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Abstract

We develop and estimate a multifactor affine model of commodity futures that allows
for stochastic seasonality. We document the existence of stochastic seasonal fluctuations
in commodity futures and that properly accounting for the cost-of-carry curve requires at
least three factors. We estimate the model using data on heating oil futures and analyze the
contribution of the factors to risk premia. Correctly specifying seasonality as stochastic is
important to avoid erroneously assigning those fluctuations to other risk factors. We also
estimate a nonlinear version of the model that imposes the zero lower bound on interest rates
and find similar results.
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1 Introduction

Futures prices in many energy and agricultural commodities display seasonal fluctuations. Often,

those fluctuations are not perfectly predictable. From the point of view of market participants,

stochastic seasonal fluctuations imply a source of risk that manifests itself in futures prices and

risk premia. The purpose of this paper is to develop and estimate an affine model of futures prices

that allows for stochastic variations in seasonality. We use the model to analyze the implications

of stochastic seasonal fluctuations for the pricing of commodity futures and risk premia.

The earlier literature, such as Gibson and Schwartz (1990) and Litzenberger and Rabinowitz

(1995), assumes that the price of commodity futures depends on two factors, a spot price factor

and a cost-of-carry (or convenience yield) factor. Schwartz (1997) extends the model to include

a stochastic interest rate, which became the standard three-factor model of commodity futures.

Casassus and Collin-Dufresne (2005) provides a different interpretation of the three-factor model

that we use to relate the cost-of-carry and the spot commodity price. Miltersen and Schwartz

(1998) use the affine framework to price derivatives on commodity futures, and Hamilton and Wu

(2014) study risk premia in oil futures markets. Finally, existing models of seasonal commodity

futures only allow for deterministic seasonal fluctuations in prices (e.g. Sorensen, 2002) or in the

cost-of-carry (e.g. Borovkova & Geman, 2006).

This paper extends the current literature in three dimensions. First, our model features

stochastic seasonal fluctuations in both the spot price and the cost-of-carry. By attaching market

prices of risk to seasonal factors, we are able to measure the risks associated with stochastic

seasonal shocks. Second, following much of the literature on bond prices, we assume that bond

yields depend on three factors. And third, consistent with data on a set of agricultural and energy

commodity futures, we assume that the cost-of-carry curve is driven by three factors.

We begin with a preliminary analysis of futures prices for a group of energy and agricultural

commodities that provide support to our modeling assumptions. We first document that seasonal

fluctuations in this set of commodity futures are stochastic. Second, we perform a principal

components analysis on the cost-of-carry curve for each commodity. We conclude that we need at

least three factors to appropriately account for the dynamics of the cost-of-carry curve. The first

three principal components account for 90 percent or less of the variability of the cost-of-carry
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curve, with the third principal component contributing between 4 and 14 percent of the variability

depending on the commodity and method used to compute the curve. Furthermore, the first

principal component only accounts for between 16 and 80 percent of the variability. These results

suggest that a model in which the cost-of-carry depends on a single factor misses important

features of the data, and motivates our assumption that the cost-of-carry depends on three factors.

We next describe an affine model of commodity futures with stochastic seasonality in discrete

time. The model prices zero-coupon bonds and commodity futures of any maturity, and stochastic

variations in seasonality are driven a pair of random walks (Hannan, 1964). To estimate the model

we need to impose identifying restrictions. An approach often used in the bond pricing literature

is to impose identifying assumption such that the yield curve adopts an augmented Nelson and

Siegel (1987) specification (Christensen, Diebold, & Rudebusch, 2011). We extend this literature

to the pricing of commodity futures and find conditions under which the yield curve and the

cost-of-carry curve derived from the model adopt a Nelson-Siegel representation.

We estimate the model of bond and commodity futures prices using data on U.S. zero coupon

bonds and futures prices on heating oil for the period Jan-1984 through Apr-2017. We concentrate

our analysis on heating oil but leave for an online supplement estimation results using data on

soybeans futures. The model matches the cross-section of futures prices over time, including their

seasonal pattern. We find strong evidence of stochastic seasonality: the peaks and troughs of the

seasonal cycle vary over the years, and the amplitude of the seasonal fluctuations decreased over

time, particularly at the end of the sample. Consistent with the theory of storage, the moderation

of the estimated seasonal component coincides with a similar mitigation of the seasonal component

in stocks of heating oil inventories.

Expected returns of holding a futures contract fluctuate widely over time, and most of those

fluctuations come from variations in the spot, cost-of-carry, and yield curve factors. Although

non-negligible, the contribution of seasonal shocks to risk premia is small. Seasonal shocks

account for about 0.5 percentage points of expected returns but become less relevant at the end of

our sample period. Therefore, correctly specifying seasonality in futures prices as stochastic is

important mostly to avoid erroneously assigning those fluctuations to other risk factors. When we

estimate the model imposing deterministic seasonality, the omitted time variation in the seasonal

pattern manifests itself as large fluctuations in the cost-of-carry factors which, in turn, translate
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into large and spurious fluctuations in estimated risk premia.

It is often argued that interest rate shocks have a minor impact on the time variation in

commodity futures risk premia. Schwartz (1997) assumes a constant interest rate because interest

rate fluctuations are orders of magnitudes lower than those in futures returns. Using the three-

factor model, Casassus and Collin-Dufresne (2005) argue that the market price of interest rate

shocks is barely significant. In contrast, we find that yield curve factors have a significant impact

on risk premia, mostly at medium and lower frequencies. In our sample period, interest rates

declined from about 12 percent to roughly zero. The contribution of interest rate factors to

expected holding returns went from about -10 percentage points to 0 over the same time frame.

When the slope of the yield curve is positive, long term contracts are relatively more expensive

than shorter contracts while the reverse holds when the yield curve is inverted. Thus, changes in

the slope of the yield curve over time affect futures prices and risk premia. Overall, we find that

several measures of risk premia began to drop by 2007. This drop is associated with a decline in

the risk premia associated with the commodity factors and a decline in the (negative) risk premia

associated with the yield curve factors. The contribution of the seasonal shocks to risk premia

also declines, but this effect is smaller than that of the other factors.

From December 2008 to December 2015, the U.S. Federal Reserve set the policy interest rate to

virtually zero. We explore to what extent our results change if we explicitly impose the zero lower

bound on interest rates. To that end, we adapt the yield curve model proposed by Wu and Xia

(2016) and jointly estimate a model of commodity futures and bond prices that imposes the zero

lower bound constraint. Although this constraint is important for bond pricing, we find that it has

a minor impact on futures prices and risk premia relative to the results of the baseline model.

The paper is organized as follows. Section 2 documents two empirical regularities for commod-

ity futures and Section 3 describes an affine model with stochastic seasonality. Section 4 proposes

a representation of the model that adopts Nelson-Siegel functional forms and Section 5 describes

the estimation method. Section 6 contains the main results and Section 7 concludes. Proofs are

relegated to the appendix (Hevia, Petrella, and Sola (2018) contains additional material).
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2 Some empirical properties of commodity futures

In this section we document two empirical regularities in a group of energy and agricultural

commodity futures. The first is that seasonal fluctuations are stochastic. The second is that we

need at least three factors to properly account for the variability of the cost-of-carry curve. Those

results provide support to our subsequent modeling assumptions.

2.1 Stochastic seasonality in commodity futures

Futures prices in many energy and agricultural commodities display seasonal fluctuations.1

Although it is common to model seasonality as deterministic cycles, in this section we argue

that, for many commodities, those seasonal fluctuations are in fact stochastic. This distinction is

important because stochastic seasonality implies an additional risk factor that affects risk premia.

Let us decompose a stochastic process zt = znt + zst into its seasonal (zst) and non-seasonal (znt )

components. Deterministic seasonality can be modeled in terms of trigonometric functions,

zst =
6∑
j=1

[
ξj cos( 2πj

12 mt) + ξ
∗
j sin( 2πj

12 mt)
]

,

where 2πj/12 are seasonal frequencies and ξj and ξ∗j are parameters. The seasonal effect zst is the

sum of six deterministic cycles with periods of 12/j months, for j = 1, 2, ..., 6. The frequency 2π/12

corresponds to a period of 12 months and is known as the fundamental frequency. The other

frequencies represent waves with periods of less than a year.

Following Hannan (1964), we model stochastic seasonality by letting the parameters ξj and ξ∗j

evolve as a random walks. Thus, the stochastic seasonal component is given by

zst =
6∑
j=1

[
ξjt cos( 2πj

12 mt) + ξ
∗
jt sin( 2πj

12 mt)
]

, (1)

where, ξjt = ξjt−1 + νjt and ξ∗jt = ξ∗jt−1 + ν
∗
jt for j = 1, 2, ..., 6. The shocks νjt and ν∗jt are

orthogonal and normally distributed with variances σ2
j and σ∗2j . When the seasonal cycle is

dominated by a single seasonal peak and trough within the year (only the fundamental frequency

matters), the seasonality process collapses to

zst = ξt cos( 2π
12mt) + ξ

∗
t sin( 2π

12mt), (2)

1A Wald test of significance of seasonal dummies in autoregressive models of futures prices strongly reject the null
of lack of seasonality for all the commodities considered below.
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where ξt and ξ∗t are two independent random walks.

Table 1 shows the results of three tests of the null hypothesis that seasonality in futures prices

is deterministic for a number of energy commodities (gasoil, gasoline, heating oil, and natural

gas) and agricultural commodities (corn, soybean, and wheat). The alternative hypothesis is that

seasonal fluctuations are stochastic.2 We use Canova and Hansen (1995) nonparametric test for

parameter stability and its spectral extension developed by Busetti and Harvey (2003). The third is

a parametric test also proposed by Busetti and Harvey (2003). For most commodities and contract

maturities, the tests strongly reject the null hypothesis of deterministic seasonality.3

These results suggest that the common practice of imposing a deterministic seasonal model

in commodity futures (at least for those considered here) is flawed. Moreover, deseasonalizing

the data prior to any empirical analysis is also problematic for two reasons. First, extracting the

seasonal component from each futures contract in isolation does not guarantee that the seasonal

factors are consistent across maturities.4 And second, by deseasonalizing the data prior to any

empirical analysis one is unable to measure the contribution of seasonal shocks to risk premia.

We deal with both concerns by imposing a common seasonal factor that affects futures prices of

all maturities within the context of an affine model of futures prices.

2.2 Number of factors in the cost-of-carry curve

To estimate an affine model of commodity futures we need to determine the number of risk

factors. Researchers agree that three factors capture most of the variation in bond yields and

we follow this practice below. But less is known about the factor structure in the cost-of-carry

curve. The basic model of commodity futures assumes that a single factor drives variations in

the cost-of-carry. In this section we show that, in fact, we need at least three factors to properly

account for the dynamics of the cost-of-carry.

A τ-period futures contract entered into at time t is an agreement to buy the commodity at

time t+ τ at the settlement price F(τ)t . Let St denote the spot commodity price; fτt = log(F(τ)t ), the

log of the futures price; and st = log(St), the log of the spot price. The log-basis of a commodity

2The data are end-of-month log settlement futures prices on contracts with maturities up to 18 months ahead.
Details about the sources and construction of the data are given in Hevia et al. (2018).

3The evidence is mixed when considering natural gas, which is often used as an example of a seasonal commodity.
4Hevia et al. (2018) show that seasonal patterns extracted from univariate models are not synchronized across

maturities.
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futures is defined as f(τ)t − st. Following Miltersen and Schwartz (1998) and Trolle and Schwartz

(2009) we define the cost-of-carry curve (net of bond yields) at t as the value u(τ)t (viewed as a

function of maturity τ) such that the basis of the commodity futures can be written as

f
(τ)
t − st = τ(y

(τ)
t + u

(τ)
t ), (3)

where y(τ)t is the yield on a zero-coupon bond that matures in τ periods.

To infer the number of factors necessary to capture the variability of the cost-of-carry curve, we

compute principal components of log futures prices net of the contribution of the spot, seasonal,

and yield curve factors. Based on equation (3), we subtract from futures prices the contribution of

bond yields and define wτt = f
(τ)
t − τy

(τ)
t . We use two procedures to isolate the contribution of

the spot and seasonal factors. In the first, we run a series of cross-sectional regressions (one for

each date) of w(τ)
t on a constant and sine and cosine waves according to

w
(τ)
t = a0t + cos

(2π
12 (t+ τ)

)
a1t + sin

(2π
12 (t+ τ)

)
a2t + ε

(τ)
t . (4)

The estimated constant (â0t) is a common shifter that affects futures prices of all maturities and

captures the role of the spot factor. The coefficients associated with the sine and cosine waves (â1t

and â2t) capture the seasonal variations in the data, and the residuals ε̂(τ)t are an estimate of (τ

times) the cost-of-carry curve. The second approach is to extract the spot and seasonal factors

using standard state space techniques. We still use equation (4) but now assume that the spot

factor (a0t) follows a first order autoregressive process and the seasonal factors (a1t and a2t) follow

independent random walks. We estimate the factors using the Kalman filter and construct the

cost-of-carry curve using the residuals of equation (4). Finally, we perform principal components

analysis on the two ways of estimating the cost-of-carry curve.

Table 2 reports the contribution of the first three principal components to the variability of

the two measures of the cost-of-carry curve.5 The result is clear: we need at least three factors to

properly account for the variability of the cost-of-carry curve. The first three principal components

account for about 90 percent of the variance of the cost-of-carry curve, with the third principal

component explaining between 5 to 14 percent of that variance. In light of these results, we

augment the traditional affine model of commodity futures by assuming that fluctuations in the

cost-of-carry are driven by three factors.

5We extract principal components from the unbalanced panel of futures prices as in Stock and Watson (2002).
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3 Affine model of commodity futures

The risk factors are represented by a vector of state variables Xt ∈ Rn, that evolves as

Xt+1 = µ+ΘXt + Γηt+1, (5)

where ηt+1 ∼ N(0, I) and Γ is lower triangular. Time periods are measured in months and the state

vector includes factors capturing the stochastic variation in seasonality, which we specify below.

Nominal cash flows received at time t+ 1 are priced using the stochastic discount factor

Mt,t+1 = e−(rt+
1
2Λ
′
tΛt+Λ

′
tηt+1) (6)

Λt = λ0 + λ1Xt,

where rt is the one period interest rate and Λt ∈ Rn is the compensation for risk to shocks to the

state vector ηt+1. The spot interest rate rt is an affine function

rt = ρ0 + ρ
′
1Xt, (7)

where ρ0 is a scalar and ρ1 ∈ Rn. Since there is no evidence of seasonality in interest rates, we set

to zero the loading of ρ1 on the seasonal factors.

3.1 Pricing government bonds

Let P(τ)t be the price of a τ-period zero-coupon bond. Absence of arbitrage implies that bond prices

satisfy the pricing condition P(τ)t = Et[Mt,t+1P
(τ−1)
t+1 ]. Using standard results (Ang & Piazzesi,

2003) one can show that log bond prices are affine functions of the risk factors

logP(τ)t = Aτ +B
′
τXt, (8)

where the scalar Aτ and the vector of loadings Bτ satisfy the recursions

Aτ = Aτ−1 − ρ0 + (µ− Γλ0)
′Bτ−1 +

1
2
B′τ−1ΓΓ

′Bτ−1 (9)

Bτ = (Θ− Γλ1)
′Bτ−1 − δ1, (10)

with initial conditions A0 = 0 and B0 = 0. The yield on a τ-period zero-coupon at date t is thus

y
(τ)
t = − logP(τ)t /τ = aτ + b

′
τXt. (11)
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3.2 Spot price and implied cost-of-carry

Consider a storable commodity with spot price St and with a net cost-of-carry of ct, expressed as

a continuously compounded rate of the spot price. The net cost-of-carry represents the storage and

insurance costs of physically holding the commodity net of any convenience yield on inventory. It

is the analog of the negative of the dividend yield of a stock and can be derived from equilibrium

models such as Routledge, Seppi, and Spatt (2000).

To capture seasonality in the spot price and the cost-of-carry, we assume that their loadings on

Xt are periodic functions of time. Let {mt} be a periodic sequence mapping the time t into the

set of months {1, 2, ..., 12}. We initialize the sequence by setting mt = t for t = 1, 2, ..., 12, and let

mt+12k = mt for every t and k. We often use m̃ when referring to a generic month and impose

the convention that m̃+ 1 = 1 when m̃ = 12.

Assume that the log spot commodity price is given by

st = γ0 + γ
mt′
1 Xt, (12)

where γmt

1 depend on the season mt. Since the payoff from holding the commodity between t

and t+ 1 is e−ct+1St+1, the principle of no arbitrage implies that the spot price St satisfies

St = Et
[
Mt,t+1e

−ct+1St+1
]

. (13)

Following Casassus and Collin-Dufresne (2005), the next proposition (proved in Hevia et al.

(2018)) states that there exists an affine and seasonal cost-of-carry process ct such that the pricing

condition (13) is satisfied given the evolution of the spot price (12).

Proposition 1 (Cost-of-carry process): The net cost-of-carry consistent with the commodity price (13)

is an affine and periodic function of the state variables ct = ψmt
0 +ψmt′

1 Xt where the scalar ψm̃0 and the

vector ψm̃1 satisfy

ψm̃+1
1 = γm̃+1

1 −
[
(Θ− Γλ1)

−1
]′ (
γm̃1 + ρ1

)
ψm̃+1

0 =
(
γm̃+1

1 −ψm̃+1
1

)′
(µ− Γλ0) +

1
2
(
γm̃+1

1 −ψm̃+1
1

)′
ΓΓ ′
(
γm̃+1

1 −ψm̃+1
1

)
− ρ0.
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3.3 Pricing commodity futures

A τ-period futures contract entered into at time t is an agreement to buy the commodity at time

t+ τ at the settlement price F(τ)t . Entering into a futures contract involves no initial cash-flow and

a payoff of St+τ − F
(τ)
t at time t+ τ. Therefore, if we let Mt,t+τ denote the stochastic discount

factor for nominal payoffs received τ periods ahead, the principle of no-arbitrage implies

Et

[
Mt,t+τ(St+τ − F

(τ)
t )

]
= 0.

In Appendix A we show that log-futures prices satisfy

f
(τ)
t = Cmt

τ +Dmt′
τ Xt, (14)

where Cm̃τ = Gm̃τ −Aτ and Dm̃τ = Hm̃τ −Bτ, Aτ and Bτ solve equations (9) and (10), and Gm̃τ and

Hm̃τ solve the recursions

Gm̃τ = Gm̃+1
τ−1 − ρ0 + (µ− Γλ0)

′Hm̃+1
τ−1 +

1
2
(
Hm̃+1
τ−1

)′
ΓΓ ′Hm̃+1

τ−1 , (15)

Hm̃τ = (Θ− Γλ1)
′Hm̃+1
τ−1 − ρ1, (16)

with initial conditions Gm̃0 = γ0 and Hm̃0 = γm̃1 for m̃ = 1, 2, ..., 12.6,7;

3.4 Risk premia in commodity futures

In this section we express different notions of risk premia in terms of the components of the affine

model. Since all the strategies that we consider cost zero when they are entered into, ex-ante

expected return entirely reflects expected risk premia.

The 1-period log holding return (open a position on a τ-period futures at time t and close it at

time t+ 1) is f(τ−1)
t+1 − f

(τ)
t . The time-t conditional expectation of this strategy is

Et[f
(τ−1)
t+1 − f

(τ)
t ] = J

mt+1
τ−1 +D

mt+1′
τ−1 ΓΛt, (17)

where Jmt+1
τ−1 = 1

2 [B
′
τ−1ΓΓ

′Bτ−1 −H
mt+1′
τ−1 ΓΓ ′H

mt+1
τ−1 ] is a periodic Jensen inequality term. The second

term, Dmt+1′
τ−1 ΓΛt, captures the stochastic variation in expected risk premia over time.

6Alquist, Bauer, and Diez de los Rios (2013) study an affine model of oil futures using a setup different from ours.
While we price commodity futures by discounting dollar cash flows—as usually done in the literature—they assume
that there are oil denominated bonds and introduce two pricing kernels, one expressed in dollars to price dollar bonds
and the other in units of oil to price oil bonds. Moreover, they do not consider seasonal fluctuations.

7Some authors claim that no-arbitrage restrictions only matter for the cross-section of bond yields and that they do
not affect the time-series dynamics of the factors (Duffee, 2011). Nevertheless, our model has several features such
as unobserved factors, stochastic seasonality, and restrictions in the physical and risk neutral measures that, when
considered together, should be addressed within an arbitrage-free model.
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The spot premium is the expected return of holding a 1-period futures contract until maturity.

It is the particular case of the expected return (17) evaluated at τ = 1,

Et[st+1 − f
(1)
t ] = J

mt+1
0 + γ

mt+1′
1 ΓΛt, (18)

where we use that a 0-period futures is equivalent to the spot price, st+1 = f
(0)
t+1.

The term premium is defined as the 1-period expected holding return of a τ-period futures

contract in excess of the spot premium. In terms of the affine model, the term premium is

Et[(f
(τ−1)
t+1 − f

(τ)
t ) − (st+1 − f

(1)
t )] = J

mt+1
τ−1 − J

mt+1
0 + (D

mt+1′
τ−1 − γ

mt+1′
1 )ΓΛt. (19)

Another strategy is to open a position on a τ-period futures at time t and sell it as a τ−h-period

futures at time t+ h. The ex-post h -period log holding return of this strategy can be expressed as a

sum of 1-period holding returns,

f
(τ−h)
t+h − f

(τ)
t = [f

(τ−h)
t+h − f

(τ−h+1)
t+h−1 ] + [f

(τ−h+1)
t+h−1 − f

(τ−h+2)
t+h−2 ] + ... + [f

(τ−1)
t+1 − f

(τ)
t ].

Therefore, the expected h-period log holding return follows from using the expected 1-period returns

and the law of iterated expectations,

Et[f
(τ−h)
t+h − f

(τ)
t ] =

h∑
i=1

J
mt+i

τ−i +

h∑
i=1

D
mt+i′
τ−i ΓEt[Λt+i−1]. (20)

4 A representation of the affine model of commodity futures

Here we extend results in Christensen et al. (2011) to the commodity futures literature by showing

that a single stochastic discount factor can be used to simultaneously price bonds and commodity

futures displaying stochastic seasonality in such a way that the yield curve and the cost-of-carry

curve adopt augmented Nelson and Siegel functional forms. This representation of the model is

simple yet flexible enough to match the different shapes of the cost-of-carry and yield curves.

We first write the log-basis (3) emphasizing the contribution of the seasonal factors as,

f
(τ)
t = β0t + τ(y

(τ)
t + ũ

(τ)
t ) + e−ωτ

[
ξt cos( 2π

12mt+τ) + ξ
∗
t sin( 2π

12mt+τ)
]

, (21)

where we interpret β0t as the deseasonalized spot commodity factor and ũ(τ)t as the cost-of-carry

curve net of any stochastic seasonal component.8 The last term on the right side reflects the

8Hevia et al. (2018) show that the pair of seasonal factors associated with the fundamental frequency is enough to
characterize seasonality in heating oil and soybean futures. Thus, from now on we assume that seasonal fluctuations
follow the process (2).
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contribution of the seasonal factors to futures prices of different maturities. When τ = 0 the

futures price is the spot commodity price and equation (21) becomes

st = β0t + ξt cos( 2π
12mt) + ξ

∗
t sin( 2π

12mt). (22)

To extract the seasonality of a futures contract with τmonths to maturity, we compute the expected

seasonal component at time t+ τ conditional on information at time t, and then multiply the

resulting expression by a discounting factor e−ωτ.

There is agreement in the bond pricing literature that three factors are sufficient to summarize

the evolution of the yield curve over time. Thus, we parametrize the yield curve y(τ)t using a

dynamic Nelson and Siegel model as in Christensen et al. (2011),

y
(τ)
t = aτ + δ1t +

(
1 − e−ζ1τ

ζ1τ

)
δ2t +

(
1 − e−ζ1τ

ζ1τ
− e−ζ1τ

)
δ3t, (23)

where δ1t, δ2t, and δ3t are latent variables interpreted as level, slope and curvature factors, and

the parameter ζ1 determines the shape of the loadings on the factors δ2t and δ3t.

Section 2 shows that we need at least three factors to properly characterize the non-seasonal

component of the cost-of-carry curve ũ(τ)t . Therefore, we also look for conditions under which the

cost-of-carry curve adopts an augmented dynamic Nelson and Siegel form,

ũ
(τ)
t = gmt

τ +β1t +

(
1 − e−ζ2τ

ζ2τ

)
β2t +

(
1 − e−ζ2τ

ζ2τ
− e−ζ2τ

)
β3t, (24)

where β1t, β2t, and β3t are level, slope, and curvature factors. Even though ũ(τ)t is independent

of seasonal shocks, rendering the Nelson and Siegel parametrization arbitrage-free still requires

the term gmt
τ to depend on the season (month) mt, although in a deterministic fashion.

We now show that Nelson and Siegel parametrization belongs to the family of affine models

described in Section 3. Although it is known that one can impose restrictions on an affine model

of bond prices to obtain a Nelson and Siegel representation of the yield curve (Christensen et al.,

2011), the extension to the commodity futures literature has not been proved so far.

The vector of risk factors is Xt = [δ1t, δ2t, δ3t,β0t,β1t,β2t,β3t, ξt, ξ∗t ]
′. Our task is to find

parameters λ0, λ1, ρ0, ρ1, γ0, and γmt

1 such that the yield curve and the cost-of-carry curve adopt

the functional forms (23) and (24). These conditions are summarized in
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Proposition 2 (Nelson and Siegel representation): Consider parameters of the risk-neutral measure

ΘQ =



1 0 0 0 0 0 0 0 0

0 e−ζ1 ζ1e
−ζ1 0 0 0 0 0 0

0 0 e−ζ1 0 0 0 0 0 0

1 1−e−ζ1
ζ1

1−e−ζ1
ζ1

− e−ζ1 1 1 1−e−ζ2
ζ2

1−e−ζ2
ζ2

− e−ζ2 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 e−ζ2 ζ2e
−ζ2 0 0

0 0 0 0 0 0 e−ζ2 0 0

0 0 0 0 0 0 0 e−ω 0

0 0 0 0 0 0 0 0 e−ω


and µQ ∈ Rn, where ζ1, ζ2,ω > 0. Let λ0 = Γ−1

(
µ− µQ

)
, λ1 = Γ−1

(
Θ−ΘQ

)
, ρ0 = 0, γ0 = 0,

ρ1 =
[
1, 1−e−ζ1

ζ1
, 1−e−ζ1

ζ1
− e−ζ1 , 0, 0, 0, 0, 0, 0

]′
, and

γ̃1 =
[
0, 0, 0, 1, 0, 0, 0, cos( 2π

12 m̃), sin( 2π
12 m̃)

]′
for m̃ = 1, 2, ..., 12. Then, the yields and futures prices adopt the parametrization (21), (23), and (24).

5 Estimation method

We estimate the model by maximum likelihood using the Kalman filter to evaluate the prediction

error decomposition of the likelihood function and to handle missing observations, a common

feature in the market of commodity futures. The state variables follow the process (5), and the

observation equation consists of futures prices and bond yields that satisfy equations (11) and (14)

augmented with measurement errors ε(τy)yt and ε(τf)ft ,

y
(τy)
t = aτy + b

′
τy
Xt + ε

(τy)
yt . (25)

f
(τf)
t = Cmt

τf
+Dmt′

τf
Xt + ε

(τf)
ft (26)

Bond yields are observed for a set of maturities τy ∈ Ty and futures prices may be observed for a

different set of maturities τf ∈ Tf. We use bond yields for maturities up to 5 years to properly

estimate the shape of the yield curve and futures contracts with maturities from 1 to 18 months.

12



The intercept and factor loadings satisfy the functional forms (21), (23), and (24). Namely,

Cmt
τ = Gmt

τ −Aτ, Dmt
τ = Hmt

τ −Bτ, aτ = −Aτ/τ, bτ = −Bτ/τ,

Hmt
τ =

[
0, 0, 0, 1, τ, 1−e−ζ2τ

ζ2
, 1−e−ζ2τ

ζ2
− τe−ζ2τ, e−ωτ cos( 2π

12 (mt + τ)), e
−ωτ sin( 2π

12 (mt + τ))
]′

,

Bτ =
[
−τ,−1−e−ζ1τ

ζ1
,−
(

1−e−ζ1τ

ζ1
− τe−ζ1τ

)
, 0, 0, 0, 0, 0, 0

]′
,

and Aτ and Gmt
τ satisfy (9) and (15). In addition, stochastic seasonality enters into equation (26)

as periodic loading on the factors ξt and ξ∗t .
9

6 Empirical results

We estimate two versions of the model: one with stochastic seasonaliy (SS) and one with deter-

ministic seasonality (DS).10 In this section we focus on the case of heating oil futures. (Hevia et al.

(2018) show results for soybean futures.)

Table 3 reports the estimates of the model with stochastic seasonality.11 The Akaike information

criterion favors the model with stochastic seasonality (-102383 versus -97850), and the Scharwz and

Hannan-Quinn criteria give similar results. The estimated commodity factors in the SS model are

radically different from those in the DS model (Figure 1), with the cost-of-carry factors showing

clear signs of seasonality in the latter but not in the former.12 Furthermore, the SS model also

dominates the DS model in terms of pricing errors (Table 4).

Figure 2 (top panel) displays the estimated seasonal components. The seasonal peak is attained

at the beginning of the winter season and the trough, at the beginning of the summer season. The

peaks and troughs of the seasonal pattern in the SS model change over time (possibly depending

on the severity of the winter season) and there is a drop in seasonal fluctuations at the end of the

sample. This drop may be due to a change in the composition of demand: while the residential

use of heating oil has decreased (which is mostly seasonal) and exports increased, its use as

transportation fuel has increased over time (a mostly non-seasonal use).13 Moreover, this finding

9Since µQ′Dτ−1 is a scalar, we can only identify a single parameter in µQ′. We thus set µQ = [µQ1 , 0, 0, 0, 0, 0, 0, 0, 0]′.
Also, note that ζ1 and ζ2 are identified because ζ2 appears only in equation (26) while ζ1 appears in both, (25) and (26).

10In the model with deterministic seasonality we set σξ = σξ∗ = 0 and estimate ξ0 and ξ∗0 as free parameters.
11Hevia et al. (2018) contains the estimates of the model with deterministic seasonality.
12The estimated matrix Θ̂ββ in the DS model contains complex roots corresponding to a cycle of about 12 months.
13According to EIA (2017), the share of heating oil consumption for residential use has decreased by more than two

thirds from the beginning to the end of the sample, while the share of transportation distillate use increased by over
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is also consistent with anecdotal evidence suggesting a vanishing seasonality in oil prices.14 As

a result, the DS model underestimates the seasonality at the beginning of the sample and over

estimates it at the end of it.

The model with deterministic seasonality also distorts the estimated factors (Figure 1). The DS

model is unable capture all seasonal fluctuations from futures prices and erroneously attributes

those cycles to fluctuations in the cost-of-carry factors. Moreover, since β1t and β2t determine the

variations of the cost-of-carry curve at the short and long end of the curve, spurious fluctuations

in these factors lead to spurious fluctuations in estimated risk premia.

The shape of the cost-of-carry curve depends on the parameter ζ2, which is more than twice

as large in the model with stochastic seasonality (0.416 versus 0.197). The parameter ζ2 also

determines the evolution of the risk factors under the risk-neutral measure and, therefore, the

associated market prices of risk. The lower is ζ2, the higher is the persistence of the level and

slope factors β1t and β2t under the risk-neutral measure, and the lower is the impact of the

past curvature β3t on the current slope β2t. The estimated ζ2 in the model with deterministic

seasonality implies more persistent factors and a weaker relation between the lagged curvature

and the current slope. Therefore, the seasonal cycles leaked into the estimated cost-of-carry factors

affect the dynamics of risk premia.

Finally, the model with stochastic seasonality is able to match the different shapes of the

futures curve observed in our sample (Figure 3). On some dates, it is not even clear whether

the futures curve is upward sloping or inverted unless one strips out the seasonal component.

Furthermore, the amplitude of the seasonal factor depends on the particular dates that we choose.

This observation is inconsistent with the predictions of a model with deterministic seasonality.

6.1 Seasonality and the theory of storage

It is of interest to determine the source of the moderation of the seasonal component. The theory

of storage relates the stock of inventories with the cost-of-carry.15 We compare the seasonal

50% over the same period. Moreover, the U.S. distillate exports grew to 1.5 million b/d in 2017, whereas they had been
stable around 0.2 million b/d from the beginning of our sample up to the end of 2005.

14For instance, the U.S. Energy Information Administration (EIA, 2013) notes that “looking at data for the last 13 years,
it is apparent that the traditional northern hemisphere winter spike in demand [for oil] has become increasingly less pronounced.”

15In the traditional model, the convenience yield measures the option value of holding inventories when there is a
positive probability of stock-outs (Deaton & Laroque, 1992; Gorton, Hayashi, & Rouwenhorst, 2013; Routledge et al.,
2000). However, the relation between inventories and convenience yields also exists without stock-outs but allowing for
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component extracted from data on heating oil inventories with the estimated seasonal component

of the affine model. The bottom left panel of Figure 2 shows a striking similarity between the two

series: the peaks and troughs are well aligned and the decline in the amplitude of the seasonal

components is similar in the two series. This result suggests that the moderation in seasonal

components of heating oil prices is capturing the same phenomenon in the stock of heating oil

inventories. Furthermore, also consistent with the theory of storage, the estimated level factor of

the cost-of-carry β1t is highly correlated with the non-seasonal component of the stock of heating

oil inventories (bottom right panel of Figure 2).

6.2 Risk premia in heating oil futures markets

Since entering into a futures contract costs zero, any expected return is a risk premium. Here we

analyze the risk associated with holding futures contracts for one period and that associated with

holding the contract to maturity. We find that risk premia in heating oil futures markets declined

over time and that it has been positive on average until 2005 and negative afterwards. The change

in the risk premium coincides with an abrupt increase in heating oil spot prices and with an

increased participation by financial investors in commodity futures markets.16 In addition, we

find that the contribution of the spot, cost-of-carry, and yield curve factors to the time variation of

risk premia is substantial, while seasonal factors play a modest role.

Figure 4 shows the 1-month expected holding return for futures contracts that mature in

1 month and 18 months ahead. Commodity factors (spot and cost-of-carry) explain most of

the evolution of risk premia. Yet, the contribution of the yield curve factors is also substantial,

particularly at the beginning of the sample when interest rates are high. As interest rates drop

over time, so does the importance of the yield curve factors. The contribution of the seasonal

shocks is about 0.6 percentage points at the beginning of the sample and becomes smaller as the

seasonal component gets smaller over time (Figure 2)

other frictions in the production and storage process, such as adjustment costs (Evans & Guthrie, 2017). Since we do
not aim to identify the precise interpretation of this relation, any of those models could be consistent with the observed
relation.

16The increased entry of non-commercial traders coincides with an increase in open interest and trading volume over
the last decade. The EIA reports that the average daily volume of futures contracts on petroleum products was four time
larger in 2017 than the 2000-2006 average (see https://www.eia.gov/finance/markets/products/financial_markets.php).
Hamilton and Wu (2014) document a similar shift in crude oil risk premia in 2005 and also attribute it to the entry of
non-commercial traders into that market.
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The estimated loading of expected returns on the yield curve level factor (δ1t) is negative and

its importance increases with the maturity of the contract. Furthermore, the loading on the slope

factor (δ2t) is positive when the yield curve is upward sloping, negative when the yield curve is

inverted, and its importance decreases for longer maturity contracts. The upper right panel of

Figure 4 is consistent with those observations. The contribution of the yield curve factors to the

risk premium of the 18-months futures contract tracks closely the negative of the level factor (δ1t),

while that of the 1-month contract is smoother and highly correlated with the slope factor (δ2t).

The bottom left panel of the figure shows that commodity factors are very volatile and that

their impact on risk premia is large. It shows that the importance of the cost-of-carry level factor

(β1t) increases with the maturity of the contract and that this factor is highly and negatively

correlated with the component of expected return accounted for by the commodity factors (-0.82

and -0.76 for the 18-month and 1-month contracts, respectively).

Figure 5 displays the expected risk premia of holding a 18 months futures contracts during 1

and 18 months. As the holding period increases, the owner of the contract is exposed to longer

term risks. As a result, the spot commodity factor (β0t) and the slope factor of the yield curve

(δ2t) become more relevant risk factors. For instance, during periods of inverted yield curves,

shorter term futures contracts tend to be more valuable than longer term contracts (equation 3).

Therefore, expected returns of longer term contracts increase.

The upper right panel of Figure 5 shows that the contribution of the slope yield curve factor

increases with the holding period: long holding returns tend to follow more closely the slope

of the yield curve than short holding returns. Moreover, periods with inverted yield curves are

roughly associated with higher total expected risk premia (top panels). In addition, the bottom left

panel shows that the contribution of the commodity factors tends to follow the short and medium

term movements of the spot commodity factor. Interestingly, the longer term movements are

negatively correlated: periods when the spot factor is relatively high are periods when expected

risk premia is negative.

6.3 The zero lower bound on interest rates

From December 2008 to December 2015, the U.S. Federal Reserve set the policy interest rate to 0.25

percentage points, virtually hitting the zero lower bound (ZLB) on interest rates. If one imposes
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the ZLB constraint, the model ceases to be affine in the risk factor, which causes analytical and

econometric challenges. In this section we explore to what extent our results are distorted by

ignoring the ZLB on interest rates.

The model is similar to that described in Section 3 but replacing the interest rate process (7) by

an affine shadow interest rate of the form

zt = ρ0 + ρ
′
1Xt.

The short term interest rate is the maximum of the shadow rate zt and a lower bound r = 0,

rt = max(zt, r).

The stochastic discount factor and the market prices of risk are still given by equations (5) and (6),

and the parameters λ0 and λ1 still satisfy the restrictions imposed in Proposition 2.

This modification renders the model non-linear. While we could approximate the solution using

numerical techniques, estimating the parameters becomes challenging because each evaluation

of the likelihood function requires numerically solving the model and performing an non-linear

filtering procedure. Instead, we adapt the methodology proposed by Wu and Xia (2016) and use

an approximate solution whereby the yield on a τ-period zero coupon bond can be written as

y
(τ)
t = r+

1
τ

τ∑
j=0

σ
Q
j g

(
ãj + b̃

′
jXt − r

σ
Q
j

)
. (27)

Here, ãj = ρ0 + ρ
′
1

(∑j−1
i=0Θ

Qi
)
µQ − 0.5ρ′1

(∑j−1
i=0Θ

Qi
)
ΓΓ ′
(∑j−1

i=0Θ
Qi
)′
ρ1; b̃′j = ρ

′
1(Θ

Q)j; σQj =[
ρ′1

(∑j−1
i=0(Θ

Qi)ΓΓ ′(ΘQi)′
)
ρ1

]1/2
; and g(x) = xΦ(x) + φ(x), where Φ is the standard normal

cumulative distribution and φ is the associated density.17 The function g(x) is non-negative,

increasing, approaches zero as x decreases, and approaches g(x) = x as x increases.

Let y(τ)t = Y(τ)(Xt), where Y(τ)(Xt) is defined as the right side of equation (27). With this

notation, the observation equations of the state-space system are

y
(τy)
t = Y(τy)(Xt) + ε

(τy)
yt

f
(τf)
t = β0t + τf

(
Y(τf)(Xt) + ũ

(τf)
t

)
+ e−ωτ

[
ξt cos( 2π

12mt+τ) + ξ
∗
t sin( 2π

12mt+τ)
]
+ ε

(τf)
ft , (28)

where ε(τy)yt and ε(τf)ft are measurement errors, τy ∈ Ty, τf ∈ Tf, and ũ(τf)t is given by equation

17Hevia et al. (2018) contains a detailed description of the model and the estimation procedure. Wu and Xia (2016)
actually solve the model in terms of one-period forward interest rates. To make it comparable with the previous section,
we chose to compute bond yields by adding one-period forward interest rates.
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(24). As before, the state variables evolve according to equation (5). To estimate the parameters of

the model, we use the the extended Kalman filter to evaluate the likelihood function. Details of

the algorithm and the estimated parameters are described in Hevia et al. (2018).

Figure 6 compares results from the affine model with those of the model that imposes the ZLB

on interest rates. The upper left panel displays the short term interest rate rt in the baseline model

and the shadow interest rate imposing the ZLB. Both lines are almost identical except between

mid-2013 and the end of 2015, when the shadow rate becomes negative while the short rate in the

baseline model is roughly zero. The upper right and middle left panels compare the level and

slope yield curve factors (δ1t and δ2t). Again they are very similar even during the zero lower

bound period. The curvature factor (δ3t) differs between models but it only explains a negligible

fraction of the variation in bond yield and risk premia. The level factors of the cost-of-carry (β1t)

are indistinguishable even during the zero lower bound period (middle right panel). Although

not shown in the figure, the same pattern is true for the other cost-of-carry factors (β2t and β3t),

the spot factor β0t, and the seasonal factors ξt and ξ∗t . Lastly, the bottom panels display the

spot premium and the expected return from holding an 18 months contract to maturity. Both

measures of risk premia are very similar between models and their pairwise correlation is 0.97 for

the former and over 0.99 for the latter.

From these results we conclude that the baseline model performs very well even during the

periods in which the interest rates were at the zero lower bound. The commodity factors, which

are the main drivers of risk premia, are virtually identical in both models. This is because the

periods in which interest rate factors differ the most (when the ZLB is binding) are precisely those

periods in which changes in interest rates have the lowest impact on futures prices (equation (28)).

6.4 Decomposing risk premia during the 1997-1998 oil price shock

We now look at the evolution of the futures curve, and the spot and term premiums around the

1997-1998 oil price shock. This was a period with large movements in commodity prices that

is particularly interesting because the futures curve was in backwardation before the 1997 peak

and in contango at the 1998 trough. Falling oil prices were associated with the emergence of a

contango in the futures market which lead to the usual time spread strategies (long a futures

contract and short a contract with a different maturity).
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To assess the risk inherent in time spread strategies, it is useful to decompose the expected

1-month holding return of a τ-period contract into a spot premium (expected return of holding a

1-month contract) and a term premium (expected 1-month return of a τ-period contract in excess

of that of a 1-month contract),

Et[f
(τ−1)
t+1 − f

(τ)
t ]︸ ︷︷ ︸

1-month expected holding return

= Et[st+1 − f
(1)
t ]︸ ︷︷ ︸

spot premium

+Et[(f
(τ−1)
t+1 − st+1) + (f

(1)
t − f

(τ))
t ]︸ ︷︷ ︸

term premium

.

Heating oil prices reached a peak in January 1997 and the associated spot premium was large

and positive (Figure 7). The reason is that periods of backwardation are usually associated with

drop in stocks of heating oil inventories and increases in the spot price. In the 1998 trough,

the spot premium was negative and large, consistent with the futures curve being in contango,

accumulation of inventories, and an expected fall in the spot price.

The risk inherent in the abnormally high commodity price of 1997 was reflected in a negative

and decreasing term premium (top left panel). As prices were too high, investors demanded a

lower premium to hold long contracts because they expected an eventual drop in the price and,

hence, were willing to accept a negative premium. In effect, the downward sloping futures curve

of January 1997 reflected the expectation of lower spot price in the future. The futures curve

switched from backwardation to contango in April 1997 while at the 1998 trough, as heating oil

prices were expected to recover, the term premium turned positive and hump-shaped as investors

demanded a positive premium for holding long dated contracts.

7 Concluding remarks

In this paper we document that seasonal fluctuations in futures contracts for a group of energy and

agricultural commodities are stochastic. In addition, we show evidence that properly accounting

for the variability in the cost-of-carry curve for the same group of commodities requires of at

least three factors. These observations motivate the main contribution of the paper: developing

and estimating a multifactor affine model of commodity futures and bond prices that allows for

stochastic variations in seasonality. We show that there is single pricing kernel that prices bonds

and commodity futures in such a way that the yield curve and the cost-of-carry curve adopt

Nelson-Siegel functional forms.
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We estimate the model using data on heating oil futures and U.S. bond prices. We observe a

decline in the amplitude of seasonal fluctuations in the futures prices that coincides with a similar

moderation in the amplitude of the seasonal pattern of stocks of heating oil inventories. This

observation is consistent with the theory of storage. Next, we measure the contribution of the

different factors to risk premia. We find that most high frequency fluctuations in risk premia

are due to variations in the spot price factor and other factors associated with the cost-of-carry

curve. Correctly specifying seasonality in futures prices as stochastic is important mostly to

avoid erroneously assigning those fluctuations to other risk factors. In addition, in contrast with

usual claims in the literature, we find that factors associated with bond yields have a significant

contribution to risk premia in commodity futures, mostly at medium and lower frequencies.

Finally, we estimate a non-linear version of the model that imposes the zero lower bound on

interest rates. Although the zero lower bound constraint is important for bond pricing, it has a

minor impact on futures prices and risk premia.
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A Appendix: Proofs

Rewrite the pricing condition of a futures contract that matures in τ periods as

F
(τ)
t Et[Mt,t+1] = Et[Mt,t+τSt+τ]. (A.1)

The price of a contract written at time t+ 1 with settlement date at t+ τ is

F
(τ−1)
t+1 Et+1[Mt+1,t+τ] = Et+1[Mt+1,t+τSt+τ].

Multiply both sides of this expression by Mt,t+1, use Mt,t+1Mt+1,t+τ = Mt,t+τ, and take

expectations conditional on information at time t to obtain

Et[Mt,t+τSt+τ] = Et

[
Mt,t+1F

(τ−1)
t+1 Et+1[Mt+1,t+τ]

]
.

Using this equation into (A.1), and noting that Et[Mt,t+τ] = P
(τ)
t and Et[Mt+1,t+τ] = P

(τ−1)
t+1 gives

V
(τ)
t = Et[Mt,t+1V

(τ−1)
t+1 ], (A.2)

where V(τ)
t = F

(τ)
t P

(τ)
t . Conjecture a solution of the form logV(τ)

t = Gmt
τ + Hmt′

τ Xt. Using

equations (5) and (6) into (A.2), and evaluating the conditional expectation gives

Gmt
τ +Hmt′

τ Xt = G
mt+1
τ−1 +H

mt+1′
τ−1 (µ− Γλ0) +

1
2H
mt+1′
τ−1 ΓΓ ′H

mt+1
τ−1 − ρ0 +

(
H
mt+1′
τ−1 (Θ− Γλ1) − ρ

′
1

)
Xt.
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Fix a month m̃ and match coefficients to obtain

Gm̃τ = Gm̃+1
τ−1 +Hm̃+1′

τ−1 (µ− Γλ0) +
1
2H
m̃+1′
τ−1 ΓΓ

′Hm̃+1
τ−1 − ρ0,

Hm̃τ = (Θ− Γλ1)
′Hm̃+1
τ−1 − ρ1,

Also, note that V(0)
t = F

(0)
t = St. Therefore, the conjecture and equation (12) imply

Gmt
0 +Hmt′

0 Xt = γ0 + γ
mt′
1 Xt.

Thus, Gm̃0 = γ0 and Hm̃0 = γm̃1 for m̃ = 1, 2, ..., 12. Finally, note that

fτt = log(V(τ)
t /P

(τ)
t ) = Gmt

τ −Aτ + (Hmt
τ −Bτ)

′Xt.

Equation (14) follows by setting Cmt
τ = Gmt

τ −Aτ and Dmt
τ = Hmt

τ −Bτ.

Proof of Proposition 2. Nelson and Siegel representation.

Log-bond prices and log-futures prices are affine functions of the state p(τ)t = Aτ +B
′
τXt and

f
(τ)
t = Cm̃τ +Dm̃′τ Xt. Given the proposed parameters of the affine model, set B0 = 0 and Hm̃0 = γm̃1 ,

and let the factor loadings Bτ and Hm̃τ satisfy the recursions

Bτ = ΘQ′Bτ−1 − ρ1 (A.3)

Hm̃τ = ΘQ′Hm̃+1
τ−1 − ρ1, (A.4)

and define Cm̃τ = Gm̃τ −Aτ and Dm̃τ = Hm̃τ −Bτ. Now partition the matrix ΘQ as

ΘQ =


Θ
Q
δδ Θ

Q
δβ Θ

Q
δξ

Θ
Q
βδ Θ

Q
ββ Θ

Q
βξ

Θ
Q
ξδ Θ

Q
ξβ Θ

Q
ξξ


where the size of the sub-matrices conforms to the size of the vectors δt, βt, and ξt.

We begin with the recursion for bonds. The Nelson and Siegel parametrization implies that

bond prices depend only on δt (i.e. Bτ = −[τ, 1−eζ1τ

ζ1
, 1−eζ1τ

ζ1
− τe−ζ1τ, 01×6]

′). Therefore, the

non-zero elements of (A.3) satisfy
−τ

−1−eζ1τ

ζ1

1−eζ1τ

ζ1
− τe−ζ1τ

 = ΘQ′δδ


−(τ− 1)

−1−eζ1(τ−1)

ζ1

1−eζ1(τ−1)

ζ1
− (τ− 1)e−ζ1(τ−1)

−


1

−1−eζ1
ζ1

1−eζ1
ζ1

− e−ζ1
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which, in turn, implies

Θ
Q
δδ =


1 0 0

0 e−ζ1 ζ1e
−ζ1

0 0 e−ζ1

 .

This condition for the arbitrage-free Nelson-Siegel model in discrete time was obtained by Hong,

Niu, and Zeng (2016).18

Consider the parameters associated with the commodity factors. The Nelson-Siegel parametriza-

tion implies that the first three elements of Hm̃τ are zero. Thus, (A.4) imposes

1

τ

1−eζ2τ

ζ2

1−eζ2τ

ζ2
− τe−ζ2τ

e−ωτ cos( 2π
12 (m̃+ τ))

e−ωτ sin( 2π
12 (m̃+ τ))


=

ΘQββ Θ
Q
βξ

Θ
Q
ξβ Θ

Q
ξξ


′



1

τ− 1

1−eζ2(τ−1)

ζ2

1−eζ2(τ−1)

ζ2
− (τ− 1)e−ζ2(τ−1)

e−ω(τ−1) cos( 2π
12 (m̃+ 1 + τ− 1))

e−ω(τ−1) sin( 2π
12 (m̃+ 1 + τ− 1))


(A.5)

and


1

1−eζ1τ

ζ1

1−eζ1τ

ζ1
− τe−ζ1τ

 =

[
Θ
Q′
βδ Θ

Q′
ξδ

]



1

τ− 1

1−eζ2(τ−1)

ζ2

1−eζ2(τ−1)

ζ2
− (τ− 1)e−ζ2(τ−1)

e−ω(τ−1) cos( 2π
12 (m̃+ 1 + τ− 1))

e−ω(τ−1) sin( 2π
12 (m̃+ 1 + τ− 1))


. (A.6)

It is easy to verify that (A.5) implies ΘQξβ = 02×4, ΘQβξ = 04×2,

Θ
Q
ξξ =

e−ω 0

0 e−ω

 and Θ
Q
ββ =



1 1 1−e−ζ2
ζ2

1−e−ζ2
ζ2

− e−ζ2

0 1 0 0

0 0 e−ζ2 ζ2e
−ζ2

0 0 0 e−ζ2


18Joslin, Singleton, and Zhu (2011) show that the arbitrage-free Nelson-Siegel model imposes a single restriction on

their maximally flexible (identified) model. In particular, the unconstrained case replaces the 1 in the ΘQδδ matrix by a
free parameter.
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while (A.6) implies ΘQξδ = 02×3 and

Θ
Q
βδ =


1 1−e−ζ1

ζ1

1−e−ζ1
ζ1

− e−ζ1

0 0 0

0 0 0

 .

Lastly, (A.3), (A.4), and Dm̃τ = Hm̃τ −Bτ imply ΘQδβ = 03×4 and ΘQδξ = 03×2.�

B Appendix: Risk premia

The (realized) 1-period holding return of a τ-month contract is

fτ−1
t+1 − fτt = C

mt+1
τ−1 +D

mt+1′
τ−1 Xt+1 −C

mt
τ −Dmt′

τ Xt.

Using (5), (9), (10), (15), and (16) the time-t expected 1-period holding return can be written as

Et[f
τ−1
t+1 − fτt ] =

1
2
[B′τ−1ΓΓ

′Bτ−1 −H
mt+1′
τ−1 ΓΓ ′H

mt+1
τ−1 ] +D

mt+1′
τ−1 ΓΛt.

The spot premium is the 1-period holding return of a futures contract with settlement date in the

next month. Using f0
t+1 = st+1, B0 = 0 and Hmt+1

0 = D
mt+1
0 = γ

mt+1
1 , the spot premium is

Et[st+1 − f
1
t] = −

1
2
[γ
mt+1′
1 ΓΓ ′γ

mt+1
1 ] + γ

mt+1′
1 ΓΛt.

The term premium and the h-period holding returns follow from simple manipulations of the

1-period holding returns and the spot premium, as described in the text.
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Table 1: Test of stochastic versus deterministic seasonality in futures prices
The table shows tests of deterministic versus stochastic seasonality in heating oil futures. τ stands
for maturity. CH denotes Canova and Hansen (1995) test, while BH denotes Busetti and Harvey
(2003) parametric and nonparametric tests. Under the null hypothesis of deterministic seasonality,
the statistics are distributed as a generalized Von-Mises random variable with 2 degrees of freedom.
***/**/* denote significance at 1/5/10 percent level. For gasoil, data starts in August 1990; for
Gasoline, in January 1985; for Natural Gas, in April 1990; for all other commodities, the sample
starts on the last day of 1983. For all commodities the ending date is April 2017.

Contract Maturity τ months

Energy 1 2 3 6 9 12

Gasoil

CH 3.7065*** 1.0628** 0.9536** 0.6203* 0.3104 0.6865*
BH (nonparam.) 4.4755*** 1.7076*** 1.9084*** 0.9575** 0.1455 0.5695
BH (param.) 11.738*** 1.3052*** 3.7776*** 7.5316*** 1.8639*** 1.2931***

Gasoline

CH 0.7967** 0.8284** 0.8368** 0.4411 0.8771** 2.2912***
BH (nonparam.) 1.155*** 1.3338*** 1.4022*** 0.1824 0.2539 2.244***
BH (param.) 3.8417*** 0.4951 1.7158*** 26.415*** 4.5124*** 0.4165

Heating Oil

CH 0.8418** 0.768** 0.6652* 0.1954 0.8524** 1.4317***
BH (nonparam.) 1.0308** 1.2491*** 1.2211*** 0.2055 0.9599** 1.5977***
BH (param.) 5.303*** 11.162*** 15.177*** 9.5591*** 1.0832*** 15.704***

Natural Gas

CH 1.542*** 0.3236 0.2023 0.4106 0.8064** 0.2779
BH (nonparam.) 3.5174*** 0.3736 0.283 0.7733** 0.4905 0.398
BH (param.) 4.2392*** 14.496*** 18.123*** 1.2262*** 13.781*** 6.514***

Agricultural

Corn

CH 8.1784*** 0.8555** 0.7226* 0.9563** 2.4234*** 2.5611***
BH (nonparam.) 18.572*** 1.2667*** 0.3207 1.0738*** 6.5478*** 7.4085***
BH (param.) 1.3201*** 7.0038*** 1.6591*** 6.8562*** 8.2679*** 8.3063***

Wheat

CH 5.9498*** 1.6014*** 0.4361 1.0749*** 1.0055** 0.2214
BH (nonparam.) 7.8489*** 3.061*** 0.3709 0.508 1.2175*** 0.2855
BH (param.) 1.5193*** 5.1433*** 1.6911*** 0.1694 1.3814*** 4.6131***

Soybean

CH 10.119*** 0.4443 0.5835 1.1623*** 2.8187*** 4.9593***
BH (nonparam.) 0.9757** 0.7387* 0.4419 0.4659 7.8844*** 11.549***
BH (param.) 4.3753*** 6.7288*** 2.0364*** 7.0118*** 9.9595*** 12.379***
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Table 2: Number of factors in the yield curve and the cost-of-carry curve
The table reports the contribution of the first three principal components to the variability of the
yield curve and the cost-of-carry curve. ε(τ),CS

t refers to the cost-of-carry curve obtained from the
cross-sectional regressions and ε(τ),KF

t is the cost-of-carry curve estimated using the Kalman filter.

PC1 PC2 PC3
Yield Curve

y
(τ)
t 99.67 0.31 0.02

Energy

Gasoil

ε
(τ),CS
t 45.52 19.84 11.28
ε
(τ),KF
t 72.46 5.65 4.00

Gasoline

ε
(τ),CS
t 35.24 28.08 13.61
ε
(τ),KF
t 38.59 19.62 11.98

Heating Oil

ε
(τ),CS
t 50.59 20.10 12.04
ε
(τ),KF
t 63.61 16.42 5.58

Natural Gas

ε
(τ),CS
t 80.55 7.96 5.15
ε
(τ),KF
t 55.92 16.57 14.03

Agricultural

Corn

ε
(τ),CS
t 25.31 16.60 12.41
ε
(τ),KF
t 28.22 18.28 12.26

Wheat

ε
(τ),CS
t 22.59 17.22 14.37
ε
(τ),KF
t 35.48 19.59 10.79

Soybean

ε
(τ),CS
t 16.07 14.10 13.25
ε
(τ),KF
t 26.83 17.14 11.76
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Table 3: Estimates of the model with stochastic seasonality

Parameters of the VAR(1) process for the yield, the spot and cost-of-carry factors
µδ(×1000) Θδδ Γδδ(×1000)

0.1305
(0.048)
0.0064
(0.0593)
0.0255
(0.1072)





0.964 0.006 0.026
(0.012) (0.019) (0.011)
−0.005 0.945 0.031
(0.014) (0.021) (0.014)
−0.004 0.016 0.936
(0.023) (0.028) (0.016)





0.313 0 0
(0.011)
−0.267 0.218 0
(0.014) (0.008)
−0.167 −0.027 0.646
(0.021) (0.026) (0.022)


µβ(×100) Θββ Γββ(×100)

−0.0134
(0.9908)
−0.0654
(0.0229)
−0.01864
(0.4807)
0.5343
(0.3542)





0.9908 0.1691 0.8391 −0.0085
(0.012) (1.045) (0.199) (0.242)
0.0004 0.8876 0.0185 0.0238
(0.0002) (0.025) (0.005) (0.007)
0.0002 −0.8541 0.8254 0.5384
(0.0044) (0.555) (0.072) (0.102)
0.0007 1.2311 −0.2151 0.3386
(0.0028) (0.428) (0.067) (0.091)





9.634 0 0 0
(0.04)
−0.141 0.139 0 0
(0.012) (0.009)
−0.971 −0.004 2.915 0
(0.197) (0.309) (0.323)
−0.143 −0.488 −2.006 1.138
(0.175) (0.287) (0.255) (0.069)


Volatility of seasonal process
σξ = 0.0029 (0.0002) σξ∗ = 0.0017 (0.0001)

Other parameters and log-likelihood
ζ1 = 0.053 (0.0006) ζ2 = 0.416 (0.021) ω = 0.0096 (0.0014) Log-likelihood = 51270.95

Table 4: Pricing errors
The table compares the pricing errors in the models with stochastic (SS) and deterministic (DS)
seasonality. RMSPE is the root mean square pricing error and MAPE is the mean absolute pricing
error. All entries are multiplied by 100.

RMSPE MAPE

Maturity SS DS SS DS

1 0.673 1.996 6.847 12.659
3 0.210 0.593 3.905 6.760
6 0.416 0.582 5.696 6.759
9 0.431 0.648 5.750 7.229

12 0.364 0.691 5.171 7.446
16 0.245 0.825 4.391 8.183
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Figure 1: Spot, cost-of-carry, and seasonal factors
Estimates of commodity factors of the models with stochastic and deterministic seasonality:
deseasonalized spot β0t; factors of the cost-of-carry, β1t, β2t, and β33t; and seasonal factors
ξt and ξ∗t .
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Figure 2: Seasonal component and heating oil inventories

The upper panel displays the implied seasonal component ξt cos( 2π
12mt) + ξ

∗
t sin( 2π

12mt) in the models with
stochastic and deterministic seasonality. The figure also displays the months in circles in the model with stochastic
seasonality. Most seasonal peaks are in December (D) and troughs in June (J). The bottom left panel displays the
seasonal component of log-inventories and the implied seasonal component of the spot commodity price, both
standardized. The bottom right panel shows the cost-of-carry level factor β1t and the non-seasonal component of
log-inventories, both standardized.
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Figure 3: Fitted log-futures curves

The figure shows fitted log-futures curves, deseasonalized fitted log-futures curve, and actual log-futures prices

on selected dates.
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Figure 4: Expected 1-month holding futures returns

This figures shows the expected 1-month holding returns of a 1-month and a 18-months futures contract. Returns

are expressed in percentage points and on an annualized basis. The upper left panel displays the total expected

return. The other panels display the contribution of the different factors. The upper right panel also shows the

negative of the level factor of the interest rates and the bottom left panel adds the level of the cost-of-carry factor.
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Figure 5: Expected holding futures returns of an 18-month futures contract

Expected 1-month and 18-months holding returns of an 18-months futures contract. Returns are expressed in

percentage points and on an annualized basis. The upper left panel displays the total expected return. The other

panels display the contribution of the different factors. The upper right panel also shows the negative of the level

factor and the slope of the interest rates and the bottom left panel adds the commodity spot factor.
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Figure 6: Comparing models with and without imposing the zero lower bound on interest rates

The figure compares some results for the baseline model (solid lines) with those estimated imposing the zero

lower bound (dashed lines) on interest rates (ZLB).

1985 1990 1995 2000 2005 2010 2015

-40

-20

0

20

40

Spot premium

1985 1990 1995 2000 2005 2010 2015

-6

-4

-2

0

2

4

Yield curve slope factor δ2t

1985 1990 1995 2000 2005 2010 2015

-2

0

2

4

6

8

10

Shadow rate and short term rate

Baseline

Imposing ZLB

1985 1990 1995 2000 2005 2010 2015

-10

0

10

20

Hold to maturity an 18-months contract

1985 1990 1995 2000 2005 2010 2015

-30

-20

-10

0

10

Cost-of-carry level factor β1t

1985 1990 1995 2000 2005 2010 2015

-5

0

5

10

15

Yield curve level factor δ1t

34



Figure 7: Spot and term premium: a case study

The upper left panel displays the spot price (solid line) and all futures prices (dotted lines). The upper right

panel displays the spot and term premium during the peak and trough months of heating oil prices. The bottom

panels display the fitted and actual futures curves on the same dates.
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A Appendix: Data description

We use data on U.S. zero coupon bonds and commodities futures for the period Jan-1984

through Apr-2017. We use data on commodity futures prices published by the relevant

exchanges, and freely available from the web provider www.quandl.com. We gather data

on four energy commodities (gasoil, gasoline, heating oil, and natural gas) and three

agricultural commodities (corn, soybean, and wheat). Those commodities account for

more than 40% of the weight in the main commodity indexes.1 We use end-of-month

log settlement prices and consider contracts with maturities up to 18 months. Available

maturities have varied over time. For example, in the early part of our sample heating oil

contracts were available with maturities up to 12 months. Contracts with maturities up to

18 months in the future appeared in 1991. For agricultural commodities delivery occurs on

certain months of the year. There are five delivery months for corn and wheat, and seven

for soybean.

To reduce the problem of low contract liquidity, we do not use data for contracts in the

expiration month and contracts with a zero monthly return. We drop from our sample

the contracts closest to expiration and label a 1 month futures contract those that expire

in the month after the next month and likewise for the longer maturities. We impose this

convention for two reasons. First, delivery for contracts that are about to expire can be

made as early as six days after the last trading day. Second, futures contracts become very

illiquid a couple of weeks before expiration. We also exclude contracts for which there are

less than 100 trades within the month. This filter leads to the exclusion of 3 to 5 percent of

the data depending on the commodity.

For bond yields, we use Gürkaynak et al. (2007) estimate of the yield curve for maturities

of 3, 6, 12, 24, 36, 48, and 60 months. The dates are matched with those of the commodities

futures. To evaluate the model, we also use data on inventories (U.S. Ending Stock of

1Crude oil (WTI and Brent) typically accounts for more than 30% of the index. The rest is divided among
metals, soft commodities, and livestock.
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Distillate Fuel Oil) obtained from the U.S. Energy Information Administration.

B Proof of Proposition 1: Cost-of-carry process

We guess-and-verify that ct = ψmt0 + ψmt′1 Xt for some values ψmt0 and ψmt1 . Take an

arbitrary month mt = m̃. Using the guess and equations (5), (6), (12) into the pricing

condition (13) gives

exp(γ0 + γ
m̃′
1 ) = exp

(
−ρ0 − ρ

′
1Xt + γ0 −ψ

m̃+1
0 +

(
γm̃+1

1 −ψm̃+1
1

)′
(µ+ΘXt) −

1
2Λ
′
tΛt

)
× Et

[
exp

([
(γm̃+1

1 −ψm̃+1
1 )′Γ −Λt

]
ηt+1

)]
.

Solving the expectation,

Et

[
exp

([
(γm̃+1

1 −ψm̃+1
1 )′Γ −Λt

]
ηt+1

)]
= exp

(
(γm̃+1

1 −ψm̃+1
1 )′ Γ

′Γ
2 (γm̃+1

1 −ψm̃+1
1 ) − (γm̃+1

1 −ψm̃+1
1 )′ΓΛt +

1
2Λ
′Λt
)

Replacing this expression above, using Λt = λ0 + λ1Xt, and rearranging gives

γm̃′1 Xt =− ρ0 −ψ
m̃+1
0 + (γm̃+1

1 −ψm̃+1
1 )′(µ− Γλ0)

+ (γm̃+1
1 −ψm̃+1

1 )′ Γ
′Γ
2 (γm̃+1

1 −ψm̃+1
1 ) +

[
(γm̃+1

1 −ψm̃+1
1 )′(Θ− Γλ1) − ρ

′
1

]
Xt.

Matching coefficients gives the values of ψm̃+1
0 and ψm̃+1

1 displayed in Proposition 1.�

C Further empirical properties of commodity futures

Table 1 and Table 2 show tests of specification of the stochastic seasonal pattern for heating

oil and soybeans. In both cases, the data supports a specification of stochastic seasonality

with a single pair of seasonal factors, associated with the fundamental frequency.

2



Table 1: Heating oil. Number of seasonal factors
The stochastic seasonal component is driven by pairs of seasonal factors zst =∑6
j=1[ξjt cos(2πj

12 mt) + ξ
∗
jt sin(2πj

12 mt)]. We test restricted versions of the seasonality pro-
cess of the form zst =

∑J
j=1[ξjt cos(2πj

12 mt) + ξ
∗
jt sin(2πj

12 mt)], where J = 1, 2, .., 6 indicates the
number of seasonal factors (i.e. harmonics) included in the specification. Each column of
the table corresponds to a different specification of the seasonal component and τ stands
for maturity of the contract. For each specification we report the log likelihood value, the
Akaike (AIC) and Bayesian (BIC) information criteria. Bold numbers denote the minimum
values of the information criteria.

J = 1,σ2
1 6= σ

∗2
1 J = 1,σ2

1 = σ∗21 J = 2,σ2
j = σ

∗2
j J = 6,σ2

j = σ
∗2
j

1-month futures (τ = 1)
LogLik -1136.444 -1136.546 -1143.820 -1177.912
AIC 2288.888 2289.092 2307.641 2397.824
BIC 2320.820 2321.024 2347.555 2481.645

2-month futures (τ = 2)
LogLik -1112.152 -1112.232 -1116.865 -1152.498
AIC 2240.305 2240.465 2253.730 2346.996
BIC 2272.237 2272.396 2293.645 2430.817

3-month futures (τ = 3)
LogLik -1094.235 -1094.443 -1096.279 -1132.514
AIC 2204.470 2204.887 2212.558 2307.029
BIC 2236.402 2236.818 2252.472 2390.850

6-month futures (τ = 6)
LogLik -1025.031 -1025.134 -1033.368 -1070.923
AIC 2066.062 2066.269 2086.737 2183.847
BIC 2097.994 2098.201 2126.652 2267.667

9-month futures (τ = 9)
LogLik -917.410 -917.524 -920.994 -960.407
AIC 1850.820 1851.048 1861.988 1962.814
BIC 1882.752 1882.979 1901.902 2046.635

12-month futures (τ = 12)
LogLik -768.907 -769.729 -778.106 -818.339
AIC 1553.814 1555.458 1576.212 1678.679
BIC 1585.746 1587.389 1616.126 1762.500
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Table 2: Soybean. Number of seasonal factors
The stochastic seasonal component is driven by pairs of seasonal factors zst =∑6
j=1[ξjt cos(2πj

12 mt) + ξ
∗
jt sin(2πj

12 mt)]. We test restricted versions of the seasonality pro-
cess of the form zst =

∑J
j=1[ξjt cos(2πj

12 mt) + ξ
∗
jt sin(2πj

12 mt)], where J = 1, 2, .., 6 indicates the
number of seasonal factors (i.e. harmonics) included in the specification. Each column of
the table corresponds to a different specification of the seasonal component and τ stands
for maturity of the contract. For each specification we report the log likelihood value, the
Akaike (AIC) and Bayesian (BIC) information criteria. Bold numbers denote the minimum
values of the information criteria.

J = 1,σ2
1 6= σ

∗2
1 J = 1,σ2

1 = σ∗21 J = 2,σ2
j = σ

∗2
j J = 6,σ2

j = σ
∗2
j

1-month futures (τ = 1)
LogLik -694.330 -694.611 -697.740 -701.091
AIC 1404.660 1405.222 1415.479 1444.182
BIC 1436.591 1437.153 1455.394 1528.002

2-month futures (τ = 2)
LogLik -689.491 -689.491 -698.668 -702.782
AIC 1394.982 1394.982 1417.336 1447.564
BIC 1426.914 1426.914 1457.251 1531.385

3-month futures (τ = 3)
LogLik -668.562 -668.562 -676.283 -680.497
AIC 1353.124 1353.124 1372.567 1402.994
BIC 1385.056 1385.056 1412.481 1486.815

6-month futures (τ = 6)
LogLik -644.586 -644.586 -652.823 -656.847
AIC 1305.171 1305.171 1325.645 1355.694
BIC 1337.103 1337.103 1365.560 1439.514

9-month futures (τ = 9)
LogLik -612.616 -612.616 -622.010 -626.675
AIC 1241.232 1241.232 1264.019 1295.351
BIC 1273.164 1273.164 1303.934 1379.171

12-month futures (τ = 12)
LogLik -562.525 -562.820 -570.457 -574.430
AIC 1141.050 1141.639 1160.913 1190.860
BIC 1172.981 1173.571 1200.828 1274.681
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Figure 1 show estimated seasonal factors extracted using an univariate model for

each contract maturity in isolation. Clearly, the estimated seasonal factors depend on the

particular maturity used to estimate the model. In other words, extracting the seasonal

component from each futures contract in isolation does not generate a seasonal pattern

consistent across maturities.

Figure 1: Estimated seasonality in commodity futures

The figure shows the estimated seasonal component using univariate models for each contract
maturity in isolation. The estimated seasonal patterns are not consistent across contract maturities.
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D Model with deterministic seasonality

Table 3 reports the estimates of the affine model of futures prices imposing deterministic

seasonality using data on heating oil futures prices from January 1984 to April 2017.

Table 3: Estimates of the model with deterministic seasonality
The table shows the estimates of the model using futures prices on heating oil and imposing
deterministic seasonality. The sample period is from January 1984 to April 2017.

Parameters of the VAR(1) process for the yield, the spot and cost-of-carry factors
µδ(×1000) Θδδ Γδδ(×1000)

0.063
(0.048)
−0.0252
(0.0540)
−0.0503
(0.1095)





0.981 0.001 0.020
(0.012) (0.018) (0.010)
−0.0001 0.964 0.019
(0.013) (0.020) (0.014)
0.014 0.029 0.925
(0.024) (0.025) (0.026)





0.299 0 0
(0.009)
−0.252 0.214 0
(0.013) (0.007)
−0.142 −0.033 0.627
(0.025) (0.036) (0.020)


µβ(×100) Θββ Γββ(×100)

0.753
(0.769)
−0.369
(0.071)
0.104
(0.135)
1.075
(0.289)





0.983 1.483 −0.004 −0.115
(0.010) (0.817) (0.197) (0.208)
0.001 0.389 0.246 −0.065

(0.0007) (0.065) (0.019) (0.022)
0.0005 0.078 1.149 0.230
(0.0015) (0.141) (0.037) (0.032)
−0.001 1.855 −1.122 0.950
(0.0027) (0.264) (0.070) (0.083)





9.547 0 0 0
(0.039)
−0.108 −0.623 0 0
(0.044) (0.055)
−0.691 −0.372 1.225 0
(0.091) (0.132) (0.083)
0.131 2.488 −1.029 0.658
(0.205) (0.230) (0.099) (0.031)


Parameters of seasonal process
ξ0 = 0.0263 (0.0013) ξ∗0 = 0.0119 (0.0014)

Other parameters and log-likelihood
ζ1 = 0.053 (0.0006) ζ2 = 0.1967 (0.00557) ω = 0.0065 (0.0062) Log-likelihood = 49004.145
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E Estimation using data on soybean futures

In this section we show the estimation of the model using data on soybean futures. The

sample period is from January 1984 to October 2016. Table 4 displays the estimates of the

model with deterministic seasonality. Figure 2 displays the estimated commodity factors

while Figure 3 shows actual and fitted log-futures curves on selected dates, including

the estimates of the deseasonalized futures curve. Finally, Figure 4 shows the 1-month

expected holding return for futures contracts that mature in 1 month and 18 months ahead

while Figure 5 displays the expected risk premia of holding a 18 months futures contracts

during 1 and 18 months. The interpretation of these plots is analogous to that discussed in

the paper for the case of heating oil.
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Table 4: Soybean: Estimates of the model with stochastic seasonality
The table shows the estimates of the baseline model using futures prices on soybean. The
sample period is from January 1984 to October 2016.

Parameters of the VAR(1) process for the yield, the spot and cost-of-carry factors
µδ(×1000) Θδδ Γδδ(×1000)

0.118
(0.054)
−0.0015
(0.0655)
−0.1327
(0.118)




0.967 −0.002 0.027
(0.012) (0.021) (0.012)
−0.007 0.947 0.022
(0.013) (0.021) (0.015)
0.0396 0.068 0.898
(0.024) (0.032) (0.026)




0.315 0 0
(0.011)
−0.268 0.218 0
(0.015) (0.008)
−0.179 −0.030 0.633
(0.034) (0.035) (0.022)


µβ(×100) Θββ Γββ(×100)

−0.0131
(4.62)
−0.0815
(0.344)
−0.665
(8.79)
0.786
(6.11)





1.000 −0.028 0.635 0.015
(0.007) (1.068) (0.151) (0.213)
0.000 0.927 0.008 −0.01

(0.0005) (0.040) (0.005) (0.009)
−0.001 −1.351 0.786 0.654
(0.0133) (0.851) (0.148) (0.171)

0.000 1.303 −0.220 0.437
(0.0092) (0.529) (0.106) (0.114)





7.0916 0 0 0
(0.042)
−0.197 0.159 0 0
(0.021) (0.022)
0.145 −0.023 3.986 0
(0.178) (0.152) (0.757)
0.001 −0.212 −3.248 0.731
(0.19) (0.312) (0.536) (0.222)


Volatility of seasonal process
σξ = 0.0064 (0.0007) σξ∗ = 0.0003 (0.0002)

Other parameters and log-likelihood
ζ1 = 0.053 (0.0007) ζ2 = 0.5435 (0.0386) ω = 0.0195 (0.0059) Log-likelihood = 37948.583
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Figure 2: Soybean: Spot, cost-of-carry, and seasonal factors
Estimates of commodity factors of the baseline model using data on soybean futures.
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Figure 3: Soybean: Fitted log-futures curves

The figure shows fitted log-futures curves, deseasonalized fitted log-futures curve, and actual log-futures
prices on selected dates.
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Figure 4: Soybean: Expected 1-month holding futures returns

This figures shows the expected 1-month holding returns of a 1-month and a 18-months futures contract.
Returns are expressed in percentage points and on an annualized basis. The upper left panel displays
the total expected return. The other panels display the contribution of the different factors. The upper
right panel also shows the negative of the level factor of the interest rates and the bottom left panel
adds the level of the cost-of-carry factor.
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Figure 5: Soybean: Expected holding futures returns of an 18-month futures contract

Expected 1-month and 18-months holding returns of an 18-months futures contract. Returns are
expressed in percentage points and on an annualized basis. The upper left panel displays the total
expected return. The other panels display the contribution of the different factors. The upper right
panel also shows the negative of the level factor and the slope of the interest rates and the bottom left
panel adds the commodity spot factor.
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F The zero lower bound on interest rates

This section describes the model that we use to estimate futures prices and bond yields

respecting the zero lower bound constraint on interest rates. The model is similar to that

described in Section 3 of the paper but replacing the interest rate process rt = ρ0 + ρ1Xt by

an affine shadow interest rate of the form

zt = ρ0 + ρ
′
1Xt. (1)

The short term interest rate is is given by

rt = max(zt, r). (2)

The evolution of the state variables under the physical and risk neutral measure are,

Xt+1 = µ+ΘXt + Γηt+1, (3)

Xt+1 = µQ +ΘQXt + Γη
Q
t+1, (4)

where ηt+1 ∼ N(0, I), ηQt+1 ∼ N(0, I), and Γ is lower triangular.

This modification renders the model non-linear. While we could approximate the

solution using numerical techniques, estimating the parameters becomes challenging

because each evaluation of the likelihood function requires numerically solving the model

and performing an non-linear filtering procedure. Instead, we adapt the methodology

proposed by Wu and Xia (2016).

To find bond prices it is convenient to compute forecasts of the state variables and the

shadow rate under both, the physical and risk neutral measure. The conditional expectation

13



and conditional variance of Xt+j under the physical measure are given by

Xt+n =

n−1∑
j=0

Θj

µ+ΘnXt + n−1∑
j=0

ΘjΓηt+n−j.

Therefore,

Et (Xt+n|Xt) =

n−1∑
j=0

Θj

µ+ΘnXt
Vart (Xt+n|Xt) =

n−1∑
j=0

ΘjΓΓ ′Θ′j

Under the risk-neutral measure the moments are

E
Q
t (Xt+n|Xt) =

n−1∑
j=0

(
ΘQ
)jµQ +

(
ΘQ
)n
Xt

Var
Q
t (Xt+n|Xt) =

n−1∑
j=0

(
ΘQ
)j
ΓΓ ′
(
ΘQ′

)j

Therefore, the conditional mean and variance of the shadow rate zt+n under the risk

neutral measure are

E
Q
t [zt+n|Xt] =ρ0 + ρ

′
1E
Q
t [Xt+n|Xt]

=ρ0 + ρ
′
1

n−1∑
j=0

(
ΘQ
)jµQ +

(
ΘQ
)n
Xt


=ρ0 + ρ

′
1

n−1∑
j=0

(
ΘQ
)jµQ + ρ′1

(
ΘQ
)n
Xt

14



(
σQn

)2
=VarQt (zt+n|Xt)

=VarQt
(
ρ0 + ρ

′
1Xt+n|Xt

)
=ρ′1Var

Q
t (Xt+n|Xt) ρ1

=ρ′1

n−1∑
j=0

ΘQjΓΓ ′ΘQ′j

 ρ1.

We will use these moments later. Let’s define some notation first,

ān =ρ0 + ρ
′
1

n−1∑
j=0

(
ΘQ
)jµQ

ãn =ān −
1
2
ρ′1

n−1∑
j=0

(
ΘQ
)j ΓΓ ′

n−1∑
j=0

(
ΘQ
)j′ ρ1

b̃′n =ρ′1

(
ΘQ
)n

(
σQn

)2
=ρ′1

n−1∑
j=0

(
ΘQ
)j
ΓΓ ′
(
ΘQ′

)j ρ1

so that

E
Q
t [zt+n|Xt] =ān + b̃

′
nXt

Var
Q
t (zt+n|Xt) =

(
σQn

)2
.

and
1
2

VarQt
 n∑
j=0

zt+j

− VarQt

n−1∑
j=0

zt+j

 = ān − ãn.

Pricing government bonds imposing the zero lower bound on interest rates

The price of a zero coupon bond satisfies

P
(n)
t = EQt

(
e−

∑n−1
j=0 rt+j

)
= e−rtEQt

(
e−

∑n−1
j=1 rt+j

)
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so that

p
(n)
t = −rt + logEQt

(
e−

∑n−1
j=1 rt+j

)
.

Therefore, the (log) forward interest rate f
(n,n+1)
t is given by

f
(n,n+1)
t =p

(n)
t − p

(n+1)
t

=− rt + log
(
E
Q
t e

−
∑n−1
j=1 rt+j

)
−
(
−rt + log

(
E
Q
t e

−
∑n
j=1 rt+j

))
= log

(
E
Q
t e

−
∑n−1
j=1 rt+j

)
− log

(
E
Q
t e

−
∑n
j=1 rt+j

)
.

Now use the approximation (true for log normal variables) logEez = E (z) + 1
2Var (z),

f
(n,n+1)
t ≈

−EQt

n−1∑
j=1

rt+j +
1
2
Var

Q
t

n−1∑
j=1

rt+j

−

−EQt

n∑
j=1

rt+j +
1
2
Var

Q
t

 n∑
j=1

rt+j


=EQt

n∑
j=1

rt+j − E
Q
t

n−1∑
j=1

rt+j +
1
2
Var

Q
t

n−1∑
j=1

rt+j

−
1
2
Var

Q
t

 n∑
j=1

rt+j


=EQt [rt+n] +

1
2

VarQt
n−1∑
j=1

rt+j

− VarQt

 n∑
j=1

rt+j

 .

This expression is exact in a gaussian term structure model. It is an approximation in the

model that imposes the zero lower bound on interest rates. We need to solve for these

conditional moments. To compute the moments we use properties of truncated normal

distribution and an approximation proposed.

E
Q
t [rt+n] =E

Q
t [max (r, zt+n)]

=ProbQt (zt+n < r)× r+ Pr (zt+n > r)× EQt [zt+n|zt+n > r]

=r+ σQn

[(
ān + b̃

′
nXt − r

σ
Q
n

)
Φ

(
ān + b̃

′
nXt − r

σ
Q
n

)
+φ

(
ān + b̃

′
nXt − r

σ
Q
n

)]
=r+ σQng

(
ān + b̃

′
nXt − r

σ
Q
n

)
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This is equation (A2) in Wu and Xia (2016). Here Φ and φ are the cumulative distribution

and density of the standard normal and the function g (x) = xΦ (x) +φ (x) for any x.

Wu and Xia (2016) also use the approximation (see page 283)

1
2

VarQt
n−1∑
j=1

rt+j

− VarQt

 n∑
j=1

rt+j

 ≈ Φ( ān + b̃′nXt − r
σ
Q
n

)
(ān − ãn) .

From here, we conclude that the forward interest rate is

f
(n,n+1)
t ≈ r+ σQng

(
ān + b̃

′
nXt − r

σ
Q
n

)
+Φ

(
ān + b̃

′
nXt − r

σ
Q
n

)
× (ān − ãn)

Using a Taylor expansion, Wu and Xia (2016) conclude

f
(n,n+1)
t ≈ r+ σQng

(
ãn + b̃

′
nXt − r

σ
Q
n

)
. (5)

In the model without the zero lower bound, the forward rate is f(n,n+1)
t = ãn + b̃

′
nXt. Note,

also that the function g(x) is non-negative, increasing, approaches zero as x decreases, and

approaches g(x) = x as x increases. Moreover,

g′ (x) = Φ (x) + xφ (x) +φ′ (x)

but using φ (x) = e−x
2/2

√
2π

so that φ′ (x) = e−x
2/2

√
2π

(−x) = −xφ (x), it follows that xφ (x) +

φ′ (x) = 0 for all x. Therefore,

g′ (x) = Φ (x) .

To estimate the model, Wu and Xia (2016) use as observation equation the forward

interest rates. We find it convenient instead to estimate the model using bond yield. Bond
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yields and interest rates are related by possible to use actual yields, using the relation

y
(τ)
t =

1
τ

τ−1∑
j=0

f
(j,j+1)
t

so that

y
(τ)
t = r+

1
τ

τ∑
j=0

σ
Q
j g

(
ãj + b̃

′
jXt − r

σ
Q
j

)
. (6)

That is, the yield is a non-linear function of the factors Xt, which we can write succinctly

as y(n)t = Y(n) (Xt).

With this notation, the state-space model is given by

Xt+1 = µ+ΘXt + Γηt+1

y
(τy)
t = Y(τy)(Xt) + ε

(τy)
yt

f
(τf)
t = β0t + τf

(
Y(τf)(Xt) + ũ

(τf)
t

)
+ e−ωτ

[
ξt cos(2π

12mt+τ) + ξ
∗
t sin(2π

12mt+τ)
]
+ ε

(τf)
ft , (7)

where ε(τy)yt and ε(τf)ft are measurement errors, τy ∈ Ty, τf ∈ Tf, and ũ(τf)t is given by

ũ
(τ)
t = gmtτ +β1t +

(
1 − e−ζ2τ

ζ2τ

)
β2t +

(
1 − e−ζ2τ

ζ2τ
− e−ζ2τ

)
β3t.

F.1 The non-linear state space system and the Extended Kalman Filter

To estimate the parameters of the model, we use the the extended Kalman filter to evaluate

the likelihood function. The only non-linear component of the previous system is the

mapping from Xt to bond yields, Y(τy).

We now perform a first order Taylor expansion of Y(τy) around an arbitrary point X̃t,

Y(τ)(Xt) ≈ Y(τ)(X̃t) +∇Y(τ)(X̃t)
(
Xt − X̃t

)
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The gradient is

∇Y(τ)(X̃t) =

[
∂Y(τ)(X̃t)

∂X1,t
,
∂Y(τ)(X̃t)

∂X2,t
, ...,

∂Y(τ)(X̃t)

∂Xn,t

]′

where n is the dimension of Xt. Also, for k = 1, 2, ...,m,

∂Y(τ)(X̃t)

∂Xk,t
=

1
τ

τ−1∑
j=0

σ
Q
j g
′

(
ãj + b̃

′
jXt − r

σ
Q
j

)
b̃j,k

σ
Q
j

=
1
τ

τ−1∑
j=0

g′

(
ãj + ã

′
jXt − r

σ
Q
j

)
b̃j,k

=
1
τ

τ−1∑
j=0

Φ

(
ãj + b̃

′
jXt − r

σ
Q
j

)
b̃j,k

where b̃j,k is element k of the vector bj and g′(x) = Φ(x). Therefore,

∇Y(τ)
(
X̃t
)
=

[
∂Y(τ)

(
X̃t
)

∂X1,t
,
∂Y(τ)

(
X̃t
)

∂X2,t
, ...,

∂Y(τ)
(
X̃t
)

∂Xn,t

]

=
1
τ

τ−1∑
j=0

Φ

(
ãj + b̃

′
jXt − r

σ
Q
j

)[
b̃j,1, b̃j,2, ..., b̃j,m

]
=

1
τ

τ−1∑
j=0

Φ

(
aj + b

′
jXt − r

σ
Q
j

)
︸ ︷︷ ︸

1×1

× b′j︸︷︷︸
1×m

because
∑τ−1
j=0 Φ

(
ãj+b̃

′
jXt−r

σ
Q
j

)
is the same for all partial derivatives.

Now suppose that we stack all the yield observations into a vector

yt = Y(Xt) + εyt

where yt =
[
y
(τ1)
t ,y(τ2)

t , ...,y(τm)
t

]′
, Y(Xt) =

[
Y(τ1) (Xt) , Y(τ2) (Xt) , ..., Y(τm) (Xt)

]′
and
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εyt =
[
ε
(τ1)
t , ε(τ2)

t , ..., ε(τm)
t

]′
. Then the Taylor approximation around Xt = X̃t is

yt ≈ Y
(
X̃t
)
+ JY

(
X̃t
) (
Xt − X̃t

)
and JY

(
X̃t
)

is the Jacobian matrix of partial derivatives of Y(Xt),

JY
(
X̃t
)
=



∂Y(τ1)(X̃t)
∂X1,t

∂Y(τ1)(X̃t)
∂X2,t

· · · ∂Y(τ1)(X̃t)
∂Xn,t

∂Y(τ2)(X̃t)
∂X1,t

∂Y(τ2)(X̃t)
∂X2,t

∂Y(τ2)(X̃t)
∂Xn,t

... . . . ...
∂Y(τm)(X̃t)

∂X1,t

∂Y(τm)(X̃t)
∂X2,t

· · · ∂Y(τm)(X̃t)
∂Xn,t


.

But using that ∇Y(τ)
(
X̃t
)
= 1

τ

∑τ
j=0Φ

(
ãj+b̃

′
jXt−r

σ
Q
j

)
b̃′j we have

JY
(
X̃t
)
=



1
τ1

∑τ1−1
j=0 Φ

(
ãj+b̃

′
jXt−r

σ
Q
j

)
b̃′j

1
τ2

∑τ2−1
j=0 Φ

(
ãj+b̃

′
jXt−r

σ
Q
j

)
b̃′j

...

1
τm

∑τm−1
j=0 Φ

(
ãj+b̃

′
jXt−r

σ
Q
j

)
b̃′j


.

Let us now stack all yield and commodity futures observations into a vector Zt = [y′t, f
′
t]
′

and measurement errors as εt = [ε′yt, ε
′
ft]
′. Then, write the state space system as

Xt+1 = µ+ΘXt + Γηt+1 (8)

Zt = H(Xt) + εt

where function H(Xt) is appropriately defined using the state-space system (7).

The extended Kalman Filter Consider the state space model 8. Let X̂t|s = E [Xt|Ys] where

Zs = [Z1,Z2, ...,Zs] is the history of observations up to time s. The extended Kalman filter
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is constructed using the following algorithm

Suppose that we have computed the filtered estimates at time t,

X̂t|t = E
[
Xt|Z

t
]

, P̂t|t = E
(
(Xt − X̂t|t)(Xt − X̂t|t)

′|Zt
)

.

Prediction step: Our objective is to compute the X̂t+1|t, P̂t+1|t, and the prediction of the

measurement equation. Using the state equation

E
[
Xt+1|Z

t
]
=µ+ΘE

[
Xt|Z

t
]

X̂t+1|t =µ+ΘX̂t|t

The covariance matrix of this prediction is

E
((
Xt+1 − X̂t+1|t

) (
Xt+1 − X̂t+1|t

)′
|Zt
)
=E
((
Θ
(
Xt − X̂t|t

)
+ Γηt+1

) (
Θ
(
Xt − X̂t|t

)
+ Γηt+1

)′
|Zt
)

=ΘE
((
Xt − X̂t|t

) (
Xt − X̂t|t

)′
|Zt
)
Θ′ + ΓE

(
ηt+1η

′
t+1|Z

t
)
Γ ′

=ΘP̂′t|tΘ
′ + ΓΓ ′

Thus,

P̂t+1|t = ΘP̂t|tΘ
′ + ΓΓ ′.

The prediction of the observation equation is

E
[
Zt+1|Z

t
]
=E
[
H(Xt+1) + εt+1|Z

t
]

=E
[
H(Xt+1) |Z

t
]

Now compute a first order Taylor approximation of H(Xt+1) around the prediction X̂t+1|t,

H(Xt+1) ≈ H(X̂t+1|t) + JH(X̂t+1|t)(Xt+1 − X̂t+1|t)
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where H(X̂t+1|t) is the Jacobian matrix of H(Xt) evaluated at X̂t+1|t. For the non-linear

component of the Jacobian, we use the algebra discussed above. Using this approximation

gives

E
[
H(Xt+1) |Z

t
]
≈E
[
H(X̂t+1|t) + JH(X̂t+1|t)(Xt+1 − X̂t+1|t)|Z

t
]

=H(X̂t+1|t) + JH(X̂t+1|t)(X̂t+1|t − X̂t+1|t)

=H(X̂t+1|t)

so that

Ẑt+1|t = H(X̂t+1|t).

The innovation is

Zt+1 − Ẑt+1|t = H(Xt+1) −H(X̂t+1|t) + εt+1

Hence, the covariance matrix of the innovation is

Ωt+1|t =E
[
(Zt+1 − Ẑt+1|t)(Zt+1 − Ẑt+1|t)

′|Zt
]

=E
[
(H(Xt+1) −H(X̂t+1|t)(H(Xt+1) −H(X̂t+1|t)

′|Zt
]
+ E

[
εt+1ε

′
t+1
]

=E
[
(H(Xt+1) −H(X̂t+1|t)(H(Xt+1) −H(X̂t+1|t)

′|Zt
]
+ R

where R = E
[
εt+1ε

′
t+1
]
. Finally, using the Taylor expansion of H(Xt+1) around X̂t+1|t,

H(Xt+1) −H(X̂t+1|t) ≈ JH(X̂t+1|t)(Xt+1 − X̂t+1|t)

Therefore

E
[
(H(Xt+1) −H(X̂t+1|t))H(Xt+1) −H(X̂t+1|t)

′|Zt
]
≈ JH(X̂t+1|t)P̂t+1|tJH(X̂t+1|t)

′
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Hence, the covariance matrix of the innovation is

Ωt+1|t = JH(X̂t+1|t)P̂t+1|tJH(X̂t+1|t)
′ + R.

Updating step: Given predictive estimates X̂t+1|t and P̂t+1|t, our objective is to find the

updated filtered estimates X̂t+1|t+1 and P̂t+1|t+1. Using the formula for a recursive projection

X̂t+1|t+1 = X̂t+1|t + proj(Xt+1 − X̂t+1|t|Zt+1 −Zt+1|t)

where proj(Xt+1 − X̂t+1|t|Zt+1 − Zt+1|t) is the projection of the prediction error of the

state variables Xt+1 − X̂t+1|t on the prediction error (innovation) of the observed variables

Zt+1 −Zt+1|t. Since the projection is a linear operator,

proj(Xt+1 − X̂t+1|t|Zt+1 −Zt+1|t) = Kt
(
Zt+1 −Zt+1|t

)
where the Kalman Gain Kt is

Kt = P̂t+1|tJH(X̂t+1|t)
′Ω−1
t+1|t.

The Jacobian JH(X̂t+1|t) and the innovation covariance matrix Ωt+1|t depend on the state

prediction X̂t+1|t. Therefore, the updating step of the state equation is

X̂t+1|t+1 = X̂t+1|t +Kt
(
Zt+1 − Ẑt+1|t

)
The covariance matrix of the updating step is

P̂t+1|t+1 =P̂t+1|t −KtΩt+1|tK
′
t

=
[
I−KtJH(X̂t+1|t)

]
P̂t+1|t.
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Summary of extended Kalman Filter.

Given filtered estimates X̂t|t, P̂t|t we compute

Prediction step:

X̂t+1|t =µ+ΘX̂t|t

P̂t+1|t =ΘP̂t|tΘ
′ + ΓΓ ′

Ẑt+1|t =H(X̂t+1|t)

Ωt+1|t =JH(X̂t+1|t)P̂t+1|tJH(X̂t+1|t)
′ + R.

Updating step:

Kt =P̂t+1|tJH(X̂t+1|t)
′Ω−1
t+1|t.

X̂t+1|t+1 =X̂t+1|t +Kt
(
Zt+1 − Ẑt+1|t

)
P̂t+1|t+1 =

[
I−KtJH(X̂t+1|t)

]
P̂t+1|t

Once we compute the innovations Zt+1 − Ẑt+1|t and covariance matrixΩt+1|t we evaluate

the log-likelihood function as usual.

F.2 Estimates of the model that satisfies the zero lower bound.

To estimate the model we impose the Nelson and Siegel representation of the parameters

of the risk neutral measure ΘQ and µQ displayed in Proposition 2 of the paper. Table 5

displays the estimates and Figure 6 shows the commodity factors of the baseline model

and the model that imposes the zero lower bound.
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Table 5: Estimates of the model that imposes the zero lower bound on interest rates
The table shows the estimates of the model using futures prices on heating oil and imposing
the zero lower bound on interest rates. The sample period is from January 1983 to April
2017.

Parameters of the VAR(1) process for the yield, the spot and cost-of-carry factors
µδ(×1000) Θδδ Γδδ(×1000)

0.284
(0.017)
−0.013
(0.026)
0.051
(0.040)





0.935 0.004 0.028
(0.004) (0.009) (0.004)
−0.007 0.941 0.048
(0.006) (0.011) (0.006)
−0.006 0.044 0.935
(0.009) (0.016) (0.008)





0.332 0 0
(0.008)
−0.259 0.254 0
(0.008) (0.006)
−0.120 −0.035 0.669
(0.016) (0.019) (0.013)


µβ(×100) Θββ Γββ(×100)

−0.0134
(0.9908)
−0.0654
(0.0229)
−0.01864
(0.4807)
0.5343
(0.3542)





0.9909 0.2165 0.9252 −0.0093
(0.0055) (0.1893) (0.0937) (0.129)
0.0004 0.8899 0.0153 0.020
(0.0001) (0.096) (0.002) (0.002)
0.0001 −0.5833 0.8461 0.5303
(0.0021) (0.1025) (0.0252) (0.038)
0.0005 1.006 −0.2248 0.3625
(0.0013) (0.1036) (0.0259) (0.036)





9.549 0 0 0
(0.195)
−0.134 0.127 0 0
(0.004) (0.004)
−0.981 −0.005 2.743 0
(0.047) (0.045) (0.134)
−0.088 −0.290 −1.88 1.062
(0.009) (0.051) (0.105) (0.027)


Volatility of seasonal process
σξ = 0.0029 (0.0001) σξ∗ = 0.0016 (0.0001)

Other parameters and log-likelihood
ζ1 = 0.056 (0.0003) ζ2 = 0.396 (0.008) ω = 0.0096 (0.0007) Log-likelihood = 42185.81
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Figure 6: Spot, cost-of-carry, and seasonal factors
Estimates of commodity factors of the baseline model and of the model that imposes
the zero lower bound constaint on interest rates.
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