  n  A =  ( D (a ))c  Cl P .

We are now in a position to describe when a Dirichlet domain for a hyperbolic group is finite-sided. 
This is only possible when the group is GF. Let T be a G F  group, and let P  C A be the set of all p.f.p.s. 
T o  each p G P , we may associate a unique plane p(p) through p, which is maximal with the property that 
some finite-index subgroup of stabp(p) act as a translation group on p(p) C\dB, for some (and hence each) 
horoball B  about p.

Suppose now that the point a is not fixed by any 7  G I\ Suppose that a G U(p), so that (D (a ))c  
contains the p.f.p. p, but no other point in the orbit o f  p. Let p =  00 in R ." , and let B  be a horoball about 
p. Let l be the ray joining a to p. If we choose d B  high enough, we see that D (a) n dB  is the Dirichlet 
domain, about the point In d B ,  for the action of stabr(p) on dB . In fact, D (a ) C\B is then a vertical prism 
on D(a) n dB\ i.e. it is euclidean-isometric to  (D (a) fl d B )  X [0, 00). M oreover, it is fairly easy to see that 
the images o f  £>(a) under stabr(p) cover some standard parabolic region C (p )  about p. From Proposition 
4.1, we see that C (p ) meets D(a) in only finitely many sides if and only if a  G p(p).

Suppose now, that o lies in a top dimensional cell o f  the com plex B r■ T h is means that (D (a ))c  meets 
A in an orbit-transversal, Q, o f p.f.p.s. If we take a standard parabolic regions C (p) about each p G Q , as 
above, we see that f?(o)\Upe<j C (p) “  relatively compact. We deduce that D (a )  is finite-sided if and only if 
a G Dp€Q p(p)- W r  contains at least one irrational p.f.p., then p(p) is »  proper subspace o f  H 1*. So, in
this case, we see that the set of a for which D(a) is infinite-sided contains an open dense subset o f  H " . (In 
fact we may find a convex cell complex so that the set o f  a  with D (a) finite-sided lies in the (n -  l)-skeleton.)

Using the generalisation o f  Proposition 4.1 stated above, we see that if  a lies in a lower-dimensional 
cell o f  Br, we see that D(a) is finite-sided if and only if a  G f"|{p(p) I P e  ( ^ ( a ))<7 n  A). Note that the set 
( D [a ))c  n  A is determined by the cell o f  Br in which a  lies.

Finally, we say a few things about general convex fundamental domains.
Let T act discontinuous^ on I P .  Let X * ,. . . ,  X k be a collection o f  disjoint open convex subsets o f  H ".

Suppose that, as 7  G T and » =  1........k  vary, the sets ~iX' are disjoint, locally  finite, and their closures cover
H n. This means that U =  frX *  | 7  G T, t =  1 , . . .  , * }  satisfies all the criteria (Chapter 2, GF3, (a )-(d )) 
to be the set o f  top-dimensional cells o f  some cell complex A, which we take to be minimal with respect to 
subdivision. T he argument in Chapter 3, GF3 => GF1, (applied to  top-dimensional cells) shows that A is 
locally finite on H "  U fl. This means that, if we write X %c  for the closure o f  X '  in HJ*, then (JJQ,\A is a 
fundamental domain for the action o f  T on H " U fl.
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Suppose now, that T is GF. By local finiteness, none o f  the sets X q  can  meet a e.Lp. So, each X'c  n  A 
consists of only (bounded) p.f.p.s. We show that each X ^  n  A is finite, and, moreover, that we can assume 
that the only standard parabolic regions C (p) that meet X'a  are those corresponding to p G X q  n  A.

The argument is similar to that for local finiteness on H "  U D. Let C\, C j ,  C3 be three successively 
smaller standard parabolic regions about p. Any set X '  that m eets both  dC\ and dCs, meets also dC j Cl 
hull(dCi U SCa), which has compact quotient under stabpp. T hus { 7  G T | y X '  D C 3 0} represents only 
finitely many cosets o f  the form (stabr p)7 , i.e. X'a  meets on ly finitely many elements in the orbit o f p. 
Shrinking C3 further to  C , we can assume that any "¡X* with 7 -X j  f l C j i  i  has p G iX^..

Let p =  00 in I t ." , and B , a horoball contained in C . W e m ust have that each X i n  B  is a vertical 
prism on X ' C\dB. W e show below that if p is rational, X q  n d B  is finite-sided. (It is possible however that 
X f,O d B  meets infinitely many other ~iX},r\dB  - recall the distinction between “ faces" and “sides* made in 
Chapter 2, GF3.) It follows that if T is rational, (i.e. every p.f.p . is rational), then each X i is finite-sided. 
From this we shall be able to  deduce the equivalence, for n  <  3, o f  definitions la , lb , 2a and 2b, mentioned 
at the start o f  this chapter.

Lem m a 4.2  : Let r  be a discrete group o f  translations acting on  E n . Suppose that the open convex sets 
X \ ,. . . .  Xi, together constitute a fundamental domain for  I*. Then, each X i  is ( the interior o f) a finite sided 
polyhedron.

(Note that the orbit o f  a convex set under a discrete euclidean group  is necessarily locally finite, if the sets 
in the orbit are all disjoint.)

P r o o f  : We know that r  is a free abelian group. Let ( j i , . . . ,  pr}  be a free set o f  generators. Let T ' <  T 
be the subgroup <  2gl t . . . ,2 g r > , so that (T : T') =  2r. The construction  o f  the convex cell com plex from 
{ 7 .Y ,}, enables us to  define the set J n~l  o f  codimension-1 faces o f  X Each A  G J n~l corresponds to  some 
i X y  with A  =  7 JF, n  Xi. We label A by the pair (>,(7 )), where [7 ] is the coset o f  T  containing 7 . We claim 
that if A  and B  in J n~x have the same label, then they lie in the same codimension-l plane o f  E ra. We 
have A =  X i n  7 j X y , B  =  X i n  n X j ,  with 7 1  and 73  differing by tw ice some translation j G T ,  that is, 
7 2 — 7 j =  2g. Let a  G A, b G B. If A and B  d o  not lie in the same plane, then  the midpoint c =  (a  +  6 )/2  lies 
in int hull(A U f l ) C  X i. However, for some u ,v  G Xy, we also have c =  ( 7 1 “  +  T 3 ")/2  =  Tr»((u +  w )/2) +  5« 
G (7 1 +  g)Xy, by convexity of Xy. This gives us the contradiction X i  n  ( 7 1  +  g )X y  A 9.

O
The tesselation o f  E 3 with square prisms described in C hapter 2, G F 3, gives us an example where the 

X i d o  not have a finite number of faces. Note that the tesselation is invariant under a Z ffl Z  action, acting 
vertically and in the NW-SE direction. The problem arises because each tile meets infinitely many images 
of itself under the Z  ®  Z action. However, this phenomenon cannot occu r  in euclidean space o f  dimension 
less than 3. The only case where we get a non-compact quotient is for an infinite cyclic action on E2. In 
this case, it is fairly easy to  see that if we have a tesselation with finite quotient, then each tile meets only 
finitely many other tiles. In fact we may classify such tiles according to whether they are compact, or have 
one or two topological ends (FIG 4.4).

Now, any isometry of E l , or E2, with no fixed point, must b e  a translation. Thus, any discrete group 
action on these spaces must have a finite-index translation subgroup. W e see that any discrete subgroup 
o f  Isom H 2, or o f  Isom I I 3, can have only rational p.f.p.s. From  this, we deduce the equivalence, in these 
dimensions, o f  the four descripions o f  geometric finiteness stated at the start o f  the chapter.

The question remains o f  whether or not a GF group necessarily has a single, convex finite-sided (or 
finite-faced) fundamental polyhedron. I suspect not, but I do n ot have a counterexample.
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