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Abstract

The computing integrated in modern vehicles has increased dramatically over the last decade, with many
cars having over 50 compute units controlling critical and non-critical functions. These ECUs communicate over
increasingly complex and heterogeneous networks, and these systems combined present challenges in terms of
scalability, validation, and security. In this article, we present the concept of smart network interfaces that incor-
porate programmable computation in the datapath to enable more features at the network layer, thereby offloading
auxiliary tasks from the ECU processor. System-level capabilities such as hardware-level fault tolerance, application
consolidation with sufficient isolation, and system-level security at each compute node become possible without
disturbing the core computational functions of the ECUs. We demonstrate this approach with practical prototyping
in FPGAs.

I. INTRODUCTION AND BACKGROUND

In automotive networks, compute and communication are often considered distinctly, though they impact each
other significantly. Overall system validation is a process that involves understanding the computational and
communication delays and how these impact the higher layer applications implemented on these networks. Within
this context, network interfaces serve simply to move data between the processors in the ECUs and the network,
abiding by the specifications of the adopted protocol.

Computation in vehicular systems is organised in domains (such as the body domain, power-train, infotainment,
and others) with each domain being served by a network protocol that satisfies its specific requirements in terms of
bandwidth, reliability, and other properties [1]. The ECU systems for each domain integrate the respective network
interfaces as an integrated peripheral on the same die (as a sub-system on the microcontroller itself) or through
a separate ASIC interfaced externally. In either case, the network interface is an implementation of the defined
protocol, like the Bosch e-Ray in the case of FlexRay, and the protocol is adhered to closely.

Extensions to standard protocol-layers allow unique features to be implemented – for example, CAN+ offers 16×
higher bandwidth than standard CAN, while maintaining backwards-compatibility with traditional CAN devices [2].
We have proposed the idea of network-layer data processing extensions as a way to support additional features.
We designed an extended FlexRay network interface [3] on a field programmable gate array (FPGA) platform to
show that a layer of configurable extensions offers additional capabilities like synchronous timestamps and on-
the-fly message monitoring that can be leveraged for unique platform-level capabilities like network security [4].
These network layer extensions can also enable capabilities like security through direct traffic monitoring [5] on the
network, and support lightweight authentication (like the scheme in [6]). Such network layer extensions can also
enable deterministic routing of messages between different domains. In commercial Ethernet switches, FPGAs have
been employed in line-rate switching systems for high-speed Ethernet, in-network traffic analysers, and intrusion
detection [7]. In the case of deterministic Ethernet standards like Time Sensitive Networks (TSN), extensions
within the network layer enable efficient implementation of fault-tolerance strategies like seamless redundancy, by
managing low-level tasks such as packet-level retransmission and removal at the network layer [8]. In the automotive
domain, such applications are typically built using processors with multiple interfaces, incurring significant latency
when moving data between Ethernet and legacy automotive networks [9]. A smart FlexRay controller can also be
incorporated in a gateway on a hybrid FPGA platform to enable deterministic interconnection of legacy automotive
network standards and Ethernet, with datapath extensions at the network interface layers to ensure low-latency
switching performance and efficient message mapping for priority messages even with high network loads [10].

While computation in the automotive domain has predominantly used automotive grade processors and micro-
controllers, the idea of using FPGAs has gained some traction. Within the automotive domain, FPGAs have been
proposed as a compute platform for accelerating real-time vision-based driver assistance systems [11]. FPGA-based
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Fig. 1: Typical ECU architecture incorporating one or more processing cores, memory elements, sensor interfaces,
network interface, and hardware accelerators.
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Fig. 2: Data layer headers embedded by the intelligent network controller.

architectures can also enable architecture-level fault-tolerance through physical level reconfiguration [12]. In this
article, we show how programmable datapaths in network interfaces can enable unique capabilities to support the
increasing demands placed on automotive networks, and we validate these ideas on FPGAs.

II. GENERAL CONCEPT

In a traditional ECU setup, all computation is done in software which runs on an off-the-shelf automotive grade
microcontroller unit that integrates the network interface and other peripherals (see Fig. 1). The application receives
information from the different sensors over the network and processes it to determine what control outputs need to
be fed to an actuator block or passed to another ECU. These individual tasks are invoked periodically based on a
predefined schedule. The network interface only manages functions related to the protocol, passing data between
the network and the ECU processor, and not offering any additional capability that would require computational
ability. As a result, any enhancement like monitoring health data or timestamping individual messages must be
managed through additional software on the ECU at the application layer.

Incorporating such system-level and low-level tasks in software can be challenging. Firstly, network and software
tasks are not always synchronised within an ECU, and software tasks are not synchronised across ECUs. Such
capabilities at the application layer require additional tasks to be added, increasing processor load and potentially
requiring extensive rescheduling and revalidation of ECU functionality. Secondly, establishing a synchronised
timestamp across ECUs can be challenging since ECUs may not be active at all times. Finally, tasks on ECU
processors are susceptible to delays resulting from interrupts and priority tasks with strict deadlines. All this can
result in non-deterministic responses to events on the network or triggers from other ECUs.

Introducing computational capability in the network layer can overcome these challenges. The capability can
transparently augment the communication data to add information about system state, maintain a synchronised
timebase across all ECUs, or apply other processing on network data. This works similar to layered protocol
encapsulation in networks like Ethernet – the network interface adds a set of headers and timestamp information
before embedding application data. At the receiving end, these headers are handled by the network layer while
the application data is passed on to the higher layer software tasks. Such a protocol architecture for FlexRay is
shown in Fig. 2, with a 2-byte header and a 4-byte synchronous timestamp being added as data-layer headers by
the network interface. The header can embed information about the state of the ECU (for diagnosis, fault-tolerance
measures, or others), the data format (for packing sequences of data together), and flags that indicate the presence
of a special network layer message.
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Fig. 3: Configurable extensions embedded within the receive path of the intelligent FlexRay network interface.

To achieve this transparent and deterministic functionality, a processing path parallel to the regular dataflow in
the network interface is integrated into the interface, as shown in Fig. 3 for the receive path for a FlexRay network
interface. The parallel path allows regular messages to be forwarded to the software processor along the traditional
path, while special message (network-level or adaptation schemes) can be processed deterministically within the
interface itself, eliminating the need for software changes to handle such enhancements. In the receive direction, the
extensions receive the decoded bytes from the network and use pattern detectors to extract the data-layer headers or
other information from the payload segment. The timestamp logic leverages the network protocol synchronisation
scheme and extends this to offer a synchronised view of time across all participating ECUs.

The extensions can trigger specific actions to enhance capabilities – for example, a mode adaptation message for
an ECU that supports multiple operating modes (like a terrain response system) could be triggered directly from
the extension, mitigating the non-deterministic factors caused by interrupts and software delays. Cipher primitives
integrated within the datapath (as shown in the Fig. 3) perform on-the-fly decryption on the protocol headers and
application data without incurring additional latency. In the transmit direction, the extensions operate in the reverse
order – they use information about the system state (periodically updated by the application) and the timestamp logic
to form a data-layer header, which is fed to the encryption block (if integrated) that takes 8-byte blocks (starting
from the protocol header) and obfuscates them before encoding them to the bit-level format for transmission on
the network.

Hence, integrating such intelligence at the network interface in a transparent manner enables unique capabilities
without incurring valuable processor time to manage such low-level tasks. While we validate these ideas in the next
section using FPGAs, this concept can be easily applied within new ASIC or SoC network interfaces by integrating
a small programmable logic path to implement these extensions in the transmission and reception chains.

III. CASE STUDIES

To quantify the advantages of embedding computation into the network interface, we look at three case studies
that relate to enhancements discussed in Sec. II. First, we look at how integrating data packing and unpacking in
the network interface can reduce processor overhead. The second case study explores hardware level adaptability
by coupling a reconfiguration management system to the datapath extension in the network interface, improving
the determinism over a software-driven approach. The final example shows how cipher primitives can be embedded
within the datapath of the network interface to offer both network and data security with no latency overhead
on network transmission or impact on software applications. For all experiments, we use the Xilinx Zynq hybrid
FPGA device as it reasonably approximates a typical automotive embedded architecture (with its dual-core ARM
Cortex A9 processors), while also allowing us to integrate the proposed hardware extensions on the same platform.
For software evaluations, the application is run on top of the Standalone Operating System from Xilinx, a very
lightweight OS that abstracts some hardware details. Details of the FlexRay network interface design can be found
in [3]. We use FlexRay and Ethernet as the network standards for experiments, but the same principles can be
extended to other legacy automotive networks like CAN, or newer standards.
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TABLE I: Data re-packing for multi-cycle data transfers (64-byte data).

Mode Latency components Total time Change

Interrupt Data Movement

Software 2.96 µs × 8 0.3 µs × 8 26.08 µs
Extension 2.96 µs × 1 0.3 µs × 8 5.36 µs −79%

TABLE II: Comparison of adaptation times when handled through software or through the hardware extension
within the smart network interface.

Mode Latency components Total time Change

Interrupt Data Movement Reconfig.

Software (PCAP) 2.96 µs 0.3 µs 2257.9 µs 2261.1 µs
H/W intelligence with

NA NA 759.4 µs 759.4 µs −66%
custom ICAP

A. Handling Volume Data at Interfaces

In this case study, we consider the case of transmitting messages from a conventional FlexRay ECU to an Ethernet
backbone network. We use an 8-byte message for this experiment (on FlexRay), as other work has shown that the
8-byte message size represents over 70% of traffic on FlexRay-based vehicular systems. Multiple such messages
are packed together to form a valid Ethernet payload of 64 bytes. With a software-based gateway, the processor has
a fetch-and-pack task that is activated whenever an 8-byte FlexRay frame is received at the network interface (using
an interrupt). The task reads the message into the Ethernet buffer and sets the done flag if the packet is ready to be
transmitted (i.e., when 64-bytes have been filled), otherwise it executes other tasks and waits for the next interrupt.
Each of these actions incurs some latency, as shown in Table I, with a best case interrupt latency of 2.96 µs. As
shown, the fetch-and-pack task is executed multiple times every Ethernet frame, consuming considerable processor
cycles in context switch and data movement (total latency of 26.08 µs).

Embedding this capability into the network layer allows the interface to pack multiple messages into an Ethernet
payload, which can be read with a simpler fetch task, reducing latency by around 80%. It should also be noted that
many tasks in an automotive system are non-preemptive to ensure strict deadlines, which could increase performance
gains further. Finally, a fully hardware based packing and switching system that does not rely on software tasks
further cuts down the latency to 3.3 µs including the transmission latency over the Ethernet link (through hardware
based packing, and forwarding, measured on actual hardware), and is a more viable solution for high-performance
automotive gateways (see VEGa [10]). Such packing also applies to ECUs that deal with data-dense sensors, such
as radar or cameras.

B. Hardware-Level Adaptation

This case study explores the benefits of coupling device-level capabilities like dynamic reconfiguration with
the datapath extensions in the network interface. Consider an ECU system that can adapt its control algorithm in
response to changes in environmental conditions or user settings, like an adaptive terrain response system that is
common in off-road capable vehicles. Since these different modes of operation are mutually exclusive, it is sensible
to have them swap in and out as required to save area and power. The Zynq platform enables the hardware blocks
to be selectively modified to adapt the processing logic through a processor-based PCAP interface. In this scenario,
a software task that monitors information from sensors or user inputs (over the network) triggers a reconfiguration
through the processor, keeping the processor occupied with a non-preemptive task until reconfiguration is completed.

Alternatively, by interfacing the low-level reconfiguration primitives with the network extensions, the recon-
figuration process can be fully handled by the interface, while the processor carries out its regular tasks. The
custom reconfiguration system determines the mode to be chosen, fetches the new hardware configuration (through
DMA) and configures the hardware block without processor intervention. The time consumed for the adaptation
process (from message reception to adaptation) in both cases is shown in Table II. The software technique keeps
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TABLE III: Latency introduced by the PRESENT cipher on an Zynq ARM core per 8 bytes of data, compared to
the smart controller that embeds the same cipher block in its datapath.

Task Rounds Latency components Total delay

Encyption TS Read Encrypt Writeback

Software
32 0.3 µs 40.9 µs 0.3 µs 41.5 µs
64 0.3 µs 82.6 µs 0.3 µs 83.2 µs

Extension
up to

NA
0 µs

0.3 µs 0.3 µs
470 Overlaps with txn

Decyption Data Read TS read Decrypt

Software
32 0.6 µs 0.3 µs 42.1 µs 43.0 µs
64 0.6 µs 0.3 µs 85.2 µs 86.1 µs

Extension
up to

0.3µs NA
0 µs

0.3 µs
470 Overlaps with rxn

the processor occupied for 2.26 ms for the reconfiguration of a small hardware block (3 % of device resources),
delaying other tasks by a significant period of time. By handling the reconfiguration through the network interface,
the processor continues to execute its tasks normally; this approach also offers much improved reconfiguration
performance (reduced by 66%), allowing a faster switch to the new mode. For more complex hardware blocks
that incur more resources, the processor driven reconfiguration can result in the processor being busy for tens of
milliseconds, and may not be a viable option in critical systems.

C. Network Security

This case study shows how a security architecture can be integrated seamlessly as an extension of the network
interface with zero latency overhead. Our prior work showed that security primitives within the network interface
can authenticate application code and protect the network from unauthorised access (see [4]). However, the key
challenge is to integrate this complex security architecture in a manner that introduces minimal overheads in latency
(for the network or application) and without affecting protocol guarantees. For security managed through software,
the encrypted message received from the network must be read and decrypted using the current configuration of
the cipher primitives before the information can be used by the application. As shown in Table III, this results in
considerable overheads (41.5 µs) per 8-bytes of sensor data, for a lightweight symmetric cipher, PRESENT, at a
minimum security setting of 32 rounds (i.e., each block of data is encrypted and decrypted over the entire cycle
32 times). Increasing the security level (more rounds) increases the latency super-linearly due to the complexity
associated with managing the cipher operations (memory requirements, computation of intermediate stage keys).
For comparison, the slot width on a standard 5 ms FlexRay cycle that supports 64 (static) slots is around 65 µs
and the increased security level results in a lost window for transmission. Moreover, the software tasks are not
synchronised to the network timing while the self adaptive nature of networks like FlexRay causes the application
and network to drift out of sync, causing further errors due to missed transmissions.

Embedding the security primitive within the network interface allows the cipher operations to be synchronised
with the network timing ensuring guaranteed transmission at all times. Within the datapath, prefetching and extensive
pipelining allow the transmission/reception of the data segments to be overlapped with the encryption/decryption
process. An abstract timing diagram of the process is shown in Fig. 4. The frame headers are prefetched at the start
of the transmission slot and are encrypted (along with the frame timestamp tn, labelled TS) using the pre-shared key
(PSK) before the start of frame sequence and the flag bits have been transmitted. Subsequently, the transmission
of the frame header is overlapped with the encryption of the first 8 bytes of data and so on. The time-stamp based
key technique (PSK + tn) ensures that the encrypted data varies in every slot even if the actual application data is
static, which is common in many automotive applications. Also, the overlap allows higher levels of security (up
to 470 rounds) per 8-byte data block before the slightest violation of timing boundaries, as shown in Table III for
both transmission and reception. Furthermore, the network extensions can also manage a security adaptation frame
(a special frame for adapting security specifics) without intervention from the application, allowing the security
scheme to be fully transparent to the application.
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TABLE IV: Area and power overheads on a Xilinx Zynq Z-7020 device.

Implementation Normalized resource consumption Peak resource Power consumption

Reg LUTs BRAMs

FlexRay with data-path extns 1.29 × 1.20 × 1 (×) 21.0% (LUTs) 1.02 ×
Intelligent network interface 1.42 × 1.27 × 1.06 (×) 22.4% (LUTs) 1.02 ×
Secure FlexRay interface 2.27 × 1.51 × 1.63 (×) 26.7% (LUTs) 1.26 ×

D. Overheads

While embedding smart capabilities into the network interface improves the overall determinism and flexibility of
the system, it does incur some cost in terms of hardware resources, and power consumption, as shown in Table IV
when implemented on a small Xilinx Zynq Z-7020 device. The simple datapath extensions (pattern detectors,
timestamp logic) on an otherwise standard FlexRay network interface increase resource consumption by 28.9% (for
registers, with dual-channel mode), with a negligible increase in power consumption. Interfacing the reconfiguration
management increases resource consumption of the intelligent network interface by 11.8% (for registers), with no
appreciable increase in power consumption. However, incorporating network security within the interface for both
channels on a FlexRay network incurs an additional 98.7% resources (for registers) and increases the overall power
consumption of the network interface by 24% (36 mW). Similarly, incorporating the data-segment protocol discussed
in Sec. II reduces the payload capacity of the FlexRay frame to 248 bytes. Despite these minor overheads (compared
to the available resource on the chip, with the highest being 6% of LUTs), the smarter network interface offers
unique ways to enhance the system’s performance and capabilities, some of which are impossible to achieve using
a software-based implementation.

We must state once more that though these experiments were validated on FPGAs, the approach could equally be
applied in the design of new network interface ASICs, where a programmable datapath segment could be integrated.

IV. CONCLUSIONS

This article presented the concept of integrating a programmable computation layer within automotive network
interfaces. This offers unique ways to address emerging challenges in vehicular systems, namely security, determin-
istic performance, and hardware-level adaptation. We demonstrated the approach using a prototype implementation
of a smart FlexRay network interface and evaluated the benefits as well as overheads associated with the approach.
Our evaluation demonstrates that smart network interfaces offer significant improvements in terms of processing
and response times over a traditional software approach.
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