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Model Specification and CDO (Mis)Pricing

ABSTRACT

Complex structured products, especially collateralized debt obligations (CDOs),

were at the center of the 2008 credit crisis. This paper explores the impact of modeling

difficulties on CDO mispricing. Comparing pricing outputs among models with differ-

ent specifications, we show that the use of a model with advanced default correlation

assumptions could have reduced the amount of model-implied AAA-rated CDO securi-

ties. This pricing difference also has predictive power for the subsequent downgrading

of AAA-rated CDO tranches. However, the model specification is only qualitatively

important for CDO mispricing, as it has a modest quantitative effect in explaining the

overall pricing errors.
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I. Introduction

The 2007-2009 credit crisis has had unprecedented impact on the financial industry.1 At the

center of this crisis is the previously little known financial innovation called collateralized debt

obligations (CDOs). CDOs are debt claims with various seniorities against collateral asset

pools. Senior claimholders will not suffer a loss until the subordinated tranches are exhausted.

Because of this prioritized structure and other credit enhancements, such as insurance, CDO

senior tranches had AAA credit ratings prior to the crisis. CDO issuance started in 1987

but remained dormant until 1997, with an annual issuance of $17 billion, since then the

market has grown rapidly to reach an annual issuance of $520.6 billion in 2006, according

to Securities Industry and Financial Markets Association (SIFMA). CDO issuance peaked in

2007Q2 (quarterly issuance of $178.6 billion) and afterward declined exponentially (2009Q1

issuance $0.8 billion). However, the strikingly strong recovery of the CDO market, especially

collateralized loan obligations (CLOs), in recent years has prompted significant concerns over

the market and its valuation.2 Given the dramatic write-downs associated with CDOs during

the credit crisis3 and the resurgence of the CDO market in recent years, it is important to

develop a good understanding of CDO valuation. We present a comprehensive study of CDO

pricing with a focus on the impact of model specification. Our study elucidates potential

structural causes of CDO mispricing.

The innovative nature of CDOs makes it difficult to identify the exact reasons for this val-

uation failure before the credit crisis. On the one hand, given the short history of the product

and modeling difficulties, Duffie (2007) doubts that anyone has capability to evaluate CDOs

1Among the top-five precrisis Wall Street investment banks, Lehman Brothers declared bankruptcy on
September 15, 2008, Bear Stearns was acquired by J. P. Morgan on March 16, 2008, Merrill Lynch was
acquired by Bank of America on September 14, 2008, and Goldman Sachs and Morgan Stanley converted into
bank holding companies on September 21, 2008.

2see, e.g., “CLO surge prompts regulatory concerns”, Financial Times, September 8, 2014. CLO per-
formance will remain solid in 2016 according to Moody’s (2015). We are also seeing a turnaround for the
European CLO market. “Time looks ripe for European collateralised loan obligations”, Financial Times,
January 21, 2016.

3For instance, on July 28, 2008, Merrill Lynch sold $30.6 billion in notional value U.S. super senior ABS
CDOs to an affiliate of Dallas, Texas-based private equity firm Lone Star Funds for $6.7 billion, or 22 cents
on a dollar. (Merrill Lynch also financed 75% of the sale through a loan with recourse only on those CDOs.)
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with comfortable accuracy. Accepting the complexities and modeling difficulties, some jour-

nalists blame the quants and their models for “killing the Wall Street”4. On the other hand,

regulators and media have rushed to blame CDO underwriters and credit rating agencies, who

brought CDOs to the marketplace, owing to their potential conflicting incentives. While some

market participants likely deserve more blame than others, “careful research is needed to dis-

tinguish the relative importance of the bad incentives view and the mispricing view”, as these

two views have distinctly different implications for future regulation and risk management

(Allen (2008)).

Given the limitations in modeling techniques and historical data, large losses do not au-

tomatically imply risk management failures (Stulz (2008)). This argument is particularly

relevant for the current setting of CDOs, which are collateralized on a pool of default-risky

assets. Accurate valuation of CDOs requires the joint distribution of those assets, especially

the default correlation, to be modeled. Defaults are rare events. Hence, the default correla-

tion is difficult to measure. Furthermore, even single-obligor credit risk analysis is difficult.

There is also little consensus on the best practices for portfolio credit risk modeling. In this

paper, we examine the impact of model specification on portfolio credit risk evaluation and

CDO mispricing.5

Traditional portfolio credit risk models, such as that of Vasicek (1987), assume that the

default correlation is driven only by observable common factors. However, recent studies

show that such an approach significantly underestimates the actual default correlation (Das,

Duffie, Kapadia, and Saita (2007)). Based on this observation, Duffie, Eckner, Horel and

Saita (DEHS, 2009) propose a frailty correlated default model, in which the latent “frailty”

factor is unobservable and time varying. Duffie, Eckner, Horel and Saita (2009) show that

their model performs well in matching historical default patterns, and Collin-Dufresne (2009)

also discusses the properties for good correlation models. Azizpour, Giesecke, and Schwenkler

(2017) find important roles of both frailty and contagion for default clustering.

4see, e.g., “Recipe for disaster: The formula that killed Wall Street”, Wired, February 23, 2009. Triana
(2009) expressed similar views.

5The issues on conflicts of interest and CDO security design are discussed by Griffin and Tang (2012),
Nicolo and Pelizzon (2008).
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Our simulation results on model specification substantiate the importance of the frailty

factor to portfolio credit risk valuation and CDO pricing. We focus on the tail risk that

is most relevant to CDO senior tranches that are often rated AAA. At the AAA level, the

expected portfolio default loss rate is 5.4% higher when frailty is considered than when it is

not. Hence, ignoring the frailty factor would result in a 5.4% greater AAA tranche size. We

further consider the impact of correlation between macroeconomic factors on CDO pricing in

the presence of frailty factor. In reality, there might be correlation between macroeconomic

factors. For example, when the market undergoes a crisis, the central bank will step in and

cut interest rates to inject liquidity into the market, which essentially creates a correlation

between the short-term interest rate and stock market performance. However, our simulation

results show that such consideration of correlation between macroeconomic factors has little

effect on portfolio credit risk valuation and CDO pricing when the frailty factor is present.

Having examined the potential impacts of model specification on CDO valuation, we

apply the DEHS frailty model to historical CDO data. Our sample contains 237 CDOs issued

between May 1998 and December 2004, including 46 collateralized bond obligations (CBOs),

82 CLOs, 99 CDOs collateralized with asset-backed securities (ABS CDOs), which includes

most mortgage-back securities, and 10 CDOs collateralized with other CDO tranche securities

(CDO2s). When the credit rating or pricing for CDOs is obtained, the collateral pool is

typically incomplete. Rating agencies will thus conduct an analysis and assign a rating based

on the projected collateral pool characteristics. To price CDOs, we first generate factor time

series based on the CDO’s collateral pool characteristics. Then, we insert these factor time

series into the no-frailty model (bad model) and the dynamic-frailty model (good model) and

generate the collateral pool loss distribution. With the collateral pool loss distribution, we

can determine the AAA tranche size by referring to the historical AAA default probability.6

We then compare the resulting AAA tranche size from the different model specifications

(no-frailty vs. frailty model).

Our empirical findings are consistent with the simulation results. Specifically, the no-

frailty model generates lower portfolio default rates and hence higher AAA tranche sizes than

6Section II discusses the tranche determination approach in details.
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the results from a credit rating agency. The no-frailty model underestimates default rates by

6% on average; however, the frailty factor increases the portfolio default rate at AAA level by

19%. Therefore, accounting for the frailty factor could shrink AAA-rated CDO tranches by

13%. If the frailty model is indeed useful, we would observe subsequent downgrades of CDO

AAA tranches when the frailty model indicates higher risk than the rating agency model. Up

to December 2008, most changes in CDO ratings at the AAA level occurred with ABS CDOs,

and in October 2009, we witness more AAA downgrading in the other CDO categories. We

find that the frailty model exhibits substantial power in separating out the safest and riskiest

CDOs, although the relationship is not strict monotone. According to the frailty model, about

92% of AAA-rated tranches with high risk are subsequently downgraded, whereas 29% are

downgraded for the low-risk group. The frailty model significantly predicts the future AAA

tranche downgrading.

We make three contributions to the literature. First, we elucidate the potential structural

causes of CDO mispricing. Griffin and Tang (2012) document the importance of out-of-model

adjustments for CDO mispricing and find that smaller model-implied AAA sizes receive larger

adjustments. We further show that model specification can affect the model-implied CDO

AAA tranches, which partially contribute to the CDO mispricing. However, considering the

out-of-model adjustment, we expect that even if we have the best model, CDOs were still

mispriced. Model constraints played some role in CDO mispricing. Second, although model

uncertainty is well studied in equity markets and portfolio allocation (e.g., Garlappi, Uppal,

and Wang (2007)), we apply it to the credit derivatives market and show its strong impact

in this market. Third, our study provides a good framework for the analysis of financial

innovations, which will likely continue, and the same model issues would appear repeatedly.

Therefore, our research provides a preliminary direction for future risk management practice.

Our study builds on Duffie, Eckner, Horel and Saita (2009), and we add to existing studies

in the following ways. While Longstaff and Rajan (2008) argue that historical CDO prices are

well explained, Coval, Jurek, and Stafford (2009a) show that substantial mispricing can arise

in the CDO structuring process. Our finding of systematic mispricing due to model misspec-

ification provides a justification for these seemingly conflicting findings. Fender, Tarashev,
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and Zhu (2008) also show that CDOs can be overvalued in comparison with equivalent corpo-

rate bonds. Feldhütter and Nielsen (2012) and Heitfield (2009) use MCMC for CDO pricing.

Choi, Doshi, Jacobs, and Turnbull (2016) introduce a top-down no-arbitrage model for pric-

ing structured products with economic variables. Longstaff and Myers (2014) focus on the

valuation of the equity tranche of the CDO. Our study differs from these studies in terms of

the economic motivation and the focus on model risk for CDO mispricing. Finally, our paper

corroborates the suggestion by Coval, Jurek, and Stafford (2009b) and Rajan, Seru, and Vig

(2015) that model performance may depend on the user’s incentives.

The rest of this paper is organized as follows. Section II reviews the setting of our study and

relevant literature. Our simulation results on the effects of model specification are discussed

in Section III. An empirical analysis using historical CDO data and the implications for CDO

mispricing are presented in Section IV. Section V concludes the paper.

II. CDO Primer and Relevant Literature

The prototype of a CDO originated in 1987 at the junk bond powerhouse Drexel Burnham

Lambert (bankrupt in February 1990). The resurgence in the current format is mostly at-

tributed to Credit Suisse First Boston in 1997 (notably Christopher Ricciardi).7 CDOs are

investment conduits that hold credit securities as collateral assets and issue secured notes as

liabilities with a prioritized payment structure. They belong to the category of pay-through

asset-backed securities (ABS).8 Major collateral asset types include corporate loans and bonds,

but other types include ABS and credit derivative contracts. Based on the collateral asset

types, CDOs can be classified into CLOs, CBOs, ABS CDOs, CDO2, and so forth. Most

CDOs have multiple tranches with various debt claim seniorities, where parts of the tranches

are sold to different investors. However, single-tranche CDOs (“bespoke” CDOs) are often

7The development of the credit derivatives market in general is largely attributed to J. P. Morgan (notably
Blythe Masters), which invented the credit default swaps (CDS) that fueled the synthetic CDO market.

8CDOs are distinguishable from traditional ABS in two aspects. First, CDOs structure and collateral assets
are much more diverse than those of traditional ABS. Second, CDOs liability structure is more complex with
trigger events to retire the senior tranches and other credit enhancements.
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structured specifically for a particular investors needs. CDO underwriters structure the deal

and arrange the CDO notes placements. Except static deals, CDO assets are administered

by collateral managers, and CDO operations are overseen by trustees.

The CDO market has been a rated market from the beginning, and in practice, many

investors rely on the ratings for CDO pricing. Before the CDO issuance, it is almost always

critical for CDO issuers to secure target ratings. Typically, the CDO underwriter submits

the CDO term sheet to one or more credit rating agencies, who will conduct CDO valuation

based on the projected collateral characteristics. The underwriter and the credit rating agency

need to agree the credit rating. Otherwise, the underwriter may use ratings from another

credit rating agency. All three major rating agencies (S&P, Moody’s, and Fitch) employ

simulation methods when rating CDOs. Since CDOs are debt claims constructed from the

underlying collateral portfolio, the valuation of CDOs starts with and depends heavily on

an accurate assessment of the credit risk of the collateral portfolio. Specifically, credit rating

agencies first simulate portfolio loss rates based on the CDO collateral asset information. The

portfolio loss distribution can be obtained by using various approaches and default correlation

assumptions. The default correlation assumption affects the thickness of the right tail of the

portfolio loss distribution (i.e. the probability of big losses), which is particularly important

for the CDO senior tranche. Because of the prioritized structure of CDOs, senior tranche

holders will not suffer a loss unless the loss is sufficiently large and the subordinated tranches

are exhausted. When default correlation is high, we will have more clustered defaults and

limited diversification benefits. Senior tranches and junior tranches will have similar cash flow

streams.

Two different approaches are often used to derive the loss distribution for the collateral

portfolio. The structural approach assumes that asset value processes are correlated, and

a firm defaults when its asset value falls below some default threshold. The asset value is

simulated with imposed correlations, and the credit portfolio value is determined after all

assets are simulated. Repeating the simulation multiple times results in a distribution of

the portfolio value. The reduced-form approach assumes that default occurs suddenly and

unpredictably. A correlation structure is directly imposed on the default probability. The
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default intensity can be linked to firm-specific and market-wide variables, and the number of

defaults in the collateral portfolio follows a given distribution. The portfolio loss rate is then

drawn repeatedly from this default distribution.9

After obtaining the distribution of the portfolio loss rate, the tranche size is determined by

referencing the scenario default rate (SDR) of the desired rating. Specifically, the simulated

distribution of the portfolio loss rate is used to map the idealized default rate for a scenario

into a SDR. The idealized default rate for a scenario (D) is the maturity-specific “default

criteria” that gives the probability of the occurrence of the scenario according to the historical

corporate bond default rate with the same rating. Then SDR is the portfolio default rate (with

some adjustment based on default experience) for which the default probability exceeding this

portfolio default rate is no greater than D, i.e. Pr(default rate ≥ SDR) = D.10 The tranche

must withstand the SDR of the desired rating. For example, for a CDO senior tranche with

a AAA credit rating, i.e. AAA scenario, the probability that the portfolio loss rate is greater

than the SDR should be lower than the historical AAA corporate bond default rate. Then, the

AAA tranche size is determined as one minus the SDR (1-SDR). Griffin and Tang (2012) and

Benmelech and Dlugosz (2009) provide detailed discussions about the S&P’s SDR approach

for the tranche determination. SDRs are key to obtaining desired ratings for CDO tranches.11

Although agency conflicts may arise during the security design (Mehran and Stulz (2007)),

structured finance instruments, particularly CDOs, can be useful investment tools as long as

the default correlation is low, as shown by DeMarzo (2005) and Leland (2007). However, the

default correlation is difficult to measure, which contributes to the failure of CDO valuation

(Brunnermeier (2009)). For such low occurrence events, the Bayesian approach is particularly

appealing (Glasserman and Li (2005)). Therefore, to assess the credit risk of structured finance

instruments such as CDOs, it is necessary to consider both the firm-specific default predictors

9See Internet Appendix in Griffin and Tang (2012) for a detailed discussion of the CDO valuation models.
10We follow S&P’s terminology and refer it as SDR. It is default scenario collateral loss rate by Moody’s.

The descriptions are based on the published documents such as Moody’s (1998), S&P (2002), and Fitch
(2006).

11The purchase price for CDO notes are mostly at par. The coupon rate on each tranche is the most
visible pricing indicator. However, the coupon rate, rating and tranche size are jointly determined. The credit
spread of a given rating is easily agreeable. Hence, the most critical pricing component is the tranche size
(equivalently the risk level of the tranche, i.e., the SDR). We focus on the tranche size and SDR throughout
this paper and use rating, pricing, and valuation interchangeably.
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and, more challengingly, the default correlation.

One firms default status may also affect another firm’s default probability. For instance,

Acharya, Schaefer, and Zhang (2015) document the impact of the downgrades of GM and Ford

on all the constituents in the market, even though some of them are completely unrelated

to GM and Ford. Jorion and Zhang (2007) conduct a larger scale analysis of bankruptcies

and find similar results. Reasons why these seemingly unrelated firms share a default factor

may be learning, as argued by Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015) and

Giesecke (2004), or market structure, as argued by Allen and Carletti (2006). A conventional

portfolio loss risk model assumes that the default correlation is attributable only to observable

factors. Even with the benefits of various firm-specific and macroeconomic covariates, how-

ever, Das, Duffie, Kapadia, and Saita (2007) find empirical evidence that defaults are more

clustered than conventional models suggest based merely on observable factors. DEHS (2009)

provides a new model for corporate default intensity with a time-varying common latent fac-

tor, as well as in the presence of a firm-specific unobservable covariate. They find that the

prediction power of a general credit model will increase dramatically if a common unobserv-

able covariate is incorporated into the model. Compared with traditional models, this model

is especially effective for default clustering estimation. However, this refined pricing model

still suffers from parameter uncertainty. In addition to the frailty factor, recent literature

documents the important role of contagion in explaining the default clustering. Helwege and

Zhang (2016) investigate the counterparty contagion and information contagion for financial

firms. Azizpour, Giesecke, and Schwenkler (2017) find that contagion and firms exposure to

observable and latent systematic factors explain significant part of clustering.

Coval, Jurek, and Stafford (2009a) show that CDO senior tranches are inaccurately priced

and that senior tranche investors should have required a higher risk premium than that

indicated by the “unreliable” ratings. The mispricing arises from the economic catastrophe

feature of CDOs and many other structured products that default only under extremely bad

economic states. This default clustering feature in bad economic states acts as an additional

source of risk for senior CDO tranches. Rating agencies, however, ignore this economic

catastrophe feature in practice. Investors therefore should not rely on credit ratings for CDO
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pricing or risk assessment, as the information contained in them is insufficient. To correct

the failure of CDO pricing, Coval, Jurek and Stafford (2009a) develop a state contingent

framework based on a modified Merton’s (1974) structural model.

Coval, Jurek, and Stafford (2009b) provide a detailed discussion of the structured products

market and the valuation/rating failure. In addition to the economic catastrophe feature,

as discussed in Coval, Jurek and Stafford (2009a), they claim that small model error can

be significantly magnified by the pooling and tranching structure of structured products.

The model error may arise from an inaccurate assumption for either the default correlation

or default probability of collateral assets. The largest impact can be found in the more

complicated CDO2.

Griffin and Nickerson (2017) quantify rating agencies’ default correlation assumptions

for structured products before and after the crisis. Although the rating agencies default

correlation assumption has increased from 0.01 to 0.03 after the crisis, it is much lower than

the estimated correlation of 0.12 when we jointly consider the observable and nonobservable

factors. Broer (2017) find that disagreement about the default correlations increases the value

of structured collateral. Erlenmaier and Gersbach (2014), Bae, Iscoe, and Kim (2015) and

Andreoli, Ballestra, and Pacelli (2016) also explore appropriate ways of estimating the default

correlation and CDO pricing.

In the spirit of DEHS (2009), we use a dynamic-frailty model as the benchmark model

for portfolio loss estimation, which is the foundation for CDO pricing. We depart from

DEHS (2009) by assuming different scenarios of the data structure. This can be achieved by

controlling for the data-generating process. We further apply the dynamic-frailty model for

CDO pricing.
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III. The Impact of Model Specification on CDO

Pricing: Simulation Results

CDOs are constructed from a collateral portfolio characterized by collateral credit quality,

maturity and correlation, and the portfolio cash flows are tranched into different classes.

Therefore, CDO pricing heavily depends on the accurate assessment of the credit risk of the

collateral portfolio. In this section, we demonstrate the effects of various model specifications

on portfolio credit risk assessment and CDO pricing based on simulations. A simulation study

can help elucidate the full picture of model performance. Misspecification of a model leads to

biased estimation and might eventually produce a deflected prediction. For example, when

common-frailty-driven defaults are not accounted for, we underestimate the possible extreme

losses of a credit portfolio, which is particularly relevant for CDO senior tranche pricing.

A. Dynamic-frailty Model and Simulation Methods

To assess the model specification effects, we use the dynamic-frailty model in Duffie, Eckner,

Horel and Saita (2009) as a benchmark good model. As defaults are more clustered than

conventional credit risk models suggest (Das, Duffie, Kapadia, and Saita (2007)), Duffie,

Eckner, Horel and Saita (2009) propose a frailty-correlated default model, in which the frailty

factor can be used to technically solve the omitted variable bias. The frailty factor can

be anything that affects a firm’s default probability and generates an additional source of

default correlation. Since the frailty factor is not observable and may change with time, we

need to perform Bayesian updating to “learn” the frailty factor from the realized defaults.

For example, after Enron’s bankruptcy, people realized that other firms may have similar

accounting problems (i.e., frailty), and adjusted their default estimation accordingly. The

inclusion of the frailty factor and the resulting more accurate default correlation assumptions

is particularly important for portfolio credit risk analysis and CDO senior tranche pricing.

Specifically, we assume that the default intensity of firm i at time t takes a proportional
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hazard specification as

λit = Λ(Si(Xt), θ)

= exp(α+ β · Vt + γ · Uit + Yt). (1)

where Si(Xt) represents the component of Xt that is relevant to the default intensity of firm

i, and θ represents the parameter vector for the default intensity to be estimated. Default

events are driven by three types of factors: observable macroeconomic factors (Vt), including

market-wide stock returns and interest rates; observable firm-specific factors (Uit) such as

a firm’s distance-to-default and trailing stock return; and the unobservable common frailty

factor Yt.
12 Following Duffie, Eckner, Horel and Saita (2009), we further assume that the

unobservable common frailty factor Yt follows an Ornstein-Uhlenbeck (OU) process, with the

speed of mean-reversion of κ and a standard Brownian motion (B) as the innovations:

dYt = −κYtdt+ dBt. (2)

Conditional independence of default arrivals is regained under the assumption that the frailty

factor may capture additional default clustering. Appendix A provides details regarding

the default intensity parameter estimation. From the frailty module, we can obtain default

probability estimations with both observable and unobservable factors.

To evaluate portfolio credit risk by using the dynamic-frailty model, we first simulate both

the observable factors and unobservable frailty factor that affect a firm’s default intensity

based on a factor time-series model. The number of firms simulated is 2800, and the history

lasts for 25 years.13 To remain in line with the factor dynamics implied in the real historic

data, we employ the same Gaussian first-order vector autoregressive model for the observable

factors in Duffie, Saita and Wang (2007) and the same OU process with long-run mean of 0

12It is possible to have a firm-heterogeneous frailty factor Zi. However, Zi is difficult to determine given
the size of the data. Furthermore, its presence does not qualitatively change the significance of Yt. Therefore,
this unobservable firm heterogeneity is excluded from the final model for portfolio credit risk evaluation in
Duffie et al. (2009).

13Duffie, Saita and Wang (2007) consider 2770 industrial firms for the period from 1980 to 2004.
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for the common frailty factor specified in Duffie, Eckner, Horel and Saita (2009). The time

step is taken to be one month. We further simulate corporate default time data by using the

Inverse-CDF method offered in Duffie and Singleton (1999). Appendix B provides a detailed

review of the factor time-series model and the data simulation method, and Appendix C lists

the maximum likelihood parameter estimation of the factor time-series model in Duffie, Saita

and Wang (2007).

After obtaining the factor time series and default timing data, we insert these simulated

data into the dynamic-frailty model to estimate the default intensity parameters. By ex-

tending the factor time series with the prespecified model, we can evaluate the credit risk

of any portfolio constructed on the underlying firms in our dataset. Through the simulation

analysis, we first investigate the performance of the dynamic-frailty model in filtering out the

“frailty” factor. The validation test in Appendix D shows that the dynamic-frailty model

can effectively filter out the hypothetical “true” frailty. Motivated by this finding, we then

investigate the performance of the frailty model for portfolio credit risk analysis and CDO

pricing.

B. No-frailty versus Dynamic-frailty Model

Even for single-obligor credit risk modeling, there is no consensus on the best performing

model. Model failure has been recorded in nearly all areas. The seminal work of Vasicek

(1987) on portfolio credit risk is shown to be inaccurate for heterogeneous asset pools. More

seriously, the default correlation is assumed to be driven only by observable factors. This

counterfactual assumption has been widely adopted until recently. However, we believe that

existing almost all CDOs are evaluated based on this low correlation assumption.

To understand to what extent an omitted latent factor might engender CDO mispricing,

we formally conduct an analysis of portfolio default rate prediction with the no-frailty and

dynamic-frailty models. Based on the portfolio default rate distributions, we further conduct

CDO pricing by referring to the SDR of the desired rating. Once the SDR for a desired

tranche rating is available, the tranche size can be determined as no greater than 1-SDR.

12



The simulated 25 years of data on observable factors is summarized in Panel A of Table I.

Then, we estimate the default intensity parameters by using the maximum likelihood method

based on the simulated data. The estimated parameters for the no-frailty and dynamic-frailty

models are listed in Panel B of Table I. Subsequently, we form a portfolio with all active firms

at the end of year 25, and predict the portfolio loss distribution with the frailty model and

no-frailty model, respectively. Figure 1 compares the portfolio’s default rate distribution for

the next five years according to the dynamic-frailty and no-frailty models. Panel C of Table

I provides the details of the quantiles of the portfolios default rate distribution. Using the

simulated portfolio as the collateral portfolio, we then investigate the CDO pricing with both

the dynamic-frailty and no-frailty models.

With the estimated distribution of expected portfolio default loss, the CDO tranche must

withstand the SDR of the desired rating. As discussed above, the SDR is the portfolio default

rate for which the default probability exceeding this portfolio default rate is no greater than

that of the historical corporate bond default rate with the same rating. Once the SDR

for a desired tranche rating is available, the tranche size can be determined as no greater

than 1-SDR. For CDO senior tranche pricing, we focus on the tail risk. We determine the

AAA tranche size by referring to the AAA historical default probability. For the five-year

prediction horizon, the default probability is about 0.1% for a AAA corporate bond. This

default probability corresponds to the SDR for the AAA tranche given by the 0.999 quantile.

However, different credit risk models yield different quantile values and therefore the model

implied SDR. The higher of the quantile value and SDR, the smaller of the model implied AAA

tranche size (1-SDR). As shown in Table I and Figure 1, the 0.95, 0.99 and 0.999 quantiles

for the dynamic-frailty model prediction are 14.29%, 17.33% and 21.01%, respectively, and

11.66%, 13.41%, and 15.55% for the no-frailty model prediction. If we take the 0.999 quantile

as the SDR for a AAA rating, the AAA tranche size will be 78.99% for the frailty model and

84.45% for the no-frailty model. Therefore, compared to pricing CDOs without the frailty

factor (i.e., the no-frailty model), pricing CDOs with the frailty factor can reduce the AAA

tranche size by 5.46%.
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C. Correlation Between Macroeconomic Factors

The simulation results from the previous section highlight the value of the frailty model for

CDO pricing. In this section, we further consider the impact of correlation between macroe-

conomic factors on CDO pricing in the presence of frailty factor. Specifically, we consider a

more realistic model for dependent risk factors that captures the correlation between macroe-

conomic factors. In reality, there might be correlation between macroeconomic factors. For

example, when the market undergoes a crisis, the central bank will step in and cut interest

rates to inject liquidity into the market, which essentially creates a correlation between the

short-term interest rate and stock market performance.14 However, in credit risk models, such

as the frailty model in Duffie, Eckner, Horel and Saita (2009), interest rates are assumed to

be independent of stock market index trailing returns. Ignoring the additional correlation

between the interest rate and stock market index returns may affect CDO pricing and the

real AAA tranche size.

To investigate the effect of this correlation assumption, we first impose a correlation (lag

one) between the interest rates and market returns in the factor time-series model used for

the data simulation. Specifically, based on the factor time-series model in Appendix B, we

introduce a correlation ρ between the innovation terms of the 3-month interest rate (ε1,t+1)

and S&P 500 trailing returns (ξt). Historically, the lag one correlation between the innovations

of the 3-month interest rate and S&P 500 returns is about 0.18 for the 10 years from 1997 to

2006. This period represents a time when the CDO market experienced exponential growth.

For illustration purpose, we opt for a higher correlation of 0.3.

Based on the simulated historical time series (with an imposed correlation), we compare

the frailty model prediction with and without the effect of the correlation between macroe-

conomic factors (ρ equals to 0.3 and 0, respectively). A summary of factor time series is

provided in Table II Panel A. Panel B presents the estimated default intensity parameters

14In this section, we focus on the correlation between short-term interest rate and stock market performance,
which is a more realistic model for dependent risk factors. It’s interesting to further investigate the impact
of the monetary policy intervention on derivative pricing. To introduce the intervention in the model, we
may have to consider regime changes (or jumps) in the interest rates depending on the level of simulated (or
realized market returns).
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for the frailty model. Figure 2 shows the portfolio’s default rate distribution for the next five

years according to the dynamic-frailty model with correlated and uncorrelated macro factors.

The quantiles of predicted portfolio default rate are also summarized in Table II Panel C. As

we can see from tail part of Figure 2 and Table II Panel C, the portfolio default rate is only

slightly higher when correlation is considered. The differences are 0.09%, 0.14% and 0.14%

for the 0.95, 0.99, and 0.999 quantiles, respectively. This result implies that the assumption of

zero correlation between interest rates and stock market returns in the dynamic-frailty model

does not have a significant effect on the default estimation results. Consequently, the implied

CDO AAA tranche is similar regardless of whether the correlation between macroeconomic

factors is considered.

To sum up, the simulation results in this section suggest that the common frailty factor

affects the predicted portfolio default rate, particularly for the part of the tail that is most

relevant to AAA CDO tranches. In the presence of the frailty factor, the model prediction is

relatively robust to a correlation between macroeconomic factors.

IV. CDO Pricing with the Frailty Model: Empirical

Evidence

In the previous section, we investigate the potential effects of model specification on CDO

valuation by using a simulation method. We conduct a corresponding empirical analysis in

this section. We first describe our sample CDO data. The empirical method is demonstrated

in a case study. Specifically, we perform a credit risk evaluation on CDO AAA tranches by

using both the no-frailty model and dynamic-frailty model. We scrutinize the ability of the

benchmark dynamic-frailty model to predict subsequent downgrading of the senior AAA-rated

CDO tranches over our sample CDOs, and we further discuss the implications of the results

for CDO mispricing.
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A. Data Description

Our sample contains 237 CDOs issued between May 1998 and December 2004.15 The distri-

bution according to collateral asset type is as follows: 46 CBOs, 82 CLOs, 99 ABS CDOs

and 10 CDO2s. We obtain the first report after the ramp-up of the asset portfolio16 with the

following collateral asset characteristics:

• Closing date (CDate): The date on which a CDO is purchased by investors.

• Weighted average rating (WAR): Average credit rating of the collateral asset portfolio,

weighted by the par amount of each asset.

• Weighted average maturity (WAM): Average maturity of the collateral asset portfolio,

weighted by the par amount.

• Number of obligors (N): Number of distinct obligors for the collateral asset portfolio.

• Default measure (DM): The average expected default rate of collateral assets, weighted by

the par amount and annualized by the average asset maturity.

• Variability measure (VM): The annualized standard deviation of collateral asset default

rates, which measures the dispersion of underlying assets when their correlation is not

considered.

• AAA tranche size (AAA size): The sum of the face values of all AAA-rated tranches of a

CDO divided by the total face value of the CDO.

Table III presents the summary statistics for our sample. We also list the SDRs at the

reporting date for the initial rating and downgrading notches as of October 15, 2009, for

the initially AAA-rated tranches. For downgrading notches, the number 0 denotes never

downgraded, and the numbers 1-19 correspond to downgrading from AAA to AA+ all the

way down to CC. In our sample, we have 16 downgraded CBOs, 53 downgraded CLOs, 85

downgraded ABS CDOs and 7 downgraded CDO2s. The SDR is the required subordinationor

15Our sample period ends in 2004 because of the limited availability of data on the frailty factor. Addi-
tionally, the CDO market has explosive growth with some irregular activities during the 2005-2007 period.
Consequently, nonstructural factors could drive CDO pricing after 2004.

16See internet appendix Figure IA.1 in Griffin and Tang (2012) for the discussion of CDO credit rating
timeline.
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the percentage of portfolio loss rate that a CDO tranche at a given rating level must sustain

without causing a cash flow event of default. The probability of default in the asset portfolio

exceeding this percentage is no greater than the historical default probability of corporate

bonds with the same rating. For example, if the portfolio default distribution is the same as

the one with frailty in Figure 1 and if the average realized default probability for a AAA-rated

corporate bond is 0.1%, then the SDR for the AAA tranche is 21.01%, the 0.999 quantile.

Once the SDR for a desired tranche rating is available, the tranche size can be determined

as no greater than 1-SDR. However, in practice, a larger fraction of a AAA tranche can be

achieved through out-of-model adjustments (Griffin and Tang (2012)).

B. A Case Study Illustrating the Methodology

We first illustrate our CDO valuation method via an example case analysis. All 4 types of

CDOs are valuated in a similar way. The chosen CDO is called Independence I. This CDO is

collateralized with various ABS securities, including commercial mortgage-backed securities

(CMBS), residential mortgage-backed security assets (RMBS), ABS, and CDO. Below, we

demonstrate how we evaluate this ABS CDO and how the frailty model generates results that

can predict eventual downgrade.

Independence I is issued by Independence I CDO, Ltd. (a special purpose vehicle registered

in the Cayman Islands) and co-issued by Independence I CDO Inc. (a special purpose vehicle

registered in Delaware).17 The closing date is December 7, 2000, according to Moody’s, and

December 12, 2000, according to S&P. Credit Suisse is the lead underwriter and counterparty

for interest rate swap agreements. The collateral manager is Independence Fixed Income

Associates Inc., which was renamed to Declaration Research and Management LLC. in 2003.

From Moody’s New Issue Report dated April 13, 2001, the collateral pool is fully ramped in

March 12, 2001 (about 65% complete at the closing date).

Independence I has an initial principle amount of US$300 million with the following capital

structure: Class A first priority senior secured notes of $223.5 million (74.5%), Class B second

17The Independence series continue to Independence VII issued on March 28, 2006.
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priority senior secured notes of $50 million, Class C Mezzanine secured notes of $15 million,

and a preference share of 11.5 million.18 Moody’s initially assigned a AAA rating to the

Class A tranche, followed by the Class B tranche with Aa3, and Class C tranche with Baa2.

Preference shares are not rated. S&P assigned the AAA rating to Class A but did not rate

Class B, Class C and preference shares. Fitch also provided Class A with a AAA rating, Class

B with a AA- rating, and Class C with a BBB rating. Although all three rating agencies

issued a AAA rating to Class A of this CDO, it was subsequently downgraded to AA- rating

on August 30, 2004, and further downgraded to A- on November 16, 2005, by S&P. Fitch

downgraded Class A to A on March 7, 2006 and then to BB on March 9, 2009. Moody’s

downgraded Class A to AA2 on February 18, 2005, to Baa2 on February 2, 2007, and further

to B1 and then placed it under review for possible a downgrade on April 22, 2009.

The collateral asset characteristics for Independence I reported on December 26, 2003,

before any downgrade are as follows: the collateral asset portfolio contains 95 assets from 83

obligors, with a weighted average rating of BBB-, a weighted average maturity of 8.45 years,

an average expected asset default rate of 0.0112, and a variability of the default rate of 0.0162.

For the AAA rating of this collateral portfolio, a rating agency derives the SDR of 29.2% by

using a default rate threshold of 0.00608.

When the credit rating or pricing for a CDO is obtained, the collateral pool is typically

incomplete, and rating agencies will conduct an analysis and assign a rating based on the

projected collateral pool characteristics. To price this CDO, we first generate factor time

series based on the collateral pool characteristics specified above. Then, we insert these factor

time series into the no-frailty model (bad model) and the dynamic-frailty model (good model)

and generate the collateral pool loss distribution. With the collateral pool loss distribution,

we can determine the AAA SDRs by referring to the historical AAA default probability. We

then compare the AAA SDRs and the resulting AAA tranche size from the different model

specifications (no-frailty vs. frailty model).

Specifically, we adopt the parameter estimations of the factor times-series dynamics and

18These numbers are provided by Moody’s New Issue Report. S&P record has a preference share size of
$12 million.
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default intensity provided in Duffie, Saita and Wang (2007) and Duffie, Eckner, Horel, and

Saita (2009).19 The 3-month treasury bill rate and S&P 500 index are obtained from the

Board of Governors of the Federal Reserve system and CRSP database, respectively. We

choose the weighted average maturity (WAM) of the CDO as the prediction horizon. We

further assume that each obligor has an equal amount of principal in the asset pool.

We next need the distance to default and asset processes for the 83 obligors of the CDO

collateral pool. We assume the obligor-specific factors starting from its long-run means.

As discussed earlier, collateral pools of CDOs consist of various types of assets, such as

corporate bonds, leveraged loans, sovereign debts, ABS tranches and CDO tranches. Our

exemplificative CDO Independence I comprises 41.8% CMBS, 23% RMBS, 21.4% ABS, and

13.8% CDO assets. It is prohibitive to estimate the distance to default and asset processes

for these complex securitized products. Instead, some rating agencies use the average default

probability of the same rating cohort to proxy for the default probability of the same type of

assets and assume a pairwise correlation among the obligors based on the industry sector and

geographic region. For example, S&P’s CDO Evaluator and Fitch’s VECTOR determines the

default probability based on asset type, rating and maturity.20 Furthermore, for CBOs and

CLOs, the obligor might be a private firm, and such rating is not even available.

In our study, we do not conduct an obligor-by-obligor estimation for the distance to

default and asset processes. For simplicity and tractability, we make use of the portfolio

average expected default rate (DM) and variability of default rate (VM). We assume that the

default probability of each obligor in the collateral portfolio is log-normally distributed with

a mean DM and a standard deviation of VM taken by the square root of N , the number of

obligors. We choose a log-normal distribution in light of the nonnegative default probabilities

and right-skewed default rate distribution. Then, we equally draw N quantiles of the log-

normal distribution along the interval (0, 1) and assign these quantiles as the default rates of

19The frailty factor estimation is available up to the end of year 2003. For a CDO with a closing date in
the year 2004 (which may have been initiated in 2003), we extend this factor to the date by using the OU
process dynamics starting from the end month of 2003.

20For each asset type, default probabilities across all ratings and for typical maturities are estimated from
historical default data on that specific type. Sometimes, adjusted default probabilities from other asset types
are used when the historical data are scarce for a recent innovation.
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the obligors. Next, the sampled default probability of obligor i, DPi, is transformed into the

targeted distance to default, θiD, through the inverse cumulative normal distribution function

Φ−1:

θiD = −Φ−1(DPi), (3)

For simplicity, we assume that the long-run mean of the assets of each obligor is uniformly

distributed on some quartile range of the asset values, as estimated in Bharath and Shumway

(2008). Specifically, for CBOs, we choose the uppermost quartile, 6.3-10.0, given that CBOs

mostly comprise bonds issued by relative large-cap companies. For CLOs, we choose the 0.25-

0.5 quartile, 3.3-4.7, since most underlying assets of CLOs are leveraged loans from small and

median-sized firms. For ABS CDOs and CDO2s, we do not have an established basis to

choose a particular asset span and simply use the interquartile range, 3.3-6.3.21 Empirical

evidence in Titman and Wessels (1988), Rajan and Zingales (1995), and Fama and French

(2002) shows that larger firms tend to have higher leverage. Thus, we assign in reverse order

the long-run means of assets to the targeted distance to default for each obligor. Accordingly,

a larger obligor in our sample has a lower targeted distance to default.

Given the assumption that obligor-specific factors start from their long-run means, we

apply the no-frailty model and dynamic-frailty model to generate the collateral pools default

rate distribution for each CDO and determine the SDRs accordingly. The results are provided

in Table III. For Independence I, the SDR is 29.2% according to the rating agency model,

25.3% according to the no-frailty model, and 51.8% according to the dynamic-frailty model.

Theoretically, the AAA tranche size is given by the 1-SDR. Therefore, while the SDRs ac-

cording to both the rating agency model and the no-frailly model allow a AAA tranche of

more than 70% for this CDO, the dynamic-frailty model with an advanced default correlation

assumption allows a much smaller AAA tranche of 48.2%.

In the above analysis, we use the historical AAA default probability to determine the SDR

and the AAA tranche size from the collateral pool loss distribution. In other words, we fix

the AAA default probability and compare the model-implied AAA tranche size. In our data

21For ABS CDOs and CDO2s, our SDR prediction is not sensitive to the asset span when it is shifted down
to the lower interquartile 0.4-4.7 or up to the upper interquartile 4.7-10.0.
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set, we also observe the real AAA tranche size. Then, instead of fixing the default probability

and comparing the model-implied tranche size, we can also compare the model-implied “real”

default probability of this real AAA tranche size. Specifically, we construct a variable default

probability (DPi) for CDO i as:

DPi = Prob{Default Rate > Attachment Point} (4)

Theoretically, the corresponding default probability for the AAA tranche size should be the

AAA default probability (DPAAA,i). However, different models yield different portfolio default

rate estimation. The AAA tranche size from the credit rating agency model does not necessary

gives the AAA default probability according to the no-frailty and/or dynamic-frailty models.

With the real AAA tranche size in our dataset, we would like to examine the corresponding

default probability for this AAA tranche size in the no-frailty model (DPNF,i) and dynamic-

frailty model (DPDF,i). The larger deviation between DPDF,i and DPAAA,i (i.e., DPDF,i-

DPAAA,i), the higher risk of this AAA tranche as estimated by the dynamic-frailty model.

A similar argument can be made for the DPNF,i-DPAAA,i. For our case Independence I, the

DPNF,i andDPDF,i equal 0.4% and 20.7%, respectively. Given that theDPAAA,i equals 0.61%,

the default probability of the Independence I AAA tranche is much higher according to the

dynamic-frailty model estimation. Note that the Class A tranche with an initial AAA rating

from all three rating agencies is eventually downgraded to a BB credit rating.

C. AAA Tranche Size from the Frailty and No-Frailty Models

The estimated SDRs from the no-frailty model and dynamic-frailty model for each CDOs are

presented in Table III and Figure 3. For comparison, we also provide the SDRs by rating

agency. Table IV summarizes the real AAA tranche size, and the empirical results for average

SDR according to the rating agency model, no-frailty model, and dynamic-frailty model. The

last two columns in Table IV provide the average implied default probability of the real AAA

tranche size from the no-frailty model and the dynamic-frailty model, respectively.
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As we can see from Tables III, IV and Figure 3, the SDRs from the no-frailty model are

highly correlated with those from the rating agency model. Specifically, the correlation is

0.91 for CBOs, 0.89 for CLOs, 0.87 for ABS CDOs and 0.57 for CDO2. Compared with the

no-frailty model, the rating agency model gives higher SDRs, on average. In particular, the

SDRs from the rating agency model are 9% higher for CBOs, 7% higher for CLOs, 4.1%

higher for ABS CDOs and 10.3% higher for CDO2. Therefore, on average, the rating agency

model yelled a smaller AAA tranche size than the no-frailly model. However, when the frailty

factor is considered, the SDRs from the rating agency model underestimate CBOs by 12%,

CLOs by 15%, ABS CDOs by 13% and CDO2 by 5%, on average. Across all the 237 CDOs in

the sample, the dynamic-frailty model predicts SDRs that are, on average, 13% higher than

predicted by the rating agency model, while the no-frailty model predicts 6% lower SDRs

than the dynamic-frailty model.

According to our empirical results, if we only consider observable factors for our portfolio

credit risk evaluation, the SDRs according to rating agencies, which are the primary deter-

minants of the assigned rating, overestimated the portfolio risk for all four types of CDOs,

on average. For CDO2s, the overestimation is most prominent. Once the additional source of

risk, the common frailty factor that systematically affects the whole economy, is taken into

account, the risks of all 4 types of CDOs are underestimated by the SDRs from the rating

agency model. ABS CDOs are most directly related to the subprime mortgage crisis, and

they have experienced widespread downgradings even for AAA-rated tranches. Of the 99

ABS CDO in our sample, 85 have been downgraded by one or more rating agencies, and 16

and 53 downgrades are recorded for the 46 CBOs and 82 CLOs, respectively, in our sample.

The dynamic-frailty model predicts the large risk underestimation, over 10% for CBOs and

CLOs. The frailty factor is thus important for understanding the risks embedded in AAA

tranches, as it decreases the AAA tranche size by about 19% when added to the model.

D. Downgrading Prediction

We further conduct a downgrading prediction study with respect to the 237 CDOs in our

sample. We first separate the CDOs into 10 risk groups according to difference between the
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implied default probability of the real AAA tranche from the frailty model (DPDF,i) and

the AAA default probability (DPAAA,i) , i.e., DPDF,i − DPAAA,i. Group 1 represents the

lowest risk group, and group 10 represents the highest risk group predicted by the frailty

model. Then, we compare the percentage of CDOs downgraded in each of the risk groups.

Similarly, we can compare the downgrading prediction power of the no-frailty model using

the deviation of DPNF,i−DPAAA,i. As shown in Figure 4, when we use the frailty model, the

average rate of downgrades for CDOs in the lowest risk category is 29%, whereas the average

downgrading rate is 92% in the highest risk group. Although the frailty model is not perfect

and indeed there is no monotonic pattern in the figure22, the monotonicity is much more

visible for frailty model than the no-frailty model. In Figure 4, we have also shown the risk

classification and downgrading prediction based on the rating agency’s SDR. The SDRs from

rating agency produce a different pattern, which is consistent with Griffin and Tang (2012).

Overall, although the frailty model is not perfect, it shows power in separating out the safest

and riskiest CDOs and predicting the future CDO downgrading compared to no-frailty and

rating agencys SDRs.

To further investigate the power of the frailty model in predicting the future AAA tranche

downgrading, we have conducted the following regression analysis. Since higher default prob-

ability denotes more risk, the AAA tranche is expected to be downgraded to a lower credit

rating when the deviation between the default probability for the real AAA tranche size from

the frailty model (good model) and no-frailty model (bad model) is higher. We thus conduct

an ordered probit regression of the AAA tranche downgraded notches on the risk proxy DP

and a set of controls and a CDO type dummy. The results are presented in Table V. The

downgrading notches are regressed on the default probability for the real AAA tranche size

from the dynamic-frailty model (DPDF ), the default probability for real AAA tranche size

from the no-frailty model (DPNF ), the difference between default probability with and with-

out frailty (DPDF − DPNF ). We also include a set of controls for the CDO characteristics,

including the weighted average maturity (WAM), default measure (DM), variance measure

22The imperfect of frailty model is consistent with Azizpour, Giesecke, and Schwenkler (2017) who establish
the presence of excess clustering in the default data that cannot be explained by firms’ joint exposure to
observable and latent systematic factors.
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(VM), number of obligors (Obl), interest rate (rf ), S&P 500 Return (S&P 500), Dummy

CLO, Dummy ABS and Dummy CDO2.

We expect the coefficients on default probability to be positive and significant, which

would support the prediction power of the model. For the 237 CDOs, the coefficient for

DPDF equals 3.37, and it is 3.53 for the default probability without frailty DPNF . The

coefficient for DPDF continues to be positive when both DPDF and DPNF are included in

the regression. When the difference in default probabilities between the frailty and no-frailty

models (DPDF − DPNF ) is used as an independent variable, its coefficient is positive and

significant even after we include the DPNF or other control variables, as shown in models 3, 4

and 6. The R2 for these regressions is 9.97%, on average. Therefore, the frailty model exhibits

prediction power for the subsequent AAA CDO downgrading. The power of the frailty model

is further evidenced by the regression result that the deviation between frailty and no-frailty

model (DPDF −DPNF ) significantly predicts downgrading.

E. Implications for CDO Mispricing

The previous analyses suggest that when the good model (frailty model) is used for CDO

pricing, we will obtain a much smaller AAA tranche size. The good model has the power to

capture the excess default clustering, which is particularly important for CDO AAA tranche

pricing. The differences in model outputs from the good and the bad model even have

prediction power for the subsequent CDO downgrades. Therefore, model specification plays

an important role in obtaining the true price for CDO. However, does the model specification

(or model error) explain the entire CDO mispricing that we observed before the crisis?

The development and adoption of new financial models, which provide a simple way to

quantify the risks in the complicated CDO collateral pool, indeed boosted the explosive growth

of the CDO market. Observing the limits of these financial models during the recent crisis,

some market participants tend to blame the quants and their models for “killing the Wall

Street”.23 However, as stated by the rating agency “ratings are ultimately the result of a

23see, e.g., “Recipe for disaster: The formula that killed Wall Street”, Wired, February 23, 2009.
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formal committee process and not simply model output” (Fitch (2006)). Mispricing may be

attributed to both the model error (due to model specifications) and the errors out of the

model (due to human factors). Even when the true model is used for CDO pricing (zero model

error), mispricing can exist if there are errors out of the model. In particular, when we target

a particular level of AAA tranche size, the subjective out-of-model adjustment yields identical

AAA tranche sizes across CDOs, irrespective of the model outputs. The role of subjective

adjustment is confirmed by Griffin and Tang (2012), who find evidence that CDOs with

a smaller model-implied AAA size receive larger adjustments and subsequently experience

more severe downgrading. In this setting, although model specification is important for

finding the true price, errors out of the model play a key role in explaining CDO mispricing.

Understanding the roles of both model specification and out-of-model errors is important for

avoiding future pricing errors in the CDO and other financial markets.

In addition, Coval, Pan, and Stafford (2014) show that capital markets develop blind

spots when financial models are misapplied in real world capital markets. The emergence and

persistence of the blind spots arise because the relatively sophisticated market participants

fail to notice the state-contingent model errors. They rely upon learning rules (and research

methodologies) that have little power to reject their model in economically benign states, and

they are forced to adjust their model only after the learning event, such as a crisis. However,

one looking for state-contingent model errors prior to the learning event would have found

reliable evidence. Therefore, even when model errors exist, mispricing can be less severe

if market participants have developed a better understanding for the nature of the error.

Our paper provides a good framework for analyzing model specification and its impact on

derivative pricing, which will likely continue and appear repeatedly.

V. Conclusion

One of the most remarkable episodes of the 2007-2009 credit crisis is the widespread down-

grading of top-rated (often AAA) CDO securities and overwhelming write-downs resulting

25



from CDO revaluation. In this paper, we analyze the structural causes of CDO mispricing,

and our simulation results suggest that model misspecification affects CDO valuation. The

frailty default factor identified by Duffie, Eckner, Horel, and Saita (2009) is especially impor-

tant in accurately measuring the default correlation. As ignoring the frailty factor can inflate

the AAA tranche of a CDO, the AAA-rated tranche would have been rated much lower had

the deal structurers and rating agencies considered the frailty factor and used more advanced

model at the time of deal origination.

We conduct an empirical analysis on 237 CDOs issued between May 1998 and December

2004. Our no-frailty model obtains a CDO portfolio default rate at the AAA level that is

close to rating agency estimates for CLOs and ABS CDOs. However, compared with ignoring

frailty, considering the frailty factor raises the AAA portfolio default rate. Furthermore,

the increase in relative risk for ABS CDOs, which experienced the most AAA downgrades

during the credit crisis in our sample, can predict future downgrades. Hence, the information

content in the frailty factor is qualitatively important. However, out-of-model adjustments

play an important role in CDO pricing, with smaller model-implied AAA sizes receiving

larger adjustments (Griffin and Tang (2012)). Considering out-of-model adjustments, model

constraints have a modest quantitative effect in explaining the entire CDO mispricing.

The CDO market, especially the segment of CLOs, has come back strong with issuance

amounts surpassing the precrisis peak. Hence, understanding the pricing of CDO is useful

for future regulatory policies and risk management strategies, as future financial innovations

will likely be accompanied by similar issues regarding model specification and data quality.

The frailty model and Bayesian estimation approach discussed in this paper will be useful for

portfolio credit risk analysis, as default data are scarce. Prior beliefs can shape the result in

significant ways. Exploring the economic sources of the frailty factor and formation of prior

belief about default correlation is thus a promising area for future research.
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Appendices

A Parameter Estimation

The parameter estimation approach follows Duffie, Eckner, Horel and Saita (2009). Specifi-

cally, in the dynamic-frailty model, the likelihood of the data at the parameters (γ, θ) is given

by

L(γ, θ|W,Y,D)

= L(γ|W )L(θ|W,Y,D)

= L(γ|W )
m∏
i=1

(e−
∑Ti

t=ti
λit∆t

Ti∏
t=ti

[Ditλit∆t+ (1−Dit)]). (5)

However, given that Yt is not observable to the econometrician, the likelihood is then

L(γ, θ|W,D)

=

∫
L(γ, θ|W, y,D)pY (y)dy

= L(γ|W )

∫
L(θ|W, y,D)pY (y)dy

= L(γ|W )E[
m∏
i=1

(e−
∑Ti

t=ti
λit∆t

Ti∏
t=ti

[Ditλit∆t+ (1−Dit)])|W,D]. (6)

where Di is the vector of default indicators. That is, for company i, Di = 0 before default and

1 upon default. pY (y) represents the unconditional probability density of the unobservable

common factor Y. Here, we assume that Y is independent of W .

For the estimation of the default intensity parameter θ, a combination of Markov chain

Monte Carlo (MCMC) and the expectation-maximization (EM) algorithm is employed. This

combination offers advantages for maximum likelihood parameter estimation in the model
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with incomplete information. The detailed steps include:

Step 1. Obtain the maximum likelihood estimator of the intensity model with only observ-

able covariates β̂. This estimator is the MLE from equation (5) when the effect of unobservable

covariate Y is not considered.

Step 2. Assign an initial estimate value for θ, as suggested by Duffie, Eckner, Horel and

Saita (2009), at θ(0) = (β̂, 0.05, 0).

Step 3. Draw n independent sample paths for the frailty factor Y (1), . . . , Y (n) from

pY (·|W,D, θl), which is the conditional density of Y’s OU process. This can be done with

MCMC, specifically the Gibbs sampler, while taking the lth estimate value for θl as well as

the observable covariates W and D as given.

Step 4. Maximization step. Define the intermediate quality

Q(θ, θ(l)) = Eθ(l)(logL(θ|W,Y,D))

=

∫
logL(θ|W, y,D)pY (y|W,D, θ(l)) dy (7)

Based on the sample path for Y drawn in step 3, Q(θ, θ(l)) can be approximated by

Q̂(θ, θ(l)) =
1

n

n∑
j=1

logL(θ|W,Y (j), D) (8)

Then, the new parameter estimate θ(l+1) can be obtained by

Max Q̂(θ, θ(l)) = Max
1

n

n∑
j=1

logL(θ|W,Y (j), D) (9)

Step 5. Return to step 3, and replace θ(l) with the new estimator θ(l+1). Proceed to step 4

to obtain θ(l+2). Repeats step 3 and 4 until the estimation of θ reaches reasonable convergence.

The asymptotic standard errors for the parameter estimators can be calculate from the
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Hessian matrix of the expected complete-data likelihood.

B Data Simulation Method

To assess the effects of the model specification on portfolio credit risk assessment and CDO

pricing, we simulate a series of data structures. The number of firms simulated is 2800, and

the history lasts for 25 years. To remain in line with the factor dynamics implied in the

real historic data, we employ the same Gaussian first-order vector autoregressive model for

the observable factors in Duffie, Saita and Wang (2007) and the same OU process with a

long-run mean of 0 for the common frailty factor specified in Duffie, Eckner, Horel and Saita

(2009). The time step is taken to be one month. Here, we provide a brief review of this factor

time-series model.

A simple arbitrage-free two-factor affine term-structure model is specified for the three-

month treasury rates (r1t) and 10-year treasury rates (r2t).

rt+1 = rt + kr(θr − rt) + Crεt+1, (10)

where θr is the long-run mean of interest rates, Cr is a 2 × 2 matrix, and ε1, ε2 . . . are

independent standard normal vectors.

For the firm-specific factors of distance to default Dit and log-assets Vit and the trailing

1-year S&P 500 return,24

Di,t+1

Vi,t+1

 =

Dit

Vit

+

 kD 0

0 kV

 θiD

θiV

−

Dit

Vit


+

 b · (θr − rt)

0

+

σD 0

0 σV

 ηi,t+1, (11)

24Firm asset value is determined by using the Merton’s model. For more details, refer to Merton (1974)
and Vassaulou and Xing (2004).
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St+1 = St + ks(θs − St) + ξt+1, (12)

where θiD, θiV are the long-run means for firm i’s distance to default and log assets, respec-

tively. ηit is the two-dimensional innovation vector.

The correlation among the observable factors is modeled as

ηi,t = Azit +Bwt,

ξt = αSut + γSwt, (13)

where zit and wt are independent two-dimensional standard normal vectors and ut are inde-

pendent standard normals.

For tractability and parsimony, the mean-reverting speed kD of the distance to default

is assume to be homogeneous across all firms. The distance to default is an asset volatility-

adjusted measure of leverage, and its volatility σD does not vary by firm, as implied by

Merton’s theory. Asset volatility σV and its mean-reverting speed kV are also assumed to be

homogeneous across firms. However, a common targeted leverage ratio leads to an unrealistic

estimated term structure of future default probabilities. Duffie, Saita andWang (2007) instead

estimate θiD firm by firm, with the cross-sectional distribution displayed in figure 12 of their

paper. In our simulation study, we load the long-run means of distance to default and log

assets for each firm in the following way.

As reported in Duffie, Saita and Wang (2007), the estimated θiD across the whole firm set

has a median of 3.1, with an interquartile range of 1.4-4.8. A careful inspection of figure 12

reveals that the interval 0.0-8.0 of θiD covers most of the firms except those at the extreme

lower or upper tail of the distribution. Within this interval, θiD is approximately linear

to the rank of firm i, which means that θiD might be uniformly distributed on this range.

Accordingly, we parameterize θiD as

θiD ∼ U(0.0, 8.0), (14)
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where U denotes the uniform distribution.

The long-run means of log assets are not reported in Duffie, Saita and Wang (2007).

Here, we turn to Bharath and Shumway (2008), who apply a similar estimation procedure

and provide the quartiles of estimates for an augmented firm set.25 The reported asset value

ranges from 1.52 to 22949.32 (log asset value ranges from 0.4 to 10.0).26 For simplicity, we

assume in our simulation that θiV is uniformly distributed on this interval:

θiV ∼ U(0.4, 10.0). (15)

To generate time series for the observable factors, we need to make further assumptions of

the starting value of the factor processes and the entry time of each firm. Following common

practice, all factors are assumed to start at their long-run means. We are left with roughly

1400 active firms at the end of the data period after subtracting the number of defaults

and merger-acquisitions from the total number of firms in Duffie, Saita and Wang (2007).27

Campbell, Hilscher and Szilagyi (2008) provide the average number of active firms in each

year from 1963 to 2003 in a lager data set. This number increases from 4342 in 1980 to 7833

in 2003. Proportional to this growth rate, in the simulation, we assume that 800 firms exist

at the beginning of the data period. The other 2000 firms enter evenly in the following 25

years.

Once time series for distance to default and log assets are available, we can determine the

face value of debt (Lt) and market value of equity (Wt) of each firm i by sequentially solving

25Duffie, Saita and Wang (2007) consider 2770 industrial firms for the period from 1980 to 2004, with 497
defaults identified. Bharath and Shumway (2008) examine all firms in the intersection of the Compustat
Industrial file—Quarterly data and CRSP daily stock returns for NYSE, AMEX and NASDAQ for the period
between 1980 and 2003, excluding financial firms. They obtain total 1449 defaults.

26Winsorized at the 1st and 99th percentiles by Bharath and Shumway (2008).
27We do not exclude “other exits” since most exists of this type are various data gaps.
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the following two equations. Let Vt denotes asset value at time t; then

Dt =
ln(Vt/Lt) + (µA − 1

2
σ2
V )T

σV

√
T

; (16)

Wt = VtΦ(d1)− Lte
−rTΦ(d2), (17)

where d1 =
ln(Vt/Lt)+(r+ 1

2
σ2
V )T

σV

√
T

, d2 = d1 − σA

√
T , Φ(·) is the standard normal cumulative

distribution function. r is the risk-free interest rate measured as the 3-month treasury rate.

We assume a forecast horizon of 12 months. We avoid solving for the asset volatility in

virtue of the assumption of their homogeneity across all firms as specified in equation (11). Its

value is fixed at the maximum likelihood estimate of 0.1169. Some scholars provide various

approaches to estimate the expected asset drift rate µA.
28 In this paper, we deviate from all

these methods by using the mean-reversion property of the log assets process. We calculate

µV as the expected mean-reversion during the next period.

µV − 1

2
σ2
V = kV (θV − ln(Vt)) (18)

Inserting µV and σV into equation (16), we can directly derive the debt value Lt. The time

series for a firm’s market equity follows from the call-option pricing formula as stated in

equation (17). It is unrealistic to assume a constant level of face value of debt in a time

period as long as 25 years. Combining the assumptions of leverage targeting and mean-

reverting asset process, we allow a firm to dynamically adjust their outstanding debt, as

suggested by Collin-Dufresne and Goldstein (2001).29

Now, we come to the determination of the exit time for each firm. There are three major

types of exits defined in Duffie, Saita and Wang (2007): defaults, merger-acquisition and

“other exits”. Each type of exit will not restrict the intensity parameter estimation of the

28Vassalou and Xing (2004) calculate firm-specific average returns on each stock. Bharath and
Shumway(2008) estimate previous year asset returns. Campbell, Hilscher and Szilagyi (2008) use 0.06, an
empirical proxy for equity premium, plus the risk-free rate as an estimate.

29Collin-Dufresne and Goldstein (2001) and Duffie, Saita and Wang (2007) show that dynamic debt adjust-
ment and leverage targeting could generate a more realistic term structure of default probabilities.
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other types.30 Since “other exits” are mostly data gaps of various types, they are less relevant

for our study, and we exclude them for simplicity. As argued in Duffie, Saita and Wang (2007),

merger-acquisitions have relatively little effect on the default hazard rate, and future default

does not have to be prevented in merger-acquisitions if debts are not paid back immediately.

Here, we do not consider merger-acquisition exits either.

We calculate the default intensity as

λit = eα+β1Dit+β2Rit+β3rt+β4St+yt , (19)

where Rit is the trailing 1-year stock return. (α, β) = (-1.029, -1.201, -0.646, -0.255, 1.556),

the real data estimates reported in Table II of Duffie, Eckner, Horel and Saita (2009). A

hypothetic frailty path, which remains latent in reality, is generated with a mean-reverting

speed of 0.03 and volatility of 0.15, which are derived from the marginal frailty parameter

posterior distribution in Figure 6 in Duffie, Eckner, Horel and Saita (2009).

For firm i, the conditional probability of survival from entry time ti to some future time

si before the data cutoff date Ti is given by

pi(ti, si) = e−
∑si

t=ti
λit∆t (20)

∆t equals one month.

The default time is simulated by using the Inverse-CDF method offered in Duffie and

Singleton (1999). For each firm i, we draw a uniform random number U . Default time τ is

determined as

τ = inf{si : pi(ti, si) ≤ U, ti ≤ si ≤ Ti} (21)

If pi(ti, Ti) > U , the firm never defaults in our data period.

30See Proposition 2 of Duffie, Saita and Wang (2007).
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Now, we can insert our factor time series and default timing data into the frailty model to

estimate the default intensity parameters. By extending the factor time series with the pre-

specified model, we can evaluate the credit risk of any portfolio constructed on the underlying

firms in our data set.

C Correlation Structure of Observable Factors

This appendix lists the factor time-series models estimated by Duffie, Saita and Wang (2007).

kr =

 0.03 −0.021

− 0.027 0.034

 , θr =

 3.59

5.47

 ,

Cr =

 0.5639 0

0.2247 0.2821

 ,

b = (0.0090 − 0.0121)′, kD = 0.0355, σD = 0.346

kV = 0.015, σV = 0.1169

AA′ +BB′ =

 1 0.448

0.448 1

 , BB′ =

 0.448 0.0338

0.0338 0.0417

 ,

kS = 0.1137, αS = 0.047, θS = 0.1076,

γS = (0.0366 0.0134)′.

D Validation Tests

As shown in Figure 5 of Duffie, Eckner, Horel and Saita (2009), the latent factor plays a

crucial role in the tail of the probability density of the predicted number of defaults in the

next 5 years. A common source of the current level of and future level of shocks to this latent

34



factor enlarges the risk of heavily clustered defaults remarkably. Thus, the filtered-out latent

factor path and the mean-reverting speed, κ, and volatility, η, which govern its time-series

dynamics, are of importance for assessing the modeled correlation risk. Maximum likelihood

estimates of the default intensity parameters converge to the true data-generating process

when the number of firms and number of time periods become large. It is thus helpful to do

some convergence tests first when working with limited real data.

According to the doubly stochastic assumption, estimation of the factor time series model

could be separated from estimation of the default intensity parameters. We focus on default

intensity estimation and also check the posterior distribution of the filtered frailty factor

through Bayesian analysis. Using the simulation approach described in the previous section,

we simulate one set of the observable macroeconomic factors and firm-specific factors, as well

as one hypothetical frailty path. Then, 100 times, we draw a new U , the default trigger, for

each firm and let the default time be determined accordingly. This process corresponds to 100

different realizations of the firm-default history. The maximum number of defaults recorded

is 648, and the minimum is 573. We then estimate the frailty model for each realization.

We find that the mean filtered frailty paths tightly follow the “true” frailty path. The

correlation between filtered frailty and “true” frailty ranges from 0.87 to 0.96, and the esti-

mated intensity parameter is close to the true data-generating process. Further, the root mean

square error of the estimated intensity parameter is moderate and of similar magnitude to the

standard error of the parameter estimation provided in Table II in Duffie, Eckner, Horel and

Saita (2009). It is relatively safe to conclude that the model appropriately identifies the in-

tangible risk embedded in the latent frailty factor and that the intensity parameter estimation

is not likely to be heavily skewed given the available 25 years of firm-default history.
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Figure 1: Portfolio default rate distribution with and without frailty factor. The condi-
tional probability density of default rate within 5 years, for the portfolio formed by all active firms
at the 25th-year end, from (a) no-frailty model (solid line), (b) dynamic-frailty model (dashed line).
We apply Gaussian kernel smoothing (with bandwidth 5) to the Monte-Carlo generated empirical
distribution.
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Figure 2: Portfolio default rate distribution with and without correlation between
macroeconomic factors. The conditional probability density of default rate within 5 years, for
the portfolio formed by all active firms at the 25th-year end, in (a) a model with positively correlated
short term interest rate and stock market performance (solid line), (b) a model without such corre-
lation (dashed line). We apply Gaussian kernel smoothing (with bandwidth 5) to the Monte-Carlo
generated empirical distribution.
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Table I
No-frailty Model versus Dynamic-frailty Model

This table reports the default rate predictions from the no-frailty model and the dynamic-frailty model.
Panel A reports summary statistics for the simulated 25 years data of observable factors used for parameter
estimation. Panel B reports the Maximum likelihood estimates of default intensity parameters with and
without frailty, respectively. Panel C presents the percentiles of predicted portfolio loss distribution using
both the frailty and the no-frailty models. The portfolio includes all active firms at the end of simulated year
25. Then we compare the portfolio’s future five years default rate distributions from the frailty and no-frailty
models. Total number of firms alive at the beginning of the prediction is 2170.

Panel A: Summary statistics

Quantiles

Variable Mean Std. Min 0.25 Median 0.75 Max

distance to default 4.70 2.46 -3.40 2.81 4.76 6.59 12.86

trailing stock return(%) 13.98 72.01 -81.70 -29.11 -1.07 37.15 317.76

3-month T-bill rate 5.11 1.56 1.62 4.01 5.10 6.03 10.52

trailing S&P 500 return(%) 10.37 13.90 -24.59 0.35 9.12 20.54 47.44

Panel B: Maximum likelihood estimates of intensity parameters

With frailty Without frailty

Coefficient t-statistic Coefficient t-statistic

constant -1.046 -5.4 -0.828 -5.1

distance to default -1.115 -31.8 -1.070 -30.3

trailing stock return -0.732 -7.2 -0.812 -7.5

3-month T-bill rate -0.253 -7.3 -0.325 -10.7

trailing S&P 500 return 1.756 5.9 1.538 5.1

latent-factor volatility η 0.147 10.3

latent-factor mean reversion κ 0.029 5.1

Panel C: Percentiles of predicted default rate distribution

0.05 0.15 0.50 0.90 0.95 0.99 0.999

with frailty(%) 4.61 5.81 8.48 12.86 14.29 17.33 21.01

without frailty(%) 4.06 5.16 7.47 10.69 11.66 13.41 15.55
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Table II
Correlation Between Macroeconomic Factors

This table reports the impact of correlation between macroeconomic factors on default rate prediction. Panel A
reports summary statistics for the simulated 25 years data of observable factors used for parameter estimation.
Panel B reports the Maximum likelihood estimates of default intensity parameters. Panel C presents the
percentiles of predicted default rate distribution. Total number of firms alive at the beginning of the prediction
is 2150.

Panel A: Summary statistics

Quantiles

Variable Mean Std. Min 0.25 Median 0.75 Max

distance to default 4.72 2.41 -3.27 2.92 4.78 6.54 13.68

trailing stock return(%) 15.28 71.82 -88.16 -27.78 0.12 38.47 475.37

3-month T-bill rate 5.16 1.77 0.99 3.90 5.13 6.43 9.46

trailing S&P 500 return(%) 11.21 13.37 -19.05 0.81 11.54 21.21 53.12

Panel B: Maximum likelihood estimates of intensity parameters

Coefficient Std. Error t-statistic

constant -0.998 0.176 -5.7

distance to default -1.176 0.035 -33.3

trailing stock return -0.618 0.092 -6.7

3-month T-bill rate -0.256 0.032 -8.0

trailing S&P 500 return 1.451 0.343 4.2

latent-factor volatility η 0.161 0.019 8.3

latent-factor mean reversion κ 0.027 0.005 5.5

Panel C: Percentiles of predicted default rate distribution

0.05 0.15 0.50 0.90 0.95 0.99 0.999

with correlation effect(%) 1.63 2.33 4.19 7.91 9.35 12.47 16.42

without correlation effect(%) 1.63 2.33 4.19 7.91 9.26 12.33 16.28
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Table III:
Empirical Results for Scenario Default Rate Prediction

This table reports CDOs’ weighted average rating (WAR); closing date(CDate); weighted average maturity
(WAM); number of obligers (N); scenario default rate (%) from (a) rating agency (SDR), (b) no-frailty model
(SDR NF), (c) dynamic-frailty model (SDR DF); default probability from (a) no-frailty model (DP NF), (b)
dynamic-frailty model (DP DF); Notches for AAA tranche downgrading (DG). Averages of the SDRs are
provide at the bottom of the tables for each CDO type.

Panel A: CBO

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

BEA 1998-1 98/05 CCC 4.1 96 58.7 40.9 62.5 11.4 31.3 19

Conseco 98/08 BBB- 4.6 124 15.8 15.3 28.4 0.0 0.1 0

Juniper 1999-1 99/03 CCC+ 4.9 101 49.7 38.6 62.4 2.7 23.3 0

Federated 1999 99/03 B+ 3.7 119 28.1 21.8 37.0 0.0 0.7 0

Emerald 99/05 BB 3.4 120 18.0 15.9 30.0 0.1 6.3 0

Cedar 99/06 B+ 3.9 136 35.2 24.4 41.2 0.0 1.1 0

KNIGHT 99/06 BB+ 3.6 135 18.8 14.8 29.6 6.8 28.5 0

Admiral 99/08 CCC 4.9 76 58.3 42.1 61.8 0.1 6.4 0

INA 1999-1 99/09 B- 4.8 88 47.1 34.1 59.1 1.4 19.6 0

Talcott Notch I 99/10 B- 5.2 146 42.1 33.8 54.3 21.9 48.3 0

FC III 99/11 B 3.5 42 42.6 26.2 45.2 0.1 4.0 0

Centennial 99/12 B+ 4.4 141 36.2 23.4 41.2 0.0 0.2 0

Triton IV 99/12 A- 6.8 117 18.8 12.8 25.6 0.0 0.1 0

Inner Harbor 1999-1 99/12 B+ 5.4 157 37.5 26.1 45.2 0.4 11.6 0

Juniper 2000-1 00/04 B 5.5 107 42.0 30.8 51.4 9.9 37.5 0

Arlington Street 00/06 B+ 5.5 107 40.4 27.1 46.7 0.0 1.2 9

CAESAR 2000 00/06 BB+ 1.2 14 33.1 21.4 21.4 0.0 0.0 0

Wilbraham 00/07 B 5.5 101 44.7 31.7 54.5 0.8 15.4 0

JWS 2000-1 00/07 B+ 5.7 118 40.7 27.1 47.5 0.0 2.4 0

Coliseum 00/07 BB+ 4.9 91 20.7 19.8 37.6 1.0 14.0 1

Madison Ave. I 00/08 B+ 5.7 120 37.8 29.2 51.7 0.2 12.2 0

Nicholas-Applegate I 00/08 B+ 5.5 65 39.8 29.2 52.3 0.0 6.5 10

Chartwell I 00/09 B 5.8 88 43.1 34.1 60.2 19.5 54.3 15

Capstan 00/11 B 5.6 64 46.6 32.8 56.9 0.2 12.8 0

Lone Star 00/12 BBB- 5.5 106 17.2 18.9 39.2 2.6 31.9 0

Blue Eagle I 00/12 B 3.9 20 58.0 40.0 65.0 2.1 16.2 0

Signature 5 00/12 BB- 3.4 104 41.5 20.2 41.3 0.0 2.4 2

Berkeley Street 01/03 B+ 5.8 128 38.1 28.9 55.5 0.0 9.7 10

Liberty Square I 01/03 B+ 6.1 106 39.1 28.3 57.5 0.1 20.3 2

Madison Ave.II 01/03 BBB- 5.1 107 16.9 17.8 39.3 0.3 20.8 6

Hampden 01/03 BBB- 4.9 139 16.1 16.5 40.3 0.1 17.1 0

Centurion III 01/03 B+ 5.4 202 35.6 27.7 57.4 0.0 7.6 0

Canyon 2001-1 01/04 B 5.9 143 41.4 32.2 57.0 1.9 33.3 0

Nicholas-Applegate II 01/04 B+ 5.9 72 38.4 30.6 54.2 3.5 35.0 10

Mammoth 2001-1 01/05 B+ 5.9 129 38.5 28.7 53.5 35.4 65.2 0

Liberty Square II 01/05 B+ 6.2 106 38.8 27.4 52.0 0.1 11.6 4

Balboa I 01/06 BB+ 6.6 120 22.3 24.2 45.8 15.7 54.1 0

Melchior I 01/07 B+ 5.4 87 40.3 29.9 52.9 0.1 7.0 0

Concerto II 01/07 B+ 6.1 97 41.3 33.0 57.7 0.1 11.1 0

Robeco II 01/08 BB- 6.3 129 34.1 29.1 55.0 0.9 28.5 1

TCW 01/08 B+ 6.1 139 38.9 30.2 56.8 0.0 5.2 0

Cashel Rock 01/11 B+ 5.5 101 38.5 28.7 52.5 2.6 32.8 3

(Continued)
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Panel A-Continued

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

Signature 6 01/12 B+ 5.5 115 41.5 28.7 51.3 1.3 20.4 1

Cardinal 02/09 BBB- 5.9 71 18.7 23.9 40.8 6.0 26.3 0

Canyon Capital 2002-1 02/12 B+ 6.3 131 35.4 32.1 51.9 23.9 48.3 9

Prado 03/11 B- 4.7 44 57.7 38.6 59.1 0.2 6.8 9

Average 36.6 27.6 48.7 3.8 18.5

Panel B: CLO

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

Highland Legacy 99/08 B- 4.55 223 42.0 29.1 48.6 1.1 17.6 0

First Dominion III 99/12 B 4.78 187 42.4 28.3 49.7 2.3 21.9 0

Longhorn 00/03 BB- 4.99 129 29.1 22.5 44.2 0.0 2.2 0

Addison 00/10 B+ 5.33 162 33.7 25.3 47.5 0.0 1.7 0

Sequils-Cen. V 01/04 B 3.42 137 41.5 26.2 48.2 9.1 48.8 3

TCW Select 01/05 BB- 5.11 107 31.0 26.2 49.5 0.0 8.0 0

COPERNICUS EURO I 01/07 B+ 5.17 62 39.3 32.3 54.8 0.7 16.3 0

Highland V 01/08 B- 4.91 179 43.9 31.8 58.1 0.6 29.1 5

Race Point 01/11 BB- 5.95 179 30.0 26.8 49.7 0.0 7.2 0

Carlyle H.Y. IV 02/04 BB- 5.54 244 31.4 24.0 42.2 6.8 29.9 4

Katonah III 02/04 BB- 5.61 103 32.6 27.2 43.7 1.1 12.5 3

INTERCONTINENTAL 02/05 B+ 6.24 109 38.9 33.0 52.3 0.0 4.1 0

Centurion VI 02/08 B+ 5.01 277 32.4 25.9 41.0 1.5 15.1 1

Saratoga I 02/09 B+ 5.44 278 36.3 27.7 47.0 10.4 38.7 1

Landmark II 02/09 B+ 5.37 98 36.0 28.6 46.9 1.5 16.2 3

Castle Hill II 02/09 B+ 5.31 143 33.5 28.0 47.1 11.7 37.5 2

RMF EURO 02/10 B 7.21 94 47.0 41.5 60.6 13.4 37.1 0

Venture II 2002 02/11 BB- 5.4 155 31.8 28.4 44.9 20.4 42.0 2

Castle Hill I 02/12 B+ 5 135 33.7 26.7 44.4 5.4 26.0 0

Gulf S.C. 2002-1 02/12 B+ 5.67 90 34.1 31.1 50.0 8.4 31.2 3

1888 FUND 02/12 B+ 5.43 142 40.4 31.7 49.3 29.3 50.6 1

LEOPARD I 03/01 B+ 6.83 58 43.3 41.4 58.6 0.5 8.5 0

Katonah IV 03/02 BB- 5.22 98 32.3 28.6 44.9 1.8 15.3 5

Longhorn III 03/03 BB+ 5.15 72 23.1 26.4 41.7 0.3 7.2 0

Race Point II CLO 03/04 BB- 5.48 208 32.1 28.4 47.6 0.5 13.8 0

ARES VII 03/05 BB- 5.2 118 30.9 28.0 47.5 25.6 47.3 5

Katonah V 03/05 BB- 5.06 90 33.0 27.8 46.9 0.9 12.6 3

LCM I 03/06 BB- 5.17 97 31.6 27.8 47.4 0.0 3.1 0

Waveland-Ingots 03/06 BB 5.02 101 27.0 27.7 44.6 7.6 30.0 0

NYLIM Fla. 2003-1 03/07 BB- 5.25 117 31.4 27.4 46.2 0.3 11.8 0

Gulf S.C. 2003-1 03/08 B+ 5.4 134 35.6 29.5 49.3 5.4 29.7 4

Clydesdale 2003 03/09 B+ 5.25 174 36.0 29.3 47.1 6.4 30.3 4

EUROCREDIT III 03/09 B 7.39 70 51.1 42.9 64.5 3.7 26.2 0

Union Square 03/09 B+ 5.28 128 36.0 29.7 47.3 1.0 13.9 0

Magnetite V 03/09 B+ 5.35 156 34.6 27.6 46.1 2.9 22.6 3

Ballyrock II 03/11 BB 5.45 149 30.0 26.3 45.0 0.1 9.3 2

Babson 2003-I 03/11 B+ 5.23 205 33.3 27.3 48.2 0.4 13.3 1

Venture III 03/11 B+ 5.81 186 33.7 28.7 49.5 1.4 22.6 2

(Continued)
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Panel B-Continued

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

Landmark III 03/12 BB- 5.38 122 33.3 27.9 47.5 1.0 20.9 1

Aquilae I 03/12 B+ 7.17 73 46.8 39.7 65.8 14.0 47.6 0

Navigator 2003 03/12 B 5.35 166 43.1 33.1 55.4 3.3 32.8 0

LightPoint 2004-1 04/02 B+ 4.1 142 37.7 26.8 48.6 0.5 20.2 3

Clarenville 04/02 B+ 6.09 99 41.7 37.4 61.6 8.3 42.0 0

Ares VIII 04/03 B+ 5.43 210 38.7 31.9 54.9 10.9 48.6 4

Celerity 04/03 BB- 5.48 131 33.5 29.8 51.1 1.3 27.3 1

Leopard II 04/04 B+ 6.84 68 42.9 38.2 64.7 0.4 15.8 0

Northwoods IV 04/05 B+ 5.43 67 39.4 29.9 52.2 0.2 12.4 2

Boston Harbor 2004-1 04/05 BB- 5.57 126 32.8 28.6 53.2 3.6 33.9 2

Champlain 04/05 B+ 5.55 207 37.0 29.0 51.9 2.5 33.6 3

Long Grove 04/05 B+ 4.84 198 34.1 25.3 46.5 1.1 24.4 3

CENTURION VII 04/05 B+ 5.15 295 32.8 25.4 48.3 0.5 21.6 2

Jubilee III 04/05 B 6.59 64 52.7 40.6 65.6 1.1 21.6 0

Babson 2004-I 04/06 B+ 5.5 195 33.7 28.7 52.8 2.9 32.4 4

Petrusse Euro. 04/06 B+ 5.83 236 41.6 28.4 52.2 0.0 6.1 0

Carlyle H.Y. VI 04/07 B+ 5.67 210 38.0 29.0 52.4 22.2 58.7 4

AMMC III 04/07 B+ 5.31 137 36.4 29.2 52.6 5.1 37.1 2

Hudson Str. 2004 04/07 B 5.57 139 42.1 32.4 57.6 1.1 25.1 0

FIRST 2004-I 04/07 BB- 4.96 123 29.3 25.2 47.9 0.4 17.9 1

WhiteHorse I 04/07 B+ 5.81 119 40.1 31.9 52.9 6.4 39.4 1

Signature 7 04/07 B+ 5.23 83 41.5 30.0 51.7 5.1 33.7 6

Gulf S.C. 2004-1 04/08 B+ 5.68 156 37.1 30.1 55.1 3.9 35.0 5

Venture IV 04/08 B+ 5.75 234 38.1 30.8 55.6 4.3 37.4 1

Veritas I 04/08 B+ 5.95 113 39.4 31.9 54.0 4.3 34.7 5

Clydesdale 2004 04/08 B+ 5.54 245 35.5 28.6 52.2 0.9 23.8 2

Velocity 04/08 BB- 5.36 130 30.1 25.4 49.1 1.1 25.3 3

Flagship III 04/08 B+ 5.27 178 37.7 29.2 54.5 4.0 36.3 4

Essex Park 04/09 B+ 5.65 141 37.8 31.2 55.8 1.0 25.0 2

Navigator 2004 04/10 B 5.47 171 43.6 33.9 59.6 4.5 37.4 0

BlackRock Sen. 04/10 B+ 5.29 315 37.1 29.2 53.2 1.7 31.5 1

Landmark IV 04/10 B+ 5.64 136 38.2 30.9 52.9 0.6 21.4 1

Adagio I 04/10 B 7.69 70 53.3 44.3 71.4 10.1 44.7 0

NYLIM Fla. 2004-1 04/10 B+ 5.39 171 39.0 31.6 56.7 4.1 37.8 1

Babson 2004-II 04/10 B+ 5.26 337 37.0 29.3 54.7 1.9 32.4 2

LCM II 04/11 B+ 5.26 162 36.5 28.4 52.9 3.8 35.2 0

Hewetts Island II 04/11 B+ 5.71 122 40.0 31.1 57.4 1.3 26.6 5

Wind River I 04/11 B 5.29 174 40.0 32.2 56.6 0.1 13.0 4

Premium Loan I 04/11 B 5.52 132 40.0 33.3 58.1 30.4 61.9 3

Callidus D.P. III 04/12 B+ 5.79 183 39.5 30.6 56.8 5.0 39.7 1

Alzette Euro. 04/12 B 6.74 263 43.5 34.2 59.7 0.2 20.1 0

First 2004-II 04/12 B+ 5.24 126 35.0 28.6 52.2 1.8 26.2 2

Chatham Light 04/12 B+ 5.65 227 40.6 30.8 55.1 8.1 43.3 1

Whitney I 04/12 B+ 6.13 151 35.0 30.5 55.0 8.1 41.7 1

Average 37.1 30.1 51.9 4.6 26.8

48



Panel C: ABS

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

Bleecker 00/03 B- 6.83 35 57.2 45.7 68.6 42.9 62.7 19

Talon I 00/04 B+ 6.92 66 44.6 33.3 57.6 27.4 52.5 18

Phoenix II 00/05 BB- 7.84 47 43.5 29.8 48.9 5.3 24.6 10

Ingress I 00/05 BB 6.43 52 31.9 30.8 51.9 0.6 12.3 0

Varick 00/09 BB+ 7.75 86 26.6 27.9 52.3 43.3 69.6 17

PRUDENTIAL I 00/10 BB- 6.4 51 38.6 29.4 53.4 10.0 38.6 0

TIAA I 00/12 BB+ 6.68 104 28.5 23.1 48.1 7.2 44.7 0

Independence I 00/12 BBB- 8.45 83 29.2 25.3 51.8 0.4 20.7 13

MWAM 2001-1 01/01 BB+ 8.71 66 25.3 28.8 53.0 5.3 36.0 6

Saybrook Point 01/02 B- 6.54 90 41.5 37.8 63.3 66.6 83.0 15

NYLIM Str. 2001-1 01/04 BBB 7.56 87 19.1 19.5 40.2 0.1 13.8 4

SFA CABS II 01/05 B- 7.18 35 41.5 45.7 71.4 27.3 57.4 8

Independence II 01/07 BBB- 8.45 102 26.5 22.5 45.1 0.0 10.6 9

Arroyo I 01/08 BBB 7.69 108 23.3 19.4 41.7 0.3 19.3 1

Putnam 2001-1 01/11 BBB 7.23 134 18.1 17.9 38.1 2.4 34.0 4

MADISON AVE. I 01/12 BBB 6.72 95 19.7 18.9 33.7 5.5 31.1 11

Helios Series I 01/12 BBB- 6.31 72 18.6 19.4 36.9 6.7 30.7 10

Commodore I 02/02 BBB 6.38 52 20.9 19.2 30.8 0.0 2.5 7

Trainer W.F.R. II 02/02 BBB- 7.71 92 25.8 22.8 40.2 6.3 29.7 17

F.A.B. 2002-1 02/04 BBB- 5.91 90 23.5 20.0 33.3 0.5 9.6 4

Independence III 02/05 BBB+ 7.64 87 20.0 17.2 29.9 0.4 9.0 16

TIAA 2002-1 02/05 BBB 7.02 55 29.5 18.2 32.7 0.0 2.2 0

Anthracite I 02/05 BB+ 7 40 58.3 27.5 45.0 0.0 0.1 0

Aspen I 02/05 BBB- 7 26 32.1 26.9 42.3 7.2 19.4 10

ACA 2002-1 02/07 BBB 7.33 83 22.8 20.5 33.7 0.0 4.0 4

Saybrook Point II 02/11 BB 7.14 284 41.5 29.2 48.9 50.3 65.9 17

Charles River I 02/11 A- 6.87 89 18.7 16.9 29.5 0.0 0.5 19

ABS Capital II 02/11 BBB+ 6.75 109 18.2 17.4 32.1 0.8 11.9 18

Anthracite II 02/12 BB 6.99 44 60.0 31.8 52.3 0.0 0.2 0

Birch R.E. I 02/12 BBB+ 7 40 23.8 20.0 35.0 0.0 1.2 0

C-BASS V 02/12 BBB 6.82 47 27.1 23.4 38.3 0.0 3.1 0

CMBS R.O.S.T 2002-1 02/12 AA 7 29 22.4 17.2 27.6 0.0 0.9 0

Longport 03/01 BBB 7.09 155 28.1 18.7 33.5 36.1 54.5 19

Trainer W.F.R. III 03/02 A- 7 77 19.6 18.2 32.1 1.1 12.2 18

Northlake I 03/02 BBB+ 6.97 131 19.6 15.3 29.8 0.0 2.1 19

C-BASS VI 03/04 BBB+ 7 56 20.0 17.9 31.6 0.0 1.1 0

TIAA II 03/05 BBB+ 7.04 87 21.6 18.4 35.0 1.4 17.6 14

Faxtor 2003-1 03/05 BBB 6.9 91 21.2 18.7 35.3 1.5 16.8 3

ACA 2003-1 03/05 A- 7.02 100 18.3 16.0 30.0 0.0 4.3 19

Independence IV 03/06 A- 7.04 115 20.2 17.4 31.3 0.1 7.6 19

C-BASS VII 03/07 BBB 6.94 87 21.8 20.7 39.1 0.5 11.1 1

FAB 2003-1 03/07 BBB 5.99 89 21.2 18.0 33.7 1.3 15.0 5

N-Star R.E. I 03/08 BBB 6.94 69 30.5 20.3 34.8 0.2 6.8 2

Putnam 2003-1 03/10 A 9.02 207 12.0 16.9 35.3 0.3 15.0 17

Saturn Ventures I 03/10 BBB- 7.21 82 41.5 25.6 42.7 13.0 39.8 11

C-BASS VIII 03/11 BBB+ 6.98 66 21.2 19.7 34.8 0.1 6.2 3

Lakeside I 03/12 AA 10.55 89 15.9 18.0 34.8 92.3 94.7 19

BLUE BELL 03/12 AAA 6.75 137 6.6 9.3 19.7 3.7 26.9 18

Commodore II 03/12 A- 7.03 91 19.5 16.5 33.0 1.3 22.1 19

Trainer W.F.R. IV 04/01 AA- 6.9 95 15.1 14.7 29.5 0.0 4.0 4

Independence V 04/02 A- 6.94 155 20.4 14.8 29.7 0.1 9.7 19

Alexander Park I 04/02 A 7 127 17.1 15.7 30.7 0.0 6.5 18

(Continued)
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Panel C-Continued

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

Knollwood 04/03 A+ 6.91 160 16.4 13.8 30.6 0.0 4.9 19

C-Bass IX 04/03 BBB 6.97 66 25.0 22.7 40.9 2.5 25.4 9

Newcastle IV 04/03 BBB- 6.99 58 31.6 24.1 44.8 1.6 21.5 5

Anthracite III 04/03 BB+ 7 58 52.2 27.6 48.3 0.0 0.7 1

Lakeside II 04/03 AA+ 9.09 145 11.7 14.5 29.7 79.4 88.4 16

FAB UK 2004-1 04/04 BBB+ 7.48 62 17.8 19.4 37.1 4.1 29.6 1

Vermeer 04/04 BBB+ 7.02 83 20.9 18.1 36.1 0.3 11.6 9

Bluegrass II 04/04 A 6.87 112 18.4 14.3 30.4 0.0 1.9 17

Klio 04/04 AAA 6.43 160 7.6 8.8 20.6 51.5 72.5 17

Saturn 2004 F.A.I. III 04/04 A 7.25 107 19.5 15.0 29.9 0.4 15.9 10

Saturn II 04/04 BBB- 7.2 89 41.5 24.7 44.9 1.2 21.9 11

FAXTOR 2004-1 04/05 BBB 6.85 92 22.0 18.5 38.0 1.2 22.4 3

C-Bass X 04/05 BBB- 6.87 98 32.9 24.5 45.9 3.0 30.4 2

ACA 2004-1 04/05 A- 6.98 102 19.4 15.5 30.4 0.1 6.6 9

Rhodium 1 04/05 BBB 6.78 66 18.8 19.7 34.8 4.1 27.9 3

Sandstone 04/06 A- 7 55 27.2 18.2 34.5 0.0 1.3 0

Whately I 04/06 A 6.88 184 14.5 13.6 28.8 0.0 6.0 17

RFC I 04/06 BBB+ 6.97 93 20.4 16.1 33.3 0.0 4.9 0

N-Star R.E.II 04/07 BBB 6.94 82 30.3 19.5 39.0 0.0 5.6 3

Acacia 5 04/07 BBB 6.93 95 23.2 17.9 35.8 0.0 3.9 0

Cascade I 04/07 AA+ 8.08 107 11.3 13.1 26.2 17.8 49.7 17

C-Bass XI 04/09 BBB 6.83 107 25.7 20.6 41.1 3.8 32.1 1

Bluegrass III 04/09 BBB+ 6.88 113 19.6 16.8 31.9 0.2 11.3 18

Newcastle V 04/09 BBB- 6.75 63 26.5 22.2 41.3 0.3 13.3 6

Inman Squ. I 04/10 BBB- 7.34 81 41.8 22.2 42.0 0.0 0.3 0

Klio II 04/10 AA- 7.56 113 8.6 15.0 31.9 84.7 89.8 18

Pinnacle Point 04/10 BBB+ 6.57 160 13.8 15.0 33.1 45.9 71.3 19

Sherwood 04/10 B+ 7.31 198 41.5 36.2 60.6 46.2 72.4 18

Porter Squ. II 04/10 BB 6.47 78 47.3 28.2 51.3 20.7 54.0 18

Laguna ABS 04/10 AA+ 7.96 218 10.7 11.5 25.7 36.4 67.2 14

Reservoir Funding 04/10 BBB- 7.08 99 19.3 25.3 47.5 53.2 75.3 18

Acacia 6 04/11 BBB+ 6.95 83 22.6 16.9 33.7 0.0 7.8 6

Whitehawk 04/11 A- 6.42 95 10.6 14.7 29.5 0.0 0.1 11

Hillcrest I 04/11 BBB- 6.95 129 29.8 24.0 45.7 3.1 32.7 18

Trainer W.F.R. V 04/11 A+ 6.95 109 17.2 14.7 30.3 0.0 5.9 9

Jupiter 04/12 BBB+ 6.98 106 11.5 18.9 38.7 33.2 62.6 13

C-Bass XII 04/12 A- 6.9 70 21.0 17.1 34.3 0.7 15.7 17

McKinley 04/12 AA+ 7.16 104 8.1 11.5 25.0 15.1 42.7 17

Revelstoke I 04/12 AAA 6.08 72 6.5 9.7 20.8 0.7 11.2 18

Cimarron 04/12 AAA 6.98 93 6.9 10.8 21.5 1.3 18.4 19

Belle Haven 04/12 AA 9.18 190 13.4 14.2 31.1 37.0 66.7 18

Vermeer II 04/12 A- 7.06 106 18.8 15.1 32.1 0.0 4.5 1

Witherspoon 04/12 AA+ 6.85 154 8.6 11.0 24.0 1.3 22.2 17

Fairfield S.S. 2004-1 04/12 BB 6.99 75 49.1 29.3 52.0 2.8 29.3 2

Margate I 04/12 AA 6.82 229 10.1 10.9 25.3 1.8 25.8 15

Zenith 04/12 AA- 6.86 146 9.7 13.0 28.1 22.9 55.3 19

Ischus I 04/12 A 6.96 107 21.3 15.0 31.8 0.0 7.1 16

Average 24.2 20.1 37.5 10.6 25.5
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Panel D: CDO2

Name CDate WAR WAM N SDR SDR NF SDR DF DP NF DP DF DG

Lusitano 1 01/08 BBB- 3.19 72 21.0 12.5 23.6 0.0 2.7 0

Lafayette I 02/04 BB+ 3.77 30 32.1 23.3 33.3 0.0 0.3 0

Zais V 02/12 BBB- 6.99 49 47.4 26.5 40.8 0.1 4.5 11

Porter Squ. I 03/07 BB- 7 55 34.6 38.2 58.2 75.7 81.1 5

Hamilton 03/09 B+ 5 158 34.6 26.9 42.3 0.0 0.3 0

Tricadia 2003-1 04/01 BBB- 6.55 69 36.3 11.5 18.5 0.0 0.0 10

Zais VI 04/01 BBB- 5.69 67 42.6 20.9 38.7 0.0 2.7 13

Vertical 2004-1 04/03 AA 9.78 71 10.8 18.3 34.5 56.8 76.9 19

Tricadia 2004-2 04/11 BB+ 7.5 62 55.3 30.8 54.8 0.9 19.8 12

TABS 2004-1 04/12 AA+ 7.57 98 9.7 12.2 26.5 5.7 31.4 19

Average 32.4 22.1 37.1 13.9 22.0
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Table IV
Empirical Results for Average Default Rate Predictions

This table reports the average original AAA tranche size (Size), the average value of scenario default rate
(%) from (a) rating agency (SDR), (b) no-frailty model (SDR NF), (c) dynamic-frailty model (SDR DF); the
average value of default probability from (a) no-frailty model (DP NF), (b) dynamic-frailty model (DP DF).
The average values are calculated for each CDO types.

Average AAA Size SDR SDR NF SDR DF DP NF DP DF

CBO 71.7 36.6 27.6 48.7 3.8 18.5

CLO 73.6 37.1 30.1 51.9 4.6 26.8

ABS 80.7 24.2 20.1 37.5 10.6 25.5

CDO2 77.8 32.4 22.1 37.1 13.9 22.0
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Table V
Empirical Results for Regression Analysis

This table reports the regression results of downgrading notches on default probability with frailty (DPDF ),
default probability without frailty(DPNF ), the difference between default probability with and without
frailty (DPDF −DPNF ). We also include the following controls: weighted average maturity (WAM), default
measure (DM), variance measure (VM), number of obligors (Obl), interest rate (rf ), S&P 500 Return (S&P
500), Dummy CLO, Dummy ABS and Dummy CDO2.

Independent Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Variables

DPDF 3.37 4.38

(5.44) (3.35)

DPNF 3.53 2.91 -1.47

(4.31) (3.64) (-0.88)

DPDF −DPNF 5.46 4.37 4.77

(4.24) (3.35) (3.46)

WAM 0.19

(1.11)

DM 3.36

(0.21)

VM -39.51

(-0.76)

Obl (x100) 0.50

(1.71)

rf -0.19

(-1.63)

S&P 500 0.17

(0.22)

Dummy CLO 0.41 0.66 0.31 0.34 0.34 -0.51

(1.09) (1.80) (0.80) (0.89) (0.89) (-1.03)

Dummy ABS 2.73 2.68 2.93 2.77 2.77 2.09

(6.89) (6.83) (7.36) (6.92) (6.92) (3.56)

Dummy CDO2 2.68 2.34 3.10 2.79 2.79 2.50

(3.65) (3.17) (4.46) (3.79) (3.79) (3.17)

R2(%) 10.26 9.33 9.15 10.32 10.32 10.44

Observations 237 237 237 237 237 237

53


