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my family and fiancé Jen. Jen has been there to support, care and motivate me

through the most difficult periods of the PhD process; her unwavering optimism

has been fundamental to my completion of the thesis. Both my parents have been

incredible with their support throughout. I am grateful that they have constantly

been there to give the ultimate level of support to me throughout my life and I have

needed that more than ever during the PhD. I would like them to know how grateful

I am and how essential their support has been.

iv



Declarations

I declare that the work and research contained in this thesis is my own unless

otherwise stated. This thesis has been submitted to the University of Warwick only,

and not to any other institution, in support of my application for the degree of

Doctor of Philosophy.

Signed:

Nicholas Tawn

v



Abstract

Markov Chain Monte Carlo (MCMC) techniques for sampling from com-
plex probability distributions have become mainstream. Big data and high model
complexity demand more scalable and robust algorithms. A famous problem with
MCMC is making it robust to situations when the target distribution is multi-modal.
In such cases the algorithm can become trapped in a subset of the state space and
fail to escape during the entirety of the run of the algorithm. This non-exploration
of the state space results in highly biased sample output.

Simulated (ST) and Parallel (PT) Tempering algorithms are typically used to
address multi-modality problems. These methods flatten out the target distribution
using a temperature schedule. This allows the Markov chain to move freely around
the state space and explore all regions of significant mass.

This thesis explores two new ideas to improve the scalability of the PT algo-
rithm. These are implemented in prototype algorithms, QuanTA and HAT, which
are accompanied by supportive theoretical optimal scaling results.

QuanTA focuses on improving transfer speed of the hot state mixing informa-
tion to the target cold state. The associated scaling result for QuanTA shows that
under mild conditions the QuanTA approach admits a higher order temperature
spacing than the PT algorithm.

HAT focuses on preserving modal weight through the temperature schedule.
This is an issue that can lead to critically poor performance of the PT approach.
The associated optimal scaling result is useful from a practical perspective. The
result also challenges the notion that without modal weight preservation tempering
schedules can be selected based on swap acceptance rates; an idea repeatedly used
in the current literature.

The new algorithms are prototype designs and have clear limitations. How-
ever, the impressive empirical performance of these new algorithms, together with
supportive theory, illustrate their substantial improvement over existing methodol-
ogy.

vi



Chapter 1

Introduction

1.1 Introduction

The Bayesian approach for inference on a d-dimensional parameter x combines prior

knowledge, in the form of a fully specified prior distribution, with information from

observed data y, incorporated through the likelihood function, to obtain a fully

specified posterior distribution of x given y, Note the unusual use of x rather than,

e.g. θ, as the notation for the parameter vector; this is for the sake of consistency

with all chapters in the thesis. Letting π(x|y) denote the posterior, f(y|x) the

likelihood function, π(x) the prior distribution for x and f(y) the joint distribution

of the data, then the posterior is computed using the standard Bayes formula:

π(x|y) =
f(y|x)π(x)

f(y)
∝ f(y|x)π(x). (1.1)

This posterior distribution is typically intractable with the joint distribution of the

data, f(y), typically unknown. Tractable models can be constructed using notions

of conjugacy with regards to prior distribution choice, but this defeats the object

of allowing genuine expert judgment to be incorporated properly. Furthermore, the

use of conjugacy is only possible in a small subset of problems.

Indeed a practitioner is typically interested in expectations of some quantity,

h(X), with respect to the posterior distribution, i.e.

Ex|y[h(X)] =

∫
x∈X

h(x)π(x|y)dx. (1.2)

Due to the intractability of the posterior, computational methods are required.

Indeed this Bayesian specific issue falls into a wider class of general problems

appearing across many disciplines. Specifically when a distribution π(dx) is only
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known up to a constant of proportionality but one wants to evaluate integrals of the

form ∫
x∈X

h(x)π(dx).

A class of methods with proven success in these settings is the Monte Carlo

approach. Markov Chain Monte Carlo (MCMC) is one such method that has been

successfully employed in a vast range of problems. It has not only revolutionised the

applicability of the Bayesian approach to statistics but also impacted subject areas

across Physics, Economics, Social Sciences, Computer Science and many more. It

involves the generation of a suitably constructed Markov Chain that is designed to

draw samples from the intractable target distribution that is only known upto a

constant of proportionality. Assuming that the algorithm has successfully sampled

from the posterior distribution then estimates of moments, quantiles, . . . etc can be

computed by using this sample. See Section 1.2 for more details on this.

The MCMC approach assumes that the constructed Markov chain can ex-

plore the entire state space effectively in the finite run time of the chain. One major

stumbling block is when the probability mass is separated into different regions in

the state space. This can result in slow inter-regional exploration, or even worse,

critical failure to explore all regions of significant probability mass. As a result the

output sample will be biased and should not be used for Monte Carlo estimation of

integrals of the form given in equation (1.2). This thesis will be primarily focused

on this issue when the target distribution exhibits multi-modality.

1.1.1 Outline of the Thesis

Chapter 1 is focused on literature review and gives a basic overview of Markov

chains and their application in an MCMC framework. Following this the problem of

multi-modality is motivated with toy examples along with a brief overview of some

of the current methods designed to overcome these issues. Detailed descriptions of

the simulated and parallel tempering algorithms are given since these are the focus

of development in the new work in following chapters. Chapter 1 concludes with an

overview of the work in Woodard et al. [2009b], Woodard et al. [2009a] and Atchadé

et al. [2011]. These results motivate the core novel ideas established in the following

chapters.

Chapter 2 introduces a new prototype algorithm (QuanTA) designed to im-

prove the mixing efficiency through the temperature schedule of a parallel tempering

algorithm. Chapter 3 complements Chapter 2 with the development of a theo-

retically optimal temperature spacing result, Theorem 3.2.1, for QuanTA. Corol-
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lary 3.4.1 and Theorem 3.4.1 follow from this and provide insight to the utility of

QuanTA outside of the canonical Gaussian setting.

Chapter 4 introduces a new prototype algorithm (HAT) that attempts to

overcome weight preservation issues prevalent when using power based tempering

targets. Chapter 5 complements Chapter 4 by developing a new theoretically opti-

mal temperature spacing result, Theorem 5.1.1, for the HAT algorithm which gives

guidance to optimal temperature schedule setup. The ensuing Corollaries 5.2.1 and

5.2.2 give insight into the theorem and discuss the implications relating to the work

in Atchadé et al. [2011], namely the major issues of using acceptance rates as a

quality diagnostic.

Chapter 6 concludes the thesis with a summary of the findings followed by a

discussion on two ideas for further work that naturally follow from the work in this

thesis.

1.2 Markov Chains and the Metropolis-Hastings Algo-

rithm

This section will establish the basics of the Markov chain construction and the

heuristics of why such stochastic processes are so useful in a Monte Carlo framework.

The basics of Markov chain theory can be found in a number of classic probability

text books, e.g. Grimmett and Stirzaker [2001], Durrett [2010], but for a deep insight

into Markov chain behaviour (particularly for those designing MCMC algorithms)

Meyn and Tweedie [2012] is invaluable.

Heuristically, a Markov chain is a stochastic process whose evolutionary be-

haviour conditioned on the current value, is the same as that if it had been condi-

tioned on the entire path history.

More formally if (X ,B) is a measurable space with σ-algebra B then

Definition 1.2.1 (Discrete-time Markov Chain). A stochastic process, Xt for t ∈ N,

on X with associated filtration (Ft)(t∈N), is a discrete-time Markov chain if ∀ A ∈ B

P(Xt ∈ A|Ft−1) = P(Xt ∈ A|σ(Xt−1)).

Herein the associated transition kernel (for a time-homogeneous Markov chain) will

be denoted

P (x,A) := P(Xt ∈ A|Xt−1 = x).

This construction is simplistic and tractable, hence the widespread use of

this assumption in modelling applications. In many cases the key feature of interest
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is the long-term behaviour of the Markov chain. Under mild conditions it turns

out that the Markov chain has an ergodic behaviour and its location in the state

space is described by some limiting distribution. To establish the required ergodicity

results, there are three key ingredients, invariance, aperiodicity and irreducibility.

For a measure µ on the space (X ,B) then for any A ∈ B the following shorthand

will be used herein µ(A) :=
∫
A µ(dx).

Definition 1.2.2 (Invariance). Suppose that P (x,A) is a Markov chain transition

kernel, then π is said to be invariant for the Markov chain if ∀A ∈ B

π(A) =

∫
x∈X

π(dx)P (x,A). (1.3)

Intuitively, this says that if the location of the Markov chain at time step

t − 1 is distributed according to π then the location at time-step t is distributed

according to π. It is this “π” that one hopes the chain will target in the long-run;

however there is not necessarily a unique invariant distribution since the chain might

get stuck/absorbed in different regions of the state space. To ensure that the chain

can get everywhere repeatedly and without any cyclical behaviour the following two

conditions are required on the chain:

Definition 1.2.3 (Aperiodicity and Irreducibility). Recall Definition 1.2.1 of a

Markov chain. Then as given in Roberts et al. [2004], a Markov chain with transition

kernel P and invariant distribution π is

1. Aperiodic if there doesn’t exist a collection of disjoint subsets of X , {X1, . . . ,XK},
of size greater than 1 such that, ∀i ∈ 1, . . . ,K and ∀x ∈ Xi there exist A ∈ B
where A ⊆ X{(i+1) mod K} and P (x,A) = 1.

2. φ-Irreducible if there exists a non zero (σ-finite) measure, φ on X such that for

all A ⊆ X with φ(A) > 0 there exists n ∈ N such that Pn(x,A) > 0 ∀x ∈ X .

With the establishment of invariance, aperiodicity and irreducibility then a

key result that can be found in Roberts et al. [2004][Theorem 4], but originally

derived in Meyn and Tweedie [2012], characterises the long-term behaviour of the

Markov chain:

Theorem 1.2.1. If a Markov chain on a state space is φ-irreducible, aperiodic, and

has a stationary distribution π, then for π a.e. x ∈ X

lim
n→∞

‖ Pn(x, ·)− π(·) ‖TV = 0
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where the norm ‖ · ‖ is the TV norm defined for a measure µ on (X ,B) as

‖ µ(·) ‖TV = sup
A∈B
|µ(A)|.

But why is this useful for the ultimate goal of approximating intractable

integrals? For a Markov chain, Xi, with properties established in the aforementioned

theorem, Meyn and Tweedie [2012] derives that for a functional h : X → R with∫
X |h(x)|π(dx) <∞ then with probability 1

lim
n→∞

1

n

n∑
i=1

h(Xi) =

∫
X
h(x)π(dx) = Eπ [h(X)] . (1.4)

A Bayesian practitioner seeks to evaluate exactly these types of integrals. Conse-

quently, if a suitably convergent Markov chain can be established then one can use

a finitely truncated version of the sample average on the LHS of equation (1.4) to

estimate integrals of the form Eπ [h(X)].

Setting up such a Markov chain in general could be difficult, particularly

when one wants a specific limiting distribution, π, for the sample. However, having

reversibility of the chain makes this practically possible. This is attained by

selecting a transition kernel, P , such that detailed balance holds i.e. ∀x, y ∈ X

π(dx)P (x, dy) = π(dy)P (y, dx). (1.5)

It is then a routine calculation, see Roberts et al. [2004][Proposition 1], that the

desired target π is invariant for the chain. It is exactly this setup that the famous

Metropolis-Hastings algorithm utilises to achieve π-invariance.

The Metropolis-Hastings algorithm, introduced in Metropolis et al. [1953]

and established in Hastings [1970] is arguably the most famous of the MCMC ap-

proaches.

To generate a sample of size n from the a target π, the following procedure

is undertaken, with xt denoting the value of the chain at time t:

The Metropolis-Hastings (MH) Algorithm:

• Choose an initial value for the chain, x0.

• Choose a suitable proposal distribution for moves of the chain, denoted q(xi−1, x
′
).

• Iterate over i = 1, . . . , n+m
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1. Propose a move xi−1 → x
′
according to the proposal distribution q(xi−1, x

′
).

2. Compute the acceptance ratio A:

A :=
π(x

′
)q(x

′
, xi−1)

π(xi−1)q(xi−1, x
′)
.

3. Accept the move with probability

1 ∧A.

4. If accepted set xi := x
′

else xi := xi−1.

• Discard a burn-in period of the the first m samples and retain the final n.

Thus the procedure outputs a sample of points {xm+1, . . . , xn+m}. Then the law of

large numbers result in equation (1.4) can be exploited to estimate expectations of

suitable functionals with respect to π.

1.2.1 Proposal Choice and Optimal Tuning of MH:

Clearly, due to the finite run-time of the algorithm, the choice of the proposal

mechanism, q(·, ·), is fundamental in determining the sample quality.

A concrete example is for the Gaussian Random Walk Metropolis algorithm

where the proposal mechanism is chosen to be a Gaussian increment centred on

the current value of the chain where the user has the freedom to choose the scaling

parameter, σ, that controls the variance of the proposal about the current location.

There is a famous trade off, Roberts et al. [1997], between proposing over ambitious

steps for the chain (which degrade the acceptance rates towards zero so the chain

rarely moves) and being under ambitious and proposing only very small steps that

have high acceptance rate but take a long time to traverse the state space (meaning

very slow convergence from the initialisation point).

For a given proposal mechanism there are a number of ways that one may

wish to measure the effectiveness of the resulting MH algorithm. An intuitive and

principled approach, Geyer [1992], is to consider the variance of the estimator of

the integral of interest, i.e. the variability of the sample estimator of Eπ(g(x)). The

estimation of the variance of the estimator is non-trivial. For a Markov chain target-

ing an invariant distribution π and for some functional g the quantity Varπ(g(X))

may exist (provided g ∈ L2(π)) but the existence of the variance of the estima-

tor of Eπ(g(X)) is not guaranteed. Denoting the tth lagged auto-covariances by

6



γt := Covπ(g(X0), g(Xt)); Kipnis and Varadhan [1986] showed that for a stationary,

irreducible, reversible Markov chain as n→∞

nVarπ

(
1

n

n∑
i=1

g(Xi)

)
→ σ2 =

∞∑
t=−∞

γt

and if this σ2 is finite then a central limit theorem holds with

√
n

(
1

n

n∑
i=1

[g(Xi)]− Eπ(g(X))

)
⇒ N(0, σ2).

The finiteness of σ2 is indeed an issue and there is a large amount of literature

establishing when a CLT holds; even then, sample estimation of σ2 is a difficult

problem. As noted in Geyer [1992], when a spectral gap exists (see Section 1.2.2)

then σ2 <∞.

Typically the covariances, γt, are positive and usually the first order covari-

ance dominates the others in magnitude. In this case, minimising the first order

covariance (by making suitably ambitious proposals for moves away from the cur-

rent location) has the desirable effect of minimising the variance of the estimator.

So a reasonable approach is to design/tune the proposals to maximise (on aver-

age) the distance jumped at each iteration of the chain; thereby minimising the

covariance between the locations of successive chain locations. One measure of the

jump/proposal ambition is the expected squared jumping distance.

Definition 1.2.4 (The Expected Squared Jumping Distance (ESJD)). For a sta-

tionary Markov chain setup to sample from an invariant distribution π, the expected

squared jumping distance is given by

ESJD = Eπ
[
(X1 −X0)2

]
where X0 and X1 are the consecutive locations of the Markov chain under station-

arity.

Sherlock [2006] uses ESJD as the metric for optimal scaling of random

walk Metropolis moves on spherically symmetric targets and presents a clear and

insightful review on using ESJD as the metric for proposal optimisation. ESJD

can be used to obtain theoretically optimal tuning results in simplified tractable

cases. In a practical setting, empirical estimates of ESJD from the output sample

can be used for proposal tuning.

ESJD is not always the ideal metric to judge optimal performance by. The

7



ESJD is determining the second moment behaviour of the jump distances. There

are higher order moments for the chain that could also be considered. There should

be a justification for using ESJD over other metrics.

As defined in Øksendal [2003], consider a diffusion process denoted by Xt

with drift µ(Xt) and variance σ2(Xt) such that

dXt = µ(Xt)dt+ σ2(Xt)dBt

where Bt denotes standard Brownian motion. Single components of d-dimensional

Markov chains, for a number of (suitably scaled) MH algorithms, have non-trivial

limiting behaviour that can be described by a diffusion process as d→∞, Roberts

et al. [2001]. The “mixing speed” of the diffusion is determined by the volatility

which is the coefficient of the Brownian motion component, i.e. σ2(Xt).

Roberts and Rosenthal [2014] give guidance on algorithmic tuning assuming

an asymptotic diffusion can be derived. They consider two diffusion processes both

with the same stationary distribution, π, but different volatility functions σ2
1(Xt)

and σ2
2(Xt). They show that if σ2

1(x) ≤ σ2
2(x) (π-almost surely) then the asymptotic

variance of the Monte Carlo estimator is smaller for the diffusion with volatility

σ2
2(Xt). This suggests that if there is a limiting diffusion process for the Markov

chain of interest, then optimising the volatility gives a principled approach towards

minimising the estimator variability.

ESJD has links with the principled limiting diffusion process approach. The

ESJD of a one-dimensional component of the Markov chain as the dimensionality

tends to infinity converges to the quadratic variation process, i.e. σ2(Xt), of the

limiting diffusion (if such a limit exists). Not all chains have a limiting diffusion

though but this at least this gives some heuristic principal for the use of ESJD over

other metrics for optimisation tuning. ESJD will be the metric used for optimal

tuning in the theorems in both Chapters 3 and 5.

1.2.2 The Spectral Gap

Section 1.6 reviews the work of Woodard et al. [2009a] and Woodard et al. [2009b]

since it is a key motivation towards the work in this thesis. A summary theorem will

be given which assumes knowledge of Spectral Gap theory for Markov chain analysis.

For completeness the basic definitions required to understand the summary theorem

and the heuristic understanding of its implications are given.

On the space (X ,B) consider a measure µ and the measure defined by the n-

step transition kernel of a Markov chain (started at x) and denoted Pn(x, ·). Herein
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the following shorthand will be used:

• The measure µPn(·) is defined as µPn(A) :=
∫
X P

n(x,A)µ(dx) ∀A ∈ B.

• For a functional f defined on X then ∀x ∈ X , Pnf(x) :=
∫
X f(y)dPn(x, dy).

Defining the following as in Woodard et al. [2009a]:

• The inner product (with respect to a measure π) defined on complex valued

functionals on X
(f, g)π =

∫
X
f(x)g(x)π(dx). (1.6)

• Let L2(π) denote the space of functionals on X such that (f, f)π <∞.

• The transition kernel, P , is defined as non-negative definite if ∀f ∈ L2(π)

(Pf, f)π ≥ 0.

With these definitions in place the definition of the Spectral Gap can be introduced,

as in Woodard et al. [2009a]:

Definition 1.2.5 (Spectral Gap). For a φ-irreducible, aperiodic Markov chain with

non-negative definite transition kernel P , invariant with respect to π, then the Spec-

tral Gap is defined as

Gap(P ) := inf
f∈L2(π),Varπ(f)>0

(
E(f, f)

Varπ(f)

)
(1.7)

where E(f, f) is the Dirichlet form defined as (f, (I − P )f)π.

For the purposes of MCMC the key significance of obtaining a (bound on)

the spectral gap is that it helps determine the convergence rate to invariance of the

Markov chain. In fact, Woodard et al. [2009a] highlights that for a φ-irreducible,

aperiodic Markov chain with non-negative definite transition kernel P , invariant

with respect to π, and with initiating measure µ (and some associated constant

Cµ):

‖ µPn(·)− π(·) ‖2≤ Cµe−nGap(P ) (1.8)

where for a measure ν which has a density with respect to π given by dν
dπ then

‖ ν ‖2:=

[∫ (
dν

dπ
(x)

)2

π(dx)

]1/2

.
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Consequently, the spectral gap (if strictly positive) determines the geometric rate

of convergence of the Markov chain to the invariant distribution π. The larger the

value of the spectral gap the quicker the rate of convergence to invariance.

Therefore, it is desirable to maximise the spectral gap of an MCMC chain.

Additionally Woodard et al. [2009a] and Woodard et al. [2009b] analyse the form

of the spectral gap as dimensionality increases, thus giving an indication of how the

rate of convergence decays with the curse of dimensionality.

1.2.3 A Population-Based Approach to MCMC

MCMC algorithms’ performance typically rely on some tuning parameters. Exam-

ples include the variance of the proposals in the Gaussian random walk Metropolis

algorithm, Roberts et al. [1997], or the tuning of the number of leapfrog steps and

the momentum proposal in the Hamiltonian Monte Carlo algorithm.

Often, these parameters are tuned towards some theoretical optimal accep-

tance rate of the proposed moves or maximum empirical estimate of the ESJD.

Traditionally, this was achieved using trial runs on test setups for the parameters

that were then discarded before initiating a final run with the chosen tuned param-

eters. An alternative approach is to use an Adaptive MCMC framework, Roberts

and Rosenthal [2007] and Roberts and Rosenthal [2009], that in a single run au-

tomates the tuning of parameters towards a value that induces a user specified

chain behaviour, such as a desirable proposal acceptance rate. The complication

with Adaptive MCMC is that it requires very careful implementation to ensure that

the chain targets an invariant distribution that is the one desired. For complex

algorithms a proof of this is non-trivial.

Adaptive MCMC approaches typically use the history of the chain (violating

the Markov property). In this thesis, Chapter 2 requires the use of an approach

that considers sample points under the invariant distribution other than the current

location of the chain. One approach would be to use an Adaptive MCMC framework.

However, to overcome the complications of an adaptive approach an alternative

Population-Based approach which utilises state space augmentation was used. Such

techniques have been used in Gilks et al. [1994], Roberts and Gilks [1994], Jasra

et al. [2007] and involve running multiple chains in parallel, all targeting the same

invariant target distribution, π, marginally whilst the proposal mechanisms for each

individual chain can depend on the current location of (a subset of) the other chains.

Intuitively, this can guide the direction (e.g. see the snooker algorithm of Gilks et al.

[1994]) or shape of proposal. Importantly, the Markov property can be preserved.

For completeness, a statement and proof justifying the Population-Based
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Metropolis-Hastings approach that will be used in Chapter 2 is given.

Theorem 1.2.2 (Population-Based MH Invariance). Consider a target measure

π(dx) on some measure space (X ,B). On the augmented space X n define the product

measure

πn(dx1, . . . , dxn) ∝
n∏
i=1

π(dxi).

Let A ( {1, . . . , n} and i ∈ {1, . . . , n}\A. Then define a Markov chain Xn on X n

with component transition kernels PA(xi, dy) taking

(x1, . . . , xi, . . . , xn)→ (x1, . . . , y, . . . , xn)

with the associated proposal measure, defined as qA(xi, dy), dependent on the set of

locations of the chains indexed by A, i.e. {xj : j ∈ A}. If the proposed moves are

accepted according to the MH acceptance probability

αA(xi, y) = min

{
1,
π(y)qA(y, xi)

π(xi)qA(xi, y)

}
then the Markov chain Xn has invariant distribution πn(dXn).

Proof. The proof follows trivially as a special case of Metropolis-within Gibbs.

1.3 The Multi-Modality Problem

Consider using the MH algorithm to target a distribution, π, that is multi-modal

with the modes being well separated; Figures 1.1 and 1.2 illustrate two such ex-

amples. It is important that a chain explores the entire space so that the sample

estimates are unbiased thus validating Monte Carlo integral approximations of the

form (1.4). Typically the proposal mechanisms used in MH algorithms are localised

and tuned to explore the local mode efficiently. However, this localisation essentially

means that the Markov chain becomes trapped in a subset of the state space and

(even though it theoretically satisfies all ergodicity properties in the prior section)

in the finite run time it fails to explore all regions of significant probability mass.

The resulting algorithm’s performance in the finite run can appear similar/identical

to one that fails to satisfy the irreducibility criteria introduced in Definition 1.2.3.

Figures 1.1 and 1.2 show an example where a Gaussian random walk on a toy

multi-modal target for only a finite number of runs of the algorithm could result in

the algorithm only exploring a restricted subset of the support of the distribution.

Even though the swap acceptance rates were tuned to a theoretically suggested
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optimal 0.234, Roberts et al. [1997], the Markov chain entirely fails to explore the

full target distribution.
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Figure 1.1: One dimensional target density (black) constructed from a Gaussian
mixture distribution, over-plotted (in red) with the kernel density estimate from a
1000000 run RWM (tuned to give an approximately 0.234 acceptance rate).

Indeed many of the most effective and scalable proposal mechanisms for MH

utilise the local gradient information with the Metropolis Adjusted Langevin Al-

gorithm (MALA), e.g. Roberts and Stramer [2002], and Hamiltonian Monte Carlo

(HMC), e.g. Girolami and Calderhead [2011], being arguably the most famous meth-

ods. Essentially, this class of techniques use local gradient based information that

“directs” the proposed move uphill to regions of higher density. This is a heuris-

tically sensible approach when the target is uni-modal; however, when the target

distribution is multi-modal with insignificant bridging mass, then these methods

tend to make the problem even worse since the gradient information helps to draw

the Markov chain back towards the local mode.

In cases where the modes are “close” then approaches that incorporate am-

bitious proposals, e.g. Green and Mira [2001], could be used. Also, if one knows the

locations of modes beforehand, then a carefully designed mixture proposal would

allow for inter-modal jumps. In general, the form of the target isn’t known, and if

naive algorithms tuned to localised exploration are used the user will be unaware

that the chain hasn’t explored the entire space.
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Figure 1.2: Left: 2D Gaussian mixture target density (black). Right: over-plotted
(in red) with the sample of a 1000000 run RWM (tuned to give a 0.234 acceptance
rate).

This motivates using a more advanced MCMC algorithm to sample from

the target distribution in cases which exhibit multi-modality. The major problem is

that the regions of significant probability mass do not have significant bridging mass

that allows the chains to traverse along to get from region to region using localised

moves. Using proposals like the Gaussian increments in RWM with large ambitious

scalings in the hope the proposal will land in another modal region inevitably has

extremely low acceptance rates and performance tends to deteriorate dreadfully in

higher dimensions.

Definition 1.3.1 (Tempered Target at Inverse Temperature β). For a target distri-

bution π(·), the tempered target at inverse temperature β, denoted πβ(·), is defined

as

πβ(x) ∝ π(x)β

for β ∈ (0,∞); and it is only a proper distribution provided
∫
X π(x)βdx <∞.

Such distributions are useful for a range of β values, including for optimisa-

tion problems in the simulated annealing framework where one considers β → ∞
with an invariant Markov chain (hopefully) becoming trapped in the mode with

the global maximum, Kirkpatrick et al. [1983]. For the purposes of sampling from

a multi-modal target the range of inverse temperatures that are of interest are
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β ∈ (0, 1].

As β → 0 then πβ(·) approaches a (potentially improper) uniform distribu-

tion on the support of the target distribution. Essentially, this has the effect of

flattening out the target distribution by spreading out mass into the tails of the

distribution and forming bridging mass between modes. Herein, tempered targets

raised to a power β ∈ (0, 1) will be will be described as hot state target distributions.

This nomenclature emanates from the physics literature where, π(x) ∝ exp{−H(x)}
with −H(x) < 0 being the potential, so by heating the system to a temperature

T = 1/β (hence multiplying the potential by β) this increases the energy in the sys-

tem. As such the cold state will be used herein to describe the target distribution

with no heating (i.e. β = 1).

Figure 1.3 illustrates the effect of tempering on the target density used in

Figure 1.1 and shows that the (normalised) tempered densities appear to approach

an improper uniform distribution and have crucially provide bridging mass between

the modes.
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Figure 1.3: Tempered densities for β={1,0.5 ,0.1,0.005}, corresponding to (dark
blue), (light blue), (red) and (dark red) respectively.

The tempered distributions have the same support and also have their modes

in the same locations as the untempered distribution (since powering is a monotone

function). As such, for a suitably hot temperature level target, basic methods such

as RWM or HMC should be able to efficiently explore the space. Using these hot

temperature targets the idea is to construct an algorithm that “borrows” information
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from the mixing ability in the hotter state tempered distributions to enable full

exploration of the state space in the cold level target state.

Two fundamental and widely used algorithms that exploit these tempered

targets to aid mixing in multi-modal settings are the parallel and simulated tem-

pering algorithms; these are introduced in the following Section 1.4, along with

alternative and rivaling approaches for multi-modal settings.

1.4 Algorithms for Multi-Modal Target Distributions

Section 1.3 motivated the use of advanced algorithms for sampling from a multi-

modal distribution. Under a given parametrisation, the target distribution is fixed

and so the performance of an MCMC algorithm depends upon the proposal mech-

anism employed. Section 1.3 suggested that mixing information from the chains

targeting the hotter, tempered distributions could be used to aid inter-modal mix-

ing at the target cold state. Geyer [1991] and Marinari and Parisi [1992] introduced

the Simulated tempering (ST) and Parallel tempering (PT) algorithms to do this. In

this section the ST algorithm will be introduced and its major drawback highlighted,

motivating the more practically favoured PT algorithm.

After this a brief review of alternative/competing algorithms that attempt

to overcome the issues of multi-modality will be explored.

1.4.1 Simulated Tempering (ST) Algorithm

Consider a sequence of d-dimensional tempered target distributions (on a state space

X ) defined at inverse temperature levels {β0, . . . , βn} where 0 ≤ βn < βn−1 < . . . <

β1 < β0 = 1. The simulated tempering approach introduced by Marinari and Parisi

[1992], runs a single (d + 1)-dimensional Markov chain, (β,X), on the extended

extended state space {β0, . . . , βn} × X , cycling between moves within the current

temperature level and temperature level swap moves to mix through the temperature

schedule. The invariant distribution of the chain, (β,X), defined on the extended

state space {β0, . . . , βn} × X is

π(β, x) ∝ K(β)π(x)β (1.9)

where ideally (but unrealistically) K(β) =
[∫
x π(x)βdx

]−1
, resulting in each tem-

perature level being marginally normalised. The algorithm proceeds as follows:
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Simulated Tempering (ST) Algorithm:

• Choose a sequence of tempering values 0 ≤ βn < βn−1 < . . . < β1 < β0 = 1.

• Choose initial values of the chain β0 and x0.

• Choose the proposal mechanisms for all within temperature level type moves,

denoted qβj (y|x) for j = 0, 1, . . . , n.

• Choose the number, m, of within temperature proposals the chains will per-

form before attempting a swap type move and choose the total number, s, of

swap moves that will be attempted.

• Iterate s times:

1. If currently in temperature level βj uniformly randomly propose to move

to one of the adjacent temperature levels, β
′ ∈ {βj−1, βj+1} say. (Denote

the current position of the chain in the X space as x).

2. Compute the acceptance ratio for the proposed move (βj → β
′
) and

accept the move with probability equal to

min

(
1,
K(β

′
)π(x)β

′

K(βj)π(x)βj

)
. (1.10)

3. Perform m within temperature moves to target the current inverse tem-

perature level target using the proposal mechanism specified for the cur-

rent inverse temperature value.

Choosing K(β) to normalise the marginal temperature levels is not necessary

for the running of the algorithm; indeed knowing the normalisation constants apriori

is highly unlikely for most problems of interest. Figure 1.4 illustrates an example

of un-normalised tempered targets when the convenient choice of K(β) ∝ 1 is used.

The key problem with not having marginally normalised targets is highlighted by

considering the marginal distribution of the inverse temperature values. Assuming

K(β) ∝ 1, then by integrating out x from the joint distribution,

π(β) ∝
∫
X
π(β, x)dx = K(β)

∫
x
π(x)βdx (1.11)

and so π(β) ∝
∫
x π(x)βdx. Thus the chain can end up spending dramatically dif-

ferent amounts of time within each temperature level; a problem exacerbated with
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Figure 1.4: Tempered Densities for β={1,0.5,0.1,0.005}, corresponding to (dark
blue), (light blue), (red) and (dark red) respectively with normalising constants
K(1) = 1, K(0.5) = 0.21, K(0.1) = 0.04, K(0.005) = 0.009.

higher dimensionality. Indeed, this is an issue explored by Wang and Landau [2001]

and later (and specifically for a general state space simulated tempering algorithm)

Atchadé and Liu [2004]. Also, importance sampling, or more specifically, meth-

ods such as bridge sampling, Meng and Schilling [2002], can be used to attempt to

approximate normalisation constants but this is a non-trivial task in multi-modal

settings.

As a concrete example of the dangers of using un-normalised marginals for

the simulated tempering algorithm consider Figure 1.3 with normalised tempered

densities for a Gaussian mixture target distribution and the contrastingly powered

up but un-normalised versions in Figure 1.4. Numerical integration allow us to

compute the marginal distribution of the β’s: π(β = 0.005) = 0.77, π(β = 0.1) =

0.19, π(β = 0.5) = 0.03, π(β = 1) = 0.007. Even in this single dimensional setting

the Markov chain on the augmented state space would spend less that 0.7% of its

time exploring the target cold state.

Example of the ST algorithm:

To demonstrate the utility of the simulated tempering algorithm, the toy problems

from Figures 1.1 and 1.2 are revisited. Recall, the respective chains were unable

to escape local modes when using a finite run Gaussian RWM algorithm. By using
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a suitably constructed ST algorithm with a simple three level geometric schedule,

{1, 0.05, 0.052}, (and using importance sampling to normalise the marginals), the

resulting Markov chain successfully explores all modes in the target distribution as

can be seen in Figure 1.5.

Figure 1.5: Top plots: are for the 1-dimensional example from Figure 1.1 and show
the target density (black) and kernel density estimates (red) for the failure case
using RWM (left) and the successful case using the ST algorithm (right). Bottom
plots: are for the 2-dimensional example from Figure 1.2 with target density (black)
and over plotted sample points (red), again for the failure case using RWM (left)
and the successful case using the ST algorithm (right).

A convincing plot, in Figure 1.6, for the 1-dimensional example in Figure 1.5,

shows that it is indeed the auxiliary hot states mixing that is allowing effective inter-

modal mixing. Figure 1.6 shows the trace plot for the simulated tempering algorithm

for the moves between 22000 and 24000 iterations. The background colour indicates

the temperature that the chain is at, with dark red being the hottest state and blue

being the cold target state. It is clear from the plot that the jumps between the
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key modal areas of density in the cold state are occurring due to the mixing of the

chain in the hotter states, with this mixing information then being fed back to the

cold state.

Figure 1.6: Trace plot of a simulated tempering chain targeting the 1 dimensional
distribution from Figure 1.1. The inverse temperature schedule is a simple 3 level
geometric schedule, {1, 0.05, 0.052} and the respective temperature at each iteration
is indicated by the background colour, with dark red being the hottest (0.052), pink
the intermediate temperature (0.05) and blue the target cold state. This highlights
how the chain is only able to traverse between areas of significant mass when in the
hottest states.

1.4.2 Parallel Tempering (PT) Algorithm

The major practical drawback of using the ST algorithm is with regards to the

lack of normalised marginals at each of the temperature levels. In toy or simple

low dimensional examples numerical integration or well designed importance sam-

pling methods could be used, although this essentially defeats the need to then use

MCMC. In high dimensional, complex settings this isn’t feasible.

Consider running, n, Markov chains in parallel with one at each of the differ-

ent temperature levels that the previously considered ST algorithm could have used,

and denote the inverse temperature levels {β0, . . . , βn} where 1 = β0 > . . . > βn > 0.
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For this augmented state space, X n, the limiting target distribution is defined to be

πn(x0, x1, . . . , xn) ∝ πβ0(x0)πβ1(x1) . . . πβn(xn).

The chains running at the hotter temperatures have the improved fast mixing

and the aim is to pass this mixing information to the cold state target chain. One

approach is to propose a swap move between two chains in tandem; essentially

proposing a jump in each chain to the location of the chain at the other (typically

consecutive) temperature level.

Suppose a swap type move is proposed between inverse temperature levels

βj and βk. To ensure that this swap move preserves invariance it will be accepted

based on the usual Metropolis-Hastings acceptance probability,

min

(
1,
πβj (xk)πβk(xj)

πβj (xj)πβk(xk)

)
. (1.12)

Hence using this setup gives the same benefits as ST with the auxiliary hot

state mixing information aiding the inter-modal mixing in the cold states. However,

it is clear from equation (1.12) that the swap acceptance probability no longer

depends on any marginal temperature normalisation constants since they all cancel

in the ratio.

Although, very close to the ST procedure with obvious tweaking, the PT

procedure is now given and it will be referred to throughout the remainder of the

thesis with the shorthand notation PT:

Parallel Tempering (PT) Algorithm:

• Choose a sequence of tempering values 0 ≤ βn < βn−1 < . . . < β1 < β0 = 1.

• Choose initial values of the chains for each temperature level, x0
0, x

0
1, . . . , x

0
n.

• Choose the proposal mechanisms for all within temperature level type moves,

denoted qβj (y|x) for j = 0, 1, . . . , n.

• Choose the number, m, of within temperature proposals the chains will per-

form before attempting a swap type move and choose the total number, s, of

swap moves that will be attempted.

• After running the chains in parallel for a burn-in period, iterate s times:
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1. Uniformly randomly select a pair of adjacent temperatures, 1/βj and

1/βj+1 say, for which a swap move is proposed, and where the values of

the respective chains are (currently) xj and xj+1.

2. Compute the acceptance ratio for the proposed swap and accept the swap

with probability equal to

min

(
1,
π(xj)

βj+1π(xj+1)βj

π(xj)βjπ(xj+1)βj+1

)
. (1.13)

3. Perform m within temperature moves for each of the (n + 1) chains ac-

cording to their respectively specified proposal mechanisms.

Note that in this setup only swap moves between consecutive temperatures is con-

sidered. The reason for this will be apparent from the discussion on optimal tuning

for the PT algorithm discussed in Section 1.5. Also note the significant opportunity

to parallelise this approach so that the n chains don’t require n times longer run-

time; indeed, VanDerwerken and Schmidler [2013] note substantial computational

gains can be made for the PT algorithm.

1.4.3 Associated and Rival MCMC Algorithms for Multi-modality

For completeness, this section discusses some of the notable and associated algo-

rithms used in an MCMC framework that are either closely linked to the ST and

PT algorithms or have rivaling approaches altogether.

• The Equi-Energy Sampler, Kou et al. [2006], Andrieu et al. [2007], is an ap-

proach very similar to the PT algorithm. Suppose that the target distribution

has the form π(x) ∝ exp{−h(x)} where h(x) denotes the energy. Then sup-

pose a sequence of energy bands are created (potentially adaptively through

the run of the algorithm Schreck et al. [2013]) with H0 < H1 . . . < Hn+1 =∞
with H0 < infx∈Xh(x), hence partitioning the energy space.

The basic idea is that multiple chains are run on a sequence of n (truncated)

tempered target distributions with the ith given by πi(x) ∝ exp{−h(x)∨Hi}.
The samples generated at each level are grouped into the (typically predefined)

energy bands partitioned by the Hi’s. The process begins by only sampling

from the π0(·) distribution. After some burn-in period, sampling from π1(·)
begins in parallel but with communication with the historical samples from

π0(·) via “swap moves” similar to the PT algorithm approach. This process
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continues, sequentially adding new levels until the target state is reached at

πn+1(·).

The “swap moves” between target levels are proposed and accepted with the

same MH ratio as in the PT approach. The major difference is that the

swap location from the hotter temperature level are selected uniformly from

all historical locations of the hotter chain that share the same energy band

indicator as the cooler chain; thus inducing high acceptance rates of the swap

proposals.

• Tempered Transitions: Neal [1996] introduced the tempered transitions

approach to sampling from a multi-modal target distribution in an MCMC

framework. Like the ST and PT algorithms this method still utilises tempered

target distributions. However, unlike the PT and ST algorithms, the core

Markov chain requires no state-space augmentation but instead the tempered

targets are interwoven into the proposal mechanism. Essentially, the proposal

is made up from a sequence of proposals that create a path through the chosen

sequence of tempered target levels to the hottest state and then back to the

cold target state by which point the hope is that the final position is in a

different mode. As will be seen, the number of temperature levels required in

high dimensional tempering procedures depends on the dimension and so the

proposal complexity can scale quite badly with dimension and indeed without

very carefully constructed paths, the acceptance of these moves deteriorates

with dimension making the method difficult to tune.

• Mode Jumping Proposals: Tjelmeland and Hegstad [2001] designs an algo-

rithm that uses optimisation techniques to find a localised mode upon proposal

of a large initial proposal away from the current mode; then proposing from an

appropriate Gaussian distribution from the mode point. Indeed this has some

interesting links with the work in Chapter 4, specifically Section 4.3.4, where

optimisation methods are used. Both Al-Awadhi et al. [2004] and Jennison

and Sharp [2006] consider similar approaches, with the former more generally

for a Reversible Jump MCMC framework, and essentially use a sequence of

localised MH moves to be made after an ambitious initial move has been pro-

posed in the hope that the ensuing localised moves will drift towards the mode

point. Behrens [2008] takes a slightly different approach by doing a prior scan

of the statespace for modes using a series of parallel, optimising, simulated

annealing procedures designed to locate modes and then using e.g mode point

gradient based information, a (Gaussian) mixture model is fitted and used as
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a standard proposal during the MH scheme. This has the nice feature that

the actual run of the algorithm is relatively cheap but setup costs are high,

and the mixture approximation’s accuracy can be an issue resulting in low

acceptance rates. A criticism of any scheme relying on locating modes prior

to the run of the algorithm is that such approaches tend to leave no ability to

adapt if modes are missed initially or if the fitted mixture proposal is poorly

fitted.

• A Repulsive-Attractive Metropolis Algorithm for Multimodality:

Tak et al. [2016] introduce another very interesting idea where the proposal

mechanism, similar to the tempered transitions approach, is constructed from

a sequence of proposals. Only localised MH moves are made but for the first

stage of the sequence of moves that make up the proposal trajectory, the in-

verse of the target distribution π is targeted, creating a repulsion effect away

from the local mode and (hopefully) then attracted towards a different mode

on the latter part of the trajectory. Only a single chain is needed, but like the

tempered transitions approach, it is difficult to tune the number of steps in

the path of the proposal especially in high dimensional complex settings.

• Nemeth et al. [2017] introduce an ingenious approach that augments the state

space in a way that permits a target distribution with direct bridging mass

between modes. Ultimately this allows the fast mixing HMC algorithm to

sample from this target by moving along the contours of the extended target

density. This approach requires a computational cost which could become

large since the method requires N “temperature levels” similar to the PT

approach but then for the running of the HMC algorithm then augmentation

to 2N variables is required.

• Importance Sampling and SMC: Additionally, and beyond the scope of

this review, there’s a vast range of competing approaches from the Importance

Sampling and Sequential Monte Carlo (SMC) literature e.g. Neal [2001]. A nice

idea that is closely linked to the PT approach is in Gramacy et al. [2010], where

the issue of “wasted” samples in the PT algorithm arising from the augmented

levels is addressed. Gramacy et al. [2010] proposes using these as importance

samples for the cold target state and explores the optimal weighting strategy.

This thesis focuses on the development of two novel improvements to the PT

algorithm. The new methodology is designed to overcome core issues that hinder

the mixing speed of the chain in the PT algorithm. It is worth noting that all the
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competing methods noted above suffer from the the problems noted in Chapter 4,

and almost all the methods noted above suffer from the issues targeted in Chapter 2.

Hence, the thesis, albeit entirely focused on the PT approach, is in many senses

more broadly applicable to methodological improvement for many of the alternative

multi-modal solutions.

1.5 Optimal Setup of the Temperature Schedule

In both the ST and PT algorithms, a sequence of n + 1 inverse temperature levels

were required, {β0, . . . , βn}. Little was explained about why a schedule with inter-

mediate levels, rather than simply 2 levels (a hot level and cold level) are needed.

Clearly, once a sufficiently hot level has been chosen then the corresponding chain

can mix through all areas of significant probability mass. Recall the acceptance

probabilities for the ST and PT algorithms respectively (1.10) and (1.12); these

preserve the invariance to π and if one considers the hotter state chain as providing

a proposal for the next location of the colder state chain then proposals to locations

that are unlikely under the target distribution are unlikely to be accepted.

As a heuristic, consider a one dimensional target distribution π which is a

standard Gaussian distribution, i.e.

π(x) ∝ exp

(
−x

2

2

)
and so at inverse temperature level β

πβ(x) ∝ exp

(
−βx

2

2

)
hence the target distribution is still Gaussian but with variance 1/β. Figure 1.7

shows the normalised density of π(x) but is over-plotted by the (also normalised)

target density at inverse temperature level β = 0.1. Clearly, locations for samples

from the hotter target are very likely to occur in areas that are unrepresentative

of the cold state target and hence one would expect that temperature swap move

proposals from these locations would be rejected.

The bigger the gap in the temperature space between consecutive levels the

larger that this issue becomes and as the gap increases the acceptance rate of swap

moves between these levels diminishes to zero. Consequently, a schedule with inter-

mediate temperatures is used to feed the mixing information from these hot states

through to the cold target state.
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Figure 1.7: Black line: density of a standard Gaussian distribution. Red line:
density of a standard Gaussian at inverse temperature level β = 0.1. Note the
limited overlap of representative sample locations between the two densities.

The setup of these temperature levels is a fundamental issue to the algo-

rithm’s performance. Just like tuning the scaling of the variance when using RWM,

Roberts et al. [1997], there is a “Goldilocks” principle.

• Making the spacings too large results in low acceptance rates and slow mixing

through the temperature schedule.

• Making the spacings too small means that there are many intermediate levels

to mix through on the temperature schedule to get from the hot state to the

cold state; again leading to slow mixing through the temperature schedule.

This issue becomes increasingly problematic with an increase in dimensional-

ity of the problem. To emphasise this consider a d-dimensional target distribution π

which is constructed from d iid standard Gaussian marginals. The swap acceptance

probability for a temperature swap move between inverse temperatures β and β
′

in

a PT setup where y ∼ πβ′ and x ∼ πβ is

min

{
1, exp

(
−β

′ − β
2

d∑
i=1

[
x2
i − y2

i

])}
(1.14)

but as d → ∞ then by the law of large numbers
∑d

i=1 x
2
i → d Eβ(X2) = d/β and

similarly
∑d

i=1 y
2
i → d Eβ′ (Y

2) = d/β
′
; so for large d then (1.14) is approximately
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given by

min

1, exp

−
(
β
′ − β

)2

2ββ′
d


 . (1.15)

The acceptance ratio is then clearly exponentially decreasing in dimension. Conse-

quently, for a fixed spacing ε = β
′−β, the acceptance probability of a swap between

consecutive temperatures will degenerate to 0 in the limit as d→∞. If the spacing

here was scaled according to the dimensionality so that ε ∝ O(d−1/2), then the swap

move acceptance probability in (1.15) stabilises to have a non degenerate limit as

d→∞.

This dimensionality degradation and ambition of proposal trade-off motivates

seeking a temperature schedule that has spacings that induce an “optimal” mixing

through the temperature space.

1.5.1 Existing Optimal Scaling for Temperature Spacings Results

Atchadé et al. [2011] investigate the problem of selecting temperature spacings when

the dimensionality, d, of the target distribution tends towards infinity. Suppose

a swap move between two consecutive temperature levels, β and β′ = β + ε is

proposed. To optimise the ambition of the consecutive spacings, a heuristically

sensible approach is to maximise (with respect to ε) the ESJD (see Section 1.2

and Definition 1.2.4) through the inverse temperature space. This is the approach

of Atchadé et al. [2011] and their specific form of ESJD through the temperature

schedule will be denoted herein by ESJDβ

ESJDβ = Eπ
[
(γ − β)2

]
(1.16)

where γ = β + ε for some ε > 0 if the proposed swap is accepted and γ = β

otherwise. The expectation is taken with respect to π, i.e. assuming invariance has

been reached. Note that ESJDβ will be used as the target metric for optimality in

both Theorems 3.2.1 and 5.1.1 later on in this thesis.

Indeed, for the PT algorithm,

ESJDβ = Eπ
[
(γ − β)2

]
= ε2 × Eπ

[
P(Swap accepted)

]
= ε2 × Eπ

[
min

(
1,
π(xj)

βkπ(xk)
βj

π(xj)βjπ(xk)βk

)]
=: ε2 ×ACC. (1.17)
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It is worth noting for those familiar with scaling arguments that the second equality

here is usually non-trivial and needs justification; in this case, with the discrete and

one-dimensional nature of the temperature schedule this equality is trivial.

For tractability of optimisation, Atchadé et al. [2011] restrict to the set of

d-dimensional target distributions with (iid) form:

π(x) ∝
d∏
i=1

f(xi). (1.18)

Furthermore, motivated by (1.15), for non degeneracy of the limiting behaviour of

the ESJDβ as d→∞ then the spacing, ε, between consecutive levels must have a

form

ε =
`

d1/2
. (1.19)

with ` a positive constant to be chosen to attain an optimal ESJDβ. Pursuit of the

optimal `, denoted ˆ̀, leads to Theorem 1 of Atchadé et al. [2011]:

Theorem 1.5.1. For the parallel tempering algorithm, under the above setting of

(1.18) and (1.19), then as d → ∞ the ESJDβ is maximised when ` is chosen to

maximise

`2 × 2Φ

(
−`
√
I(β)

2

)
where I(β) = V arπβ

(
f(x)

)
. This optimal choice of ` corresponds to an acceptance

rate of swap moves of 0.234 (3 d.p.). The maximised asymptotic ESJD is given by:

ESJDβ = (2/dI(β))×ACC × [Φ−1(ACC/2)]2. (1.20)

Using an almost identical proof, Atchadé et al. [2011] showed an equivalent

result for the marginally normalised ST approach, where the ESJDβ then has the

slightly different form of

ESJDβ = ε2 × Eπ

[
min

(
1,
K(β + ε)π(x)β+ε

K(β)π(x)β

)]
=: ε2 ×ACC. (1.21)

The result of which is given in Theorem 2 of Atchadé et al. [2011] (given here).

Theorem 1.5.2. For the simulated tempering algorithm, under the above setting

of (1.18), (1.19) and (1.21), then as d → ∞ the ESJDβ is maximised when ` is

chosen to maximise

`2 × 2Φ

(
−`
√
I(β)

2

)
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where I(β) = V arπβ
(
f(x)

)
. This optimal choice of ` corresponds to an acceptance

rate of swap moves of 0.234 (3 d.p.). The maximised asymptotic ESJD is given by:

ESJDβ = (4/dI(β))×ACC × [Φ−1(ACC/2)]2. (1.22)

Insight and Impact of Theorems 1.5.1 and 1.5.2:

Theorems 1.5.1 and 1.5.2 give explicit formulas for derivation of the optimal

` for consecutive temperature spacings. Albeit derived for target distributions that

are assumed to have iid type construction in (1.18), for a practitioner, the associated

0.234 optimal swap acceptance rate gives powerful setup guidelines. The theorems

also suggest a strategy for optimal setup starting with a chain at the hottest level

and tuning the spacing to successively colder temperature levels based on the swap

acceptance rate to attain consecutive swap rates close to 0.234. Indeed, using a

stochastic approximation algorithm, see Robbins and Monro [1951], then Miasoje-

dow et al. [2013] take an adaptive MCMC approach (see Roberts and Rosenthal

[2009]) to the setup of the temperature spacings with the target being to exploit the

above 0.234 tuning suggested by Atchadé et al. [2011].

In practice, for most interesting problems, the target will not satisfy the iid

assumption (1.18). Atchadé et al. [2011] consider using the 0.234 rule when tar-

geting an inhomogeneous Gaussian distribution and the Ising model, with neither

example satisfying the distributional assumption in (1.18). The first of these ex-

amples illustrates that even when the distribution doesn’t satisfy equation (1.18)

the 0.234 rule still appears optimal when considering the empirical ESJDβ over

different spacings.

A highly insightful example is for the Ising model. Atchadé et al. [2011]

compares the efficiency between an implementation of the 0.234 rule versus a tradi-

tionally chosen method of geometric spacing for the Ising model. The Ising model

exhibits a phase transition (which is when there is a dramatic change in form of the

distribution) as the temperature reaches some hot critical value. Using the tradi-

tional geometric schedule, the parallel tempering algorithm performs poorly close

to this temperature. However, Atchadé et al. [2011] use the 0.234 rule which al-

locates a cluster of temperature levels around the critical temperature making it

easier for the temperature swaps to “bridge” this critical temperature level (due to

the temperature level move being less ambitious).

Theorems 1.5.1 and 1.5.2 give insight between the relative efficiencies of the

simulated and parallel tempering schemes. The ESJDβ for the PT algorithm given
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in equation (1.20) is half that for the ESJDβ of the ST procedure given in equa-

tion (1.21). Also, Atchadé et al. [2011] show that the optimal spacings between

inverse temperature levels are
√

2 times larger for ST than for PT. This implies

that compared to the PT scheme, the ST procedure is twice as efficient at mixing

across the temperature space. This suggests preference towards the simulated tem-

pering scheme. However, the optimal ESJDβ was computed for the ST algorithm

assuming the marginal normalisation constants can be found (whereas the normal-

ising constants aren’t needed for parallel tempering). Furthermore, the temperature

swap in a PT scheme aids the mixing for two chains simultaneously whereas with

ST mixing is only for a single chain.

Recall that in Section 1.2 the use of ESJD was justified under the assumption

that there is an associated limiting diffusion process. Atchadé et al. [2011] used the

ESJD but noted that full justification requires proof of existence of a limiting

diffusion process. This was subsequently studied in Roberts and Rosenthal [2014].

Initially and crucially Roberts and Rosenthal [2014] establish that for two non-

explosive diffusion processes Xσ1 and Xσ2 with the same invariant distribution, π,

and where σ1(·) and σ2(·) are the variance functions, then if σ1(x) > σ2(x) for all

points x in the state space then Xσ1 is more efficient with respect to the asymptotic

variance of estimates of L2(π) functionals i.e. for f ∈ L2(π)

lim
T→∞

T−1/2 Var

(∫ T

0
f(Xσ1

s ) ds

)
≤ lim

T→∞
T−1/2 Var

(∫ T

0
f(Xσ2

s ) ds

)
.

Roberts and Rosenthal [2014] compute the diffusion limit of the inverse tempera-

ture component, i.e. β, of an ST procedure under the same assumptions on the

scaling and target form as Atchadé et al. [2011]. This gives a functional form of

the diffusion volatility as a function of `, i.e. σ`(β). This can be maximised with

respect to ` at the fixed inverse temperature level β to give ˆ̀(β), ensuring optimal

asymptotic efficiency. Reassuringly, Roberts and Rosenthal [2014] concluded that

optimal spacings are identical to those considered optimal in Atchadé et al. [2011]

and have a corresponding expected acceptance rate of 0.234 between consecutive

temperature levels.

1.5.2 The Relationship with Geometric Spacings

The problem of choosing optimal spacings has been studied previously in the physics

literature e.g. Kone and Kofke [2005] and Predescu et al. [2004]. These papers

conclude that the optimal spacings correspond to roughly a 0.23 acceptance rate
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between swap moves (in agreement with the scaling theorems of Atchadé et al.

[2011]). However, in both cases this is found for distribution functions with far

more restrictive forms than that of equation (1.18).

A major observation of Atchadé et al. [2011] is that temperature levels should

be setup consecutively. Previous studies and practitioners typically used a geometric

inverse temperature schedule.

Definition 1.5.1 (Geometric Temperature Schedule). A geometric (inverse)

temperature schedule refers to a temperature schedule setup with inverse tem-

peratures given by 1 = β0 > β1 > . . . > βn > 0 where for a fixed constant C ∈ (0, 1)

βi+1 = Cβi.

Atchadé et al. [2011] show that, under their setting, the optimal temperature

schedule will only be geometrically derived if I(β) = Varfβ (log f) ∝ 1/β2.

To see this, consider the optimal scaling PT result in Theorem 1.5.1 and note

that the limiting ESJDβ is given by

`2

d
× 2Φ

(
−`
√
I(β)

2

)
.

Substituting in u = `
√
I(β) and then maximising now with respect to u gives a value

û (which importantly doesn’t depend on I(β)). Then the corresponding optimal `

is given by

ˆ̀=
û√
I(β)

.

Now for a geometric schedule then ˆ̀ must be proportional to β with the

constant of proportionality not depending on the value of β. This happens if I(β) ∝
1/β2. A key example is for the setting of a uni-modal iid Gaussian target since

in this case I(β) = 1/β2. This is the fundamental justification for the use of a

geometric schedule for the canonical Gaussian empirical examples of Section 2.7,

and later on, this is used in the derivation of the result in Corollary 5.2.1.

1.6 Torpid and Rapid Mixing of the PT Algorithm

Atchadé et al. [2011] and Roberts and Rosenthal [2014] give practical guidance

to setup the temperature schedule in an optimal way. From the perspective of the

ST/PT algorithm, both Atchadé et al. [2011] and Roberts and Rosenthal [2014], seek

a Markov chain that can mix in the inverse temperature component “optimally”.
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Heuristically, this means that their approach seeks a setup that instigates a chain

that can move from the hot state to the cold state (and vice versa) as quickly as

possible. Such an approach doesn’t consider how well the within temperature chains

are mixing or even worse whether the temperature marginal component is only being

tuned to work in a subset of the modes. The latter issue is the focus of study in

Chapters 4 and 5.

The performance of the full chain for an ST/PT approach has been studied

in detail in Zheng [2003], Madras and Zheng [2003], Woodard et al. [2009b] and

Woodard et al. [2009a]. Essentially, these studies partition the state space into

regions (typically containing a mode) and study the resulting ST Markov chain by

breaking its mixing efficiency into three intuitive core components:

1. The mixing of the chain between regions at the hot state;

2. The mixing of the chain within a region;

3. The mixing of the chain through the temperature levels via the swap move.

Woodard et al. [2009a] and Woodard et al. [2009b] have the most informative

results regarding the scalability of the ST and PT approaches; motivating the core

strategies in this thesis. Section 1.2.2 gave the core definitions and motivation for

analysing the spectral gap of a Markov chain and it is this quantity that is studied

in detail in Woodard et al. [2009a] and Woodard et al. [2009b].

The spectral gap gives (a bound on) the rate of convergence of the Markov

chain to invariance and so analysing its behaviour, as the dimensionality of the state

space increases, indicates how robust the algorithm is to the curse of dimensionality.

Inevitably, the rate of convergence will decrease as the dimensionality increases hence

the spectral gap will decrease. Characterising this decrease is the focus of Woodard

et al. [2009a] and Woodard et al. [2009b].

Definition 1.6.1 (Rapid and Torpid Mixing). As in Woodard et al. [2009a] and

Woodard et al. [2009b]:

• A Markov chain is said to be Rapidly Mixing if the spectral gap, defined

in (1.7), decays at most polynomially quickly with respect to the state space

dimensionality.

• A Markov chain is said to be Torpidly Mixing if the spectral gap, defined

in (1.7), decays at least exponentially quickly with respect to the state space

dimensionality.
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Of the two types of mixing characterised in Definition 1.6.1, the preferential

type of mixing is Rapid mixing which scales far less badly as the dimensionality

grows with the dimensionality of the problem.

The result that is rather condemning for the scalability of the PT and ST

algorithms is given in Woodard et al. [2009b][Corollary 3.2] and with full details to

be found in their paper, it states that if the following three properties hold then the

ensuing ST/PT algorithm will be Torpidly mixing. If there exists a region A and

inverse temperature values β∗ < β∗∗ such that:

1. The supremum of the conductance of A (a measure of the chain’s ability

to escape the local region, A) over inverse temperatures above a threshold

value, β∗, is exponentially decreasing with dimension. More formally, the

conductance of a set A ∈ B with respect to a target distribution measure µ is

given by ∫
A P (x,Ac)π(dx)

π(A)π(Ac)

where P is the transition kernel of the Markov chain and Ac denotes the

compliment of A.

2. The supremum of the persistence of A (a measure of the decrease in probability

weight of A at a hot temperature relative to its weight at the cold target state)

over inverse temperatures, in the range [β∗, β∗∗), is exponentially decreasing.

3. The supremum of the overlap (a measure of the weight indifference of A be-

tween a pair of temperature levels) for all pairings β ∈ [0, β∗) and β
′ ∈ (β∗∗, 1]

is exponentially decreasing with dimension.

Woodard et al. [2009b] illustrates that the important canonical setting (that

this thesis focuses on) of the Gaussian mixture target with non-identical covariance

structures is Torpidly mixing. An essential failing in this case is the persistence

property, this will be a key focus of the work in Chapter 4.

Additionally, Section 2 attempts to overcome some of the issues that are

problematic for the overlap property restricting the ambition of the temperature

spacings meaning a less dense schedule is needed in certain settings.

It is worth noting that, Woodard et al. [2009a], provides an interesting result

that gives conditions guaranteeing Rapid mixing for the ST and PT approaches.

The quantities bounding the spectral gap from below this time are similar to those

sufficient for the Torpid mixing in Woodard et al. [2009b]. Details are in the paper

but heuristically, conditions guaranteeing Rapid mixing are: the mixing quality in
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each (unimodal) region; the mixing speed of the chain at the hottest levels between

regions; a variation of the persistence property, described above, decaying only poly-

nomially with dimension; and a variation of the overlap property, described above,

decaying only polynomially with dimension.

For the canonical Gaussian mixture target setting, Woodard et al. [2009a]

illustrate that Rapid mixing can be achieved for a symmetric mode setup. This

is the form of the target distributions primarily used for the empirical examples

in Chapter 2 and so it is worth noting that even though the PT algorithm used in

those simulations is theoretically geometrically ergodic, in practice, the performance

is poor for a finite run of the algorithm.
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Chapter 2

Quantile Preserved Tempering

2.1 Introduction

Papaspiliopoulos and Roberts [2003] and Papaspiliopoulos et al. [2007] both illus-

trate the importance that reparametrisation can have on the efficiency of an MCMC

algorithm (especially a Gibbs sampler). Dependence structure under a particular

parametrisation can mean that a Gibbs sampler finds it hard to make large moves

in a particular component conditional on the value of the other parameters, Roberts

and Sahu [1997]. This leads to a very poorly mixing algorithm and thus high

asymptotic variances of the sample estimates. However, it is sometimes possible

to reparametrise in a way that reduces (and in some cases eliminates) the depen-

dence between parameters; thus reducing or even removing the restrictive behaviour

of the component-wise Gibbs moves.

Parallel/simulated tempering algorithms can be considered similar proce-

dures to that of a Gibbs sampler where there are deterministic/random scans which

mix between the within temperature moves, in the target state space, and swap

moves, through the temperature space. It will become apparent that this Gibbs

style behaviour is one of the major driving factors limiting the ambitiousness of

the temperature spacings leading to the concept of an optimal spacing between

temperature levels, Atchadé et al. [2011].

The following heuristic analyses a simulated tempering procedure for a d-

dimensional standard Gaussian target distribution. It illustrates exactly how a

dependence between state-space location and temperature can be prohibitive to the

acceptance of ambitious temperature swap moves. It is then established that a

reparametrisation in this canonical case overcomes this issue entirely, allowing for

arbitrarily ambitious swap moves through the temperature schedule.
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Then the following sections in this chapter develop methodology to exploit

this idea and make it practically useful in a multi-modal setting. Albeit derived sep-

arately and in the context of tempering, there are links with the reparametrisation

techniques used in the RJMCMC context of Hastie [2005].

2.2 Gibbs Behaviour in a Tempering Setting

Consider the following example of a simulated tempering procedure on a d-dimensional

Gaussian target distribution:

x ∼ N(0, Id). (2.1)

Hence,

π(x) =
1

(2π)d/2
exp

(
−x

Tx

2

)
, (2.2)

and so

K(β)π(x)β =
βd/2

(2π)d/2
exp

(
−βx

Tx

2

)
. (2.3)

where K(β) =
∫
πβ(z)dz. The tempered density is therefore still Gaussian and

indeed at inverse temperature level β, x ∼ N
(
0, Idβ

)
and thus

β
xTx

d
∼ χ2

d, (2.4)

hence

E
(
xTx

d

)
=

1

β
and Var

(
xTx

d

)
=

1

β2
. (2.5)

Suppose that the simulated tempering algorithm is currently running at the

inverse temperature level β and that a temperature swap move proposal to a new

level β
′

is made. In the standard simulated tempering algorithm, given in Sec-

tion 1.4.1, this temperature swap is equivalent to the joint move

(β, x)→ (β
′
, x). (2.6)

Figure 2.1 shows the joint density function between the dimension-standardised

magnitude of x, i.e. (xTx)/d, and the temperature, i.e. 1/β. There is a strong depen-

dence between these two variables. Large proposals for moves in the temperature

space, characterized by moves of the type given in equation (2.6) are more likely to

be rejected than smaller less ambitious moves.

Suppose that instead of the move at a temperature swap being characterised
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Figure 2.1: Joint distribution for xT x
d against 1/β when the target at the cold

state is the standard normal in d-dimensions. This shows that there is a significant
dependence structure between the location and temperature values as would be
expected.

by equation (2.6) consider a joint move of the form

(β, x)→ (β
′
, x
′
), (2.7)

where, conditional on the proposal of β
′
, then the proposal for x

′
is made determin-

istically so that

x
′

=

(
β

β′

) 1
2

x. (2.8)

The resulting acceptance rate for the swap move is then given by

min

(
1,
K(β

′
)π(x

′
)β
′

K(β)π(x)β

∣∣∣∣∣∂x
′

∂x

∣∣∣∣∣
)

= min

(
1,

β
′d/2

(2π)d/2
exp(−β

′
x
′T
x
′

2 )

βd/2

(2π)d/2
exp(−βxT x

2 )

(
β

β′

) d
2
)

= 1. (2.9)

In this example, by making the deterministic reparametrisation move for the

location parameters, it is apparent that the acceptance probability of a temperature

swap move is independent of the location in the state-space, X . Atchadé et al. [2011]

showed that in general the swap moves require spacings sizes that are O(d−1/2)

meaning that O(d1/2) levels are required to reach a pre-specified hot state level.

The reparametrisation in this case has allowed for infinitely higher order behaviour
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of the scaling of the temperature spacings with respect to dimensionality; indeed,

entirely overcoming the curse of dimensionality.

Figure 2.2 provides further intuition. Suppose that the current chain is at

the hotter (red) state and the location of the chain is at the point indicated with

the red dot. If a swap move to the colder (black) temperature is proposed and the

traditional swap scheme is used, the move would very likely be rejected since the

proposal is effectively trying to move a point that is “representative” in the hotter

state to a location very “unrepresentative” (black point) in the colder state. What is

meant by “representative” will be explained below. However, if the aforementioned

reparametrisation is made in conjunction with the swap proposal then a joint move

proposal is made with the location now being “representative” under the colder

state (blue point).
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Figure 2.2: The density functions for two tempered one dimensional standard Gaus-
sian distributions with tempering values, β, being 0.8 and 0.1, black and red respec-
tively. The move locations of the red particle are illustrated for the standard move
(black point) and the reparametrised move location (blue point).

But what does it mean for a swap move to have a “representative” location

in the new temperature level? Suppose that the current location of the chain in a

simulated tempering algorithm is x at inverse temperature level β and that a tem-

perature swap move β → β
′

is proposed along with a reparametrised deterministic

shift of x → x
′

= g(x, β, β
′
). Now suppose that g is chosen in a way that pre-
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serves the quantile between the two levels. Denoting the CDF of πβ by Fβ(·) then

preservation of the quantile requires g to be such that

Fβ(x) = Fβ′ (g(x, β, β
′
)) (2.10)

and so by differentiating wrt x and rearranging gives

1 =
πβ
′
(g(x, β, β

′
))

πβ(x)

∣∣∣∣∣∂g(x, β, β
′
)

∂x

∣∣∣∣∣ (2.11)

which is exactly the acceptance ratio in the temperature swap move for the simulated

tempering move. Ensuring quantile preservation gives a swap acceptance probability

of 1. In this Gaussian setting one is simply making a reparametrised move that

preserves the quantile value at the different levels.

Unfortunately this doesn’t give a general approach to making all swap moves

have acceptance probability 1 regardless of the density. For reversibility to hold one

needs to ensure that the function g is a bijection with a well defined inverse. Alas,

solutions to equation (2.11) are certainly not necessarily unique in any multidimen-

sional non-trivial distribution and so it is not a good idea to solve numerically as it

is unlikely to give reversible results.

In a broad class of applications it is not unreasonable to make a Gaussian

approximation to a local mode. Section 2.3 will establish that this heuristic extends

immediately to a target that is any general d-dimensional Gaussian. Then the rest

of the chapter will explore and develop methodology to implement this simple idea

to enhance the speed of the mixing through the temperature schedule in a parallel

tempering setup.

2.3 A More General Reparametrisation Approach

Suppose that a more complex multi-modal distribution is now targeted. Even if the

local modes can be approximated by a Gaussian distribution, it is unlikely that they

will have standard covariance structure.

Suppose that the target distribution is N(µ,Σ) then at inverse temperature

level β the hot state target will be N(µ, Σ
β ).

Consider a chain with current location, x, and suppose that a swap move

β → β
′

is proposed. The above heuristic motivates seeking a reparametrisation,

x → x
′
, based on quantile preservation, to make the acceptance probability of the

temperature swap independent of the location.
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Defining

z =

(
Σ

β

)−1/2 (
x− µ

)
a reparametrisation of x is sought, such that, for the proposed temperature move

β → β
′
x→ x

′
z → z

thus keeping the quantity z constant. To this end

x =

(
Σ

β

)1/2

z + µ

and x
′

=

(
Σ

β′

)1/2

z + µ

=

(
Σ

β′

)1/2((Σ

β

)−1/2(
x− µ

))
+ µ

=

(
β

β′

)1/2

(x− µ) + µ.

The (reparametrised) joint move is given by:

β → β
′

x→ x
′

=

(
β

β′

)1/2

(x− µ) + µ. (2.12)

A nice observation is the cancellation of the covariance matrix terms that

simplify the expression to only require knowledge/approximation of the mean point

µ for implementation. This type of move is similarly derived in Hastie [2005] where

the aim is to adaptively fit Gaussian mixtures to different models in a RJMCMC

framework and then propose swap moves between models using such moves. How-

ever, in that context the covariance structure also needs estimating since different

models have entirely different covariance structures.

As already stated, to perform such a move an approximation to the local

mode’s mean, i.e. µ̂, is required. Details of how this can be done are given in

Section 2.5. However, assuming there exists a technique that finds local mode points,

the next section explores the utilisation of the reparametrisation idea in a parallel

tempering context.
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2.4 Reparametrisation for Parallel Tempering

Simulated tempering provided the heuristics but without prior knowledge or (adap-

tive) estimation, e.g. Atchadé and Liu [2004], of the normalisation constants of the

temperature level marginals then such a procedure is impractical. Therefore, focus

will be given to the parallel tempering method.

It turns out that the use of the reparametrised move in the parallel tempering

setup can be very simple to implement. Essentially, there is the same setup as in the

standard PT algorithm but now there is utilisation of the reparametrised move when

proposing a swap move between a pair of chains at different temperature levels. All

heuristics carry over from before since a PT algorithm is essentially a population

with “communicating” swap move version of the simulated tempering algorithm.

Consequently, moves that allow for more ambitious temperature spacings in the

simulated tempering setting will allow more ambitious spacings in the PT setting.

The New Swap Move Procedure:

Suppose a swap move between two chains at temperatures β1 and β2 and that these

are located at positions x1 and x2 respectively. Furthermore, assume that these

locations have been assigned to local mode points µ1 and µ2.

Then using the reparametrisation motivated by Gaussian quantile preserva-

tion then

x1 → g(x1, β2, β1, µ1) and x2 → g(x2, β1, β2, µ2)

where

g(x, β
′
, β, µ) =

(
β

β′

)1/2

(x− µ) + µ. (2.13)

With d denoting the dimension of the state space, the resulting acceptance

ratio required for detailed balance to hold is

min

1,
π(g(x1, β2, β1, µ1))β2π(g(x2, β1, β2, µ2))β1

∣∣∣∂g(x2,β1,β2,µ2)
∂x1

∣∣∣∣∣∣∂g(x1,β2,β1,µ1)
∂x2

∣∣∣
π(x1)β1π(x2)β2


= min

1,
π(g(x1, β2, β1, µ1))β2π(g(x2, β1, β2, µ2))β1

(
β2

β1

)d/2(
β1

β2

)d/2
π(x1)β1π(x2)β2


= min

(
1,
π(g(x1, β2, β1, µ1))β2π(g(x2, β1, β2, µ2))β1

π(x1)β1π(x2)β2

)
. (2.14)
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Rather conveniently the Jacobian’s determinant values (present due to the

deterministic reparametrisations) cancel from the acceptance ratio.

As discussed in Section 2.3, for this move to be made feasible estimates of

the means of the local modes of the particles for which a swap move is proposed are

required, i.e. µ̂. Suggestions of how to do this are now given in Section 2.5.

2.5 The Local Mode Point Approximation

In order to perform the reparametrisation move in equation (2.13) an estimate of the

mean of the local modes is required i.e. a set of locations {µ1, . . . , µK} that will be

used as centring points for the reparametrisation. With symmetric modes the mean

and mode points coincide but in asymmetric modes then more thought is required,

see Section 2.8. In fact, in a general setting where the target distribution is in C4

and the target distribution is powered up to a super cold level, Section 3.4 justifies

setting the µi’s as the mode points of the local modes, i.e. ∂
∂xπ(µi) = 0. This is

since the spacings exhibit higher order behaviour when using the reparametrisation

move at the super cold temperatures in this case.

It is an entirely non-trivial problem to obtain estimates for the µi’s and even

K, the number of modes. Fitting any mixture model adaptively as in Hastie [2005]

can be quite dangerous in multi-modal settings where modes can be discovered later

in the run of the algorithms. As is highlighted in Roberts and Rosenthal [2007],

adaptive MCMC needs careful implementation to ensure the true distribution is

being targeted and the diminishing adaptation constraints mean that if new regions

of mass are discovered late on then the adaptation won’t have the ability to adapt

accordingly.

Section 2.6 introduces the proposed prototype algorithm, called QuanTA,

which exploits the aforementioned reparametrisation. The basic idea in the setup

is that through the use of a population-based setup, clustering methods exploit the

information in the population to establish estimates of the mode centres, about

which the reparametrisation is centred.

A population-based approach was decided upon for two major reasons. Firstly,

the easily provable invariance to the true target distribution, (recall Section 1.2.3);

secondly, the ability to “adapt” fully throughout the run of the algorithm upon

discovery of new modal regions. Additionally, the scalability can be favorable with

typically exploitable computational parallelisation. In the particular setting of in-

terest, there are two major considerations when applying a population based scheme

to estimate the mode points, µi:
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• In order that the Markovian property of the chains is preserved it is important

that only the “most recent” information is used to estimate the means.

• The estimates of the means of the local modes of the particles that are proposed

for a swap move cannot depend upon the location of these particles as this

would contradict the reversibility of the move.

An ideal approach would be to have a population of chains that at the point

of needing the µi’s to be estimated, one could fit a Dirichlet Process mixture model

with an unspecified number of modes, e.g. Neal [2000] and Kim et al. [2006]. This

can be done using a Gibbs sampler, switching between updates that sample a cluster

number and updates for the mixture distribution parameters; this can be compu-

tationally expensive, Raykov et al. [2016]. Indeed, Raykov et al. [2016] propose a

potential solution that would allow for adaptive designation of the number of modes,

see the end of Section 2.5.1 for details, but this is left as further work.

2.5.1 A Weighted K-Means Clustering Approach

The work done in this thesis considers the use of the reparametrisation move in toy

target distributions that are mixtures with a known number of components. Addi-

tionally, these have well separated modes. Thus, to cluster particle locations, fairly

naive approaches were considered. A computationally cheap algorithm that gave

good performance in these settings was sought. Hence, non-parametric, (relatively)

computationally cheap clustering procedures were considered using methods from

the Machine Learning literature, see Friedman et al. [2001].

Consequently, to find the µi’s, N multiple versions of the parallel tempering

scheme can be run in parallel and once a temperature swap type move is proposed

then a K-means clustering scheme is used, e.g. Hartigan and Wong [1979]. This

provides cluster centres that can then be used as either the µi’s or as initialisation

points for a localised optimisation method if the actual mode point is being sought.

There are many versions of the K-Means procedure that are implementable

but the one chosen for implementation is a Weighted K-Means Algorithm.

This method has the capacity to add weight and therefore leverage to points in the

mode centres’ determination. In the tempering setting this is an intuitively sensible

approach. This is because one would want the particles at the colder states, where

the modes are less disperse, to have more leverage in determining the mode point.

To back this up and motivate the chosen weighting strategy, consider the

the following setting and its associated maximum likelihood estimator. For a set of

temperatures βj for j = 1, . . . , n. If the target, π, was indeed a N(µ,Σ) distribution
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and there are mj draws (with the ith denoted by x
βj
i ) from πβj for j = 0, 1, . . . , n

then the maximum likelihood estimate for µ is∑n
j=1

∑mj
i=1 x

βj
i βj∑n

j=1

∑mj
i=1 βj

. (2.15)

Since Gaussian approximations to the local modes are being made then it is sensible

to weight the points as in the principled maximum likelihood framework.

Weighted Clustering:

The basic version of K-means groups a collection of points x1, . . . , xn in to M

clusters S1, . . . SM by selecting an allocation that minimises the following objective

function

argminS


M∑
i=1

n∑
j=1

1{xj∈Si}||xj − µi||
2

 (2.16)

where µi is the mean of the points allocated to the set Si, i.e.

µi =
1

|Si|

n∑
j=1

xj1{xj∈Si}. (2.17)

Thus, equation (2.17) shows that all xj ’s allocated to the Sj cluster have identical

leverage in determining the mean, µj , of the jth cluster.

In the population-tempering setting, with chain locations being distributed

under different temperatures, this can lead to cluster centre instability. This is be-

cause the hotter state chain locations can be very far from the mode points due to the

increased dispersion at these temperatures. Indeed, the Gaussian MLE formula in

equation (2.15), down-weights such points in proportion to the inverse temperature

value.

This motivates using a weighted version of the K-means clustering procedure

with the aim being to stabilise the mean estimation of the local mode. Weighted

K-means is an almost identical procedure to that of basic K-means but utilises

user-defined weight allocations for points; thus designating appropriate leverage in

determining the cluster centres. For the setting of interest each chain location will be

allocated a weight, determined by their inverse temperature value. For a collection of

n chain locations x1, . . . , xn at inverse temperature levels βx1 , . . . , βxn , the weighted

K-means algorithm is as follows:
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The Weighted K-Means Algorithm:

The objective function to minimise is the same as in the standard K-means

procedure, given by

f(S) := argminS


M∑
i=1

n∑
j=1

1{xj∈Si}||xj − µi||
2

 . (2.18)

1. Choose the following: the maximum number of iterations, I; the number of

centres, K; initial allocations of points (see e.g. Bradley and Fayyad [1998]),

typically done by selecting K points at random to be the initial centres; and

the particle weights (which for this application are the inverse temperature

values, β, of the chain locations).

2. Repeat the following until either a (local) minimum for f is found or I itera-

tions have been completed:

i Compute for i = 1, . . . ,K

µi =

∑n
j=1 βxjxj1{xj∈Si}∑n
j=1 βxj1{xj∈Si}

. (2.19)

ii Re-allocate the chain locations to the new centres by allocating to the

centre closest to the location in some chosen distance metric that defines

the norm in the objective from equation (2.18). This gives a new allocation

S.

iii Compute f(S) and check that this has reduced from the previous alloca-

tion.

3. Return centres and particle allocations.

This procedure can be implemented using the R package“FactoClass”, by Eĺıas and

Del Campob [2007] which uses a modified version of the K-means algorithm of

Hartigan and Wong [1979].

Clustering During the Transition Phase:

It is worth noting that during the burn-in phase of the algorithm the allocated

weights can be detrimental to the performance of the algorithm. This is because

the chains will not have had a chance to explore the state space properly and thus
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establish themselves in the different modes. In the transitional phase it is the hotter

states that expolore and discover other regions of mass and so it is these chains

that should carry significant weight in the transitional phases before invariance is

established.

In practice it is best that the weighted clustering is only fully incorporated

after some transitional phase. In the setup of examples in this thesis this incorpo-

ration has been done linearly with respect to iteration. After a prescribed number

of iterations B the algorithm will be running under a fully weighted K-means pro-

cedure as described above but for i ∈ 1, . . . , B the weight assigned to the jth chain,

xj , at inverse temperature βxj is given by

1

B

(
(B − i) + iβxj

)
. (2.20)

Computational Reduction:

There are many methods for initialising the centres in a K-Means algorithm,

e.g. Bradley and Fayyad [1998]. Random initialisation schemes that only use the

most recent chain locations ensure that the Markov property holds; this preserves

invariance of the Markov Chain in the population-framework established in Sec-

tion 1.2.3.

When making a temperature swap proposal using the reparametrisation

move, estimates of the mode centres are required. The idea is to obtain these

estimates from clustering the other chains that are running in parallel. Indeed, in

the full specification of the new scheme given in the following section then multiple

PT schemes will be run in parallel. It is this setup that the following ideas exploit.

For every swap proposal, clustering to discover mode centres must be done

on the most recent locations of the chains to preserve the Markov property. Using

all other particles that are in the other schemes for every swap proposal would lead

to a very slow and computationally expensive algorithm.

Two tricks can be used to reduce the computational costs. The first one

preserves invariance but the second is theoretically unjustified.

1. The parallel schemes are split into two groupings and K-means is performed on

the first half to provide mean estimates for the local mode points. Using these,

swap moves incorporating the reparametrisation move can be proposed for

each of the schemes in the second set. The same procedure can be performed

but with the reverse roles of the groups allowing swap moves for the other

half. This is a more efficient way to share the mixing information between the
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parallel schemes since one is not using N−1 schemes for clustering every time a

single scheme proposes a swap type move. This setup potentially also reduces

the communication costs in the case where the parallelism of the algorithm is

exploited.

2. The K-means procedure is a bottleneck in computational cost and will be run

regularly throughout the algorithm. It has a number of input parameters that

affect its performance. As stated above, these include the initial choice of the

mode centres and the number of iterations allowed for convergence. In the

typical version of the K-means algorithm, the initial centres are chosen as a

random selection of K of the chain locations, but in general can be selected

as input parameters to the algorithm. As the number of particles increases

(necessarily with problem complexity) then the procedure will require an in-

creasing number of iterations to provide a converged algorithm, particularly

in the case that the start points are initialised randomly.

In the design of the QuanTA algorithm, introduced in the following section, the

weighted K-means procedure is repeated very regularly and can potentially be

a major bottleneck of the procedure in high dimensional, complex situations.

However, once the population has reached invariance, it seems intuitive to pass

the previous mode centres from the last clustering process to the current K-

means iteration as initialisation centres. In the canonical setting of well spaced

modes this can provide a major improvement in the computational overhead;

with almost immediate convergence for the K-means clustering procedure.

There is a significant catch to this though. Recycling the previous mode cen-

tres to initialise the next K-means procedure uses information from historical

values of the Markov chains that are running in parallel; violating the Markov

property. Empirical tests on toy examples show that this alteration reduces

the computational cost without any noticeable effect on the invariant target,

but much more work needs to be done to explore the validity of this.

Furthermore, albeit beyond the scope of this thesis there are a number of

state of the art techniques that can improve the efficiency of the K-means proce-

dure. For the required purposes of this thesis, the Weighted K-means procedure

described above is sufficient but a practitioner should consider using more advanced

techniques such as Žalik [2008], Kanungo et al. [2002] along with techniques that

exploit parallelisation of the algorithm, see Zhao et al. [2009]. Indeed, Žalik [2008]

gives a method that means prior selection of K is not required and uses a cost

function to adaptively find K during the clustering process.
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Obviously the K-means procedure can be deemed restrictive and unsuitable

in many examples due to the underlying assumptions of fixed K and spherically

symmetric clusters. Due to the well-spaced nature of the modes in the examples that

this thesis considers then this was not an issue in the runs performed here. However,

for a practitioner, an interesting and alternative approach found in Raykov et al.

[2016] could potentially overcome these issues. It uses approximate MAP inference

for Dirichlet process mixtures. The claim is that this has similar performance speed

to K-means but comparable quality to Gibbs sampling. This allows fitting to clusters

using a likelihood based approach which could indeed enhance the practicality of

the new approach.

Having a distribution over the number of clusters would allow freedom in the

determination of cluster quantity. However, it would require a carefully chosen prior

over cluster numbers. Another approach would be to use a random scan through

different values of K for the K-means procedure and adaptively tuning and refining

which is the “best K” through an ad-hoc approach that analyses the temperature

swap move acceptance rates from a particular value of K. Again this is an area of

consideration for further work.

2.6 The Quantile Tempering Algorithm (QuanTA)

The setup is that there are N parallel tempering schemes running in parallel each

on the same temperature levels. Herein, for this chapter, let xk(i,j) represent the

location of the chain on the ith iteration in the kth parallel scheme at the inverse

temperature level βj .

The Algorithm QuanTA:

• Choose a sequence of tempering values 0 ≤ βn < βn−1 < . . . < β1 < β0 = 1.

• Choose initial values of the chains for each temperature level, xk00, x
k
01, . . . , x

k
0n

for each k of the N parallel schemes.

• Choose the proposal mechanism for a given within temperature move, qβj (x
k
ij , x

k
(i+1)j)

for j = 1, . . . , n.

• Choose the value y ∈ {0, 1, . . . , n} which indexes the hottest level that the

reparametrisation move will be implemented on (beyond which the standard

PT swap move is used).
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• Choose the number, m, of within temperature proposals the chains will per-

form before attempting a swap type move and choose the total number, s, of

swap moves that will be attempted.

• If using a clustering procedure with a fixed cluster number, choose the number

of cluster centres M .

• Iterate s times:

1. Perform the weighted clustering procedure from Section 2.5.1 (or more

generally any suitable clustering procedure) on the locations of the par-

ticles for the particles xkij where k ∈ {1, 2, . . . , N/2} and j ∈ {1, 2, . . . , y}
and i the most recent iteration of the chain. This generates cluster centres

c1, . . . , cM , from which:

i. If the target is C1 then use a local optimisation technique initialised

at each cj respectively to generate mode centres µ1, . . . , µM ;

ii. Else set µj = cj ∀ j = 1, . . . ,M .

2. For each k ∈ {N/2, . . . , N} a swap move for the kth scheme is proposed.

This is done as follows:

i. Uniformly randomly select a pair of adjacent temperatures, 1/βj and

1/βj+1 say, for which a reparametrised swap move will be proposed,

and where the values of the respective chains are (currently) xkij and

xki(j+1). If the tempering level is too high i.e. (j + 1) > y then

propose the standard swap move and accept with the ratio given

in equation (2.36). Otherwise continue with the reparametrisation

move proposal.

ii. Classify the clusters to which the particles xkij and xki(j+1) belong,

denoted by µ1 and µ2 respectively.

iii. The transformed locations are computed as in equation (2.13) for the

reparametrisation move i.e.

g(xkij , β(j+1), βj , µ1) and g(xki(j+1), βj , β(j+1), µ2).

iv. Compute the acceptance ratio for the proposed swap and accept the

swap with probability equal to

min

(
1,
π(g(xkij , β(j+1), βj , µ1))β(j+1)π(g(xki(j+1), βj , β(j+1), µ2))βj

π(x1)β1π(x2)β2

)
.
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3. Now perform the chosen clustering procedure on the locations of the par-

ticles for the particles xkij where k ∈ {N/2, . . . , N} and j ∈ {1, 2, . . . , y}
and i the most recent iteration of the chain.

4. Repeat the procedure in step 2 but now for k ∈ {1, 2, . . . , N/2}.

5. For each of the N parallel schemes, perform m within temperature moves

for each of the (n+ 1) chains according to the proposal mechanism spec-

ified.

Note that the QuanTA algorithm described is suitable for parallelisation;

both for the within temperature moves which do not require “communication” be-

tween the particles and also parallelisation between the groupings so that one group

performs the within moves while the other group performs the clustering operation.

2.7 Examples of Implementation

Motivated by the heuristic provided in Section 2.2 it would be hoped that this new

algorithm leads to high (close to 1) acceptance rates for swap moves when the target

is a mixture of symmetric Gaussian modes.

Section 1.5 explains that even under an optimal setup the traditional PT

scheme becomes increasingly expensive as dimensionality grows. As the dimension-

ality, d, grows the optimal spacing of the PT algorithm decays as O(d−1/2). This

means that the time taken to pass the information from the hotter mixing states

to the coldest state is O(d) due to the random walk nature of the swap moves,

Roberts and Rosenthal [2014]. It will be shown in Chapter 3, in particular The-

orem 3.2.1 and Theorem 3.4.1, that this new scheme is still O(d) with spacings

O(d−1/2) for a general mode structure. In addition to this, if the target is C4, then

at colder temperatures when the Gaussian approximation to the mode becomes in-

creasingly accurate, e.g. Barndorff-Nielsen and Nielsen [1989] and Olver [1968], then

this method has a higher order behaviour in spacings with respect to the inverse

temperature value, see Section 3.4.1.

The QuanTA reparametrisation move doesn’t solve all the issues inherent in

the PT framework. This will be highlighted with the final example in this section. In

fact, Woodard et al. [2009b] shows that for most “interesting” examples the mixing

decays exponentially slowly in dimension and the reader is directed to Chapter 4 for

heuristics underlying this issue and a prototype attempt to overcome this challenging

problem.
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Basic Setups for the Examples in this Section:

For clarity of the new QuanTA algorithm’s gains the main two examples

will focus on target distributions with symmetric (i.e. all modes have the same

covariance structure) Gaussian modes all with equal weights. Subsequently there

will be an example where the target distribution is still an evenly weighted mixture

of Gaussians but now the inter-modal variances differ between modes. This example

will be a motivating example to the ideas explored in Chapter 4.

In each of the examples given, both the new QuanTA and standard (PT) par-

allel schemes will be run for comparison of performance. Recall the standard (PT)

parallel scheme refers to the algorithm detailed in Section 1.4.2. In all examples:

1. Both the new QuanTA and PT versions were run 10 times to ensure replica-

bility.

2. Both versions were run with the same within to swap move ratio; in all exam-

ples the algorithms performed 3 within move proposals to every 1 swap move

proposal.

3. Both versions use the same set of (geometrically generated) temperature spac-

ings; chosen to be overly ambitious for the PT setup but demonstrably under-

ambitious for the new QuanTA scheme.

4. In addition to the overambitious schedule for the PT approach, the optimal

temperature spacing for the PT setup is presented. This is to highlight the

extra number of levels (and hence computational cost) needed for the PT ap-

proach to be effective in the examples. This has been found using repeated

runs of the PT algorithm with temperatures selected so that there is a fixed

hottest level and then levels are added (or discarded) until the suggested op-

timal acceptance rate of 0.234 for the PT algorithm, Atchadé et al. [2011], is

reached.

5. For all runs the within level temperature proposals were made with Gaussian

RWM moves and at each level the respective acceptance rates were tuned

approximately towards the suggested optimal 0.234.

2.7.1 One-Dimensional Example

Target distribution given by:

π(x) ∝
5∑

k=1

wkφ(µk,σ2)(x) (2.21)
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where φ(µ,σ2)(.) is the density function of a univariate Gaussian with mean µ and

variance σ2. In this example, σ = 0.01, the mode centres are given by (µ1, µ2, µ3, µ4, µ5) =

(−200,−100, 0, 100, 200) and all modes are equally weighted with w1 = w2 = . . . =

w5.

Hence, with very narrow well spaced modes this is a hard example for the

PT algorithm but essentially canonical for QuanTA.

The temperature schedule for this example is derived from a geometric sched-

ule (see Section 1.5.2) with an ambitious 0.0002 common ratio for the spacings. Only

3 levels are used and so the temperature schedule is given by {1, 0.0002, 0.00022}.
Figure 2.3 gives the plot of the non-normalised target distributions at each of these

3 levels.

Figure 2.3: From top to bottom, plots of the target distribution given in
equation (2.21) at each of the tempered levels with inverse temperatures
{1, 0.0002, 0.00022} respectively.

Both the PT and QuanTA algorithms were run so that 20,000 swap moves
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would be attempted. For QuanTA this would be 20,000 swaps for each of the N

individual parallel tempering schemes in parallel of which there were N = 100 in

this example. Hence for a single scheme in each setting there is the same frequency

and quantity of swap proposals. Furthermore, in all runs all the chains were started

from a start location of -200. This bias favours the PT algorithm since it makes it

hard for the clustering procedure to establish and branch out early on.

Specific to the setup of the QuanTA scheme:

• In the clustering steps of the algorithm then eligible chains at all temper-

ature levels are used in the weighted clustering procedure, i.e. there is no

cutoff beyond which hotter temperature chains are not considered.

• All swap moves between the levels used the reparametrisation move (condi-

tional on being reversible).

• Since all modes are symmetric, allocation to a centre was done using Euclidean

distance rather than the more expensive Mahalonobis distances.

• Once a centre had been found from the clustering procedure, a quasi-Newton

optimisation was used to find the modal point for the local mode.

There is N times larger output from QuanTA than the PT version. So for

comparison only a single randomly selected scheme from the QuanTA’s output is

used. Obviously, this should also be accounted for in any computational expense

comparison.

With suitable tuning for the within temperature moves at the three stated

temperature levels, both algorithms were run 10 times on this setup.

Figure 2.4 shows two representative trace plots of the target state chain for

a run of the PT algorithm and QuanTA respectively. There is a clear improvement

in the inter-modal mixing for the QuanTA scheme.

To further highlight this improvement, the consecutive swap acceptance rates

between the three levels are given in Table 2.1. Clearly the rate of transfer of mixing

information from the hot states to the cold state is significantly improved by the

QuanTA scheme in this example.

Figure 2.5 further illustrates the inferential improvement “per iteration” of

the QuanTA scheme over the standard PT scheme. Figure 2.5 compares the running

modal weight approximation for the mode centred on 200 when using the standard

PT and QuanTA schemes respectively. This used the cold state chains from 10

individual runs of the PT algorithm and 10 single schemes selected randomly from
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Figure 2.4: Trace plots of the target state chains for representative runs of the PT
(top) and QuanTA schemes (bottom). Note the vastly improved inter-modal mixing
of the new QuanTA scheme.

10 separate runs of the QuanTA algorithm. Then after removing a burn-in period of

2000 iterations of the chains, the running weight approximation of the mode centred

on 200 was computed. Denoting the estimator of the kth mode’s weight by ŵk and

the respective cold state chain’s ith value as Xi and discarding a burn-in of period

of B iterations,

ŵk =
1

N −B + 1

N∑
i=B

1{ck<Xi≤Ck}. (2.22)

where ck and Ck are the chosen upper and lower boundary points for allocation to

the kth mode.

Figure 2.5 shows clearly that in this example the QuanTA scheme has a

vastly improved rate of convergence to the true value of 0.2 over the PT scheme. The

variability of the estimate after any finite number of iterations is visibly smaller for
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Swap location: 1 2

PT 0.06 0.07

QuanTA 0.99 0.99

Table 2.1: Comparison of the acceptance rates of swap moves for the PT algorithm
and QuanTA targeting the one dimensional distribution given in equation (2.21) and
setup with the ambitious inverse temperature schedule given by {1, 0.0002, 0.00022}.

the QuanTA scheme. In fact, the bias from starting all schemes in the -200 centered

mode is still not “forgotten” in the PT runs and has resulted in the majority of

runs over this finite number of iterations significantly underestimating the weight

w5. In contrast the removal of a 2000 iteration burn-in appears to be ample for the

QuanTA scheme, which shows fast, unbiased convergence to the true value of w5.

For a computational expense comparison one should compare how many

extra temperature levels would be required to make the PT scheme work optimally

(i.e. with consecutive 0.234 swap acceptance rates). This gives a clearer idea of the

reduction in number of intermediate levels that can be achieved using the QuanTA

scheme and hence the savings in computational expense from running these extra

chains. Using the same hottest state level of 0.00022 which ensures good hot state

mixing over the statespace then repeated runs of the PT scheme were performed

on temperature schedules that were geometrically generated (theoretically optimal

in this setting) until a swap rate of approximately 0.234 was achieved between

consecutive levels.

In this example a 0.04 geometric ratio suggested optimality for the PT

scheme. Hence, to reach the stated hottest level needs 7 temperatures, as opposed

to the 3 needed in the QuanTA scheme. Indeed, the common ratio for the spacings

used in the QuanTA run was 200 times smaller.

2.7.2 Twenty-Dimensional Example

Again in the canonical setting of the Gaussian symmetric mixture distribution but

now in a hard higher 20 dimensional case. The target distribution is a tri-modal

Gaussian:

π(x) ∝
3∑

k=1

wk

 20∏
j=1

φ(µk,σ2)(xj)

 (2.23)

where φ(µ,σ2)(.) is the density function of a univariate Gaussian with mean µ and

variance σ2. In this example, σ = 0.01, the marginal mode centres are given by

(µ1, µ2, µ3) = (−20, 0, 20) and all modes are equally weighted with w1 = w2 = w3.
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Figure 2.5: For the one dimensional target given in equation (2.21), the running
weight approximations for the mode centred on 200 with target weight w5 = 0.2
for 10 separate runs of the PT and QuanTA schemes respectively. Left: the PT
runs showing slow and variable estimates for w5. Right: the new QuanTA scheme
showing fast, unbiased convergence to the true value for w5

With such narrow well spaced modes in such a high dimension this is an

extremely hard example for the PT algorithm and it will be seen that inter-modal

mixing is very slow in contrast with the highly successful performance of the QuanTA

in this case.

The temperature schedule for this example is derived from a geometric sched-

ule (see Section 1.5.2) with an ambitious 0.002 common ratio for the spacings. Only 4

levels are used and so the temperature schedule is given by {1, 0.002, 0.0022, 0.0023}.
Both the PT and QuanTA schemes were run so that 20,000 swap moves

would be attempted. For the QuanTA scheme this would be 20,000 swaps for each

of the N schemes in parallel of which there were 100 in this example. Hence for

a single scheme in each setting there is the same frequency and quantity of swap
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proposals. Furthermore, in all runs all the chains were started from a start location

of (−20, . . . ,−20). This is biased towards the PT algorithm since it makes it hard

for the clustering to find good initial clusters early on.

See the one-dimensional example for the specifics of the setup of the QuanTA

scheme with regards the performance tuning parameters. With suitable tuning for

the within temperature moves at the four stated temperature levels, both algorithms

were run 10 times on this setup.

Figure 2.6 shows two representative trace plots of the target state chain for

a run of the PT algorithm and QuanTA respectively. There is a clear improvement

in the inter-modal mixing for the new QuanTA scheme. There is a stark contrast

between the two algorithmic performances. The run using the standard PT scheme

entirely fails to improve the mixing of the cold chain. In contrast the QuanTA

scheme establishes a chain that is very effective at escaping the initialising mode and

then mixes rapidly throughout the state space between the three separate modes.

The consecutive swap acceptance rates between the four levels are given in

Table 2.2. Clearly there is no transfer of mixing information from the hot states to

the cold state for the PT algorithm but there is effectively immediate transfer in

the QuanTA scheme for this particular canonical example.

Swap location: 1 2 3

PT 0 0 0

QuanTA 0.99 0.99 0.99

Table 2.2: Comparison of the acceptance rates of swap moves for the PT algo-
rithm and QuanTA targeting the Twenty dimensional distribution given in equa-
tion (2.23) and setup with the ambitious inverse temperature schedule given by
{1, 0.002, 0.0022, 0.0023}.

Figure 2.7 compares the running modal weight approximation for w3, the

mode centred on (20, . . . , 20), when using the standard PT and QuanTA schemes

respectively. This used the cold state chains from 10 individual runs of the PT algo-

rithm and 10 single schemes selected randomly from 10 separate runs of the QuanTA

algorithm. Removing a burn-in of 2000 iterations, the running approximation of w3,

i.e. ŵ3, was computed. The weight approximation in each run was given by the es-

timator, described in the one dimensional example above, in equation (2.22). Due

to the narrow and careful positioning of the modes on the hyper-diagonal of the R20

space then only the cold state, first component, one-dimensional chain was consid-

ered for this estimator. Furthermore, the chosen boundaries identifying the target

mode were ck = 10 and Ck =∞.
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Figure 2.6: Trace plots of the first component of the twenty dimensional cold state
chains for representative runs of the PT (top) and new QuanTA (bottom) schemes.
Note the fast inter-modal mixing of the new QuanTA scheme, allowing rapid explo-
ration of the target distribution. In contrast the (very boring) top plot shows that
the PT scheme never manages to escape the initial mode marginally centred on -20
for the entirety of the run.

Figure 2.7 shows (predictably given the trace plots) that in this example

the standard PT scheme entirely misses the mode in question and all 10 runs gave

ŵ3 = 0; far from the true value w3 = 1/3. In stark contrast, in the 10 runs of

the QuanTA scheme, the 10 running estimators of w3 quickly stabilise, with low

variability about the true value.

A stark computational comparison is given by observing how many extra

temperature levels would be required to make the PT scheme work optimally (i.e.

with consecutive 0.234 swap acceptance rates). This gives an indication of the

potential computational savings from running these extra chains. Using the same

hottest state level of 0.00022 which ensures good hot state mixing over the state space

then repeated runs of the PT scheme were performed on temperature schedules that
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Figure 2.7: For the twenty-dimensional target given in equation (2.23), the running
approximations for w3 with target value 1/3 for 10 separate runs of the PT and
QuanTA schemes respectively. Left: the PT runs confirmed that none of the 10 runs
discovered the mode of interest. Right: the QuanTA scheme shows fast, unbiased
convergence to the true value for w3

were geometrically generated (theoretically optimal in this setting) until a swap rate

of approximately 0.234 was achieved between consecutive levels.

In this example, simulations showed that a 0.58 geometric ratio induced

swap acceptance rates of 0.234. Hence, optimal implementation of the PT approach

would have required 36 temperature levels in contrast to the 4 that were sufficient

for QuanTA in this example.

2.7.3 Five-Dimensional Non-Canonical Example

Leaving the canonical symmetric setting, the following example has a five dimen-

sional Gaussian mixture target with even weight to the modes but with different
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covariance scaling within each mode. The target distribution is given by:

π(x) ∝
3∑

k=1

wk

 5∏
j=1

φ(µk,σ
2
k)(xj)

 (2.24)

where φ(µ,σ2)(.) is the density function of a univariate Gaussian with mean µ and

variance σ2. In this example, (σ1, σ2, σ3) = (0.02, 0.01, 0.015), the marginal mode

centres are given by (µ1, µ2, µ3) = (−20, 0, 20) and all modes are equally weighted

with w1 = w2 = w3.

Although at first glimpse this doesn’t sound like a significantly harder prob-

lem, or even far from the canonical setting, the differing modal scalings make this

a much more complex example. This is due to the lack of preservation of modal

weight through power-based tempering; a problem discussed and worked on in detail

in Chapter 4. The K-means clustering procedure can be unstable and finds it hard

to establish good mode centres early on in the run of the algorithm since the hot

state chains are suggestive of the “wrong regions”.

This was certainly the case in this example and it was evident that the clus-

tering struggled badly when the differential modal scalings were made significantly

harder than in this example. This shows that there is a lack of robustness with the

transition phase of the algorithm before mode centres can become established. This

reinforces that standard swap moves and perhaps methods from Chapter 4 should

be used in tandem with this QuanTA scheme to add to the algorithm’s robustness.

Discussion of robustifying techniques can be found in Section 2.9.

The temperature schedule for this example cannot be a simple geometric

schedule as in the previous example due to the scaling indifference between the

modes. By using an ambitious geometric schedule, the clustering was very unstable

early on and this often led to an inability to establish mode centres for the run.

Instead, a mixture of geometric schedules was used with an ambitious spacing for

the coldest levels and then a less ambitious spacing for the hotter levels. For the

four coldest states an ambitious geometric schedule with 0.08 common ratio was

used. A further 8 hotter levels were added using a conservative geometric schedule

with ratio 0.4. Hence the schedule was given by:

{1, 0.08, 0.082, 0.083, 0.49, 0.410, 0.411, 0.412, 0.413, 0.414, 0.415, 0.416}. (2.25)

For the QuanTA scheme, the reparametrisation moves were used for swap moves

between the coldest 7 levels and standard swap moves were used otherwise.

Again, both the PT and QuanTA schemes were run so that 20,000 swap
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moves would be attempted. For the QuanTA scheme this would be 20,000 swaps for

each of the N schemes in parallel of which there were 100 in this example. Hence for

a single scheme in each setting there is the same frequency and quantity of swap

proposals. Furthermore, in all runs all the chains were started from a start location

of 0.

Figure 2.8 shows two representative trace plots of the target state chain for

a run of the PT and QuanTA algorithms respectively. There is a clear improvement

in the inter-modal mixing for the QuanTA scheme; albeit far less stark than that

in the canonical one-dimensional and twenty-dimensional examples already shown.

There is still a stark contrast between the two algorithmic performances. The run

using the standard PT scheme fails to explore the state space. The QuanTA scheme

establishes a chain that is able to explore the state space but does appear to have a

bit of trouble during burn-in; mixing is good therein.

The lack of comparable performance to the earlier canonical examples is

entirely due to the lack of modal weight preservation when power tempering; an

issue looked at in detail in Section 4. The runs still show impressive improvements

in mixing for an ambitious spacing in the coldest part of the temperature schedule.

The consecutive swap acceptance rates between the 12 levels are given in

Table 2.2. Clearly there is little transfer of mixing information through the 4 coldest

states for the PT algorithm. Importantly, in the QuanTA scheme there are non-

degenerate swap acceptance rates through the coldest levels but, unlike the canonical

examples, they are not all close to 1. Indeed, for the QuanTA scheme, the swap

rate between the coldest and second coldest levels is a relatively low (0.446) in

comparison to the other swap rates for QuanTA. This is due to the “red-herring”

effect caused by the lack of weight preservation in power-based tempering; and will

be discussed in detail in Chapter 4.

This example is both positive (showing the improved mixing using the QuanTA

scheme on a hard example) but also serves as a warning for the degeneracy of both

the PT and new QuanTA schemes when using power-based tempering on a target

outside of the canonical symmetric mode setting. Chapter 4 explores these difficult

settings and begins to establish prototype methodology to deal with targets of the

form given in this example.

2.7.4 Discussion of the Examples

It should be noted that the simulation examples are in the contrived settings of

Gaussian mixture targets where the local Gaussianity of the modes is ideal for the

operation of the algorithm. This is certainly an important class of distributions,
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Figure 2.8: Trace plots of the first component of the five dimensional cold state
chains for representative runs of the PT and QuanTA schemes respectively. Note the
difference in inter-modal mixing between the QuanTA scheme and the PT scheme
which (hardly) manages to escape the initial mode marginally centred on 0 for the
entirety of the run.

with large data models giving rise to Bayesian central limit theorems to the local

modes. Furthermore, the local Gaussian approximation required by QuanTA can

always be made to any distribution which is second order continuously differen-

tiable at the modal point. Indeed, the basis for a Gaussian type move is given

further justification in Chapter 3. In particular in Theorem 3.4.1, which shows that

with sufficient smoothness of the target distribution, QuanTA propels the mixing

information through the temperature schedule at a “higher speed” than the PT

approach.
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Swap location: 1 2 3 4 5 6

PT 0.001 0.0161 0.0138 0.469 0.317 0.348

QuanTA 0.446 0.970 0.997 0.999 0.999 0.999

Swap location: 7 8 9 10 11 -

PT 0.328 0.334 0.359 0.324 0.327 -

QuanTA 0.285 0.285 0.285 0.285 0.302 -

Table 2.3: Comparison of the acceptance rates of swap moves for the PT and
new QuanTA algorithm targeting the five dimensional distribution given in equa-
tion (2.24) and setup with the ambitious inverse temperature schedule given in
equation (2.25). Note that for QuanTA, the reparametrised swap move was only
used for swaps in the coldest 7 levels.

2.7.5 The Computational Cost of QuanTA

It is important to analyse the computational cost of the new approach. A basic

analysis of the increase in computational expense of the new QuanTA approach

relative to the traditional PT approach is undertaken. To be an effective algorithm

the inferential gains of QuanTA per iteration should not be outweighed by the

increase in run-time.

The analysis uses the runs of the one and twenty-dimensional examples, given

above, using both the QuanTA and PT approaches. The algorithms were setup the

same as in the ambitious versions of the spacing schedules in each case.

The key idea is to first establish the total run-time, denoted R, in each case.

Typically one looks to compare the time-standardised Effective Sample Size (ESS).

In this case it is natural to take the acceptance rate as a direct proxy for the effective

sample size. This is due to the fact that the target distributions have symmetric

modes with equal weights. Hence the acceptance rate between consecutive temper-

ature levels dictates the performance of the algorithm; in particular the quality of

inter-modal mixing.

To this end, taking the first level temperature swap acceptance rate, denoted

A, the runs are compared using run-time standardised acceptance rates i.e. A/R.

Note that in both dimensional cases, the output from QuanTA is 100 times

larger due to the use of 100 schemes running in parallel. Hence, for a standardised

comparison the time was divided by 100. Therefore, in what follows in this section,

when the run-time, R, of the QuanTA approach is referred to, this means the full

run-time divided by 100. The fairness of this is discussed below.
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In the one-dimensional example:

Algorithm PT QuanTA

Run-time (sec) 5.60 8.01

Swap Rate 0.06 0.99

A/R 0.01 0.12

In the twenty-dimensional example:

Algorithm PT QuanTA

Run-time (sec) 8.00 12.79

Swap Rate 0.00 0.99

A/R 0.00 0.08

In both cases the QuanTA approach has a longer run-time to generate the

same amount of output; as would be expected due to the added cost of clustering.

Indeed, it takes approximately 1.5 times longer to generate the “same amount of

output”.

However, the temperature swap move acceptance rates are 16.5 and∞ times

better respectively when using the QuanTA approach. Using the acceptance rate as

a proxy for effective sample size then the quantity A/R is the most important value

to compare. In both cases the QuanTA approach shows a significant improvement

over the PT approach.

There are issues with the fairness of this comparison:

• By standardising the run-time of QuanTA by the number of parallel schemes is

not entirely fair since it is sharing out the clustering expense between schemes.

This is not fair since it implicitly assumes that a single run could have equally

useful cluster centre approximations. Thus, this feature of the comparison

favours QuanTA.

• The spacings are too ambitious for the PT approach meaning that the accep-

tance rates are very low. For a complete analysis one should run the PT algo-

rithm on its optimal temperature schedule and then use the time-standardised

ESS from each of the optimised algorithms.

The empirical computational studies are favourable to the QuanTA approach.

This is for a couple of examples that are canonical for QuanTA. Outside of this

canonical setting the improvements from running QuanTA will be less obvious. In
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fact it will depend on the strength of the Gaussian approximation to the local mode,

something looked at for the cold temperatures in Section 3.4.

Outside of the canonical symmetric mode setting then the acceptance rates

will not necessarily be a suitable metric to compare mixing quality; indeed one would

then need to consider an approach utilising ESS. However, this new algorithm is a

prototype and so these computational results are encouraging.

2.8 Implications of Using the Reparametrisation Move

in an Asymmetric Mode

This section assumes that after a mode centre has been established through the

chosen clustering method then local optimisation is performed to find the mode

point of the local mode. Consequently, reparametrisations would be centred about

the mode point.

In a Gaussian mode, it is clear that when using the QuanTA reparametri-

sation move, the acceptance probability of the temperature swap move becomes

independent of the position of the chain in the state space. This result is particu-

larly reliant on the spherical symmetry of the mode.

It is important to understand the limitations of the algorithm and so it should

be understood that the reparametrisation move will not be as powerful in the setting

where the modes are not themselves symmetric.

To gain insight an asymmetric uni-modal “Gaussian” target will be con-

sidered. Consider a target given by the following (where φ(µ,σ2)(.) is the density

function of a Gaussian with mean µ and variance σ2):

π(x) = α× φ(0,σ2)(x)1{x<0} + γ × φ(0,1)(x)1{x>0} (2.26)

where α and γ are choosen so that α+γ
2 = 1 and α × φ(0,σ2)(0) = γ × φ(0,1)(0) i.e.

the mode is continuous in the first derivative. An example is given in Figure 2.9.

Denote the normalised tempered density at inverse temperature level β by

πβN , and the normalisation constant of the tempered distribution at level β by C(β).

The acceptance probability of a temperature swap type move from level β to β
′

for a simulated tempering algorithm targeting π where the reparametrisation move

towards the mode is used and without loss of generality the chain location, x, is in
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Figure 2.9: Example of an asymmetric Gaussian mode with density given by equa-
tion (2.26) and where σ2 = 16, α = 10 and γ = 0.5.

the upper tail of the distribution, is given by

α = min

1,
πβ
′

N (x
′
)

πβN (x)

∣∣∣∣ ββ′
∣∣∣∣ 1

2



= min

1,
C(β)

C(β′)

γβ
′
φβ
′

(0,1)

((
β

β′

) 1
2
x

)
γβφβ(0,1) (x)

∣∣∣∣ ββ′
∣∣∣∣ 1

2

 . (2.27)

From the canonical true Gaussian setting then equation (2.27) can be simplified

using

D(β)

D(β′)

φβ
′

(0,1)

((
β

β′

) 1
2
x

)
φβ(0,1) (x)

∣∣∣∣ ββ′
∣∣∣∣ 1

2

= 1 (2.28)

where D(β) =
∫∞
−∞ φ

β
(0,1)(z)dz.

So by using the result in equation (2.28) then

α = min

(
1,
γβ
′
D(β

′
)/C(β

′
)

γβD(β)/C(β)

)

= min

1,

γβ
′
[∫∞

0 φβ
′

(0,1)(z)dz

]
/C(β

′
)

γβ
[∫∞

0 φβ(0,1)(z)dz
]
/C(β)


= min

(
1,

Proportion of mass in the upper tail at level β
′

Proportion of mass in the upper tail at level β

)
. (2.29)

65



In the asymmetric case the acceptance probability is no longer 1. In modes that are

of this form (or at least approximately) then equation (2.29) shows that, conditional

on the tail side of the mode, the acceptance probability of a swap move becomes

independent of the location of the chain. So there is still the nice interpretation

that, conditional on the tail, the swap acceptance probability is independent on the

location. Obviously this is only approximately true in the case that the tails are

approximately Gaussian.

However, this illustration is in a single dimension. Supposing a target consists

of a product of iid such components, then as the dimension grows then, conditional

on all components being in the same tail marginally, this acceptance ratio will decay

(or grow) geometrically fast in dimension. This would then require a finite spacing

in the temperature schedule rather than the arbitrary spacing for the canonical

Gaussian setting.

Interestingly, the aforementioned work analysing the utility of the QuanTA

approach in high-dimensional super cold temperatures in Chapter 3 in Theorem 3.4.1

actually concludes that there is a reduced higher order behaviour for the temperature

spacings when there is asymmetry about the mode point.

2.9 Auxiliary Cold Levels Aiding the Performance of

the QuanTA Weighted Clustering

In all the examples considered the reparametrised shift has been centred about the

mode point of the local mode. The proposal has been that the weighted K-means

procedure locates a mode centre which will at least be contained in the “basin”

of the local mode and then localised optimisation perhaps using gradient ascent,

(stochastic gradient ascent if the data size of the problem is large e.g. Bottou [2010])

or a Newton optimisation. Only needing the centre point to be located in the basin

of attraction of the local mode allows a reduction in the number of parallel schemes

due to reduced need for accuracy of the mode point estimate. However, there may

be scenarios where one may not want to employ optimisation schemes but still want

a reasonable and stable estimate of the mode points.

Consider the process of optimisation via simulated annealing optimisation,

Kirkpatrick et al. [1983], which is heavily linked to parallel tempering, and has the

aim of discovering a global maximum. It does this by slowly cooling (as opposed

to heating) the target distribution until the chain has been trapped in the region

about the global maximum (i.e. the mode point of the local mode).

For the standard PT algorithm there is no obvious gain to go colder than
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the cold target state (beyond perhaps storing history to provide memory of old

locations similar to the motivation in Brooks et al. [2003]). Indeed having the

colder temperatures would add to the computational complexity and run time of

the algorithm if one hasn’t parallelised and even then it is unclear that the added

cost of mixing through these auxiliary super cold temperatures would be worth the

benefits of history storage. This analysis is left for further work. However, in the

setting of the QuanTA algorithm there is motivation to using these colder states.

For particles that are in the discovered/explored modes then if particles in

these modes have reached the colder states then they are less disperse about the

local mode than those in the hotter temperatures and thus have more precision in

estimating the mode point. Hence, using these colder states could improve the

stability of the cluster centre values. Indeed, if the target is C2 then a Laplace

approximation to the local mode becomes increasingly accurate as the temperature

gets colder, see Section 3.4.1. This would mean that the chains at these colder levels

should be able to mix through the additional colder levels increasingly easily.

Trial runs have shown that using colder levels in conjunction with the weighted

K-means setup, given in Section 2.5.1, gives an algorithm that has improved stabil-

ity to the local mode approximation. Additionally, these auxiliary super-cold levels

are increasingly centred about the mode point rather than the mean of the local

mode which could be useful in an asymmetric modal setting.

Empirical Example:

Consider the toy uni-variate bi-modal Gaussian target distribution

π(x) =
1

2
φ(−µ,σ2)(x) +

1

2
φ(µ,σ2)(x)

where µ = 50 and σ = 4. Albeit in the canonical setting, the modes are highly

dispersed even at the target cold temperature. This would mean that for stable

estimates of the mode point even via the weighted cluster centre approach one would

need a large number of parallel schemes to provide a large collection of particles.

So consider running the QuanTA algorithm with weighted clustering to target

this distribution using the following temperature schedules

1. A standard schedule where the coldest state is the target level, β = {1, 0.25, 0.05, 0.005}.

2. A schedule including temperatures that are far colder than the target level,

β = {20, 10, 1, 0.25, 0.05, 0.005}.
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Clearly, if more particles are used in parallel then the mode centre approxi-

mations will be less variable. In fact, with local mean calculated in equation (2.19),

derived from the MLE for a unimodal Gaussian, then one would expect an error

of order O(1/n
1
2 ) assuming n particles are used. Hence, in an attempt to make a

“fair” comparison of mode centre approximation stability between the different runs

then the computational budget should remain constant and thus the same number

of particles used. Each version was therefore run with a different numbers of parallel

versions in such a way that the number of particles used in the clustering procedures

were equal. In this comparison, 100 versions were run for the standard schedule and

60 versions were run for the super cold version. In both cases only particles at

inverse temperature level 0.05 and colder were used for clustering, thus ensuring

identical clustering complexity in terms of the number of particles used.

In the competing runs of the algorithm the mode centre approximations were

recorded and a burn-in period removed. The distribution of the estimated cluster

centres for the mode located at 50 was analysed. Figure 2.10 compares the kernel

density estimates of the distributions of the estimated centres in the two cases. It is

clear that the super cold temperatures improve the stability of the estimates, with

the simulations giving standard deviations of 0.71 and 0.18 for the standard and

super-cold schedule versions respectively.

It is evident that using these super-cold temperatures can add robustness to

the algorithm. In cases where the modes are asymmetric then using the super cold

temperatures will have densities concentrated about the mode point. Hence, using

weighted clustering amongst these super cold levels will give better estimates of the

mode points (prior to any local optimisation).

Some general comments on using the super cold auxiliary levels:

• If using super-cold temperatures, care should be taken to establish fully weighted

clustering only once the population has reached invariance otherwise it may

be hard to establish new modes away from those where the super cold states

are initiated. One suggestion is to sporadically use un-weighted clustering in

an attempt to establish new modes and add robustness.

• When the target is suitably smooth then QuanTA can mix very fast through

the super-cold temperatures meaning that the spacings can be ambitious and

not as many levels would be required, see Theorem 3.4.1.

• Once at invariance, providing there are enough particles in parallel, then clus-

tering could be restricted to just those locations at the coldest temperatures
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Figure 2.10: Plot of the kernel density estimates of the distributions of the mode
centre estimates for the mode centred on 50 for both the version of the QuanTA
algorithm using a standard temperature schedule and then using a temperature
schedule with super cold levels. It is clear that the super cold version gives more
stable estimates with much less variability.

reducing the computational overhead on clustering and providing accurate

mode point approximations.

2.10 Robustification in Non-Gaussian cases

So far the focus has been on the canonical Gaussian type modes. This canonical

setting covers an important class of models. However, Gaussianity certainly doesn’t

cover all the modal structures. The deterministic form of the reparametrisation

move is specific and potentially restrictive. This section explores some basic ways

to establish a more robust version of the algorithm that may be of interest to a

practitioner and be more widely applicable.
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2.10.1 Alternative Reparametrisations

Recall the following, regarding the preservation of quantiles in general for a simu-

lated tempering swap-type move. Suppose that the current location of the chain in

a simulated tempering algorithm is x at inverse temperature is β and that a tem-

perature swap move β → β
′

is proposed along with a reparametrised deterministic

shift of x→ x
′

= g(x, β, β
′
). Now suppose that g is chosen in a way that preserves

the quantile of the target, π, at the respective temperature levels. Denoting the

CDF of πβ by Fβ then preservation of the quantile requires g such that

Fβ(x) = Fβ′ (g(x, β, β
′
)) (2.30)

and so by differentiating wrt x and rearranging gives

1 =
πβ
′
(g(x, β, β

′
))

πβ(x)

∣∣∣∣∣∂g(x, β, β
′
)

∂x

∣∣∣∣∣
which is exactly the acceptance ratio in the temperature swap move for the simulated

tempering move. Unfortunately this doesn’t give a general approach to making

all swap moves have acceptance probability 1. For reversibility to hold one needs

to ensure that the function g is a bijection and so has an inverse. Solutions to

equation (2.30) are certainly not unique in a general multidimensional non-trivial

distribution and so it is not a good idea to solve numerically as it is unlikely to give

reversible results.

In the Gaussian case however, there is the reparametrisation move which is

given by a linear (and therefore bijective) function of the location. As the shift in this

canonical setting solves equation (2.30) and is also invertible (providing reversibility)

then as a consequence acceptance rates of the swap move are maximised. Partic-

ularly important to note is that the shift is performed componentwise and thus is

effectively preserving each of the marginal quantiles and so the correlations between

components has no effect on the reparametrisation.

The following section explores toy scenarios when a similar reparametrisation

based shift can be attempted and the Gaussian type shift would not work well.

2.10.2 Examples of Reparametrisations in Important Non-Gaussian

Cases

The first thing to note is that the extension to non-Gaussian modes will focus on

cases where the d-dimensional modes are of an iid component form (or at least have
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spherical contours) and thus the preservation of the marginal quantiles is sufficient

to preserve the full quantile of the joint distribution and importantly provide so-

lutions that are reversible (since univariate marginal preservation gives a bijective

reparametrisation).

Focus will be given to three examples that encapsulate the most common

behaviours of cases when the modes are heavier tailed than the Gaussian. These

are the Laplace, scaled t and a more general polynomially tailed mode which has a

more tractable solution than the t distribution.

The Laplace Distribution:

In the case of the Laplace distribution where the pdf is given by

π(x) =
1

2
λ exp (−λ|x|) for x ∈ (−∞,∞) (2.31)

then in a simulated tempering context the ideal reparametrisation when propos-

ing a move from inverse temperature level β to β
′

is to make the deterministic

reparametrisation x → β

β′
x. Note the difference from the canonical Gaussian ver-

sion where the ideal is to make the reparametrisation x→
(
β

β′

)1/2
x. It is clear that,

in the Laplace case, the QuanTA shift will never coincide with the optimal Laplace

shift even for super-cold temperatures (since the laplace distribution is not C2 at

it’s mode). Using the Gaussian-based shift in this setting gives some improvement

in the swap acceptance probability since it is moving the particles locations in the

“right direction” marginally but inevitably for this heavier tailed target “not doing

enough”.

The Scaled t distribution:

A t-distribution with a large degrees of freedom will essentially be Gaussian,

particularly about the mode point, and so the QuanTA scheme will work well in

such examples.

For a t-distribution when the degrees of freedom are small and thus the dis-

tribution is particularly heavy tailed, then as for the Laplace distribution example,

the Gaussian shift is simply not significant enough to preserve the modal quantiles

between temperature levels.

The density function for a standard scaled t(ν,σ) distribution is

π(x) ∝
(

1 +
x2

νσ2

)− ν+1
2

(2.32)
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where ν is the degrees of freedom and σ the scale parameter. Indeed, even after tem-

pering this distribution to inverse temperature β it remains a scaled t distribution

such that πβ ∼ t(ν′ ,σ′ ) where ν
′

= βν + β − 1 and σ
′

= σν1/2 (βν + β − 1)−1/2.

Suppose the target of a simulated tempering algorithm is the t(4,1) and that

the chain is currently at temperature level β = 0.5 and a swap move of the form

β → β
′

= β + ε is proposed. Furthermore, suppose that the current position of the

chain is at x = 2. Figure 2.11 compares x
′
, for the Gaussian motivated shift versus

the implicitly calculated ideal quantile location that would preserve the quantile as

the value of β
′

varies.

Figure 2.11: Locations of x
′
, for the Gaussian motivated shift (red) versus the

true quantile preserving location (black) when the target of a simulated tempering
algorithm is the t(4,1) and that the chain is currently at temperature level β = 0.5

and a swap move of the form β → β
′

= β + ε is proposed with the chain currently
located at x = 2. This is plotted over the range of values for the spacing, ε ∈ [0, 20].
It shows that although the Gaussian based shift is going in the “right direction” it
never shifts far enough to preserve the quantile.

Even in the case where one assumes knowledge of the parameters σ and ν

for the scaled t, the location of the reparametrised chain is not analytic and must

instead be computed implicitly from the one-dimensional marginal CDFs. The

following tractable heavy tailed example gives a starting point for establishing an

analytic reparametrisation since it has identical tail behaviour to a t-distribution.

A Polynomially Tailed Distribution:

Consider a target distribution with mode point µ and density function given
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by

π(x) =
(k − 1)

2σ

(
1 +

∣∣∣∣(x− µ)

σ

∣∣∣∣)−k ∀ x ∈ R. (2.33)

Now suppose that the chain in a simulated tempering algorithm is at location x

at inverse temperature level β and that a temperature swap proposal is made such

that β → β
′
. Then by computing the CDF and subsequently the location that one

should shift to preserve the quantile then one can show that

x
′

=


σ

[
1−

(
1− (x−µ)

σ

) kβ−1

kβ
′−1

]
if x ≤ µ,

σ

[(
1 + (x−µ)

σ

) kβ−1

kβ
′−1 − 1

]
if x > µ.

(2.34)

Note that in the limit as β →∞ then the required transformation converges to that

of the Laplace distribution type reparametrisation.

There are certainly two major complications with using this reparametrisa-

tion that make it particularly hard to implement effectively:

1. The reparametrisation formula depends upon knowing the value of (the more

than likely) unknown parameter k

2. The reparametrisation formula depends upon knowing the value of (the more

than likely) unknown parameter σ.

Now this is significantly more information than was required for Gaussian-motivated

QuanTA version. In the population-based setting of QuanTA then there is scope for

estimation of the two parameters from the clustered sample in the mode. However,

with sample sizes potentially low and the nature of the heavy tails, then maximum

likelihood estimates could be very poor and unstable. An initial suggestion would

be to assume knowledge of the parameter k and estimate σ by using the method of

moments. This could be done by noting that for a particle, x, at inverse temperature

level β then by making the transformation

y =

(
(kβ − 2)(kβ − 3)

2

) 1
2

(x− µ) (2.35)

then the variance of the new variable, y, is σ2. The stability and practicality of this

approach is beyond the scope of this project.

The question of how to “guess” k is then a further issue. However, there are

some key considerations to take into account. If kβ ≤ 3 then the second moment
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doesn’t exist and so the above approach to estimate σ would be invalid. More

seriously, if kβ ≤ 1 then the distribution is improper and hence the algorithm

wouldn’t be targeting a well defined invariant distribution at the hotter levels.

Ultimately, in a multi-modal setting with heavy-tailed distributions one would

require a global reparametrisation to the problem to obtain exponential tails for

the modes, otherwise beyond a certain hot temperature the tempered distributions

would become improper since their integrals will be infinite.

An important question for the practitioner is whether the QuanTA algorithm

can be made more robust to work in different modal cases. The QuanTAR algorithm

introduced in this following Section 2.10.3 suggests a basic solution to add some level

of robustness to QuanTA but this comes at a cost to the efficiency.

2.10.3 Robustification in the Non-Gaussian Modes: The QuanTAR

Algorithm

An attempt to robustify the QuanTA algorithm that fits naturally into the QuanTA

algorithm’s framework is motivated by the random scan Gibbs sampler. If the

different reparametrisation moves that the user wants to use are all considered as

different proposal kernels then every time a temperature swap move in the algorithm

is proposed then the form of the reparametrisation move is chosen at random from

the set of all possible moves available. These choices could be given weights so that

if the user wants predominantly the canonical Gaussian move then extra weight

could be added to performing such moves.

By randomising the selection of reparametrisation move then there will be

a loss of efficiency from doing the optimal moves every time. Denote by Pi the ith

reparametrisation type move for i ∈ 1, . . . , T , and suppose that the target is a uni-

modal Gaussian. If all move types are chosen uniformly then it would be expected

that the algorithm would be at worst 1/T times as “efficient” as the ideal version

of the algorithm which would only use the Gaussian reparametrisation.

This potential loss of efficiency could actually be integral to adding robust-

ness in cases where the temperature spacings are ambitious with inhomogeneous

modal distributions. In this case (in the parallel tempering setting in the QuanTA

algorithm) the robustified version would have a chance of doing the ideal move every

time a swap move is proposed.

As such, and mostly for completeness, a toy suggestion for a more robust

version of QuanTA is presented. This is called the QuanTAR (Quantile Tempering

Algorithm-Robust)
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The QuanTAR Algorithm:

Denote by Pi the ith reparametrisation type move for i ∈ 1, . . . , T and the

corresponding weights for each move by wi respectively. Furthermore, denote by

gP (x, β1, β2, µ) the transformation, of type P , of location x that is the location of

the chain in the state space at the tempering level β2 and in the local mode centred

on µ and is being swapped to level β1. As in QuanTA, N parallel schemes are run

in parallel. Then QuanTAR is as follows

• Choose a sequence of tempering values 0 ≤ βn < βn−1 < . . . < β1 < β0 = 1.

• Choose initial values of the chains for each temperature level, xk00, x
k
01, . . . , x

k
0n

for each k of the N parallel schemes.

• Choose the proposal mechanism for a given within temperature move, qβj (x
k
ij , x

k
(i+1)j)

for j = 1, . . . , n.

• Choose the number, m, of within temperature proposals the chains will per-

form before attempting a swap type move and choose the total number, s, of

swap moves that will be attempted.

• After running the chains in parallel for a burn-in period, iterate s times:

1. Perform a clustering procedure (e.g. k-means) on the locations of the par-

ticles for the particles xkij where k ∈ {1, 2, . . . , N/2} and j ∈ {1, 2, . . . , y}
and i the most recent iteration of the chain.

2. For each k ∈ {N/2, . . . , N} a swap move for the kth scheme is proposed.

This is done as follows:

i Uniformly randomly select a pair of adjacent temperatures, 1/βj and

1/βj+1 say, for which a reparametrised swap move will be proposed,

and where the values of the respective chains are (currently) xkij and

xki(j+1). If the tempering level is too high i.e. (j + 1) > y then

propose the standard swap move and accept with the ratio given

in equation (2.36). Otherwise continue with the reparametrisation

move proposal.

ii Classify the clusters to which the particles xkij and xki(j+1) belong,

denoted by µ1 and µ2 respectively.
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iii Choose m1,m2 ∈ {P1, . . . , PT } randomly such that P(m1 = Pi) = wi

and P(m2 = Pj) = wj independently.

iv The transformed locations are computed for the reparametrisation

move using the respectively randomised move types x and y i.e.

gm1(xkij , β(j+1), βj , µ1) and gm2(xki(j+1), βj , β(j+1), µ2)

and also the respective Jacobians

J1 =
∂gm1

∂x
(xkij , β(j+1), βj , µ1) and J2 =

∂gm2

∂x
(xki(j+1), βj , β(j+1), µ2).

v Compute the acceptance ratio for the proposed swap and accept the

swap with probability equal to

min

(
1,
π(gm1(xkij , β(j+1), βj , µ1))β(j+1)π(gm2(xki(j+1), βj , β(j+1), µ2))βj |J1||J2|

π(x1)β1π(x2)β2

)
.

3. Now perform the clustering procedure (e.g. k-means) on the locations

of the particles for the particles xkij where k ∈ {N/2, . . . , N} and j ∈
{1, 2, . . . , y} and i the most recent iteration of the chain.

4. Repeat the procedure in step 2 but now for k ∈ {1, 2, . . . , N/2}.

5. For each of the N parallel schemes, perform m within temperature moves

for each of the (n+ 1) chains according to the proposal mechanism spec-

ified.

Toy Example of the QuanTAR Algorithm:

Consider the univariate bi-modal target distribution which is a mixture of a

Laplace distribution and a Gaussian given by

π(x) = 0.5× 1

(2π)1/2
exp

(
−1

2
(x+ 100)2

)
+0.5×1

2
exp(−4|x−100|) ∀x ∈ R. (2.36)

Both the standard parallel tempering and QuanTAR algorithm were run to

target this distribution on an ambitious geometric temperature schedule given by

β = {1, 0.1, 0.01, 0.001}, with no use of auxiliary super cold temperatures. This

leads to a series of targets illustrated in Figure 2.12.

The reparametrisation options for a swap mode were chosen uniformly from

the set of options only containing the Gaussian and Laplace motivated moves (clearly
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Figure 2.12: Plots showing the target density, π, given in equation (2.36), at each
of the four temperature levels used in the implementation of the QuanTAR and PT
algorithms, β = {1, 0.1, 0.01, 0.001}.

making this a very contrived example). The reparametrisation move was only used

for swaps between the coldest two temperature levels.

The acceptance rate for the swap move between the coldest two temperature

levels is improved when using the QuanTAR algorithm over the standard PT algo-

rithm, 0.57 and 0.27 respectively. Figure 2.13 shows the trace plots of the chains

located in the coldest temperature in both the QuanTAR and PT runs. The inter-

modal jump rate is higher in the case of the QuanTAR run, and hence the increased

acceptance rates are indeed corresponding to an increased rate of mixing between

modes.

The increased rate of mixing in this example is much harder to notice from

the trace plots than in the examples for the QuanTA approach. Much of this is due

to the loss of efficiency from using the random scan selection of the reparametrisation

moves. Also significant is a major issue regarding the modal weight preservations.

From the density plots in Figure 2.13 there is a lack of modal weight preservation

when using power-based tempering, as was the case in the five-dimensional QuanTA

example earlier. This is a major flaw of power-based tempering and this is the focus

of the work in the following two chapters.
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Figure 2.13: Denoting the sample values as θ instead of x. Top: Trace plot of the
cold state chain in the QuanTAR run. Bottom: Trace plot of the cold state chain
in the PT run.
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Chapter 3

Optimal Scaling of the QuanTA

Algorithm

3.1 Introduction

Chapter 2 established that in the canonical Gaussian unimodal setting, QuanTA

can make arbitrarily large steps through the temperature schedule. However, for a

general setting, the move will have limitations to the spacing ambitiousness as there

was for the PT algorithm. This section will establish a similar result to Atchadé

et al. [2011], giving practitioners a gauge on the optimal setup for QuanTA with

relation to the consecutive temperature spacings. It will be shown that a consecutive

spacing that induces a swap rate of approximately 0.234 is optimal according to the

metric used in Atchadé et al. [2011].

Atchadé et al. [2011] motivated seeking an optimal temperature schedule se-

lection for the efficiency of the transfer of the hot state mixing information through

to the cold state for the standard PT algorithm. One measure of the transfer

efficiency through the temperature schedule is the Expected Squared Jumping Dis-

tance, ESJDβ, for a temperature swap move. This is used as the metric in Atchadé

et al. [2011] and is given added justification as the quantity which limits to the total

variation for the limiting diffusion (if one indeed exists) of the process, Roberts and

Rosenthal [2014]. Denote by ESJDβ the expected squared jumping distance for

the expectation of the square of the difference in inverse temperature change for a

chain at inverse temperature level β undertaking a proposed swap with a chain at

a colder temperature level β′ = β + ε. Mathematically that is

ESJDβ = E
[
(γ − β)2

]
(3.1)
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where β is the current temperature of the chain and γ is the random variable taking

the the value β if the proposed swap move is rejected or β
′

if the move is accepted.

In order to pass the information efficiently from the hot state to the cold

state then one needs a strategy to balance making overly ambitious large jump

proposals which have low acceptance probabilities against under ambitious small

jump proposals with overly high acceptance rates; both of which lead to slow mixing.

By tuning the consecutive temperature spacings to maximise the ESJDβ between

levels then a strategy balancing ambition and acceptance should be reached.

3.2 The Setup and Theorem Statement

Consider a d-dimensional target distribution of the very simple form

fd(x) =

d∏
i=1

f(xi) (3.2)

where the marginal distributions f is in C4 with a global maximum at the point µ.

Furthermore, the marginal targets f are assumed to be of the form

f(x) = e−H(x) ∀x ∈ R (3.3)

where the H(x) := − log(f(x)) is regularly varying i.e. there exists an α > 0 such

that for x > 0
H(tx)

H(t)
→ xα as |t| → ∞. (3.4)

This is a sufficient condition for Theorem 3.2.1 and ensures the moments and inte-

grals required for the proof are all well defined. In addition to this assume that the

fourth derivatives of (log f)(·) are bounded, i.e. ∃M > 0 such that

|(log f)′′′′(z)| < M ∀z ∈ R. (3.5)

This condition is sufficient for proving Theorem 3.2.1 but is far from necessary. In

fact, the proof should still work if the condition is weakened so that for some k ≥ 4

then the kth derivative of the logged density is bounded. Note also, if the state

space was restricted to a compact domain then this condition would be entirely

unnecessary anyhow.

As in the setup of the algorithm, assume that there are n+ 1 d-dimensional

chains, x0, . . . ,xn, running in parallel at inverse temperature levels, 1 = β0 < β1 <
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. . . < βn targeting the product distribution

πd(x0, . . . ,xn) ∝ fβ0

d (x0) . . . fβnd (xn). (3.6)

The aim is to determine the optimal spacing between the consecutive temperature

levels by considering a pair of neighbouring levels and maximizing the ESJDβ given

in equation (3.1).

In what follows assume that invariance has been reached and suppose that

the algorithm proposes a swap move between the locations of the particles, x and

y, that are at the inverse temperature levels β and β′ = β + ε respectively. Also,

suppose that ε has the form

ε =
`

d
1
2

(3.7)

where ` will be the optimising constant and the particular scaling in d is needed to

get a non-trivial asymptotic for the ESJDβ.

For

x ∼ fβd and y ∼ fβ
′

d (3.8)

when the swap move is proposed the locations of the respective particles is adjusted

according to the transformation move. Specifically

x′ = g(x, β, β′,µx) =

(
β

β′

) 1
2

(x− µx) + µx =: g1(x) (3.9)

y′ = g(y, β′, β,µy) =

(
β′

β

) 1
2

(y − µy) + µy =: g2(y). (3.10)

where µz denotes the mode point of the local mode to particle z.

For the marginal targets, f , there is an assumed global maximum at µ =

(µ, . . . , µ) and for the sake of tractability due to issues arising in Chapter 4, let

µy = µx = µ. This is a significant and strong assumption. The problem is that

the allocation to a mode point essentially partitions the state space into regions,

and the mass in each region can be dramatically inconsistent between consecutive

temperature levels, see Chapter 4. This would result in a degenerate limit to the

ESJDβ in this setting.

When the modes are all symmetric in form then the regional mass is pre-

served. In a symmetric modal setting, without loss of generality (just consider a

relocation shift in the state space), the two chains can be considered to be acting

in a single mode with centring point µ. The symmetrically multi-modal setting is

canonical for the QuanTA algorithm (which was demonstrated to struggle outside
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of this context).

Note µ can be any interior point in the state space for the proof to work, not

necessarily the mode, but this is the sensible choice.

Then the acceptance probability of the swap move proposed is αβ(x,y) where

αβ(x,y) = 1 ∧
fβ
′

d (g1(x))fβd (g2(y))

fβ
′

d (y)fβd (x)
, (3.11)

and so recalling equation (1.17) in Section 1.5.1

ESJDβ = ε2Eπd [αβ(x,y)]

= ε2Eπd
[
1 ∧ eB

]
, (3.12)

where

B = log

(
fβ
′

d (g1(x))fβd (g2(y))

fβ
′

d (y)fβd (x)

)
. (3.13)

Under the above conditions, the following optimal scaling result will be

proved (where Φ(0,1) is the cumulative distribution function of a standard Normal

distribution).

Theorem 3.2.1 (Optimal Scaling for the QuanTA Algorithm). Consider the par-

allel tempering algorithm targeting the distribution πd given in equation (3.6) where

the target distribution at the cold state (β = 1) is given by the iid form in equa-

tion (3.2). In addition the marginal components of the target are assumed to be

regularly varying, satisfying equations (3.3) and (3.4), and satisfy the fourth order

derivative bound in (3.5). Assuming ε scales with dimension as in equation (3.7)

then as d → ∞, the ESJDβ, given in equation (3.12), is maximised when ` is

chosen to maximise

ESJDβ =
2`2

d
Φ(0,1)

−`
[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

√
2

 , (3.14)

where

V (β) = Covβ((log f)(x), (x− µ)(log f)′(x)) =
1

β2

I(β) = Varβ [(log f)(x)]

R(β) = Eβ
[
(x− µ)2(log f)′′(x)− (x− µ)(log f)′(x)

]
.

82



Furthermore, for the optimal ` the corresponding swap move acceptance rate

induced between two consecutive temperatures is given by 0.234 (3.s.f).

The proof of this result is given in the following Section 3.3 and is broken

down into 3 key steps: computing the appropriate Taylor expansions of the logged

swap move acceptance ratio; establishing limiting Gaussianity of the logged swap

move acceptance ratio; and finally optimisation of the limiting ESJDβ.

3.3 Proof of Theorem 3.2.1

3.3.1 Step 1: Taylor Expansion of the Log-Acceptance Ratio

With B as in equation (3.13). Denoting h(x) := log (f(x)) and xi and yi to be the

ith elements of x and y respectively then

B =

d∑
i=1

[β′h(g1(xi))− βh(xi)] +

d∑
i=1

[βh(g2(yi))− β′h(yi)]

=: Hβ′

β (x) +Hβ
β′(y). (3.15)

With the aim being to derive the asymptotic behaviour of the log acceptance

ratio then the next step is to use Taylor expansions (in ε) to appropriate order so

that the asymptotic behaviour of B can be understood.

For notational convenience, the following will be used:

• Making h(g1(x)) explicitly dependent on ε

αx(ε) := h(g1(x)) = log

[
f

((
β

β + ε

)1/2

(x− µ) + µ

)]
.

• Denote

dx(ε) :=

(
β

β + ε

)1/2

(x− µ) + µ.

By Taylor series expansion in ε, for fixed x, with Taylor remainder correction

term denoted by ξx such that 0 < ξx < ε:

h(g1(x)) = αx(ε) = αx(0) + εα′x(0) +
ε2

2
α′′x(0) +

ε3

6
α′′′x (ξx), (3.16)
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where

α′x(ε) = −(x− µ)

2

β1/2

(β + ε)3/2
(log f)′(dx(ε)), (3.17)

α′′x(ε) =
(x− µ)2

4

β

(β + ε)3
(log f)′′(dx(ε))

+
3(x− µ)

4

β1/2

(β + ε)5/2
(log f)′(dx(ε)), (3.18)

α′′′x (ε) = −(x− µ)3

8

β3/2

(β + ε)9/2
(log f)′′′(dx(ε))− 9(x− µ)2

8

β

(β + ε)4
(log f)′′(dx(ε))

−15(x− µ)

8

β1/2

(β + ε)7/2
(log f)′(dx(ε)). (3.19)

As a preview to the later stages of this proof, the terms up to second order in ε

dictate the asymptotic distribution of B. However, to show that the higher order

terms “disappear” in the limit as ε → 0 then a careful analysis is required. Thus

the next step is to establish that, under the assumptions made above, the higher

order terms converge to zero in probability.

To this end, a careful analysis of α′′′x (·) is undertaken. Firstly, it will be shown

that |Eβ[α′′′x (ξx)]| is bounded; then application of Markov’s inequality will establish

that the higher order terms converge to zero in probability as d→∞. Define

ηε :=

[(
β

β + ε

) 1
2

− 1

]

so that

dx(ε)− x =

[(
β

β + ε

) 1
2

− 1

]
(x− µ) := ηε(x− µ),

which has the property that ηε → 0 as d→∞ and |ηε| ≤ 1.

Then, with Taylor remainder correction terms denoted ξε1, ξ
ε
2, ξ

ε
3 such that

0 < |ξεk − x| < |dx(ε)− x|

(log f)′(dx(ε)) = (log f)′(x) + ηε(x− µ)(log f)′′(x) +
ηε

2(x− µ)2

2
(log f)′′′(x)

+
ηε

3(x− µ)3

6
(log f)′′′′(ξε1), (3.20)

(log f)′′(dx(ε)) = (log f)′′(x) + ηε(x− µ)(log f)′′′(x)

+
ηε

2(x− µ)2

2
(log f)′′′′(ξε2), (3.21)

(log f)′′′(dx(ε)) = (log f)′′′(x) + ηε(x− µ)(log f)′′′′(ξε3). (3.22)
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Recall the assumptions from equation (3.4) and, in particular, the assumption of

boundedness of the fourth order derivatives of |(log f)′′′′(·)| < M given in equa-

tion (3.5).

Substituting equations (3.20), (3.21) and (3.22) into equation (3.19); evalu-

ating the expectation with respect to X ∼ fβ then ∃ C ∈ R+∣∣Eβ[α′′′x (ξx)]
∣∣

≤ Eβ
[∣∣α′′′x (ξx)

∣∣]
≤ Eβ

[
|(x− µ)|3

8
β−3|(log f)′′′(d(ξx))|+ 9|(x− µ)|2

8
β−3|(log f)′′(d(ξx))|

+
15|(x− µ)|

8
β−3|(log f)′(d(ξx))|

]

≤ Eβ

[
|(x− µ)|3

8
β−3

(
|(log f)′′′(x)|+ |(x− µ)||(log f)′′′′(ξξx3 )|

)
+

9|(x− µ)|2

8
β−3

(
|(log f)′′(x)|+ |(x− µ)||(log f)′′′(x)|+ |x|

2

2
|(log f)′′′′(ξξx2 )|

)
+

15|(x− µ)|
8

β−3

(
|(log f)′(x)|+ |(x− µ)||(log f)′′(x)|+ |(x− µ)|2

2
|(log f)′′′(x)|

+
|(x− µ)|3

6
|(log f)′′′′(ξξx1 )|

)]
≤ C (3.23)

where the first three inequalities are from the direct application of the triangle

inequality (with the second also using the boundedness of ηε); whereas the final

inequality arises from both the finiteness of expectations of the terms involving

derivatives of order three or below (this is due to the regularly varying tails of

log(f(·))) and the assumption that |(log f)′′′′(·)| < M .

Using equation (3.16), with substitution of terms from equations (3.17),

(3.18) and (3.19), Hβ′

β (x) can be expressed as

Hβ′

β (x) =
d∑
i=1

(β + ε) [αxi(ε)− βαxi(0)]

= ε
d∑
i=1

[
αxi(0) + βα′xi(0)

]
+ ε2

d∑
i=1

[
β

2
α′′xi(0) + α′xi(0)

]

+ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]
+ ε4

d∑
i=1

1

6
α′′′xi(ξxi). (3.24)
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By equation (3.23) and using the iid nature of the x′is and using Markov’s inequality

then ∀δ > 0

δP

(∣∣∣∣∣ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]∣∣∣∣∣ > δ

)

< E

(∣∣∣∣∣ `3d3/2

d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]∣∣∣∣∣
)

≤ `3

d1/2

[
1

2
E
(
|α′′xi(0)|

)
+
β

6
C

]
→ 0 as d→∞.

Thus,

ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]
→ 0 in probability as d→∞.

By identical methodology, as d→∞

ε4
d∑
i=1

1

6
α′′′xi(ξxi)→ 0 in probability.

Consequently,

Hβ′

β (x) = ε

[
d∑
i=1

h(xi)−
1

2
(xi − µ)h′(xi)

]

+
ε2

8β

[
d∑
i=1

(xi − µ)2h′′(xi)− (xi − µ)h′(xi)

]
+ Tx (3.25)

where

Tx = ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]
+ ε4

d∑
i=1

1

6
α′′′xi(ξxi)

with Tx → 0 in probability as d→∞.

Now denoting h(g2(y)) as

αy(ε) := h(g2(y)) = log

[
f

((
β + ε

β

)1/2

(y − µ) + µ

)]
,

the Taylor series expansion in ε, for a fixed y, with Taylor truncation term denoted

by ξy such that 0 < ξy < ε is given by

h(g2(x)) = αy(ε) = αy(0) + εα′y(0) +
ε2

2
α′′y(0) +

ε3

6
αy(ξy). (3.26)
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By identical methodology to the above calculation in equation (3.23) for αx(·), it

can be shown that ∃ Cy ∈ R+ such that

∣∣Eβ[α′′′y (ξy)]
∣∣ ≤ Cy. (3.27)

Hence, using exactly the same methodology as for the xi’s above, then

Hβ
β′(y) = −ε

[
d∑
i=1

h(yi)−
1

2
(yi − µ)h′(yi)

]

+
ε2

8β

[
d∑
i=1

(yi − µ)2h′′(yi)− (yi − µ)h′(yi)

]
+ Ty. (3.28)

where Ty → 0 in probability as d→∞.

Two definitions will now be established that will be useful for notational

convenience but also highlight important terms that will appear in the final result.

Definition 3.3.1. With notation established thus far in the statement and proof

of Theorem 3.2.1 then the following are defined:

• k(z) = (z − µ)h′(z)

• r(z) = (z − µ)2h′′(z)

Using this new notation the log acceptance ratio, B, from equation (3.15) is

written as

B = ε

[
d∑
i=1

h(xi)− h(yi) +
1

2
(k(yi)− k(xi))

]

+
ε2

8β

[
d∑
i=1

r(xi)− k(xi) + r(yi)− k(yi)

]
+ (Tx + Ty). (3.29)

Next some notation is introduced that will be useful for the following steps

of the argument. Define

M(β) = Eβ(h(z)) (3.30)

S(β) = Eβ(k(z)) (3.31)

R(β) = Eβ(r(z)− k(z)), (3.32)

where the M(β) is as it was in Atchadé et al. [2011]. In all cases the expectation is

with respect to the distribution fβ(x)
Zβ

where Zβ =
∫
fβ(z)dz. By Taylor expansion
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to first order then M(β + ε)−M(β) = εM ′(β) +O(ε2) where

I(β) := M ′(β) =

∫
(log f(x))2 f

β(x)

Zβ
dx−

[∫
log f(x)

fβ(x)

Zβ
dx

]2

= Eβ(h(x)2)− [Eβ(h(x))]2

= Varβ(h(x)). (3.33)

An important identity for the term S(β) is also given by

S(β) =

∫
(x− µ)(log f)′(x)

fβ(x)

Zβ
dx

=

∫
(x− µ)f ′(x)

fβ−1(x)

Zβ
dx

=
��

���
���

��: 0[
(x− µ)

β

fβ(x)

Zβ

]−∞
−∞
−
∫

1

β

fβ(x)

Zβ
dx = − 1

β
, (3.34)

where the last step follows as the expectation of the score function is zero. Again

by Taylor expansion to first order S(β+ ε)−S(β) = εS′(β) +O(ε2). From the form

of S(β) in equation (3.34) it is clear that for all f ,

V (β) := S′(β) =
1

β2
(3.35)

By taking the integral form of S(β) and differentiating with respect to β, similar to

(3.33), it can be shown that

V (β) = Eβ[k(x)h(x)]− Eβ[k(x)]Eβ[h(x)] = Covβ(h(x), k(x)). (3.36)

This is simply a nice observation; it is the form of V (β) given in equation (3.35)

that will be useful herein.

3.3.2 Step 2: Establising the Asymptotic Normality of B

It will now be established that B (in equation (3.13)) is asymptotically Gaussian of

the form N(−c, 2c), for some c, as d→∞ provided ε = `/d1/2.

Now, making the dimensionality dependence explicit, write B = W (d) +
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(Tx + Ty) where

W (d) := ε

[
d∑
i=1

h(xi)− h(yi) +
1

2
(k(yj)− k(xj))

]

+
ε2

8β

[
d∑
i=1

r(xi)− k(xi) + r(yi)− k(yi)

]

and (Tx + Ty) → 0 in probability as d → ∞. Hence, if it can be shown that W (d)

converges in distribution to a Gaussian of the form N(−c, 2c) then by Slutsky’s

Theorem one can conclude that B converges in distribution to the same Gaussian

as the W .

To this end, the asymptotic Gaussianity of W (d) is established. First note

that due to the iid nature of the xi’s and yi’s respectively then by the standard Cen-

tral Limit Theorem, e.g. Durrett [2010], for a sum of iid variables, then asymptotic

Gaussianity is immediate where

W (d)⇒ N
(
µW , σ

2
W

)
as d→∞ (3.37)

where

µW = lim
d→∞

E[W (d)]

and

σ2
W = lim

d→∞
Var[W (d)].

To this end the terms E[W (d)] and Var[W (d)] are computed.

E[W (d)] := ε

[
d∑
i=1

M(β)−M(β + ε)− 1

2
(S(β)− S(β + ε))

]

+
ε2

8β

[
d∑
i=1

R(β) +R(β + ε)

]

= ε

[
d∑
i=1

−εM ′(β) +
ε

2
S′(β)

]
+
ε2

8β

[
d∑
i=1

2R(β)

]
+O(d−1/2)

→ `2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
as d→∞.

Similarly,

Var(W (d))→ 2`2Varβ

(
h(x)− 1

2
k(x)

)
as d→∞.
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Hence by Slutsky’s Theorem then B is asymptotically Gaussian such that

B ∼̇ N

(
`2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
, 2`2Varβ

(
h(x)− 1

2
k(x)

))
. (3.38)

Note that for any general target π and proposal q then the Metropolis-

Hastings acceptance ratio has the property that

Eπ,q
(
π(y)q(y, x)

π(x)q(x, y)

)
=

∫ ∫
π(y)q(y, x)

π(x)q(x, y)
π(x)q(x, y)dydx = 1 (3.39)

and so it is key that if the above expressions for B is correct and the right asymptotic

form for B has been found then limd→∞ E
(
eB
)

= 1 and thus one requires

µW = −
σ2
W

2
. (3.40)

At first it is not obvious that the limiting Gaussian derived for B has this essential

property. For the sake of completeness this will be verified before moving on to

optimisation of the temperature level spacings.

Lemma 3.3.1. With notations established in Chapter 3 and in particular under the

assumptions of Theorem 3.2.1 then

`2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
= −`2Varβ

(
h(x)− 1

2
k(x)

)
, (3.41)

which ensures that the key identity in equation (3.40) is satisfied for the limiting

form for B in equation (3.38).

Proof. From equation (3.38) then denote

µ = `2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
(3.42)

and

σ2 = 2`2Varβ

(
h(x)− 1

2
k(x)

)
.

Then by using the standard properties of variance it is routine to show that

−σ
2

2
= `2

[
−I(β)− 1

4
Varβ(k(x)) + V (β)

]
. (3.43)

Consequently, equating the terms on the RHS of equations (3.42) and (3.43) shows

that if the following can be shown to hold then the required identity in equa-

90



tion (3.41) is validated:

1

4β
R(β) = −1

4
varβ(k(x)) +

1

2
V (β). (3.44)

The LHS and RHS of equation (3.44) will be considered separately. The following

integration by parts are well defined due to the assumption that − log(f(·)) has reg-

ularly varying tails. Starting with the RHS and recalling that from equation (3.34)

Eβ(k(x)) = −1/β:

−1

4
varβ(k(x)) +

1

2
V (β) = −1

4

[
Eβ(k(x)2)− Eβ(k(x))2

]
+

1

2β2

= −1

4
Eβ(k(x)2) +

3

4β2
.

Then, noting that (log f)′(x)fβ(x) = f ′(x)fβ−1(x), and using integration by parts

(by first integrating f ′(x)fβ−1(x)):

Eβ(k(x)2) =

∫
(x− µ)2[(log f)′(x)]2

fβ(x)

Zβ
dx

=

���
���

���
���

���
�: 0[

(x− µ)2

β
(log f)′(x)

fβ(x)

Zβ

]−∞
−∞

− 1

β

∫ [
(x− µ)2(log f)′′(x) + 2(x− µ)(log f)′(x)

] fβ(x)

Zβ
dx

= − 1

β
Eβ(r(x))− 2

β
Eβ(k(x)) = − 1

β
Eβ(r(x)) +

2

β2
. (3.45)

Collating the above in equations (3.44) and (3.45) then

−1

4
varβ(k(x)) +

1

2
V (β) =

1

4β
Eβ(r(x)) +

1

4β2
=

1

4β
R(β), (3.46)

where the final equality simply comes from the definition ofR(β) from equation (3.32).

Using Lemma 3.3.1 it is concluded that B∼̇N(−σ
2

2 , σ2) where

σ2 = 2`2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
.
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3.3.3 Step 3: Optimisation

Firstly, an auxiliary result, given in Roberts et al. [1997], that will help in the process

of deriving the optimal spacings will be established in the following calculation.

Letting φ(m,σ2) denote the density function of a Gaussian with mean m and

variance σ2 and suppose that G ∼ N(−σ2

2 , σ
2),

E(1 ∧ eG) =

∫ ∞
0

φ(−σ2

2
,σ2
)(g)dg +

∫ 0

−∞
egφ(−σ2

2
,σ2
)(g)dg

= 1− Φ(−σ2

2
,σ2
)(0) + Φ(σ2

2
,σ2
) (0)

= 1− Φ(0,1)

(σ
2

)
+ Φ(0,1)

(
−σ

2

)
= 2Φ(0,1)

(
−σ

2

)
. (3.47)

Using the result in equation (3.47), for large d, and recalling the form of the ESJDβ

from equation (3.12) then

ESJDβ =
2`2

d
Φ(0,1)

−`
[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

√
2

 . (3.48)

Letting

u = `

[
1

2
V (β)− I(β) +

1

4β
R(β)

]1/2

, (3.49)

then

ESJDβ =
2u2

d
[

1
2V (β)− I(β) + 1

4βR(β)
]Φ(0,1)

(
− u√

2

)
. (3.50)

Consider optimising the ESJDβ now with respect to u. It is clear that the

optimising value, denoted u∗, doesn’t depend on[
1

2
V (β)− I(β) +

1

4β
R(β)

]
.

Determining u∗’s value explicitly can be done numerically.

Recalling the form of ESJDβ in equation (3.12) then for every choice of

u there is an associated acceptance rate, denoted here by ACCβ. Indeed, for the

optimising value u∗ there is an associated optimal acceptance rate

ACC∗β = 2Φ(0,1)

(
− u

∗
√

2

)
. (3.51)
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Indeed, if u∗ is the maximiser of equation (3.50) then

ACC∗β = 0.234 (3.s.f) (3.52)

and this consequently completes the proof of Theorem 3.2.1.

3.4 Interpretation and Discussion of Theorem 3.2.1

An important sanity check for the result in Theorem 3.2.1 is to interpret the result

when the target is in the most basic version of the canonical setting. This is when

the marginal targets are Gaussian with mean µ and standard deviation σ, and so

f(x) ∝ φ(µ,σ2)(x).

It has already been illustrated in Section 2.2 that in this setting a temperature

swap move with any spacing can be made with an acceptance probability of one. In

the setting of optimal spacing this implies that there is no limit to the ambitiousness

of the spacing. Corollary 3.4.1 shows this is indeed the case for the Gaussian setting

which is reasuring.

Corollary 3.4.1. Under the setting of Theorem 3.2.1 where f(x) ∝ φ(µ,σ2)(x) then

the asymptotic ESJDβ takes the form

ESJDβ =
2`2

d
Φ(0,1) (0) (3.53)

which shows that there is no finite value of ` that maximises the ESJDβ and ` can

be chosen arbitrarily large irrespective of the dimension.

Proof. Equation (3.14) from the statement of Theorem 3.2.1 gives the general form

of the ESJDβ for a general marginal f . If it can be shown that for f(x) ∝ φ(µ,σ2)(x)[
1

2
V (β)− I(β) +

1

4β
R(β)

]
= 0 (3.54)

then by appealing to the form of the ESJDβ given in equation (3.48) it is clear that

there is no finite ` that maximises the ESJDβ and so the Corollary is proved.

Without loss of generality, assume that each marginal is a standard normal

with 0 mean and variance 1. Then

• V (β) = 1
β2

• I(β) = Varβ(−x2

2 ) = 1
2β2
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• R(β) = Eβ
(
−x2

2 + x2

2

)
= 0.

Combining these three identities as in the LHS of equation (3.54) then it is clear

that this equates to 0 as required.

3.4.1 Higher Order Scalings at Cold Temperatures

For this section let φ(·) denote the density function of the standard Gaussian dis-

tribution.

Recall that I(β) = 1/(2β2) for any uni-variate Gaussian distribution at in-

verse temperature level β. Section 1.5.2 showed that the optimal spacings result of

Atchadé et al. [2011] implies that the optimal choice for the scaling parameter takes

the form
ˆ̀∝ β (3.55)

resulting in a geometrically spaced temperature schedule.

Assuming appropriate smoothness for the iid marginal target densities, f(·)’s,
then for a sufficiently cold temperature the local mode can be well approximated by

a Gaussian. Hence for sufficiently cold temperatures then one expects to see that

I(β) ≈ 1/(2β2); thus inducing an (approximately) geometrically spaced temperature

schedule at these cold temperature levels. A rigorous derivation that I(β) ≈ 1/(2β2)

is contained in the proof of Theorem 3.4.1 below.

For the QuanTA algorithm the optimal spacing in the canonical Gaussian

case is of “infinitely” higher order with regards to the temperature level since there

is no restriction on the size of the temperature spacings with regards the value of β.

In the case where the target distribution is sufficiently smooth then πβ(x)

converges to a Gaussian as β →∞. This suggests that even outside of the Gaussian

setting, once in the super colder temperatures, the QuanTA approach will exhibit a

higher order behaviour (with respect to β) for the spacings. Equation (3.55) showed

that the spacings for a Gaussian target in a standard PT setting are O(β). So for

cold temperatures one should expect QuanTA to permit higher order behaviour so

that the spacings would be O(βζ) where ζ > 1. The following Theorem 3.4.1 will

establish when this is the case.

However, before the statement of the theorem, three assumption statements

are made about the target density f(·), as given in Theorem 3.2.1. These provide a

sufficient form of f(·) for proving the theorem.

Assume that the marginal component of the target, f(·), is uni-modal with

mode point at µ = 0 without loss of generality. Also, assume that f(·) is in C4 and
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define the normalised density gβ(·) such that

gβ(y) ∝ fβ
(
µ+

y√
−β(log f)′′(µ)

)
= fβ

(
y√

−β(log f)′′(0)

)
(3.56)

1. For γ > 0 as β →∞

|Vargβ
(
Y 2
)
− 2| = O

(
1

βγ

)
; (3.57)

2. Bounded fourth derivatives of log f(·) i.e. there exists a positive constant M

such that for all z ∈ R
|(log f)′′′′(z)| < M ; (3.58)

3. For all β > 0, the eighth moment exists and is finite

Eβ
[
X8
]

=

∫
X
x8 πβ(x)∫

X π
β(z)dz

dx <∞. (3.59)

Note that in Theorem 3.4.1, then the conditions on f(·) are inherited from the

conditions on f(·) from Theorem 3.2.1. Thus assumptions 2 and 3 are implicitly

satisfied but are still stated due to their importance for proving the result.

Theorem 3.4.1 (Cold Temperature Scalings). Under the setting of Theorem 3.2.1

then the optimal ESJDβ is derived by maximising

2`2

d
Φ(0,1)

−`
[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

√
2


with respect to `.

For large β, if the marginal target, f(·) satisfies the three conditions/assumptions

in equations (3.57), (3.58) and (3.59) given above, then[
1

2
V (β)− I(β) +

1

4β
R(β)

]
= O

(
1

βk

)
,

where

• k = min {2 + γ, 3} > 2 if f is symmetric about the mode point 0

• k = min
{

2 + γ, 5
2

}
> 2 otherwise.
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This induces an optimising value ˆ̀ such that

ˆ̀= O
(
β
k
2

)
, (3.60)

showing that at the colder temperatures QuanTA permits higher order behaviour than

the standard PT scheme which has ˆ̀= O (β).

Remark: For the case that f is not symmetric about the mode point then

Assumptions 2 and 3 can be altered respectively so that only third derivatives of

log f(·) need to be bounded and only sixth moments (rather than eighth) need to

exist.

Proof. Recall the definition of u from equation (3.49). Denoting by u∗ the value of

u that maximises ESJDβ and it is immediate from equation (3.49) that

ˆ̀=
u∗[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

. (3.61)

As a result, if it can be shown that[
1

2
V (β)− I(β) +

1

4β
R(β)

]
= O

(
1

βk

)
, (3.62)

then the result of the theorem follows. To this end, the LHS of equation (3.62) will

be split into two terms which are analysed individually. For notational convenience,

h(·) := log f(·) with corresponding derivatives denoted h′(·), h′′(·), h′′′(·) etc.

The 1
2V (β)− I(β) term:

It has already been established that V (β) = 1/β2 for all distributions. Also,

for a Gaussian density, f(·), I(β) = 1/(2β2). Since gβ(·) approaches the density of

a standard Gaussian, φ(·), as β → ∞, then one expects that I(β) would approach

1/(2β2) too. Hence, a rigorous analysis of this convergence needs to be established.

Note that

I(β) = Varβ [h(X)]

=

∫
(h(x)− Eβ[h(X)])2 f

β(x)

Z(β)
dx

=

∫ h( y√
β(−h′′(0))

)
− Egβ

[
h

(
y√

β(−h′′(0))

])2

gβ(y)dy (3.63)
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using the change of variable, X = Y√
β(−h′′(0))

. By Taylor expansion of h about the

mode point, 0, up to fourth order then

h

(
y√

β(−h′′(0))

)
= h(0)− y2

2β

+
y3h′′′(0)

6 (β(−h′′(0)))3/2
+

y4h′′′′(ξ1(y))

24 (β(−h′′(0)))2 (3.64)

where ξ1(·) is the truncation term for the Taylor expansion such that

0 < |ξ1(y)| <

∣∣∣∣∣ y√
β(−h′′(0))

∣∣∣∣∣
for all y. Using the Taylor expansion form of h and assumption 2 bounding the

fourth derivatives given in equation (3.58)∣∣∣∣∣Egβ
[
h

(
Y√

β(−h′′(0))

)
− h(0) +

Y 2

2β
− Y 3h′′′(0)

6 (β(−h′′(0)))3/2

]∣∣∣∣∣
≤ Egβ

[∣∣∣∣ Y 4h′′′′(ξ1(Y ))

24 (β(−h′′(0)))2

∣∣∣∣] ≤ M

24 (β(−h′′(0)))2Egβ
[
Y 4
]

= O

(
1

β2

)
where Egβ

[
Y 4
]
<∞ by assumption 3 given in equation (3.59). Thus,

Egβ

[
h

(
Y√

β(−h′′(0))

)]
= h(0)−

Egβ
[
Y 2
]

2β
+

Egβ
[
Y 3
]
h′′′(0)

6 (β(−h′′(0)))3/2
+
Egβ

[
Y 4h′′′′(ξ1(Y ))

]
24 (β(−h′′(0)))2 ,

and substituting this into equation (3.63), along with the Taylor expansion of h to

the fourth order given in equation (3.64), gives

I(β) =

∫ (
h(0)− y2

2β
+

y3h′′′(0)

6 (β(−h′′(0)))3/2
+

y4h′′′′(ξ1(y))

24 (β(−h′′(0)))2

−

[
h(0) +

Egβ
[
Y 2
]
h′′(0)

2β(−h′′(0))
+

Egβ
[
Y 3
]
h′′′(0)

6 (β(−h′′(0)))3/2
+

Egβ
[
Y 4h′′′′(ξ1(Y ))

]
24 (β(−h′′(0)))2

])2

gβ(y)dy

=
1

4β2

∫ (
y2 − Egβ

[
Y 2
])2

gβ(y)dy

+
2h′′′(0)

24β5/2(−h′′(0))3/2

∫ (
y2 − Egβ

[
Y 2
]) (

y3 − Egβ
[
Y 3
])
gβ(y)dy

+O

(
1

β3

)
,
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which is finite and well defined due to assumptions 2 and 3. Consequently, in general

I(β) =
1

4β2
Vargβ

(
Y 2
)

+O

(
1

β5/2

)
,

but in the case that h′′′(0) = 0, which indeed holds in the case that f is symmetric

about the mode point, then

I(β) =
1

2β2
Vargβ

(
Y 2
)

+O

(
1

β3

)
and so under assumption 1 given in equation (3.57), then

I(β) =
1

2β2
+O

(
1

βk

)
(3.65)

where in general k = min {2 + γ, 5/2} but if h′′′(0) = 0 then k = min {2 + γ, 3}, and

so 1
2V (β)− I(β) = O

(
1
βk

)
.

The R(β) term:

Recall that

R(β) =
1

4β
Eβ
[
X2h′′(X)−Xh′(X)

]
=

1

4β
Egβ

[(
Y√

β(−h′′(0))

)2

h′′

(
Y√

β(−h′′(0))

)

− Y√
β(−h′′(0))

h′

(
Y√

β(−h′′(0))

)]
. (3.66)

Using Taylor expansion about the mode at 0 then

h′

(
y√

β(−h′′(0))

)
= h′(0) +

y√
β(−h′′(0))

h′′(0) +
y2

2β(−h′′(0))
h′′′(0)

+
y3

6β3/2(−h′′(0))3/2
h′′′′(ξ2(y)), (3.67)

where ξ2(·) is the truncation term for the Taylor expansion such that

0 < |ξ2(y)| <

∣∣∣∣∣ y√
β(−h′′(0))

∣∣∣∣∣
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for all y. Also,

h′′

(
y√

β(−h′′(0))

)
= h′′(0) +

y√
β(−h′′(0))

h′′′(0)

+
y2

2β3/2(−h′′(0))3/2
h′′′′(ξ3(y)) (3.68)

where ξ3(·) is the truncation term for the Taylor expansion such that 0 < |ξ3(y)| < |y|
for all y. Hence,

y2

2β(−h′′(0))
h′′

(
y√

β(−h′′(0))

)
− y√

β(−h′′(0))
h′

(
y√

β(−h′′(0))

)

=
y3

2 (β(−h′′(0)))3/2
h′′′(0) +

y4

(β(−h′′(0)))2

[
1

2
h′′′′(ξ3(y))− 1

6
h′′′′(ξ2(y))

]
.

Substituting this in to the R(β) term in equation (3.66)

R(β) =
1

4β
Egβ

[
Y 3

2 (β(−h′′(0)))3/2
h′′′(0) +

Y 4

(β(−h′′(0)))2

[
1

2
h′′′′(ξ3(Y ))− 1

6
h′′′′(ξ2(Y ))

]]

=
h′′′(0)

8β5/2(−h′′(0))3/2
Egβ

[
Y 3
]

+
1

4β3(−h′′(0))2
Egβ

[
Y 4

[
1

2
h′′′′(ξ3(Y ))− 1

6
h′′′′(ξ2(Y ))

]]
,

where

Egβ

[
Y 4

[
1

2
h′′′′(ξ3(Y ))− 1

6
h′′′′(ξ2(Y ))

]]
<∞

due to assumptions 2 and 3 given in (3.58) and (3.59) respectively. Hence, in general

R(β) = O

(
1

β5/2

)
but in the case that h′′′(·) = 0, which is the case when f(·) is symmetric about the

mode point 0, then

R(β) = O

(
1

β3

)
.

Consequently,

R(β) = O

(
1

βk

)
(3.69)

where in general k = 5/2 but in the case that h′′′(0) = 0 then k = 3.

Combining the results of equations (3.65) and (3.69) completes the proof.

Theorem 3.4.1 shows that the QuanTA approach gives higher order behaviour
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in the limit as β →∞. However, this was under the assumption that

|Vargβ
(
Y 2
)
− 2| = O

(
1

βγ

)
.

but one should analyse the realism of this assumption. Heuristically, since gβ(·) ap-

proaches a Gaussian density then one expects Y 2 to approach a χ2 random variable

on 1 degree of freedom which would have a variance of 2.

To gain insight into typical γ values, next are derived the γ values in the

cases that f(·) is the density of a Gamma(a, b) distribution and a t-distribution on

ν degrees of freedom respectively. It will be shown in both cases that as β → ∞
the respective densities approach a Gaussian and also that the rate of convergence

in the assumption is γ = 1 in both cases.

Gamma Example:

Suppose that f(·) is the density function of a Gamma(a, b) with a > 1 and

so

f(x) ∝ xa−1 exp {−bx}

and so

fβ(x) ∝ xβ(a−1) exp {−βbx}

hence with slight abuse of notation fβ ∼ Gamma(β(a− 1) + 1, βb).

Now by routine calculation it can be shown that the mode point is given by

µ =
a− 1

b

and

h′′(µ) = − b2

a− 1
.

As in the statement of Theorem 3.4.1, but now with non-zero mode point,

gβ(·) is defined as

gβ(y) ∝ fβ
(
µ+

y√
−βh′′(µ)

)
which is achieved by transforming the original random variable, X ∼ fβ, such that

X = µ+
Y√

−βh′′(µ)
.

Firstly, it will be shown that gβ(·) approaches a standard Gaussian density

φ as β →∞. To this end, with C and D denoting constants, and using the Taylor

100



expansion of log(1 + x) about the point x = 0 then

log (gβ(y)) = C + β(a− 1) log

(
µ+

y√
−βh′′(µ)

)
− βb

(
µ+

y√
−βh′′(µ)

)

= D + β(a− 1) log

([
1 +

y

µ
√
−βh′′(µ)

])
− βbµ

(
y

µ
√
−βh′′(µ)

)

= D + β(a− 1)

[
y

µ
√
−βh′′(µ)

− y2

µ2(−βh′′(µ))2
+O

(
1

β3/2

)]

−βb

(
y√

−βh′′(µ)

)

= D − y2

2
+O

(
1

β3/2

)
→ log(φ(y)) as β →∞.

Now, the aim is to compute Vargβ
(
Y 2
)
, and knowing the moments of X ∼ fβ

which are easily attainable from the moment generator function of X, this can be

done by using the fact that

Y =
√
−βh′′(µ) (X − µ) .

Hence,

Egβ
[
Y 2
]

=
βb2

a− 1

[
Eβ
(
X2
)
− 2µEβ (X) + µ2

]
=

βb2

a− 1

[
(β(a− 1) + 1) (β(a− 1) + 2)

β2b2

−2

(
a− 1

b

)(
β(a− 1) + 1

βb

)
+

(a− 1)2

b2

]

=
β

a− 1

[
3(a− 1)

β
+

2

β2
−
(

2(a− 1)

β

)]
= 1 +

2

(a− 1)β

= 1 +O

(
1

β

)
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and letting α = β(a− 1) + 1 for notational convenience then

Egβ
[
Y 4
]

=
β2b4

(a− 1)2
Eβ
(
(X − µ)2

)
=

β2b4

(a− 1)2
Eβ
[
X4 − 4X3µ+ 6X2µ2 − 4Xµ3 + µ4

]
=

β2

(a− 1)2

[
α(α+ 1)(α+ 2)(α+ 3)

β4
− 4

α(α+ 1)(α+ 2)(a− 1)

β3

+6
α(α+ 1)(a− 1)2

β2
− 4

α(a− 1)3

β
+ (a− 1)4

]

= 3 +
26

β(a− 1)
+O

(
1

β2

)
and so

Vargβ
(
Y 2
)

= Egβ
[
Y 4
]
−
(
Egβ

[
Y 2
])2

= 2 +O

(
1

β

)
.

Hence, the assumption in equation (3.57) of Theorem 3.4.1 is satisfied with γ = 1.

t-distribution Example:

Suppose that f(·) is the density function of a tν-distribution (with ν degrees

of freedom where ν > 4). The density function is therefore given by

f(x) ∝
(

1 +
x2

ν

)− ν+1
2

.

The mode point for this distribution is µ = 0, hence as in the statement of Theo-

rem 3.4.1, gβ(·) is defined as

gβ(y) ∝ fβ
(

y√
−βh′′(0)

)

which is achieved by transforming the original random variable, X ∼ fβ, such that

X =
Y√
−βh′′(0)

.

A routine calculation shows that

h′′(0) = −ν + 1

ν
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and so

gβ(y) ∝
(

1 +
y2

β(ν + 1)

)−β(ν+1)
2

.

which can be recognised as the density function kernel of a scaled t-distribution.

In fact Y can be written as Y = σ′T where T ∼ tν′ where v′ = β(ν + 1) − 1 and

(σ′)2 = β(ν+1)
β(ν+1)−1 = β(ν+1)

ν′ .

Firstly, it will be shown that gβ(·) approaches a standard Gaussian density

φ as β →∞. To this end, recalling that
(
1 + x

n

)−n → e−x and n→∞,

gβ(y) ∝
(

1 +
y2

β(ν + 1)

)−β(ν+1)
2

=

(
1 +

y2/2

β(ν + 1)/2

)−β(ν+1)
2

→ e−
y2

2 as β →∞. (3.70)

Now, the aim is to compute Vargβ
(
Y 2
)
. Recalling that the variance of a t-distribution

on ν degrees of freedom is given by ν/(ν − 2), then

Egβ
[
Y 2
]

= (σ′)2

[
ν ′

ν ′ − 2

]
=

β(ν + 1)

β(ν + 1)− 3

= 1 +
3

β(ν + 1)− 3

= 1 +O

(
1

β

)
.

Recalling that the kurtosis of a random variable, Z, is defined as κZ = E
(

(Z−E[Z])4

Var(Z)2

)
,

and for a t-distribution on ν degrees of freedom the kurtosis is given by 3 + 6
ν−4 .
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Hence,

Egβ
[
Y 4
]

= (σ′)4E
[
T 4
ν′
]

= (σ′)4[Var (Tν′)]
2κTν′

=

(
β(ν + 1)

ν ′

)2 [ ν ′

ν ′ − 2

]2 [
3 +

6

ν ′ − 4

]
=

3 [β(ν + 1)]2

(β(ν + 1)− 3)2 +
6 [β(ν + 1)]2

(β(ν + 1)− 5) (β(ν + 1)− 3)2

= 3 +
2

β(ν + 1)
+O

(
1

β2

)
and so

Vargβ
(
Y 2
)

= Egβ
[
Y 4
]
−
(
Egβ

[
Y 2
])2

= 2 +O

(
1

β

)
.

Hence, the assumption in equation (3.57) of Theorem 3.4.1 is satisfied with γ = 1.

Consequently, in both the Gamma and t-distribution settings the result of Theo-

rem 3.4.1 will hold for appropriately large β and with γ = 1. With k as defined in

Theorem 3.4.1, the symmetry about the mode point in the t-distribution shows that

k = 3; whereas the asymmetry of the Gamma distribution gives a k = 5/2 in that

case.

The result in Theorem 3.4.1 does not imply that QuanTA isn’t useful outside

the Gaussian or super cold settings. The QuanTA approach will be practically useful

in settings where the mode can be well approximated by a Gaussian and thus allow

the shift move to approximately preserve the quantile. What Theorem 3.4.1 does

show is that for a large class of distributions that exhibit appropriate smoothness,

QuanTA is sensible, and is arguably the canonical approach to take at the super

cold levels, since it enables acceleration of the mixing speed through the temperature

schedule.
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Chapter 4

Weight Preserved Tempering

4.1 Introduction

The PT/ST framework allows for any arbitrary density/mass function specification

at the augmented (hot state) levels. In most applications the natural choice that

maintains the location of the mode points is to raise the original target density to

the power of an inverse temperature, β, i.e.

πβ(x) ∝ f(x)β. (4.1)

Albeit the most easily implementable method to “spread out” the modes to allow for

some overlap of modal mass, this can be a poor choice for the hotter state targets.

The reason for this is that by powering up the target distribution, the relative weights

of the multiple modes are not preserved in general. The weights of the modes can be

significantly different in the hotter states than in the cold state target. Inevitably

this leads to poor inter-modal mixing of the cold state chain between modes as the

hotter states have weights, potentially drastically, inconsistent with those in the cold

state target. Recall from Section 1.6 that the lack of regional weight preservation

is one of the major features determining the torpid mixing of the PT algorithm in

Woodard et al. [2009b].

The weight inconsistencies can prove highly misleading for the chains at the

hotter temperatures. This “red-herring” effect is most obvious in a ST approach,

where the chain explores the hotter levels and spends the vast majority of its time

in regions that are relatively insignificant at the cold temperature. In fact, the

chain often only “realises” that it has pursued a red-herring when it reaches the

coldest levels; by which time it has wasted a large amount of time mixing through

the temperature schedule without ever visiting the cold target state. An explicit
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example of this effect will be given in this chapter in Section 4.3.1.

In Section 4.3.2 a new type of tempered target is proposed that (approxi-

mately) preserves modal weight in the canonical Gaussian setting and this leads to

the proposal of a new prototype algorithm (the HAT algorithm) that attempts to

overcome the weight inconsistency issues of the traditional PT scheme. This new

scheme is highly computationally expensive and indeed has flaws for use in a real

practical problems. However, it shows promise in the simulations in Section 4.4.1

and has already spawned further avenues for exploration and further work, see

Chapter 6.

4.1.1 Heuristic Example

Consider the d-dimensional bimodal Gaussian target distribution with modes 1 and

2 with means, covariance matrices and weights given by µi,Σi, wi for i = 1, 2 re-

spectively. Hence the target is given by:

π(x) = Cf(x) = C

(
w1

(2π)
d
2 |Σ1|

1
2

φ(x, µ1,Σ1) +
w2

(2π)
d
2 |Σ2|

1
2

φ(x, µ2,Σ2)

)
, (4.2)

where φ(x, µ,Σ) = exp
(
−1

2(x− µ)′Σ−1(x− µ)
)
.

Now assume that the hotter targets are generated through powering up the

distribution as in equation (4.1). Furthermore assume that the modes 1 and 2 are

well separated and thus have negligible mass between the modes. Then for β not

too small and x appropriately close to mode i then the target can be approximated

by

πβ(x) ∝

(
w1

(2π)
d
2 |Σ1|

1
2

φ(x, µ1,Σ1) +
w2

(2π)
d
2 |Σ2|

1
2

φ(x, µ2,Σ2)

)β

≈

(
wi

(2π)
d
2 |Σi|

1
2

φ(x, µi,Σi)

)β

=
wβi

(2π)
βd
2 |Σi|

β
2

exp

(
−β

2
(x− µi)′Σ−1

i (x− µi)
)

(4.3)

By integrating this (with the assumption that the modes are sufficiently spaced to
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allow for the approximation to be valid) then

∫
πβ(x)dx ≈ Cβ

[∫
wβ1

(2π)
βd
2 |Σ1|

β
2

exp

(
−β

2
(x− µ1)′Σ−1

1 (x− µ1)

)
dx

+

∫
wβ2

(2π)
βd
2 |Σ2|

β
2

exp

(
−β

2
(x− µ2)′Σ−1

2 (x− µ2)

)
dx

]

= Cβ

[
wβ1

(2π)
βd
2 |Σ1|

β
2

(
|Σ1|
βd

) 1
2

+
wβ2

(2π)
βd
2 |Σ2|

β
2

(
|Σ2|
βd

) 1
2

]

=
Cβ

((2π)ββ)
d
2

[
wβ1 |Σ1|

1−β
2 + wβ2 |Σ2|

1−β
2

]
. (4.4)

Denoting the weight of the ith mode at the temperature level β by W(i,β)

then the following approximation can be made

W(i,β) ≈
Cβ

((2π)ββ)
d
2

[
wβi |Σi|

1−β
2

]
Cβ

((2π)ββ)
d
2

[
wβ1 |Σ1|

1−β
2 + wβ2 |Σ2|

1−β
2

]
=

wβi |Σi|
1−β

2

wβ1 |Σ1|
1−β

2 + wβ2 |Σ2|
1−β

2

∝ wβi |Σi|
1−β

2 , (4.5)

where the final line is taking proportionality with respect to the ith mode’s mass.

Consequently, for β not too small the target can be approximated by

πβ(x) ∝W(1,β) |Σ1|−
1
2 φ(x, µ1,Σ1/β) +W(2,β) |Σ2|−

1
2 φ(x, µ2,Σ2/β). (4.6)

Now consider the case when the target is a one-dimensional bimodal Gaussian of

the form given in equation (4.2) with parameters: µ1 = −40, µ2 = 40,Σ1 = 1,Σ2 =

9, w1 = 0.9 and w2 = 0.1. Hence

π(x) ∝ 0.9

(2π)
1
2

exp

(
−1

2
(x+ 40)2

)
+

0.1

(2π)
1
2 × 3

exp

(
− 1

2× 9
(x− 40)2

)
. (4.7)

Figure 4.1 illustrates the inconsistency of the modal weights at the different tem-

perature levels when power tempering is used. In fact, as the β → 0 then it is clear

that the mode centred at 40 begins to dominate the share of the weight even though

this mode in the cold state is only attributable for a weight of 0.1.

Visually from Figure 4.1 it is clear that there is inconsistency of the weights
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Figure 4.1: Plots of the tempered target densities generated by powering the target,
π(x), given in equation (4.7) by powers β = {1, 0.1, 0.05, 0.005}. It is clear from
the plot that the relative weights in the modes in the first plot at the cold temper-
ature with β = 1 are not preserved and in fact the cold state lower weight mode
increasingly dominates the share of the weight as β → 0

at the hotter and colder temperatures. Equation (4.5) can be used to approximate

the weights at the temperature level β for this example

W(1,β) ≈
0.9β × 11−β

0.9β × 11−β + 0.1β × 31−β (4.8)

and

W(2,β) ≈
0.1β × 31−β

0.9β × 11−β + 0.1β × 31−β . (4.9)

β 1 0.1 0.05 0.005

W(1,β) 0.90 0.32 0.28 0.25

W(2,β) 0.1 0.68 0.72 0.75

Table 4.1: Approximated weights associated with modes 1 and 2 from the target dis-
tribution given in equation (4.7) and computed using the formulas in equations (4.8)
and (4.9).

Table 4.1 gives the approximate weights of the modes at the levels β =
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{1, 0.1, 0.05}. It confirms the observations regarding the relative weights in the pair

of modes from Figure 4.1. It is apparent from the values in Table 4.1 that mode 2

becomes the dominant mode of the pair as the temperature increases. Even when

moving from the cold state to the neighboring state at β = 0.1, mode 1 reduces its

share of the global mass from 90% to just 32%.

Consequently, when the parallel tempering algorithm is used with power

based tempering then the chains at the hotter states are targeting distributions that

can have modal weights significantly different to those in the cold state. As will be

discussed in Section 4.1.2, this leads to reduced swap acceptance probabilities for

useful swap moves; a direct consequence of the hotter states suggesting the “wrong”

modal weights when proposing a swap location for the chain.

4.1.2 The Effect on the Swap Move Acceptance Probabilities

The effects of using power-based targets from equation (4.1) on the swap acceptance

rates is best understood through the analysis of the swap acceptance ratio when con-

sidering the bimodal Gaussian target example given in equation (4.2). So consider

two particles x and y at the inverse temperature levels β and β
′

respectively and

suppose that x is currently in mode 1 and y is currently in mode 2. Furthermore,

assume that the two temperatures levels are still cold enough that the modes are

still well separated. Now suppose that a swap move has been proposed between

these two levels.

The Metropolis-Hastings swap move ratio is (approximately) given by

α =
π(x)β

′
π(y)β

π(y)β
′
π(x)β

≈
(
|Σ1|
|Σ2|

)β−β
′

2

×
exp

(
−β

′−β
2 (x− µ1)′Σ−1

1 (x− µ1)
)

exp
(
−β′−β

2 (y − µ2)′Σ−1
2 (y − µ2)

) . (4.10)

Equation (4.10) shows that there is a clear dependence on the respective covariance

structures of the modes.

An intuitive analysis is given when the two key terms in equation (4.10) are

considered separately. The two distinct terms in this ratio are:

A1 :=

(
|Σ1|
|Σ2|

)β−β
′

2

and A2 :=
exp

(
−β

′−β
2 (x− µ1)′Σ−1

1 (x− µ1)
)

exp
(
−β

′−β
2 (y − µ2)′Σ−1

2 (y − µ2)
) . (4.11)

As has already been motivated in Chapter 1 in Section 1.5 and Chapter 2, the
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ideal would be to have the swap ratio, α ≈ A1A2, as close to 1 as possible for

an arbitrarily large temperature spacing and thus optimise the mixing rate of the

algorithm through the temperature schedule.

Chapter 2 introduced QuanTA, which utilises a reparametrisation move that

is motivated by preservation of the quantile of a Gaussian mode upon tempering.

This seeks to nullify the effects of shrinkage/expansion of the mode through the

tempering schedule. In fact QuanTA controls of the A2 term to be equal to 1 in this

Gaussian setting. However, this does not solve the whole problem and it is apparent

that the A1 term also has a significant effect on the performance of the algorithm.

It is immediately apparent from the form of A1 that the acceptance ratio,

α, degrades exponentially quickly in the inverse temperature spacing with a rate

proportional to the log ratio of the covariance structures of the respective modes.

Recall the setting given above in equation (4.7). In this case, suppose that

the two particles to be swapped are indeed in separate modes, so a “useful” swap

has been proposed, then for any choice of β and β
′

in the range that keeps the

approximations valid

A1 =

(
1

3

)β−β′
(4.12)

and so when considering the spacings analysed in Table 4.1 then for the levels at

β = 1 and β
′

= 0.1 then A1 = 0.37. So even if QuanTA is used to preserve the

quantile within a mode, making A2 ≈ 1, then the move will have an acceptance rate

far from 1.

Monitoring acceptance rates doesn’t tell the whole story though. The above

only explains the degradation of the swap rate for moves in the case when the two

particles are in different modes. If the locations of the two chains are within the

same mode then irrespective of the change in weight of the mode between levels,

the acceptance probability will remain high, with A1 being equal to 1 in such cases.

This is particularly problematic since the chains can become trapped in regions

that dominate the mass at the hot temperature levels; essentially only visiting these

regions and thus giving reasonable acceptance rates. This wouldn’t be diagnosed

by checking the swap acceptance rates since few if any “useful” temperature swap

moves are being performed.

Therefore, temperature swap acceptance rates are therefore generally not a

reliable diagnostic, something noted in Woodard et al. [2009b]. This is certainly

something that a practitioner should be aware of, particularly when running the

algorithms in high dimensions. Concrete examples of when the acceptance rates

appear acceptable but in fact there has been an absolute failure to mix are given in
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both Sections 4.3.1 and 4.4.1.

4.2 The Ideal Tempering Targets

The above motivates searching for a version of the tempered targets that preserves

the regional weight but still provides the inter-modal bridging mass. Note that

this section only focuses on the Gaussian mixture setting as this will be a useful

approximation to many more general settings.

The modal weight preservation would mean that the chains at the hotter

states would be in the correct regions with consistent regularity to the cold state tar-

get. This should enable even more ambitious proposals throughout the temperature

schedule since the algorithm no longer has to overcome the weight inconsistencies.

Consequently, although obviously impractical, the ideal solution would be to

adjust the dispersion in the mode in the same way that power based tempering of

a uni-modal target would; but now whilst maintaining the modal weights.

The best way to describe this would be to refer back to the Gaussian mixture

example in the motivating example with density given in equation (4.2). In the

power based tempering case then the target distribution at inverse temperature

level β is given by

πβ(x) ∝

(
w1

(2π)
d
2 |Σ1|

1
2

φ(x, µ1,Σ1) +
w2

(2π)
d
2 |Σ2|

1
2

φ(x, µ2,Σ2)

)β
. (4.13)

However, as seen in Section 4.1.1, this does not generally preserve the relative weights

of the modes at the hotter temperatures.

Modal weight would be preserved if, instead, at temperature level β, the

target distribution was given by

πβ(x) ∝ w1

(2π)
d
2 |Σ1|

1
2

φ

(
x, µ1,

Σ1

β

)
+

w2

(2π)
d
2 |Σ2|

1
2

φ

(
x, µ2,

Σ2

β

)
. (4.14)

Using this as the hotter state target would indeed preserve the regional

weights whilst also providing the ultimate goal of modal dispersion. Considering

the swap acceptance ratio between two consecutive chains, located in two separate

modes at levels β and β
′
, as was done in Section 4.1.2 in equation (4.10), but now
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for this idealised target then

α =
πβ′ (x)πβ(y)

πβ′ (y)πβ(x)

≈
exp

(
−β

′−β
2 (x− µ1)′Σ−1

1 (x− µ1)
)

exp
(
−β′−β

2 (y − µ2)′Σ−1
2 (y − µ2)

) = A2. (4.15)

The A1 term from equation (4.15) has now disappeared and consequently has no

effect on the swap acceptance. Thus, if used in conjunction with the QuanTA

approach, making A2 ≈ 1, then there would be super fast mixing through the

(cooler) parts of the temperature schedule.

Figure 4.2 shows the comparison between the target distributions used when

using the power based setup vs the idealised setup for the example density given

in equation (4.7). The densities have been normalised for ease of comparison and

clearly illustrate how the mode centred at 40 progressively becomes the dominant

weight mode as the power based tempering scheme is used.

Figure 4.2: Plots of the normalised tempered target densities generated by both
powering the target (black) and the ideal modal spread (red). π(x) as in equa-
tion (4.7) and inverse temperature levels β = {1, 0.1, 0.05, 0.005}.

Hence, in the practically unrealistic setting where the target is a Gaussian

mixture with known parameters, including the weights, then the idealised target
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is taken to be the mixture with a tempered variance in each component. Thus,

spreading out the modes but preserving the regional weights.

To formalise this, for a general Gaussian mixture target given by

π(x) ∝
J∑
j=1

wjφ(x, µj ,Σj) (4.16)

then the corresponding idealised target distribution is defined as:

Definition 4.2.1 (Idealised Target Distribution). For a Gaussian mixture target

distribution π(·), as in equation (4.16), the idealised tempered target at inverse

temperature level β is defined as

πIβ(x) ∝
J∑
j=1

wjφ

(
x, µj ,

Σj

β

)
. (4.17)

Using these idealised targets in the PT scheme can give substantially better

performance than when using the standard power based targets. This is illustrated

in the examples in Sections 4.3.1 and 4.4.1. In practice the ideal target will need to

be approximated; this will be reviewed in Section 4.3.2.

From herein, when the term “Ideal Algorithm” is used it refers to the imple-

mentation of the standard PT algorithm but now using the idealised targets from

equations (4.17).

4.3 The Impact of High Dimensionality

So far this issue with the weightings has only been illustrated in a one-dimensional

target scenario. Recall that in the Gaussian mixture setting with well separated

modes then the acceptance rate for a swap move given by equation (4.10) depends

directly on two terms A1 and A2. In a Gaussian mixture setting the A2 term can be

made to be approximately 1 when QuanTA is applied to the problem. This leaves

the acceptance probability equal to

A1 =

(
|Σ1|
|Σ2|

)β−β
′

2

.

This quantity decays/grows exponentially with the temperature spacing between

consecutive levels. There is also significant decay with the dimensionality increase.

To get a basic understanding of the impact of dimensionality then suppose the
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covariance matrices Σ1 and Σ2 have iid structure with marginal variances σ2
1 and

σ2
2 respectively. Then in this case

A1 =

(
σ1

σ2

)d(β−β′ )
(4.18)

and so the acceptance ratio of a swap move grows/decays exponentially quickly

in dimension, d. This is a key feature that leads to the torpid mixing of parallel

tempering in high dimensions that is described in detail in Woodard et al. [2009b];

specifically the exponential decay of the persistence quantity found in Woodard et al.

[2009b].

4.3.1 A Warning Example of Naively Using Power Tempering in

High Dimensions

In the following there will be a basic example comparing the performances of the

simulated tempering in the two cases when the naive power based targets are

used and then when the toy “Idealised” targets in Section 4.2 are used instead.

A simplistic higher dimensional bimodal setting will illustrate that when standard

power based targets are used at the hotter states then:

1. Acceptance rates cannot be relied upon to diagnose poor inter-modal mixing

of the chain;

2. Even in a 10-dimensional problem the standard power based tempering scheme

leads to critically bad performance of the simulated tempering algorithm.

Use of the ST algorithm as opposed to the PT algorithm is due to ease of

analysis and understanding. There are no multiple chain interactions in the ST

algorithm. A key observation will be to understand the bottlenecks that hinder the

algorithm, and these are only obvious in this simulated tempering setup.

The example considered is the ten dimensional target distribution given by

the bimodal Gaussian mixture

π(x) = w1φ(µ1,Σ1)(x) + w2φ(µ2,Σ2)(x) (4.19)

where w1 = 0.2, w2 = 0.8, µ1 = (−10,−10, . . . ,−10), µ2 = (10, 10, . . . , 10), Σ1 =

9I10 and Σ2 = I10. Hence, at the hotter temperature levels when power based

tempering is used then mode 1, which only accounts for 20% of the mass at the cold

level, becomes the dominant mode containing almost all the mass.
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For both runs the same geometric temperature schedule was used:

{1, 0.32, 0.322, . . . , 0.326}.

In fact, Theorem 5.1.1 from Chapter 5 suggests this is an optimal setup for the

Idealised run of the algorithm since the swap move acceptance rates are around

0.22; close to the suggested 0.234 optimal value. However, as will be seen, this

will not be optimal for the run using the power based targets despite the algorithm

having a not unreasonable 0.17 swap acceptance rate between the coldest and next

coldest levels. This is a little on the low side and this is due to the fact that the

targets at all levels have been normalised after power based tempering. This is

unrealistic in practice and instead an adaptive normalisation approach such as that

in Atchadé and Liu [2004] would be needed. Obviously, this is why the parallel

tempering approach is more accessible and practical but the interaction of particles

in a swap move can hide the the key observations in this example. Both algorithms

were run from an initial location which is the modal point of the mode 1 region of

mass.

Another key part of the setups of the algorithm was the toy setup for the

algorithms’ within temperature proposals. In order to ensure that the within modal

mixing isn’t influencing the mixing then a local modal independence sampler was

used for the within moves. This essentially means that once a mode has been found

the mixing is “infinitely” fast. Using the naive modal assignment that the location

x is in mode 1 if x̄ < 0 and in mode 2 otherwise, then the within move proposal

distribution for a move at inverse temperature level β is given by

qβ(x,y) = φ(
µ1,

Σ1
β

)(y)1x̄<0 + φ(
µ2,

Σ2
β

)(y)1x̄≥0, (4.20)

where φµ,Σ(.) is the density function of a Gaussian random variable with mean µ

and variance matrix Σ.

Figure 4.3 plots a functional of the inverse temperature at each iteration of

the algorithm runs. The functional is

h(βt)sgn (x̄t) :=
log
(
βt
βm

)
log
(

1
βm

)sgn (x̄t) (4.21)

where sgn(.) is the usual sign function and βm is the minimum of the inverse tem-

peratures. The key here is that the levels are now being illustrated on the log scale

with sign indication of the modal location. Without the log scale for this geometri-
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cally decaying schedule it would be very unclear what is happening at the hottest

temperatures.

Figure 4.3 clearly illustrates that the hot state modal weight inconsistency

leads the chain down a red-herring trajectory with the suggestion that all the mass

is in modal region 1; resulting in the chain never reaching the other mode in the

finite run of the algorithm. This is highlighted further in Figure 4.4, which shows

the estimated kernel density estimates in the two cases for the marginal distribution

of the first component.

Figure 4.3: Top: Trace plots of the functional of the simulated tempering chains
given in equation (4.21). On the left is the version using the idealised targets, which
mixes well through the temperature schedule and finds both modal regions. On the
right is the version using the standard power-based targets, which fails to ever find
one of the modes. Bottom: Trace plots showing the associated trace plot of x̄ in the
two cases.

0.234 Rule Failure:

In this case there was evidence that the power-based target runs were sub

optimally tuned since the swap acceptance rate between the coldest and second
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Figure 4.4: Figure 4.3 showed the relative performances of the simulated tempering
runs using idealised and power-based versions of the target respectively. To further
highlight the gains of using the idealised targets, here are the respective kernel
density estimates from the generated samples from the two runs.

coldest levels was on the low side. This is only noticeable given the (unrealistic)

normalisation of the temperature marginals and indeed would be un-noticeable if

the PT algorithm was employed.

Even so, there was certainly no indication from the swap ratios between any

of the other levels that there was poor performance in the power-based target setup;

all these swaps were close to the suggested optimal 0.234 rate. A closer examination

of the 0.234 rule statement in Atchadé et al. [2011] will explain why this “optimal

setup” still allowed poor mixing.

Atchadé et al. [2011] showed that when the target distribution has a global

iid form, π(x) ∝
∏d
i=1 f(xi), then the optimal temperature spacings in a traditional

power-based algorithm are geometric when

I(β) = Varfβ [log(f(x))] ∝ β−2. (4.22)
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This is the case when the target distribution is the uni-modal multivariate Gaussian

target with iid marginals.

The temperature spacings in Section 4.3.1 were designed to be optimal for

the idealised targets. This schedule was itself geometric and appeared to be the

correct scaling even for the power-based targets since it gave approximately 0.234

swap acceptance rates throughout the schedule. This gives the first bit of insight

into why the setup failed to be optimal. For a Gaussian mixture under power-based

tempering, the optimal schedule would not generally be geometric since the result

in equation (4.22) wouldn’t hold. But in the simulation run the geometric schedule

gave close to the optimal acceptance rate, showing that essentially the run has been

tuned to be optimal in a single Gaussian mode rather than across the multiple

modes.

Indeed, the trace plots in Figure 4.3 show that the chain is effectively trapped

in mode 1, which although it only has 20% of the mass in the cold state, is completely

dominant at the hotter states. Consequently, in finite runs starting in mode 1,

aiming for a 0.234 swap rate is essentially tuning the algorithm to mix in a uni-

modal Gaussian since the chain is never reaching the other mode.

This ultimately highlights the issue of using the metric of Expected Squared

Jumping Distance, Atchadé et al. [2011], or the limiting diffusion speed, Roberts

and Rosenthal [2014], in conjunction with the assumption of “infinitely fast” within

temperature mixing to obtain results suggesting optimality of the tempering sched-

ule.

The key problem is that the suggested optimal schedules are derived under

the (practically) unrealistic assumption that the chains can mix (globally) infinitely

fast in each of the temperature levels. This isn’t an unrealistic assumption when

the target distribution is unimodal or in the case when there is multimodality but

where all the modes have a symmetric form and equal weights, see Woodard et al.

[2009a].

However, in the cases when the modes have different scalings, as was the

case in the example in Section 4.3.1, maximising the ESJDβ in the temperature

space proves to be a misleading metric to optimise; especially if infinitely fast within

temperature mixing is assumed. Particularly in the context of PT algorithm, in the

setting of Atchadé et al. [2011], there is no consideration of what constitutes a

“useful swap move”. A non-rigorous definition of what it means to be a useful swap

move is given later in Definintion 5.2.1. Essentially it constitutes a swap move in a

PT algorithm between chains that are located in different modes.

Without this notion, tuning the spacings to have a 0.234 acceptance rate for
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the temperature level swaps in a finite run of the algorithm could simply be tuning

the algorithm to only work well in a single mode. This gives the chain the “optimal”

ability to mix through the temperature schedule but without necessarily exchanging

worthwhile mixing information.

As a preview, Section 5 derives optimal scaling results for a regionally weight

preserving PT algorithm and discusses the reliability of using the swap move accep-

tance rates as a diagnostic for algorithmic performance. Section 5.2 builds on this

by suggesting potential improvements to the temperature swap rate diagnostics.

A heuristic calculation gives further intuition to the issues with the power-

based optimal setup in Atchadé et al. [2011] and Roberts and Rosenthal [2014].

Suppose that the d-dimensional state space, Xd, is made up of a disjoint union of

two regions A(1,d) and A(2,d) and that the target distribution has the regionally

conditionally independent identically distributed form

π(x) =
2∑

k=1

[
d∏
i=1

fk(xi)

]
1[x∈A(k,d)]. (4.23)

Furthermore assume that the regions are given by hyper-rectangles such thatA(k,d) =

A1
k ⊗ . . .⊗Adk = [ak, bk]⊗ . . .⊗ [ak, bk]. In the case of power based tempering, then

at inverse temperature level β, the weight in the kth region wβk is given by

wβk ∝
∫
A(k,d)

[
d∏
i=1

fβk (xi)

]
dx =

(∫ bk

ak

fβk (z)dz

)d
. (4.24)

Now define the ratio of weights in the two regions at the inverse temperature level β

to be r(β) = wβ1 /w
β
2 . The ratio of these ratios at consecutive temperature levels β

and β
′

= β+ε will be considered in the high dimensional setting when ε is necessarily

small. Using a Taylor expansion to the first order term

log(r(β
′
))− log(r(β)) = ε

∂

∂β
[log(r(β))] +O(ε2), (4.25)

where it can be shown that

∂

∂β
[log (r(β))] = d

[
E
fβ1

[log (f1)]− E
fβ2

[log (f2)]
]
. (4.26)

The relevance of this is that in the optimal scaling setting of Atchadé et al.

[2011] it is fundamental that the spacings of consecutive inverse temperature levels

have a dimensionality scaling ε = `/d1/2. This dimensionality scaling is essential to

achieving a non-degenerate asymptotic swap acceptance rate.
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In contrast, the above heuristic in equations (4.24), (4.25) and (4.26) show

that for ε ∝ 1/d1/2 then r(β
′
) becomes exponentially inconsistent with r(β) as

dimensionality increases. This shows that the setting considered in Atchadé et al.

[2011] is too simplistic to explain the scaling issues prevalent in high-dimensional

complex settings.

4.3.2 Approximating the Ideal

Using the idealised targets given in Section 4.2 would be typically impossible since

weights, locations and scales of the modes are unknown. The idealised targets effec-

tively assumes knowledge of the relative modal weights apriori. This is unrealistic,

but this section introduces a prototype method that is designed to approximate

these idealised targets and maintain some of the benefits of the idealised targets in

low to mid-dimensional settings.

Essentially one would like to remove the weight inconsistencies through the

temperature schedule. At temperature level β then the approximate weight of the

ith mode is given by W(i,β) in equation (4.5), where it is approximated as

W(i,β) ∝ w
β
i |Σi|

1−β
2 . (4.27)

Now assume that the target distribution is (or at least can be well approxi-

mated by) a d-dimensional Gaussian mixture and so the target distribution is given

by

π(x) ∝ f(x) =

N∑
i=1

wiφi(x) (4.28)

where wi is the (unnormalised) weight of the ith mode and φi is the Gaussian density

of the ith mode with mean µi and covariance matrix Σi. Assume that the modes

are well spaced. Tempering this with the traditional power based method can have

major issues as described in Section 4.1.1.

Using the ideal tempering targets of Section 4.2 then consider, at inverse

temperature level β, targeting the a “weight adjusted” target

πβ(x) ∝ f(x)βαβ(x) (4.29)

where function, αβ(x), is designed to “preserve” the modal weight throughout the

temperature schedule. Thus αβ(·) is acting as a multiplicative correction factor for

the traditional power based target given by f(·)β.

Let x be a point in the ith mode which has local mean µi and covariance
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structure Σi. Appealing to the weight inconsistency issue highlighted above in equa-

tion (4.27) and the assumption that the modes are well spaced then to preserve the

weight the ideal form of αβ(x) is

αβ(x) = w1−β
i |Σi|

β−1
2 . (4.30)

This would then mean that the approximate weight, W
Adj
(i,β) , of the ith mode at level

β for the adjusted density π
Adj
β is given by

W
Adj
(i,β) ∝W(i,β) × αβ(x) = wi (4.31)

as required.

In general the wi are unknown and in fact are values that are being estimated

and so a surrogate must be used instead.

Assuming that the mode is approximately a unimodal Gaussian then by

considering the normalisation constant of the unimodal mode we can get values

proportional to the true weights. Hence consider an unnormalised d-dimensional

unimodal Gaussian density f(y) with normalisation constant C, mean µ and covari-

ance structure Σ. The normalisation constant, C, can be calculated as

C = f(y)× (2π)
d
2 |Σ|

1
2 × exp

{
1

2
(y − µ)TΣ−1(y − µ)

}
. (4.32)

Recalling that if the distribution is indeed Gaussian then at any location y

∇ log
(
f(y)

)
= −Σ−1(y − µ) (4.33)

and

∇∇T log f(y) = −Σ−1. (4.34)

Hence using equations (4.33) and (4.34) then

C = f(y)× (2π)
d
2 |(−∇∇T log f(y))−1|

1
2

× exp

{
1

2
∇ log

(
f(y)

)T [∇∇T log f(y)
]−1∇ log

(
f(y)

)}
. (4.35)

Returning to the multimodal setting and now using the weight surrogate

given in equation (4.35), then especially in the Gaussian mixture setting, given in
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equation (4.28), an appropriate choice of the adjustment function α̂β is given by

α̂β(x) =

[
f(x)× (2π)

d
2 |(−∇∇T log f(x))−1|

1
2

× exp

1

2
∇ log

(
f(x)

)T ∇∇T log f(x)

]−1

∇ log
(
f(x)

)
1−β

×|(−∇∇T log f(x))−1|
β−1

2

= (2π)
d(1−β)

2 f(x)(1−β)

× exp

{
1− β

2
∇ log

(
f(x)

)T [∇∇T log f(x)
]−1∇ log

(
f(x)

)}
(4.36)

With the adjustment in equation (4.36) then the naive adjusted target can

be defined as

Definition 4.3.1 (Numerically Adjusted Target). For a target distribution, π(·) in

C2, the corresponding adjusted target is defined as

π
Adj
β (x) ∝ f(x)βα̂β(x)

= (2π)
d(1−β)

2 f(x) exp

{
1− β

2
∇ log

(
f(x)

)T [∇∇T log f(x)
]−1∇ log

(
f(x)

)}
∝ f(x) exp

{
1− β

2
∇ log

(
f(x)

)T [∇∇T log f(x)
]−1∇ log

(
f(x)

)}
. (4.37)

In its raw form this is quite an elegant formula and one can immediately see

from the form given in equation (4.37) that the adjusted target is effectively the

original cold state target multiplied by a Gaussian inspired term that contains all

the tempering features for “spreading out the mass”. Suppose that f was indeed a

Gaussian unimodal density then the adjusted target reassuringly gives π
Adj
β (x) ∝

f(x)β.

4.3.3 Problem Points for the Adjusted Target

Assuming well-spaced modes that are approximately unimodal Gaussian within each

mode then this adjusted density appropriately attempts to replicate the “ideal tar-

gets” of Section 4.2. However, in the low density areas between the modes the raw

form of the adjustment given in equation (4.37) behaves very badly. This is due

to the use of the hessian of the logged target (see equation (4.34)) at each location

being used as an approximation to the covariance structure of the local mode. Note

that in the canonical Gaussian mixture case then this will be a very good approxi-
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mation when the location is within a mode, however into the tails and in particular

in the zone in between the modes then the hessian can suggest a covariance matrix

that is not positive definite.

In fact at the points of inflection of the logged target density between the

modes then the value of
[
∇∇T log f(x)

]−1
is very unstable. In the one-dimensional

case the adjusted target given in equation (4.37) explodes at these points result-

ing in an ill-defined target distribution. Thus using the naive targets defined in

equation (4.37) can have serious stability issues.

4.3.4 A Robust Adjusted Target

In the naive approach given in equation (4.37), the local gradient information is used

to associate a particle with a mode and then provides a multiplicative adjustment

factor for the weight re-adjustment.

Furthermore, in a Gaussian mixture setting, note that at the mode points

of the modes when the gradient terms are 0 then equation (4.37) shows that the

local mode heights are being preserved. Hence, the adjusted target can essentially

be seen as a local rescaling of the powered target distribution. In fact, suppose that

the target is a uni-modal Gaussian distribution with mean µ and variance matrix Σ.

Then, in this case, it can be seen that the naive adjusted target in equation (4.37)

is equivalent, up to proportionality, to

π
Adj
β (x) ∝ f(x)βf(µ)1−β (4.38)

which has the interpretation that the mode height is being preserved throughout

tempering by repeatedly rescaling according to how the mode point’s height changes

as the target is tempered.

Extending this to a Gaussian mixture setting, note that:

1. At inverse temperature level, β, and locally to a mode the adjusted target,

π
Adj
β (·), is (up to proportionality) the usual tempered Gaussian derived from

power-based tempering.

2. Consider the form of π
Adj
β (·) given in the final line of equation (4.37). One can

see that at the any given mode point µ, when the gradient terms are 0, then up

to a global proportionality constant π
Adj
β (µ) ∝ f(µ), with no β dependency

on the RHS.

Hence, the adjusted target can essentially be seen as a local rescaling of the powered

target distribution in such settings. Moreover, if one only rescales regions using a

123



localised formula similar to equation (4.38) for β ∈ [0, 1) then there will be no

explosion points that would render the target distribution improper.

Thus the aim is to associate each point x with a mode point, µx to which

equation (4.38) will then be applied. Essentially providing the desired, localised

rescaling.

In the Gaussian uni-modal setting the mode point can be found exactly

through the gradient information at the current location, x by using just one step

of the Newton optimisation algorithm such that

µ = x−
[
∇∇T log f(x)

]−1∇ log
(
f(x)

)
. (4.39)

In a Gaussian mixture setting this approach is suitable for the majority of points

in the state space to associate a location to a local mode point. Although further

work is needed to establish a robust approach outside this setting, for the prototype

algorithm in this thesis it is sufficient to define

µx = x−
[
∇∇T log f(x)

]−1∇ log
(
f(x)

)
. (4.40)

Then, assuming that each point, x, in the state space has an associated mode

point, µx, the robust adjusted target at tempering level β is defined as

Definition 4.3.2 (Robust Adjusted Target). Consider a target distribution π(x) ∝
f(x) in C2 then the robust adjusted target is defined as

πHβ (x) ∝ f(x)βf(µx)1−β. (4.41)

In the form given in equation (4.41), the height of the adjusted target at all

levels is bounded by the global maximum value of the target distribution and hence

there is no longer a concern that there will be explosion points as was the case in

the numerically adjusted target given in Definition 4.3.1.

In the regions where the hessian is not strictly negative definite the value

of µx given by the single step of the Newton scheme in equation (4.40) will not

necessarily be a position that will have a higher density value. In fact, for many of

the values in this region then the value of µx will be out into the tails of the target

and so rescaling to the height of the target at µx will effectively keep zero density

(rather than explosion) at such points.

Consider the example in equation (4.7) given earlier for a bimodal univariate

mixture of Gaussians. Figure 4.5 illustrates the behaviour of the robust adjusted

target relative to the idealised target; showing that until the hottest temperatures
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levels are reached the numerical version is a good approximation to the idealised

target.

Figure 4.5: Plot of the robust vs ideal tempered targets for the bimodal Gaussian
example in equation (4.7) at inverse temperatures β = 0.05 and β = 0.005 respec-
tively. Note the almost identical behaviour at the colder temperature; but the step
change in the hotter temperature, which is an open issue with the adjusted targets.

At this point one should check that this robust adjusted target is indeed a

well-defined probability distribution at inverse temperature level β.

Proposition 4.3.1. Assume that π(x) = Cf(x) is continuous and bounded on Rd

and that ∫
X
fβ(x)dx <∞.

Then πHβ (x) is a well defined probability density.

Proof. By integrability of fβ(·), there exists a C ∈ R such that
∫
X f(x)dx = 1

C <∞.

By boundedness of π(·) there exists an M ∈ R such thatM = supx{f(x)} < ∞.

Then, at inverse temperature level β∫
X
πHβ (x)dx =

∫
X
Cf(x)βf(µx)1−βdx

≤
∫
X
Cf(x)βM1−βdx

= CM1−β
∫
X
f(x)βdx <∞. (4.42)
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So πHβ (x) ≥ 0 is finitely integrable.

4.3.5 Improvements to the Adjusted Target

Section 4.3.4 introduces the new, robust adjusted tempered target distributions that

in the canonical Gaussian mixture setting (approximately) preserve modal mass.

Recall that the computation of πHβ (x) at each point requires the association of x to

a local modal point µx that will, hopefully, be the mode point of the local mode. In

the Gaussian setting this can be found using a single step of the Newton optimisation

scheme. However, this is still an issue for points in between modes where the Hessian

is not strictly negative definite. From herein this region where the hessian of the

logged target is not strictly negative definite will be referred to as the zone of

uncertainty.

Gaussian mixtures are the focus of the examples in this chapter. However,

two avenues that are furtherwork for generalisation/improvement of the numerically

adjusted target are:

1. A Quasi-Newton scheme could be used, so that points even in the zone of

uncertainty can be allocated to a suitable mode point.

2. A more general, but fundamentally deterministic, optimisation scheme could

be used e.g. gradient ascent.

4.4 The HAT (Hessian Adjusted Tempering) Algorithm

Sections 4.3.2, 4.3.5 and 4.3.4 gave suggestions for a new type of tempered target

where, especially, in the Gaussian mixture setting in the colder temperatures the

regional weights are at least approximately maintained. Hence the adjusted target

at inverse temperature level β is specified to be

πHβ (x) ∝ f(x)βf(µx)1−β (4.43)

where µx is derived deterministically from the location x using either

1. A single step of a Newton optimisation scheme (requiring hessian calculation);

2. Use the first option but additionally use the methods discussed in Section 4.3.4

to add mass to the zone of uncertainty (but this should only be done at the

hotter temperatures, for details see Section 4.6);
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3. Use another local optimisation scheme such as Gradient Ascent, which would

be necessary when the target isn’t C2.

The proposal is that one uses the adjusted target suggested in the form

given in equation (4.43) along with added robustness suggested in options 2 and

3 succeeding equation (4.43). Consequently the actual algorithm is just that of

the vanilla PT algorithm given in Section 1.4.2 but instead using the new adjusted

targets. Even so the algorithm is given for completeness:

HAT (Hessian Adjusted Tempering) algorithm :

• Choose a sequence of inverse temperature values 0 ≤ βn < βn−1 < . . . <

β1 < β0 = 1. This should be done with guidance from the optimal spacing

strategy suggested in Theorem 5.1.1 and the Corollaries 5.2.1 and 5.2.2 found

in Chapter 5.

• Choose initial values of the chains for each temperature level, x0
0, x

0
1, . . . , x

0
n.

• Choose the proposal mechanisms for the within temperature level moves at

each level, qβj (x
j
i , x

j
(i+1)) for j = 0, 1, . . . , n. See Section 4.6 regarding within

temperature moves at the hottest levels.

• Choose the number, m, of within temperature proposals the chains will per-

form before attempting a swap type move and choose the total number, s, of

swap moves that will be attempted.

• Then iterate s times:

1. Perform m within temperature moves for each of the (n + 1) chains ac-

cording to the chosen proposal mechanism at each level; maintaining

invariance with respect to the adjusted target given in equation (4.43).

For the hotter states, especially in the higher dimensional settings, then

more care should be taken to ensure fast mixing, see Section 4.6.

2. Uniformly randomly select a pair of adjacent inverse temperatures, βj

and βj+1 say, for which a swap move is proposed, and where the values

of the respective chains are (currently) xj and xj+1.

3. Compute the acceptance ratio for the proposed swap and accept the swap

with probability equal to

min

(
1,
πHβj+1

(xj)π
H
βj

(xj+1)

πHβj (xj)π
H
βj+1

(xj+1)

)
.
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• End, and discard a suitably chosen burn in period for the chain.

4.4.1 Examples of Implementation of the HAT Algorithm

The effectiveness of the “Ideal” weight preserving targets has already been illustrated

in Section 4.2. Through a series of examples it will be shown that, even with the HAT

approximation, in the canonical Gaussian setting there is comparable performance

to the ideal algorithm.

4.4.2 One-dimensional Gaussian mixture example:

Consider a bi-modal Gaussian mixture target with target density given by:

π(x) ∝
2∑

k=1

wkφ(µk,σ
2
k)(x) (4.44)

where φ(µ,σ2)(.) is the density function of a univariate Gaussian with mean µ and

variance σ2. The modal weights are given by w1 = 0.8 and w2 = 0.2, the means

are given by µ1 = −40 and µ2 = 40 and finally the standard deviations are given

by σ1 = 0.1 and σ2 = 5. So there is a large disparity between the modal variances.

Figure 4.6 illustrates the target distribution π and clearly shows the variance and

height disparity between the modes.

Figure 4.6: The target density plotted for the example bi-modal target given in
equation (4.44). Note that the second mode located at 40 is very disperse yet is the
dominant mode at the hotter temperatures under vanilla power tempering.
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The performance of the new HAT algorithm will be compared with that of

the PT algorithm. However it is not obvious how to construct a fair setup since the

“optimal temperature schedules” will differ between the two algorithms. Both have

a suggested optimal 0.234 rule for the acceptance rates of the spacings (see Section 5

for details of the optimal scaling of the HAT algorithm).

To illustrate the gains of the HAT algorithm in this case the same temper-

ature schedule will be used and this will be chosen under optimality for the HAT

algorithm. This will highlight that the optimal spacings for HAT algorithm in this

example are too ambitious for the PT algorithm to work well.

The inverse temperature schedule used is geometrically spaced with common

ratio 0.05. Hence, the inverse temperature schedule is {1, 0.05, 0.052}. Verified over

10 repeated runs of the HAT algorithm this schedule is (approximately) optimal

for the HAT algorithm, according to Theorem 5.1.1 from Chapter 5. Furthermore,

at each level there are three within temperature moves before a temperature swap

proposal between a uniformly selected pair of consecutive temperatures. The run is

finished when there have been 20,000 swap moves proposed. All chains were started

at the position 40 to really highlight the lack of robustness of the PT algorithm to

a feasible start point.

Figure 4.7 shows three trace plots, of the cold state chain, for runs of the PT

algorithm under the described setup. The target weight in the modal region centred

on -40 is 0.8; so it is clear that the performance of the PT algorithm is inconsistent,

making modal weight estimates highly variable.

Figure 4.8 shows the trace plot of three runs of the cold state chain for the

HAT algorithm. It is immediately obvious that the inter-modal mixing is far more

regular than for the PT approach. The acceptance rates of the swap moves between

the coldest and consecutively next coldest level for each of these three runs are

respectively {0.27, 0.29, 0.28}; for comparison those of the PT runs in Figure 4.7

were {0.05, 0.12, 0.12}. In this case, which is simplistic due to the single dimension,

the poor mixing in the target state in the PT algorithm would be picked up by the

low swap move acceptance rate and hence in an optimal setup further intermediate

temperatures would be needed. This illustrates the ability of the HAT algorithm

to take larger steps through the temperature schedule than the PT algorithm is

capable of. In the below example, in five dimensions there are illustrations of the

swap acceptance rates not diagnosing the poor mixing.

Figure 4.9 shows the running modal weight approximation of w1 after the kth

iteration of the cold state chains once a burn-in period of 10,000 iterations has been

removed for the ten examples of the PT and HAT runs respectively. The weight
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Figure 4.7: Three trace plots of the mixing of the coldest level chain in three separate
runs of the PT algorithm targeting the distribution given in equation (4.44). The
setup of the PT algorithm was the same in each case and the key observation is the
infrequency of inter modal jumps that would subsequently result in more variable
estimates of modal weights.

approximation after iteration k is given by

ŵk1 =
1

k − 10000

k∑
i=10001

1(Xi<0) (4.45)

where Xi is the location of the chain at the coldest temperature level after the ith

iteration. Observe the jagged and volatile convergence of the running estimate of

ŵk1 as it converges to the true value 0.8 for the PT algorithm.

To see how the performance of the HAT algorithm compares with that of the

idealised algorithm in this Gaussian mixture setting then 10 runs of the Ideal algo-

rithm were performed. All runs had the same setup with regards to the temperature
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Figure 4.8: Three trace plots of the mixing of the coldest level chain in three separate
runs of the HAT algorithm targeting the distribution given in equation (4.44). The
setup of the HAT algorithm was the same in each case and the key observation is
the relatively high frequency of inter modal jumps which one would hope would give
a fast rate of convergence of an estimator of the modal weights.

schedule and within level performance. The runs gave comparable performance to

the HAT version. An example comparing a run from each of the three types is given

in Figure 4.10. It is hard to differentiate between the trace plots for the HAT and

idealised runs.

4.4.3 Five-dimensional example:

Consider the target distribution again given by the bimodal Gaussian mixture. Con-

sider a bi-modal Gaussian mixture target with target density given by:

π(x) ∝
2∑

k=1

wkφ(µk,Σk)(x) (4.46)
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Figure 4.9: Running estimate of the weight in the mode centred on -40, from equa-
tion (4.45), for 10 runs of the PT (here denoted S1) and HAT algorithms respectively.
In both cases a burn-in of 10,000 iterations was removed. Observe the increased
variability of the weight estimates for the PT runs compared to the HAT runs.

where φ(µ,Σ)(.) is the density function of a 5 dimensional Gaussian with mean µ

and covariance matrix Σ. The weights of the modes are even with w1 = w2 = 0.5,

µ1 = (−15, . . . ,−15), µ2 = (15, . . . , 15), Σ1 = I5 and Σ2 = 32 × I5. This example

will be used to analyse the following:

1. Similarly to the one-dimensional example, the performance of the HAT algo-

rithm will be compared to the PT algorithm under a setup of optimality for

the HAT algorithm.

2. There will be a comparison of performance when the problem is made only

slightly harder with more ambitious temperature spacings that will illustrate

the added robustness of the HAT scheme over the PT algorithm in this setting.

3. A basic examination of the hot state mixing which will be used to motivate

the discussion in Section 4.6.
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Figure 4.10: Three trace plots of the cold state chain targeting the distribution in
equation (4.44) using the PT, HAT and Ideal algorithms respectively. Note the
visually comparable performance between the HAT and Ideal runs.

Firstly, appealing to the results in Theorem 5.1.1 and Corollary 5.2.1 from

Chapter 5, then the optimal inverse temperature schedule for the HAT setup on

seven levels is geometrically spaced and is given by {1, 0.35, 0.352, . . . , 0.356}. Run-

ning this over 10 runs gives stable empirical estimates of the swap ratios at around

0.26 for the HAT algorithm, which only defer from this value in the hottest lev-

els when the weight preserving approximation becomes less valid. The algorithm

is again setup with 3 within temperature level moves and then one proposal of a

temperature swap. Both modes have identical weights and in all simulations a fixed

start location of (15, . . . , 15) was used; obviously this has a biasing effect from the

start but it is useful to show that the PT algorithm either fails or takes a very long

time to burn-in from a very reasonable start point.

Figure 4.11 shows three runs of the PT algorithm on this setup. As was

apparent in the one-dimensional case the mixing is extremely poor with very few
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transitions between modes. There is a clear problem with the algorithm struggling

to escape the burn-in period. Clearly any attempt to estimate regional weights from

these finite runs would be heavily biased.

Figure 4.11: Three trace plots of the first component mixing of the coldest level
chain in three separate runs of the PT algorithm targeting the distribution given in
equation (4.46). There is a clear infrequency of inter-modal jumps. The swap move
acceptance rates between the coldest state and the next level in the three cases are
{0.18, 0.27, 0.21}.

On the other-hand Figure 4.12 shows three runs of the HAT algorithm im-

plementation on its optimised setup. Relative to the mixing in the PT algorithm

the frequency of inter-modal moves at the cold state is much higher and unlike the

volatile performance of the PT algorithm the runs on this finite number of iterations,

at least by eye, appear to be consistently good. The regularity of swap moves means

that once a suitable (but relatively small) burn-in period has been removed then the

runs of the HAT algorithm provide far more stable and lower variance estimates of

the modal weights.
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Figure 4.12: Three trace plots of the first component mixing of the coldest level
chain in three separate runs of the HAT algorithm targeting the distribution given
in equation (4.46). Note the high frequency of inter modal jumps.The swap move
acceptance rates between the coldest state and the next level in the three cases
respectively are {0.27, 0.28, 0.27}.

Figure 4.13 shows one example of a run of each of the algorithms in this

setup, i.e. the PT, HAT and Ideal. Although just one example is given, it is hoped

that this shows that there is comparability in the trace plots of the performance of

the HAT algorithm to the performance of the Ideal algorithm.

Next, there is a brief look at the hot state mixing of the algorithms for the

runs given in Figure 4.14. The mixing for the hot state of the PT algorithm is very

fast and the chain is able to move around the state space quickly. However, this

is not the case for the HAT algorithm which suffers from some aspect of modality

still. The problem with the mixing here is discussed more deeply in Section 4.6 and

is one of the key areas of further work proposed from this thesis.

Finally, a slight increase in the ambitiousness of the spacing is made. The
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Figure 4.13: Three trace plots of the cold state chain targeting the distribution in
equation (4.44) using the PT, HAT and Ideal algorithms respectively.

common ratio of the geometric spacing decreases from 0.35 to 0.25. Figure 4.15

shows one representative run from each. The PT algorithm in these finite runs never

finds the other mode and, although slightly on the low side, the acceptance rate for

swap moves throughout the temperature schedule is approximately 0.16 and would

not be suggestive of any major mixing issue to the practitioner. The acceptance

rates too for the HAT algorithm in this case are also only 0.16, again a little on the

low side from that suggested for optimality, but this is not totally prohibitive for

the algorithm which still manages to make, albeit less but still, regular inter-modal

jumps.
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Figure 4.14: Two trace plots showing the respective hot state mixing at inverse
temperature β = 0.356 of the runs from the top plotted examples in Figures 4.12
and 4.11, which are for the PT and HAT algorithms respectively. Note that the
global mixing for the hot state appears to be better than that of the HAT algorithm
when the chain can become temporarily stuck in local modes even in this hot state.

4.5 Computational Expense of the HAT Algorithm

There is no denying the fact that the practical implementation of the HAT algorithm

is significantly more expensive per iteration (ignoring inferential quality) over the

PT algorithm.

This is due to the expense incurred evaluating the target distribution for the

HAT targets. This involves the numerical calculation (and inversion of) of a hessian

at every evaluation of the target distribution. This is an O(d3) operation whether

or not eigenvalues are calculated to assess whether the hessian is suggestive of a

“proper” positive definite covariance matrix.

For comparison, the computational expense of evaluating the target in the

five dimensional example in Section 4.4.1 is highlighted with a HAT target evaluation

taking typically around 240 times longer than for the toy (very cheap) powered

version. Much of the expense can be put down to the chosen tuning of the numerical

“hessian” function in R, from the package Gilbert et al. [2006], which has been tuned

for high accuracy over speed. The hessian calculation computes 25 entries for a 5×5

matrix and for each entry the accuracy tuning parameter was allowed 10 iterations
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Figure 4.15: Three trace plots of the cold state chain targeting the distribution in
equation (4.44) using the PT, HAT and Ideal algorithms respectively. However,
unlike the versions of the runs in Figure 4.13, the temperature schedules were on
a more ambitious, sub-optimal, spacing. All cold level swap move acceptance rates
were approximately 0.16; even for the PT runs.

until convergence; immediately explaining the expense factor of approximately 250.

A key question is how the performance scales with dimension. The cost

of forming and inverting a hessian in d-dimensions is O(d3), which is undeniably

expensive.

Particularly in the colder states, with significantly different covariance struc-

tures between modes, performing location dependent moves would be essential to en-

sure fast intra-modal mixing. Position dependent RWM moves, Livingstone [2015],

which use the hessian at the current location to estimate the local covariance struc-

ture would be one approach to ensure fast intra-modal mixing. It would make the

iterative cost O(d3) for the standard PT algorithm. At each step of the HAT al-

gorithm the hessian can be calculated and stored for use in a position dependent

RWM framework making the within temperature moves more efficient at no signif-
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icant extra cost.

4.5.1 Limiting Diffusion for the Ideal Algorithm

A key insight into the scalability of HAT comes from collaborative work in con-

junction with this thesis by Professor Gareth Roberts (University of Warwick) and

Professor Jeffrey Rosenthal (University of Toronto). This work is in the process of

being written up for publication at the time of submission of this thesis.

The work analyses a simulated tempering algorithm targeting a bimodal

Gaussian target in d-dimensions, with inverse temperature level targets suggested

by the ideal algorithm of Section 4.2, i.e.

πβ(x) ∝
2∑

k=1

wkφ(µk,Σkβ )(x) (4.47)

where φ(µ,Σ)(.) is the density function of a d-dimensional Gaussian with mean µ

and variance matrix Σ. The weights of the modes are even with w1 = w2 = 0.5,

µ1 = (−1, . . . ,−1), µ2 = (1, . . . , 1), Σ1 = Id and Σ2 = σ2 × Id.
Previous analysis in Roberts and Rosenthal [2014], focussed on the ST ap-

proach with power-based tempered targets and made the unrealistic assumption

that exact, immediate mixing was happening within each temperature level.

The new work analyses the performance of a simulated tempering algorithm

where the hot states are given as in equation (4.47) following the idealised target

concept of Section 4.2. It makes two, far more realistic assumptions for the mixing

of the chain:

1. Immediate mixing within a single mode. Hence, conditional on being in one

of the mixture components, the Markov chain immediately mixes to invariance

within that component.

2. Immediate hot state mixing between modes only at the hot state temperature

level.

The first assumption is very realistic, while the second assumption is less so;

in particular this will likely be violated for the HAT algorithm (see Section 4.6).

Further to this, the temperature spacings are geometric with O(d−1/2) spac-

ings which are suitable and indeed optimal considering the associated optimal scal-

ing results that will follow in Chapter 5. Additionally, the hottest temperature is

assumed to be O(d−1) to induce stable probabilities of swapping between regions.
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The d+ 1 dimensional chain at time t is denoted as (βt, Xt) where Xt is the

location in the state space, X , and βt is the inverse temperature level. The aim

is to find a limiting diffusion for the signed “temperature” component of the chain

defined as

Yt = sgn(Xt)
log (βt/βmin)

log(1/βmin)
∈ [−1, 1]

where sgn(Xt) is 1 if the chain is assigned to the mode centred on {1}d or -1 if the

chain is assigned to the mode centred on {−1}d and βmin is the minimum of the

inverse temperature levels (i.e. hottest state).

With suitable scaling of the process, and using the two assumptions above, it

is concluded that Yt converges to a limiting process characterised as a skew Brownian

motion. The scaling that is required to obtain this non-trivial limiting process gives

insight into the convergence rate of this particular algorithm as dimensionality grows.

It turns out that time must be “sped up” by a factor of O
(
d log(d)2

)
to obtain a non-

trivial limiting process. This suggests that the convergence time of the algorithm is

polynomial in dimension.

This is a positive result for the HAT algorithm since assuming similar be-

haviour, the added O(d3) complexity that Hessian information requires suggests that

HAT converges in O(d4 log(d)2), which is still polynomial in dimension. Comparing

this to the standard ST approach for this example, which is torpidly mixing and

so convergence is decaying exponentially badly in dimension, see Woodard et al.

[2009b]. This result is therefore very positive and supportive of the HAT approach.

Alas, there are still open issues with the HAT approach that will likely cause

issues with the mixing at the hot temperature. Details are given in the following

section.

4.6 Hotter State Within Temperature Proposals

When power tempering, the bottleneck of information transfer through the tempera-

ture schedule occurs towards the colder temperatures when there is a relatively very

sudden regional weight indifference between consecutive temperature levels. Section

4.4.1 shows that the HAT algorithm can vastly improve the inter-modal mixing and

in the canonical setting has comparable iterative performance to the ideal algorithm

(albeit at a non trivial computational expense).

However, there is a new bottleneck that if ignored, can hugely undermine the

performance of the HAT algorithm. Figure 4.16 shows that the target distributions

at the hottest levels essentially becomes a step function along the region boundary
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formed by the zones of uncertainty. Such step function targets exhibit poor mixing

performance when using the typical hot state style proposals of symmetric RWM.

To see this, consider the bi-modal Gaussian mixture target given in equa-

tion (4.4). At an inverse temperature level, β, close to 0, the target distribution at

a point associated with the ith mode is proportional to |Σi|−1/2. Then a symmet-

ric RWM move proposed from x to y in this hottest state has (approximately) an

acceptance ratio of

A ≈ min

(
1,
|Σi(y)|−1/2

|Σi(x)|−1/2

)
(4.48)

where i(z) ∈ {1, 2} is the modal assignment of position z. Clearly then RWM can

mean that the hot states are still “multi-modal” with the chain at the hottest levels

trapped in regions with the smallest |Σi|. This is the opposite of the purpose of

tempering where the idea is that the chain at the hottest states can move freely

about all regions of significant probability mass.

Two solutions to this were initially considered but neither provided perfor-

mance that exceeded the symmetric RWM dynamics. Both were based on using the

ratio of the normalisation constants from the proposal densities to cancel out the ra-

tio of the target distributions (which is very large/small if the jump is inter-regional)

in the Metropolis-Hastings acceptance ratio. Suppose that the current location of

the Markov chain is x, then these two suggested mechanisms for proposing a new

location y in the hottest states were as follows:

1. Uniform Proposals: Propose component-wise independent symmetric centred

uniform proposals such that yi ∼ Unif(xi − a(x), xi + a(x)) where a(x) =[
2s[πHβ (x)]1/d

]−1
with s, a tuning parameter. The proposal density is given

by

q(x,y) =
1

sd[πHβ (x)]

d∏
i=1

1|xi−yi|≤a(x).

The key is that the acceptance rate for a proposed swap is given by

A = min

(
1,

d∏
i=1

1|xi−yi|≤h

)
(4.49)

where h = min(a(x), a(y)). Trial runs show that it is very hard to tune this

move well and the discontinuous nature of the move becomes a real issue for

the harder interesting scenarios where the step jump in the target is large. In

fact with any high dimensional setting it is unclear that this move would be

able to overcome any “zone of uncertainty”.
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Figure 4.16: Left: Plot of an example bimodal Gaussian mixture. Right: Plot of
the HAT target at the inverse temperature level β = 0.00005. Note the step nature
of the function with jumps that would be problematic for a symmetric RWM to
overcome.

2. Multivariate-t Proposals: Propose from a Multivariate t-distribution with a

suitable scale matrix (given below). It seemed intuitive that the heavy tails

of the t-distribution would provide a greater ability for the chain to jump

(ambitiously) across the boundary between regions in the hottest states of the

HAT algorithm. Hence,

y ∼ Multivariate-t(ν,Σ(x))

where ν is the degrees of freedom and Σx is the scale matrix of the multivariate-

t and in this case is given by a d-dimensional diagonal matrix with the (i, i)

entry given by Σ(x)(i,i) = s
[
πHβ (x)

]2/d
where s is a tuning parameter. Then
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the proposal density is given by

q(ν,s)(x,y) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
νd/2|Σ(x)|1/2

[
1 +

ν

2
(y − x)

′
Σ(x)−1(y − x)

]− ν+d
2

which gives a MH acceptance probability of

A = min

1,

1 +
∑d
i=1(xi−yi)2

sν[πHβ (x)]
2/d

1 +
∑d
i=1(xi−yi)2

sν[πHβ (y)]
2/d


(v+d)

2

 .

It should be noted that the scaling parameter, s introduced above is very

important in determining the performance of the algorithm and is directly

dependent on the normalisation constant of the target distribution.

Trial runs on hard one dimensional step type targets appear to show that the

use of the t-distribution is only as good at traversing the large step down as the

symmetric RWM moves with regards to the swap acceptance rate of proposed

moves across the step boundary.

A Population Based Approach: Another suggestion that certainly has

issues in the higher dimensions is to take a population approach to the target at

the hottest level. The motivation for this is that the mixing quality of the chains at

the colder temperature relies almost entirely on the hot state ability to traverse the

state space fast and efficiently. Therefore, if the mixing in the hot state is “sticky”

then this can filter up through to the colder chains when using the HAT algorithm.

If one has a population of particles at the hot state from which one is uni-

formly selected to undertake a swap move to the consecutively colder temperature

then one is not relying upon a single chain.

However, the acceptance rate of a step down can be seen to decay expo-

nentially fast in dimension and so a population would have to grow exponentially

in dimension to ultimately negate the step jump problem assuming the particles

continue using symmetric RWM.

In low/mid-dimensional problems it is not unrealistic that this could work

well and alleviate some of the problem. Since the mixing of the O(d1/2) temperature

levels depends on the mixing at this hot state it is sensible to put the extra effort

in at this single hot temperature to overcome the stickiness issues.

An Implicit Move Approach: Another approach that is being considered

as further work to this thesis is the use of implicit proposals which are well moti-
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vated in a simple one-dimensional toy step function target but not obviously yet

generalisable to a multi-dimensional setting.

New Approach: An interesting idea for a future approach that attempts

to preserve regional weight but maintain rapid mixing is suggested in the further

work Section 6.2.2. It is an idea that utilises statespace augmentation in an attempt

to overcome the core issues with significantly different entropy levels that can occur

between modes.
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Chapter 5

Optimal Scaling of a Regionally

Weight-Preserved PT

Algorithm

5.1 Introduction

Atchadé et al. [2011] motivated seeking an optimal temperature schedule selection

for the efficiency of the transfer of the hot state mixing information through to the

cold state. One measure of the transfer efficiency through the temperature schedule

is the Expected Squared Jumping Distance (ESJDβ) for a temperature swap move,

which is used as the metric in Atchadé et al. [2011] and is given rigorous justification

in Roberts and Rosenthal [2014], given by

ESJDβ = E
[
(γ − β)2

]
(5.1)

where β is the current temperature of the chain and γ is the random variable taking

the values β if the proposed swap move is rejected or β
′

if the move is accepted.

In order to pass the information efficiently from the hot state to the cold

state then one needs a strategy to balance making overly ambitious large jump

proposals which have low acceptance probabilities against under ambitious small

jump proposals with high acceptance both leading to slow mixing. By tuning the

consecutive temperature spacings to maximise the ESJDβ between levels then a

strategy balancing ambition and acceptance should be reached.
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5.1.1 Assumptions and Setup

Suppose that the d-dimensional state space, Xd, can be divided up into distinct

regions of significant probability mass, an idea similar to the decompositions used

in Woodard et al. [2009a]. The aim being that on these regions the distributional

mass will be preserved under power-based tempering. Let there beK distinct regions

such that

Xd = ∪Kj=1A(j,d). (5.2)

This is the case (at least approximately) in the HAT algorithm, especially in the

canonical setting with well separated Gaussian modes, where the space is divided

up into regions defined by their associated mode.

Assume that there are n + 1 d-dimensional chains, x0, . . . ,xn, running in

parallel at inverse temperature levels, 1 = β0 < β1 < . . . < βn targeting the product

distribution

πd(x0, . . . ,xn) ∝ πβ0

(w,d)(x0) . . . πβn(w,d)(xn) (5.3)

where the d-dimensional target distribution at inverse temperature level β is taken

to be of the weight preserving form

πβ(w,d)(x) ∝
K∑
k=1

wkπ
β
k (x)1[x∈A(k,d)]

=

K∑
k=1

wk

 d∏
i=1

fβ(k,i)(xi)∫
Aik
fβ(k,i)(z)dz

1[x∈A(k,d)] (5.4)

where

wk =

[∫
A(k,d)

πk(x)dx

]
and

K∑
k=1

wk = 1.

For simplicity (and tractability of the result), let each region be given by a hypercube

A(k,d) = A1
k ⊗ . . .⊗Adk = [a1

k, b
1
k]⊗ . . .⊗ [adk, b

d
k] (5.5)

so that for i, j ∈ {1, . . . , d}, (bik − aik) = (bjk − a
j
k).

Furthermore, it is assumed that the unnormalised univariate distributions

fβ(k,i)(·) have a shifted iid form on the corresponding region Ak. That is, for each

k ∈ {1, . . . ,K} there is a density, denoted fk(·), such that for all i ∈ {1, . . . , d}

f(k,i)(xi) = fk(xi − µik), (5.6)
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where µik =
aik+bik

2 .

The interpretation of the target is that the one-dimensional components

are conditionally independent (and shifted identically distributed) given the region.

This target preserves the masses in each region throughout the temperature sched-

ule.

In what follows assume that invariance of the chains at all temperature lev-

els has been reached. Suppose that a proposed temperature swap move between

the particles x and y has been made and that these chains are at the consecutive

tempering levels β and β
′

= β + ε where ε = `/d
1
2 . Thus

x ∼ πβ(w,d) and y ∼ πβ
′

(w,d).

Then the acceptance probability of the swap move proposed is

α(x,y) = 1 ∧
πβ
′

(w,d)(x)πβ(w,d)(y)

πβ
′

(w,d)(y)πβ(w,d)(x)
. (5.7)

In the parallel tempering algorithm there are also within temperature mixing

type moves that provide the mixing within each temperature level. As in Atchadé

et al. [2011], the assumption that the chains mix “infinitely” fast within each level

relative to the temperature space mixing is made here. Although this is unrealistic

at colder temperatures where multimodality prevents effective within temperature

mixing it means that the pair of chains, x and y, at the different levels can be

considered independent in the following analysis.

Under the above conditions, the following optimal scaling result will be

proved (where Φ(0,1) is the cumulative distribution function of a standard Gaus-

sian distribution).

Theorem 5.1.1 (Optimal Scaling for a Regionally Weight Preserved Parallel Tem-

pering Algorithm). Consider the parallel tempering algorithm targeting a distribu-

tion defined on a d-dimensional statespace, Xd, which can be decomposed as the

union of disjoint hypercubes as described in equations (5.2) and (5.5) and further

suppose that the target takes the regionally conditionally iid form given in equa-

tions (5.3), (5.4) and (5.6). Then as d → ∞, the ESJD given in equation (5.1) is

maximised when ` is chosen to maximise

`2
K∑
j=1

K∑
m=1

2wjwmΦ(0,1)

(
−`σj,m(β)

2

)
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where σj,m(β) = (Ij(β) + Im(β))
1
2 and Ik(β) = Var

fβk
((log fk) (x)).

Furthermore, the corresponding optimal swap move acceptance rate, â, in-

duced between two consecutive temperatures is in the region 0 < â ≤ 0.234 (3 s.f.).

The proof of this result is given immediately in the following Section 5.1.2

and is broken down into 3 key steps: establishing limiting Gaussianity of the logged

swap move acceptance ratio; computation of the limiting ESJDβ and optimisation

of the ESJDβ and derivation of the corresponding optimal swap acceptance rate.

These steps are broken down into three separate lemmas; the results and derivations

of Lemmas 5.1.3 and 5.1.4 establish the proof of Theorem 5.1.1.

5.1.2 Proof of Theorem 5.1.1

Recall that the ESJDβ takes the form

Eπd
[
(γ − β)2

]
= ε2 × Eπd [P(accept the swap)]

= ε2 × Eπd

1 ∧
πβ
′

(w,d)(x)πβ(w,d)(y)

πβ
′

(w,d)(y)πβ(w,d)(x)


= ε2 × Eπd

[
1 ∧ eB

]
, (5.8)

where

B = log

πβ′(w,d)(x)πβ(w,d)(y)

πβ
′

(w,d)(y)πβ(w,d)(x)


=

[
log

(
πβ
′

(w,d)(x))

)
− log

(
πβ(w,d)(x))

)]
+

[
log
(
πβ(w,d)(y))

)
− log

(
πβ
′

(w,d)(y))

)]
=: Hβ

d (x) +Hβ
′

d (y). (5.9)

The first step is to understand the asymptotic nature of B. Lemma 5.1.2

establishes this and shows that B has an asymptotically Gaussian mixture distribu-

tion.

Lemma 5.1.2 (Asymptotic Gaussianity of B). Under the setting of Theorem 5.1.1

and B given above in equation (5.9); as d→∞, B converges weakly to a Gaussian

mixture given

K∑
i=1

K∑
j=1

1[x∈Ai]1[y∈Aj ]N

(
−`

2

2
(Ij(β) + Im(β)) , `2 (Ij(β) + Im(β))

)
, (5.10)
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where Ik(β) = Var
fβk

(log (fk)).

Proof. Consider the term Hβ
d (x) from equation (5.9):

Hβ
d (x) =

K∑
k=1

 d∑
i=1

log

 fβ
′

(k,i)(xi)∫
Aik
fβ
′

(k,i)(z)dz

− log

 fβ(k,i)(xi)∫
Aik
fβ(k,i)(z)dz

1[x∈Ak]

=

K∑
k=1

[
d∑
i=1

ε log
(
f(k,i)(xi)

)
− log

(∫
Aik

fβ
′

(k,i)(z)dz

)
+ log

(∫
Aik

fβ(k,i)(z)dz

)]
1[x∈Ak]

=

K∑
k=1

[
d∑
i=1

ε log
(
f(k,i)(xi)

)
− ε ∂

∂β
log

(∫
Aik

fβ(k,i)(z)dz

)

−ε
2

2

∂2

∂2β
log

(∫
Aik

fβ(k,i)(z)dz

)

−ε
3

6

∂3

∂3β
log

(∫
Aik

f
[β+ξ(k,i)]

(k,i) (z)dz

)]
1[x∈Ak] (5.11)

where the final line uses a Taylor expansion to third order and 0 < |ξ(k,i)| < ε is the

mean value Taylor remainder.

Considering just the first derivative term in the final line of equation (5.11)

M(k,i)(β) :=
∂

∂β
log

(∫
Aik

fβ(k,i)(z)dz

)
=

∫
Aik

log
(
f(k,i)(z)

)
fβ(k,i)(z)dz∫

Aik
fβ(k,i)(z)dz

= E
fβ
(k,i)

(
log
(
f(k,i)

))
= E

fβk
(log (fk)) (5.12)

where the final equality is given due to the “shifted” iid form of the target in

equation (5.6). Hence, the dependence on the component identifier, i, in the term

M(k,i)(β) can be dropped and so is instead denoted by Mk(β).

Now consider the second order derivative from the final line of equation (5.11)

I(k,i)(β) :=
∂2

∂2β
log

(∫
Aik

fβ(k,i)(z)dz

)

=

∫
Aik

log
(
f(k,i)(z)

)2
fβ(k,i)(z)dz∫

Aik
fβ(k,i)(z)dz

−

∫
Aik

log
(
f(k,i)(z)

)
fβ(k,i)(z)dz(∫

Aik
fβ(k,i)(z)dz

)2

= Var
fβ
(k,i)

(
log
(
f(k,i)

))
= Var

fβk
(log (fk)) (5.13)
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where the final equality is given due to the assumed “shifted” iid setting described

above in equation (5.6). Hence, the dependence on the component identifier, i, in

the term I(k,i)(β) can be dropped and so is instead denoted by Ik(β).

For notational convenience, and due to the “shifted” iid setup, herein the

following notation is used:

Jk(β) :=
∂3

∂3β
log

(∫
Aik

fβ(k,i)(z)dz

)
∀i ∈ {1, . . . , d}

and furthermore the Taylor remainder from (5.11) can be given as ξk without a

dependence on i.

Using this new notation; the shifted iid form of the conditional components

given in equation (5.6) and writing xsi = xi − µik then Hβ
d (x) can be rewritten as

Hβ
d (x) =

K∑
k=1

[
d∑
i=1

ε log (fk(x
s
i ))− εMk(β)− ε2

2
Ik(β)− ε3

6
Jk(β + ξk)

]
1[x∈Ak].

By identical methodology to computing Hβ
d (x) and with ysi = yi − µik then

Hβ
′

d (y) =
K∑
k=1

[
d∑
i=1

−ε log (fk(y
s
i )) + εMk(β) +

ε2

2
Ik(β) +

ε3

6
Jk(β + ξk)

]
1[y∈Ak].

However, one can write

Mk(β
′) = Mk(β) + εIk(β) +

ε2

2
Jk(β + ξTk)

where ξTk is the the Taylor correction term such that 0 < |ξTk | < ε. Substituting

this term for Mk(β) into the above expression for Hβ
′

d (y),

Hβ
′

d (y) =
K∑
k=1

[
d∑
i=1

−ε log (fk(y
s
i )) + εMk(β

′
)− ε2

2
Ik(β)

+
ε3

6
(Jk(β + ξk)− 3Jk(β + ξTk))

]
1[y∈Ak].

Let Ex
k denote the event that x ∈ Ak then, with a slight abuse of notation, condi-
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tioning B on the events Ex
l and Ey

m

B|Ex
j , E

y
m =

d∑
i=1

[
ε (log (fj(x

s
i ))−Mj(β))− ε

(
log (fm(ysi ))−Mm(β

′
)
)

−ε
2

2
(Ij(β) + Im(β))− ε3

2
Jk(β + ξTk)

]
.

Defining

R
(β,β

′
)

(x,y,j,m) :=

d∑
i=1

[
ε (log (fj(x

s
i ))−Mj(β))− ε

(
log (fm(ysi ))−Mm(β

′
)
)

−ε
2

2
(Ij(β) + Im(β))

]

=:

d∑
i=1

r
(β,β

′
)

(x,y,j,m),i (5.14)

then, conditional on the events Ex
l and Ey

m, the r
(β,β

′
)

(x,y,l,m),i are independent and iden-

tically distributed for all i ∈ {1, . . . , d}. Using the assumed independence between

the x and y then

Eπd

(
r

(β,β
′
)

(x,y,j,m),i

)
= −ε

2

2
(Ij(β) + Im(β)) (5.15)

and

Varπd

(
r

(β,β
′
)

(x,y,j,m),i

)
= ε2

(
Var

fβj
(log (fj)) + Var

fβ
′

m

(log (fm))

)
= ε2 (Ij(β) + Im(β)) . (5.16)

With ε = `/d1/2, then using equations (5.16), (5.15), and the central limit

theorem for iid random variables, e.g. Durrett [2010], then as d→∞

R
(β,β

′
)

(x,y,j,m) ⇒ N

(
−`

2

2
(Ij(β) + Im(β)) , `2 (Ij(β) + Im(β))

)
. (5.17)

Furthermore, assuming continuity of Jk(·) for all k = 1, ,K then

lim
d→∞

Jk(β + ξTk) = Jk(β)

151



and so there exists a bounding constant C ∈ R such that for all k ∈ {1, . . . ,K}

|Jk(β + ξTk)| < C.

Consequently, ∣∣∣∣∣ε3
d∑
i=1

Jk(β + ξTk)

∣∣∣∣∣ ≤ `3

d1/2
C → 0 as d→∞.

Thus, by trivial use of Slutsky’s Theorem

B|Ex
j , E

y
m ⇒ N

(
−`

2

2
(Ij(β) + Im(β)) , `2 (Ij(β) + Im(β))

)
. (5.18)

Removing the conditioning across all regions gives the result in Lemma 5.1.2 and

the proof is complete.

Using the result in Lemma 5.1.2 then an expression for the ESJDβ for large

d is now derived.

Lemma 5.1.3 (Asymptotic ESJDβ). Under the setting of Theorem 5.1.1 and B

given above in equation (5.9); then for large d the ESJDβ is approximately given

as

ESJDβ = ε2 × Eπd
[
1 ∧ eB

]
∼ `2

d

K∑
j=1

K∑
m=1

wjwm

(
2Φ(0,1)

(
−`σj,m(β)

2

))
, (5.19)

where σj,m(β) = (Ij(β) + Im(β))
1
2 .

Proof. Firstly, an essential subsidiary result is established. Recall that (for some

general σ) if G ∼ N(−σ2

2 , σ
2) then, as was explicitly derived in equation (3.47), but

also found in Roberts et al. [1997],

E
(
1 ∧ eG

)
= 2Φ(0,1)

(
−σ

2

)
. (5.20)

Recall the form of the ESJDβ in this case:

ESJDβ = ε2 × Eπd
[
1 ∧ eB

]
.

For large d, B will be assumed to be distributed as in its asymptotic conditional

Gaussian form from Lemma 5.1.2. Then, taking the expectation under this assump-
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tion and applying the result from equation (5.20) then for large d

ESJDβ ∼
`2

d

K∑
j=1

K∑
m=1

wjwm

(
2Φ(0,1)

(
−`σj,m(β)

2

))
, (5.21)

where σj,m(β) = (Ij(β) + Im(β))
1
2 .

Lemma 5.1.3 establishes the key asymptotic form of the ESJDβ for Theo-

rem 5.1.1. However, the final part of the theorem statement regarding the optimal

spacing and associated optimal acceptance rate is yet to be established.

To this end the aim is to find the optimal spacing and to do this the ESJDβ in

equation (5.19) must be maximised with respect to `. This can be done numerically

to give a value ˆ̀.

For intuition, the ESJDβ function in equation (5.19) is considered for a

simple two region example, so Xd = ∪2
j=1A(j,d), where I1(β) = 1 and I2(β) = 5.

Suppose that the weight in each region is equal and so w1 = w2 = 0.5. Figure 5.1

shows the plot of the ESJDβ function from equation (5.19) over a range of values

of the scaling parameter, `. It is clear that there is indeed an optimal scaling that

finds a balance between over ambitious moves and under-ambitious moves in the

temperature schedule.

Optimisation for a specific problem through numerical techniques would re-

quire that one knows the values of the σj,m terms. This is not generally the case,

and although one would still be able to do trial runs of the algorithm to tune the

estimated ESJDβ to be maximal, without knowledge of how big this can be then it

is hard and computationally expensive to blindly tune to an unknown optimum. In

the optimal scaling of the temperature schedule in Atchadé et al. [2011], there was an

associated optimal acceptance rate for swap moves between consecutive temperature

levels and this gives the practitioner a clear tuning target for the spacings.

In this case, the optimal acceptance rate is less clearly attainable due to the

summation of terms in equation (5.19) meaning that there won’t be a single optimal

acceptance rate, see below for the example in Figure 5.2. In Sherlock [2006] a similar

problem arises when finding the associated optimal acceptance rate for the tuning

of a RWM algorithm on spherically symmetric target distributions. In that case it

turned out that through a clever application of Jensen’s inequality then the optimal

acceptance rate is less than or equal to the typical 0.234 value.
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Figure 5.1: Plotting the ESJDβ over different values of ` in a basic example where
I1(β) = 1 and I2(β) = 5 and w1 = w2 = 0.5.

Note that the ESJDβ given in equation (5.19) can be expressed as

ESJDβ ∼
`2

d
EΣβ

(
2Φ(0,1)

(
−
`Σβ

2

))
where Σβ is a discrete RV such that P(Σβ = σi,j(β)) = wiwj . This has similarities

to the form of the ESJD in Sherlock [2006] and motivates looking for a similar

optimal acceptance rate scaling range.

Recall the example given in Figure 5.1; instead of fixing the weights in the

two regions, consider finding the optimal spacings over a range of different values

of the weights such that w1 = 1 − w2. Having found the corresponding optimal

spacings then the associated optimal acceptance rates are calculated. Figure 5.2

shows how the optimal acceptance rate changes as the weight of region 1, w1, moves

between the extreme points where there is all or none of the mass in the first region.

At the extreme points the scalings (reassuringly) correspond to the setting

of the work in Atchadé et al. [2011] and give a corresponding 0.234 optimal scaling.

Figure 5.2 shows that in this basic example the optimal acceptance rates lie in the

conjectured â ≤ 0.234 region.

Figure 5.2 motivates the existence of an optimal acceptance rate, which one
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Figure 5.2: Black line: the numerically obtained optimal acceptance rates over
different values of w1 in the basic 2 region example where I1(β) = 1 and I2(β) = 5.
Red line: the 0.234 level.

expects to lie in the range 0 < â ≤ 0.234. This will now be derived explicitly.

Lemma 5.1.4 (Optimal Acceptance Rate). Under the setting of Theorem 5.1.1

then Lemma 5.1.3 showed that for large d the ESJDβ

ESJDβ ∼
`2

d

K∑
j=1

K∑
m=1

wjwm

(
2Φ(0,1)

(
−`σj,m(β)

2

))
, (5.22)

where σj,m(β) = (Ij(β) + Im(β))
1
2 . Optimising this with respect to ` corresponds to

a consecutive temperature level spacing that has an associated optimal temperature

swap acceptance rate of 0 < â ≤ 0.234.

Proof. For convenience, the ESJDβ term established in Lemma 5.1.3 can be refor-

mulated so that the sum with indicators is replaced by a random variable denoted

Σβ. Hence, for large d the ESJDβ is (approximately)

ESJDβ =
`2

d
EΣβ

(
2Φ(0,1)

(
−
`Σβ

2

))
where Σβ is a discrete RV such that P(Σβ = σi,j(β)) = wiwj .
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In order to find the optimal spacing, ˆ̀, this is differentiated to ` and set equal

to 0. Hence,

∂

∂l
ESJDβ = EΣβ

(
4`Φ(0,1)

(
−
`Σβ

2

)
− `2Σβφ(0,1)

(
−
`Σβ

2

))
,

and setting this equal to 0 to obtain a formula for the optimal spacing ˆ̀ gives

2EΣβ

(
Φ(0,1)

(
−

ˆ̀Σβ

2

))
= EΣβ

(
ˆ̀2Σβ

2
φ(0,1)

(
−

ˆ̀Σβ

2

))
. (5.23)

Note that differentiating the ESJDβ a second time verifies that the value ˆ̀ is indeed

a maximum. Next, as in Sherlock [2006], define the function h(·) defined so that

h(x) = −Φ−1
(0,1) (x)φ(0,1)

(
Φ−1

(0,1) (x)
)

(5.24)

and note that h(·) is a concave function since for any x ∈ (0, 1)

∂2h

∂x2
= −2

Φ−1
(0,1) (x)

φ(0,1)

(
Φ−1

(0,1) (x)
) < 0.

By considering the form of the ESJDβ given in equation (5.8) then it is clear

that for any spacing ` the associated acceptance rate is given by

a = EΣβ

(
2Φ(0,1)

(
−
`Σβ

2

))
and so the optimal acceptance rate, â is given by

â = EΣβ

(
2Φ(0,1)

(
−

ˆ̀Σβ

2

))
.

Letting V := Φ(0,1)

(
−

ˆ̀Σβ
2

)
then by equation (5.23) at the optimal spacing

â = 2EΣβ (V ) = EΣβ (h(V ))

where h(·) is given above in equation (5.24).

Since h(·) is concave then Jensen’s inequality can be applied to give

EΣβ (h(V )) ≤ h
(
EΣβ (V )

)
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and thus

â = 2EΣβ (V ) ≤ −Φ−1
(0,1)

(
EΣβ (V )

)
φ(0,1)

(
Φ−1

(0,1)

(
EΣβ (V )

))
. (5.25)

Now let m := −Φ−1
(0,1)

(
EΣβ (V )

)
then by equation (5.25)

2Φ(0,1) (−m) ≤ mφ(0,1) (−m) , (5.26)

with equality only in the case when m is the optimiser of the function m2Φ(0,1) (−m).

Let this optimal m be denoted m̂ then

2Φ(0,1) (−m̂) = m̂φ(0,1) (−m̂) = 0.234 (3 s.f.). (5.27)

Figure 5.3: Plot of the function 2Φ(0,1) (−m)−mφ(0,1) (−m)

Figure 5.3 shows a plot of the function 2Φ(0,1) (−m)−mφ(0,1) (−m). Although

not entirely clear in the figure, there is only the one point m̂ giving a root of the

function (occuring in the interval of [0, 2]) and then for m > m̂ the inequality given

above in equation (5.26) holds strictly. Consequently, given that equation (5.26)

holds then it implies that in this case m > m̂ and so crucially due to the decreasing

monotonicity of Φ(0,1)(−m) the acceptance rate of the algorithm satisfies

â = 2Φ(0,1) (−m) ≤ 2Φ(0,1) (−m̂) = 0.234 (3 s.f.), (5.28)
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where the last approximate equality is given from equation (5.27).

Thus combining the results of Lemmas 5.1.3 and 5.1.4 completes the proof

of Theorem 5.1.1.

5.2 Implications and Suggestions of this Optimal Scal-

ing Result

The optimal scaling result in Theorem 5.1.1 gives the practitioner guidance for opti-

mally tuning a regionally weight preserved PT algorithm. It does this by suggesting

a range of acceptance rate values (≤ 0.234) that the optimal temperature swap ac-

ceptance rate should fall within. Unlike the optimal tuning suggested in Atchadé

et al. [2011], the theorem only gives a range rather than a fixed value.

As was noted in Atchadé et al. [2011], much of the previous literature was

suggestive of a geometrically defined temperature schedule. Recalling Section 1.5.2,

which reviewed this idea in the context of the optimality result of Atchadé et al.

[2011]; a geometric schedule would only be optimal in their setting when

I(β) = Varfβ (log f) ∝ 1/β2.

Indeed, this is the case when the target distribution is a uni-modal Gaussian.

However, moving to a multimodal Gaussian mixture then this no longer

holds and tuning acceptance rates in a PT algorithm to be 0.234 can be misleading

through finite runs of the algorithm (especially in higher dimensions).

Suppose that the HAT algorithm is being used to target a multimodal Gaus-

sian mixture in d-dimensions, then Theorem 5.1.1 gives useful guidance for the setup

of the temperature spacings particularly in the colder part of the temperature sched-

ule when indeed there is (at least approximately) an optimal geometric schedule.

Corollary 5.2.1. Suppose that a target Gaussian mixture distribution is constructed

from K mixture components defined so that

πβ(x) ∝
K∑
k=1

wkφ(µk,Σkβ )(x)

where Σi := σ2
i Id. Suppose that all components are well spaced into K separate

hypercube regions as in the setup of Theorem 5.1.1; with the µi defining the centring

vector of the hypercubes.
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Assume that this is being targeted by using a regionally weight preserving

tempering algorithm. Provided the dimensionality, d, is large then the ESJDβ is

(approximately) given by

ESJDβ ≈
2`2

d
Φ(0,1)

(
− `

β
√

2

)
.

Maximising this form for the ESJDβ derives an associated optimal acceptance rate

of 0.234 (3s.f.). Furthermore ˆ̀∝ β and so the optimal spacing is (approximately)

geometric.

Proof. Recall the setting of Theorem 5.1.1; for large d, the ESJDβ is given by

ESJDβ =
`2

d

K∑
j=1

K∑
m=1

wjwm

(
2Φ(0,1)

(
−`σj,m(β)

2

))
,

where σj,m(β) = (Ij(β) + Im(β))
1
2 . However, particularly in the cold states, as-

suming the regional truncations of tails only remove negligible mass then ∀j,m ∈
{1, . . . ,K} then σj,m(β) ≈

(
2
β2

)1/2
which is independent of region. Hence the

ESJDβ term simplifies to

ESJDβ ≈
2`2

d
Φ(0,1)

(
− `

β
√

2

)
.

This has a maximum with respect to ` such that ˆ̀∝ β and with this optimal spacing

the induced optimal acceptance rate is directly derived to be

ACC = 2Φ(0,1)

(
−

ˆ̀

β
√

2

)
= 0.234 (3s.f.).

Consequently, a practitioner using a regionally weight preserving PT algo-

rithm targeting a well spaced Gaussian mixture distribution (or something approx-

imately of this form) is encouraged to tune the consecutive temperature swap ac-

ceptance rates to an approximately optimal value of 0.234.

5.2.1 The Problem with ESJDβ

An important question is whether the ESJDβ metric of mixing speed throughout

the temperature schedule really is the optimal metric to assess the performance
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of a regionally weight preserved tempering algorithm. Using standard power-based

tempering, optimising the ESJDβ is not necessarily inductive of an algorithm giving

good inter-modal mixing.

In fact, due to the lack of weight preservation and finite nature of runs of

the algorithm, the tuning stategy suggested can result in spacing tunings that are

only optimised for temperature swap moves occurring within a subset of the space;

potentially leading to critically poor scalings for swap moves elsewhere in the state

space.

The optimal temperature schedule scaling results are all under the assump-

tion of infinitely fast mixing within each temperature, which is essentially only re-

alistic if regional weight preservation is satisfied; something certainly not true when

using standard power-based tempering. This is major motivation for analysing the

joint process of within and temperature moves, as has been done in the new work

described in Section 4.5.1.

Indeed, in all the optimal scaling results discussed, the temperature spacings

necessarily take the form ε = `/d1/2 for non-degeneracy of the temperature swap ac-

ceptance probabilities. When using standard power-based tempering, it was shown

in a heuristic in Section 4.3.1, that the regional weight inconsistency between tem-

perature levels degenerates critically unless the spacings are chosen to be O(d−1).

This suggests that for the power-based tempering setup, optimising the ESJDβ

as in Atchadé et al. [2011], cannot alone induce a robust algorithm setup for an

asymmetric modal problem. Having regional weight preservation overcomes this

contradiction of scalings, giving justification to the use of ESJDβ in that setting.

There is still a major issue with using ESJDβ in all scaling results discussed

in this thesis. This is a metric in the temperature space and essentially integrates

out the dependence on the current location of the chains in the respective consec-

utive temperature levels. As such, optimisation of the ESJDβ suggests an

algorithm that has the fastest mixing speed throughout the temperature

schedule with the optimal consecutive spacings tuned in favour of those

modes that have the most mass along with the “easiest” swap moves

between each level. This by no means guarantees the best algorithm to enhance

the inter-modal mixing of the chains.

To illustrate this consider a bi-modal target in the setting of Theorem 5.1.1.

Suppose that Xd = A(1,d)∪A(2,d) and that at a given inverse temperature level β then

I1(β) = 1 and that I2(β) = V for a range of V ∈ {4, 8, 12, 16}. Figure 5.4 shows

how the optimal acceptance rate and corresponding optimal value of the spacing

parameter ˆ̀, induced by maximising the ESJDβ given in Theorem 5.1.1, vary as
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the weight assigned to mode 1 varies between 0 and 1 for each of the different values

of V .

Figure 5.4 shows that as the difference between the terms I1(β) and I2(β)

becomes larger then the unsuitability of the temperature spacing for a given mode

becomes evermore inappropriate. Indeed, modes with small I(β) are suggestive of

a more ambitious spacings.

Consequently, the ESJDβ, favours the dominant modes which admit the

more ambitious spacings due to their having small I(β). This is particularly high-

lighted in Figure 5.4 in the final row of plots when I2(β) = 16 where the weight of

the first mode, with I1(β) = 1, has to drop below roughly 0.35 before the spacing

stops being almost entirely tuned to swap moves of chains within the first mode.

Further to this, it is interesting that in this final row of plots there appears

to be a jump discontinuity in each plot. It would appear that once the difference

between the I(β) terms in the two modes becomes large enough the optimal approach

with regards to maximising the ESJDβ in Theorem 5.1.1 is to (essentially) optimise

for swap moves in only one region. Hence the optimally tuned spacing doesn’t find

a “compromise value” but instead optimises to a single region. Clearly this cannot

be the right thing to do if one is trying to optimise the inter-modal mixing since the

algorithm will be only tuned to perform well for swap moves of chains that are both

within this chosen optimal region.

This evidence suggests that even once weight is preserved regionally and the

spacings tuned according to Theorem 5.1.1, the ESJDβ metric has not produced

an algorithm with optimal inter-modal mixing.

There are two approaches that are intuitively sensible to try to overcome

this problem. Their practicality is problematic and implementation is left as further

work but nevertheless the concepts are worthy of discussion.

1. Scale the spacings to be optimal with respect to only the mode with the largest

value of I(β). Hence the optimal spacing would be tuned so that the spacing

parameter, `, maximises

ESJD ≈ 2`2

d
Φ(0,1)

(
−`
√
σ2

√
2

)

where σ2 = infj{Ij(β)}.

This would scale the spacings so that for the majority of modes the spacings

are under-ambitious. However, the intuition is that at least there will be no

mode that would find a swap move impossible by being far too over-ambitious.
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In practice prior knowledge of I(β) in each mode is unrealistic. However, if

there was suitable regional structure, which is given in the HAT algorithm

setting, then monitoring swap moves between chains in the same mode and

tuning so that every mode has at least a 0.234 swap acceptance rate would be

doing exactly as suggested. This would of course not be easy to implement.

2. Only monitor swap moves that are useful (in the context given below). Al-

though discussed in detail below. The key idea is that the ESJDβ consid-

ered in Theorem 5.1.1 integrates out the locations of the chains within the

temperature levels meaning that swap moves of chains that are in the same

region/mode are “averaged out” over also. Such swap moves are useless for

aiding inter-modal mixing since no “new information” from the hot state is

being transferred to the cold state. An idea is to scale the spacings to have an

optimal spacing but only with respect to useful swap type moves.

Pursuing suggestion 2, a non-rigorous definition of a useful swap move is

given:

Definition 5.2.1. Consider the parallel tempering algorithm targeting a distribu-

tion defined on a d-dimensional statespace, Xd, which can be decomposed as the

union of disjoint hypercubes as described in equations (5.2) and (5.5) and further

suppose that the target takes the regionally conditionally iid form given in equa-

tions (5.3), (5.4) and (5.6). Then define a “useful swap move” to be a swap move

that is between chains at consecutive temperature levels that are in different regions.

If one scales the temperature spacings in a regionally weight preserving tem-

pering algorithm to be optimal according to ESJDβ under the assumption that the

moves are conditionally only useful swap type moves then one is looking to optimise

ESJDF
β = E

[
(γ − β)2

∣∣F], (5.29)

where F is the event that the chains being swapped are in two different regions of

the state space. The regional decomposition is assumed to be such that each region

has a single mode; similar to the setup given in equation (5.2).

The following corollary to Theorem 5.1.1, shows that defining the conditioned

ESJDF
β as in equation (5.29) and optimising this with respect to the spacing param-

eter ` gives a well defined limiting ESJDF
β and an associated optimal acceptance

rate.
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Corollary 5.2.2. Assume the setup from Theorem 5.1.1 with a target distribution

that has a regionally conditionally iid form given in equations (5.3), (5.4) and (5.6).

Then as d→∞, the ESJDF
β given in equation (5.29) is optimised when ` is chosen

to maximise

`2
K∑
j=1

∑
m6=j

2W(j,m)Φ(0,1)

(
−`σj,m(β)

2

)

where σj,m(β) = (Ij(β) + Im(β))
1
2 and Ik(β) = Var

fβk
(log (fk)) and the weights are

given by

W(j,m) =
wjwm∑K

j=1

∑
m 6=j wjwm

.

Furthermore, the corresponding optimal swap move acceptance rate, denoted â, in-

duced between two consecutive temperatures is in the region 0 < â ≤ 0.234 (3s.f.).

Proof. The proof is identical to that of Theorem 5.1.1 with the only difference being

the weightings of the components in the double sum, but this is simply derived by

conditioning on the event, F, that there are no swaps between chains in the same

region.

Now return to the setting of a bi-modal target in two regions, given in Fig-

ure 5.4, and considering the same setup but instead deriving the optimal schedule

via Corollary 5.2.2. Without the need for the plots it is clear that in this bimodal

example, the optimal schedule is unaffected by the weight in mode 1, w1, and instead

is only focused on finding the optimal value of ` such that it maximises

2`2Φ(0,1)

(
−`σ1,2(β)

2

)
,

which is well established to induce a 0.234 rule for the acceptance of the relevant

useful type swap moves and indeed the spacing will only depend on the value of

σ1,2(β) = (I1(β) + I2(β))
1
2 . Consequently, for any value of w1 ∈ (0, 1), the optimal

spacing, ˆ̀will remain the same and is bounded between the optimal spacings induced

by σ1,2(β) = (2I1(β))
1
2 and σ1,2(β) = (2I2(β))

1
2 . This can be considered as being

a value for an optimal spacing with a compromise between the two extremes where

the modes induce very different spacings for non useful swap moves.

In a bimodal example it is therefore very nice that the optimal spacings don’t

depend on the weights of the regions and only focuses on optimising the useful swap

type moves independently of the regional weightings. However, this is clearly no

longer the case when there are more than 2 regions, there is still the intuitively nice
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property that if there was a dominant region then it’s influence on the scaling won’t

be as powerful any longer.

The practicality of scaling spacings according to the result in Corollary 5.2.2

is limited but not impossible. In the colder states in the setting of well separated

modes then local gradient information or a clustering approach could assign chain

locations to modes but it is questionable whether this extra expense is worthwhile.

The major message from this section is that the ESJDβ can be a misleading

metric to optimise. It requires marginalisation of the temperature components by

integrating out the dependency on the chain locations under the assumed infinitely

fast mixing at each level. This is a highly unrealistic assumption and motivates a

full joint location-temperature asymptotic analysis.
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Figure 5.4: In the setting of Theorem 5.1.1, with 2 regions and for a fixed dimension
assumed large, the optimal scalings and corresponding optimal acceptance rates
are computed as the weight in the first region w1 varies over the range 0 to 1.
Furthermore within the respective regions I1(β) = 1 and that I2(β) = V where a
range of V ∈ {4, 8, 12, 16} is considered. Each row of plots considers each value
of V respectively. Left: Optimal acceptance rate plots. Right: the corresponding
optimal spacings in terms of the scaling parameter l.
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Chapter 6

Conclusions and Furtherwork

6.1 Conclusion

This thesis explored two core concepts relating to the performance of the PT al-

gorithm. These were regarding improvements to the mixing speed of the hot state

mixing information through the temperature schedule once a mode had been found

(Chapter 2), and regarding the issues arising from the typical lack of regional weight

preservation under power-tempering (Chapter 4). Each of these chapters gave rise

to a prototype algorithm, QuanTA and HAT respectively, giving the first steps to-

wards a more robust, scalable framework for tackling the issue of multi-modality

in MCMC. Each of the new algorithms were accompanied by theoretical results

that provide (asymptotic in dimension) optimal setup and these were established in

Chapters 3 and 5 respectively.

Chapter 2 explored the restrictive nature of the spacings for consecutive lev-

els of the temperature schedule. This limits the ambition of the proposal magnitude

for jumps in the temperature space. It was shown that, for a unimodal setting,

appropriate quantile preservation between levels allowed swap moves that were ac-

cepted with probability one. In general, a reparametrisation scheme preserving the

quantile within a mode upon proposing a swap of the chain’s value to a different

temperature level is unfeasible. However, in the case of a Gaussian unimodal target

there is a simple reparametrisation that can be carried out if one knows the location

of the mode point. For this canonical example, it is possible to entirely overcome

the curse of dimensionality that typically restricts the ambition of the inverse tem-

perature spacings (which are usually O(d−1/2)) in a PT algorithm. In fact, in the

Gaussian setting jumps in the temperature space of arbitrary distance are accepted

with probability one.
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It is this reparametrisation that motivated the design of a new prototype

algorithm, QuanTA in Section 2.6, that attempts to utilise the Gaussian driven

reparametrisation to approximately preserve the quantile within a mode upon propos-

ing a swap to an adjacent temperature level. QuanTA exploits a population-based

approach to MCMC that preserves the Markovian property whilst extracting in-

formation (in the form of mode points needed for the reparametrisation centrings)

from the current values of a population of parallel Markov chains.

Empirical examples highlighted the vastly improved mixing that can be

achieved by using the QuanTA approach in the canonical symmetric mode Gaus-

sian mixture target setting, particularly as the dimensionality increased. Indeed,

in this canonical setting it was illustrated that the vast number of intermediate

temperatures that are typically required for the PT approach are unnecessary. Con-

sequently, for cases where the local modes can be well approximated by a Gaussian

distribution then the QuanTA approach can vastly improve the transfer speed of

mixing information from the hot state to aid the cold state inter-modal mixing.

The QuanTA approach still has a number of key open problems; rendering

it a prototype algorithm rather than a finished product. The QuanTA algorithm

as specified in Section 2.6 requires prior specification of the number of modes, K,

which for many practical problems is unrealistic. When the modes are critically not

symmetric then the population size required for a stable robust method will likely

grow exponentially with the dimension of the problem. The reparametrisation form

is specific to a Gaussian mode and is inappropriate for modes that are not well

approximated by a Gaussian distribution.

In practice the method may need added robustification by incorporating

other reparametrisation shifts such as the shift required if the modal structures are

Laplace; this gave rise to the development of QuanTAR in Section 2.10.3 which

uses a random scan approach to using a reparametrisation move from a collection

of pre-specified reparametrisations. Alas, these pre-specified forms will be limited,

and this was illustrated in Section 2.10.2 for the t-distribution case when the ideal

reparametrisation is only implicitly available.

Chapter 3 provided an accompanying result suggesting an approach for op-

timal setup of the QuanTA temperature schedule. The major result is given in

Theorem 3.2.1 and this suggests that the optimal spacings in the inverse tempera-

ture schedule for QuanTA for a general target of iid form is still O(d−1/2) (as is the

suggested optimum for the PT approach); hence no generic improvement in the scal-

ability with dimension. Importantly, Theorem 3.2.1 suggests that the temperature

schedule setup can be tuned to optimality by aiming for a schedule that induces a
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0.234 acceptance rate for swap move proposals between adjacent temperature levels.

Theorem 3.4.1 in Section 3.4 is supportive of the use of QuanTA; proving

that it can exhibit higher order behaviour with respect to the spacings than the

traditional PT setup does. The result describes the higher order spacings possible

at super-cold temperatures in symmetric and asymmetric modal cases.

QuanTA only aims to aid mixing through the temperature schedule once a

mode has been found. The work in Woodard et al. [2009a] and Woodard et al.

[2009b], overviewed in Section 1.6, highlighted that the scalability of the PT ap-

proach using power-based tempering is poor for most interesting examples. Indeed,

this is the case for the canonical setting of a Gaussian mixture model with modes

that have differing covariance structures; overcoming this issue is the focus of Chap-

ter 4. The major problem is the lack of regional weight preservation when using

power-based tempering; a problem that is emphasised with an increase in dimen-

sionality.

Using the Gaussian mixture setting as the canonical setting once more, the

concept of an “ideal” tempered target was introduced in Section 4.2. Particularly

through the colder temperature levels this approximately preserves the regional

weight in a modal region. By approximating this ideal target, a prototype algorithm,

HAT, was developed in Section 4.4 that essentially used rescaling regionally about

the local mode point.

This approach appears to give impressive improvement in mixing speeds (per

chain iteration) on difficult low to mid-dimensional examples presented. However,

there are clear issues that render the current algorithm prototype rather than a

finished product. Computationally, the algorithm is very expensive and requires

the computation and inversion of hessian matrices at every evaluation of the target

making the algorithm at least O(d3) in complexity.

However, it should be noted that recent collaborative work discussed in Sec-

tion 4.5.1 suggests that in the Gaussian mixture setting then even with the hessian

expense, the HAT algorithm is polynomially degrading with dimension as opposed

to the exponential decay for the traditional PT approach. This work assumes im-

mediate mixing at the hottest state but this is currently a major issue with the

HAT approach, as is highlighted in Section 4.6. In high-dimensional settings, using

RWM type moves will lead to exponentially slow mixing and likely mean that the

capacitance condition in Woodard et al. [2009b], which is one aspect of a trio of con-

ditions guaranteeing torpid mixing, would be satisfied. Chapter 4 has shown that

weight preservation makes a huge difference to the robustness of the PT algorithm.

Indeed, a major conclusion of Chapter 4 is that practitioners should be very wary
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of using temperature swap move acceptance rates to diagnose the performance of

the PT algorithm.

Chapter 5 provides an optimality result, Theorem 5.1.1, that accompanies

the HAT algorithm (but is more broadly applicable to any regional power-based

tempered weight preserving PT algorithm). Similar to Theorem 3.2.1 for QuanTA,

Theorem 5.1.1 suggests an optimal setup to the temperature spacings for a regionally

weight preserved PT algorithm for high dimensional settings. Again, the optimal

schedule has temperature spacings that scale with dimension as O(d−1/2). Impor-

tantly, Theorem 5.1.1 suggests that the temperature schedule setup can be tuned

to optimality by aiming for a schedule that induces an acceptance rate in the range

0 < â ≤ 0.234 for swap move proposals between adjacent temperature levels. Indeed,

under the setting of a Gaussian mixture, Corollary 5.2.1 to Theorem 5.1.1, suggests

that a geometric schedule is optimal; an extension to the geometric optimality for

a Gaussian suggested in Atchadé et al. [2011].

Complementary to this, Section 5.2.1 discussed the appropriateness of using

ESJDβ as the measure of performance of the algorithm with regards to the success

of inter-modal mixing. It showed that the use if the ESJDβ is inappropriate if used

in combination with the assumption of infinitely fast within temperature mixing. It

produces an algorithm that perhaps can move effectively through the temperature

schedule but can have critically bad performance with regards to inter-modal mixing.

To conclude, this thesis has made a contribution to improving arguably the

most successful tool that practitioners use when implementing an MCMC algorithm

in multi-modal settings. The prototype algorithms are accompanied with optimality

theorems that are not only useful for algorithmic setup, but more crucially, provide

insight into the scalability and merits of the approaches. However, the issue of multi-

modality in MCMC is far from resolved; this thesis has highlighted core problems

for future research and novel approaches that take the first steps to designing more

robust scalable algorithms in this setting.

6.2 Further Work

Beyond the detailed shortcomings of the new algorithms that are presented in this

thesis, two interesting directions for further work have become apparent. Both have

clear motivation to overcoming the scalability issues with the PT and ST algorithms

and are heavily linked to the QuanTA and HAT algorithms respectively.
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6.2.1 Tempering with Implicit MCMC

Chapter 2 introduced QuanTA, utilising a deterministically reparametrised location

temperature swap move to improve the mixing through the temperature schedule.

For optimal and stable performance, QuanTA relies on knowing the number of modes

prior to running the algorithm and this is typically unrealistic. This motivates a

more robust approach. Section 2.5 eluded to using a Dirichlet process prior on the

number of modes and performing a more robust clustering scheme than the basic

K-means approach but this would inevitably be highly computationally intensive.

Intuitively, the Gaussian-driven reparametrisation draws the location in to-

wards the mode point upon proposing a location that is colder, and for reversibility

it repels the location away from the mode point when proposing a swap to a hotter

temperature level; all with the hope of approximately preserving the quantile of the

local mode. In a unimodal Gaussian setting, the direction towards the mode can be

found with the use of local, log-target, gradient information to second order. This

means that no population-based approach is required to estimate the mode point.

An approach that could be use to exploit this for the general multi-modal

framework, whilst importantly still guaranteeing reversibility, is to use an implicit

MCMC framework, e.g. Casella et al. [2011], which has been used to try to over-

come some of the instability issues prevalent in the popular MALA approach when

targeting light tailed distributions.

Consider the joint move setting of Chapter 2, which in QuanTA takes the

form of a deterministic move for the location, x to a reparametrised version x
′
:

(x, β)→ (x
′
, β
′
).

Suppose that this new location is given by solving the following implicit equation

x
′
+ g(β

′
, x
′
)5 log π(x

′
) = x+ h(β, x)5 log π(x) (6.1)

where g and h are functions that must be specified. Solutions to this can be found

using the Newton algorithm for finding the roots of such implicit equations. Assum-

ing uniqueness of the solution, then reversibility is guaranteed.

From the work in Chapter 2 it seems natural that the choice of h and g should

allow for swap moves between adjacent temperatures with arbitrary separation to be

accepted with probability one for a uni-modal Gaussian target distribution. Hence,
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setting

h(x, β) = g(x, β) =
(
β1/2 − 1

) [
−55T log π(x)

]−1
(6.2)

then the solution to the implicit equation in the setting where the target at the cold

state is a Gaussian with mean µ and variance matrix Σ becomes

x
′
+ g(β

′
, x
′
)5 log π(x

′
) = x+ h(β, x)5 log π(x)

x
′
+
(

(β
′
)1/2 − 1

)
ΣΣ−1(x

′ − µ) = x+
(
β1/2 − 1

)
ΣΣ−1(x− µ)

x
′

=

(
β

β′

)1/2

(x− µ) + µ.

which mirrors the reparametrised location suggested for a Gaussian unimodal target

in Chapter 2. For reversibility, it would be ideal that the solution is unique. To

guarantee this, one would have to run the solver, e.g. the Newton scheme, from the

proposed new location to ensure that one returns to the initial point x, doubling

the computational overhead of the solution step.

A major issue that could prove problematic in this approach is the require-

ment for calculation of third derivatives. This is due to the deterministic nature

of the move requiring a Jacobian for the transformation which is needed in the

accept-reject step of the swap move. Defining,

b(x) :=
[
−55T log π(x)

]−1 5 log π(x),

then the Jacobian for the transformation x → x
′

from solving the implicit equa-

tion (6.1) is given by

Jx(x
′
) :=

∂x
′

∂x
=
[
Id +

(
(β′)1/2 − 1

)
Jx′ (b(x

′
))
]−1 [

Id +
(

(β′)1/2 − 1
)
Jx(b(x))

]
where Id is the d×d identity matrix. If the problem doesn’t have tractable gradient

terms then this is certainly a non-trivial computational overhead. Early, attempts

to run this on simple 1-dimensional Gaussian mixtures have shown similar inferen-

tial performance to the QuanTA approach but the scalability is poor with dimen-

sionality. However, the concept of using gradient information to construct a joint

temperature-location swap move seems to be an interesting future path for making

QuanTA more robust.
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6.2.2 Rapid Mixing via State Space Augmentation

The main message from the work in Chapter 4 which essentially follows from the

work in Woodard et al. [2009b], is that when modes have differing scalings then naive

tempering approaches scale badly with dimensionality. Woodard et al. [2009b] high-

lighted a property of persistence, see Section 1.6 for an overview. This characterizes

the regional weight indifference between the cold and hot states when tempering.

Chapter 4 demonstrates that this is a significant problem, even for low dimensional

examples for Gaussian mixture target distributions. The HAT algorithm attempts

to overcome the issue of regional weight preservation, but there are open issues with

mixing at the hottest temperature levels, likely making the algorithm impractical

for high dimensional problems.

Woodard et al. [2009a] showed that modal symmetry in a Gaussian mixture

rendered the PT algorithm rapidly mixing. The HAT algorithm preserves weight

but there can then be significant entropy changes between regions at the hottest

level, inherent from the asymmetry of modal structure.

This motivates looking for a different approach that still aims to preserve

regional weight but allows rapid mixing at the hottest temperature levels. Albeit at

an early stage of development the thesis has pointed towards a promising approach

that utilises the idea of modal symmetry and hence regional weight preservation

upon tempering. Consider the following 1-dimensional bi-modal Gaussian mixture

distribution with means at -10 and 10; variances of 0.1 and 9; and equal weighting,

illustrated in Figure 6.1.

Figure 6.1: A 1-dimensional bi-modal Gaussian mixture distribution with means at
-10 and 10; variances of 0.1 and 9; and equal weighting
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Heuristically, it will always be an issue attempting to force a reversible

Markov chain in the mode centred on -10 to the mode centred on 10 due to the

dramatic change in entropy. However, consider augmenting the state space by a

variable y which is designed in a way such that, in a Gaussian setting, the modes

have an identical determinant of the covariance structure. Clearly, this will come

in the form of a conditional distribution given the current value of the “x” variable

and could crudely be described through the gradient information from the point x,

similar to the HAT approach.

In the case of the Gaussian mixture in Figure 6.1 then the ideal is that the

new target would (approximately) be the bi-modal bi-variate Gaussian target:

0.5×N

([
−10

0

]
,

[
1 0

0 3

])
+ 0.5×N

([
10

0

]
,

[
1 0

0 3

])
(6.3)

which has a density illustrated in Figure 6.3.

Figure 6.2: Density contour plot for the bi-modal bi-variate Gaussian target given
in equation (6.3).

Hence the core idea is that through state space augmentation, the hope is

that the mode points evaluations can be on the scale of the weight of the mode

rather than depending on the covariance structure. Hence, upon tempering there

shouldn’t be an exponential decay of regional weight indifference.
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