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Synopsis

The obesity pandemic is one of the greatest challenges facing public health world-
wide. With epidemiological projections forecasting only its acceleration, it is clear
that the current anti-obesity approach has not been effective. This thesis seeks to
outline, through a translational approach, the various reasons for which the obesity
crisis continues to grow and to provide further insight into which modifiable factors
may contribute to more effective anti-obesity strategies. From the basic science
perspective, this thesis investigated through cutting-edge laboratory technology
some of the more novel and promising molecular mediators of metabolic recovery
(namely gut-hormone FGF-19 and gut-derived bacterial LPS). In particular, this
study contributes to a more in-depth understanding of adipose tissue mitochondria,
and their role in buffering excess nutrients to maintain systemic metabolic health.
From the clinical angle, this thesis explored through clinical audit some of the en-
vironmental barriers to metabolic recovery of patients undergoing treatment at a
specialist bariatric service of a major NHS hospital. As a result of this translational
approach, it was possible for the author to develop a profound appreciation of the
complexities involved in developing an effective solution to the obesity crisis, which
is rooted in two distinct (and sometimes opposite) concepts: (1) the medical and
surgical treatment of obesity, targeting the physiological disorder through phar-
macotherapy and/or surgery, and (2) the environmental management of obesity,
targeting the dietetic, psychological, socio-economic and political causes through
weight management and community development programs, industry regulation
and public policy. Though often treated as separate, neither concept need be in
conflict with the other. If the objective is truly to develop an effective solution to
the obesity crisis, it is paramount to develop a trans-discipline community coordi-
nated approach that addresses not just the cellular targets, but the environmental
contributors to obesity.

xv
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Introduction and Aims
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1.1 The Obesity Pandemic

Obesity Diagnosis and Classification

The terms “overweight” and “obesity” describe medical conditions characterised by

the excess accumulation of body fat endangering health [1]. The most accepted

and widespread method for diagnosis in adults is the use of the Body Mass Index

(BMI), a ratio of weight-for-height. In adults, a BMI between 25 and 29.9 Kg/m2

designates the person as overweight, and above 30 Kg/m2 as obese (Table 1.1). The

National Institute for Health and Care Excellence (NICE) recommends the use of

BMI in tandem with waist circumference for the diagnosis and risk assessment

(Table 1.2) of overweight, obesity, which may help differentiate between those

with elevated BMI due to high fat versus muscle mass [1].

Table 1.1: Obesity Classification
Classification BMI
Underweight < 18.5Kg/m2

Normal weight 18.5� 24.9Kg/m2

Overweight 25.0� 29.9Kg/m2

Obese: Class I 30.0� 34.9Kg/m2

Obese: Class II 35.0� 39.9Kg/m2

Obese: Class III � 40Kg/m2

Obesity classification by Body Mass Index (BMI) as defined by NICE Guidelines [1].

For adults with a BMI of 35 Kg/m2 or over, cardio-vascular disease risks are assumed

to be very high with any waist circumference [1].

Table 1.2: Assessment of health risk using BMI and waist circumference
BMI Classification Waist Circumference

Men < 94 cm 94� 102 cm > 102 cm

Women < 80 cm 80� 88 cm > 88 cm

Overweight No increased risk Increased risk High risk
Obese Increased risk High risk Very high risk

Health risk assessment by Body Mass Index (BMI) and waist circumference as defined by NICE
Guidelines [1].
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Obesity Prevalence: Past and Present

The prevalence of obesity world-wide has nearly tripled since 1980 (Figure 1.1).

Currently, about 65% of the world�s population reside in countries where obesity

and overweight cause more deaths than underweight [2, 3, 4]. My own home

country of Mexico (with 33%) is second only to the United States (38%) in adult

obesity, and first place world-wide in childhood obesity.

�1

Figure 1.1: Historical trend in obesity prevalence of select countries
From the Organisation for Economic Co-operation and Development �s(OECD) 2014 Obesity

Update [2].

In the UK, 27% of adults are obese and a further 36% are overweight, making

it the Western European country with the highest prevalence of obesity (Figure

1.2) [3]. The prevalence of severe obesity (BMI� 40 Kg/m2) in the UK has more

than tripled since 1993 and is the fastest growing category of obesity [5]. Though

severe obesity affected approximately just 2% of men and 4% of women in the UK

in 2014, the total medical costs per capita in these severely obese individuals were

3



approximately 86% greater [5].

Percentage of Total UK population

�1

Figure 1.2: UK population distribution by BMI classification in 2005 and 2015
From House of Commons Library Obesity Statistics [6].

Obesity Prevalence: Future Projections

Recent projections, from the OECD analysis of national health survey data, show

obesity rates are expected to rise steadily until at least 2030 (Figure 1.3). The

United States, Mexico and England are among the countries expected to be the

most affected, with 2030 obesity rates projected as 47%, 39% and 35% for each

country, respectively [3]. The potential cost of overweight and obesity to the NHS

is set to rise from 6.3 billion pounds per year in 2015, to 8.3 billion pounds per

year in 2025 and 9.7 billion pounds per year in 2050. If including the cost of

obesity-associated comorbidites, this cost is projected to increase from 27 billion

pounds per year (in 2015) to 37.2 and 49.9 billion pounds per year in 2025 and

2050, respectively [7].
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Figure 1.3: Future projected rates of obesity in select countries
From the Organisation for Economic Co-operation and Development �s(OECD) 2017 Obesity

Update [3].
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1.2 The Complex Interplay between Biological,

Psychological, and Socio-Economic Deter-

minants of Obesity

At first, the cause of obesity can appear simple. As stated by the laws of ther-

modynamics, body fat accumulation is the net result of an unbalanced energy in,

versus energy out equation. This simplistic view, widely held and often portrayed

as true by the media and members of the general public, does not reflect the in-

tricacies of what is in fact a complex and multifaceted process. In general, obesity

arises from an intricate interplay between biological and environmental factors,

which vary from person to person, from group to group and across a person�s life-

time [7]. From the existence of this wide variability in causes, it follows logically

that there must also exist a wide array of potential solutions, which target the

particular combination of each person and each group�s main barriers to change.

Thus, in-depth understanding of the causes is paramount to the correct diagnosis

and resolution of obesity. Evidence from the medical, life, social, economic and

political sciences have produced a great deal of promising leads, however, these

are not generally well integrated across disciplines, and consequently, results from

trialled interventions to date have been somewhat underwhelming. In the follow-

ing sections, the causes of obesity from the perspective of several disciplines are

discussed in greater detail.
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Causes of Obesity: Genetics and Biology

The environmental conditions throughout the process of human evolution have

selected for a biology which is supremely well adapted to contend with prolonged

periods of fasting, limited nutrition or even starvation. By bestowing a survival

advantage to our ancestors, several (and often redundant) systems have evolved

to protect the most vital aspects of our physiology (such as the constant need for

energy). The result is a body which actively defends against intentional depletion

of energy stores [8, 9, 10, 11]. However, the fast-pace of technological advances

means that most of us now live in a drastically altered environment for which we

are ill-adapted. For many, there is much interest in modifying these biological

targets in such a way that health may be preserved without the need to alter the

environmental factors which determine our dietary intake, and/or postpone the

inevitable appearance of metabolic disease.

Much effort has gone towards trying to identify the genetics of obesity. Several

genome-wide association studies have highlighted a number of genes, which when

mutated may cause severe obesity within the first few weeks of life. Other genes,

such as variation of the FTO gene, have been shown to contribute to weight gain,

though not degree of obesity [12]. Though there is evidence to suggest adiposity

is among the most heritable of human traits [13], it not yet clear whether ge-

netic susceptibility to obesity is the result of relatively common polymorphisms

with modest (but widespread) effects on risk; or multiple different rare alleles.

Despite the somewhat widespread belief that such genetic pre-dispositions may

affect metabolic rate or selective conversion of excess calories into fat stores, most

monogenic defects associated with human obesity disturb hypothalamic pathways
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controlling hunger, satiety and food intake [12]. Critical hormonal, neural path-

ways and feed-back loops have been identified through such research, which have

facilitated a more in-depth understanding of the physiological mechanisms of food

choice, weight gain and metabolic disease. Indeed, the current evidence thus far

would seem to suggest that from an aetiological standpoint, obesity is more of a

neurobehavioural than a metabolic disease [14].

Perhaps one of the better understood examples of molecules involved in regula-

tion of energy intake is the adipokine, leptin [15]. The relevance of leptin was

first discovered in ob/ob mice which due to mutations in the ob gene, exhibited

a complete lack of the leptin protein, and were phenotypically severely obese [16].

Treatment of these mice with recombinant leptin corrected their hyperphagia, neu-

roendocrine and metabolic abnormalities [17]. However, in the general population,

leptin levels are low in lean individuals, and heightened alongside increased adipose

tissue mass. Its main role is now believed to be the stimulation of food intake

when body weight is low, and obese individuals may develop a resistance to its

actions [18].

In the modern world, where plentiful, energy-dense, low-cost food is ubiquitous,

our intrinsic adaptations for survival must be overridden through conscious control

[19, 20, 21, 22]. Recent studies employing functional resonance imaging have

demonstrated how sensory factors such as sight, smell, palatability and availability

of food can stimulate brain neural networks to the extent that innate control

mechanisms are overwhelmed, a phenomenon termed “hedonic” hunger [23, 24].

By contrast, the innate mechanisms of satiety, which communicate to our bodies

that we have had enough, are relatively weak, and easily overridden by the sight
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or taste of food [25, 26]. For example, it is far easier to skip a meal than it is to

avoid tasting (or finishing) a single food once it is put in front of us, despite the

fact that we may already be full [25].

On the other side of the energy equation, research into the metabolic aspects of

energy expenditure have yielded little to suggest this may be the cause of the rising

rates of obesity. Numerous, large sample, multi-national studies have demonstrated

that, after adjustment for body size and composition, energy expenditure differs

little between individuals [27, 28]. Thus, there is little evidence to suggest the basic

physiology of energy expenditure between lean and obese individuals is altered to

protect lean individuals against weight gain.

The evidence so far would seem to negate a physiological difference between lean

and obese individuals as the primary cause of obesity. Though some causative

mutations affecting appetite and satiety have been identified, these have not been

present in the majority of obesity cases tested [12]. More limited knowledge is

available regarding genetic variants that underlie the susceptibility or resistance of

an individual to obesity, and perhaps more interestingly, the interaction between

the obesogenic environment and these genetic variants. In this respect, other lines

of investigation have begun to show much promise, such as the role of the gut

microbiota, gut hormones and the circadian rhythm [29, 30, 31, 32, 33].

Causes of Obesity: Diet and Eating Behaviours

With excessive energy intake being recognised as the primary contributor to weight

gain [7, 34], what an individual eats (diet) and the context in which food is con-

sumed (eating behaviour) are critical to the development of obesity.
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Measuring dietary intake outside carefully-controlled laboratory conditions remains

problematic, but a number of specific dietary risks have been consistently iden-

tified. In general, the low intake of fruits and vegetables, and their replacement

with ultra-processed energy-dense foods and drinks (which are generally high in fat

and/or sugar and low in dietary fibre, vitamins and minerals) are strongly associated

with obesity and metabolic disease [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Un-

fortunately, ultra-processed foods are becoming increasingly dominant in the world

diet, as cooking and food preparation habits and skills decline [46, 47]. Therefore,

the current evidence suggests a healthy diet should limit (and, if possible, exclude)

all but traditionally processed foods and snacks; consisting mainly of vegetables,

whole grains, legumes and fruit, with limited amounts of meat, eggs and dairy.

However, according to the 2013 health survey for England [5], more adults ate

fewer than 3 portions of fruit and vegetables a day (45% men and 41% women),

than met the recommended 5 portions.

What dictates a persons dietary choices, behaviours and preferences? The cur-

rent evidence would suggest a number of points in a person�s lifetime, in which

there may be critical periods of metabolic plasticity, and/or pivotal habits and at-

titudes are established. For instance, robust evidence suggests breast-feeding and

early growth patterns are important determinants of long-term health [48, 49].

Dietary behaviours (such as preference for fruits and vegetables) are developed

early in childhood and resistant to change at a later stage [50]. In young children,

the most significant predictor of obesity is parental obesity (risk is increased by

10%)[22]. Even more alarmingly, whilst no amount of exercise has been found to

protect against childhood obesity [51, 52, 53], proximity between fast food restau-
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rants and schools was observed to be an independent predictor of BMI in children

[54]. Also critical is the perimenopausal period, where a significant shift in obesity

prevalence demographics is observed (over three quarters of females over the age

of 45 presenting with either overweight or obesity) (UK data) [5].

The context in which a food or meal is eaten can also have a significant impact

on satiety, negative habit re-enforcement and overall tendency to gain weight.

Among the problem eating behaviours most commonly identified by researchers

as potential contributors to obesity are: skipping breakfast, grazing, eating past

satiety signals, eating when feeling bored, eating when feeling upset, eating as a

reward, eating as a hobby, eating quickly, secret eating, chaotic meal patterns,

avoiding meals prepared at home, eating before feeling hungry, and eating at night

[55]. The characterisation of problem eating behaviours worth targeting in obesity

is still at an early stage in research, and is likely to vary substantially between

individuals. However, identifying and targeting these behaviours appropriately may

be critical to effective obesity interventions.

Causes of Obesity: Mental Health

Higher prevalence of obesity has long been observed in several psychiatric disor-

ders, of which the most thoroughly studied is depression [56]. This association is

stronger in women and with increasing severity of obesity [57, 58, 59, 60]. Epi-

demiological evidence has emerged suggesting that the onset of obesity precedes

that of depression in adults, whilst in children and adolescents the opposite is true

[61, 62, 63].

Negative attitudes towards obese individuals have persisted even as its prevalence
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has become more wide-spread. These anti-obesity biases appear early in life, but

have also been uncovered in educational, occupational and health-care settings

[64, 65, 66, 67, 68], and even in health professionals who specialise in obesity [69].

Thus, individuals with obesity can often encounter from their surroundings little

empathy at best, and outright discrimination at worst. Thus, researchers believe

that weight discrimination, encountered more often by women and individuals with

higher BMI, may explain the epidemiological observations of depression prevalence

in obese population [56]. Other mechanisms, such as health-related quality of life,

may also explain the increased risk of depression in individuals with severe obesity

[70, 71, 72, 73]. Furthermore, depending on the type of depression presentation,

appetite may be either impaired or increased [74, 75], usually remaining consistent

within the same person despite wide variability between individuals [76].

Other forms of mental illness have been associated with obesity. Overweight and

obesity are much more prevalent in individuals with bipolar disorder (36% and 32%,

respectively) than in the general population [77, 78]. A comparison of obese and

non-obese individuals with bipolar disorder, highlighted that obese participants had

significantly more manic and depressive episodes, and greater severity of depressive

symptoms than lean counterparts [79].

The presence of schizophrenia has also been tightly associated with a higher risk

of obesity [80, 81]. Schizophrenia is also associated with a 20% shorter life-

expectancy, and greater prevalence of obesity co-morbidities such as type-2 dia-

betes, coronary heart disease, and hypertension [82, 83].

An important factor in the association between metal health and obesity is the use

of antipsychotic medication, which have been shown to promote varying degrees
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of weight gain, sometimes in as little as 10 weeks [84, 85] and may be linked to

disturbances in hunger and satiety, though the precise mechanisms remain poorly

understood. Some antidepressant and mood stabilising medications have also been

associated with significant weight gain, however this varies substantially with the

specific type of medication and further trials are needed [86].

Early childhood trauma resulting from abuse has also been implicated in risk of

obesity. A recent meta-analysis reported childhood abuse was clearly associated

with obesity as an adult, including a positive dose-response association [87].

Thus, people living with mental illness are particularly vulnerable to the risk of

obesity. This relationship is often bidirectional and complex and may be at least

in part, mediated by our approach to and compassion for individuals with obesity.

Causes of Obesity: Policy, Socio-economic and Cultural

Factors

There is currently a lack of conclusive evidence on how and to what extent our

environment encourages the obesity epidemic, however some trends and themes

are emerging.

Deprivation and low socio-economic status has a strong positive association with

obesity rates [88, 5]. Indeed, children in the most deprived areas of the UK are

twice as likely to be obese (where obesity rates are 25%) than children in the least

deprived areas (where the obesity rates at year 6 is just 12%) [5].

The amount of household income spent on food has fallen steadily since the 1960s

to an average of 10%, but it is worth noting there is a wide divide between lower

and higher income households. Whilst higher-income households spend below
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15% of their total income on food, this spend exceeds 23% among lower-income

households [89, 7]. Importantly, cheaper foods tend to be more calorie-dense,

with plentiful fats and sugars and lacking in vitamins and minerals. Data from

the USA show that real purchasing costs of fruits and vegetables have increased

in relation to fats, oils, starches and sugars (Figure 1.4) [90]. Indeed, a positive

linear correlation has been demonstrated between the prevalence of obesity across

21 countries, and the number of hours worked annually [7], though whether this

is the result of socio-economic status, less cooking time or higher levels of stress

is unclear.

�1

Figure 1.4: Price changes (real dollars) from 1985-2000 differentially affecting
dietary components in the USA

Source: Institute of Agriculture and Trade Policy [90]

With lowered costs of non-perishable ingredients, food industry and manufactur-

ers have developed and invested in a large range of processed foods versus raw

products, which they can produce at minimal cost and sell at the price of raw
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non-processed foods [91, 92]. Supermarket processed foods is one of the fastest

growing category of products, particularly if marketed as “healthy” [93]. However,

there is poor and lax regulation of the terminology and health benefits these foods

are allowed to claim, and the result is often wide confusion and misinformation

in the general public as to what is actually “healthy” [94]. Further highlighting a

need for stricter regulation and government policy, is the finding that fast food

outlets are more common in higher deprivation areas, where the local population

have much higher risk of obesity and poor health outcomes [95, 88, 5, 96, 97].
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1.3 Effectiveness of Current Obesity Treatments

Exercise Only Interventions

Exercise on its own is often discussed as a weight loss strategy. However, the

evidence suggests that exercise unaccompanied by dietary changes is ineffective.

A recent meta-analysis of randomised controlled trials attempting exercise-only

interventions in children (which included more than 18,000 participants) concluded

that no amount of exercise, even in cases where children were exercising more

than ten times that of their peers, was protective against childhood obesity [51,

52, 53]. Similar conclusions can be drawn from adult studies which target weight

through exercise only. One 11-year study reported that participants exercising

more than 150 minutes per week gained 1.8Kg less than their sedentary peers

over the period of the study [98]. A thirteen-year nurses� study reported that in

individuals with unhealthy BMI, no amount of exercise prevented weight gain over

the period of the study [99]. In a twenty year study of 25,000 male participants

and objectively measured exercise, men who exercised the maximum amount (more

than 5 hours per week) gained 2.6Kg fewer than men who exercised a minimum

of 90 minutes per week [100]. Another study, where participants were enrolled

in walking programs but no dietary changes were targeted found that for every

16.9Km walked, participants lost 45g [101], such that it would take 66 to 81 hours

of walking to lose 1 Kg of body weight. Thus, the evidence clearly shows that

there is no realistically prescribable amount of exercise that will lead to weight loss

in the absence of dietary changes.

It should be stated that exercise confers many other health benefits on mobility,
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stress and cardiovascular health and should be encouraged in obese and non-obese

individuals [102], however the current evidence suggests that exercise can not offset

the effects of an obesogenic diet. Thus dietary changes are paramount to effective

weight loss interventions.

Dietary and Lifestyle Interventions

Despite extensive research focused on the causes of obesity, research into what con-

stitutes an effective obesity intervention is surprisingly limited. Controlled studies

are finite, narrow in scope and confined to laboratory settings [103, 104, 105, 106,

1]. Few interventions have been effective in reducing prevalence of obesity. Though

some are promising, they have not yet been reproduced at a larger scale. One such

promising example is the Fleurbaix-Laventie Ville-Santé community-based interven-

tion, which targets dietary choices and physical activity in children. It combines

both private and public sector initiatives to generate consistent messages on select

topics (i.e. eating more vegetables, etc...) for a 3 to 4 month duration. The lessons

from this program are set to inform a much wider community-based intervention

(EPODE) involving more than 130 towns in France, and two each in Belgium,

and Spain, though no data is yet available for this program [107]. It is worth

noting however, that interventions securing even modest amounts of weight loss

have been shown to reduce healthcare costs arising from associated co-morbidities

(such as type-2 diabetes) [108, 109, 110]. The North Karelia Project in Finland

demonstrated that a comprehensive, determined and community-based programme

can have a substantial positive effect on risk factors and eating behaviours, which

were associated with favorable changes in chronic disease [111, 112, 113, 114].
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Lessons From History

In the recent past, there have been repeated efforts to curb harmful behaviours

such as smoking, heavy drinking, drug abuse, and safer driving. The lessons from

some of these campaigns may provide valuable insight as to effective behaviour

change strategies that may be used to tackle the obesity epidemic [115]. In the

case of alcohol consumption and smoking, policy makers moved from basic advice

provision, to facilitation of healthier options (such as nicotine patches), to active

discouragement of unhealthy behaviour (through taxation, and advertising restric-

tions) and finally to regulatory action (such as bans on smoking in public areas)

[116]. Though there is no doubt that regulation of smoking has been ultimately

effective in the protection of public health, under-pressure from major tobacco

corporations it took policy makers 50 years to move from evidence of harm to reg-

ulatory action [117, 116]. The food industry is no less powerful than the tobacco

industry, and unlike smoking, obesity and overweight are being normalised in our

society, even as the trends accelerate and the evidence grows, leaving action on

diet (such as taxation of sugar-sweetened beverages and policy that would limit

added sugar) far behind [94, 118, 119, 91, 120].

Lessons From Social Marketing and Behaviour Change Re-

search

Extensive evidence from social marketing research suggest that public information

campaigns instructing people to avoid certain foods, eat more fruit and vegeta-

bles, and/or exercise more frequently are unlikely to produce any real effect on

the obesity problem [121, 122, 7]. Instead, interventions that go beyond informa-
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tion campaigns to simultaneously inform, shift motivation, provide the necessary

tools and skills are much more likely to effect meaningful behaviour change [123].

Any approach aimed at influencing behaviour, should be properly tailored to the

individual and group�s specific collection of factors contributing to obesity, since

evidence suggests that large behaviour change campaigns can have the opposite

effect if they are not first properly tested [22].

Research shows that the interaction between the person and their environment is

an important determinant of behaviour [124, 125, 126, 127], which means that

some environments can make it extremely difficult to effect behaviour change

[128, 129]. These studies highlight the extreme and sustained effort required to

resist the temptation of the obesogenic environement [130, 131, 132], so perhaps

it is not so surprising that interventions targeting individual choices within the

same obesogenic environment have not proved effective. Stress [133, 21] and

habit formation can further significantly undermine the individual�s ability to resist

temptation [134], particularly in the case of eating behaviour [21]. Evidence suggest

that people are more susceptible to information and behaviour change at times in

which existing habits are temporarily broken (such as after becoming a parent,

moving house, starting in a new school, surgical intervention, etc...) [22]. A

person�s perception of their own vulnerability to disease (rather than severity of

risk) is crucial to whether or not they will change their behaviour. However,

research has shown that because people do not want to feel vulnerable, they are

more likely to convince themselves that they are not at risk [135, 136], and provision

of information is not likely to prove effective under these circumstances. Individuals

should be encouraged to reflect and propose their own answers, as self-generated

19



persuasive arguments have been shown to lead to greater change, however the

environmental cues should not be ignored or they will trigger old habits [22].

Bariatric Surgery

Bariatric surgery is currently the most successful treatment for obesity-related

T2DM and the metabolic syndrome in morbidly obese patients [137]. Within the

first two years after bariatric surgery, morbidly obese patients may often lose 50%

of original weight, a figure that remains stable up to 10 years post intervention

[138, 139]. Though their BMI will generally remain in the obese category (above

30), their metabolic parameters may be similar to those of lean and healthy in-

dividuals [140]. Studies comparing bariatric surgery against dietary interventions

have reported that similar improvements to cardio-metabolic risk may be achieved

with both [141], however maintenance of weight loss, though a challenge in both,

is significantly greater after bariatric intervention [142].

However, studies comparing bariatric surgery against non-surgical programs rarely

include non-surgical interventions which target all environmental causes and con-

tributors to obesity (such as diet, stress and environmental triggers)[103, 106],

so perhaps this does not necessarily reflect the true potential of non-surgical in-

terventions, and further comparisons between surgery and comprehensive holistic

non-surgical interventions are required. However, the need for robust, large-scale,

multidisciplinary obesity interventions is unlikely to be met by existing funding

pathways [143, 7] and is likely to require unprecedented coordination from part-

ners outside the health sector. To ensure effectiveness, the planning of such in-

terventions must evaluate and aim to target all causes and contributors to obesity
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accordingly, either through establishing effective behaviour change strategies, new

social norms, a creative and supportive environment, and engagement of commu-

nity stake-holders [144, 121, 122, 22].
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1.4 Provision of Weight Management Services

in the UK

The current UK guidelines for treatment of obesity prioritise patients according

to BMI and presence of co-morbidities (Table 1.3), the effect of which is that

opportunities for meaningful intervention in patients with overweight, obesity class

I and even obesity class II (without co-morbidities) are largely ignored. Despite

mounting evidence that the primary causes of obesity arise exponentially from the

obesogenic environment, current weight management services in the UK mostly

target non-environmental causes, by prioritising obesity-associated co-morbidities

whilst obese patients are simply told to lose weight. It is critical to the obesity

pandemic that treatment is not divorced from prevention.

Table 1.3: UK guidelines for overweight and obesity treatment strategies
BMI Classification Waist Circumference Co-morbidities present

Men < 94 cm 94� 102 cm > 102 cm

Women < 80 cm 80� 88 cm > 88 cm

Overweight 1 2 2 3

Obesity I 2 2 2 3

Obesity II 3 3 3 4

Obesity III 4 4 4 4

Tier Action

1 General advice on healthy weight and lifestyle

2 Diet and physical activity

3 Diet and physical activity; consider drugs

4 Diet and physical activity; consider drugs; consider surgery

Source: NICE Guidelines [1]

While there are established public-private mechanisms for investment in pharma-

cotherapy and bariatric surgery, behavioural interventions have, historically, been

poorly supported [143, 7]. Perhaps the issue lies in the many competing theo-

ries for the “main cause” of obesity, grounded in a range of disciplines (such as
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dietetics, sociology, psychology, physiology, and economics) each implying differ-

ent solutions, which promote both caution and confusion [143]. When combined

with the multi-level nature of modern governance, the result is an intricate set of

challenges for effective anti-obesity policy. In addition, if policies are developed in

isolation, there is a very high likelihood that potential beneficial results from one

initiative may be undermined by the well-intentioned, though opposite actions of

another. Thus, there is great need for a unified, trans-discipline effort to determine

and prioritise which determinants of obesity to target, and which strategies to use

with reference to the evidence. As the evidence points overwhelmingly away from

personal responsibility and towards the obesogenic environment [143, 7], it is illog-

ical to continue to discuss and target the obesity crisis through person�s choices

without addressing their environmental context. Attention should be refocused

towards addressing the environmental contributors of obesity (such as the food

industry, marketing, mental health, socio-economic deprivation and stress), and

weight management interventions adequately funded to address both prevention

and treatment of co-morbidities.
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1.5 The Pathophysiology of Metabolic Disease

Obesity is the fourth largest risk factor for deaths in the UK (after hypertension,

smoking, and high cholesterol) [5]. For individuals who fall within the obese cat-

egory, the risk of disease increases sharply with BMI. With increasing body mass

index (BMI), a measure of weight relative to height, there is also increasing preva-

lence of metabolic morbidities such as insulin resistance, type 2 Diabetes Mellitus

(T2DM), hypertension, dyslipidaemia, ischaemic stroke and coronary heart disease

[145, 146]. Additionally, strong associations have been observed between increas-

ing BMI and several types of cancers such as breast, colon, kidney and pancreas

[147, 148]. T2DM, ischaemic heart disease, stroke and cancer are all within the

top 10 causes of death worldwide. The global average of healthcare costs for type-

2 diabetes alone are projected to increase by 30-34% from 2010 to 2030, though

it could be as much as 67% in developing nations [149]. Given the alarming scale

of this issue, precise understanding of key cellular and systemic processes underly-

ing adipose tissue biology and obesity-related metabolic disease are of outstanding

importance.

Relevance of White Adipose Tissue in the Initiation of

Metabolic Disease

Under conditions of chronic hyper-caloric supply, white adipose tissue may not be

able to cope with the high demand for lipid storage, resulting in increased circulat-

ing free fatty acids and accumulation of lipotoxic metabolites such as diacylglicerol,

ceramides and long-chain fatty acyl-CoA in adipose and non-adipose tissues [150].
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Lipotoxic metabolites lead to direct inhibition of insulin signaling through serine

phosphorylation of insulin receptor substrate (IRS) proteins and activation of in-

flammatory pathways [151, 152]. Further evidence to suggest cardio-metabolic

disease arises from lipotoxicity can be observed in genetic conditions such as fa-

milial combined hyperlipidaemia where defects in chylomicron lipid uptake and

lipolysis in white adipose tissue result in increased circulating lipid and ectopic fat

deposition in organs other than white adipose tissue. Although these individuals�

BMIs are usually normal, they are insulin resistant and at high risk of cardiovascular

disease [153, 154].

Within white adipose�s adaptive response to increase its lipid storage capabilities,

adipogenesis is thought to play an important role, allowing white adipose tissue

to grow in adipocyte number (hyperplasia) and thus store lipids innocuously in

the form of triglycerides. When the pressure for increased lipid storage exceeds

the adipogenic capacity of the tissue, lipid accumulates in existing adipocytes,

causing them to swell (hypertrophy), develop abnormalities in lipid handling (lipo-

toxicity) and eventually leads to apoptosis. In both visceral and subcutaneous

WATs, larger adipocyte diameter (hypertrophy) positively associates with inflam-

mation and cardio-metabolic disease [155, 156]. Interestingly, a recent in vitro

study showed that increased mitochondrial activity is necessary for differentiation

of human preadipocytes [157], implicating mitochondria in white adipose tissue

dysfunction and cardio-metabolic risk.

Apoptosis in itself is another factor that may contribute to adipose tissue dysfunc-

tion by reducing white adipose tissue mass and therefore its capacity to adequately

buffer lipids. Moreover, widespread adipocyte apoptosis releases a variety of lipo-
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toxic metabolites that trigger a local inflammatory response, which can directly

hinder insulin sensitivity. Indeed, increased white adipose tissue apoptosis has long

been observed in association with obesity and cardio-metabolic disease risk [158],

though the trigger to adipocyte apoptosis itself has not yet been determined. In-

terestingly, mitochondria have been shown to play a signaling role in certain types

of apoptosis, which are age-related and increased mitochondria-mediated apop-

tosis associate with higher percentage of pro-apoptotic cells in skeletal muscle

[159, 160, 161].

Moreover, distribution of white adipose tissue in addition to its lipid-handling ca-

pacity is a major factor in determining cardio-metabolic risk. Lipodystrophic syn-

dromes highlight this fact, as in these individuals loss of gluteo-femoral or subcuta-

neous fat (causing increased lipid deposition in visceral white adipose tissue) results

in worsening metabolic and cardiovascular risk parameters [162, 163]. Although

the reason behind this risk disparity remains under debate, evidence suggests this

could be partially explained through tendency for inflammation. While subcuta-

neous white adipose tissue has higher lipid handling capacity [164, 165], visceral

white adipose tissue has a high supply of innate immune cells that allow it to play a

largely mechanical and protective role against external inflammatory stimuli [166].

These resident innate immune cells in visceral white adipose tissue of normal BMI

and metabolically “healthy” obese individuals are mainly M2 macrophages that se-

crete anti-inflammatory molecules (such as IL-10 and IL-4) and serve a primarily

antigen presenting role [167]. However, with increased adipocyte apoptosis, the

macrophage population distribute in the tissue forming crown-like structures (CLS)

and adopt an M1 phenotype, capable of secreting pro-inflammatory molecules like
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IL1-ß, TNF-a and IL-6 [168, 169]. The combination of CLS, apoptotic adipocytes

and circulating inflammatory cytokines during obesity are strongly associated with

cardio-metabolic risk [168, 158, 170]. Interestingly, adipose tissue depot-specific

differences in mitochondrial number and respiration have been identified, implicat-

ing mitochondrial functionality in cardio-metabolic risk [171].

Collectively, the evidence set out above highlights the potential role of mitochon-

drial alterations in adipose tissue dysfunction and the pathogenesis of obesity-

associated insulin resistance and cardio-metabolic disease. In the following section,

these mitochondrial alterations are examined in more detail.

27



1.6 Emerging Concepts in the Mechanism for

Metabolic Recovery After Bariatric Surgery

Success of surgery varies from one individual to another, depending on surgical

procedure, commitment to dietary and lifestyle changes, length of T2DM and

metabolic disease prior to surgery, age, gender and genetics [172, 173]. However,

the profound and consistent nature of weight loss following bariatric surgery was

elegantly demonstrated by the Swedish Obese Subjects (SOS) trial [174], the first

prospective controlled bariatric surgery intervention study and provides an instru-

mental opportunity to study mechanisms of metabolic health and disease. The

most common surgical procedures (Figure 1.5) include:

� Laparoscopic adjustable gastric banding (LAGB): restricting the stomach
using an adjustable silicone band.

� Vertical sleeve gastrectomy (VSG)/ laparoscopic greater curvature plication
(LGCP): creating a smaller gastric pouch

� Bilio-pancreatic diversion (BPD): connecting the distal part of the small
intestine to the ventricle, bypassing the duodenum and jejunum

� Roux-en-Y gastric bypass (RYGB): creating a smaller gastric pouch and
connecting it to the distal end of the jejunum.
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Figure 1.5: Schematics of the main types of bariatric procedures
Several In LAGB, an inflatable silicon device is wrapped around the top portion of the stomach,
reducing the gastric volume which can later be adjusted in the clinic with minor invasion. In
VSG, the stomach is reshaped into a tubular-like sleeve. In LGCP, the stomach is folded inward
and stitched at the fold to reduce the gastric volume in a similar degree to VSG. In BPD, a
VSG is performed after which the stomach is then connected to the jejunum and the
duodenum to the lower part of the small intestine. In RYGB, a small gastric pouch is directly
connected to the jejunum, bypassing the rest of the stomach and the duodenum.

In terms of fat loss and diabetes resolution, BPD and RYGB (which include a

malabsorption component through bypass of a considerable amount of the small

intestine) confer the greatest long-term improvement [137, 139, 138], but carry

greater risks and side effects [175, 176]. Interestingly, patients who have undergone

BPD and RYGB exhibit a pronounced improvement in diabetes within the first few

days post surgery, which cannot be explained by the energy restriction or fat loss

alone [177]. Thus, metabolic improvements observed post bariatric surgery are

not just the result of energy restriction and malabsorption-associated fat loss, but

likely involve other elements including signaling factors in the small intestine.

In the past, an overwhelming focus of those studying the mechanism of metabolic
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recovery following bariatric surgery has been to examine these short-term weight-

independent mechanisms, without sufficient focus on how the surgery generates

weight loss in the first place. Two main hypotheses for the mechanism of metabolic

improvement following bariatric surgery have been proposed: (a) the hindgut hy-

pothesis suggests that enhanced delivery of nutrients to the small intestine trigger

secretion of hindgut signals with beneficial effects on glucose homeostasis, whilst

(b) the foregut hypothesis states that post-surgical metabolic improvement is the

result of altered signals from the excluded segment of proximal intestine. Evidence

continues to emerge that would support both possibilities, as well as several oth-

ers, whilst highlighting deeper levels of complexity [178, 176, 179, 180, 181, 182].

In terms of the long-term effects of surgery however, weight loss has consistently

remained as one of the main contributing factors to the metabolic advantages

conferred by bariatric surgery [179].

Regulation of Energy Balance

Like many other key necessities for functional life such as temperature, blood

pressure, electrolytes and glycaemia, energy stores are very carefully regulated.

The complex genes-environment interaction throughout evolution has selected for

highly effective processes that defend against loss of energy stores. Body fat is

actively defended physiologically during periods of intentional weight loss [20],

through sustained reduction of energy expenditure (resulting from loss of lean

muscle) [10], more efficient muscle metabolism [9], reductions in thyroid and sym-

pathetic activity [8], and reduced non-resting metabolic rate [11]. On the other

side of the energy equation, hunger hormones (known to reduce satiation and sati-
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ety) adapt to weight loss in a manner that will encourage weight regain. Diet

and exercise-led weight loss efforts result in sustained reductions of leptin, insulin,

peptide YY, cholecystokinin, and amylin; whilst levels of ghrelin, and pancreatic

polypeptide increase. These changes are associated with elevated measures of

subjective appetite [19], and altered neural activity in response to food cues in

brain areas controlling enteric regulation, emotional, decision, executive functions

and perception systems [11]. Following surgical weight loss, however, hunger is

reduced and cognitive restraint is increased. Therefore, the most striking result

of bariatric surgery, is its capacity to produce weight loss without triggering the

weight-defense mechanisms that result with non-surgical means, ensuring greater

probability that weight loss will be maintained.

Restriction and Malabsorption

The once popular hypotheses of food restriction and malabsorption as the main

mechanisms of post-surgical weight loss have now been largely abandoned. Since

the 1980s, studies have consistently confirmed that gastric-only procedures do not

delay the transit of food within the foregut, and satiety signals generated with such

procedures do not correspond with food transit time. Moreover, no evidence has

been found that any of the most commonly performed procedures (RYGB, VSG,

LAGB), with the exception of BPD, produce significant macronutrient malabsorp-

tion in sufficient amounts to influence the energy equation [183].
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Gastro-Intestinal Mechanoreceptors

There is strong evidence to suggest that subtle adjustments in gastric pressure

can influence satiety. A double blinded, randomised controlled trial of individuals

with gastric bands, either correctly adjusted or empty demonstrated this concept.

Individuals with correctly adjusted bands were less hungry, more satisfied after a

meal, and satiated for longer than those whose bands were empty [184]. Neither

GI hormones nor gastric emptying rate were affected by these minor mechanical

adjustments, which despite this may clearly have a significant effect on weight loss.

Hormonal Changes

Insulin and the adipokines Leptin, and adiponectin, all follow the same pattern

of change as with non-surgical weight loss [69, 176], and thus are unlikely to

explain the enhanced effects of surgery on metabolic health. The L-cell hormones

glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), which reportedly deliver

a rapid incretin and satiety response have been shown to increase after RYGB,

BPD and VSG surgeries [185, 186]. However their contribution to weight loss

efficacy of bariatric procedures remain uncertain [182]. Similarly, initial reports

of the hunger hormone Ghrelin garnered much attention, as it was shown to be

markedly reduced with surgery versus lifestyle weight loss interventions, however

several lines of preclinical and clinical research have thrown doubt on its impact in

sustained weight loss [187, 188, 189].
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Bile Acid Handling

Primary bile acids are synthesised from cholesterol in the liver, stored in the gall-

bladder, and secreted in the second part of the duodenum in response to a meal.

They are then actively and passively absorbed in the terminal ileum and recycled

via the portal vein to be secreted again (a cycle which can be completed several

times a day). The nuclear farsenoid receptor X (FXR) is the primary regulator

of the bile acid cycle, and may also influence hepatic effects on glucose tolerance

by inhibiting gluconeogenesis, improving insulin secretion and sensitivity, and up-

regulating glycogen synthesis. Bile acids may also improve glucose tolerance and

satiety through intestinal stimulation of cell surface G protein-coupled bile acid

receptor 5 (TGR5) and GLP-1 secretion from L-cells [190].

In humans, bile acid levels fluctuate between feeding and fasting, with robust

differences detected between healthy insulin-sensitive individuals and those with

type-2 diabetes [191]. Furthermore, bile acid levels are increased after RYGB, and

VSG but not LAGB procedures [190]. Increased secretion of gut hormone FGF-19

(stimulated by bile acid reabsorption in the terminal ileum) is seen within days of

surgery, and may be involved in increased GLP-1 and PYY secretion, improved

glycaemia, and weight loss [31].

The Gastro-Intestinal Microbiome

The recent finding that fecal transplantation from bariatric subjects to germ-free

animals can reproduce weight loss and mimic post-surgical metabolic improve-

ments is extremely promising and indicative of a crucial relationship between the

microbiota and metabolic disease [192]. The composition of the GI microbiome is
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enormously complex, though surprisingly stable in the individual. Germ-free mice

transplanted with human microbial communities were stably and heritably colo-

nized, reproducing much of the human donor�s bacterial diversity. Mice who were

then subsequently fed a high-fat, high-sugar “Western” diet had increased adipos-

ity, a trait that was transmissible to other mice through microbiota transplantation

[30]. Though true understanding of the microbiota�s role in altering metabolic

and appetite signaling pathways is in a very early stage, these results are neverthe-

less compelling evidence of a potential physiological mechanism controlling obesity

which is both related to poor diet and intrinsic to individuals with obesity.

One promising avenue for further research in this subject are gut-derived bacterial

Lipopolysaccharide (LPS), also known as endotoxin, which are outer cell membrane

fragments from Gram-negative bacteria, whose gut populations are encouraged by

a Western diet. Due to their chemical affinity, LPS are absorbed and distributed

alongside dietary fats inside chylomicrons, with circulating LPS concentrations

rising in a direct proportion to dietary fats or in combination with saturated fat,

high-fat or high carbohydrate meals [193, 194]. Once in circulation, LPS stimulates

the innate inflammatory response in adipose tissue, and release of pro-inflammatory

cytokines through the activation of TLRs and the IKK/NFkB pathway [195, 196].

As chronic, low-grade inflammation is a risk factor for the development of metabolic

dysfunction [197], many studies have focused on LPS within this context. In an

animal model LPS was shown to initiate obesity and insulin resistance [198], and

in humans serum LPS may function as a predictive biomarker for obesity-related

metabolic disease [199, 200, 201, 202].

Under normal conditions, only small amounts of LPS from gut bacteria enter the

34



circulation bound to dietary lipids and chylomicrons (low density lipoproteins to

which they have high affinity), and are quickly eliminated by monocytes, particularly

liver-resident Kupffer cells. In this way, circulating levels of LPS are dependent

on dietary lipid intake and liver functionality, both of which may be altered during

obesity [203]. Indeed, studies indicate that as little as one high-fat meal is sufficient

to raise serum LPS levels, especially in metabolically compromised subjects and in

a manner that is directly proportional to degree of insulin resistance [204]. Subjects

with T2DM are reported to have higher circulating LPS levels than lean, healthy

individuals [196]. Thus, meal patterns and insulin resistance can alter serum LPS,

contribute to systemic inflammation and cardio-metabolic disease.

Bariatric surgery, which results in substantial weight loss and T2DM remission

through gastro-intestinal remodeling, may inhibit the intestinal absorption of LPS.

Indeed, in one study, RYGB was shown to decrease endotoxaemia and accompany-

ing oxidative and inflammatory stress along with improvements of cardio-metabolic

risk parameters [205]. However, the contribution of LPS to metabolic recovery fol-

lowing bariatric surgery remains unknown.

Portal Vein Nutrient Sensing

Neural receptors in the wall of the portal vein sense dietary protein and soluble fi-

bre and modulate intestinal gluconeogenesis [206, 207, 208], which may influence

energy and glucose homeostasis, hunger, satiety and insulin sensitivity. Glucose

sensing in the portal vein influences a range of central cortical, hedonic and home-

ostatic regions that control food choice, and satiety [209]. Indeed, specific portal

denervation in rats, resulted increased glycaemia, glucagon-like peptide 1 (GLP-1)
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and insulin secretion, and reduced insulin sensitivity [210]. However, human data

for a role of portal vein nutrient sensing in metabolic recovery is limited [211].

Food Preference

All effective bariatric surgeries result in reduced caloric intake through limiting

hunger, improving satiation and satiety and altering food choice. However, spe-

cific food choice patterns vary with the type of surgical procedure performed. Pa-

tients who undergo LAGB typically avoid bread, pasta, and sticky rice which may

generate obstructive symptoms and prefer easily digestible protein and vegetables

[212, 213], whilst RYGB patients report limiting their intake of sweet and fatty

foods which can cause dumping syndrome and possibly replace these with vegeta-

bles [181]. Functional MRI scans of post-surgical patients often report reduced

activation of reward pathways to energy dense foods [180]. The evidence would

suggest that changes in food preference involve sensory, reward and physiological

taste alterations [214, 215], however the anatomical or physiological mechanisms

responsible remain unknown.
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1.7 The Emerging Relevance of Adipose Mito-

chondrial Function in the Pathophysiology

of Metabolic Disease

Normal mitochondrial action is essential for maintaining physiological cellular func-

tion. Not just the main powerhouse of the cell, mitochondria are charged with

many vital activities such as reactive oxygen species (ROS) production and detox-

ification, regulation of mitochondrial matrix and cytoplasmic calcium, metabolites

synthesis and catabolism, organelle transport, some types of apoptosis, nutrient

oxidation and ATP production [216]. In most instances, mitochondrial dysfunction

is described as inefficient and/or insufficient ATP production [217], however an

abnormality in any mitochondrial function can be termed mitochondrial dysfunc-

tion, and has the potential to produce severe metabolic alterations and contribute

to insulin resistance.

The primary role of mitochondria is energy production in the form of ATP. In gen-

eral terms, energy production in eukaryotic cells (primarily in the form of ATP)

occurs in the mitochondrion through oxidative phosphorylation (OXPHOS) or the

electron transport chain (ETC) which is comprised of several inter-membrane pro-

teins (complex I, II, III, IV and ATP synthase) located in the inner mitochondrial

membrane. In this process, reducing agents NADH and FADH
2

(generated from

previous pathways such as glycolysis, kerb’s cycle and fatty acid beta-oxidation)

are oxidized to NAD and FAD, generating electrons, which are carried over from

complex I of the ETC to II and so on to IV and O
2

, generating H
2

O. In parallel

to this, protons are pumped from the matrix through to the inter-membrane space
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to produce an electrochemical gradient that will become the driving force for the

ATP synthase complex to produce ATP from ADP [152].

Inter-membrane proteins known as uncoupling proteins (UCPs) play an important

role in lowering this electrochemical gradient, either by utilizing it to produce heat

(as in the case of UCP1 in brown adipose tissue) or by facilitating proton leak to

prevent excess ROS formation (UCP2 and 3). The latter is particularly relevant

when there is an excess supply of electrons and low oxygen utilization (high nutrient

supply and low energy demand), as the ETC complexes become saturated with

electrons and excess electrons are instead pumped directly to oxygen, generating

ROS. UCP2 and 3 function to reduce ROS over-accumulation by allowing excess

protons to re-enter the matrix, thereby lowering the electrochemical gradient and

preventing further ROS production [218, 219, 220].

Increased ROS production and reduced expression of antioxidant enzymes have

long been observed in obese and type-2 diabetic patients [221, 222, 223, 224].

As ROS are extremely unstable molecules with the potential to react and alter

lipids, protein and DNA leading to increased mutagenesis, inflammatory processes,

decreased biogenesis [152] and further mitochondrial dysfunction, prevention of

ROS overproduction is a vital matter. Indeed, ROS have been implicated in insulin

resistance through activation of IkB kinase ß (IKK-ß) and various other serine

kinases [225, 226, 152]. As mitochondria are the primary source of ROS within

the cell, this may be a potential mechanistic link between mitochondrial dysfunction

with type-2 diabetes. In support of this concept, over-expression of UCP2 or 3

in vitro results in lower ROS levels and enhanced metabolic rate, both protective

factors against weight gain and insulin resistance [227, 228]. Conversely, UCP3
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knockout mice exhibit severe oxidative damage [229]. Antioxidants, such as a-

lipoic acid have been shown to oppose ROS-induced insulin resistance [230] and

pharmacological compounds such as metformin [231, 232] and thiazolidinediones

[233] may also improve mitochondrial function by reducing mitochondrial ROS

production and stimulating biogenesis.

Mitochondrial biogenesis is the process through which old mitochondria merge

(become larger through fusion) and divide (become smaller through fission) to pro-

duce new mitochondria, conserving functional and disposing of faulty mitochon-

drial DNA. This process is coordinated by the peroxisome proliferator-activated

receptor (PPAR) co-activator 1 alpha (PGC1a) through co-activation of nuclear

respiratory factor 1 (NRF-1), which in turn regulates the expression of DNA poly-

merase (POLG) and mitochondrial transcription factor A (TFAM) and OXPHOS

genes, necessary for mitochondrial gene expression and replication [234, 220, 235].

Adequate execution of mitochondrial biogenesis protects mitochondrial DNA qual-

ity and function.

Faults in this process (which may occur in conditions of high oxidative stress and in-

flammation) can generate mutations in the mitochondrial genome, reduce number

of mitochondria, impair oxidative capacity, further increase ROS production and

adversely impact general mitochondrial function and insulin signaling [152, 236].

Indeed, inhibition of obesity-induced mitochondrial fission, rescues insulin resis-

tance through increased p38 MAP kinase-associated IRS-1 and Akt activation

[237]. Accumulation of high levels of ROS activates stress kinases [223] and pro-

inflammatory signaling, which result in the inactivation of IRS proteins by their

phosphorylation at serine residues [225, 226, 152]. Finally, reduced lipid oxidation
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through impaired ß-oxidation results in increased intracellular build-up of lipotoxic

molecules such as diacylglycerol and ceramides which stimulate pro-inflammatory

signaling and directly alter insulin action [238, 239, 240, 241, 242]. Thus, mi-

tochondrial dysfunction, through altered mitochondrial biogenesis, increased ROS

production and decreased fatty acid oxidation, is a potential mechanistic link be-

tween obesity and insulin resistance.

Mitochondrial dysfunction correlates with cardiovascular risk factors such as age,

physical inactivity and caloric excess. Muscle mitochondria of obese and T2DM

patients have decreased mitochondrial respiration capacity, beta-oxidation, ATP

production, and increased lipotoxic species and ROS, which associate with insulin

resistance [217, 243, 244]. Altered mitochondrial number and morphology have

also been observed in skeletal muscle and adipose tissue of obese and T2DM

patients [245, 225, 246]. Moreover, pharmacological and lifestyle interventions

that improve mitochondrial function also improve insulin resistance [152].

In addition to evidence that mitochondrial dysfunction may contribute to insulin

resistance, there is also evidence to suggest that insulin resistance itself may con-

tribute to mitochondrial dysfunction. One study in particular showed that, while

stimulating skeletal muscle of healthy lean individuals with insulin results in in-

creased synthesis of mitochondrial gene transcripts and proteins, the same actions

on muscle from T2DM subjects produces a diminished response [247].

There are several factors known to alter PGC1a expression and by extension mi-

tochondrial biogenesis, quality control and function such as: age, exercise, fasting

and insulin, all acting in a tissue-specific manner [248, 249, 250] (Figure1.6).

Indeed, factors causing increase of cellular ATP demand, such as in the case of
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exercise, fasting and cold exposure have been linked with increased AMP-activated

protein kinase (AMPK) and PGC1a expression [251, 252, 253, 254]. In contrast,

age, insulin resistance and T2DM are associated with reduced levels of PGC1a

expression [248, 255]. Pharmacological (metformin) [232, 231, 256] and lifestyle

interventions (exercise [257, 258] and caloric restriction [259, 260]) that improve

insulin sensitivity also stimulate mitochondrial biogenesis. Moreover, PGC1a can

alter intrinsic properties of the mitochondria by elevating the expression of ROS-

detoxifying enzymes like superoxide dismutase 2 (SOD2) [261] and increasing mi-

tochondrial oxidative capacity through enhanced expression of enzymes involved in

ß-oxidation, the citric acid cycle and the electron transport chain [262, 250, 263].

Thus, factors that determine cardiovascular risk are also closely involved in mito-

chondrial function through regulation of PGC1a.

Though several studies have highlighted a link between mitochondrial dysfunction

and insulin resistance in skeletal muscle and other metabolic regulatory tissues, the

contribution of mitochondria to adipose tissue dysfunction and insulin resistance is

still unknown. Indeed, there is little knowledge on obesity-induced mitochondrial

alterations in WAT and whether any mitochondrial alterations may be reversed via

bariatric surgery.
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Figure 1.6: Modulation of mitochondrial function by factors which also affect
metabolic disease
Several known environmental factors alter mitochondrial biogenesis and function via AMPK or
PGC1a. PGC1a in turn regulates transcription of biogenesis (POLG, TFAM), OXPHOS
(components of the ETC: complex I, II, III, IV, ATP) and other (SOD1, UCP2) mitochondrial
function genes. TFAM regulates the transcription of mitochondrially-encoded components of
the ETC, such as mt-ND6 and mt-ATP6. Nutrients are oxidised via ß-oxidation or citric acid
cycle resulting in NADH and FADH2, which are subsequently further oxidised through
OXPHOS to generate ATP. Electrons from NADH and FADH2 are carried over from complex I
through to IV of the ETC while protons are pumped through to the inter-membrane space to
provide the electrochemical gradient needed for the production of ATP from ADP by ATP
synthase. Excess nutrients will result in excess electrons that are carried over to O2 to produce
ROS. UCP2 and endogenous antioxidant SOD1 prevent excess accumulation of ROS. AMPK
AMP-activated protein kinase, PGC1a peroxisome proliferator-activated receptor gamma
co-activator 1-alpha, OXPHOS oxidative phosphorylation, POLG DNA polymerase subunit
gamma, TFAM mitochondrial transcription factor A, ETC electron transport chain, UCP2
uncoupling protein 2, SOD1 superoxide dismutase 1, mtDNA mitochondrial DNA, mt-ND6
mitochondrially-encoded NADH dehydrogenase 6 (complex I), SDHA succinate dehydrogenase
subunit A (complex II), COX4 cytochrome c oxidase subunit 4 (Complex IV), mt-ATP6 ATP
synthase subunit 6 (Complex V), ROS reactive oxygen species.
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1.8 Aims

The general aim of this thesis was to address the question of effective solutions

to the obesity pandemic translationally, by investigating the range of barriers to

metabolic recovery following bariatric surgery:

1. From the basic science approach, the role of:

(a) gut-hormone FGF-19 on metabolic and mitochondrial improvement

(b) gut-derived pro-inflammatory bacterial lipopolysaccharide (LPS) on metabolic

and mitochondrial improvement, and

(c) the direct effect of LPS on the disruption of mitochondrial function in

the adipocyte

2. From the clinical approach, the environmental barriers to patient weight loss

and metabolic recovery within a major UK tier 3 and 4 bariatric centre.
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Chapter 2

Materials and Methods
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Ethics and study design

The study was approved by the Ethics Committee of the Institute of Endocrinol-

ogy (Institute of Endocrinology- Ethics Committee EC: 19/5/2009, Prague, Czech

Republic). All study participants provided written and informed consent in ac-

cordance with the Declaration of Helsinki. Thirty-nine morbidly obese (BMI>35

Kg/m2), type-2 diabetic, Caucasian women undergoing either bilio-pancreatic di-

version (BPD; n=12), laparoscopic greater curvature plication (LGCP; n=15), or

laparoscopic adjustable gastric banding (LAGB; n=12) at the OB clinic, Prague,

Czech Republic were recruited to participate in this study. Thorough biochem-

ical and anthropometric investigations were conducted before (baseline) and six

months after surgery with collection of serum samples and abdominal subcuta-

neous white adipose tissue (AT) biopsies at both of these time points. Patients on

pharmacological treatment with incretin mimetics and/or insulin were not included

in this study. All subjects included in this study were off anti-diabetic medication,

including metformin.

Blood biochemistry and body composition anal-

ysis

All anthropometric and biochemical measurements were performed before and six

months after surgery. Following a 10-hour overnight fast, venous blood was sam-

pled in all patients, collected in chilled EDTA-containing tubes with and without

aprotinin (for glucose and insulin measurements), aliquoted and frozen at -80ºC

until assayed. Serum glucose, HbA1c and lipids were determined using the Cobas
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6000 analyzer. Insulin resistance was assessed using the homeostatic model as-

sessment of insulin resistance (HOMA-IR) according to the following equation:

HOMA� IR =
[fasting glucose (mmol/L) x fasting insulin (mIU/L)]

22.5

, as previously described [264]. The Friedwald formula [265] was employed to

compute serum levels of LDL cholesterol. Body weight was measured to the

nearest 0.5Kg and height to the nearest 1 cm. Percentage excess weight loss was

calculated according to the following equation:

EWL (%) =
[Preoperative weight (Kg) � Postoperative weight (Kg)]

[Preoperative weight (Kg) � Ideal weight (Kg)]
x 100

with ideal body weight calculated based on a BMI = 25 Kg/m2 as follows:

Ideal weight (Kg) = 25 x
⇥
Height (m)2

⇤

Body fat mass was measured using the bioimpedance method (Tanita TBF-300;

Tanita corporation).

RNA isolation and qRT-PCR

For RNA extraction, 100mg of frozen AT was homogenized in 500 µL Qiazol

reagent (#79306 Qiagen, UK) then isolated using a column-based isolation method

(RNeasy Lipid Tissue Mini Kit; #74804 Qiagen, UK) according to manufacturer�s

instructions. Samples were digested with DNase I to remove potential genomic

DNA contaminants (DNase I kit, #AMP-D1 Sigma-Aldrich). RNA was eluted in
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10 µL RNase-free water and 1 µL quantified in duplicate using a spectrophotome-

ter (Nanodrop ND-1000, labtech) at 260 nm absorbancy. Synthesis of cDNA was

performed using 200 ng RNA per sample and a Bioline mRNA reverse transcription

kit (#BIO-65026) according to the manufacturer�s instructions. Gene expression

was assayed through quantitative real-time polymerase chain reaction (qRT-PCR)

using ABI 7500 standard sequence detection system (Applied Biosystems, UK).

Each reaction was prepared to 25 µL final volume containing Taqman Universal

PCR mastermix (#4304437 Applied Biosystems, UK), 1 µL sample cDNA and a

specific commercially available Taqman gene expression assay (ThermoFisher Sci-

entific, UK, Table 2.1). All samples were assayed in triplicate and multiplexed

using 18S (ribosomal RNA) as a pre-optimised control probe. As per the manu-

facturer�s instructions, reactions were carried out at 50 ºC for 2 minutes, 95 ºC

for 10 minutes, and then 40 cycles of 95 ºC for 15 seconds and then 60 ºC for 1

minute. For data analysis, gene expression was calculated based on the following

formula:

mRNA expression = 2 -4Ct, where 4Ct = target gene Ct� 18s Ct
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Table 2.1: Mitochondrial mRNA Gene Expression Taqman Assays
Gene Assay ID

PGC1a Hs00173304_m1

POLG Hs01018668_m1

TFAM Hs00273372_s1

mtND6 Hs02596879_g1

SDHA Hs00188166_m1

COX4I1 Hs00971639_m1

mtATP6 Hs02596862_g1

UCP2 Hs01075227_m1

SOD1 Hs00533490_m1

SOD2 Hs00167809_m1

MFN2 Hs00208382_m1

OPA1 Hs01047018_m1

DRP1 Hs01552605_m1

FIS1 Hs00211420_m1

18s 4310893E

Evaluation of mitochondrial DNA (mtDNA) copy

number

Total DNA was extracted from 50mg frozen AT and cell culture samples using

DNeasy Blood and Tissue Mini Kit (#69504 Qiagen, UK) in accordance to the

manufacturer�s instructions. RNase treatment was performed to eliminate possible

RNA contamination. DNA was eluted with 100 µL AE buffer and quantified using

a spectrophotometer (Nanodrop ND-1000, Labtech). Relative amounts of mito-

chondrial DNA copy number were assessed through qPCR in an ABI Prism 7500

thermo cycler (Life Technologies) with the use of iQTM SYBR Green Supermix

(#170-8880 BioRad). Mitochondrial (mtND1) and nuclear (BECN1) gene primers

(Table2.2) were used to determine relative amounts of mitochondrial to nuclear

DNA [266]. Each sample was measured in triplicate. Mitochondrial number was

48



calculated based on the following formula:

mtDNA copy number = 24Ct, where 4Ct = BECN1 � mtND1

Table 2.2: Mitochondrial Copy number Primer Sequences
Gene Forward Reverse

mtND1 ATGGCCAACCTCCTACTCCT GCGGTGATGTAGAGGGTGAT

BECN1 CGAGGCTCAAGTGTTTAGGC ATGTACTGGAAACGCCTTGG

Evaluation of mitochondrial DNA integrity

Total DNA was extracted from cultured cells using DNeasy Blood and Tissue

Mini Kit (#69504 Qiagen, UK) in accordance to the manufacturer�s instructions.

RNase treatment was performed to eliminate possible RNA contamination. DNA

was eluted with 100 µL AE buffer and quantified using a spectrophotometer (Nan-

odrop ND-1000, Labtech). Evaluation of mitochondrial DNA integrity was per-

formed via qRT-PCR by comparing previously published primers [267] spanning a

section of mtDNA susceptible to mutations (where 84% of known mutations occur)

against a section that is not affected by any of the reported large deletions. Real-

time PCR of both targets were run using a probe-based duplex qRT-PCR assay on

an ABI Prism 7500 thermo cycler (Life Technologies) with the following thermal

profile: 95ºC for 10 minutes, followed by 40 cycles of 95ºC for 15s, 55ºC for 15s,

and 60ºC for 1 minute. The reaction components consisted of 22.5µL Taqman

Universal PCR Mastermix no AmpErase® UNG (Applied Biosystems), each mito-

chondrial probe at 250nM (Taqman® MGB Probe, ThermoFisher Scientific,UK;

shown in Table2.3) with a final reaction volume of 25µL.
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Table 2.3: Mitochondrial DNA Integrity Probe Sequences
mtDNA Section Binding Site Positions Sequence (5�-3�)

Stable mt 16,560-10 6FAM-CATCACGATGGATCACAGGT(NFQ)

Suceptible mt 10,934-10,951 NED-GACCCCCTAACAACCCCC(NFQ)

Mitochondrial DNA integrity was calculated according to the following published

formula [267]:

2mtDNADR , where mtDNADeletion Ratio =
(Stable Probe Ct � Suceptible Probe Ct)

Stable Probe Ct

FGF-19 serum levels

For measurement of serum FGF-19 levels (pg/mL), an enzyme-linked immunosor-

bent assay (ELISA) kit for FGF-19 (Quantikine ELISA, R&D Systems, Minneapolis,

MN) was used. All measurements were performed in duplicate according to the

manufacturers instructions. This assay has a detection range of 31�544 pg/mL and

a coefficient of variation of 4.5% for intra-assay and 5.5% inter-assay precision.

LPS assay comparison and quantitation of serum

levels

For serum lipopolysaccharide (LPS) determination, two methods were compared:

the Limulus Amebocyte Lysate (LAL) Kinetic Chromogenic Assay (QCL-1000TM ,

LONZA) and the EndoLISA® Elisa-based endotoxin detection assay (Hyglos). LPS

concentrations of 8 human serum samples (BMI=21� 38 kg/m2) were determined

in parallel with both assays. Samples were run in duplicate according to the manu-
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facturers instructions. Serial sample dilution (from 1 : 4 to 1 : 10) and appropriate

spike and negative controls were utilised to minimise enzyme-inhibitory factors in

samples and confirm result validity. Results were calculated, according to manu-

facturers instructions, based on a LPS standard (E. Coli 055:B5) curve ranging

from [4 to 0.06 EU/mL] for the LONZA kit and from [500 to 0.005 EU/mL] for the

EndoLISA.

For bariatric samples, the EndoLISA® Elisa-based endotoxin detection assay (Hy-

glos) was used to quantify LPS serum levels. A preliminary trial of singlets was

run to determine optimal dilution (1:5, 1:10; 1:20), after which samples were run

at optimal dilution in duplicate. Results were calculated according to manufac-

turers instructions, based on a LPS standard (E. Coli 055:B5) curve ranging from

[500 to 0.005 EU/mL].

Protein extraction and Western blot

For protein extraction, 100mg of frozen human adipose tissue or 1.2 x 106 cul-

tured adipocytes were homogenised in 200 µL PhosphosafeTM Extraction Buffer

(Novogenr, Merk, Germany). A Bio-Rad detergent compatible protein assay kit

(Bio-Rad Laboratories, CA) and nanospectrophotometer (GeneFlow, UK) were

used to quantify protein concentrations. As described previously for Western blot

analyses [268], 10-20µg of protein were loaded onto a denaturing polyacrylamide

gel (GeneFlow, UK), transferred on to a nitrocellulose membrane which was then

incubated with a primary antibody diluted in 0.2% I-block PBS-T (IRS1 1 : 250,

MT-CO1 1 : 1000, SDHA 1 : 1000, ß-Actin 1 : 1000) at 4ºC overnight. A

chemiluminescence detection system (ECL Plus, GE Healthcare, UK) was used
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to visualise protein bands, and densitometry was conducted using ImageQuant

LAS 4000 Software (GE Healthcare, UK). Equal protein loading was confirmed

by examining ß-actin protein expression. Primary antibodies utilised are listed in

Table2.4.

Table 2.4: Primary Antibodies
1º Antibody Supplier Catalogue Number

IRS1 Millipore

ß-actin Cell Signalling

SDHA Cell Signalling 5839

MT-CO1 Abcam Ab14705

Human adipocyte culture, differentiation and treat-

ment

Human subcutaneous white adipocyte cell line ChubS7 were grown and differen-

tiated as previously described [269]. Briefly, cells were seeded on to 6-well plates

(0.3x106) unless otherwise specified, grown to 100% confluence and differenti-

ated for 8-10 days in DMEM/F12 with 3% FBS and PromoCell Differentiation

Supplement Mix (C-39436, PromoCell). After differentiation, cells were allowed

to equilibrate in basal media for 12 hours before being treated for 24-72 hours

in basal media supplemented with LPS (10 or 100 ng/mL, E. Coli O55:B5, Sigma,

L6529), TNF↵ (10 ng/mL, Sigma, H8916) or Insulin (50 nM, Sigma, I9278). All

media were prepared with DMEM/F12 (ThermoFisher Scientific, UK, 11320033)

and formulations are shown in Table 2.5.
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Table 2.5: Adipocyte Culture Media Formulations
Growth Media Differentiation Media Basal Media

Fetal Bovine Serum 10% Fetal Bovine Serum 3% Bovine Serum Albumin 0.5%

Glutamine 2mM d-biotin 8

µg/mL

Insulin (recombinant human) 0.5 µg/mL

Dexamethasone 400

ng/mL

IBMX 44

µg/mL

L-Thyroxine 9

ng/mL

Citglitazone 3

µg/mL

Seahorse Cell Mito Stress Test

Respiration and media acidification rate were measured using a Seahorse XF24

Extracellular Flux Analyzer (Seahorse Bioscience, Agilent Technologies). Immor-

talised human preadipocytes ChubS7 were seeded onto 24-well plates (Seahorse

Bioscience, 100850-001) at a density of 10,000 cells/well, grown and differentiated

using the standard protocol outlined above, and treated for 24 or 72 hours with

or without LPS (10 or 100 ng/mL, E. Coli O55:B5, Sigma, L6529). Each experi-

mental group consisted of 5 replicates, with the experiment repeated on at least 2

separate occasions (n=10). The assay was conducted in sterile, unbuffered Assay

Media prepared with Seahorse base media (Seahorse Bioscience, 102365-100) at

37ºC (pH 7.4), the formulation of which is listed in Table2.6.

Table 2.6: Seahorse Media Formulation
Reagent Supplier Catalog Number Final Concentration

Sodium Pyruvate Sigma S8636 1mM

Glutamine Glutamax® Seahorse Included 2mM

Glucose Sigma G8769 17.5mM

After a calibration step (30min) and an equilibration step (30min), the assay pro-

tocol consisted of 3 cycles of the following steps: mix (3min), wait (2min), mea-

sure (3min), which were completed before and after each injection of Oligomycin
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(Sigma, O4876), FCCP (Sigma, C2920) and combined Rotenone (Sigma, R8875)

and Antimycin A (Sigma, A8674). Reagents or vehicle control were injected in the

appropriate volume of a tenfold concentrated stock solution to give the following fi-

nal in-well concentrations: 2 µM Oligomycin, 2 µM FCCP, 0.5 µM Rotenone/Antimycin

A. Prior to experiments, reagent concentrations and seeding density were optimised

as per the manufacturers instructions. Oxygen consumption rate (OCR) and extra-

cellular acidification rate (ECAR) were calculated by the WAVE software (Seahorse

Bioscience, Agilent Technologies). The basal respiration parameters were calcu-

lated from the mean of 3 individual OCR measurements as follows:

Basal Respiration = Initial OCR (pmol/L)�Rotenone OCR (pmol/L)

For OCR and ECAR response to injection of each compound, data was normalised

by the basal respiration of each experimental group (shown as percentage of base-

line) to account for well-to-well variability in cell number.

Determination of ATP abundance

Immortalised human preadipocytes ChubS7 were seeded onto gelatin-coated 96-

well white opaque cell culture plates at a density of 10,000 cells/well. Cells were

grown and differentiated according to the standard protocol outlined above, and

treated with or without LPS (10 or 100 ng/mL, E. Coli O55:B5, Sigma, L6529) for

24 or 72 hours. Bioluminescent determination of ATP abundance was conducted

using EnzyLightTM ATP Assay Kit (BioAssay Systems, EATP-100) following the

manufacturers instructions for adherent cells. Luminescence was read using a
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PheraStar FS microplate reader (BMG Labtech), and ATP concentrations deter-

mined based on interpolation of a standard curve of known ATP concentrations

ranging from 0� 30 µM.

Determination of mitochondrial membrane po-

tential

The dye tetramethylrhodamine ethyl ester perchlorate (TMRE, Sigma, 87917) was

used to determine mitochondrial membrane potential. TMRE is a cell-permeant,

positive-charged red/orange dye that is readily sequestered by polarised mitochon-

dria (due to their negative charge) in a manner that is directly proportional to their

membrane potential. Immortalised human preadipocytes ChubS7 were seeded onto

a black opaque 96-well plate, differentiated and treated as described for the ATP

abundance assay. Adherent cells were incubated with 300 nM TMRE (Sigma) di-

luted in basal media (described in Table 2.5) for 30min at 37ºC. Cells were then

washed 3 times with warm PBS before reading fluorescence with a PheraStar FS

microplate reader (BMG Labtech) at 550/590nM excitation/emission immediately

and after 10, 20 and 30 minutes. As a positive control for depolarisation, 30 µM

FCCP was added to some cells for 30minutes, prior to the TMRE incubation step.

FCCP is an ionophore which destroys membrane potential, rendering mitochondria

unable to accumulate TMRE. For background correction, cells with no TMRE and

no FCCP added were used. Membrane potential was calculated using the relative
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fluorescence signal of samples based on the following formula:

Membrane Potential (%) =


(LPS sample� background)

(control sample� background)

�
x 100

Endogenous antioxidant activity assays

Activity of endogenous antioxidants SOD and Catalase was evaluated through

a colorimetric method, using OxiSelectTM Superoxide Dismutase Activity Assay

(STA-340) and OxiSelectTM Catalase Activity Assay (STA-341) Kits (Cell Bio-

labs). Following adipocyte differentiation and treatment, v 1.2 x 106 adherent

cells were washed 3 times with ice-cold PBS, harvested with a cell scraper in 1mL

of cold Lysis buffer (10mM Tris, pH 7.5, 150mM NaCl, 0.1mM EDTA). Sam-

ples were homogenised, centrifuged and stored at -80ºC until assayed. All assays

were conducted within 1 month of sample collection and were conducted in accor-

dance to manufacturers instructions. Absorbance was read using a PheraStar FS

microplate reader (BMG Labtech). SOD activity was calculated based on optical

density as outlined in the following formula:

SOD activity (inhibition %) =


(BlankOD � SampleOD)

BlankOD

�

The concentration of active Catalase was determined by interpolation of a catalase

standard curve. Optical density at 540nm was plotted on the “x” axis, Catalase

(U/mL) on the “y” axis, and a second order polynomial equation was used to

determine catalase concentrations as follows:
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Catalase (U/mL) = 174.01x2+13.678x+2.7743 where x = optical density (540 nm)

Quantification of total reactive oxygen and ni-

trogen species

Total reactive oxygen and nitrogen species were evaluated through green fluores-

cence using OxiSelectTM
in vitro ROS/RNS Assay Kit (STA-347, Cell Biolabs).

Following adipocyte differentiation and treatment, v 1.2 x 106 adherent cells were

washed 3 times with ice-cold PBS, flash-frozen in dry-ice and harvested using a

cell-scraper. Samples were homogenised in 200 µL PBS and stored at -80ºC and

assayed within 1 month of collection. Assay was conducted according to man-

ufacturers instructions, and fluorescence after 30 minutes was measured using a

PheraStar FS microplate reader (BMG Labtech) with a 485/538 nm filter and

530 nm cutoff. Total ROS/RNS were calculated by interpolation of a Hydrogen

Peroxide standard curve as follows:

ROS/RNS (µM) = 5354.5x2 + 1043.3x+ 50.496

where x = relative flourescence units (485/538).

57



2-deoxyglucose uptake

Glucose uptake in differentiated ChubS7 adipocytes was evaluated via cellular in-

corporation of [3H]-2-deoxyglucose. Following differentiation and treatment, cells

were washed 3 times with warmed PBS and allowed to equilibrate in KRH buffer

(containing 0.01% BSA, 5mmol/L glucose) at 37ºC for 2.5 hours. Adipocytes were

then incubated a further 30 minutes with KRH buffer without glucose and either no

(basal control) or 100 µM insulin. Immediately after, 1 µCi/mL [3H]-2-deoxyglucose

(PerkinElmer, NET328A001MC) in KRH buffer at 37ºC was added for a further10

minutes. To finalise the assay, cells were then washed 3 times with ice-cold PBS,

lysed and harvested in 200 µL RIPA buffer and a cell scraper. Radioactivity was

evaluated via scintillation counting of the lysates, diluted 1:4 in �-scintillation fluid

(Beta-Plate Scint, PerkinElmer), and a scintillation Counter. Results defined as

counts per minute (CPM) were normalised to total protein content and glucose

uptake displayed relative to the basal control.

Analysis of mitochondrial morphology through

confocal microscopy

Analysis of the mitochondrial network was performed through live cell imaging

using a confocal microscope. ChubS7 cells were seeded on to gelatin-coated 35mm

glass bottom culture dishes (MatTek corportationr), grown, differentiated and

treated for 24 hours as described above. Upon completion of treatment, basal

media was removed, replaced with 100 nM Mitotracker Red and cells incubated

for 20 minutes at 37ºC. Cells were then washed three times with basal media and
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imaged in HEPES-buffered basal media (pH 7.35) with or without LPS (10 or

100 ng/mL, E. Coli O55:B5, Sigma, L6529). The Z system attached to an inverted

flourescence microscope fitted with an F-view-II cooled CCD camera (Olympus)

was used to observe cells which were maintained at 37ºC throughout the imaging

process. Cells were magnified 40x through an oil objective lens, and a 500 nm

excitation filter was used to image the mitochondrial network.

Morphologic assessment of the mitochondrial network was conducted on confocal

images using ImageJ (version 1.50i) as described by others [270]. The mito-

chondrial parameters assessed were mitochondrial area (µm2) and the degree of

branching, as defined by the following equation:

BF =
MtP 2

(4⇡MtA)

where MtP = length of mitochondrial outline (mitochondrial perimeter in µm)

and MtA = Area of mitochondria (µm2). Four independent experiments were

conducted and a minimum of 70 images were examined for each experimental

group.

Statistical Analysis

Statistical analyses were performed using the SPSS 21.0 software. Data are re-

ported as mean ± standard deviation (SD), unless otherwise specified. Data were

examined for normality according to the Shapiro-Wilks criteria. Comparisons be-

tween pre- and post-surgery time-points were performed via paired two-tailed t-

tests (if parametric) and the Wilcoxon signed ranks test (if non-parametric). For
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categorical data, Fisher�s exact test was used. Between-group (surgery type) dif-

ferences were assessed using One-way ANOVA (if parametric) and Kruskal-Wallis

test (if non-parametric) using change variables, calculated as percentage change

from pre-surgery values [(post/pre) x100]. For Pearson correlation analyses, change

variables [(post/pre) x100] were log-transformed prior to analysis if non-parametric.
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Chapter 3

Differential Effect of Bariatric

Surgical Procedure on

Metabolic Outcomes and

Adipose Tissue Mitochondria

61



3.1 Introduction

Bariatric surgery is currently considered the most effective treatment for severe

obesity, and is associated with substantial and sustained weight loss, coupled with

long-term T2DM remission in the majority of cases [271, 174]. However, the type

of bariatric surgical intervention also appears to be an important factor affecting the

degree and spectrum of improvements in metabolic parameters [174]. Post-surgical

excess weight loss ranges in degree from 15-25% after laparoscopic adjustable

gastric banding (LAGB), to 30-40% after bilio-pancreatic diversion (BPD), with

the degree of weight loss achieved being the strongest predictor of type-2 diabetes

(T2DM) remission [272, 273, 274, 275].

Also critical to metabolic recovery are mitochondria. Established metabolic regu-

lators [276], mitochondria are key to the adipose tissue�s (AT) ability to maintain

its metabolic and endocrine functionality in the face of constant energy oversup-

ply [277]. Mitochondria exquisitely tailor changes in energy production capac-

ity through structural and functional modifications (fission and fusion) dependent

upon supply and demand. However, in cases of chronic nutrient excess, such as

obesity, the mitochondrial network is forced to sustain these adaptations (fragmen-

tation) for the longer term, leading to severely compromised mitochondrial DNA

integrity, inefficiency and metabolic stress [278, 279]. In addition, this impairment

in function can further lead to an accumulation of reactive oxygen species (ROS)

[236], impaired oxygen consumption and ß-oxidation [280, 281], enhanced lipo-

toxic species accumulation [282], pro-inflammatory cytokine production [283] and

impaired insulin signaling [284, 285].

Recent studies examining mitochondria in human AT has shown that both obesity
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and T2DM can lead to mitochondrial inefficiency with fewer and smaller mitochon-

dria, and that this dysfunction is dependent upon substantial weight gain rather

than adipocyte cell size [286, 287]. Beyond simple obesity, the insulin resistant

state is also associated with mitochondrial dysfunction within AT [288, 289, 290],

whilst studies also suggest that mitochondrial dysfunction in adipocytes itself may

be causal in leading to impairment of insulin sensitivity [291, 292].

Nutrient overload, either through high-fat or high-glucose environments, has been

strongly implicated in mitochondrial dysfunction, leading to increased oxidative

stress and molecular mechanisms of metabolic dysfunction in AT [279, 293, 294,

295]. Therefore, interventions such as bariatric surgery that can induce substantial

and sustained weight loss, may reverse the underlying cellular causes of insulin

resistance by limiting over nutrition and reversing mitochondrial dysfunction in AT

[271, 174, 272, 273, 274, 275].

Thus, the aims of this study were to: (1) determine whether bariatric surgery,

the most effective treatment for morbid obesity to date [271, 174], can reverse

mitochondrial maladaptation in AT from obese subjects with T2DM; (2) evaluate

whether the type of bariatric surgery, i.e. with varying degrees of caloric restriction

(as evidenced by weight loss), has a differential effect on the resulting mitochondrial

health; and (3) understand which, if any, clinical or biochemical post-operative

factors may be associated with a reversal in mitochondrial maladaptation.

63



3.2 Methods

Ethics and Study Design

All study participants provided written and informed consent in accordance with

the Declaration of Helsinki. Thirty-nine morbidly obese (BMI > 35 Kg/m2), type-

2 diabetic, Caucasian women undergoing either bilio-pancreatic diversion (BPD;

n=12), laparoscopic greater curvature plication (LGCP; n=15), or laparoscopic ad-

justable gastric banding (LAGB; n=12) at the OB clinic, Prague, Czech Republic

were recruited to participate in this study. Thorough biochemical and anthropo-

metric investigations were conducted before (baseline) and six months after surgery

with collection of serum samples and abdominal subcutaneous white adipose tissue

(AT) biopsies at both of these time points. Patients on pharmacological treatment

with incretin mimetics and/or insulin were not included in this study. The reader

is referred to Chapter 2 Materials and Methods for greater detail.

Blood Biochemistry and Anthropometry

Anthropometric and biochemical measurements were performed before and six

months after surgery, following a 10-hour overnight fast, from venous blood sam-

ples. Serum glucose, HbA1c and lipids were determined through biochemical anal-

yses (see Chapter 2). Insulin resistance was assessed using the homeostatic model

assessment of insulin resistance (HOMA-IR) [34]. The Friedwald formula [35] was

employed to compute serum levels of LDL cholesterol. Body weight was measured

to the nearest 0.5 Kg and height to the nearest 1 cm. Percentage excess weight

loss was calculated (see Chapter 2 for equation), and body fat mass was measured
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using the bioimpedance method (Tanita TBF-300; Tanita corporation).

RNA isolation and qRT-PCR

Gene expression from subcutaneous white adipose tissue biopsies before and 6

months after each bariatric surgery was determined via qRT-PCR. RNA isolation

and qRT-PCR methods are detailed in Chapter 2. For detail on primer sequences

of mitochondrial genes used in this study the reader is referred to Table 2.1.

Mitochondrial DNA copy number assay

Mitochondrial number was determined via analysis of relative amounts of mito-

chondrial to nuclear DNA [266] in subcutaneous white adipose tissue biopsies be-

fore and 6 months after each bariatric surgery. For in depth detail on this method,

the reader is referred to Chapter 2.

Statistical Analysis

Statistical analyses were performed using the SPSS 21.0 software. Data are re-

ported as mean ± standard deviation (SD), unless otherwise specified. Data were

examined for normality according to the Shapiro-Wilks criteria. Comparisons be-

tween pre- and post-surgery time-points were performed via paired two-tailed t-

tests (if parametric) and the Wilcoxon signed ranks test (if non-parametric). For

categorical data, Fisher�s exact test was used. Between-group (surgery type) dif-

ferences were assessed using One-way ANOVA (if parametric) and Kruskal-Wallis

test (if non-parametric) using change variables, calculated as percentage change

from pre-surgery values [(post/pre) x100]. For Pearson correlation analyses, change
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variables [(post/pre) x100] were log-transformed prior to analysis if non-parametric.

66



3.3 Results

Differential Effect of Bariatric Procedure on Metabolic Health

The most notable difference between surgical procedures was weight loss. Though

all surgical procedures resulted in significant reductions of BMI compared with pre-

surgical measurements (Figure 3.1A), the BPD procedure produced significantly

greater weight reduction (p=0.004), by a factor of approximately 30-50% on top

of the other two LGCP and LAGB procedures (Figure 3.1B).
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Figure 3.1: Differential effect of surgical procedure on weight loss
(A) BMI before and 6 months after three distinct bariatric procedures: Bilio-pancreatic diversion
(BPD), Laparoscopic Greater Curvature Plication (LGCP) and Laparoscopic Adjustable Gastric
Banding (LAGB). Bars represent means ± standard error of the mean, with individual data
points shown as dots to illustrate distribution. (B) Percent of the individual�s excess weight lost
at 6 months post BPD, LGCP or LAGB. Pre-to-post differences were calculated using a 2-tail
paired t-test, whilst one way ANOVA was used to compare change between surgeries. *p<0.05,
**p<0.01.
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Figure 3.2: Differential effect of surgical procedure on HbA1c
(A) Serum HbA1c before and 6 months after three distinct bariatric procedures: Bilio-pancreatic
diversion (BPD), Laparoscopic Greater Curvature Plication (LGCP) and Laparoscopic Adjustable
Gastric Banding (LAGB). Data is expressed as precentage of pre-surgical levels. Bars represent
means ± standard error of the mean. (B) Serum HbA1c before and after BPD, LGCP and
LAGB, showing weighted average once BMI is accounted for through ANCOVA analysis. One
way ANOVA or ANCOVA was used to compare change between surgeries. *p<0.05, **p<0.01.

The type of surgical procedure also had a significant impact on HbA1c reduction.

These data is shown in Figure 3.2, as percentage of pre-surgical values. Despite

similar levels of HbA1c at baseline between surgeries, the BPD procedure resulted

in significantly lower circulating levels of HbA1c (a marker of long-term diabetic

control), compared with LGCP (p=0.022) and LAGB (p=0.002) (Figure 3.2A). To

clarify whether this effect could be explained by the greater weight loss shown by the

BPD cohort, the analysis was repeated using ANCOVA and BMI as a covariate.

As shown in Figure 3.2B, BPD resulted in superior HbA1c reductions, despite

controlling for BMI. Indeed, further linear regression analysis revealed that inter-

surgical differences in excess weight loss could account only for 30% of divergence

in HbA1c, leaving the remaining 70% as the result of other, unknown factors (Table

3.1).
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Table 3.1: Contribution of weight loss to surgery-induced improvements in serum
HbA1c

R square change B Coefficient p value

Excess weight loss 0.304 �0.776 0.0001

A linear regression analysis was performed using surgery-induced changes in serum HbA1c as
the dependent variable, and excess weight loss as independent, to determine the contribution of
weight loss to serum HbA1c improvements. No other variables were entered into the model.

In addition to improved diabetic control, BPD also resulted in significantly lower

lipid levels. As shown in Figure 3.3A, total cholesterol was significantly reduced in

patients who underwent BPD, but not in those who underwent LGCP, or LAGB.

Subsequent ANCOVA analysis revealed that this surgery-specific difference re-

mained unchanged after accounting for differences in BMI (Figure 3.3B). Indeed,

further linear regression analysis revealed that inter-surgical differences in excess

weight loss could account only for 12% of divergence in serum total cholesterol,

leaving the remaining 88% as the result of other, unknown factors (Table 3.2).

Similar results were observed in other lipids, where improvements in LDL choles-

terol (29%, p=0.001) and in HDL/LDL ratio appeared greater with BPD (15% in-

crease from pre-surgery, p=0.154) than with LGCP and LAGB procedures (2% and

4%, respectively). The aforementioned findings and all additional anthropometric,

biochemical and clinical data obtained before and 6 months after bilio-pancreatic

diversion (BPD; n= 12), laparoscopic greater curvature plication (LGCP; n=15)

or laparoscopic adjustable gastric banding (LAGB; n=12) operations can be found

in Table 3.3, to highlight comparative differences between the 3 surgeries.
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Figure 3.3: Differential effect of surgical procedure on total cholesterol
(A) Serum Total Cholesterol before and 6 months after three distinct bariatric procedures: Bilio-
pancreatic diversion (BPD), Laparoscopic Greater Curvature Plication (LGCP) and Laparoscopic
Adjustable Gastric Banding (LAGB). Data is expressed as precentage of pre-surgical levels. Bars
represent means ± standard error of the mean. (B) Serum Total Cholesterol before and after
BPD, LGCP and LAGB, showing weighted average once BMI is accounted for through AN-
COVA analysis. One way ANOVA or ANCOVA was used to compare change between surgeries.
*p<0.05, **p<0.01.

Table 3.2: Contribution of weight loss to surgery-induced improvements in total
cholesterol

R square change B Coefficient p value

Excess weight loss 0.127 �0.535 0.019

A linear regression analysis was performed using surgery-induced changes in serum total choles-
terol as the dependent variable, and excess weight loss as independent, to determine the contri-
bution of weight loss to serum total cholesterol improvements. No other variables were entered
into the model.

Differential Effect of Bariatric Procedure on Indicators of

Adipose Mitochondrial Function

Next, the impact of the different bariatric procedures on mitochondrial function in

adipose tissue was examined. Transcript levels of genes associated with a range

of mitochondrial functions (biogenesis, oxidative phosphorylation, uncoupling and

antioxidant capacity) and dynamics (fission and fusion) were examined in adipose

biopsies through qRT-PCR. Gene expression levels pre-surgery for each gene cat-

egory are shown in Figures 3.4 to 3.7. Overall, transcript levels for genes involved
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in mitochondrial biogenesis (Figure 3.4), oxidative phosphorylation (Figure 3.5),

reactive oxygen species clearance (Figure 3.6), and dynamics (Figure 3.7) did not

vary significantly prior to surgical intervention between the three surgical cohorts

(BPD, LGCP, or LAGB) .
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Figure 3.4: Pre-surgery comparison of genes involved in mitochondrial biogenesis
Pre-surgery adipose tissue mRNA levels of genes involved in mitochondrial biogenesis for each
surgical cohort due to undergo either Bilio-pancreatic diversion (BPD), laparoscopic greater
curvature plication (LGCP) or laparoscopic adjustable gastric banding (LAGB). Data is expressed
as 1/4Ct. Bars represent means ± standard error of the mean. One way ANOVA was used to
determine differences between surgeries. N.S. denotes differences shown were not statistically
significant (p>0.05). PGC1↵: Peroxisome proliferator-activated receptor gamma coactivator
1-alpha; POLG: mitochondrial DNA polymerase; TFAM: mitochondrial transcription factor A.
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Figure 3.5: Pre-surgery comparison of genes involved in oxidative phosphorylation
Pre-surgery adipose tissue mRNA levels of genes involved in Oxidative Phosphorylation for each
surgical cohort due to undergo either Bilio-pancreatic diversion (BPD), laparoscopic greater cur-
vature plication (LGCP) or laparoscopic adjustable gastric banding (LAGB). Data is expressed
as 1/4Ct. Bars represent means ± standard error of the mean. One way ANOVA was used to
determine differences between surgeries. N.S. denotes differences shown were not statistically
significant (p>0.05). mtND6: mitochondrially-encoded NADH dehydrogenase 6; SDHA: Succi-
nate Dehydrogenase Complex Flavoprotein Subunit A; COX4I1: Cytochrome c oxidase subunit
4 isoform 1; mtATP6: Mitochondrially-encoded ATP Synthase 6.
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Figure 3.6: Pre-surgery comparison of genes involved in reactive oxygen species
clearance
Pre-surgery adipose tissue mRNA levels of genes involved in reactive oxygen species clearance (A,
uncoupling and B, endogenous antioxidant action) for each surgical cohort due to undergo either
Bilio-pancreatic diversion (BPD), laparoscopic greater curvature plication (LGCP) or laparoscopic
adjustable gastric banding (LAGB). Data is expressed as 1/4Ct. Bars represent means ± standard
error of the mean. One way ANOVA was used to determine differences between surgeries. N.S.
denotes differences shown were not statistically significant (p>0.05). UCP2: Uncoupling protein
2; SOD1: Superoxide dismutase 1; SOD2: Superoxide dismutase 2.
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Figure 3.7: Pre-surgery comparison of genes involved in mitochondrial dynamics
Pre-surgery adipose tissue mRNA levels of genes involved in mitochondrial dynamics (A, fis-
sion and B, fusion) for each surgical cohort due to undergo either Bilio-pancreatic diversion
(BPD), laparoscopic greater curvature plication (LGCP) or laparoscopic adjustable gastric band-
ing (LAGB). Data is expressed as 1/4Ct. Bars represent means ± standard error of the mean.
One way ANOVA was used to determine differences between surgeries. N.S. denotes differences
shown were not statistically significant (p>0.05). MFN2: Mitofusin 2; OPA1: mitochondrial
dynamin like GTPase; DRP1: Dynamin-1-like protein; FIS1: Mitochondrial fission 1 protein.

Gene expression levels post-surgery are shown in Figure 3.8 as fold-change of pre-

surgery values. In general, mitochondrial gene mRNA levels were higher after

the BPD procedure than the LGCP or LAGB operations. This was particularly
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evident with oxidative phosphorylation (SDHA, COX4I1 and mtATP6), reactive

oxygen species clearance (UCP2 and SOD2) and fusion (OPA1) genes, and would

suggest a surgery-specific difference in bioenergetic efficiency, antioxidant capacity

and mitochondrial quality control.
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Figure 3.8: Effect of bariatric procedure on mitochondrial gene expression in adi-
pose biopsies
Surgery-induced changes in adipose tissue mRNA expression of genes involved in mitochondrial
biogenesis (A), oxidative phosphorylation (B), reactive oxygen species clearance (C), and dy-
namics (D) for each surgical procedure: BPD, LGCP or LAGB. Data is expressed as fold-change
of pre-surgical values (shown as dotted line). Bars represent means ± standard error of the mean.
Pre-to-post surgical differences were determined via 2-tailed paired t-test (*p<0.05, **p<0.01).
One way ANOVA was used to determine differences between surgeries (†p<0.05).
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The effect of each surgery on mitochondrial number in adipose biopsies was also

analysed by comparing mitochondrial DNA relative to gDNA levels (Figure 3.9).

Mitochondrial number did not differ significantly between cohorts prior to surgery

(Figure 3.9A), however surgery-specific effects on mitochondrial number were ob-

served post-surgery (Figure 3.9B). Whilst the LGCP and LAGB procedures seem-

ingly lowered the number of mitochondrial DNA copies in adipose biopsies, no such

effect was observed with the BPD procedure.
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Figure 3.9: Effect of bariatric procedure on mitochondrial number in adipose biop-
sies
Surgery-induced changes in adipose tissue mitochondrial DNA copy number before (A), and after
(B) each surgical procedure: Bilio-pancreatic diversion (BPD), laparoscopic greater curvature
plication (LGCP) or laparoscopic adjustable gastric banding (LAGB). Data is expressed as 1/4Ct

of mitochondrial target relative to nuclear for A, and as percentage change of pre-surgical values
(shown as dotted line) for B. Bars represent means ± standard error of the mean. Pre-to-post
surgical differences were determined via 2-tailed paired t-test (*p<0.05, **p<0.01). One way
ANOVA was used to determine differences between surgeries (†p<0.05). N.S. denotes differences
shown were not statistically significant (p>0.05).

In order to further examine the overall impact of each surgery on adipose mito-

chondrial functionality, surgery-induced changes in genes involved in mitochondrial

function (biogenesis, oxidative phosphorylation, uncoupling, and antioxidant ca-

pacity) and dynamics (fission and fusion) were compared to the changes observed

in mitochondrial number using Pearson correlation analyses. In genes controlling

function, these relationships were significantly positive after BPD surgery across 9
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of 10 genes assessed, whilst significantly negative for 7 genes after LGCP surgery,

and absent for all genes after the LAGB procedure (Table 3.4). Analysis of mi-

tochondrial dynamics genes revealed significant correlations in genes involved in

both fusion and fission processes within the BPD cohort. These relationships were

absent in the LGCP group and present only for fusion genes in the LAGB group,

indicating that the control of mitochondrial function and dynamics differed with

the type of surgical procedure.

Table 3.4: Relationship of mitochondrial number to mitochondrial function and
dynamics genes after BPD, LGCP and LAGB bariatric procedures

Mitochondrial number vs.
BPD LGCP LAGBP

(n = 12) (n = 15) (n = 12)

Fu
nc

tio
n

PGC1↵ 0.794** �0.688** �0.175

POLG 0.867** �0.407 0.035

TFAM 0.479 �0.560* �0.154

mtND6 0.758* �0.613* �0.153

SDHA 0.855** �0.600* �0.056

COX4I1 0.939** �0.442 0.147

mtATP6 0.782** �0.547* 0.056

UCP2 0.818** �0.389 0.063

SOD1 0.842** �0.604* 0.098

SOD2 0.696* �0.576* �0.017

D
yn

am
ic

s MFN2 0.983** �0.493 0.939*

OPA1 0.808* �0.202 0.963*

DRP1 0.302 �0.426 0.669

FIS1 0.871* �0.337 0.209

Table shows Pearson�s correlation coefficient between mitochondrial number and genes involved
in mitochondrial biogenesis (PGC1a, POLG, TFAM), oxidative phosphorylation (mtND6, SDHA,
COX4I1, mtATP6), uncoupling (UCP2), antioxidant function (SOD1, SOD2), fusion (MFN2,
OPA1) and fission (DRP1, FIS1) processes. Correlations were calculated using change vari-
ables (pre to 6-months post-surgery percentage change). Negative correlations are shown in
red. *p<0.05, **p<0.01. BPD: bilio-pancreatic diversion, LGCP: laparoscopic greater curvature
plication, LAGB: laparoscopic adjustable gastric banding. PGC1a: Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha, POLG: mitochondrial DNA polymerase gamma
catalytic subunit, TFAM: mitochondrial transcription factor A, mtND6: mitochondrially-encoded
NADH dehydrogenase 6, SDHA: Succinate dehydrogenase complex subunit A, COX4I1: Cy-
tochrome c oxidase subunit 4 isoform 1 (complex IV), mtATP6: mitochondria-DNA-encoded
ATP synthase subunit 6 (complex V), UCP2: uncoupling protein 2, SOD1: superoxide dismu-
tase 1, SOD2: Superoxide dismutase 2, MFN2: Mitofusin 2; OPA1: mitochondrial dynamin like
GTPase; DRP1: Dynamin-1-like protein; FIS1: Mitochondrial fission 1 protein.
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Mapping Surgery-Specific Differences in Mitochondrial Func-

tionality to Clinical Indicators of Metabolic Health

In order to further understand the factors contributing to the surgery-specific mito-

chondrial differences observed, their relationship with the metabolic variables that

varied the most between surgical procedures were examined, including: excess

weight loss (EWL), body mass index (BMI), serum HbA1c and serum total choles-

terol (Table3.5). Most of these analyses returned non-significant relationships

however, total serum cholesterol was identified to have a significant association

accross all surgeries with two mitochondrial genes: mitochondrially-encoded ATP

synthase 6 (mtATP6) and uncoupling protein 2 (UCP2). Shown as scatterplots

in Figure 3.10, these relationships show that higher total cholesterol in serum was

associated with lower expression of both mtATP6 and UCP2 genes, and that the

BPD procedure generally had lower cholesterol with higher mitochondrial gene

expression than the LGCP and LAGB procedures. These findings are consistent

with the notion that greater lipid toxicity may be the cause of surgery-specific

differences observed in mitochondrial functionality.
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Table 3.5: Relationship of mitochondrial variables with clinical indicators of
metabolic health

EWL BMI HbA1c Total Cholesterol

r p r p r p r p

mt number �0.083 0.629 0.078 0.649 0.039 0.825 �0.120 0.486

Fu
nc

tio
n

PGC1↵ �0.124 0.428 0.101 0.520 0.045 0.775 �0.038 0.810

POLG 0.072 0.647 �0.061 0.697 �0.002 0.990 �0.118 0.450

TFAM 0.013 0.936 0.010 0.948 0.027 0.863 �0.138 0.376

mtND6 �0.027 0.867 �0.024 0.880 0.002 0.989 �0.189 0.371

SDHA 0.097 0.535 �0.126 0.422 �0.117 0.462 �0.089 0.571

COX4I1 0.121 0.441 �0.157 0.315 �0.071 0.655 �0.181 0.246

mtATP6 0.129 0.408 �0.203 0.192 �0.151 0.340 �0.318 0.038*

UCP2 0.162 0.298 �0.200 0.198 �0.015 0.927 �0.343 0.024*

SOD1 0.118 0.450 0.067 0.668 0.112 0.478 �0.018 0.909

SOD2 0.131 0.404 �0.174 0.264 0.055 0.730 �0.259 0.093

D
yn

am
ic

s MFN2 0.005 0.980 �0.012 0.950 �0.163 0.407 �0.085 0.662

OPA1 �0.042 0.831 0.067 0.731 0.220 0.260 �0.198 0.303

DRP1 �0.138 0.483 0.205 0.295 �0.005 0.980 0.192 0.327

FIS1 0.124 0.523 �0.153 0.429 �0.016 0.935 0.067 0.728

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between metabolic
and mitochondrial variables in the entire patient cohort (n=39). Correlations were calculated us-
ing change variables (pre to 6-months post-surgery percentage change). Significant correlations
are shown in red. *p<0.05. EWL: excess weight loss, BMI: body mass index, HbA1c: serum gly-
cosylated haemoglobin, PGC1a: Peroxisome proliferator-activated receptor gamma coactivator
1-alpha, POLG: mitochondrial DNA polymerase gamma catalytic subunit, TFAM: mitochon-
drial transcription factor A, mtND6: mitochondrially-encoded NADH dehydrogenase 6, SDHA:
Succinate dehydrogenase complex subunit A, COX4I1: Cytochrome c oxidase subunit 4 isoform
1 (complex IV), mtATP6: mitochondria-DNA-encoded ATP synthase subunit 6 (complex V),
UCP2: uncoupling protein 2, SOD1: superoxide dismutase 1, SOD2: Superoxide dismutase 2,
MFN2: Mitofusin 2; OPA1: mitochondrial dynamin like GTPase; DRP1: Dynamin-1-like protein;
FIS1: Mitochondrial fission 1 protein.
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Figure 3.10: Association of total serum cholesterol with adipose mitochondrial
genes
Scatter plots of total serum cholesterol correlated against mitochondrial genes mtATP6 (oxida-
tive phosphorylation) and UCP2 (reactive oxygen species clearance). Correlations were calculated
using change variables (percentage of pre levels) in the entire patient cohort (n=39), but in-
dividual data points are color-coded according to surgical procedure: Bilio-pancreatic diversion
(BPD), laparoscopic greater curvature plication (LGCP) or laparoscopic adjustable gastric band-
ing (LAGB). Linear trend line is also shown with Pearson correlation statistic (r) and significance
(p).
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3.4 Discussion

The present study hypothesized that caloric restriction (as evidenced by weight

loss) through bariatric surgery would be accompanied by beneficial effects on adi-

pose tissue mitochondria, supporting systemic metabolic recovery. To investigate

this hypothesis, genes controlling a wide range of mitochondrial functions (biogen-

esis, oxidative phosphorylation, antioxidant, uncoupling, fusion and fission) were

investigated. The BPD procedure lead to a tighter control of mitochondrial gene

expression than LGCP or LAGB in association with greater weight, lipid and HbA1c

reduction. These findings highlighted for the first time that (1) mitochondrial mal-

adaptation may be reversed through bariatric intervention, dependent on (2) the

type of procedure (BPD, LGCP and LAGB) which may influence (3) the degree of

caloric and nutritional restriction. The BPD procedure which was the only proce-

dure where mitochondrial recovery was evident, was also the surgery to result in

the greater improvement of weight loss, HbA1c and dyslipideamia.

Whilst bariatric surgery per se, is currently the most effective treatment for severe

obesity, associated with substantial and sustained weight loss, coupled with long-

term T2DM remission in the majority of cases [271, 174], the type of bariatric

surgical intervention given also appears to be an important factor affecting the

degree and spectrum of improvements in metabolic parameters. In this present

study, weight loss and thus HbA1c improvement rates were greater following the

BPD procedure compared with LGCP and LAGB surgeries. These outcomes affirm

previous research [174], reporting excess weight loss ranging from 15-25% excess

weight loss after LAGB, to 30-40% after BPD/DS, where the highest mean weight

loss achieved is also the strongest predictor of T2DM remission [272, 274, 275,
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273].

The finding that regulation of mitochondrial genes were significantly improved only

in patients who also exhibited the greater metabolic improvements (as is the case

of the BPD group), would seem to reinforce the concept that adipose mitochondria

play an important role in systemic metabolic health. Following the BPD procedure

alone, mitochondrial number was significantly and positively correlated with mRNA

expression of most genes assayed, covering a range of mitochondrial (biogenesis,

oxidative phosphorylation, uncoupling, antioxidant and quality control) functions,

whilst after the LGCP and LAGB surgeries they appeared dysregulated. These

mitochondrial differences may have severe functional implications for the adipose

tissue at large. The genes MFN2, OPA1, DRP1 and FIS1 together allow the

isolation and autophagic elimination of damaged mitochondria [29, 296], and are

essential to maintaining mitochondrial quality and function [236]. Furthermore the

long-term inhibition of DRP1 and OPA1, which may be induced through nutrient

excess [278, 279], may also lead to accumulation of irreversibly damaged mito-

chondria [29], which may in turn lead to pro-inflammatory cytokine production

[283] and impaired insulin signaling [284, 285].

Interestingly, despite similar HbA1c reduction rates between LGCP and BPD (once

BMI is accounted for), mitochondrial recovery was evident in BPD alone, with the

only measured differential factor being lipidaemic improvement in BPD, though

not LGCP. One interpretation of this result would be that mitochondrial recovery

is related to diet and specifically caloric restriction, which may ease mitochondrial

stress caused by excess nutrient delivery and improve the lipid buffering capacity of

adipose depots (evidenced by an improved lipid profile). In accord with this con-
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cept, BPD is the only bariatric procedure shown to severely inhibit macronutrient

absorption [176, 183], and thus induce the more severe caloric deficit (as evi-

denced by greater rates of weight loss). Similar mitochondrial benefits have also

been reported through hypo-caloric dietary intervention, where some mitochon-

drial, glucose and lipid metabolism modifications occur after very and moderately

low calorie diets [179, 297, 298]. Taken together these data suggest that the sever-

ity and duration of the caloric deficit may provide the basis to support mitochondrial

recovery, which in human subjects may be better sustained through surgery rather

than lifestyle interventions and ultimately lead to the better metabolic recovery.

This study has certain limitations, namely: (1) though subjects of this study did

not follow a particular dietary regimen and led a relatively sedentary lifestyle in the

period before surgery, these two factors were not controlled either before or after

surgery; and (2) despite the prospective study design, it is not possible to clarify

in the context of this study whether the observed mitochondrial improvements are

the cause or consequence of metabolic recovery, or indeed whether other factors

either dependent or independent of weight are at play. Thus, further research is

required to clarify these points.

In summary, ensuring that mitochondria are able to cope with the demand of excess

nutrients is critical for both functional adipose function and its lipid buffering ca-

pacity. Indeed, in conditions of chronic nutrient excess, such as obesity and T2DM,

mitochondria become inefficient and dysfunctional. However, these findings sug-

gest that nutrient-induced mitochondrial maladaptation may be reversed through

certain bariatric procedures in association with degree of weight loss and dyslipi-

daemic improvement. Ultimately these data suggest that mitochondrial function
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in adipose tissue is closely dependent on overall metabolic health and further un-

derstanding of its role during metabolic recovery of adipose tissue may be key in

reducing long-term damaging effects on peripheral metabolism.
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Chapter 4

Role of Gut-hormone FGF-19 on

Adipose Mitochondria Recovery

Post Bariatric Surgery
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4.1 Introduction

A key factor in the development of type-2 diabetes and metabolic syndrome is

the inability of adipose tissue to cope with the chronic insult of over-nutrition,

whilst maintaining important metabolic and endocrine functions [299, 150]. At

the forefront of this challenging environment are mitochondria, major nutrient

sensors and metabolic regulators, which are fundamental to adipose tissue function

[276, 277]. However, during sustained conditions of chronic nutrient excess, such

as obesity and type-2 diabetes, mitochondria appear unable to cope well with this

environment, leading to fragmentation, unresponsiveness and dysfunction [287,

236, 280]. This nutrient-induced mitochondrial dysfunction can lead to impaired

respiration, lipotoxicity, oxidative species accumulation and inflammation; further

exacerbating insulin resistance and type-2 diabetes [281, 283, 284, 285]. Indeed,

the importance of adequate mitochondrial function for metabolic health is further

highlighted by the observation that mitochondrial DNA mutations often result in

diabetic phenotypes [300, 301, 302].

Both insulin resistance and type-2 diabetes status can be reversed through bariatric

surgery, with significantly greater success rates than pharmacological, exercise, and

diet interventions [271, 273, 174]. Depending on the procedure, bariatric surgery

involves a type/degree of gastro-intestinal remodeling, which can lead to reduced

stomach volume and nutrient absorption capacity [303, 304]; however, this alone

cannot fully explain the profound weight loss and metabolic improvement observed

after these surgeries versus medical/lifestyle interventions [178].

Recently, the ileal-derived hormone, fibroblast growth factor 19 (FGF-19), has been

identified as a novel enterokine regulator of glucose and lipid homeostasis which
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is potentially involved in the metabolic recovery following bariatric surgery [305].

Indeed, rodent studies have shown that mice lacking the receptor required for gut

secretion of FGF-19 show significantly impaired weight loss and glucose improve-

ment following bariatric surgery compared with their wild-type counterparts [306].

In addition, direct administration of recombinant FGF-15 (FGF-19 in humans) to

obese mice leads to significant weight reduction, principally AT reduction, and

reverses dietary and leptin-deficient diabetes [307]. Moreover, in humans, data

from clinical studies would seemingly indicate FGF-19 as a cause rather than con-

sequence of type-2 diabetes improvement, given that neither lifestyle interventions

nor intense medical management of type-2 diabetes appears to increase circulating

FGF-19 levels, despite similar reductions in HbA1c to surgical procedures [308].

Furthermore, there is good clinical evidence that certain bariatric procedures in-

crease serum FGF-19 levels [31, 309, 310]. As such, both human and rodent studies

suggest that increased circulating FGF-19 levels may contribute to the underlying

mechanisms of metabolic improvement following certain types of bariatric surgery.

Beyond the potential effects on white adipose tissue, studies have shown FGF-19

to exert several advantageous effects on various metabolic relevant organs [305].

In the central nervous system, FGF-19 has been associated with lowered brain-

hedonistic responses, reduced food intake, improved glycaemic control and en-

hanced glucose effectiveness [311, 306]. Furthermore, in the liver, FGF-19 has

been shown to increase energy expenditure and fatty acid oxidation through raised

delivery of fatty acids to the mitochondria [312]. Additionally, in brown adipose

tissue, elevated FGF-19 (either through genetic over-expression or systemic admin-

istration) can affect the metabolic rate and activity of this highly energy-consuming
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tissue [307, 312]. These studies also highlight the importance of mitochondria as

a target of FGF-19 [307, 311, 306, 312], although its role in white adipose tissue

mitochondria, particularly within the context of type-2 diabetes, remains largely un-

known. In Chapter 3, evidence was outlined that suggests that only some bariatric

procedures (namely BPD) result in recovery of white adipose mitochondria from

severely obese type-2 diabetic individuals. In this present chapter, the hypothesis

is investigated that changes in serum FGF-19 levels after bariatric surgery influence

this multifactorial recovery and thus impact overall metabolic recovery.
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4.2 Methods

Ethics and Study Design

Thirty-nine morbidly obese (BMI>35 Kg/m2), type-2 diabetic, Caucasian women

undergoing either bilio-pancreatic diversion (BPD; n=12), laparoscopic greater cur-

vature plication (LGCP; n=15), or laparoscopic adjustable gastric banding (LAGB;

n=12) were recruited to participate in this study. Fasted bloods and anthropo-

metric investigations were conducted before (baseline) and following surgery with

collection of serum samples and abdominal subcutaneous white adipose tissue (AT)

biopsies at both of these time points. Patients on pharmacological treatment with

incretin mimetics and/or insulin were not included in this study. For further detail

the reader is referred to Chapter 2.

Blood Biochemistry and Anthropometry

All anthropometric and biochemical measurements were performed before and six

months after surgery. For detail on blood, adipose tissue sample and other clinical

data collection, please see Chapter 2.

RNA isolation and qRT-PCR

Gene expression of mitochondrial genes was assayed through quantitative real-time

polymerase chain reaction (qRT-PCR) using subcutaneous white adipose tissue

biopsies before and 6 months after bariatric surgery. For detail on primer sequences

used in this study the reader is referred to Table 2.1. For further detail please see

Chapter 2.
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Mitochondrial DNA copy number assay

Mitochondrial (mtND1) and nuclear (BECN1) gene primers (Table2.2) were used

via qRT-PCR to determine relative amounts of mitochondrial to nuclear DNA as

a measure of mitochondrial number per adipocyte[266] within subcutaneous white

adipose tissue biopsies. For further detail on methods, the reader is referred to

Chapter 2.

FGF-19 Serum Levels

For measurement of serum FGF-19 levels (pg/mL), an enzyme-linked immunosor-

bent assay (ELISA) kit for FGF-19 (Quantikine ELISA, R&D Systems, Minneapolis,

MN) was used. All measurements were performed in duplicate according to the

manufacturers instructions. This assay has a detection range of 31-544 pg/mL and

a coefficient of variation of 4.5% for intra-assay and 5.5 % inter-assay precision.

Statistical Analysis

Statistical analyses were performed using the SPSS 21.0 software. Data are re-

ported as mean ± standard deviation (SD), unless otherwise specified. Data were

examined for normality according to the Shapiro-Wilks criteria. Comparisons be-

tween pre- and post-surgery time-points were performed via paired two-tailed t-

tests (if parametric) and the Wilcoxon signed ranks test (if non-parametric). For

categorical data, Fisher�s exact test was used. Between-group (surgery type) dif-

ferences were assessed using One-way ANOVA (if parametric) and Kruskal-Wallis

test (if non-parametric) using change variables, calculated as percentage change

from pre-surgery values [(post/pre) x100]. For Pearson correlation analyses, change
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variables [(post/pre) x100] were log-transformed prior to analysis if non-parametric.
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4.3 Results

Differential Effect of Bariatric Procedure on Circulating

Levels of Gut Hormone FGF-19

Serum levels of gut-hormone FGF-19 were measured before and 6 months after

each bariatric procedure, and descriptive statistics for this data are sumarised in

Table 4.1.

Table 4.1: Comparisons of surgery-induced changes in serum FGF-19 levels be-
tween BPD, LGCP and LAGB bariatric procedures

Bariatric Percent of patients Change from pre- to post-surgery (%)†

procedure (n) with increase (%) Mean (SD) Median (IQR)

BPD (12) 58.3 158.90(180.60) 121.72(52.73 to 152.67)

LGCP (15) 73.3 181.32(209.65) 135.41(74.75 to 172.57)

LAGB (12) 16.7 60.03(29.23)* 61.84(43.39 to 72.56)*

Table shows percentage of patients (%) who exhibited increased serum FGF-19 post-surgery
relative to pre-surgery levels. The Wilcoxon signed ranks test was used for within group com-
parisons of pre and post-surgery levels (*p<0.05). †: The Kruskal-Wallis H test determined
there were significant differences in serum FGF-19 between the three surgery types (�2=7.655;
p=0.022). SD: standard deviation, IQR: interquartile range, BPD: bilio-pancreatic diversion,
LGCP: laparoscopic greater curvature plication, LAGB: laparoscopic adjustable gastric banding.

A wide range in serum FGF-19 concentrations were found both before and after

surgery. Pre-surgery levels of FGF-19 between BPD and LGCP cohorts were not

significantly different however, they were found to be significantly higher in the

LAGB cohort (Figure 4.1A). To control for this variability, post-surgery levels were

analysed relative to the individual�s pre-surgery readings. The type of bariatric

procedure was found to play an important role on whether FGF-19 levels increased

or decreased post-surgery (as tested using the Kruskal Wallis H Test, p=0.018).

Whilst the BPD and LGCP procedures both seemingly up-regulated FGF-19 levels

in circulation in the majority of patients (58% in BPD and 73% in LGCP), the

LAGB procedure resulted in their significant down-regulation (Figure 4.1B). Only
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17% of patients who underwent the LAGB procedure exhibited raised post-surgical

serum FGF-19 levels (Figure 4.1C). Thus, a step-wise surgery-specific effect on

FGF-19 levels was observed (LGCP>BPD>LAGB).
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Figure 4.1: Surgery-specific effects on serum FGF-19 concentrations
Pre- (A) and Post-surgery (B) serum concentrations of FGF-19 for each surgical procedure:
Bilio-pancreatic diversion (BPD), laparoscopic greater curvature plication (LGCP) or laparoscopic
adjustable gastric banding (LAGB). Post-surgery data is expressed as percentage of pre-surgical
values (shown as dotted line). Pie charts (C) show the numerical proportion of FGF-19 increase
or decrease for each surgical procedure. Bars represent means ± standard error of the mean,
pie chart slices represent percentage of total subjects in each surgical cohort (BPD n=12, LGCP
n= 15, LAGB n= 12). Pre-to-post surgical differences were determined via the Wilcoxon signed
ranks test (*p<0.05, **p<0.01). The Kruskal-Wallis H test determined there were significant
differences in serum FGF-19 between the three surgery types (†p<0.05). N.S. denotes differences
shown were not statistically significant (p>0.05).
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Mapping Surgery-Specific Differences in Metabolic Recov-

ery to Serum FGF-19 Levels

In order to ascertain whether FGF-19 may be a contributing factor to the procedure-

specific differences in metabolic recovery, the surgery-induced changes in serum

FGF-19 were examined against clinical indicators of metabolic health. As shown in

Table 4.2, FGF-19 was not associated with any of the surgery-differential clinical

variables, such as excess weight loss, BMI, HbA1c and total cholesterol. No associ-

ation was observed between FGF-19 and age, waist-hip ratio, body fat percentage,

glucose, HOMA IR, triglycerides or LDL cholesterol. However, serum FGF-19

levels were significantly associated with insulin, HDL cholesterol and HDL/LDL

ratio (Figure 4.2). Higher levels of FGF-19 were also associated with increased

serum insulin levels and HDL relative LDL cholesterol across all surgeries; however

no clustering on the basis of procedure was evident. These results are therefore

consistent with the notion that FGF-19 may participate in metabolic recovery, but

does not support the hypothesis that it is involved in modulating superior metabolic

outcomes observed with the BPD versus LGCP and LAGB procedures.
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Table 4.2: Relationship of circulating FGF-19 levels with clinical indicators of
metabolic health

FGF-19

r p

Age (y) �0.051 0.556

EWL (%) 0.185 0.259

BMI (Kg/m2) �0.116 0.481

WHR �0.060 0.721

Body fat (%) �0.195 0.241

Glucose (mmol/L) �0.139 0.399

Insulin (pmol/L) 0.344 0.032*

HOMA IR 0.084 0.614

HbA1c (mmol/mol) �0.142 0.388

TGL (mmol/L) 0.290 0.073

T Chol (mmol/L) 0.066 0.688

LDL (mmol/L) �0.044 0.790

HDL (mmol/L) 0.399 0.013*

HDL/LDL 0.489 0.002**

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between serum
FGF-19 levels and metabolic variables in the entire patient cohort (n=39). Correlations were
calculated using change variables (pre to 6-months post-surgery percentage change). Significant
correlations are shown in red. *p<0.05. EWL: excess weight loss, BMI: body mass index,
WHR: waist-hip ration, HOMA IR: homeostasis model assessment of insulin resistance, HbA1c:
serum glycosylated haemoglobin, TGL: triglycerides, T Chol: total cholesterol, LDL: low-density
lipoproteins, HDL: high-density lipoproteins.

r= 0.344, p= 0.032*
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Figure 4.2: Association of serum FGF-19 levels with insulin and HDL/LDL ratio
Scatter plots show correlations of serum FGF-19 against insulin and HDL/LDL ratio. Corre-
lations were calculated using change variables (percentage of pre levels) in the entire patient
cohort (n=39), but individual data points are color-coded according to surgical procedure: Bilio-
pancreatic diversion (BPD), laparoscopic greater curvature plication (LGCP) or laparoscopic ad-
justable gastric banding (LAGB). Linear trend line is also shown with Pearson correlation statistic
(r) and significance (p). If non-parametric, variables were log-transformed prior to correlation
analysis to improve normality.
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Mapping Surgery-Specific Differences in Indicators of Adi-

pose Mitochondrial Functionality to Serum FGF-19 Levels

Next, the question of whether FGF-19 is involved in modulating mitochondrial

functionality in the adipose tissue was investigated, and if so, whether surgery-

specific changes in FGF-19 may help explain the differential effect also observed in

adipose mitochondrial functionality. To evaluate this, the relationship of FGF-19

against mitochondrial number and transcript levels were examined through Pearson

correlation analyses. As shown in Table 4.3, no significant association was found

between serum FGF-19 levels and any of the mitochondrial genes studied. Inter-

estingly however, FGF-19 levels were significantly and inversely associated with

mitochondrial DNA copy number in adipose biopsies (Figure 4.3). Higher levels

of FGF-19 were associated with lower levels of mitochondrial number across all

surgical cohorts, with no clustering on the basis of type of procedure observed.

These results are therefore consistent with the notion that FGF-19 may play a role

in modulating adipose mitochondrial function, however no evidence was found to

support the hypothesis that FGF-19 is involved in modulating superior mitochon-

drial outcomes observed with the BPD versus LGCP and LAGB procedures.
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Table 4.3: Relationship of circulating FGF-19 levels with indicators of adipose
mitochondrial functionality

FGF-19

r p

mt number �0.428 0.014*

Fu
nc

tio
n

PGC1↵ �0.140 0.395

POLG �0.173 0.294

TFAM �0.194 0.288

mtND6 �0.254 0.119

SDHA �0.177 0.282

COX4I1 �0.234 0.151

mtATP6 �0.250 0.125

UCP2 �0.195 0.234

SOD1 �0.055 0.738

SOD2 �0.010 0.950

D
yn

am
ic

s MFN2 �0.118 0.548

OPA1 �0.027 0.892

DRP1 0.214 0.283

FIS1 �0.164 0.406

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between serum
FGF-19 levels and mitochondrial variables in the entire patient cohort (n=39). Correlations were
calculated using change variables (pre to 6-months post-surgery percentage change). Signifi-
cant correlations are shown in red. *p<0.05. mt number: mitochondrial DNA copy number,
PGC1a: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, POLG: mito-
chondrial DNA polymerase gamma catalytic subunit, TFAM: mitochondrial transcription factor
A, mtND6: mitochondrially-encoded NADH dehydrogenase 6, SDHA: Succinate dehydrogenase
complex subunit A, COX4I1: Cytochrome c oxidase subunit 4 isoform 1 (complex IV), mtATP6:
mitochondria-DNA-encoded ATP synthase subunit 6 (complex V), UCP2: uncoupling protein 2,
SOD1: superoxide dismutase 1, SOD2: Superoxide dismutase 2, MFN2: Mitofusin 2; OPA1:
mitochondrial dynamin like GTPase; DRP1: Dynamin-1-like protein; FIS1: Mitochondrial fission
1 protein.
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Figure 4.3: Association of serum FGF-19 levels with adipose mitochondrial number
Scatter plot showing correlation between serum FGF-19 and mitochondrial DNA copy number in
adipose biopsies. Correlation was calculated using change variables (percentage of pre levels) in
the entire patient cohort (n=39), but individual data points are color-coded according to surgical
procedure: Bilio-pancreatic diversion (BPD), laparoscopic greater curvature plication (LGCP) or
laparoscopic adjustable gastric banding (LAGB). Linear trend line is also shown with Pearson
correlation statistic (r) and significance (p).
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4.4 Discussion

As outlined in Chapter 3, only one type of bariatric procedure (BPD) was asso-

ciated with adipose mitochondrial benefits, despite similar rates of weight loss-

associated HbA1c improvement, suggesting there may be other factors altered by

gut-remodeling specific to each surgery which may be influencing mitochondrial

recovery in BPD but not LGCP or LAGB. One likely candidate influencing this

dichotomous relationship is Gut-hormone Fibroblast Growth Factor-19 (FGF-19).

Therefore, serum FGF-19 levels were measured before and after 3 bariatric pro-

cedures (BPD, LGCP and LAGB) and analysed against all anthropometric, bio-

chemical and mitochondrial variables. Our findings confirm for the first time a

differential impact between BPD, LGCP and LAGB bariatric procedures on circu-

lating FGF-19 levels, with BPD and LGCP leading to similar significant rises in

this hormone, in contrast to the LAGB surgery, which lowered serum FGF-19 lev-

els. Despite these widely ranging effects, circulating FGF-19 was significantly and

consistently associated with adipose mitochondrial number across all 3 surgical

procedures investigated, adding credence to the notion that FGF-19 may target

adipose mitochondrial function to improve metabolic health after bariatric surgery.

The finding that FGF-19 levels are inversely correlated with mitochondrial number

in AT may be interpreted as a shift towards a less fragmented and more elon-

gated mitochondrial network when FGF-19 levels are raised. This would seem of

benefit, given that mitochondrial fragmentation has been associated with apop-

tosis [313, 314], severely compromised mitochondrial DNA integrity, inefficiency

[278, 279], accumulation of reactive oxygen species (ROS) [236], impaired oxygen

consumption and ß-oxidation [280, 281], lipotoxic species accumulation [282], pro-
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inflammatory cytokine production [283] and impaired insulin signaling [284, 285].

Moreover, fragmentation of muscle mitochondria has been reported in several

mouse and human models of obesity and type-2 diabetes [245, 315].

However, it must also be stated that long-term sustained mitochondrial elongation

can compromise mitochondrial quality control and function [29], so mitochondrial

elongation per se is not necessarily indicative of mitochondrial health, and that

the cell requires a balance between both fission and fusion processes to maintain

mitochondrial quality. As shown in Chapter 3, genes controlling a wide range of

mitochondrial functions were tightly correlated with mitochondrial number in BPD

patients, whilst in the other surgeries they appeared dysregulated. This finding

would support the assertion that BPD improves the control of genes involved in

maintaining mitochondrial function to a greater extent than the other two bariatric

procedures in this study, and is consistent with a role of serum FGF-19 in mediating

a less fragmented and potentially more functional mitochondrial network.

In contrast, in the LGCP group the relationships between mitochondrial number

and gene expression followed a significant inverse association, despite similar rise

in serum FGF-19 levels compared to BPD. This seemingly paradoxical finding may

be better understood within a wider context of additional factors also likely to play

a role in mitochondrial recovery [277]. Indeed, the BPD operation (unlike LGCP)

produced significantly lower serum lipids levels and nearly twice as much weight

loss (30% versus 17%). This is consistent with both previous reports [316], and

the notion that these two factors (weight loss and lipid recovery) may have also

contributed to the enhanced mitochondrial outcomes observed after BPD versus

LGCP. Further in support of this concept, total and HDL cholesterol were the only
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biochemical variables (apart from FGF-19) to exhibit a significant association with

mitochondrial genes. Decreased cholesterol levels were directly associated with

enhanced mRNA expression of complex IV (COX4I1) and V (mtATP6) genes of the

electron transport chain. Similar associations were observed with the uncoupling

protein 2 (UCP2) gene, which has been implicated in preventing reactive oxygen

species accumulation and oxidative stress damage [218].

Interestingly, in the LAGB group (the only study procedure to significantly reduce

serum FGF-19 levels), changes in mitochondrial gene expression in AT were (with

exception of fusion genes) unrelated to mitochondrial number, suggesting a dys-

regulation of mitochondrial function in this cohort, potentially resulting from un-

opposed fusion. Though this bariatric procedure resulted in significant weight loss

and general metabolic improvement, the noted HbA1c reduction was significantly

less pronounced compared with the other two procedures (even after accounting for

BMI), which might be, at least in part, the result of the mitochondrial dysfunction

and lower serum FGF-19 levels observed.

Previous studies in mice support the hypothesis that circulating FGF-19 targets

white adipose mitochondria to exert metabolic improvements. Mice challenged

with a high-fat diet and treated with fexaramine (an intestine-restricted FXR ago-

nist which potently induces intestinal FGF-15, i.e. the mouse FGF-19 homologue)

exhibited significantly less weight gain, systemic inflammation, and improved glu-

cose homeostasis, with specific effects noted on visceral white adipose tissue, in-

cluding: reduced activation of inflammatory and lipogenic pathways, browning of

white adipocytes, and increased thermogenesis [317]. Though FGF-19 is known to

exert several metabolically beneficial effects by its actions in the liver that regulate
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glucose and cholesterol production [305], recent evidence in mice further suggests

that the improvement of glucose homeostasis after recombinant FGF-15 treatment

is likely due to direct signaling in AT and other metabolic relevant organs rather

than through the known hepatic effects [318]. Furthermore, previous reports of

positive correlations between circulating FGF-19 and adiponectin [319, 320] lend

further credence to the role of FGF-19 as a regulator of white adipose tissue en-

docrine and metabolic function. In accordance with previous research, these find-

ings support the hypothesis that FGF-19 targets white AT and provide evidence

for the first time in humans that circulating FGF-19 levels strongly and inversely

associate with mitochondrial fragmentation of this tissue.

It should be noted that, this study has certain limitations, namely: 1) though

our study subjects did not follow a particular dietary regimen and led a relatively

sedentary lifestyle in the period before surgery, these two factors were not controlled

either before or after surgery; and 2) despite the prospective study design, it is

not possible to clarify in the context of this study the precise mechanism by which

each studied surgical procedure alters serum FGF-19 levels, thus further research

is required to clarify this point. However, to our knowledge, this is the first study

to compare serum FGF-19 levels between these bariatric surgical procedures and

to provide evidence of differential mitochondrial and metabolic outcomes based on

the type of surgical procedure.

In conclusion, elevated serum FGF-19 levels post-surgery were significantly asso-

ciated with improved mitochondrial health in AT leading to greater control of

mitochondrial gene regulation and overall type-2 diabetes remission. These in-

creased FGF-19 levels were also observed to be surgery-specific with BPD pa-
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tients achieving better metabolic health outcomes compared to LGCP and LAGB

(BPD>LGCP>LAGB), and highlighting mitochondria in AT as a promising po-

tential target of FGF-19 during diabetic recovery following bariatric surgery.
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Chapter 5

Role of Gut-derived LPS on

Adipose Mitochondria Recovery

Post Bariatric Surgery
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5.1 Introduction

Chapters 3 and 4 outlined evidence supporting the concept that FGF-19 targets

adipose tissue mitochondria, leading to weight loss and metabolic recovery post

bariatric surgery. The BPD procedure, which resulted in heightened serum FGF-

19 levels, also produced the greater improvements in mitochondrial gene regula-

tion, weight loss and overall type-2 diabetes remission. However, the procedure

LGCP also produced similarly heightened serum FGF-19 levels but lacked the corre-

sponding improvements in mitochondrial function. These data raises the question:

which surgery-specific factors mediate the differences observed in mitochondrial

and metabolic benefit? Gut-derived bacterial lipopolysaccharide (LPS) is a promis-

ing target of study for this question, as it is increased in circulation in association

with over-nutrition (specifically lipids), has been extensively linked with inflamma-

tion and metabolic dysfunction [199, 200, 201, 321] and is likely to be altered by

gut-remodeling [322]. Interestingly, a main difference between the two surgeries

was greater lipid reduction and weight loss with BPD compared to LGCP or indeed

LAGB.

LPS are major outer cell wall components of gram negative bacteria normally

present in the gut, which may provide an interesting mechanistic link between

the Western diet and metabolic disease (Figure 5.1). Due to their biochemical

affinity, LPS are absorbed coupled to chylomicrons, and circulating levels increase

in direct relationship with dietary fat absorption [196]. As little as a single high-fat,

high-carbohydrate meal can raise serum LPS levels by 50% and generate systemic

inflammation [323]. In addition, chronic intake of high-fat, high-carbohydrate

meals can increase the gram-negative bacteria sub-population, and thus the gut
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LPS load [324, 325, 326, 327, 32]. Therefore, both acute and chronic Western

diets can generate systemic inflammation and initiate metabolic disease, through

increased LPS absorption. Indeed, direct intravenous administration of LPS to

healthy adults has been shown to reduce insulin sensitivity by 30% [328] and

several cross-sectional studies have demonstrated that serum LPS levels function

as independent predictors of type-2 diabetes incidence [199, 200, 201, 321].

The finding that diabetes rates in people with mitochondrial disease (known as

mitochondrial diabetes) are more than four times higher (40%) than the rates in

the average population (9%) provides strong evidence that mitochondrial func-

tionality may be intrinsically linked with the pathophysiology of metabolic disease

[329, 330, 331, 332, 333]. In addition to respiration and nutrient metabolism,

mitochondria are the main cellular source of reactive oxygen species, closely in-

volved in regulating several vital processes including inflammation and apoptosis

[334, 294, 281, 283, 152, 335]. Thus, this study hypothesized that heightened

LPS may have adverse direct and/or (through inflammation) indirect effects on

adipose mitochondria functionality, impacting these tissues� ability to buffer lipids

away from other organs, and contributing to metabolic disease (Figure 5.1). As

such, it could be considered that the difference in mitochondrial and metabolic

outcomes outlined throughout Chapters 3 and 4 may be explained, at least in part,

by differences in serum LPS levels.

It should be stressed that LPS can be difficult to measure reliably in serum be-

cause the concentration of (mostly unknown) LPS- neutralizing factors vary from

individual to individual [336]. Furthermore, conventional LPS detection methods

utilise Limulus Amebocyte Lysate (LAL) which whilst highly sensitive to LPS, can
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carry several limitations. Mainly, the LAL-LPS reaction must occur whilst the

sample matrix (which contain several inhibitory factors to varying quantities) is

present. This limitation can be minimised to some degree by serial dilution and

spiking the sample with increasing known amounts of LPS to determine degree of

neutralizing factors, heat inactivation steps and the use of glass instead of plastic

test tubes [337]. However, these measures are time-consuming and their success

can be limited, although procedures can be put in place to minimise these issues.

A newer method (EndoLISA®), is based on the recombinant factor C, which is

a bacteriophage protein which specifically binds endotoxin onto a microtiter solid

phase, allowing the sample matrix (with potentially interfering components) to

be removed before the detection reaction takes place. Although not yet tested

for use in serum samples, this new method may support a more reliable and less

error-prone assessment of LPS than current LAL-based methods.

Therefore, this present chapter (1) compared the specificity and reliability of both

methods, in order to use a suitable assay to (2) measure serum LPS levels before

and 6-months after 3 bariatric surgeries: BPD, LGCP and LAGB. These set of

studies specifically investigated whether BPD would lower serum LPS levels to a

greater extent than the other bariatric surgeries, and thereby be associated as a

result with superior metabolic and mitochondrial outcomes.
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Figure 5.1: Gut-derived LPS links the Western diet with metabolic disease via
mitochondrial dysfunction
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Proposed mechanism by which gut-derived LPS links the Western diet with metabolic disease
via mitochondrial dysfunction. A chronic high-fat, high-carbohydrate diet leads to increased
circulating LPS through two main mechanisms: (A) Chronic high-fat high-carbohydrate meals
increase gram-negative (LPS-containing) bacterial populations in the gut and (B) lipophilic LPS
are coupled, packaged and distributed alongside chylomicrons, so serum LPS levels are directly
proportional to degree of chylomycron-dependent fat absorption. (C) Once in circulation, LPS
triggers a potent systemic inflammatory response, which may become chronic if Western diet
is continued. Chronic inflammation is a hallmark of adipocyte dysfunction, insulin resistance and
metabolic disease. (D) In the present work, we propose LPS may also generate mitochondrial
dysfunction in adipose tissue and compromise the lipid buffering capacity of this organ. (E)
Continued energy surplus will then result in ectopic lipid deposition on other metabolic organs,
such as liver, pancreas, muscle and blood vessels, initiating systemic metabolic disease.
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5.2 Methods

Ethics and Study Design

Thirty-nine morbidly obese (BMI>35 Kg/m2), type-2 diabetic, Caucasian women

undergoing either bilio-pancreatic diversion (BPD; n=12), laparoscopic greater cur-

vature plication (LGCP; n=15), or laparoscopic adjustable gastric banding (LAGB;

n=12) were recruited to participate in this study. Fasted bloods and anthropo-

metric investigations were conducted before (baseline) and following surgery with

collection of serum samples and abdominal subcutaneous white adipose tissue (AT)

biopsies at both of these time points. Patients on pharmacological treatment with

incretin mimetics and/or insulin were not included in this study. For further detail

the reader is referred to Chapter 2.

Blood Biochemistry and Anthropometry

All anthropometric and biochemical measurements were performed before and six

months after surgery. For detail on blood, adipose tissue sample and other clinical

data collection, please see Chapter 2.

RNA isolation and qRT-PCR

Gene expression of mitochondrial genes was assayed through quantitative real-time

polymerase chain reaction (qRT-PCR) using subcutaneous white adipose tissue

biopsies before and 6 months after bariatric surgery. For detail on primer sequences

used in this study the reader is referred to Table 2.1. For further detail please see

Chapter 2.
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Mitochondrial DNA copy number assay

Mitochondrial (mtND1) and nuclear (BECN1) gene primers (Table2.2) were used

via qRT-PCR to determine relative amounts of mitochondrial to nuclear DNA as

a measure of mitochondrial number per adipocyte[266] within subcutaneous white

adipose tissue biopsies. For further detail on methods, the reader is referred to

Chapter 2.

LPS Assay Validation and Quantitation in Serum Levels

For serum lipopolysaccharide (LPS) determination, two methods were compared:

the Limulus Amebocyte Lysate (LAL) Kinetic Chromogenic Assay (QCL-1000TM ,

LONZA) and the EndoLISA® Elisa-based endotoxin detection assay (Hyglos). LPS

concentrations of 8 human serum samples (BMI=21� 38 kg/m2) were determined

in parallel with both assays. Samples were run in duplicate according to the manu-

facturers instructions. Serial sample dilution (from 1 : 4 to 1 : 10) and appropriate

spike and negative controls were utilised to minimise enzyme-inhibitory factors in

samples and confirm result validity. Results were calculated, according to manu-

facturers instructions, based on a LPS standard (E. Coli 055:B5) curve ranging

from [4 to 0.06 EU/mL] for the LONZA kit and from [500 to 0.005 EU/mL] for the

EndoLISA.

For bariatric samples, the EndoLISA® Elisa-based endotoxin detection assay (Hy-

glos) was used to quantify LPS serum levels. A preliminary trial of singlets was

run to determine optimal dilution (1:5, 1:10; 1:20), after which samples were run

at optimal dilution in duplicate. Results were calculated according to manufac-

turers instructions, based on a LPS standard (E. Coli 055:B5) curve ranging from
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[500 to 0.005 EU/mL].

Statistical Analysis

Statistical analyses were performed using the SPSS 21.0 software. Data are re-

ported as mean ± standard deviation (SD), unless otherwise specified. Data were

examined for normality according to the Shapiro-Wilks criteria. Comparisons be-

tween pre- and post-surgery time-points were performed via paired two-tailed t-

tests (if parametric) and the Wilcoxon signed ranks test (if non-parametric). For

categorical data, Fisher�s exact test was used. Between-group (surgery type) dif-

ferences were assessed using One-way ANOVA (if parametric) and Kruskal-Wallis

test (if non-parametric) using change variables, calculated as percentage change

from pre-surgery values [(post/pre) x100]. For Pearson correlation analyses, change

variables [(post/pre) x100] were log-transformed prior to analysis if non-parametric.
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5.3 Results

Validation and Optimisation of LPS quantitation in human

serum samples

Two methods for the quantitation of circulating LPS levels were validated and

compared: Limulus Amebocyte Lysate (LAL) Kinetic Chromogenic Assay (QCL-

100TM , LONZA) and the EndoLISA® Elisa-based endotoxin detection assay (Hyg-

los). To gain a representative picture and given that LPS levels are reported to vary

with BMI, eight human serum samples from individuals with a range of BMIs (21-

37.5 Kg/m2) were used to run the assays. As per the manufacturer�s instructions of

the Limulus Amebocyte Lysate (LAL) Kinetic Chromogenic Assay[336], the effect

of vessel material (glass vs. plastic) as well as heat inactivation of samples were

tested. As shown in Figure 5.2, vessel material did not alter the sensitivity of the

LAL assay, whilst heat activation reduced the sensitivity of the assay. Therefore,

subsequent LAL assays were run in the absence of heat activation, using validated

pyrogen-free polypropylene test tubes.

Next, both assays were run in parallel, with four replicates per sample and the

standard curves of each method were compared. The Pearson coefficient of deter-

mination (R2) value was slightly closer to 1 in the EndoLISA, compared with the

LAL standard curve (Figure 5.3), indicating a better fit of the EndoLISA data to

the suggested linear model. In order to determine assay reliability, two replicates

within each sample were spiked with a known amount of LPS (Figure 5.4). Assay

reliability was greater with the EndoLISA method, in which more than 50% of the

LPS spike was recovered in 6 out of 8 samples (Figure 5.4B). In contrast, spiked

114



samples in the LAL method showed minimal difference to non-spiked samples (Fig-

ure 5.4A). As both assays were tested using the same samples, these differences

can not be accounted for by differences in interfering substances present in the

sample. Thus, this data would suggest the EndoLISA method to have greater

sensitivity in addition to reliability. Figure shows LPS readings via each method

side by side. Though higher readings were obtained on average with the LAL

method, the EndoLISA method shows more sensitivity to individual variation and

may therefore be a better option when between-group differences are subtle.
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Figure 5.2: Validation of vessel material and heat inactivation for LAL method
Graph shows the effect of sample heat inactivation and vessel material interference on LPS
quantitation via the Limulus Amebocyte Lysate (LAL) kinetic chromogenic method. Data are
expressed as endotoxin units per milliliter (EU/mL), and bars represent standard error of the
mean. Significant differences were determined via 2-tailed unpaired t-test. *p<0.05, **p<0.01,
n=8. N.S. denotes differences shown were not statistically significant.
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Figure 5.3: Comparison of calibration curves between two methods of LPS quan-
titation
Graph shows the calibration curve for two LPS quantitation methods: the Limulus Amebocyte
Lysate (LAL) kinetic chromogenic Assay (LONZA) and the EndoLISA® Elisa-based endotoxin
detection assay (Hyglos). Pearson Coefficient of Determination (R2) is shown for each linear
model.
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Figure 5.4: Reliability of LAL versus EndoLISA methods
Eight human serum samples from individuals with a range of BMIs from lean to obese (21-37.5
kg/m2) were used to compare two methods of LPS quantitation: Limulus Amebocyte Lysate
(LAL) Kinetic Chromogenic Assay (QCL-1000TM , LONZA) and the EndoLISA® Elisa-based
endotoxin detection assay (Hyglos). Graphs display LPS spike recovery with LAL (A) and
EndoLISA (B) methods. Data are expressed as endotoxin units per milliliter (EU/mL), each bar
represents reading of one sample without or with LPS spike (darker colour) with corresponding
BMI shown below. n=8.
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Figure 5.5: Sensitivity of LAL versus EndoLISA methods
LPS levels of eight human serum samples from individuals with a range of BMIs from lean
to obese (21-37.5 kg/m2) measured via two methods: the Limulus Amebocyte Lysate (LAL)
Kinetic Chromogenic Assay (QCL-1000TM , LONZA) and the EndoLISA® Elisa-based endotoxin
detection assay (Hyglos). Data are expressed as endotoxin units per milliliter (EU/mL), each
bar represents reading of one sample, with corresponding BMI shown below.

Effect of Bariatric Surgical Procedure on Circulating LPS

Levels

As shown in previous chapters of this thesis, the bariatric procedure BPD resulted

in greater improvements in mitochondrial gene regulation, weight loss and overall

type-2 diabetes remission, with more moderate improvements also observed after

the LGCP, but not the LAGB procedure. To investigate whether circulating levels

of bacterial LPS could help explain some of these differences, this chapter next

examined the effect of each individual bariatric procedure on endotoxaemia.

Figure 5.6A shows serum LPS levels vary substantially between individuals both

before and six months after BPD, LGCP or LAGB, and as such no significant

differences from pre-to-post surgery were detected within each group. Between

groups however, a stepwise trend (BPD<LGCP<LAGB) was detected which was

nevertheless non-significant (Figure 5.6B). Moreover, all three surgeries resulted
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in similar proportion of improvement of metabolic endotoxaemia (approximately

43% on average) (Figure 5.7). Despite this, surgery-specific effects were identified

with respect to the degree of LPS improvement (Figure 5.8). When patients

who did not achieve endotoxaemic improvement post-surgery (Figure 5.8A) were

separated from those who did (Figure 5.8B), it became apparent that the BPD and

LGCP surgeries resulted in substantially greater (approximately 20%) reductions

of circulating LPS.
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Figure 5.6: Serum LPS levels before and after bariatric surgical intervention
The EndoLISA® Elisa-based endotoxin detection assay (Hyglos) was used to quantify serum LPS
levels before and 6-months after 3 bariatric procedures: Bilio-pancreatic diversion (BPD), laparo-
scopic greater curvature plication (LGCP) or laparoscopic adjustable gastric banding (LAGB).
Data is shown as either EU/mL at pre and post surgery (A), or as percentage or pre-surgical
levels (B). Dotted line denotes pre levels for each surgery normalised as 100%, bars represent
means ± standard error of the mean. Pre-to-post surgical differences were determined via 2-
tailed paired t-test (*p<0.05, **p<0.01). One way ANOVA was used to determine differences
between surgeries (†p<0.05). N.S. denotes differences shown are not statistically significant
(p>0.05).
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Figure 5.7: Proportion of serum LPS improvement for each surgical procedure
Pie charts showing the numerical proportion of patients with lower LPS post-surgery for each
bariatric procedure: Bilio-pancreatic diversion (BPD), laparoscopic greater curvature plication
(LGCP) or laparoscopic adjustable gastric banding (LAGB). Proportion is shown as percentage
of total subjects in each surgical cohort (BPD n=12, LGCP n= 15, LAGB n= 12).
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Figure 5.8: Surgery-specific effect on degree of metabolic endotoxaemic recovery
Each surgical cohort was subdivided by whether or not patients exhibited an improvement in
metabolic endotoxaemia (decreased LPS levels). Graphs show surgery-specific effects on serum
LPS levels in patients who exhibited raised (A) versus lowered (B) metabolic endotoxaemia after
3 bariatric procedures: Bilio-pancreatic diversion (BPD), laparoscopic greater curvature plication
(LGCP) or laparoscopic adjustable gastric banding (LAGB). Data is expressed as percentage of
pre-surgical values (shown as dotted line), and bars represent means ± standard error of the
mean. One way ANOVA was used to determine differences between surgeries (†p<0.05). N.S.
denotes differences shown were not statistically significant (p>0.05).

Mapping Surgery-Specific Differences in Metabolic Recov-

ery to Serum LPS Levels

In order to ascertain whether lower LPS may be a contributing factor to the

procedure-specific differences in metabolic recovery, surgery-induced changes in
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serum LPS levels were examined against clinical indicators of metabolic health.

No statistically significant relationships were identified between LPS and other

clinical variables in the patient cohort as a whole. To understand whether the

medley of heightened versus lowered serum LPS in post-surgical patients could

be masking any association, these relationships were also analysed in each sub-

cohort (split by whether or not surgery resulted in endotoxaemic improvement).

No statistically significant relationships were identified in those who exhibited lower

post-surgery endotoxaemia (Table 5.1). However, in patients who exhibited contin-

ued heightened endotoxaemia after surgery however, significant correlations with

waist circumference and circulating lipoprotein levels were observed (Table 5.1),

which are consistent with previous studies reporting an association between serum

LPS and central adiposity.
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Table 5.1: Relationship of circulating LPS levels with clinical indicators of
metabolic health

LPS "LPS #LPS

n = 39 n = 16 n = 23

r p r p r p

Age (y) �0.078 0.637 �0.484 0.058 0.100 0.649

EWL (%) �0.011 0.945 �0.071 0.795 0.137 0.534

BMI (Kg/m2) 0.028 0.865 0.162 0.549 �0.250 0.250

Waist (cm) 0.122 0.465 0.575 0.025* �0.070 0.752

WHR �0.068 0.684 0.096 0.725 �0.339 0.122

Body fat (%) �0.041 0.813 �0.134 0.648 �0.037 0.871

Glucose (mmol/L) �0.150 0.370 �0.024 0.931 �0.102 0.645

Insulin (pmol/L) �0.130 0.430 �0.032 0.908 �0.054 0.807

HOMA IR 0.191 0.250 0.048 0.861 �0.153 0.496

HbA1c (mmol/mol) 0.004 0.981 �0.061 0.829 0.132 0.549

TGL (mmol/L) 0.126 0.445 0.126 0.643 0.044 0.842

T Chol (mmol/L) 0.022 0.895 �0.178 0.509 0.172 0.432

LDL (mmol/L) �0.123 0.457 �0.348 0.187 �0.103 0.641

HDL (mmol/L) 0.122 0.464 0.017 0.952 0.338 0.115

HDL/LDL 0.162 0.337 0.565 0.035* 0.350 0.101

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between serum
LPS levels and metabolic variables in the entire patient cohort (n=39), and sub-cohort of pa-
tients with increased (n=16) or decreased (n=23) post-surgery serum LPS. Correlations were
calculated using change variables (pre to 6-months post-surgery percentage change). Signifi-
cant correlations are shown in red. *p<0.05. EWL: excess weight loss, BMI: body mass index,
WHR: waist-hip ration, HOMA IR: homeostasis model assessment of insulin resistance, HbA1c:
serum glycosylated haemoglobin, TGL: triglycerides, T Chol: total cholesterol, LDL: low-density
lipoproteins, HDL: high-density lipoproteins.

Mapping Surgery-Specific Differences in Indicators of Mi-

tochondrial Functionality to Serum LPS Levels

Next, this study investigated whether LPS may be involved in modulating mito-

chondrial functionality in the adipose tissue, and whether surgery-specific changes

in LPS may help explain the differential effect also observed in adipose mitochon-

drial functionality. To evaluate this, the relationship of LPS against mitochondrial

number and gene transcript levels was examined through Pearson correlation anal-

yses. No significant relationship was noted between LPS and any of the mitochon-

drial genes studied (Table 5.2). However, serum LPS levels were significantly and
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inversely associated with mitochondrial number in adipose biopsies across all surg-

eries, with no obvious clustering on the basis of surgical procedure per se (Figure

5.9A). Patients with improved post-surgical LPS levels had significantly greater

number of mitochondrial DNA copies in their adipose tissue, than patients who

exhibited heightened endotoxaemia (Figure 5.9B).

Table 5.2: Relationship of circulating LPS levels with indicators of adipose mito-
chondrial functionality

LPS

r p

mt number �0.485 0.005*

Fu
nc

tio
n

PGC1↵ �0.100 0.540

POLG �0.055 0.736

TFAM �0.057 0.728

mtND6 0.043 0.790

SDHA �0.097 0.552

COX4I1 �0.121 0.456

mtATP6 0.062 0.705

UCP2 �0.223 0.167

SOD1 �0.007 0.965

SOD2 0.008 0.961

D
yn

am
ic

s MFN2 �0.042 0.832

OPA1 �0.269 0.166

DRP1 0.141 0.483

FIS1 �0.012 0.953

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between serum
LPS levels and mitochondrial variables in the entire patient cohort (n=39). Correlations were
calculated using change variables (pre to 6-months post-surgery percentage change). Signifi-
cant correlations are shown in red. *p<0.05. mt number: mitochondrial DNA copy number,
PGC1a: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, POLG: mito-
chondrial DNA polymerase gamma catalytic subunit, TFAM: mitochondrial transcription factor
A, mtND6: mitochondrially-encoded NADH dehydrogenase 6, SDHA: Succinate dehydrogenase
complex subunit A, COX4I1: Cytochrome c oxidase subunit 4 isoform 1 (complex IV), mtATP6:
mitochondria-DNA-encoded ATP synthase subunit 6 (complex V), UCP2: uncoupling protein 2,
SOD1: superoxide dismutase 1, SOD2: Superoxide dismutase 2, MFN2: Mitofusin 2; OPA1:
mitochondrial dynamin like GTPase; DRP1: Dynamin-1-like protein; FIS1: Mitochondrial fission
1 protein.
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Figure 5.9: Association of serum LPS levels with adipose mitochondrial number
Scatter plot showing correlation between serum LPS levels and mitochondrial DNA copy number
in adipose biopsies (A). Correlation was calculated using change variables (percentage of pre
levels) in the entire patient cohort (n=39), but individual data points are color-coded according
to surgical procedure: Bilio-pancreatic diversion (BPD), laparoscopic greater curvature plication
(LGCP) or laparoscopic adjustable gastric banding (LAGB). Linear trend line is also shown with
Pearson correlation statistic (r) and significance (p). Post-surgical adipose mitochondrial levels in
patients who exhibited an increase ("LPS) or decrease (#LPS) of serum LPS levels after surgery
(B). Data are expressed as percentage to each individual�s pre-surgical levels, bars represent
mean ±standard error of the mean. Statistical differences were analysed using a 2-tailed unpaired
T-test (*p<0.05).
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5.4 Discussion

In the present chapter, the aim was to (1) optimise the methodology for LPS serum

quantification and, (2) to determine whether serum LPS changes post-surgery

varied between procedures in a similar manner to mitochondrial improvements,

which would support the hypothesis that serum LPS reduction is implicated in

adipose mitochondrial recovery after bariatric intervention.

The BPD (and to a lesser-extent the LGCP) procedure resulted in significantly

greater reductions of serum LPS than LAGB. This step-wise post-surgery reduc-

tion in LPS (BPD>LGCP>LAGB) mimicked the step-wise improvement in mito-

chondrial gene regulation outlined in Chapter 3. Furthermore, these reductions

in LPS levels post surgery were significantly associated with increased numbers

of mitochondria in adipose biopsies. Collectively, this data is consistent with the

concept that heightened serum LPS contributes to metabolic disease by targeting

adipose mitochondria.

Studies on circulating LPS levels post bariatric surgery are limited, and vary sub-

stantially based on surgical procedure studied and follow-up duration. Most, how-

ever, report decreases to some degree in circulating LPS levels from 90 to 360

days post-surgery. Namely, one study of 15 severely obese individuals with type-2

diabetes undergoing Roux-en-Y gastric bypass (RYGB) reported a significant 20%

decrease in circulating LPS levels at 6 months post-surgery [205], whilst another

reported significant LPS reductions at 1 year post RYGB or duodenal switch [338].

These reports are consistent with our own findings, where bariatric intervention

resulted in a reduction of 20 to 40% depending on the procedure. Despite ev-

idence that LPS levels vary between procedures in the short-term after surgery
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[339] however, to our knowledge this is the first study to examine the long-term

effects of several bariatric procedures in parallel. Here, these studies demonstrate

for the first time that some procedures are more effective than others in lowering

serum LPS, and that this difference is associated with enhanced metabolic and

mitochondrial benefits.

Recent evidence suggests that between-surgery differences in long-term metabolic

benefit are rooted in the degree and type of gastrointestinal remodeling and the

resultant changes in gut microbiota composition. This was elegantly demonstrated

in a recent study where fecal matter from patients post-RYGB or vertical banded

gastroplasty was transplanted to germ-free mice and resulted in significant weight

loss, fat deposition and decreased use of carbohydrates as fuel [192]. Within this

context, it is conceivable that LPS may be functioning as a communication link

between gut and adipose tissue mitochondria to produce this shift in substrate

metabolism. Our findings that LPS levels vary depending on surgical procedure in

a manner proportional to the degree of mitochondrial improvement is consistent

with this notion, however further research is needed to test the direct effect of LPS

on mitochondrial functionality.
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Chapter 6

Direct Effect of LPS on Human

Adipocyte Mitochondrial

Function
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6.1 Introduction

The profound metabolic benefits of bariatric surgery cannot be explained by weight

loss alone [176, 179]. Recent findings that fecal transplantation from bariatric

subjects to germ-free animals can reproduce weight loss and mimic post-surgical

metabolic improvements have bolstered the research potential of gut factors as

mediators of obesity and metabolic disease [192]. One such factor is bacterial

lipopolysaccharide (LPS). Absorbed alongside dietary lipids, its levels are elevated

in obesity, resulting in a low-grade chronic inflammation and insulin resistance [196,

340, 341, 199, 204, 328]. As outlined in previous chapters, reductions in serum

LPS after surgery varied substantially based on the bariatric procedure and in direct

proportion to the degree of mitochondrial benefit in adipose tissue. Moreover,

serum LPS levels were the only circulating factor to show a significant association

with mitochondrial number in adipose biopsies. As such, this study hypothesized

that heightened circulating LPS levels target adipose mitochondria unfavorably

and contribute to insulin resistance and the pathogenesis of metabolic disease.

There are several potential mechanisms by which heightened LPS levels may con-

tribute to mitochondrial dysfunction, which are summarised in Figure 6.1. LPS

is a powerful trigger of inflammation, a hallmark of metabolic disease. Studies

addressing the molecular link between adipose tissue inflammation and insulin re-

sistance have highlighted the up-regulation of two pathways linking the two: the

inhibitor of nuclear factor kappa-B kinase subunit beta/ nuclear factor kappa-

light-chain-enhancer of activated B cells (IKKß/NF-kß) and the c-Jun N-terminal

kinases (JNK) pathway. Both are triggered either through direct activation of

cytokine receptor and its respective pro-inflammatory cytokine; or activation of
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toll-like receptors (TLRs) by saturated free fatty acids, lipotoxic species, or indeed

LPS [166, 342, 195]. IKKß and JNK are well-established serine kinases that phos-

phorylate insulin receptor substrate 1 (IRS-1) proteins at serine residues, leading

to decreased insulin signaling. Additionally, IKKß activates NF-kß, which further

increases inflammation by stimulating the transcription of pro-inflammatory cy-

tokines such as TNF-a and IL-6 [343]. IL-6 induces the expression of suppressors

of cytokine signaling proteins (SOCS), which also interfere with insulin signaling

[344]. Importantly, inhibition of IKKß and JNK with anti-inflammatory pharma-

cotherapy or gene knock-out reduces serine phosphorylation of IRS proteins and

improves insulin sensitivity [345, 346, 347, 348].
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Figure 6.1: Hypothesis
Proposed hypothesis for how LPS effect on adipocytes contribute to type-2 diabetes: Heightened
LPS after a high-fat, high carbohydrate meal triggers inflammation (A), up-regulate IKK/JNK
signaling pathways which can directly inhibit insulin signaling through insulin receptor sub-
strate 1 (IRS1). In addition, activation of IKK/NF� leads to transcriptional activation of
pro-inflammatory cytokines (such as TNF-↵) and reactive oxygen species (ROS) formation, es-
tablishing a positive feedback loop and further exacerbating inflammation and oxidative stress.
The current work proposes that the accumulation of ROS will lead to mitochondrial DNA damage,
bioenergetic inefficiency and mitochondrial dysfunction (B), which will add further inflammation
and oxidative stress, and ultimately add extra complexity to cellular insulin resistance (C) and
have potential adverse consequences on systemic insulin sensitivity via impaired lipid buffering
and ectopic fat deposition on non-adipose organs.

If sustained chronically, the pro-inflammatory environment poses a powerful threat

to mitochondrial DNA integrity and organelle functionality. Mitochondrial DNA is

thought to be more susceptible to damage than nuclear DNA as in addition to being

in closer proximity to ROS (mitochondria are the main source of ROS in the cell)

it contains only coding sequences and is not protected by histones [349, 350, 351].

Indeed, several known mitochondrial [288, 352] and nuclear [353] mutations have

been associated with detrimental cardio-metabolic phenotypes through impairment
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of mitochondrial function [331, 352, 288].

Mitochondrial genes encode 13 protein subunits of the OXPHOS complex includ-

ing subunit 6 (mt-ND6) of NADH dehydrogenase (complex I) and subunit 6 (mt-

ATP6) of ATP synthase (complex V). Nuclear DNA encode all subunits of succinate

dehydrogenase (SDHA; complex II) and subunit 4 (COX4) of cytochrome c oxidase

(complex IV) as well as proteins involved in mitochondrial DNA replication, tran-

scription, translation, and repair. The expression level of these OXPHOS genes

as well as size and shape of mitochondria largely determine oxidative capacity and

both morphology and OXPHOS gene expression are closely linked to insulin action

[354]. Though studies thus far have described clear evidence of obesity-associated

alterations on mitochondrial function in skeletal muscle, the physiological implica-

tions of these alterations are yet to be understood, particularly within the context

of white adipose tissue dysfunction.

During obesity, white adipose tissue, and the mitochondrial network within this

organ are faced with the extreme challenge of metabolising and storing the excess

calories as lipids, in order to avoid their harmful deposition in other organs such

as liver, pancreas, muscle and blood vessels. Any adverse effects on mitochondrial

functionality may have direct consequences on the lipid buffering capacity of white

adipose tissue as a whole, and contribute to systemic metabolic disease. As such,

the aim of this present chapter was to determine the direct in vitro effect of LPS

on human adipocyte (1) insulin sensitivity, (2) inflammation, (3) mitochondrial

DNA integrity, functionality and morphology and (4) overall energy phenotype in

order to determine whether LPS would adversely affect mitochondrial function and

adipocyte lipid handling.
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6.2 Methods

Human adipocyte culture, differentiation and treatment

Human subcutaneous white adipocyte cell line ChubS7 were grown and differen-

tiated as previously described [269]. Briefly, cells were seeded on to 6-well plates

(0.3x106) unless otherwise specified, grown to 100% confluence and differenti-

ated for 8-10 days in DMEM/F12 with 3% FBS and PromoCell Differentiation

Supplement Mix (C-39436, PromoCell). After differentiation, cells were allowed

to equilibrate in basal media for 12 hours before being treated for 24-72 hours

in basal media supplemented with LPS (10 or 100 ng/mL, E. Coli O55:B5, Sigma,

L6529), TNF↵ (10 ng/mL, Sigma, H8916) or Insulin (50 nM, Sigma, I9278). All

media were prepared with DMEM/F12 (ThermoFisher Scientific, UK, 11320033)

and formulations are shown in Table2.5 in Chapter 2.

2-deoxyglucose uptake

Glucose uptake in differentiated ChubS7 adipocytes was evaluated via cellular in-

corporation of [3H]-2-deoxyglucose. Following differentiation and treatment, cells

were washed 3 times with warmed PBS and allowed to equilibrate in KRH buffer

(containing 0.01% BSA, 5mmol/L glucose) at 37ºC for 2.5 hours. Adipocytes were

then incubated a further 30 minutes with KRH buffer without glucose and either no

(basal control) or 100 µM insulin. Immediately after, 1 µCi/mL [3H]-2-deoxyglucose

(PerkinElmer, NET328A001MC) in KRH buffer at 37ºC was added for a further10

minutes. To finalise the assay, cells were then washed 3 times with ice-cold PBS,

lysed and harvested in 200 µL RIPA buffer and a cell scraper. Radioactivity was
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evaluated via scintillation counting of the lysates, diluted 1:4 in �-scintillation fluid

(Beta-Plate Scint, PerkinElmer), and a scintillation Counter. Results defined as

counts per minute (CPM) were normalised to total protein content and glucose

uptake displayed relative to the basal control.

Protein extraction and Western blot

For protein extraction, 100mg of frozen human adipose tissue or 1.2 x 106 cul-

tured adipocytes were homogenised in 200 µL PhosphosafeTM Extraction Buffer

(Novogenr, Merk, Germany). A Bio-Rad detergent compatible protein assay kit

(Bio-Rad Laboratories, CA) and nanospectrophotometer (GeneFlow, UK) were

used to quantify protein concentrations. As described previously for Western blot

analyses [268], 10-20µg of protein were loaded onto a denaturing polyacrylamide

gel (GeneFlow, UK), transferred on to a nitrocellulose membrane which was then

incubated with a primary antibody diluted in 0.2% I-block PBS-T (IRS1 1 : 250,

MT-CO1 1 : 1000, SDHA 1 : 1000, ß-Actin 1 : 1000) at 4ºC overnight. A

chemiluminescence detection system (ECL Plus, GE Healthcare, UK) was used to

visualise protein bands, and densitometry was conducted using ImageQuant LAS

4000 Software (GE Healthcare, UK). Equal protein loading was confirmed by exam-

ining ß-actin protein expression. Primary antibodies utilised are listed in Table2.4

(Chapter 2).

RNA isolation and qRT-PCR

RNA was extracted from cell lysates containing approximately 1x106 adipocytes

using a column-based isolation method (RNeasy Lipid Tissue Mini Kit; #74804 Qi-
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agen, UK) according to manufacturer�s instructions. Samples were digested with

DNase I to remove potential genomic DNA contaminants (DNase I kit, #AMP-D1

Sigma-Aldrich). RNA was eluted in 10 µL RNase-free water and 1 µL quantified

in duplicate using a spectrophotometer (Nanodrop ND-1000, labtech) at 260 nm

absorbancy. Synthesis of cDNA was performed using 1 µg RNA per sample and a

Bioline mRNA reverse transcription kit (#BIO-65026) according to the manufac-

turer�s instructions. Gene expression was assayed through quantitative real-time

polymerase chain reaction (qRT-PCR) using ABI 7500 standard sequence detec-

tion system (Applied Biosystems, UK). Each reaction was prepared to 25 µL final

volume containing Taqman Universal PCR mastermix (#4304437 Applied Biosys-

tems, UK), 1 µL sample cDNA and a specific commercially available Taqman gene

expression assay (Applied Biosystems, UK). For detail on primer sequences used in

this study the reader is referred to Table 2.1. All samples were assayed in triplicate

and multiplexed using 18S (ribosomal RNA) as a pre-optimised control probe. As

per the manufacturer�s instructions, reactions were carried out at 50 ºC for 2 min-

utes, 95 ºC for 10 minutes, and then 40 cycles of 95 ºC for 15 seconds and then

60 ºC for 1 min. For data analysis, a DCt was calculated based on the difference

between 18S and the target gene. Gene expression was calculated based on the

following formula:

mRNA expression = 2 -4Ct, where 4Ct = target gene Ct� 18s Ct
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Endogenous antioxidant activity assays

Activity of endogenous antioxidants SOD and Catalase was evaluated through

a colorimetric method, using OxiSelectTM Superoxide Dismutase Activity Assay

(STA-340) and OxiSelectTM Catalase Activity Assay (STA-341) Kits (Cell Bio-

labs). Following adipocyte differentiation and treatment, v 1.2 x 106 adherent

cells were washed 3 times with ice-cold PBS, harvested with a cell scraper in 1mL

of cold Lysis buffer (10mM Tris, pH 7.5, 150mM NaCl, 0.1mM EDTA). Sam-

ples were homogenised, centrifuged and stored at -80ºC until assayed. All assays

were conducted within 1 month of sample collection and were conducted in accor-

dance to manufacturers instructions. Absorbance was read using a PheraStar FS

microplate reader (BMG Labtech). SOD activity was calculated based on optical

density as outlined in the following formula:

SOD activity (inhibition %) =


(BlankOD � SampleOD)

BlankOD

�

The concentration of active Catalase was determined by interpolation of a catalase

standard curve. Optical density at 540nm was plotted on the “x” axis, Catalase

(U/mL) on the “y” axis, and a second order polynomial equation was used to

determine catalase concentrations as follows:

Catalase (U/mL) = 174.01x2+13.678x+2.7743 where x = optical density (540 nm)
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Quantification of total reactive oxygen and nitrogen species

Total reactive oxygen and nitrogen species were evaluated through green fluores-

cence using OxiSelectTM
in vitro ROS/RNS Assay Kit (STA-347, Cell Biolabs).

Following adipocyte differentiation and treatment, v 1.2 x 106 adherent cells were

washed 3 times with ice-cold PBS, flash-frozen in dry-ice and harvested using a

cell-scraper. Samples were homogenised in 200 µL PBS and stored at -80ºC and

assayed within 1 month of collection. Assay was conducted according to man-

ufacturers instructions, and fluorescence after 30 minutes was measured using a

PheraStar FS microplate reader (BMG Labtech) with a 485/538 nm filter and

530 nm cutoff. Total ROS/RNS were calculated by interpolation of a Hydrogen

Peroxide standard curve as follows:

ROS/RNS (µM) = 5354.5x2 + 1043.3x+ 50.496

where x = relative flourescence units (485/538).

Evaluation of mitochondrial DNA integrity

Total DNA was extracted from cultured cells using DNeasy Blood and Tissue

Mini Kit (#69504 Qiagen, UK) in accordance to the manufacturer�s instructions.

RNase treatment was performed to eliminate possible RNA contamination. DNA

was eluted with 100 µL AE buffer and quantified using a spectrophotometer (Nan-

odrop ND-1000, Labtech). Evaluation of mitochondrial DNA integrity was per-

formed via qRT-PCR by comparing previously published primers [267] spanning a

section of mtDNA susceptible to mutations (where 84% of known mutations occur)
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against a section that is not affected by any of the reported large deletions. Real-

time PCR of both targets were run using a probe-based duplex qRT-PCR assay on

an ABI Prism 7500 thermo cycler (Life Technologies) with the following thermal

profile: 95ºC for 10 minutes, followed by 40 cycles of 95ºC for 15s, 55ºC for 15s,

and 60ºC for 1 minute. The reaction components consisted of 22.5µL Taqman

Universal PCR Mastermix no AmpErase® UNG (Applied Biosystems), each mito-

chondrial probe at 250nM (Taqman® MGB Probe, ThermoFisher Scientific,UK;

shown in Table2.3) with a final reaction volume of 25µL.

Mitochondrial DNA integrity was calculated according to the following published

formula [267]:

2mtDNADR , where mtDNADeletion Ratio =
(Stable Probe Ct � Suceptible Probe Ct)

Stable Probe Ct

Mitochondrial DNA copy number assay

Total DNA was extracted from cell lysates containing approximately 1x106 adipocytes

using DNeasy Blood and Tissue Mini Kit (#69504 Qiagen, UK) in accordance to

the manufacturer�s instructions. RNase treatment was performed to eliminate

possible RNA contamination. DNA was eluted with 100 µL AE buffer and quanti-

fied using a spectrophotometer (Nanodrop ND-1000, Labtech). Relative amounts

of mitochondrial DNA copy number were assessed through qPCR in an ABI Prism

7500 thermo cycler (Life Technologies) with the use of iQTM SYBR Green Super-

mix (#170-8880 BioRad). Mitochondrial (mtND1) and nuclear (BECN1) gene

primers (Table2.2) were used to determine relative amounts of mitochondrial to nu-

clear DNA [266]. Each sample was measured in triplicate. Mitochondrial number
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was calculated based on the following formula:

mtDNA copy number = 24Ct, where 4Ct = BECN1 � mtND1

Analysis of mitochondrial morphology through confocal

microscopy

Analysis of the mitochondrial network was performed through live cell imaging

using a confocal microscope. ChubS7 cells were seeded on to gelatin-coated 35mm

glass bottom culture dishes (MatTek corportationr), grown, differentiated and

treated for 24 hours as described above. Upon completion of treatment, basal

media was removed, replaced with 100 nM Mitotracker Red and cells incubated

for 20 minutes at 37ºC. Cells were then washed three times with basal media and

imaged in HEPES-buffered basal media (pH 7.35) with or without LPS (10 or

100 ng/mL, E. Coli O55:B5, Sigma, L6529). The Z system attached to an inverted

fluorescence microscope fitted with an F-view-II cooled CCD camera (Olympus)

was used to observe cells which were maintained at 37ºC throughout the imaging

process. Cells were magnified 40x through an oil objective lens, and a 500 nm

excitation filter was used to image the mitochondrial network.

Morphologic assessment of the mitochondrial network was conducted on confocal

images using ImageJ (version 1.50i) as described by others [270]. The mito-

chondrial parameters assessed were mitochondrial area (µm2) and the degree of

branching, as defined by the following equation:

BF =
MtP 2

(4⇡MtA)
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where MtP = length of mitochondrial outline (mitochondrial perimeter in µm)

and MtA = Area of mitochondria (µm2). Four independent experiments were

conducted and a minimum of 70 images were examined for each experimental

group.

Seahorse Cell Mito Stress Test

Respiration and media acidification rate were measured using a Seahorse XF24

Extracellular Flux Analyzer (Seahorse Bioscience, Agilent Technologies). Immor-

talised human preadipocytes ChubS7 were seeded onto 24-well plates (Seahorse

Bioscience, 100850-001) at a density of 10,000 cells/well, grown and differentiated

using the standard protocol outlined above, and treated for 24 or 72 hours with

or without LPS (10 or 100 ng/mL, E. Coli O55:B5, Sigma, L6529). Each experi-

mental group consisted of 5 replicates, with the experiment repeated on at least 2

separate occasions (n=10). The assay was conducted in sterile, unbuffered Assay

Media prepared with Seahorse base media (Seahorse Bioscience, 102365-100) at

37ºC (pH 7.4), the formulation of which is listed in Table2.6.

After a calibration step (30min) and an equilibration step (30min), the assay pro-

tocol consisted of 3 cycles of the following steps: mix (3min), wait (2min), mea-

sure (3min), which were completed before and after each injection of Oligomycin

(Sigma, O4876), FCCP (Sigma, C2920) and combined Rotenone (Sigma, R8875)

and Antimycin A (Sigma, A8674). Reagents or vehicle control were injected in the

appropriate volume of a tenfold concentrated stock solution to give the following fi-

nal in-well concentrations: 2 µM Oligomycin, 2 µM FCCP, 0.5 µM Rotenone/Antimycin

A. Prior to experiments, reagent concentrations and seeding density were optimised
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as per the manufacturers instructions. Oxygen consumption rate (OCR) and extra-

cellular acidification rate (ECAR) were calculated by the WAVE software (Seahorse

Bioscience, Agilent Technologies). The basal respiration parameters were calcu-

lated from the mean of 3 individual OCR measurements as follows:

Basal Respiration = Initial OCR (pmol/L)�Rotenone OCR (pmol/L)

For OCR and ECAR response to injection of each compound, data was normalised

by the basal respiration of each experimental group (shown as percentage of base-

line) to account for well-to-well variability in cell number.

Determination of ATP abundance

Immortalised human preadipocytes ChubS7 were seeded onto gelatin-coated 96-

well white opaque cell culture plates at a density of 10,000 cells/well. Cells were

grown and differentiated according to the standard protocol outlined above, and

treated with or without LPS (10 or 100 ng/mL, E. Coli O55:B5, Sigma, L6529) for

24 or 72 hours. Bioluminescent determination of ATP abundance was conducted

using EnzyLightTM ATP Assay Kit (BioAssay Systems, EATP-100) following the

manufacturers instructions for adherent cells. Luminescence was read using a

PheraStar FS microplate reader (BMG Labtech), and ATP concentrations deter-

mined based on interpolation of a standard curve of known ATP concentrations

ranging from 0� 30 µM.
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Determination of mitochondrial membrane potential

The dye tetramethylrhodamine ethyl ester perchlorate (TMRE, Sigma, 87917) was

used to determine mitochondrial membrane potential. TMRE is a cell-permeant,

positive-charged red/orange dye that is readily sequestered by polarised mitochon-

dria (due to their negative charge) in a manner that is directly proportional to their

membrane potential. Immortalised human preadipocytes ChubS7 were seeded onto

a black opaque 96-well plate, differentiated and treated as described for the ATP

abundance assay. Adherent cells were incubated with 300 nM TMRE (Sigma) di-

luted in basal media (described in Table2.5) for 30min at 37ºC. Cells were then

washed 3 times with warm PBS before reading fluorescence with a PheraStar FS

microplate reader (BMG Labtech) at 550/590nm excitation/emission immediately

and after 10, 20 and 30 minutes. As a positive control for depolarisation, 30 µM

FCCP was added to some cells for 30minutes, prior to the TMRE incubation step.

FCCP is an ionophore which destroys membrane potential, rendering mitochondria

unable to accumulate TMRE. For background correction, cells with no TMRE and

no FCCP added were used. Membrane potential was calculated using the relative

fluorescence signal of samples based on the following formula:

Membrane Potential (%) =


(LPS sample� background)

(control sample� background)

�
x 100

Statistical Analysis

Statistical analyses were performed using the SPSS 21.0 software. Data are re-

ported as mean ± standard deviation (SD), unless otherwise specified. Data were

examined for normality according to the Shapiro-Wilks criteria. Unless otherwise
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specified, comparisons between pre- and post-surgery time-points were performed

via paired two-tailed t-tests (if parametric) and the Wilcoxon signed ranks test

(if non-parametric). For categorical data, Fisher�s exact test was used. Between-

group (surgery type) differences were assessed using One-way ANOVA (if paramet-

ric) and Kruskal-Wallis test (if non-parametric) using change variables, calculated

as percentage change from pre-surgery values [(post/pre) x100]. For Pearson cor-

relation analyses, change variables [(post/pre) x100] were log-transformed prior to

analysis if non-parametric.
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6.3 Results

LPS administration to human adipocytes directly induced

insulin resistance

In order to test the hypothesis that LPS drives adipocyte insulin resistance via mi-

tochondrial dysfunction, the first step was to establish whether in vitro LPS admin-

istration could directly induce insulin resistance in human subcutaneous adipocytes

ChubS7. Therefore, adipocytes were treated with two different doses of LPS and

two established in vitro models of insulin resistance served as positive controls:

chronic TNF-↵ (10 ng/mL ) and chronic insulin (50 nM ). As shown in Figure 6.2(A),

all four treatments successfully resulted in insulin resistance after both 24 and 72

hours, as evidenced by significant reductions in uptake of radio-labelled glucose

following an acute dose of insulin (100 nM ) compared with control adipocytes.

This functional observation of insulin resistance was accompanied at 24 hours by

reduced protein expression of insulin receptor substrate 1 (IRS1), a key first step

in the insulin signaling cascade Figure 6.2(B-C). Thus, both low and high doses

of LPS resulted in impaired insulin signaling and adipocyte glucose uptake, with

stronger effects at 24 hours.
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Figure 6.2: Effect of LPS on Human Adipocyte Insulin Sensitivity
(A) Glucose uptake and (B-C) Insulin receptor substrate 1 (IRS1) protein expression in human
adipocytes following 24 or 72-hour treatment with 10 ng/mL TNF-↵, 50 nM chronic Insulin, 10
or 100 ng/mL LPS. (C) Image of IRS1 and loading control �-actin Western blot membranes at
both time-points. For (A), results are expressed as percentage of basal control; for (B) results are
expressed as percentage change from control cells. Bars represent standard error of the mean.
*p<0.05, **p<0.01.
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LPS administration up-regulated inflammation and oxida-

tive stress

Next, inflammation and oxidative stress were assessed via measurement of pro-

inflammatory cytokine TNF-↵, and the combination of total reactive oxygen (ROS)

and nitrogen (RNS) species. LPS was a potent inducer of inflammation (par-

ticularly at 24 hours), when TNF-↵ mRNA increased 300-500% in LPS-treated

adipocytes relative to control (Figure 6.3A). Abundance of total ROS and RNS rose

by 50% within 24 hours and 150% within 72 hours of LPS treatment (Figure 6.3B).

As expected, endogenous antioxidant superoxide dismutase (SOD) also showed a

marked increase, both in terms of mRNA transcript levels (400-3000%; Figure

6.3C) and activity (30-300%; Figure 6.3D). However, the activity of endogenous

antioxidant catalase was significantly impaired with LPS treatment, particularly

at 24 hours when LPS treatment resulted in an approximately 50-75% decrease

(Figure 6.3E). Overall, mRNA transcript levels of both TNF-↵ and SOD2 genes

were lower at 72 compared to 24 hours (Figure 6.3A and C).
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Figure 6.3: Effect of LPS on Human Adipocyte Inflammation and Oxida-
tive Stress
(A) Tumor necrosis factor-alpha (TNF-↵) mRNA expression (n= 6), (B) total reactive oxygen
(ROS) and nitrogen species (RNS) (n=6), (C) Superoxide dismutase 2 (SOD2) mRNA expression
(n=3), (D) SOD activity (n=6), and (E) catalase activity (n=6) in human adipocytes following
24 or 72-hour incubation with 10 or 100 ng/mL LPS. Data are expressed as percentage change
from control, unless otherwise specified and bars represent standard error of the mean. *p<0.05,
**p<0.01.

LPS administration resulted in mitochondrial DNA dele-

tion, and protein depletion

Given that LPS resulted in increased ROS accumulation and impaired endoge-

nous antioxidant response, the possibility of damage to mitochondrial DNA was
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investigated. Briefly, a section of mitochondrial DNA known for its susceptibility

to mutations (where 80% of all reported mutations occur) was compared against

a stable section (where no mutations have been reported). As shown on Figure

6.4A, control adipocytes presented 100% mitochondrial DNA integrity at both 24

and 72 hours. However, adipocyte treatment with LPS produced a mitochondrial

DNA deletion of approximately 5% after 24 hours and 10-16% after 72 hours. The

damage to mitochondrial DNA was accompanied by adverse effects on mitochon-

drial protein translation at 24 hours, as evidence by a depletion of mitochondrial

protein encoded in mitochondrial DNA versus nuclear DNA-encoded mitochondrial

protein (Figure 6.4B). Importantly, other cellular stressors (namely, chronic TNF↵

and insulin) did not produce the same effects on mitochondrial DNA integrity or

protein abundance as LPS treatment, suggesting effect on mitochondria may be a

specific effect of LPS.
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Figure 6.4: Effect of LPS on Mitochondrial Quality
(A) Mitochondrial DNA (mtDNA) integrity and (B) mitochondrial protein abundance (denoted
by mitochondrial MT-CO1 to nuclear SDHA protein ratio) in human adipocytes following a 24
or 72-hour incubation with 10 ng/mL TNF-↵, 50 nM chronic Insulin, 10 or 100 ng/mL LPS. (C)

Image of MT-CO1 and SDHA Western blot membranes at both time-points. Data are expressed
as percentage change from control, and bars represent standard error of the mean. *p<0.05,
**p<0.01, n=6.
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LPS administration induced mitochondrial elongation

Assay of mitochondrial DNA copy number revealed a striking 80-95% reduction in

mitochondrial number, when adipocytes were treated with LPS for both 24 and

72 hours (Figure 6.5A). This finding was further substantiated through confocal

imaging analysis, which showed that mitochondrial area in LPS-treated adipocytes

was significantly reduced compared with controls (Figure 6.5B). Furthermore, the

degree of branching in the mitochondrial network was approximately doubled with

LPS treatment (Figure 6.5C), which is indicative of greater elongation.
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Figure 6.5: Effect of LPS on Mitochondrial Morphology
(A) Mitochondrial DNA copy number in human adipocytes following a 24 or 72-hour incubation
with 10 or 100 ng/mL LPS (n=6). (B) Total mitochondrial area (µm2) and (C) Degree of mi-
tochondrial network branching calculated through confocal microscopy analysis (n=70). Unless
otherwise specified, data are expressed as percentage change from control, and bars represent
standard error of the mean. *p<0.05, **p<0.01.
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Shown in Figure 6.6 are three representative confocal images for each experimental

group. These confocal images highlight the high abundance of mitochondria,

forming a wide mitochondrial network within adipocytes. Indeed in many cases,

mitochondria encircle lipid droplets either partially or completely (indicated by

white arrowheads), further evidence of the important functional link between these

two cellular structures.
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Control LPS 10 ng/mL LPS 100 ng/mL

�1

Figure 6.6: Confocal Microscopies of Adipocytes treated with or without LPS
Representative confocal images of control (left panel) and LPS-treated adipocytes (middle and
right panel). Images are shown at 40x magnification, scale bar represents 10 µm. Arrowheads
indicate where lipid droplets are clearly evident within the mitochondrial network.
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LPS administration impaired mitochondrial efficiency, lead-

ing to a greater reliance on glucose as an energy substrate

To understand the implications of LPS treatment on mitochondrial function, a

Seahorse extracellular flux analyzer was used to measure basal oxygen consump-

tion rate (OCR) and extracellular acidification rate (ECAR) as indicators of aerobic

and anaerobic respiration, respectively. As shown in Figure 6.7A, 24 hours of LPS

treatment did not significantly alter OCR, but up-regulated glycolysis, indicated by

increased ECAR (Figure 6.7B). Despite the increased respiration with LPS treat-

ment, ATP production was significantly reduced at both 24 and 72 hours (Figure

6.7C), resulting in significantly impaired bioenergetic efficiency (Figure 6.7D). In-

terestingly, mitochondrial membrane potential was unaffected by LPS treatment

(Figure 6.7E), indicating reduced efficiency was not related to mitochondrial un-

coupling.
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Figure 6.7: Effect of LPS on Basal Mitochondrial Bioenergetics
(A) Basal oxygen consumption rate (OCR), (B) Basal extracellular acidification rate (ECAR),
(C) ATP abundance, (D) basal bioenergetic efficiency (ATP/ mitochondrial OCR), and (E)

mitochondrial membrane potential (MMP; expressed as relative flourescence signal) in human
adipocytes following a 24 or 72-hour incubation with 10 or 100 ng/mL LPS (n=10). Data are ex-
pressed as percentage change from control, unless otherwise specified and bars represent standard
error of the mean. *p<0.05, **p<0.01.

LPS administration reduced cellular metabolic flexibility

under stress

Given that obesity represents a chronic stress to adipocytes, it became necessary

to understand the implications of LPS treatment when adipocyte mitochondria
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are under stress. Therefore, a Seahorse Mito Stress Test was performed after LPS

treatment. Briefly, this test consists of the successive delivery of 3 compounds

which systematically shut down different components of the electron transport

chain. The compound oligomycin inhibits ATP synthase, the ionophore FCCP

disrupts the mitochondrial membrane potential, and Rotenone/Antimycin A inhibit

complex I action, effectively arresting all mitochondrial respiration. With each

additional compound, the cell must increase its reliance on glycolysis to meet ATP

demand and sustain life. As shown in Figure 6.8, that is indeed the case for control

cells, where each compound addition during the stress test results in increased

ECAR. However, with LPS treatment, adipocytes are unable to sustain the high

glycolytic rate, indicating an impaired metabolic flexibility under stress. Figure

6.9, indicates adipocytes do not alter their aerobic respiration (OCR) to cope with

decreasing glycolysis. The net result of LPS treatment is a shift towards increased

glycolysis in basal conditions, but impaired glycolytic capacity under stress (Figure

6.10). This shift in energy phenotype of adipocytes is indicative of greater reliance

on glucose rather than lipids as an energy substrate, which may further exacerbate

the stress of over-nutrition.
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Figure 6.8: Effect of LPS on glycolytic capacity under stress
Time-lapse of glycolytic capacity as measured by extracellular acidification rate (ECAR) of the
media during a seahorse mitochondria stress test performed after a 24-hour (A) or 72-hour (B)

incubation with 10 or 100 ng/mL LPS (n=10). Values were normalised to basal levels of each
experimental group to account for inter-well cell number variability. Error bars represent standard
error of the mean. *p<0.05, **p<0.01.
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Figure 6.9: Effect of LPS on aerobic capacity under stress
Time-lapse of aerobic capacity as measured by oxygen consumption rate (OCR) during a seahorse
mitochondria stress test performed after a 24-hour (A) or 72-hour (B) incubation with 10 or
100 ng/mL LPS (n=10). Values were normalised to basal levels of each experimental group to
account for inter-well cell number variability. Error bars represent standard error of the mean.
*p<0.05, **p<0.01.
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Figure 6.10: Effect of LPS on energy phenotype of the adipocyte
Energy phenotype mapping of control vs. LPS-treated adipocytes assessed after 24-hour (A) or
72-hour (B) treatments in both, basal and stressed conditions. Error bars represent standard
error of the mean. *p<0.05, **p<0.01.
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6.4 Discussion

In this present chapter, it was hypothesized that surgery-specific changes in serum

concentrations of gut-derived bacterial LPS may modulate the differential metabolic

and mitochondrial outcomes observed between bariatric surgical procedures (out-

lined in previous chapters). Thus, human subcutaneous adipocytes were treated

with LPS to test the direct effect on mitochondrial function and insulin sensitiv-

ity. These novel studies demonstrate that increased circulating LPS levels (often

present as a result of a Western diet), when delivered in vitro, can directly trigger

mitochondrial damage, and a dysfunctional switch of energy substrate from lipids

towards glucose, potentially impairing the lipid buffering capacity of adipose tissue.

The key finding of this study was that incubation of adipocytes with LPS induced a

switch in metabolic phenotype: from primarily reliant on oxidative phosphorylation

for energy requirements to greater reliance on glycolysis. The relevance of this

finding is tied to the implication that reliance on glucose instead of lipids as a fuel

will impair the lipid buffering capacity of adipose tissue, leading to lipid spill-over

and deposition in other organs such as liver, pancreas, blood vessels and skeletal

muscle. The ectopic deposition of fat in organs other than adipose tissue is known

to initiate systemic insulin resistance [282, 150]. Thus, lowering LPS levels in

circulation (either through diet, pharmacotherapy and/or bariatric surgery) may

have therapeutic potential, and warrant further investigation.

The switch in fuel preference resulted in reduced bioenergetic efficiency, which

could not be explained by mitochondrial membrane potential or uncoupling action

(as both were unaltered). However, LPS resulted in sustained conditions of in-

flammation and oxidative stress in tandem with deletion of mitochondrial DNA,
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protein depletion and dramatic morphological alterations. Sustained mitochondrial

elongation and/or conditions of high oxidative stress are known to compromise mi-

tochondrial DNA quality [281, 236], and in this instance either through defective

protein translation, redox signaling or some other unknown mechanism resulted in

the metabolic phenotype observed.

This study has some limitations, namely, an in vitro study design which, though

selected because it would minimise interference of confounders, does not necessarily

reflect the phenomenon as it would occur in vivo. Recent evidence from germ-free

animals have shown that the interaction of the microbiota with diet and metabolic

health is enormously complex, and can vary with species, genetic background,

diet, physiological and pathological state [30]. Further research is required to

elucidate this interaction, and specifically the relationship between LPS and adipose

mitochondria.

In conclusion, this study provides direct, novel evidence, that a Western diet is

linked with impaired adipose tissue metabolism through gut-derived LPS, which

modulates mitochondrial dysfunction and may initiate and/or exacerbate the metabolic

syndrome. These findings are consistent with the initial hypothesis that surgery-

specific differences in mitochondrial outcomes may be due, at least in part, to

divergence in serum LPS concentrations. Nevertheless, many other factors (in-

cluding compliance with dietary and lifestyle advice) may also play a role in both

serum LPS levels and metabolic outcomes after bariatric surgery, and should not

be discounted, particularly as reduction of LPS levels alone, is unlikely to be suf-

ficient to counteract all other adverse factors from an unhealthy diet and lifestyle

to provide significant metabolic benefit. Thus, in the next (and final) chapter of
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this thesis, the impact of environmental factors on bariatric surgical outcomes are

explored in greater detail.
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Chapter 7

Environmental Factors

Influencing Bariatric Outcomes

of a Specialist Weight

Management Service: Lessons

from a Clinical Audit
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7.1 Introduction

The purpose of this chapter was to examine the pathophysiology of obesity through

a clinical perspective, and to explore the environmental barriers to its successful

resolution. Despite the fact that bariatric surgery has been shown to result in

significant and profound weight loss, significant weight regain is seen in in 10-

20% of patients after all of the most commonly performed procedures: Roux-en-

Y gastric bypass, vertical sleeve gastrectomy and laparoscopic adjustable gastric

banding [355, 356]. Since weight recidivism can have significant detrimental effects

on the person�s metabolic health and quality of life, it is paramount to understand

the factors involved.

A recent systematic review has highlighted diet and behaviour/psychology as the

most common reasons for weight regain following bariatric surgery (in approx-

imately 25% and 20% of cases, respectively) [173, 357]. Indeed, dietary non-

compliance may cause a 50% excess weight regain in as little as 3 months [358],

and poor diet quality, inappropriate food choices and lack of nutritional counseling

were shown to predict weight regain post-surgery [359]. In addition, the presence of

a psychiatric diagnosis [360], greater impulsivity and binge-eating behaviour [144],

lack of psychological follow-up [361], and “food grazing” behaviours [362, 363] are

all positively associated with weight regain post-bariatric surgery. Thus, engage-

ment and compliance with medical, dietetic and lifestyle advice is an important

component of successful long-term post-operative weight management [173].

During the course of these studies, data was collected as part of an audit in the Tier

3 and 4 specialist weight management service at University Hospitals Coventry and

Warwickshire NHS Trust. This specialist service offers an integrated medical and
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surgical management of complex and severe obesity, with a wide and diverse mul-

tidisciplinary team which includes Endocrinology, Nursing, Dietetics, Psychology

and Surgery (please see acknowledgements section). To ensure patient safety and

maximal outcomes, the National Institute for Health and Care Excellence (NICE)

guidelines state that bariatric surgery should be considered only if an individual

meets all of the following criteria [1]:

� A BMI of � 40 or between 35� 40 with a significant co-morbidity is present
which could be improved with weight loss.

� All appropriate non-surgical methods have been tried and failed

� Has had or will have intensive pre and post-operative multi-disciplinary man-
agement and support (including psychological and dietetic)

� Generally fit for surgery and anaesthesia

� Patient commitment to long-term follow-up

� Bariatric surgery is the treatment of choice for individuals with a BMI > 50

In the UHCW bariatric service, two additional criteria were enforced: a minimum

12-month engagement with the medical pathway and at least 5% excess weight

loss and maintenance before the day of surgery.

Thus, in this audit the following research questions were investigated: (1) how

effective is this Tier 3 and 4 service on weight loss and glycaemic outcomes, (2)

how effective are the current UHCW surgical criteria at predicting post-surgical

outcomes, and (3) what impact does the degree of multidisciplinary support have

on patient outcomes?
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7.2 Methods

Audit Rationale and Description

The aim of this study was to evaluate local weight loss and glycaemic control

outcomes of the service�s own patient population and to identify specific barriers

or strategies which may help improve patient outcomes. In particular, evidence

for the validity of the current surgical criteria was investigated. The audit popu-

lation was comprised of 100 morbidly obese patients who started and completed

both medical and surgical service pathways of the Warwickshire Institute for the

Study of Diabetes, Endocrinology, and Metabolism (WISDEM), University Hos-

pitals Coventry and Warwickshire NHS Trust (UHCW) between 2011 and 2016.

All patients underwent the same sleeve gastrectomy procedure and were followed-

up for 18 months post-surgery. All data included in this audit was prospectively

collected, and retrospectively collated from the electronic clinical results reporting

system and patient appointment booking system. Data collected was limited to

Age, Height and Weight at start, day of surgery, then 3, 6, 9, 12 and 18 months

post-surgery. Starting type-2 diabetes status, and serum HbA1c levels at day of

surgery, and 1 year post-surgery were also collected. Pre-surgery clinic attendance

information was collected for a sub-cohort of 55 patients for whom complete data

was available and included: total appointments with Medical doctor, Dietitian,

Psychologist, and Surgeon as well as duration of time spent on the medical path-

way.
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Statistical Analysis

All statistical analyses were performed using IBM SPSS Statistics Version 22.

Excess weight loss was calculated as percentage of excess weight, using an ideal

body weight corresponding to BMI of 25. Data were analysed for normality and log-

transformed if non-parametric. Correlations were analysed using bivariate Pearson

correlation analyses. Unless otherwise stated, differences between 2 groups were

analysed using 2-tailed independent samples T-test and One-way ANOVA for more

than 2 groups. A p value of <0.05 was considered as statistically significant.
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7.3 Results

Description of the Service Pathway

The integrated medical and surgical pathways for the specialist weight management

service at the Warwickshire Institute for the Study of Diabetes, Endocrinology and

Metabolism (WISDEM) are shown in Figure 7.1. All patients are seen by a Di-

etitian, Medical Endocrinologist, and Psychologist for an initial assessment at the

start of the medical pathway, after which they are followed up regularly (approxi-

mately every 3 months) by a Dietitian, and based on medical need by a Medical

endocrinologist (approximately every 6 months for those patients with a comor-

bidity or other medical need relevant to cardio-vascular disease risk management).

Depending on need, there is some limited availability for psychological treatment.

Once the patient has met the surgical criteria, the MDT make a joint decision on

surgical candidacy, and the patient is then invited to attend a group education ses-

sion on the surgical options available, and pre and post-surgical advice. After this

point, they are seen by a surgeon in clinic and placed on the surgery waiting list.

Post-surgically, patients are followed-up at 3, 6, 9, 12, and 18 months by either a

Dietitian or Bariatric Nurse and at 12 and 24 months by a medical endocrinologist

before being discharged to the care of their GP at 24 months.

Effect of Service Pathway on Weight Loss and Glycaemic

Control

Table 7.1 shows the starting demographics of the audit population, split by T2DM

status. Of the total audit population (n=100), fourty-five had been diagnosed with
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type-2 diabetes mellitus (T2DM) prior to their first appointment, whilst fifty-five

had not (Figure 7.2). The two sub-cohorts did not differ significantly in either age,

BMI or excess weight.

Table 7.1: Starting demographics of non-diabetic and diabetic cohorts
Non T2DM T2DM Non T2DM

n = 55 n = 45 vs. T2DM

Mean±SD Min-Max Mean±SD Min-Max p value

Age (y) 46.3± 9.33 23� 65 48.1± 10.2 26� 67 0.371

Height (m) 1.65± 0.09 1.51� 1.91 1.68± 0.08 1.52� 1.91 0.078

Weight (Kg) 146.6± 20.0 108.4� 201.2 147.0± 23.9 112.0� 225.0 0.917

BMI (Kg/m2) 53.4± 6.30 40.4� 72.1 51.5± 5.96 40.3� 64.1 0.119

IBW (Kg) 78.8± 7.79 57.1� 91.0 71.4± 7.47 57.8� 91.2 0.084

Excess Weight (Kg) 77.8± 17.1 42.8� 131.5 75.6± 19.6 50.28� 133.8 0.556

Excess Weight (% of IBW ) 213.9± 24.9 161.6� 288.6 205.8± 23.8 161.3� 256.3 0.100

Data are means ± standard deviation. Statistical differences between non-diabetic and diabetic
cohorts were determined via 2-tailed independent T-tests, and significance p value shown in
right-most column. BMI: body mass index, IBW: ideal body weight (calculated if BMI was 25).

45%55%

Non-T2DM T2DM

n=55 n=45

�1

Figure 7.2: Starting proportion of type-2 diabetes in the patient cohort
Pie chart showing numerical proportion of patients with a diagnosis of type-2 diabetes mellitus
(T2DM) prior to their start in the specialist weight management service.

Figure 7.3 shows the BMI, total body weight and excess weight loss up to the

day of surgery. Both non-T2DM and T2DM patients lost a significant amount of

weight during this time (20% of their excess weight on average). Though non-

T2DM patients lost 2% extra (approximately 4 Kg) than the T2DM group, this

difference was not statistically significant.
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Figure 7.3: Effect of the medical pathway on obesity
Indicators of obesity taken at the beginning (first appointment) and end (surgery day) of the
medical pathway for both non-diabetic and diabetic cohorts. Charts show (A) BMI, (B) total
body weight, and (C) body weight lost by the day of surgery (expressed as percentage of excess
weight). Bars represent means ± standard error of the mean. Statistical differences between start
and day of surgery were analysed using 2-tailed paired t-test, *p<0.05; **p<0.01. Statistical
differences between non-T2DM and T2DM cohorts were determined via 2-tailed independent
samples t-test. †p<0.05; ††p<0.01.

In terms of glycaemic control, Figure 7.4 shows the proportion of patients who

achieved serum HbA1c targets of less than 48mmol/mol by the day of surgery. As

expected, all but one non-T2DM patients had serum HbA1c levels well below

48mmol/mol (on average 38.5 ± 4.5mmol/mol), whilst the majority (68%) of T2DM

patients had sub-optimal glycaemic control (on average 60.0± 2.14mmol/mol).
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Figure 7.4: Proportion of patients who achieved glycaemic control before surgery
Pie charts showing numerical proportion of patients who achieved target HbA1c of <48mmol/mol
by the end of the medical pathway (day of surgery). Independent charts are shown for (A) non-
T2DM and (B) T2DM cohorts. Serum HbA1c levels (means ±standard deviation) are shown
below for each cohort.

Figure 7.5 shows the trend of weight loss throughout the service pathway. Sig-

nificant reductions in BMI were observed at every follow-up contact up until one

year post-surgery, after which (18 months) this trend reached an apparent plateau

(Figure 7.5A). Indeed, an average of approximately 2-4% of excess weight was

regained between 12 and 18 months post-surgery (Figure 7.5B). This trend was

not significantly different between T2DM and non-T2DM groups.

In terms of timing, as shown in Figure 7.6, much of the weight loss (approximately

34%) occurred prior to surgery during the medical pathway, and peaked shortly af-

ter surgery, with an additional 37% lost within the first 3 months post-surgery. The

initial weight loss pre-surgery was slightly reduced in T2DM (32%) compared with

non-T2DM patients (36%), however this difference was not statistically significant

(p=0.307).
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Figure 7.5: Trend of weight loss throughout the service pathway
Mean BMI (A) and excess weight loss (B) for non-T2DM and T2DM cohorts from beginning
to end of the service pathway. Error bars represent standard error of the mean. Statistical
differences from one contact to the next were analysed using 2-tailed paired t-test, *p<0.05;
**p<0.01. Statistical differences between non-T2DM and T2DM cohorts were determined via
2-tailed independent samples t-test. †p<0.05; ††p<0.01. N.S. denotes differences are not
statistically significant.
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Figure 7.6: Timing of weight loss between patient contacts
Distribution of weight lost in (A) Kg and (B) as percentage of total weight loss between each
patient contact of the service pathway, for non-T2DM (n=55), T2DM (n=45) patient cohorts
and the combined total (n=100).

Figure 7.7 summarises the net effect of the service on weight loss. On average

patients lost nearly 50 Kg, with a minimal regain (1 to 3 Kg) by the final follow-up

appointment (Figure 7.7A). However, the extent of weight loss varied widely from

one individual to the next. Figure 7.7B shows this distribution for the total patient

cohort (n=100), as well as non-T2DM (n=45) and T2DM cohorts (n=55). In all
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cohorts and sub-cohorts, the most frequent result was a loss of 50 to 74% of excess

weight (an outcome achieved by 45 to 56% of patients). Around 30% of patients

lost between 25 and 49% of their excess weight, and around 17% lost more than

75% of their excess weight. Finally, only 2% of patients achieved less than 25%

excess weight loss. The final weight loss outcomes, though slightly less robust for

the T2DM group did not differ significantly between sub-cohorts.
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Figure 7.7: Summary of achieved weight loss
(A)Summary of changes in body weight from heaviest to final weight recorded. Ideal and lowest
body weight are included for reference. Bars represent means ± standard error of the mean.
Statistical differences between heaviest and lowest or last weight were analysed using a 2-tailed
paired t-test, *p<0.05; **p<0.01. (B) Pie charts showing the proportion of weight loss success
in the combined total, non-T2DM and T2DM cohorts. Categories represent varying degrees of
weight loss (expressed as a percentage of individual excess weight).

Figure 7.8 summarises the net effect of the service pathway on glycaemic control

(as evidenced by serum HbA1c levels). As expected, T2DM individuals had higher

levels at both pre and post-surgery than non-T2DM patients, however, both patient

groups achieved significantly lower HbA1c levels at 12 months post-surgery (Figure

7.8A). This reduction was nevertheless significantly greater in T2DM patients,
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who exhibited a 20% serum HbA1c reduction on average, whilst a 10% reduction

was observed in the non-T2DM group (Figure 7.8B). In contrast to only 30% of

T2DM patients who met HbA1c targets (< 48mmol/mol) before surgery, at one year

post-surgery 65% of T2DM patients had met this target (Figure 7.8C). Medication

information was not collected for this audit, so it is unclear whether this constituted

true remission, or simply better medical management.
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Figure 7.8: Summary of achieved glycaemic control
(A)Serum HbA1c levels at time of and 1 year post-surgery in non-T2DM and T2DM cohorts.
(B) Comparison of surgery-induced changes (expressed as percentage of peri-operative values)
in serum HbA1c between non and T2DM cohorts. (C) Pie charts showing the proportion of
patients who achieved HbA1c targets at the time of and 1 year post-surgery in the T2DM cohort.
Bars represent means ± standard error of the mean. Statistical differences between pre and post-
surgery were analysed using a 2-tailed paired t-test, *p<0.05; **p<0.01. Statistical differences
between non-T2DM and T2DM cohorts were determined via 2-tailed independent samples t-test.
†p<0.05; ††p<0.01.
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Pre-Surgery 5% Weight Loss as an Indicator of Compliance

and Post-Surgical Outcomes

In the UHCW specialist weight management service, one of the criterion for

bariatric surgical candidacy is that the patients lose 5% of their excess weight

before surgery. The rationale for this criterion is that it is an indicator of dietetic

and lifestyle compliance (more objective than self-reported information) and will

allow the multidisciplinary team to select those patients who are most likely to

benefit from surgery.

As 5% excess weight loss is a criterion for surgery, a very small minority of the

audit population (6%) did not meet this target. The majority of patients (47%)

lost well above the target (>20%) by the day of surgery, followed by 27% who lost

between 10 and 20% excess weight, and 20% who lost between 6 and 10% excess

weight prior to surgery (Figure7.9).
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Figure 7.9: Excess weight loss pre-surgery
Pie chart depicting patient distribution across increasing categories of pre-surgical weight loss (as
% of excess weight). Descriptive statistics for pre-surgical excess weight loss (EWL) are shown
below the chart.

Next, Pearson correlation analyses were used to examine the relationship between

pre-surgical weight loss and post-surgery weight loss and T2DM outcomes. As

shown in Table 7.2, pre-surgical weight loss was significantly and positively as-

sociated with post-surgical weight loss, namely that occurring within the first 3

months post-operation (coincidentally the period with fastest weight loss), the

maximal weight loss and the final weight loss achieved. Importantly, pre-surgical

weight loss was also significantly and inversely associated with post-surgical gly-

caemic control (as evidenced by HbA1c at 12 months after surgery).
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Table 7.2: Relationship of pre-surgery weight loss to post-surgical outcomes
Pre-surgery EWL (%)

Pearson�s r p value

Post EWL (Surgery to 3m) �0.622 0.0000002**

Post EWL (3m to 6m) �0.022 0.850

Post EWL (6m to 9m) �0.168 0.185

Post EWL (9m to 12m) �0.068 0.631

Post EWL (12m to 18m) 0.099 0.596

Post Maximum EWL (%) 0.512 0.0000004**

Post Final EWL (%) 0.475 0.000003**

Pre HbA1c (mmol/mol) �0.126 0.214

1 year Post HbA1c (mmol/mol) �0.246 0.016*

1 year Post HbA1c (% of pre) �0.050 0.630

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between pre-surgical
excess weight loss (EWL) and post-surgical weight loss and glycaemic outcomes. Significant
correlations are shown in red. *p<0.05, **p<0.01, n=100. EWL: weight loss expressed as
percentage of excess weight.

The association of pre-surgical weight loss with final post-operation excess weight

loss and HbA1c are shown in greater detail as scatterplots on Figure 7.10. Inter-

estingly, past the limit of 30% pre-surgery weight loss, the associated improvement

in HbA1c appears to reach a plateau (Figure 7.10B).
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Figure 7.10: Association of pre-surgical weight loss with post-surgical outcomes
Scatter plots showing correlation between pre-surgical excess weight loss and (A) final post-
operative weight loss outcomes and (B) glycaemic control. EWL: weight loss expressed as
percentage of excess weight. n=100.

The trend in BMI throughout the service pathway in different categories of pre-
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surgery excess weight loss is shown in Figure 7.11. The BMI of patients who

did not achieve the 5% weight loss target was significantly higher no just at the

start, but also throughout the pathway. Furthermore, they exhibited significant

weight regain, back to nearly the same BMI as pre-surgery. Interestingly, past the

minimum 5%, there was no significant difference in BMI between patients who

lost 10%, 20% or greater than 20%, indicating the enhanced outcomes in those

who lost more than 5% may be the result of greater compliance with dietetic and

lifestyle advice, rather than the weight loss per se.

This observation was mirrored in T2DM outcomes as well. As shown in Figure

7.12, patients who lost more than 5% of their excess weight prior to surgery had

significantly lower levels of serum HbA1c on the day of surgery as well as 1 year

post-operation. However, this advantage was not significantly greater with further

weight loss, further supporting the notion that this gain is the result of lifestyle

and dietetic compliance in these individuals rather than a function of the weight

loss itself.
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Figure 7.11: Effect of 5% weight loss target achievement on BMI throughout the
service pathway
Mean BMI trend from beginning to end of the service pathway for sub-cohorts split on the
basis of pre-surgical excess weight loss (EWL). Error bars represent standard error of the mean.
Statistical differences shown in figure represent comparison between categories of EWL and were
analysed using one-way ANOVA, *p<0.05; **p<0.01, n=100.
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Figure 7.12: Effect of 5% weight loss target achievement on glycaemic control
Serum HbA1c levels at time of and 1 year post-surgery in sub-cohorts split on the basis of
pre-surgical excess weight loss (EWL). Bars represent means ± standard error of the mean.
Statistical differences between EWL categories were analysed using one-way ANOVA, *p<0.05;
**p<0.01. N.S. denotes differences shown are not statistically significant.
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1-Year Duration in Medical Pathway as an Indicator of

Patient Engagement and Post-Surgical Outcomes

In the specialist weight management service, one of the criterion for bariatric sur-

gical candidacy is a minimum 1-year duration in the service. The rationale is that

this is an indicator of engagement with the service, which will maximise weight

loss outcomes, whilst minimise risk of complications. Therefore, we investigated

whether duration on the medical pathway (prior to progression to surgery) had a

direct association with weight loss or glycaemic control in the local patient popula-

tion. Figure 7.13 shows how duration on the medical pathway is distributed in the

audit population. The greater proportion of patients audited (49%) progressed to

surgery within the second year of being in the service, whilst 31% did so within the

third year. A very small minority (12%) took longer than three years and 8% took

less than one year. The most frequent duration (mode) was just under 2 years.
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Figure 7.13: Duration of the medical pathway
Pie chart depicting patient distribution across increasing categories of duration on the medical
pathway (starting from their first appointment to the date of surgery), from less than 1 year to
more than 4 years. Descriptive statistics (in years) of duration are shown below the chart.

Next, Pearson correlation analyses were carried out to ascertain whether duration

of the medical pathway was associated with weight loss and glycaemic control

outcomes post-surgery. As shown on Table 7.3, no association was found be-

tween duration of the medical pathway and either weight loss or serum HbA1c

concentrations at any point in the pre or post-surgical period.
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Table 7.3: Relationship of duration of the medical pathway with surgical outcomes
Duration (y)

Pearson�s r p value

Pre-surgery EWL (%) 0.023 0.874

Post EWL (Surgery to 3m) �0.092 0.538

Post EWL (3m to 6m) �0.082 0.630

Post EWL (6m to 9m) �0.107 0.580

Post EWL (9m to 12m) 0.099 0.637

Post EWL (12m to 18m) 0.204 0.505

Post Maximum EWL (%) �0.033 0.820

Post Final EWL (%) 0.002 0.989

Pre HbA1c (mmol/mol) 0.027 0.854

1 year Post HbA1c (mmol/mol) �0.130 0.384

1 year Post HbA1c (% of pre) �0.106 0.478

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between medical
pathway duration (y) and indicators of weight loss and glycaemic control throughout the service
pathway. Correlations were calculated in the sub-cohort of patients where attendance data
was available (n=49). Significant correlations are shown in red. *p<0.05. EWL: weight loss
expressed as percentage of excess weight.

Clinic Attendance Record During Medical Pathway as an

Indicator of Patient Engagement and Post-Surgical Out-

comes

Given that duration on the medical pathway was not a good indicator of post-

surgical outcomes in the audit population, we next tested the potential of clinic

attendance record (“did not attend” instances) as a substitute indicator of patient

engagement.

In order to ascertain whether attendance record was associated with weight loss and

T2DM outcomes, we analysed these relationships via Pearson correlation analyses.

The total number of instances in which patients failed to attend any multidisci-

plinary appointment within the medical pathway was significantly and inversely as-

sociated with both pre and post-surgical excess weight loss (Figure 7.14). In terms

of glycaemic control, no such association was found either with pre or post-surgical
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HbA1c levels (r = 0.097, p = 0.497 and r = 0.049, p = 0.733, respectively).
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Figure 7.14: Impact of patient engagement on pre and post surgical weight loss
success
Scatter plots showing correlation between instances of failure to attend clinic appointments
during the medical pathway and (A) pre-surgery and (B) final post-surgery excess weight loss
(%). EWL: weight loss expressed as percentage of excess weight. Correlations were calculated
in the sub-cohort of patients where attendance data was available (n=55).

Having established that lack of clinic attendance was associated with poorer weight

loss outcomes, this study next focused on determining which individuals were at

higher risk of not engaging. In order to address this point Pearson correlation

analyses were performed between starting demographics and absence rates. As

shown in Table 7.4, starting weight and BMI were significantly and positively

correlated with absences throughout the medical pathway. Figure 7.15 shows

this association in greater detail, whereby patients with more than seven total

absences recorded, had significantly higher weight than those with fewer and two.

Importantly, this trend continued throughout the pathway, with patients who had

fewer than two absences achieving a significantly lower weight than those with

greater than two absences. Thus, it is possible that targeting heavier patients with

more intensive follow-up may help maximise patient engagement and therefore

184



post-surgical outcomes.

Table 7.4: Relationship between starting demographics and absence rates
“Did not attend” instances

Pearson�s r p value

Age (years) �0.203 0.137

Starting Weight (Kg) 0.344 0.010*

Starting BMI (Kg/m2) 0.272 0.044*

Table shows Pearson�s correlation coefficient (r) and p value significance (p) between total
instances in which a patient did not attend a clinic appointment pre-surgery, and starting demo-
graphics collected. Significant correlations are shown in red. *p<0.05, **p<0.01, n=100.
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Figure 7.15: Impact of obesity severity on patient engagement throughout the
medical pathway
Association of (A) weight and (B) BMI to “did not attend” instances at the start and (C)

throughout the medical pathway. Data represent means ± standard error of the mean and
correspond to the sub-cohort of patients where attendance information was available (n=55).
Statistical differences between “did not attend” categories were analysed via one-way ANOVA,
*p<0.05; **p<0.01.
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Role of Multidisciplinary Support on Patient Attendance

and Weight Trajectory

Since appropriate specialist multidisciplinary support has been reported to play a

critical role in preventing post-surgical weight recidivism, this study next examined

the relationship between degree of multidisciplinary support and clinic attendance

record in the audit population.

Figure 7.16 describes the amount, intensity and distribution of patient contacts by

each discipline involved in the specialist weight management service on the audit

population. On average, patients saw a dietitian seven times, a psychologist twice,

a medical Endocrinologist four times and a surgeon once in total by the end of

the medical pathway. Dietetic contacts ranged in intensity from monthly to 6-

monthly, with the largest majority (38%) seeing a dietitian every 3 months (Figure

7.16C). Psychology contacts ranged in intensity from nil to every 6 months, with

the majority of patients (58%) seeing a psychologist once per year (Figure 7.16D).

Medical Endocrinologist contacts ranged in intensity from every three months to

once only, with the largest majority (33%) being seen by a medical Endocrinologist

once per year (Figure 7.16E). In general surgery clinic contacts were once only for

the majority of patients (89%) once they had met the surgical criteria and been

cleared by the multidisciplinary team to progress to the surgical pathway (Figure

7.16F).
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Figure 7.16: Patient contacts during the medical pathway by discipline
(A) Total patient contacts and (B) contact intensity of each discipline (Dietetics, Psychology,
Endocrinology, and Surgery) during the medical pathway. Bars represent means ± standard
error of the mean. (C-F) Pie charts showing the proportionality of patient contacts for each
discipline. Data correspond to the sub-cohort of patients where attendance information was
available (n=55).

Figure 7.17 details the relationship of absence rate against total contacts for each

discipline, whilst Figure 7.18 shows the same absence rate against contact inten-

sity (contacts/year). Though no relationships were evident when considering total

contacts, significant associations emerged if considering contact intensity. Inter-

estingly, increased contact intensity was only associated with decreased absences

in disciplines that target and support the removal of environmental contributors to
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obesity (Dietetics and Psychology). A positive correlation was found between total

medical Endocrinologist contacts and absence rate, though this is perhaps more an

indicator that medical appointments are often offered as a result of medical need,

and patients who are ill are likely less able to attend appointments. Indeed, this

association was no longer present when examining contact intensity.
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Figure 7.17: Impact of total MDT contacts on patient engagement
Scatter plots showing relationship between instances of “did not attend” clinic appointment
and total patient contacts during the medical pathway for each discipline: (A) Dietetic, (B)

Psychology, (C) Endocrinology and (D) Surgery. Correlations were calculated in the sub-cohort
of patients where attendance data was available (n=55).
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Figure 7.18: Impact of MDT contact intensity on patient engagement
Scatter plots showing relationship between instances of “did not attend” clinic appointment and
intensity of patient contacts during the medical pathway for each discipline: (A) Dietetic, (B)

Psychology, (C) Endocrinology and (D) Surgery. Correlations were calculated in the sub-cohort
of patients where attendance data was available (n=55).
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7.4 Discussion

Despite the well-recognised challenge that is long-term maintenance of weight loss

and glycaemic control (even after bariatric surgery), there is no clear consensus

on which environmental factors are responsible. Recent evidence have highlighted

a complex multi-factorial relationship involving dietetic, psychological and physi-

ological issues which alter satiety, food choice, eating behaviours and metabolic

health [173]. In the present chapter, these issues were examined through a clinical

audit of a joint tier 3 and 4 bariatric specialist service. The main finding of this

study, was that environmental factors, namely dietetic compliance (evidenced by

pre-surgical weight loss) and patient engagement (evidenced by clinic attendance

record) were the principal factors associated with enhanced post-surgical weight

loss outcomes, with dietetic compliance also associated with further benefits for

post-surgical glycaemic control. This study also identified patients with larger

starting BMI to be at higher risk of poor engagement, and that more frequent

appointments may prove protective against this.

The finding that patients with higher starting BMI were at significantly higher risk

of not attending appointments and poorer post-surgical outcomes is consistent

with the findings of a previous study from the same bariatric centre, where pre-

surgery BMI was negatively associated with quality of life [364]. Both studies

highlight that even within the specialised umbrella of morbid obesity, one-size does

not necessarily fit all, and the availability of tailored, holistic support throughout

the service pathway is critical to patient benefit.

Another key finding of this audit was the inverse association between appoint-

ment frequency of some disciplines and missed appointments. Failure of patients
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to attend appointments does not just result in poorer weight loss outcomes as

demonstrated in this chapter, but also according to a 2013 estimate cost the

NHS up to £225 million annually [365]. The implication that patient engagement

rates and healthcare costs may be modifiable through more frequent appointments

targeted towards higher BMI patients warrants serious consideration as a service

development strategy.

It is also worth noting that patents with lower BMI at the start engaged better,

and achieved better weight outcomes than those with higher BMI. Whilst it may

be possible to enhance outcomes in individuals with high BMI through intense and

long-term multi-disciplinary support, this data also highlights that weight loss in-

terventions are more effective at lower BMI. Given that though the fastest growing

obesity category is that of morbid obesity [366], it may very well be more cost-

effective to invest resources in preventing patients from attaining morbid obesity

in the first place. However, currently provision of tier 2 and 3 weight management

does not reflect the alarming rise in obesity prevalence [367].

This audit had certain limitations, namely: (1) due to the need to confine the

boundaries of the research question, medication, gender and other clinical infor-

mation were not collected, (2) given the retrospective approach, dietary, lifestyle

and psychological data was not readily available, and (3) though significant corre-

lations were identified, due to the study design, causation could not be determined.

In conclusion, dietetic compliance and patient engagement were critical to post-

surgical weight loss and glycaemic control. Higher frequency of Dietetic and Psy-

chology appointments were significantly associated with enhanced patient engage-

ment, whilst a larger starting BMI was associated with reduced engagement and
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poorer overall post-surgical weight outcomes. Taken together, this data supports

the notion that a holistic, intense and patient-tailored approach is critical to max-

imising patient benefit. Patients with larger BMI are likely to require more intense

support, and achieve more modest outcomes, thus adequate provision of prevention

services is crucial to resolving the obesity crisis.
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General Discussion and

Conclusions
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The obesity pandemic is expected to continue to rise exponentially despite current

efforts to curb it [3]. In the UK, the current strategy has been to prioritise treatment

based on risk of metabolic co-morbidities [1], whilst treatment and/or prevention

of obesity itself remains largely ignored or limited to behaviour change strategies

which social marketing research have been shown to be ineffective (such as public

information campaigns) [121, 122].

Whilst considerable effort has been devoted to obesity research, this has been

heavily biased towards the pathophysiology and treatment of metabolic disease,

whilst research into effective lifestyle interventions for obesity treatment are limited

[103, 142, 104, 97, 106]. Evidence from obesity area research largely supports

the notion that neurobehavioural changes in physiology (affecting appetite, satiety

and food choices) underly most genetic causes of obesity, and strongly suggest any

genetic predispositions are likely to contribute to obesity in much the same way [14,

368, 12, 19, 369]. Evidence from developmental, social, psychological and other

sciences indicate that human behaviour is largely shaped by interaction with the

environment [124, 126, 370, 128, 21, 22, 121]. In recent history, changes in food

production, availability, and marketing have significantly manipulated global food

choices, and cultural practices, especially in the socially, medically and economically

vulnerable [105, 54, 88, 34, 92, 46, 5]. Thus, there is great need to integrate the

environmental with the physiological determinants of health in order to produce

meaningful improvements to the obesity epidemic. The aim of the present thesis

was to approach this subject translationally in order to integrate and advance our

understanding of this subject.

From the basic research perspective, the aim was to investigate the potential role

195



of emerging novel molecular mediators of metabolic recovery following bariatric

surgical intervention. The enterokine FGF-19 has been recently implicated in this

process by the finding that mice lacking the receptor for FGF-19 secretion show sig-

nificantly impaired weight loss and glycaemic control after bariatric surgery [306].

The evidence in this thesis demonstrates for the first time a differential effect of

bariatric surgical procedure on serum FGF-19 levels in tandem with metabolic and

mitochondrial improvements. Though not all surgeries which resulted in increased

serum FGF-19 levels produced evidence of mitochondrial improvements, a signif-

icant association between FGF-19 levels and adipose mitochondrial number was

observed across all surgeries, highlighting the mitochondrial network as a potential

target of this novel gut hormone.

Another mechanism for metabolic recovery following bariatric surgery, which was

investigated in this thesis, focused on circulating levels of gut-derived bacterial

lipopolysaccharide (LPS). Recent evidence suggests that surgery-specific differ-

ences in metabolic benefit may be the result of changes in gut microbiota that

arise from the type and extent of gastro-intestinal remodeling. In particular, a

recent study transplanted fecal matter from post-surgical patients on to germ-free

mice fed a high-fat diet, resulting in significant weight loss, and reduced fat depo-

sition and decreased use of carbohydrates as fuel versus animals transplanted with

fecal matter from control patients [192]. In this thesis, it was hypothesized that

LPS may be involved in the cross-talk between intestinal remodeling and metabolic

fuel partitioning in adipose mitochondria. Here, this study shows for the first time,

that LPS levels were significantly different between surgical procedures, and cor-

related significantly with reduced mitochondrial number in adipose tissue. Direct
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administration of LPS to adipocytes resulted in mitochondrial DNA damage, and

a functional shift towards carbohydrates versus lipid as a fuel source. Taken to-

gether, the findings outlined in this study support our hypothesis and highlight LPS

as a novel link between a Western diet and impaired adipose tissue functionality,

with potential implications for systemic lipid toxicity and metabolic disease.

From the clinical perspective, the aim of this thesis was to examine the environ-

mental barriers to successful weight loss and metabolic recovery, both before and

after bariatric surgery. The collective evidence to date suggests that the main rea-

son bariatric surgery has so far been more effective than non-surgical interventions

is grounded in its ability to avoid triggering many of the mechanisms seen with the

latter, which defend energy stores and promote weight regain [8, 9, 10, 11, 176].

However, some weight recidivism is still commonly seen even with bariatric inter-

ventions, with dietary and psychological factors highlighted as the most common

reasons [357, 358, 359, 173]. The results from the clinical audit of a Tier 3 and

4 bariatric service are consistent with this notion. Whilst the majority of patients

lost more than 50% of their excess weight by the end of surgical pathway (18

months post surgery), there was substantial variability in the extent of weight loss

achieved between individuals. The main factors associated with weight loss suc-

cess were dietetic compliance (evidenced by pre-surgical weight loss) and patient

engagement (evidence by clinic attendance record). Patients with larger starting

BMI and less frequent dietetic or psychology appointments were at higher risk of

poorer outcomes, further substantiating the argument that patient-tailored holistic

support addressing the environmental as well as the physiological determinants of

health are crucial to achieving maximal weight loss and patient benefit.
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In conclusion, the evidence set out in this thesis (and by previous studies) over-

whelmingly supports the notion that obesity is the result of a complex, multi-

factorial interaction with an obesogenic environment. Great gains have been

made in our understanding of the physiological mechanisms leading to obesity

and metabolic disease. In particular, the key fact that most obesity-associated

monogenetic mutations target hypothalamic pathways (controlling hunger, satiety

and food intake) has reframed our understanding of obesity from a metabolic to

a neurobehavioural origin. Further understanding of how the obesogenic environ-

ment disrupts molecular mechanisms that control food choice will be critical for the

development of more effective treatments. Gut-derived factors such as bacterial

LPS, the enterokine FGF-19 and other promising research targets may hold further

insight into the mechanism of metabolic recovery, which may be enhanced through

multidisciplinary holistic treatment. However, any intervention which seeks to tar-

get metabolic disease, food choice or behaviour without seeking to also alter the

environment is at a strong disadvantage for success. Therefore, there is great need

to collaborate across disciplines, in order to gain an accurate perspective of the

causes and solutions to the obesity pandemic.
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Appendix 1: WISDEM Staff

Table 7.5: Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism
Staff (2011-2016)

Prof. Harpal Randeva (WISDEM Clinical Director, Consultant Endocrinologist)
Mr. Vinod Menon (Consultant Surgeon)

Mr. FT Lam (Divisional Medical Director)
Mr. Matthew Venus (Consultant Plastic Surgeon)

Mr. Ian Fraser (Consultant Surgeon)
Mrs. Jenny Abraham (Specialist Bariatric Nurse)
Ms. Joanne Wood (Bariatric Coordinator)

Prof. Sudhesh Kumar (Professor of Medicine, Diabetes and Metabolism)
Dr. Tom Barber (Associate Professor of Endocrinology)

Prof. Grigorios Kaltsas (Consultant Endocrinologist)
Dr. Milan Piya (Consultant Endocrinologist)

Dr. Vidhya Jahagirdar (ST7 Endocrinology and Diabetes)
Dr. Hassan Kahal (NIHR Clinical Lecturer)

Dr. Hema Venkataraman (ST3 Endocrinology and Diabetes)
Dr. Daniel Border (ST2 Acute Internal Medicine)

Dr. Georgios Dimitriadis (Clinical Research Fellow)
Dr. Helen Miller (Clinical Psychologist)

Dr. David Kendrick (Clinical Psychologist)
Dr. Emma Shuttlewood (Bariatric Clinical Psychologist)

Miss Neha Shah (Specialist Bariatric Dietitian)
Mrs. Olga Sutton (Senior Dietitian)
Mrs. Louise Halder (Senior Bariatric Dietitian)

Mrs Margaret Bosworth (Assistant Therapist)
Ms Wendy Clayton (Diabetes Specialist Nurse)
Ms Wendy Goodwin (Diabetes Specialist Nurse)
Dr. Narendra Reddy (NIHR Clinical Lecturer)
Dr. Saboor Aftab (NIHR Clinical Lecturer)
Dr. Umar Shariff (Registrar)

Dr. Aruna Munasinghe (Clinical Fellow)
Dr. Shameen Jaunoo (Clinical Fellow)
Dr. Peng Cheun Lau (Clinical Fellow)
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Appendix 2: List of Formal

Presentations during PhD

Studies (2014-2017)

Dates June 30

th, 2017

Conference Surgical Research Forum

Venue University Hospital Coventry and Warwickshire

Presentation Factors influencing metabolic recovery after bariatric surgery: lessons

from the UHCW service (ORAL)

Dates June 10

th, 2017

Conference American Diabetes Association 17th Annual Scientific Sessions

Venue San Diego, CA, USA

Presentation Gut Hormone FGF-19 Modulates Adipose Mitochondrial Function

and Type-2 Diabetes Recovery Following Bariatric Surgery (Mod POSTER)

Dates April 18th � 21

st, 2017

Conference Scandinavian Society for Atherosclerosis Research

Venue Copenhagen, Denmark

Presentation Gut-derived bacterial LPS links western diet with adipocyte dysfunction

through mitochondrial damage (BEST POSTER AWARD)

Dates March 30

th, 2017

Conference Warwick Medical School Research Network Symposium

Venue Arden House, Westwood Campus, University of Warwick

Presentation Effective Treatment of Obesity: Lessons from a Bariatric Service (ORAL)

Dates December 9

th, 2016

Conference 43rd Adipose Tissue Discussion Group

Venue Merton College, Oxford University

Presentation Gut-derived bacterial LPS drive mitochondrial dysfunction, inflammation

and insulin resistance in human adipocytes (2nd BEST POSTER AWARD)
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Dates November 7

th � 9

th, 2016

Conference British Society for Endocrinology BES Annual Meeting

Venue Brighton, UK

Presentation Metabolic Endotoxaemia Impairs Mitochondrial Respiration and Insulin

Sensitivity in Human Adipocytes (POSTER).

Short-listed for Early Career Endocrinologist Award

Endocrine Abstracts 44 P179. DOI:10.1530/endoabs.44.P179

Dates October 24

th � 25

th, 2016

Conference World Mitochondria Society 7th Annual Meeting

Venue Maritim ProArte Hotel, Berlin, Germany

Presentation Contribution of Gut-derived Bacterial LPS to Mitochondrial Dysfunction,

Oxidative Stress and Inflammation in Human Adipocytes (ORAL)

JWMS 2(2) page 5 DOI:10.18143/JWMS_v2i2

Dates September 7

th � 10

th, 2016

Conference 17th International Congress of Dietetics Associations

Venue Granada, Spain

Presentation The fat benefits of Nutrient Malabsorption in Obese Patients with

Type-2 Diabetes (ORAL).

Rev Esp Nutr Hum Diet 20(1) O-070 DOI:10.14306/renhyd

Dates March 31

st, 2016

Conference Midlands Academy of Medical Sciences Research Festival

Venue Leicester, UK

Presentation Obesity-induced Mitochondrial Dysfunction in T2DM Women is Resolved with

Malabsorptive but not Restrictive Bariatric Surgery (POSTER)

Dates February 15

th � 19

th, 2016

Conference Obesity and Adipose Tissue Biology Keystone Symposia

Venue Fairmont Banff Springs, Banff, Canada

Presentation Malabsorptive Bariatric Surgery Resolves Obesity-induced Mitochondrial Maladaptation

in Subcutaneous Adipose Tissue of Obese T2DM women (POSTER) P-2052

Dates November 2

nd � 4

th, 2015

Conference British Society for Endocrinology BES Annual Meeting

Venue Edinburgh, Scotland

Presentation Evidence for Improved Mitochondrial Efficiency in Adipose Tissue of T2DM women

after malabsorptive but not restrictive bariatric surgery (POSTER)

Endocrine Abstracts 38 P199 DOI:10.1530/endoabs.38.P199

Dates December 15

th, 2014

Conference 41st Adipose Tissue Discussion Group

Venue University of East Anglia, Norwich, UK

Presentation Evidence for Improved Regulation of Mitochondrial Biogenesis in Abdominal Subcutaneous

Adipose Tissue of Obese T2DM women Undergoing Bariatric Surgery (POSTER)
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