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Summary 
Chapter 1 outlines the potential of coordination and organometallic complexes in 

antimicrobial chemotherapy. Various historical examples are reviewed and their 

advantages and disadvantages discussed. Recent developments are then described, 

which have allowed the design of complexes with well-defined 3-dimensional 

structures, but in which the metal acts as a structural template rather than a reaction 

centre. Finally, consideration is given to the prospects for such compounds making a 

substantial contribution to the currently rather uncertain future of antimicrobial 

chemotherapy. 

Chapter 2 describes the discovery, synthesis and characterisation of new Class Ia 

(exo-pyridine) flexicates with varying ligand functionality, as well as some of the 

underlying challenges. The helicating effect of the linker connecting these bimetallic 

structures is subsequently explored, by investigating their structure, physical 

properties and aqueous stability.  

Chapter 3 focuses on the screening of water-soluble Class Ia flexicates for 

antimicrobial activity against various bacteria, allowing the establishment of lead 

compounds against Gram-negative bacteria. Various assays are then used in order to 

make further preclinical evaluations of the lead compounds and/or better understand 

the nature of the observed antimicrobial activity. For example, eukaryote toxicity 

and effect upon membrane integrity are assessed. 

Chapter 4 explores the use of tandem omics techniques (genomics, transcriptomics 

and proteomics) as means to develop credible hypotheses regarding the mechanism 

behind the potent activity of the lead compound against a pathogenic E. coli strain. 

The initial study describes the selection and characterisation of E. coli mutants 
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Chapter 6 details the experimental procedures used to carry out the work in this 

thesis.  

Appendix contains tables of crystallographic data 
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Chapter 1 

Antimicrobial Metallodrugs 

1.1 Introduction   

The development of antibiotics in the early 20th century revolutionised the field of 

medicine, preventing countless deaths from diseases caused by microbial pathogens. 

In the early 21st century, issues such as immunodeficiency – increasingly common in 

the age of HIV/AIDS and for patients undergoing cancer chemotherapy – have 

boosted the demand for agents to combat opportunistic infections.1, 2 Our ability to 

respond to such challenges is however threatened by the rise of antimicrobial 

resistance (AMR), creating an extensive problem for the medical establishment,3-7 

with infection by drug-resistant pathogens now a prominent and growing cause of 

global mortality.8   

 

1.1.1 Antimicrobial resistance and the case for metallo-antimicrobials  

Whilst the genetic changes required for bacterial resistance are substantial, rapid cell 

division at human body temperature (~20 min for Escherichia coli) and the vast 

number of bacteria involved in infections means that these changes occur often. 

DNA replication produces on average 1 error in every 107 bases9, 10 and in a typical 

bacterial genome of ~3 × 106 base pairs , this is equivalent to approximately 0.3 

errors per generation.10 Although only a few resistant mutations are produced, those 

mutants survive and flourish where other drug-susceptible bacteria die. This rapid 

adaptation ensures that antibiotic-resistant strains often appear soon after clinical use 

of a drug,10-12 Methicillin-resistant Staphylococcus aureus (MRSA), multidrug-
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resistant Mycobacterium tuberculosis (MDR-TB) and fluoroquinolone-resistant 

Pseudomonas aeruginosa (FQRPA) are much-publicised examples.8, 13, 14  

While some of the mechanisms by which microbes resist drug action are more 

generalised, many depend on specific molecular recognition of the active 

antimicrobial15-19 (Figure 1.1). For example, drug-deactivating enzymes produced by 

microbes (e.g. β-lactamases) commonly provide resistance to natural product or 

closely related, ‘semi-synthetic’ agents which contain structures and chemical motifs 

familiar to biology.20 In contrast, such enzymes are not evolved and have not been 

found for ‘purely synthetic’ antimicrobials, leading to the argument that the ideal 

compound might be produced by rational design rather than by the modification of a 

natural product21, 22 or indeed by exploratory phenotypic screening (vide infra).  

 

Figure 1.1: Routes of antimicrobial resistance [AMR]:  (a) demonstrates a simple antimicrobial mode of 
action; (b) enzymatic inactivation of the antimicrobial; (c) target overproduction; (d) changes to cellular 
permeability; (e) a pathway blocked by the drug is circumvented by the creation or use of an alternative 
pathway; (f) target modification/mutation; (g) efflux pumping; (h) a surface-bound bacterium forms an 
impermeable biofilm. 
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Transition metal complexes, representing in many cases completely anthropogenic 

chemistry, thus emerge as an alternative source of chemotherapeutic antimicrobial 

agents.23, 24 They offer structural diversity not available to organic chemistry alone, 

alongside a range of ligand exchange kinetics, redox activities, and tunable 

electrostatic topologies.25 However, synthetic transitional metal complexes, e.g. 

simple tris-chelate complexes used by Dwyer (vide infra), have traditionally offered 

these features at the cost of a lack of functional complexity in comparison to 

biomolecules and synthetic organic compounds. Also, while the unique properties of 

metal complexes create new opportunities for interactions with biological machinery, 

possibly leading to new modes-of-action, they also present new questions in respect 

of biological compatibility and transport. Such considerations will be crucial design 

of synthetic metallodrugs, and are briefly addressed here. 

 

1.1.2. Metallodrugs and the bacterial cell envelope  

Before a complex may access an endocellular target it is required to somehow cross 

the bacterial cell envelope, which provides defense against chemical and physical 

stresses from the environment. This barrier may prove to be a considerable challenge 

to synthetic chemotherapeutics.26 This brief account of the issues facing 

metallodrugs in respect of cellular entry follows the prevailing assumption that 

passive diffusion is the principal route of ingress, although there is a highly credible 

argument for a carrier-mediated view of drug uptake i.e. that drugs predominantly 

enter cells via promiscuous proteinaceous carriers.27-29 

Pathogenic bacteria are commonly classified as Gram-positive or -negative 

according to the response of the outer surface of the cell to the Gram test, developed 
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in 1884.30 Gram-positive bacteria such as Staphylococcus, Streptococcus and 

Bacillus stain purple on exposure to crystal violet (hexamethyl pararosaniline 

chloride).31 They have a substantial layer of peptidoglycan (murein); a 3D lattice 

structure formed from a sugar polymer, crosslinked via oligopeptide side-chains 

(Figure 1.2). The exterior is decorated with teichoic acids – polymers of e.g. glycerol 

phosphate and carbohydrates – whose function is to bind metal cations, providing 

rigidity. Biosynthesis of peptidoglycan is unique to bacteria, and this process is thus 

an important antibacterial target (e.g. by the β-lactams).32 Gram-negative bacteria 

such as Escherichia, Yersinia and Pseudomonas are enveloped by both inner and 

outer membranes separated by a periplasm containing relatively little 

peptidoglycan;31 they stain pink with the application of Gram staining assays. The 

outer membrane consists of phospholipids and lipopolysaccharides (LPSs), which 

are found on the cell surface, directed outward. LPSs are a unique feature to these 

bacteria, their amphiphillic, negatively charged nature allows them to confer a 

negatively charged layer to the outer cell membrane,33 which is stabilised using 

divalent cations. The double plasma membrane studded with LPSs in Gram-negative 

species makes them a problematic target for many drug molecules. Before a complex 

may access an endocellular target it is required to somehow cross the bacterial cell 

envelope, which provides defense against chemical and physical stresses from the 

environment. This barrier may prove to be a considerable challenge to synthetic 

chemotherapeutics.26  

The lipophilicity of a complex is taken as a good measure of its ability to pass into 

the cell by diffusion, and in some cases increased lipophilicity correlates with 

antimicrobial potency (vide infra). The standard method of evaluating the 

lipophilicity of a molecule is by measuring the partition between octanol and water 
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i.e. log(P), for example by using the “shake-flask” method.34 This criterion is part of 

“Lipinski’s rule of five” (see below). Ideal lipophilicity for antimicrobial activity lies 

within a target, organism-dependent range, high enough to be able to cross the cell 

membrane, but low enough to be sufficiently soluble in an aqueous medium (i.e. 

amphiphilic).35 Advantageously for coordination complexes, the combination of 

metals centres that are usually charged (hydrophilic) and lipophilic organic ligands 

may give rise to systems of amphipathic topography. This would imply their 

hydrophobicity could be optimised in this respect. Relating changes in structure, 

geometry and physical properties of a complex to their influence upon biological 

activity may lead to the development of structure-activity relationships or 

quantitative structure-activity relationships (SARs/QSARs); a common exercise in 

drug design and development.36  

 

 

Figure 1.2: The bacterial cell wall: (a) The Gram-positive envelope. (b) The Gram-negative envelope. In 
Gram-positive bacteria, the lipidic plasma membrane with embedded proteins is covered by a 
multilayered peptidoglycan shell decorated with polysaccharides, teichoic acids and proteins. In Gram-
negative bacteria, a thin peptidoglycan layer surrounds the plasma membrane and is covered by an 
asymmetrical outer membrane containing lipopolysaccharides, which lies on the peptidoglycan layer. 
Reprinted from Micron, Vol 48 (12), Tripathi P., Beaussart A., Andre G., Rolain T., Lebeer S., Vanderleyden 
J., Hols P., and Dufrêne Y. F., Towards a nanoscale view of lactic acid bacteria, p. 1323–1330, Copyright 
2012, with permission from Elsevier.37 

In more extreme instances of amphiphilicity, metal complexes may, like detergents, 

be able to destroy the integrity of the lipid bilayer of the cell wall and thus 
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compromise the bacterium.38 This is not thought of as a viable antibacterial route 

however, as any untargeted mechanism generally compromising the cell wall is 

likely to also severely damage eukaryotic cell membranes, leading to low selectivity 

and unacceptable toxicity towards humans. The high positive charge on some metal 

complexes may naturally lead to surfactancy in this context, and this mechanism 

needs to be excluded via standard tests such as red blood cell lysis assays.39 

 

1.1.3 Lipinski’s rule of five and other criteria  

It is common practice to assess the orally active “drug-likeness” of a molecule 

according to Lipinski’s rule of five: this places a limit on the acceptable number of 

hydrogen bond donors and acceptors (5 and 10 respectively), a molecular weight 

<500 Daltons and a log(P) value (water-octanol partition coefficient) no greater than 

5, with others later refining this to a -0.4 to +5.6 range from observations using large 

drug databases.40 Suitable candidates will break at most one criterion.  

These guidelines were developed from observation of the properties of successful 

drug molecules of the time, and so are naturally biased towards small compounds of 

natural or synthetic-organic origin. While these particular guidelines may therefore 

not be appropriate for application to metal complex design, the underlying physico-

chemical issues remain. It thus makes sense for metallo-organic chemists to consider 

overarching criteria for properties of their chosen region of chemical space at the 

start of discovery programs. It is quite a challenge for example to synthesise 

complexes that combine water solubility and stability, stereochemical purity and 

ready availability. Without these properties however the molecule is most unlikely to 

progress out of the chemistry lab and into the clinic, regardless of in vitro activity.  
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1.1.4 Molecular targets in the cell  

Coordination and organometallic chemistry are not yet generally equipped to address 

specific biomolecular targets i.e. to make a compound for a specific receptor as in 

the target-oriented approach to drug discovery, although elegant approaches are 

emerging.41, 42 There are nevertheless great opportunities to take part in the 

resurgence of phenotypic drug discovery.43-45 where the biological targets of a drug 

(see examples below) are established after the observation of the useful biological 

effect. Indeed, it has been asserted that this approach has led to a disproportionately 

high number of first-in-class drugs with novel mechanisms of action (1999- 

2008).46, 47 

DNA is fundamentally important to the machinery governing cells and their 

proliferation. It is involved directly or indirectly in all cellular functions, through the 

coding of proteins via genes, making DNA a key antimicrobial target, particular for 

reactive-at-metal metallodrugs.48 The major ‘canonical’ form observed biologically, 

B-DNA has a wide, shallow major groove and a relatively deep and narrow minor 

groove. This anionic structure lends itself to various interactions with coordination 

complexes,49, 50 e.g. by dative or covalent bonds, shape selectivity or via the stacked 

bases51 (shown in Figure 1.3). Such binding or reactions may alter its shape, 

reactivity, chemistry, and ultimately the function of DNA. 
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Figure 1.3: A short B-DNA sequence. Based on coordinates obtained from the Nucleic Acid Database 
project (NDB), based at Rutgers University (NDB ID: NA2970 PDB ID: 4Q10).52 

Within the bacterium, the chromosomal DNA exists as a supercoiled; non-organelle 

bound structure: the nucleoid. Maintenance of the topological integrity of this 

chromosomal DNA is enacted by two enzymes classes; topoisomerases and DNA 

gyrases, both of which control the extent of the supercoiling,53 making these 

enzymes useful antimicrobial targets in their own right.  

Composed almost entirely of RNA, the complex machinery of the bacterial ribosome 

tackles the task of translating the encoded information of DNA into proteins that 

catalyse the cellular processes of the cell.54 This important function makes RNA a 

potential target, in particular the ribosome complex. RNA rarely takes the B-form 

observed in DNA55 (Figure 1.3), though it may be considered chemically similar and 

can produce analogous structures at a local level. In rapidly growing bacterial cells, 

most of the ribosomes appear in the aggregated form of polysomes, where several 
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ribosomes carry out translation on a single RNA transcript (messenger RNA) of a 

particular gene.56 

The demand for structural and chemical diversity required for the biocatalysis 

supporting life falls overwhelmingly to the polypeptides. Protein complexity is built 

in at the primary structural level from the large pool of chemically diverse common 

amino acids monomers available (>20), increased through the secondary structures 

available (α-helices, β-sheets), and increased again at the tertiary and quaternary 

structure levels (macrostructure, co-factor inclusion).57 Targeting these diverse 

species poses quite a challenge to drug designers, and no antimicrobial metallodrugs 

have been developed to our knowledge with this specific purpose, although protein 

inhibiting metallodrugs have been developed as anticancer agents;25 notably 

Meggers and co-workers’ staurosporine-mimetic, Ru(II) protein kinase inhibitors.58 

 

1.1.5 Preliminary screening for antimicrobial activity   

Most of the studies reported in this chapter include some kind of antimicrobial 

screening as part of the early discovery process. The essentials are summarised here, 

with an excellent summary of more detailed advice available.39 

The measurement of the ability of a candidate to inhibit the growth of a bacterium – 

the minimum inhibitory concentration (MIC) usually reported in g/ml – may be 

carried out using standardised protocols.59 This allows rapid comparability to 

existing antimicrobials. MIC values may also be contrasted with the toxicity of a 

compound to eukaryote as a rough measure of its selectivity (for prokaryotes), using 

another rapid in vitro method to measure half-maximal inhibitory concentration (IC50 
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usually in M or nM) against eukaryote cells. Further, the minimum bactericidal 

concentration (MBC in g/ml) – the lowest concentration of an antibacterial agent 

required to kill rather than merely inhibit growth of a particular bacterium – can be 

determined readily.59 A wide range of other studies are available, and these are 

mentioned in the relevant section below.  

Against the background outlined at the start of this section of the need for drugs that 

may suffer less from the acquisition of resistance, and of considering the practical 

barriers which must be overcome, we explore here the recruitment of transition metal 

coordination chemistry for the development of new classes of antimicrobial 

chemotherapeutics. Alongside naturally occurring metallodrugs, increasingly 

sophisticated antimicrobial complexes are now being developed and tested. These 

metallodrugs broadly fall into two categories: (i) those using a labile or reactive 

metal centre as an implicit part of their mode-of-action - particularly those natural 

products that are ‘activated’ by metal coordination, and; (ii) those using metal ions as 

a template. The latter area is of increasing interest as we gain better control over 

complex stoichiometry and stereochemistry.25  

 

1.2 Redox-active Metal Complexes  

The intrinsic antimicrobial (antibacterial) activity of certain group 11 metal ions or 

solubilised atoms is well known.60 Copper and, particularly, silver vessels would be 

used by early civilizations to store water because of an understanding that this would 

help disinfect it.61 Since then Cu, Ag and other transition metal ions have been 

shown in water to be bactericidal, primarily via in-cell redox activity (notably cycles 
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of Fenton/Haber-Wiess reactions60) and/or sporadic interference with native metal 

cofactors as per the Irving-Williams series62 even at low concentration.63, 64 

However, aqua or other simple complexes would not be suitable for use in 

antimicrobial chemotherapy because of their generally low solubility in water, poor 

stability and resultant potential for toxicity in humans.65  

In this context we note that some complexes that are unsuitable as drugs find 

commercial use as topical antimicrobial agents. The antifungal/antibacterial zinc 

pyrithione66 (pyrithione = N-hydroxypyridine-2-thione) present in many shampoos is 

used to treat forms of dermatitis and dandruff. While Zn(II) is not a redox active 

metal, it was determined that the complex acts by increasing cellular copper levels, 

leading to loss of activity of iron-sulfur cluster-containing proteins. It is this 

proposed that pyrithione acts as a copper ionophore, enabling copper to enter cells 

and distribute across intracellular membranes.67 The topical antibacterial natural 

product bacitracin – a cyclic peptide – is active as a complex of a range of divalent 

metal ions68 and is used in e.g. Zn and Ag preparations. 

Research on complexes which are designed to release antimicrobial metals into 

solution by triggers such as local redox activity has appeared. Screening of copper 

complexes by Wolschendorf and co-workers led to the discovery of antibacterial 

complexes that are implied to release copper ions.69, 70 Fromm and co-workers 

developed silver coordination species, some of which comprise polynuclear 

frameworks, with antimicrobial properties.71 Useful approaches for work in this area 

would be to promote selective ingress into prokaryote cells or to create systems for 

organism-specific release. Such hypothetical ‘stealth’ complexes could be similar in 
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nature to complexes where the metal centre acts as a structural template e.g. helicates 

or siderephore complexes and their analogues (vide infra).  

 

1.2.1 Bleomycin   

Bleomycin (Figure 1.4), also known as blenoxane and occasionally abbreviated 

BLM, was discovered in 1966 as a Cu(II)-chelating antibiotic derived from a culture 

of the strain Streptomyces verticullus,72 although the complexes Fe and Co are the 

most studied.73-75 Although bleomycin and its derivatives are noted anti-cancer and 

antiviral agents,76, 77 they have also shown promising prokaryote (Bacillus subtilis) 

toxicity.78 The iron complex is considered to be the in vivo active species due to the 

relative abundance of iron in living organisms relative to other transition metals. In 

the Fe(II)-chelate form and in the presence of dioxygen (O2) and a reducing agent, 

bleomycin actively cleaves DNA in a directed manner.75 It is a key example of a 

compound where the organic component provides an element of targeting but the 

principal payload is the metal ion.  

 

Figure 1.4: Structure of ‘free’ bleomycin (A and B variants). The metal binding sites, proposed through 
spectroscopic studies, are marked *.79 
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The nature of the coordination geometry of the complex formed by chelation of a 

metal ion by bleomycin has been thoroughly studied. Electron spin-echo envelope 

spectroscopy of complexes allowed, through detection of hyperfine splitting of 14N, 

identification of the heteroatoms involved in binding79 as well as the presence of a 

distorted five or six coordinate coordination sphere  (the sixth being a possible site 

for a monodentate ligand). Determination of the structure of a Cu(II) complex of a 

bleomycin intermediate, lacking the sugar and peptidyl bithiazole moieties, but 

inclusive of all metal binding sites has appeared.80 Nuclear magnetic resonance 

(NMR) studies, using diamagnetic Zn(II) species on bleomycin itself as well as the 

structurally similar tallysomycin as chelators has been used to probe the coordination 

of bleomycin.81, 82  

The proposed antimicrobial mechanism of action involves the formation of an 

’active form’ where the BLM-Fe(II) reacts (most likely via a superoxide 

intermediate) to form a peroxy species BLM-Fe(III)-OOH with the peroxy species 

occupying the sixth coordination site of the distorted octahedron, as observed by 

Raman spectroscopy.83 O-O bond cleavage results in the generation of O=Fe(IV)-

BLM or O=Fe(V)-BLM which oxides ribose moieties in DNA, in regions 

immediately preceding a 5'-GC-3' or 5'-GT-3' sequence, causing the ribose moiety 

and thus the DNA structure to break down.75, 84, 85  

Despite the good early candidacy of such bleomycin complexes, they have largely 

been ruled out as a prospect for a clinical antimicrobial role. Issues include the lack 

of specificity for prokaryote DNA, the severity/irreversibility of DNA double strand 

scission, and evidence for human toxicity (causing lung fibrosis).86 
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1.2.2 Streptonigrin and the anthracyclines  

Streptonigrin (SN) is a quinone-based antibiotic,87 which as a whole undergoes a 

dramatic structural change upon metal binding [(Figure 1.5(a)], towards an active 

form.88 The anthracyclines (ACs - notably daunomycin and adriamycin) are 

constructed of four fused rings linked to a pyran derivative [Figure 1.5(b)], which 

may be a pyranose sugar, or group of sugars, in more complex examples.89 Although 

their core structures vary, these compounds share notable key features; (i) both were 

originally isolated from the Streptomyces genus (although synthetic derivatives are 

known);90-92 (ii) they contain moieties that allow specific binding/intercalation of 

DNA (their primary target, although ACs may also bind DNA topoisomerase 

enzymes);93, 94 and (iii) whilst both are quinone-based antibiotics in their own right 

(as unbound species), they require binding of a redox-active metal in order to be 

fully active. For the latter, evidence suggests that the increase in activity is caused by 

improving DNA binding by modification of geometry and electrostatic topography, 

and the availability of localised catalysis of radical species formation.95, 96 It is 

suggested that anthracyclines may be bound to one, or two metal ions 

simultaneously, using their opposing β-ketophenolate moieties.97 

 

Figure 1.5: Structures of quinone-based antibiotics: (a) streptonigin and (b) the simple anthracyclines 
daunomycin (R = H) and adriamycin (R = OH). Proposed metal binding sites are marked *.   

The antimicrobial effects of SN towards E. coli and B. subtilis, were described in the 

1960-70s.98, 99 The mechanism has been linked to its generation of O2
- and/or 

peroxides, a feature closely associated with the presence of iron and copper, leading 
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to the inhibition of DNA synthesis.100 Similarly, metal-AC complexes [notably 1:1 

complexes with Fe(III)] are implicated in the induction of DNA cleavage via 

increased generation of radicals,101, 102 especially in the presence of reducing agents 

such as NADH. Reportedly this activity occurs through (metal-assisted) reduction to 

semiquinone forms, as with other quinone-based drugs;103 a process found to be 

inhibited by the enzymes catalase104 and superoxide dismutase105 as would be 

expected for a mechanism dependent upon reactive superoxides and peroxides. 

Intercalation of the free anthracycline in DNA, combined with limited redox activity 

of the organic nucleus, accounts for the mild antibacterial effect of metal-free 

species, particularly against B. subtilis strains lacking DNA-repair mechanisms.106  

Some antifungal activity (daunomycin) has also been noted.107 

 

1.3 Complexes with Reactive Metal Centres   

Numerous attempts have been made to screen reactive-at-metal species for 

antimicrobial activity, with varying results. Prominent historic examples have been 

reviewed in detail, notably by Ming.108  

Although cisplatin [cis-diamminedichloridoplatinum(II)] is renowned for its 

anticancer activity, and been thoroughly reviewed accordingly alongside other 

platinum compounds,109-111 it was discovered serendipitously as a drug candidate by 

Barnett Rosenberg in the 1960s via its ability to inhibit cell division in E. coli.112 

Other than its completely synthetic origin, it is differentiated from the earlier 

antimicrobial species discussed in this section in that the metal does not contribute to 
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the mechanism of action via redox activity, but as a reaction centre in the formation 

of strong crosslinking bonds with the target biomolecule DNA in vivo.50   

Focus for synthetic reactive-at-metal antimicrobials has been with the aim of 

controlling and modulating reactivity in order to reduce the side effects seen in 

chemotherapeutic use. Attempts have subsequently been made to ‘tame’ cisplatin-

like heavy transition metal complexes using strongly bound N-heterocyclic carbene 

(NHC) ancillary ligands.113 While bis complexes such as that of Figure 1.6(a) have 

modest activity,114 Panda, Ghosh and co-workers115 reported a slightly more potent 

complex of gold chloride [Figure 1.6(b)] in Gram-positive B. subtilis, although this 

and similar examples tested were inactive against Gram-negative E. coli. Gurovic, 

Silbestri and co-workers116 synthesised much more soluble gold and silver 

complexes e.g. Figure 1.6(c), but the MIC values reported were extremely high. In 

contrast, bimetallic compounds e.g. Figure 1.6(d) were screened by Mandal and co-

workers for their antimicrobial activities against multiple keratitis-associated human 

eye pathogens, revealing some impressive MIC figures and the ability to eradicate 

biofilm on contact lenses.117 An alternative strategy for controlled reactivity is the 

use of metal centres with ‘intermediate’ reactivity, for example Co(III) complexes 

with non-innocent (redox) ligands.118 
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Figure 1.6: N-heterocyclic carbene complexes used in antimicrobial screening. 

 

 

1.4 Complexes Which Release Carbon Monoxide  

The ability of coordination complexes to act as small molecule carriers, particularly 

CO-releasing molecules (CORMs), has been explored as a source of 

chemotherapeutic agents - including antimicrobials.119  

The efforts initially of Saraiva120 and later Poole in particular121 have driven the 

antimicrobial research of CORMs, and in spite of the analytical challenge involved 

demonstrating CO release under biological conditions.122 Modest antimicrobial 

effects of prototypic examples have been described120 which were markedly 

improved in comparison with the use of carbon monoxide alone. This perhaps 

suggests selective release, or a synergistic effect of the remaining complex.121 

Interestingly, these complexes would appear to affect ‘non-traditional’ targets (e.g. 

cellular respiration).123 Figure 1.7 shows two notable CORMs; Ru(II)-based 
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‘CORM-3’, noted for its water solubility owing to the use of glycinate and chloride 

ligands, and a Mn(I)-based ‘photoCORM’, capable of releasing CO upon irradiation 

with near-ultraviolet light, with an initially uncoordinated pyridyl group capping the 

now free octahedral site.121 

 

Figure 1.7: Notable CORM-type complexes studied as potential antimicrobial metallodrugs: (a) 
CORM-3 [tricarbonylchloro(glycinato)ruthenium(II)] and (b) the ‘photoCORM’ [Mn(CO)3(tpa-κ3N)]+,124 
showing the action of CO release with UV-irradiation. 

The use of electromagnetic radiation to photoactivate an inert metallodrug precursor 

at the site of infection, has garnered some interest.125, 126 However, the poor 

penetrability of shorter-wavelength light into the body127 and the often-widespread 

nature of infection needs to be considered.  

 

1.5 Metal Centres as Structural Templates   

Rather than using metal centred redox activity or substitution chemistry to 

permanently damage DNA or other biomolecular target(s), more subtle inhibitory 

mechanisms are being addressed with complexes where the metal is intended to be 

purely structure-forming. Indeed, depending on the nature of the ligands, the control 

of stereochemistry becomes important, and this is an area where much development 

is needed.25 Nevertheless, systems with promising antimicrobial activity along with 

supporting studies towards an understanding of underlying mechanism(s) have been 

reported.  
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1.5.1 Early advances: simple tris-complexes  

A very early body of work, which nevertheless continues to inspire new research, 

was described by Dwyer and co-workers in the 1950-60s.128, 129 These researchers 

tested simple complexes of transition metals with small, symmetric bidentate 

ligands, such as the examples shown in Figure 1.8. These complexes were found to 

have variable activity against strains of Escherichia, Staphylococcus and Salmonella 

respectively, with the placement of exosteric groups (e.g. methyl groups) proving an 

important influence on antibacterial activity observed.  

 

Figure 1.8: Simple tris-chelate metal complexes using: bidentate N-donor ligands (a) ethylenediamine, 
(b) 2,2’-bipyridine and (c) 1,10-phenanthroline. Complexes are shown as Δ-isomers although the study 
used both Δ and Λ enantiomers separately, or racemic mixtures. M = Co, Ru, Ni, Fe, Os. 128, 129 

 

1.5.2 DNA-intercalating ruthenium complexes   

Many tris(bipyridine) and related complexes of Ru(II) are known – these are very 

inert and not expected to mediate any sort of metal-centred activity. Their ability to 

intercalate DNA is however well studied49, 50 using e.g. NMR, linear dichroism (LD) 

and circular dichroism (CD).130, 131 The complex Δ-[Ru(bpy)2(dppz)]2+ for example 

co-crystalises with B-DNA containing a base-pair mismatch as shown in Figure 

1.9.132  
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Figure 1.9: B-DNA complex of Δ-[Ru(bby)2(dppz)]2+. The complex is shown as a spacefill model in 
blue/grey.  One dppz ligand intercalates two B-DNA base pairs. Structure is shown from two perspectives 
(90° rotation about the vertical axis). Only the double helix and a single complex are shown for clarity. 
Created from RCSB Protein Data Bank structure (PDB ID: 4E1U).132 

While much of the motivation for use of these complexes is in the arena of 

cancer,133-138 Aldrich-Wright and co-workers published in 2010 an account of the 

antimicrobial potential of three Ru(II)-based DNA intercalators (Figure 1.10).139 

Using standardised screening techniques59 MICs were determined against four 

Gram-positive bacterial strains [B. subtilis 168, Methicillin-sensitive S. aureus 

(MSSA) 160 and MRSA strains 41 & 252]. The results appeared to follow earlier 

reported trends in ability to intercalate DNA; [Ru(phen)2(dpq)]2+ showed little or no 

potency, [Ru(bpy)2(dpqC)]2+ showed middling activity (MIC: 16-64 μg/ml) and 

[Ru(2,9-Me2phen)2(dppz)]2+ displayed the highest potency with MICs ranging from 

8 μg/ml for MSSA160 to a remarkable 2 μg/ml for MRSA252. MBCs (minimum 

bacteriocidal concentration) of two to four times the corresponding MICs support a 

bacteriocidal rather than an inhibitory (bacteriostatic) mode of action. In contrast, no 
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activity was found against Gram-negative E. coli, perhaps because of the low 

permeability of the cell envelope. 

 

Figure 1.10: DNA-intercalating complexes studied by Aldrich-Wright and co-workers: dpq = 
dipyrido[3,2-d:2’,3’-f]-quinoxaline), dpqC = dipyrido[3,2-a:2’,3’-c]-(6,7,8,9-tetrahydro)-phenazine), dppz = 
dipyrido[3,2-a:2’,3’-c]-phenazine. Complexes shown as Δ isomers. 

In further work, a time-kill assay using [Ru(2,9-Me2phen)2(dppz)]2+ was carried out. 

This established the rate with which live bacteria are killed via measurement of the 

population growth/decline from a set initial population. In the presence of 1 μg/ml 

(0.5 of the MIC) or less, MRSA252 continued to increase in population. At 8 μg/ml 

(the MBC) and 32 μg/ml population showed a sharp decline, suggesting a relatively 

rapid mode of action. Further, the nematode worm Caenorhabditis elegans (C. 

elegans), a multicellular eukaryote and noted infection model140, 141, was infected by 

MRSA252, then subjected to various concentrations of [Ru(2,9-Me2phen)2(dppz)]2+ 

i.e. an infection/recovery experiment. Over several days, the number of surviving 

worms was monitored (Figure 1.11). It was observed that a relatively low 

concentration of [Ru(2,9-Me2phen)2(dppz)]2+ (1 μg/ml) showed little improvement 
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over the control, where all worms died by day six in both cases, though with a 

slightly slower rate with complex present. Concentrations of 8 and 32 μg/ml showed 

marked improvement over the control with ~80% nematode survival at day six. 

 

Figure 1.11: Survival of age-synchronised C. elegans in the presence of [Ru(Me2phen)2dppz]2+: after 
an initial 1 h incubation with S. aureus MRSA252 the number of living worms was scored daily. Circles, 
32 μg/ml; diamonds, 8 μg/ml; triangles, 1 μg/ml; squares, no compound added (control). Reprinted from 
the European Journal of Pharmaceutical Sciences, Vol 42 (4), Bolhuis A., Hand L., Marshall J. E., Richards A. 
D., Rodger A. and Aldrich-Wright J., Antimicrobial activity of ruthenium-based intercalators, p. 313–317, 
Copyright 2011, with permission from Elsevier.139 

Overall these experiments create one of the more advanced cases for potential use of 

inert metal complexes as antimicrobials; relatively low MIC, a rapid mode of action 

relative to infection spread, direct evidence for recovery from otherwise fatal 

infection in a higher eukaryote, and a credible mechanistic hypothesis. Significant 

questions remain however, such as selectivity of the compounds here or in higher 

organisms, and the issue of enantiomeric separation.131, 142-147 

 

1.5.3 Oligonuclear ruthenium complexes  

O’Reilly et al. found that “dimers” of [Ru(phen)2(Me2bpy)]2+ units linked via an 

alkyl chains (Figure 1.12, n = 5, 7, 10) are excellent and robust DNA-groove binders, 

and more efficient than the  mononuclear analogues. The binding strength was found 

to increase with the linker chain length as this allows it to ‘follow’ the helical DNA 
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structure.148-150 Aldrich-Wright and co-workers also demonstrated enhanced binding, 

compared with its mononuclear analogue, of a dinuclear Ru(II) complex 

incorporating a 2-mercaptoethyl ether linker.151 Similarly, Lincoln and Thomas 

demonstrated extremely high binding affinity of Ru(II) dinuclear complexes at DNA 

sites.152-155 Keene and Collins have presented an extensive body of work in this area, 

including discovery of antimicrobials and study of mechanism(s) of action.156 

The [(Ru(phen)2)2(μ-bbn)]
4+ (abbreviated to Rubbn) systems in separated 

stereoisomeric forms (Δ,Δ or Λ,Λ, excluding the meso isomer)157 were studied 

alongside various controls.158 Rubb12-16 complexes were found to be active against a 

range of pathogenic bacteria, particularly Gram-positive S. aureus, both methicillin-

susceptible (ATCC 25923) and ‘clinical wild type’ MRSA (MICs of 1-2 μg/ml). 

Activities against Gram-negative E. coli ATCC 25922 (2-4 μg/ml) and ATCC 27853 

P. aeruginosa ATCC 27853 (8-16 μg/ml) were more modest but nevertheless 

promising. Against all Gram-negative and Gram-positive organisms tested, the Δ,Δ-

isomers were found to be marginally the more active. Interestingly, relatively short 

(n = 2, 5), and heteroatom-linked dinuclear complexes were shown to have little or 

no activity.  
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Figure 1.12: Oligonuclear ruthenium complexes used by Collins, Keene et al.: Rubbn, Rubbn-mono 
[Rubbn lacking a second RuII(phen)2 centre], trinuclear and linear tetranuclear analogues. All metal centres 
shown in the Δ configuration, and where applicable with methylene bridges anchored trans across Ru(II) 
centres. 

Selectivity for the ‘lead’ Δ,Δ-Rubb12-16 complexes was assessed subsequently. 

Human red blood cell lysis (indicating membrane disruption) and toxicity to THP-1 

(monocytic leukemia) cells increased with chain length, but the most promising 

candidate tested (ΔΔ-Rubb12) gave HC50 and IC50 values respectively over 100-fold 

higher than the S. aureus MIC.158 Later screening by the same team showed a lower 

toxicity to hamster kidney (BHK), human embryonic kidney (HEK-293) and human 

liver carcinoma (HEP-G2) cell lines.159 

Microbial cellular uptake for this class of compound was measured for these 

complexes via their inherent fluorescence.160 Uptake fell with lower linker chain 
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length n reflecting the trend in log P values158 Rubb16 > Rubb12 > Rubb7 suggesting 

that the higher hydrophobicity is beneficial, although it is difficult to deconvolute 

other effects of the longer chain such as increased mechanical flexibility.  At the 

same time, monometallic species Rubbn-mono which contain a pendant ligand (n = 

7, 12) and [Ru(Me4phen)3]
2+ did not follow the same trend, even though 

[Ru(Me4phen)3]
2+, a compound remarkably similar to those used in the early work of 

Dwyer,128, 129 was shown here to be a potent antimicrobial (MIC range: 0.5 μg/ml vs. 

S aureus to 32 μg/ml vs. P. aeruginosa). This may well indicate that the mechanisms 

of cellular uptake and/or antimicrobial action of Rubbn systems are different from 

mononuclear Ru(II) systems.  

Uptake into Gram-negative bacteria was significantly less than for Gram-positives 

for Rubbn systems, and shown in all cases to occur in an energy-independent manner 

(passive diffusion) as, for example, dead or ATP-inhibited cells would still 

accumulate the complexes.160, 161 Further, the dinuclear complexes significantly 

depolarise and permeablise the cell membrane of S. aureus,161 although it is worth 

noting that this occurred at concentrations double the corresponding MICs.158 

Cellular localization of Rubbn in E. coli MG1665 was studied using wide-field 

fluorescence microscopy (Figure 1.13).159 Rubb16, the most hydrophobic Rubbn 

complex reported, was found to concentrate in the vicinity of RNA (polysomes) in 

vivo, despite the significant membrane activity reported previously.161 In the context 

of the pedigree described above of Rubbn systems as DNA-groove binders, an 

RNA/polysome-targeting mechanism is feasible, which could halt translation of 

RNA to proteins, thereby preventing protein synthesis. A preference for the RNA-
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rich nucleolus over chromosomal DNA for all linear Rubb12 systems in eukaryotic 

cell lines was observed via co-localization studies using confocal microscopy.162 

 

Figure 1.13: Rubb16 localisation in E. coli MG1665 cells at the MIC of 4 mg/ml. Fluorescence 
microscopy images show: (a) phase-contrast: (b) Rubb16 phosphorescence; and (c) merged. Scale bar = 5 
μm. This image and others from the same work illustrate the concentration of Rubb16 at the RNA-based 
polysomes.159 - Published by The Royal Society of Chemistry. 

The concepts above were extended through the study of oligonuclear Rubbn 

complexes (Figure 1.12) built through modular syntheses.163 The application of 

similar methodology to earlier work158 showed that these complexes have strong 

antimicrobial activity; several MICs against S. aureus were below 1 μM, with low 

MICs against Gram-negatives E. coli (1-6 μM) and to a lesser extent, P. aeruginosa 

(9-50 μM). Linear species with chain lengths n = 12, 16, were found to be more 

active, and in particular the linear tetranuclear complexes were more active than the 

branched species. This is consistent with the hypothetical target as RNA with the 

compounds acting as polynucleotide groove binders.159 Furthermore while the 

trinuclear species were found to be the most lipophilic (log P) and showed relatively 

high uptake, they were not as active as their linear-tetranuclear counterparts. Unlike 



Daniel H Simpson | Chapter 1 

University of Warwick | Page 27 

their dinuclear counterparts, cellular uptake of Rubbn-tri and linear Rubbn-tetra 

(Figure 1.12) in the Gram-negative species was greater than or equal to that observed 

in the Gram-positives, and yet the MICs for Gram-positive species were significantly 

lower. This may suggest in this instance that the resistance of Gram-negative species 

to these compounds is not the result of the protective membrane but because 

intracellular processes are for some reason less susceptible.160, 161 

 

1.5.4 Siderophore analogues 

 

 

Figure 1.14: Siderophore and analogue chemistry of Raymond et al. (a) the catechol ligand 

enterobactin (ent) from E. coli; (b) structure of [FeIII(ent)]3- based on a crystallographic study of  

[V(ent)3]2-; (c) 1,3,5-tris[(2,3-dihyroxybenzoyl)aminomethyl]benzene (MECAM); (d) 1,3,5-N,N',N'’   

-tris(2,3-dihydroxybenzoylamide)tri(aminoethyl)amine (TRENCAM). 

Siderophores are molecules produced by bacteria in order to sequester iron164 in 

competition with strategies evolved in the host organism such as nutritional 

immunity.165, 166 Enterobactin [Figure 1.14(a)]167, 168 is the strongest Fe(III)-binding 
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siderophore known, (K = 1052 M−1).169 The chiral backbone, biosynthesised from a 

tri-lactone of the amino acid L-serine, preorganises for Δ configuration at the 

metal;170 the structure of Figure 1.14(b) is based on the analogue Δ-[V(ent)]2-, 

reported by Karpishin & Raymond.171 

Raymond and co-workers conducted a detailed study of the uptake of siderophore 

complexes in E. coli, underpinning our understanding of bacterial uptake of ferric 

iron. Of particular interest to this chapter was the ability of a Rh(III) complex 

[Rh(MECAM)]3- [ligand shown in Figure 1.14(c)] to inhibit bacterial uptake of the 

[Fe(ent)]3- complex167 nominally via the E. coli FepA receptor protein; a critical 

pathway for essential iron uptake in E. coli.172, 173 [Fe(TRENCAM)]3- 174 [ligand 

shown in Figure 1.14(d)] and in particular [Fe(MECAM)]3- were later found to be 

taken up by the iron-starved Gram-negative, enterobactin-dependent  species, 

Bordetella bronchiseptica using the same BfeA outer membrane receptor as 

enterobactin.175 Other [Fe(ent)]3- mimics have shown similar uptake in Salmonella 

typhimurium through enterobactin receptors; IroN and FepA.176 Work on the 

TRENCAM ligand and its complexes has led to an intriguing set of supramolecular 

structures, which are bicapped, rather than monocapped; two TREN [tris(2-

aminoethyl)amine] moieties link the three catechol bidentate units to two axial 

tertiary amine ‘hubs’ at either pole of the complex.177  

Through this work we can see that a siderophore analogue might be used to block the 

uptake of iron or to ferry more toxic ions into the prokaryote cell in ‘Trojan horse’ 

strategy. 
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1.5.5 Metallohelices  

Myriad coordination architectures formed through the application of ligands 

designed to span multiple metal centres have been reported, including helicates,178-181 

knots,182 grids,183, 184 catenanes,185 rotaxanes,186 boxes187 and cages188 amongst 

others.189 Rather few of these have been shown to have any kind of potential use as 

drug molecules, probably because of the difficulty in making water-compatible 

compounds in significant quantities. This practical barrier arises because inert metal 

ions such as Ru(II), which are expected to give water-stable compounds, give 

mixtures of kinetic products on reaction with polydentate ligands, leading to low 

yields. On the other hand, the cleaner thermodynamic products produced by 

relatively labile metals are almost invariably subject to hydrolysis in water or 

biological media.  

Lehn’s prototypical helicate chemistry181 (Figure 1.15) has nevertheless inspired a 

number of workers to explore the idea that such compounds might provide entry to a 

new area of biomimetic chemical space unavailable to organic chemistry.190, 191   

 

Figure 1.15: Lehn’s prototypic helicate structure: showing the two optical isomers (M = Cu or Ag).181, 

192 
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In 1997, Hannon and co-workers reported a synthesis of a helicate structure 

[Fe2L
H

3]
4+ from simple starting materials;193 an aromatic diamine, 2-picolinaldehyde, 

and an Fe(II) source that provides the anchoring octahedral metal centres (Figure 

1.16). The rigid ligand system mechanically couples the helical coordination 

environments, requiring them to adopt the same stereochemistry (Δ,Δ, or Λ,Λ). The 

ensuing triple-helix structure has a well-defined pitch. The reported syntheses of this 

compound involve the use of weakly-coordinating anions (PF6
-) for ease of isolation, 

followed by exchange with chloride to provide water solubility. 

 

Figure 1.16:  Hannon’s Fe(II) helicate, shown as the Λ,Λ isomer. 

Related examples include the results of simple modifications to the original Fe(II) 

helicate: replacing the bridging methylene with O; several peripheral 

modifications;194 Ru(II) analogue(s).195, 196 The latter, along with the original bis-

Fe(II) helicate, is reported to be resolvable into enantiomers using a brine elution on 

a cellulose column or even paper,194, 197 as supported by circular dichroism, although 

without quantification of the optical purity (e.g. through the use of an NMR shift 

reagent such as TRISPHAT).198 Helicates with arginine199 and a short peptide 

fragments200 (Figure 1.16) were subsequently reported via multi-step route. Helicity 
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was seen to be controlled to within the limit of signal:noise for the NMR spectra 

observed.199 Great attention has been given to the ability of these helicates to bind 

DNA motifs in vitro, especially the B-DNA major groove196, 201, 202 and three-way 

junctions (3WJ)199, 203-205 inducing conformational changes.196  

The helicate [Fe2L
H

3]
4+ of Figure 1.16 as the chloride salt was subject to in vivo 

screening as an antimicrobial agent.206 MICs of 32 μg/ml against Gram-positive B. 

subtilis strain 168, and 64 μg/ml against Gram-negative E. coli strain GM2163, 

respectively. Both MBCs were less than four times the MIC, and although the 

potencies are rather low this was taken as confirming a bacteriocidal mode of 

action.39 Unfortunately the compound was found to be incompatible with standard 

broth59 so a special in-house medium was devised. This makes comparison with 

other compounds difficult. Spectroscopic analysis of the DNA extracted from B. 

subtilis after exposure to the helicate at 100 μM indicated a ~3.7-fold rise in the 

absorbance at 575 nm compared to that of a control sample, which presumably had a 

very low absorbance in this region. Further work is needed to establish a link 

between the ability of this helicate to bind DNA and the antimicrobial or other 

activity. A time-kill assay supports a rapid cell death for B. subtilis and SDS-PAGE 

(protein electrophoresis) assays suggest a loss in overall protein production and an 

upregulation of stress proteins in that bacterium, although this may be due to 

membrane damage. 

The low stability of [Fe2L
H

3]
4+ to hydrolysis in water has been noted.42 As mentioned 

above such matters must always be a consideration for labile metal assemblies and 

we recommend that simple kinetic stability studies are performed. If the helicate 

architecture is merely a vehicle for delivery of organic components, then in the case 



Daniel H Simpson | Chapter 1 

University of Warwick | Page 32 

of [Fe2L
H

3]
4+ that is a mixture of a relatively benign aldehyde and a carcinogenic and 

toxic207, 208 diamine component. Despite these limitations, this work is tantalizing 

and has inspired others to consider how safer, more tractable and more drug-like 

metallohelices can be synthesised. In progressing this work, a number of criteria 

need to be considered if any helicate or related compound can ever find its way to 

the clinic. Specifically the complexes need to be readily available on a reasonable 

scale in optically pure form, have good solubility and high stability in water, and be 

capable of derivatization so that structures can be optimised. While these criteria are 

challenging, and made more so by the need, as alluded to above, to use inherently 

labile metals, we are unlikely to see practical progress if we do not address them.191  

 

Figure 1.17: Highly diastereoselective self-assembly of M(II) complexes: α-phenyliminopyridine 
ligands from optically pure amines and pyridine-2-aldehydes engage in synergistic π-stacking 
arrangements as part of the mechanism of stereoselection.209-211 

Scott and co-workers’ approach to this problem was to avoid reliance on the helicate 

paradigm of mechanical coupling for stereochemical control at the metal, and instead 
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to develop a diastereoselective synthesis of monometallic complexes which might be 

used to form the end units of a helicate-like structure. Following the development of 

several prototype ligand designs for this purpose212-215 a very simple but highly 

effective synthesis of highly stereochemically pure complexes of various first row 

transition metal was developed (Figure 1.17).209-211 For diamagnetic Fe(II) the 

selectivity for a single fac diastereoisomer (~200:1) is delivered in this α-

phenyliminopyridine system by a combination of optimal stereodirecting steric 

effects and a series of hydrophobic arene π-interactions. The latter also provides the 

complexes with remarkable stability to hydrolysis (vide infra).  

The next step of linking two such monometallic units together proceeded smoothly, 

and the subsequent so-called flexicates216 were comprised of two diastereomerically 

pure tris(chelate)Fe(II) units linked at either side by relatively flexible chains. Two 

structural classes are readily available: a diamine linker leading to exo-pyridine 

(alternatively class Ia), and a dialdehyde leading to exo-imine (alternatively class Ib) 

architectures (Figure 1.18).  

MICs were determined in standard media against MRSA strain 252 and E. coli strain 

MC4100.216 It was found that the more flexible architectures of the exo-imine 

flexicates (Figure 1.18) showed little or no antibiotic activity. In stark contrast, the 

more rigid system of the exo-pyridine class of flexicate had much higher 

antimicrobial activity with MICs of 8 μg/ml against Gram-positive MRSA for both 

isomers and MICs of 8 and 4 μg/ml for Δ and Λ isomers respectively against Gram-

negative E. coli. Similar MICs were observed in pathogenic MRSA USA300, and E. 

coli TOP10.42 MBCs in these organisms of ca 2 × MIC suggest a bacteriocidal mode 
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of action. Promisingly, the same flexicates were found to have low toxicity (LC50 of 

400-500 μg/ml) towards the nematode C. elegans.216 

 

Figure 1.18: Subcomponent self-assemblies of two flexicate architectures.216 

As with the Hannon helicate, there is evidence for binding to DNA architectures in 

some of these compounds. Binding affinities were generally stronger for Λ 

complexes and markedly stronger for the more rigid, antimicrobial exo-imine 

architectures (Figure 1.18), and evidence was presented from LD spectra for binding 

into the major groove.216 A more detailed analysis of the biophysical interactions 
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with different DNA motifs was presented.217 Atomic force microscopy (AFM) 

revealed that the enantiomers caused supercoiling of ctDNA, and DNase I 

footprinting supported B-DNA major groove binding for this complex as well as 

suggesting a sequence selectivity for 5'-CACATA and 5'-CACTAT sequences. The 

interaction of this flexicate with DNA motifs that are potential chemotherapeutic 

targets was demonstrated: four-way (Holliday) junctions (4WJ) – implemented in 

homologous genetic recombination,218 3WJs (both T-shaped and Y-shaped 

variations) and double stranded DNA (dsDNA) with bulges of different sizes. In 

contrast, in all such studies the exo-imine architecture gave essentially no DNA 

binding.217  

At this stage while the correlation between the DNA interactions seen in vitro and 

the antibiotic activity may be coincidental, it is noteworthy that a wide selection of 

further exo-imine flexicates219 with little or no binding affinity for cell-free DNA 

were also inactive as antimicrobials. At the same time observations of low toxicity to 

the amoeba, Acanthamoeba polyphaga and an apparent probiotic effect in the moth 

larvae, Manduca sexta, in which the systemic distribution of the complex was 

observed, are highly encouraging.  

Inspired by the structures of small antimicrobial peptides such as human cathelicidin 

LL-37,220, 221 Scott used a new set of supramolecular design principles to develop a 

synthesis of a range of functionalised, optically pure amphipathic metallohelices.42 

These highly water-stable “triplex” metallohelices (Figure 1.19) are comprised of 

three directional strands arranged head-to-tail, leading, via the helix fold, to 

structures with a polar functionalised face opposite a hydrophobic ridge. Perhaps 

surprisingly, given their high toxicity to cancer cell lines, antimicrobial activity for at 
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least the parent complexes against MRSA and E. coli was negligible (MICs all >128 

μg/ml).  

 

Figure 1.19: Cationic units of optically pure triplex metallohelices 42 

Crowley and co-workers reported a simple synthesis of a dinuclear Ru(II) triple 

helicates using a Huisgen alkyne-azide cycloaddition (‘click’) reaction to furnish a 

pyridine-triazole bidentate unit at either end of a symmetric AB-BA ligand.222 Here 

also, negligible antimicrobial activity was observed (MICs >256 μg/ml) for this, or 

indeed the Hannon helicate which was used as a control.  

 

1.6 Outlook  

Antimicrobial transition metal complexes that rely on metal-centred redox or 

reactivity, generally cause lesions to a DNA target by producing highly reactive 

species such as peroxides in the vicinity, or by forming new covalent bonds (cross-

linking). Despite the use in many cases of ligands designed to confer selectivity of 

the metallo-antimicrobial towards DNA, these drugs are likely to be promiscuous as 
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a natural consequence of overt reactivity at the metal centre. Poor selectivity towards 

the microbial target and depletion by unspecific binding are inevitable.223 Many 

reactive-at-metal metallodrugs have thus found greater clinical acceptance as 

anticancer agents, or as topical treatments of infection. Overall however the 

feasibility of use of new systems such as NHC complexes of gold and silver in 

antimicrobial treatments must be low given the affinity of these ions to ubiquitous 

thiol groups in vivo.116 

More promising reactive-at-metal antimicrobials display improved activity by 

making use of the way coordination chemistry may be used to define the geometry of 

their complexes, allowing engineered targeting of the endocellular target; there may 

be potential for development towards the targeted delivery of reactive metal species, 

using complexes engineered to carefully contain reactivity until required; a ‘Trojan 

horse’ strategy.224 

Since the late 1980s major developments in supramolecular-coordination chemistry 

have allowed the design of myriad transition metal complexes with well-defined 

geometries with no overtly reactive metal centre. These architectures have been 

discussed for some time as useful in the design of synthetic antimicrobials as they 

could be engineered to have a geometry ideal for inhibiting a particular cellular 

process, whilst simultaneously evading the resistance mechanisms suffered by 

natural products, as their chemistry is unfamiliar to nature. Despite this attention, it 

is only since the mid-1990s that such complexes have been reported with appropriate 

properties to be used in medicinal research, and since 2010 that substantial works on 

screening for antimicrobial potential and mechanisms of action have appeared.  
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The most promising examples thus far of antimicrobial complexes of this type have 

been the ruthenium-based, intercalators of Aldrich-Wright, the oligonuclear 

ruthenium systems of Collins and Keene, and dinuclear iron metallohelix systems. 

As with reactive-at-metal complexes, much attention has been given to their 

interaction with DNA in vitro.50, 225 Little attention has been given this far to 

interactions with other prokaryote cellular structures such as membrane chemistry or 

the possibility of protein-protein interactions (PPIs). The latter are crucial to the vast 

majority of cellular processes as well as offering high specificity. Meggers and co-

workers58 show there is a precedent for targeting PPIs with coordination complexes 

through precise architectural design. In this context, self-assembling bimetallic 

helicate-based systems show great promise because of their structural similarity to α-

helices, but control over surface topology, so readily provided in nature, is in its 

infancy.42 

If inert template complexes are versatile enough to be tailored to provide potent and 

selective antibiotic agents, then it is argued that their synthetic design ought to be 

driven by a better and fuller understanding of their molecular interactions within 

(and at the surface of) the prokaryote pathogen, i.e. understanding by what 

mechanism(s) it has any antibacterial effect. Advances in high-throughput assays in 

molecular biology and computation methods, for example, are making such 

awareness ever easier to achieve. As well as a scarcity of mechanistic understanding, 

it is also noted that to date the few inert template coordination complexes that have 

been reported to have biological activity have only been tested against a few genera 

(Bacillus, Staphyloccocus, Escherichia), and the selectivity for prokaryotes over 

eukaryotes in vivo has rarely been studied.  
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The demonstrated usefulness of CORM-type complexes as CO release vectors adds 

another potential weapon in the fight against microbial infection, and the idea of 

small molecule releasing complexes may well be expanded towards other useful 

small molecules than may benefit from targeted delivery (nitrous oxide, hydrogen 

sulfide, etc.). 

There is a growing interest in the field towards synergistic combinations of drugs; 

hitting different prokaryote biomolecular targets in complimentary fashion, 

hopefully reducing resistance and toxic side effects, and allowing the ‘repurposing’ 

of existing chemic space.226-229 This has not been widely studied for coordination 

complexes, the report of Wolschendorf and co-workers of copper ion releasing 

complexes acting synergistically with disulfiram, being an exception.70 Some of the 

potential of coordination complexes may be realised here as they may act on 

pathways (protein synthesis, DNA replication, iron intake, etc.) that could sensitise 

the pathogen to traditional chemotherapeutics.  

The chemistry necessary to develop the well-defined structures with tailored 

properties is rapidly advancing. It is proposed that in order to effectively guide this 

research to reach its full potential in antimicrobial chemotherapy, we must employ a 

rigorous approach to fully understanding the potency, selectivity, cell wall activity 

and mechanisms of action of each complex type, using a wide range of organisms. 

We need to conduct this interdisciplinary work with a view to advancing towards in 

vivo trials. Realistically, in order to make such an investment, coordination and 

organometallic chemists should be asking themselves hard questions about their 

chosen system. Can it ever be produced and used as a drug in humans? What are the 

barriers to acceptance by regulators and industry? Given the increasingly strict 
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limitations on heavy metal impurities in drugs230 the deliberate use of such metals 

outside existing cancer treatments is perhaps unlikely. In the fight against 

antimicrobial resistance there is nevertheless a need to explore chemical space 

outside that of natural antibiotics, and so long as we address practical criteria of 

safety and utility, the unique structures of metallo-organic chemistry provide a very 

promising avenue.  
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Chapter 2 

New Class Ia Flexicates From a Range of 

Optically Pure Diamines  

 

2.1 Introduction  

In Chapter 1, the potential of metallohelices as antimicrobial metallodrugs was 

discussed. The prototype class Ia (exo-pyridine) flexicate, [Fe2La
3]Cl4, showed 

promise in this field, having potent antimicrobial activity and remarkably high 

aqueous stability.1 However, for reasons described later, no other flexicates of this 

class had been synthesised, and remarkably the analogous compounds of class Ib (exo-

imine) and the related triplex metallohelices showed essentially no antimicrobial 

activity.2, 3 It was thus a high priority to investigate the synthesis of new class Ia 

metallohelices for testing as antimicrobials.    

This chapter will focus on the development of class Ia flexicates from diamine 

bridging units of varying sizes and architectures, in order to investigate the effect upon 

the assembly and structure of the system.  

 

2.2 Synthesis of Optically Pure Diamine Bridges 

A range of diamines derived from symmetric benzylic dihalides were targeted so as to 

provide a range of structural diversity (Scheme 2.1), such as: (i) the meta- and ortho- 

analogues of our previously reported1 para-xylenyl system 3a, i.e. 3b and 3c, are 

designed to investigate the effect of increasing fold angle; (ii) the 4,4'-biphenyl 3d is 
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an elongated analogue of 3a; (iii) the Ar-E-Ar systems 3e-h incorporate potentially 

helicating ‘hinges’ and positions for secondary interactions; (iv) the more rigid 

dibenzofuran 3i. These diamines were later incorporated into class Ia flexicates as 

described below (Scheme 2.4). 

 

Scheme 2.1: Synthetic routes to (R,R)-diamines (3a-i) from (R)-1 [(R)-2-phenylglycinol], through 
etherification of the corresponding benzylic dihalide (2a-i), mediated by sodium hydride and [15]-crown-
[5] in THF. Corresponding (S,S)-diamines were similarly synthesised from (S)-1. The fluorene-bridged 
diamine 3j could not be isolated for reasons discussed below. 

 

2.2.1 Xylenyl & biphenyl linkers (3a-d)  

Attempts to reproduce the synthesis of the previously reported1 diamine enantiomers 

3a (Scheme 2.1) were unsuccessful.  In these experiments, the reaction mixture was 

observed to be heterogeneous, containing a large quantity of solid material, and 

separation of the products was not achieved. Since the mass spectrum of the product 

material was essentially the same as that of the pure diamine it is proposed that samples 

contained some products of N-alkylation. NMR spectra were consistent with this 
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hypothesis. Further, attempts to apply the same conditions to the synthesis of meta-

substituted enantiomers 3b from 2b (α,α'-dibromo-m-xylene) gave a similar result. It 

was suspected that this apparently capricious behaviour was a result of changes in the 

condition of starting materials and solvents etc., but extensive studies showed no 

improvement, and new conditions were thus investigated. The use of an N-protection 

strategy was not attempted since this had been studied and abandoned by earlier group 

members. After a large number of experiments using various solvents and other 

conditions we turned to the work of Aspinall, Greeves et al.4 who showed that the 

addition of [15]-crown-[5] improved the rate of O-alkylation in similar etherification 

reactions mediated by sodium hydride. Treatment of p-, m- and o- bis-

bromomethylxylenes (2a-c) with 2.1 equivalents of 2-phenylglycinol (1) in the 

presence of NaH and 1-2 equivalents of [15]-crown-[5] (Scheme 2.1) led to 

homogeneous reaction mixtures in THF. After Kugelrohr distillation of the product to 

remove crown ether and excess aminoalcohol, the aminoethers 3a, 3b and 3c were 

readily isolated, with negligible impurities present. NMR spectra of 3b are shown in 

Figure 2.1.  

Using the same modified etherification, commercially-available 4,4'-

bis(chloromethyl)-1,1'-biphenyl (2d) was converted to 3d as shown in Scheme 2.1.  
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Figure 2.1: NMR spectra of 3b: (i) Structure of (R,R)-3b; (ii) 300 MHz 1H-NMR spectrum; (iii) 75 MHz 
13C{1H}-NMR spectrum. Spectra recorded in CDCl3 (δH 7.26, δC 77) at 298 K. 

 

2.2.2 Ar-E-Ar linkers (3e-h) 

 

Scheme 2.2: Synthetic routes to Ar-E-Ar dibromide intermediates 2e-h, later incorporated into 
diamines 3e-h.  

The diamines of Scheme 2.1 containing an Ar-E-Ar linkage (3e-h) were furnished 

from the commercially-available compounds Ph-E-Ph (E = O, S, CH2, CH2CH2) via a 

halomethylation method similar to that described by Belfield and co-workers5, 6 i.e. 

using excess acidified formaldehyde/hydrobromic acid, to give dibromides 2e-h 

(Scheme 2.2). Various reaction conditions were attempted, and suitable parameters 

           (i) 

 

 

 

(ii) 

 

 

 

(iii) 
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determined via 1H-NMR study of crude products. It was found that optimal reaction 

conditions correlated with the π-electron donating ability of the central atom E, e.g. 

optimal temperature increased as E varied: alkyl > S > O. Washing with water followed 

by recrystallisation from toluene/n-hexane or toluene/DCM gave the desired product 

in 40-60 % yield. This method gave excellent regioselectivity, as illustrated by the 1H-

NMR spectrum (Figure 2.2) of 2e [bis-4-(bromomethyl)phenyl ether].  

 

 

Figure 2.2: 1H-NMR spectrum of 2e: (i) Structure of 2e [bis-4-(bromomethyl)phenyl ether]; (ii) 300 MHz 
1H-NMR spectrum of this product recorded in CDCl3 (δH 7.26) at 298 K. 

 

2.2.3 Dibenzofuran linker (3i) and fluorene analogue  

In order to develop rigid analogues of the Ar-E-Ar linkers, we considered the use of 

dibenzofuran, dibenzothiofuran, N-protected carbazole and fluorene systems. 

Attempts were made to extend the bromomethylation reaction described in the 

previous section. Of these, the dibenzofuran and fluorene systems were successful in 

giving single, suitable products with 2,8- and 2,7-substitution respectively (Scheme 

2.3). In the remaining systems, a mixture of products was observed by NMR 

spectroscopy, presumably because each aromatic ring has two competing para-

directing substituents. The dibenzofuran dibromide system 2i was smoothly converted 

to 3i (Scheme 2.1), but the fluorene derivative 2j gave an inseparable mixture of 

                    (i) 

 

 

 

(ii) 
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products, perhaps due to the relatively low pKa of the protons of the central methylene 

group (22.6 in DMSO).7 

 
 
Scheme 2.3: bis-Bromomethylation of dibenzofuran and 9H-fluorene to give single products; 2,8-
bis(bromomethyl)dibenzofuran (2i) and 2,7-bis(bromomethyl)-9H-fluorene (2j). 

 

2.2.4 Determining the optical purity of diamine systems 3a-b 

The -iminophenyl unit present in flexicate systems leads to very high levels of 

diastereoselection in those self-assembled products, as determined by NMR 

spectroscopy.8, 9 For the example of the S,S diamine, the presence of a small amount 

of the meso (R,S) compound might in principle lead to the formation of mesocate10  

i.e. ,[M2(R,S-L)3]
2+ (L = ditopic helicand). However, this would require a high 

level of meso-ligand self-selection; this is unlikely given that helication effects would 

lead to such a structure being very high energy. Hence this impurity is more likely to 

lead to the formation of other types of misassembled complex such as coordination 

polymers which would be detected by NMR spectroscopy. Further, at high levels of 

optical purity of S,S diamine, the presence of R,R compound is statistically unlikely. 

Nevertheless, and although we start with optically pure aminoalcohol, we do rely on 

the optical purity of the diamine in asserting the optical purity of the complex. 

Investigations of chiral HPLC analysis of these products, including a collaboration 

with a commercial analytical laboratory, had in the past proved fruitless, so we set out 

to determine optical purity by other means.  
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The diamines (R/S)-3a and (R/S)-3b were synthesised using racemic phenylglycinol. 

These mixtures could not be distinguished from the nominally optically pure products 

e.g. (R,R)-3a, by NMR spectroscopy. Therefore a chiral derivatisation method was 

employed,11 whereby samples of nominally S,S-, R,R- and racemic (i.e. S,S/R,R/S,R) 

diamine were converted to the corresponding diamides using (R)-(+)-Mosher’s acid 

(α-methoxy-α-trifluoromethyl-phenylacetic acid) and the products analysed by 1H-

NMR spectroscopy. The spectra for 3b isomers are shown in Figure 2.3. The diamide 

derivative of the racemic diamine gave two resonances in the ratio 1:1 (green line) 

indicating again that the stereogenic centres are isolated as far as can be determined 

by 1H-NMR spectroscopy at 400 MHz, but also that local diastereomeric units 

containing S- and R-amines could be distinguished via the 1H chemical shift of the 

methoxy group in (R)-(+)-Mosher’s acid. The diastereomeric diamides of (R,R)-3b 

(blue line) and (S,S)-3b (red line) gave essentially a single resonance for the OMe unit. 

Thus, the total enantiomeric excess of all amine-derived chiral centres could be 

measured for a given sample (found to be >98 % e.e.). These results suggest that the 

etherification and purification methods described in section 2.2.1 led to the production 

of optically pure diamine bridges without significant racemisation. 
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Figure 2.3: Determination of the optical purity of 3b systems through the synthesis of (R)-(+)-Mosher’s 
acid derivatives (i) - the structure of which is shown here with bridge-derived chiral centres highlighted *. 
Overlaid 400 MHz 1H-NMR spectra in CDCl3 are shown for three samples (ii); nominal (R,R)-3b derivative in 
blue, nominal (S,S)-3b derivative in red, and the derivative(s) of an 3b isomeric mixture in green.  Only the 
3-4 ppm region containing the δ = 3.25-3.40 shift corresponding to -OCH3 protons is shown. Spectra were 
recorded at 298 K. 

 

2.3 New Zn(II) Flexicates 

 

Scheme 2.4: Synthetic routes to class Ia flexicates ΔM-[M2La-i3]X4 from (R,R)-diamines, 3a-i. Complexes 
synthesised from two metal sources are discussed in this chapter: zinc(II) perchlorate, and iron(II) chloride. 
Corresponding ΛM flexicates were similarly synthesised from diamines (S,S)-3a-i. 

 

 

(i) 

 

 

 

 

 

(ii) 
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The synthesis of all class Ia flexicates of the type [Zn2L3][ClO4]4 followed the same 

method as previously reported for ΔZn-[Zn2La
3][ClO4]4, via (R,R)-3a (Scheme 2.4);1 

allowing the components 2-pyridinecarboxaldehyde [4] (6 eq.), the appropriate 

diamine bridge [3] (3 eq.), and zinc(II) perchlorate hexahydrate (2 eq.) to self-

assemble in acetonitrile at ambient temperature. Precipitation by addition of excess 

ethyl acetate and drying in vacuo gave the desired bimetallic species, with unoptimised 

yields of 50-80 %. These complexes were characterised by multinuclear NMR, mass 

spectroscopy, and microanalysis. Typical features of interest are discussed herein, 

with particular interest paid to those complexes where a single crystal suitable for 

XRD could be grown. It is worth noting that perchlorate salts pose an explosion risk, 

particularly when heated, and should therefore only used on a small scale and never 

exposed to excess heat. 

 

2.3.1 Xylenyl & biphenyl linkers: [Zn2La-d
3][ClO4]4 

Before introducing new class Ia flexicates, it is useful to review the prototype 

assembly, [Zn2La
3][ClO4]4 in the context of this chapter, as new structural 

comparisons can now be drawn. 

The cationic unit of the complex comprises two octahedral metal centres of similar 

configuration to our earlier monometallic self-assembling systems,8, 9 spanned by 

three p-xylenyl units. The crystal structure reported by Howson et al. (Figure 2.4) is 

intriguing for two main reasons (discussed below).  
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Figure 2.4: Structure of the cationic unit in ΔZn-[Zn2La3][ClO4]4·2CH3CN·3H2O·½CH3OH, reproduced 
from the work of Howson et al.1 Ellipsoids modelled at 50% probability. Hydrogen atoms, solvent molecules 
and counterions removed for clarity. Zn(II) ions are shown in pink, nitrogen atoms in blue, oxygen atoms in 
red, and carbon atoms in dark grey.  

Firstly, the bridging groups are seen to deviate considerably from threefold symmetry. 

Two distinct orientations are observed; (i) bridges containing O(1) and O(2) are more 

folded, with acute torsion angles (<70°) at C(19)-C(22)-O(2)-C(23) and C(16)-C(15)-

O(1)-C(14); (ii) the bridge containing O(3) in contrast traces effectively a linear transit 

between the Zn centres with a torsion angle at C(52)-C(51)-O(3)-C(50) of 173.9°. 

Nonetheless, the [Zn2La
3]

4+ complex is only slightly bent along the nominal C3 axis, 

with the angle between the two imine N atom [N(2)-N(3)-N(6)] planes being 8.2°.  

Secondly, although the complex displays overall axial chirality, the helicity of the 

bridging p-xylenyl groups opposes that of the metal coordination environments, giving 

a heterohelical structure. The pitch or ‘twist’ of the bridges along the nominal C3 axis 

may be measured by taking the torsion angles between two Zn-N(imine) bonds of the 

same ligand, along the Zn-Zn axis [e.g. N(6V)-Zn(1V)-Zn(1)-N(6)]. It was found that 

for the two folded bridges, this angle was 20.3°, whereas the more linear bridge was 

rotated by 63.3°. These angles characterise this metallohelix as being not particularly 
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twisted at all. By comparison, the poly-bipyridine ligands of Lehn’s archetypal Cu(I) 

helicate make ~180° rotation about the molecule’s long axis, per additional metal 

unit.12  

 

 

 

Figure 2.5: 1H-NMR spectrum of [Zn2La3][ClO4]4: (i) Structure of the assembled ΔZn flexicate (cationic unit) 
and its ligand, (R,R)-La. (ii) The 400 MHz 1H-NMR spectrum of this flexicate, reproduced from the work of 
Howson et al. (recorded at 298 K in d3-acetonitrile). 

In contrast with the low symmetry structure of [Zn2La
3]

4+ observed in the solid state, 

the solution NMR spectra of [Zn2La
3][ClO4]4 (Figure 2.5) and the analogue 

[Fe2La
3]Cl4 (Figure 2.15, vide infra) at room temperature indicate that the three 

ligands/bridges are equivalent on this timescale, suggesting either that the system is 

D3 symmetric or, perhaps more likely, that a dynamic structure exists in solution. 

Overall, it is clear that the p-xylenyl bridge provided by La does not induce optimal 

topography in the bimetallic, i.e. this is not an ideal helicands for the class Ia flexicate 

system. Indeed, it was recognised in the first publication of this type of molecule that 

helication was not a requirement here for diastereomerically pure self-assembly – 

hence the name “flexicate” was coined for this type of metallohelical structure.  

 (i) 

 

 

                                                                                        

 

 

(ii) 

 

 

 

 

 

 

 

 

 

 

(ii) 
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The m-xylenyl linkage of 3b gave the new flexicate, [Zn2Lb
3][ClO4]4. As for 

[Zn2La
3][ClO4]4,

1 the 1H-NMR spectrum (Figure 2.6) of this complex is consistent 

with a threefold symmetric complex; only a single set of ligand peaks are present. A 

striking feature of the 1H-NMR spectrum of this complex is the strongly downfield-

shifted singlet for the three isolated m-xylenyl protons which results from their 

orientation towards a deshielding environment at the centre of the complex (vide 

infra). This contrasts with the observations for a related m-xylenyl linked class Ib 

Zn(II) flexicate by Kaner et al.,2 which gave a number of conformers associated with 

orientations of the bridging units.   

   

 

Figure 2.6: 1H-NMR spectrum of [Zn2Lb3][ClO4]4: (i) Structure of the assembled ΔZn flexicate (cationic unit) 
and its ligand, (R,R)-Lb; (ii) 500 MHz 1H-NMR spectrum recorded in d3-acetonitrile at 298 K. 

Slow vapour diffusion of ethyl acetate into a concentrated acetonitrile solution of ΔZn-

[Zn2Lb
3][ClO4]4 afforded single crystals suitable for XRD.† The cationic unit of the 

                                                           
† Crystallographic data for this and other compounds discussed in this chapter were obtained and solved 
by Dr Guy Clarkson (University of Warwick). Tabulated crystallographic data for these complexes are 
included in the appendix. 
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compound, shown in Figure 2.7, crystallised in space group P21 along with four 

perchlorate counterions and two acetonitrile molecules. The octahedral Zn 

coordination environments of this structure are similar to those for [Zn2La
3][ClO4]4 

(vide supra) and all previous related structures, featuring the familiar inter-ligand π-π 

stacking interactions.  

 

Figure 2.7: Structure of the cation unit of ΔZn-[Zn2Lb3][ClO4]4·2CH3CN. Ellipsoids modelled at 50% 
probability. Hydrogen atoms, solvent molecules and counterions removed for clarity. Zn(II) ions are shown 
in pink, nitrogen atoms in blue, oxygen atoms in red, and carbon atoms in dark grey. 

The overall size and shape of [Zn2Lb
3]

4+ is more markedly folded or “concertinaed” 

than [Zn2La
3]

4+; the inter-metallic distance is substantially shortened (12.4 Å vs. 14.0 

Å) while the circumference of the molecule is increased, as evidenced by the average 

distance between the centroids of each xylenyl aromatic ring: 7.6 Å, vs. 6.3 Å for 

[Zn2La
3]

4+. Correspondingly the m-xylenyl bridge also folds with a more pronounced 

helical turn along the metal-metal axis: torsion angles between Zn-N(imine) bonds 

from the same ligand, along the Zn-Zn axis [e.g. N(6)-Zn(1)-Zn(2)-N(7)] range from 

100.9° to 101.0°. It should be noted however that as with [Zn2La
3]

4+ the P-helicity 



Daniel H Simpson | Chapter 2 

University of Warwick | Page 68 
 

generated by each Zn centre is inverted at the C-stereogenic centre such that the 

bridge units fold with M helicity. Hence, the structure is homochiral, but not 

homohelical.13 

The distortions from threefold symmetry observed in [Zn2La
3]

4+ are not so apparent in 

[Zn2Lb
3]

4+ and the conformations assumed by each Lb ligand are rather similar. For 

example all CPh-CH2-O-CH2 torsion angles [e.g. C(20)-C(22)-O(2)-C(23)], fall within 

the range 170-180°. The structure shows very slight bending along the nominal C3 

axis, with an angle between imine N atom planes [N(2)-N(6)-N(10) and N(3)-N(7)-

N(11)] of 9.4°, comparable to [Zn2La
3]

4+. 

The crystal structure of [Zn2Lb
3][ClO4]4 shows that all the m-xylenyl groups are 

oriented such that the C-H groups at C(21), C(57), and C(93) point towards the centre 

of the complex, in contrast to a structure detected in a related class Ib complex.2 Since 

the plane of each xylenyl group intersects this cavity, the centre of the complex is 

expected to be a rather deshielding environment as a result of the coinciding ring 

currents. This explains the unusually downfield-shifted 1H-NMR signals for these H 

nuclei as shown in Figure 2.6.  

In contrast to the above, the o-xylenyl system 3c formed a mixture of products on 

treatment with aldehyde and zinc perchlorate (see Figure 2.8). Evidently while the 

ligand Lc is formed, it is not suitably configured to form a bimetallic complex. 
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Figure 2.8: 1H-NMR spectrum of the attempted synthesis of [Zn2Lc3][ClO4]4 recorded at 298 K in d3-
acetonitrile, using a 500 MHz spectrometer. 

The biphenyl-linked diamine, 3d, gave the flexicate [Zn2Ld
3][ClO4]4. The 1H-NMR of 

this species shown in Figure 2.9 is consistent with the presence of a single, threefold 

symmetric complex. 

 

 

Figure 2.9: 1H-NMR spectrum of [Zn2Ld3][ClO4]4: (i) Structure of the assembled ΔZn flexicate (cationic unit) 
and its ligand, (R,R)-Ld; (ii) 500 MHz 1H-NMR spectrum recorded in d3-acetonitrile at 298 K. 

As may be expected given the structural similarity between 4,4'-substituted biphenyl 

and p-xylenyl linkers, the 1H-NMR spectrum of [Zn2Ld
3][ClO4]4 bears a closer 

resemblance to the 1H-NMR spectrum of [Zn2La
3][ClO4]4 (Figure 2.5) than of 

[Zn2Lb
3][ClO4]4. The biphenyl protons can be discerned in that spectrum, as a pair of 

mutually coupled doublets.  
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2.3.2 Ar-E-Ar linkers: [Zn2Le-h
3][ClO4]4  

Syntheses of Zn(II) flexicates [Zn2Le-h
3][ClO4]4 from diamine bridges 3e-h were 

attempted. The 1H-NMR spectra of the resulting species are shown in Figure 2.10. The 

spectra of ether-linked [Zn2Le
3][ClO4]4, thioether-linked [Zn2Lf

3][ClO4]4, and 

methylene-linked [Zn2Lg
3][ClO4]4 indicate the presence of effectively a single 

conformer in each case. However, the spectrum of ethylene-linked [Zn2Lh
3][ClO4]4 is 

marked out by the presence of numerous minor peaks alongside a series of major peaks 

corresponding to the target threefold symmetric flexicate.  

The effect of temperature upon the mixture present in [Zn2Lh
3][ClO4]4 was 

investigated through the use of variable temperature 1H-NMR studies. Spectra 

obtained in the temperature range 253 to 333 K (-20 to 60 °C), are shown in Figure 

2.11. At 253 K one major species with signals corresponding to the target threefold 

symmetric flexicate is apparent. Notably, the imine region shows three small peaks in 

the approximate ratio 1:1:1 (as indicated in Figure 2.11), which could indicate the 

presence of a minor species with three inequivalent sets of imine units.  
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Figure 2.10: 1H-NMR spectra of [Zn2Le-h3][ClO4]4: (i) Generic structure (ΛZn cationic unit) for these 
assembled flexicates and the generic structure [(S,S) isomer] of their ligands [Le-h]; 1H-NMR spectra of (ii) 
[Zn2Le3][ClO4]4; (iii) [Zn2Lf3][ClO4]4; (iv) [Zn2Lg3][ClO4]4; (v) nominally [Zn2Lh3][ClO4]4. Spectra recorded in 
d3-acetonitrile at 298 K, using a 500 MHz spectrometer. 

Other less well resolved minor peaks are also present. With increasing temperature 

these peaks broaden and increase in intensity relative to the imine peak for the major 

product, and by 333 K the lower symmetry compound is probably the most abundant. 
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There is also a pronounced broadening of peaks attributed to the higher symmetry 

species. These observations indicate that the two species are in equilibrium and that 

the rate of exchange increases with temperature, although even at 333 K, the rate is 

relatively slow on the NMR chemical shift timescale. It is worth noting that we cannot 

exclude the presence of species containing tetrahedral Zn(II) centres, since these 

would also be diamagnetic, although we have never observed such compounds 

previously in studies of this ligand type.     

 

Figure 2.11: Variable temperature 1H-NMR spectra of [Zn2Lh3][ClO4]4 in d3-acetonitrile. Spectra 
recorded at 20 K increments from 253 K (-20 °C) to 333 K (60 °C), using a 500 MHz spectrometer.   

Slow diffusion of ethyl acetate into a concentrated acetonitrile solution of thioether-

linked [Zn2Lf
3][ClO4]4, prepared by mixing samples of the two antipodes, afforded 

single crystals suitable for XRD. A structure belonging to the space group C2/c was 

obtained, with a unit cell containing four ΛZn, and four ΔZn [Zn2Lf
3]

4+ complexes, along 

with four counterions, five water molecules, and six acetonitrile molecules per 

complex. The ΛZn cationic unit observed in this structure, is shown in Figure 2.12.  
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Naturally, the longer bridge of [Zn2Lf
3]

4+ results in a longer complex than those 

xylenyl-linked examples discussed previously, with an inter-metal distance of 17.4 Å. 

Interestingly, the ‘hinge’ created by the sulfur atoms appears to aid the folding process 

by allowing the bridge to arch outwards, with the two flanking p-tolyl units able to 

orient separately, and furthermore allowing the bridge a remarkable twist along the 

metal-metal axis: torsion angles between Zn-N(imine) bonds from the same ligand 

range 167.3° to 179.1°. As a consequence of this arching of the bridge the sulfur atoms 

protrude from the helix and the system appears to have a larger circumference than 

earlier examples (S-S distances range 8.0 Å to 9.2 Å). The moderate variation in S-S 

distances of [Zn2Lf
3]

4+ are consistent with a slightly anisotropic structure, perhaps due 

in part to the bulkiness of the sulfur atoms, which could make a more symmetric 

arrangement sterically challenging.  

 
Figure 2.12: Structure of the ΛZn cation unit of [Zn2Lf3][ClO4]4·6CH3CN·5H2O. Ellipsoids modelled at 50% 
probability. Hydrogen atoms, solvent molecules and counterions removed for clarity. Zn(II) ions are shown 
in pink, nitrogen atoms in blue, oxygen atoms in red, sulfur atoms in yellow, and carbon atoms in dark grey. 

The structure does not appear to be distorted significantly from threefold symmetry; 

the C-S-C bond angles [e.g. C(19)-S(1)-C(22)] fall within a narrow range (103-104°), 

virtually identical to that measured for diphenyl sulphide.14 The CPh-CH2-O-CH2 
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torsion angles [e.g. C(25)-C(28)-O(2)-C(29)] range from 162° to 171°; slightly lower 

than the essentially antiperiplanar arrangement in meta-bridged [Zn2Lb
3]

4+ and within 

a smaller range than observed in the distorted structure, [Zn2La
3]

4+. An angle between 

imine N-atom planes [N(2)-N(6)-N(10) and N(3)-N(7)-N(11)] of 9.9° (comparable to 

[Zn2La-b
3]

4+ structures) is also supportive there being little torsional strain in this 

complex. 

 

2.3.3 Dibenzofuran linker: [Zn2Li
3][ClO4]4  

The (2,8-substituted) dibenzofuran linkage incorporated via 3i gave flexicate 

[Zn2Li
3][ClO4]4, the 1H-NMR spectrum of which is shown in Figure 2.13. 

 
 

 

Figure 2.13: 1H-NMR spectrum of [Zn2Li3][ClO4]4: (i) Structure of the assembled ΔZn flexicate (cationic 
unit) and its ligand, (R,R)-Li; (ii) 500 MHz 1H-NMR spectrum recorded in d3-acetonitrile at 298 K. 
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In the 1H-NMR spectrum of [Zn2Li
3][ClO4]4, resonance for the dibenzofuran 1- and 9-

H atoms a (Figure 2.13) appears at 9.0 ppm c.f. 7.8 ppm in the amine 3i (recorded in 

CDCl3). This large downfield shift arises, as in [Zn2Lb
3][ClO4]4 above, because these 

groups are directed toward the centre of the assembly. An additional similarity to the 

spectrum of [Zn2Lb
3][ClO4]4 is that large chemical shift differences were observed 

within each pair of diastereotopic methylene protons d and e.  

Slow diffusion of ethyl acetate into a concentrated acetonitrile solution of racemic 

[Zn2Li
3][ClO4]4, prepared by mixing samples of the two antipodes, afforded single 

crystals suitable for XRD. The compound crystallised in the space group P-1 and the 

unit cell contains two ΛZn, and two ΔZn [Zn2Li
3]

4+ complexes, counterions, four 

acetonitrile and six water molecules. The ΔZn cationic unit is shown in Figure 2.14.  

 

Figure 2.14: Structure of the ΔZn cation unit of [Zn2Li3][ClO4]4·CH3CN·1.5H2O. Ellipsoids modelled at 
50% probability. Hydrogen atoms, solvent molecules and counterions removed for clarity. Zn(II) ions are 
shown in pink, nitrogen atoms in blue, oxygen atoms in red, and carbon atoms in dark grey. 

The intermetallic distance in [Zn2Li
3]

4+ of 14.4 Å is rather smaller than that observed 

in the related structure [Zn2Lf
3]

4+ (17.4 Å), corresponding to a more compact 

concertina fold. Correspondingly the circumference is slightly larger, with distances 
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between ‘apex’ O atoms [O(11), O(14) and O(17)] falling into a narrow range (9.9-

10.1 Å). These three atoms form an approximate equilateral triangle, indicating high 

symmetry of the system. There is also a lack of distortion arising from ring strain: each 

CPh-CH2-O-CH2 torsion angle [e.g. C(142)-C(141)-O(10)-C(140)] falls into the range 

173-180° (effectively antiperiplanar). As alluded to above, one consequence of this 

efficient helication is that the CH groups at C(227) and C(230) are directed inwards 

leading to a strong downfield shift in the 1H-NMR spectrum. In addition, the angle 

between imine N atom planes [N(2)-N(6)-N(10) and N(3)-N(7)-N(11)] is 

exceptionally shallow at 3.3°. Torsion angles between Zn-N(imine) bonds from the 

same ligand, along the Zn-Zn axis range 159.8° to 162.5°, greater than [Zn2Lb
3]

4+ and 

less than [Zn2Lf
3]

4+, however this in line with [Zn2Li
3]

4+ having the intermediate inter-

metal distance of the three.  

 

2.4 New Water-Soluble Fe(II) Flexicates 

Water compatible systems suitable for antimicrobial screening were prepared by self-

assembly using adaptations of the method previously reported (Scheme 2.4).1 In all 

cases, enantiomers [Fe2L3]Cl4 were synthesised by heating 2-pyridinecarboxaldehyde 

[4] (6 eq.) and the appropriate diamine bridge [3] (3 eq.) with anhydrous iron(II) 

chloride (2 eq.) under reflux in methanol. Upon removal of volatiles under reduced 

pressure, the desired bimetallic product was obtained in high yield. The NMR spectra 

of [Fe2La
3]Cl4∙6H2O

1 obtained in this way are shown in Figure 2.15.  
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Figure 2.15: NMR spectra of [Fe2La3]Cl4∙6H2O: (i) Structure of the assembled ΛFe flexicate (cationic unit) 
and its ligand, (S,S)-La; (ii) 400 MHz 1H-NMR spectrum, showing the presence of water at 4.87 ppm; (iii) 100 
MHz 13C{1H}-NMR spectrum. Spectra recorded in d4-methanol (δH 3.31, δC 49) at 298 K.   

New [Fe2L3]Cl4 complexes were characterised via multinuclear NMR techniques, 

mass spectrometry, circular dichroism (CD) spectroscopy, microanalysis, thermo-

gravimetric analysis (TGA), IR and UV-visible spectroscopies. In addition, 

experiments were conducted to assess the suitability of these complexes as 

antimicrobial candidates, e.g. aqueous stability studies. Key observations, typical of 

this class, are included in this chapter. Full characterisation data sets are included in 

Chapter 6. 
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2.4.1 Structure 

1H and 13C NMR spectra of [Fe2L3]Cl4 species were similar to their [Zn2L3][ClO4]4 

counterparts, suggesting strong structural similarity. Typically, 1H-NMR spectra were 

slightly broader and contain a large peak at 4.87 ppm due to the presence of water of 

crystallisation. The NMR spectra of [Fe2Lb
3]Cl4 are shown in Figure 2.16.  

 

 

Figure 2.16: NMR spectra of [Fe2Lb3]Cl4∙6.5H2O: (i) Structure of the assembled ΛFe flexicate (cationic unit) 
and its ligand, (S,S)-Lb; (ii) 400 MHz 1H-NMR spectrum, showing the presence of water at 4.87 ppm; (iii) 100 
MHz 13C{1H}-NMR spectrum. Spectra recorded in d4-methanol (δH 3.31, δC 49) at 298 K.   

As for [Zn2Lc
3][ClO4]4, the o-xylenyl bridged complex, [Fe2Lc

3]Cl4, could not be 

isolated.  

Whilst NMR spectra of [Fe2Lh
3]Cl4 did not appear to be as complicated as its Zn(II) 

analogue, the 1H-NMR spectrum of this species was significantly broader than other 

compounds described in this section, although all peaks were in the usual ppm range 

(i) 
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and few impurities were detected (Figure 2.17). The 13C-NMR spectrum was assigned 

readily.  

 

 
 
Figure 2.17: NMR spectra of [Fe2Lh3]Cl4∙11.5H2O: (i) Structure of the assembled ΛFe flexicate (cationic 
unit) and its ligand, (S,S)-Lh; (ii) 400 MHz 1H-NMR spectrum, showing the presence of water at 4.87 ppm; 
(iii) 100 MHz 13C{1H}-NMR spectrum. Spectra recorded in d4-methanol (δH 3.31, δC 49) at 298 K.   

With the exception of [Fe2Lc
3]Cl4, each [Fe2L3]Cl4 Ia flexicate gave excellent 

electrospray-ionisation mass spectrometry (ESI-MS) data, whereby the [Fe2L3]
4+ 

complex could easily be discriminated. This is in contrast to the [Zn2L3]
4+ 

counterparts, where the tetracation was typically not observed by the same method. 

For example, ΛFe-[Fe2Lh
3]Cl4 gave a strong peak of m/z 521.9, corresponding to the 

molecular ion. High resolution ESI-MS analysis of this complex shown in Figure 2.18 

revealed that the isotopic peaks contributing to this signal are separated by ~0.25 mass 
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units, confirming a tetracationic charge and thus the dinuclear structure, as opposed to 

e.g. 8+ charged tetrahedral assemblies.15, 16  

 

Figure 2.18: High-resolution ESI mass spectrum of ΛFe-[Fe2Lh3]Cl4 (top) focusing on the peak 
corresponding to the [Fe2Lh3]4+ ion. For comparison, a simulated mass spectrum of a [Fe2Lh3]4+ ion assuming 
natural isotopic abundance (bottom), is also shown over the same m/z range. 

Circular dichroism spectra of pairs of flexicate enantiomers were recorded in water at 

a flexicate concentration of 0.03 mM. In each case it was found that these pairs of 

spectra were of equal magnitude, but of opposite sign to one another (i.e. a reflection 

in the horizontal axis), confirming that the flexicates are indeed produced in non-

racemic pairs of opposite configurations,17 as might be expected given the 

aforementioned optical purity of the incorporated diamines (section 2.2.4). The 

superimposed spectra of ΛFe- and ΔFe-[Fe2Lb
3]Cl4 are typical in this respect, and are 

shown in Figure 2.19 as an illustrative example. 
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Figure 2.19: Superimposed CD spectra of [Fe2Lb3]Cl4 enantiomers, showing them to be of equal 
magnitude and opposite sign. Both taken at a concentration of 0.03 mM in water. 

 

2.4.2 Water of Crystallisation 

 

Figure 2.20: Thermogravimetric analyses of both [Fe2Lb3]Cl4∙6.5H2O enantiomers, indicating a 
characteristic drop in mass as water of crystallisation is lost.   

The presence of water molecules in the [Fe2L3]Cl4 formulations is evident from the 

broad O-H stretching modes observed in FTIR spectra and the aforementioned strong 

H2O peak in the 1H-NMR spectra. Quantification of this water of crystallisation is 

necessary in order to deduce correct formula weights when calculating molarities, for 

example in spectroscopic and biomedical assays. In order to determine the water of 
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crystallisation present with sufficient accuracy, two principal techniques were used in 

tandem; microanalysis and thermogravimetric analysis (TGA).  

TGA data showed a significant mass loss between ambient temperature and 450 K, 

consistent with the loss of water of crystallisation, before further mass loss at higher 

temperature. The mass loss demonstrated by TGA, is shown for both [Fe2Lb
3]Cl4 

enantiomers in Figure 2.20. In that example, approximately 5.8 % of the mass 

(corresponding to 6.5 water molecules), is lost before the mass remaining reaches a 

plateau at around 400 K. It was found that these mass losses observed by TGA 

correlated well with the water of crystallisation predicted by microanalysis data, 

within the error limits of the two measurements. Microanalysis data for both 

[Fe2Lb
3]Cl4 enantiomers is shown in Table 2.1, where the formulation 

[Fe2Lb
3]Cl4∙6.5H2O (predicted by TGA) fits well with this data. 

Complex % C % H % N 

Fe2C108H102N12O6Cl4∙6.5H2O 63.75 

 

 

 

5.70 8.28 

ΔFe-[Fe2L
b

3]Cl4∙6.5H2O 63.66 5.83 8.09 

ΛFe-[Fe2L
b

3]Cl4∙6.5H2O 64.08 5.68 7.98 

 
Table 2.1: Theoretical and recorded microanalysis data for [Fe2Lb3]Cl4∙6.5H2O enantiomers. 

 

2.4.3 Aqueous solubility and stability 

The solubility and stability of test compounds in aqueous media are important 

considerations in the planning and interpretation of biomedical experiments. All 

[Fe2L3]Cl4 flexicates displayed excellent aqueous solubility, however, in more 

complex aqueous media such as those used in microbiology, precipitation occurred at 

higher flexicate concentrations, especially for larger complexes, such as the systems 

[Fe2Ld-h
3]Cl4. Therefore, where concentrated stock solutions were required (e.g. for 
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microbiological assays), those solutions were supplemented with methanol (typically 

10 % vol.). 

In order to assess the stability of flexicates in water, a panel of five flexicates was 

chosen and each made up to 50 μM in water and incubated for 28 days at 37 °C 

(average healthy human body temperature, and a commonly used temperature in 

biomedical experiments). The concentration of flexicate present was monitored at 

various time points by measuring the absorbance at a wavelength of 573 nm, 

corresponding to the peak maxima of the flexicate metal-to-ligand charge transfer 

(MLCT) band; an absorbance that is distinct and unique to the complex. The results 

are plotted graphically in Figure 2.21. It is obvious from this absorbance-time 

dependence data that [Fe2La
3]Cl4 and [Fe2Lh

3]Cl4 are relatively unstable in water, and 

this could be verified visually as the two initially purple solutions became pale yellow 

by the conclusion of the experiment. 

 

Figure 2.21: Decomposition of flexicates in water at 37 °C, from an initial concentration of 0.05 mM. 
Monitored using the absorbance at λ = 573 nm. Data sets normalised using the initial value (A573 at t = 0). 

Flexicates [Fe2Le
3]Cl4, [Fe2Li

3]Cl4, and particularly [Fe2Lb
3]Cl4, were relatively 

stable. The cause of this difference is likely a result of the structure and rigidity of the 
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cation, as observations made of [Zn2L3][ClO4]4 analogues marked La and Lh systems 

as being particularly asymmetric and dynamic, whereas Lb and Li systems were 

especially rigid. Nonetheless, each of the flexicates analysed were largely intact (>85 

%) after 24 hours.  

First-order kinetics appear to be the most common rate laws encountered in stability 

studies,18 whereby the loss of the starting material may be described using a simple 

exponential decay model (equation 2.1) containing two parameters; the initial quantity 

at t = 0 (denoted [A]0 here), and the rate constant, k.  

[𝐴] = [𝐴]0𝑒
−𝑘𝑡    Equation 2.1 

Whereas [A]0 is effectively an arbitrary choice made as part of the experimental setup, 

k is dependent on the stability of the compound under the conditions applied (solvent, 

temperature, etc.) and is the parameter that determines the half-life of the compound, 

as equation 2.1 can be manipulated in order to express the half-life (t1/2) as a function 

where k is the only variable (equation 2.2). 

𝑡1/2 =
ln(2)

𝑘
    Equation 2.2 

The first-order model described by equation 2.1 could be iteratively fitted to the decay 

profiles of [Fe2La
3]Cl4 and [Fe2Lh

3]Cl4, with minimal remaining residual error (R2 > 

0.97), in spite of the fact that the model does not account for absorptions caused by 

the breakdown products which accumulate over the course of hydrolysis. Rate 

constants, half-lives and coefficient of determination (R2) values for these models are 

tabulated in Table 2.2. OriginPro 9.1 software was used in fitting the model and 

calculating the parameters obtained. The exponential decay model could not be 

accurately fitted to the hydrolysis data of [Fe2Lb/e/i
3]Cl4, however. 



Daniel H Simpson | Chapter 2 

University of Warwick | Page 85 
 

Complex Apparent rate constant (day-1) Half-life (days) R2 

ΛFe-[Fe2L
a
3]Cl4 0.152 ± 0.005 4.549 ± 0.142 0.99 

ΛFe-[Fe2L
h

3]Cl4 0.198 ± 0.027 3.500 ± 0.473 0.98 

 
Table 2.2: Parameters obtained from the fitting of a First-order decay model (equation 2.1) to the 
hydrolysis data of [Fe2La3]Cl4 and [Fe2Lh3]Cl4. Rate constants and half-lives are shown with 95 % 
confidence intervals. The R-squared curve-fitting statistic is quoted to two decimal places. 

Complexes [Fe2Lb/e/i
3]Cl4 do appear to decay exponentially initially, but this slows or 

even halts at roughly 5-7 days; preventing the complexes from achieving 50 % loss 

over the course of the experiment, making a comprehensive analysis difficult. 

Analysis of the solutions after the conclusion of the experiment showed that there had 

been negligible fluctuation in the pH of these solutions throughout the duration of the 

experiment. However, as the solutions were sealed in order to prevent evaporation, 

there may have been a depletion of molecular oxygen, which may be necessary in 

breaking down the complexes via oxidative routes. It could therefore be postulated 

that [Fe2Lb/i
3]Cl4 require oxidative processes to occur in order for aqueous 

decomposition to proceed at an appreciable rate, though further investigation would 

be necessary in order to better understand the potential role of molecular oxygen in 

the aqueous decomposition of [Fe2L3]Cl4 class Ia flexicates.  

Ultimately, the process of aqueous decomposition for a multi-component, self-

assembled system is understandably a rather complex process, requiring several steps 

and perhaps alternative competing routes (e.g. ligand dissociation, oxidation), each of 

which could conceivably occur at different rates, and be individually influenced by a 

variety of factors. 
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2.5 Summary 

The progress in diamine design/synthesis described in this chapter allowed the 

development of a diverse range of new class Ia flexicates, and these have in turn been 

critical in understanding the effect the incorporated linker unit has upon the structure 

and assembly of the metallohelix. The improved synthetic route proved to be 

straightforward and easily adapted, making it foreseeably useful in any future 

investigation. 

While we know that helication19 is not a requirement for formation of the flexicate 

structures, it is perhaps not surprising to observe that some linker units work slightly 

against the helicity arising from the metal coordination units. This tends to cause 

distortion and asymmetry in the structures (e.g. [Zn2La
3]

4+,1  [Zn2Ld
3]

4+, and certain 

class Ib systems2). In contrast, for the current compounds m-xylenyl-bridged Lb and 

dibenzofuran-bridged Li appear to be excellent helicands for the formation of class Ia 

flexicates. This is evidenced in the resistance of flexicates [Fe2Lb
3]Cl4 and [Fe2Li

3]Cl4 

to aqueous decomposition, and the higher symmetry and large helical twist per unit of 

inter-metal distance that are observed in their [Zn2L3][ClO4]4 crystal structures, noting 

the order obtained: [Zn2Li
3]

4+ (11.2° Å-1) > [Zn2Lf
3]

4+ (10.0° Å-1) > [Zn2Lb
3]

4+ (8.1° 

Å-1) >> [Zn2La
3]

4+ (2.5° Å-1). 

Given the similarity in configuration between the linker units of Lb and Li, it is 

unsurprising that they have a similar effect on the geometry of the class Ia flexicates. 

Both linkers are effectively planar (dihedral angles between dibenzofuran aromatic 

ring planes are less than 6.5°) and the substituent CAr-CH2 bonds subtend angles of 

approximately 93.5° for 2,8-dibenzofuran,20 and 120° for m-xylenyl. As a result these 

linkers are both rigid and introduce a slight fold to the ligand. However, as this fold 
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becomes very sharp (o-xylenyl), the result is a poor helicand, Lc. It is likely that this 

sharper fold allows the ligand ready access to tetradentate binding modes (i.e. 

chelating a single metal centre), and would also disfavour the formation of [M2L3]
4+ 

systems for steric and electrostatic reasons in bringing the two metal centres much 

closer together than in the p- or m-xylenyl bridged systems. 

Class Ia flexicates with Ar-E-Ar linkers, where E is a single-atom connector, appeared 

to make reasonably effective helicands, e.g. note the aqueous stability of ether-linked 

[Fe2Le
3]Cl4. However, if this central group is 1,2-ethylene, the resulting ligand (Lh) is 

much more flexible due to the ability to rotate about the ethylene C-C bond, which 

allows access to a range of Ar-CH2-CH2-Ar conformations - from linear (trans-like) 

to the sharply bent (cis-like). As a result of the increased flexibility in Lh, the complex 

formed with Zn(II) exists as a number of species in solution, albeit with the threefold 

symmetric species being dominant at room temperature. Whilst the [Fe2Lh
3]Cl4 

complex did appear to be threefold symmetric by 1H-NMR, broad signals suggest there 

may be some dynamic processes occurring within the structure. A dynamic class Ia 

structure is reminiscent of observations made of the class Ia prototype, [Fe2La
3]Cl4, 

and it is therefore unsurprising that both of these flexicates displayed relatively poor 

aqueous stability compared to other class Ia flexicates. 
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Chapter 3 
Evaluation of Antimicrobial Activity  

 
3.1 Introduction  

Characterising the susceptibility of bacteria to candidate antimicrobial compounds in 

vitro is an essential part of the early discovery process.1 As outlined in Chapter 1, the 

assay commonly employed is the macro/microbroth dilution method for 

determination of minimum inhibitory concentration (MIC).1-3 This standardised 

method exposes the test organism to an incremental series of antimicrobial 

concentrations (typically in the range 1-128 µg/ml or lower).2, 4, 5 The MIC is defined 

as the lowest concentration required for complete inhibition of microbial growth 

over a set incubation period (typically 18-24 h). The MIC is also critical to the setup 

and/or interpretation of many other evaluations used to investigate antimicrobial 

activity (as will be described in this chapter).  

In this chapter, the new water-soluble class Ia flexicates, i.e. [Fe2La-i
3]Cl4, are 

screened initially against a small panel of microbes. The most active compounds 

against Gram-negatives are tested against a larger panel of clinically relevant 

pathogens. Other evaluations that are relevant to the mode-of-action (MOA) and/or 

clinical use are undertaken;1 (i) whether the complexes are bactericidal or 

bacteriostatic; (ii) the effect on membrane integrity; (iii) the influence on bacterial 

growth under various conditions; (iv) toxicity toward eukaryote models.  
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3.2 Initial Screening 

3.2.1 Determination of MICs by broth microdilution: protocol optimisation  

The method used in the Bolhuis laboratory (University of Bath) in a previous 

collaboration with the group was a useful starting point in developing our own 

protocols for determining MICs6, especially as they made use of an appropriate 

growth medium specifically formulated for susceptibility testing: cation-adjusted 

Mueller-Hinton broth (CAMHB).7 The constraints imposed upon the protocol to be 

used are that it must remain as true as possible to the standard procedure2, 5 and that 

it ought to closely reproduce the MIC data reported for [Fe2La
3]Cl4, as well as 

known antimicrobials. Ideally, the protocol should also be high-throughput. 

In order to create the range of solutions required, a 1280 µg/ml stock solution of the 

flexicate was prepared in water containing 10 % methanol by volume (in order to aid 

dissolution), which was diluted tenfold in CAMHB-culture as part of the assay to 

give the highest concentration tested, 128 µg/ml. This stock was repeatedly diluted 

twofold in CAMHB, allowing the standard 1-128 µg/ml range to be used in the 

assay, with ≤1 % methanol by volume remaining. Overnight cultures of either E. coli 

strain TOP10 (ATCC PTA-10989) or methicillin-resistant S. aureus strain USA300 

(ATCC BAA-1717) in CAMHB were diluted in the same medium to an cell 

concentration of 5 × 105 cfu/ml. 200 µl of 9:1 microbial culture/flexicate dilution, or 

appropriate control, were laid out onto a sterile 96-well plate (as in Figure 3.1, for 

example). After a 20 h incubation at 37 °C with gentle shaking, the plates were 

visually inspected, in order to determine the MICs.  

It was found that for ΔFe-[Fe2La
3]Cl4 and ΛFe-[Fe2La

3]Cl4, MICs against E. coli 

TOP10 matched those reported against E. coli MC4100, and likewise MICs against 
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(MRSA) S. aureus USA300 corresponded with those reported for S. aureus 

MRSA2526 (included as part of Table 3.1).  These MICs determined from 200 µl 

cultures on a 96-well plate were consistent with those determined with 1 ml. This is 

advantageous as a 96-well plate format allows a higher throughput determination of 

MICs: four compound/strain combinations may be run in triplicate, across a seven-

concentration range, with space for appropriate positive and negative controls 

respectively. An example of such a setup, where a single flexicate is screened against 

four strains is shown in Figure 3.1, where the demarcation between growth and 

inhibition, which marks out the MIC, can clearly be made out for each strain. Each 

plate was repeated to ensure that biological replicates were also performed as part of 

each determination. 

	

Figure	 3.1:	 Example	 of	 an	 MIC	 determination	 interpreted	 visually,	 using	 a	 96-well	 plate.	
Photographs	 taken	 before/after	 incubation	 have	 been	 annotated	 to	 show	 the	 setup	 and	 interpretation	
respectively.	In	this	example	a	single	flexicate	has	been	tested	at	concentrations	128-2	µg/ml	(descending	
down	the	plate)	against	four	strains,	each	in	triplicate.	Here,	MICs	of	4	µg/ml	(strain	A),	64	µg/ml	(strain	
B),	64	µg/ml	(strain	C),	and	8	µg/ml	(strain	D)	are	assigned.	Positive	(culture	only)	and	negative	(medium	
only)	controls	have	been	used	to	validate	results.	

 

MICs were also determined from the 96-well plate setup by monitoring the optical 

density (turbidity) at a wavelength of 600 nm (commonly abbreviated ‘OD600’) at set 

time intervals, using a plate reader, so that growth curves for each condition could be 

plotted. This was especially useful in cases where the demarcation between growth 



Daniel H Simpson | Chapter 3 

University of Warwick | Page 93 

and inhibition was difficult to determine by visual inspection alone. However, the 

use of a plate reader reduces the turnover of the assay, since only one plate can be 

incubated/monitored at a time. Growth curves produced from the MIC determination 

of kanamycin against E. coli TOP10 are shown in Figure 3.2, where there is an 

obvious distinction between the weak growth observed at half the MIC, and 

complete inhibition at the MIC. For each microbial strain used in this chapter, MICs 

were determined against the known antimicrobials, kanamycin and tetracycline (see 

Table 3.1). These determined values closely corresponded to MICs reported for 

representative E. coli and S. aureus strains.2 

 

Figure	3.2:	MIC	determination	of	kanamycin	against	E.	coli	TOP10,	using	growth	curves.	The	MIC	of	2	
µg/ml	(pink	squares),	can	be	confirmed	as	this	concentration	has	a	‘growth’	profile	identical	to	that	of	the	
negative	 control	 (black	 diamonds),	 whereas	 the	 next	 lowest	 concentration	 of	 1	 µg/ml	 (green	 circles)	
shows	weak	 growth.	 At	 0.5	 µg/ml	 (quarter	 the	MIC,	 blue	 triangles),	 the	 growth	 approaches	 that	 of	 the	
positive	 control	 (red	 inverted	 triangles).	 Error	 bars	 representing	 95	%	 confidence	 intervals,	 calculated	
using	replicates,	are	shown.	

	

3.2.2 MIC data and selectivity 

Following the above assessment of the protocol and confirmation of the earlier 

results, a slightly expanded panel comprising two representative Gram-negative and 

two Gram-positive species, was chosen for the initial screen against the entire new 

class Ia flexicate library. To accompany the Gram negative model organism,8 E. coli, 
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represented by the TOP10 strain, physiologically and genetically distinct P. 

aeruginosa (strain PAO1, ATCC 15692) was selected, due to its human 

pathogenicity and extensive inherent resistance to many established antimicrobials. 

This makes it a clinically relevant target.9 To expand on the previous Gram-positive 

model (S. aureus USA300), B. subtilis (strain 168, ATCC 6051) was selected since it 

is also an extensively studied Gram-positive species with significantly different 

physiology (and no direct clinical relevance) that is genetically unrelated to S. 

aureus.10 

The MICs determined against this panel of four microbial species are tabulated in 

Table 3.1. In addition to the water-soluble class Ia flexicates and antibiotic controls, 

representative subcomponents (i.e. starting materials and intermediates) of the 

flexicate systems were also screened against E. coli TOP10 and S. aureus USA300. 

Screening was not possible for the ligands and their corresponding diamines, due to 

their poor aqueous solubility. 

Generally ΛFe class Ia flexicates were more potent than their ΔFe counterparts, 

particularly against E. coli, though the differences were subtle i.e. 1-2 dilutions. This 

increased our confidence in the screening results since effectively pairs of 

independently synthesized compounds are being tested in parallel. This initial screen 

of class Ia flexicates demonstrates a range of activities, while notably we have 

recently shown that the related class Ib compounds have little if any antimicrobial 

activity.6, 11 
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  MIC/ µg/ml (µM) 
  Gram positive Gram negative 

Group Compound S. aureus  
USA300 

B. subtilis 
168 

E. coli 
Top10 

P. aeruginosa 
PAO1 

Class Ia ΛFe-[Fe2La
3]Cl4 8 (3.9) 2 (1.0) 4 (2.0) 64 (31.3) 

Flexicates ΔFe-[Fe2La
3]Cl4 8 (3.9) 1 (0.5) 8 (3.9) 128 (62.6) 

 ΛFe-[Fe2Lb
3]Cl4 16 (7.9) 4 (2.0) 2 (1.0) >128 (>60) 

 ΔFe-[Fe2Lb
3]Cl4 16 (7.9) 1 (0.5) 4 (2.0) >128 (>60) 

 ΛFe-[Fe2Ld
3]Cl4 32 (13.5) 8 (3.4) 64 (27.1) >128 (>60) 

 ΔFe-[Fe2Ld
3]Cl4 16 (6.8) 8 (3.4) 64 (27.1) >128 (>60) 

 ΛFe-[Fe2Le
3]Cl4 2 (0.8) 1 (0.4) 16 (6.7) 128 (53.9) 

 ΔFe-[Fe2Le
3]Cl4 16 (6.7) 2 (0.8) 32 (13.5) 128 (53.9) 

 ΛFe-[Fe2Lf
3]Cl4 16 (6.6) 4 (1.6) 64 (26.2) >128 (>60) 

 ΔFe-[Fe2Lf
3]Cl4 32 (13.1) 8 (3.3) 16 (6.6) >128 (>60) 

 ΛFe-[Fe2Lg
3]Cl4 16 (6.6) 8 (3.3) 64 (26.6) >128 (>60) 

 ΔFe-[Fe2Lg
3]Cl4 16 (6.6) 4 (1.7) 32 (13.3) >128 (>60) 

 ΛFe-[Fe2Lh
3]Cl4 32 (13.1) 8 (3.3) 64 (26.2) >128 (>60) 

 ΔFe-[Fe2Lh
3]Cl4 32 (13.1) 8 (3.3) 64 (26.2) >128 (>60) 

 ΛFe-[Fe2Li
3]Cl4 2 (0.8) 2 (0.8) 16 (6.6) 128 (52.8) 

 ΔFe-[Fe2Li
3]Cl4 2 (0.8) 2 (0.8) 16 (6.6) 128 (52.8) 

Antibiotics Kanamycin 1 (2.1) 0.5 (1.0) 2 (4.1) 16 (33.0) 

 Tetracycline 0.5 (1.1) 8 (18.0) 1 (2.3) 4 (9.0) 

Components Fe(II) gluconate >128 
(>250)  >128 

(>250)  

 Pyridine-2-
carboxaldehyde 

>128 
(>1000)  >128 

(>1000)  

Table	 3.1:	 In	 vitro	 antimicrobial	 activity	 (MICs)	 of	 class	 Ia	 flexicates	 and	 controls	 against	 four	
bacterial	strains.	MICs	quoted	in	µg/ml,	and	µM	in	parentheses. 

In terms of Gram-negative activity, while no compounds showed significant activity 

against P. aeruginosa, ΛFe-[Fe2Lb
3]Cl4 slightly exceeded the potency of ΛFe-

[Fe2La
3]Cl against E. coli  with MIC of 2 µg/ml - a result comparable to the 

established control antibiotics, despite the much higher molecular weight of the 

flexicate. Activity against and selectivity for Gram-negatives are desirable traits in 

anti-infective candidates since their outer membranes constitute a semi-permeable 

barrier (see Chapter 1 for more details), indicating lower membrane permeability and 
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antibiotic susceptibility, making them challenging therapeutic targets. Their 

restricted outer membrane permeability also often works in synergy with co-

determinant resistance mechanisms, such as efflux mechanisms, to bring about 

antimicrobial resistance (AMR).12 In contrast to the range of activities in E. coli and 

S. aureus, most complexes showed relatively high activity against B. subtilis, as 

discussed later in this chapter. 

	
Figure	3.3:	Gram-negative	selectivity	[S.	aureus	MIC/E.	coli	MIC]	of	class	Ia	flexicates	ordered	in	the	x-
axis	 by	 intermetallic	 distance	 (increasing	 left	 to	 right).	 A	 selectivity	 ratio	 of	 one,	 i.e.	 where	 there	 is	 no	
selectivity	for	either	organism,	is	marked	as	a	dashed	red	line.	Kanamycin	(KAN)	is	included	for	reference.		

In an attempt to assess and compare Gram-negative/Gram-positive selectivity, the 

ratios of the potency for each compound against E. coli/S. aureus are plotted in 

Figure 3.3. The complexes have been ordered in the x-axis according to their 

intermetallic distance using data from the crystal structures of the isostructural Zn(II) 

analogues (Chapter 2). It is apparent that the selectivity displayed by ΛFe-[Fe2Lb
3]Cl4 

is rather unique among the active compounds in the series. The compound ΛFe-

[Fe2La
3]Cl4 is the nearest competitor with a marginal selectivity for the Gram-
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negative as previously reported.6 The compound ΔFe-[Fe2Lf
3]Cl4 is reasonably 

selective but has low activity.  

 
Figure	 3.4:	 Gram-negative	 selectivity	 [B.	 subtilis	MIC/E.	 coli	MIC]	of	 class	 Ia	 flexicates	ordered	 by	
intermetallic	distance	(increasing	left	to	right).	A	selectivity	ratio	of	one,	 i.e.	where	there	is	no	selectivity	
for	 either	 organism,	 is	 marked	 as	 a	 dashed	 red	 line.	 Kanamycin	 (KAN)	 is	 included	 in	 both	 graphs	 for	
reference.		

Gram-negative selectivity may also be assessed by plotting the ratios of the MICs for 

each compound against E. coli/B. subtilis, as shown in Figure 3.4. In doing so, it 

would appear that most class Ia flexicates show a selectivity for Gram-positive B. 

subtilis over E. coli, however, it is likely that the low values of Gram-negative 

selectivity suggested by this ratio are predominantly a consequence of the broad 

antimicrobial sensitivity of B. subtilis in liquid.13 Nevertheless, it serves to further 

illustrate the unique activity of ΛFe-[Fe2Lb
3]Cl4 as the only compound with a lower 

MIC against E. coli TOP10 than B. subtilis 168.  

In grouping complexes by size in Figures 3.3 and 3.4, it becomes apparent that there 

is stronger selectivity for E. coli amongst the short flexicates with xylyl bridges - 

particularly ΛFe-[Fe2Lb
3]Cl4. It is also evident that in complexes [Fe2Le

3]Cl4 and 
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[Fe2Li
3]Cl4 where the ligand contains a central ether O atom protruding from the 

structure, that the selectivity is strongly reversed, making these examples quite 

Gram-positive selective by this metric. Much longer structures without protruding 

ether O atoms displayed both lower selectivity and very modest activity, making 

them poor antimicrobial candidates. 

 

3.2.3 Microbial lethality 

It is common practice to assess whether the antibacterial activity exhibited by a 

compound or class of compounds is predominantly bacteriostatic (reversible 

inhibition of bacterial growth), or bactericidal (bacterial killing). This is useful for 

judging clinical relevance and for understanding the MOA.14, 15 For example, efforts 

made to understand the lethality of proposed Ru(II) antimicrobial metallodrugs were 

discussed in Chapter 1.16, 17 The common method employed is to determine minimal 

bactericidal concentrations (MBCs), and to contrast these against the observed MICs. 

Such a determination is usually performed in the immediate aftermath of an MIC 

determination, whereby attempts are made to culture viable organisms that have been 

exposed to drug concentrations at and above the MIC, on an antimicrobial-free 

medium. The MBC is usually defined as the concentration where effective 

eradication (>99.9 %) of viable cells occurs. 

MBCs were determined for class Ia flexicates against E. coli TOP10 and S. aureus 

USA300 (see Table 3.2), by attempting to recover viable cells by centrifugation from 

the relevant wells of a completed MIC determination assay, re-suspending the 

bacterial pellet in sterile phosphate buffered saline (PBS), and plating onto sterile 

lysogeny broth (LB) agar plates. After incubating these plates overnight at 37 °C, the 

lowest concentration where viable cells could not be recovered was determined to be 
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the MBC. Flexicates gave MBC/MIC ratios mostly in the range 1-2 against both 

species, making these complexes by definition, bactericidal (MBC/MIC ≤ 4).1 

 S. aureus USA300 E. coli Top10 

Compound MBC  
(µg/ml) 

MBC 
MIC 

MBC 
(µg/ml) 

MBC 
MIC 

ΛFe-[Fe2La
3]Cl4 16 2 8 2 

ΔFe-[Fe2La
3]Cl4 16 2 16 2 

ΛFe-[Fe2Lb
3]Cl4 32 2 8 4 

ΔFe-[Fe2Lb
3]Cl4 32 2 16 4 

ΛFe-[Fe2Ld
3]Cl4 32 1 64 1 

ΔFe-[Fe2Ld
3]Cl4 32 2 64 1 

ΛFe-[Fe2Le
3]Cl4 2 1 32 2 

ΔFe-[Fe2Le
3]Cl4 16 1 32 1 

ΛFe-[Fe2Lf
3]Cl4 16 1 128 2 

ΔFe-[Fe2Lf
3]Cl4 32 1 32 2 

ΛFe-[Fe2Lg
3]Cl4 32 2 64 1 

ΔFe-[Fe2Lg
3]Cl4 16 1 64 2 

ΛFe-[Fe2Lh
3]Cl4 32 1 64 1 

ΔFe-[Fe2Lh
3]Cl4 32 1 128 2 

ΛFe-[Fe2Li
3]Cl4 2 1 32 2 

ΔFe-[Fe2Li
3]Cl4 8 4 32 2 

	
Table	3.2:	In	vitro	bactericidal	activity	(MBCs)	of	class	Ia	flexicates	against	E.	coli	TOP10	and	S.	aureus	
USA300.	MBCs	quoted	in	µg/ml,	and	as	a	multiple	of	the	corresponding	MIC. 

In order to investigate the rate of bacterial killing, time-kill curves were plotted, 

following a similar method to that described by Bolhuis et al.16 Overnight E. coli 

cultures were diluted in CAMHB (50 ml) to a cell concentration of approximately 

106 cfu/ml. Compound was added and samples were taken at regular intervals during 

37 °C incubation. For removal of the compound from samples, cells were collected 

by centrifugation and re-suspended in sterile PBS. The viable count was determined 

by plating serial dilutions, allowing the cfu/ml to be calculated at each time point. 

Attention was focussed upon the key relationship between the lead anti-Gram 
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negative compound, ΛFe-[Fe2Lb
3]Cl4 , and the Gram-negative model, E. coli TOP10. 

Figure 3.5 compares several time-kill curves using different concentrations of ΛFe-

[Fe2Lb
3]Cl4. As expected, the number of viable cells present is shown to decrease in 

correlation with the concentration of ΛFe-[Fe2Lb
3]Cl4 (dose dependent), and the 

decrease becomes more pronounced the longer the cells are incubated with the 

compound. 

 

Figure	 3.5:	 Time	 kill	 curves	 of	 E.	 coli	 TOP10	 in	 the	 presence	 or	 absence	 of	 ΛFe-[Fe2Lb3]Cl4.	 The	
vertical	axis	has	been	scaled	logarithmically.	Error	bars	representing	95	%	confidence	intervals,	calculated	
using	replicates,	are	shown. 

It is evident from the time-kill assays that the compound is fast acting, taking around 

1 h to reduce the number of viable cells tenfold at 8 µg/ml, the observed MBC for 

this complex against E. coli TOP10. However, across the concentration range tested 

(including the control), it appears the viable cell count is unaffected at t = 20 min, 

suggesting that there is some initial delay in the action, comparable to the optimal E. 

coli dividing time. A delay, where cells are not initially in logarithmic phase, have 

been described for the killing kinetics of β-lactam antibiotics, as growth models of 

time-kill curves typically account for this.18, 19 Contrastingly, the reports by Ooi et al. 
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of their antimicrobial quaternary amine/porphyrin ‘XF’ platform showed those 

agents to rapidly kill S. aureus without delay, at concentrations above the MIC and 

under a range of growth conditions.20 

At 2 µg/ml of ΛFe-[Fe2Lb
3]Cl4, the viable count stays relatively stable throughout the 

experiment, confirming the measured MIC, whereby rates of cell growth and death 

are roughly equivalent. This also shows that the observed MIC is stable to changes in 

the volume of the culture used. 

 

3.3 Cell Membrane Integrity 

When bactericidal activity is observed for a proposed antimicrobial agent, it is 

prudent to make an assessment of the effect it has on the bacterial cell membrane, to 

establish if cell lysis is the major cause of the observed loss in bacterial viability. 

Although antimicrobial agents that target cell wall synthesis (e.g. β-lactams21) or 

specifically disrupt the prokaryote membrane (e.g. pore-forming antimicrobial 

peptides22) may cause cell lysis, there are many compounds, including many 

biocides, that will nonspecifically compromise the integrity of the bacterial cell 

membrane, causing, or at least contributing to, cell death. Direct osmotically driven 

cell lysis (i.e. detergency) is not a desirable property for a drug molecule to have, as 

this will usually correspond to a lack of prokaryotic specificity, leading to an acute 

toxic effect in mammals.23 

In order to assess the effect of class Ia flexicates on the cell membrane integrity of 

bacteria, we employed the commercially available, high-throughput BacLight™ 

LIVE/DEAD assay (Invitrogen).24 This fluorescence assay scores cells as ‘live’ 
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(intact) or ‘dead’ (membrane compromised), using two fluorescent DNA binders: 

SYTO-9 and propidium iodide. Used alone, SYTO-9 labels all bacteria in a 

population, however, when both dyes are present, propidium iodide penetrates only 

bacteria with damaged membranes and causes a reduction in the SYTO-9 stain 

fluorescence.25 After incubation of these dyes in 1:1 ratio with bacterial cells (to give 

200 µl total), the fluorescence emission from excitation at wavelength 470 nm, is 

predominantly red (λmax ≈ 630 nm) for ‘dead’/compromised cells, and green (λmax ≈ 

530 nm) for ‘live’/intact cells. The green/red emission ratio is therefore proportional 

to the percentage of ‘live’/intact cells in the entire sample; a simple calibration curve 

is used to translate fluorescence output into the % cell integrity for a given sample. 

These curves were generated using control samples: untreated cells (100 % intact), 

cells treated with isopropanol, washed and re-suspended in saline solution (0 % 

intact), and intentional mixtures of these to give samples at 10, 50, and 90 % intact 

respectively. A typical calibration curve is shown in Figure 3.6. Ampicillin, (a 

peptidoglycan synthesis inhibitor) was also used as an antibiotic control, at a 

clinically-relevant concentration of 4 µg/ml, the E. coli MIC.2 

 

Figure	3.6:	A	typical	BacLight™	assay	calibration	curve	plotting	the	fluorescence	output	ratio	of	control	
samples	comprising	0,	10,	50,	90,	and	100	%	‘live’/intact	E.	coli	TOP10	cells,	respectively.	A	linear	model	
has	been	fitted	by	linear	regression,	plotted	here	as	a	red	line.	Output	parameters	are	tabulated	under	the	
curve.	



Daniel H Simpson | Chapter 3 

University of Warwick | Page 103 

Either S. aureus USA300 or E. coli TOP10 cells grown to stationary phase in LB 

were collected by centrifugation, washed twice and then re-suspended in sterile 0.9 

% saline solution to OD600 = 0.2. Enantiomers of [Fe2La
3]Cl4 and [Fe2Lb

3]Cl4 

respectively were incubated with the cells either at the appropriate MIC or at [4 × 

MIC], as recommended by Chopra,26, 27 for 45 minutes (37 °C). After a further 15 

min room-temperature incubation with the BacLight™ preparation (in darkness), the 

fluorescence output was measured at 530 nm and 630 nm respectively, from 

excitation at 485 nm. The calculated % membrane integrity is tabulated in Table 3.3. 

Saline solutions of flexicates (10-100 µg/ml) were not observed to emit any 

significant fluorescence output when irradiated with light of wavelength 470 nm, 

suggesting the compounds themselves do not contribute to false-positive/negative 

results.  

 % Membrane Integrity 

 S. aureus USA300 E. coli TOP10 

Compound 1 × MIC 4 × MIC 1 × MIC 4 × MIC 

ΛFe-[Fe2La
3]Cl4 91.0 ± 4.9 

(8 µg/ml) 
75.6 ± 1.9 
(32 µg/ml) 

100.0 ± 2.0 
(4 µg/ml) 

100.0 ± 0.8 
(16 µg/ml) 

ΔFe-[Fe2La
3]Cl4 93.8 ± 3.4 

(8 µg/ml) 
82.8 ± 1.2 
(32 µg/ml) 

100.5 ±1.0 
(8 µg/ml) 

92.0 ± 1.6 
(16 µg/ml) 

ΛFe-[Fe2Lb
3]Cl4 85.6 ± 10.0 

(16 µg/ml) 
15.1 ± 0.8 
(64 µg/ml) 

100.5 ± 8.9 
(2 µg/ml) 

96.7 ± 5.7 
(8 µg/ml) 

ΔFe-[Fe2Lb
3]Cl4 80.8 ± 3.6 

(16 µg/ml) 
14.5 ± 2.2 
(64 µg/ml) 

99.1 ± 8.3 
(4 µg/ml) 

95.7 ± 3.2 
(16 µg/ml) 

Ampicillin 97.3 ± 3.3 
(4 µg/ml) 

93.2% ± 6.2 
(4 µg/ml) 

	
Table	3.3:	Percentage	membrane	 integrity	of	S.	aureus	and	E.	coli	exposed	to	 flexicates	 [Fe2La3]Cl4	
and	 [Fe2Lb3]Cl4	 for	 45	minutes,	 either	 at	 the	 corresponding	MIC,	 or	 4	 ×	 MIC.	 Error	 representing	 95	%	
confidence	 intervals,	 calculated	 using	 replicates,	 are	 quoted.	 Absolute	 concentrations	 in	 μg/ml	 are	
included	for	reference,	in	parentheses.	

The data obtained from the application of the BacLight™ assay suggest that, in spite 

of their bactericidal effect noted in MBC/MIC values and E. coli time-kill curves of 

ΛFe-[Fe2Lb
3]Cl4, the lead class Ia flexicate tested, did not cause significant 
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membrane damage to E. coli TOP10, and only caused significant damage to S. 

aureus USA300 (against which they were less active) at substantial concentrations. 

This would imply that these flexicates do not act as lytic agents at lower 

concentrations (<30 µg/ml), at least when tested against stationary phase E. coli and 

S. aureus. Ampicillin at 4 µg/ml gave little or no cell lysis, especially against the β-

lactam-resistant S. aureus USA300. Ooi et al. observed similar negative results from 

a shorter 10 min exposure of S. aureus SH1000 to the peptidoglycan synthesis 

inhibitor, vancomycin.26 On the other hand, those researchers also observed 

extensive cell lysis for other membrane-disruptive agents including nisin28 and 

cetyltrimethyl-ammonium bromide29 (CTAB). 

 

3.4 Screening Against Pathogenic Gram-Negative Bacteria 

3.4.1 MIC determination and choice of strains 

The initial screening described in section 3.2 identified lead anti-Gram-negative 

compounds. Model laboratory strains (e.g. E. coli TOP10) were included in the 

initial screen, as they are presumed to be adequate representatives of their parent 

genus and due to their low hazard category, may be easily handled, making them 

ideal for rapid screening of a large library. However, in being cultivated for efficient 

and safe laboratory use over many generations, such model strains have often lost 

many characteristics of wild-type/pathogenic strains of the same parent species.30, 31 

Therefore we proceeded to screen our leading class Ia flexicates against more 

recently isolated clinically relevant Gram-negative strains. Two categories of Gram-

negative pathogens were chosen: pathogenic E. coli, and Gram-negative species 

belonging to the so-called ESKAPE pathogens9, 32, 33 - Klebsiella pneumoniae, 
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Acinetobacter baumannii, and Enterobacter species (Pseudomonas aeruginosa 

having already been included in the initial screen). It should be noted that the 

majority of the strains described herein are classified as biosafety hazard group 2 by 

relevant authorities,34 and must be handled appropriately.  

Pathogenic E. coli strains may be grouped according to the symptoms that they 

manifest during infections of a human host. For example, enterohemorrhagic E. coli 

(EHEC) strains, most notably strains of the serotype O157:H7, cause acute 

haemorrhagic diarrhoea, whereas uropathogenic E. coli (UPEC) strains are 

responsible for many urinary tract infections (UTIs). We focussed our attention upon 

EHEC O157:H7 strains Sakai (ATCC BAA-460) and EDL933 (ATCC 700927), 

UPEC	O6:H1:K2 strain CFT073 (ATCC 700928), and an archetypal K12 E. coli 

strain, MG1655 (ATCC 700926) that, in spite of being a laboratory strain, has 

undergone minimal genetic manipulation making it a more appropriate control strain 

than TOP10. A useful physiological and genomic comparison of these four strains 

may be found in the work of Brzuszkiewicz et al.35 

Amongst Gram-negative ESKAPE pathogens, four clinical isolate strains were 

chosen; K. pneumoniae strains K6 (ATCC 700603), widely used in susceptibility 

testing and exhibiting extended spectrum β-lactam resistance,36 and KP02 (NCTC 

13442), which exhibits carbapenem resistance via the OXA-48 β-lactamase;37 an A. 

baumannii reference strain (NCTC 13420) associated with a multidrug resistant 

outbreak in the UK;38, 39 E. cloacae strain 684 (NCTC 13405) that exhibits extended 

spectrum β-lactam resistance via the AmpC β-lactamase.40 

MICs were determined for the class Ia flexicates with leading Gram-negative 

activity, [Fe2La
3]Cl4 and [Fe2Lb

3]Cl4 enantiomers respectively, as well as control 
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antibiotics, against the panel of Gram-negative pathogens using the assay outlined in 

section 3.2.1. The results obtained are listed in Table 3.4. Species of the family 

Enterobacteriaceae (E. coli, K. pneumoniae, and E. cloacae) generally exhibited 

promising susceptibility (MICs of 2-8 µg/ml) to the flexicates tested, especially the 

lead compound indicated by the initial screen, ΛFe-[Fe2Lb
3]Cl4, which frequently 

demonstrated higher µg/ml activity than the controls. Of particular note was the 

activity of this compound against EHEC O157:H7 strains (Sakai and EDL933) that 

matched the activity versus E. coli TOP10. Remarkably, of the E. coli strains tested, 

the lab strain MG1655 demonstrated the least susceptibility.  
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Class Ia ΛFe-[Fe2La
3]Cl4 8 16 4 16 8 32 64 64 

Flexicate ΔFe-[Fe2La
3]Cl4 32 16 16 32 128 128 128 64 

 ΛFe-[Fe2Lb
3]Cl4 8 4 2 2 4 64 8 64 

 ΔFe-[Fe2Lb
3]Cl4 8 4 4 4 8 128 16 64 

Antibiotic Kanamycin 2 8 4 4 64 >64 2 >64 

 Tetracycline 2 4 4 4 16 32 4 >64 

Table	 3.4:	 In	 vitro	 antimicrobial	 activity	 (MICs)	 of	 leading	 class	 Ia	 flexicates	 against	 pathogenic	
Gram-negative	strains.		Kanamycin	and	tetracycline	controls	are	also	included	for	reference. 

Taking both screens into account, it is evident that class Ia flexicates are not 

especially active against species of the order Pseudomonadales (P. aeruginosa, A. 

baumannii), or against K. pneumoniae strain KP02. The latter case is particularly 

intriguing as it is in stark contrast to the susceptibility exhibited by the other K. 

pneumoniae strain tested, K6. This would seemingly indicate that the mechanism of 

carbapenem resistance in KP02 also conveys cross-resistance to class Ia flexicates. If 
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that is the case, it would be an unusual example of resistance to an established 

antibiotic offering cross-resistance to an entirely anthropogenic compound. 

Similarity in behaviour to clinically accepted antibiotics supports the notion that the 

action of an antimicrobial agent is of a specific nature. 

Of additional note is that what little susceptibility P. aeruginosa, A. baumannii, and 

K. pneumoniae KP02 do show, is higher for our initial ‘hit’ compound, ΛFe-

[Fe2La
3]Cl4, rather than ΛFe-[Fe2Lb

3]Cl4. This may indicate that the target site is 

different for these strains, or that there is a difference in membrane interactions, 

leading to increased exclusion and/or expulsion from the cell. The latter hypothesis 

would fit with observations that intrinsic and adaptive AMR mechanisms in species 

of the order Pseudomonadales are often associated with the cell membrane and the 

permeability thereof. These mechanisms involve various components such as the 

membrane and LPS layer themselves, as well as porins and efflux pump proteins that 

control cellular ingress/egress respectively.41-44 Compellingly, many OXA-48 

positive K. pneumoniae clinical isolates, of which KP02 (NCTC 13442) is one, are 

known to augment β-lactamase activity with loss or down-regulation of certain outer 

membrane porins (notably OmpK35 and OmpK36) as part of their AMR.45-48 Given 

the much lower susceptibility of K. pneumoniae KP02 to the leading flexicates 

compared with the K6 strain, this would again support the hypothesis that interaction 

of flexicates with the cell membrane is a key factor in their mode of action, if indeed 

KP02 exhibits lower susceptibility as a result of porin deficiency. It is also worth 

noting that Pseudomonas and similar bacteria can produce a polysaccharide capsule 

(alginate) that is strongly anionic, and so could absorb and neutralise cationic 

antimicrobial agents.49 
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Nonetheless, the activity trends observed in Tables 3.1 and 3.4, suggest that there is a 

specificity to the action of class Ia flexicates, including the lead compound, ΛFe-

[Fe2Lb
3]Cl4. Given the particularly strong activity this compound has against EHEC 

O157:H7 strains, further experiments were therefore conducted to further investigate 

the activity of ΛFe-[Fe2Lb
3]Cl4 against the EHEC O157:H7 strain, Sakai. 

 

3.4.2 Lead compound effect upon E. coli Sakai 

In order to investigate the kinetics involved in the action of ΛFe-[Fe2Lb
3]Cl4 against 

E. coli Sakai, the MIC was re-measured with a single alteration to the protocol; the 

plate was incubated at 30 °C rather than the standard 37 °C. The reduced temperature 

has numerous effects, including; (i) reducing the kinetics of microbial growth; (ii) 

slowing the interactions that underlie the bactericidal MOA; (iii) reducing membrane 

fluidity, which may affect rate of compound ingress; (iv) reducing gene expression 

and enzyme kinetics, ultimately slowing the bacterial response. Under these 

conditions, the MIC shifted from 2 to 4 µg/ml. This suggests that the potency of the 

compound is linked to the rates of the various processes involved. 

To further examine whether the bactericidal MOA of ΛFe-[Fe2Lb
3]Cl4 necessitates 

active growth of E. coli, an experiment was established to investigate whether ΛFe-

[Fe2Lb
3]Cl4 exposure during stationary phase causes a decrease in the viability of E. 

coli Sakai. Cultures of E. coli Sakai were grown overnight to stationary phase, 

collected by centrifugation, and re-suspended to an OD600 of 0.1, in 20 ml PBS 

containing 8 µg/ml (MBC, 4 × MIC) ΛFe-[Fe2Lb
3]Cl4, before incubation for a further 

three hours at 37 °C. Cells were subsequently harvested by centrifugation and 

washed twice in clean sterile PBS. The final cell pellet was re-suspended to an OD600 

of 0.01 in 50 ml CAMHB. These cultures were incubated at 37 °C and monitored for 
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growth by taking periodic OD600 measurements and viability counts over five hours. 

This data is plotted in Figure 3.7, alongside positive and negative (20 vol% iso-

propanol) controls. 

 

Figure	 3.7:	 Growth	 of	E.	 coli	 O157:H7	 Sakai	 after	 exposure	 to	 ΛFe-[Fe2Lb3]Cl4	 at	 (4	 ×	MIC)	 during	
stationary	phase,	followed	by	washing	and	resuspension	in	CAMHB.	Data	compared	to	a	positive	control	
containing	no	compound,	and	incubation	with	the	known	lytic/cidal	agent,	 isopropanol	(20	vol%).	OD600	
measurements	(solid	 lines)	and	viability	counts	(dotted	lines)	are	shown.	Viability	counts	are	not	shown	
for	isopropanol,	as	no	viable	cells	could	be	recovered.	Error	bars	representing	95	%	confidence	intervals	
are	shown,	calculated	using	replicates.	

Although at a slower rate than the positive control, Figure 3.7 clearly shows that E. 

coli Sakai grows with near normal kinetics despite the long exposure to (4 × MIC) 

ΛFe-[Fe2Lb
3]Cl4 during stationary phase, once the flexicate is removed. A minor 

deviation from the positive control growth rate suggests limited cell death has 

occurred. This lack of cell death observed by this treatment is in contrast to the rapid 

killing seen for the same concentration of ΛFe-[Fe2Lb
3]Cl4, in Figure 3.5, where the 

compound was present during log phase. It should be noted that the lack of 

bacteriocidal action in stationary phase cells is in agreement with the BacLight™ 
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assay data, which suggested negligible membrane damage at lower concentrations, 

since this assay requires cells to be in stationary phase. 

 

3.5 Eukaryote Toxicity 

Efforts to advance from in vitro antimicrobial screening towards in vivo screening in 

mammalian models can be expedited and de-risked by first attempting to 

understanding the in vitro toxicity of the compounds to mammalian cell lines, and 

lower metazoan animals such as insects. 

 

3.5.1 Insect model   

To assess the general toxicity of class Ia flexicates towards a metazoan animal, a 

straightforward toxicity assay was employed by Dr Nicholas Waterfield and co-

workers (Microbiology and Infection Division, University of Warwick) using 

Galleria mellonella larvae: commonly called “wax worms”, which have been shown 

to be a useful model organism for in vivo toxicology and pathogenicity testing, 

making them an alternative to small mammals in early experiments.50, 51  
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Figure	3.8:	G.	mellonella	larvae	injected	with	solutions	of	various	flexicates,	to	a	bodily	concentration	
of	roughly	32	µg/ml,	and	incubated	for	five	days.	The	control	(PBS	only	injection)	is	shown	in	the	centre. 

Solutions of leading class Ia flexicates, [Fe2La-b
3]Cl4 enantiomers, in PBS (10 µl) 

were carefully injected into the open blood system of cohorts of G. mellonella 

larvae. Larval masses varied slightly but were typically 250 mg, a value that was 

subsequently used to calculate treatment doses, to give a bodily concentration of 32-

64 µg/ml. After the initial injection, larvae (ten per condition), including negative 

controls injected with PBS only, were incubated over five days while being 

examined and scored daily, for survival. Figure 3.8 shows several example plates of 

G. mellonella larvae at the endpoint of the experiment. It was found that the injection 

of the flexicates had no significant effect on larval survival. It would appear from 

this initial toxicity screen that the class Ia flexicates are not overtly toxic to 

multicellular eukaryotes, even at this relatively high dosage. This is in agreement 

with the previously observed low toxicity (LC50 > 400 µg/ml) of the class prototype, 

[Fe2La
3]Cl4, to the nematode worm Caenorhabditis elegans (C. elegans).6 
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3.5.2 Human cell line model  

In order to investigate the cytotoxicity of the class Ia flexicates to mammalian cells, 

their ability to kill or otherwise damage immortalised human cells in vitro. This was 

tested by determining the half-maximal lethal concentrations (IC50): defined as the 

concentration of a therapeutic agent at which half of the maximal inhibition (or 

death) occurs, relative to an untreated control. This was conducted by Samantha 

Shepherd in the Phillips laboratory (University of Huddersfield) using a colorimetric 

MTT assay, which measures metabolic activity of a cell line via the reduction of the 

yellow tetrazole, MTT, to purple formazan; a process which can only occur if the 

cells present are alive and metabolically active. IC50 values are quoted for a specific 

incubation time with the compound, since cells must be harvested in order to recover 

and measure formazan levels. 

IC50 values (96 h incubation) were determined for all water-soluble class Ia 

flexicates against ARPE-19 (ATCC CRL-2302), a non-cancerous retinal cell line. 

The values obtained are tabulated in Table 3.5. A rough measure of selectivity of the 

complexes for E. coli over non-cancerous cells, calculated as the molar ratio between 

the APRE-19 IC50 and the MIC against E. coli TOP10, is also included.  

The IC50:MIC ratio provides an ad hoc index for prokaryote selectivity (therapeutic 

index), however since IC50 and MIC values differ in how they are defined and 

measured, it makes it somewhat difficult to draw firm conclusions regarding the 

potential for clinical applicability of a test compound using this index. Nevertheless, 

this metric is useful in comparing the relative prokaryote selectivity within 

compound libraries. For class Ia flexicates, it is obvious that xylyl-bridged 

compounds, [Fe2La-b
3]Cl4 enantiomers, are much more selective for the prokaryote 
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organism (E. coli TOP10) over human APRE-19 cells, than other compounds of the 

class, reflective of their relatively low E. coli MICs and high ARPE-19 IC50 values. 

This is again in line with the different behaviour observed of these lead compounds 

in the above in vitro assays, compared with other class Ia flexicates.  

 IC50 after 96 h (µM) Prokaryote Selectivity 

Compound ARPE-19 
𝐀𝐑𝐏𝐄 𝟏𝟗 𝐈𝐂𝟓𝟎

𝑬. 𝒄𝒐𝒍𝒊 𝐓𝐎𝐏𝟏𝟎 𝐌𝐈𝐂
 

ΛFe-[Fe2La
3]Cl4 13.90 ± 1.14 6.95 

ΔFe-[Fe2La
3]Cl4 18.69 ± 2.09 4.79 

ΛFe-[Fe2Lb
3]Cl4 6.39 ± 2.36 6.39 

ΔFe-[Fe2Lb
3]Cl4 22.44 ± 2.56 11.22 

ΛFe-[Fe2Ld
3]Cl4 0.17 ± 0.07 <0.01 

ΔFe-[Fe2Ld
3]Cl4 0.29 ± 0.12 0.01 

ΛFe-[Fe2Le
3]Cl4 0.89 ± 0.46 0.13 

ΔFe-[Fe2Le
3]Cl4 2.37 ± 0.46 0.18 

ΛFe-[Fe2Lf
3]Cl4 0.29 ± 0.12 0.01 

ΔFe-[Fe2Lf
3]Cl4 1.14 ± 0.31 0.17 

ΛFe-[Fe2Lg
3]Cl4 0.67 ± 0.25 0.03 

ΔFe-[Fe2Lg
3]Cl4 1.07 ± 0.32 0.08 

ΛFe-[Fe2Lh
3]Cl4 2.26 ± 1.07 0.09 

ΔFe-[Fe2Lh
3]Cl4 6.84 ± 1.57 0.26 

ΛFe-[Fe2Li
3]Cl4 1.98 ± 0.45 0.3 

ΔFe-[Fe2Li
3]Cl4 1.94 ± 0.56 0.29 

Table	 3.5:	 In	 vitro	 human	 cell	 line	 inhibition	 (IC50	 values)	 and	 relative	 prokaryote	 selectivity	 of	
class	Ia	flexicates	using	non-cancerous	ARPE-19	cells.	Relative	selectivity	is	given	by	the	ratio	of	ARPE-19	
IC50	to	the	E.	coli	TOP10	MIC	in	µM.	
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3.6 Summary  

The work described in this chapter has demonstrated the range of in vitro biological 

activities displayed by class Ia flexicates, allowing the identification of ΛFe-

[Fe2Lb
3]Cl4 as the lead compound (MIC vs. E. coli O157:H7 of 2 µg/ml, 1 µM), and 

made progress towards understanding the underlying MOA. In general, the 

consistent potent activity of shorter xylyl-bridged flexicates, against Gram-negative 

Enterobacteriaceae (including against a panel of clinically relevant pathogenic 

examples), coupled with their relative selectivity for these species over Gram-

positive S. aureus, Human ARPE-19 cells, and G. mellonella larvae, make these 

compounds strong candidates for further research and development in the field of 

antimicrobial chemotherapy.  

Despite their activity against the Enterobacteriaceae, the lead compounds exhibited 

far less activity against certain other Gram-negative bacteria tested, namely the 

Pseudomonadales and a single carbapenem-resistant K. pneumoniae strain, KP02.  

This difference would appear to correlate with differences in the cell membrane 

composition and permeability (see section 3.4.1) suggesting the outer cell membrane 

is a key site of interaction for the lead class Ia flexicates, if not the major target site 

itself.  

The MOA of the class Ia library is bacteriocidal in nature, and therefore concerns 

processes within the microbial cell that are crucial not only for growth, but for 

survival. However, the difference in cell death between cells that are actively 

dividing, and those in stationary phase, would appear to demonstrate a much stronger 

effect upon the actively replicating enterobacterial cell. It would appear that this 

MOA is specific in nature, since a range of activities is observed across both 



Daniel H Simpson | Chapter 3 

University of Warwick | Page 115 

complexes and species. Furthermore, despite the hypothesis of the MOA relating to a 

critical interaction between the lead class Ia flexicates and the enterobacterial cell 

membrane, it would appear that the MOA is not cytolytic in nature, at least when 

cells are in stationary phase. 

As well as progression towards in vivo study (protection assays in mammalian 

models), future work on the antimicrobial activity of class Ia flexicates will 

inevitably involve further cycles of synthesis and screening to refine their potency 

and selectivity. However, the exact molecular interactions that give rise to the 

observed antimicrobial activity of the lead compound remain unknown; without this 

information, improvements to the activity of the lead compound will be somewhat 

serendipitous and therefore inefficient. Research towards deconvoluting the 

molecular targets, i.e. the mechanism of action, is the focus of the next chapter. 
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Chapter 4 
Towards Target Deconvolution - Tandem 

‘omic’ Approaches 

 
4.1 Introduction  

In the previous chapter, ΛFe-[Fe2Lb
3]Cl4 was established as the lead antimicrobial 

compound against Gram-negative Enterobacteriaceae. The pathogen, E. coli 

O157:H7 Sakai Δstx1-2, proved especially susceptible (MIC = 2 µg/ml), and was 

therefore used as a model to investigate mode-of-action. This strain is a derivative of 

a Japanese isolate1 where both Shiga toxin genes (stx1, stx2) were knocked-out by 

Sasakawa and co-workers, who introduced a kanamycin resistance cassette.2 The 

strain was later cured of kanamycin resistance by Dr Chrystala Constantinidou and 

co-workers (unpublished), who kindly donated it for use. It was found that ΛFe-

[Fe2Lb
3]Cl4 is bactericidal against E. coli, but is most potent against actively 

replicating cells. However, the key molecular interactions of this compound, i.e. the 

underlying mechanism(s), remain unknown.  

Deconvolution of molecular targets has profound implications for the development 

of antimicrobial candidates identified through phenotypic profiling,3 as it provides 

the clarity necessary to allow the establishment of far more precise lines of 

investigation (e.g. in silico docking studies4). A good example of this may be found 

in accounts from the 1980s of the discovery of the penicillin-binding proteins 

(PBPs), and the effect it had on the research and development of the β-lactams.5, 6 

However, the sheer complexity of the microbial cell has traditionally made target 
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identification and validation somewhat challenging and therefore an undertaking 

only attempted for therapeutic agents with a well-established clinical pedigree.7 

Fields of study grouped together under the neologism ‘omics’,8 e.g. genomics, 

transcriptomics (RNA) and proteomics, may bring coherence to the complexity of 

the cellular machine through the categorisation and quantification of a certain group 

of biological molecules within the cell.9 Advances in the technology and 

bioinformatics necessary to produce and process such huge data sets are making 

tandem omic approaches an increasingly viable option in a number of applications, 

including the development of hypotheses regarding the key molecular targets 

(mechanism) of a drug candidate.10  

This chapter explores the -omic responses of the clinically relevant E. coli Sakai to 

ΛFe-[Fe2Lb
3]Cl4, to identify responses that may be indicative of key interactions, 

allowing the development of credible mechanistic hypotheses. 

 

4.2 Characterisation of Tolerant Mutants  

Given the number of potential mechanisms by which antimicrobial resistance 

(AMR) may occur (see Chapter 1), bacterial resistance, or at least tolerance, to an 

antibacterial agent should be anticipated from large, fast-growing bacterial 

populations. It should be noted here that resistance could occur through either 

spontaneous mutation of genes already present in the genome or through the 

acquisition of specific traits by horizontal gene transfer. In the case of mutation of 

intrinsic genes, exposure to antibacterial stress alters the relative fitness of different 

genotypes within a the population, ‘selecting’ for genotypes encoding lower 
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susceptibility factors when the antibacterial pressure is sufficient.11 However, in 

order for a resistance-conferring mutation to be selected, it must add to the overall 

fitness of the genome that carries it. Mutations that confer AMR by modification to 

native pathways, but at too high a cost to the overall fitness of organism tend to be 

rapidly lost from the population. Therefore the desirable property of an effective 

antimicrobial with regard to mechanism-of-action, is a scenario where the process of 

AMR is complex, coming at a high fitness cost to the microbe. Under these 

circumstances, AMR by horizontal gene transfer (HGT) is more common that native 

mechanisms. 

Considering AMR, what is important to understand of an anti-infective agent is the 

frequency and extent with which AMR arises when a lethal dose is applied. This 

information is useful in considering clinical acceptance; hinting as to how AMR may 

arise with clinical use, and thus which dosage regimes may be the best to use. 

Additionally, subsequent characterisation of any resistant/tolerant mutants recovered 

may provide insights into how in vitro resistance/tolerance to the candidate 

antibacterial arises, potentially inferring the mechanism underlying the candidate’s 

antibacterial activity.12 Analysing the genomes of resistant/tolerant strains in 

particular can shed light onto these mechanisms. Compellingly, since the first 

sequencing of a whole bacterial genome by Sanger in the 1970s,13 the advent of 

high-throughput sequencing technology (e.g. the Illumina whole genome MiSeq 

platform) has vastly reduced the time and cost of whole-genome sequencing (WGS), 

making it an accessible tool for many laboratories.14 

To calculate frequency of spontaneous resistance, the number of resistant mutants 

arising in a population must be determined. Resistant mutants (RMs) are therefore 
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frequently isolated from laboratory cultures by challenging these populations to 

grow on agar plates infused with a sub-lethal dose of antibacterial agent, as this 

allows RM colonies to be isolated, selected and counted.15-18 In segregating 

individual lines of descent (such as colonies), agar methods also benefit genomic 

analyses, as post-mutation genetic drift (random variation in the relative frequency 

of different genotypes in a small population, owing to the chance deletion or 

mutation of particular genes) and mixing of different genotypes are limited, reducing 

noise. Mutant lines may also be generated in clear lines of descent from individual 

parent lines, accounting for variation in the original WT. However, it should be 

noted that environmental factors influence the likelihood of certain resistance 

mechanisms arising, inferring that the resistance profile or ‘resistome’ developed on 

agar may be different to that which would arise in vivo during an infection.11 

Nonetheless agar plate methods of RM generation remain a useful initial assessment 

of resistance to an antibacterial agent, and therefore we chose to apply this method to 

investigate the physiological and genomic changes that occurred in E. coli Sakai 

cultivated when challenged with lethal doses of ΛFe-[Fe2Lb
3]Cl4. 

 

4.2.1 Selection of mutants with increased tolerance to ΛFe-[Fe2Lb
3]Cl4 

The ability of E. coli Sakai to grow on Mueller-Hinton (MH) agar infused with ΛFe-

[Fe2Lb
3]Cl4, was initially assessed by spreading 25 µl of an overnight culture of E. 

coli Sakai onto MH agar infused with 20, 40, and 80 µg/ml of the compound, 

respectively. After incubation of these plates overnight (37 °C), it was found that 

agar plates infused with 20 or 40 µg/ml of the compound were covered with a ‘lawn’ 

of E. coli; it was only at the highest concentration of the compound, 80 µg/ml that 

individual colonies were resolved. This is surprising given that these concentrations 
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are much higher (×10-40) than the MIC in liquid broth, which suggests that the 

effective concentration reaching the growing bacteria is low, possibly reflecting poor 

diffusion of the compound through agar and/or weak penetration of the biofilms 

formed by bacterial colonies. 

 
Figure	 4.1:	Workflow	 diagram	 for	 the	 selection,	 confirmation	 and	 study	 of	E.	 coli	 Sakai	mutants	
exhibiting	resistance/tolerance	to	the	lead	compound	from	wild	type	lines,	as	outlined	in	section	4.2. 

Mutant variants of E. coli Sakai with reduced susceptibility to ΛFe-[Fe2Lb
3]Cl4 were 

selected for study, using the workflow depicted in Figure 4.1. From an initial 

population of E. coli Sakai, seven colonies (labelled a-f) were re-streaked onto MH 

agar to serve as parent WT lines. Overnight cultures of these parent lines were grown 

in CAMHB, and 25 µl of each culture was applied to MH agar containing 80 µg/ml 

ΛFe-[Fe2Lb
3]Cl4, set into a 6-well plate. The remaining overnight cultures were 

serially diluted and plated onto LB agar in order to establish viable cell counts and 

thus the total number of E. coli present in the cultures, 1.78 × 109 cfu/ml on average 

(σ = 0.13 × 109 cfu/ml). An average of 11.1 (σ = 3.3) colonies grew from the 25 µl 

aliquots of overnight culture applied to 6-well plates containing MH agar infused 

with ΛFe-[Fe2Lb
3]Cl4. This suggests a mutation frequency of 2.49 × 10-7 (σ = 0.78 × 

10-7) under those conditions, assuming all colonies did indeed represent bona fide 

RM mutant lines. 
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4.2.2 Characterisation of tolerant phenotypes  

Four prospective RM colonies from each of the seven parent lines (twenty-eight 

colonies in total) were selected for further study. These colonies were re-streaked 

onto MH agar containing 80 µg/ml of the compound, and then onto MH agar without 

selection pressure from the compound, removing any false positive “non-mutants” or 

genetically unstable mutants (having low fitness, resulting in rapid revertance of the 

mutation) respectively. Only one of the twenty-eight prospective mutants was 

discounted using this screen. As a test of the ability of the twenty-seven stable 

mutants to resist the lead compound in agar, six examples were picked and streaked 

onto lanes of MH agar containing 80 µg/ml of the compound, alongside two parent 

lines. The resulting plate after overnight incubation (37 °C) is shown in Figure 4.2, 

where lanes containing prospective RMs streaked towards the centre of the plate 

resulted in a ‘lawn’ of E. coli, while the WT strain only produced a few colonies at 

the site of initial inoculation, where the bacterial load would have been highest. This 

may indicate that on agar, a layer of dead cells is able to protect growing E. coli cells 

from the lethal effect of the lead compound. 
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Figure	 4.2:	 Tolerant	mutant	 and	 wild	 type	 lines	 of	 E.	 coli	 Sakai	 smeared	 onto	 lanes	 of	 MH	 agar	
infused	with	the	lead	compound,	ΛFe-[Fe2Lb3]Cl4,	at	80 μg/ml.	Two	lanes	containing	wild	type	lines	are	
shown	on	the	far	left,	with	the	other	six	lanes	hosting	selected	mutant	lines.	Picked	colonies	were	smeared	
along	their	lanes	towards	the	centre	line. 

From the twenty-seven prospective stable mutants, overnight cultures in CAMHB 

were grown. These were diluted to 5 × 105 cfu/ml in 1 ml CAMHB, containing the 

lead compound at a concentration of 2 µg/ml (the WT MIC determined by broth 

microdilution). This was also performed for the seven WT parent lines, and all 

thirty-four samples plus negative controls were incubated for 20 h (37 °C) in sterile 

24-well plates. The OD600 was measured for each cell line, and it was found that 

after subtraction of the baseline (average negative control measurement), the growth 

varied considerably across cell lines. WT/parent lines showed negligible signs of 

growth as expected, and while all prospective RM were observed to have grown 

somewhat (all OD600 > 0.05), some prospective RMs grew considerably (OD600 > 1), 

and others displayed only weak signs of growth. The most promising candidates, i.e. 

those that registered an OD600 > 0.5, were selected for further study that involved 

comparing their phenotypes and genotypes to the parent lines. This final selection 

yielded seventeen RM lines, with at least one RM line sourced from each of the 

seven original parent lines. 
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To determine the extent of resistance in the seventeen chosen RM lines, MIC of 

these best candidates was measured using the protocol described in the previous 

chapter. The results are tabulated in Table 4.1. This confirmed that the RM 

candidates were indeed more resistant to the lead compound, ΛFe-[Fe2Lb
3]Cl4, but 

with only slight shifts in the MIC (×2-4). This suggests that these lines represent 

tolerant mutants, rather than fully resistant strains. 

 

4.2.3 Whole genome sequencing, bioinformatic analysis, and characterisation of 

genetic alterations  

Cultures of each of the 17 tolerant mutants were grown in CAMHB overnight, 

alongside WT E. coli Sakai. Genomic DNA was collected from these cultures, 

prepared for whole genome sequencing (WGS) using the Illumina Nextera® XT kit, 

and sequenced with an Illumina MiSeq™ sequencer (Microbiology & Infection 

division, University of Warwick), as outlined in Chapter 6. 

WGS allowed a search for mutations common to all or some of the 17 tolerant 

strains. The nature of the Illumina sequencing platform does not provide fully 

sequenced “closed” genomes, however, the web based Enterobase service19 could be 

used to assemble and compare DNA contigs (overlapping DNA sequences that 

together represent a contiguous consensus region of DNA) from the 17 genomes to 

ascertain any single nucleotide polymorphisms (SNPs), as well as small DNA 

insertions or deletions. This analysis was carried out by Drs Alexia Hapeshi and 

Nicholas Waterfield (University of Warwick), and is summarised in Table 4.1. 
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WT 2 - - - - - 1 

a1 4 Yes Deletion  550 bases 
lost 

waaG, 
waaQ 1.53 

a4 4 Yes Deletion 4971120 ~1900 
bases lost btuB 0.01 

b1 8 Yes SNP 1736847 G to T galU 1.27 

b2 4 Yes Deletion 4550911 11 bases 
lost waaG 0.56 

c2 8 Yes SNP 1737380 G to A galU 1.37 

c3 4 Yes SNP 4974478 C to G btuB 0.03 

d4 4 No     0.21 

e1 4 Yes SNP 1737192 A to C galU 1.07 

e2 8 No     0.20 

e4 8 No     0.07 

f1 8 Yes SNP 1737192 A to C galU 0.67 

f3 4 No     0.55 

f4 4 No SNP*   galU 0.05 

g1 4 Yes Deletion 4974320 1 base (T) 
lost btuB 0.56 

g2 4 No Insertion 4973226 G inserted btuB 0.43 

g3 8 No Deletion* 4973227 1 base (G) 
lost btuB 0.49 

g4 4 Yes SNP 4974212 C to T btuB 0.55 

Table	4.1:	Characterisation	of	E.	coli	Sakai	tolerant	mutants,	in	comparison	to	the	WT	strain.	Response	
to	the	lead	compound	(MIC)	is	compared	to	genomic	changes	found	through	EnteroBase.	Relative	plasmid	
(pO157)	 levels	 found	 through	 mapping	 coverages	 are	 also	 listed.	 Those	 identified	 later	 via	 Sanger	
sequencing	are	marked	*.	

While most of these ‘tolerant mutations’ could be grouped into three distinct classes, 

interestingly no evidence of traditional target site mutations, which would have 

pointed to a specific target in the cell, was observed. Rather all three groups showed 

mutations in genes for proteins involved in the maintenance of the outer membrane 

of the cell.  
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Two of the mutation groups had acquired mutations that would alter the biophysical 

properties of the lipopolysaccharide (LPS) outer membrane (see Figure 1.2), 

presumably lowering the interaction of the lead compound with the cell. Specifically, 

mutations were observed in the waaG glucosyltransferase and galU, UTP-glucose-1-

phosphate uridylyltransferase genes. The WaaG glycosyltransferase enzyme is 

involved in the synthesis of LPSs that constitute the outer leaflet of the outer 

membrane in Gram-negative bacteria, and has previously been identified as a 

potential antibiotic target.20 It is located at the cytosolic side of the inner membrane, 

where it catalyses the transfer of the first outer-core glucose to the inner core during 

lipopolysaccharide synthesis. Similarly, the GalU enzyme is also involved in LPS 

synthesis. The LPS O-antigen of EHEC O157:H7 comprises N-acetyl-D-perosamine, 

L-fucose, D-glucose, and N-acetyl-D-galactose.21 This normally has a defensive role 

against host antimicrobial peptides. As N-acetyl-D-galactose is synthesized from 

galactose by GalE, GalT, GalK, and GalU, 22 these galU mutants will have defective 

O-antigen.  

The third class of mutants contain mutations that pre-terminate the vitamin B12 

transporter gene, btuB. The protein expressed by this gene (BtuB) is responsible for 

the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane 

to the periplasmic space. It derives its energy for transport by interacting with the 

trans-periplasmic membrane protein TonB. It also acts as the receptor for the 

proteinaceous antibacterial A and E colicins.23 This transporter may ‘promiscuously’ 

contribute to entry of the lead compound into the periplasm, especially given BtuB is 

thought to mediate colicin action upon E. coli. Indeed non-functional mutations to 

the E. coli btuB gene have been shown to confer increased colicin resistance, which 
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could be reversed by the addition of a plasmid bearing a functioning copy of the 

btuB gene.24 

It is harder to account for the increase in tolerance in the remaining mutants, in 

which no chromosomal SNPs or insertion/deletions could be detected, only the loss 

of the pO157 virulence plasmid (extrachromosomal DNA). The loss of the plasmid 

could be co-incidental, perhaps just an indication of bacterial stress, with any 

genuine tolerance SNPs, being missed as a consequence of the incomplete nature of 

MiSeq based WGS. However, it is noteworthy that pO157 encodes a small operon of 

genes predicted to be involved in LPS modification.25 It could therefore be 

speculated that the loss of these genes may have resulted in increased tolerance 

observed, again through changes in surface chemistry of the bacteria.  

 

4.2.4 Cross resistance  

 MIC (µg/ml) vs. E. coli Sakai 

Compound 
Mutants 

WT 
b1 b2 g4 

ΛFe-[Fe2Lb
3]Cl4 8 4 4 2 

ΔFe-[Fe2Lb
3]Cl4 16 16 16 4 

ΛFe-[Fe2La
3]Cl4 8 8 32 16 

ΔFe-[Fe2La
3]Cl4 16 32 64 32 

Table	4.2:	Cross-resistance	of	E.	coli	Sakai	mutants	to	lead	anti-E.	coli	flexicates	determined	through	
MIC	measurements.	 Values	 for	 E.	 coli	 Sakai	WT,	 and	 earlier	 screening	 against	 the	 lead	 compound,	 are	
included	for	reference. 

To determine whether E. coli Sakai mutants with tolerance to ΛFe-[Fe2Lb
3]Cl4 (the 

lead compound) exhibit cross-resistance to closely related compounds, three well-

characterised mutants; b1, b2, and g4 (representing alterations to genes galU, waaG, 

and btuB respectively), were selected for screening against compounds closely 
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related to the lead compound. These included its antipode, ΔFe-[Fe2Lb
3]Cl4, and p-

xylenyl bridged [Fe2La
3]Cl4 enantiomers. Results are listed in Table 4.2. 

Intriguing differences in the responses of mutants to these variant forms of flexicates 

were observed. The galU mutant, b1, was more tolerant to [Fe2Lb
3]Cl4 enantiomers 

than the wild-type, and yet this strain is more susceptible to [Fe2La
3]Cl4 enantiomers 

compared to the WT. This finding is reminiscent of the observation made in the 

previous chapter, that flexicate-resistant P. aeruginosa PAO1 and K. pneumoniae 

KP02 were most susceptible to the prototype class Ia flexicate, ΛFe-[Fe2La
3]Cl4. The 

waaG mutant, b2, possessed increased resistance to ΔFe-[Fe2Lb
3]Cl4, though 

susceptibility to [Fe2La
3]Cl4 enantiomers remained unchanged. Finally, the btuB 

mutant, g4, exhibited increased resistance to all compounds. This study supports the 

notion that membrane interactions are indeed key to the interactions of these lead 

compounds, and is also indicative of some structure-specificity to this interaction. 

 

4.3 Transcriptome Response  

An alternative approach to investigating the biochemical interactions that define the 

mechanism of an antimicrobial agent is to study changes in bacterial gene expression 

(mRNA levels) when the organism is challenged with the antimicrobial compound. 

In this case it is important to use sub-lethal doses of the agent so that bacteria are 

affected by the agent and have time to respond through changes in gene expression, 

but are not actually killed.26 Bacterial transcriptional responses to stress are typically 

very rapid, on the timescale of minutes. In order to allow a stress to take effect and 

elicit a transcriptome response, studies of bacterial transcriptional responses to 

antimicrobial stress typically measure RNA levels 15-60 min after application of the 
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agent to a microbial culture.27-29 Analysing total RNA may also be useful in 

identifying any small noncoding RNA transcripts (sRNA) that are not translated into 

protein, but are nevertheless implicit in influencing cellular processes by other 

regulatory mechanisms.30 

The current technique for measuring a transcriptomic profile is through RNA 

sequencing (RNA-seq),31 which involves conversion of RNA purified from 

microbial culture to complementary DNA (cDNA). Synthesised cDNA may then be 

sequenced using second generation high-throughput RNA-seq kits, which use similar 

technology to whole-genome sequencing that has largely replaced older microarray 

technology.32, 33 There are several important considerations that should precede 

sequencing, however; (i) optimal timing and concentration for the addition of the 

antimicrobial agent should be determined beforehand, to ensure that the 

transcriptome is predominantly influenced by the agent, rather than by general stress 

and/or cell death signalling; (ii) contaminating DNA must be fully depleted from the 

RNA samples, using e.g. DNase; (iii) RNA is readily degraded by environmental 

RNAases, and therefore must be rapidly protected from degradation by using 

appropriate handling techniques, and ensuring all workspaces and equipment are 

sterile and free of RNases; (iv) in order to detect low-level transcripts with enough 

read depth to infer statistically significant changes, ribosomal RNA (rRNA), which 

is not a component of the expression profile and comprises the majority (95-99 %) of 

RNA present in a bacterium,34 must be depleted. Quality controls may be used 

during the preparation of RNA sample for sequencing (e.g. the Agilent 2100 

Bioanalyzer DNA/RNA quality control system), in order to ensure the results 

obtained are of high quality. 
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4.3.1 Optimisation of experimental conditions  

An overnight culture of WT E. coli Sakai was diluted to an OD600 of 0.025, in 3 × 50 

ml CAMHB. The growth of these triplicates was monitored during incubation at 37 

°C (with shaking aeration), by taking OD600 measurements every 30 min, until 

stationary phase behaviour was observed (after 8 h). This was repeated with cultures 

where 0.5 µg/ml of ΛFe-[Fe2Lb
3]Cl4 (¼ of the MIC) was added either initially, or 

during exponential growth (OD600 ≈ 0.5), 200 min into the experiment. Growth 

curves plotted from OD600 data, is shown in Figure 4.3. Since the sub-MIC, 0.5 

µg/ml, addition of the lead compound during exponential growth caused minimal 

deviation in growth from the control, this condition was chosen for the experiment to 

determine the effect of the compound on the transcriptome. 

 

Figure	4.3:	Growth	of	E.	coli	Sakai	WT	in	response	to	the	lead	compound	added	at	a	quarter	of	the	MIC	
(0.5	μg/ml),	either	initially	(blue	circles)	or	at	200	minutes	during	exponential	phase	(red	triangles).	The	
control	 culture	 is	 included	 for	 reference	 (black	 squares).	 Error	 bars	 representing	 95	 %	 confidence	
intervals,	calculated	using	replicates,	are	shown. 

In line with similar experiments,27-29 it was planned to extract the RNA 40 min after 

the addition of the compound. The OD600 240 min after inoculation, with addition of 

the compound at 200 min, is around 0.75 for both this condition and the control 

culture. This corresponds to approximately 6 × 108 cfu/ml.    
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4.3.2 Extraction and purification of microbial RNA  

In line with the chosen setup described in the previous section, three overnight 

cultures of WT E. coli Sakai were each diluted in 2 × 50 ml CAMHB (one control 

and one treated culture), to an OD600 of 0.025. These cultures were incubated at 37 

°C for 200 min, whereupon ΛFe-[Fe2Lb
3]Cl4 was added to one culture from each pair, 

to a final concentration of 0.5 µg/ml. After a further 40 min of incubation, 1 ml of 

each culture was added to separate 2 ml aliquots of RNAprotect® reagent (Qiagen), 

and vortexed immediately, preserving and stabilising the microbial RNA. After a 5 

min incubation at ambient temperature, cells were collected by centrifugation. RNA 

was then extracted from the samples and prepared for RNA-seq as outlined in 

Chapter 6. 

Samples were finally eluted in 40 µl of RNase-free water per sample. The RNA 

concentration of each sample was determined from 1 µl of RNA elution, using the 

Qubit® HS RNA quantification kit (ThermoFisher Scientific). The absence of DNA 

from the RNA elution was confirmed using a standard polymerase chain reaction 

(PCR) to attempt the amplification of the gene encoding the E. coli 16S ribosomal 

subunit. The absence of detectable PCR products in subsequent agarose gel 

electrophoresis, signified the lack of genomic DNA contamination. Additionally, the 

Agilent 2100 Bioanalyzer instrument was used to check the quality of RNA, using a 

further 2 µl of RNA elution prepared using the RNA 6000 pico kit (Agilent), 

according to the manufacturer’s instructions. Bioanalyzer electropherograms, which 

plot fluorescence output (proportional to RNA quantity) versus elution time 

(proportional to fragment size), are shown in Figure 4.4. The large sharp rRNA 

peaks (16S and 23S subunits) and reasonably smooth baseline suggests minimal 
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RNA degradation has occurred, making the remaining RNA elution samples 

appropriate for further processing towards RNA-seq. 

   
 
Figure	 4.4:	 Agilent	 Bioanalyzer	 electropherograms	of	 E.	 coli	 Sakai	 RNA,	 used	 to	determine	 sample	
quality.	The	two	largest	peaks,	towards	the	right	of	each	electropherogram,	are	due	to	the	E.	coli	ribosomal	
16S	and	23S	subunits.	The	 three	electropherograms	on	 the	 left	 are	of	RNA	 from	E.	coli	 treated	with	 the	
lead	compound,	and	those	on	the	right	are	of	RNA	from	control	groups. 

 

4.3.3 Depletion of rRNA  

As stated above, rRNA is the dominant form of RNA purified from microbial cells, 

and this should be significantly depleted to improve read depth of RNA-seq data. 

The Ribo-Zero™ bacterial rRNA removal kit (Illumina) was used according to the 
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manufacturer’s instructions, to achieve rRNA depletion of 4 µg of input RNA per 

sample. At the final step, samples were eluted into 5.5 µl RNase-free water.  

	  
	
Figure	 4.5:	 Agilent	 Bioanalyzer	 electropherograms	 of	 enriched	 E.	 coli	 Sakai	 RNA	 after	 rRNA	
depletion,	used	to	determine	sample	quality.	The	three	electropherograms	on	the	left	are	of	enriched	RNA	
from	E.	 coli	 treated	with	 the	 lead	 compound,	 and	 those	 on	 the	 right	 are	 of	 enriched	 RNA	 from	 control	
groups.	

The Agilent 2100 Bioanalyzer instrument was used to check the quality of RNA, 

using 0.5 µl of input RNA per sample, prepared using the RNA 6000 pico kit 

(Agilent) as per kit instructions. Bioanalyzer electropherograms, shown in Figure 

4.5, have much smaller 16S and 23S rRNA peaks compared to those of the pre-

enriched RNA samples (Figure 4.4), suggesting the rRNA depletion was successful. 

The remaining 5 µl of each enriched RNA sample was progressed towards 

conversion to cDNA. 
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4.3.4 Sequencing via conversion to cDNA  

A modified TruSeq™ (Illumina) magnetic bead format, stranded mRNA sample 

preparation protocol was used to prepare cDNA libraries for sequencing (see Chapter 

6). All steps were carried out in sealable sterile 96-well plates. The prepared cDNA 

libraries were recovered from this process as 30 µl of supernatant (in TruSeq™ 

Resuspension buffer). The DNA concentrations of sample libraries were determined 

using the Qubit® HS dsDNA quantification kit (2 µl of input solution from each 

library). The Agilent 2100 Bioanalyzer instrument was used to determine the quality 

and average fragment size of cDNA sample libraries, using 0.5 µl of input DNA 

each, prepared using the High-Sensitivity DNA kit (Agilent) as per kit instructions. 

Bioanalyzer electropherograms, shown in Figure 4.6, each show a single shouldered 

peak of roughly similar fragment size (260-275 bp). This would suggest the 

conversion to cDNA has been successful and that the samples are of sufficient 

quality to proceed towards sequencing. The cDNA libraries, prepared using 

TruSeq™ stranded mRNA kit, were then sequenced on the Illumina MiSeq™ 

platform, prepared using the paired-end 2 × 75 bp kit as per instructions. 
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Figure	4.6:	Agilent	Bioanalyzer	electropherograms	of	cDNA	synthesised	from	enriched	E.coli	Sakai	
RNA,	 using	 the	 TruSeq™	 kit,	 to	 determine	 sample	 quality	 and	 average	 DNA	 fragment	 size.	 The	 three	
electropherograms	on	the	left	are	of	cDNA	sourced	from	E.	coli	treated	with	the	lead	compound,	and	those	
on	 the	 right	 are	 of	 sample	 sourced	 from	 control	 groups.	 Sharp	 peaks	 are	 due	 to	 short	 and	 long	 DNA	
markers	respectively.	Annotations	(blue	lines)	demonstrate	where	fragment	sizes	were	determined.		 

4.3.5 Bioinformatic analyses and results  

RNA-seq data was mapped onto the genome sequence of EHEC Sakai and analysed 

as paired datasets using the DESeq2 program,35 by Drs Alexia Hapeshi and Nicholas 

Waterfield (University of Warwick). Using this approach and paired sample 

analysis, a limited number of statistically significant expression changes, relevant to 

the activity of the lead compound, were successfully defined. An increase in 
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transcription of 48 genes (Table 4.3) and a decrease in only 20 (Table 4.4) was 

observed. A combination of manual analysis; STRING network analysis and KEGG 

database pathway-mapping tools, was used to further interpret this data (Figure 4.7). 

	
Figure	4.7:	KEGG	database	pathway-mapping	of	RNA-seq	 (E.	coli	 Sakai	 response)	data,	 illustrating	
pathway	 relationships	 (connective	 lines)	 between	 genes	 affected	by	 treatment	with	 the	 lead	 compound	
(nodes).	Down-regulated	genes	are	shaded	blue	(others	are	all	upregulated).		Important	gene	clusters	are	
circled	 and	 annotated.	 There	 is	 no	 particular	meaning	 to	 the	 node	 colours,	 but	 their	 size	 relates	 to	 the	
availability	 of	 structural	 information	 for	 the	 corresponding	 protein.	 The	 nature	 of	 the	 relationships	
between	 genes	 and	 their	 corresponding	 proteins	 are	 denoted	 by	 line	 colour:	 known	 interactions	 are	
turquoise	 (from	curated	databases)	or	magenta	 (experimentally	determined);	predicted	 interactions	are	
green	 (gene	 neighbourhood),	 red	 (gene	 fusions),	 or	 blue	 (gene	 co-occurrence);	 others	 are	 yellow	
(textmining),	black	(co-expression),	or	lilac	(protein	homology).36	

Fimbrial genes 

Biotin 
synthesis Fe-S Oxido-

reductases 

CAMP 
resistance 

and cell 
surface stress  
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Gene Product Log2 fold 
change Gene Product Log2 fold 

change 

fimH Fimbiral adhesin FimH 2.13 mdh Malate dehydrogenase 1.26 

ydeR  Fimbrial-like protein 2.09 bioC Biotin synthase BioC 1.24 

ydeT Fimbrial usher protein 2.08 efeB 
 

Deferrochelatase/ 
peroxidase 1.23 

ECs2112 
 

Fimbrial chaperone 
protein 2.07 bioF 

 
8-amino-7-oxononanoate 
synthase 1.23 

yodB Cytochrome b561 1.98 ampH Endopeptidase AmpH 1.22 

ECs2113 Major fimbrial subunit 1.91 fabR 
 

Transcriptional repressor 
FabR 1.21 

ribB DHBP synthase 1.87 yijD Inner-membrane protein 1.18 

napF Ferredoxin protein NapF 1.84 ECs0853 Biotin synthase 1.17 

yedS Fimbrial-like protein 1.79 lpxT Lipid A 1-diphosphate 
synthase LpxT 1.17 

ybjG 
 

Undecaprenyl-
diphosphatase 1.75 phoE Phosphoporin protein 

PhoE 1.16 

ydeP Oxidoreductase 1.75 yeaR NOx response protein YeaR 1.15 

ECs2713 Hypothetical protein 1.70 tatD Exonuclease 1.14 

mgtA Mg2+-transporter 1.64 eptA phosphoethanolamine 
transferase EptA 1.13 

rstA Transcriptional regulator  1.61 
bioA 
 
 

Adenosylmethionine-8-
amino-7-oxononanoate 
aminotransferase 

1.13 

terW 
 

Regulator of tellurite 
resistance ter operon 1.59 yqjH Ferric-chelate reductase 1.10 

asr Acid shock protein 1.56 ECs1344 Hypothetical protein 1.10 

rstB Sensor protein RstB 1.53 arnB 
 

UDP-4-amino-4-deoxy-L-
arabinose transaminase 1.07 

yebO Membrane protein YebO 1.49 phoP 
 

PhoP family 
transcriptional regulator 1.04 

yebG Membrane protein YebG 1.48 deoR 
 

Transcriptional repressor 
DeoR 0.99 

fuhF 
 

Ferric iron reductase 
FhuF-like transporter 1.48 prpB 2-methylisocitrate lyase 0.96 

napD NapD assembly protein 1.43 pmrB Sensor protein 
PmrB/BasS  0.95 

sodA Superoxide dismutase 1.38 tqsA AI-2 transport protein 0.95 

phoQ Sensor protein PhoQ 1.32 bglA 6-phospho-β-glucosidase 0.91 
hemL 
 

Glutamate-1-semialdehyde 
aminotransferase 1.29 hsp90 Heat-shock protein 0.81 

Table	 4.3:	 Genes	 found	 to	 be	 significantly	 upregulated	 in	 treated	 samples	 (0.5	 μg/ml	 lead	
compound),	relative	to	the	untreated	control,	using	EnteroBase.	All	p-values	<0.001.	
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Gene Product Log2 fold 
change Gene Product Log2 fold 

change 

ygjH Putative tRNA synthetase -1.74 egbC β-D-galactosidase -1.14 

norV Anaerobic NO-reductase 
flavorubredoxin -1.63 ynfE Oxidoreductase -1.13 

dcuB Anaerobic C4-
dicarboxylate transporter -1.55 csrB sRNA Inhibitor of CsrA -1.08 

egbA β-D-galactosidase -1.53 lhr ATP-dependent helicase -1.00 

ompW Outer membrane porin -1.46 pyrI Aspartate 
carbamoyltransferase -0.98 

fumB Fumarase B -1.35 pyrB Aspartate 
carbamoyltransferase -0.94 

dmsA DMSO-reductase -1.25 terB Tellurite, colicin & 
phage resistance protein -0.94 

dmsB DMSO-reductase -1.23 frdB Fumarate reductase -0.87 

dmsC DMSO-reductase -1.21 int Integrase for prophage 
CP-933I -0.87 

ygjL Oxidoreductase -1.14 terZ Tellurite, colicin & 
phage resistance protein -0.87 

Table	 4.4:	 Genes	 found	 to	 be	 significantly	 down-regulated	 in	 treated	 samples	 (0.5	 μg/ml	 lead	
compound),	relative	to	the	untreated	control,	using	EnteroBase.	All	p-values	<0.001.	

Full details of the mapping and analyses (STRING/KEGG) can be found in Chapter 

6. Some of the key findings are discussed in the following sections.	

 

4.3.6 Cationic antimicrobial peptide resistance and membrane maintenance  

 A crucial finding was that E. coli induced expression of genes for sensors, 

regulators and LPS modification that are known to be up regulated in response to 

attack by cationic antimicrobial peptides (CAMPs).37 These include the genes for 

PhoPQ, a two component (2C) sensor/regulator pair, and MgrB, which modulates 

the PhoQ sensor response range.38 While the analysis does not directly indicate 

whether the sensor is being activated or not, the increase in transcription of auto-

regulated phoPQ genes themselves39 along with known regulon genes strongly 

suggests that this is the case. This 2C system is known to up regulate genes for LPS 

modification in response to CAMP insult,39 and indeed observed an up regulation in 
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transcription of the arnB gene, encoding a UDP-4-amino-4-deoxy-l-arabinose-

oxoglutarate aminotransferase, was observed. This transamindase is an enzyme that 

acts in a pathway that modifies lipid A phosphates with 4-amino-4-deoxy-l-

arabinose, causing an increase the surface positive charge of the cell, reducing 

interaction with CAMPs and an giving increased resistance to polymyxins.40 Several 

other PhoPQ regulated genes are also up regulated upon exposure to the lead 

compound. These include genes for the proteins, PhoE (an outer membrane 

phosphoporin allowing for passive diffusion of small molecules), MgtA (a 

magnesium-transporting ATPase), HemL (glutamate-1-semialdehyde 

aminotransferase involved in the process of heme synthesis and also regulated by 

Mg2+ levels) and RstAB (a 2C sensor/regulator system which supresses RpoS 

expression and is itself also regulated by Mg2+ levels). It should be noted that the 

phoPQ genes are also under the control of a Mg2+ responsive promoter, suggesting 

‘cross-talk’ between several stimuli. While the PhoE porin showed transcriptional up 

regulation, it is noted that a second porin, OmpW showed a significant down 

regulation. OmpW functions in transport of small, hydrophobic molecules across the 

outer membrane, related to cell survival under microaerobic conditions. It also serves 

as a receptor for the antimicrobial protein, Colicin S4.  

Increased transcription of the gene for the YbjG undecaprenyl pyrophosphate 

phosphatase is also relevant as BcrC/YbjG family proteins confer bacitracin 

resistance.41 Disruption of ybjG causes increased bacitracin sensitivity, while 

overexpression causes increased resistance to bacitracin. Interestingly an increase in 

transcription of the gene for the regulator FabR was also observed. FabR is known to 

repress the transcription of fabB, involved in unsaturated fatty acid (UFA) 

biosynthesis.42 By controlling UFA production, FabR directly influences the 



Daniel H Simpson | Chapter 4 

University of Warwick | Page 143  

physical properties of the membrane bilayer. Despite this, no significant difference 

in fabB transcription was detected at this time point, so the involvement of FabR in 

the regulation of other genes cannot be ruled out. Two further tightly-linked genes, 

also relevant to CAMP resistance43 and showing increased transcription, are those 

for the EptA phosphoethanolamine transferase and its regulator sensor protein, 

PmrB. The sensor domain of PmrB is known to respond to several stimuli including 

acidic pH and an excess of Fe(III).44 Again, indirect evidence for the activation of 

PmrAB system comes from the increase in pmrB transcription itself, consistent with 

its known auto-regulation, and the up regulation of eptA transcription. EptA 

catalyses the addition of a phosphoethanolamine moiety to the KDO component of 

lipid A.43 This phosphoethanolamine modification of LPS is required for resistance 

to polymyxin and also to prevent excessive and damaging Fe(III) binding to the LPS. 

Interestingly, this modification is also induced in cells grown under mild acidic 

conditions, which provides a link to a group of up regulated genes involved in 

coping with acid stress (vide infra). While not strictly involved in cell membrane 

maintenance it is also noted an upregulation in a fimbrial biogenesis operon 

(suggesting an attempt by the cell to initiate a biofilm), in addition to the β-lactam 

binding protein, AmpH, which is a DD-alanine-peptidase associated with recycling 

and remodelling of the peptidoglycan cell wall.45  

 

4.3.7 Acid stress response  

In addition to the PmrB response the transcriptional upregulation of several other 

genes involved in acid stress response (ASR) were observed. Interestingly, 

transcriptional ASR and resistance to various membrane-active environmental 
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stresses, e.g. polymyxin B, have been observed in other bacteria, suggesting a 

mechanistic link.46, 47 Another up regulated gene involved in both ASR and LPS 

synthesis is lpxT. LpxT is the lipid A 1-diphosphate synthase enzyme, which is 

induced under acidic aerobic conditions. It catalyses the phosphorylation of lipid A, 

transferring a phosphate group from undecaprenyl-pyrophosphate to the position 1 

phosphate of approximately one-third of lipid A molecules, to create lipid A 1-

diphosphate. This is surprising as this would have the effect of increasing the 

negative charge of the bacterial surface, acting antagonistically to the roles of EptA 

and ArnB (vide supra). It should be noted however that the overall transcription 

level of this gene is significantly lower than the levels of eptA and arnB suggesting 

its effects may be outcompeted. This observation nevertheless highlights the 

complexities associated with the structural remodelling of Gram-negative 

lipopolysaccharides. Another gene known to be dependent upon PhoB and RstA 

(vide supra) that can be seen to increase is asr, which facilitates an acid-induced 

protective response in cells exposed to very low pH. A further three up regulated 

genes known to be involved with ASR are those encoding for EfeB (which extracts 

iron from exogenous heme and believed to function under acid-stress conditions), 

YdeP (an oxidoreductase) and RibB (which catalyses the first committed step in 

the biosynthesis of riboflavin when induced by low pH). In addition to acid stress we 

also observed the up regulation of response genes for other forms of stress including 

the heat shock protein Hsp90 and TerW, which is involved in tellurite resistance. On 

the other hand we also observe down regulation of the terZ and terB genes, which 

are also involved in tellurite resistance. The significance of this is unclear.  

Interestingly, an increase in transcription of genes relating to oxidative stress was 

seen, including; sodA superoxide dismutase, yeaR which is induced by nitric oxide, 
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napF a ferredoxin-type protein predicted to play a role in the oxidative stress 

response and tatD (mttC) a DNase potentially involved with the repair of peroxide-

induced DNA damage. It is possible that the up regulation of yeaR, we observed is a 

result of the down regulation of the norV gene, which encodes a cytoplasmic nitric 

oxide reductase, used for the detoxification of nitric oxide. 

 

4.3.8 Metabolism and redox state  

While the majority of up regulated genes are accounted for in the stress responses 

described above, significant increases in the transcription of several genes involved 

in various aspects of metabolism and redox state maintenance were also observed. 

These include 2-methylisocitrate lyase, which catalyzes the formation of pyruvate 

and succinate from 2-methylisocitrate and NAD-dependent malate dehydrogenase 

both of which are involved with energy generation and the citric acid (TCA - 

tricarboxylic acid) cycle. Conversely a down-regulation of genes for two other TCA 

related proteins was seen; FrdB fumarate reductase (one of a class of membrane-

bound, FAD-containing enzymes that are responsible for the catalysis of fumarate 

and succinate interconversion) and FumB fumarase (typically more abundant during 

anaerobic growth and down-regulated by heme limitation). There was also an up 

regulation in the gene encoding YodB, a cytoplasmic membrane protein (cytochrome 

b561) that is part of the electron transport respiratory chain. Genes for proteins 

involved in anabolic and catabolic processes that showed increased transcription 

include 6-phospho-β-glucosidase, with a likely role in carbohydrate metabolism, and 

four biotin cofactor synthesis genes, which are necessary for many processes, e.g. 

the production of fatty acids, and the metabolism of fats and amino acids. Two 
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additional genes encoding enzymes with roles in iron homeostasis are up regulated; 

YqjH, an NADPH-dependent ferric reductase and FhuF which is involved in the 

reduction of ferric iron in cytoplasmic ferrioxamine B.  

The significance of the down regulation of several other genes involved in metabolic 

processes remains unclear. These include an operon of four genes that encode 

membrane localised an anaerobic dimethyl sulfoxide reductase complex and dcuB, 

encoding an anaerobic C4-dicarboxylate transporter responsible for the transport of 

C4-dicarboxylates from the periplasm across the inner membrane. Finally, a down-

regulation was observed in genes ebgA and ebgC, which encode subunits of a cryptic 

β-D-galactosidase, believed to be an evolved alternative to LacZ. 

 

4.4 Proteome Response  

Changes to the transcriptome are only one aspect of the response of a bacterium to 

stress. To mount a physiologically useful response, newly synthesised or pre-existing 

mRNA needs to be translated into protein product. Since the processes of translation, 

localisation, modification and degradation that maintain the proteome have 

individual kinetics independent of transcription, the proteomic responses do not 

necessarily correlate strongly with responses at the RNA level.48 It is therefore 

prudent in obtaining a full perspective of the physiological response, and how the 

cellular machinery executes this response, to examine both proteomic and 

transcriptomic responses in tandem.49 Until recently, questions of global protein 

abundances had been difficult to address. However, with advances in mass 

spectrometry (MS), notably the development of the Orbitrap mass detector,50 large 

scale analysis of full cellular proteomes has become feasible. MS proteomic methods 
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rely on the notion the partially digested proteins will fragment into a predictable 

distribution of masses, since all natural polypeptides (proteins) use the same set of 

~20 amino acids and a limited suite of post-translational modifications.51 Comparing 

MS data to an in silico derived protein fragmentation database can therefore be used 

to deduce a global protein profile. 

 

4.4.1 Setup and protein extraction  

Several research teams have reported integrated transcriptomic and proteomic 

analyses of stress-perturbed bacterial culture, typically using mass spectrometry to 

profile and quantify proteins, at the same time point(s) as the trascriptome was 

analysed.52-54 It was therefore chosen to conduct a similar proteomic analysis of E. 

coli Sakai to the lead compound (ΛFe-[Fe2Lb
3]Cl4), with culture and perturbation 

conditions identical to those used to measure the transcriptomic response (see section 

4.2); with samples taken 40 min after addition of 0.5 µg/ml compound, during 

exponential phase, including three replicates of the experiment and control cultures 

respectively. The cells can then be washed and lysed, allowing protein to be 

extracted using SDS polyacrylamide gel electrophoresis (SDS-PAGE), and prepared 

for liquid chromatography mass spectrometry (LCMS) analysis.   

Protein was extracted at the relevant time point by first collecting cells by 

centrifugation, before washing with, and resuspending in, PBS. Cell lysis followed 

by SDS-PAGE were then performed as detailed in Chapter 6. Those gel images are 

shown in Figure 4.8; the consistency of the sample lanes attest to the homogeneity of 

samples produced by this protocol, in terms of the major protein bands present and 

total protein loading. 
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Figure	 4.8:	 SDS-PAGE	 gels	 of	 E.	 coli	 Sakai	 protein	 (~40	 µg)	 extracted	 from	 cultures	 with/without	
exposure	 to	 the	 lead	 compound	 during	 exponential	 growth.	 Hollow	 triangles	 mark	 lanes	 where	 a	 NE	
BioLabs	broad	range	protein	reference	ladder	was	applied,	and	filled	triangles	mark	sample	lanes.		

 

4.4.2 LCMS: preparation and analysis   

Each sample lane from the SDS-PAGE gels were carefully extricated and cut into 

small pieces, which were prepared separately. Peptide samples within gel pieces 

were prepared for LCMS using the heterophase digestion method outlined by 

Shevchenko, Mann and co-workers.55 Briefly, each sample was; reduced using 

dithiothreitol (DTT) to break up disulfide bridges; alkylated at reactive sites using 

iodoacetamide; digested using trypsin (2.5 ng/µl, 18 h incubation at 37 °C); extracted 

from the gel pieces by sonication in 3:1 water/acetonitrile containing 5 % formic 

acid. Extracts from the same SDS-PAGE lane were then recombined, and the six 

samples were dried under gentle vacuum (SpeedVac). These samples were stored 

at -20 °C, and later thawed gradually when required for LCMS analysis.   

Dry peptide samples were resuspended by sonication in 55 µl of water containing 2.5 

% acetonitrile and 0.05 % trifluoroacetic acid, purified using C18 desalting tips, and 

again dried via SpeedVac. Samples were finally resuspended into 1:1 

methanol/water (50 µl) and a 10 µl aliquot was analysed by nanoLC-ESI-MS/MS. 



Daniel H Simpson | Chapter 4 

University of Warwick | Page 149  

 

4.4.3 Data analysis and results  

Proteins were identified from raw LCMS data (referenced against the Uniprot 

Escherichia_coli_O157H7 database) and label-free quantification (LFQ) values for 

each protein were calculated using MaxQuant software.56 Data were inputted to 

Perseus57 for normalisation and further analysis, establishing the fold difference 

between E. coli Sakai proteins (treated vs. control samples) and the statistical 

significance of those differences using the significance analysis of microarrays 

(SAM) technique.58 SAM identifies statistically significant genes by carrying out 

protein-specific t-tests and computes a statistic di for each protein i, which 

effectively scores the strength of the relationship between protein counts and 

treatment group A and B, using the difference between mean counts for each 

treatment and the standard error, si (Equation 4.1). This was undertaken by Dr Alexia 

Hapeshi (University of Warwick) and further details are included in Chapter 6. 

𝑑! =
!! ! !!! !

!!!!!
     Equation	4.1 

	

The false discovery rate59 (FDR) was set to 0.01, to match the RNA-seq analysis. 

The value s0, a parameter used to alter the weighting given to fold difference over 

statistical significance in scoring, was set to typical values of either 0.2 or 0.5.60 

These settings suggested only one or four proteins had significantly different counts 

across treatments, respectively. Volcano plots (scatter plots of fold difference against 

statistical significance) illustrating this analysis are shown in Figure 4.9, and the 

proteins found to have significant differential counts are listed in Table 4.5. 
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Figure	 4.9:	 Volcano	 plots	 of	 proteomic	 data,	 identifying	 significant	 protein	 changes	 between	
treated	 and	 control	 E.	 coli	 Sakai	 cells.	 The	 difference	 in	 log2	 LFQ	 (treated	 vs.	 control)	 is	 plotted	
against	-log10	p-value	for	each	protein,	with	selection	thresholds	set	at	s0	=	0.2	(left)	or	0.5	(right)	shown	as	
black	curves.	Proteins	exceeding	these	thresholds	are	marked	with	red	circles	and	annotations.	

Protein Function Log2 LFQ fold 
change -Log10 p-value 

GadE* Regulates the expression of several genes 
involved in acid resistance 1.89 4.29 

SlyA Regulates the expression of several genes 
involved in acid resistance 1.99 1.51 

RpmI 50S ribosomal protein L35 -2.25 1.23 

RpmE 50S ribosomal protein L31 -1.79 1.68 

Table	 4.5:	 Proteins	 counts	 found	 to	 be	 significantly	 different	 in	 treated	 samples	 (0.5	 μg/ml	 lead	
compound),	 relative	 to	 the	 untreated	 control,	 using	 SAM	 analysis	 (s0	 =	 0.5,	 FDR	 =	 0.01)	 on	 Perseus	
software.	Proteins	that	remain	significant	with	s0	=	0.2,	are	marked	*	(GadE).	

The difficulty in finding significant changes in protein counts under the treatment 

conditions applied (40 min after an addition of the lead compound at 0.5 µg/ml), 

especially in contrast to the RNA-seq findings, suggest that this treatment was too 

subtle to detect many overt changes to the proteome. This is consistent with the low 

fold changes and relatively mild response observed in the RNA-seq data for the same 

treatment/incubation time. A higher dosage and/or a longer incubation with the 

complex would thus foreseeably be worthy of consideration in any future proteomic 

study of the antimicrobial action of the lead compound.  

GadE was identified as the protein having the most significant LFQ difference across 

treatments, having a higher count in E. coli Sakai cells treated with the lead 

compound, in spite of a lack of significant up-regulation in the RNA-seq data. GadE 
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SlyA 
RpmI 
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is a transcriptional regulator involved in glutamate-dependent mechanisms of acid 

stress response (ASR). It is required for the expression of gadA and gadBC, amongst 

others. This makes GadE the essential regulator for the GAD (Glutamate 

decarboxylase) system, which consumes protons by converting glutamate to 

γ-aminobutyric acid (GABA), removing them from solution.61 This is of interest in 

relation to the RNA-seq data, as a number of genes linked to ASR were found to be 

differentially expressed (see section 4.3.7). Taken together, this would suggest the 

lead compound is affecting the intracellular pH. This effect could be directly or 

indirectly critical to the mechanism (though there may be several), or it could be the 

result of another mechanism, e.g. disruption of the proton-motive force could cause a 

build-up of protons in the cell.  

Compellingly, another protein with a higher count in treated cells, albeit with much 

lower statistical significance (p-value ≈ 0.03), was the transcriptional regulator, 

SlyA. As well as being another protein associated with ASR, SlyA is also associated 

with resistance to CAMPs,62 another process where associated genes were seen to be 

upregulated in the RNA-study (see section 4.3.6). The only proteins showing any 

remotely significant lowering of their counts after treatment with the lead compound 

were both ribosomal proteins. This may suggest that the cell is diverting resources 

away from ribosome assembly in response to the activation of specific stress 

pathway. However, for both proteins the p-values associated with these lower counts 

(0.02-0.06) are rather high, making these differences more ambiguous. 
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4.5 Summary  

This chapter described tandem “omics” approaches that investigated the mechanism 

of the lead class Ia flexicate, ΛFe-[Fe2Lb
3]Cl4, against E. coli Sakai, with the aim of 

developing credible hypotheses. Firstly a genomic study of mutants selected against 

the lead compound, followed by studies of the transcriptomic and proteomic 

responses respectively to the lead compound. To our knowledge, this is the most 

comprehensive mechanistic study of an antimicrobial metallodrug to date. 

In spite of the high concentration of the lead compound (80 µg/ml) required to select 

single colonies at ×40 the MIC in broth, under these conditions a mutation frequency 

of 2.49 × 10-7 (σ = 0.78 × 10-7) was obtained. This is higher than many antibiotics 

typically used in the clinic,63 though some yield similar values, e.g. rifampicin 

against S. aureus.64 However, it is noteworthy that none of these mutants were truly 

resistant; as only two- to four- fold increases in MIC were observed. WGS (MiSeq) 

followed by genome assembly via EntroBase was a critical indicator of potential 

mechanistic targets in identifying gene modifications that lead to tolerance: genes 

encoding LPS modification enzymes, waaG and galU, and a vitamin B12 transporter 

gene, btuB. Each of these would point to the Gram-negative outer membrane being 

either a primary target or at least a critical interaction for reasons such as ingress. 

Mutations to waaG and galU gave no cross-resistance or even increased 

susceptibility to other lead flexicates ([Fe2La
3]Cl4), compared to the WT. This 

suggests that the LPS layer (which WaaG and GalU modify), is not only critical to 

the action of ΛFe-[Fe2Lb
3]Cl4, but is specific in its interaction with this compound 

and its structure. 
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An unexpected outcome of the mutant selection and WGS, was a potential link 

between the level of the pO157 plasmid and tolerance. Early data from ongoing 

Sanger sequencing experiments on these mutants by Drs Kathryn Styles and Nick 

Waterfield would suggest that the observed loss is genuine (not the result of 

irregularities in DNA extraction or genome mapping). The cause of this loss remains 

unknown as the experiment was not designed to investigate this effect, and further 

work will be necessary to better understand the plasmid loss. As well as 

speculatively containing genes encoding LPS modifiers, the plasmid contains many 

virulence factors, thus its loss under this selection pressure could be of clinical 

interest.  

The RNA-seq response (analysed by DEseq2) could be grouped into three main 

classes; (i) CAMP resistance and membrane maintenance; (ii) acid stress response; 

(iii) Metabolism and redox state. The ability to group most of the genes identified 

into those categories and often related cellular pathways (Figure 4.7) adds 

confidence to these findings. The response appeared to be moderate, with only 68 

genes found to have significantly different expression after treatment with the lead 

compound at quarter the MIC, for 40 min. In addition, overt differences were not 

seen as fold changes were all within the range: 2.13 > log2(fold change) > -1.74. 

However, this moderate response appears to have beneficially aided the analysis (as 

intended), since there is an absence of chaotic or erratic changes that may result from 

the early stages of cell death, which could otherwise confound interpretation of the 

results.  

Proteomic analysis could only reliably identify a single protein, GadE, as being 

differentially expressed in treated cells with a high degree of confidence. This is 
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likely due to the re-use of the treatment conditions used in the RNA study, which 

elicited a moderate transcriptome response, while it is likely the proteome would 

take longer to show a response. Any future proteomic investigation should take this 

finding into account by using a longer incubation time with the flexicate and/or a 

concentration closer to the MIC. Indeed, with additional resources it is typical to 

perform proteomic analyses as time-series.49 Nonetheless a higher count of GadE is 

supportive of the lead compound inducing an ASR, in line with RNA-seq findings. 

With the outer membrane, acid stress and redox/metabolism all being implicated in 

the action of the lead compound, it may be hypothesised that the compound is acting 

upon the outer membrane in such a way to either disrupt ion (e.g. proton) transport 

or permeablise this layer somewhat. This general mechanism would be compatible 

with all of these effects, and would certainly be consistent with observations from 

Chapter 3 such as the stark difference in the susceptibility of K. pneumoniae strains 

to the lead compound. Another hypothesis, potentially congruent with the first, is 

that the lead compound may be mimicking the activity of CAMPs. This was alluded 

to in some specific RNA responses and would certainly be consistent with 

membrane interactions being critical to their action. Notably, a somewhat similar 

RNA response to that described in this chapter has been reported for Streptococcus 

pneumoniae treated with a designed CAMP.65 In addition, the first report of class Ia 

flexicates did allude to their structural similarity to certain CAMPs66 where the seats 

of cationic charge are held at opposite ends of an otherwise hydrophobic protein, e.g. 

protegrin. It would certainly be prudent to investigate these hypotheses further in any 

future investigations of these molecules and their antimicrobial activity. 
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Chapter 5 
General Conclusions and Future Work  

 
5.1 The Antimicrobial Discovery Process  

Chapters 2 and 3 outline the synthesis and screening that allowed the discovery of 

new antimicrobial class Ia flexicates, with a particular focus on compounds showing 

activity against Gram-negative species. The assembly ΛFe-[Fe2Lb
3]Cl4 was 

discovered as an exceptionally potent antimicrobial against the Enterobacteriaceae, 

particularly E. coli, with MICs as low as 2 µg/ml. 

Optimisation of this compound may now be considered. Chapter 2 outlined how a 

range of linkers may be incorporated into the class Ia flexicate system, however the 

subcomponent assembly of these metallohelices foreseeable allows for a wider range 

of synthetic modifications (see Scheme 2.4). For example, modification of the 

pyridine units or replacement with other N-heterocyclic systems is highly feasible.1-3  

Likewise, the screening presented in Chapter 3 could be expanded through the use of 

a panel incorporating a greater diversity of bacterial strains and species. Notably, 

promising Gram-positive activity was observed for certain compounds such as 

[Fe2Li
3]Cl4 enantiomers, but not explored further since Gram-negative systems are a 

priority.4, 5 Just as the Gram-negative panel was expanded through the use of 

ESKAPE pathogens to give novel insights, the Gram-positive panel might be 

similarly increased by the addition of Enterococcus faecium strains, several of which 

are well-known pathogens,6 and various strains of Staphylococcus aureus that would 

better represent the diversity of that species.7 Additionally there are many other 
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documented examples of Gram-positive genera containing many pathogenic strains 

e.g. Streptococci,8 Listeria,9 Clostridium.10 Furthermore, simpler antimicrobial 

screens such as that outlined in this work necessitate the use of strains that may be 

accommodated by an unmodified macro/micro-broth dilution method of assessing 

susceptibility. The screening of strains requiring specific growth conditions not 

accounted for by this method (e.g. anaerobes require a low O2 environment) require 

sophisticated modification, but could thus allow the testing compounds against a 

broader range of pathogens.11 

In understanding the activity observed from the screening described in this work, and 

its origin, it must noted that broth dilution methods of MIC determination measure 

bacterial susceptibility as a function of the concentration applied to solution. 

However, this is not necessarily correlated to the ‘effective concentration’, i.e. the 

bioavailability, of the compound as experienced by the bacterium, or the cellular 

uptake of the compound. To determine bioavailability, the extent to which 

compounds are removed from solution by the factors their environment must be 

considered.12 While the aqueous solubility and stability of the compounds described 

in this work is addressed, further work is required to determine whether the 

bioavailability of the compounds in biological media such as CAMHB is an 

important factor of the activity observed. A simple experiment to determine whether 

binding to broth components inactivates a compound, may be a simple incubation in 

broth at a set concentration followed by filtration through a size-exclusion filter that 

removes large molecules such as proteins, but would allow an unbound metallohelix 

to pass through.13 The concentration of the complex passing through such a filter 

post-incubation would allow a rough estimate of non-specific binding, measured for 

example using the flexicate MLCT absorption band, as used in Chapter 2 in 
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determining aqueous stability. Bioavailability in vivo is much more complex, but 

nonetheless means of addressing this issue have been described.14 

In practice the measurement of cellular uptake is often challenging. For metallodrugs 

containing non-native elements [e.g. Ru(II) complexes], the problem is simplified as 

the presence of these elements, acting as proxies for the complex, is relatively easy 

to determine and quantify, for example by inductively coupled plasma mass 

spectrometry (ICP-MS). For compounds entirely composed of elements native to 

bacteria, as is the case for the class Ia flexicates screened in this work, spectroscopic 

handles may be into the molecule without affecting the chemistry by the introduction 

of radioisotopes such as 3H (tritium), 14C, or 55Fe that have sufficient half-lives to 

allow for synthesis, preparation, etc., is a plausible route that allow for quantitative 

detection in-cell.15, 16 

The work of Chapter 3 put forward simple structure-activity relationship (SARs) for 

Class Ia flexicates with regard to E. coli and S. aureus respectively, and these may be 

developed further by gathering additional quantitative information about the physical 

properties of this class,17 such as lipophilicity [e.g. log (P)] or redox potential for 

example. Correlation between factors such as these and observed antimicrobial 

activity could be crucial in understanding which properties are necessary in driving 

the activity, stimulating better mechanistic understanding and guiding future 

synthetic work. 
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5.2 Mechanistic Hypotheses 

Chapter 4 outlined hypotheses regarding the mechanism causing the potent 

bactericidal activity of the lead compound in E. coli (ΛFe-[Fe2Lb
3]Cl4). This 

compound was seen to influence the cell membrane, acid-stress, and cell 

metabolism/redox, with the enticing notion that this may hint at a similarity in 

behaviour between this compound and cationic antimicrobial peptides (CAMPs). 

Immediate further work in this area could focus on testing these hypotheses using 

orthogonal approaches to mechanistic investigation.  

Recently, fluorescence-based ‘reporter strains’ have been reported, whereby the 

target bacterium is modified such that it fluoresces in response to stress caused by 

the inhibition of a particular critical cellular process.18 In 2007, a Bayer HealthCare 

research team reported that they had successfully produced and tested five Bacillus 

subtilis reporter strains, with different promoters associated with certain stress 

responses, fused to a luciferase (fluorescent reporter) gene.19 These five stains were 

collectively capable of ‘reporting’ inhibition of: DNA synthesis, RNA synthesis, 

protein synthesis, cell membrane synthesis (or cell wall damage) and fatty acid 

synthesis. The team tested against several antibiotic compounds with well-

understood mechanisms and the reporter strains proved effective in highlighting the 

processes being targeted; e.g. bleomycin induces the yorB promoter associated with 

DNA damage, vancomycin induces the promoter ypuA associated with cell wall 

stress. The system has some drawbacks such as a limited drug concentration range 

and difficulty identifying mechanisms for compounds with diverse MOAs (e.g. 

ethidium bromide). Understandably, the potential of such high-throughput 
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biotechnology for facile, rapid understanding of the mechanism of action for novel, 

antimicrobials, is considerable. 

Another means of validating the importance of a certain cellular pathway to the 

antimicrobial activity of a compound, is to test the susceptibility of ‘knockout 

mutant’ strains, e.g. the Keio collection, a library of E. coli K-12 mutants.20, 21 These 

stains differ from typical wild-type stains of the same species in that they lack a 

certain nonessential gene (or lack the means to express said gene), which causes a 

pathway to be shut down. Libraries of such knockout mutant strains have been 

devised in order to assist in the triangulation of antimicrobial agents’ mechanism or 

key cellular targets. 

With confirmation of a key target of targets, specific information regarding these 

interactions such as binding kinetics may be explored and leveraged to improve the 

antimicrobial activity through molecular modification. 
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Chapter 6 

Materials and Methods 

6.1 Experimental Details for Chapter 2  

6.1.1 Solvents and chemicals  

All solvents and chemicals purchased from commercial sources (Sigma-Aldrich, 

Acros, Fisher Scientific, Alfa Aesar or Invitrogen) were used without further 

purification unless otherwise stated. Sodium hydride dispersions in mineral oil were 

placed in a Schlenk vessel under an inert atmosphere and washed three times with 

diethyl ether to remove the oil, then dried and stored under argon in an MBraun dry 

box. Where necessary solvents were dried by heating to reflux for 3 d under dinitrogen 

over the appropriate drying agents (potassium for tetrahydrofuran, and calcium 

hydride for methanol and DCM) and degassed before use. Tetrahydrofuran was 

additionally pre-dried over sodium wire. Dried solvents were stored in glass ampoules 

under argon. Deuterated solvents were purchased from Sigma-Aldrich or Cambridge 

Isotope Laboratories and pre-dried over molecular sieves (3 Å for methanol, dimethyl 

sulfoxide and acetonitrile; 4 Å for chloroform), for 24 h prior to use. Perchlorate salts 

pose an explosion risk, particularly when heated, and were therefore only used on a 

small scale and never exposed to excess heat. 

 

6.1.2 Equipment and instrumentation   

Where appropriate, reactions were carried out under argon using a dual manifold 

argon/vacuum line and standard Schlenk techniques, or an MBraun dry box. All 
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glassware and cannulae for these techniques were stored in an oven at >375 K for 48 

h prior to use.  

NMR spectra were recorded on Bruker Advance III HD300/400/500 spectrometers. 

Routine NMR assignments were confirmed by 1H-1H (COSY) and 13C-1H (HSQC) 

correlation experiments where necessary. The spectra were internally referenced using 

the residual protio solvent (CDCl3, CD3CN etc.) resonance relative to 

tetramethylsilane (δ = 0 ppm). ESI mass spectra were recorded in a methanol/water 

mixture (4:1) on either an Agilent Technologies 1260 Infinity spectrometer or a Bruker 

Daltonics MicroTOF spectrometer. Fourier-transformed infra-red (FTIR) spectra were 

measured using a Bruker Alpha-P FTIR spectrometer (undergraduate laboratory, 

University of Warwick). Elemental analyses were performed by Medac Ltd. 

Chobham, Surrey, UK GU24 8JB. Optical rotation measurements were performed on 

a Perkin Elmer Polarimeter 341 by Warwick Analytical Services, Coventry, UK. In 

all cases the following parameters were used: solvent methanol, temperature 21 °C, 

pathlength 100 mm, wavelength 589 nm.  

Suitable single crystals for diffractometry were mounted on glass fibre with Fomblin 

oil on a Bruker-Nonius FR591 rotating anode diffractometer with a Bruker-Nonius 

APEX II CCD camera on k-goniostat. The crystals were kept at 120 ± 2 K during data 

collection. Using Olex2,1 the structure was solved with the ShelXS2 structure solution 

program using Direct Methods and refined with the ShelXL2 refinement package 

using Least Squares minimisation. This was performed by Dr Guy Clarkson, and data 

is tabulated in the appendix. 

UV-Visible absorbance spectra were recorded using a Jasco V-660 spectrometer. 

Measurements were collected from a 1 cm path-length quartz cuvette and, unless 
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otherwise mentioned, the standard parameters used were: bandwidth 1 nm, response 

time 1 sec, wavelength scan range 200-700 nm, data pitch 0.2 nm, scanning speed 200 

nm/min, with four accumulation taken per sample to give an average spectrum with 

reduced noise. CD spectra were measured on a Jasco J-815 spectrometer. 

Measurements were collected using a 1 cm path-length quartz cuvette and unless 

otherwise mentioned the standard parameters used were: bandwidth 2 nm, response 

time 1 sec, wavelength scan range 200-700 nm, data pitch 1 nm, scanning speed 200 

nm/min, with four accumulation taken per sample to give an average spectrum with 

reduced noise. 

Thermogravimetric analysis (TGA) was performed using a Mettler Toledo TGA/DSC 

1 STAR® system instrument. Samples were weighed accurately into a pre-weighed 

40 μl TGA/DSC aluminium crucible (DSC consumables Inc.) and heated 298 to 573 

K (25 to 300 °C), at 5 K/min under a nitrogen atmosphere. The mass of the sample 

was recorded at various temperature points along this range. 

 

6.1.3 Synthesis and characterisation of small organic molecules  

(R)-2-phenylglycinol1 [(R)-1] 

  

D-Phenylglycine (20.0 g, 0.13 mol, 1 eq.) was suspended in anhydrous tetrahydrofuran 

(100 ml) under argon, and added dropwise to a stirred solution of lithium aluminium 

hydride (10.0 g, 0.26 mol, 2 eq.) in anhydrous tetrahydrofuran (100 ml) at 0 °C. The 

suspension was allowed to warm to ambient temperature and then heated at reflux (70 
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°C) for 16 h. After cooling to 0 °C the reaction mixture was quenched by adding 

saturated potassium carbonate solution (250 ml) dropwise. The solid was filtered off 

to give a yellow solution. The solvent was removed under reduced pressure to give a 

yellow solid, which upon recrystallisation from minimum hot toluene gave a white 

crystalline solid. 

Yield: 10.37 g, 75.6 mmol, 58 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.31-7.17 (5H, m, Ph), 3.97 (1H, dd, 3JHH = 

4.4 Hz, 8.3 Hz, CH), 3.67 (1H, dd, 2JHH = 10.7 Hz, 3JHH = 4.4 Hz, CH2), 3.48 (1H, dd, 

2JHH = 10.7 Hz, 3JHH = 8.3 Hz, CH2), 1.78 (2H, br s, NH2). 

13C{1H NMR (75 MHz, 298 K, CDCl3): δC 142.9 (Ph), 128.8 (Ph), 127.7 (Ph), 126.6 

(Ph), 68.2 (CH2), 57.5 (CH). 

MS (ESI): m/z 297.1 [2M+Na]+, 160.0 [M+Na]+, 138.1 [M+H]+, 121.1 [M-NH2]
+. 

FTIR: ν cm-1 2834 w, 1605 w, 1496 w, 1452 w, 1360 w, 1197 w, 1078 m, 1045 m, 

979 w, 883 m, 816 m, 755 s, 700 s. 

Elemental analysis found (calculated for C8H11NO): % C 69.76 (70.04), H 8.19 (8.08), 

N 10.19 (10.21). 

Melting point: 76-78 °C (lit. 76-78 °C).1 

Optical rotation: -26.04° (6.61 g/100 ml, 21 °C) [lit. value -25.99° (6.62 g/100 ml, 20 

°C)].1 
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 (S)-2-phenylglycinol [(S)-1] 

 

Synthesised using the procedure described for (R)-2-phenylglycinol, substituting D-

phenylglycine for L-phenylglycine. 

Yield: 11.48 g, 83.7 mmol, 65 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.31-7.17 (5H, m, Ph), 3.97 (1H, dd, 3JHH = 

4.4 Hz, 8.3 Hz, CH), 3.67 (1H, dd, 2JHH = 10.7 Hz, 3JHH = 4.4 Hz, CH2), 3.48 (1H, dd, 

2JHH = 10.7 Hz, 3JHH = 8.3 Hz, CH2), 1.78 (2H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.9 (Ph), 128.8 (Ph), 127.7 (Ph), 126.6 

(Ph), 68.2 (CH2), 57.5 (CH). 

MS (ESI): m/z 297.1 [2M+Na]+, 160.0 [M+Na]+, 138.1 [M+H]+, 121.1 [M-NH2]
+. 

FTIR: ν cm-1 2834 w, 1605 w, 1496 w, 1452 w, 1360 w, 1197 w, 1078 m, 1045 m, 

979 w, 883 m, 816 m, 755 s, 700 s. 

Elemental analysis found (calculated for C8H11NO): % C 69.87 (70.04), H 8.27 (8.08), 

N 10.12 (10.21). 

Melting point: 76-79 °C. 

Optical rotation: 26.17° (6.67 g/100 ml, 21 °C). 
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bis-4-(Bromomethyl)phenyl ether2 (2e) 

 

Diphenyl ether (5.67 g, 33.3 mmol) and paraformaldehyde (4.0 g, 0.13 mol, 4 eq.), 

were suspended in a solution of 33 wt% HBr in glacial acetic acid (36 ml). The mixture 

was stirred at ambient temperature for 48 h. The white solid formed was collected by 

filtration, washed with water (100 ml) and 2:1 n-hexane/ethyl acetate (80 ml), and 

dried in air. The product was recrystallised from hot toluene/n-hexane, to give a white 

crystalline solid, which was collected by filtration and dried overnight at 50°C in 

vacuo. 

Yield: 6.74 g, 18.9 mmol, 57 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.37 (4H, d, 3JHH = 8.5 Hz, Ph), 6.97 (4H, d, 

3JHH = 8.5 Hz, Ph), 4.51 (4H, s, CH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 157.1 (Ph), 133.1 (Ph), 130.8 (Ph), 119.3 

(Ph), 33.3 (CH2). 

MS (CGMS): m/z 277.7 [M-Br]+, 275.7 [M-Br]+, 197.4 [M-2Br+H]+. 

FTIR: ν cm-1 1592 w, 1495 m, 1439 w, 1231 s, 1198 s, 1160 m, 1088 m, 1015 w, 869 

m, 860 m, 839 s, 813 m. 

Elemental analysis found (calculated for C14H12Br2O): % C 46.76 (47.23) H 3.35 

(3.40) N <0.1 (0). 
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bis-4-(bromomethyl)phenyl sulfide2 (2f) 

 

Diphenyl sulfide (2.8 ml, 3.1 g, 16.6 mmol, 1.0 eq.) and paraformaldehyde (1.8 g, 59.9 

mmol, 3.6 eq.) were added to a solution of 33 wt% HBr in glacial acetic acid (18 ml). 

The mixture was stirred under reflux at 50 °C overnight. Upon cooling, the addition 

of water (100 ml) caused a white precipitate to form, which was collected by filtration, 

washed with water (100 ml) and 2:1 n-hexane/ethyl acetate (80 ml), and dried in air. 

The product was recrystallised from hot toluene/n-hexane, to give a white crystalline 

solid, which was collected by filtration and dried overnight at 50°C in vacuo. 

Yield: 4.01 g, 10.8 mmol, 65 %. 

1H NMR (500 MHz, 298 K, CDCl3): δH 7.34-7.29 (8H, m, Ar), 4.47 (4H, s, CH2). 

13C{1H} NMR (125 MHz, 298 K, CDCl3): δC 137.0 (Ph), 136.0 (Ph), 131.4 (Ph), 130.1 

(Ph), 33.0 (CH2). 

MS (CGMS): m/z 372.9 [M+H]+, 293.7 [M-Br]+, 292.3 [M-Br]+, 213.2 [M-2Br+H]+. 

FTIR: ν cm-1 1487 w, 1222 m, 1196 m, 1086 w, 1016 w, 839 s, 804 w.  

Elemental analysis found (calculated for C14H12Br2S): % C 44.91 (45.19), H 3.30 

(3.25), N <0.1 (0). 
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bis-4-(bromomethyl)phenylmethane3 (2g) 

 

Diphenylmethane (5.0 g, 29.7 mmol, 1.0 eq) and paraformaldehyde (5.35 g 0.178 mol, 

6.0 eq.) were suspended in a mixture of aqueous 48 wt% HBr solution (80 ml) and 

glacial acetic acid (25 ml). Tetradecyltrimethylammonium bromide (0.16 g) was 

added and the suspension was stirred under reflux at 125 °C overnight. Upon cooling, 

the yellow solid formed was collected by filtration, washed with water (100 ml) and 

dried in air. The product was recrystallised from hot toluene/n-hexane, to give a white 

powder, which was collected by filtration and dried overnight at 70 °C in vacuo. 

Yield: 3.85 g, 10.9 mmol, 37 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.32 (4H, d, 3JHH = 7.4 Hz, Ph), 7.15 (4H, d, 

3JHH = 7.4 Hz, Ph), 4.48 (4H, s, CH2Br), 3.96 (2H, s, CH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 141.2 (Ph), 135.9 (Ph), 129.5 (Ph), 129.4 

(Ph), 41.5 (CH2), 33.6 (CH2Br). 

MS (CGMS): m/z 275.7 [M-Br]+, 273.7 [M-Br]+. 

FTIR: ν cm-1 1511 w, 1432 w, 1416 w, 1226 m, 1198 s, 1022 w, 864 m, 823 s, 765 m, 

721 m, 715 s. 

Elemental analysis found (calculated for C15H14Br2): % C 51.53 (50.88), H 3.96 (3.99), 

N <0.1 (0).  
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1,2-bis-4-(bromomethyl)phenylethane (2h) 

 

Bibenzyl (5.42 g, 29.7 mmol, 1.0 eq) and paraformaldehyde (5.35 g 0.178 mol, 6.0 

eq.) were suspended in a mixture of aqueous 48 wt% HBr solution (80 ml) and glacial 

acetic acid (25 ml). Tetradecyltrimethylammonium bromide (0.16 g) was added and 

the suspension was stirred under reflux at 125 °C overnight. Upon cooling, the yellow 

solid formed was collected by filtration, washed with water (100 ml) and dried in air. 

The product was recrystallised from hot DCM/n-hexane, to give a yellow powder, 

which was collected by filtration and dried overnight at 50 °C in vacuo. 

Yield: 1.95 g, 5.3 mmol, 18 %. 

1H NMR (300 MHz, 298 K, CDCl3): 7.31 (4H, d, 3JHH = 7.3 Hz, Ph), 7.17 (4H, d, 3JHH 

= 7.3 Hz, Ph), 4.49 (4H, s, CH2Br), 2.91 (4H, s, CH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.1 (Ph), 135.7 (Ph), 129.3 (Ph), 129.0 

(Ph), 37.5 (CH2), 33.8 (CH2Br). 

MS (CGMS): m/z 289.8 [M-Br]+, 287.8 [M-Br]+, 243.8 [M-2Br+Cl]+, 184.9 

[C8H8Br]+, 182.9 [C8H8Br]+, 139.5 [C8H8Cl]+, 104.5 [C8H8]
+. 

FTIR: ν cm-1 1611 w, 1511 m, 1437 w, 1418 m, 1226 s, 1211 s, 1200 s, 1081 w, 1017 

w, 830 s, 749 m. 

Elemental analysis found (calculated for C16H16Br2): % C 52.88 (52.21), H 4.46 (4.38), 

N <0.1 (0). 
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2,8-bis(bromomethyl)dibenzofuran (2i) 

 

Dibenzofuran (1.0 g, 5.9 mmol, 1.0 eq) and paraformaldehyde (0.78 g, 26.0 mol, 4.38 

eq) were suspended in a solution of 33 wt% HBr in glacial acetic acid (10 ml). 90 wt% 

phosphoric acid (5 ml) was added and the mixture stirred under reflux at 65 °C for 1 

h, then at ambient temperature overnight, before cooling. The reaction contents were 

added to ice-cold water (150 ml), and the white solid collected by filtration and dried 

in air. The crude product was dissolved into a minimal volume of hot toluene, before 

adding an excess (~100 ml) of n-hexane. The product was recrystallised from hot 

toluene/n-hexane, to give a white powder, which was collected by filtration and dried 

overnight at 50°C in vacuo. 

Yield: 1.00 g, 2.8 mmol, 48 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.98 (2H, s, Ph), 7.56-7.48 (4H, m, Ph), 4.69 

(4H, s, CH2). 

13C{1H} NMR (100 MHz, 298 K, CDCl3): δC 156.6 (Ph), 132.9 (Ph), 128.9 (Ph), 124.4 

(Ph), 121.6 (Ph), 112.3 (Ph), 34.0 (CH2Br). 

MS (CGMS): m/z 275.7 [M-Br]+, 274.3 [M-Br]+, 229.8 [M-2Br+Cl]+, 194.9 [M-

2Br]+. 

FTIR: ν cm-1 1601 w, 1486 w, 1458 w, 1219 s, 1205 s, 1187 s, 1126 m, 1024 m, 882 

m, 822 s, 736 m. 
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Elemental analysis found (calculated for C14H10Br2O): % C 47.16 (47.50), H 2.88 

(2.85), N <0.1 (0). 

 

2,7-bis(bromomethyl)fluorene (2j) 

 

Adapted from a synthesis of 2,7-bis(bromomethyl)-9,9-diethylfluorene.4  

Fluorene (5.0 g, 30.1 mmol, 1.0 eq) and paraformaldehyde (3.9 g, 0.13 mol, 4.3 eq.) 

were suspended in a solution of 33 wt% HBr in glacial acetic acid (75 ml). 90 w% 

phosphoric acid (25 ml) was added and the mixture stirred under reflux at 65 °C for 1 

h, then at ambient temperature overnight. The flocculent reaction mixture was added 

to ice-cold water (300 ml), and the white solid collected by filtration and dried in air. 

Recrystalisation from 5:1 acetone/n-hexane gave the desired product as a white 

powder, which was dried overnight at 50 °C in vacuo.  

Yield: 2.91 g, 8.3 mmol, 27 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.73 (2H, d, 3JHH = 7.8 Hz, Ph), 7.58 (2H, s, 

Ph), 7.41 (2H, d, 3JHH = 7.8 Hz, Ph), 4.60 (4H, s, CH2Br), 3.90 (2H, s, CH2). 

13C{1H} NMR (100 MHz, 298 K, CDCl3): δC 144.3 (Ph), 141.6 (Ph), 136.8 (Ph), 128.2 

(Ph), 126.0 (Ph), 120.5 (Ph), 36.8 (CH2), 34.4 (CH2Br). 

MS (CGMS): m/z 262.8 [M-2Br+2Cl]+, 227.9 [M-2Br+Cl]+, 193.0 [M-2Br]+. 

FTIR: ν cm-1 1420 m, 1396 s, 1227 m, 1210 s, 1201 s, 825 s, 732 m, 725 m,706 s.  
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Elemental analysis found (calculated for C15H12Br2): % C 51.72 (51.17) H 3.43 (3.44) 

N <0.1 (0).  

 

6.1.4 Synthesis and characterisation of chiral diamines (3a-i)5  

(R,R)-α,α'-bis(2-amino-2-phenylethoxy)-p-xylene [(R,R)-3a] 

 

Under inert atmosphere, (R)-2-phenylglycinol (2.0 g, 14.6 mmol, 2.2 eq.) was 

dissolved in anhydrous THF (50 ml), to which 1 ml (1.11 g, 5.0 mmol, 0.8 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.72 g, 31.3 mmol, 4.8 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

α,α'-dibromo-p-xylene (1.73 g, 6.6 mmol, 1 eq.) in anhydrous THF (40 ml) was then 

added dropwise. The reaction mixture was then stirred under static vacuum; for 1 h at 

ambient temperature, then 5 h at 65 °C. The bright yellow reaction mixture was 

allowed to cool before quenching with 2:1 saturated KCl aq./water (60 ml). The crude 

product was extracted using diethyl ether (3 × 100 ml), dried over sodium sulfate, 

filtered through celite, and the solvent removed under reduced pressure to leave a 

yellow oil. This crude product was purified by Kügelrohr distillation (150 °C, 45 min) 

to remove [15]-crown-[5] and unreacted excess phenylglycinol. 

Yield: 1.63 g, 4.3 mmol, 66 %. 
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1H NMR (400 MHz, 298 K, CDCl3): δH 7.36-7.20 (14H, m, Ph), 4.51 (4H, s, OCH2Ph), 

4.20 (2H, dd, 3JHH = 9.0 Hz, 3.8 Hz, CH), 3.57 (2H, dd, 2JHH = 9.0 Hz, 3JHH = 3.8 Hz, 

OCH2CH), 3.41 (2H, t, 2JHH/3JHH = 9.0, OCH2CH), 1.70 (4H, br s, NH2). 

13C{1H} NMR (100 MHz, 298 K, CDCl3): δC 142.6 (Ph), 137.8 (Ph), 128.5 (Ph), 127.9 

(Ph), 127.5 (Ph), 127.0 (Ph), 76.8 (OCH2CH), 73.1 (OCH2Ph), 55.7 (CH). 

MS (ESI): m/z 377.2 [M+H]+, 189.1 [M+2H]2+. 

FTIR: ν cm-1 2873 m, 1602 w, 1515 w, 1471 m, 1452 w, 1420 w, 1354 m, 1308 w, 

1212 w, 1088 s, 1020 m, 848 m, 759 s, 701 s. 

Elemental analysis found (calculated for C24H28N2O2): % C 75.95 (76.56) H 7.34 

(7.50) N 7.07 (7.44). 

 

(S,S)-α,α'-bis(2-amino-2-phenylethoxy)-p-xylene [(S,S)-3a] 

 

Synthesised according to the procedure described for (R,R)-3a; substituting (R)-2-

phenylglycinol for (S)-2-phenylglycinol. 

Yield: 1.71 g, 4.5 mmol, 69 %. 

1H NMR (400 MHz, 298 K, CDCl3): δH 7.36-7.20 (14H, m, Ph), 4.51 (4H, s, OCH2Ph), 

4.20 (2H, dd, 3JHH = 9.0 Hz, 3.8 Hz, CH), 3.57 (2H, dd, 2JHH = 9.0 Hz, 3JHH = 3.8 Hz, 

OCH2CH), 3.41 (2H, t, 2JHH/3JHH = 9.0, OCH2CH), 1.70 (4H, br s, NH2). 
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13C{1H} NMR (100 MHz, 298 K, CDCl3): δC 142.6 (Ph), 137.8 (Ph), 128.5 (Ph), 127.9 

(Ph), 127.5 (Ph), 127.0 (Ph), 76.8 (OCH2CH), 73.1 (OCH2Ph), 55.7 (CH). 

MS (ESI): m/z 399.2 [M+Na]+, 377.2 [M+H]+, 189.1 [M+2H]2+. 

FTIR: ν cm-1 2873 m, 1602 w, 1515 w, 1471 m, 1452 w, 1420 w, 1354 m, 1308 w, 

1212 w, 1088 s, 1020 m, 848 m, 759 s, 701 s. 

Elemental analysis found (calculated for C24H28N2O2): % C 75.95 (76.56) H 7.99 

(7.50) N 6.94 (7.44). 

 

(R,R)-α,α'-bis(2-amino-2-phenylethoxy)-m-xylene [(R,R)-3b] 

 

Under inert atmosphere, (R)-2-phenylglycinol (1.14 g, 8.3 mmol, 2.2 eq.) was 

dissolved in anhydrous THF (50 ml), to which 1.2 ml (1.33 g, 6.0 mmol, 1.6 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.42 g, 17.5 mmol, 4.6 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

α,α'-dibromo-m-xylene (1.0 g, 3.8 mmol, 1 eq.) in anhydrous THF (40 ml) was then 

added dropwise. The reaction mixture was then stirred under static vacuum; for 1 h at 

ambient temperature, then 5 h at 65 °C. The pink reaction mixture was allowed to cool 

before quenching with 2:1 saturated KCl aq./water (60 ml). The crude product was 

extracted using diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered through 

celite, and the solvent removed under reduced pressure to leave a yellow oil. This 



Daniel H Simpson | Chapter 6 

University of Warwick | Page 181 

crude product was purified by Kügelrohr distillation (150 °C, 45 min) to remove [15]-

crown-[5] and unreacted excess phenylglycinol. 

Yield: 1.22 g, 3.2 mmol, 81 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.40-7.23 (14H, m, Ph), 4.55 (4H, s, OCH2Ph), 

4.24 (2H, dd, 3JHH = 9.0 Hz, 3.8 Hz, CH), 3.61 (2H, dd, 2JHH = 9.0 Hz, 3JHH = 3.8 Hz, 

OCH2CH), 3.46 (2H, t, 2JHH/3JHH = 9.0, OCH2CH), 1.75 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.6 (Ph), 138.5 (Ph), 128.7 (Ph), 128.6 

(Ph), 127.5 (Ph), 127.2 (Ph), 127.1 (Ph), 127.0 (Ph), 76.9 (OCH2CH), 73.3 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 399.2 [M+Na]+, 377.2 [M+H]+, 189.1 [M+2H]2+. 

FTIR: ν cm-1 2853 m, 1602 w, 1492 m, 1452 m, 1254 m, 1155 m, 1084 s, 1027 m, 860 

m, 791 w, 759 s, 701 s.  

Elemental analysis found (calculated for C24H28N2O2): % C 75.74 (76.56) H 7.94 

(7.50) N 7.30 (7.44). 

 

(S,S)-α,α'-bis(2-amino-2-phenylethoxy)-m-xylene [(S,S)-3b]  

 

Synthesised according to the procedure described for (R,R)-3b; substituting (R)-2-

phenylglycinol for (S)-2-phenylglycinol. 
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Yield: 1.16 g, 3.1 mmol, 85 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.40-7.23 (14H, m, Ph), 4.55 (4H, s, OCH2Ph), 

4.24 (2H, dd, 3JHH = 9.0 Hz, 3.8 Hz, CH), 3.61 (2H, dd, 2JHH = 9.0 Hz, 3JHH = 3.8 Hz, 

OCH2CH), 3.46 (2H, t, 2JHH/3JHH = 9.0, OCH2CH), 1.75 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.6 (Ph), 138.5 (Ph), 128.7 (Ph), 128.6 

(Ph), 127.5 (Ph), 127.2 (Ph), 127.1 (Ph), 127.0 (Ph), 76.9 (OCH2CH), 73.3 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 399.2 [M+Na]+, 377.2 [M+H]+, 189.1 [M+2H]2+. 

FTIR: ν cm-1 2853 m, 1602 w, 1492 m, 1452 m, 1254 m, 1155 m, 1084 s, 1027 m, 860 

m, 791 w, 759 s, 701 s.  

Elemental analysis found (calculated for C24H28N2O2): % C 75.72 (76.56) H 7.61 

(7.50) N 7.17 (7.44). 

 

(S,S)-α,α'-bis(2-amino-2-phenylethoxy)-o-xylene [(S,S)-3c] 

 

Under inert atmosphere, (S)-2-phenylglycinol (0.69 g, 5.0 mmol, 2.2 eq.) was 

dissolved in anhydrous THF (40 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.3 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.25 g, 10.4 mmol, 4.6 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 
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α,α'-dibromo-o-xylene (0.6 g, 2.3 mmol, 1 eq.) in anhydrous THF (30 ml) was then 

added dropwise. The reaction mixture was then stirred under static vacuum; for 1 h at 

ambient temperature, then 5 h at 65 °C. The dark brown reaction mixture was allowed 

to cool before quenching with 2:1 saturated KCl aq./water (50 ml). The crude product 

was extracted using diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered 

through celite, and the solvent removed under reduced pressure to leave a yellow oil. 

This crude product was purified by Kügelrohr distillation (150 °C, 45 min) to remove 

[15]-crown-[5] and unreacted excess phenylglycinol. 

Yield: 0.59 g, 1.6 mmol, 68 %. 

1H NMR (400 MHz, 298 K, CDCl3): δH 7.29-7.12 (14H, m, Ph), 4.44 (4H, s, OCH2Ph), 

4.13 (2H, dd, 3JHH = 8.9 Hz, 3.8 Hz, CH), 3.50 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.8 Hz, 

OCH2CH), 3.35 (2H, t, 2JHH/3JHH = 8.90, OCH2CH), 1.73 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.7 (Ph), 136.4 (Ph), 130.0 (Ph), 128.5 

(Ph), 128.0 (Ph), 127.5 (Ph), 127.0 (Ph), 76.9 (OCH2CH), 71.0 (OCH2Ph), 55.7 (CH). 

MS (ESI): m/z 377.2 [M+H]+. 

FTIR: ν cm-1 2853 m, 1724 w, 1603 w, 1584 w, 1492 w, 1452 m, 1354 w, 1216 w, 

1186 w, 1120 m, 1080 s, 1027 m, 943 w, 861 w, 753 s, 700 s. 

Elemental analysis found (calculated for C24H28N2O2): % C 76.14 (76.56) H 7.83 

(7.50) N 6.91 (7.44). 
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(R,R)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-1,1'-biphenyl [(R,R)-3d] 

 

Under inert atmosphere, (R)-2-phenylglycinol (0.86 g, 6.3 mmol, 2.1 eq.) was 

dissolved in anhydrous THF (50 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.0 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.31 g, 12.9 mmol, 4.3 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

4,4'-bis(chloromethyl)-1,1'-biphenyl (0.75 g, 3.0 mmol, 1 eq.) in anhydrous THF (40 

ml) was then added dropwise. The reaction mixture was then stirred under static 

vacuum; for 1 h at ambient temperature, then 5 h at 65 °C. The yellow reaction mixture 

was allowed to cool before quenching with 2:1 saturated KCl aq./water (60 ml). The 

crude product was extracted using diethyl ether (3 × 100 ml), dried over sodium 

sulfate, filtered through celite, and the solvent removed under reduced pressure to 

leave a yellow oil. This crude product was purified by Kügelrohr distillation (150 °C, 

45 min) to remove [15]-crown-[5] and unreacted excess phenylglycinol. Upon 

standing, the product solidified to give a pale yellow wax. 

Yield: 0.82 g, 1.8 mmol, 61 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.49 (4H, d, 3JHH = 8.1 Hz, Ph), 7.34-7.16 

(14H, m, Ph), 4.52 (4H, s, OCH2Ph), 4.19 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.8 Hz, CH), 

3.57 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.8 Hz, OCH2CH), 3.41 (2H, t, 2JHH/3JHH = 9.0, 

OCH2CH), 1.73 (4H, br s, NH2). 
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13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.6 (Ph), 140.4 (Ph), 137.4 (Ph), 128.5 

(Ph), 128.3 (Ph), 127.5 (Ph), 127.2 (Ph), 127.0 (Ph), 76.8 (OCH2CH), 73.0 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 475. 2 [M+Na]+, 453.2 [M+H]+, 227.1 [M+2H]2+.  

FTIR: ν cm-1 3383 w, 2853 m, 1561 w, 1502 w, 1492 m, 1454 m, 1396 w, 1373 w, 

1348 m, 1305 m, 1210 w, 1183 w, 1108 s, 1015 m, 1003 m, 936 w, 860 m, 801 s, 758 

s, 700 s.    

Elemental analysis found (calculated for C30H32N2O2): % C 79.27 (79.61) H 7.25 

(7.13) N 5.93 (6.19). 

 

(S,S)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-1,1'-biphenyl [(S,S)-3d] 

 

 

Synthesised according to the procedure described for (R,R)-3d; substituting (R)-2-

phenylglycinol for (S)-2-phenylglycinol. 

Yield: 1.05 g, 2.3 mmol, 78 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.49 (4H, d, 3JHH = 8.1 Hz, Ph), 7.34-7.16 

(14H, m, Ph), 4.52 (4H, s, OCH2Ph), 4.19 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.8 Hz, CH), 

3.57 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.8 Hz, OCH2CH), 3.41 (2H, t, 2JHH/3JHH = 8.9, 

OCH2CH), 1.73 (4H, br s, NH2). 
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13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.6 (Ph), 140.4 (Ph), 137.4 (Ph), 128.5 

(Ph), 128.3 (Ph), 127.5 (Ph), 127.2 (Ph), 127.0 (Ph), 76.8 (OCH2CH), 73.0 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 475. 2 [M+Na]+, 453.2 [M+H]+, 227.1 [M+2H]2+.  

FTIR: ν cm-1 3383 w, 2853 m, 1561 w, 1502 w, 1492 m, 1454 m, 1396 w, 1373 w, 

1348 m, 1305 m, 1210 w, 1183 w, 1108 s, 1015 m, 1003 m, 936 w, 860 m, 801 s, 758 

s, 700 s.    

Elemental analysis found (calculated for C30H32N2O2): % C 79.27 (79.61) H 7.31 

(7.13) N 5.92 (6.19). 

 

(R,R)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-diphenyl ether [(R,R)-3e] 

 

Under inert atmosphere, (R)-2-phenylglycinol (0.66 g, 4.8 mmol, 2.1 eq.) was 

dissolved in anhydrous THF (50 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.3 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.25 g, 10.4 mmol, 4.6 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

2e (0.8 g, 2.3 mmol, 1 eq.) in anhydrous THF (40 ml) was then added dropwise. The 

reaction mixture was then stirred under static vacuum; for 1 h at ambient temperature, 

then 5 h at 65 °C. The brick red reaction mixture was allowed to cool before quenching 

with 2:1 saturated KCl aq./water (60 ml). The crude product was extracted using 
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diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered through celite, and the 

solvent removed under reduced pressure to leave a yellow oil. This crude product was 

purified by Kügelrohr distillation (150 °C, 45 min) to remove [15]-crown-[5] and 

unreacted excess phenylglycinol. 

Yield: 0.78 g, 1.6 mmol, 72 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.40-7.22 (14H, m, Ph), 6.96 (4H, d, 3JHH = 

8.3 Hz, Ph), 4.51 (4H, s, OCH2Ph), 4.23 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, CH), 

3.61 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, OCH2CH), 3.45 (2H, t, 2JHH/3JHH = 8.9, 

OCH2CH), 1.74 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 156.8 (Ph), 142.6 (Ph), 133.2 (Ph), 129.4 

(Ph), 128.5 (Ph), 127.5 (Ph), 126.9 (Ph), 118.9 (Ph), 76.7 (OCH2CH), 72.9 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 491.2 [M+Na]+, 469.2 [M+H]+, 235.1 [M+2H]2+. 

FTIR: ν cm-1 3027 w, 2855 w, 1601 m, 1500 s, 1452 w, 1354 w, 1236 s, 1166 w, 1087 

s, 1014 w, 874 m, 853 m, 760 s, 701 s.  

Elemental analysis found (calculated for C30H32N2O3): % C 76.47 (76.90) H 7.14 

(6.88) N 5.65 (5.98). 

 

(S,S)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-diphenyl ether [(S,S)-3e] 
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Synthesised according to the procedure described for (R,R)-3e; substituting (R)-2-

phenylglycinol for (S)-2-phenylglycinol. 

Yield: 0.77 g, 1.6 mmol, 73 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.40-7.22 (14H, m, Ph), 6.96 (4H, d, 3JHH = 

8.3 Hz, Ph), 4.51 (4H, s, OCH2Ph), 4.23 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, CH), 

3.61 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, OCH2CH), 3.45 (2H, t, 2JHH/3JHH = 8.9, 

OCH2CH), 1.74 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 156.8 (Ph), 142.6 (Ph), 133.2 (Ph), 129.4 

(Ph), 128.5 (Ph), 127.5 (Ph), 126.9 (Ph), 118.9 (Ph), 76.7 (OCH2CH), 72.9 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 491.2 [M+Na]+, 469.2 [M+H]+, 235.1 [M+2H]2+. 

FTIR: ν cm-1 3027 w, 2855 w, 1601 m, 1500 s, 1452 w, 1354 w, 1236 s, 1166 w, 1087 

s, 1014 w, 874 m, 853 m, 760 s, 701 s.  

Elemental analysis found (calculated for C30H32N2O3): % C 76.48 (76.90) H 7.22 

(6.88) N 5.65 (5.98). 

 

(R,R)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-diphenyl sulfide [(R,R)-3f] 

 

Under inert atmosphere, (R)-2-phenylglycinol (0.64 g, 4.7 mmol, 2.1 eq.) was 

dissolved in anhydrous THF (50 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.4 eq.) [15]-
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crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.24 g, 10.0 mmol, 4.7 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

2f (0.8 g, 2.2 mmol, 1 eq.) in anhydrous THF (40 ml) was then added dropwise. The 

reaction mixture was then stirred under static vacuum; for 1 h at ambient temperature, 

then 5 h at 65 °C. The dark purple reaction mixture was allowed to cool before 

quenching with 2:1 saturated KCl aq./water (60 ml). The crude product was extracted 

using diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered through celite, and 

the solvent removed under reduced pressure to leave a yellow oil. This crude product 

was purified by Kügelrohr distillation (150 °C, 45 min) to remove [15]-crown-[5] and 

unreacted excess phenylglycinol. 

Yield: 0.88 g, 1.8 mmol, 84 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.41-7.23 (18H, m, Ph), 4.53 (4H, s, OCH2Ph), 

4.25 (2H, dd, 2JHH = 8.8 Hz, 3JHH = 3.7 Hz, CH), 3.62 (2H, dd, 2JHH = 8.8 Hz, 3JHH = 

3.7 Hz, OCH2CH), 3.46 (2H, t, 2JHH/3JHH = 8.8, OCH2CH), 1.76 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.6 (Ph), 137.4 (Ph), 135.1 (Ph), 131.2 

(Ph), 128.6 (Ph), 128.5 (Ph), 127.5 (Ph), 126.9 (Ph), 76.9 (OCH2CH), 72.9 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 507.2 [M+Na]+, 485.2 [M+H]+, 243.1 [M+2H]2+. 

FTIR: ν cm-1 2855 m, 1602 w, 1492 w, 1452 m, 1421 w, 1354 m, 1212 w, 1084 s, 

1084 m, 848 m, 757 m, 700 s. 

Elemental analysis found (calculated for C30H32N2O2S): % C 73.53 (74.35) H 6.83 

(6.66) N 5.42 (5.78). 
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(S,S)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-diphenyl sulfide [(S,S)-3f] 

 

Synthesised according to the procedure described for (R,R)-3f; with the substitution 

of (R)-2-phenylglycinol for (S)-2-phenylglycinol. 

Yield: 0.58 g, 1.2 mmol, 56 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.41-7.23 (18H, m, Ph), 4.53 (4H, s, OCH2Ph), 

4.25 (2H, dd, 2JHH = 8.8 Hz, 3JHH = 3.7 Hz, CH), 3.62 (2H, dd, 2JHH = 8.8 Hz, 3JHH = 

3.7 Hz, OCH2CH), 3.46 (2H, t, 2JHH/3JHH = 8.8, OCH2CH), 1.76 (4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.6 (Ph), 137.4 (Ph), 135.1 (Ph), 131.2 

(Ph), 128.6 (Ph), 128.5 (Ph), 127.5 (Ph), 126.9 (Ph), 76.9 (OCH2CH), 72.9 (OCH2Ph), 

55.7 (CH). 

MS (ESI): m/z 507.2 [M+Na]+, 485.2 [M+H]+, 243.1 [M+2H]2+. 

FTIR: ν cm-1 2855 m, 1602 w, 1492 w, 1452 m, 1421 w, 1354 m, 1212 w, 1084 s, 

1084 m, 848 m, 757 m, 700 s. 

Elemental analysis found (calculated for C30H32N2O2S): % C 73.96 (74.35) H 6.89 

(6.66) N 5.42 (5.78). 
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(R,R)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-diphenylmethane [(R,R)-3g] 

 

Under inert atmosphere, (R)-2-phenylglycinol (0.67 g, 4.9 mmol, 2.2 eq.) was 

dissolved in anhydrous THF (50 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.3 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.24 g, 10.0 mmol, 4.4 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

2g (0.8 g, 2.3 mmol, 1 eq.) in anhydrous THF (40 ml) was then added dropwise. The 

reaction mixture was then stirred under static vacuum; for 1 h at ambient temperature, 

then 5 h at 65 °C. The orange-brown reaction mixture was allowed to cool before 

quenching with 2:1 saturated KCl aq./water (60 ml). The crude product was extracted 

using diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered through celite, and 

the solvent removed under reduced pressure to leave a yellow oil. This crude product 

was purified by Kügelrohr distillation (150 °C, 45 min) to remove [15]-crown-[5] and 

unreacted excess phenylglycinol. 

Yield: 0.74 g, 1.6 mmol, 70 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.41-7.14 (18H, m, Ph), 4.52 (4H, s, OCH2Ph), 

4.24 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, CH), 3.97 (2H, s, PhCH2Ph), 3.61 (2H, dd, 

2JHH = 8.9 Hz, 3JHH = 3.7 Hz, OCH2CH), 3.45 (2H, t, 2JHH/3JHH = 8.9, OCH2CH), 1.72 

(4H, br s, NH2). 



Daniel H Simpson | Chapter 6 

University of Warwick | Page 192 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.7 (Ph), 140.7 (Ph), 136.1 (Ph), 129.1 

(Ph), 128.5 (Ph), 128.1 (Ph), 127.5 (Ph), 127.0 (Ph), 76.9 (OCH2CH), 73.3 (OCH2Ph), 

55.7 (CH), 41.5 (PhCH2Ph). 

MS (ESI): m/z 489.1 [M+Na]+, 467.1 [M+H]+. 

FTIR: ν cm-1 3057 w, 2896 w, 2853 m, 1603 w, 1511 w, 1492 w, 1452 m, 1418 w, 

1354 w, 1182 w, 1088 s, 1020 m, 849 m, 804 w, 758 s, 701 s. 

Elemental analysis found (calculated for C31H34N2O2): % C 80.20 (79.80) H 7.22 

(7.34) N 5.23 (6.00). 

 

 

(S,S)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-diphenylmethane [(S,S)-3g] 

 

Synthesised according to the procedure described for (R,R)-3g; with the substitution 

of (R)-2-phenylglycinol for (S)-2-phenylglycinol. 

Yield: 0.75 g, 1.6 mmol, 71 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.41-7.14 (18H, m, Ph), 4.52 (4H, s, OCH2Ph), 

4.24 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, CH), 3.97 (2H, s, PhCH2Ph), 3.61 (2H, dd, 

2JHH = 8.9 Hz, 3JHH = 3.7 Hz, OCH2CH), 3.45 (2H, t, 2JHH/3JHH = 8.9, OCH2CH), 1.72 

(4H, br s, NH2). 
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13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.7 (Ph), 140.7 (Ph), 136.1 (Ph), 129.1 

(Ph), 128.5 (Ph), 128.1 (Ph), 127.5 (Ph), 127.0 (Ph), 76.9 (OCH2CH), 73.3 (OCH2Ph), 

55.7 (CH), 41.5 (PhCH2Ph). 

MS (ESI): m/z 489.1 [M+Na]+, 467.1 [M+H]+. 

FTIR: ν cm-1 3057 w, 2896 w, 2853 m, 1603 w, 1511 w, 1492 w, 1452 m, 1418 w, 

1354 w, 1182 w, 1088 s, 1020 m, 849 m, 804 w, 758 s, 701 s. 

Elemental analysis found (calculated for C31H34N2O2): % C 80.34 (79.80) H 7.55 

(7.34) N 5.27 (6.00). 

 

 

(R,R)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-1,2-diphenylethane [(R,R)-3h] 

 

Under inert atmosphere, (R)-2-phenylglycinol (0.66 g, 4.8 mmol, 2.2 eq.) was 

dissolved in anhydrous THF (50 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.4 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.24 g, 10.0 mmol, 4.6 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

2h (0.8 g, 2.2 mmol, 1 eq.) in anhydrous THF (40 ml) was then added dropwise. The 

reaction mixture was then stirred under static vacuum; for 1 h at ambient temperature, 

then 5 h at 65 °C. The grey-brown reaction mixture was allowed to cool before 
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quenching with 2:1 saturated KCl aq./water (60 ml). The crude product was extracted 

using diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered through celite, and 

the solvent removed under reduced pressure to leave a yellow oil. This crude product 

was purified by Kügelrohr distillation (150 °C, 45 min) to remove [15]-crown-[5] and 

unreacted excess phenylglycinol. Upon standing, the product solidified to give a 

yellow wax. 

Yield: 0.8 g, 1.7 mmol, 77 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.41-7.14 (18H, m, Ph), 4.53 (4H, s, OCH2Ph), 

4.24 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, CH), 3.61 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 

3.7 Hz, OCH2CH), 3.45 (2H, t, 2JHH/3JHH = 8.9, OCH2CH), 2.91 (4H, s, CH2CH2), 1.73 

(4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.7 (Ph), 141.4 (Ph), 135.9 (Ph), 128.6 

(Ph), 128.5 (Ph), 128.0 (Ph), 127.5 (Ph), 127.0 (Ph), 76.8 (OCH2CH), 73.3 (OCH2Ph), 

55.7 (CH), 37.7 (CH2CH2). 

MS (ESI): m/z 481.2 [M+H]+. 

FTIR: ν cm-1 3384 w, 3058 w, 3027 w, 2854 m, 1601 m, 1514 w, 1491 w, 1451 m, 

1421 w, 1352 w, 1308 w, 1291 w, 1114 s, 1091 s, 1020 m, 820 s, 753 s, 700 s. 

Elemental analysis found (calculated for C32H36N2O2): % C 79.71 (79.97) H 7.69 

(7.55) N 5.69 (5.83). 
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(S,S)-4,4'-bis[(2-amino-2-phenylethoxy)methyl]-1,2-diphenylethane [(S,S)-3h] 

 

Synthesised according to the procedure described for (R,R)-3h; with the substitution 

of (R)-2-phenylglycinol for (S)-2-phenylglycinol. 

Yield: 0.84 g, 1.7 mmol, 80 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.41-7.14 (18H, m, Ph), 4.53 (4H, s, OCH2Ph), 

4.24 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, CH), 3.61 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 

3.7 Hz, OCH2CH), 3.45 (2H, t, 2JHH/3JHH = 8.9, OCH2CH), 2.91 (4H, s, CH2CH2), 1.73 

(4H, br s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 142.7 (Ph), 141.4 (Ph), 135.9 (Ph), 128.6 

(Ph), 128.5 (Ph), 128.0 (Ph), 127.5 (Ph), 127.0 (Ph), 76.8 (OCH2CH), 73.3 (OCH2Ph), 

55.7 (CH), 37.7 (CH2CH2). 

MS (ESI): m/z 481.2 [M+H]+. 

FTIR: ν cm-1 3384 w, 3058 w, 3027 w, 2854 m, 1601 m, 1514 w, 1491 w, 1451 m, 

1421 w, 1352 w, 1308 w, 1291 w, 1114 s, 1091 s, 1020 m, 820 s, 753 s, 700 s. 

Elemental analysis found (calculated for C32H36N2O2): % C 80.05 (79.97) H 7.66 

(7.55) N 5.69 (5.83). 
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(R,R)-2,8-bis[(2-amino-2-phenylethoxy)methyl]-dibenzofuran [(R,R)-3i] 

 

Under inert atmosphere, (R)-2-phenylglycinol (0.67 g, 6.0 mmol, 2.2 eq.) was 

dissolved in anhydrous THF (50 ml), to which 0.6 ml (0.67 g, 3.0 mmol, 1.3 eq.) [15]-

crown-[5] was added by injection. The solution was then added dropwise to neat 

sodium hydride (0.4 g, 10.0 mmol, 4.4 eq.). The effervescent mixture was carefully 

placed under static vacuum and stirred at ambient temperature for 1 h. A solution of 

2i (0.8 g, 2.3 mmol, 1 eq.) in anhydrous THF (40 ml) was then added dropwise. The 

reaction mixture was then stirred under static vacuum; for 1 h at ambient temperature, 

then 5 h at 65 °C. The dark green-grey reaction mixture was allowed to cool before 

quenching with 2:1 saturated KCl aq./water (60 ml). The crude product was extracted 

using diethyl ether (3 × 100 ml), dried over sodium sulfate, filtered through celite, and 

the solvent removed under reduced pressure to leave a yellow oil. This crude product 

was purified by Kügelrohr distillation (150 °C, 45 min) to remove [15]-crown-[5] and 

unreacted excess phenylglycinol. 

Yield: 0.78 g, 1.7 mmol, 74 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.81 (2H, s, Ph), 7.45 (2H, d, 3JHH = 8.5 Hz, 

Ph), 7.36-7.17 (12H, m, Ph), 4.62 (4H, s, OCH2Ph), 4.20 (2H, dd, 2JHH = 8.9 Hz, 3JHH 

= 3.7 Hz, CH), 3.59 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, OCH2CH), 3.44 (2H, t, 

2JHH/3JHH = 8.9, OCH2CH), 1.74 (4H, br s, NH2). 
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13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 156.2 (Ph), 142.6 (Ph), 132.9 (Ph), 128.5 

(Ph), 127.5 (Ph), 127.3 (Ph), 126.9 (Ph), 124.3 (Ph), 120.3 (Ph), 111.6 (Ph), 76.7 

(OCH2CH), 73.5 (OCH2Ph), 55.7 (CH). 

MS (ESI): m/z 489.2 [M+Na]+, 467.2 [M+H]+, 234.1 [M+2H]2+. 

FTIR: ν cm-1 3057 w, 3027 w, 2854 m, 1603 w, 1488 m, 1452 m, 1420 w, 1355 w, 

1248 w, 1208 m, 1189 m, 1083 s, 1027 m, 876 m, 850 m, 808 m, 759 m, 700 s. 

Elemental analysis found (calculated for C30H30N2O3): % C 76.36 (77.23) H 6.83 

(6.48) N 5.83 (6.00). 

 

(S,S)-2,8-bis[(2-amino-2-phenylethoxy)methyl]-dibenzofuran [(S,S)-3i] 

 

Synthesised according to the procedure described for (R,R)-3i; with the substitution of 

(R)-2-phenylglycinol for (S)-2-phenylglycinol. 

Yield: 0.82 g, 1.8 mmol, 78 %. 

1H NMR (300 MHz, 298 K, CDCl3): δH 7.81 (2H, s, Ph), 7.45 (2H, d, 3JHH = 8.5 Hz, 

Ph), 7.36-7.17 (12H, m, Ph), 4.62 (4H, s, OCH2Ph), 4.20 (2H, dd, 2JHH = 8.9 Hz, 3JHH 

= 3.7 Hz, CH), 3.59 (2H, dd, 2JHH = 8.9 Hz, 3JHH = 3.7 Hz, OCH2CH), 3.44 (2H, t, 

2JHH/3JHH = 8.9, OCH2CH), 1.74 (4H, br s, NH2). 
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13C{1H} NMR (75 MHz, 298 K, CDCl3): δC 156.2 (Ph), 142.6 (Ph), 132.9 (Ph), 128.5 

(Ph), 127.5 (Ph), 127.3 (Ph), 126.9 (Ph), 124.3 (Ph), 120.3 (Ph), 111.6 (Ph), 76.7 

(OCH2CH), 73.5 (OCH2Ph), 55.7 (CH). 

MS (ESI): m/z 489.2 [M+Na]+, 467.2 [M+H]+, 234.1 [M+2H]2+. 

FTIR: ν cm-1 3057 w, 3027 w, 2854 m, 1603 w, 1488 m, 1452 m, 1420 w, 1355 w, 

1248 w, 1208 m, 1189 m, 1083 s, 1027 m, 876 m, 850 m, 808 m, 759 m, 700 s. 

Elemental analysis found (calculated for C30H30N2O3): % C 76.36 (77.23) H 6.83 

(6.48) N 5.83 (6.00). 

 

6.1.5 Synthesis and analysis of Mosher diamides6  

Mosher amide derivatives were prepared using (R)-(+)-Mosher’s acid (α-methoxy-α-

trifluoromethyl-phenylacetic acid), and analysed using 1H and 19F NMR. The chemical 

shifts of Mosher diamide methyl and trifluoromethyl groups are listed in Table 6.1 

(see Figure 2.3 for overlaid spectra of 3b derivatives). 

Mosher’s acid (90 mg, 0.38 mmol) was dissolved in anhydrous DCM (8 ml) and 

cooled to 0 °C. Oxalyl chloride (0.4 ml, 0.59 g, 4.7 mmol) was added, followed by 1 

drop of DMF. After stirring for 1 hour the reaction mixture was concentrated in vacuo 

and the residue was suspended in hexane (10 ml) and concentrated in vacuo [19F NMR 

(400 MHz, CDCl3) δF -70.2]. The product was dissolved in anhydrous DCM (10 ml) 

to give a 38 mM solution of Mosher’s acid chloride. The diamine (0.01 g, 20-30 µmol) 

was dissolved in DCM (5 ml) and 2.5 ml of the Mosher’s acid chloride solution in 

DCM (95 µmol >3 eq.) was added, followed by saturated aqueous sodium carbonate 

(2 ml). After stirring overnight the phases are separated and the organic phase dried 
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(magnesium sulfate), filtered and concentrated in vacuo to give crude Mosher’s 

diamide. Kügelrohr distillation (120 °C, 20 min) was used to remove excess Mosher’s 

acid and Mosher’s acid chloride from the product, which was analysed without further 

purification. 

 Mosher diamide NMR chemical shift 

(400 MHz, CDCl3) 

Parent diamine δH (OCH3) δF (CF3) 

(R,R)-3a 3.38 -68.9 

(S,S)-3a 3.30 -68.9 

rac-3a 3.38, 3.31 -68.9 

(R,R)-3b 3.37 -68.9 

(S,S)-3b 3.29 -68.9 

rac-3b 3.37, 3.30 -68.9 

(R,R)-3d 3.40 -68.8 

(S,S)-3d 3.32 -68.8 

(R,R)/(S,S)-3d 3.40, 3.32 -68.8 

Table 6.1: Chemical shifts of Mosher diamide derivatives (of 3a, 3b, and 3d), used to determine 
optical purity. The 1H-NMR shift corresponding to -OCH3 protons that are sensitive to the chirality of the 
parent diamine, and 19F-NMR shift corresponding to -CF3 F atoms are listed. 

 

6.1.6 Synthesis and characterisation of [Zn2L3][ClO4]4 complexes  

General Procedure5  

The appropriate optically pure diamine (3.0 eq.) and 2-pyridinecarboxaldehyde (6.0 

eq.) were dissolved in acetonitrile (30 ml) and stirred for 30 min at ambient 

temperature to form a yellow solution containing the ligand. Zinc (II) perchlorate 

hexahydrate (2.0 eq.) was added was added and no colour change was observed as the 

solution was stirred at ambient temperature for 4 h. The volume of the solution was 

reduced to ~10 ml under reduced pressure, and ethyl acetate was added dropwise to 

cause precipitation of a white solid, which was collected by filtration, washed with 

ethyl acetate (20 ml), and dried in air.  
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ΔZn-[Zn2Lb
3][ClO4]4∙3H2O 

 

Yield:  64 %. 

1H NMR (500 MHz, 298 K, CD3CN): δH 8 .65 (6H, s, HC=N), 8.30 (3H, s, Ph), 7.82 

(6H, t, 3JHH = 7.8 Hz, Py), 7.65-7.60 (12H, m, Ph/Py), 7.53 (3H, t, 3JHH = 7.5, Ph), 7.34 

(6H, dd , 3JHH = 7.5 Hz, 5.3 Hz, Py), 7.25 (6H, d, 3JHH = 7.8 Hz, Py), 6.95 (6H, t, 3JHH 

= 7.6 Hz, Ph), 6.75 (12H, t, 3JHH = 7.6 Hz, Ph), 6.36 (12H, d, 3JHH = 7.6 Hz, Ph), 5.63 

(6H, dd, 3JHH = 11.1 Hz, 2.6 Hz, CH), 5.01 (6H, d, 2JHH = 10.7 Hz, OCH2Ph), 4.86 

(6H, d, 2JHH = 10.7 Hz, OCH2Ph), 4.11 (6H, t, 2JHH /3JHH = 11.4 Hz, OCH2CH), 3.17 

(6H, dd, 2JHH = 11.4 Hz, 3JHH = 3.0 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 163.3 (C=N), 148.9 (Ar), 147.1 (Ar), 

142.7 (Ar), 139.3 (Ar), 135.6 (Ar), 130.5 (Ar), 130.1 (Ar), 130.0 (Ar), 129.6 (Ar), 

129.5 (Ar), 129.0 (Ar), 128.1 (Ar), 127.2 (Ar), 75.2 (OCH2Ph), 73.0 (OCH2CH), 67.8 

(CH). 

MS (ESI): m/z 448.67 [Zn2Lb
3]

4+, 309.10 [Zn2Lb]2+. 

Elemental analysis found (calculated for C108H102Cl4N12O22Zn2.3H2O): % C 57.49 

(57.74) H 4.46 (4.85) N 7.62 (7.48). 
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ΔZn-[Zn2Ld
3][ClO4]4∙10H2O 

 

Yield: 53 %. 

1H NMR (500 MHz, 298 K, CD3CN): δH 8.76 (6H, s, HC=N), 7.93 (6H, t, 3JHH = 7.8 

Hz, Py), 7.72 (6H, d, 3JHH = 4.9 Hz, Py), 7.45 (6H, dd , 3JHH = 7.6 Hz, 5.5 Hz, Py), 

7.40-7.35 (18H, m, Ph/Py), 7.25 (12H, d, 3JHH = 8.1 Hz, Ph), 7.08 (6H, t, 3JHH = 7.4 

Hz, Ph), 6.96 (12H, t, 3JHH = 7.6 Hz, Ph), 6.74 (12H, d, 3JHH = 7.6 Hz, Ph), 5.75 (6H, 

dd, 3JHH = 10.3 Hz, 2.9 Hz, CH), 5.11 (6H, d, 2JHH = 13.5 Hz, OCH2Ph), 4.61 (6H, d, 

2JHH = 13.5 Hz, OCH2Ph), 4.09 (6H, t, 2JHH /3JHH = 10.9 Hz, OCH2CH), 3.81 (6H, dd, 

2JHH = 10.9 Hz, 3JHH = 3.2 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 164.1 (C=N), 149.1 (Ar), 147.3 (Ar), 

142.8 (Ar), 140.7 (Ar), 137.9 (Ar), 136.2 (Ar), 130.6 (Ar), 129.8 (Ar), 129.15 (Ar(, 

129.1 (Ar), 128.1 (Ar), 127.4 (Ar),  72.9 (OCH2Ph), 71.8 (OCH2CH), 68.2 (CH). 

MS (ESI): m/z 631.3 [Ld+H]+. 
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Elemental analysis found (calculated for C126H114Cl4N12O22Zn2∙10H2O): % C 57.79 

(58.18) H 4.44 (5.19) N 6.15 (6.46). 

 

ΛZn-[Zn2Le
3][ClO4]4∙8H2O 

 

Yield: 78 %. 

1H NMR (500 MHz, 298 K, CD3CN): δH 8.74 (6H, s, HC=N), 7.85 (6H, t, 3JHH = 7.8 

Hz, Py), 7.65 (6H, d, 3JHH = 4.9 Hz, Py), 7.45 (12H, d, 3JHH = 8.5 Hz, Ph), 7.36 (6H, 

dd , 3JHH = 7.0 Hz, 5.2 Hz, Py), 7.31 (6H, d, 3JHH = 7.7 Hz, Py), 7.02 (6H, t, 3JHH = 7.4 

Hz, Ph), 6.88 (12H, t, 3JHH = 7.6 Hz, Ph), 6.73 (12H, d, 3JHH = 8.5 Hz, Ph), 6.60 (12H, 

d, 3JHH = 7.6 Hz, Ph), 5.75 (6H, dd, 3JHH = 5.7 Hz, 3JHH = 2.0 Hz, CH), 4.95 (6H, d, 

2JHH = 12.2 Hz, OCH2Ph), 4.42 (6H, d, 2JHH = 12.2 Hz, OCH2Ph), 4.19 (6H, t, 2JHH 

/3JHH = 11.0 Hz, OCH2CH), 3.36 (6H, dd, 2JHH = 11.0 Hz, 3JHH = 2.6 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 163.4 (C=N), 157.6 (Ar), 148.9 (Ar), 

147.2 (Ar), 142.7 (Ar), 136.0 (Ar), 134.3 (Ar), 130.6 (Ar), 129.8 (Ar), 129.7 (Ar), 
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129.6 (Ar), 129.1 (Ar), 127.2 (Ar), 119.5 (Ar), 73.1 (OCH2Ph), 72.3 (OCH2CH), 68.3 

(CH). 

MS (ESI): m/z 669.3 [Le+Na]+, 647.3 [Le+H]+. 

Elemental analysis found (calculated for C126H114Cl4N12O25Zn2.8H2O): % C 57.87 

(57.98) H 4.25 (4.90) N 6.33 (6.44). 

 

ΛZn-[Zn2Lf
3][ClO4]4.5H2O 

 

Yield: 76 %. 

1H NMR (500 MHz, 298 K, CD3CN): δH 8.72 (6H, s, HC=N), 7.83 (6H, t, 3JHH = 7.8 

Hz, Py), 7.60 (6H, d, 3JHH = 4.8 Hz, Py), 7.45 (12H, d, 3JHH = 8.2 Hz, Ph), 7.33 (6H, 

dd , 3JHH = 7.5 Hz, 5.6 Hz, Py), 7.28 (6H, d, 3JHH = 8.0 Hz, Py), 7.07 (12H, d, 3JHH = 

8.2 Hz, Ph), 7.01 (6H, t, 3JHH = 7.4 Hz, Ph), 6.88 (12H, t, 3JHH = 7.6 Hz, Ph), 6.56 

(12H, d, 3JHH = 7.6 Hz, Ph), 5.66 (6H, d, 3JHH = 10.4 Hz, CH), 4.92 (6H, d, 2JHH = 12.1 



Daniel H Simpson | Chapter 6 

University of Warwick | Page 204 

Hz, OCH2Ph), 4.39 (6H, d, 2JHH = 12.1 Hz, OCH2Ph), 4.20 (6H, t, 2JHH /3JHH = 11.0 

Hz, OCH2CH), 3.13 (6H, dd, 2JHH = 11.0 Hz, 3JHH = 2.5 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 163.1 (C=N), 148.8 (Ar), 145.2 (Ar), 

142.7 (Ar), 138.1 (Ar), 135.9 (Ar), 135.6 (Ar), 131.0 (Ar), 130.6 (Ar), 129.8 (Ar), 

129.5 (Ar), 129.2 (Ar), 127.1 (Ar), 73.2 (OCH2Ph), 72.7 (OCH2CH), 68.2 (CH). 

MS (ESI): m/z 739.0 [Zn2Lf
3][ClO4]

3+, 684.9 [Lf+Na]+, 529.4 [Zn2Lf
3]

4+. 

Elemental analysis found (calculated for C126H114Cl4N12O22S3Zn2.5H2O): C 57.71 

(57.98) H 4.36 (4.90) N 6.23 (6.44). 

 

ΛZn-[Zn2Lg
3][ClO4]4∙2H2O∙2EtOAc 

 

Yield: 68 %. 

1H NMR (500 MHz, 298 K, CD3CN): δH 8.71 (6H, s, HC=N), 7.85 (6H, t, 3JHH = 7.8 

Hz, Py), 7.64 (6H, d, 3JHH = 4.8 Hz, Py), 7.37-7.31 (24H, m, Ph/Py), 7.02 (6H, t, 3JHH 

= 7.4 Hz, Ph), 6.91 (12H, d, 3JHH = 8.0 Hz, Ph), 6.88 (12H, t, 3JHH = 7.7 Hz, Ph), 6.58 



Daniel H Simpson | Chapter 6 

University of Warwick | Page 205 

(12H, d, 3JHH = 7.6 Hz, Ph), 5.69 (6H, dd, 3JHH = 10.3 Hz, 3JHH = 2.2 Hz, CH), 4.83 

(6H, d, 2JHH = 12.0 Hz, OCH2Ph), 4.37 (6H, d, 2JHH = 12.0 Hz, OCH2Ph), 4.13 (6H, t, 

2JHH /3JHH = 10.9 Hz, OCH2CH), 3.83 (6H, s, PhCH2Ph), 3.32 (6H, dd, 2JHH = 10.9 Hz, 

3JHH = 2.9 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 163.5 (C=N), 148.9 (Ar), 147.2 (Ar), 

142.7 (Ar), 141.4 (Ar), 136.6 (Ar), 136.1 (Ar), 130.5 (Ar), 129.8 (Ar), 129.7 (Ar), 

129.6 (Ar), 129.1 (Ar), 128.4 (Ar), 127.3 (Ar), 73.6 (OCH2Ph), 72.5 (OCH2CH), 68.1 

(CH), 41.0 (PhCH2Ph). 

MS (ESI): m/z 667.3 [Lg+Na]+, 645.3 [Lg+H]+. 

Elemental analysis found (calculated for C129H120Cl4N12O22Zn2∙2H2O∙2EtOAc): % C 

61.47 (61.51) H 4.75 (5.28) N 6.03 (6.28). 

 

ΛZn-[Zn2Lh
3][ClO4]4 (partial characterisation of main conformer) 
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1H NMR (500 MHz, 298 K, CD3CN): δH 8.67 (6H, s, HC=N), 7.89 (6H, t, 3JHH = 7.7 

Hz, Py), 7.65 (6H, d, 3JHH = 4.9 Hz, Py), 7.42-7.33 (24H, m, Ph/Py), 7.12 (12H, d, 3JHH 

= 7.9 Hz, Ph), 7.04 (6H, t, 3JHH = 7.4 Hz, Ph), 6.89 (12H, t, 3JHH = 7.7 Hz, Ph), 6.63 

(12H, d, 3JHH = 7.6 Hz, Ph), 5.63 (6H, dd, 3JHH = 10.3 Hz, 3JHH = 2.7 Hz, CH), 4.86 

(6H, d, 2JHH = 12.2 Hz, OCH2Ph), 4.50 (6H, d, 2JHH = 12.2 Hz, OCH2Ph), 4.02 (6H, t, 

2JHH /3JHH = 10.7 Hz, OCH2CH), 3.59 (6H, dd, 2JHH = 11.2 Hz, 3JHH = 3.2 Hz, 

OCH2CH), 2.79 (12H, s, CH2CH2). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 163.8 (C=N), 149.0 (Ar), 147.2 (Ar), 

142.7 (Ar), 143.6 (Ar), 136.4 (Ar), 136.2 (Ar), 130.6 (Ar), 129.7 (Ar), 129.6 (Ar), 

129.2 (Ar), 129.1 (Ar), 127.4 (Ar), 73.8 (OCH2Ph), 72.1 (OCH2CH), 68.1 (CH), 37.9 

(CH2CH2). 

MS (ESI): m/z 681.3 [Lh+Na]+, 659.3 [Lh+H]+. 

 

ΔZn-[Zn2Li
3][ClO4]4∙8H2O 
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Yield: 53 %. 

1H NMR (500 MHz, 298 K, CD3CN): δH 8.95 (6H, s, Ph), 8.47 (6H, s, HC=N), 7.77 

(6H, t, 3JHH = 7.8 Hz, Py), 7.72 (6H, d, 3JHH = 8.4 Hz, Ph), 7.64 (6H, d, 3JHH = 8.4 Hz, 

Ph), 7.48 (6H, d, 3JHH = 4.7 Hz, Py), 7.27 (6H, dd , 3JHH = 7.2 Hz, 5.2 Hz, Py), 7.20 

(6H, d, 3JHH = 7.8 Hz, Py), 6.93 (6H, t, 3JHH = 7.4 Hz, Ph), 6.75 (12H, t, 3JHH = 7.6 Hz, 

Ph), 6.18 (12H, d, 3JHH = 7.6 Hz, Ph), 5.26 (6H, dd, 3JHH = 10.5 Hz, 3JHH = 2.6 Hz, 

CH), 4.44 (6H, d, 2JHH = 9.6 Hz, OCH2Ph), 3.81 (6H, d, 2JHH = 9.6 Hz, OCH2Ph), 3.70 

(6H, t, 2JHH /3JHH = 10.9 Hz, OCH2CH), 2.59 (6H, d, 2JHH = 9.9 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3CN): δC 163.3 (C=N), 157.5 (Ar), 148.7 (Ar), 

147.1 (Ar), 142.6 (Ar), 135.6 (Ar), 134.1 (Ar), 130.7 (Ar), 130.5 (Ar), 129.6 (Ar), 

129.4 (Ar), 129.0 (Ar), 127.3 (Ar), 125.0 (Ar), 122.0 (Ar), 112.8 (Ar), 74.2 (OCH2Ph), 

72.8 (OCH2CH), 67.9 (CH). 

MS (ESI): m/z 667.3 [Li+Na]+, 645.3 [Li+H]+. 

Elemental analysis found (calculated for C126H108Cl4N12O25Zn2∙8H2O): % C 58.02 

(58.05) H 4.17 (4.79) N 6.32 (6.45). 

 

6.1.7 Synthesis and characterisation of [Fe2L3]Cl4 complexes   

General procedure5  

The appropriate optically pure diamine (3.0 eq.) and 2-pyridinecarboxaldehyde (6.0 

eq.) were dissolved in methanol (50 ml) and stirred for 2 h at ambient temperature to 

form a yellow solution containing the ligand. Anhydrous iron (II) chloride (2.0 eq.) 

was added, and an immediate colour change to deep purple was observed. The solution 

was then heated at reflux (80 °C) for 48 hours. After filtering through fluted filter 
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paper, the solvent was removed under reduced pressure to give the desired product as 

a dark purple solid, which was dried overnight at 50 °C in vacuo. 

 

ΔFe-[Fe2La
3]Cl4∙6H2O 

0.7 g (1.86 mmol) of diamine used.  

Yield: 1.18 g, 0.58 mmol, 92 %. 

1H NMR (400 MHz, 298 K, CD3OD): δH 9.30 (6H, s, HC=N), 7.80 (6H, t, 3JHH = 7.0 

Hz, Py), 7.58 (6H, d, 3JHH = 7.0 Hz, Py), 7.55 (12H, s, Ph), 7.29 (6H, t, 3JHH = 7.0 Hz, 

Py), 7.11 (6H, t, 3JHH = 7.5 Hz, Ph), 7.02 (12H, t, 3JHH = 7.5 Hz, Ph), 6.85-6.80 (18H, 

m, Py/Ph), 5.97 (6H, dd, 3JHH = 11.0 Hz, 3JHH = 3.5 Hz, CH), 5.12 (6H, d, 2JHH = 13.0 

Hz, OCH2Ph), 4.61 (6H, d, 2JHH = 13.0 Hz, OCH2Ph), 4.34 (6H, t, 2JHH/3JHH = 11.0 

Hz, OCH2CH), 3.58 (6H, dd, 2JHH = 11.0 Hz, 3JHH = 3.5 Hz, OCH2CH).  

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 173.3 (C=N), 160.4 (Ar), 154.6 (Ar), 

139.9 (Ar), 138.7 (Ar), 136.5 (Ar), 130.5 (Ar), 129.5 (Ar), 129.4 (Ar), 128.9 (Ar), 

127.1 (Ar), 73.7 (OCH2Ph), 73.1 (OCH2CH), 73.0 (CH). 

MS (ESI): m/z 443.8 [Fe2La
3]

4+, 577.3 [La+Na]+. 
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FTIR: ν cm-1 3346 br, 3024 w, 2860 m, 1635 w, 1612 m, 1591 w, 1494 w, 1472 m, 

1452 m, 1358 w, 1298 w, 1241 w, 1104 m, 1074 s, 1019 m, 1000 m, 936 w, 837 w, 

757 s, 700 s. 

Elemental analysis found (calculated for C108H106Cl4Fe2N12O6∙6H2O): % C 64.08 

(63.91) H 5.40 (5.86) N 7.99 (8.28). 

 

ΛFe-[Fe2La
3]Cl4∙6H2O 

0.7 g (1.86 mmol) of diamine used.  

Yield: 1.18 g, 0.58 mmol, 93 %. 

1H NMR (400 MHz, 298 K, CD3OD): δH 9.30 (6H, s, HC=N), 7.80 (6H, t, 3JHH = 7.0 

Hz, Py), 7.58 (6H, d, 3JHH = 7.0 Hz, Py), 7.55 (12H, s, Ph), 7.29 (6H, t, 3JHH = 7.0 Hz, 

Py), 7.11 (6H, t, 3JHH = 7.5 Hz, Ph), 7.02 (12H, t, 3JHH = 7.5 Hz, Ph), 6.85-6.80 (18H, 

m, Py/Ph), 5.97 (6H, dd, 3JHH = 11.0 Hz, 3JHH = 3.5 Hz, CH), 5.12 (6H, d, 2JHH = 13.0 

Hz, OCH2Ph), 4.61 (6H, d, 2JHH = 13.0 Hz, OCH2Ph), 4.34 (6H, t, 2JHH/3JHH = 11.0 

Hz, OCH2CH), 3.58 (6H, dd, 2JHH = 11.0 Hz, 3JHH = 3.5 Hz, OCH2CH).  

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 173.3 (C=N), 160.4 (Ar), 154.6 (Ar), 

139.9 (Ar), 138.7 (Ar), 136.5 (Ar), 130.5 (Ar), 129.5 (Ar), 129.4 (Ar), 128.9 (Ar), 

127.1 (Ar), 73.7 (OCH2Ph), 73.1 (OCH2CH), 73.0 (CH). 
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MS (ESI): m/z 443.8 [Fe2La
3]

4+, 577.3 [La+Na]+. 

FTIR: ν cm-1 3346 br, 3024 w, 2860 m, 1635 w, 1612 m, 1591 w, 1494 w, 1472 m, 

1452 m, 1358 w, 1298 w, 1241 w, 1104 m, 1074 s, 1019 m, 1000 m, 936 w, 837 w, 

757 s, 700 s. 

Elemental analysis found (calculated for C108H106Cl4Fe2N12O6∙6H2O): % C 63.41 

(63.91) H 5.61 (5.86) N 7.96 (8.28). 

 

ΔFe-[Fe2Lb
3]Cl4∙6.5H2O 

 

0.7 g (1.86 mmol) of diamine used.  

Yield: 1.21 g, 0.59 mmol, 96 %. 

1H NMR (400 MHz, 298 K, CD3OD): δH 9.22 (6H, s, HC=N), 8.37 (3H, s, Ph), 7.73 

(6H, t, 3JHH = 7.6 Hz, Py), 7.66 (6H, d, 3JHH = 7.6 Hz, Py), 7.52-7.47 (9H, m, Ph), 7.22 

(6H, t, 3JHH = 6.5 Hz, Py), 7.02 (6H, t, 3JHH = 7.3 Hz, Ph), 6.86 (12H, t, 3JHH = 6.5 Hz, 

Ph), 6.78 (6H, d, 3JHH = 5.3 Hz, Py), 6.55 (12H, br s, Ph), 5.86 (6H, dd, 3JHH = 11.0 

Hz, 3JHH = 2.1 Hz, CH), 5.03 (6H, d, 2JHH = 10.8 Hz, OCH2Ph), 4.40 (6H, t, 2JHH/3JHH 

= 11.4 Hz, OCH2CH), 3.05 (6H, dd, 2JHH = 11.4 Hz, 3JHH = 2.5 Hz, OCH2CH). The 



Daniel H Simpson | Chapter 6 

University of Warwick | Page 211 

presence of water (δH 4.91-4.85) obscures the second OCH2Ph peak, which could 

nonetheless be detected by 2D-NMR (HSQC). 

13C NMR (125 MHz, 298 K, CD3OD): δC 172.9 (C=N), 160.3 (Ar), 154.5 (Ar), 139.9 

(Ar), 139.4 (Ar), 135.8 (Ar), 130.5 (Ar), 130.4 (Ar), 130.2 (Ar), 129.3 (Ar), 128.8 

(Ar), 75.9 (OCH2Ph), 74.4 (OCH2CH), 72.4 (CH). 

MS (ESI): m/z 443.8 [Fe2Lb
3]

4+, 577.3 [Lb+Na]+. 

FTIR: ν cm-1 3356 br, 3028 w, 2864 w, 1612 w, 1590 w, 1494 w, 1472 m, 1451 m, 

1385 w, 1357 w, 1298 m, 1240 w, 1156 w, 1105 m, 1072 s, 1003 m, 930 w, 887 w, 

834 w, 756 s. 

Elemental analysis found (calculated for C108H106Cl4Fe2N12O6∙6.5H2O): % C 63.65 

(63.63) H 5.84 (5.88) N 8.09 (8.24).  

 

ΛFe-[Fe2Lb
3]Cl4∙6.5H2O 

 

0.7 g (1.86 mmol) of diamine used.  

Yield: 1.19 g, 0.58 mmol, 94 %. 
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1H NMR (400 MHz, 298 K, CD3OD): δH 9.22 (6H, s, HC=N), 8.37 (3H, s, Ph), 7.73 

(6H, t, 3JHH = 7.6 Hz, Py), 7.66 (6H, d, 3JHH = 7.6 Hz, Py), 7.52-7.47 (9H, m, Ph), 7.22 

(6H, t, 3JHH = 6.5 Hz, Py), 7.02 (6H, t, 3JHH = 7.3 Hz, Ph), 6.86 (12H, t, 3JHH = 6.5 Hz, 

Ph), 6.78 (6H, d, 3JHH = 5.3 Hz, Py), 6.55 (12H, br s, Ph), 5.86 (6H, dd, 3JHH = 11.0 

Hz, 3JHH = 2.1 Hz, CH), 5.03 (6H, d, 2JHH = 10.8 Hz, OCH2Ph), 4.40 (6H, t, 2JHH/3JHH 

= 11.4 Hz, OCH2CH), 3.05 (6H, dd, 2JHH = 11.4 Hz, 3JHH = 2.5 Hz, OCH2CH). The 

presence of water (δH 4.91-4.85) obscures the second OCH2Ph peak, which could 

nonetheless be detected by 2D-NMR (HSQC). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.9 (C=N), 160.3 (Ar), 154.5 (Ar), 

139.9 (Ar), 139.4 (Ar), 135.8 (Ar), 130.5 (Ar), 130.4 (Ar), 130.2 (Ar), 129.3 (Ar), 

128.8 (Ar), 75.9 (OCH2Ph), 74.4 (OCH2CH), 72.4 (CH). 

MS (ESI): m/z 443.8 [Fe2Lb
3]

4+, 577.3 [Lb+Na]+. 

FTIR: ν cm-1 3356 br, 3028 w, 2864 w, 1612 w, 1590 w, 1494 w, 1472 m, 1451 m, 

1385 w, 1357 w, 1298 m, 1240 w, 1156 w, 1105 m, 1072 s, 1003 m, 930 w, 887 w, 

834 w, 756 s. 

Elemental analysis found (calculated for C108H106Cl4Fe2N12O6∙6.5H2O): % C 64.08 

(63.63) H 5.68 (5.88) N 7.98 (8.24).  
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ΔFe-[Fe2Ld
3]Cl4∙12H2O 

 

0.25 g (0.55 mmol) of diamine used.  

Yield: 0.364 g, 0.15 mmol, 84 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.39 (6H, s, HC=N), 7.82 (6H, t, 3JHH = 6.8 

Hz, Py), 7.62 (6H, d, 3JHH = 6.3 Hz, Py), 7.33-7.26 (18H, m, Ph/Py), 7.16-7.06 (30H, 

m, Ph), 6.92-6.87 (18H, m, Ph/Py), 6.09 (6H, d, 3JHH = 9.8 Hz, CH), 5.21 (6H, d, 2JHH 

= 9.6 Hz, OCH2Ph), 4.70 (6H, d, 2JHH = 13.7 Hz, OCH2Ph/H2O), 4.39 (6H, t, 2JHH/3JHH 

= 10.6 Hz, OCH2CH), 3.82 (6H, d, 2JHH = 9.8 Hz, OCH2CH). 

13C{1H} NMR (100 MHz, 298 K, CD3OD): δC 173.5 (C=N), 160.6 (Ar), 154.7 (Ar), 

141.4 (Ar), 139.9 (Ar), 137.7 (Ar), 136.5 (Ar), 130.6 (Ar), 130.5 (Ar), 129.5 (Ar), 

128.9 (Ar) 128.6 (Ar), 127.1 (Ar), 73.1 (OCH2Ph), 72.9 (CH), 72.8 (OCH2CH). 

MS (ESI): m/z 500.9 [Fe2Ld
3]

4+. 

FTIR: ν cm-1 3350 br, 2862 w, 1612 w, 1556 w, 1494 m, 1471 m, 1451 m, 1382 w, 

1360 w, 1298 w, 1207 w, 1102 m, 1073 s, 1023 m, 1004 m, 934 w, 804 m, 758 s, 700s. 
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Elemental analysis found (calculated for C126H118Cl4Fe2N12O6∙12H2O): % C 63.86 

(63.96) H 5.46 (6.05) N 6.88 (7.10). 

 

ΛFe-[Fe2Ld
3]Cl4∙12H2O 

 

0.25 g (0.55 mmol) of diamine used.  

Yield: 0.347 g, 0.15 mmol, 80 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.39 (6H, s, HC=N), 7.82 (6H, t, 3JHH = 6.8 

Hz, Py), 7.62 (6H, d, 3JHH = 6.3 Hz, Py), 7.33-7.26 (18H, m, Ph/Py), 7.16-7.06 (30H, 

m, Ph), 6.92-6.87 (18H, m, Ph/Py), 6.09 (6H, d, 3JHH = 9.8 Hz, CH), 5.21 (6H, d, 2JHH 

= 9.6 Hz, OCH2Ph), 4.70 (6H, d, 2JHH = 13.7 Hz, OCH2Ph/H2O), 4.39 (6H, t, 2JHH/3JHH 

= 10.6 Hz, OCH2CH), 3.82 (6H, d, 2JHH = 9.8 Hz, OCH2CH). 

13C{1H} NMR (100 MHz, 298 K, CD3OD): δC 173.5 (C=N), 160.6 (Ar), 154.7 (Ar), 

141.4 (Ar), 139.9 (Ar), 137.7 (Ar), 136.5 (Ar), 130.6 (Ar), 130.5 (Ar), 129.5 (Ar), 

128.9 (Ar) 128.6 (Ar), 127.1 (Ar), 73.1 (OCH2Ph), 72.9 (CH), 72.8 (OCH2CH). 
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MS (ESI): m/z 500.9 [Fe2Ld
3]

4+. 

FTIR: ν cm-1 3350 br, 2862 w, 1612 w, 1556 w, 1494 m, 1471 m, 1451 m, 1382 w, 

1360 w, 1298 w, 1207 w, 1102 m, 1073 s, 1023 m, 1004 m, 934 w, 804 m, 758 s, 700s. 

Elemental analysis found (calculated for C126H118Cl4Fe2N12O6∙12H2O): % C 63.97 

(63.96) H 5.28 (6.05) N 6.86 (7.10). 

 

ΔFe-[Fe2Le
3]Cl4∙10.5H2O 

 

0.25 g (0.53 mmol) of diamine used.  

Yield: 0.347 g, 0.15 mmol, 82 %.  

1H NMR (500 MHz, 298 K, CD3OD): δH 9.33 (6H, s, HC=N), 7.76 (6H, t, 3JHH = 7.6 

Hz, Py), 7.55 (6H, d, 3JHH = 7.6 Hz, Py), 7.45 (12H, d, 3JHH = 8.3 Hz, Ph), 7.25 (6H, t, 

3JHH = 6.5 Hz, Py), 7.08 (6H, t, 3JHH = 7.3 Hz, Ph), 6.97 (12H, t, 3JHH = 7.5 Hz, Ph), 

6.80-6.68 (30H, m, Py/Ph), 6.00 (6H, dd, 3JHH = 10.9 Hz, 3JHH = 1.8 Hz, CH), 5.03 

(6H, d, 2JHH = 11.9 Hz, OCH2Ph), 4.52 (6H, t, 2JHH/3JHH = 10.9 Hz, OCH2CH), 4.40 
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(6H, d, 2JHH = 11.9 Hz, OCH2Ph), 3.25 (6H, dd, 2JHH = 10.9 Hz, 3JHH = 2.0 Hz, 

OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.8 (C=N), 160.4 (Ar), 158.4 (Ar), 

154.5 (Ar), 139.8 (Ar), 136.4 (Ar), 134.2 (Ar), 130.5 (Ar), 130.4 (Ar), 130.1 (Ar), 

129.4 (Ar), 128.8 (Ar), 127.0 (Ar), 74.1 (OCH2Ph), 73.7 (OCH2CH), 73.0 (CH). 

MS (ESI): m/z 512.7 [Fe2Le
3]

4+. 

FTIR: ν cm-1 3339 br, 2860 w, 1601 m, 1500 s, 1472 m, 1451 m, 1385 w, 1358 w, 

1299 w, 1231 s, 1166 w, 1103 m, 1077 s, 1013 m, 1001 m, 873 m, 836 m, 817 w, 758 

s, 700 s. 

Elemental analysis found (calculated for C126H118Cl4Fe2N12O9∙10.5H2O): % C 63.21 

(63.40) H 5.48 (5.87) N 6.73 (7.04). 

 

ΛFe-[Fe2Le
3]Cl4∙10.5H2O 
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0.25 g (0.53 mmol) of diamine used.  

Yield: 0.332 g, 0.14 mmol, 78 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.33 (6H, s, HC=N), 7.76 (6H, t, 3JHH = 7.6 

Hz, Py), 7.55 (6H, d, 3JHH = 7.6 Hz, Py), 7.45 (12H, d, 3JHH = 8.3 Hz, Ph), 7.25 (6H, t, 

3JHH = 6.5 Hz, Py), 7.08 (6H, t, 3JHH = 7.3 Hz, Ph), 6.97 (12H, t, 3JHH = 7.5 Hz, Ph), 

6.80-6.68 (30H, m, Py/Ph), 6.00 (6H, dd, 3JHH = 10.9 Hz, 3JHH = 1.8 Hz, CH), 5.03 

(6H, d, 2JHH = 11.9 Hz, OCH2Ph), 4.52 (6H, t, 2JHH/3JHH = 10.9 Hz, OCH2CH), 4.40 

(6H, d, 2JHH = 11.9 Hz, OCH2Ph), 3.25 (6H, dd, 2JHH = 10.9 Hz, 3JHH = 2.0 Hz, 

OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.8 (C=N), 160.4 (Ar), 158.4 (Ar), 

154.5 (Ar), 139.8 (Ar), 136.4 (Ar), 134.2 (Ar), 130.5 (Ar), 130.4 (Ar), 130.1 (Ar), 

129.4 (Ar), 128.8 (Ar), 127.0 (Ar), 74.1 (OCH2Ph), 73.7 (OCH2CH), 73.0 (CH). 

MS (ESI): m/z 512.7 [Fe2Le
3]

4+. 

FTIR: ν cm-1 3339 br, 2860 w, 1601 m, 1500 s, 1472 m, 1451 m, 1385 w, 1358 w, 

1299 w, 1231 s, 1166 w, 1103 m, 1077 s, 1013 m, 1001 m, 873 m, 836 m, 817 w, 758 

s, 700 s. 

Elemental analysis found (calculated for C126H118Cl4Fe2N12O9∙10.5H2O): % C 63.05 

(63.40) H 5.17 (5.87) N 6.71 (7.04). 
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ΔFe-[Fe2Lf
3]Cl4∙11H2O 

 

0.25 g (0.52 mmol) of diamine used.  

Yield: 0.359 g, 0.15 mmol, 85 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.34 (6H, s, HC=N), 7.74 (6H, t, 3JHH = 7.4 

Hz, Py), 7.53 (6H, d, 3JHH = 7.4 Hz, Py), 7.45 (12H, d, 3JHH = 7.8 Hz, Ph), 7.25 (6H, t, 

3JHH = 6.4 Hz, Py), 7.08-7.04 (18H, m, Ph), 6.96 (12H, t, 3JHH = 7.0 Hz, Ph), 6.76-6.66 

(18H, m, Ph/Py), 5.93 (6H, d, 3JHH = 10.7 Hz, CH), 4.99 (6H, d, 2JHH = 11.6 Hz, 

OCH2Ph), 4.52 (6H, t, 2JHH/3JHH = 10.7 Hz, OCH2CH), 4.38 (6H, d, 2JHH = 11.7 Hz, 

OCH2Ph), 3.04 (6H, d, 2JHH = 10.7 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.6 (C=N), 160.3 (Ar), 154.4 (Ar), 

139.8 (Ar), 138.1 (Ar), 136.5 (Ar), 136.2 (Ar), 131.4 (Ar), 130.5 (Ar), 130.4 (Ar), 

129.7 (Ar), 129.5 (Ar), 128.8 (Ar), 127.1 (Ar), 73.9 (OCH2Ph), 73.7 (OCH2CH), 73.0 

(CH). 

MS (ESI): m/z 524.7 [Fe2Lf
3]

4+. 
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FTIR: ν cm-1 3360 br, 3027 w, 2862 w, 1613 w, 1592 w, 1492 m, 1472 m, 1452 m, 

1384 w, 1353 w, 1299 w, 1242 w, 1102 m, 1079 s, 1015 s, 1001 m, 841 w, 804 m, 758 

s, 700 s. 

Elemental analysis found (calculated for C126H118Cl4Fe2N12O6S3∙11H2O): % C 61.66 

(61.92) H 5.20 (5.77) N 6.61 (6.88). 

 

ΛFe-[Fe2Lf
3]Cl4∙11H2O 

 

0.25 g (0.52 mmol) of diamine used.  

Yield: 0.29 g, 0.12 mmol, 69 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.34 (6H, s, HC=N), 7.74 (6H, t, 3JHH = 7.4 

Hz, Py), 7.53 (6H, d, 3JHH = 7.4 Hz, Py), 7.45 (12H, d, 3JHH = 7.8 Hz, Ph), 7.25 (6H, t, 

3JHH = 6.4 Hz, Py), 7.08-7.04 (18H, m, Ph), 6.96 (12H, t, 3JHH = 7.0 Hz, Ph), 6.76-6.66 

(18H, m, Ph/Py), 5.93 (6H, d, 3JHH = 10.7 Hz, CH), 4.99 (6H, d, 2JHH = 11.6 Hz, 

OCH2Ph), 4.52 (6H, t, 2JHH/3JHH = 10.7 Hz, OCH2CH), 4.38 (6H, d, 2JHH = 11.7 Hz, 

OCH2Ph), 3.04 (6H, d, 2JHH = 10.7 Hz, OCH2CH). 
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13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.6 (C=N), 160.3 (Ar), 154.4 (Ar), 

139.8 (Ar), 138.1 (Ar), 136.5 (Ar), 136.2 (Ar), 131.4 (Ar), 130.5 (Ar), 130.4 (Ar), 

129.7 (Ar), 129.5 (Ar), 128.8 (Ar), 127.1 (Ar), 73.9 (OCH2Ph), 73.7 (OCH2CH), 73.0 

(CH). 

MS (ESI): m/z 524.7 [Fe2Lf
3]

4+. 

FTIR: ν cm-1 3360 br, 3027 w, 2862 w, 1613 w, 1592 w, 1492 m, 1472 m, 1452 m, 

1384 w, 1353 w, 1299 w, 1242 w, 1102 m, 1079 s, 1015 s, 1001 m, 841 w, 804 m, 758 

s, 700 s. 

Elemental analysis found (calculated for C126H118Cl4Fe2N12O6S3∙11H2O): % C 61.81 

(61.92) H 5.22 (5.77) N 6.57 (6.88). 

 

ΔFe-[Fe2Lg
3]Cl4∙11H2O 

 

0.25 g (0.52 mmol) of diamine used.  

Yield: 0.25 g, 0.10 mmol, 60 %. 
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1H NMR (500 MHz, 298 K, CD3OD): δH 9.28 (6H, s, HC=N), 7.75 (6H, t, 3JHH = 7.1 

Hz, Py), 7.53 (6H, d, 3JHH = 7.1 Hz, Py), 7.36 (12H, d, 3JHH = 7.6 Hz, Ph), 7.23 (6H, t, 

3JHH = 6.2 Hz, Py), 7.06 (6H, t, 3JHH = 7.0 Hz, Ph), 6.94 (12H, t, 3JHH = 7.1 Hz, Ph), 

6.89 (12H, d, 3JHH = 7.6 Hz, Ph), 6.77 (6H, d, 3JHH = 5.0 Hz, Py), 6.69 (12H, d, 3JHH = 

7.0 Hz, Ph), 5.96 (6H, d, 3JHH = 9.8 Hz, CH), 4.45 (6H, t, 2JHH/3JHH = 10.9 Hz, 

OCH2CH), 4.37 (6H, d, 2JHH = 11.5 Hz, OCH2Ph), 3.86 (6H, s, PhCH2Ph), 3.23 (6H, 

d, 2JHH = 9.8 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC
 172.8 (C=N), 160.4 (Ar), 154.5 (Ar), 

141.9 (Ar), 139.8 (Ar), 136.6 (Ar), 136.4 (Ar), 130.4 (Ar), 130.2 (Ar), 129.3 (Ar), 

128.8 (Ar), 127.1 (Ar), 74.2 (OCH2Ph), 73.9 (OCH2CH), 72.9 (CH), 41.5 (PhCH2Ph). 

MS (ESI): m/z 511.4 [Fe2L3]
4+. 

FTIR: ν cm-1 3360 br, 3043 w, 2915 w, 2858 m, 1612 w, 1512 w, 1494 w, 1471 m, 

1451 m, 1360 w, 1299 w, 1240 w, 1105 m, 1076 s, 1019 m, 1001 m, 757 s, 700 s. 

Elemental analysis found (calculated for C129H124Cl4Fe2N12O6∙11H2O): % C 65.34 

(64.83) H 5.91 (6.16) N 6.52 (7.03). 
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ΛFe-[Fe2Lg
3]Cl4∙11H2O 

 

0.25 g (0.52 mmol) of diamine used.  

Yield: 0.25 g, 0.10 mmol, 60 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.28 (6H, s, HC=N), 7.75 (6H, t, 3JHH = 7.1 

Hz, Py), 7.53 (6H, d, 3JHH = 7.1 Hz, Py), 7.36 (12H, d, 3JHH = 7.6 Hz, Ph), 7.23 (6H, t, 

3JHH = 6.2 Hz, Py), 7.06 (6H, t, 3JHH = 7.0 Hz, Ph), 6.94 (12H, t, 3JHH = 7.1 Hz, Ph), 

6.89 (12H, d, 3JHH = 7.6 Hz, Ph), 6.77 (6H, d, 3JHH = 5.0 Hz, Py), 6.69 (12H, d, 3JHH = 

7.0 Hz, Ph), 5.96 (6H, d, 3JHH = 9.8 Hz, CH), 4.45 (6H, t, 2JHH/3JHH = 10.9 Hz, 

OCH2CH), 4.37 (6H, d, 2JHH = 11.5 Hz, OCH2Ph), 3.86 (6H, s, PhCH2Ph), 3.23 (6H, 

d, 2JHH = 9.8 Hz, OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC
 172.8 (C=N), 160.4 (Ar), 154.5 (Ar), 

141.9 (Ar), 139.8 (Ar), 136.6 (Ar), 136.4 (Ar), 130.4 (Ar), 130.2 (Ar), 129.3 (Ar), 

128.8 (Ar), 127.1 (Ar), 74.2 (OCH2Ph), 73.9 (OCH2CH), 72.9 (CH), 41.5 (PhCH2Ph). 

MS (ESI): m/z 511.4 [Fe2Lg
3]

4+. 
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FTIR: ν cm-1 3360 br, 3043 w, 2915 w, 2858 m, 1612 w, 1512 w, 1494 w, 1471 m, 

1451 m, 1360 w, 1299 w, 1240 w, 1105 m, 1076 s, 1019 m, 1001 m, 757 s, 700 s. 

Elemental analysis found (calculated for C129H124Cl4Fe2N12O6∙11H2O): % C 64.76 

(64.83) H 5.50 (6.16) N 6.39 (7.03). 

 

ΔFe-[Fe2Lh
3]Cl4∙11.5H2O 

 

0.25 g (0.52 mmol) of diamine used.  

Yield: 0.32 g, 0.13 mmol, 77 %. 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 173.3 (C=N), 160.4 (Ar), 154.6 (Ar), 

143.2 (Ar), 139.8 (Ar), 136.5 (Ar), 130.3 (Ar), 130.0 (Ar), 129.8 (Ar), 129.7 (Ar), 

129.3 (Ar), 128.8 (Ar), 127.2 (Ar), 74.5 (OCH2Ph), 73.3 (OCH2CH), 72.7 (CH), 38.1 

(CH2CH2). 

MS (ESI): m/z 521.9 [Fe2Lh
3]

4+. 
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FTIR: ν cm-1 3372 br, 3023 w, 2921 w, 2855 m, 1612 w, 1589 w, 1513 w, 1494 w, 

1471 m, 1451 m, 1385 1241 w, 1103 m, 1074 s, 1018 m, 1002 m, 815 w, 158 s, 700 

s. 

Elemental analysis found (calculated for C132H126Cl4Fe2N12O6∙11.5H2O): % C 65.44 

(65.05) H 5.87 (6.16) N 6.69 (6.90). 

 

ΛFe-[Fe2Lh
3]Cl4∙11.5H2O 

 

0.25 g (0.52 mmol) of diamine used.  

Yield: 0.32 g, 0.13 mmol, 78 %. 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 173.3 (C=N), 160.4 (Ar), 154.6 (Ar), 

143.2 (Ar), 139.8 (Ar), 136.5 (Ar), 130.3 (Ar), 130.0 (Ar), 129.8 (Ar), 129.7 (Ar), 

129.3 (Ar), 128.8 (Ar), 127.2 (Ar), 74.5 (OCH2Ph), 73.3 (OCH2CH), 72.7 (CH), 38.1 

(CH2CH2). 

MS (ESI): m/z 521.9 [Fe2Lh
3]

4+. 
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FTIR: ν cm-1 3372 br, 3023 w, 2921 w, 2855 m, 1612 w, 1589 w, 1513 w, 1494 w, 

1471 m, 1451 m, 1385 1241 w, 1103 m, 1074 s, 1018 m, 1002 m, 815 w, 158 s, 700 

s. 

Elemental analysis found (calculated for C132H126Cl4Fe2N12O6∙11.5H2O): % C 64.48 

(65.05) H 5.66 (6.16) N 6.69 (6.90). 

 

ΔFe-[Fe2Li
3]Cl4∙13H2O 

 

0.25 g (0.54 mmol) of diamine used.  

Yield: 0.38 g, 0.16 mmol, 88 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.10 (6H, s, HC=N), 9.00 (6H, s, DBF), 7.76 

(6H, d, 3JHH = 8.3 Hz, DBF), 7.69 (6H, t, 3JHH = 7.7 Hz, Py), 7.59 (6H, d, 3JHH = 8.3 

Hz, DBF), 7.46 (6H, d, 3JHH = 7.7 Hz, Py), 7.14 (6H, t, 3JHH = 6.6 Hz, Py), 7.05 (6H, 

t, 3JHH = 7.4 Hz, Ph), 6.95 (12H, t, 3JHH = 7.4 Hz, Ph), 6.65 (6H, d, 3JHH = 5.6 Hz, Py), 

6.50 (6H, d, 3JHH = 5.3 Hz, Ph), 5.55 (6H, dd, 3JHH = 10.8 Hz, 3JHH = 2.7 Hz, CH), 4.51 
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(6H, d, 2JHH = 9.2 Hz, OCH2Ph), 4.02 (6H, t, 2JHH/3JHH = 11.0 Hz, OCH2CH), 3.75 

(6H, d, 2JHH = 9.2 Hz, OCH2Ph), 2.34 (6H, dd, 2JHH = 10.8 Hz, 3JHH = 2.7 Hz, 

OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.7 (C=N), 160.4 (Ar), 158.2 (Ar), 

154.3 (Ar), 139.7 (Ar), 135.8 (Ar), 133.6 (Ar), 131.7 (Ar), 130.3 (Ar), 130.1 (Ar), 

129.4 (Ar), 128.6 (Ar), 125.0 (Ar), 123.2 (Ar), 113.1 (Ar), 74.8 (OCH2Ph), 73.9 

(OCH2CH), 72.3 (CH). 

MS (ESI): m/z 645.2 [Li+H]+, 511.3 [Fe2Li
3]

4+.  

FTIR: ν cm-1 3378 br, 3030 w, 2856 m, 1612 w, 1591 w, 1488 w, 1472 m, 1452 m, 

1385 m, 1360 w, 1242 w, 1212 m, 1185 m, 1104 m, 1073 s, 1027 m, 1002 m, 830 w, 

806 w, 758 s, 700s. 

Elemental analysis found (calculated for C126H112Cl4Fe2N12O9∙13H2O): % C 62.60 

(62.38) H 5.13 (5.73) N 6.69 (6.93). 
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ΛFe-[Fe2Li
3]Cl4∙13H2O 

 

0.25 g (0.54 mmol) of diamine used.  

Yield: 0.36 g, 0.15 mmol, 83 %. 

1H NMR (500 MHz, 298 K, CD3OD): δH 9.10 (6H, s, HC=N), 9.00 (6H, s, DBF), 7.76 

(6H, d, 3JHH = 8.3 Hz, DBF), 7.69 (6H, t, 3JHH = 7.7 Hz, Py), 7.59 (6H, d, 3JHH = 8.3 

Hz, DBF), 7.46 (6H, d, 3JHH = 7.7 Hz, Py), 7.14 (6H, t, 3JHH = 6.6 Hz, Py), 7.05 (6H, 

t, 3JHH = 7.4 Hz, Ph), 6.95 (12H, t, 3JHH = 7.4 Hz, Ph), 6.65 (6H, d, 3JHH = 5.6 Hz, Py), 

6.50 (6H, d, 3JHH = 5.3 Hz, Ph), 5.55 (6H, dd, 3JHH = 10.8 Hz, 3JHH = 2.7 Hz, CH), 4.51 

(6H, d, 2JHH = 9.2 Hz, OCH2Ph), 4.02 (6H, t, 2JHH/3JHH = 11.0 Hz, OCH2CH), 3.75 

(6H, d, 2JHH = 9.2 Hz, OCH2Ph), 2.34 (6H, dd, 2JHH = 10.8 Hz, 3JHH = 2.7 Hz, 

OCH2CH). 

13C{1H} NMR (125 MHz, 298 K, CD3OD): δC 172.7 (C=N), 160.4 (Ar), 158.2 (Ar), 

154.3 (Ar), 139.7 (Ar), 135.8 (Ar), 133.6 (Ar), 131.7 (Ar), 130.3 (Ar), 130.1 (Ar), 

129.4 (Ar), 128.6 (Ar), 125.0 (Ar), 123.2 (Ar), 113.1 (Ar), 74.8 (OCH2Ph), 73.9 

(OCH2CH), 72.3 (CH). 
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MS (ESI): m/z 645.2 [Li+H]+, 511.3 [Fe2Li
3]

4+.  

FTIR: ν cm-1 3378 br, 3030 w, 2856 m, 1612 w, 1591 w, 1488 w, 1472 m, 1452 m, 

1385 m, 1360 w, 1242 w, 1212 m, 1185 m, 1104 m, 1073 s, 1027 m, 1002 m, 830 w, 

806 w, 758 s, 700s. 

Elemental analysis found (calculated for C126H112Cl4Fe2N12O9∙13H2O): % C 62.18 

(62.38) H 4.95 (5.73) N 6.71 (6.93). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Daniel H Simpson | Chapter 6 

University of Warwick | Page 229 

6.1.8 Absorption spectra for [Fe2L3]Cl4 flexicates   

UV-visible spectra 
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CD spectra 
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6.1.9 TGA data for [Fe2L3]Cl4 flexicates   

Illustrating mass decrease due to loss of water of crystallisation and decomposition. 
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6.1.10 Aqueous stability study of [Fe2L3]Cl4 flexicates   

For all solutions tested, flexicate concentrations of 50 μM were made up in distilled 

water supplemented with 1 % methanol. Aliquots of 3 ml were sealed into plastic 

macrocuvettes (Fisher) using [10 mm × 10 mm] LDPE cuvette lids (Sigma) and 

parafilm to prevent evaporation. After taking initial UV-vis spectra across the 

wavelength range 450-600 nm - otherwise using the parameters detailed in section 

5.1.1, these cuvettes were incubated at 37 °C using a cuvette incubator rack (Grant 

instruments) for 28 days. Intermittent UV-vis spectra using the same parameters were 

taken during this time, with the cuvettes being carefully cleaned with lens tissues 

beforehand. UV-vis spectra of a 3 ml solution of 1 % methanol in water were also 

taken alongside the flexicate solutions, to be used as a baseline measurement that was 

subtracted from experimental data.   
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6.2 Experimental Details for Chapters 3 and 4  

6.2.1 General considerations  

All procedures were carried out using appropriate aseptic techniques; for routine work, 

surfaces were thoroughly washed with 4:1 ethanol/water beforehand, and work was 

carried out close to a lit flame (Bunsen burner); extensive and/or sensitive work was 

carried out using a sterile class II microbiological laminar flow cabinet (e.g. 

ThermoFisher 1300 series). Where necessary, equipment and reagents were either 

bought sterile or sterilised in-house, using an autoclave. Cation-adjusted Müller-

Hinton broth (CAMHB) was purchased from Sigma, where it is listed as Mueller 

Hinton Broth 2. Sterile growth media, agar plates, and antibiotic stock solutions were 

prepared by the media preparation unit of the University of Warwick’s School of Life 

science (stored at 4 °C until required), unless stated otherwise.  Where accurate 

weighing of small masses was essential, e.g. in making flexicate stock solutions, this 

was done using a 7-figure balance (Sartorius). The optical density at 600 nm (OD600) 

of bacterial broth cultures was measured on a benchtop spectrophotometer (e.g. 

Jenway 6300 or ISS Cell Density Meter). Routine centrifugations were performed 

using a benchtop centrifuge, e.g. Eppendorf 4418 model, for small volumes (≤2 ml 

liquid), or an Eppendorf 5810R centrifuge for larger volumes (up to 50 ml).  

For the incubation of multi-well (typically 96-well) plates, the Falcon™ plates (Fisher) 

containing bacterial culture were either incubated using a plate thermos-shaker 

(BioSan PST-100HL), or where turbidity (i.e. optical density) was monitored during 

incubation, using a microplate reader (BMG labtech SPECTROstar nano, or 

Labsystems iEMS reader) set to periodically measure OD600 output of each well used. 

In either case the plates were incubated with the clear polystyrene lid applied, at 37 °C 

with shaking (200-400 rpm depending on the assay). Appropriate positive/negative 
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controls were incorporated. At least two biological replicates were performed for each 

plate. 

 

6.2.2 Bacterial strains 

Strains and their origins are listed in table 6.2. Bacterial stocks were stored long-term 

in either Müller-Hinton broth or Lysogeny broth (LB) supplemented with 20-40 % 

glycerol, and frozen to -80 °C. When required, frozen bacterial stocks were slowly 

thawed on ice and then streaked onto MH agar or LB agar plates, which were 

subsequently incubated overnight to give single colonies. Inoculated agar plates were 

incubated overnight in a precision incubator (LEEC) set to 37 °C.  

Strain 
Wild-type 

ascension code 
Notes and references Source 

A. baumannii NCTC 13420 Reference MDR strain7 
Biota Ltd. (now defunct)  

Pathogen library  

B. subtilis  168 ATCC 6051 Legacy strain8 
Dowson laboratory  

(University of Warwick) 

E. cloacae  684 NCTC 13405 AmpC positive isolate9 Biota Pathogen library 

E. coli TOP10 ATCC PTA-10989 DH10β strain10 Invitrogen 

E. coli MG1655 ATCC 700926 K12 strain11 
Constantinidou laboratory  

(University of Warwick) 

E. coli CFT073 ATCC 700928 UPEC O6:H1:K212 Constantinidou laboratory 

E. coli Sakai ATCC BAA-460 
Japanese EHEC O157:H7 

Δstx1-213, 14 
Constantinidou laboratory  

E. coli EDL933 ATCC 700927 
American EHEC O157:H7 

Δstx1-215 
Constantinidou laboratory  

K. pneumoniae   K6 ATCC 700603 
Reference strain, SHV-18 

positive16 
Biota Pathogen library 

K. pneumoniae  KP02 NCTC 13442 OXA-48 positive isolate17 Biota Pathogen library 

P. aeruginosa  PAO1 ATCC 15692 Legacy strain18 Biota Pathogen library 

S. aureus   USA300 ATCC BAA-1717 MRSA, FPR3757 isolate19  
Nebraska Transposon 

Mutant Library 

Table 6.2: Information regarding the strains used in this work, and their origins. 
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Overnight bacterial cultures in liquid were grown by seeding 5-10 ml of sterile broth 

(CAMHB unless specifically stated) with bacteria picked from a single colony grown 

on an agar plate. A sterile 25 ml tube 

All incubations of liquid culture (except for 96-well plates) were carried out using a 

MaxQ® 8000 (ThermoFisher) or Innovia® 44 (New Brunswick scientific) 

thermoshaker, set to 37 °C with shaking at 150-400 rpm, or for some larger cultures 

using a shaking water bath (Grant instruments) with the same parameters. 

 

6.2.3 Minimum inhibitory concentration (MIC) determination20-22  

A 1280 μg/ml stock solution of each flexicate was prepared in water containing 10 % 

methanol, corresponding to a tenfold concentration of the highest concentration tested, 

128 μg/ml. This stock was repeatedly diluted twofold in CAMHB, allowing the 

standard 1-128 μg/ml range to be used in the assay upon further tenfold dilution. 

Overnight cultures of each bacterial strain in CAMHB (antibiotic-free) were diluted 

in the same medium to an cell concentration of 5 × 105 cfu/ml. Aliquots of 9:1 

microbial culture/flexicate dilution or appropriate control (200 μl), were distributed 

out onto a sterile 96-well plate, set up as described in section 5.2.1. They were then 

either incubated and later visually inspected, or OD600 data was recorded and used to 

determine bacterial growth, allowing the MIC (the lowest concentration that inhibits 

growth) to be determined. In either case, plates were incubated at 37 °C (unless 

specified otherwise) for 20 h, with gentle shaking.  



Daniel H Simpson | Chapter 6 

University of Warwick | Page 236 

Appropriate positive (culture only, no antimicrobial) and negative controls (media 

only) were used in each plate. Every plate was repeated at least in duplicate. Known 

antimicrobials (e.g. kanamycin) were used to validate this methodology.  

 

6.2.4 Minimum bactericidal concentration (MBC) determination23  

Determination of MBCs was carried out for strain/compound pairings where an MIC 

≤128 μg/ml was determined, immediately following that assay. For each ‘culture’ with 

compound concentration in the range 128 μg/ml to the MIC (inclusive), 100 μl of the 

bacteria/compound mix was recovered from the microtitre plate for analysis. Cell 

and/or debris was collected from samples by centrifugation and resuspended in 100 μl 

sterile PBS, which was streaked onto a sterile antimicrobial-free LB/agar plate. Upon 

overnight incubation (37 °C), plates were inspected and the MBC was determined to 

be the lowest concentration of compound at which this dilution/culturing assay 

showed no visible signs of bacterial growth. This was performed at least in duplicate 

for each pairing of compound concentration and bacterial strain. 

 

6.2.5 BacLight™ LIVE/DEAD assay and fluorometric measurements  

Overnight cultures of the appropriate bacterial strain in CAMHB (antibiotic-free) were 

divided into two equal portions and cells collected by centrifugation (4000 g for 

10 min) and resuspeded in aqueous saline solution (0.85 % NaCl by weight). One 

pellet, going on to comprise live/intact cells, was resuspended in fresh saline solution 

(10 ml). The second pellet, (which would go on to comprise dead/compromised 

bacterial cells) was resuspended using the same volume of 70 % aqueous isopropanol, 

in order to obtain dead/compromised cells. Both suspensions were incubated, with 
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gentle shaking, for 1 h at room temperature, before harvesting by centrifugation 

(4000g for 10 min). Both pellets were resuspended in fresh saline solution to yield a 

cell suspension of OD600 = 0.2.  

Flexicate solutions of 10× the desired final concentration were prepared in saline 

containing 10 % methanol, and they were added to the live (intact) cell suspension at 

a ratio of 9:1 (cells:flexicate). These were distributed into separate wells of a sterile 

Falcon™ 96-well plate (100 μl each). Additionally, different proportions of live and 

dead cells were mixed to obtain cell suspensions containing different proportions of 

live/intact cells (100 %, 90 %, 50 %, 10 % and 0 %). Aliquots of these mixtures (100 

μl) were applied to each plate as controls. Plates were incubated for 40 min at 37 °C, 

then 100 μL of BacLight™ LIVE/DEAD dye solution (prepared according to the 

manufacturer’s instructions) was added. After 15 min incubation in a darkroom at 

ambient temperature, fluorescence output of the samples was measured using a 

VarioSkan Flash (ThermoFisher) plate reader, set to measure the output at wavelength 

530 nm and 630 nm respectively (12 nm bandwidth, 100 ms measurement time), from 

an excitation at wavelength 485 nm. A delay of 200 ms was included between 

measurements.  

Cell membrane integrity was quantitatively determined using the controls to plot a 

standard curve (for an example, see Figure 3.6). Experimental samples were repeated 

five times, and controls were repeated in triplicate.  

 

6.2.6 Whole genome sequencing (WGS)  

The appropriate E. coli cells were collected from 0.5 ml of overnight culture (~5 × 108 

cells), by centrifugation. Genomic DNA was collected from each of these samples 
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using a DNeasy® blood and tissue genomic DNA extraction kit (Qiagen), according 

to the manufacturer’s instructions. The purified genomic DNA from each sample was 

eluted into 100 μl of the elution buffer and the DNA concentration (ng/μl) of each 

sample was determined using the Qubit® high-sensitivity dsDNA quantification kit 

(ThermoFisher Scientific).  

The Illumina Nextera® XT kit was used to prepare genomic DNA libraries (250 bp 

fragments) that are suitable for sequencing, and ensure each sample is uniquely 

identifiable during sequencing. This was done according to the manufacturer’s 

instructions, using the DNA concentrations determined using the Qubit® assay to 

normalise the quantity of input genomic DNA used (1 ng in 5 μl). After the preparation 

of genomic DNA libraries, the DNA concentration of each library was determined 

using the Qubit® HS dsDNA quantification kit. This allowed DNA libraries to be 

normalised (4 mM), pooled together (5 μl of each library), and finally prepared for 

sequencing according to Illumina Nexteria® XT guidelines. The prepared pool of DNA 

libraries was loaded onto an Illumina MiSeq™ sequencer (machine time courtesy of 

the Microbiology and Infection Division, University of Warwick), by either Dr 

Gemma Kay, or Dr Alexia Hapeshi. The paired-end 2 × 250 bp kit was used for the 

whole-genome sequencing.  

 

6.2.7 Extraction and purification of microbial RNA  

To extract RNA from E. coli culture, 6 × 108 cells (e.g. 1 ml of culture at OD600 ≈ 

0.75) were added to an aliquots of RNAprotect® reagent (Qiagen) of twice the volume, 

and vortexed immediately, preserving and stabilising the microbial RNA. After a 5 

min incubation at ambient temperature, cells were collected by centrifugation. 
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To facilitate the breakdown of the E. coli cell wall, cells were resuspended into 100 μl 

Tris-EDTA (TE) buffer containing 20 μl proteinase K (Qiagen) and 1 mg/ml 

lysozyme, and incubation for 5 min at ambient temperature with gentle shaking. RNA 

was then extracted from the samples using the miRNeasy spin-column format kit 

(Qiagen) as per the manufacturer’s instructions, with the inclusion of a double on-

column DNA digestion (using RNase-free DNase). The final elution was performed 

using 40 μl of RNase-free water per sample. The RNA concentration of each sample 

was determined from 1 μl of RNA elution, using the Qubit® HS RNA quantification 

kit (ThermoFisher Scientific).  

 

6.2.8 Determining quality of microbial RNA  

The absence of DNA from the RNA elution was confirmed using a standard 

polymerase chain reaction (PCR) to attempt the amplification of the gene encoding 

the E. coli 16S ribosomal subunit.24  

The PCR primers for 16S rRNA were:   

5'- AGAGTTTGATCMTGGCTCAG-3' (forward)  

5'- GGTTACCTTGTTACGACTT-3' (reverse) 

The PCR conditions were: 

1) Initial denaturation at 94 °C for 3 min.  

2) Denaturation at 94 °C for 30 sec.  

3) Annealing at 55 °C for 30 sec.  

4) Extension at 68 °C for 1 min. 

5) Steps 2-4 repeated ×29 times.  
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6) Final extension at 68 °C for 5 min. 

The absence of detectable PCR products in subsequent agarose gel electrophoresis, 

signified the lack of genomic DNA contamination.  

Additionally, the Agilent 2100 Bioanalyzer instrument was used to check the quality 

of RNA, using a further 2 μl of RNA elution prepared using the RNA 6000 pico kit 

(Agilent), according to the manufacturer’s instructions. Bioanalyzer 

electropherograms are shown in Figure 4.4.  

 

6.2.9 Generation of cDNA libraries  

A modified TruSeq™ Stranded mRNA (Illumina) library preparation protocol was 

used to prepare cDNA libraries for sequencing. All steps were carried out in sterile, 

sealable 96-well plates. 

Firstly, RNA was fragmented and converted to cDNA via DNA/RNA hybrid. RNA 

depleted of rRNA (5 μl) was mixed with TruSeq™ ‘Fragment, Prime, Finish mix’ (13 

μl) and incubated at 94 °C for 8 min. The 96-well plate was briefly centrifuged (280 

g), incubated for 5 min at ambient temperature and 17 μl of the sample transferred to 

a new well on the same plate. Superscript II (Fisher) was mixed with TruSeq™ First 

Strand Synthesis Act D in a 1:9 ratio, and 8 μl of this mix was added to each sample. 

The plate was then incubated at 25 °C for 10 min, 42 °C for 15 min and 70 °C for 15 

min. Next, to each sample was added; TruSeq™ End Repair Control diluted 1:50 in 

Resuspension buffer (5 μl), and TruSeq™ Second Strand Marking Master Mix (20 μl). 

Plates were then incubated at 16 °C for 1 h. 
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An initial purification was performed by adding 90 μl of Agencourt® AMPure® XP 

magnetic beads, and incubating the plate at ambient temperature for 15 min, then 

placing it on a suitable magnetic rack for 5 min at ambient temperature. The 

supernatant was discarded and the beads were washed twice by cycles of adding 200 

μl of 80% aq. ethanol, incubating for 30 sec on the magnetic rack and discarding the 

supernatant. Beads were dried in air for 15 min and resuspended in 17.5 μl of 

resuspension buffer. The plate was incubated at ambient temperature for 2 min, placed 

on the magnetic rack for 5 min and 15 μl of the supernatant, containing cDNA, was 

transferred to a new well.  

In preparation for sequencing, cDNA 3’ ends were adenylated. To achieve this, for 

each sample TruSeq™ A-Tailing Control diluted 1:100 in Resuspension buffer (2.5 

μl) and TruSeq™ A-Tailing mix (12.5 μl) were added, and the plate was incubated at 

37 °C for 30 min, then 70 °C for 5 min. Then, TruSeq™ Ligation Control diluted 1:100 

in Resuspension buffer (2.5 μl), TruSeq™ Ligation mix (2.5 μl), and of Index adapter 

(2.5 μl) were added to each sample. The plate was centrifuged (280 g, 1 min) and then 

incubated at 30 °C for 1 h. TruSeq™ Stop Ligation buffer (5 μl) was added to stop the 

reaction. A second purification (using 42 μl of Agencourt® AMPure® XP beads) was 

carried out as described for the initial purification: beads were washed with 80 % aq. 

ethanol, resuspended in 52.5 μl of Resuspension buffer and 50 μl of supernatant was 

transferred to a new well. A third purification (using 50 μl of Agencourt® AMPure® 

XP beads) was performed immediately after: beads were washed with 80 % aq. 

ethanol, resuspended in 22.5 μl of Resuspension buffer and 20 μl of supernatant was 

transferred to a new well.  
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Enrichment of the samples using PCR was performed. To each sample, PCR Primer 

Cocktail (5 μl) and PCR Master mix (25 μl) were added, and the following PCR setup 

enacted: 

1) Initial denaturation at 98 °C for 30 sec. 

2) Denaturation at 98 °C for 10 sec. 

3) Annealing at 60 °C for 30 sec. 

4) Extension at 72 °C for 30 sec. 

5) Repeat steps 2-4 14 more times. 

6) Final extension at 72 °C for 5 min. 

A final purification was performed as previously described using 50 μl of Agencourt® 

AMPure® XP beads: beads were washed with 80 % aq. ethanol and resuspended in 

32.5 μl of Resuspension buffer. The supernatant (30 μl), containing completed cDNA 

library, was then transferred to a new well. Prior to sequencing DNA concentration 

and fragment size were determined, as these parameters are critical to the setup. The 

former was measured using the Qubit® High Sensitivity DNA assay kit, and the latter 

using was determined using the (Agilent 2100) Bioanalyzer High Sensitivity DNA kit 

as per the manufacturer’s instructions. 

 

6.2.10 Protein extraction and sodium dodecyl sulfate polyacrylamide gel 

electrophoreisis (SDS-PAGE)  

Protein was extracted at the relevant time point by first collecting ~6.4 × 108 cells 

(equivalent to 1 ml of culture at an OD600 = 0.8) by centrifugation and resuspension 

twice into 1 ml PBS, before resuspending the final cell pellets into 100 µl PBS. To 

initiate lysis of E. coli cells, 100 µl of a combined ×2 loading buffer/SDS-PAGE 
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loading dye (see composition below) was thoroughly mixed into the samples, then 

after a 5 min incubation at 95 °C, samples were left to stand for 18 h at ambient 

temperature. SDS-PAGE (4–15% Mini-PROTEAN® TGX™, BioRad) was then 

performed using 12 µl from each lysate sample per lane (preliminary protein 

quantification assays suggested that this volume contains ~40 µg of E. coli protein). 

After staining for 1 h with InstantBlue (Expedeon) and removing excess dye by 

immersing the gels in water for 18 h, gels were imaged using a G:BOX Chemi XRQ 

(SYNGENE).  

Combined loading buffer/SDS-PAGE loading dye composition (×2 concentration): 1 

ml Tris/HCl buffer (1 M, pH 7.5), 4 ml 10 % SDS, 4 ml 50 % glycerol, 200 μl β-

mercaptoethanol, 200 μl bromophenol blue [40 mg/ml], 600 μl deionised water.  

 

6.2.11 Protein preparation for proteomics: in-gel digest  

Protocol adapted from the methodology outlined by Shevchenko, Mann and co-

workers,25 by the proteomics division of the School of Life Sciences, University of 

Warwick. Work performed jointly by the author and Dr Alexia Hapeshi. 

Each sample lane from the SDS-PAGE gels was carefully extricated and cut into small 

pieces (6 per lane), which were prepared separately. Gel pieces were washed (and 

destained) by adding 50% ethanol in 50 mM ammonium bicarbonate and incubating 

for 20 min, with shaking and heating at 50 °C. This was repeated twice, before 

dehydrating the gel pieces by adding 100% ethanol, incubating for 5 min at 55°C with 

shaking, then removing the liquid. 
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Protein disulfide bonds were reduced by adding 10 mM dithiothreitol (DTT) in 50 mM 

ammonium bicarbonate (180 μl) and incubating for 45 min at 56 ºC, with shaking, 

then removing excess liquid. Cysteine residues could then be alkylated by adding 55 

mM iodoacetimide (IAA) in 50 mM ammonium bicarbonate for 30 min (at ambient 

temperature, in the dark), then removing excess liquid. Gel pieces were again washed 

(using 50 % ethanol in 50 mM ammonium bicarbonate) and dehydrated (using 100% 

ethanol) as previously described. 

For the tryptic digest, 2.5 ng/μl trypsin (40 μl) was added and the gel pieces allowed 

to rehydrate for 10 mins. Sufficient additional 50 mM ammonium bicarbonate to cover 

the gel pieces was then added and samples incubated overnight with shaking (37 ºC). 

To stop the digestion and extract the peptides from the gel pieces, 5 % formic acid in 

25 % acetonitrile was added (40 μl). Samples were sonicate for 10 min and the 

supernatant extracted. This was repeated three times, pooling the collected 

supernatants for each sample. The samples originating from the same SDS-PAGE lane 

were then recombined and the peptide samples dried using a Speed-Vac, overnight (40 

°C). 

Dry peptide samples were resuspended by sonication (30 min) in 55 μl of water 

containing 2.5 % acetonitrile and 0.05 % trifluoroacetic acid. Samples were purified 

using C18 desalting tips, and dried using by SpeedVac evaporation. Samples were 

finally resuspended into  1:1 methanol/water (50 μl) and a 10 μl aliquot was analysed 

by nanoLC-ESI-MS/MS using an Ultimate 3000 Orbitrap Fusion™ instrument 

(Thermo Fisher) with a 120 min LC separation on a 25 cm column, for each sample. 
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6.2.12 Bioinformatics: whole genome analysis  

[As performed by Drs Alexia Hapeshi and Nicholas Waterfield] 

Fastq reads from the whole genome sequencing of WT and tolerant clones were 

uploaded to EnteroBase26 and assembled into contigs.  The genomes of the tolerant 

clones were then aligned against the WT assembly whilst all genomes including the 

WT were also aligned against the reference E. coli O157:H7 Sakai genome (Assembly: 

GCF_000008865.1) for SNP and indel detection.  

In addition, for confirmation of the EnteroBase analysis, alignment of raw reads to the 

reference E. coli O157:H7 Sakai genome (Assembly: GCF_000008865.1) including 

plasmids pO157 and pOSAK1 (Accession numbers: NC_002695 for the chromosome, 

NC_002127 for pOSAK1 and NC_002128 for pO157) was performed using 

Bowtie2.27 For the purposes of mapping, the chromosome and two plasmids were used 

as reference in a single multifasta file. Bam files were sorted and indexed using 

Samtools28 and visualised in Artemis genome browser29 for manual validation. 

Qualimap30 was used to calculate mapping statistics. Finally, SNP and small indel 

detection was also performed using VarScan2.31 

 

 

6.2.13 Bioinformatics: transcriptomic analysis  

[As performed by Drs Alexia Hapeshi and Nicholas Waterfield] 

Fastq reads were mapped using Bowtie2 against the E. coli O157:H7 Sakai genome. 

As for the genome analysis, the chromosomal and pO157 and pOSAK1 plasmid 

sequences were introduced in a single fasta file, which was used as the reference for 
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Bowtie2. Alignment statistics are shown below. Only mapped reads were then used to 

create bam files and read counts per gene were calculated using BEDtools 

coverageBed.32 Differential expression analysis was performed using DESeq2.33 A 

multi-factor design was used to account for sample pairing and hence differences 

between the samples, whilst measuring the effect of the treatment. The design formula 

used was thus dds <- DESeqDataSet(se, design = ~replicate + condition), whereby 

condition refers to treatment. Results show differentially expressed genes with a 

Benjamini-Hochberg false discovery rate34 (FDR) cutoff of 0.05 and a p-adjusted 

value less than 0.05. To identify overrepresented biological pathways in the dataset, 

the KEGG mapper Search&Color Pathway tool35 was used and STRING36 was used 

to visualise connections between differentially expressed genes. Table 6.3 lists the 

number of paired reads and % alignment rate for each sample. 

Sample Number of reads (paired) Alignment rate (%) 

Control replicate 1 7746362 84.98 

Control replicate 2 5809414 99.77 

Control replicate 3 7168291 98.25 

Treated replicate 1 5529284 99.57 

Treated replicate 2 7553893 99.44 

Treated replicate 3 9714225 99.80 

Table 6.3: RNAseq (paired) read numbers and alignment rate for each sample. 

 

6.2.14 Bioinformatics: proteomic analysis   

[As performed by Dr Alexia Hapeshi] 

Raw LCMS data was introduced into MaxQuant software37 to calculate label-free 

quantification (LFQ) values for each protein identified (referenced against peptide 

sequences from the Uniprot Escherichia_coli_O157H7 database). These were used in 
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Perseus38 for further analysis. Total protein distributions were normalised for each 

sample, base-2 logarithms of LFQ fold differences (treated vs. control samples) were 

taken, and paired t-tests were used to calculate p-values. These parameters were used 

to calculate significance thresholds: the false discovery rate (FRD), set to 0.01, and s0 

(see Equation 4.1) set to 0.2 or 0.5. 
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Appendix 
Crystallographic Data 

 
[Zn2Lb

3][ClO4]4·2CH3CN 

Empirical formula C112H108Cl4N14O22Zn2 
Formula weight 2274.66 
Temperature/K 150(2) 
Crystal system monoclinic 
Space group P21 
a/Å 12.3149(4) 
b/Å 40.4691(4) 
c/Å 12.3281(2) 
α/° 90 
β/° 117.839(3) 
γ/° 90 
Volume/Å3 5432.9(2) 
Z 2 
ρcalcg/cm3 1.390 
μ/mm‑1 2.091 
F(000) 2364.0 
Crystal size/mm3 0.124 × 0.116 × 0.074 colourless block 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 8.118 to 152.936 
Index ranges -13 ≤ h ≤ 11, -50 ≤ k ≤ 47, -13 ≤ l ≤ 15 
Reflections collected 19477 
Independent reflections 13837 [Rint = 0.0262, Rsigma = 0.0327] 
Data/restraints/parameters 13837/377/1615 
Goodness-of-fit on F2 1.041 
Final R indexes [I>=2σ (I)] R1 = 0.0482, wR2 = 0.1332 
Final R indexes [all data] R1 = 0.0492, wR2 = 0.1346 
Largest diff. peak/hole / e Å-3 0.42/-0.54 
Flack parameter -0.014(15) 
 

[Zn2Lf
3][ClO4]4·6CH3CN·5H2O 

Empirical formula C138H142Cl4N18O27S3Zn2 
Formula weight 2853.41 
Temperature/K 100(2) 
Crystal system monoclinic 
Space group C2/c 
a/Å 38.9929(5) 
b/Å 22.5983(2) 
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c/Å 36.9118(6) 
α/° 90 
β/° 104.4640(10) 
γ/° 90 
Volume/Å3 31494.8(7) 
Z 8 
ρcalcg/cm3 1.204 
μ/mm�1 1.937 
F(000) 11904.0 
Crystal size/mm3 0.29 × 0.11 × 0.1 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 4.556 to 134.798 
Index ranges -46 ≤ h ≤ 46, -27 ≤ k ≤ 27, -44 ≤ l ≤ 43 
Reflections collected 210348 
Independent reflections 28266 [Rint = 0.0614, Rsigma = 0.0286] 
Data/restraints/parameters 28266/377/1849 
Goodness-of-fit on F2 1.360 
Final R indexes [I>=2σ (I)] R1 = 0.1046, wR2 = 0.3130 
Final R indexes [all data] R1 = 0.1218, wR2 = 0.3332 
Largest diff. peak/hole / e Å-3 1.21/-0.84 
 

[Zn2Li
3][ClO4]4·CH3CN·1.5H2O 

Empirical formula C128.5H114.75Cl3N13.25O22.5Zn2 
Formula weight 2441.67 
Temperature/K 100(2) 
Crystal system triclinic 
Space group P-1 
a/Å 19.4621(5) 
b/Å 24.0209(9) 
c/Å 30.5735(16) 
α/° 90.960(4) 
β/° 99.274(3) 
γ/° 89.987(3) 
Volume/Å3 14104.2(10) 
Z 4 
ρcalcg/cm3 1.150 
μ/mm‑1 0.462 
F(000) 5078.0 
Crystal size/mm3 0.20 × 0.12 × 0.03 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.308 to 55.424 
Index ranges -23 ≤ h ≤ 25, -31 ≤ k ≤ 31, -39 ≤ l ≤ 39 
Reflections collected 159842 
Independent reflections 63160 [Rint = 0.1545, Rsigma = 0.1643] 
Data/restraints/parameters 63160/351/3038 
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Goodness-of-fit on F2 1.272 
Final R indexes [I>=2σ (I)] R1 = 0.1738, wR2 = 0.4171 
Final R indexes [all data] R1 = 0.2757, wR2 = 0.4778 
Largest diff. peak/hole / e Å-3 4.64/-0.92 
 


