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A new route towards a series of tethered 6-arene/Ru(II) catalysts for use in the transfer and 

pressure hydrogenation of ketones and aldehydes to alcohols is reported. The route proceeds 

through the formation of an amide from the diamine precursor, followed by reduction, rather 

than the direct alkylation of the diamine. This has the advantage that dialkylation of the amine is 

avoided during the synthesis. Through this new route, both racemic and enantiomerically-pure 

6-arene/Ru(II) tethered catalysts can be prepared in high yield. 

2009 Elsevier Ltd. All rights reserved. 
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Introduction. 

Enantiomerically pure tethered 6-arene/Ru(II) complexes of 

type 1 have been widely applied to the asymmetric reduction of 

ketones and imines to alcohols and amines respectively.1 This 

class of catalyst was first reported by Wills et al. in 20052 and an 

improved synthesis by Wills et al./Johnson Matthey was reported 

in 2012.3 Several other groups have also reported derivatives of 

the original tethered complex 1 and these have also been tested in 

a number of synthetic applications.1,4 Complex 1 may be 

prepared on a large scale through an established reaction 

sequence in which a diene is attached to the diamine precursor 

(TsDPEN) through an SN2 substitution reaction of monotosylated 

diamine 2 with triflate 3 to form ligand 4 (Scheme 1).3 In some 

cases, a tosylate or mesylate leaving group may be employed in 

this step. Complex 1 is subsequently formed via a dimer 4 which 

may isolated or converted directly into the monomer without 

isolation.2,3 

 

Scheme 1. Established route to tethered complexes 1.5 

 

Whilst this route works well for complex 1, the synthesis of a 

racemic derivative of 1 (i.e. in which the two phenyl groups were 

absent from the diamine unit), which is a valuable catalyst for 

general reduction applications,5 has proved to be more 

challenging, and low yields were achieved upon cyclisation of 

the corresponding intermediate dimer to the required product.3a 

As it was suspected that this was due to the high polarity of the 

racemic complex compared with 1, we sought to compensate for 

this by replacing the p-toluenesulfonyl group with a more 

lipophilic substituent. In the event, we first attempted to form 

ligand 7 from the reaction between 3 and TrisEN 86 using the 

established alkylation method. Unfortunately, and in contrast to 

TsDPEN 2, the reaction was complicated by a competing 

dialkylation reaction of TrisEN 8. The use of tosylate and 

mesylate derivatives of 3 did not provide a solution as these were 

either unreactive or also gave competing dialkylation products. 

Hence, an alternative approach was required.  

Results and Discussion.  

Towards identifying a solution to this challenge, we 

considered the use of an amide intermediate, therefore avoiding 

issues of dialkylation. Firstly, amine 8 was coupled with acid 97 

to form amide 10, which was subsequently reduced to amine 7 

using lithium aluminium hydride. Subsequent complexation to 

the dimer 11 followed by conversion to 6 upon treatment with 

base, following the established protocols for this stage of the 

tethered catalyst synthesis, completed the development of the 

improved synthetic route (Scheme 2).  

 

 

Scheme 2. Amide route to racemic tethered complex 6 via 
amides 10 and 13. 

Through a similar process but reversing the position of the 

amide, amine 7 was also formed through the combination of 

carboxylic acid 12 (prepared from glycine) with amine 13 to give 

14, followed by reduction, representing a further amide-based 

approach to the required ligands (Figure 1). The high yields 

obtained in each of the final steps reflects the much greater 

compatibility of the more lipophilic ligand 7 (compared to the 

NTs analogue)3a with the reaction conditions used. 

 

Figure 1. Amide intermediate 14 and precursors 12 and 13. 

The amide approach was also demonstrated to be effective for 

the synthesis of several known asymmetric catalysts2,3 (Scheme 

3) and was applied successfully to the ligand precursor for 1. In 

this case, amide 15 was formed from TsDPEN 2 and reduced to 4 

in 93% and 66% yields respectively for each step. Throughout 

this study, EDC/HOBt was found to be an efficient reagent 

combination for the amide formation step of the sequence. 
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.   

Scheme 3. New route to hindered asymmetric tethered 

complexes via an amide. 

In addition, some highly hindered (also known) derivatives 

were also prepared by this method (Scheme 4). The extra level of 

steric hindrance and the variation in tether length can, in some 

cases, moderate the level of selectivity and activity of the 

complexes. In this synthesis, (S,S)-TrisDPEN 16 was first 

coupled with either acid 9 or 17 to give the amides 18a and 18b 

respectively in good yields. Subsequent reduction to the known 

amines 19a/b proceeded cleanly; these are known precursors to 

the hindered tethered catalysts 20a/b following an established 

method.3b In the synthesis of 4, 19a and 19b by this method, the 

1H NMR spectra indicated the formation of a single 

diastereoisomer of product in each case, suggesting that no 

epimerisation takes place at either chiral centre during the 

reduction reactions. 

 

Scheme 4. New route to hindered asymmetric tethered 

complexes via an amide intermediate. 

 

The new racemic complex 6 worked efficiently as a catalyst for 

the reduction of acetophenone and several aldehydes (Table 1). 

In acetophenone reduction, full conversion could be achieved 

using as little as 0.1 mol% catalyst with either hydrogen gas or 

formic acid/triethylamine as the reducing agent. In all cases 

except entry 2, the reductions worked effectively without the 

requirement for the addition of a further reagent, such as a base, 

to activate the catalyst. In the case of the hydrogenations, 

ionization takes place in methanol solution.3a,8 The reasons for 

the lower conversion in entry 2 are not clear however reactions in 

isopropanol are reversible and it may be the case that the reaction 

had not proceeded with full conversion even over the extended 

reaction time. Aldehyde reduction worked equally well and the 

loading could be reduced further but at the cost of a small amount 

of formylated side product. A series of aldehydes were reduced in 

full within 5h using 0.2 mol% catalyst and with high selectivity 

for reduction of the carbonyl group over other sensitive functions 

in the molecule. This preference from the selective reduction of 

the more reactive and polar C=O bond in the aldehyde is in 

common with previous observations using this class of 

substrate.3a 

 

Table 1. Application of catalyst 6 to the racemic reduction of 
acetophenone and aldehydes. 

 

entr

y 

Substrate Reagent, 

Solvent 
S/C 

t / h 

S] 

T/ 
oC 

Conv /% 

1 PhCOMe FA/TEA 

400:1 

5h 

1M 

40 98% 

2 PhCOMe iPrOH 

400:1 

29h 

0.1 M 

40 26%,  

3 PhCOMe 30 bar H2 
MeOH 

500:1  

24h 
1 M 

60 99% 

4 PhCOMe 30 bar H2 
MeOH 

1000:1  

24h  
0.5M 

60 99% 

5 PhCOMe 30 bar H2  
MeOH 

1000:1 

24h 
1M 

60 99% 

6 PhCHO FA/TEA 
500:1  

5h, 7h 
1.5M 

40  86, 100 

7 PhCHO FA/TEA 

1000:1 

5h 

1.5M** 

60 96%,  

4%* 

8 PhCHO FA/TEA 

5000:1 

5h 

1.5M** 

60 89%,  

10%* 

9 PhCHO FA/TEA 
10,000:1 

24h 
1.5M** 

60 56%, 
18%* 

10 PhCHO FA/TEA 

20,000:1 

24h 

1.5M** 

60 37%,  

9%* 

11 p-Br 

C6H4CHO 

FA/TEA  

500:1 

5h 

1.5M 

40 100 

12 p-NO2 
C6H4CHO 

FA/TEA  
500:1 

5h 
1.5M 

40 99 

13 p-iPr 

C6H4CHO 

FA/TEA 

500:1 

5h 

1.5M 

40 99 

14 p-OMe 
C6H4CHO 

FA/TEA 
500:1 

5h 
1.5M 

40 100 

15 PhCH=CH

CHO 

FA/TEA 

500:1 

5h 

1.5M 

40 96 

* Formylated alcohol. ** contains DMF (ca 0.25 mL). 
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The route was further applied to the preparation of catalyst 

precursor ligands 219 and 22, which contains an aromatic ring in 

place of the diene, i.e. via the amides 23 and 24 respectively in 

good yields (Figure 2). Intermediate 21 has been employed to 

form reduction catalysts such as 1 using an arene-displacement 

strategy recently reported by Wills et al.10  

 

  Figure 2. Precursors to the synthesis of complex 1 and its 
racemic analogue via an arene-exxchange route.9 

In conclusion, we have developed an alternative route to a series 

of tethered Ru(II) catalysts using an amide intermediate, which 

avoids the problems of multiple alkylation which were 

encountered using the existing alkylation strategy. Through this 

approach, it was possible to prepare a highly effective racemic 

catalyst (6) for the reduction of ketones and aldehydes, which 

may also be employed with hydrogen gas or with a combination 

of formic acid and triethylamine. Using this method, complex 6 

was prepared cleanly and in high yield without the complications 

of side-product formation. The clean reductions, using an 

economical metal source, provide an advantage over more 

established stoichiometric methods. The approach can also 

employed to form known asymmetric tethered catalysts in high 

yield. 
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