## A Thesis Submitted for the Degree of PhD at the University of Warwick

## Permanent WRAP URL:

http://wrap.warwick.ac.uk/99902

## Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

## THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

## TITLE

GRAPHS WITH PARALLEL MEAN CURVATURE AND A VARIATIONAL PROBLEM IN CONFORMAL GEOMETRY

# AUTHOR Isabel Maria da Costa Salavessa 

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTAE

| 1 <br> cms. | 12 | 13 | 14 | 15 | 18 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | Bosson Spa, Wetharty West Yorkshire United Kingdom

# GRAPHS WITH PARALLEL MEAN CURVATURE AND A VARIATIONAL PROBLEM IN CONFORMAL GEOMETRY 

by<br>Isabel Maria da Costa Salavessa

December 1987

Submitted for the degree of Doctor of Philosophy
University of Warwick


#### Abstract

This thesia essentially deals with two basic problems, one in Riemanian, the other in Conformal Geometry, described in Part I resp. Part III. Part II ean be considered an an interlude serving as a sort of bridge between Riemannian and Comformal Geometry.

The main resnlt of the first part, formulated in Corollaries 1.1.1 and 1.1.2 of Theorem 1.1, atates that any graph I ; $\subset M \times N$ of a map $f: M \rightarrow N$ between Riemannian manifolds, with parallel mean cervature, is minimal, provided $M$ ia compact or non-compact with zero Oheeger constant. This reault generalisea the case $M=\mathbb{R}^{m}, N=\mathbb{R}$, independently treated by E. Heinz, S. S. Chern, and H. F. Flanders. Moreover, Theorem 1.2 and Proposition 2.3 show that, for $M$ the $m$-hyperbolic apace - thus with non-zero Cheeger conatant - there exista a realvalued function $f$, the graph of which is a submanifold of $M \times R$ with parallel mean curvatore $H$ satisfying $\|\boldsymbol{H}\|=e$, where $e$ can be any positive constant lesa than or equal to the ratio of the Cheeger constant and the dimension $m$. Furthermore, the behaviour of the mean corvature of a graph is studied in some apecial cases.

The second part deals with the problem of finding a criterion for an immersion between Riemannian manifolds to be a conformal one. Sufficient conditions on the menn curvature, tension Beld, and ratio of given and induced volame elementa in the immersed manifold are derived in Theorem 1. Thereto, a apecial, "almost conformal" vector field in introdnced, which also allows the obteinment of a Liouville-type theorem for harmonic maps.

Part III is devoted to Conformal Geometry. In chapter 1, the conformal geometry of aubmanifolds of the Möbius apace in extensively reviewed by asing Elie Cartan's method of moving frames. As the latter method in acarcely ased in the literature, it is treated in a quite detailed way, which might aeem excenrive to those who are more familiar with it. In chapter 2, the generalised Willmore $m$-rabmanifolda of the Möbias apace $S^{n}$ are investigated a critical pointa of a functional integral, formulated in the framework of conformal geometry, which wa introduced by M. Rigoli, leading to an Euler-Lagrange equation. Thin equation generalises the one obtained by R. L. Bryant (for $m=2, n=3$ ) and later by Rigoli (for $\mathbf{2}=\boldsymbol{m} \leq \boldsymbol{n}$ ). Furthermore, a Bernotein-type theorem in formulated


for Willmore hyperaurfaces of $S^{\boldsymbol{n}}$, imvolving the hyperbolic conformal Ganam map, which generalises the Bernstein theorem for surfaces of $S^{\boldsymbol{U}}$ due to Rigoli. However, in the gencral case a condivion on the hypersurface has to be imposed, which neverthelem in atiafied by Willmore aubmanifolde with conformal Gaum map being a critical point of another, well-known functional. Finally, chapter 3 deale with the explicit compatation of the aecond-veriation formula for a Willmore surface immersed into a apace form. The obtained formale reducem to the one of J. L. Weiner in the apecial case of a minimal surface of the 3 -sphere.

Foreword
It is a pleasure to thant Professor Jim Belle for his constant encouragement and his liberal attitude towards research. Moreover, he offered me several very vainable angestiona of problems to study. I am also indebted to Dr. Marco Rigoli for introducing me to the somewhat misterious, old -new field of conformal geomentry. Further, I should mention the helpful conversations with Drs. D. M. Due and R. Tribuzy. The Galonste Gulbenkian Foundation in Lisbon is thanked for its fInancial anpport during my stay abroad and the Faculty of Sciences of the Univerity of Lisbon for permitting my leave of absence. Finally, I dearly thank my husband George Rap, who lost two months of his work in formatting my thesis with $W T_{3} \mathrm{X}$ and supported me decisively in its realisation.

Lisbon, 9 December 1987
Jebel Nevin da Coste faluesss

## Contents

Abstract ..... ii
Foreword ..... iv
Content ..... v
I GRAPHS WITH PARALLEL MEAN CURVATURE ..... 1
O GONPRAL ROMARKS AND NOTATIONS ..... 2
1 THE MEAN OURVATURE OF A GRAPH ..... 10
1.1 Introdnction ..... 10
1.2 The General Cate ..... 12
1.3 Co-Dimension Ore ..... 21
1.4 Graphs of Isometric Immersions, Conformal Mapa, Riemennian Sub- meraiona, and Harmonic Morphisms ..... 24
2 STABILITY OF A MINIMAL GRAPH AND A GENERALISED EQUATION FOR NON-PARAMETRIC HYPERSURPAOES WITH CONSTANT MEAN OURVATURE30
2.1 Some Remarke on the Stability of a Minimal Graph ..... 36
2.2 The Equation for a Non-Parametric Bypersurface of ( $\boldsymbol{M} \times \boldsymbol{R}, \boldsymbol{f} \times \boldsymbol{h}$ ) with Conatent Mean Curvature: Some Remarki on Regularity of Solutiona ..... 40
2.3 Eriatence of Grapha of Functions on the m-Hyperbolic Space with Given Constant Mean Gurviture ..... 31
Reperences ..... s7
11 CONFORMAL AND ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [RI-Sa/87] ..... 62
1 Introduction ..... 63
2 Preliminarites and Formulae ..... 63
3 Main Reaults ..... 68
REPERENCES ..... 75
III A VARIATIONAL PROBLEM AND A RELATED BERNSTEIN-TYPE THEOREM IN CONFORMAL GE- OMETRY ..... 75
0 INTRODUCTION ..... 76
1 THE CONFORMAL GEOMETRY OF SUBMANIROLDS OF $\boldsymbol{S}^{\boldsymbol{n}}$ ..... 78
1.1 The Geometry of the Möbius Space ..... 78
1.1.A The Infinitesimal Conformal Transformationa of $\mathbb{R}^{n}$ and $S^{n}$ ..... 78
1.1.B The Möbius Gronp ..... 81
1.1.0 The Structare Equations of the Möbios Group ..... 91
1.2 Submanifolds of $S^{n}$ ..... 90
1.2.A Zerozh-Order G-Frame Fieldr Along $f$ ..... 97
1.2.B First-Order G-Frame Fielda Along $f$ ..... 98
1.2.C Second-Order G-Frane Fielda Along $f$ ..... 103
1.2.D The Generalised Weyl Tensor and Gonformalty Flat Sub- manifolds ..... 110
1.3 Relation with Riemannian Geometry of Submanifolda of the Eu- clidean Space ..... 112
Appandix I ..... 125
2 VARIATIONAL PROBLEMS IN CONFORMAL GEOMETRY ..... 117
2.1 Introduction: The Willmore Functional ..... 127
2.1.A The Riemannian Olase ..... 127
2.1.B Oonformal Interpretation with Further Generalisationa ..... 130
2.2 The Euler-Lagragge Equation for the Willmore Fanctional W ..... 135
2.3 The Conformal Gaum Map ..... 153
2.4 A Gonformal Bernitein-type Theorem ..... 101
Appendix II ..... 168
(THE SECOND VARIATION FOR WILLMORE SURPACES OF A SPAOB FORM ..... 170
REPERENOES ..... 197

Part I

## GRAPHS WITH PARALLEL MEAN CURVATURE

## Chapter 0

## GENERAL REMARKS AND NOTATIONS

Let $\left(M^{m}, g\right)$, $\left(N^{n}, h\right)$ denote two mooth Riemannian manifolds of dimenaion $m$, $n$, equipped with their reapective Levi-Civita connectiona $\boldsymbol{\nabla}$ and $\nabla^{\prime}$.

If $\phi: M \rightarrow N$ in a $C^{3}$-map, then $\phi^{-1} T N \rightarrow M$ denoten the pull-back of $T N$ by $\phi$, i.e. the $C^{3}$-vector bundle with $i$ bre at $x \in M$ given by $T_{\text {* }}{ }^{\prime} N$. The difierential $d \phi$ of $\phi$ is a $O^{\prime}$ - 1 -form on $M$ with valnea in $\phi^{-1} T N$. $\phi^{-1} T N$ hea a Riemannian metric induced by the metric $A$ of $T N$. Let $\nabla^{\boldsymbol{\phi}}$ denote the indaced connection on $\phi^{-1} T N$, i.e. $\nabla^{0^{-1}}$ is the unique linear connection on $\phi^{-1} T N$ unch thet for each smooth eection $Z$ of $T N$ and $z \in M_{1} X \in T_{s} M$

$$
\begin{equation*}
\nabla_{X}^{\phi^{-1}}(Z \circ \phi)_{x}=\nabla_{\Delta \phi_{e}(X)^{\prime}} Z_{\phi(x)} \tag{0.1}
\end{equation*}
$$

The first fundamental form of $\phi$ in the semi-definite 2-covariant teneor fleld $\boldsymbol{\phi}^{\boldsymbol{\prime}} \mathrm{h}$.
 $\phi^{-1} T N \rightarrow M$ given by

$$
\nabla d \phi(X, Y)=\nabla_{X}^{\phi^{-1}}(d \phi(Y))-d \phi\left(\nabla_{X} Y\right)
$$

where $X, Y$ are amooth vector fielda on $M$.
The tansion fisld of $\phi$ in the section of $\phi^{-1} T N$ given by

$$
\tau_{\phi}=\operatorname{trace}_{\boldsymbol{f}}(\nabla(\phi)
$$

$\phi$ is raid to be harmonic, if it her vaninhing tension feld. The map $\phi$ in arid to be tofelly geodesic, if it hat veniohing recond fondamental form. If $N=\boldsymbol{R}$, then $T_{\phi}=\Delta \phi$ in the Laplacian of $\phi$.

Let $U \subset M, \cap \subset \mathbb{R}^{m}$ be open aeta and $x: U \rightarrow \Omega$ be a map that definea a co-ordinate nyatem. Using the index range $i, j, k, \ldots \in\{1, \ldots, m\}$ and writing locally the metric on $U$ as $g(x)=s_{1}, d r^{\prime} d{ }^{\prime}$ (here we use the index-aummation

 Levi-Cevila connection of $M$, we have the atandard expressions

$$
\begin{gather*}
\nabla_{\frac{\theta}{\partial x^{k}}} \frac{\partial}{\partial x^{j}}={ }^{N} \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}} \\
{ }^{M} \Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left\{\frac{\partial}{\partial x^{i}} g_{l j}+\frac{\partial}{\partial x^{j}} g_{i t}-\frac{\partial}{\partial x^{i}} g_{i j}\right\}, \quad{ }^{N} \Gamma_{i k}^{k}=\frac{\partial}{\partial x^{i}} \log \sqrt{|g|}  \tag{0.2}\\
\frac{\partial}{\partial x^{i}} g_{j k}={ }^{M} \Gamma_{i j}^{r} g_{r k}+{ }^{M} \Gamma_{k i}^{r} g_{j r} .
\end{gather*}
$$

If $X=X^{t} \frac{g}{\partial s^{n}}$ is a smooth vector field on $M$ and $\mu=\psi^{k} \frac{\partial}{\partial s^{2}}(x) \in T_{a} M, x \in M$, we have the following formulae

$$
\begin{align*}
\nabla_{\varepsilon} X_{(x)}=u^{j} & \left(\frac{\partial}{\partial x^{j}} X^{k}+X^{i M} \Gamma_{i j}^{k}\right) \frac{\partial}{\partial x^{k}} \\
\operatorname{div}(X) & =\frac{\partial}{\partial x^{k}} X^{k}+X^{\prime M} \Gamma_{i *}^{k}  \tag{0.3}\\
& =\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{j}}\left(X^{j} \sqrt{|g|}\right) \tag{0.4}
\end{align*}
$$

If $a: M \rightarrow \mathbb{R}$ is a $C^{1}$-fanction, then the gradient of $x$ on $U$ in given by

$$
\begin{equation*}
\nabla u=g^{H} \frac{\partial u}{\partial x^{J}} \frac{\partial}{\partial x^{b}} . \tag{0.5}
\end{equation*}
$$

If $M$ is oriented and $x$ ia an orientation-preserving chart, then the volume element of $(M, g)$ is given by $d V,=\left.\sqrt{\left\lvert\, \frac{1}{\mid}\right.}\right|^{d} x^{1} \wedge \ldots \wedge d x^{n}$.
Let $V \subset N, \boldsymbol{N}^{\prime} \subset \mathbb{R}^{\mathbf{n}}$ be open seta and $y: V \rightarrow \boldsymbol{R}^{\prime}$ be a co-ordinate ayitem on $N$. Then, using the index range $a, \beta, \ldots \in\{1, \ldots, n\}$, we have, on $V, h(y)=$
 aymbols of the Levi-Oivita connection of $N$, the Brat and aecond fundamental forme of $\phi: M \rightarrow N$ on $U$ are given by (asmming that $\phi(U) \subset V$ )

$$
\begin{gathered}
\left(\phi^{\phi} h\right)_{i j}=\frac{\partial \phi^{\alpha}}{\partial x^{i}} \frac{\partial \phi^{\beta}}{\partial x^{j}} h_{\alpha \beta} \\
(\nabla d \phi)_{i j}^{\gamma}=\frac{\partial^{2} \phi^{\gamma}}{\partial x^{i} \partial x^{j}}-{ }^{N} \Gamma_{i j}^{k} \frac{\partial \phi^{\gamma}}{\partial x^{k}}+{ }^{N} \mathrm{~T}_{\alpha \beta}^{\gamma} \frac{\partial \phi^{\alpha}}{\partial x^{i}} \frac{\partial \phi^{\beta}}{\partial x^{j}},
\end{gathered}
$$

and the tension field of $\phi$ by

Than harmonic mapa are locally solutiona of a syatem of aecond-order aemi-lizear elliptic partial differential equations. From regularity theory of solutions of elliptic equations we know that $C^{1}$-harmonic mapa of amooth Riemannian manifolda are amooth $|\mathrm{Mo} / 86|$. In particalar, totally geodesic $C^{1}$-mapa are amooth. Such mapa carry geodesice of $M$ to geoderics of $N$.
Note: if $N=\boldsymbol{R}$, Eq. (0.6) takea the following form

$$
\begin{equation*}
\Delta \phi=\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}}\left(g^{i k} \sqrt{|g|} \frac{\partial \phi}{\partial x^{k}}\right) \tag{0.7}
\end{equation*}
$$

Now ansnme that $\phi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ is an isometric immercion, i.e. $g=\phi^{*} h$. Then the mean eureature $B$ of $\phi$ ia exactly

$$
H=\frac{1}{m} \tau_{\phi}
$$

Let $V \rightarrow M$ denote the normal bandle of $\phi$. Then $\phi^{-1} T N=\operatorname{d\phi }(T M) \oplus V$, where the direct aum in an orthagonal one. The second fondamental form $\boldsymbol{\nabla} d \phi$ is a aeetion of $\odot^{2} T^{*} M \otimes V$ and $H$ in a aection of $V$.
If $Z$ in a rection of $\phi^{-1} T N$, we will denote by $Z^{\top}$ and $Z^{\perp}$ the orthogonal projections of $Z$ on the vector bandlea $d \phi(T M)$ and $V$, reapectively. $V$ has an induced Riemannian metric from the one of $\phi^{-1} T N$. The induced connection $\nabla^{+}$on $V$ is given by

$$
\nabla_{x}^{1} z=\left(\nabla_{x}^{4-1} z\right)^{\perp}
$$

for each $O^{1}$-acetion $Z$ of $V$ and $X \in T_{z} M, z \in M$.
$\phi$ if said to be a minimal immerion, if $B=0$. That in, $\phi$ in minimal, if and only it \$in harmonic.
© in aid to have conatant mean curtadury, if the norm \| $\|\|$ || of $B$ in $V$ (which is equal to the norm in $\phi^{-1} T N$ ) is conatent.
If $\phi$ in an inometric immerrion of clana $C^{1}$, then $\phi$ in and to have parellal mean eursature, if $\boldsymbol{H}$ is a parallel $\boldsymbol{C}^{\mathrm{H}}$-section of $\boldsymbol{V}$, i.e.

$$
\nabla^{\perp} \boldsymbol{H}=0 .
$$

Since $\forall x \in M$ and $X \in T_{s} M, d\|E\|_{B}^{2}(X)=2\left\langle\nabla_{X}^{1} H, H\right\rangle_{A(d(x))}$, if $\phi$ has paralled mean curveture, then it also has constant mean curvature. For $n=m+1$ the corverse is almo true.

Given an isometric immeraion into a Enclidean space $\phi:\left(M^{m}, \phi^{*} h\right) \rightarrow\left(\mathbb{R}^{\mathbf{*}}, h\right)$, the corresponding Gassa map of $\phi, \gamma_{\star}:\left(M, \phi^{*} h\right) \rightarrow G(n, m)$, where $G(n, m)$ is the Grasamanian manifold of m-spaces through the origin in $\boldsymbol{R}^{n}$, is given by $\gamma_{\phi}(x)=d \phi_{F}\left(T_{z} M\right)$. Considering $G(m, m)$ with ita nanal Riemannian structure (aee e.g. Ref. [Ko-No/09]), we have the following relation between the mean curveture $\boldsymbol{H}$ of $\phi$ and the tension field $\tau_{\gamma_{0}}$ of $\gamma_{\mu}$ due to Ruh and Vilms [Ru-Vi/70] (aree also Ref. [Ee-Le/83])

$$
T_{\tau_{\psi}}=m \nabla^{\perp} H
$$

This equality means the following:
$\forall x \in M T_{n s}(x) \in T_{T_{\psi}(x)} G(n, m)$ and, using the canonical identification of

$$
T_{\gamma_{\psi}(x)} G(m, m) \approx\left(\gamma_{\psi}(x)\right)^{\phi} \otimes\left(\gamma_{\phi}(x)\right)^{\perp}=\left(d \phi_{x}\left(T_{x} M\right)\right)^{\star} \otimes\left(d \phi_{x}\left(T_{x} M\right)\right)^{\perp}
$$

we have

$$
T_{\psi_{t}}(x)\left(d \phi_{s}(X)\right)=m \nabla_{X}^{1} H_{(x)}, \forall X \in T_{s} M
$$

Hence, $\phi$ has parallel mean curvature, iff $\gamma_{\phi}$ in a harmonic map.
On the vector bundiee $\otimes T^{+} M \otimes \phi^{-1} T N, \sigma^{2} T^{\bullet} M \otimes V, \ldots$, i.a. on tentor producte of Riemannian vector bandlea, we will employ the uanal induced Riemannian metrics which at each gbre are the Hilbert-Schmidt inner prodacts. In general, if $\xi: W \rightarrow M$ in a vector bundle aver a manifold $M$, then $\boldsymbol{O}^{\boldsymbol{\prime}}(\boldsymbol{W})$ denotea the vector apace of $C^{\boldsymbol{*}}$-aection of $\boldsymbol{W}$.

Note that we are using the following sign for the curvature tenaor of ( $M$, f)

$$
R^{M}(X, Y) Z=-\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{x} Z+\nabla_{|X, Y|} Z
$$

and that, if $P=\left|\varepsilon_{1}, \epsilon_{1}\right|$ in a plane of $T_{r} M_{\text {, }}$ where $\varepsilon_{1}, \epsilon_{1}$ is an orthonormal basis of $P$, the aectional curnature of $(M, q)$ of the plane $P$ ia given by

$$
K_{r}(P)=K\left(e_{1}, \varepsilon_{a}\right)=\left\langle R_{z}^{N /}\left(e_{1}, \epsilon_{3}\right) e_{1}, \epsilon_{2}\right\rangle_{,} .
$$

Two very well-known functionals In Riemannian Geometry are the functional volame, applied to isometric immersiona, and the functional energy, applied to mapa between two Riemannian manifolds.

Let $\phi: \boldsymbol{M}^{m} \rightarrow(\boldsymbol{N}, \boldsymbol{h})$ be an immersion of an m-manifold $\boldsymbol{M}$ into a Riemanaian manifold ( $N, h$ ). For each oriented compact domain $D \subset M$ (and we will denote by $D$ the interior of $\bar{D}$, that in, $\bar{D}=\bar{D} \cup \boldsymbol{D}$ ) the solume of $\phi$ on $D$ is given by

$$
V_{D}(\phi)=\int_{D} 1 d V_{\phi- \pm}
$$

where $d V_{\phi} h$ is the volume element of ( $D, \phi^{\circ} h$ ).
Let $\left(\phi_{1}\right)_{e \in(-r, 0)}$ be amooth variation of \&uch that the vector variation $W=$ $\left.\frac{\theta}{i n}\right|_{1-9} \in O^{\infty}\left(\phi^{-1} T N\right)$ has compact aupport in $D$. Then it is well-known that

$$
\left.\frac{\partial}{\partial t} V_{D}\left(\phi_{t}\right)\right|_{t=0}=-\int_{D} m\left(H_{\Delta}, W\right)_{A} d V_{t-A}
$$

where $H_{\phi}$ is the mean curvature of $\phi$.
That $i_{\text {, }}$ the Enler-Lagrange equation of this variational problem reada $H_{\phi}=0$, i.e. the critical pointe of $V_{D}$ are the minimal immersiona.

If $\phi$ is a critical point of $V_{D}$, then (wee Refa. [ $\mathrm{Si} / 68$ ], ( $\mathrm{Sp} / 79$ ]) the Heasian of $V_{D}$ at $\phi$ satiafies

$$
\begin{equation*}
\text { Hess } V_{D}(\phi)(W, W)=\left.\frac{\partial^{\mathbf{J}}}{\partial \pi^{3}} V_{D}\left(\phi_{1}\right)\right|_{\phi=0}=\int_{D}\left\langle J_{\phi}\left(W^{\perp}\right), W^{\perp}\right\rangle_{A} d V_{\phi \cdot \Delta} \tag{0.8}
\end{equation*}
$$

Here

$$
J_{\phi}\left(W^{\perp}\right)=-\Delta^{\perp} W^{\perp}-A\left(W^{\perp}\right)-\left(\text { Ricci }_{\phi}\left(W^{\perp}\right)\right)^{\perp}
$$

with Ricci ${ }_{\psi}^{N}\left(W^{\perp}\right)_{z}=\sum_{i=1}^{m} R_{\phi|x|}^{N}\left(d_{\phi_{x}}\left(X_{i}\right), W_{z}^{1}\right) d \phi_{x}\left(X_{i}\right), V z \in D$, where $X_{i}, \ldots, X_{m}$ is an orthonormal besis of ( $T_{z} M, \phi^{*} h$ ), $R^{N}$ is the eurvatare tensor of $(N, h),()^{2}$ denotes the orthogonal projection of $\phi^{-1} T N$ onto the normal bundle $V$ of $\phi, A$ is the element of $C^{\infty 0}\left(\otimes V^{\bullet} \otimes V\right)$ given by $A_{x}\left(W_{s}^{\perp}\right)=\sum_{j=}\left(\nabla \phi_{n}\left(X_{1}, X_{j}\right), W_{s}^{\perp}\right\rangle_{A} \nabla_{d \phi_{z}}\left(X_{1}, X_{j}\right)$, and where $\Delta^{+}$denates the Laplacian in the normal bundle:

$$
\Delta^{1} W_{z}^{L}=\sum_{i=1}^{m} \nabla^{1} W_{z}^{1}\left(X_{i}, X_{i}\right)=\sum_{i=1}^{m} \nabla_{X_{i}}^{1} \nabla_{X_{i}}^{1} W_{z}^{1}-\nabla_{\nabla_{x_{i}} X_{i}}^{1} W_{z}^{1}
$$

(assming that the $X_{i}$ are extended a local aections of $T M$ defined on a neighbourhood of $s$, conetituting a local frame of $M$ ).
Note that we are ueing the opposite aign of the Lapheian of Eelle and Lemaire [Be-Le/8s] for aections of Riemannian vector bundlen, and the eign of the Laplacian of functiona adopted by Ohavel [Cha/84].
$\phi$ in asd to be (atrictly) eolume-atabla in $D$, if Hean $V_{D}(\phi)(W, W) \geq 0(>0)$, for
all $W \in C^{\infty}\left(\phi^{-1} T N\right) \backslash\{0\rangle$ with compact support contained in $D$.

The differential operator $J_{\phi}: C^{\infty}(V) \rightarrow C^{\infty}(V)$ ia the Jacobi operator and is $L^{2}$-melfadjoint atrongly elliptic |Si/68|. A section $W$ is $C^{\infty 00}(V)$ ia and to be a Jacobi field on $D$, if $J_{\phi}(W)=0$ on $D$. If $Z$ in a Killing vector field on $(N, h)$, that ia, $Z$ in a vector field on $N$ such that the Lie derivative $L_{g} h$ of $h$ along $Z$ it rero, then $\left(\phi^{-1} Z\right)^{1}$ is a Jacobi field on $D$.

If $\phi$ in an immeraion of a hypernurface $M^{m}$ into $\left(N^{m+1}, h\right)$, then Eq. (0.8) ia
 that in, win amooth function on $D$ with compact apport contained in $D$. In this case Eq. (0.8) reduces to

$$
\begin{align*}
& \text { Hess } V_{D}(\phi)(W, W)=\int_{D}\left(-\Delta u-\left(R+\|\nabla d \phi\|^{3}\right) u\right) d V_{\phi-4}  \tag{0.9}\\
& =\int_{0}\left(\|\nabla\|^{2}-\left(R+\|\nabla d \phi\|^{2}\right) \varepsilon\right) d V \omega_{n} \text {, }
\end{align*}
$$

where $R_{s}=\operatorname{Ricci}\left(\nu_{s}, \nu_{s}\right)=\sum_{t=4}^{m}\left\langle R_{\phi(s)}^{N}\left(d \phi_{z}\left(X_{1}\right), \nu_{s}\right) d \phi_{s}\left(X_{1}\right), \nu_{z}\right\rangle_{A}$. It is well-hnown |Fi-Sch/80| (Lemme 1, Th. 1) [Si/68] [Sm/43| that $\phi$ is atrictly volume-rtable on $D$, if there are no Jacobi felda defined in a anbdomain $D^{\prime} \subset D$ which are aero on $\partial D^{\prime}$.

If we have a map $\phi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ between two Riemannian manifoldt, for each compact oriented domain $\bar{D} \subset M$ the emaryy of $\phi$ an $D$ le given by

$$
E_{D}(\phi)=\left\|\int_{D}\right\| d \phi \|^{2} d V_{1},
$$

where $d V$, in the volume element of $(D, s)$.
If $\phi$ in an inometric immersion, then $E_{D}(\phi)=\frac{m}{3} V_{D}(\phi)$.
It is well-known that $\phi$ in a eritical point of $E_{D}$, if $\phi$ if a bermonic map. If $\phi$ in a
 $O^{\text {en }}\left(\phi^{-1} T N\right)$ hat compact aupport contaiged in $D$,

$$
\begin{align*}
\operatorname{Hess} E_{D}(\phi)(W, W) & =\left.\frac{\partial^{2}}{\partial t^{2}} E_{D}\left(\phi_{1}\right)\right|_{t=0}=\int_{D}\left\langle-\Delta W-\operatorname{Ricci}{ }_{c}^{N}(W), W\right\rangle_{A} d V_{t} \\
& =\int_{D}\left(\|W W\|^{2}-\langle\operatorname{Ricci}\right. \tag{0.10}
\end{align*}
$$

where $\Delta$ in the Laplacian on $\phi^{-1} T N$ and $R i c c i j(W)_{2}=\sum_{i=1}^{m} R_{i s)}^{N}\left(d \phi_{5}\left(X_{i}\right), W\right) d \phi_{5}\left(X_{i}\right)$ with $X_{1}, \ldots, X_{n}$ an orthonormal basia of ( $T_{e} M, s$ ) [EeLe/s3].

A harmonic map $\phi$ ia aaid to be aserey-stable, if, for every oriented compact domain $\bar{D} \subset M$ and all $W \in C^{\infty}\left(\phi^{-1} T N\right)$ with compaet aupport in $D, H_{\text {eas }} E_{D}(\phi)(W, W) \geq$ 0.

From Eq. (0.10) it follows obvioutly that, if ( $N, h$ ) has non-positive sectional curvatures, any harmonic map $\phi:(M, g) \rightarrow(N, h)$ is energy-stable.
For a minimal isometric immersion $\phi:(M, \phi h) \rightarrow(N, A)$, the following relation between HenaV $V_{D}(\phi)$ and Heas $E_{D}(\phi)$ holda, for $W \in C_{0}^{\infty}(V)$ (see Ref. [Fe/85]):

$$
\text { Hess } E_{D}(\phi)(W, W)=H_{r a s} V_{D}(\phi)(W, W)+2 \int_{D}\left\|\left(\nabla^{\psi^{-1}} W\right)^{\top}\right\|^{2} d V_{\phi} \cdot
$$

On a Riemannian manifold can be defined nome very important conctants, via. Gheeger, isoperimetric, and Sobolev constante. These constanta may provide estimates of eigenvalues and eigenfunctions for the Laplacian operator on domaing of $\boldsymbol{M}$ (relative to the Dirichet problem). One can find an extemaive etindy on these conatanta in Ref. |Cha/84], [Be-Ga-Ma/71|. In this mannec ript we are only going to use the Cheeger constant, the definition of which we give here.
Let ( $M^{m}, \rho$ ) be a non-compact ariented Riemannian manifold with dimension $m \geq$ 2, and poatibly having a boundary. The Cheager conatant of $M$ is the non-negative namber

$$
\zeta(M)=\inf \frac{A(a D)}{V(D)}
$$

where $D$ rangen over all open aubmanlfolds of $\boldsymbol{M}$ with compact clowne in $\boldsymbol{M}$ and amooth boundary, $V(D)$ in the volame of $D$, and $A(O D)$ is the aren of the boandery of $D$.

Dre to a reault of Yav [Ya/75| (bee almo Ref. |Cha/84|, Theorem 8, page 98), in the definition of $\boldsymbol{\zeta}(\mathbb{M})$ it auficen to let $D$ range over open anbmanifolda of $\boldsymbol{M}$ that are comected. We note that, if $\boldsymbol{M}$ were compact (without houndery), she congtant $\boldsymbol{V}(M)$ defined an above would be sero. In fact, there in a difierent definition of the Cheeger constant for a compact manifold (aee Ref. (Cha/84), but we are not going ta geed it.

The ampleat example of complete non-compact Riemannian manifold with Oheeger comtant equal to gero are the simple Riemannian manifolda, i.e. the Riemapalan manifold $\left(M^{m}, \theta\right)$ mech that there exirta a diffomorphiam $\phi:(M, g) \rightarrow$
 But there exint alno complete Riemanaian manifulda difeanorpline to ( $\boldsymbol{R}^{m},<,>$ )
with positive Cheeger constant, an for example the m-hyperbolic apace. In fact, if ( $M^{m}, f$ ) in a complete simply connected Riemannian m-dimenaional manifold with sectional corvatures bounded from above by $K$, where $K$ is a negative conrtant, then [Ya/75|

$$
\begin{equation*}
h(M) \geq(m-1) \sqrt{-K} \tag{0.11}
\end{equation*}
$$

This result was obtained by using Bishop'a comparison theorem to arrive at $\Delta r \geq$ ( $m-1$ ) $\sqrt{-K}$, where $r$ in the distance function to a fixed point in ( $M, g$ ), integrating $\Delta r$, and using Stokes' theorem.
Another way of estimating $\zeta(M)$ ia the following inequality due to Cheeger (see e.g. Ref. [Cha/84], theorem 3, page 95)

$$
\lambda(D) \geq \frac{1}{4} f^{2}(D), \quad \forall D \subset M \text { domain },
$$

where $\lambda(D)$ is the firmt eigenvalue for the Dirichlet problem in the domain $D$. Using thin fact and an estimate of the lowest Dirichlet eigenvalue of the geodesic diak of radius $\delta$ in the m-hyperbolic space $H^{m}$ of constant eectional carvature $K=-1$, one can see that $\bar{\zeta}\left(H^{m}\right)=m-1$ (see Ref. [Cha/84], page 96), so inequality ( 0.11 ) is sharp.

## Chapter 1

## THE MEAN CURVATURE OF A GRAPH

### 1.1 Introduction

In 1955 Heinz [He/56] proved that, if $z=x(x, y)$ in a sorface of $\mathbb{R}^{3}$ defined for $x^{2}+y^{1} \leq R^{2}$ with mean curvature antislying $\|H\| \geq a>0$, then $R \leq \frac{1}{a}$. Thw, in particular, if $\varepsilon$ is defined in all $\mathbb{R}^{2}$, then inf $\|H\|=0$, which implies that, if $z$ has constant mean curvature, $z$ wast be a minimal surface of $\boldsymbol{R}^{\mathbf{1}}$. In 1965 Chern (aee Ref. [Ch/65], Cor. of Th. 1) and, independently, Flanders [Fla/80] obtained the asme renult for hypersurfaces of $\mathbb{R} \mathbb{R}^{a+1}$ defined by the equation $s=a\left(\varepsilon_{1}, \ldots, x_{n}\right)$.

One can formulate a generaliation of the above problem an followa:
Given two amooth Riemannian manifolds ( $M, \phi),(N, h)$ and a amoath map $f 1$ $M \rightarrow N$, the graph of $f, I_{f}=\{(x, f(x)): x \in M\}$, ia am-aubmanifold of the prodact $M \times N$ of co-dimension $n$. We take on $M \times N$ the Riemannian metric product $g \times h$ and on $I_{f}$ the induced one.

Question (Balla) Aesume thet $\Gamma$; has pardlel mean curvaturc. Dos: this imply $\Gamma_{f}$ to te a minimal aumanifold of $M \times N$ ?

The basic idea of Chern and Flanders to tackle thin question, in the particular canea mentioned above, was to find a way of writing the mean curvature of $\Gamma_{f}$ a a divergence of a bounded vector feld on $M$ which involvea firat derivetives of $f$. Thin procedure suggente us, in the general case, to relate the mean curvinture of $I_{f}$ to the second fundamental form of $f$. Aa we will see, the relation between the mean curvature of $I$, and the tengion fleld of $f$ is more relevant in aome ipeciad casen, for example when $f$ is an inometry or even a cunformal map, a Riemannian
anbmersion, a harmonic morphism, or when $n=1$.
In the general case we are going to impose a condition on the Riemannian manifold ( $M, q$ ) that punitively answers the above question (see Cor. 1.1.2). Moreover, we will also show that the absence of this condition conjures up counter-examples (aee Th. 1.2).

Let as consider $I_{j}^{\prime}$ as an embedding

$$
\begin{aligned}
\Gamma_{y}: M & \rightarrow(M \times N, g \times h) \\
x & \rightarrow(x, f(x)) .
\end{aligned}
$$

So we have two Riemannian metrics on $M$, vix. $g$ and the one induced by $I_{f}^{\prime}$,

$$
\Gamma_{f}^{*}(g \times h)=g+f \%,
$$

which makes $\mathrm{I},:(M, g+f \%) \rightarrow(M \times N, g \times h)$ an isometric immersion. Let $\nabla$ and $\nabla^{*}$ denote the Levi-Givita connections on $(M, g)$ and ( $M, g+f \%$ ), reapectively. Let $V$ be the normal bandle of $\mathrm{I}_{\boldsymbol{f}}$ in $\mathrm{\Gamma}_{\boldsymbol{f}}^{-1} T(M \times N)=T M \times f^{-1} T N$ and $\nabla^{*} d \Gamma, \in O^{\infty}\left(\Theta^{\prime} T^{*} M \otimes V\right)$ be the second fundamental form of the immernion $r_{f}$. The mean curvature of $\Gamma_{f}$ is the section

$$
H=\frac{1}{m} \operatorname{trace}_{(g+\Gamma \times)}\left(\nabla^{*} d_{l}\right)
$$

of $V$. Let $\nabla_{d} \in \sigma^{\infty}\left(O^{\prime} T^{\bullet} M \otimes f^{-1} T N\right)$ be the neeond fundamental form of the map $f$ and $\tau_{f}$ itu tention field, when $M$ in considered with the metric $g$. We denote by $\nabla^{f^{-1}}$ and $\nabla^{r^{-4}}$ the induced connections on $f^{-1} T N$ and $\Gamma_{f}^{-1} T(M \times N)$, reapectively, and $\nabla^{\perp}$ denolea the connection on the normal bondle $\boldsymbol{V}$. Let ()$^{+}$ and (1) ${ }^{\top}$ denote the orthogonal projections of $T M \times f^{-1} T N$ on $V$ and on $d \Gamma(T M)$, respectively, relative to the metric $g \times h$.
In general, there in no natural way to relate the Levi-Civita connections $\nabla$ and $\nabla^{*}$ of resp. $(M, g)$ and $(M, q+f \%)$, bat we have the following relation among the connections $\nabla, \nabla^{\Gamma^{-1}}$, and $\nabla^{r_{j}^{-4}}$ :
if $X \in O^{\infty}(T M), U \in O^{\infty}\left(f^{-1} T N\right)$, then $(X, U)$ given by $(X, U)_{z}=\left(X_{n}, U_{z}\right), \forall x \in$ $M$, is an element of $C^{\cos \left(\Gamma_{f}^{-1} T(M \times N)\right.}$ ) and we have

$$
\begin{equation*}
\nabla_{r}^{5^{\prime}}(X, U)=\left(\nabla_{r} X, \nabla_{Y}^{\prime-4} U\right), \forall Y \in C^{\infty}(T M) \tag{1.1}
\end{equation*}
$$

To prove Eq. (1.1) we only have to convider the property Eq. (0.1).

### 1.2 The General Case

Next we are going to derive an expression for the mean curvature of $\Gamma_{f}$ and ite covariant derivative in $V$.
Let $\left(X_{i}\right)_{i s i s m}$ be a local orthonormal frame of ( $M, g$ ). Defining

$$
\begin{equation*}
\tilde{\theta}_{i j}:=\left\langle X_{i}, X_{j}\right\rangle_{p+f \%}=\delta_{i j}+\left\langle d f\left(X_{i}\right), d f\left(X_{j}\right)\right\rangle_{h}, \forall \forall_{i}, j \in\{1, \ldots, m\} \tag{1.2}
\end{equation*}
$$

and denoting by $\left|\dot{g}^{\prime j}\right|_{1 \leq i j \leq m}$ the inverse of the matrix $\left[\left.\dot{g}_{i j}\right|_{1 \leq i d S m}\right.$ we have

$$
m H=\sum_{i j=1}^{m} j^{i j} \nabla^{*} d \Gamma_{j}\left(X_{i}, X_{j}\right)
$$

Let $\left(X_{1}\right)_{i \leq i \leq m}$ be a local orthonormal frame of $(M, g+f \%)$. Then, $\left(X_{1}, d\left(X_{1}\right)\right)_{1 \leq 0<m}$ is a local orthonormal frame of $d \Gamma_{f}(T M)$. Next we define the following sections $W \in C^{\infty}\left(f^{-1} T N\right), Z \in C^{\infty}(T M)$

$$
\begin{gather*}
W=\text { trace }_{\left(s+/ \rho^{\prime}\right)}(\nabla d f)  \tag{1.3}\\
Z=\sum_{i, j=1}^{m} g^{i j}\left(W, d f\left(X_{i}\right)\right\rangle_{\mathrm{A}} X_{j} \tag{1.4}
\end{gather*}
$$

We note that $Z$ is well defined over all $M$ and that another way to write $Z$ is

$$
\begin{equation*}
Z=\sum_{i=1}^{m}\left\langle W, d\left(\bar{X}_{i}\right)\right\rangle_{A} \bar{X}_{i} \tag{1.5}
\end{equation*}
$$

Then we can formulate the following lemma:
Lemma $1.1 \forall X, Y \in C^{\infty}(T M)$
(i) $\nabla^{\bullet} d \Gamma_{f}(X, Y)=(0, \nabla d f(X, Y))^{\perp}$
(ii) $m H=(-Z, W-d(Z))=(0, W)^{\perp}$
(iii) $m \nabla_{X}^{5^{-1}} H=\left(0, \nabla_{x}^{\prime-1} W-\nabla_{d}(X, Z)\right)-\left(\nabla_{X} Z, d\left(\nabla_{x} Z\right)\right)$

$$
m \nabla_{X}^{1} H=\left(0, \nabla_{x}^{f^{-1}} W-\nabla d f(X, z)\right)^{\perp}
$$

Proof. Using Eq. (1.1) we have

$$
\begin{aligned}
\nabla^{*} \omega_{f}(X, Y) & =\nabla_{X}^{\mathrm{r}_{j}^{-1}}\left(\Phi_{f}(Y)\right)-\Gamma_{f}\left(\nabla_{X}^{*} Y\right) \\
& =\nabla_{X}^{\Gamma^{-1}}(Y, d(Y))-\left(\nabla_{X}^{*} Y, d\left(\nabla_{X}^{*} Y\right)\right) \\
& =\left(\nabla_{X} Y, \nabla_{X}^{f^{-1}}(d(Y))\right)-\left(\nabla_{X}^{*} Y, \psi\left(\nabla_{X}^{*} Y\right)\right) \\
& =\left(\nabla_{X} Y-\nabla_{X}^{*} Y, \nabla_{d}(X, Y)+\mathbb{U}\left(\nabla_{X} Y-\nabla_{X}^{*} Y\right)\right) \\
& =d \Gamma_{f}\left(\nabla_{X} Y-\nabla_{X}^{*} Y\right)+\left(0, \nabla_{d}(X, Y)\right)
\end{aligned}
$$

Since $\nabla^{*} d T_{f}(X, Y) \in C^{\infty}(V)$, we get (i). Than, we have

$$
\begin{aligned}
& m H=\sum_{i, j=1}^{m} \dot{j}^{i j} \nabla^{\bullet} d \int_{j}\left(X_{i}, X_{j}\right)=\left(0, \sum_{, j=1}^{m} j_{j}^{j} \nabla d j\left(X_{i}, X_{j}\right)\right)^{1} \\
& =\left(0, \text { trace }_{\left.(g+\rho)^{\prime}\right)}(\nabla d)\right)^{\perp} \\
& =(0, W)^{\perp}=(0, W)-(0, W)^{\top} \text {. }
\end{aligned}
$$

Since $(0, W)^{\top}=\sum_{j=1}^{m}\left\langle(0, W),\left(X_{i}, d\left(X_{i}\right)\right)\right\rangle_{v \times a}\left(X_{i}, d\left(X_{i}\right)\right)=\sum_{i=1}^{m}\left\langle W, d\left(X_{i}\right)\right\rangle_{A}$ ( $\boldsymbol{X}_{\mathbf{i}}, \boldsymbol{d}\left(\boldsymbol{X}_{\mathbf{t}}\right)$ ),

$$
\begin{aligned}
m H & =(0, W)-\left(\sum_{i=1}^{m}\left\langle W, d\left(X_{i}\right)\right\rangle_{A} X_{i}, \sum_{i=1}^{m}\left\langle W, d\left(X_{i}\right)\right\rangle_{A} d\left(X_{i}\right)\right) \\
& =(0, W)-(Z, d(Z)),
\end{aligned}
$$

which gives (ii).
Finally, differentiating the latter expression and using Eq. (1.1) we obtain

$$
\begin{aligned}
m \nabla_{x}^{f^{-1}} H & =\left(0, \nabla_{x}^{f^{-1}} W\right)-\left(\nabla_{x} z, \nabla_{x}^{f^{-1}}(d f(z))\right) \\
& =\left(0, \nabla_{x}^{f^{-1}} W\right)-\left(\nabla_{x} z, \nabla_{d f}(x, z)+d\left(\nabla_{x} z\right)\right) \\
& =\left(0, \nabla_{x}^{f^{-1}} W-\nabla_{d}(X, z)\right)-\left(\nabla_{x} z, d f\left(\nabla_{x} z\right)\right) \cdot \nabla
\end{aligned}
$$

The following lemme will often be used.
Lemma 1.2 Let $x \in M, X \in T_{8} M$, and a $\in T_{(\Omega)} N$. Then $(X, 0),(0, n) \in T_{s} M \times$ $T_{f(s)} N$ and
(i) $:=0$ if $(0, z)^{L}=0$
(ii) $(X, 0) \in V_{z}$ if $X=0$.

Proof. At the point $x$ we have

$$
\begin{align*}
(0, z)^{L} & =(0, z)-(0, z)^{T}=(0, z)-\sum_{i=1}^{m}\left\langle(0, z),\left(X_{i}, d f_{s}\left(X_{i}\right)\right)\right\rangle_{s, a}\left(X_{i}, d f_{z}\left(X_{1}\right)\right) \\
& =\left(-\sum_{i=1}^{m}\left\langle z, d_{s}\left(X_{i}\right)\right\rangle_{4} X_{i}, z-\sum_{i=1}^{m}\left\langle z, d f_{s}\left(X_{i}\right)\right\rangle_{4} d f_{s}\left(X_{i}\right)\right) \tag{1.6}
\end{align*}
$$

If $(0, x)^{1}=0$, then the first component of the vector in Eq. (1.0) in aleo sero. Therefore, since $\left(X_{i}\right)_{1 \leq 1 \leq m}$ in a basis of $T_{s} M,\left\langle x, d f_{s}\left(X_{i}\right)\right\rangle_{A}=0, V_{i} \in\{1, \ldots, m\}$, and the vector in Eq. (1.0) becomes

$$
0=(0, x)^{\perp}=(0, z) .
$$

That in, $z=0$ and (i) if proved. Now we prove (ii):
If $(X, 0) \in V_{s,}$ then $\forall Y \in T_{s} M \quad\left((X, 0),\left(Y, d f_{s}(Y)\right)\right\rangle_{s \times h}=0$, so $(X, Y)_{r}=0$. Hence $X=0$.

In Ref. $\mid \mathrm{E} e / 79\}$ it was pointed out that $\Gamma_{f}$ is minimal, iff

$$
\begin{equation*}
\text { id }:\left(M, g+f^{\circ} h\right) \rightarrow(M, g) \quad f:(M, g+f h) \rightarrow(N, h) \tag{1.7}
\end{equation*}
$$

are both harmonic maps.
In fact, since $\Gamma_{f}=(i d, f):\left(M_{1}+f h_{h}\right) \rightarrow(M \times N, g \times h), m H=\left(T_{i j}^{n}, T_{f}^{\circ}\right)$, where $\boldsymbol{T}_{\mathrm{id}}^{*}, \boldsymbol{T}_{\boldsymbol{f}}^{\boldsymbol{f}}$ are the tension fielda of the maps id and $f$ in Eq. (1.7),
The system (1.7) can be reduced to an equivalent equation.

## Proponition 1.1 The followinf atatemente are equiealent:

(i) I, is minimal,
(ii) $f:(M, g+f \%) \rightarrow(N, h)$ is harmonic,
(iii) $W=(\text { trece })_{(r+f i)}(\nabla d)=0$.

Aloo, $\Gamma_{f}$ is a toislly geodesie swomanifold of $M \times N$, iff $f:(M, f) \rightarrow(N, h)$ is a totally geodesic map.

Proof. From Lamma 1.1 (ii) $m H=(-Z, W-d(Z))$, bapea $-Z=$ Tid and $W-d f(Z)=T_{f}$. Therefore, if (i) halds, then (ii) and (iii) obvioualy hold.
If (ii) holds, that id $T_{f}^{*}=0$, then $m H=\left(T_{i d}^{*}, 0\right)$. So, as $F \in C^{\infty}(V)$ and from Lemma 1.2 (ii), $\boldsymbol{H}=\mathbf{0}$.
If (iii) hold, then $m H=-(Z, d(Z)) \in V \cap \Gamma_{f}(T M)$. So $H=0$.
The last atatement follows immediately from Lemman $1.1(\mathrm{i})$ and $1.2(\mathrm{i})$. $\boldsymbol{\nabla}$

To prove the main theorem of part one of this work we recall the following formala (nee Ref. [Ee-Le/78], page 9):
Given a map $\phi:\left(P_{1}, g_{1}\right) \rightarrow\left(P_{1}, g_{1}\right)$ between Riemannian manifolda, we have

$$
\begin{equation*}
d i v_{\theta_{1}}\left(d \phi \cdot T_{\phi}\right)=\left\|T_{\phi}\right\|_{h_{0}}^{2}+\left\langle d \phi, \nabla^{\psi^{-1}} \tau_{\phi}\right\rangle \tag{1.8}
\end{equation*}
$$

where $d_{\phi} \cdot T_{\phi}$ in the vector field of $T P_{1}$ given by

$$
\left\langle d \phi \cdot \tau_{\phi}, X\right)_{p_{1}}=\left(d \phi(X), \tau_{\phi}\right)_{i t}, \forall X \in G^{\infty}\left(T P_{1}\right),
$$

and where $($,$) in the indnced Riemannian metric in the vector bundle \otimes T^{*} P_{1} \otimes$ $\phi^{-1} T P_{1}$, that is, $\forall x \in M_{1}\left\langle d \phi, \nabla^{t^{-1}} \tau_{\psi}\right\rangle(x)=\sum_{i=1}^{m}\left\langle d \phi_{\theta}\left(e_{i}\right), \nabla_{s}^{t^{-t}} \tau_{*(x)}\right\rangle_{t}$, where $\epsilon_{1}, \ldots, c_{\text {g }}$ in an orthonormal basis of $T_{r} P_{1}$.
In particular, if $\phi$ is an inometric immersion, then, aince $\tau_{\phi}$ is orthogonal to $d \phi\left(T P_{1}\right)$, Eq. (1.8) becomes

$$
\begin{equation*}
\left\langle d \phi, \nabla^{\phi^{-1}} \tau_{\phi}\right\rangle=-\left\|\tau_{\phi}\right\|_{\theta_{2}}^{2} \tag{1.8}
\end{equation*}
$$

This formala can earily be compated directly, too.
Theorem 1.1 Aesume that $\mathrm{I}_{\mathrm{f}}$ hat parallel mean curearure. Let $\mathrm{e}=\|B\|_{\mathrm{oxa}}$ fe is a conotant). Then, for cach oriented compaet domain $\bar{D} \subset M$, we have

$$
c \leq \frac{1}{m} \frac{A(\partial D)}{V(D)}
$$

-here $V(D)$ is the volume of $D$ and $A(\partial D)$ is the area of $a D$, relative to the metric $g$.

Proof. From Lemma 1.1 (iii) we have $\forall X \in C^{\infty}(T M)$

$$
0=m \nabla_{X}^{1} H=\left(0, \nabla_{X}^{f^{-1}} W-\nabla d(X, Z)\right)^{\perp},
$$

hence, from Lemman 1.2 (i),

$$
\nabla_{k}^{r^{-1}} W=\nabla d f(x, z)
$$

From Lemma 1.1 (iii)

$$
\begin{equation*}
m \nabla_{x}^{\Gamma_{j}^{-1}} H=-\left(\nabla_{x} z, d\left(\nabla_{x} z\right)\right) \tag{1.10}
\end{equation*}
$$

From the latter equation we cas prove now that

$$
\begin{equation*}
m\left\langle\nabla^{\mathrm{r}^{-1}} H, d \mathrm{I}_{j}\right\rangle=-\operatorname{div}_{f}(Z) \text { on } M \tag{1.11}
\end{equation*}
$$

Let $x_{0} \in M$ and $X_{1}, \ldots, X_{m}$ be a lacal orthonormal frame of $(M, g)$, defined in a neighbourhood of $x_{0}$ and atinfying $\nabla X_{1}\left(x_{0}\right)=0, \quad V_{i}=1, \ldots, m$. Such frames can be conaracted aning parallel transport in ( $M, \boldsymbol{\rho}$ ).

Then, $Z=\sum_{i j=1}^{m} \bar{g}^{i j}\left\langle W, d j\left(X_{i}\right)\right\rangle_{A} X_{j}$ in a neighbourhood of $x_{0}$. Since $\boldsymbol{\nabla} X_{1}\left(x_{0}\right)=0$, we have at the point $x_{0}$

$$
\begin{aligned}
& \nabla_{X_{1}} Z=\sum_{t, \infty=1}^{m} \nabla_{X_{1}}\left(\tilde{g}^{t p}\left(W, d /\left(X_{k}\right)\right)_{k} X_{p}\right) \\
& =\sum_{H_{m=1}^{m}}^{m} d\left(\bar{g}^{\boldsymbol{L} p}\left(W, d f\left(X_{k}\right)\right)_{A}\right)\left(X_{1}\right) X_{p},
\end{aligned}
$$

so $\forall i, j$

$$
\begin{aligned}
& \left\langle\left(\nabla_{X_{i}} Z, d f\left(\nabla_{x_{i}} Z\right)\right),\left(X_{j}, d f\left(X_{j}\right)\right)\right\rangle_{, \mathrm{ch}}= \\
& =\sum_{k_{j}=1}^{m}\left\langle d\left(j^{h p}\left\langle W, d f\left(X_{k}\right)\right)_{A}\right)\left(X_{i}\right)\left(X_{p}, d f\left(X_{p}\right)\right),\left(X_{j}, d f\left(X_{j}\right)\right)\right\rangle_{p a t} \\
& =\sum_{k=1}^{m} \tilde{g}_{\boldsymbol{j}} d\left(\tilde{j}^{k p}\left(W, d f\left(X_{k}\right)\right\rangle_{h}\right)\left(X_{i}\right),
\end{aligned}
$$

and, therefore, from Eq. (1.10)

$$
\begin{aligned}
& m\left\langle\nabla^{\Gamma_{j}^{-1}} \boldsymbol{H}, d \Gamma_{j}\right\rangle\left(x_{0}\right)=\sum_{i, j=1}^{m} m \dot{g}^{i j}\left\langle\nabla_{X_{i}}^{\Gamma_{i}^{-1}} H_{, d \Gamma_{j}}\left(X_{j}\right)\right\rangle_{g \times \omega} \\
& =\sum_{i, j=1}^{m}-\tilde{j}^{\boldsymbol{j}}\left\langle\left(\nabla_{x_{i}} Z, d f\left(\nabla_{x_{i}} Z\right)\right),\left(X_{j}, d f\left(X_{j}\right)\right)\right\rangle_{m-A} \\
& =\sum_{i, k,-1}^{m}-j^{j} \dot{j}_{j_{j}} d\left(\tilde{g}^{\psi}\left\langle\left(W, d\left(X_{k}\right)\right)_{\star}\right)\left(X_{i}\right)\right. \\
& =\sum_{i, k=1}^{m}-\delta_{i p} d\left(\tilde{g}^{k y}\left(W, d f\left(X_{k}\right)\right)_{k}\right)\left(X_{i}\right) \\
& =\sum_{i, L=1}^{m}-d\left(\tilde{j}^{n}\left(W, d r\left(X_{k}\right)\right)_{A}\right)_{\varepsilon_{0}}\left(X_{0}\right) .
\end{aligned}
$$

Since $\sum_{k=1}^{m} z^{z^{1 i}}\left\langle W, d f\left(X_{k}\right)\right\rangle_{k}=\left\langle Z, X_{i}\right)_{g}, \forall i=1, \ldots, m$ in a neighbourhood of $x_{0}$,

$$
\begin{aligned}
m\left\langle\nabla^{r_{i}^{-1}} H_{i} d \Gamma_{j}\right\rangle\left(x_{0}\right) & =\sum_{i=1}^{m}-d\left(\left(Z, X_{i}\right)_{y}\right)_{m_{0}}\left(X_{i}\right)=\sum_{i=1}^{m}-\left\langle\nabla_{X_{i}} Z, X_{i}\right\rangle_{j}\left(x_{0}\right) \\
& =-\operatorname{div}_{i}(Z)\left(x_{0}\right)
\end{aligned}
$$

and we have proved Eq. (1.11).
On the ather hand, from Eq. (1.9) we have

$$
\left\langle\nabla^{r_{j}^{-1}} B, d \Gamma_{j}\right\rangle=-m\|H\|_{\rho \times h}^{\mathrm{z}}=-m c^{2}
$$

So Eq. (1.11) gives

$$
\begin{equation*}
m^{2} c^{2}=\operatorname{div}_{f}(Z) \text { on } M \tag{1.12}
\end{equation*}
$$

Let $D \subset M$ be an oriented compact domain and $d V_{0}, d A_{\text {a }}$ denote the reapective volume elements of $D$ and $\partial D$ relative to the metric f. Applying Stoken' theorem we get

$$
\begin{aligned}
m^{2} e^{2} V(D) & =\int_{D} m^{2} c^{2} d V,=\int_{D} \operatorname{div}_{1}(Z) d V \\
& =\int_{\partial D}\langle Z, \vec{n}\rangle_{g} d A_{g}
\end{aligned}
$$

where $\boldsymbol{\#}$ in the outward nnit normal of $\partial D$.
From the Schwarz inequality $\left|\langle Z, \vec{\eta}\rangle_{\mathrm{g}}\right| \leq\|Z\|_{\rho}\|\vec{n}\|_{\mathrm{g}}=\|Z\|_{\text {, }}$ and Lemma 1.1(ii), we obtain

$$
m c=m\|B\|_{\mathrm{BNA}}=H(-Z, W-d f(Z))\left\|_{\operatorname{ma}} \geq\right\| Z \|_{\mathrm{F}} .
$$

Hence

$$
m^{2} e^{2} V(D) \leq \int_{D D}\left|(Z, \vec{i})_{,}\right| d A, \leq \int_{A D} m e d A,=m e A(D D)
$$

$0 \mathrm{c} \leq \frac{1}{m} \frac{A(D D)}{V(D)}, \infty$
Corollary 1.1.1 If $(M, g)$ ia an oriented non-compact Riemannian manifold and $f: M \rightarrow N$ is a amooth map such that $I_{f}$ has parallel mean cursature $H$, then

$$
\|H\|_{\mathrm{P} \times \mathrm{a}} \leq \frac{1}{m} \mathrm{f}_{( }(M)
$$

Corollary 1.1.2 U $(M, s)$ is an oriented, compael (without boundary) manifold or an oriented non-compact Riemannian manifold with Cheeger comotant equal io saro (eee Ch. 0 for definution), then for any Riemannian manifold ( $N, h$ ) and any $\operatorname{map} f:(M, f) \rightarrow(N, h)$, $f$ the graph $\Gamma_{f}:(M, f+f h) \rightarrow(M \times N, \rho \times h)$ is an im. meraion aith parallel mean cureature, it in in fact a minimel a whmanifold of $M \times N$.

In Chapter 0 ve recalled that, if $(M, g)$ it a simply connected Riemannian mdimensional manifold with aectional curveturea bounded from above by $K$, where $K$ in a negative conrtant, then $\bar{\zeta}(M) \geq(m-1) \sqrt{-K}$, and that, if $M$ is the m-hyperbolic apece, $\boldsymbol{\zeta}(M)=m-1$. Therefore, in such cases Cor. 1.1.2 cannot be applied. Moreover, we will give next an explicit example which show that the condition on the Cheeger constant of ( $M, \rho$ ) is a fandamental criterion for a graph with parallel mean curviture to be minimal.

Thaorem 1.2 Gonsider the 2-dimensional hyperbolic apace $\left(H^{1}, g\right)$, wherd $A^{\mathbf{2}}$ is the unit open disk of Pr$^{1}$ with cenire at the origin and $g$ is the Riemannian metrie on $H^{\mathbf{2}}$ giecta $\boldsymbol{b}_{\boldsymbol{F}}$

$$
\begin{equation*}
\theta=\frac{4|d x|^{3}}{\left(1-|x|^{2}\right)^{2}} \tag{1.13}
\end{equation*}
$$

The function $f: H^{2} \rightarrow \mathbb{R}$ given by

$$
f(x)=\int_{0}^{p(x)} \sqrt{\frac{1}{2}(\cosh (r)-1)} d r
$$

where $r(x)=\log \left(\left.\frac{1+1}{1-\mid} \right\rvert\,\right)$ is the diotance function from the origin in $H^{1}$, is amooth on all $H^{2}$, and $I_{j} \subset H^{3} \times \mathbb{R}$ has conatant mean curoature $\|H\|=\frac{1}{2}$.

Proof. It follows from Lemma (1.3), to be given and proved in the next section, that we only have to verify if $f$ atisisies the equation $\operatorname{div}_{\mathrm{f}}\left(\frac{\mathrm{v} f}{\sqrt{1+\|v f\|^{2}}}\right)=1$.
First we calculate the Chriatoffel symbols of the m-hyperbolic space ( $\boldsymbol{H}^{m}, 9$ ), where 0 is given by Eq. (1.13). Defining the identity map $x: H^{m} \rightarrow \boldsymbol{R}^{m}$ ase co-

 $g^{i j}=\frac{\left(1-|a|^{2}\right)^{2}}{4} \delta_{i j}$. Then, using Eq. (0.2), we obtain

$$
\Gamma_{i j}^{k}=\frac{2}{1-|x|^{2}}\left(\delta_{k j} x_{i}+\delta_{i k} x_{j}-\delta_{i j} x_{k}\right)
$$

Now we prove that $f$ is smooth.
$\forall x \in H^{2} \backslash(0), \varepsilon \in T_{s} H^{2}=R^{1}$, we have $d / f(\varepsilon)=\sqrt{\frac{1}{5}(\cosh (r(x))-1)} d r_{z}(\varepsilon)$. Note


$$
\begin{equation*}
d f_{3}(x)=\frac{2\langle x, w\rangle}{\left(1-|x|^{2}\right)^{3 / 3}} . \tag{1.14}
\end{equation*}
$$

Now we thow that $\frac{\partial f}{d f}(0)=0$ for $i=1,2$.

$$
\lim _{h \rightarrow 0}\left|\frac{f\left(h e_{1}\right)-f(0)}{h}\right|=\lim _{h \rightarrow t i}\left|\frac{1}{h} \int_{0}^{3 \operatorname{san} L^{-1}(t h \mid)} \sqrt{\frac{1}{2}(\cosh t-1) d t}\right| .
$$

Since lim, $\operatorname{lanh}^{-1}(t)=1$ and $\tan h^{-1}:(-1,1) \rightarrow(-\infty,+\infty)$ in an increaring function, we have $\forall \delta>0, \exists \varepsilon>0$ auch that, $\forall h: 0<|h|<\epsilon, \frac{\text { mat }-1(u A) \mid}{|A|}<1+\delta$ and, $V \in \in\left[0,2 \tanh ^{-1}(|h|)\right], \sqrt{\frac{1}{5}(\cosh t-1)}<\delta$. Hence,

$$
\left|\frac{1}{h} f_{0}^{1 \tan h^{-1}| | h| |} \sqrt{\frac{1}{2}(\cosh t-1)} d t\right|<\frac{\delta}{|h|} 2 \tanh ^{-1}(|h|)<2 \delta(1+\delta)
$$

So we have proved that Eq. (1.14) alo holde for $2=0$, which proves the amoothness of $f$ on all $H^{1}$.
Finally we caleulate $\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+\| V / i f}}\right)$.
The vector fields $\tilde{\dot{a}}_{1}(x)=\frac{1-|x|^{2}}{3} \varepsilon_{i}, i=1, \ldots, m$ form an orthonormal frame of $\left(H^{*}, \theta\right)$. So
$\nabla f_{z}=\sum_{i=1}^{m} d d_{x}\left(\bar{e}_{i}\right) \bar{e}_{i}=\frac{\sqrt{1-|x|^{2}}}{3}$ and $\|\nabla f\|_{y}^{2}=\frac{|0|^{2}}{1-\mid a^{2}}$.
Uaing formula (0.3) we get, for $m=2$,

$$
\begin{aligned}
& \operatorname{div}_{g}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{g}^{2}}}\right)= \\
& \quad=\operatorname{div}_{g}\left(\frac{1-|x|^{2}}{2} x\right)=\sum_{k=1}^{m} \frac{\partial}{\partial x^{k}}\left(\frac{1-|x|^{2}}{2} x_{k}\right)+\sum_{i, k=1}^{m} \frac{1-|x|^{2}}{2} x_{i} \Gamma_{i k}^{k} \\
& =\sum_{k=1}^{2}\left(-x_{k} x_{k}+\frac{1-|x|^{2}}{2}\right)+\sum_{i, k=1}^{2} \frac{1-|x|^{2}}{2} \frac{2}{1-|x|^{2}} x_{i}\left(\delta_{k k} x_{i}+\delta_{i k} x_{k}-\delta_{i k} x_{k}\right) \\
& =-|x|^{2}+1-|x|^{2}+2|x|^{2}=1 . \odot
\end{aligned}
$$

Ramarlin 1.1 Aa a consequence of Cor. 1.1.2, Prop. 1.1, and Bopf'maximmm principle (aee for example Ref. (Che/84]), if $M$ in an oriented compact manifold, $N=\boldsymbol{R}^{n}$, and $\Gamma_{f}$ hat parallel mean curvature, then $f$ in a conotant map.

Damark 1.2 In Sec. 1 we prenented the reault of Chern [Gh/as] on the mean curvature of a graph af a starting point for the man theorem of thin aection. Thig result wal a corollary of a theoremin his paper quoted above, which we reproduce here:

Theoram (Charn) Let $P$ le compact piece of an oriented hyperamfees of dimension $m$ with mooth boundary ip thich is immeroed in a Emelidean apace of dimension $m+1$. Suppose the mean eursalure $\sigma_{1} \geq e>0$. Let ate fited
 vhere $V_{a}$ is the tolume of the orthoponal projection of $P$ and $L_{a}$ that of $1 P$ in the hiperpiant perpendicular to a. If $M$ is defined dy the equation $z=F\left(s_{1}, \ldots, s_{m}\right)$, for $s_{1}^{2}+\ldots+x_{m}^{3}<R$, then $e R \leq 1$.

The above case seems, at first sight, much more general than a graph, but, in fact, It la ententially the reme, as we are going to explain in denail.
The condition "... Let a be a fised unit vector which makes an angle $\leq \frac{5}{\mathrm{~F}}$ with all
normals of $P$... . means the following:
Let un aname that the anglea are $<\frac{\pi}{5}$. Denote by $\Phi: P^{m} \rightarrow \mathbb{R}^{m+1}$ the immersion of $P$ into the $m+1$ - dimensional Euclidean apace, and let $\phi: P \rightarrow|a|^{\perp} \simeq \boldsymbol{R}^{m}$ deaote the composition of $\Phi$ with the orthogosal projection of $\mathbb{R}^{m+1}$ onto $|a|^{\perp}$. That in, $\phi(x)=\boldsymbol{\Phi}(x)-(\boldsymbol{\Phi}(x), a) \in, \forall x \in P$. Then $\phi$ is also an immerion of $P$, as follows atraightforwardly from our assumption concerning the angles.
$V_{a}$ and $L_{a}$ in Ghern'a theorem are resp. the volume and area of $P$ and $a P$ relative to the netric induced by the immersion $\phi$ of $P$ into $|a|^{\perp} \propto \boldsymbol{R R}^{m}$. Writing now $E^{m+1}=[\varepsilon]^{+} \times[a]$, then
© : $P \rightarrow R^{m+1}=[a]^{1} \times[a]$ in given by
$\Phi(x)=(\phi(x),<\Phi(x), a>a) \simeq(\phi(x),<\Phi(x), a>)$, wince $\phi(x)+<\Phi(x), a>a=$ $\Phi(x)$.
Thum $\Phi$ can be writien an $\Phi(x)=(\phi(x), f(x))$, where $f: P^{m} \rightarrow R \approx|\in|$ is a amooth map and $\phi: P^{m} \rightarrow \mathbb{R}^{m} \approx[a]^{\perp}$ ia an immertion. We can consider $\overline{\#}$ at a parametrisation of a graph, where the frat component of in the inometric immerion $\phi: P^{m} \rightarrow \mathbb{R}^{m}$ instead of the identity map, which in the care of a graph.

In the anme apirit, we can also improve our main theorem (1.1) for the case of a parametrisation of a graph:
Let $\left(M^{m}, g\right),\left(N^{n}, h\right)$ be amooth Riemannian manifolda and $P^{m}$ an m-dimensional manlfold. Let $=\left(\phi, \cap,\left(P, \phi^{\circ} f+f^{\circ} h\right) \rightarrow(M \times N, f \times A)\right.$ be an lemetric immerrion with componente $\phi$ and $f$, such that $\phi:\left(P^{m}, \phi^{\circ}, s\right) \rightarrow\left(M^{m}, g\right)$ is an isometric immersion and $f: P \rightarrow N$ is a map. Let $H$ be the mean curveture of the inometric immersion $\boldsymbol{\Phi}$. Then Th. 1.1 can be reformulated afollowa:

Theoram 1.1' If © has parallel mean eurvature, than, for each compaet orisnted domain $\bar{D} \subset P$, ${ }^{2}$ e have

$$
c \leq \frac{1}{m} \frac{A(D D)}{V(D)}
$$

-here $c=\|B\|_{\mathrm{g} \times \mathrm{h}}$ (conotant) $V(D)$ and $A(a D)$ are reap. the solume of $D$ and the ares of $8 D$ relative to the metric $\phi^{\circ} \mathrm{g}$.

The proof of this theorem in andogons to the one of Th. 1.1, with some obviona chages of notation.

### 1.3 Co-Dimension One

If the graph $I_{f}$ is a hypersurface of $M \times N$, that is, $N$ in of dimension one, we can obtain an eatimate for the infimam of the norm of the mean curveture of $\Gamma_{/}$, without needing to impose the assumption of $f \boldsymbol{f}$ having parallel mean corvature, as in the general care.

Let us soppose that $N$ is oriented and of dimension one. Les $Y$ be a anit vector field defined on all $(N, h)$. Define $\omega:=\sqrt{1+\|d\|^{1}}$, where $\|d /\|$ is the norm of $d f$ in Riemannian vector bundle $\otimes T^{*} M \otimes f^{-1} T N$. Denote by $\nabla f$ the amooth
 $\|\nabla f\|_{\mathrm{t}}=\|d f\|$ and $\nu=\frac{1}{s}(-\nabla f, Y)$ is a unit normal of $\Gamma$.
In this case it is easy to derive an expression for the matrix $\left[g^{i j}\right]$ (here we nae the same notations as in Sec. 1.2). Denoting $p_{1}=\left(d /\left(X_{i}\right), Y\right)_{A}$, we have

$$
\tilde{g}_{i j}=\delta_{i j}+p_{i} p_{j} \text { and } \tilde{g}^{i j}=\delta_{i j}-\frac{1}{\omega^{3}} p_{i} p_{j}
$$

Observe that $\omega^{2}=\left|\tilde{g}_{i j}\right|$. So,

$$
\begin{aligned}
m H & =\sum_{i j=1}^{m} \bar{g}^{j} \nabla^{*} d \Gamma_{j}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{m} \nabla^{*} d \Gamma_{j}\left(X_{i}, X_{i}\right)-\sum_{i j i=1}^{m} \frac{1}{\omega^{i}} p_{i} p_{j} \nabla^{*} d \Gamma_{j}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

From Lemma 1.1 (i), we have

$$
\nabla^{*} d \Gamma_{j}\left(X_{i}, X_{2}\right)=\left\langle\left(0, \nabla d f\left(X_{i}, X_{j}\right)\right), v\right\rangle_{s} \nu=\frac{1}{\omega}\left\langle\nabla d f\left(X_{i}, X_{j}\right), Y\right\rangle_{H} \nu
$$

Hence,

$$
\begin{align*}
m\langle H, \nu\rangle_{p x h} & =\sum_{i, j=1}^{m} \tilde{g}^{i j}\left\langle\frac{1}{\omega} \nabla d f\left(X_{i}, X_{j}\right), Y\right\rangle_{A}=\frac{1}{\omega} \operatorname{trace}_{(6+f \cdot h)}\langle\nabla d f(\cdot, \cdot), Y\rangle_{A} \\
& =\frac{1}{\omega}\left\langle\tau_{f}-\sum_{i, j=1}^{m} \frac{1}{\omega^{2}} p_{i} p_{j} \nabla d f\left(X_{i}, X_{j}\right), Y\right\rangle_{h} \tag{1.15}
\end{align*}
$$

For $M=\mathbb{R}^{m}$ and $N=\mathbb{R}$, thin expression in equal to the one obtained by Flendera [Fle/86].

## Lamma 1.8

$$
m\langle H, \nu\rangle_{\rho \times h}=\operatorname{div}_{\rho}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{3}^{2}}}\right)
$$

In particolar, div, $\left(\frac{V f}{\sqrt{1+\| V / G}}\right)=$ me (e connant), iff $\|E\|_{\text {ran }}=|e|$.
Proof. Let $x_{0} \in M$, and $X_{1}, \ldots, X_{m}$ be a local orthonormal frame of ( $M, \boldsymbol{n}$ ) in a meighbourhood of $x_{0}$, unch that $\boldsymbol{\nabla} X_{1}\left(x_{0}\right)=0$. Then, at the point $x_{0}$

$$
\begin{aligned}
& \operatorname{div}_{g}\left(\frac{\nabla f}{\omega}\right)\left(x_{0}\right)=\sum_{i=1}^{m}\left\langle\nabla_{x_{i}}\left(\frac{\nabla f}{\omega}\right), X_{i}\right\rangle_{v}=\sum_{i=1}^{m} d\left(\left\langle\frac{\nabla f}{\omega}, X_{i}\right\rangle_{t}\right)\left(X_{i}\right) \\
& =\sum_{i=1}^{m}\left\langle\nabla_{X_{i}}^{f-1}\left(\frac{1}{\omega} d\left(X_{i}\right)\right), Y\right\rangle_{h} \\
& =\sum_{i=1}^{m}\left\langle d\left(\frac{1}{\omega}\right)\left(X_{i}\right) d\left(X_{i}\right)+\frac{1}{\omega} \nabla d\left(X_{i}, X_{i}\right), Y\right\rangle_{t} \\
& =\left\langle\sum_{i=1}^{m}-\frac{1}{2 \omega^{i}} d\|d\|^{2}\left(X_{i}\right) d\left(X_{i}\right)+\frac{1}{\omega} \tau_{f}, Y\right\rangle_{n} \\
& =\left\langle-\frac{1}{\omega^{i}} \sum_{i=1}^{m}<\nabla_{X_{i}} d i d\right\rangle\left\langle f\left(X_{i}\right)+\frac{1}{\omega} T_{f}, Y\right\rangle_{i} \\
& =\left\langle-\sum_{i, j=1}^{m} \frac{1}{\omega^{i}}<\nabla d f\left(X_{i}, X_{j}\right), d f\left(X_{j}\right)>s d f\left(X_{i}\right)+\frac{1}{\omega} \tau_{f}, Y\right\rangle_{k} \\
& =\left\langle-\frac{1}{\omega^{i}} \sum_{i_{j}=1}^{m}<\nabla d f\left(X_{i}, X_{j}\right), Y>_{\Delta}<d f(X,)_{i} Y>_{\Delta} d f\left(X_{i}\right)+\frac{1}{\omega} \tau_{f}, Y\right\rangle_{\Delta} \\
& =\left\langle-\frac{1}{\omega^{*}} \sum_{i, j=1}^{m} p_{i} P_{j} \nabla d r\left(X_{i}, X_{j}\right)+\frac{1}{\omega} T_{f}, Y\right\rangle_{\mathrm{a}}
\end{aligned}
$$

Let $\|\nabla d /\|$ denate the norm of $\nabla d f$ in $\Theta^{2} T^{\bullet} M \otimes f^{-1} T N$.

## Proponitlon 1.2

(a) $U \bar{D} \subset M$ it an oriemted compaet domain of $M$, then

$$
\min _{D}\|H\|_{\text {pch }} \leq \frac{1}{m} \frac{A(a D)}{V(D)}
$$

where $A(D D)$ and $V(D)$ are reop. the area of $\partial D$ and the volume of $D$, relative to the metrie $g$. In particular, if $(M, g)$ is a compaet manifold or nom-compact vith Gheeger conatant equal to sero, then inf $\|H\|_{\mathrm{mx}}^{\mathrm{N}}=0$.
( $b$ ) $I f(M, s)$ is a canmected, orianted, complete Riomennian manifold and $\frac{\| j_{0}}{\sqrt{1+\| v i g}}$ is istegrable is $(M, g)$, then there esiata $a x \in M$, anch that $H_{z}=0$. Moreoser, if $<F_{1} \nu>$ pat in comlained in $[0,+\infty)$ or in $(-\infty, 0]$, then $\boldsymbol{H}$ 으 0 .

Proof. (a) Let $e=\min _{D}\|\boldsymbol{B}\|$. Clearly we may suppose $c \neq 0$. Since $D$ is connected,

$$
\begin{align*}
\|H\|_{r} & =\left\langle H_{z}, \nu_{s}\right\rangle_{p h}, \quad \forall x \in D \\
& \text { or }  \tag{1.10}\\
\|H\|_{r} & =-\left\langle H_{*}, \nu_{s}\right\rangle_{p A}, \quad \forall x \in D .
\end{align*}
$$

Denoting by $d V$, and $d A$, the volume elements of $D$ and $\partial D$, reapectively, and by ä the outward unit normal of $3 D$, and applying Lemman 1.3 and Stokea' theorem, we obtain

$$
\begin{aligned}
c V(D) & \leq \int_{D}\|H\|_{p \times 1} d V_{t}=\left|\int_{D}\left\langle A_{1} \nu\right\rangle_{p \times A} d V_{f}\right|= \\
& =\frac{1}{m}\left|\int_{D} \operatorname{div}_{q}\left(\frac{\nabla f}{\omega}\right) d V_{p}\right|=\frac{1}{m}\left|\int_{\partial D}\left\langle\frac{\nabla f}{\omega}, n\right\rangle, d A_{s}\right| \\
& \leq \frac{1}{m} \int_{\partial D}\left\|\frac{\nabla f}{\omega}\right\|_{s} d A_{s} .
\end{aligned}
$$

As $\left\|\frac{\nabla f}{\omega}\right\|_{g} \leq 1, \quad e \leq \frac{1}{m} \frac{A(\partial D)}{V(D)}$.
(b). Suppose that $H_{z} \neq 0, \forall x \in M$. Note that, in thin case, Eq. (1.10) holds on all $M$.

 grable and since * is an orthogonal isomorphism between the Riemannian vector bandles $\Lambda^{\prime} T^{\top} M$ and $\Lambda^{m-1} T^{0} M,\|\theta\|$ in integrable on ( $M, g$ ), i.e. 1 is an integrable ( $m-1$ )-form of ( $M, \varnothing$ ). By applying the extended Stokea' theorem of Gafiney-Yau (see Ref. |Ya/7e|, lemma of Sec. 1) to $\theta$, we may take a aequence of compact domains $B_{1}$ of $M$, soch that $B_{1} \subset B_{i+1}, \quad V_{1}, \cup B_{1}=M$, and $\mathrm{lim}_{m_{++\infty}} f_{B_{1}} d \theta=0$, that is,

$$
\lim _{t \rightarrow+\infty} \int_{B_{i}} \operatorname{div} g\left(\frac{\nabla f}{\omega}\right) d V_{g}=0 .
$$

Therefore, we can conclude from Eq. (1.10) and Lemma 1.3

$$
\lim _{-\rightarrow+\infty} \int_{J_{t}}\|B\|_{r \times d} d V_{t}=0 .
$$

Consequently, $\int_{B_{1}}\|H\|_{g} d V_{0}=0$, Wi, i.e. $H \equiv 0$, which in a coatradiction. If we auppone that $\langle\boldsymbol{H}, \nu\rangle_{\mathrm{pus}}$ in contained in $[0,+\infty)$ or in $(-\infty, 0]$, then, again, Eq. (1.10) holde on all $M$, which implien $H \equiv 0$ en well. $\bigcirc$

Remark 1.5 In Prop. 1.2(b)(I) we could only require the weaker condition

$$
\lim _{R \rightarrow+\infty} \frac{1}{R} \int_{B_{R}\left(x_{0}\right)} \frac{\|\nabla f\|_{g}}{\sqrt{1+\|\nabla f\|_{g}^{2}}} d V_{g}=0
$$

for ame $x_{0} \in M_{1}$ where $B_{R}\left(x_{0}\right)$ in the geodesic ball of ( $M, s$ ) with centre $s_{1}$ and radins $R$. In fact, the Stokes' theorem of Yau atill holda with this condition (ace Appendix of Ref. [Ya/76]).

### 1.4 Graphs of Isometric Immersions, Conformal Maps, Riemannian Submersions, and Harmonic Morphisms

In Sec. 2 we have seen that for a map $f:(M, g) \rightarrow(N, h)$, $I$, to be minimal in in general not equivalent to $f:(M, \varrho) \rightarrow(N, h)$ be harmonic. However, we will ireat some casen where the equivalence does hold.

A map $\phi:\left(P_{1}, g_{1}\right) \rightarrow\left(P_{1}, g_{1}\right)$ between two Riemannian manifolda ia and to be (weakly) conformal, if $\phi^{\prime} \phi_{5}=\rho^{\prime} g_{1}$, where $\rho: P_{1} \rightarrow R$ in a amooth map. If $\operatorname{dim} P_{1}>\operatorname{dim} P_{1}$, then $\phi$ is constant. If $\rho$ it a mon-zero constant, $\phi$ is auid to be a homothetic map and, in partic alar, an isometric immeraion, if $\rho=1$. If $p(x) \neq 0 \quad \forall x \in P_{1}$, J.e. \& it an Immeraion, then we have the following well-known relavion [Ho-O $/ 82$ ] between $\mathcal{I}_{\phi}$, the tension field of $\phi:\left(P_{1}, \theta_{1}\right) \rightarrow\left(P_{1}, g_{1}\right)$ and $H_{\phi}$, the mean curvature of the inometric immeraion $\phi:\left(P_{1}, \phi^{\prime \prime} g_{2}\right) \rightarrow\left(P_{1}, \theta_{1}\right)$ :

$$
\begin{equation*}
m H_{\phi}=\frac{1}{\rho^{2}} \tau_{\phi}+\frac{m-2}{\rho^{2}} d \phi(w) \tag{1.17}
\end{equation*}
$$

where $m=\operatorname{dim}\left(P_{1}\right)$ and $v=\nabla_{f}$ log $\rho$. We recall that a Riemannian manifold ( $\boldsymbol{M}, \boldsymbol{g}$ ) is asid to be (strongly) parabolic, if it admits no non-constant aubharmonic functions $/$ (i.e. $\Delta / \geq 0$ ) that are bounded from above.

Proponition $1.8 L_{a 1} f:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ be aconformed map with $f^{\circ} h=\lambda^{2} f$. Let $E$ te the mean curuature of $\Gamma_{f}$. Than echase:
(a)

$$
m H=\left(0,\left(1+\lambda^{2}\right)^{-1} T_{j}\right)^{\perp} .
$$

In particulaf, if $x_{0} \in M, H_{s_{0}}=0$, if $\tau_{f}\left(x_{0}\right)=0$. Therefore, $I_{\text {f }}$ in a minimal submanifold of $(M \times N, g \times h)$, if $f:(M, g) \rightarrow(N, h)$ io a harmonic map (and in this caoe, for $m \neq 2, f$ is a homothetic map).
(b) If $m=2$, or $f$ is an isometric immersion or, more generally, $f$ is a homothetic map, then $\mathrm{I}_{\mathrm{j}}$ hat parallel mean curoalure, iff $\mathrm{I}_{\mathrm{j}}$ in minimal.
(c) $U m \neq 2$ and $\mathrm{I}_{f}$ has parallel mean eurvature, then

$$
\Delta\left(\left(1+\lambda^{2}\right)^{-1}\right)=\frac{2 m^{2}}{m-2} e^{2},
$$

with $c=\|H\|$ (constant). Gonsequently,
(i) if $(M, g)$ is parabolic or if $\lambda$ hat a minimum on $M \backslash a M$ for $m \geq 3$, then $I_{f}$ is minimal.
(ii) if ( $M^{m}, g$ ) is complete, connected, and oriented, and $m \geq 3$, then for -ot $(M, g)<+\infty \quad I_{j}$ is minimal, and for vol $(M, g)=+\infty \quad\left(1+\lambda^{3}\right)^{-1} \notin$ $L(M, g), \quad \forall p \in(1,+\infty)$.

Proof. Since $f^{*} h=\lambda^{2} g, \Gamma_{f}^{*}(g \times h)=g+f^{*} h=\left(1+\lambda^{2}\right) g=\mu^{2} g$, where $\mu: M \rightarrow$ $[1,+\infty)$ it a smooth map. It follows from Eq. (1.17) that

$$
m H=\mu^{-2} \tau_{\mathrm{I}}+(m-2) \mu^{-2}(w, d f(\infty)),
$$

with $\tau_{\text {r }}$ the tension field of $\mathrm{I}_{\mathrm{f}}:(M, g) \rightarrow(M \times N, g \times h)$ and with $w=\nabla, \log \mu$. Thus, $\tau_{\mathrm{f}_{f}}=\left(\boldsymbol{\tau}_{\mathrm{id}}, \boldsymbol{T}_{f}\right)=\left(0, \tau_{f}\right)$. Hence,

$$
\begin{equation*}
m H=\mu^{-1}\left(0, \tau_{f}\right)+(m-2) \mu^{-2}(w, d j(w)) . \tag{1.18}
\end{equation*}
$$

So $m H=(m H)^{\perp}=\left(0, \mu^{-1} \tau_{f}\right)^{\perp}$ and (a) is proved by applying Lemma 1.2(i). If $f$ is harmonic, i.e. $H=0$ (from (a)), and $m \neq 2$, then Eq. (1.18) gives $w=0$, that in, $f$ is a homothetic map ( (ee also Ref. [Ee-Le/83]).
Next we prove (b). If $m=2$ or $f$ is a homothetic map (i.e $w=0$ ), we obtain from Eq. (1.18)

$$
m H=\mu^{-2}\left(0, \tau_{f}\right)
$$

So, applying formala (1.1) we have, $\forall X \in C^{\infty}(T M)$,

$$
\begin{equation*}
m \nabla_{X}^{r_{j}^{\prime-1}} H=\left(0, \nabla_{X}^{f^{-1}}\left(\mu^{-2} \tau_{J}\right)\right) \tag{1.19}
\end{equation*}
$$

and

$$
\begin{equation*}
m \nabla_{X}^{1} B=\left(0, \nabla_{X}^{J^{-1}}\left(\mu^{-1} \tau_{f}\right)\right)^{\downarrow} . \tag{1.20}
\end{equation*}
$$

Hence, applying Lemma $1.2(\mathrm{i})$ to Eq. (1.20), we conclude that
$\nabla_{x}^{1} H=0$ iff $\nabla_{x}^{f^{-1}}\left(\mu^{-1} \tau_{j}\right)=0$, which is equivalent to $\nabla_{x}^{5^{-1}} H=0$ due to Eq. (1.19). Using Eq. (1.9) for $\phi=I_{f}$, we get $\nabla^{1_{5}^{-1}} H=0$ iff $H=0$,' and we have proved (b). In order to obtain (c) we are first going to prove the following formula:

$$
\begin{equation*}
\left(r_{f, d}(\cdot)\right)_{A}=\frac{2-m}{2} d \lambda^{2} . \tag{1.21}
\end{equation*}
$$

Let un fix $x_{0} \in M$ and let $X_{1}, \ldots, X_{m}$ be a local orthonormal frame of ( $M, g$ ) defined in a neighbourhood of $x_{0}$ and antiafying $\nabla X_{1}\left(x_{0}\right)=0, \quad \forall i=1, \ldots, m$. At $x_{0}$ we have, $\mathrm{V}_{\mathrm{i}}, j, k \in\{1, \ldots, m\}$,

$$
\begin{aligned}
\left\langle\nabla_{d}\left(X_{1}, X_{j}\right), d f\left(X_{k}\right)\right\rangle_{A}\left(x_{0}\right) & =\left\langle\nabla_{X_{i}}^{f^{-1}}\left(d f\left(X_{j}\right)\right), d f\left(X_{k}\right)\right\rangle_{k} \\
& =d\left(\left\langle d f\left(X_{j}\right), d f\left(X_{k}\right)\right\rangle_{i}\right)\left(X_{i}\right)-\left\langle d f\left(X_{j}\right), \nabla d\left(X_{i}, X_{k}\right)\right\rangle_{A} \\
& =\delta_{j t} d \lambda^{2}\left(X_{i}\right)-\left\langle d f\left(X_{j}\right), \nabla_{d}\left(X_{i}, X_{k}\right)\right\rangle_{k} .
\end{aligned}
$$

Performing a cyclic permatation on the indices $i, j, k$ we get

$$
\begin{aligned}
& \left\langle\nabla d f\left(X_{i}, X_{j}\right), d f\left(X_{k}\right)\right\rangle_{t}=\delta_{j t} d \lambda^{2}\left(X_{i}\right)-\left\langle d\left(X_{j}\right), \nabla d\left(X_{i}, X_{k}\right)\right\rangle_{t} \\
& \left\langle\nabla d\left(x_{1}, x_{t}\right), d\left(x_{j}\right)\right\rangle_{\mathrm{h}}=\delta_{i} d \lambda^{\prime}\left(x_{k}\right)-\left\langle d\left(x_{i}\right), \nabla \|\left(x_{k}, x_{j}\right)\right\rangle_{\mathrm{A}} \\
& \left\langle\nabla_{d f}\left(X_{j}, X_{k}\right), d f\left(X_{i}\right)\right\rangle_{k}=\delta_{k i d} d \lambda^{\prime}\left(X_{j}\right)-\left\langle d f\left(X_{k}\right), \nabla d f\left(X_{j}, X_{i}\right)\right\rangle_{k},
\end{aligned}
$$

and so, at the point $x_{0}$,

$$
\left\langle\nabla d f\left(X_{1}, X,\right), d\left(X_{k}\right)\right\rangle_{H}=\frac{1}{2}\left\{\delta_{\mu} d \lambda^{2}\left(X_{1}\right)-\delta_{1} d \lambda^{2}\left(X_{k}\right)+\delta_{k i} d \lambda^{2}\left(X_{j}\right)\right\} .
$$

Hence, for $\mathbf{i}=\boldsymbol{j}$

$$
\left\langle\nabla d r\left(X_{i}, X_{i}\right), d r\left(X_{k}\right)\right\rangle_{k}=\delta_{1} d \lambda^{2}\left(X_{i}\right)-\frac{1}{2} \Lambda^{2}\left(X_{k}\right),
$$

and so

$$
\begin{aligned}
\left(\tau_{J}, d f\left(X_{k}\right)\right\rangle_{A}\left(x_{0}\right) & =\sum_{j=1}^{m}\left\langle\nabla_{d}\left(X_{j}, X_{j}\right), d\left(X_{b}\right)\right\rangle_{A} \\
& =d \lambda^{\prime}\left(X_{k}\right)-\frac{m}{2} d \lambda^{2}\left(X_{k}\right)=\frac{2-m}{2} d \lambda_{x_{0}}^{\prime}\left(X_{k}\right) .
\end{aligned}
$$

Supposing that $\mathrm{I}_{\boldsymbol{f}}$ has parallel mean corvature we have, from Eq. (1.12) in the proof of Th. 1.1,

$$
m^{2} c^{2}=\operatorname{div}_{\mathbf{1}}(Z)
$$

where $Z$ is the vector field of $M$, given in Eq. (1.4). Next we are going to prove that

$$
\begin{equation*}
m^{\prime} c^{4}=\frac{m-2}{2} \Delta\left(\mu^{-3}\right) \text { on } M \tag{1.22}
\end{equation*}
$$

Let $x_{0} \in M$ and $X_{1}, \ldots, X_{m}$ be a local orthonormal frame of ( $M, g$ ) defined in a neighhourhood of $x_{0}$ and antisfying $\boldsymbol{\nabla} X_{i}\left(x_{0}\right)=0, \forall_{i}=1, \ldots, m$. Then,

$$
Z=\sum_{i=1}^{m} \dot{\mathbf{g}}^{\prime}<W, d f\left(X_{1}\right)>_{n} X_{j} \text { and } W=\sum_{i, j=1}^{m} \dot{g}^{j} \nabla_{d j}\left(X_{i}, X_{j}\right)
$$

in a neighbourhood of $x_{0}$. Since $\hat{\phi}_{i j}=\mu^{2} \delta_{i j}$, we have

$$
W=\sum_{i=1}^{m} \mu^{-3} \nabla d f\left(X_{i}, X_{i}\right)=\mu^{-2} \tau_{f}
$$

and

$$
Z=\sum_{i=1}^{m} \mu^{-4}<\tau_{f}, d f\left(X_{i}\right)>_{h} X_{i}=\sum_{i=1}^{m} \mu^{-i} \frac{(2-m)}{2} d \lambda^{2}\left(X_{i}\right) X_{i},
$$

and at the point $x_{0}$

$$
\begin{aligned}
m^{2} c^{2} & =\operatorname{div}_{j}\left(\sum_{i=1}^{m} \mu^{-4} \frac{(2-m)}{2} d \lambda^{2}\left(X_{i}\right) X_{i}\right)\left(x_{0}\right) \\
& =\sum_{i, k=1}^{m} \frac{2-m}{2}\left\langle\nabla_{X_{i}}\left(\mu^{-4} d \mu^{2}\left(X_{i}\right) X_{i}\right), X_{k}\right\rangle_{\xi}\left(x_{0}\right) \\
& =\sum_{i, k=1}^{m} \frac{2-m}{2} d\left(\mu^{-4} d \mu^{2}\left(X_{i}\right)\right)_{x_{0}}\left(X_{k}\right)\left\langle X_{i}, X_{k}\right\rangle_{i} \\
& =\sum_{i=1}^{m} \frac{2-m}{2} d\left(\mu^{-4} d \mu^{2}\left(X_{i}\right)\right)_{s_{0}}\left(X_{i}\right) \\
& =\frac{m-2}{2} \sum_{i=1}^{m} \nabla d\left(\mu^{-2}\right)_{s_{0}}\left(X_{i}, X_{i}\right) \\
& =\frac{m-2}{2} \Delta\left(\mu^{-2}\right)\left(x_{0}\right)
\end{aligned}
$$

Thus, Eq. (1.22) holds, that is, $\Delta\left(\mu^{-2}\right)=\frac{\mathbf{m}^{2}}{m-2} e^{2}$ with $0<\mu^{-2} \leq 1$. So,

$$
\text { for } m \geq 3 \begin{cases}\Delta\left(\mu^{-2}\right) & \geq 0  \tag{1.23}\\ \mu^{-3} & \leq 1\end{cases}
$$

and

$$
\text { for } m=1 \begin{cases}\Delta\left(\mu^{-2}\right) & \leq 0 \\ \mu^{-2} & >0 .\end{cases}
$$

Hence, if $(M, f)$ ia parabolic, $\mu$ mant be constant, and, therefore, $0=\Delta\left(\mu^{-1}\right)=$ $\frac{m_{m}^{2}}{m_{-1}} e^{3}$, i.e. $I_{y}$ in minimal.
For $m \geq 3$, if $\lambda$ has a minimum on $M \backslash a ́ M$, then $\mu^{-2}$ has a maximam on $M \backslash 2 M$. A. $\Delta \mu^{-\mathbf{2}} \geq 0$, it follows from Hopf's maximum priaciple, applied an a bounded domain of $\boldsymbol{M}$ where that maximum ia attained (see e.g. Ref. [An/82], page 96), that (c) (i) holds.
Now we prove (c)(ii). From Eq. (1.23) we have $\mu^{-3} \Delta\left(\mu^{-1}\right) \geq 0$. So, from Th. 3 of Ref. [Ye/76], we have either $\int_{M}\left(\mu^{-3}\right)^{p} d V,=+\infty, \quad \forall_{p} \in(0,+\infty) \backslash\{1\}$, or $\mu$ in conmant. Thus, if the volume of ( $M, \rho$ ) in finite, we conclude from $0<\mu^{-3} \leq 1$ that $\mu^{-1} \in L^{s}(M, f), \quad \forall p \in(1,+\infty)$. Therefore, $\mu$ in constant and $I_{f}^{\prime}$ is minimal. Let an now suppose that the volume of $(M, \eta)$ in infinite. If $\mu^{-1} \in L^{P}(M, \rho)$ for some $p \in(1,+\infty)$ were true, then $\mu$ would be constant. Since $\mu$ cannot be equal to gero, thin would imply that the volume of ( $M, g$ ) in finite, which in a contradiction. So , in this case, $\mu^{-3} \notin L^{( }(M, f), \forall p \in(1,+\infty)$.

Ramark 1.4 Prop. $1.3(\mathrm{c})$ meana that, if $m \geq 3, \operatorname{vol}(M, q)=+\infty$, and $I_{\text {, }}$ han non-zero parallel mean curvature, then, $\forall p \in(1,+\infty),\left(1+\frac{l i k i t}{m}\right)^{-p}$ cannot be integrable, nor have a maximum.

Now we atudy the graphn of Riemonninn aubme rione and harmonic morphiam. Henceforth, antil the end of this section, we asame that ( $M, g$ ) and $(N, h)$ are boundaryiess manifolds.

Let $f:\left(M^{m}, f\right) \rightarrow\left(N^{n}, h\right)$ be a map. For each $x \in M$, we denote $T_{r}^{V} M:=$ Kerdfa and $T_{s}^{d /} M:=\left(T_{\varepsilon}^{V} M\right)^{1}$, itu orthogonal complement in ( $\left.T_{F} M, f\right)$. The elements of $T_{z}^{V} M$ and $T_{z}^{H} M$ are called vertical reap. horinontal tangent vectora of $M$ at the point $x$. Let an denote by ()$^{V}$ and ( $)^{H}$ the orthogonal projections of $T_{s} M$ on $T_{s}^{V} M$ reap. $T_{s}^{\boldsymbol{Z}} \boldsymbol{M}$.
The map $f$ in and to be horisontally conformal , if, $\forall x \in M$ such that $d f \neq$ $0, d_{z}: T_{a}^{\mathrm{g}} M \rightarrow T_{f(x)} N$ is a conformal, linear isomorphiam. For anch unapa we have (ree Ref. |Ee-Le/83])

$$
\forall x \in M, u, v \in T_{n}^{H} M, \quad<d_{x}(v), d_{x}(v)>_{4}=\frac{2 e_{f}(x)}{n}<\|, v>_{1},
$$

where ef $=\frac{1}{g}\|d\|^{3}$ in the energy density of $f$.

A map $f:(M, g) \rightarrow(N, h)$ is said to be a harmonic marphism, if, for any hermonic function $\phi$ defined on an open met $V$ of $N$, the composition $\phi$ of in harmonic on $f^{-1}(V)$.
The following proposition, which we will use later on, is due to Fuglede [Fu/78] and Ishiara [1s/79] (see also Ref. [Ee-Le/83]).

Propanition 1.A $A \operatorname{map} f:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ is a harmonie morphiams, iff it is a harmanic and horizontally conformal map. If $f$ is non-conutant, it is a oubmersion on an open denee aubset of $M$ (and so $m \geq n$ ). If at a point $x$ rank $f_{x}<n$, then $d f_{s}=0$.

Let $f:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ be a anbmertion. Then, $T^{V} M \rightarrow M$ and $T^{H} M \rightarrow M$ are smooth vector bundles. Hence, in the neighbourhood of each point of $M$ we may take an orthonormal frame $X_{1}, \ldots, X_{n}, X_{\mathrm{a}}+1, \ldots, X_{m}$ of $(M, g)$, auch that $X_{1}, \ldots, X_{n} \in G^{\infty 0}\left(T^{H} M\right)$ and $X_{n+1}, \ldots, X_{m} \in C^{\infty 0}\left(T^{V} M\right)$.
For all $y \in f(M)$, the fibre $F_{y}=f^{-1}(\underline{v})$ of $f$ at the point $y$ is a aubmanifold of $M$ of dimension $m-n$ with $T_{s}\left(F_{r}\right)=T_{\eta}^{V} M$.
Let the inclusion map $i_{y}: F_{y} \rightarrow(M, g)$ be an isometric immersion. Its second fundamental form setimfies

$$
\nabla_{山_{j}}\left(X_{s}, Y_{x}\right)=\left(\nabla_{X} Y_{s}\right)^{H}, \quad \forall X, Y \in C^{\infty}\left(T^{V} M\right), \quad \forall x \in F_{F},
$$

where $\boldsymbol{\nabla}$ in the Levi-Oivita connection of ( $M, \boldsymbol{f}$ ).
Thma, the tenaion field of 1 , is given by

$$
\begin{equation*}
T_{L_{y}}(x)=\sum_{j=1+1}^{m}\left(\nabla_{x_{j}} X_{j}\right)_{z}^{H} \quad \in T_{s}^{H} M=\left(T_{s}\left(F_{y}\right)\right)^{\perp} \tag{1.24}
\end{equation*}
$$

and is equal to $m$ - $n$ times the mean curvature of the fibre $F_{y}$.
Since $f \circ 1$, in constant on $F_{z}, \nabla d(/ \circ 1)=$,0 , we get [Ba-Ee/81], using the composition law,

$$
\begin{equation*}
\nabla d f_{x}(X, Y)=-d f_{x}\left(\nabla \iota_{y}(X, Y)\right), \quad \forall X, Y \in T_{x}\left(F_{y}\right) \tag{1.25}
\end{equation*}
$$

The aubmersion $f$ in and to be Riemanmian, if, $\forall x \in M, d f_{z}: T_{s}^{H} M \rightarrow T_{f(x)} N$ is an inometry. Here we recall the following reanlta about Riemannian aubmeraiona and harmonic morphiams (nee Ref. [Ee-Le/83] for further references).

Propoaltion 1.b Let $f:(M, G) \rightarrow(N, h)$ be a submernion. Then:
(a) f hae lotelly geodesic fibres, iff $\left.\nabla \mathbb{d}\right|_{T^{*} N \times \Gamma^{*} N}=0$.

If, momover, $f$ is Riemannian, then also (b) and (c) hold:
(b) $\left.\nabla d f\right|_{T \pi N \times T=N}=0$.
(c) the following conditions are equiralent:
(i) / has minimal filres;
(ii) $f$ is harmonic;
(iii) $f$ in a harmonic marphism.

If, on the other hand, $f$ is a harmonic morphism, then (d) and (a) hold:
(d) if $n=2$, the fibres are minimal.
(e) if $n \geq 3$, the following conditions are equivaleni:
(i) the fibres are minimal;
(ii) $\nabla_{e f}$ is sertical everywhere;
(iii) the mean cursature of the horisontal distribution, which is the vertical enctar field piren by $\frac{1}{5}\left(\sum_{i=1}^{n} \nabla_{X_{i}} X_{i}\right)^{V}$, is equal to $\frac{\nabla e_{f}}{2 e_{f}}$.

Let now $f:\left(M^{m}, g\right) \rightarrow\left(N^{*}, h\right)$ be a Riemannian sobmersion. From now on $X_{1}, \ldots, X_{n}, X_{m+1}, \ldots, X_{m}$ denoter a local frame of $(M, \rho)$, such that $X_{1}, \ldots, X_{n} \in$ $C^{\infty}\left(T^{H} M\right)$ and $X_{\mathrm{n}+1}, \ldots, X_{m} \in C^{\infty}\left(T^{V} M\right)$. Note that from Prop. 1.5 we have

$$
\begin{equation*}
\tau_{f}=\sum_{i=1}^{m} \nabla d f\left(X_{i}, X_{1}\right)=\sum_{i=m+1}^{m} \nabla d f\left(X_{i}, X_{i}\right) . \tag{1.26}
\end{equation*}
$$

On ( $T^{H} \boldsymbol{M}, \mathrm{~g}$ ) we have an induced connection $\nabla^{H}$ which ia given by:

$$
\nabla_{X}^{H} Z_{x}=\left(\nabla_{x} Z_{x}\right)^{H}, \quad \forall Z \in C^{\infty}\left(T^{H} M\right), X \in T_{x} M
$$

Propanition 1.6 Let $f:\left(M^{m}, f\right) \rightarrow\left(N^{n}, h\right)$ be a Riemannian aubmarsion, and denote by $K T_{j}$ the section of $T^{H} M$ given by

$$
v T_{j}=\left(d| |_{T N_{N}}\right)^{-1}\left(\tau_{J}\right)
$$

Then we hage:
(a) $\forall y \in f(M), x \in F_{y}, \quad M_{f}(x)=-T_{1},(x)$.

In particular, $\left\|T_{f}(x)\right\|_{\Delta}=\left\|T_{f}(x)\right\|_{\text {. }}$. Thus, the filres of $f$ have conatant mean curveture, iff the norm of the toncion field of $f$ is conotant in sach fitre.
(b) $\forall y \in f(M), x \in F_{y}, X \in T_{m}\left(F_{y}\right)=T_{z}^{V} M$,

$$
\left(\nabla_{X}^{z_{y}^{*}} T_{y_{y}}\right)_{z}^{H}=-\nabla_{X}^{H}\left(K T_{f}\right)_{z}
$$

In particular, the fibres of $f$ hase parallel mean eurvature, iff $M T$, is a parallel section of $T^{H} \boldsymbol{M}$ along the vertical vector fields.
(e) $\forall X \in C^{\infty}\left(T^{H} M\right), \quad d f\left(\nabla_{X}\left(\xi_{T_{j}}\right)\right)=\nabla_{X}^{f^{-1}} T_{f}$.

Proof. Let $y \in f(M)$. From Eq. (1.24) we have

$$
T_{i}(x)=\sum_{i=m+1}^{m}\left(\nabla_{X_{i}} X_{i}\right)_{z}^{H}, \quad \forall x \in F_{y}
$$

and from Eqs. (1.26),(1.25)

$$
\begin{aligned}
T_{j}(z) & =\sum_{i=n+1}^{m} \nabla d f_{z}\left(X_{i}, X_{i}\right)=-d J_{s}\left(\nabla d\left(a_{p}\right)_{z}\left(X_{i}, X_{i}\right)\right) \\
& =-d f_{s}\left(T_{i}\right)
\end{aligned}
$$

Since $T_{1}(x) \in T_{x}^{H} M$, from the definition of $N T_{f}$ we get $-T_{H_{j}}(x)=M T_{f}(x)$. Now let $X \in T_{z}\left(F_{y}\right)$. Then,

$$
\nabla_{x}^{1_{x}^{-1}}\left(T_{1},\right)_{2}=-\nabla_{x}^{y^{\prime}}\left(1_{y}^{1}\left(\mu T_{\rho}\right)\right)_{z}=-\nabla_{x}\left(K_{i} T_{f}\right)_{z}
$$

 equal to ( $\left.\nabla^{\prime}{ }^{\prime}\right)^{H}$. Thun, we have

$$
\nabla_{X}^{1}\left(\tau_{i}\right)_{z}=\left(\nabla_{x}^{\varepsilon_{y}^{-1}}\left(\tau_{t_{j}}\right)_{s}\right)^{\Delta}=-\nabla_{X}^{U}\left(H \tau_{j}\right)_{z},
$$

and we have proved (b).
Now we prove (c). For all $X \in O^{\infty}$ ( $T M$ ),

$$
\begin{aligned}
d f\left(\nabla_{X} M T_{f}\right) & =\nabla_{x}^{f-1}\left(d f\left(N r_{j}\right)\right)-\nabla d f\left(X, N T_{f}\right) \\
& =\nabla_{x}^{f-1} T_{f}-\nabla_{d f}\left(X, M T_{f}\right)
\end{aligned}
$$

So, from Prop. 1.6(b) we get

$$
\downarrow\left(\nabla_{X} M_{f}\right)=\nabla_{X}^{f^{-4}} \tau_{l}, \forall X \in O^{\infty}\left(T^{\#} M\right) \cdot \emptyset
$$

Next we atady the mean curvenure $H$ of the graph $\mathrm{I}_{f}$ of $f$.
Note that the (given in Eq. (1.2)) are in this case given by

$$
\tilde{g}_{i j}= \begin{cases}2 \delta_{i j} & \text { for } i, j \leq n  \tag{1.27}\\ \delta_{i j} & \text { for } i \geq n+1 \text { or } j \geq n+1\end{cases}
$$

Proposition 1.7 Let $f:\left(M^{m}, q\right) \rightarrow\left(N^{n}, h\right)$ be a Riemanmian aubmeraion. Then - ehave:
(a) $m H=\left(0, T_{f}\right)^{\perp}$.

In particular, for any point $x \in M, T_{f}(x)=0$, iff $H_{x}=0$, and so the following conditions are equivalent:
(i) $\Gamma_{f}$ is a minimal sulmanifold of $M \times N$.
(ii) $f$ is harmonic.
(iii) $f$ is a harmonic morphism.
(ie) the fibres of $f$ are minimal.
(b) The following conditions are equedealent:
(i) $\Gamma_{f}$ has constant mean $c$ urvature.
(ii) $\left\|T_{f}\right\|_{A}$ is conctant.
(iii) the fitres of $f$ have conatant mean cureature, the norm of which is the same for all fibret.
(e) if $\Gamma_{f}$ has parallsi mean curearure, then $\nabla_{X}^{f^{-1}} \tau_{f}=0, \forall X \in G^{\infty}\left(T^{H} M\right)$.

Proof. From Lemma 1.1(ii),

$$
m H=-(Z, d(Z))+(0, W)=(0, W)^{\perp}
$$

where $W$ and $Z$ are given by Eqs. (1.3) reap. (1.4). From Eq. (1.27),

$$
W=\sum_{i=1}^{n} \frac{1}{2} \nabla d\left(X_{i}, X_{i}\right)+\sum_{i=n+1}^{m} \nabla d f\left(X_{i}, X_{i}\right)
$$

and from Prop. 1.5 and Eq. (1.26) we have

$$
W=\sum_{i=n+1}^{m} \nabla_{d}\left(x_{i}, X_{i}\right)=T_{f}
$$

Hence,

$$
Z=\sum_{i=1}^{n} \frac{1}{2}<T_{f}, d f\left(X_{i}\right)>_{n} X_{i} .
$$

Thus, we have $m H=\left(0, T_{f}\right)^{2}$, and (a) in proved by applying Lemma $1.2(i)$ and Prop. 1.5(c).

The above expression for $Z$ gives $d f(Z)=\sum_{i=1} \frac{1}{2}<T_{f}, d f\left(X_{i}\right)>_{s} d f\left(X_{i}\right)$. Since $d f_{z}: T_{*}^{H} M \rightarrow T_{f(=1} N$ in an isometry, $d f_{s}\left(X_{1}\right), \ldots, d f_{s}\left(X_{n}\right)$ ia an orthonormal basia of $\boldsymbol{T}_{f(x)}^{\prime} N$. Thus,

$$
d(Z)=\frac{1}{2} \tau_{f}=\frac{1}{2} W
$$

that is,

$$
Z=\left(\left.d\right|_{T^{n} M}\right)^{-1}\left(\frac{1}{2} \tau_{f}\right)=\frac{1}{2} N \tau_{f}
$$

Therefore, $m H=-(Z, d f(Z))+(0,2 d(Z))=(-Z, d(Z))$, and so

$$
\begin{aligned}
\|m H\|_{F \times A}^{2} & =\|Z\|_{;}^{2}+\|d f(Z)\|_{A}^{2}=2\|Z\|_{F}^{2} \\
& =2\|d f(Z)\|_{A}^{2}=\frac{1}{2}\left\|T_{f}\right\|_{A}^{2}
\end{aligned}
$$

Consequently, $I_{f}$ has constant mean carvatare, $i f f\left\|_{f}\right\|_{A}$ is constant, and (b) followa from Prop. 1.6(a).
Finally, we prove (c). From Lemma 1.1 (iii) we have, $\forall X \in G^{\infty}(T M)$,

$$
\nabla_{x}^{1} H=\left(0, \nabla_{x}^{f^{-1}} w-\nabla d f(z, X)\right)^{\perp}
$$

If $\Gamma_{f}$ has parallel mean curvature, then, from Lemma $1.2(i), \nabla_{X}^{\prime-1} W=\nabla d f(Z, X)$, that is,

$$
\nabla_{X}^{f-1} \tau_{f}=\nabla d f\left(\frac{1}{2} \lambda T_{f}, X\right)
$$

Using Prop. 1.5(b) we obtain

$$
\nabla_{X}^{f^{-1}} \tau_{i}=0, \quad \forall X \in O^{\infty}\left(T^{H} M\right) \cdot \nabla
$$

Let $f:\left(M^{m}, A\right) \rightarrow\left(N^{n}, h\right)$ be a harmonic morphism. We are now going to atady the mean carvature $H$ of $\Gamma_{f}$.
Let $U=\{x \in M: d, \neq 0\}$. From Prop. 1.4, if $f$ is not conatant, $U$ is an open denae aubset of $M$, and, $\forall x \in U, d$, in a aubmersion with

$$
<d f_{s}(\varepsilon), d_{s}(v)>_{n}=\frac{2 e_{f}}{n}<\varepsilon, v>_{n}, \forall v, v \in T_{z}^{M} M
$$

Proponition 1.8 Let $f:\left(M^{m}, g\right) \rightarrow\left(N^{m}, h\right)$ be harmonic marphism. Then:
(a) $\forall_{x} \in M \backslash U, \quad H_{z}=0$.
(b) $\forall x \in U$,

$$
m H_{x}=\left(0, \frac{-2 e_{f}(x)}{n+2 \varepsilon_{f}(x)} d f_{s}\left(\tau_{i},(x)\right)\right)^{\perp}
$$

where $y=f(x)$ and $t y: F_{y} \rightarrow(M, g)$ is the incluaion map of the filtre $F$, of $f$ at $y$. In particular, $H_{z}=0, \forall x \in F_{g}$, iff the fibre $F_{y}$ is a minimal ( $m-n$ )submanifold of $(M, f)$. $S o, \Gamma_{f}$ in a minimal aubmanijold of $M \times N$, ift the fibres of $\left.f\right|_{U}$ are minimal.

Proof. Let $x_{0} \in M \backslash U$, and $X_{1}, \ldots, X_{m}$ be an orthosormal benis of ( $T_{n_{0}} M_{i} \rho$ ). Then, $\left.X_{i j}\left(x_{0}\right)=<X_{i}, X_{j}\right\rangle_{1}+\left\langle\boldsymbol{d}_{m 0}\left(X_{i}\right), d_{m}\left(X_{j}\right)>_{A}=\delta_{1}\right.$. From Lemme 1.1 (ii) we have $m H_{m_{0}}=\left(0, W_{m_{0}}\right)^{\perp}$, where $W_{\infty_{0}}=\sum_{i_{j} \sim 1}^{p} i^{\prime J}\left(x_{0}\right) \nabla_{d_{0}}\left(X_{i}, X_{j}\right)=$ $\sum_{i=1}^{m} \nabla_{d f_{0}}\left(X_{1}, X_{i}\right)=T_{f}\left(x_{0}\right)$. Since $f$ is harmonic (Prop. 1.4), $\boldsymbol{H}_{*_{0}}=0$.
On $U, f: U \rightarrow N$ is a submersion. Let $X_{1}, \ldots, X_{n}, X_{n+1}, \ldots, X_{m}$ be a local orthonormal frame of $(M, s)$, auch that $X_{1}, \ldots, X_{m} \in G^{\infty}\left(T^{H} M\right)$ and $X_{n+1}, \ldots, X_{m} \in$ $C^{\infty}\left(T^{V} M\right)$. Am $f$ in a horizontally conformal map (Prop. 1.4),

$$
\begin{aligned}
\mathrm{g}_{i j} & =\left\langle X_{i}, X j\right\rangle_{,}+<d\left(X_{i}\right), \phi\left(X_{j}\right)> \\
& = \begin{cases}\delta_{i j}\left(1+\frac{m_{i}}{}\right) & \text { for } i, j \leq n \\
\delta_{i j} & \text { for } i \geq n+1 \text { or } j \geq n+1\end{cases}
\end{aligned}
$$

From Lemme $1.1($ ii $), m H=(0, W){ }^{\perp}$, where $W=\sum_{i, j=1}^{m} \bar{j}^{i j} \nabla d\left(X_{i}, X_{j}\right)=$ $\sum_{i=1}^{n} \frac{n}{n+2 \pi j} \nabla d f\left(X_{i}, X_{i}\right)+\sum_{i=n+1}^{m} \nabla d f\left(X_{1}, X_{i}\right)$. On the owher hand, since $f$ ia harmonic,

$$
0=\tau_{f}=\sum_{i=1}^{n} \nabla d\left(X_{i}, X_{i}\right)+\sum_{i=1}^{m} \nabla d\left(X_{i}, X_{i}\right)
$$

Thas,

$$
\begin{aligned}
W & =-\sum_{i=n+1}^{m} \frac{n}{n+2 e_{j}} \nabla d\left(X_{i}, X_{i}\right)+\sum_{i=n+1}^{m} \nabla d\left(X_{i}, X_{i}\right) \\
& =\frac{2 e_{f}}{n+2 e_{f}} \sum_{i=n+1}^{m} \nabla d f\left(X_{i}, X_{i}\right)
\end{aligned}
$$

From Eqs. (1.25), (1.24) we have, $\forall x \in U$,

$$
\sum_{i=a+1}^{m} \nabla_{d} f_{s}\left(X_{i}, X_{i}\right)=-d f_{i}\left(\sum_{i=n+1}^{m}\left(\nabla_{X_{i}} X_{i}\right)^{u}\right)=-d_{s}\left(T_{i,}(s)\right)
$$

where $y=f(x)$. Therefore,

$$
W_{s}=\frac{-2 e_{f}(x)}{n+2 e_{j}(x)} t V_{s}\left(\tau_{1},(x)\right),
$$

and so

$$
m H_{z}=\left(0, \frac{-2 e_{f}(x)}{n+2 e_{f}(x)} d f_{z}\left(\tau_{i, p}(x)\right)\right)^{\perp}
$$

Since $T_{1}(x) \in T_{x}^{\mu H} M_{1} d f_{s}\left(T_{1}(x)\right)=0$, iff $T_{H_{y}}(x)=0$. Uaing Lemme 1.2(i) we get $H_{z}=0$, iff $\tau_{s}(x)=0.0$

Applying Prop. 1.5(d)(e) we obtain immediately:
Corollary 1.8.1 If $n=2, \Gamma_{f}$ is a minimal aubmanifold of $M \times N . I_{n} \geq 3, I_{f}$ is minimal, iff $\mathrm{Ve}_{f}$ reatricted to $U$ is a eertical eector field for the oubmersion $\left.f\right|_{U}$.

## Chapter 2

# STABILITY OF A MINIMAL GRAPH AND A GENERALISED EQUATION FOR NON-PARAMETRIC HYPERSURFACES WITH CONSTANT MEAN CURVATURE 

### 2.1 Some Remarks on the Stability of a Minimal Graph

Given a map $f:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ between Riemanuian manifolda, anch that the graph of $f, \Gamma,\left(M, g+f^{*} H\right) \rightarrow(M \times N, f \times h)$, is a minimal immersion, we may wonder when it is volume-stable or energy-stable.

In Gh. 0 we bave given a brief introduction un the atability af volame and energy fanctionala, from which we may conclude at once that, if ( $M, g$ ) and ( $N, h$ ) have non-poaitive aectional curvatures, then minimal grapha are energy-riable, but not necemarily volume-stable, like e.g. in the case of Ex. 2.1 in thig section. However, the latter does hold, when $(M, y)$ han non-negative sectional curviurea and $\operatorname{dim} N=1$, a we will ahow to be an immediate consequence of a reault obtained by Barbosa [Bar/78|. He studied the Jacabi fields on a domain $D$ of a minimal hyperaurface for the case $R \geq 0$ in the exprearion ( 0.9 ) for the Hemian of the volume factional $V_{D}$, obtsining the following result:

Theoram (Barboan) Lat $\phi M^{m} \rightarrow\left(\bar{M}^{m+1}, \vec{i}\right)$ ta an ioomatric minimed immarsion, $t a$ unit normal sector field to $M, D \subset M$ a domain with compact clooure, and $\bar{X}$ He Killing vector field on $\hat{N}$. Asamme that $\hat{\boldsymbol{M}}$ has non-megetive estional evruatures. Than שe hase:
(a) $\|<\bar{X}, v>_{f}>0$ on $D$, then $\phi$ is atrietly volume-stable on $D$.
(1) If thert esiate a domain $D^{\prime} \subset D_{1}$ euch that $<\bar{X}_{1} \nu>_{j}=0$ on $\Delta D$, them is not etricily solume-atalle on $D$.

Thia theorem has an immediate application to graphs with co-dimension one. Suppose that $N$ is oriented and one-dimensional. Let $Y$ be a unit section along all $N$. In Ch. 1, Sec. 3, we remarked that $\nu=\frac{1}{\omega}(-\nabla f, Y)$, where $w=\sqrt{1+\|\nabla f\|_{!}^{\prime}}$ is a unit nonmal to the graph $\Gamma_{f}: M \rightarrow(M \times N, ~ M \times h)$. Them, $X=(0, Y) \in$ $C^{\infty}(T(M \times N))$ is a parallel vector field and, therefore, alana Killing vector field. Moreaver, it entiafies $\left.\langle X, \nu\rangle_{\mathrm{g} \times \mathrm{A}}=\frac{1}{\omega}\right\rangle \mathbf{0}$.

Proposition $2.1 I f(M, g)$ is a Ricmannian manifold with nom-negediee ucetional ewroctures, and if $\Gamma_{f}$ is minimal, then, for each compact domain $D \subset M_{1} \Gamma_{f}$ is solume-atalle on $D$.

Ramark 2.1 Also Barboas $|\mathrm{Bar} / 78|$ mentioned this consequence for the case $M^{m}=\mathbb{R}^{m}$, which was aready a well-known result.

Example 2.1 Micallef [ $\mathrm{M} / \mathbf{8} 4$ ] observed that the example given by Osserman $\left|\mathrm{O}_{1} / 69\right|$ of the map $\boldsymbol{f}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ reading

$$
f(x, y)=\frac{1}{2}\left(e^{v}-3 e^{-x}\right)\left(\cos \left(\frac{y}{2}\right),-\sin \left(\frac{y}{2}\right)\right)
$$

han a graph $\Gamma_{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ which is minimal and, moreover, energy-miable, but not volame-stable.
Besides, thin example showa that there are minimal graphs of functions $f: \mathbb{R}^{\mathbf{2}} \rightarrow$ $\mathbb{R}^{\mathbf{2}}$ which are not linear planes of $\mathbb{R}^{4}$, i.e. the Bernatein Theorem does not hold for graphe of co-dimension $\geq 2$. This was already to be expected from the work of Lawan and Osarman |Le-Os/77|, which gave a negative anawer to the nniquenean, regularity, and even existence of solations to the minimal anface mytem for codimengion $\geq 2$.

Remark 2.2 At this point we ahould recall the theorem of Bernmein, since it concerna minimal grapha. It atates that, if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ in amooth function, anch that she graph $\Gamma_{f} \subset \mathbb{R}^{m+1}$ ia a minimal hypernurface of $\mathbb{R}^{m+1}$ and $m \leq 7$, then $f$ is a linear function. The care $m=2$ was proved by Bernatein in 1927 [B/27] and reproved by Fleming in 1962 [F1/62], who med a new technique. This
method constitated a basis for the proofs of the cases $m=3$ (de Giorgi |DG/es]), $m=4$ (Almegren $\mid A 1 / 66]$ ), and $m \leq 7$ (Simons $[\mathrm{Si} / 68 \mid$ ). For $m \geq 8$ the thearem is no longer true, i.e. there exist complete analytic minimal graphs of sufficiently high dimension (from $m=8$ apwarda) that are not hyperplanes (Bombieri, de Giorgi, and Giarti |Bo-DG-Gi/69]).
A minimal graph of a map from $\mathbb{R}^{m}$ to $\mathbb{R}$ is a solution of a differential equation, viz. the minimal-hypersurface equation (see next section). In general, a Bernsteintype problem amounts to determining when the domain of a solation of a certain differential equation is sufficiently large (for a given metric) in order to conclude that the solution is a trivial one. Given a minimal submanifold of a Riemannian manifold (and minimal means being a solution of a certain differential equation), a Bernstein-type problem would be to find out when that submanifold is a totally geodesic one. This problem can be solved, if we require the minimal anbmanifald to be volume-atable and/or impose a rigidity condition. For example, a condition on the Gausa map of a aurface or on the total scalar carvature of a hypersurface may lead to the desired result. It seems surprising that the original Bernstein Theorem only holds for $\boldsymbol{m} \leq 7$. Stability is not sufficient to make the theorem hold, since, for all $m$, $a$ minimal graph of $\boldsymbol{R}^{m+1}$ in stable. A resson why it fails for $m \geq 8$ appears to originate in the way the total scalar curvature grows. This conjecture was pointed out and juatified by do Carmo and Peng [DC-Pe/80]. Their result is the following:

Theorem (do Carmo,Peng) Let $x: M \rightarrow \mathbb{R}^{m+1}$ be a complete stable minimal hypersurface of $\mathbb{R}^{m+1}, K$ the sealar cursature of $M$ vith the induced metric, and $B_{R}(p)$ a seodesic ball of $M$ with centre in a fised point $p$ and radius $R$. Thus, if

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} \frac{\int_{B_{R}(p)}|K| d M}{R^{3+2 q}}=0, q<\sqrt{\frac{2}{m}} \tag{2.1}
\end{equation*}
$$

then $x(M)$ is a hyperplane of $\mathbb{R}^{m+1}$. In particular, if the tolal euroalure of $x$, i.e. $J_{M}|K| d M$, is finite, the conelusion holds.

On the other hand, Miranda (Mir/67) proved that, for a minimal graph of $\boldsymbol{R}^{m+1}$,

$$
\begin{equation*}
\lim _{R^{\rightarrow+\infty}} \frac{\int_{B_{0}(v i l}|K| d M}{R^{u-g}}<+\infty . \tag{2.2}
\end{equation*}
$$

So, from Eqs. (2.1,2.2), the Bernstein Theorem holds for $m \leq 5$. Moreover, the anthora [DC-Pe/80] conclude that connter-examplea to it, for higher dimenciona,
ahoald then have infinite total corvatore, approaching infinity at least quadratically in the geodeaic distance from a fixed point in $M$.

A similar Bernstein-type problem has been formulated by Schoen, Simon, and Yan [Seh-Si-Ya/75] for a atable minimal hypersurface $M^{m}$ of a apace $N^{m+1}$ with nonnegative constant aectional curvatures, impasing the condition $\lim _{R \rightarrow+\infty} R^{-4} \operatorname{vol}_{\boldsymbol{N}}\left(B_{F}(\rho)\right)=$ 0 , for some $q \in\left(0,4+\sqrt{\frac{B}{m}}\right)$, where $B_{A}(p)$ denotes a geodesic ball of $M$ or the intersection of a ball of $N$ with $M$. This condition is atinfied for minimal graphs of $\boldsymbol{R}^{m+1}$, when $\boldsymbol{m} \leq 5$, too.
If a map $f: \mathbb{R}^{m} \rightarrow \boldsymbol{R}^{n}$ has minimal graph $\mathrm{I}_{\boldsymbol{\prime}} \subset \mathbb{R}^{m+4}$, we cannot expect $\mathrm{I}_{\boldsymbol{\prime}}$ to be linear, as show Ex. 2.1. Neverthelesa, we can find some conditions in order to obtain a Bernatein-type problem for $n \geq 2$. Ae we recalled in Ch. 0 , $I_{j}:\left(R^{m}, g+f^{*} h\right) \rightarrow\left(\mathbb{R}^{m+n}, g \times h\right)$ with $g, h$ the resp. Euclidean metriea of $\mathbb{R}^{m}, \mathbb{R}^{n}$, hes parallel mean curvature, $i f$ its Ganas map $T_{5}:\left(R^{m},+f^{*} h\right) \rightarrow G(m+n, m)$ is harmonic. Using this fact and atudying the regular balle of the Grammannian manifolds, Hildebrandt, Josi, and Widman [Hi-Jo-Wi/aO] (see also Ref. [Ei/85]) got the following Bernatein Theorem:

Theorem (Hildebrandt, Joat, Widman) Suppose that the $G^{\mathbf{3}}$-functione $\boldsymbol{z}^{\mathbf{1}}=$ $f^{\prime}(x), i=m+1, \ldots, m+m, x \in R^{m}$ define non-parametric $m$-dmensional manifold $\boldsymbol{X}$ of $\mathbb{R}^{m+\infty}$ which has parallel mean.enryature fisld. Suppose aleo that the tamgent planes of $\boldsymbol{X}$ do not differ too mueh from the thorisontel plane" $z^{m+1}=$ $0, \ldots, x^{m+n}=0$. More precisely, suppose that there is a mumber $\beta_{0}$ aith

$$
0<\beta_{0}<\cos ^{-p}\left(\frac{\pi}{2 \sqrt{\kappa p}}\right), p=\min \{m, n\}, \kappa= \begin{cases}1 & \text { if } p=1  \tag{2.3}\\ 2 & \text { if } p \geq 2\end{cases}
$$

such that

$$
\begin{equation*}
\operatorname{det}\left|\hat{p}_{i j}\right|=\operatorname{det} \mid \delta_{i j}+<d f\left(e_{1}\right), d f\left(e_{j}\right)>1 \leq \beta_{0}^{2} \tag{2.4}
\end{equation*}
$$

 Therefore, if || $\mathbf{d} f \|$ in boonded by a conveniently chosen poritive conotent, that in, $g+f^{\prime \prime} h$ is a "amall" deformation of the metric $g$, and if $\Gamma_{f}$ has parallel mean carveture, then $f$ is in fact a limear map. Besides, Fildebrandt et al. obeerved that, if $m=1$, then $p=\pi=1$, and so condition (2.3) doea not impoae any reatriction on $\beta_{0}$ and condition (2.4) becomes $\|\nabla f\|_{\mathrm{g}} \leq$ conntant, which rearta in Mower'a weak Bernatein Theorem [Mon/61], reading: any entire $C^{\boldsymbol{1}}$-aulation $f(\Omega), z \in \boldsymbol{R}^{m}$, of the
minimal-sorface equation $\operatorname{div}_{f}\left(\frac{v f}{\sqrt{1+\| v f i!}}\right)=0$, with mup $\|\nabla f\|_{\mathrm{F}}<\infty$, ia necesarily a linear function. The above theorem of Hildebrandt et al. In a particular care of their main result in Ref. [ $\mathrm{Hi}-\mathrm{J}$ o-Wi/80], wich ia a Liauville-type theorem for harmonie mapt of aimple or compact Riemannian manifolda with range contsined in a regular ball.

### 2.2 The Equation for a Non-Parametric Hyper-

 surface of ( $M \times \mathbb{R}, g \times h$ ) with Constant Mean Curvature: Some Remarks on Regularity of SolutionsLet ( $M^{m}, \theta$ ) be a m-dimensional Riemannian manifold and $f: M \rightarrow \mathbb{R}$ be a smooth fonction. Let $h$ be the Euclidean metric of $\mathbb{R}$. From Eq. (1.15) and Lemma 1.3 we know that the mean curvature $H$ of the graph $\Gamma_{f} \subset(M \times R, f \times h)$ ia given by

$$
\begin{aligned}
& \boldsymbol{I}=\frac{1}{m \sqrt{1+\|\nabla f\|_{i}^{2}}}\left(\text { trace }_{(n+\rho \rightarrow 4} \nabla d r\right)_{\nu} \\
& =\frac{1}{m \sqrt{1+\|\nabla f\|_{i}^{j}}}\left(\Delta f-\frac{1}{1+\|\nabla f\|_{i}^{2}} \sum_{i=1}^{m} \nabla d f\left(X_{i}, X_{j}\right) d f\left(X_{i}\right) d f\left(X_{j}\right)\right) v \\
& =\frac{1}{m} \operatorname{div}_{g}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{p}^{2}}}\right) \nu \text {, }
\end{aligned}
$$

where $\nu=\frac{(-v / 1)}{\sqrt{1+\mid \nabla / f}}$ is a mnit normal to $I_{f}$ and $X_{1,}, \ldots, X_{m}$ is a local orthonormal frame of ( $T M, \boldsymbol{s}$ ). So $I_{f}$ has conatant mean emrvature with $\|\boldsymbol{H}\|=\left|e^{\prime}\right|$, iff $\operatorname{div}_{s}\left(\frac{\mathrm{v}_{\mathrm{f}}}{\sqrt{1+\mid V_{f}}}\right)=\mathrm{mc}$. Thus, the equation

$$
\begin{equation*}
\operatorname{div}_{1}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{j}}}\right)=e \quad \text { (constant) } \tag{2.5}
\end{equation*}
$$

or, equivalenty,

$$
\begin{equation*}
\operatorname{trace}_{\left(e+/ f^{*}\right)}(\nabla \psi)=e \sqrt{1+\|\nabla /\|_{i}} \tag{2.6}
\end{equation*}
$$

in the equation for non-parametric hyperanfacea of $M \times$ Fiti.e. for grapha of maps from $M$ to $\mathbb{R}$ - wish conalant mean corvature. For $c=0$ it becomes the equation for minimal graph. More generally, if in Equ. $(2.5,2.6)$ we replace $c$ by a
function $m \boldsymbol{H}(x)$, we get the equation for non-parametric hypersurfacea of $M \times \mathbb{R}$ with prescribed mean curvature, given at each point $x \in M$ by $H(x) \nu$.
Let $x: D \subset M \rightarrow \cap \subset \boldsymbol{R}^{m}$ beacoordinate rymem of $M$ and let $g_{1, j} \theta^{j j}$, and $|\boldsymbol{s}|$ be as given in Ch. O. Note; throughout this section we will ose the index-ammation convention. Then, we have

$$
\operatorname{trace}_{\left(0+f^{\circ}\right)}(\nabla 4)=\bar{g}^{u} \nabla d f\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

where $\left[\ddot{y}^{13}\right]$ denotes the inverne matrix of $\left[\hat{S}_{i j}\right]$ with

$$
\begin{equation*}
\tilde{v}_{i j}=\left\langle\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right\rangle_{j+f^{-n}}=g_{i j}+\frac{\partial f}{\partial x^{i}} \frac{\partial f}{\partial x^{j}} \tag{2.7}
\end{equation*}
$$

We can easily verify that



This equation is of the form

$$
\begin{equation*}
\underline{Q} \approx=e^{\prime J}(x, \pm, D «) \frac{\partial^{2}}{\partial x^{i} \partial x}+b(x, m, D \pm) \tag{2.10}
\end{equation*}
$$

 ( $\frac{\partial a}{\partial s^{r}}, \cdots, \frac{\partial_{n}}{\sigma^{z}}$ ), and where the coefficientr of $Q$ are the functiona $a^{\prime \prime}, b: \cap \times$ $\boldsymbol{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined for all values $(x, s, p) \in \Omega \times \boldsymbol{R} \times \boldsymbol{R}^{n \prime}$.
Equation (2.10) in called a tecond-order quasi-linear differential equation. In our case, these coefficienta are given by

$$
\begin{equation*}
\varepsilon^{i j}(x, s, p)=s^{i j}(x, p)=q^{i j}(x)-\frac{q^{i t}(x) p^{j j}(x) p_{m} p_{1}}{1+p^{\omega}(x) p_{r} p_{i}}, p=\left(p_{1}, \ldots, p_{m}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
b(x, s, p)=-M_{i j}^{k}(x)\left(g^{i j}(x)-\frac{f^{c t}(x) g^{2 j}(x) p_{t} p_{t}}{1+g^{H i}(x) p_{k} p_{i}}\right) p_{t}-e\left(1+g^{u} p_{t} p_{i}\right) i \tag{2.12}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left|e^{i j}(x, p)\right|=\left|g_{i j}(x)+p_{i} p_{j}\right|^{-1} \tag{2.13}
\end{equation*}
$$

Denote by $G(x): \mathbb{R}^{\boldsymbol{m}} \rightarrow \mathbb{R}^{m}$ the self-adjoint, positive-definite linear operator given by $\left\langle\boldsymbol{G}(x) e_{1}, \mathrm{e},>=\boldsymbol{g}_{\boldsymbol{g}}(\boldsymbol{x})\right.$, and by $\boldsymbol{B}(\boldsymbol{p})$ the self-adjoint, semi-definite, nonnegative linear operator given by $\left\langle B(p) c_{i}, e_{j}>=p_{c} p\right.$. Then, $| \varrho^{\prime 2}(x, p) \mid$ representa the matrix (in the canonic basis of $\boldsymbol{R}^{\boldsymbol{m}}$ ) of the self-adjoint positive definite operator $(G(x)+B(p))^{-1}$. Hence, Eq. (2.9) is a secand-order quagi-linear elliptic differential equation in all $\Omega \times \mathbb{R} \times \mathbb{R}^{m}$ [Gil- $\left.\mathrm{Tr} / 83\right]$. However, it is not uniformly elliptic in all $\Omega \times \mathbb{R} \times \boldsymbol{R}^{m}$, as we will see in the following.
Let $\lambda(x, p)>0$ and $\Delta(x, p)>0$ denote the minimom resp. maximum eigenvalues of [ $a^{13}(x, p) \mid$. Then, $\lambda^{-1}(x, p)$ and $\Delta^{-1}(x, p)$, are the maximum resp. minimum eigenvalues of $\left[g_{i j}(x)+p_{i} p_{j}\right]$. Denote by $\dot{\alpha}(x)$ and $\dot{\alpha}(x)$ the minimum resp. maximam eigenvalues of $\left|g_{1},(x)\right|$. Then, we have the two inequalities

$$
\begin{align*}
\frac{1}{\Delta(x, p)} & =\min _{\| \| \|=1}\left(g_{i j}(x) u^{i} u^{j}+\langle u, p\rangle^{2}\right) \\
& \leq \min _{\|=i=1}\left(\hat{\alpha}(x)+\langle w, p\rangle^{2}\right)=\hat{\alpha}(x) \tag{2.14}
\end{align*}
$$

because there exists a a with $ะ \perp p$ (we are supposing $m \geq 2$ ), and

$$
\begin{align*}
\frac{1}{\lambda(x, p)} & =\max _{\|v\|=1}\left(g_{i j}(x) u^{i} u^{j}+\langle u, p\rangle^{2}\right) \\
& \geq \max _{\| \| \|=1}\left(\dot{\alpha}(x)+\langle z, p\rangle^{2}\right)=\dot{\alpha}(x)+\|p\|^{2} . \tag{2.15}
\end{align*}
$$

Note that in Eqs. $(2.14,2.15)$ we have equalities, if $g_{g}(x)=a(x) \delta_{1}$, for some positive function $\alpha(x)(\equiv \dot{\alpha}(x) \equiv \hat{\alpha}(x))$. Thas,

$$
\begin{equation*}
\frac{\Delta(x, p)}{\lambda(x, p)} \geq \frac{\dot{\alpha}(x)+\|p\|^{2}}{\dot{\alpha}(x)} \tag{2.16}
\end{equation*}
$$

So, $\frac{1}{\lambda}$ is not bounded on all $\boldsymbol{n} \times \mathbb{R} \times \boldsymbol{R}^{m}$, which proves that $Q$ ia non-uniformly elliptic on all $\boldsymbol{\Omega} \times \boldsymbol{R} \times \boldsymbol{R}^{\boldsymbol{m}}$, being only uniformly elliptic on an open anbet $U$ with $P^{\prime}(u) \subset \cap$ and $P^{\prime}(U) \subset \mathbb{R}^{m}$ both bounded.
Let us now write Eq. (2.10) in the form $\Theta_{m}(x)=F\left(x, u, D_{u}, D^{\mathbf{1}} u\right)=0$, where


$$
F(x, z, p, r)=F(x, p, r)=a^{i j}(x, z, p) r_{i j}+b(x, z, p)
$$

 we conelade, since $\boldsymbol{Q}$ in elliptic on $\Omega$ at $z_{0}$ and $\left[\mathbb{a}^{10}\left(x, \Psi_{0}, D u_{0}\right)\right]$ in a positive-definite matrix for all $x \in \Omega$, and uring a well-known regularity theorem on aecond-order
differential operators (see e.g. Ref. [Au/82], page 86, Th. 3.56), that fia in amooth on $\Omega$.
We can improve thil regularity property, starting from Eq. (2.5). Let um auppase that $M$ is oriented. In a local coordinate system $x: D \rightarrow \bar{\Pi} \subset \mathbb{R}^{m}$, antumed to be orientation-preaerving, we have

$$
\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{f}^{3}}}=\frac{g^{h i} \frac{\partial f}{\|^{2}}}{\sqrt{1+g^{4} \frac{\partial f}{\partial x^{*}} \frac{\partial f}{\partial z^{2}}}} \frac{\partial}{\partial x^{k}} .
$$

Uring Eq. (0.4) we get

$$
\operatorname{div}_{s}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{;}^{2}}}\right)=\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{*}}\left(\frac{\sqrt{|g| g^{n} \frac{\partial f}{\partial z}}}{\sqrt{1+g^{2 k} \frac{\partial I}{\partial v^{2}} \frac{\partial z}{\partial z}}}\right)
$$

Thus, Eq. (2.5) is, in thia local coordinate system, given by

$$
\begin{equation*}
\frac{\partial}{\partial x^{t}}\left(\frac{\sqrt{|g| g^{n} \frac{\partial f}{\partial z}}}{\sqrt{1+g^{N} \frac{\partial L}{\partial v^{2}} \frac{\partial l}{\partial s^{s}}}}\right)=e \sqrt{|g|} . \tag{2.17}
\end{equation*}
$$

This equation in of the disergence form

$$
\begin{align*}
\underline{\underline{v}} & =\left.\frac{\partial}{\partial x^{k}}\right|_{(\varepsilon)}\left(A^{k}(x, m, D \varepsilon)\right)+B(x, m, D \varepsilon) \\
& =\operatorname{div}_{(=1}\left(A^{L}\left(x, \varepsilon, D_{m}\right)\right)+B(x, m, D \varepsilon) \tag{2.18}
\end{align*}
$$

where

$$
\begin{equation*}
A^{k}(x, z, p)=A^{k}(x, p)=\frac{\sqrt{|g| g^{N}}(x) p_{i}}{\sqrt{1+g^{u} p_{s} p_{t}}} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
B(x, z, p)=B(x)=-c \sqrt{|g|}(x) \tag{2.20}
\end{equation*}
$$

A $C^{1}$-fanction $\boldsymbol{m}: \overline{\boldsymbol{n}} \rightarrow \boldsymbol{R}$ in asid to be a weak solution of Eq. (2.17), if, $\forall \phi \in D(\Omega)$ (i.e. $\phi \in G^{\infty}(\Omega)$ with compact upport in $\cap$ ),

For $f=\mathrm{m} 0: D \subset M \rightarrow R$, Eq. (2.21) in equivalent to

$$
\begin{equation*}
\int_{D}\left(\frac{\phi^{N i} \frac{\partial f}{\partial j}}{\sqrt{1+g^{*} \frac{\partial I}{\partial x^{2}} \frac{\partial g^{2}}{\partial y^{2}}}} \frac{\partial \phi}{\partial x^{i}}+c \phi\right) d V_{1}=0, \forall \phi \in D(D), \tag{2.22}
\end{equation*}
$$

that is, to

$$
\begin{equation*}
-\int_{D}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{f}}}, \nabla \phi\right) d V_{t}=\int_{D} c \phi d V_{t}, \quad \forall \phi \in D(D) \tag{2.23}
\end{equation*}
$$

We call a $C^{1}$-function $f: M \rightarrow R$ a weak soludion of the equation for nonparametric hypersorfaces of ( $M \times \mathbb{R}, g \times h$ ) with constant mean curveture, and we write

$$
\begin{equation*}
\operatorname{div}_{f}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{f}^{3}}}\right)=c, \tag{2.24}
\end{equation*}
$$

if, $\forall \phi \in D(M)$,

$$
\begin{equation*}
-\int_{\Delta} \frac{\left\langle\nabla \phi_{1} \nabla f\right\rangle_{1}}{\sqrt{i+\|\nabla f\|_{y}^{3}}} d V_{1}=\int_{\Delta} e \phi d V_{1} \tag{2.25}
\end{equation*}
$$

More generally, we obtain weak solutions of the equation for non-parametric hyperanfaces of ( $M \times \boldsymbol{R}, \boldsymbol{f} \times h$ ) with prescribed mean curvature, replacing everywhere the constant $c$ by the function $m \boldsymbol{m}(x)$.

In order to be able to apply the regularity theory of Morrey [Mo/54], we have to write Eq. (2.24) as the Euler-Lagrange equation of a variational problem. Thereto we use the method of Gulliver [ $\mathrm{Gu} / 83, \mathrm{Gu} / 74$ ] of characterising anbmanifolds with preacribed mean curvature as critical points of a sum of two functionala.
We consider the volnme functional for graphe of $\boldsymbol{C}^{\boldsymbol{H}}$-functions $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{R}$ on a compact domain $D$, given by

$$
V(f, D)=V_{D}\left(\Gamma_{j}\right)=\int_{D} 1 d V_{\left(\rho+f^{+}\right)}=\int_{D} \sqrt{1+\|\nabla f\|_{j}^{2}} d V_{3}
$$

The fanction $f$ is a critical point of $V(\cdot, D)$, if, for any variation $f_{1}=f+t W$ with $W: D \rightarrow \mathbb{R} \boldsymbol{C} C^{1}$-map and $t \in(-\epsilon, C)$ with compact anpport in $D$, we have

$$
\begin{equation*}
\left.\frac{\partial}{\partial l} V\left(f_{t}, \bar{D}\right)\right|_{r=0}=0 \tag{2.26}
\end{equation*}
$$

We are going to calculate explicitly the l.h.t. of Eq. (2.26). Let $x \in M$ and $X_{1}, \ldots, X_{m}$ be an orthonormal basis of ( $T_{z} M, \rho$ ). Then,

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} \sqrt{1+\left\|\nabla f_{i}\right\|_{j}^{2}}(x)\right|_{t=0}= \\
& =\frac{\left.\frac{\theta}{i n}\left\langle\nabla f_{i}(x), \nabla f_{i}(x)\right\rangle_{i}\right|_{i=0}}{2 \sqrt{1+\|\nabla f\|_{i}^{2}}}=\sum_{i=1}^{m} \frac{\left.\frac{\partial}{H i}\left(d\left(f_{i}\right)_{+}\left(X_{i}\right)\right)^{2}\right|_{t=0}}{2 \sqrt{1+\|\nabla f\|_{i}}} \\
& =\sum_{i=1}^{m} \frac{\left.\frac{0}{a}\left\{\left(d X_{x}\left(X_{i}\right)\right)^{2}+2 t d W_{x}\left(X_{i}\right) d f_{x}\left(X_{i}\right)+t^{2}\left(d W_{a}\left(X_{i}\right)\right)^{3}\right\}\right|_{t=0}}{2 \sqrt{1+\|\nabla F\|_{i}^{2}}}
\end{aligned}
$$

$$
=\sum_{i=1}^{m} \frac{d W_{s}\left(X_{i}\right) d d_{s}\left(X_{i}\right)}{\sqrt{1+\|\nabla f\|_{i}^{i}}}
$$

which in a continnous map in the variable $x$. Hence,

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} V\left(f_{t}, \bar{D}\right)\right|_{t=0}=\left.\int_{D} \frac{\partial}{\partial t} \sqrt{1+\left\|\nabla f_{t}\right\|_{j}^{2}}\right|_{t=0} d V_{s}=\int_{D} \frac{\langle\nabla W, \nabla f\rangle_{t}}{\sqrt{1+\|\nabla f\|_{j}^{2}}} d V_{s} . \tag{2.27}
\end{equation*}
$$

Observe that, if $f$ in $G^{\mathbf{1}}$ and $W$ has compact support in $D$,

$$
\left.\frac{\partial}{\partial t} V\left(f_{t}, \bar{D}\right)\right|_{t=0}=-\int_{D} \operatorname{div}\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{3}^{3}}}\right) W d V_{s}
$$

Now let us suppose that $\bar{D}$ is aufficiently amall, say contractible. Then, $\bar{D} \times \mathbb{R}$ it also contractible. Therefore, all claned forms on $D \times \boldsymbol{R}$ are exact. In particular, there exiala a $a \in C^{\infty 0}\left(\Lambda^{m} T^{*}(D \times R)\right)$, auch that $d \alpha=(-1)^{m} e d V_{\text {gad }}$, where $h$ is the Enclidean metric of $\mathbb{R}$ and $d V_{\text {rxi }}$ in the volume element of $D \times \mathbb{R}$.
Coneder the following functional defned for $C^{1}$-fnectiona $f: D \rightarrow \mathbb{R}$ :

$$
\sigma(f, \bar{D})=\int_{D} \Gamma_{j}^{j} \alpha
$$

where $\Gamma_{f} \boldsymbol{o}$ is the continuons m-form of $\bar{D}$, given by

$$
\Gamma_{j} \alpha_{x}\left(w_{1}, \ldots, w_{m}\right)=\alpha_{(s, / f s))}\left(\left(w_{1}, d_{x}\left(\varepsilon_{1}\right)\right), \ldots,\left(w_{m}, d_{x}\left(\varepsilon_{m}\right)\right)\right) .
$$

Let $W: \bar{D} \rightarrow \boldsymbol{R}$ be a $C^{1}$-function with $\left.W\right|_{a p}=0$. Next we calculate

$$
\left.\frac{\partial}{\partial t} C(f+t W, \bar{D})\right|_{t=0}=\left.\frac{\partial}{\partial t} \int_{D}\left\langle\Gamma_{f+t}^{*} \alpha, d V_{\theta}\right\rangle d V_{\theta}\right|_{t=0}
$$

with <, > the Bilbert-Schmidt Riemannian metric on $\Lambda^{m} T^{\bullet} M$. Fix $X_{1, \ldots,} X_{m}$ as an orthonormal frame of ( $T M, \theta$ ), defined on all $\bar{D}$, and with the aame orientation
 each i $\in\{1, \ldots, m\}$, a $C^{\prime \prime}$-vector field $Z^{\prime}$ an all $\bar{D} \times R$, anch that

$$
Z_{(x, f(x))}^{i}=\left(X_{i}(x), d f_{x}\left(X_{i}(x)\right)\right), \quad \forall x \in D
$$

Also, let $\bar{W} \in C^{\prime}(T(\bar{D} \times \boldsymbol{R}))$, auch that $\tilde{W}_{(x, f(x))}=\left(0, W_{a}\right) \forall x \in \bar{D}$. We remark that, trivially,

$$
\begin{equation*}
\operatorname{Min}_{\boldsymbol{B}^{\prime}} \tilde{W}_{(x, f(x))}=\left(0, d W_{s}(X,(x))\right) \tag{2.28}
\end{equation*}
$$

Demote by : $(-\mathrm{e}, \mathrm{f}) \times D \rightarrow D \times \mathbb{R}$ the $C^{\prime}$-map given by $\forall(t, x)=\left(x, f(x)+t W_{z}\right)$, and by $\tilde{z}^{\prime}$ the $C^{1}$-aection of $\mathrm{g}^{-1} T(D \times \mathbb{R})$ given by

$$
\dot{E}_{(1, s)}=Z_{(s, \theta(s)]} \in T_{s} M \times \mathbb{R}=T_{\varepsilon(4, a)}(\bar{D} \times \mathbb{R}), \quad \forall i \in(-\varepsilon, \varepsilon), x \in \mathcal{D} .
$$

Then, we have

$$
\begin{equation*}
\nabla_{h}^{i_{h}^{-1}} \tilde{Z}_{\left(0, r^{2}\right)}=0, \tag{2.29}
\end{equation*}
$$

where $\frac{f}{f i}$ denotes the amooth section of $T((-\varepsilon, \varepsilon) \times \bar{D})$, such that $\frac{g_{i}}{}(t, x)=(1,0)$. Now let us $f x x \in D$. Then,

$$
\begin{aligned}
& \left\langle\Gamma_{\text {fow }}^{*} \alpha(x), d V_{f}(x)\right\rangle=\Gamma_{j+1 W^{*}} \alpha(x)\left(X_{1}(x), \ldots, X_{m}(x)\right)=
\end{aligned}
$$

Next we heve to determine the following limit:

$$
\begin{align*}
& \lim _{\rightarrow 1} \frac{1}{\ell}\left\{\alpha_{\left(s, f(s)+w_{n}\right)}\left(\left(X_{1}, d f_{x}\left(X_{1}\right)\right)+\iota\left(0, d W_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d d_{x}\left(X_{m}\right)\right)+l\left(0, d W_{x}\left(X_{m}\right)\right)\right)\right. \\
&\left.-\sigma_{(x, f(s))}\left(\left(X_{1}, d d_{x}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{x}\left(X_{m}\right)\right)\right)\right\} . \tag{2.30}
\end{align*}
$$

The firat term in the limit can be evaluated as

$$
\begin{aligned}
& a_{\left.\left(s_{1}\right)(N)+s W_{n}\right)}\left(\left(X_{1}, d d_{s}\left(X_{1}\right)\right)+t\left(0, d W_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d_{s}\left(X_{m}\right)\right)+t\left(0, d W_{s}\left(X_{m}\right)\right)\right)= \\
& \left.=\alpha_{\left(x_{s} /(x) \times \omega_{t}\right)}\left(\left(X_{1}, d\right)_{x}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d d_{x}\left(X_{m}\right)\right)\right) \\
& \left.+i \sum_{i=1}^{m} \alpha_{(a, i)} \text { onew } W_{n}\right)\left(\left(X_{1}, d_{s}\left(X_{1}\right)\right), \ldots,\left(0, d W_{m}\left(X_{i}\right)\right), \ldots,\left(X_{m}, d f_{f}\left(X_{m}\right)\right)\right) \\
& +\sum_{k \geq 1} t^{t^{*} \phi_{t}(x, t)} \text {, }
\end{aligned}
$$

Where $\boldsymbol{\Phi}_{t}(x, t)$ in a continuona function in $t \in(-\epsilon, \epsilon)$. Therefore,

$$
\begin{aligned}
& \text { (2.30) }=
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\alpha_{(a, 1)}\left(\left(X_{1}, d_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d_{s}\left(X_{m}\right)\right)\right)\right\} \\
& +\sum_{i=1}^{m} \lim _{i \rightarrow 0} \alpha_{\left(a, f(x)=W_{2}\right)}\left(\left(X_{1}, d_{s}\left(X_{1}\right)\right), \ldots,\left(0, d W_{s}\left(X_{i}\right)\right), \ldots,\left(X_{m}, d_{s}\left(X_{m}\right)\right)\right) \\
& +\sum_{k>0} \lim _{t=0} t^{t-1} \Phi_{n}(x, t)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{m} \alpha_{(x, 1(x))}\left(\left(X_{1}, d_{s}\left(X_{1}\right)\right), \ldots,\left(0, d W_{r}\left(X_{i}\right)\right), \ldots,\left(X_{m, d}\left(X_{m}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & d\left(e^{-1} \alpha\left(\dot{Z}^{1}, \ldots, \dot{Z}^{m}\right)\right)_{(0, i)}\left(\frac{\partial}{\partial t}\right) \\
& +\sum_{i=1}^{m} \alpha_{(x, /(\alpha))}\left(Z_{(s, /(i=1))}^{\prime}, \ldots,\left(0, d W_{s}\left(X_{4}\right)\right), \ldots, Z_{(x, /(x))}^{m}\right)
\end{aligned}
$$

where $\theta^{-1} a \in C^{\prime}\left(\Lambda^{m} \theta^{-1}(T(D \times I R))^{\bullet}\right)$ is the alternating $m$-tenaor given by

$$
e^{-1} \alpha_{(t, v)}\left(z_{1}, \ldots, z_{m 1}\right)=\alpha_{v\left(t_{m)}\right)}\left(z_{1}, \ldots, z_{m}\right)
$$

$V(C, x) \in(-\epsilon, \epsilon) \times D$ and $z_{1} \in T_{[(6,3)}(D \times I R)=\theta^{-1}(T(\bar{D} \times I R))_{(1, x)}$. Let $\nabla$ denote the conmection of the vector bundle $\Lambda^{m} \mathbb{E}^{-1}(T(D \times \Delta R))^{*}$. Using Eqs. $(2.28,2.29)$ we have

$$
\begin{aligned}
& \text { (2.30) }= \\
& =\nabla_{H_{H}}\left(0^{-1} \alpha\right)_{(0, x)}\left(\tilde{Z}_{(0, x)}^{1}, \ldots, \tilde{Z}_{(0, x)}^{m}\right) \\
& +\sum_{i=1}^{m}\left(0^{-1} \alpha\right)_{(0, x)}\left(\tilde{Z}_{(0, x)}^{1}, \ldots, \nabla_{i}^{i} \tilde{Z}_{(0, x)}^{-1}, \ldots, \hat{Z}_{(0, x)}^{m}\right) \\
& +\sum_{i=1}^{m} a_{(s, f(x))}\left(Z_{(x, f(x))}^{\prime}, \ldots,\left(0, d W_{s}\left(X_{i}\right)\right), \ldots, Z_{(x, f(s))}^{m}\right) \\
& =\nabla_{d\left(\frac{\theta}{n}\right)} \alpha_{0(0, z)}\left(\tilde{z}_{(0, x)}^{1}, \ldots, \tilde{z}_{(0, s)}^{m}\right) \\
& +\sum_{i=1}^{m} \alpha_{(x, f(x))}\left(Z_{(x, f(x))}^{1}, \ldots,\left(0, d W_{x}\left(X_{i}\right)\right), \ldots, Z_{(x, f(x))}^{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{m} a_{(s, f \mid x)]}\left(Z_{(x, f(x))}, \ldots, \bar{\nabla}_{B^{4}} \bar{W}_{(x, f(x))}, \ldots, Z_{(x, f(s))}^{n}\right) \\
& =d\left(\alpha\left(Z^{1}, \ldots, Z^{m}\right)\right)_{(x, f(x))}\left(\dot{W}_{(x, J(y))}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{m} a_{(x, f(s))}\left(Z_{(x, f(s))}^{1}, \ldots, \boldsymbol{\nabla}_{E^{i}} \boldsymbol{w}_{(x, f(x))}, \ldots, Z_{(x, f(x))}^{m}\right) \\
& =d\left(\alpha\left(Z^{1}, \ldots, Z^{m}\right)\right)_{(x, f(x))}\left(\tilde{W}_{(x, \sqrt{(x)})}\right) \\
& +\sum_{i=1}^{m} \alpha_{(x, f(x))}\left(Z_{(x, f(x))}^{1}, \ldots,\left[Z^{i}, \tilde{W}\right]_{(x, f(=1)}, \ldots, Z_{(x, f(x))}^{m}\right) \\
& =L_{w} \alpha_{(x, f(s))}\left(Z_{(s, f(s)), \ldots,}^{1} Z_{(s, f(s))}^{m}\right) .
\end{aligned}
$$

Using now the following formula for a $k$-form $\theta \in C^{\prime}\left(\Lambda^{*} T(M \times R)^{*}\right)$,

$$
\begin{aligned}
d \theta\left(Y_{1}, \ldots, Y_{t+1}\right)= & \sum_{i=1}^{k+1}(-1)^{i-1} d\left(\theta\left(Y_{1}, \ldots, \hat{Y}_{i}, \ldots, Y_{k+1}\right)\right)\left(Y_{i}\right) \\
& +\sum_{i<j}(-1)^{i+j} \theta\left(\left[Y_{i}, Y_{j}\right], Y_{1}, \ldots, Y_{i}, \ldots, Y_{j}, \ldots, Y_{k+1}\right)
\end{aligned}
$$

we get $L_{\bar{W}} \alpha=\mathbf{1}_{\bar{W}} \circ d \alpha+d\left(1_{\bar{w}} a\right)$. Hence,
(2.30) $=$

$$
\begin{aligned}
& =L_{i} \alpha_{(x, f(x))}\left(Z_{\left.(x, f(x)), \ldots, Z_{(x, f(x))}^{\prime}\right)}\right) \\
& =\varepsilon_{W_{i}} \cdot d \alpha_{(x, f(x))}\left(Z^{1}, \ldots, Z^{m}\right)+d\left(\varepsilon_{\frac{1}{1}}^{a r}\right)_{(p, S(m)]}\left(Z^{1}, \ldots, Z^{m}\right) \\
& =d \alpha_{(x, f(x))}\left(\tilde{W}_{(x, f(s))}, Z_{(x, f(s))}^{1}, \ldots, Z_{(x, J(s))}^{m}\right)+d\left(v_{W} \alpha\right)_{(x, J(x))}\left(Z_{(x, f(x))}^{\prime}, \ldots, Z_{(x, f(x))}^{m}\right) \\
& =(-1)^{m} c d V_{s \times A}(x, f(x))\left(\left(0, W_{s}\right),\left(X_{1}, d f_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{s}\left(X_{m}\right)\right)\right) \\
& +d\left(s_{w} \alpha\right)_{\left(x_{s} f(s)\right)}\left(\left(X_{i}, d f_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{x}\left(X_{m}\right)\right)\right) \\
& =(-1)^{m e d} V_{f \in A}(x, f(x))\left(\left(0, W_{z}\right),\left(X_{1}, d f_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{s}\left(X_{m}\right)\right)\right) \\
& \left.+\Gamma_{j}^{j}\left(d\left(2_{i} \alpha\right)\right)\right)_{s}\left(X_{1}(x), \ldots, X_{m}(x)\right) \text {. }
\end{aligned}
$$

Hence, $\left.\frac{t}{a t}\left\langle\mathrm{I}_{\mathrm{fuW}} a(x), d V_{g}(x)\right\rangle\right|_{t-0}$ exista and gives a function continoona in the varaiable $x \in \boldsymbol{D}$. Thus,

$$
\begin{aligned}
& \left.\frac{\partial}{\partial i} C(f+i W, \bar{D})\right|_{\mathrm{f}=\mathrm{o}}=\left.\int_{D} \frac{\partial}{\partial t}\left\langle\Gamma_{f+e W}^{+} a(x), d V_{i}(x)\right\rangle\right|_{1-d} d V_{,} \\
& =\int_{D}(-1)^{m} e d V_{p c h}(x, f(x))\left(\left(0, W_{s}\right),\left(X_{1}, d f_{r}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{z}\left(X_{m}\right)\right)\right) d V_{s} \\
& +\int_{D} \Gamma_{j}\left(d\left(e_{\infty} a\right)\right) \text {. }
\end{aligned}
$$

We cannot claim that $\Gamma_{f}^{j}\left(d\left(i_{W} \alpha\right)\right)=d\left(\Gamma_{f}^{\prime}\left(s_{W} \alpha\right)\right)$, becane $\Gamma_{f}$ is only $C^{1}$ and not I' $^{\prime}$. So we canaot ane Itoka' theoram directly. However, ong may approximate $f$ uniformly up to first derivatives by amooth functions an $D$ and then prove the following, more general, Stokes' theorem (see e.g. Ref. [M/79]):

$$
\int_{D} \Gamma_{j}\left(d\left(t_{\bar{W}} \alpha\right)\right)=\left.\int_{\infty 0} \Gamma_{j}^{*}\right|_{\infty 0}\left(t_{\bar{W}} \alpha\right)
$$

Since $\tilde{W}_{(x, f(x))}=\left(0, W_{x}\right)=0, \quad \forall_{x} \in \partial D$, we get

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} O(f+t W, D)\right|_{r=0}= \\
& \quad=\int_{D}(-1)^{m} c d V_{s x A}(x, f(x))\left(\left(0, W_{s}\right),\left(X_{1}, d d_{s}\left(X_{i}\right)\right), \ldots,\left(X_{m}, d f_{s}\left(X_{m}\right)\right)\right) d V_{s} .
\end{aligned}
$$

In order to compute $d V_{s, A}\left(x_{1} f(x)\right)\left(\left(0, W_{s}\right),\left(X_{1}, d f_{s}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{s}\left(X_{m}\right)\right)\right) d V_{s}$, which does nat depend on the choice of the orthormal benis $X_{1}(x), \ldots, X_{m}(x)$ of
 atraghtforwardly

$$
d V_{q A}(x, f(x))\left(\left(0, W_{z}\right),\left(X_{1}, d f_{z}\left(X_{1}\right)\right), \ldots,\left(X_{m}, d f_{x}\left(X_{m}\right)\right)\right)=(-1)^{m} W_{z}
$$

Hence,

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} C(f+t W, \bar{D})\right|_{t=0}=\int_{D} e W d V, \tag{2.31}
\end{equation*}
$$

Adding Eqs. (2.27) and (2.31) we obtain

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}(V+C)(f+t W, D)\right|_{t=0}=\int_{D}\left(\left\langle\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{g}^{2}}, \nabla W}\right\rangle_{s}+c W\right) d V, \tag{2.32}
\end{equation*}
$$

A $C^{1}$-function $f: D \rightarrow \mathbb{R}$ is said to be a critical point of the functional $V+C$, if $\left.\frac{\partial}{\partial t}(V+C)(f+t W, \bar{D})\right|_{t=0}=0$ for any $C^{1}$-function $W: \bar{D} \rightarrow \mathbb{R}$ with compact support in $D$. Thus, a weak solution of Eq. (2.24) is a critical point of $V+C$ and vice versa. Here we should remark that this result also holds in the more general case of prescribed mean curvature, replacing everywhere the constant $c$ by the function $m H(x)$.
Next we write the functional $V+C$ in local coordinates in order to verify that it fulfils the required conditions of Morrey.
For a $\boldsymbol{C}^{1}$-function $\boldsymbol{f}: \overline{\boldsymbol{D}} \rightarrow \boldsymbol{\mathbb { R }}$

$$
(V+C)(f, \bar{D})=\int_{D}\left(\sqrt{1+\|\nabla f\|_{p}^{2}}+\left\langle\Gamma_{f}^{*} \alpha, d V_{s}\right\rangle\right) d V_{s} .
$$

In local coordinates, $\alpha \in \Lambda^{m} T^{*}(\bar{D} \times \mathbb{R})$ takes the form

$$
\alpha=\lambda d x^{1} \wedge \ldots \wedge d x^{m}+\sum_{i_{1}<\ldots<i_{m-1}} \lambda^{i_{1} \ldots i_{m-1}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{m-1}} \wedge d t,
$$

where $\lambda, \lambda^{i_{1} \ldots{ }^{m-1}}: \bar{D} \times \mathbb{R} \rightarrow \mathbb{R}$ are $C^{\infty}$-functions. Then,

$$
\begin{aligned}
\left\langle\Gamma_{j}^{*} \alpha, d V_{c}\right\rangle & =\frac{1}{\sqrt{|g|}} \Gamma_{f}^{*} \alpha\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{m}}\right) \\
& =\frac{1}{\sqrt{|g|}} \alpha\left(\left(\frac{\partial}{\partial x^{1}}, d f\left(\frac{\partial}{\partial x^{1}}\right)\right), \ldots,\left(\frac{\partial}{\partial x^{m}}, d f\left(\frac{\partial}{\partial x^{m}}\right)\right)\right) \\
& =\frac{1}{\sqrt{|g|}}\left(\lambda+\sum_{i_{1}<\ldots<i=-1}(-1)^{m-i=\lambda^{i_{1} \ldots i_{m-1}}} \frac{\partial f}{\partial x^{i m}}\right),
\end{aligned}
$$

where, for each group of $(m-1)$ indices $i_{1}<\ldots<i_{m-1}, i_{m}$ denotes the remaining one to complete $\{1, \ldots, m\}$. So we obtain

$$
\begin{aligned}
& (V+C)(f, \bar{D})= \\
& =\int_{\Omega}\left\{\sqrt{|g|} \sqrt{1+g^{a t} \frac{\partial f}{\partial x^{t}} \frac{\partial f}{\partial x^{4}}}+\left(\lambda+\sum_{i_{1}<\ldots<i_{m-1}}(-1)^{m-i_{m}} \lambda^{i_{1} \ldots i_{m-1}} \frac{\partial f}{\partial x^{i_{m}}}\right)\right\} d x^{1} \wedge \ldots \wedge d x^{m} \\
& =I\left(f \circ x^{-1}, \bar{\Omega}\right),
\end{aligned}
$$

where $I$ is the functional, acting on $C^{1}$-functions $\boldsymbol{y}: \bar{n} \rightarrow \boldsymbol{R}$, given by

$$
I(u, \bar{\Omega})=\int_{\mathrm{a}} \Psi(x, u(x), D u(x)) d x
$$

with $\Psi: \Omega \times \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ the amooth function
$\Psi(x, x, p)=\sqrt{|g|}(x) \sqrt{1+g^{n}(x) p_{0} p_{t}}+\left(\lambda(x, z)+\sum_{i_{1}<\ldots<i_{m-1}}(-1)^{m-1-\lambda^{\prime \prime-1-1}}(x, z) p_{1-1}\right)$.
A $O^{\prime}$-function $w: \bar{\Pi} \rightarrow \mathbb{I}$ is a critical point of $I$, if, for any $O^{1}$-function $W$ : $\bar{\Pi} \rightarrow \mathbb{R}$ with compact aupport in $\Omega,\left.\quad \frac{s}{d i} I(\varepsilon+t W, \bar{n})\right|_{t=0}=0$. So, wia a critical point of $I$, iff $f=m \circ x: D \rightarrow \mathbb{R}$ is a critical point of $V+G$. Let us fix a $C^{\prime}$-function $\boldsymbol{z}(x)$ and let $\mathcal{G}$ be a bounded domain of $\Omega \times \mathbb{R} \times \mathbb{R}^{m}$ of the form $g=\{(x, z, p): x \in \Omega,|z-m(x)|<h,\|p-p(x)\|<h\}$, where $p(x)$ is sume continuous $\mathbb{R}^{m}$-valued function of $x$ and $h$ is a positive constant. Deriving the function $\boldsymbol{\psi} \boldsymbol{w}$.r.t. the variable $p$, we get

$$
\begin{aligned}
\frac{\partial^{k} \psi}{\partial p_{i} \partial_{j j}}(x, z, p) & =\frac{g^{i j}(x)\left(1+g^{k *}(x) p_{k} p_{0}\right)-g^{k j}(x) g^{* i}(x) p_{k} p_{0}}{\left(1+g^{p_{0}}(x) p_{k} p_{0}\right)^{i}} \sqrt{|g|(x)} \\
& =a^{i j}(x, p) \frac{\sqrt{|g|}(x)}{\sqrt{1+g^{k 0}(x) p_{k} p_{s}}},
\end{aligned}
$$

$\forall x \in \cap, z \in \mathbb{R}, p \in \boldsymbol{R}^{m}$, where $\left[s^{i j}(x, p)\right]$ is positive-definite matrix (see Eqs. $(2.11,2.13)$ ). Then, $\forall(x, z, p) \in \mathcal{G}$, we have

$$
\begin{equation*}
\frac{\partial \mathbb{N}}{\partial p_{1} \partial p_{j}}-(x, z, p) \mu_{i} \mu_{j}>0, \quad \forall \mu \in \boldsymbol{R}^{m} \backslash\{0\} \tag{2.33}
\end{equation*}
$$

The fulfilment of this inequality weans that $\Psi$ is strictly couvex with reapect to the variable $p$, and is in accondance with Morrey's condition on $\Psi(x, s, p)$ to be the integrand of a regular veriational problem near $\boldsymbol{m}(x)$. Moreover, it is equivalent to what nowadaya is called the ellipticity condition of the Enler-Lagrange operator $\mathscr{Q}(x)=\operatorname{div}_{(x)} D_{p} \Psi\left(x, z, D_{m}\right)-D, \Psi\left(x, y, D_{m}\right)$ (cf. Ref. |Git-Tr/83], page 289). Morrey (see Ref. [Mo/54], page 158) proved that, if $x: \overline{\boldsymbol{I}} \rightarrow \boldsymbol{R}$ in a $C^{1}$-function and in a critical point of $I(\cdot, \bar{\Omega})$, then, aince $\Psi$ ia amooth, $a$ ia emonth on $\cap$. Moreover, if $\|_{\text {an }}$ in amooth, then $\approx$ is amooth on $\Omega$. Thun, we have the demired regularity property:

Propoaltion 2.2 Let $(M, g)$ be a emooth Riamannian manifold and $f: M \rightarrow \mathbb{R}$ be a $C^{1}$-function which is a weak solution of Eq. (R.L4). Then, $f$ is amooth on all $M \backslash a M$. If $\left.f\right|_{\text {aN }}$ is aloo emooth, then $f$ is amooth on all $M$.

### 2.3 Existence of Graphs of Functions on the $m$ Hyperbolic Space with Given Constant Mean Curvature

In the previous section we have derived some regularity properties of graphs of maps $f: M^{m} \rightarrow \mathbb{R}$ with constant mean corvatare $c$. From Sec. 1.1 we also know that, if $M$ is non-compact and oriented, this constant cannot exceed the ratio of the Gheeger constant $h(M)$ and the dimension $m$, and that, if $M$ is compact (without boundary) and oriented, $c$ ean only be zero. Supposing that $h(M) \neq 0$, we may pose the following question:

Question Given a constant $e^{\prime}$ with $0 \leq e^{\prime} \leq \frac{1}{m} \emptyset(M)$, does there exist a map $f: M \rightarrow \mathbb{R}$, awh that $I_{j} \subset M \times \mathbb{R}$ has constant mean curvature equal to $e^{\prime} \rho$

In Th. 1.2 we only gave a pasitive answer for the case of the two-dimensional hyperbolic apace with $e^{\prime}$ assuming ita extreme value $\frac{1}{3}$. Here we consider the more general case of the hyperbolic space of arbitrary dimension m $\geq 2, H^{m}=\left(B^{m}, g\right)$, where $B^{m}$ is the unit open disk with centre $O$ in $\mathbb{R}^{m}$ and where $g$ in the complete metric given by

$$
g=\frac{4|d x|^{3}}{\left(1-|x|^{3}\right)^{3}}
$$

Wi recall (eue Oh. 0) that $E^{m}$ has conotant corvature equal to -1 and that $b\left(B^{m}\right)=$ $m-1$.

Proponition 2.3 For cach e $\in|1-m, m-1|$, the function $f: H^{m} \rightarrow \mathbb{R}$ gisen $\boldsymbol{H}$

$$
f(x)=\int_{0}^{r(x)} \frac{\frac{t}{(0 \operatorname{lnh} r)^{m-1}} \int_{0}^{r}(\sinh t)^{m-1} d t}{\sqrt{1-\left(\frac{t}{(\sinh r)^{m-1}} \int_{0}^{r}(\sinh t)^{m-1} d t\right)^{2}}} d r
$$

-here

$$
r(x)=\log \left(\frac{1+|x|}{1-|x|}\right)
$$

is amooth on all $H^{m}$, and $\Gamma_{f} \subset H^{m} \times I R$ has conotani mean euroture given by $\|\boldsymbol{H}\|=\frac{|c|}{\boldsymbol{m}}$.
In particular, if $m=2$ and $e=1, f$ can be eritten as

$$
f(x)=\int_{0}^{r(x)} \sqrt{\frac{1}{2}(\cosh r-1)} d r .
$$

Proof. According to Sec. 2.2, one only has to verify that $f$ astigfies the differential equation (2.5). Of courae, we are not going to execate anch simple but tiresome arithmetic. Instead, we will show how the above expression for $f$ is obtained. The procedure to be followed is to solve for $f$ in Eq. (2.5) as a fonction of the intrinsic distance $r(x)$ in $H^{m}$ from the origin, thereby considering e as a varying parameter. Using the expressions for the Christoffel symbols of ( $H^{m}, \emptyset$ ) computed in the proof of Th. 1.2, we see that the distance function $\left.r: H^{m} \rightarrow \mathbb{R}, r(x)=\log \left(\frac{1+1}{1-1}\right)\right)=$ $2 \tanh ^{-1}(|x|)$, has the following propertiea: $\forall x \neq 0, \nabla_{r}=\frac{1-|y| n}{|n|}$, , where the gradient of $r$ is w.r.t. the metric $g$. Hence, $\| \nabla r_{l}=1$ and $\Delta r=(m-1)$ coth $r$. We observe that $r^{1}$ is omooth.
Let us write $f=$ hor with $h: \boldsymbol{R}_{0}^{+} \rightarrow \boldsymbol{P R}$.
Then, $\boldsymbol{\nabla} f=h^{\prime}$ or $\nabla_{r}$, and Eq. (2.5) applied to $f$ becomes equivalent to ( $\forall x \neq 0$ )

$$
\begin{aligned}
& c=\operatorname{div},\left(\frac{\nabla f}{\sqrt{1+\|\nabla f\|_{g}^{2}}}\right)=\operatorname{div}_{s}\left(\frac{h^{\prime} \circ r \nabla r}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}\right) \\
& =\frac{h^{\prime} \circ r \Delta r}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}+\left\langle\nabla\left(\frac{h^{\prime} \circ r}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}\right), \nabla r\right\rangle_{0} \\
& =\frac{h^{\prime} \circ r \Delta r}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}+h^{\prime} \circ r\left\langle\nabla\left(\frac{1}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}\right), \nabla r\right\rangle_{0}+\frac{\left(\nabla\left(h^{\prime} \circ r\right)^{2}, \nabla r\right)_{g}}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}} \\
& =\frac{h^{\prime} \text { or } \Delta r}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}-\frac{1}{2} h^{\prime} \text { or }\left\langle\frac{\nabla\left(1+\left(h^{\prime} \circ r\right)^{2}\right)}{\left(1+\left(h^{\prime} \circ r\right)^{2}\right)^{\frac{1}{2}}}, \nabla_{r}\right\rangle+\frac{h^{\prime \prime} \text { or }\left\langle\nabla_{r}, \nabla_{r}\right\rangle_{A}}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}} \\
& =\frac{h^{\prime} \circ r \Delta r}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}}-\frac{\left(h^{\prime} \circ r\right)^{2} h^{N} \circ r \|^{2} \nabla_{l}^{2}}{\left(1+\left(h^{\prime} \circ r\right)^{2}\right)^{1}}+\frac{h^{n} \circ r\|\nabla r\|_{9}^{2}}{\sqrt{1+\left(h^{\prime} \circ r\right)^{2}}} \text {. }
\end{aligned}
$$

Using the above properties of $r$ we get

$$
\begin{aligned}
& c\left(1+\left(h^{\prime} \circ r\right)^{2}\right)^{4}= \\
& =(m-1) \operatorname{coth} r\left(h^{\prime} \circ r\right)\left(1+\left(h^{\prime} \circ r\right)^{2}\right)-\left(h^{\prime} \circ r\right)^{2} h^{\prime \prime} \circ r+h^{\prime} \circ r\left(1+\left(h^{\prime} \circ r\right)^{2}\right) \\
& =(m-1) \operatorname{cothr}\left(h^{\prime} \circ r\right)\left(1+\left(h^{\prime} \circ r\right)^{2}\right)+h^{N} \circ r .
\end{aligned}
$$

With the anbstitution $\omega(r)=h^{\prime}(r)$, the equation becomes

$$
\begin{equation*}
\omega^{\prime}=e\left(1+\omega^{2}\right)^{\frac{1}{2}}-(m-1) \operatorname{coth} p \omega\left(1+\omega^{1}\right), \quad \forall r>0 . \tag{2.34}
\end{equation*}
$$

The nert step in to reduce this differeatial equation to a linear one through several changes of variables. Firrt we write Eq. (2.34) as

$$
\frac{\omega^{\prime} \omega}{\left(1+\omega^{2}\right)^{\frac{1}{2}}}=c \omega-(m-1) \operatorname{coth} r \frac{\omega^{2}}{\left(1+\omega^{2}\right)^{!}}
$$

Let $y=\frac{1}{\left(1+w^{2}\right)^{1}} \in(0,1]$. Then, $w= \pm \frac{\sqrt{1-\boldsymbol{r}^{2}}}{v}$. Taking first $w$ non-uegative, we get

$$
\text { Eq. (2.34) } \Longleftrightarrow-y^{\prime}=e \frac{\sqrt{1-y^{3}}}{y}-(m-1) \operatorname{coth} r^{\frac{1}{y^{2}}-y^{2}} y^{2} .
$$

Thus,

$$
-y=c \sqrt{1-y^{2}}-(m-1) \operatorname{coth} r\left(1-y^{2}\right)
$$

Let $v=v^{2} \in(0,1]$. Then,

$$
\text { Eq. (2.34) } \Longleftrightarrow-\frac{1}{2} \frac{v^{\prime}}{\sqrt{1-v}}=c-(m-1) \operatorname{coth} r \sqrt{1-v} \text {. }
$$

Finally, let $=\sqrt{1-v} \in(0,1)$. Hence,

$$
\begin{equation*}
\text { Eq. (2.34) } \Longleftrightarrow m^{\prime}=c-(m-1) \text { coth } r a, \tag{2.35}
\end{equation*}
$$

which equation is linear. Let as firat suppose $c=1$. Then, the general solution of Eq. (2.35) is given by

$$
\begin{aligned}
& z(r)=e^{-\int_{r_{0}}^{0}(m-1) \text { eothtat }}\left(\int_{r_{0}}^{1} e^{(m-1) \int_{t_{0}}^{*} \text { eothtdi }} d s+w_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(\sinh r_{0}\right)^{m-1}}{(\sinh r)^{m-1}}\left(\frac{1}{\left(\sinh r_{0}\right)^{m-1}} \int_{\nu_{0}}^{\prime}(\text { iinh } \theta)^{m-1} d \theta+v_{0}\right) \\
& =\frac{1}{(\sinh r)^{m-1}} \int_{r_{0}}^{\pi}(\sinh s)^{m-1} d \theta+w_{0} \frac{\left(\sinh r_{0}\right)^{m-1}}{(\sinh r)^{m-1}} .
\end{aligned}
$$

Let un now put $r_{0}=w_{0}=0$. Then, we have

$$
\begin{equation*}
s(r)=\frac{1}{(\sinh r)^{m-1}} \int_{0}^{\rho}(\sinh \theta)^{m-1} d \epsilon, \forall r>0 \tag{2.36}
\end{equation*}
$$

Nest we prove that $\llbracket \in\{0,1)$ with $¥(0)=0$, and, moreover, that $\operatorname{mip}_{\in \in(0,+\infty)}(r)=$ $\lim _{m_{r \rightarrow+\infty}} \boldsymbol{v}(r)=\frac{2}{m-1}$.


If $\because(r)$ attaina a local maximam at anme $r_{0} \in(0,+\infty)$, then $\varepsilon^{\prime}\left(r_{0}\right)=0$. From Eq. (2.3b) we have $v\left(r_{0}\right)=\frac{\text { anchra }}{m-1}$. Thus, $v\left(r_{0}\right)<\frac{1}{m-1} \leq 1$. On the other hand, if there are no local maxima, then, necessarily, $\sup _{\boldsymbol{i} \in(\mathrm{a}+\infty)} \boldsymbol{m}(r)=\lim _{r \rightarrow+\infty} \boldsymbol{m}(r)$. So we only
have to calculate this limit. With partial integration,

$$
\begin{aligned}
& \int_{0}^{t}(\sinh t)^{m-1} d s= \\
& =\left[\cosh s(\sinh \theta)^{m-2}\right]_{0}^{\prime}-(m-2) \int_{0}^{t} \cosh ^{2} \theta(\sinh \theta)^{m-2} d \theta \\
& =\cosh r(\sinh r)^{m-9}-(m-2) \int_{0}^{p}\left(1+\sinh ^{1} e\right)(\sinh a)^{m-1} d s \\
& =\cosh r(\sinh r)^{m-2}-(m-2) \int_{0}^{t}(\sinh s)^{m-2} d \theta-(m-2) \int_{0}^{r}(\sinh s)^{m-1} d s .
\end{aligned}
$$

Than,

$$
\int_{0}^{v}(\sinh s)^{m-1} d s=\frac{1}{m-1} \cosh r(\sinh t)^{m-1}-\frac{m-2}{m-1} \int_{0}(\sinh s)^{m-\theta} d s
$$

and

$$
\begin{aligned}
\frac{\int_{0}^{\prime}(\sinh s)^{m-1} d s}{(\sinh r)^{m-1}} & =\frac{1}{m-1} \operatorname{coth} r-\frac{(m-2) \int_{0}^{r}(\sinh s)^{m-1} d s}{(m-1)(\operatorname{minh} r)^{m-1}} \\
& =\frac{1}{m-1} \operatorname{coth} r-\frac{m-2}{(m-1) \sinh r} \frac{\int_{0}^{\prime}(\sinh s)^{m-1} d s}{(\operatorname{minh} r)^{m-1}}
\end{aligned}
$$



$$
\lim _{n \rightarrow+\infty} \frac{\int_{i}^{\prime}(\operatorname{minh} g)^{m-1} d e}{(\sinh r)^{m-1}}=\frac{1}{m-1}, \lim _{n \rightarrow+\infty} \operatorname{coth} r=\frac{1}{m-1} .
$$

Therefore,

$$
\begin{equation*}
\operatorname{lemp}_{r \in\left[a_{+\infty}\right)}!(r)=\frac{1}{m-1}, \tag{2.37}
\end{equation*}
$$

which is not a maximum. So, $\left.0 \leq u(r)<\frac{1}{m-1}, \forall r \in \mid 0,+\infty\right)$ and $u(r)$ antinfies Eq. (2.35) for $c=1$. Let now $c$ be an arbitrary conatant. Then, the function
 Eq. (2.37) we conclude that e muat astiefy $0 \leq e \leq m-1$. That in, V0 $\leq c \leq m-1$, the function

$$
\bar{i}(r)=c \frac{\int_{0}^{\prime}(\text { sinh } s)^{m-1} d r}{(\sinh r)^{m-1}}
$$

fulfla the condition apecified in Eq. (2.35).
In terms of the original fonction $f$, we have

$$
\left.f(x)=h(r(x))=\int_{0}^{r(s)} \frac{(\sin )^{\infty-1}}{\sqrt{1}(\sinh t)^{m-1} d t} \sqrt{1-(\cos t)^{-2=}} \int_{0}^{\prime}(\sinh t)^{m-1} d\right)^{2} \quad d r,
$$

which molves Eq. (2.3). If we had chosen w mon-positive, we would have obtained the ame expresion for $f$, but now with $1-m \leq c \leq 0$. Obviouely, $/$ in amooth
on $H^{m} \backslash\{0\}$. Let us now investigate the behaviour of $f$ close to the origin. Near $t=0$ we have the following Taylor expansions:

$$
\begin{aligned}
& \sinh t=t+\frac{t^{2}}{6}+O\left(t^{3}\right)=t\left(1+\frac{t^{2}}{6}+O\left(t^{4}\right)\right) \\
& (1+t)^{m}=1+m t+\Theta\left(t^{2}\right) \\
& \frac{t}{\sqrt{1+t}}=1-\frac{t}{2}+\Theta\left(t^{2}\right), \quad \frac{1}{1-t}=1+t+\Theta\left(t^{2}\right)
\end{aligned}
$$

where $\Theta\left(l^{*}\right)$ and $O\left(t^{k}\right)$ are analytic functions of the form

$$
\Theta\left(t^{k}\right)=\sum_{n \geq 0} \frac{a^{2+n}}{(k+\pi i 1} t^{k+n}, O\left(t^{k}\right)=\Sigma_{n \geq 0} \frac{a^{k+2 n}}{(k+2 n) i^{2}} t^{k+2_{n}}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{\sqrt{1+t^{1}}}=1-\frac{t^{2}}{1}+O\left(t^{4}\right), \frac{t}{1-t^{3}}=1+t^{2}+O\left(t^{4}\right), \text { and } \\
& (\sinh t)^{m-1}=t^{m-1}\left(1+\frac{t^{2}}{6}+O\left(t^{4}\right)\right)^{m-1}=t^{m-1}\left(1+\frac{m-1}{6} t^{2}\right)+O\left(t^{m+z}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{(\sinh s)^{m-1}} \int_{0}^{\theta}(\sinh t)^{m-1} d t=\frac{\frac{s^{m}}{m}+\frac{m-1}{m-2} \frac{a^{m+2}}{s}+O\left(s^{m+4}\right)}{s^{m-1}\left(1+\frac{m-1}{6} s^{2}+O\left(s^{4}\right)\right)}= \\
& =\frac{\frac{a}{m}+\frac{m-1}{m-2} \frac{a^{s}}{6}+O\left(s^{6}\right)}{1+\frac{m-1}{s} s^{2}+O\left(s^{4}\right)} \\
& =\left(\frac{s}{m}+\frac{m-1}{m+2} \frac{s^{s}}{6}+O\left(s^{6}\right)\right)\left(1-s^{2}\left(\frac{m-1}{6}+O\left(s^{2}\right)\right)+O\left(s^{4}\right)\right) \\
& =\theta\left(1-\frac{m-1}{6} s^{2}\right)\left(\frac{1}{m}+\frac{m-1}{m+2} \frac{s^{2}}{6}\right)+O\left(s^{6}\right) \\
& =\frac{s}{m}\left(1-\frac{m-1}{m+2} \frac{s^{2}}{3}\right)+O\left(s^{6}\right) .
\end{aligned}
$$

For $A$ close to zero, $\frac{A}{\sqrt{1-A^{2}}}=A\left(1+\frac{1}{2} A^{2}\right)+O\left(A^{5}\right)$. Putting

$$
A=\frac{c}{(\sinh t)^{m-1}} \int_{0}^{e}(\sinh t)^{m-1} d t=c \frac{s}{m}\left(1-\frac{m-1}{m+2} \frac{s^{2}}{3}\right)+O\left(s^{t}\right)
$$

we have $O\left(A^{5}\right)=O\left(s^{6}\right)$ and

$$
\begin{aligned}
& \frac{A}{\sqrt{1-A^{2}}}= \\
& =\left(c \frac{\theta}{m}\left(1-\frac{m-1}{m+2} \frac{s^{2}}{3}\right)+O\left(s^{5}\right)\right)\left(1+\frac{1}{2}\left(\frac{c \theta}{m}\left(1-\frac{m-1}{m+2} \frac{s^{2}}{3}\right)+O\left(s^{6}\right)\right)^{2}\right)+O\left(s^{6}\right) \\
& =c \frac{s}{m}\left(1+s^{2}\left(\frac{c^{2}}{2 m^{2}}-\frac{m-1}{3(m+2)}\right)\right)+O\left(s^{6}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{r} \frac{A}{\sqrt{1-A^{2}}} d s & =\frac{c}{m} \frac{r^{2}}{2}+\frac{c}{m} \frac{r^{4}}{4}\left(\frac{c^{2}}{2 m^{2}}-\frac{m-1}{3(m+2)}\right)+O\left(r^{6}\right) \\
& =\frac{c}{m} \frac{r^{2}}{2}+O\left(r^{4}\right)
\end{aligned}
$$

Consequently,

$$
f(x)=\int_{0}^{v(x)} \frac{A}{\sqrt{1-A^{2}}} d x=\frac{e}{m} \frac{r^{2}(x)}{2}+O\left(r^{4}(x)\right)
$$

Siace $\mathrm{P}^{\mathbf{1}}(\mathrm{x})$ is amooth on all $\boldsymbol{H}^{m}$, we conclude that $\boldsymbol{f}(x)$ is, too. $\nabla$

Remark 2.3 We conld not find a non-trivial global solution $f$ of Eq. (2.5) of the type $f(x)=\operatorname{Aar}(x)$ for $c=0$. In fact, if in Eq. (2.35) we set $e=0$, it hat as solation $\cong(r)=\kappa(\text { ainh } r)^{1-m}$ with $\kappa$ an arbitrary inuegration constant, which, for $\kappa \neq 0$, tends to $+\infty$ near the origin. Hence, $\boldsymbol{m}(r)(0,1]$. Than, it aeeme that we can formalate the following Bernstein-type conjecture:
Conjecture Let $f: H^{m} \rightarrow \mathbb{R}$ be a smooth map, anch that $\Gamma_{j} \subset H^{m} \times \mathbb{R}$ in a minimal graph. Then, $f$ ia a totally geodesic map.

We alno remark that the function $f$ given in Prop. 2.3 hae non-bounded $\|\nabla f\|_{\text {, }}$.

## REFERENCES

|Al/60] F.J. Almegren Jr., Same Interior Repularity Theoreme for Minimal Surfaces and an Exteneion of Dernetein's Theorem, Ann. of Math. 85, 277-292 (1960).
[Au/82] T. Aulin, Non-Linear Analygia on Manifolde, Momge-Ampdre Equations, Grundl. Math. Wiss. 252, Springer Veriag New York (1982).
|Ba-Ee/81| P. Baird and J. Eells, A Conserection Lav for Harmonic Maps, Geometry Symp. Utrecht 1980, Lect. Notes in Math. 894, 1-25 (1981).
|Bar/7a| J. L. Barbosa, Remarks on Stability of Mimimal Surfaces, An. Acad. Brasil. Ciènc. 50 (3), 293-297 (1978).
[B/27] S. N. Bermstein, Uber ein Geometrisehea Theorem und vaine An. wendung auf tie Partielle Differentialgleichungen vom Elliptisehen Typus, Math. Z. 26, 551-558 (1927).
[Be-Ga-Ma/71] M. Berger, P. Gauduchon, and E. Mazet, La Speetre d'uac Varidid Riemannienne, Lect. Nutes in Math. 104 (1971).
|Bo-DG-Gi/69] E. Bumbieri, E. de Giorgi, and E. Giusti, Minimal Comer and the Bernatein Problem, Inventionea Math. 7, 243-248 (1969).
|Cha/84| 1. Chavel, Eigenaluea in Riemannian Geometry, Academic Preas (1984).
[Ch/05] S. S. Chern, On the Curvatures of a Piece of Hyparaurface in Euelidean Space, Abh. Math. Sem. Hamburg 29, 77-91 (1905).

| [DG/05] | E. de Giorgi, Una Eatemaione del Teorema Al Barnatein, Ann. Seuola Norm. Sup. Pige 19, 79-85 (1985). |
| :---: | :---: |
| [DC-Pe/80] | M. do Carmo and C. K. Peng, Stable Complate Minimal Byparsurfaces, Proc. Beijing Symp. on Diff. Geom. and Diff. Eq. (1980). |
| \| $\mathrm{E}_{2} / 79$ \| | J. Eells, Minimal Graphe, Manuscripta Math. 28, 101-108 (1979). |
| [Be-Le/78] | J. Eells and L. Lemaire, A Report on Harmonic Maps, Ball. London Math. Soe. 10, 1-68 (1978). |
| [Ee-Le/83] | J. Eells and L. Lemaire, Selected Topico in Harmonic Maps, C.B.M.S. Reg. Conf. Seriet No. 50 A.M.S. (1983). |
| [Ee-Sa/64] | J. Eella and J. Sampaon, Harmonic Mappings of Riemannian Manifolde, Aw. J. Math. 88, 109-100 (1984). |
| [Fe/85] | M. J. Ferreira, Aplica̧̧ös Ramificadas Gonformes de Suporffiea de Riemann a Problemas Variacionais, Ph.D. Thesin, Science Faculty, Univ, of Lirbon (1985). |
| \| $\mathbf{F i}$-Sch/80\| | D. Fincher-Colbrie and R. Schoen, The Strucimer of Complate StaHe Minimal Surfaces in 3-Manifolda of Non-Negatiee Scalar Gur. eature, Comm. Pure and Appl. Math. XXXIII, 199-211 (1980). |
| [Fla/60] | H. F. Flandery, Remark on Mean Gurucalure, J. London Math. Soc. 11, 364-366 (1966). |
| [Fl/02] | W. H. Fleming, On the Oriented Plataam Problam, Rend. Circ. Mat. Palermo 11, 09-89 (1962). |
| \| $\mathrm{Fa} / 78$ \| | B. Fuglede, Harmanic Morphiomu betreen Ricmanaian Manjoldo, Ann. Inat. Fourier (Gremoble) 28, 107-144 (1978). |
| \|Ga/34] | M. Gafiney, A Special Stokea' Theorem for Complats Riemanmian Manifolds, Ann. of Math. 60 (1), 141-145 (1954). |
| [Gil-Tr/83] | D. Gilbarg and N. S. Trudinger, Elliplic Partial Difforantial Equatiome of Second Order, Springer Veriag Berilin, $2^{\text {ad }}$ edition (1083). |


| [Ga/74] | R. Gultiver, On the Esistence of a Heperamr/ace of Proseribed Moan Curvalure with a Giecn Boundary, Manuscripta Mash. 11, 15-36 (1974). |
| :---: | :---: |
| [Gı/83] | R. Gulliver, Necessary Conditiona for Submanifolde and Currenta with Preecribed Mean Curseturr, Sem. on Minimal Sabmanifolds, Ann. Math. Studies 103, Princeton Univ. Press, 225-242 (1983). |
| [ $\mathrm{He} / 55$ ] | E. Heinz, Üler Fläehen mit Einduatiger Projektion auf eina Ebene deren Krümmungen dureh Ungleichungen Eingescheanh Sind, Math. Annalen 129, 451-454 (1955). |
| [ $\mathrm{Hi} / 8.5$ ] | S. Hildebrandt, Harmonic Mappinga of Riemannian Manifolde, Momecantini 1984, Lect. Notes in Math. 1181, 1-117 (1985). |
| [Hi-Jo-Wi/80] | S. Hildebraudt, J. Jost, and K. O. Widman, Harmonic Mappingi and Minimal Sulmanifolda, Inventiones Math. 62, 209-298 (1980). |
| [E\%-OH/82] | D. Hofiman and R. Osserman, The Area of the Generaliond Geussian Image and the Stability of Minimal $S_{\text {wrfaces }}$ in $S^{n}$ and $\mathbb{R R}^{n}$, Math. Annalen 260, 437452 (1982). |
| [13/79] | T. Ishiara, A Mapping of Riemannian Manifolds which Presoroes Harmonic Functions, J. Math. Kyoto Univ. 19, 215-229 (1979). |
| [Ko-No/03/69] | S. Kobayashi and K. Nomizu, Foundetione of Differential Geometry, Intersc. Pub. New York, London, Vol. I (1963), Vol. II (1909). |
| [La-On/77] | H. B. Lawain and R. Osserman, Nom-Esiatence, Nom-Uniquereas, and Irregularity of Solutiona to the Minimal Surfact Syotem, Acta Math. 139, 1-17 (1977). |
| [Ma/79] | A. Machado, Tópicos de Andioe e Geomatria, Vol. I, Textone Nutas do C.M.A.F. 14 (1979). |
| [ $\mathrm{M} / \mathrm{B4}$ ] | M. Micalef, Stabl Minimal Suyfaces in Erechidean Space, J. Diff. Geom. 19, 57-84 (1984). |

[Mir/67] M. Miranda, Una Magioratione Integrele per ta Cursetura della Ipersuperfice Minimali, Rend. del Sem. Mat. della Univ. Padove 38, 91-107 (1967).
[Mo/54] G. B. Morrey, Second-Order EMliptic Syatems of Differential Equations, in "Contritutiona to the Theory of Partial Differential Equationan, Ann. of Math. Studies 35, Princetom Press, 101-159 (1954).
|Mo/60| G. B. Morrey, Mukiple Integrale in Calculue of Variatione, Grundl. Math. Wiss. 150, Springer Verlag Berlin (1960).
|Mos/61| 3. Moser, On Harnach'a Theorem far Enliptic Differential Equations, Comm. Pure Appl. Math. 14, 577-591 (1961).
|Os/69| R. Osserman, A Survey of Minimal Surfaces, Van Noatrand Math. Stadiea 25 (1909).
[Ru-Vi/70] E. A. Ruh and J. Vilms, The Tenaion Field of the Games Map, Trans. Am. Math. Soc. 149, 569-573 (1970).
[Se/80] I. M. C. Salaveana, Graphs wilh Paralis Mean Cureature, I.C.T.P.

[Sch-Si-Ya/75] R. Schoen, L. Simon, and S. T. Yau, Cursatura Eatimatea for Minimat Hypersurfaces, Acta Math. 184, 275-288 (1975).
[Si/68] J. Simons, Minimal Varieties in Riemanaian Manjolds, Ann. of Math. 88, 62-105 (1968).
[Sm/65] S. Smale, On the Morie Indes Theorem, J. Math. Mech. 14, 10491056 (1965).
[Sp/79] M. Spivak, A Comprihanaise Introduction to Differential Geometry, Vol. IV, Publish or Periah Inc. Berteley (1979).
[Ya/75] S. T. Yau, Iooperimatric Constanta and their Firat Biganalue of a Compact Manjfold, Ann. Sci. Ec. Norm. Sup. Paria B, 487-507 (1975).
[Ya/76] S. T. Yaa, Some Function-Theoretic Properties of Complete Riemannian Manifolds and their Applications to Geometry, Indiana Univ. Math. J. 25 (7), 659 -670 (1976).

## Part II

## CONFORMAL AND

ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [Ri-Sa/87]

## 1 Introduction

Let $f: M \rightarrow N$ be an immeraion where $M$ and $N$ are Riemannian manifolda with metric! $g$ reap. h. A natural problem ia to study relations between and $h^{*}=f^{*} h$, the induced metric on $M$ via $f$. For inatance, we can try to find out if, under some asaumptions on $f$ and the manifolds $(M, g),(\dot{N}, h)$, the two metrica $h^{*}$ and are conformally related, or, afortiori, if $h^{*}=g$, that is, if $f$ is an isometry. In the present work we give some aufficient conditionn to poaitively anower the former problem and ahow that a alight atrengthening of these providea a necessary and anficient criterion to solve the latter. In both casea we asame the existence of a special vector field on $N$, at least in a neighbourhood of $f(M)$, proving, anyhow, that this clans of vector feld in large enough to justify their use. As a aide product, we preaent a Liouville-type reant for $f$ harmonic and with finite energy (proposition 2). The core of thin work in in Sec. 3, in the form of theorems 1,2 and proposition 3. Some applications, in the more tranaparent caae $M$ compact, are given at the end of the same aection. In particular, proposition 4 should be compared with the main resulte of Chers and Haiung [Oh-Hs/63] and Haing and Rhodes [Hs-Rh/69].

## 2 Preliminaries and Formulae

Let ( $N, h$ ) be a Riemannian manifold and $U \subset N$ an open get.
Definition $A$ vector field $X$ defined in $U$ is asid to be almoat conformal, if there egiat amooth fanctions $\alpha, \beta: U \rightarrow R_{\text {, anch that the }}$ Lie derivative of $h$ with renpect to $\boldsymbol{X}, L_{X} h$, satisfies

$$
\begin{equation*}
2 a h \leq L_{X h} \leq 2 \beta A . \tag{1}
\end{equation*}
$$

$X$ in aid to be fiaite, if inf $a>-\infty$ and anp $\beta<+\infty$, and to be strongly almoar conformal, if it is flite and $\alpha>0$.

## Examplea

1. Any conformal vector field $X$ on $\boldsymbol{U}$ in almost conformal.
2. Any homothetic vector field $X$ on $U$ for which $L_{X} d$ ia poitive definite is atrongly almont conformal. For intance, in $\left(R^{\mathrm{z}},<,>\right)$ the porition vectar feld $X$ antiz fien $L_{X}<,>=2<,>$.
3. A procedure to construct almost conformal vector fielda in given by the following:

Proposition 1 Let $U \subset(N, h)$ be an open set supporting a real function $\phi$. La\& $X=\nabla \phi$ be its gradient and $\nabla \phi \phi$ ifo second fundamentel form. Then, $\alpha \boldsymbol{L} \leq \nabla_{\phi} \phi \leq$


Proof. Recall that, given any veetor fields $X, Y, Z, L_{X} h(Y, Z)=\left\langle\nabla_{Y} X, Z\right\rangle_{4}+$ $\left\langle\nabla_{Z} X, Y\right\rangle_{A}$. For $X=\nabla_{\phi}$, we heve $\left\langle\nabla_{Y} X, Z\right\rangle_{h}=\left\langle\nabla_{Y}(\nabla \phi)_{,} Z\right\rangle_{A}=Y(\nabla \phi, Z\rangle_{h}-$ $\left\langle\nabla_{\phi} \nabla_{Y} Z\right\rangle_{\star}=Y(Z \phi)-\nabla_{Y} Z(\phi)=\nabla_{d \phi}(Y, Z)$. Therefore, we obtain $L_{X} h(Y, Z)=$ $2 \nabla d \phi(Y, Z) . \nabla$

For instance, let $(N, h)$ be a complete manifold and $B_{R}(p)$ a regular ball,that in, $B_{R}(p)$ in a geodeaic ball of radius $R$ centred at $p \in N$ with the propertiea:
(i) $\sqrt{k} R<\frac{p}{i}$,
(ii) $C(p) \cap B_{R}(p)=0$,
where $k=\max \left\{0, \operatorname{sap}_{\ln _{n}(f)} K\right\}$ with $K$ the sectional carvature of $N$, and where $C(p)$ is the cut locus of the centre $p$. Due to a reaule of Hildebrandt, Kand, and Widman [Hi-Ka-Wi/77] (see also Ref. $|\mathrm{Hi} / 85|$, page 66, Th. 5.2, the second fundamental form of the function $\phi=\frac{1}{1} \rho^{2}$ with $\rho(\rho)=\operatorname{dirt}(\rho, p)$ atisfies, in $B_{R}(p)$,

$$
a_{k}(\rho) h \leq \nabla_{d},
$$

where $\epsilon_{\Delta}(t)=t \sqrt{k} \cot (\sqrt{k} t)$ for $0 \leq \ell<\frac{\pi}{\sqrt{k}}$. Furthermore, if $K \geq w, w \leq 0$ on $B_{R}(g)$, then, in $B_{R}(p)$,

$$
\nabla d \phi \leq \alpha_{-}(\rho)
$$

with $a_{\omega}(t)=t \sqrt{-\omega} \operatorname{coth}(\sqrt{-\omega} t)$ for $0 \leq t<\infty$. As a consequence, under the above anmomptionn the vector field $X=\rho \frac{d}{i n}=1 \nabla\left(\rho^{2}\right)$ ia strongly almoat conformal on $B_{R}(\boldsymbol{y})$. By the Cartan-Hadamand theorem, thir is particnlarly agnificant, if $\boldsymbol{N}$ ia simply connected and with non-positive aectional curvetaren. Indeed, in thia case any geodesic ball is regular.

The above diacnagion also jugtifies the terminology of the following.
Definition $A$ vector field $X$ defined in $U$ il asid to be ofromply conves, if there exists a a : $U \rightarrow \mathbb{R}$, such that info $>0$ and

$$
L_{X} h \geq 2 a h
$$

Again, if $B_{R}(p)$ is a regular ball in the complete manifold $(N, h)$, then $X=\rho \frac{g}{\partial_{f}}$ is strongly conver in the geodesic ball $B_{A}(p)$.

Let ( $M, \varphi$ ) be a second Riemannian manifold of dimension $m$ and $f: M \rightarrow N$ $a$ amooth map. The tension field $T$, of $f$ ia defined an (|Ee-Le/83|)

$$
T_{f}=\text { trace }, \nabla d f
$$

Given a atrongly convex vector feld $X$ in the open set $U \subset N$, we set $\nu=$ infa $>0$ and suppoase $f(M) \subset U$. Now we denote by $X$, the vector feld along $f$ and by $\nabla$, $\nabla^{\prime}$, and $\nabla^{f^{-1}}$ the connections on $T M, T N$, and $f^{-1} T N$, reapectively. Let $Z$ be the vector feld on $M$ defined by

$$
<Z_{x}, Y>_{f}=<\left\langle\|_{\pi}(Y), X_{f(s)}>_{\perp}, V Y \in T_{r} M_{1} x \in M .\right.
$$

Fining $x_{0} \in M$ and choosing $X_{1}, \ldots, X_{m}$ as an orthonormal frame of $(M, g)$ defined in a neighbourhood of $x_{0}$, such that $\nabla X_{i}\left(x_{0}\right)=0$, we have, at the point $x_{0}$,

$$
\begin{aligned}
& \left\langle\tau_{f}, X_{f}\right\rangle_{A}\left(x_{0}\right)=\sum_{i=1}^{m}\left\langle\nabla_{d}\left(X_{i}, X_{i}\right), X_{f}\right\rangle_{4}=\sum_{i=1}^{m}\left\langle\nabla_{X_{i}}^{f-1}\left(d f\left(X_{i}\right)\right\rangle_{m 0}, X_{j}\right\rangle_{m} \\
& \left.=\sum_{i=1}^{m}\left\{d\left((d)\left(X_{i}\right), X_{f}\right)_{m}\right)_{m_{0}}\left(X_{i}\right)-\left\langle d f\left(X_{i}\right), \nabla_{X_{i}}^{\prime-1} X_{j}\right\rangle_{A}\right\} \\
& =\sum_{i=1}^{m}\left\{d\left(<Z, X_{i}>_{i}\right)_{\infty}\left(X_{i}\right)-\left\langle d\left(X_{i}\right), \nabla_{d\left(X_{1}\right)}^{\prime} X\right\rangle_{A}\right\} \\
& =\operatorname{div}_{\mathrm{f}}(Z)\left(x_{0}\right)-\sum_{i=1}^{m} \frac{1}{2} L_{X} h\left(d f\left(X_{i}\right), d f\left(X_{1}\right)\right) \\
& \leq \operatorname{div}_{i}(Z)\left(x_{0}\right)-\sum_{i=1}^{m} \alpha\left(d f\left(X_{i}\right), d f\left(X_{i}\right)\right)_{h} \\
& =\operatorname{div}_{\mathrm{g}}(Z)\left(x_{0}\right)-\alpha\|d\|_{g}^{2}\left(x_{0}\right) \text {. }
\end{aligned}
$$

So we have obtained the formula

$$
\begin{equation*}
<\tau_{f}, X_{f}>_{n} \leq \operatorname{div}_{f}(Z)-\alpha\|d f\|_{f}^{1} \leq \operatorname{div}_{f}(Z)-\nu\|d f\|_{f} \tag{2}
\end{equation*}
$$

where $\left\|\left\|^{\prime}\right\|^{1}\right.$ ia the aquare of the Hilhert-Schmidt norm of the section $d \in C^{\infty}\left(T M^{*} \otimes\right.$ $f^{-1} T N$ ), $M$ being anpplied with the metric $f$.

Supposing next that $M$ in compact, we get by integratiog Eq. (2)

$$
\begin{equation*}
E(f) \leq-\frac{1}{2 \nu} \int_{M}<\tau_{f}, X_{f}>_{A} d V_{f} \tag{3}
\end{equation*}
$$

where $E(f)$ is the energy of $f$. Obwerve that, in case $(N, A)=\left(\mathbb{R}^{n},<,>\right), X$ in the position vector field, and $f$ in an isometry, Eq. (3) tranaforms imto the equality

$$
V(M)=-\int_{M}<H_{i} f>d V_{i}
$$

with $H$ the mean-curvature vector of the immeraion $f$ and $V(M)$ the volume of M. Hence, Eq. (3) can be thought to generalise a clasvical formula of Minkowaki on conver bodies.

Furthermore, from Eq. (3) we deduce that, if $f$ is harmonic, i.e. $T_{f}=0$, then $E(f)=0$ and $f$ is constant. This result generalises to the non-compact case in the following:

Proposition 2 Let $(M, g)$ le a complete, non-compact, orianted Riamanmian manifold, and $f: M \rightarrow U \subset(N, h)$ be a harmomic map of finite energy, where $U$ is an open eft supporting a atrongly conses victor field $X$. Let $y$ be some point in
 is conatant.

Proof. Let; be the 1 -form dual to the vector field $Z$ on $M$ appearing in Eq. (2), that it, $s(Y)=\langle Z, Y\rangle$, and let $\#$ be the Hodge atar operator. Then, $d * r=\operatorname{div}(Z) d V$, with $d V$, the volume element of $(M, f)$, and, wince $f$ is harmonic, Eq. (2) gives

$$
\begin{equation*}
\nu\|d r\|^{2} d V_{s}^{\prime} \leq d * \varsigma \tag{4}
\end{equation*}
$$

Let now $\|* \varepsilon\|$ be the norm of the $(m-1)$-form $\ddagger s$. Thes, $\|=s\|=\|s\|=\|Z\|_{\rho}$, but, from the definition of $Z$ and the Schwartz inequality, $\|Z\|_{\mathrm{f}} \leq\|\mathbb{f}\|_{\mathrm{g}}\left\|\boldsymbol{X}_{\boldsymbol{f}}\right\|_{\mathrm{a}}$. Therefore, applying Holder's inequality, we have
and, aince the energy of $f$ in finite,

$$
\frac{1}{t} \int_{E_{n}(g)}\|+s\|^{2} V_{t} \leq \sqrt{2 E(f)}\left\{\frac{1}{t^{3}} \int_{B_{i}(g)}\left\|X_{f}\right\|_{k}^{\mathcal{R}} d V_{t}\right\}^{\}} \underset{t \rightarrow+\infty}{\longrightarrow} 0
$$

By the Gafiney-Yan extension of Stoken' theorem (ree the eppendix of Ref. [Ya/70]), there exiate a sequence of compact domains $K_{i}$ in $M_{1}$ auch that $K_{i} \subset K_{i+1}$,
$Y_{i} K_{1}=M$, and $f_{H_{1}}{ }^{d} \xi_{i \rightarrow+0} 0$. Applying thia to $E 4$. (4) we dednce $E(f)=0$, i.e. $f$ is constant.

Remark After careful inspection of the proof of Prop. 2 we couclude that it ia auficient to require $\boldsymbol{U}$ to support a aricily conisa vector field inatead of a strongly corver one. Such vector fields antisty $L_{X} h \geq 2 a h$ with $a>0$.

Ramark In cane $U=B_{r}(p)$ and $X=\rho \frac{\partial}{\partial j}$ as in Sec. 2, Ex. 3, Prop. 2 should be compared with the reaulta of Karp |Kar/82]. Indeed, if $N$ is simply connected, complete, and with non-positive sectional curveturea, $\rho^{2}$ in amooth on all of $N$, $\nabla d\left(\rho^{2}\right) \geq 2 h$, and $\|\nabla \rho\|_{\Delta}=1$ almost everywhere. Thus, it appeari that our
 $f)^{2} d V,=0$ play the roles of boundednean of $f(M)$ resp. of moderate volume growth of $M$ in Cor. 4.1.1 of Ref. [Kar/82]-

Let now $f:(M, g) \rightarrow(N, h)$ be an immersion and $M$ be oriented with dim $M=$ m. We tet

$$
h^{\bullet}=f^{\bullet} h
$$

for the pulled-back metric. Let $a$ be the ratio of the volome elementa of $h^{*}$ and $\boldsymbol{f}$, ao that a ia the poaitive function defined by

$$
d V_{A}=s d V_{\mathrm{i}}
$$

Then, $\|\Delta\|_{j}^{3}$ and w are related by the inequality

$$
\begin{equation*}
m\left\|^{\frac{2}{6}} \leq\right\| d \|_{\}}^{2} \tag{5}
\end{equation*}
$$

at any point $\boldsymbol{y} \in \boldsymbol{M}$, with equality holding, iff

$$
\begin{equation*}
h^{*}=\lambda^{2} g \tag{6}
\end{equation*}
$$

for aome non-zero $\lambda$ at $\mathbf{y}$. In order to prove these atatementa, we choose at each point $\geq \in M$ an orthonormal banin $X_{1}, \ldots, X_{m}$ on $T_{s} M$ which diagonalinen $\boldsymbol{h}^{*}$, i.e. $<X_{1}, X_{j}>_{A^{*}}=<d_{i}\left(X_{1}\right), d_{a}\left(X_{j}\right)>_{a}=\delta_{i j} \lambda_{i}$. As $d V_{a}=V_{a}\left(X_{1}, \ldots, X_{m}\right) d V_{a}$, we have $u=d V_{\iota^{\circ}}\left(X_{2}, \ldots, X_{m}\right)=\sqrt{\operatorname{det}\left\langle X_{1}, X_{j}\right\rangle_{A^{\prime}}}=\sqrt{\lambda_{1} \cdots \lambda_{m}}$. From the well-hnown geometric-arithmetic-mean inequality $\left(a_{1} \ldots a_{m}\right)^{\frac{1}{m}} \leq \frac{1}{m}\left(a_{1}+\cdots+a_{m}\right)$
for any non-negative real $a_{1}$, with equality iff $a_{0}=a_{j} \quad V_{i}, j$, and néng $\left\|\left\|\|_{i}=\right.\right.$ $\lambda_{1}+\cdots+\lambda_{m}$, we obrain Eqs. (5) and (8).

An afinal notation, we denote by $H$ the mean-earvature vector of the inometric immerxion $f:\left(M, h^{\circ}\right) \rightarrow(N, h)$.

## 3 Main Results

Given a strongly almost conformal vector beld $X$ on $U$, we define

$$
\theta=\frac{\beta}{\alpha} \geq 1
$$

where $\alpha$ and $\beta$ are an in Eq. (1).
Theorem 1 Let $(N, g)$ be an $m$-dimencional, with $m \neq 2$, oriented camplete Riemannian manifold, $U \subset(N, h)$ be an open oct ampporting a atrandy almaat conformal osctor field $X$, and $f: M \rightarrow U$ be an immesion satiofying
(A) $E(f)<+\infty, h^{*}$ in complete, and $\left\|X_{f}\right\|_{A},\| \|\| \|_{A} \in L^{2}(M, g)$.

If
(i) $\left(T_{j}-m \Perp H, X_{f}\right)_{A} \geq 0$ and
(ii) $\leq 0 s^{\circ}=$ for $m \geq 3$,
(iii) $\geq 0$ for $m=1$,
then $f$ is conformal with $A^{\circ}=00^{2}$.

Proof. With notations analogous to thase used in Sec. 2, we get

$$
\begin{equation*}
\left\langle m H, X_{f}\right\rangle_{A}=\operatorname{div}_{H^{\prime}}(W)-\sum_{i} \frac{1}{2} L_{X} h\left(d f\left(X_{1}\right), d\left(X_{1}\right)\right) \geq \mathrm{div}_{n}(W)-m B_{1} \tag{7}
\end{equation*}
$$

where $\left\{X_{1}\right\}$ in an orthonormal basis of ( $M, A^{*}$ ) and $W$ in the vector feld on $M$ defined by $\langle W, Y\rangle_{\mathrm{a}}=(\mathbb{}=(Y), X\rangle_{\mathrm{A}}, \forall Y \in T_{-} M, x \in M$.
Maltiplying Eq. (7) by a and anbtracting the result from Eq. (2), we obtain

$$
\begin{equation*}
\left\langle\tau_{f}-m 凶 H, X_{f}\right\rangle_{A} \leq \operatorname{div},(Z)-थ \operatorname{div}_{A^{\prime}}(W)-o\|d f\|_{s}^{3}+m \beta \varepsilon . \tag{8}
\end{equation*}
$$

Let un consider the cane $m \geq 3$. From $m \leq 010 \leq 1$ (asumption (ii)) and aince
 Hence, Eq. (5) and $0 \geq 1$ give $u \leq \frac{1}{f}=\frac{1}{2} \leq \frac{1}{m f}\|d\|_{;}^{3} \leq\|d d\|_{\text {; }}$. Therefore, an
 Using the definition of $W$ and applying the Schwara inequality we get $\|W\|_{\Delta} \cdot \leq$ $\sqrt{m}\left\|X_{f}\right\|_{A}$. So, an we manmed $\left\|X_{f}\right\|_{A} \in L^{2}(M, g)$ (conditions (A)), we obtain $\left\|\|W\|_{A^{*}} \in L^{\prime}(M, \theta)\right.$ or, equivilently, $\| W \|_{A}, \in \dot{L}^{1}\left(M, h^{*}\right)$. Furthermore, the first part of Eq. (7) and the properties of $\boldsymbol{L}_{x} h$ yield

$$
\left\langle m H, X_{f}\right\rangle_{\Delta} \leq \operatorname{div}_{n} \cdot(W)-\alpha m .
$$

Combining this with Eq. (7) and multiplying ly w we arrive at

$$
\because\left(m H, X_{f}\right)_{4}+\alpha m=\leq \operatorname{div}_{k}(W) \leq 』\left(m H, X_{f}\right\rangle_{\Delta}+\beta m z .
$$

Thas, since $\approx\|H\| \in L^{\mathbf{2}}(M, g)$, we immediately deduce that $\operatorname{adiv}_{k}(\mathbb{W}) \in L^{\prime}(M, g)$ or, equivaleatly, $\operatorname{div}_{A^{\prime}}\left(W^{\prime}\right) \in L^{\prime}\left(M, h^{*}\right)$. Finally, as in the proof of Prop. 2, we have $\|Z\|, \in L^{1}(M, g)$. Apphying the Gaffery-Yau ertension of Stolea' theorem |Ge/54] [Ya/76], we find a aequence of compact domains $K$, telescoping to $M$, anch that

$$
\int_{K_{1}} \operatorname{div}_{A^{\prime}} \cdot(W) d V_{t}=\int_{K_{1}} \operatorname{div}_{A^{\prime}}(W) d V_{A^{\bullet}} \rightarrow+\infty \int_{M^{\prime}} \operatorname{div}_{A^{\cdot}}(W) d V_{A^{\bullet}}=0
$$

and

$$
\int_{K_{4}} \operatorname{div}_{f}(Z) d V_{i} \rightarrow+\infty
$$

Ueing annmption (i), integrating Eq. (8) over $K_{i}$, and letting $i \rightarrow+\infty$ we get

$$
\begin{equation*}
\int_{M}\left(m \beta u-\alpha\|d f\|_{\xi}^{2}\right) d v_{g} \geq 0 \tag{9}
\end{equation*}
$$

Now, from Eq. (5) we obtain

$$
m \beta u-\alpha\|d\|_{p}^{1} \leq m\left(\beta u-\alpha w^{\frac{x}{2}}\right)=m \alpha\left(\theta u-u^{\frac{2}{2}}\right),
$$

but amomption (ii) impliez 0 - $\mathbf{x}^{\frac{1}{=} \leq 0}$. Hence, from Eq. (9) and the above inequality we conclude $a\|d\|_{i}^{3}=m \beta$, i.e. $\|d\|_{;}^{3}=m \theta=m \|^{2}$. This givea
 $\cdots=0 i^{\circ}=$ and thun

$$
\begin{equation*}
h^{0}=\theta x^{2}-g . \tag{10}
\end{equation*}
$$

The case $\boldsymbol{m}=1$ is proved analogoualy.
Remarka If $M$ is compact, condition (A) are autumatically antiofed and the
condition $\operatorname{anp} \beta<+\infty$ can be dropped. Moreover, from the proof of Th. 1, $\|H\|_{A} \in L^{\mathbf{1}}(\boldsymbol{M}, \boldsymbol{\rho})$ ia clearly satirfied, if $\|\boldsymbol{H}\|$ in bounded. Thin gananteen the convergence of the integral $\int_{N^{\prime}} \operatorname{div}_{b^{\prime}}(W) d V_{A^{*}}$. Finally, one may subatitute this condition by $\left\|\boldsymbol{T}_{f}\right\|_{A} \in L^{1}(M, \theta)$ and work out a reasoning aimilar to the one presented, uning now $\operatorname{div}_{\mathrm{n}}(Z) d V_{f}$. The ame remarkn apply to the next reanlta.

In what follows, conditions (A), (i), (ii), (iii) aways refer to the aneag given in Th. 1. As expected, the cane $m=2$ is apecial.

Propasition $\mathbb{S}$ Let $(N, \theta)$ de an oriented complete surface, $U \subset(N, h)$ an open eet supporting a atrongly conformal (i.e. a $=\boldsymbol{\beta}$ ) isetor field $X$, and $f: M \rightarrow U$ an immermon actiafring ( $A$ ) with $\leadsto \in L^{\prime}(M, \theta)$. Then, $f$ in conformal, iff (i) holda with $m=2$.

Proof. A simple modification of the previous proof gives the sufticient part. In fact, in this case we immediately have from Eq. (5) $2 m \leq\|d\|^{2}$, obtaining Eq. (9) as well. A, $2 \beta u-\alpha\|d\|_{;}^{3}=\alpha\left(2 u-\|d\|_{j}^{3}\right)=0$, we conclude from Eq. (6) that $f$ il conformal with $\boldsymbol{h}^{*}=\mathbf{\mu}$.
Now we prove necessity. Given a conformal immersion $/:(M, g) \rightarrow(N, h)$, the following formula ia well-known [Ho-Os/82]:

$$
\begin{equation*}
n A=\frac{1}{\sigma} \tau_{f}+\frac{t n-2}{\theta} d\left(\nabla_{i} \log \sqrt{\sigma}\right), \tag{11}
\end{equation*}
$$

where $m=\operatorname{dim} M, k^{*}=\sigma g$, and $\nabla$, is the gradient w.r.t. $g . S o$ if $M$ is a aufface and $f$ is conformal, then $u=\sigma$ and, from Eq. (11), $\mathcal{T}_{f}-2 』 B=\boldsymbol{T}_{f}-\boldsymbol{T}_{f}=0$, which prover neceasity of (i).

Theorem 1 and its proof, together with Prop. 3, give:
Theoram 2 Let $(M, y)$ be an $m$-dimentional, oriented, complete Riemanaian manifold, $U \subset(N, h)$ be am open set aupporting a atrongly conformel scetor fialde $X$, and $f: M \rightarrow U$ be an immersion satia/ying (A) (with $£ \in L^{1}(M, g)$, if $m=2$ ). Then, $f$ is an ieometry, iff
(i) $\left\langle T_{1}-m u H, X\right\rangle_{1} \geq 0$ and
(ii) $\leq 1$, that is, $f$ is volume decreacing for $m \geq 3$,
(iii) $\llbracket \geq 1$, that is, $f$ is wodume inereasing for $m=1$,
(iv) $¥=1$, that is, $f$ is wolume preserving for $m=2$.

Proof. Necessity ia obvious. Aa for aufficiency, since $X$ ia conformal, $=1$ and, for $m \geq 3$, formula ( 10 ) gives $h^{\bullet}=g$, i.e. $f$ is an inometry. The other canen are anslogota.

Remark Theorem 2 wan proved in Ref. $[\mathrm{Ri} / 87 \mid$ under the assmotion ( $N, \mathrm{~h})=$ ( $\mathbb{R}^{\mathrm{E}},<,>$ ), $X$ is the porition vector field, and $\boldsymbol{M}$ is compact.

Consider now the case where a atrongly almost cumformal vector field $X$ hat the additional property infa $=\nu>0$. Set $\mu=\operatorname{rup} \beta$ and $\bar{\theta}=\mu \geq 1$, which in a constant. Replacing by $\hat{\theta}, a$ by $\nu$, and $\beta$ by $\mu$ in Th. 1 , thus obtaining the correaponding conditiona ( i ), ( $\overline{\mathrm{ii}}$ ), (iii), we can formulate the following atrengthened theorem:

Theoram s Lef $(M, f)$ be an m-dimensional, with $m \neq 2$, oriented, complete Riemanmian manifold, $U \subset(N, h)$ be an open sef ampporting a atronply almosi conformal ecetor field $X$ with the propertyinfa> 0 , and $f: M \rightarrow U$ be an immer. eion eatiofying condition (A). If (i) and (ii) or (iii) hold, than $f$ is an isometry and $X$ is homothetic.

Proof. The proof of Th. 1 goes through till Eq. (10), which now becomes

$$
\begin{equation*}
h^{*}=n^{2} \tag{12}
\end{equation*}
$$

 Tf, vaing Eq. (11), we obtain

$$
\begin{equation*}
\left\langle\tau_{f}-m=B, X_{f}\right)_{4}=\lambda_{1-2}^{n}\left(1-j^{-1}\right)\left(m H, X_{f}\right)_{4} \tag{18}
\end{equation*}
$$

Combined with Eq. (7) this gives
 yield

$$
\begin{equation*}
0 \leq-\|^{\frac{1}{2}}\left(1-\delta^{-1}\right) \int_{M} \Phi d V_{V^{*}} \leq 0 \tag{15}
\end{equation*}
$$

an $\geq$ 1. Comequently, $=1$, that is, $X$ is homothetic and, from Eq. (12), $f$ is an inometry. $\nabla$

Next we give an application of Theorem 2.

Propoaition $\&$ Let $i:\left(N^{\prime}, h^{\prime}\right) \rightarrow(N, h)$ be an isometric immeroion of an oriented manifald $N^{\prime}$, with $\operatorname{dim} N^{\prime}=m$ and $i\left(N^{\prime}\right) \subset U$ an open set in $N$ supporting a canformal uector field $X$ and having the property $o>0$ on $U$. Let ( $M$, ) be an mdimenaional, compaet, ariented Riemannian manifald and $F:(M, g) \rightarrow\left(N^{\prime}, h^{\prime}\right)$ be an orientation-presersing harmonic diffeomorphiam with ratio of the volume elementa $\quad$. Let $\nabla$ di be the second fundamental tensor of i: $N^{\prime} \rightarrow N$ and $H$ its mean-curiature sector field. Then, $F$ is an isometry, iff
(1) $\left\langle\text { irace, } \nabla \mathbf{V d}(d F, d F)-m y H, X_{i o F}\right\rangle_{A} \geq 0$ and
(2) $F$ is colume decreasing for $m \geq 3$,
(9) $F$ is edume presersing for $m=2$,
(4) $F$ is eolume iscreseing for $m=1$.

Proof. Let $f=i$ o F. Since $i$ in an isometric immersion and $\operatorname{dim} N^{\prime}=\operatorname{dim} M$, a atandard composition formula of Eellg-Sampton [Ee-Sa/64] gives

$$
\tau_{f}=\tau_{r}+\text { trace }, \nabla \Delta i(d F, d F) \text { and } H_{f}=H
$$

where $H_{f}$ is the mean-curvature vector with respect to $f$. Moreover, $F$ ia hermonic and the ratio $z_{j}$ of volume elements w.r.t. $f$ antiafies $\varepsilon_{j}=v_{\text {, }}$ which yields

$$
\left\langle T_{f}-m \backsim H_{f}, X_{f}\right\rangle_{\mathrm{h}}=\left\langle\text { trace, } \nabla d i(d F, d F)-m \backsim B, X_{i o F}\right\rangle_{\mathrm{a}}
$$

Since $f$ is an isometry, iff $F$ is an, the result followa immediately from Th. 2. $\boldsymbol{Q}$

Remark Proposition 4 generalises the main reault of Hsiung and Rhodes [HeRh/68] (and, earlier, of Chern and Hsing |Ch-Ha/63|), which in our formalation can be stated in the form:
Let $F:(M, \phi) \rightarrow\left(N^{\prime}, A^{\prime}\right)$ be a harmonic, volvme-preserving diffeomorphimu. Let $x:(M, g) \rightarrow(N, h)$ and $i:\left(N^{\prime}, h^{\prime}\right) \rightarrow(N, h)$ be inometric immeraiona of compact anbmanifolds into the Riemannian manifald ( $N, A$ ) which admite a atrongly conformal vector feld $X$. If $\left(T_{f}-m H,, X_{f}\right)_{\Delta} \geq 0$, with $f=i$ o $F$, then $F$ is an inomery.

## REFERENCES

| \|Ch-Ha/63| | S. S. Uhern and C. G. Hsiung, Oh the Isomairy of Compaet Submanifolde in Euclidean Space, Math. Annalen 119, 278-285 (1963). |
| :---: | :---: |
| [Be-Le/83] | J. Eelle and L. Lemaire, Selected Topics in Harmonic Maps, C.B.M.S. Reg. Gonf. Series No. 50 A.M.S. (1983). |
| \|Ga/54] | M. Gaffiney, A Special Stokeq' Theorem for Completi Riemannian Manifolds, Ann. of Math. 60 (1), 141-145 (1954). |
| [ Hi -Ka-Wi/77] | S. Hildebrandt, H. Kaul, and K. O. Widman, An Esistanee Theory for Harmonic Mappinge of Riemanmian Manifolds, Acta Math. 138, 1-16 (1977). |
| [ $\mathrm{El} /$ /8] ${ }^{\text {] }}$ | B. Hildebrande, Harmonie Mappinge and Minimal Immersiona, Lect. Notes in Math. 1181 (1985). |
| [ $\mathrm{Ho-O} / 82$ ] | D. Hoffimen and R. Osserman, The Area of the Generalised Gano. inan Image and Stability of Minimal Surfaces in $S^{\boldsymbol{*}}$ and $\mathbb{R}^{\boldsymbol{*}}$, Math. Annalen 260, 437-452 (1982). |
| [ $\mathrm{Ha}-\mathrm{Rh} / 08$ ] | C. C. Heimng and B. H. Rhode』, Lsometries of Compact Submanifolde of a Riemannian Manifold, J. Diff. Geom. 2, 9-24 (1908). |
| [Ka/82] | L. Karp, Subharmonic Functions on Real and Gomplas Manifolde, Math. 2. 179, 535-554 (1982). |
| \|Ri/87T| | M. Rigoli, On Immersed Gompact Submanifold of Evelidean Spact, to appear in Proc. Am. Math. Soc. (1987?). |

|Ri-Sa/87] M. Rigoli and I. M. G. Salavessa, Conformal and Jıometric Im. mersions of Ricmannian Manifolds, to appear in Math. Z. (1987).
[Ya/76] S. T. Yau, Some Function. Theoretic Properties of Gamplete Riemannian Manifolde and their Applications to Geomatry, Indiana Univ. Math. J. 25, 659-670 (1976).

Part III

## A VARIATIONAL PROBLEM AND A RELATED

BERNSTEIN-TYPE THEOREM IN CONFORMAL GEOMETRY

## Chapter 0

## INTRODUCTION

Conformal Geometry is concerned with the properties of figures and objects of $S^{\mathbf{n}}$, invariant ander the action of the Mübius group, that $\mathrm{in}_{\mathrm{i}}$ invariant under an arbitrary conformal transformation of the sphere $S^{n}$ equipped with its usual Riemannian atracture of conatant positive sectional carvature. Thin geometry was first introduced by Elie Cartan [C/55]. Here, we review in Cb. 1 the geometry of the Möbius apace $S^{a}$ and the indaced comformal atructare of an immersed submanifold, deacribed by, among othera, Schiemangk and Sulanke |Sch-Sa/80], Sulanke [ $\mathrm{Sa} / 81$ ], Bryant [ $\mathrm{Br} / 84$ ], and Rigoli [Ri/87], which auzhora ase Cartan's method of mosing frames . Faithful versions of this method can be found in Refs. [Je/77] and [ $\mathrm{Sa}-\mathrm{Sv} / 80$ ].

Some of the conformal invariants in Riemannian geometry can be interpreted an invariante of conformal geometry. More precinely, we can compare the geometries of submanifolds in the Eaclidean apace $\boldsymbol{F}^{n}$ and of those of the Möbius apace $S^{n}$, thinking of $S^{\boldsymbol{n}}$ an $\mathbb{R}^{n}$ with a point at infinity through atereographic projection. For example, the Willmore integrand for immersed sarfaces $\boldsymbol{F}: \boldsymbol{M} \rightarrow \boldsymbol{R}^{\mathbf{1}}$ into the 3-dimensional Enclidean apace, which in inveriant ander conformal transformations of $\mathbb{R}^{\boldsymbol{\prime}}$ (plas the "point at infnity"), can be interpreted as the Riemannian verion of a conformally invariant 2 -form $\Pi_{\text {p }}$ on $M$ endowed with the indaced conformal atracture by the Mübias apace $S^{\mathbf{t}}$. In this way, Bryast [Br/84] otadied the Willmore functional and the asouciated variational problem, deriviag ita Ealer-Lagrange equation. The critical pointe are called Willmore immeraed aorfaces. This procedure allowed Rigoli $[\mathrm{Ri} / 87]$ to generalive in a natural manner the concept of Willmore inmeraed anbmanifolda $f: M^{m} \rightarrow S^{-}$of the Möbias apace $S^{\text {a }}$ a critical pointa of the variational problem annuciated with a functional $\boldsymbol{W}(f)$.

However, he only derived the Enler-Lagrange equation for the cage $m=2$ and $n$ arbitrary. In this work, vis. in Ch. 2, we will aolve for the Euler-Lagrange equation for any dimension $m \leq n$. This variational problem is related to the one of a different conformally inveriant functional, involving the conformal Gauat map $y_{f}: M^{m} \rightarrow Q_{m \rightarrow m}\left(\mathbb{R}^{m+1}\right)$ for an immernion $f: M^{m} \rightarrow S^{m}$. Thin rehation was firat pointed out by Bryant [Br/84], in the $m=2, n=3$ ease, and by Rigoli |Ri/87|, for $m=2, n \leq 3$.

Alao, in Oh. 2, we wil solve a Bernstein-type problem for Willmore hypersurfacea of $S^{\prime \prime}$, which generalises the one solved by Rigoli $\mid \mathrm{Ri} / \mathrm{sa}$ ] for anfacea of $S^{3}$.

Finally, in Ch. s, we compate the second variation formala for Willmore aurfacen immeraed into a apace furm, in the contert of Riemannian geometry. Eerlier, this wan done by Weiner [We/78] in the particular case where $M^{1}$ is a minimal surface of $S^{\mathbf{4}}$.

Throughout this part we use the index-summation convention on repeated indices.

## Chapter 1

## THE CONFORMAL GEOMETRY OF SUBMANIFOLDS OF $S^{n}$

### 1.1 The Geometry of the Möbius Space

### 1.1.A The Infinitesimal Conformal Transformations of $\boldsymbol{R}^{\boldsymbol{n}}$ and $S^{n}$

Two Riemannian manifolds ( $M, f$ ) and ( $N, h$ ) ase said to be conformally equivalent, if there evina a diffeomorphism $\phi: M \rightarrow N$, such that $\phi^{\circ} h=e^{2 \rho} g$, where $\rho$ is a function on $\boldsymbol{M}$. If $(N, \boldsymbol{k})=(\boldsymbol{M}, \boldsymbol{q})$, uuch a diffeomorphiam $\phi$ ia called a conformal tranformation of ( $M, g$ ). ( $M, g$ ) is said to be conformally flat, if it is locally conformally equivalent to a flat Riemannian space. Conformal flatneas is well-known to be equivalent to the vanishing of the Weyl conformal carvature tenaor, if dim $M>3$. For example, all the Riemannian manifulda with conatant rectional curnture are conformally flat. A vector feld $\boldsymbol{X}$ on $\boldsymbol{M}$ is called conformal (or a conformal infinitesimal transormation), if the lacal one-paraneter group of trameformations genersted by $\boldsymbol{I}$ consists of local conformal diffeomorphisme. The vector feld $\boldsymbol{X}$ ia conformal, if $L_{X g}=\mu \boldsymbol{g}$, for some function $\boldsymbol{\mu}$ on $\boldsymbol{M}$. The conformal vector field, form a Lie algebra. Then, we bave the following well-known resulta (ree e.g. Ref. |Ko-No/63|, notea 11,9; Ref. [Ib/85], pagen 88,89; Ref. [Ei/04], page 285):

Proponition The group of all conformal traneformations of a consected $n$-dimensionel Ricmanaian manijold $N$ is a Lie group of dimenaion test than or equal to
 the complete conformal sector field on $\boldsymbol{N}$. The Lie elgebre of the conjormal eector
fielde (not necenarily complete) of any Riemanmian manifold of dimancion m $=3$, or of any conformally flat Riemannian manifold of dimension $n>3$, has dimension equal to $\frac{(n+1)(a+3]}{3}$, and only in these cases.

Thun, for all $n \geq 3$, the dimenaion of the Lie agebra of the conformal vector fields of $S^{n}$ and of $\boldsymbol{R}^{n}$ attains the maximum value $\frac{(\operatorname{man})(n+2)}{3}$, In'fact, we may obtain the infinitesimal conformal transformations of the $n$-sphere from those of the Euclidean space ( $\mathbb{R}^{\mathrm{m}},<, \gg_{\text {a }}$ ) via stereographic projection, which in a conformal diffeomorphism. We recall that a vector field $X=\left(X^{1}, \ldots, X^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ of the n-Euclidean space is conformal, iff it in of the form

$$
\begin{equation*}
x_{\left(s^{\prime}, \ldots, r^{-1}\right)}^{\prime}=\xi^{j}\left(\frac{1}{2}\|x\|^{s} \delta_{0 j}-x^{i} x^{j}\right)+D_{j}^{\prime} x^{\prime}+a x^{\prime}+v^{i} \tag{1.1}
\end{equation*}
$$

where $\left[D_{j}^{\prime}\right]$ is a given shew-symmetric matrix, $\xi^{j}, a$, and a' are given constanta, and where $\|x\|^{2}=x^{1^{2}}+\cdots+x^{n}[1 b / 85] \mid[\mathrm{He} / 75]$. Ome ean prove thia by simply checking that auch vector fields, which form a vector apace of dimenaion $\frac{(n+1)(n+1)}{3}$, aatiff $L_{I}<,>_{n}=\mu<,>_{n}$, for aome function $\mu$. A concige way of writing $\boldsymbol{X}$ given in Eq- (1.1) in

$$
\begin{equation*}
X_{n}=\frac{1}{2}\|x\|^{2} \xi-<\xi, x>_{n} x+D(x)+a x+0 \tag{1.2}
\end{equation*}
$$

where $\varepsilon=\left(\xi^{1}, \ldots, \xi^{-}\right), v=\left(v^{\prime}, \ldots, v^{\bullet}\right) \in R^{*}, D$ in a eelf-adjoint linear operator, and $a \in \mathbb{R}$. Under the manal identification $\mathbb{R}^{n}$ m $T_{x} \mathbb{R}^{n}$ for each $x \in \mathbb{R}^{n}$, which identifle the canonic basis $e$, with the diferential operatora $\frac{0}{\sigma^{T},}$ a araudard baga of the Lie algebra of these vector field is given by

$$
\begin{aligned}
& P_{i}=\frac{\partial}{\partial x^{i}}, \quad M_{i j}=x^{i} \frac{\partial}{\partial x^{i}}-x^{i} \frac{\partial}{\partial x^{j}}, i<j \\
& K_{i}=\left(\frac{1}{2}\|x\|^{2} \delta_{i j}-x^{i} x^{j}\right) \frac{\partial}{\partial x^{j}}, \quad D=x^{i} \frac{\partial}{\partial x^{i}}
\end{aligned}
$$

The linear conformal group of $\mathbb{R}^{n}$ is the $\left(\frac{n(n-1)}{2}+1\right)$-dimensional group $C O(n)=$ $O(n) \times \mathbb{R}^{+}$with composition law given by $(A, r) \circ(B, s)=(A B, r s)$. We can identify $C O(n)$ with the subgroup of the invertible $(n+2) \times(n+2)$ matrices

$$
O O(n) \cong\left\{\left[\begin{array}{ccc}
r^{-1} & 0 & 0  \tag{1.3}\\
0 & A & 0 \\
0 & 0 & r
\end{array}\right]: A \in O(n), r>0\right\}
$$

The Lie agebra of $\mathrm{CO}(\mathrm{n})$ in given by

$$
\begin{aligned}
\operatorname{co}(n)=0(n) \times \mathbb{R} & =\left\{D+a I_{n}: D \text { in skew-symmetric, } a \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{ccc}
-a & 0 & 0 \\
0 & D & 0 \\
0 & 0 & a
\end{array}\right]: D \in O(n), a \in \mathbb{R}\right\} .
\end{aligned}
$$

The affine conformal group of $R^{n}$ in the groap of dimension $\frac{\sin +1}{8}+1$

$$
\mathbb{R}^{n} \times O O(n) \cong\left\{(Z,(A, r))=\left|\begin{array}{ccc}
r^{-1} & 0 & 0  \tag{1.4}\\
r^{-1} Z & A & 0 \\
\frac{1}{r^{-1}} Z Z & Z A & r
\end{array}\right|, \begin{array}{l}
A \in O(n) \\
r>0 \\
Z \in R^{-}
\end{array}\right\},
$$

where $Z$ is a colnmn vector and ' $Z$ denoter itu tranaposed, with composition law $(Z,(A, r)) \circ(W,(B, a))=(Z+r A W,(A B, r f))$ and with Lie dgebra

$$
\mathbb{R}^{-} \times \mathcal{C O}(n) \subseteq\left\{\left\{\left|\begin{array}{ccc}
-\mathbb{1} & 0 & 0 \\
0 & D & 0 \\
0 & v & a
\end{array}\right|: D \in \mathbb{O}(n), a \in \mathbb{R}, v \in \mathbb{R}^{-}\right\} .\right.
$$

The affine conformal group acta trassitively on the left on $R^{\prime \prime} \mathrm{as}(\mathrm{Z},(A, r))(\nabla)=$ $Z+r \boldsymbol{A}(w), \forall \boldsymbol{v} \in \boldsymbol{R}^{\prime}$, being the group of all conformal tranformations of the Enclidean apace $\mathbb{R}^{n}$. Thingroup is alac called the group of aimilarilies and consiata of tranalations, orthogonal mapa, and multiplicationa by a non-zero constant. In fect, the elemente of $R^{\mathbf{n}} \times \mathrm{Ca}(\boldsymbol{n})$ conititate all the romplete conformal vector felds of $\mathbb{R}^{n}$ : the element ( $v, D+a I_{n}$ ) is identifed with the conformal vector feld $\boldsymbol{X}_{z}=\boldsymbol{D}(x)+a x+\mathbf{v}$. The Killing vector fields of $\boldsymbol{R}^{\mathbf{\prime}}$, i.e. the vector fielda $\boldsymbol{X}_{\text {, anch }}$ that $L_{X}<,>_{n}=0$, or, equivalently, the onea that generate local one-parameter groupe of isometries, are precisely the vector fielde of the form $\boldsymbol{X}_{\mathrm{z}}=\mathrm{D}(\mathrm{z})+0$ that conctitute the elements of $\mathbb{R}^{\mathbf{n}} \times \mathbf{D}(n)$. Note that the conformal vector fields of the type $X_{\mu}=\frac{1}{i}\|x\|^{2} \xi-\langle\epsilon, x\rangle$. $x$ are not complete. As we will ree, these onea generate conformal traumformationa defined only on $\boldsymbol{R}^{-} \backslash(\boldsymbol{p}\}$, "mapping" the miming point $p$ to infinity and vice veran, which are almo known a origit-preserving invertiona. By a theorem of Liouville ( (ee e.g. Ref. $[\mathrm{Pu} / 81]$, page 172), a cuuformal tranafurmation of $\mathbb{I n}^{n}$ nupa a hyperiphere or a hyperplane to a byperaphere or a byperplane, if $\mathrm{n} \geq 3$.

On the other hand, the n-aphere $S^{n}$ in an example where the group of cunformal tranformations hat the maximum dimension $(n+1)(n+2)$ and all the conformal
vector fields are complete. Let us now choome the sheregraphic projection

$$
\sigma: \begin{align*}
& \left.S_{\left(x^{n}, x^{n}, \ldots, x^{n}\right)} \backslash N\right) \tag{1.5}
\end{align*} \frac{R^{n}}{1-1-1}\left(x^{1}, \ldots, x^{n}\right),
$$

where $N=(1,0, \ldots, 0)$, with inverue

$$
\begin{aligned}
\sigma^{-1}: \mathbb{R}^{n} & \left.\longrightarrow S^{n} \backslash N\right\} \\
\omega & \longrightarrow\left(\| \mid{ }_{-1}^{N}, \frac{N}{1+\|}\right)
\end{aligned}
$$

 a vector field of $\mathbb{R}^{-}$, then the vector Beld of $S^{-} \backslash\{N\}, a^{-1}$-related with $X$, reading


$$
\begin{equation*}
L_{X^{\prime}}<,>_{s_{n} n}=d \log \left(\left(1-x^{0}\right)^{1}\right)\left(x^{\prime}\right)<,>_{s n}+\left(1-x^{0}\right)^{1} L_{Y}<,>_{\mathrm{a}} a(d \theta \otimes d a) . \tag{1.6}
\end{equation*}
$$

Thus, $X$ in a conformal vector field of $\boldsymbol{R}^{n}$, iff $X^{\prime}$ is a conformal vector of $S^{-} \backslash\{N\}$. Explicitly, we have

$$
\begin{equation*}
x_{s}^{\prime}=\left(\frac{4\left\langle\sigma(x), x_{\theta(x)}\right\rangle_{2}}{\left(1+\|\sigma(\varepsilon)\|^{2}\right)^{2}}, \frac{-4\left\langle\sigma(s), X_{\sigma(s)}\right\rangle_{-} \sigma(x)+2 X_{\theta(x)}\left(1+\|\sigma(x)\|^{2}\right)}{\left(1+\|\sigma(\sigma)\|^{9}\right)^{3}}\right) . \tag{1.7}
\end{equation*}
$$

If $\boldsymbol{X}$ in a conformal vector field of $\boldsymbol{Z}^{\mathbf{\prime}}$, we can anootilly extend $\boldsymbol{X}^{\prime}$ at to be almo defined at the point $N$. In fact, from Eq. (1.2) follows that $d \sigma_{\omega}^{-1}\left(X_{\nu}\right) \rightarrow(0, \xi)$ an $\|\omega\| \rightarrow+\infty$. Thut, lettiog $x \rightarrow N$, we have $\|\sigma(x)\|^{2}=\frac{1+z^{\circ}}{1-\xi^{3}} \rightarrow+\infty$. Hence,

$$
X_{s, N}^{\prime}(0, \xi) .
$$

The groap $O O(n)$ acta on $S^{-}$vin rtereographic projection an

$$
\begin{aligned}
C O(n) \times S^{n} & \longrightarrow \begin{cases}S^{n} & \sigma^{-1}(P(\theta(x))) \\
(P, x) & \text { for } x \neq N \\
N & \text { for } x=N\end{cases}
\end{aligned}
$$

In the same way $\operatorname{Fin}^{-n} \times C O(n)$ actu on $S^{n}$, whereby keeping $N$ Gxed, in other worde, keeping the point of $\boldsymbol{R}^{n}$ at infinity fixed.

### 1.1.B The MBhiua Group

Now we are going to review the group of confurmal tranafurmationa of $S^{n}$, for $\mathrm{n} \geq 2$, also called the Mübing gruap.
Let $Q$ be the quadratic form given by

$$
Q(x)=-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{1}+\cdots+\left(x^{0+1}\right)^{2}, \text { for } z=\left(x^{0}, x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1} \text {, }
$$

that in, $Q$ is the quadratic form associated with the Lorentz inner prodact <, > of $\mathbb{R ^ { n + 2 }}$ with signatare $(-,+, \cdots,+)$. The Lorentz groap of dimenaion $\frac{(a+1)(a+n)}{1}$

$$
O(n+1,1)=\{P \in G L(n+2 ; \mathbb{R}): P \text { leaves } Q \text { invariant }\}
$$

is the group of the linear automorphisms of $\mathbb{R}^{n+2}$ that preserve $<$, $>$. Let $\mathcal{L}$ denote the light cone, $\mathcal{L}=\boldsymbol{Q}^{-1}(0)$, and $\mathcal{L}^{+}$ite connected component

$$
\mathcal{C}^{+}=\left\{x=\left(x^{0}, x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1}: \quad Q(x)=0, x^{0}>0\right\}
$$

the positive light cone.
Henceforth, we agree on the index range $1 \leq A, B, \ldots \leq n, 0 \leq a, b, \ldots \leq n+1$, and we fix a righthanded basia $\left\{\eta_{0}, \eta_{A}, \eta_{n+1}\right\}$ of $\mathbb{R}^{n+1}$ with $\boldsymbol{\eta}_{0}, \eta_{n+1} \in \mathcal{L}^{+}$, and uuch that $<,>$ ia represented in this basis by the matrix

$$
S=\left[S_{\Delta}^{4}=\left\langle\eta_{a}, \eta_{\Delta}\right\rangle\right]=\left|\begin{array}{ccc}
0 & 0 & -1  \tag{1.8}\\
0 & I_{n} & 0 \\
-1 & 0 & 0
\end{array}\right| .
$$

We can always find auch a beais, like for example $\eta_{0}=\frac{s_{0}-y_{n+1}^{2}}{\sqrt{2}}, \eta_{A}=e_{A}, \eta_{n+1}=$
 basis $Q$ is given by $Q(x)=-2 \dot{x}^{0} \hat{\mathbf{x}}^{n+1}+\hat{x}^{A} \hat{x}^{A}$, for $x=\dot{x}^{4} \eta_{0}$.
If $P=\left[P_{i}^{i} \mid \in M_{\mid++1]}\right.$ in $A(n+2) \times(n+2)$ matrix, we identify $P$ with the element of $G L(n+2, R)$ given by $P\left(\eta_{n}\right)=P_{c}^{\mathbf{t}} \boldsymbol{m}_{0}$. Then, we have

$$
\begin{aligned}
& { }^{\prime} P S P=S \text { if }\left\langle P_{a}, P_{i}\right\rangle=S_{i}^{4} \text {, where } P_{a}=\left[\begin{array}{c}
P_{!}^{0} \\
\vdots \\
P_{\square}^{n+1}
\end{array}\right] \in \mathbb{R}^{n+1} \text {, } \\
& \text { iff }\langle P(v), P(v)\rangle=\langle\approx, v\rangle, \forall \varepsilon, v \in \mathbb{R}^{n+1} \text {. }
\end{aligned}
$$

Thus, we ean identify (thoogh not canonically) $O(n+1,1)$ with the group

$$
\left\{P \in M_{(n+1)^{1}}: T P S P=S\right\}
$$

Observe that, if $\eta_{\text {! }}$ is another basis of $\mathbb{R}^{n+3}$, astisfying the same conditions as $\eta_{\text {. }}$, the linear map $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$, auch that $P\left(\eta_{0}\right)=\boldsymbol{n}_{\text {in }}$, in an element of $O(n+1,1)$. Here we remark that gowe authors prefer to represent the inuer product $<,>$ in the canonic basis f., resulting in the matrix

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & r_{n+1}
\end{array}\right] .
$$

Finally, we note that all elementa of $O(n+1,1)$ have determinant equal to $\pm 1$ and that, $\forall P \in O(n+1,1), P(\mathcal{L}) \subset \mathcal{L}$.

It in well-known that $O(n+1,1)$ hed four connected components and that its identity component can be identified with (ef. Ref. [Ko-No/69], page 268)

$$
\begin{equation*}
G=\left\{P \in O(n+1,1): \operatorname{det} P=1, P\left(\mathcal{C}^{+}\right) \subset \mathcal{C}^{+}\right\} \tag{1.9}
\end{equation*}
$$

$G$ acts on the left on $\mathcal{L}^{+}$by inatrix multiplication as

$$
\begin{array}{rlc}
A: G \times \mathcal{L}^{+} & \longrightarrow & \mathcal{L}^{+} \\
(P, x) & \longrightarrow P(x)
\end{array}
$$

If $x=\left|\begin{array}{l}e \\ v \\ 0\end{array}\right|$ is an element of $C^{+}$written in the basin $\eta_{\mathrm{A}}$, we get from the equation
$Q(x)=0$

$$
\begin{align*}
& x=e\left|\begin{array}{c}
1 \\
\omega \\
\frac{1}{2}\|\omega\|^{2}
\end{array}\right|, \text { if } e \neq 0, \\
& x=e\left|\begin{array}{c}
\frac{1}{2}\|\omega\|^{2} \\
\omega \\
1
\end{array}\right|, \text { if } e \neq 0, \text { and, in particalar, } \\
& x=e\left|\begin{array}{l}
0 \\
0 \\
1
\end{array}\right|, \text { if } e=0(e \neq 0), \tag{1.10}
\end{align*}
$$

where $c, s \geq 0, \omega=\left|\begin{array}{c}\omega^{\prime} \\ \vdots \\ \omega^{n}\end{array}\right| \in \mathbb{R}^{n}$, and $\|\omega\|^{2}=\{\omega$. Thun, it is straightforward to prove that $G$ acts on $\mathcal{L}^{+}$trandivively on the left.
Let $S^{\prime \prime}$ denote the unit aphere of the Euclidean apace $\boldsymbol{p r}^{\boldsymbol{+}+1}$. We can identily $S^{\text { }}$ with the projectivisation of the positive light cone $L^{+}$as follows: the map
in a amooth anbmeraion onto $S^{n}$. Let $\sim$ denote the relation of equivalence on $\mathbb{P}^{n+2} \backslash\{0\}$ given by $x \sim y$, iff $\exists a \neq 0: x=a y$. Then, $P^{n+1}=R^{n+1} \backslash\{0\}_{/ \sim}$ in the
projective space. For $x, y \in \mathcal{L}^{+}$, we have $x \sim y$, iff $F(x)=F(y)$. Thus, denoting by $\left[\begin{array}{l}c \\ v \\ v\end{array}\right]_{\sim}$ the equivalence class of the element $\left[\begin{array}{l}c \\ v \\ v\end{array}\right] \in \mathbb{R}^{n+2}$ in $P^{n+1}$, the map

$$
\begin{align*}
& \boldsymbol{\kappa}=\boldsymbol{F}_{/ \sim}: \quad \mathcal{L} \dagger_{\sim} \subset \mathbb{P}^{\mathbf{n + 1}} \longrightarrow S^{n}  \tag{1.11}\\
& {\left[\begin{array}{c}
1 \\
\omega \\
\frac{1}{3}\|\omega\|^{2}
\end{array}\right]_{\sim} \rightarrow\left(\frac{\|\omega\|^{2}-1}{\|\omega\|^{2}+1}, \frac{2 \omega}{\|\omega\|^{2}+1}\right)}
\end{align*}
$$

defines a diffeomorphism with inverse given by

$$
\begin{array}{ccc}
\kappa^{-1}: S^{n} & \rightarrow & \mathcal{L} \dagger_{\sim} \\
& \left(z^{0}, z\right) & \rightarrow\left[\begin{array}{c}
2-2 z^{0} \\
2 z \\
1+z^{0}
\end{array}\right]_{\sim}
\end{array}
$$

Definition 1.1 Embedded into $P^{n+1}$ in the above way, $S^{n}$ is called the Möbius space. We call $x_{0}=\left[\eta_{0}\right]_{\sim}$ and $x_{\infty}=\left[\eta_{n+1}\right]_{\sim}$ the origin reop. Möbius point of $S^{n}$.
(See Appendix I for some observations concerning this definition.)
Observe that, composing the map $\kappa$ defined in Eq. (1.11) with the stereographic projection $\sigma$ of Eq. (1.5), we obtain the following "diffeomorphism":

$$
\begin{aligned}
& \boldsymbol{\sigma} \circ \boldsymbol{K}: \quad \mathcal{L} \dagger_{\sim} \quad \longrightarrow \mathbb{R}^{n} \cup\{\infty\} \\
& {\left[\begin{array}{c}
1 \\
\omega \\
\frac{1}{3}\|\omega\|^{2} \\
\mathbf{x}_{0} \\
\mathbf{x}_{\infty}
\end{array} \quad \rightarrow \quad \rightarrow \quad \omega \quad \begin{array}{c}
\omega \\
\\
\end{array} \quad \rightarrow \quad \infty .\right.}
\end{aligned}
$$

Since $\boldsymbol{\Delta}: \boldsymbol{G} \times \mathcal{L}^{+} \rightarrow \mathcal{L}^{+}$is a transitive action, it induces a transitive (well-defined) action on $\mathcal{L} \dagger_{\sim}=S^{n}$, viz.

$$
\Lambda_{/ \sim}: \begin{gathered}
G \times S^{n} \\
\left(P,|x|_{\sim}\right)
\end{gathered} \longrightarrow\left[\begin{array}{c}
S^{n} \\
{[P(x)]_{\sim}}
\end{array}\right.
$$

Morecover, it is well-known that thia action is effective and that $G$, the identity component of $O(n+1,1)$, is the froup of orientation-presersing conformal iraneformalions of the w-sphere, considered with a Riemannian stracture of conmant positive sectional curvature (cf. Refa. [Sch-Sa/80] [Ko-No/09]). The gruup $G$ is called the (pasitive) Mobius group.

Let $G_{\theta}=\left\{P \in G:\left[P\left(\psi_{0}\right)\right]_{\sim}=\left[\psi_{\theta}\right]_{\sim}\right]=\left\{P \in G: \exists r>0: P\left(\nabla_{0}\right)=r^{-1} \psi_{\psi_{0}}\right\}$ be the isotropic subgroup of $G$ st the puint $x_{0}$. Then, $G_{a}$ is represented by

$$
\left.G_{0}=\left\{\left\lvert\, \begin{array}{ccc}
r^{-1} & ' X B & \frac{1}{2} r^{\prime} X X  \tag{1.12}\\
0 & B & r X \\
0 & 0 & r
\end{array}\right.\right\}: \begin{array}{l}
B \in S O(n) \\
X \in \mathbb{R}^{-} \\
r \in \mathbb{R}^{+}
\end{array}\right\}
$$

where $X$ in a column vector. We have that $S^{n}$ in diffeomorphic to the homogeneoua apace $G / G_{0}=\left\{P G_{0}: P \in G\right\}$ of the left-coseta module $G_{0}$.

Remark 1.1 Following Ref. [Sch-Su/80|, the Mobion group it in fact the group $\boldsymbol{\sigma}=O(n+1,1) /\{i d,-i d\}$ that can be identified with the inotropic group of $\mathcal{E}^{+}$, $\left\{P \in O(\Omega+1,1): P\left(\mathcal{C}^{+}\right) \subset \mathcal{L}^{+}\right\}$, which has two connected componente: the identity component $G$ of $O(n+1,1)$ and $G \backslash G$. The $\operatorname{granp} \bar{G}$ atill acta effectively on $S^{a}$ (and, of course, tramaitively). Furthermore, it is, at is $O(n+1,1)$, the group of all conformal orientation-prenerving and-non-preserving tranaformations of the sphere $S^{\text {m }}$ equipped with a Riemannian utructure of comatant poaitive nectional curvature. Thys, $S^{\circ}$ can also be represented an the homogeneone apace $\boldsymbol{G}^{\boldsymbol{G}} / \boldsymbol{G}_{\mathrm{b}}$, where

$$
\tilde{G}_{0}=\left\{\left|\begin{array}{ccc}
r^{-1} & X B & \frac{1}{3} r^{\prime} X X \\
0 & B & r X \\
0 & 0 & r
\end{array}\right|: \begin{array}{ll} 
& B \in O(n) \\
X \in R^{e} \\
r \in R^{+}
\end{array}\right\}
$$

is the imotropic group of the action $\bar{G}$ on $S^{\text {s }}$ at the point $x_{0}$. Aa for the moment we are only istererted in oriented immersed aubmanifolds of $S^{\mathbf{\prime}}$, we only coneider the peaitive Möbing group $G$.

The Lie algebra gaf the group $G$ in identified with the tangent apace of $G$ at the identity element, that is,

$$
\begin{align*}
\mathbf{q} & =T_{\mathrm{id}} G=\left\{P \in M_{(\mathrm{n}+2)^{*}}: P P S+S P=0\right\}  \tag{1.18}\\
& =\left\{\left[\begin{array}{llc}
a & \xi & 0 \\
v & D & \xi \\
0 & v & -a
\end{array}\right]: \begin{array}{l}
a \in \mathbb{R}, \xi \in \mathbb{R}^{n} \\
D \in \boldsymbol{O}(n)
\end{array}\right\},
\end{align*}
$$

and the Lie agebra of $G_{0}$ is given by

$$
\boldsymbol{f}=\left\{\left|\begin{array}{ccc}
a & \xi & 0 \\
0 & D & \xi \\
0 & 0 & -a
\end{array}\right|: a \in \mathbb{R}, \xi \in \mathbb{R}^{n}, D \in O(n)\right\} .
$$

The eanonic projection of $G$ onto the quotient apace $G / G_{0}$ is given by

$$
\begin{align*}
& \Pi: \quad G \quad G / G_{e} \simeq S^{a} \propto C \neq  \tag{1.14}\\
& \Pi(P)=\left[P\left(\varphi_{0}\right)\right]_{\sim} \in P^{n+1} .
\end{align*}
$$

$G_{0} \rightarrow G \xrightarrow{\|} S^{\prime \prime}$ ia a prineipal fibre bundle with miructure gromp $\boldsymbol{G}_{0}$.
Now we relate the action of the elements of $G$ on $C \mid$, to the conformal transformations of $S^{n}$, generated by ita confornal vector fields. The identity component $\mathbb{R}^{n} \times C O(n)^{+}$of the afine comiormal group of $\mathbb{R}^{n}$ acta on $\left.C\right)$ in the name way an on $S^{\bullet}$ (see Sec. 1.1.A), i.e. the following diagran in commutative:

$$
\begin{align*}
& \left(P=(Z, A, r) \quad, \quad x=\left(\frac{2 n-z}{2 \sigma+c}, \frac{2}{2 \theta+\varepsilon}\right)\right) \rightarrow \begin{cases}\sigma^{-1}(P(\sigma(x))) & \text { if } x \neq N \\
N & \text { if } x=N\end{cases} \\
& \boldsymbol{R}^{n} \times \boldsymbol{C O}(\mathrm{n})^{+} \times \boldsymbol{S}^{\mathbf{n}} \quad \longrightarrow \quad S^{\text {e }}, \tag{1.16}
\end{align*}
$$

where $\sigma$ and $K$ are the diffeomorphiams given in Eqa. (1.b) reap. (1.11).
The Lie algebra of $G$ can be decomposed a $g=\boldsymbol{g}, \oplus g_{0} \oplus g_{4}$ with

$$
\begin{gathered}
\underline{g}_{-1}=\left\{\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|: v \in \mathbb{R}^{n}\right\} \simeq \mathbb{R}^{n}, \\
\hat{Q}_{1}=\left\{\left.\begin{array}{ccc}
-a & 0 & 0 \\
0 & D & 0 \\
0 & 0 & a
\end{array} \right\rvert\,: D \in O(n), a \in \mathbb{R}\right\} \simeq \mathbb{C O}(n)=\left\{D-a I_{n}: D \in O(n)\right\}, \\
g_{1}=\left\{\left|\begin{array}{lll}
0 & \leftarrow & 0 \\
0 & 0 & \xi \\
0 & 0 & 0
\end{array}\right|: \epsilon \in \mathbb{R}^{n}\right\} \simeq\left(\mathbb{R}^{n}\right)^{*} .
\end{gathered}
$$

Note that $\mathscr{Q}_{0} \oplus \mathcal{S}_{1}$ in the Lie algebra of $G_{0}$ and $Q_{-1} \oplus g_{0}$ is the one of $R^{n} \times C O(n)^{+}$. Let $p=K$ a $\Pi: G \rightarrow S^{n} \subset \mathbb{R}^{+1}$, where $\Pi: G \rightarrow \mathcal{L} / \sim \subset P^{p+1}$ in the projection
given in Eq. (1.14). As $G$ aets on the left on $\mathcal{L} \ddagger$, esch $X \in$ defines a vector field $\boldsymbol{X}$ * on $\mathcal{L} \dagger_{\sim}^{\sim}$ given by

$$
x_{\pi(P)}=\frac{\partial}{\partial l} l_{t=0}(\Pi(\exp (l X) P)), \forall P \in G,
$$

 The vector field $\boldsymbol{X}^{*}$ corresponds to a vector field $\overline{\mathcal{Y}}$ on $S^{n}$ defined by

$$
\hat{x}_{\dot{p}(P)}=\frac{\partial}{\partial t} l_{l-0}(\hat{p}(\exp (t x) P))=d \kappa_{\pi(P)}\left(x_{\pi(P)}^{*}\right),
$$

which is $\kappa$-related to $\boldsymbol{X}^{*}$. Note that the 1 -parameter groap of diffeomorphisms $\phi_{k}: \mathcal{L}_{\sim \sim}^{\dagger} \rightarrow \mathcal{L}_{j \sim}^{\dagger}$ generated by $X^{*}$ is given by $\left.\phi_{k}\left(\left\lvert\, \begin{array}{l}e \\ v \\ e\end{array}\right.\right)_{\sim}\right)=\left|\exp (t X)\left[\begin{array}{l}c \\ v \\ 0\end{array}\right]\right|_{\sim}$, and the one generated by $\tilde{X}^{*}, \hat{\phi}_{1}: S^{n} \rightarrow S^{n}$, reads $\bar{\phi}_{1}=\kappa \circ \boldsymbol{\phi}_{1} \circ \boldsymbol{\kappa}^{-1}$. For aeveral typical $X \in \mathcal{Y}$, we will give the explicit expresciona for the conformal trantiormation $\exp (X): \mathcal{L} \dagger_{\sim} \propto S^{n} \rightarrow \mathcal{L} \dagger \simeq S^{n}$ of $S^{n}$.

1) If $X=\left|\begin{array}{ccc}-a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a\end{array}\right|$ E $\underline{g}_{0}$, then $\left.\exp (X)=\left\lvert\, \begin{array}{ccc}e^{-a} & 0 & 0 \\ 0 & I_{n} & 0 \\ 0 & 0 & e\end{array}\right.\right]$, which given the

$$
\begin{aligned}
& \exp (\boldsymbol{X}): \quad \boldsymbol{\mathcal { L }} \boldsymbol{\sim}_{\sim} \quad \rightarrow \boldsymbol{L}_{\sim} \\
& {\left[\begin{array}{c}
1 \\
\omega \\
\frac{1}{3}\|\omega\|^{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
e^{-*} \\
\frac{1}{3} e^{*}\|\omega\|^{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
e^{2} \omega \\
\frac{1}{2} e^{2 *}\|\omega\|^{2}
\end{array}\right]} \\
& \left|\begin{array}{c}
\frac{1}{2}\|\omega\|^{2} \\
\omega \\
1
\end{array}\right| \rightarrow\left|\begin{array}{c}
\frac{1}{2} e^{-*}\|\omega\|^{2} \\
\omega \\
e^{e}
\end{array}\right|=\left|\begin{array}{c}
\frac{1}{2} e^{-2 e}\|\omega\|^{2} \\
e^{-<} \|_{\omega} \\
1
\end{array}\right| \\
& \begin{array}{l}
\mathrm{x}_{\infty} \quad \rightarrow\left|\begin{array}{c}
0 \\
0 \\
e^{*} \\
\mathrm{e}_{0}-t 0_{0} \\
0 \\
0
\end{array}\right|=x_{\infty} .
\end{array}
\end{aligned}
$$

Using the diffeomorphisma $\kappa$ of Eq. (1.11) and the rtereographic projection of

Eq. (1.5), we have the transformations

$$
\begin{aligned}
& \exp (X): S^{n} \subset \mathbb{R}^{n+1} \quad \longrightarrow S^{n} \subset R^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& N=(1,0, \ldots, 0) \rightarrow N \\
& S=(-1,0, \ldots, 0) \rightarrow S \text {, }
\end{aligned}
$$

and

$$
\begin{array}{ccc}
\exp (X): R^{n} \cup\{\infty\} & \rightarrow & R^{n} \cup\{\infty\} \\
\omega & \rightarrow & e^{n} \omega \\
\infty & \rightarrow & \infty \\
0 & \rightarrow & 0
\end{array}
$$

This type of conformal transformation of $S^{n}$ is called homothefic with centrea $x_{0}$ and $x_{\infty}$ (i.e. $S$ resp. $N$ or 0 resp. $\infty$ ). The integral curves of $\boldsymbol{X}^{*}$ through $S$ are comitant, becanse $\boldsymbol{X}$ belonga to the isotropic algebra $\boldsymbol{F}_{\boldsymbol{f}}$ of $\boldsymbol{G}_{0}$. The integral curve pasaing through the point $(0, \omega) \in S^{\prime}$, with $\omega$ a unit vector of $\mathbb{R}^{n}$, is given by $\boldsymbol{\gamma}(\boldsymbol{v})=$ (tanh a, sechow), and is a reparametriation of the great circle in $S^{n}$ through the points $S,(0, \omega)$, and $N$ (cf. Ref. $[\mathrm{Po} / 81])$. Besides, wince $\exp (t I): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $\exp (t X)(\omega)=e^{t 4} \omega, \mathcal{P}^{*}$ is $\sigma^{-1}$-related to the conformal vector feld of $\boldsymbol{R}^{n} \quad \hat{\mathcal{L}}^{\prime}(\omega)=\left.\frac{\theta}{\theta^{\prime}}\right|_{\ell=0} \exp (\ell Y) \omega=a w$, which in a dilatation. Than, from Eq.
 $L_{q \cdot}\left(<,>s_{n}\right)_{\left(\alpha^{2}, a^{2}, u, m\right)}=-2 a x^{0}<,>_{s^{m}}$.
2) If $X=\left[\left.\begin{array}{lll}0 & 0 & 0 \\ 0 & D & 0 \\ 0 & 0 & 0\end{array} \right\rvert\, \in g_{0}\right.$ with $D \in O(n)$, then $\exp (X)=\left|\begin{array}{lcc}1 & 0 & 0 \\ 0 & e^{D} & 0 \\ 0 & 0 & 1\end{array}\right|$ with $e^{D} \in S O(n)$. Heace,
and, asing the diffeomorphism $\kappa$,

$$
\begin{aligned}
& \begin{aligned}
\left(x^{0}, x^{1}, \ldots, x^{n}\right) & \rightarrow\left(x^{0}, e^{D}\left(x^{1}, \ldots, x^{n}\right)\right) . \\
N & \rightarrow N
\end{aligned} \\
& S \rightarrow S \text {, }
\end{aligned}
$$

which gives a rotation of $S^{n}$ around the axis $N$-S. For $\left(x^{n}, x^{1}, \ldots, x^{n}\right) \in S^{n}$, we
 as $\exp (t X)$ are obvioualy isometries of $S^{n}, \tilde{X}^{*}$ is a Killing vector field of $S^{n}$, that is, $L_{\mathcal{X}^{*}}<>_{5 n}=0$. Now, naing the stereographic projection $\sigma$, we obtain

$$
\begin{array}{ccc}
\exp (X): \mathbb{R}^{-} \cup\{\infty\} & \rightarrow & \mathbb{R}^{n} \cup\{\infty\} \\
\omega & \rightarrow & e^{D}(\omega) \\
\infty & \rightarrow & \infty \\
0 & \rightarrow & 0 .
\end{array}
$$

which gives an isometry (rotation) of $\mathbb{R}^{\boldsymbol{n}}$, too. Therefore, $\boldsymbol{\chi}^{*}(\omega)=\left.\frac{\partial}{\partial t}\right|_{t=0} \exp (t \boldsymbol{X}) \omega=$ $D(\omega)$ is a Killing vector field of $\mathbb{R}^{\boldsymbol{m}}, \boldsymbol{o}$-related to $\bar{X}^{*}$.
3) If $X=\left[\begin{array}{lll}0 & 0 & 0 \\ v & 0 & 0 \\ 0 & v & 0\end{array}\right] \in \mathbb{g}_{-1}$, then $\exp (X)=\left[\begin{array}{ccc}1 & 0 & 0 \\ v & I_{\mathbf{u}} & 0 \\ 1\|v\|^{2} & v & 1\end{array}\right]$ gives the transformation

$$
\begin{aligned}
& \exp (X): \quad \mathcal{L} \hbar_{\sim} \quad \longrightarrow \mathcal{L} \AA_{\sim} \\
& {\left[\begin{array}{c}
1 \\
\omega \\
\frac{\omega}{3}\|\omega\|^{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
1 \\
v+\omega \\
\frac{1}{3}\|v+\omega\|^{2}
\end{array}\right] \sim}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0} \rightarrow \left\lvert\, \begin{array}{c}
1 \\
v \\
\frac{1}{3}\|v\|^{2}
\end{array}\right. \|_{\sim},
\end{aligned}
$$

where $\omega^{\prime}=\|\omega\|^{ \pm} \frac{\left(\| \| \omega \|^{1} v+\omega\right)}{\|\left\{\| \|^{2} v+\omega \|^{2}\right.}$ (put $\omega^{\prime}=0$, if $\omega=0$ ). Using the diffeomorphism $\mathcal{K}$,
we have


Gartan called this kind of conformal transformation an elation with centre at $\boldsymbol{x}_{\mathrm{co}}$, i.e. at the north pole $N$. The integral curves of $\overline{\boldsymbol{X}}$ * are a fanily uf circles pasaing through the point $N$ and with tangent vector $(N,(0, v)$ ) (cf. Refs. [C/55], page 176; $[\mathrm{Po} / 81]$ ). With the stereographic projection o we have

$$
\begin{array}{ccc}
\exp (X): \mathbb{R}^{n} \cup\{\infty\} & \rightarrow & \mathbb{R}^{n} \cup\{\infty\} \\
\omega & \rightarrow & v+\omega \\
\infty & \rightarrow & \infty \\
0 & \rightarrow & v
\end{array}
$$

which gives a translation on $\boldsymbol{R}^{n}$. Since $\exp (t X): R^{n} \rightarrow \mathbb{R}^{n}$ ie given by $\omega \rightarrow t v+w$, $\hat{\boldsymbol{f}}{ }^{*}(\omega)=\left.\frac{\delta}{\delta i}\right|_{1=0} \exp (i X) \omega=0$ is a constant and, in particular, a Killing vector field on $\mathbb{R}^{n}$ that in $\sigma$-related to the vectar field $\left.\hat{X}_{\left(x^{e}, N\right)}^{*}=\left(\left(1-x^{0}\right)<x^{\prime}, v\right\rangle_{n},<x_{1}^{\prime} v\right\rangle_{n} x^{0}+$
 4) Finally, if $X=\left|\begin{array}{lll}0 & \epsilon & 0 \\ 0 & 0 & \xi \\ 0 & 0 & 0\end{array}\right| \in g_{1}$, then $\exp (X)=\left[\begin{array}{ccc}1 & \epsilon & \frac{1}{2}\|\xi\|^{2} \\ 0 & I_{n} & \xi \\ 0 & 0 & 1\end{array}\right]$, giving the trensformation



Garan called alao this conformal trausfomuation an elation, with centre $x_{0}$ (i.e. at $S$ ). With stereographic projection we get

$$
\begin{aligned}
& \exp X: \mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}
\end{aligned}
$$

$$
\begin{aligned}
& \infty \rightarrow \|_{\| \in T}^{2 \ell}
\end{aligned}
$$

This is called an inversion on $\mathbb{R}^{\mathbf{n}}$ that keepa the origin fixed. The vector feld


 From the expremiona for $L_{2} \cdot\left(<,>s_{n}\right)$ in examples 3 ) and 4), we conclude that the vector subapace of $\&$ of dimension $\frac{n(a+1)}{2}$

$$
\left\{\left|\begin{array}{ccc}
0 & -v & 0 \\
\frac{y}{2} & D & -v \\
0 & \frac{b}{2} & 0
\end{array}\right|: D \in O(n), v \in \mathbb{R}^{n}\right\}
$$

generatea all the Killing vector fielda of $S^{n}$.

### 1.1.O The Structure Equations of the Möbius Group

Firat, we recall that anxigning a conformal atructure to manifold $M$ meanu giving a elasa of conformally equivalent Riemannian metrics. The conformal aracture of $S^{n}$ will be defined by considering it as the homogeneous apace $G / G_{4}$, using sectiona of the bundle $\Pi$ II $: G \rightarrow S^{n}$, the Maurer-Cartan form of $G$, and ita atructure equationa. Henceforth, $S^{n}$ stands for the projectiviation of the light cone $\mathcal{C}^{+}$, except when we want to refer to the anit aphere of $\mathbb{R}^{++1}$, which will become clear
from the contert.
A banis of the Lie algebra 9 of $G$ is given by the $\frac{(n+1)(n+1)}{2}$ linearly independent matrice:

$$
\begin{aligned}
& \left.P_{(0)}=\left|\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & 0 \\
\vdots & 0 & \vdots \\
0 & & 0 \\
0 & 0 & \cdots & -1
\end{array}\right| \quad P_{(\alpha, B)}=\left\lvert\, \begin{array}{ccccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right.\right] \leftarrow-A \\
& P_{(0, A)}=\left|\begin{array}{ccccc}
0 & 1 & & 0 \cdots & 0 \\
0 & 0 \\
0 & 0 & & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & 0 & \vdots & \vdots \\
0 & 0 & & 0 & 0 \\
0 & 0 & 0 \cdots & 0 & 0
\end{array}\right| \cdots A \quad P_{(A, 0)}=\left|\begin{array}{ccccc}
0 & 0 & 0 \cdots & 0 & 0 \\
0 & 0 & & 0 & 0 \\
\vdots & \vdots & 0 & \vdots & \vdots \\
0 & 0 & & & 0 \\
1 & 0 & & 0 & 0 \\
0 & 0 & 0 \cdots & 1 & 0
\end{array}\right| \ldots-A
\end{aligned}
$$

with $A>B$. We denote by $\Phi$ the Maurer-Corian form of $G$, i.e. the $\boldsymbol{g}$-valued left-invariant l-form of $G$ given by

$$
\Phi_{\mathbf{Q}}\left(\hat{P}_{\mathbf{Q}}\right)=P, \forall Q \in G, P \in \mathfrak{G}
$$

where $\hat{P}$ ia the left-invariant vector field of $G$, auch that $\dot{P}_{\mathrm{id}}=P$, that is, $\hat{P}_{Q}=$ $Q \circ P \in T_{Q} G=Q g$. Then,

$$
\Phi=\widetilde{P_{(0)}} P_{(0)}+\sum_{A>B} \widetilde{P_{(A, B)}} P_{(A, B)}+\sum_{A}\left(\widetilde{P_{(0, A)}} P_{(0, A)}+\widetilde{P_{(A, 0)}} P_{(A, a)}\right)
$$

where $\left(\widetilde{P}_{(\phi)_{*}}, P_{(A, \theta)_{*}}, P_{(0, A)_{*}}, P_{(A, \theta)_{*}}\right)$ are 1 -formen dol to the frame of left-invariant vector fields $\left(\widetilde{P_{(0)}}, \widetilde{P_{(A, s)}}, \widetilde{P_{(a, A)}}, \widetilde{P_{(A, 0)}}\right)$. Since $\Phi$ assumea valuen on $g$, we denote by $\Phi_{i}, 0 \leq a, b \leq n+1$, the components of $\Phi$. Thos, $\Phi=\left[\Phi_{\Delta}\right] \in g$ ia matrix of left-invariant 1 -forms. From Eq. (1.13), we have $\Phi_{i} \in S_{i}+S_{e}^{e} \Phi_{i}=0$, which givea the following explicit relation among the componenta of $\boldsymbol{\Phi}$ :

$$
\begin{equation*}
\Phi_{0}^{0}=-\Phi_{n+1}^{n+1}, \Phi_{0}^{A}=\Phi_{A}^{n+1}, \Phi_{A}^{0}=\Phi_{n+1}^{A}, \Phi_{B}^{A}=-\Phi_{A}^{A}, \Phi_{0}^{n+1}=\Phi_{n+1}^{0}=0 \tag{1.16}
\end{equation*}
$$

$\forall A, B \in\{1, \ldots, n\}$.
 $\Phi_{A}^{0}=\widetilde{P_{[0, A]},}$ whence $\Phi_{0,}^{0}, \Phi_{a}^{A}, \Phi_{A}^{0}, \Phi_{B}^{A}(A>B)$ form at each point $P \in G$ a bania of $T_{P}^{*} G$.
 then $\Phi$ aatisiea the Marrer-Cartan atructure equationa of the group $G$, reading

$$
d \Phi=-\frac{1}{2}[\Phi \wedge \Phi]=-\Phi \wedge \Phi .
$$

Explicitly,

$$
\begin{equation*}
d \Phi_{i}^{t}=-\Phi_{:}^{\prime} \wedge \Phi_{i}^{2}, \forall 0 \leq a, b \leq n+1 . \tag{1.17}
\end{equation*}
$$

Using the relations in Eq. (1.16), we can reduce these equations to the following onea:

$$
\begin{align*}
& d \Phi_{0}^{0}=-\Phi_{A}^{0} \wedge \Phi_{0}^{A} \\
& d \Phi_{0}^{A}=-\Phi_{0}^{A} \wedge \Phi_{0}^{0}-\Phi_{B}^{B} \wedge \Phi_{B}^{B} \\
& d \Phi_{A}^{0}=-\Phi_{0}^{0} \wedge \Phi_{A A}^{0}-\Phi_{B}^{0} \wedge \Phi_{A}^{B}-\Phi_{B}^{0} \wedge \Phi_{0}^{B} .  \tag{1.18}\\
& d \Phi_{i}^{A}=-\Phi_{0}^{A} \wedge \Phi_{B}^{0}-\Phi \wedge \Phi_{B}^{A}-\Phi_{A}^{0} \wedge \Phi_{0}^{B} .
\end{align*}
$$

A section of the bundle $\Pi: G \rightarrow G / G_{0}=S^{n}$ given in Eq. (1.14) is a smooth map $\bullet: S^{n} \rightarrow G$, defined on an open set of $S^{n}$, such that $\Pi_{0} \circ=$ id with id the identity map of the domain of definition of a. One calls a also a local G-frame field of $S^{n}$. It in well-known that such sections exist on a neighbourbood of any given point of $S^{\mathrm{n}}$. The maps

$$
\left.\because: \begin{array}{c}
S^{n} \backslash\left\{x_{\infty}\right\}  \tag{1.19}\\
1 \\
\omega \\
\frac{1}{1}\|\omega\|^{2}
\end{array}\right]_{\sim} \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
\omega & I_{0} & 0 \\
\frac{1}{2}\|\omega\|^{2} & \omega & 1
\end{array}\right]
$$

and

$$
\text { o: } \left.\quad \begin{array}{c}
S^{n} \backslash\left(x_{0}\right)  \tag{1.20}\\
\frac{1}{i}\|\omega\|^{2} \\
\omega \\
1
\end{array}|\rightarrow| \begin{array}{ccc}
\frac{1}{2}\|\omega\|^{N} & \omega & 1 \\
\omega & I_{n} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

are two canonic sections of the bundle $\Pi: G \rightarrow S^{n}$.
With each section o: $S^{n} \rightarrow G$ of $\Pi$ we asociate a $\mathrm{g}^{\text {-velued (loced) } 1 \text {-form on }}$ $S^{n}$, gived by

$$
\begin{equation*}
\phi=e^{\circ} \theta^{(1)} \tag{1.21}
\end{equation*}
$$

with componenta $\phi i=a \cdot \Phi_{i}, \quad \vee 0 \leq a, b \leq n+1$. Of course, these component satirfy the same relations and strocture equations an the onet of $\mathbf{\Phi}$ in Eqa. (1.16)
and (1.18).
Since $\Phi$ antiafien $\Phi_{F}=P^{-1} d P$, i.e. $\Phi_{P}(Q)=P^{-1} \circ Q, \forall Q \in T_{P} G=P g$, we have, $\forall z \in S^{n}, z \in T_{s} S^{n}, \phi_{s}(z)=\Phi_{d x}\left(d s_{s}(x)\right)=(x(z))^{-1} d_{s}(x)$, that is,

$$
\begin{equation*}
\phi=s^{-1} d s . \tag{1.22}
\end{equation*}
$$

If we regard, in the basia $\eta_{a}$, the column components $\theta_{a}$ of $:=\left|\Delta_{0}, \Delta_{A}, \Delta_{n+1}\right|$ as $\boldsymbol{R}^{n+1}$-valued functions $a_{4}: S^{n} \rightarrow \boldsymbol{R}^{n+2}$, then we have

$$
\begin{equation*}
\left\langle a_{a}, a_{b}\right\rangle=S_{i}^{a}, \tag{1.23}
\end{equation*}
$$

where $S=\left[S_{i}^{e}\right]$ is the matrix given in Eq. (1.8), and, from Eq. (1.22), we get

$$
\begin{equation*}
d v_{a}=\phi_{a}^{d} v_{i} \tag{1.24}
\end{equation*}
$$

Similarly to the Riemannian terminology, we call the 1-forms $\phi$, which constitute a matrix with values in $g$, the connection forma correaponding to the moving frame a. Besides, differentiating Eqs. (1.23) and (1.24) would also lead to the relations (1.16) resp. the structure equations ( 1.18 ), thereby replacing $\$_{i}$ by $\phi_{i}$. We also observe that, since $\Pi \circ \Delta=\left|\omega_{0}\right|_{\sim}, \|_{0}$ represents the "ponition" vector of s.

Let $\cdot$, $: S^{\boldsymbol{\prime}} \rightarrow G$ be two sections of $\Pi$. In the intersection of their domains of definition we have

$$
\begin{equation*}
\tilde{\boldsymbol{j}}=\boldsymbol{s} \boldsymbol{K} \tag{1.25}
\end{equation*}
$$

with $K: S^{n} \rightarrow G_{0}$ a amooth map. Gonversely, given auch a map $K$ and a section - of $\Pi$, the map $\bar{i}=\boldsymbol{s} K$ is a section of $\Pi$. In order to obtain the transformation laws under a change of frame, we compute the components of $\bar{\phi}=\boldsymbol{\circ} \boldsymbol{\Phi} \boldsymbol{\Phi}$ from those of $\phi=0^{*}{ }^{\circ}$, using Eq. (1.25). The map $K$ han the explicit form

$$
K=\left|\begin{array}{ccc}
r^{-1} & \mathbf{i} X A & \frac{1}{2} r^{i} X X  \tag{1.26}\\
0 & A & r X \\
0 & 0 & r
\end{array}\right|
$$

where $r: S^{n} \rightarrow \mathbb{R}^{+}, X: S^{n} \rightarrow \mathbb{R}^{n}$ and $A: S^{n} \rightarrow S O(n)$ are smooth maps. Thus,

$$
\begin{align*}
\tilde{v} & =\left[\tilde{v}_{0}, \tilde{v}_{A}, \tilde{v}_{n+1}\right]=\left[s_{0}, v_{A}, v_{n+1}\right]\left[\begin{array}{ccc}
r^{-1} & \mathbf{t} X A & \frac{1}{2} r^{t} X X \\
0 & A & r X \\
0 & 0 & r
\end{array}\right] \\
& =\left[r^{-1} s_{0}, X_{B} A_{A}^{B} s_{0}+A_{A}^{B} s_{B}, \frac{1}{2} r^{t} X X s_{0}+r X_{A} s_{A}+r s_{n+1}\right] \tag{1.27}
\end{align*}
$$

From Eqs. (1.22),(1.25), we have

$$
\begin{aligned}
\dot{\phi}() & =\dot{t}^{-1} d \tilde{\dot{\theta}}(\cdot)=(\sigma K)^{-1} d(\sigma K)(\cdot)=K^{-1} e^{-1}(d \theta(\cdot) K+\theta d K(\cdot)) \\
& =K^{-1} e^{-1} d e(\cdot) K+K^{-1} d K(\cdot)=K^{-1} \phi(\cdot) K+K^{-1} d K(),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\bar{\phi}=K^{-1} \phi K+K^{-1} d K \tag{1.28}
\end{equation*}
$$

With Eq. (1.16) we obtain, in matrix furn,

$$
\begin{aligned}
& \tilde{\phi}=\left|\begin{array}{ccc}
\dot{\phi}_{0}^{0} & \hat{\phi}_{A}^{0} & 0 \\
\hat{\phi}_{0}^{A} & \dot{\phi}_{\hat{B}}^{\hat{A}} & {\left[\hat{\phi}_{A}^{0}\right]} \\
0 & {\left[\hat{\phi}_{0}^{A}\right]} & -\hat{\phi}_{0}^{0}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left|\begin{array}{ccc}
d r^{-1} & d\left({ }^{\prime} X A\right) & d\left(\frac{1}{2} r^{r} X X\right) \\
0 & d A & d(r X) \\
0 & 0 & d r
\end{array}\right|\right\} .
\end{aligned}
$$

Working out the above matrix compositions, we obtain the final expression (which is clearly not the entire matrix $\boldsymbol{\phi}^{\text {) }}$

In particular, we have

$$
\begin{equation*}
\tilde{\phi}_{0}^{A}=r^{-1} A_{i}^{c} \phi_{0}^{q}, \forall A \in\{1, \ldots, n\}, \tag{1.30}
\end{equation*}
$$

which leade to the traneformations

$$
\begin{equation*}
\sum_{A=1}^{n}\left(\hat{\phi}_{0}^{A}\right)^{2}=r^{-3} \sum_{A=1}^{n}\left(\phi_{0}^{A}\right)^{2} \tag{1.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\phi}_{0}^{\prime} \wedge \ldots \wedge \dot{\phi}_{0}^{\prime}=r^{-a} \phi_{0}^{1} \wedge \ldots \wedge \phi_{0}^{\prime \prime} . \tag{1.32}
\end{equation*}
$$

Let an now reconsider for a moment example (1.19). In that case, we have, $\forall x \in$ $S^{n} \backslash\left\{x_{\infty}\right\}$ and $\pm \in T_{s} S^{\boldsymbol{n}}$,

$$
\phi_{s}(x)=(a(x))^{-1} d e_{s}(x)=\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & v & 0
\end{array}\right|,
$$

where $v=d(\sigma \circ \kappa)(z) \in \mathbb{R}^{n}$ with $\sigma$ and $\kappa$ the diffeomorphisms given in Eqs. (1.5) reap. (1.11). So, $\phi_{0}^{A}=(\sigma \circ K)^{*} d v^{A}$, where $d v^{A}$ is the projection of $\mathbb{R}^{n}$ onto the coordinate $A$. This shown that $\left(\phi_{6}\right)_{1<\Lambda \leq n}$ are linearly independent 1 -forma on $S^{n} \backslash\left\{x_{\infty}\right\}$. The same conclagion is obteined for the section í defined in Eq. (1.20), asing now, instead of $\sigma$, the stereographic projection

$$
\left.\tilde{\sigma}: \begin{array}{c}
S^{n} \backslash\{S\}  \tag{1.33}\\
\left(x^{n}, x^{1}, \ldots, x^{n}\right)
\end{array}\right) \longrightarrow \begin{gathered}
\overrightarrow{R^{n}} \\
1+x^{n} \\
\hline\left(x^{1}, \ldots, x^{n}\right)
\end{gathered}
$$

with $S=(-1,0, \ldots, 0)$ the south pole of $S^{n}$.
As the domeins of these two particular sections cover all $S^{n}$, we conclude from relation (1.30), concerning any pair of aections of the fibre bundle $\Pi$, that, for any section i : $S^{n} \rightarrow G$ of $\Pi: G \rightarrow S^{n}$, the 1 -forms $\left(\phi_{0}^{\hat{1}}\right)_{1 \leq \Lambda \leq=}$ of $S^{n}$ are linenrly independent. Furthermore, from the transformations rulea in Eqg. (1.31) and (1.32) followa that these 1 -formas determine a conformal atructure resp. an orientasion on $S^{n}$. As we see from the above examplea of aections, the conformal structure asaigned to $S^{"}$ is the aame as the one generated by the Riemanaian metric da' of $S^{n}$, induced by the Euclidean metric of $\mathbb{R}^{n+1}$. Explicitly, using the mection (1.19), we get $\sum_{A=1}^{n}\left(\kappa^{-1}\right)^{*}\left(\phi_{0}^{A}\right)^{z}=\sum_{A=1}^{n} \sigma^{*}\left(d v^{A}\right)^{2}=\frac{1}{\left(1-\kappa^{2}\right)^{2}} d \varepsilon^{2}$.

### 1.2 Submanifolds of $S^{\boldsymbol{n}}$

Let $f: M^{m} \rightarrow S^{m}$ be a smooth immersion of an oriented m-manifold $M$ with $m \geq 2$. We will asaign to $M$ a conformal otructure induced by $f$ from the conformal structure of $S^{n}$. In addition to the inder ranges given in Sec. 1.1.B, we agree on $1 \leq i, j, \ldots \leq m, m+1 \leq a, \beta, \ldots \leq n$.

### 1.2.A Zeroth-Order G-Frame Fields Along $f$

Definition 1.2 A seroth.order G.frame field along $f$ is a map e: $M \rightarrow G$ defined on an open set of $M$, such that the diagram

is commutative. In other vords,

$$
\begin{equation*}
\Pi \circ c=f \tag{1.34}
\end{equation*}
$$

-here $I \mathrm{I}: G \rightarrow S^{n}$ is the principal bundle of $E q$ (1.14).
We can alwayg define a zeroth-order frame a along $f$ in a neighbourhood of each point of $M$. In fact, if $\bullet: S^{n} \rightarrow G$ is a aection of $\Pi$, then $e=\bullet \circ f: M \rightarrow G$ is sach a frame. Observe that $e$ is an immersion, $a$ in clear from Eq. (1.34).
With each zeroth-order frame e: $M \rightarrow G$ along $f$ we asaociate a g-valued (local) l-form on $M$ defined by

$$
\begin{equation*}
\phi=e^{\bullet} \Phi \quad\left(=e^{-1} d e\right) \tag{1.35}
\end{equation*}
$$

with components

$$
\phi_{i}^{*}=e^{*} \Theta_{i}^{\prime}, \quad 0 \leq a, b \leq n+1 .
$$

These components antify the same relations as the ones of $\Phi$ in Eq. (1.10). Let now ẽ : $\boldsymbol{M} \rightarrow \boldsymbol{G}$ be another zeroth-order frame along $f$. Then,

$$
\begin{equation*}
\bar{e}=\varepsilon \boldsymbol{K} \tag{1.36}
\end{equation*}
$$

where $K: M \rightarrow G_{0}$ is a map defined on an open aet of $M$, and which ia of the form (1.26), with r:M$\rightarrow \mathbb{R}^{+}, X: M \rightarrow \mathbb{R}^{n}$, and $A: M \rightarrow S O(n)$ emooth mape. Converaely, given anch a map $K$ and a zeroth-order frame $e: M \rightarrow G$ along $f$, then ê defined by Eq. (1.36) is to. Writing $s=\left[\epsilon_{0}, \varepsilon_{A}, \epsilon_{n+1}\right]$ with $\epsilon_{a}: M \rightarrow \mathbb{R}^{++1}$ vector-valued functione, we obtain the gane transformation lawn an in Equ. (1.27), (1.28), (1.29), and (1.30) in Sec. 1.1.O, thereby replacing the aections 0, í : $S^{\bullet} \rightarrow G$ of $\Pi$ by the seroth-order framea $e, ~ z: ~ M \rightarrow G$ of II long $f$. From Eq. (1.30), we have that, for any two zeroth-order frame fielde $e, \bar{e}: M \rightarrow G$ along $f$, the 1 -form

the same. If we take the sections $e, z$ of Eqs. (1.19) resp. (1.20), then $e=0 \circ f$ : $f^{-1}\left(S^{-} \backslash\left\{x_{\infty}\right\}\right) \rightarrow G$ and $\tilde{\varepsilon}=\boldsymbol{j} \circ f: f^{-1}\left(S^{-} \backslash\left\{x_{0}\right\}\right) \rightarrow G$ are seroth-order framea along $f$, whose domsina of definition cover $M$. Since $\phi_{0}^{\hat{A}}=e^{*} \phi_{0}^{A}=f^{*}\left(\iota^{*} \phi_{0}^{A}\right)$ and the 1 -forme $\left(0^{*} \Phi_{0}^{1}\right)_{1 \leq A \leq n} \operatorname{span} T^{*} S^{n}$, the $\left(\phi_{0}^{\hat{1}}\right)_{1 S A S n}$ apan $T^{*} M$. The anme conclurion holds for the 1 -forms $\tilde{\phi}_{\hat{0}}^{\hat{A}}=\boldsymbol{e}^{*} \boldsymbol{\omega}_{6}^{\hat{A}}$. Summariming, for any seroth-order $G$-frame e: $M \rightarrow G$ along $f$, the 1 -formm $\left(\phi_{0}^{1}\right)_{1 \leq A \leq n}$ apan $T^{*} M$.

### 1.2.B First-Order $G$-Frame Fields Along $f$

In order to be able to define a conformal atructure on $M$, we have to perform a first reduction of the zeroth-order $G$-frame field along $f$ given in the previous aubsection. There exiat formal theories concerning the method of moving frames on submanifolds immerned into homogeneous apaces, which deacribe in a general context the concept of reduction of frames (see e.g. Refs. [Je/77] |Su-Š/80] [Su/79]). Here, we will construct explicitly the specialised frames that we will need to define aome geometric objects in conformal geometry, following clonely the procedure of Refa. [Sch-Su/80] [Br/84] [Ri/87].
Let $x_{0} \in M$ and $e: M \rightarrow G$ be a zeroth-order $G$-frame field of $\Pi: G \rightarrow S^{\text {a }}$ along $f: M \rightarrow S^{\boldsymbol{n}}$, defined in a neighbourhood of $x_{0}$. Let $Z_{1}, \ldots, Z_{m}$ be a local linear frame of $T M$, defined near $x_{0}$. For each $x \in U$ with $U$ a anitable aeighbourhood of $u_{0}$, we condder the $\mathbb{R}^{\boldsymbol{n}}$ column vector

$$
v_{i}(x)=\left[\begin{array}{c}
\phi_{0}\left(Z_{i}(x)\right) \\
\vdots \\
\phi_{0}\left(Z_{i}(x)\right)
\end{array}\right], \quad \gamma_{i}=1, \ldots, m,
$$

where $\phi f$ in defined in Eq. (1.35). These define amooth mapa from $U$ to $\boldsymbol{R}^{n}$. As $\phi_{0}^{1}, \ldots, \phi_{0}^{\prime \prime}$ npan $T_{z}^{*} M, V_{a}=$ apan $\left\{v_{1}(x), \ldots, u_{m}(x)\right\}$ is an m-dimensional subapace of $\mathbb{R}^{n}$. Thus, $V=\left\{(x, v): x \in U, \underline{\in} \in V_{f}\right\}$ is a amooth vector unbbundle of $U \times \boldsymbol{R}^{n}$ and the $\dot{v}_{i}$ form a linear frame of $V$. Let $\hat{\dot{\theta}}_{\mathrm{i}}, \ldots, \hat{\hat{v}}_{\mathrm{m}}$ be the orthogonal linent frame of $V$ (relative to the Euclidean metric of $\mathbb{R}^{\prime \prime}$ ), obtained by GrammSchmidt orthogonaligation of $v_{1}, \ldots, v_{m}$, and $\tilde{v}_{m+1}, \ldots, \tilde{v}_{m}$ be a local orthonormal frame of the orthogonal complement of $V$ in $U \times \mathbb{R}^{n}$, which can be asumed to be defined on all $U$. Now we define the map $A: U \rightarrow O(n)$, auch that, for $x \in U$, $\boldsymbol{A}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the orthogonal linear map given by $\boldsymbol{A}(x)\left(\tilde{D}_{A}\right)=\varepsilon_{A}, \forall A \in$ $\{1, \ldots, n\}$, with $\epsilon_{A}$ the canonic bacir of $\boldsymbol{R}^{n}$. Then, $A(z)\left(V_{s}\right)=R^{m} \times\{0\}^{n-m}$. Of
courne, we may annme that $A$ taken values in $S O(n)$. Hence,

$$
A\left|\begin{array}{c}
\phi_{0}^{1} \\
\vdots \\
\phi_{0}^{n}
\end{array}\right|=\left|\begin{array}{c}
\varphi^{\mathbf{\prime}} \\
\vdots \\
\varphi^{n}
\end{array}\right|
$$

where $\varphi^{A}$ are 1 -forma on $M$, anch that $\varphi^{A}=0 \forall A \geq m+1$. Let $\kappa^{N}: U \rightarrow G_{0}$ be given by

$$
K(x)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & A(x) & 0 \\
0 & 0 & 1
\end{array}\right|, \forall x \in U
$$

and $\bar{\varepsilon}: M \rightarrow G$ by $\tilde{\varepsilon}=c K$. Then, from the tranformation lawa in Eq. (1.29)


$$
\dot{\phi}_{\theta}^{\theta}=0, \forall a=m+1, \ldots, n .
$$

In particular, $\boldsymbol{\phi}_{\mathrm{d}}^{1}, \ldots, \boldsymbol{\phi}_{0}$ congtitute a basis of $T^{\star} M$ in a neighbourhood of $x_{0}$.

Definition 1.8 A serath-arder $G$-frame field $e: M \rightarrow G$ of $\Pi$ clonf $f$ is aid to be of firat order at a poind $x_{0} \in M$, if $\phi_{0}^{0}=0$ at $x_{0}, \forall a=m+1, \ldots, n$ with $\phi$ i gisen by Eq. (1.35). The frame $c$ is acid to bs of firat order, if it is so at each poim of ita domain of definition.

The above comatraction proves the exintence of first-order framea in a neighbonshood of any given point of $\boldsymbol{M}$.

Remarl 1.2 We note that also firm-order frames of the type $e=0 \quad f$, where a is a section of $\Pi$, can be constructed in a neighbourhood of ary given point of $M$. Assume that we otart the above construction with a geroth-order $G$-frame along $f$ of the lorm $e=* \circ f$, where $: S^{n} \rightarrow G$ in a section of $\Pi$ on a neighbonrhood of $f\left(x_{0}\right)$. Then, we define $\mathcal{Z}_{1}(f(x))=d_{f}\left(Z_{i}(x)\right) \in T_{f(x)} S^{n}$ and extend $\mathcal{Z}_{\text {, }}$ on a neighboarhood of $f\left(x_{0}\right)$ in $S^{n}$, giving vector fields on $S^{\boldsymbol{e}}$. These are linearly independent on a neighbourhood of $f\left(x_{0}\right)$ in $S^{n}$. Let $p: S^{n} \rightarrow M$ be a map defined near $f\left(x_{\circ}\right)$, antisfying $p \circ f=i d_{M}$. We define

$$
\hat{v}_{i}(y)=\left|\begin{array}{c}
p^{*} \phi \phi_{1}^{\prime}\left(\hat{Z}_{i}(y)\right) \\
\vdots \\
p^{*} \phi_{0}^{g}\left(\tilde{Z}_{i}(y)\right)
\end{array}\right|, \quad V_{i}=1_{1}, \ldots, m .
$$

Then, $V_{y}=\operatorname{apan}\left\{\dot{v}_{1}(y), \ldots, v_{m}(y)\right\}$ is an m-dimensional anbapace of $\boldsymbol{R}^{m}$ for $y$ in a neighbourhood $U$ of $f\left(x_{0}\right)$ in $S^{m}$. Repeating the above construction, but now replacing $v_{1}$ by $\tilde{v}_{1}$ and $z$ by $y$, we obtain a map 㑒 : $U \rightarrow S O(n)$. Deflning $\dot{s}: S^{\mathrm{a}} \rightarrow G$ by $\bar{z}(y)=a(y) \hat{K}(y)$, with $\hat{K}: U \subset S^{n} \rightarrow G_{0}$ given by

$$
\hat{K}(y)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \hat{A}(y) & 0 \\
0 & 0 & 1
\end{array}\right|
$$

we obtain a section of II. Thas, $\bar{e}=\bar{i} \circ f$ in a zeroth-order frame of II along $f$ which satiafles $\bar{e}(x)=e(x) \hat{K}(f(x))$. Moreover, if we denote $K=\hat{K}$ of: $M \rightarrow G_{0}$, we have that $\bar{e}=a K$ atiafica $\bar{\phi}_{0}^{a}(x)=\bar{A}_{\dot{4}}^{\theta}(f(x)) \phi_{0}^{\theta}(x)=0$. Hence, $\bar{c}$ is a firat-order frame of the type of with a aection of $\Pi$.

Consider the closed aubgroup $G_{1}$ of $G_{0}$

$$
\left.G_{1}=\left\{\begin{array}{cccc}
r^{-1} & \mathbf{X} A & Y B & \frac{1}{2} r(X X+Y Y)  \tag{1.37}\\
0 & A & 0 & r X \\
0 & 0 & B & r Y \\
0 & 0 & 0 & r
\end{array}\right\} \begin{array}{l}
A \in S O(m) \\
B \in S O(n-m) \\
X \in \mathbb{R}^{m}, Y \in \mathbb{R}^{-m} \\
r \in \mathbb{R}^{+}
\end{array}\right\}
$$

where $X, Y$ are column vectorn.
Let e, e: $\boldsymbol{M} \rightarrow \boldsymbol{G}$ be geroth-order frame fields along $f$ which are of firat order at a point $x \in M$. Let

$$
K=ब^{-1} \tilde{e}=\left|\begin{array}{ccc}
r^{-1} & t Z G & \frac{1}{2} r^{l} Z Z \\
0 & C & r Z \\
0 & 0 & r
\end{array}\right| \in G_{0}
$$

Writing

$$
\left.C=\left[\begin{array}{cc}
A & A^{\prime} \\
\underbrace{B^{\prime}}_{m} & \underbrace{B}_{n-m}
\end{array}\right]\right\}_{n-m}
$$

we have, from Eq. (1.29), at the point $x$

$$
\left[\begin{array}{c}
\tilde{\phi}_{0}^{i} \\
0
\end{array}\right]=r^{-1} C\left[\begin{array}{c}
\phi_{0}^{i} \\
0
\end{array}\right]=r^{-1}\left[\begin{array}{c}
A
\end{array}\left(\phi_{0}^{i}\right] .\left[\phi_{0}^{i}\right]\right]
$$

that in, $\left.A^{\prime} \mid \phi_{e}^{j}\right]=0$. Therefore, $A^{\prime}=0$. Analogonaly, from the equality $\left[\begin{array}{c}\phi \\ 0\end{array}\right]=$ $r O\left[\begin{array}{c}\phi_{0} \\ 0\end{array}\right]$ we obtain $B^{\prime}=0$. So, $O=\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]$ at the point $x$, with $(A, B)$ e $S O(m) \times S O(n-m) \cup O^{-}(m) \times O^{-}(n-m)$. If we aesume that ( $\left.\phi_{0}, \ldots, \phi_{0}^{\nabla^{\prime}}\right)$
and ( $\left.\tilde{\phi}_{0}, \ldots, \phi_{j}^{m}\right)$ define the same orientation on $T_{s} M$, then $A \in S O(m)$ and $B \in$ $S O(n-m)$. Writing $Z=(X, Y) \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$, then, at the point $x$, we have $' Z C=' X A+Y B,{ }^{\prime} Z Z=' X X+Y Y$, and so

$$
K=\left|\begin{array}{cccc}
r^{-1} & X X A & Y B & \frac{1}{Y} r(X X X+Y Y)  \tag{1.38}\\
0 & A & 0 & r X \\
0 & 0 & B & r Y \\
0 & 0 & 0 & r
\end{array}\right| \in G_{1}
$$

Conversely, if e: $M \rightarrow G$ is a given zeroth-order frame along $f$ which is of first order at a point $x \in M$, and if $K: M \rightarrow G_{0}$ is a wap, such that $K(x) \in G_{1}$, say like in Eq. (1.38), then ẽ : $M \rightarrow G$ given by

$$
\begin{equation*}
\tilde{e}=e K \tag{1.39}
\end{equation*}
$$

is a zeroth-order frame along $f$, satiafying, at the point $x$,

$$
\left[\begin{array}{c}
\tilde{\phi}_{0}^{i} \\
\tilde{\phi}_{0}^{\alpha}
\end{array}\right]=r^{-1}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\left[\begin{array}{c}
\phi_{0}^{j} \\
0
\end{array}\right]=\left[\begin{array}{c}
r^{-1} A\left[\phi_{0}^{i}\right] \\
0
\end{array}\right] .
$$

Thns, ē in a first-order frame at $x \in M$. For this reason, $G$, is called the iootropic group of the first-order G-frame Gelde at a point $x \in M$.
Next we give the transformation lawn for a change of a frit-order $G$-frame field song $f$. Let e, ē : $M \rightarrow G$ be two first-order frames. Then, $\bar{\varepsilon}=c K$ with $K: M \rightarrow$ $G_{1} a \operatorname{map}$ of the form (1.38). Writing $e=\left|e_{0}, e_{1}, e_{\ldots,} e_{-+1}\right|$, where $e_{a}: M \rightarrow \mathbb{R}^{++1}$ are vector-valued functions, we obtain explicitly

$$
\begin{align*}
\tilde{e} & =\left[\tilde{e}_{0}, \tilde{e}_{i}, \tilde{e}_{\alpha}, \tilde{e}_{n+1}\right]=e K  \tag{1.40}\\
& =\left[r^{-1} e_{0}, A_{i}^{j}\left(X_{j} e_{0}+e_{j}\right), B_{\alpha}^{\theta}\left(Y_{\beta} e_{0}+e_{\beta}\right), \frac{1}{2} r(X X X+Y Y) e_{0}+r X_{j} e_{j}+r Y_{\alpha} e_{\alpha}+r e_{n+1}\right]
\end{align*}
$$

As in Eq. (1.28), $\tilde{\phi}=K^{-1} \phi K+K^{-1} d K$, giving

$$
\tilde{\phi}=\left[\begin{array}{ccc}
\tilde{\phi}_{0}^{0} & \tilde{\phi}_{j}^{0} & \tilde{\phi}_{a}^{0} \\
\tilde{\phi}_{0}^{j} & \dot{\phi}_{j}^{\prime} & \tilde{\phi}_{a}^{\prime} \\
0 & \tilde{\phi}_{j}^{\alpha} & \tilde{\phi}_{g}^{o}
\end{array}\right]=
$$

$$
\begin{align*}
& \left.\left(r^{-1} A \mid \phi_{0}^{\mathrm{j}}\right]\right) \quad\binom{\left.A\left(\left[\phi_{j}^{\prime}\right] X-X^{\prime} \mid \phi_{0}\right]\right)+1}{+A\left[\phi_{j}^{j}\right] A+A d A} \\
& 0 \\
& \left({ }^{\prime} B\left[\phi_{j}^{\circ} \mid A-' B Y^{\prime}\left[\phi_{0}^{i}\right] A\right)\right. \\
& \left(\lambda\left[\phi_{0}\right]^{\gamma} Y B+A\left[\phi_{0}^{\prime}\right] B\right) \\
& \left.\left({ }^{\prime} B[\phi]^{8}\right] B+{ }^{\prime} B d B\right) \tag{1.41}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\left[\hat{\phi}_{0}^{\prime}\right]=r^{-1 / A}\left[\phi_{0}^{\prime}\right] . \tag{1.42}
\end{equation*}
$$

Thun, we have

$$
\begin{equation*}
j=\sum_{i=1}^{m}\left(\tilde{\phi}_{0}^{j}\right)^{2}=r^{-1} \sum_{i=1}^{m}\left(\phi_{0}^{i}\right)^{i}=r^{-2} \tag{1.43}
\end{equation*}
$$

and

$$
\begin{equation*}
d \bar{V}=\tilde{\phi}_{0}^{1} \wedge \ldots \wedge \hat{\phi}_{0}^{m}=r^{-m} \phi_{0}^{\prime} \wedge \ldots \wedge \phi_{0}^{m}=r^{-m} d V . \tag{1.4}
\end{equation*}
$$

The equationa ( 1.43 ) and (1.44) for firm-order $G$-frame fielda along $/$ define a conformel atructure and an orientation on $M$, reapectively.

Let e: $\boldsymbol{M} \rightarrow \boldsymbol{G}$ be a flrut-order $G$-frame field viong $f$ and $\phi=[\phi \phi]$ be defined at in Eq. (1.35). The 1 -formas $\phi f$ of $\boldsymbol{M}$ eatinfy the anme relations an $\boldsymbol{\phi} \boldsymbol{f}$ in Eq. (1.16), with the additional property $\phi_{0}^{*}=0, \forall \alpha=m+1, \ldots, n$. The structare equatione (1.18) also hold for the components of $\phi$. In particalar, for each a

$$
\begin{equation*}
0=\left\langle\phi_{0}^{0}=-\phi_{i}^{*} \wedge \phi_{0}^{\prime} .\right. \tag{1.45}
\end{equation*}
$$

At this point we recall Cartan'a Lemma, becane we are going to ane it quire often.
Lemme (Cartan) Let $\mathrm{g} \leq m$ and let $\omega_{\mathrm{h}}, \ldots, \omega_{p}$ be 1 -forma an an m-dimansiond manifold $M$ thet are lineariy indopendent pointuice. Let $d_{1}, \ldots, d_{p}$ bo 1 farme on $M_{1}$, anch that

$$
\theta_{1} \wedge w_{1}=0 .
$$

Then, there asios functiona $C_{i j}$, anch that $\sigma_{i j}=\sigma_{j i}$ and $\theta_{i}=\sigma_{i j} \omega_{j}$.
Applying Cartan's Lemma to Eq. (1.45), we have

$$
\begin{equation*}
\phi_{i}^{i}=h_{i j}^{i} \phi, \quad \forall a=m+1, \ldots, n, \tag{1.46}
\end{equation*}
$$

where Ag, are amooth functions defined on the domain of definition of a and with the symmetry property

$$
\begin{equation*}
h_{i j}^{e}=h_{j i}^{*}, \quad \forall 1 \leq i, j \leq m \tag{1.47}
\end{equation*}
$$

Hence, the atracture equations (1.18) are, in the case of first-order framen, redueed 10

$$
\begin{align*}
& \begin{array}{l}
d \phi_{0}^{0}=-\phi_{0}^{0} \wedge \phi_{0}^{0} \\
d \phi_{0}^{\prime}=-\phi_{0}^{\prime} \wedge \phi_{0}^{0}-\phi_{j}^{j} \wedge \phi_{0}^{\prime}
\end{array} \\
& d \phi_{i}^{0}=-\phi_{0}^{0} \wedge \phi_{i}^{0}-\phi_{i}^{0} \wedge \phi_{i}^{j}-h_{i}^{0} \phi_{0}^{0} \wedge \phi_{0}^{k} \\
& d \phi_{j}=-\phi_{0}^{j} \wedge \phi_{j}^{0}-\phi_{i}^{\prime} \wedge \phi_{j}^{\phi}-\phi_{i}^{0} \wedge \phi_{0}^{j}+A_{i k}^{i} A_{j}^{j} \phi_{0}^{t} \wedge \phi_{0}^{0}  \tag{1.48}\\
& d \phi_{0}^{6}=-\phi_{0}^{0} \wedge \phi_{0}^{0}+h_{j}^{0} \phi_{i}^{9} \wedge \phi_{0}^{0}-\phi_{\phi}^{0} \wedge \phi_{0}^{\theta} \\
& d \phi_{i}^{( }=-h_{j i}^{0} \phi_{0}^{*} \wedge \phi_{i}-\phi_{0}^{0} \wedge \phi_{0}^{0}-h_{i j}^{\prime} \phi \phi_{i} \wedge \phi_{\phi}
\end{align*}
$$

Now we give the trancormation law of the hér. Let $\mathbb{E}: M \rightarrow G$ be mother frat-order frame and let ify denote the functiona as defined in Eq. (1.46), bat now relative to the frame e. From Eq. (1.41), we have

$$
\dot{\phi}=B_{0}^{\prime} \phi_{j}^{\prime} A_{i}^{\prime}-B_{0}^{t} Y_{p} \phi_{0} A_{j}^{\prime}, \quad \dot{\phi}=r^{-1} A_{j}^{k} \phi_{0}^{t} .
$$

Thun,

$$
\begin{aligned}
& \tilde{\phi}_{i}^{\alpha}=\tilde{h}_{i j}^{\alpha} \tilde{\phi}_{0}=r^{-1} \tilde{h}_{i j}^{\alpha} A_{j}^{k} \phi_{0}^{k} \\
& =B_{0}^{\prime} A_{i}^{\prime}\left(\phi_{j}^{\prime}-Y_{p} \phi_{\phi}\right)=B_{a}^{\prime} A_{i}^{\prime}\left(\mu_{j}^{\prime} \phi_{\phi}^{\phi}-Y_{\rho} \phi_{0}\right) \\
& =B_{g}^{\prime}\left(A_{i}^{\prime} \omega_{j \mu}^{\prime}-A_{i}^{4} Y_{p}\right) \phi_{0}^{k} .
\end{aligned}
$$

That in, $\boldsymbol{H}_{y} A_{j}^{\mu}=r B_{6}^{\prime}\left(A_{i}^{j} h_{p,}^{\beta}-A_{j} Y_{f}\right)$. Multiplying both aides by $A_{f}$ and letting $k$ run over $1, \ldots, m$, we obtain from the orthogonality of $A$ the equetion

$$
\begin{equation*}
\hat{h}_{i j}^{e}=r B_{a}^{d} A_{j}^{k}\left(A_{i}^{t} h_{i k}^{d}-A_{i}^{t} Y_{p}\right) \tag{1.49}
\end{equation*}
$$

### 1.2.C Second-Order G-Frame Fields Along $f$

Let e $: M \rightarrow G$ be a frot-order $G$-frame field of $I I: G \rightarrow S^{\text {n }}$ along $f: M \rightarrow S^{n}$. If © : $M \rightarrow G$ in any other firm-order $G$-frame, with $\&=e K$, where $K$ in of the form (1.38), then, tahing the trace in the indiced $i, j$ in Eq. (1.49), we obtain

$$
\begin{equation*}
\dot{h}_{i i}^{\Leftrightarrow}=r B_{a}^{\rho}\left(h_{k \dot{p}}^{f}-m Y_{\rho}\right) . \tag{1.50}
\end{equation*}
$$

For each $\boldsymbol{m}+1 \leq \beta \leq n$, let the function $Y_{\boldsymbol{p}}: \boldsymbol{M} \rightarrow \mathbb{R}$, defined in the domain of definition of $e$, be given by

$$
\begin{equation*}
Y_{p}=\frac{1}{m} h_{k k}^{\ell_{1}}, \tag{1.51}
\end{equation*}
$$

and $K: M \rightarrow G_{1}$ by

$$
K=\left|\begin{array}{cccc}
1 & 0 & Y & \frac{1}{2} Y Y  \tag{1.52}\\
0 & I_{m} & 0 & 0 \\
0 & 0 & I_{a}-m & Y \\
0 & 0 & 0 & 1
\end{array}\right|,
$$

where $Y=\left(Y_{m+1}, \ldots, Y_{n}\right): M \rightarrow \boldsymbol{F}^{m}$ is as in Eq. (1.51). Then, from Eq. (1.50), è satiafies

$$
\check{h}_{i}^{a}=0, \forall \alpha=m+1, \ldots, n .
$$

Oberve that in this ease, due to Eq. (1.42), $\tilde{\phi}_{\mathrm{i}}^{\mathrm{j}}=\boldsymbol{\phi}_{\mathrm{e}}, V_{i}=1, \ldots, m$, which implien $\tilde{i}=g$ and $\bar{d} \bar{V}=d V$ in Eqs. (1.43), (1.44). Than, we have just proved that one can define a firatorder $G$-frame field $e: M \rightarrow G$ along $f$ in a neighbourhood of each point $x$ of $M$, with the property $h_{i j}^{*}=0$. Moreover, such frames atill define all the Riemannian metrica of the conformal atructure of $\boldsymbol{M}$.

Definition 1.4 A firat-order G.frame field e: $M \rightarrow G$ alonf $f: M \rightarrow S^{n}$ is eaid to be of cecond order at a point $x \in M$, if it satiofies $h_{i}^{q}=0 a t x, V a=m+1, \ldots, n$, with $h_{j}^{\text {en }}$ given by Eq. (1.46). The frame $e$ is said to be of second onder, if it is so at each poind of its domain of definition.

Consider the closed subgroup of $G$, defined by

$$
G_{2}=\left\{\left|\begin{array}{cccc}
r^{-1} & X A & 0 & \frac{1}{2} r r^{\prime} X X  \tag{1.53}\\
0 & A & 0 & r X \\
0 & 0 & B & 0 \\
0 & 0 & 0 & r
\end{array}\right|: \begin{array}{cll}
A & \in & S O(m) \\
B & \in & S O(n-m) \\
X & \in & R^{m} \\
r & \in & R^{+}
\end{array}\right\}
$$

If $e, \tilde{e}: M \rightarrow G$ are firstorder framen that are of aecond order at a point $z \in M$, we get, writing $\bar{\delta}=e K$ with $K: M \rightarrow G_{1}$ of the form (1.38) and oning Eq. (1.50), $B_{s}^{s} Y_{s}=0$, i.e. $Y_{s}=0$ at $x, \bigvee \beta$. Therefore, $K(x) \in G_{s}$. Convenely, if $e: M \rightarrow G$ is a first-order frame which is of second order at a point $x \in M$, and if $K: M \rightarrow G_{1}$ is a map, such that, at $x, K(x) \in G_{2}$, then from Eq. (1.50) follows
 of recond order at $x$. Thus, $G_{3}$ in the inotropic group of second-order frawes at any point $\boldsymbol{x}$.

Remark 1.3 The frames that we have jnst called to be of second order are, strictly apeaking, not of aecond order in the terminology of the general theory on rednction of framen (see Refr. [Je/T7] [Su-Sv/80]), an way alresdy pointed out in Refs. [Sch$\mathrm{Su} / 80]$ [ $\mathrm{Br} / 84$ ] [Ri/87]. The construction of our "second-order" frames in more correctly called a partial accond-order reduction, reaulting in more apecialised firstorder frames, correaponding to the so-called Darboux frames in the Riemennian geometry of submanifolds of the Euclidean apace (see Sec. 1.3). Further reductions can only be carried out by imposing some non-degeneracy condition.
 aecond-order frame e, that, together with the $\phi_{i}^{i}$ and $h_{j,}^{\text {, }}$, will be our exenential toola in congtracting geometrie objecta (e.g. tensors) of the conformal geametry of $\boldsymbol{M}$. Differentiating Eq. (1.40) and using the atructure equation (1.48) for a firrt-order frame, we get

$$
\begin{aligned}
d \phi_{i}^{a} & =\left(d h_{i j}^{e}+h_{i j}^{e} \phi_{0}^{0}-h_{i}^{e} \phi_{j}^{k}\right) \wedge \phi_{0}^{0} \\
& =-h_{j i}^{\infty} \phi_{0}^{k} \wedge \phi_{i}^{\prime}-\phi_{\alpha}^{0} \wedge \phi_{0}^{i}-h_{i j}^{\theta} \phi_{j}^{\theta} \wedge \phi_{0}^{j},
\end{aligned}
$$

which gives

$$
\left(d h_{i j}^{\alpha}-h_{i n}^{\alpha} \phi_{j}^{k}-h_{i j}^{\alpha} \phi_{i}^{h}+h_{i j}^{j} \phi_{i}^{a}+h_{i j}^{\alpha} \phi_{0}^{0}+\delta_{i j} \phi_{i n}^{0}\right) \wedge \phi_{j}=0 .
$$

Hence, by Cartan'a Lemma, we have, for each $i, a_{\text {, }}$

$$
\begin{equation*}
d h_{i j}^{0}-h_{i j}^{q} \phi_{j}^{k}-h_{i j}^{\sigma} \phi_{i}^{k}+h_{i j}^{j} \phi_{j}^{g}+h_{i j}^{e} \phi_{0}^{0}+\phi_{i j} \phi_{a}^{0}=h_{i j k}^{a} \phi_{0}^{k}, \tag{1.54}
\end{equation*}
$$



$$
\begin{equation*}
A_{i j k}^{e}=H_{j i k}^{e}=h_{e k,}^{e}, \forall a=m+1_{1} \ldots, n, i, j, k=1, \ldots, m . \tag{1.55}
\end{equation*}
$$

Taking the trace of Eq. (1.64) in the indicen $i, j$, and noting that $h_{i j} \phi_{j}=0$, we obtain

$$
m \phi_{0}^{0}=h_{i, 1, \phi_{0}^{t}}^{t} .
$$

Defining

$$
\begin{equation*}
P_{h}^{e}=\frac{1}{m} h_{i k}^{e} \tag{1.56}
\end{equation*}
$$

we heve

$$
\begin{equation*}
\phi_{a}^{0}=p_{k}^{a} \phi_{0}^{k} \tag{1.57}
\end{equation*}
$$

Diferentiation of thi equation yields, with the atructure equationa (1.48),

$$
\begin{align*}
d \phi_{0}^{0} & =d p_{k}^{a} \wedge \phi_{0}^{k}+p_{k}^{a} \wedge d \phi_{0}^{k}=\left(d p_{j}^{0}-p_{k}^{a} \phi_{j}^{k}+p_{j}^{a} \phi_{0}^{0}\right) \wedge \phi_{0}^{j}  \tag{1.58}\\
& =-p_{j}^{a} \phi_{0}^{0} \wedge \phi_{0}^{\prime}+h_{j}^{a} \phi_{i}^{0} \wedge \phi_{0}^{j}+p_{j}^{\beta} \phi_{k}^{0} \wedge \phi_{0}^{j} . \tag{1.59}
\end{align*}
$$

Combining Eqg. (1.58) and (1.59) we obtain

$$
\left(d p_{j}^{a}-p_{i}^{\beta} \phi_{j}^{k}-h_{i, j}^{\alpha} \phi_{k}^{0}+p_{j}^{\prime} \phi_{j}^{\alpha}+2 p_{j}^{o} \phi_{0}^{0}\right) \wedge \phi_{0}^{\prime}=0 .
$$

Hence, from Cartan's Lemma,

$$
\begin{equation*}
d p_{j}^{a}-p_{k}^{0} \phi_{j}^{h}-h_{k, j}^{a} \phi_{k}^{0}+F_{j}^{f} \phi_{j}^{a}+2 p_{j}^{0} \phi_{0}^{0}=p_{j k}^{0} \phi_{0}^{k}, \tag{1.60}
\end{equation*}
$$

where $p_{i}^{d}$ are smooth functions on the domain of definition of $e$ with the symmetry property

$$
\begin{equation*}
\boldsymbol{p}_{i k}^{\boldsymbol{A}}=\boldsymbol{p}_{k i}^{\boldsymbol{\alpha}}, \quad \forall a, k, i \tag{1.61}
\end{equation*}
$$

Using Eq. (1.54), we get

$$
\begin{aligned}
& -h_{i j}^{*} h_{i j}^{*} \phi_{0}^{0}-h_{i j}^{e} \boldsymbol{P}_{k}^{\prime \prime} \phi_{0}^{k} \text {. }
\end{aligned}
$$




$$
h_{i j}^{\theta} d h_{i j}^{e}=-\sum_{i, j, a}\left(h_{i j}^{e}\right)^{2} \phi_{0}^{0}+h_{i j}^{e} h_{i j h}^{e} \phi_{0}^{k} .
$$

Hence, vaing the venishing of $d\left(h_{j}{ }_{j} \mathrm{dh}_{\mathrm{j}}^{\mathrm{j}}\right)$ and the structure equations (1.48), we obtain

$$
d\left(h_{i j}^{e} h_{i j k}^{o}\right) \wedge \phi_{0}^{k}=\left(-3 h_{i j}^{o} h_{i j k}^{o} \phi_{0}^{0}-\sum_{i j \rho}\left(h_{i j}^{\alpha}\right)^{2} \phi_{k}^{0}+h_{i j}^{\alpha} h_{i j p}^{\alpha} \phi_{k}^{0}\right) \wedge \phi_{0}^{*}
$$

Then, Garten'a Lemma yields

$$
\begin{equation*}
d\left(h_{i j}^{e} h_{i j k}^{\alpha}\right)=-3 h_{i j}^{\alpha} h_{i j k}^{e} \phi_{0}^{0}-\sum_{i, j, \varepsilon}\left(h_{i j}^{\alpha}\right)^{2} \phi_{i}^{0}+h_{i j}^{\infty} h_{i j p}^{\omega} \psi_{k}^{\rho}+H_{h r} \phi_{0}^{\theta}, \tag{1.62}
\end{equation*}
$$

where the $H_{b}$ are amooth functions with the symmetry property

$$
\begin{equation*}
H_{b v}=H_{r t} \tag{1.08}
\end{equation*}
$$

Alternatively, we can express $H_{4}$, as followa. Differentiating Eq. (1.54) and applying Oartan's Lemma, we get
where $h_{i j+1}^{0}$ are amooth functions with the symmetry properties

Expanding the l.h.t. of Eq. (1.62) and using Eq. (1.64) plua definition (1.56), we obtain

Beidea, from Eq. (1.35) we have de $=e \circ \phi$. If we regard, in the basia no $_{\text {, the }}$ column components $e_{a}$ of the matrix $e=\left|e_{0}, e_{1}, e_{n}, e_{n+1}\right|$ an $\mathbb{R}^{++1}$-valued functions $e_{a}: S^{\infty} \rightarrow \mathbb{R}^{a+2}$, then we get, with Eqa. (1.16),(1.46),(1.57),

$$
\begin{align*}
& d e_{0}=\phi_{0}^{0} e_{0}+\phi_{0} e_{1} \\
& d e_{k}=\phi_{k} e_{0}+\phi c_{c_{1}}+h_{k} \phi_{j}^{\prime} e_{o}+\phi_{0}^{\phi} e_{n+1} \\
& d e_{a}=p_{i}^{i} \phi_{0}^{\prime} e_{0}-h_{i j}^{0} \phi_{0} e_{j}+\phi_{j}^{e} e_{g} \tag{1.67}
\end{align*}
$$

Finally, the frat four structure equations (1.48), rewritten for second-order framen, take the form

$$
\begin{aligned}
& d \phi_{0}^{9}=-\phi_{i}^{i} \wedge \phi_{0}^{\prime} \\
& d \phi_{0}^{\prime}=-\phi_{0}^{\prime} \wedge \phi_{0}^{0}-\phi, \wedge \phi_{0}^{\prime} \\
& d \phi_{i}^{0}=-\phi_{0}^{0} \wedge \phi_{i}^{0}-\phi_{j}^{0} \wedge \phi_{i}^{j}-\boldsymbol{\gamma}_{j}^{0} h_{i}^{g} \phi_{j}^{j} \wedge \phi_{i}^{k} \\
& d \phi_{j}^{\prime}=-\phi_{0}^{\prime} \wedge \phi_{j}^{0}-\phi_{k}^{\prime} \wedge \phi_{j}^{*}-\phi_{i}^{0} \wedge \phi_{0}^{\prime}+h_{i h}^{i} h_{j}^{j} \phi_{j}^{k} \wedge \phi_{0}^{\prime} \text {. }
\end{aligned}
$$

 be written as

$$
\begin{align*}
& d \phi_{0}^{0}=-\phi_{i}^{0} \wedge \phi_{0}^{i}+\Omega_{0}^{0} \\
& d \phi_{0}^{0}=-\phi_{0}^{0} \wedge \phi_{0}^{0}-\phi_{j}^{j} \wedge \phi_{0}^{j}+\Omega_{0}^{0} \\
& d \phi_{i}^{0}=-\phi_{0}^{0} \wedge \phi_{i}^{0}-\phi_{j}^{0} \wedge \phi_{i}^{j}+\Omega_{i}^{0} \wedge \phi_{0}^{j}+\Omega_{j}^{i},  \tag{1.68}\\
& d \phi_{j}^{j}=-\phi_{0}^{j} \wedge \phi_{j}^{0}-\phi_{n}^{i} \wedge \phi_{j}^{k}-\phi_{i}^{0} \wedge \phi_{0}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{0}^{0}=\Omega_{0}^{i}=0, \Omega_{i}^{0}=-p_{j}^{o} h_{i k}^{\alpha} \phi_{0}^{j} \wedge \phi_{0}^{k}, \Omega_{j}^{i}=h_{i k}^{\alpha} h_{j i}^{\sigma} \phi_{0}^{k} \wedge \phi_{0}^{\prime} \tag{1.69}
\end{equation*}
$$

 connection forma resp. cursature forms corresponding to the second-order frame e.

Next we give the transformation lawa of the $\epsilon_{a}, \phi_{i}^{i}, h_{j,}^{a}, p_{i}^{i}, h_{i j}^{e}, p_{j}^{i}$, and $H_{i j}$. Let $e, \bar{e}: M \rightarrow G$ be accond-arder frames along $f$ with $\tilde{e}=e K$, where $K: M \rightarrow G_{1}$ is a map of the form

$$
K=\left|\begin{array}{cccc}
r^{-1} & t X A & 0 & \frac{1}{2} r^{t} X X  \tag{1.70}\\
0 & A & 0 & r X \\
0 & 0 & B & 0 \\
0 & 0 & 0 & r
\end{array}\right|
$$

Then,

$$
\begin{align*}
\tilde{e} & =\left[\tilde{e}_{0}, \tilde{e}_{i}, \tilde{e}_{0}, \bar{e}_{n+1}\right]=\left[\epsilon_{0}, e_{i}, e_{0}, e_{n+1}\right] K \\
& =\left[r^{-1} e_{0}, A_{i}^{j}\left(X_{j} e_{0}+e_{j}\right), B_{0}^{g} e_{\beta}, \frac{1}{2} r r^{\prime} X X e_{0}+r X_{j} e_{j}+r e_{n+1}\right] \tag{1.71}
\end{align*}
$$

Ae in Eq. (1.28), $\bar{\phi}=K^{-1} \phi K+K^{-1} d K$, which gives

$$
\begin{aligned}
& \dot{\phi}=\left|\begin{array}{ccc}
\hat{\phi}_{0}^{0} & \hat{\phi}_{j}^{0} & \hat{\phi}_{0}^{0} \\
\hat{\phi}_{0}^{i} & \dot{\phi}_{j}^{j} \\
0 & \hat{\phi}_{0}^{0} \\
0 & \dot{\phi}_{j}^{0} & \hat{\phi}_{j}^{-}
\end{array}\right|=
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\left(r^{-1} A\left[\phi_{0}^{\prime}\right]\right) \quad\left(A\left(\left[\phi_{0}^{j}\right]^{\prime} X-X^{2}\left[\phi_{0}^{i}\right]\right)+{ }^{\prime} A \mid \phi_{j}^{j}\right] A+{ }^{\prime} A d A\right) \quad\left(A \mid \phi_{e}^{i}\right] B\right) \\
& 0 \\
& \text { ( } \left.\left.{ }^{(B]} \boldsymbol{\phi}_{j}^{\mathrm{g}}\right] \mathrm{~A}\right)  \tag{1.72}\\
& \left({ }^{\prime} B\left[\phi_{B}^{8}\right] B+{ }^{\prime} B d B\right)
\end{align*}
$$

From Eq. (1.49), we have (with now $Y=0$ )

$$
\begin{equation*}
\hat{h}_{i z}^{e}=r B_{a}^{\beta} A_{i}^{k} A_{j}^{\prime} h_{w}^{\prime} \tag{1.73}
\end{equation*}
$$

 $X_{i} \phi_{p}$ ) given in Eq. (1.72), we obtain

$$
\begin{equation*}
\tilde{p}_{i}^{\phi}=r^{B} B_{j}^{g} A_{i}^{h}\left(\hat{p}_{h}^{h}+h_{h_{j}}^{f} X_{j}\right) \tag{1.74}
\end{equation*}
$$

In order to derive the transformation law of the $h_{\text {gin }}^{\text {gh }}$, we differentiate Eq. (1.73), and one Eq. (1.54) and the tranaformation laws (1.72),(1.73), obtaining

Eqs. (1.73) and (1.75) yield the transformation

Differentiating Eq. (1.74) and applying Eq. (1.60) to $e, \bar{e}$, we obtain the transformation law of the $\hat{p}_{f}^{q}$, reading

$$
\begin{align*}
& -A_{j}^{t} A_{j}^{\prime} X_{k} X_{p} h_{p t}^{p}-\frac{1}{2} A_{j}^{k} A_{j}^{t} X_{p} X_{p} h_{k}^{k}-2 A_{j}^{k} A_{j}^{\prime} X_{i} p_{k}^{k}+  \tag{1.77}\\
& \left.-2 A_{i}^{*} A_{j}^{l} X_{k} P_{i}^{f}+\delta_{1}, X_{p} X_{i} h_{p}^{p}+\delta_{i j} X_{p} p_{p}^{f}\right) \text {. }
\end{align*}
$$

Taking the trace of this equation in the indices $i, j$ leade to

$$
\begin{equation*}
\hat{p}_{i}^{a}=r^{2} B_{0}^{g}\left(p_{a}^{f}+2(m-2) X_{p} p_{p}^{f}+(m-2) X_{p} X_{t} h_{n}^{p}\right), \tag{1.78}
\end{equation*}
$$

which, in the particular case $m=2$, gives

$$
\begin{equation*}
\overrightarrow{p_{i}^{*}}=r^{0} B_{d i t}^{g} p_{i t}^{p} . \tag{1.79}
\end{equation*}
$$

Differentiation of Eq. (1.76) and application of Eq. (1.02) and the tranaformation law of the ${ }^{\circ} \mathrm{f}$ in Eq. (1.72) givea

Combining thin with Eq. (1.73), we get

Finally, we derive the tranaformation law of the $(m-1)$-form $\phi^{\text {Li...mm }:=~} \phi_{0} \wedge$ $\ldots \wedge \phi_{a}^{-1} \wedge \phi_{a}^{\prime+1} \wedge \ldots \wedge \phi_{0}^{\prime \prime}$, where the minsing index $i$ in anumed to be summed
over when appearing repeated in composite expressiona. From Eq. (1.72), we have $\bar{\phi}_{0}^{\prime}=r^{-1} A_{i}^{k} \phi_{j}^{k}$. Denoting by $\bar{E}_{1}$ and $E_{1}$ the linear framea dual to the co-frames $\bar{\phi}_{0}^{\prime}$ reap. 中. we get

$$
\begin{equation*}
\tilde{E}_{1}=r A_{i}^{k} E_{\psi} . \tag{1.82}
\end{equation*}
$$

Hence,

$$
\phi^{2 \cdot i-m}=\sum_{j} \operatorname{det}\left(A_{i \ln }^{1 \cdot \frac{2}{2}-m}\right) \phi^{2-j-m}
$$

 $j$ removed. Since $A$ is orthogonal and from the rale $(-1)^{1+3} \operatorname{det}\left(\Lambda_{1}^{1} \ldots, \ldots m\right)\left(r A_{1}^{\prime}\right)=$
 $(-1)^{i+j} r^{m-1} A_{j}^{i} \oint^{l-n} j^{-m}$. Multiplying by $(-1)^{+k^{2}} r^{1-m} A_{k}^{i}$ and aumming over $i$, we arrive at

$$
\begin{equation*}
\hat{\phi}^{1 \ldots k m}=(-1)^{i+k} r^{1-m} A_{k}^{i} \phi^{1, \ldots, m} . \tag{1.83}
\end{equation*}
$$

### 1.2.D The Generalised Weyl Tensor and Conformally Flat Submanifolda

Given a second-order $G$-frame $e: M \rightarrow G$ along $f: M \rightarrow S^{n}$, one can define the quantitien (see Ref. [Ri/87])

$$
\begin{equation*}
\tau_{j k i}^{\prime}=h_{i k}^{\alpha} h_{j l}^{a}-h_{i l}^{\alpha} h_{j k}^{\alpha}, \tag{1.84}
\end{equation*}
$$

where the $h_{i j}$ are given by Eqs. (1.46) and (1.47). The $\boldsymbol{T}_{j}^{\prime}$, atatiafy the symmetry
 (1.09) we have $\Omega_{j}^{\prime}=\sum_{A<1} T_{j \omega 1}^{\prime} \phi_{0}^{h} \wedge \phi_{0}^{\prime}$, i.e. the $T_{j \omega}^{\prime}$ are the componenta of the curvature form $\Pi_{j}$ relative to the co-frame $\phi^{k}$. If $\dot{a}: M \rightarrow G$ is another aecondorder frame, then from Eq. (1.73) follows
where $r$ and $A_{j}^{\prime}$ are an in Eqs. (1.70), (1.39). Denote by $E$, the frame of $M$ dual to the co-frame \%. Then, from the traneformation law of these framea in Eq. (1.82) we conclude that a global tensor $T \in C^{\circ 0}\left(\mathcal{O}^{2} T^{*} M \otimes T M\right)$ can be defined on $M$, locally given by

$$
\begin{equation*}
T=-\boldsymbol{T}_{j}^{\prime} \omega \phi_{0}^{k} \otimes \phi_{0}^{\prime} \otimes \phi_{0}^{\prime} \otimes E_{i} \tag{1.86}
\end{equation*}
$$

on a domain of a accond-order frame e. Rigolicalled $\boldsymbol{T}$ the generalised Weyl teneor. Taking the trace of $\tau_{j}^{\prime} w$ in the indices $i, l$, one obtains

$$
\begin{equation*}
N_{j k}:=\tau_{j k i}^{\prime}=h_{i k}^{a} h_{j i}^{a}, \tag{1.87}
\end{equation*}
$$

which defines a global symmetric tensor $N \in C^{\infty}\left(\odot^{1} T^{*} M\right)$, locally given by

$$
\begin{equation*}
N=N_{j k} \phi_{0}^{\prime} \otimes \phi_{0}^{t} . \tag{1.88}
\end{equation*}
$$

Note that $N_{n j}=\sum_{i, j_{i,}( }\left(h_{i j}^{i j}\right)^{2}$ and that, if $m=2, N=\frac{1}{2} N_{j j}\left(\phi_{0}^{1} \otimes \phi_{0}^{1}+\phi_{0}^{3} \otimes \phi_{0}^{\prime}\right)$. For any $m$, one has trivially (cf. Refs. $|\mathrm{Sch}-\mathrm{Su} / 80|[\mathrm{Ri} / 87]$ ) at a point $x \in M$

$$
\begin{equation*}
\operatorname{trace} N(x)=M_{j j}(x)=0, \text { iff } h_{i j}^{d}=0, \forall i, j, \alpha, \text { if } N(x)=0 \tag{1.89}
\end{equation*}
$$

In perticular, the condition $N_{j g}(x)=0$ in conformally invariant, an we can also aee directly from the transformation law $\hat{N}_{j j}=r^{2} N_{j i}$. A point $x \in M$ in said to be umbilic, if $N_{y}(x)=0$, and the immersion $f: M \rightarrow S^{\text { }}$ is said to be Môbino-flat, if all the points of $M$ are umbilic (see Refa. |Sch-Su/80| |Br/84] [Ri/87]). If $x$
 frame. The nse of these names becomes clear from the following proposition, first formulated by Schiemangk and Sulanke [Sch-Si/80] (aee also |Ri/87|):

Proposition (Schbmangk-Sulanke, Rigoll) Suppose that $M$ is connected and $m \geq 2$. Them, $N \geq 0$, if there esiote \& $S^{m} \subset S^{m}$, sweh that $f(M) \subset S^{m}$. In this case, if, moreover, $M$ is compact, then $f$ in a diffeomorphism of $M$ onfo $S^{m}$.

In particular, the map

$$
\begin{array}{rll}
f: \mathbb{R}^{n} & \xrightarrow{\alpha^{-i} \sigma^{-1}} S^{m}  \tag{1.90}\\
y & \rightarrow\left[\begin{array}{c}
1 \\
y \\
\frac{1}{2}\|y\|^{2}
\end{array}\right]_{\sim} \rightarrow\left[\begin{array}{c}
S^{n}=\mathcal{L} \psi_{-} \\
{\left[\begin{array}{c}
y \\
0 \\
\frac{f}{2}\|y\|^{2}
\end{array}\right]_{\sim}}
\end{array}\right.
\end{array}
$$

immerses $\mathbb{R}^{m}$ as a Mōbius-fat aubmanifold into the Möbima apace $S^{n}$.

### 1.3 Relation with Riemannian Geometry of Submanifolds of the Euclidean Space

If one conaidera $S^{n}$ an $\mathbb{R}^{n}$ with a point at infinity, one can relate the Riemannian geometry of a anbmanifold of $I^{n} \subset S^{n}$ and ita conformal geometry induced by the one of $S^{\prime \prime}$, which we will deacribe in the following.
Let us consider the diffeomorphimms

where $\sigma$ and $x$ are given in Eqs. (1.5) reap. (1.11). Through the diffeomorphism $i=\kappa^{-1} \circ \sigma^{-1}, R^{n}$ ia identifled with $S^{n} \backslash\left\{x_{\infty}\right\}$. In order to use the method of moving frames in $\mathbb{R}^{n}$, we have to write $\mathbb{R}^{n}$ a a homogeneous apace of a anbgroup of $\boldsymbol{G}$.
The isotropic aubgroup of $G$ at $X_{00}$ is given by

$$
\dot{G}=\left\{\left|\begin{array}{ccc}
r^{-1} & 0 & 0 \\
r^{-1} Z & A & 0 \\
1 r^{-1} Z Z & Z A & r
\end{array}\right| ; \begin{array}{l}
A \in S O(n) \\
Z \in E R^{-} \\
r>0
\end{array}\right\}
$$

Let $G^{0}$ be the anbgronp of $\overline{\mathcal{C}}$ defined by

$$
G^{\bullet}=\left\{\left[\left.\begin{array}{ccc}
1 & 0 & 0  \tag{1.92}\\
Z & A & 0 \\
1^{\prime} Z Z & Z A & 1
\end{array} \right\rvert\, \div \begin{array}{l}
A \in S O(n) \\
\mathbf{I}^{\prime} \in \mathbb{R}^{n}
\end{array}\right\}\right.
$$

The gronp $G^{*}$ is isomorphic to the identity component $E^{+}(n)$ of the groop of the Euclidean motions of $\boldsymbol{R}^{n}$, i.e.

$$
\mathbb{E}^{+}(n)=\left\{(A, Z): A \in S O(n), Z \in \mathbb{R}^{+}\right\}
$$

with atructare groap defined by $(A, Z) \circ(B, W)=(A B, A W+Z),(A, Z)^{-1}=$ $\left(A^{-1},-A^{-1} Z\right)$, and id $=\left(I_{n}, 0\right)$. This isomorphism in given by

$$
\begin{align*}
& E^{+}(n) \rightarrow\left|\begin{array}{ccc}
1 & G^{\bullet} & 0 \\
Z & A & 0 \\
1, Z Z & Z^{\prime} Z & 1
\end{array}\right| .
\end{align*}
$$

Under thin identification, the action of $G^{\bullet}$ on $S^{\bullet} \backslash\left\{X_{\infty} \mid\right.$, which is the rertriction of the one of $G$ on $S^{n}$, is identical to the usual action of $\boldsymbol{E}^{+}(\boldsymbol{n})$ on $\mathbb{R}^{\mathbf{n}}$. In other words, the following diagram in commotative.

$$
\begin{aligned}
& \begin{array}{ccc}
E^{+}(n) & \times \mathbb{R}^{n} \\
((A, Z) & , \omega)
\end{array} \quad \rightarrow \quad \begin{array}{c}
\mathbb{R}^{-} \\
A \omega+Z .
\end{array}
\end{aligned}
$$

As the action of $\mathbb{E}^{+}(\boldsymbol{n})$ on $\mathbb{R}^{n}$ in trausitive, the aame holds for the action of $G^{\bullet}$ on $S^{n} \backslash\left\{\mathbf{x}_{\infty}\right\}$.
The isotropic aubgroup of $G^{a}$ at the origin $\mathbf{x}_{0} \in S^{n} \backslash\left\{x_{\text {oo }}\right\}$ is given by

$$
G_{0}^{*}=\left\{\left|\begin{array}{lll}
1 & 0 & 0  \tag{1.94}\\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right|: A \in S O(n)\right\}
$$

and in inomorphic, via Eq. (1.93), to the inotropic aubgroup $S O(n)$ of $\mathbb{E}^{+}(\boldsymbol{n})$ at the paint $i^{-1}\left(\mathrm{I}_{0}\right)=0$. Thas, $\mathbb{R}^{n} \simeq S^{\text {n }} \backslash\left\{\mathrm{x}_{\infty}\right\}$ in diffeomorphic wo the homogeneoun upace $G^{\circ} / G_{\mathrm{a}}^{*}$. Let $j: G^{\bullet} \rightarrow G$ be the inclasion map. The canonic projection $\Pi: G^{\bullet} \rightarrow G^{\bullet} / G_{0}^{*} \simeq \boldsymbol{R}^{n}$ is given by

$$
\begin{equation*}
\Pi(P)=i^{-1}\left(\left[P\left(\varphi_{0}\right)\right]_{\sim}\right), \tag{1.95}
\end{equation*}
$$

that in,

$$
\Pi\left(\left[\left.\begin{array}{ccc}
1 & 0 & 0 \\
Z & A & 0 \\
\frac{1}{1} Z Z & A^{\prime} Z & 1
\end{array} \right\rvert\,\right)=i^{-1}\left(\left|\begin{array}{c}
1 \\
Z \\
\frac{1}{5}\|Z\|^{2}
\end{array}\right|_{\sim}\right)=Z .\right.
$$

Then, $\Pi=i^{-1} \circ \Pi \circ j$, where $\Pi: G \rightarrow G / G_{\mathrm{e}} \propto S^{*}$ in the projection is Eq. (1.14). The Lie alrebra of $G^{n}, \mathcal{S}^{0} \simeq \mathbb{R}^{n} \times \mathbf{O}(\mathrm{n})$, has bacis $\left\{P_{(A, 0)}, P_{(A, B)}: A>B\right\}$ (nee Sec. 1.1.C). The Marrer-Cartan form of $G^{*}$ in given by

$$
\$=\boldsymbol{*} \Phi: T G^{*} \rightarrow \Phi^{*},
$$

 natinfy the relationa

The atructure equations of $G^{*}$ are aupplied by the Maurer-Oartan equation $\mathbb{N}=$


$$
\begin{align*}
& \mathbb{\#}_{0}^{A}=-\Phi_{B}^{A} \wedge \Phi_{0}^{B}  \tag{1.97}\\
& \mathbb{B}_{B}=-\phi_{C}^{A} \wedge \Phi_{B}^{C} .
\end{align*}
$$

Next we ansign to $\mathbb{R}^{n} \simeq G^{*} / G_{0}^{*}$ a Riemannian structure, described in the following. For each (local) mection $\rho: \mathbb{R}^{n} \rightarrow \mathcal{G}^{*}$ of the bundle $\Pi ; \boldsymbol{G}^{*} \rightarrow \mathbb{R}^{\boldsymbol{n}}$, i.e. $\rho$ is a map


$$
\begin{equation*}
\dot{\phi}=\rho^{*} \Phi=\rho^{-1} d \rho \tag{1.98}
\end{equation*}
$$

 equation (1.97) a the component of ${ }^{4}$. Since $; \rho_{0} \rho^{-1}: S^{*} \rightarrow G$ in a mection of the bundle $\Pi: G \rightarrow S^{\infty}$, we know from Sec. 1.1.C that the 1 -forma

$$
i^{-1 *} \phi_{0}^{A}=i^{-1 \varphi} \rho^{*} \otimes_{0}^{A}=\left(j \circ \rho \circ i^{-1}\right)^{\bullet} \Phi_{0}^{A}, 1 \leq A \leq n
$$

are lineary independent. Therefore, $\left(\phi_{0}^{A}\right)_{1 \leq A \leqslant s}$ constitnte a (local) basia of $T^{\boldsymbol{n}} \mathbb{R}^{\boldsymbol{n}}$. On the domain of definition of $\rho$ we take the Riemannan metric

$$
\begin{equation*}
d t^{2}=\sum_{A=1}^{n}\left(\phi_{0}^{A}\right)^{2} \tag{1.89}
\end{equation*}
$$

If $\hat{\rho}: \mathbb{R}^{n} \rightarrow \mathcal{G}^{*}$ ia another section of $\Pi$, the $n$, in the intersection of the domains of definition of $\rho$ and $\bar{\rho}_{\text {, }}$ we have

$$
\begin{equation*}
\bar{\rho}=\rho K \tag{1.100}
\end{equation*}
$$

where $K: \mathbb{R}^{\boldsymbol{n}} \rightarrow \boldsymbol{G}_{0}^{+}$in a smooth map of the form

$$
K=\left|\begin{array}{lll}
1 & 0 & 0  \tag{1.101}\\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right|
$$

with $A: \mathbb{R}^{n} \rightarrow S O(n)$. Thus, we get the transformation law of the components of $\rho=\left\{\rho_{0}, \rho_{A},\left.\rho_{n+1}\right|_{,}\right.$reading

$$
\tilde{\rho}=\left[\tilde{\rho}_{0}, \tilde{\rho}_{A}, \tilde{\rho}_{n+1}\right]=\left[\rho_{0}, A_{A}^{B} \rho_{B}, \rho_{n+1}\right]
$$

and of the components of $\dot{\phi}=\left[\begin{array}{ccc}0 & 0 & 0 \\ \dot{\phi}_{0}^{A} & \dot{\phi}_{B}^{A} & 0 \\ 0 & { }^{\top}\left[\dot{\phi}_{0}^{A}\right] & 0\end{array}\right]$, viz.
$\tilde{\phi}=\tilde{\rho}^{-\phi}=\tilde{\rho}^{-1} \circ d \tilde{\rho}=K^{-1} \dot{\phi} K+K^{-1} d K=\left[\begin{array}{ccc}0 & 0 & 0 \\ A\left[\dot{\phi}_{0}^{A}\right] \\ 0 & A\left[\dot{\phi}_{B_{1}^{A}}^{A}\right] A+A d A & 0 \\ {\left[\phi_{0}^{A}\right] A} & 0\end{array}\right]$.

In particular,

$$
\bar{\phi}_{0}^{A}=A_{\lambda}^{B} \dot{\phi}_{0}^{B},
$$

whence

$$
d i^{2}=\sum_{A=1}^{n}\left(\phi_{0}^{A}\right)^{3}=\sum_{A=1}^{n}\left(\phi_{i}^{A}\right)^{2}=d l^{3} .
$$

Thma, the Riemannien metric defined locally in Eq. (1.90) in a glabal one in $\mathbb{R}^{\mathbf{n}}$, auch that, for any nection $p$ of $\Pi$, the linear frame field $X_{1}, \ldots, X_{n}$ dual to the coframe $\phi_{0}^{1}, \ldots, \phi_{0}$ given in Eq. (1.98) ia orthonormal. Moreover, dine to Eq. (1.98) and the otructure equationa (1.97), the 1 -forme ${ }^{\text {A }}$ A antinty

$$
\begin{align*}
\phi_{B}^{A} & =-\phi_{1}^{B}  \tag{1.103}\\
\phi_{0}^{A} & =-\dot{\phi}_{B}^{A} \wedge \phi_{0}^{B} .
\end{align*}
$$

 co-frame $\left(\phi_{0}^{\hat{A}}\right)_{\text {LSASI }}$. Since $\phi_{B}^{A}$ additionally has the property (from Eq. (1.97))

$$
\begin{equation*}
\phi \hat{B}=-\phi \hat{C} \wedge \hat{A} \phi_{B}, \tag{1.104}
\end{equation*}
$$

the above Riemanmian structure on $\boldsymbol{R}^{n}$ in flad. In fact, the metric $d^{1}$ is the uade Euclidean one, as we can aee by taking the section $\rho=$ soi with a : $S^{\bullet} \backslash\left|\mathrm{x}_{\mathrm{c}}\right| \rightarrow G^{\bullet}$ the map defined in Eq. (1.19). We obaerve alao that, given a (local) right-handed orthonormal frame $X_{1}, \ldots, X_{\mathbf{a}}$ of $\mathbb{R}^{n}$, there exiata a section $\bar{\rho}: \mathbb{R}^{n} \rightarrow \mathcal{G}^{\mathbf{n}}$, anch that $\boldsymbol{\phi}_{\hat{0}}\left(X_{a}\right)=\delta_{A B}$. This section can be chosen as $\bar{\rho}=\rho \cdot\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1\end{array}\right|$ with $A_{B}^{G}=(\sigma \cdot i) \|_{g}\left(X_{B}\right)$.

Now let $F: M^{m} \rightarrow \mathbb{R}^{n}$ be an immeraion of an oriented $m$-manifold $M$ with $m \geq 2$.

A map $E: M \rightarrow G^{*}$ defined on an open aet of $M$ is called $a G^{*}$-frame field of $\Pi: G^{*} \rightarrow \mathbb{R}^{\boldsymbol{*}}$ along $F$, if $\Pi \circ E=F$. For example, if $\rho: \boldsymbol{R}^{n} \rightarrow G^{\bullet}$ in a mection of $\Pi$, then $E=\rho \circ F$, defined on a conveniently chonen open set of $M$, in a $G^{4}$ frame feld of $I$ along $F$. If $\tilde{E}: M \rightarrow G^{\boldsymbol{e}}$ is another $G^{\bullet}$-frame of $\Pi$ II long $F$, then $E=E K$ with $K: M \rightarrow G_{0}^{0}$ in a mooth map defned in the interacetion of the two domian. Oonvernely, given such a map $K$ and a $G^{*}$-frame $E$, then $\tilde{E}=E K$

Set $f=\mathrm{i} \circ \boldsymbol{F}: M^{m} \rightarrow S^{n}$, which givea an immertion into the Möbius apace $S^{n}$.

If $E: M \rightarrow G^{*}$ is a $G^{*}$-frame field of $I I$ along $F$, then $e=j$ a $E: M \rightarrow G$ is a zeroth-order $G$-frame field of $\cap: G \rightarrow S^{\wedge}$ along $f$. Summariaing, we give the relations among $G^{*}$-framea of II along $F$ and the correaponding $G$-framea of $I I$ alogg $/$ in the following commatative diagram:


As in Sec. 1.2, we are now going to construct in a neighbourhood of each point of $M$ a more apecialised $G^{*}$-frame field. With each $G^{\infty}$-frame field $E: M \rightarrow G^{*}$ of II along $F$ we associate the $\mathfrak{g}^{0}$-valued 1-form

$$
\begin{equation*}
\psi=E \cdot ⿻=E^{-1} d E \tag{1.106}
\end{equation*}
$$

 ture equationg (1.97) as the ones of $\$$. If $E: M \rightarrow G^{\circ}$ is another frame of $\Pi$ I along $F$, then

$$
\begin{equation*}
\boldsymbol{E}=\boldsymbol{E} \boldsymbol{K} \tag{1.107}
\end{equation*}
$$

where $K: M \rightarrow G_{0}^{*}$ is a in Eq. (1.101) with $A: M \rightarrow S O(\%)$. Writing

$$
\phi=\left|\begin{array}{ccc}
0 & 0 & 0 \\
\psi_{0}^{A} & \psi_{B}^{A} & 0 \\
0 & {\left[\psi_{0}^{A}\right]} & 0
\end{array}\right|,
$$

we get the trancormation

$$
\begin{align*}
\bar{\psi} & =E^{B} \phi=E^{-1} d E^{\mathcal{B}}=K^{-1} \phi K+K^{-1} d K \\
& =\left|\begin{array}{ccc}
0 & 0 & 0 \\
A\left[\psi_{0}^{A}\right] & \mathcal{A}\left[\phi_{A}^{A}\right] A+A d A & 0 \\
0 & {\left[\phi_{0}^{A}\right] A} & 0
\end{array}\right| \tag{1.108}
\end{align*}
$$

Let $E: M \rightarrow G^{*}$ be any $G^{\bullet}$-frame of $\Pi$ along $F$. Take $\varepsilon=j$ a $E: M \rightarrow G$, which If a seroth-order frame of $\cap$ along $f=i \circ F: M \rightarrow S^{\text {a }}$, and coneider the g-valued 1-form on M given by $\phi=e^{\bullet}$. Then,

$$
\begin{equation*}
\phi=\oplus^{\bullet} \Phi=E^{\bullet}\left(j^{\bullet} \oplus\right)=E^{\bullet}(\omega)=\phi \tag{1.109}
\end{equation*}
$$

So $\phi_{i}^{i}=\psi_{i}^{i}$ and, in particular, $\left(\phi_{0}^{0}\right)_{1 S A S n}$ are 1 -forms on $M$ that apan $T^{*} M$. Following the procedure of Sec. 1.2.B, we can find a map $K: M \rightarrow G_{0}^{*}$ of the form (1.101), defined on the domain of $E$, such that $E=E K$ ratiafies

$$
\begin{equation*}
\psi_{0}^{\omega}=0, \forall m+1 \leq \alpha \leq m . \tag{1.110}
\end{equation*}
$$

In particular, the $\left(\hat{\phi}_{0}\right)_{1 \leq i \leq m}{ }^{\text {apan }} T^{\prime \prime} M$. Moreover, for any two $G^{\bullet}$-framea $E, E$ : $M \rightarrow G^{*}$ of $I I$ along $F$ that astiafy Eq. (1.110), the map $K: M \rightarrow G_{0}^{\infty}$ defined by
 transformation lawa (1.108). Then, under the asamption that ( $\phi_{6}^{\prime}, \ldots, \phi_{0}^{m}$ ) and ( $\hat{\phi}_{0}^{\prime}, \ldots, \dot{\phi}_{9}^{\prime \prime \prime}$ ) define the ame orientation on $M_{1} A$ in of the form

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{4}
\end{array}\right]
$$

where $A_{1} \in S O(m)$ and $A_{1} \in S O(n-m)$ (cf. Sec. 1.2.B). In other worda, $K$ takea values in the closed anbgronp of $G_{0}^{\text {o }}$ given by

$$
G_{i}^{*}=\left\{\left.\begin{array}{llll}
\left.\left\lvert\, \begin{array}{lll}
1 & 0 & 0
\end{array}\right.\right)  \tag{1.111}\\
0 & A & 0 & 0 \\
0 & 0 & B & 0 \\
0 & 0 & 0 & 1
\end{array} \right\rvert\,, \quad A \in S O(m) \quad B \in S O(n-m)\right\}
$$

Convernely, if $E: M \rightarrow G^{*}$ in a $G^{*}$-frame feld of II along $F$ which eatisfiea $\phi_{0}^{*}=0, Y_{a}$ and $K: M \rightarrow G_{i}^{*}$ in a map, then $E=E K: M \rightarrow G^{*}$ is a Ge-frame that also atioftes Eq. (1.110).

Dafinition $1.5 A G^{*}$-frame field $E: M \rightarrow G^{*}$ of II dong $F$ with the property $\psi_{0}^{*}=0, \forall m+1 \leq a \leq n$, where is giean in Eq. (1.106), is called a Darbous frame.

For a Darboux frame $E: M \rightarrow \mathcal{G}^{*}$, eet $\psi=E^{*} \boldsymbol{*}$. Then, from Eq. (1.90), we have the relations

$$
\begin{equation*}
\phi_{0}^{*}=\phi_{i}^{n+1}, \phi_{B}^{A}=-\phi_{A}^{B}, \phi_{i}^{0}=0 \text { else, } \tag{1.112}
\end{equation*}
$$

and, from the Marer-Oartan equations (1.97) for ${ }^{\mathbf{L}}$,

$$
\begin{align*}
& d \psi_{0}^{\prime}=-\psi_{j}^{\prime} \wedge \psi_{0}^{\prime} \\
& d \psi_{j}^{\prime}=-\psi_{j}^{\prime} \wedge \psi_{j}^{*}+\Lambda_{j}^{\prime}, \tag{1.113}
\end{align*}
$$

Where

$$
\begin{equation*}
\mathbf{M}_{j}=-\psi_{a}^{i} \wedge \psi_{j}^{\dot{\prime}} \tag{1.114}
\end{equation*}
$$

Differentiating $\psi_{0}=0$, we get from the above equations

$$
0=d \phi_{0}^{*}=-\psi_{i}^{*} \wedge \phi_{0}^{\prime}-\phi_{i}^{*} \wedge \phi_{0}^{\prime}=-\psi_{i}^{*} \wedge \phi_{0}^{\prime} .
$$

Applying Cartaria Lemma we obtain

$$
\begin{equation*}
\phi_{i}^{0}=K_{i j} \psi_{b} \tag{1.115}
\end{equation*}
$$

with $h_{i j}^{\bullet}$ amooth functions astistying

$$
\begin{equation*}
h_{i j}^{e}=h_{j}^{e} . \tag{1.116}
\end{equation*}
$$

These functions are called the coefficiante of the second fundamental form of the immeraion $F: M \rightarrow \boldsymbol{R}^{n}$, relative to the frame $E$.
If $\bar{E}=E K: M \rightarrow G^{*}$ in another Darboux frame along $F$, with $K: M \rightarrow G_{i}$ of the form

$$
K=\left|\begin{array}{llll}
1 & 0 & 0 & 0  \tag{1.117}\\
0 & A & 0 & 0 \\
0 & 0 & B & 0 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

then the vector components of $\bar{E}$ tranaform as

$$
\begin{equation*}
\hat{E}=\left[\hat{E}_{0}, \hat{E}_{1}, \hat{E}_{\infty}, \hat{E}_{m+1}\right]=\left[E_{0}, A_{1}^{j} E_{j}, B_{a}^{A} E_{\ell}, E_{m+1}\right] \tag{1.118}
\end{equation*}
$$



In particuler, $\tilde{\phi}_{0}^{\prime}=\boldsymbol{A}_{j}^{j} \psi_{0}^{\prime}$ and $\tilde{\phi}_{i}^{\prime}=B_{0}^{\prime} \varphi_{j}^{\prime} \mathcal{A}^{\prime}$, giving the trandormation

$$
h_{i j}^{e}=A_{i}^{k} A_{j}^{\prime} ; B_{j}^{A} h_{k i}^{\prime}
$$

Aleo, from Eq. (1.119), we see that

$$
\begin{equation*}
d l^{2}=\sum_{i=1}^{m}\left(\psi_{0}^{\prime}\right)^{2} \tag{1.120}
\end{equation*}
$$

defines a global metric on $M$, and, from Eq. (1.113), that the $\phi_{j}^{\prime}$ form the La iiCisita conncetion forms on $M$, relative to the orthonormal co-frame $\left(\phi_{0}\right)_{1 \leq i \leq m}$ and with euractury forme $\mathrm{n}_{\mathrm{j}}$.

Remark 1.4 Firat we note that $G^{*}$-frames $E: M \rightarrow G^{*}$ of $\Pi$ along $F$ of the type $E=\rho \circ F$, where $\rho: \mathbb{R}^{n} \rightarrow G^{*}$ in a section of $\Pi$, are defined in a neighbourhood of each point of $M$. Moreover, we can assame auch a frame to be a Darboux one, which can be ahown in an analogous way as in Remark 1.2. in Sec. 1.2.B. For anch Darhoux frames, we have $\psi=E^{*}{ }^{*}=F^{*} \rho^{*}{ }^{*}=F^{*} \phi$. In particalar,

$$
d^{\prime}=\sum_{i=1}^{m}\left(\phi_{0}^{1}\right)^{2}=\sum_{A=1}^{n}\left(\phi_{0}^{A}\right)^{2}=\sum_{A=1}^{n}\left(F^{0} \phi_{0}^{A}\right)^{2}=F^{*}\left(\Delta \varepsilon^{2}\right) .
$$

Thas, the metric $d d^{2}$ of $M$ is the one induced by $F$ from the metric $d^{2}$ of $R^{m}$. If we take $X_{1}, \ldots, X_{m}$ as the local orthonormal frame of $\left(M, d l^{2}\right)$ dual to $\phi_{0}^{1}, \ldots, \psi_{0}^{m}$, then

$$
\delta_{i j}=\phi_{0}^{i}\left(X_{j}\right)=F^{*}\left(\xi_{0}^{i}\left(X_{j}\right)\right)=\phi_{0}^{j}\left(d F\left(X_{j}\right)\right)
$$

and

$$
0=\phi_{0}^{*}=\phi_{0}^{\alpha}(\alpha F(\cdot)) .
$$

Let $U_{1}, \ldots, U_{m}, U_{m+1}, \ldots, U_{n}$ be the orthonormal frame of ( $\mathcal{R}^{n}, d^{2}$ ) dual to $\$ \mathrm{\phi}, \ldots, \phi_{0}^{m}$, $\$_{6}+1, \ldots, \phi_{6}$. Since
we conclude that $U_{i}(f(s))=d F_{i}\left(X_{i}\right), V_{x} \in M, 1 \leq i \leq m$ and that $\left(U_{a} \circ \rho\right)_{m+1 \leq 0 \leq n}$ in an orthonormal frame of the normal bundle to $F$. Then, since $\$ A\left(U_{o}\right)=<$ $d U_{s}\left(U_{o}\right), U_{A}>_{k^{\prime}}$ and $\psi_{j}\left(X_{k}\right)=\left\langle\nabla_{X_{2}} X_{j}, X_{i}\right\rangle_{a 1}$, the second fundamentel form of $F: M \rightarrow \mathbb{R}^{n}$ is given by

$$
\nabla d F=\sum_{i=1} k_{i j}^{o} \phi_{0}^{\prime} \otimes \psi 6 \otimes U_{0} \bullet p
$$

with $h_{j}=\psi_{i}^{*}\left(X_{j}\right)=\phi_{i}^{( }\left(d F\left(X_{j}\right)\right)$. We can earily verify that the r.h.e. of thin equation defines a global tenaor on $M$, by applying the tranaformation lawa given in Eq. (1.119) on another Darboux frame of the type $\hat{E}=\tilde{p} 0 F$, where $\tilde{\rho}: \boldsymbol{F}^{\boldsymbol{e}} \rightarrow G^{*}$ is a tection of $I$.

Finally, we remark that, for such a Darbowx frame $E: M \rightarrow G^{*}$, ita vector components ean be written as ( $E_{m+1} \equiv 0$ )

where $A: R^{n} \rightarrow S O(n)$ with vector componenta $A_{i}=\left|\begin{array}{c}A_{i}^{\prime} \\ \vdots \\ A_{i}^{i}\end{array}\right|$ is a smooth map. Identifying $E(x) \in G^{*}$ with the element $(A(f(x)), F(x)) \in E^{+}(n)$ via the inomon phinm (1.93) correspands to identifying $E_{0}(x)$ with $F(x), E_{1}(x)$ with $A_{1}(F(s))$, and $E_{a}(x)$ with $A_{e}(F(s))$. Then, one can show that $E_{i}=A_{i} \circ F=d F\left(X_{i}\right) \in d F(T M)$ and $E_{a}=A_{,} \circ F=U_{\mu} \circ F$ give rise to orthonormal frames of $d F(T M)$ and its normal bundle, respectively.

In order to simplify the relations that can be derived between the Riemannian geometry of submanifolds of $\mathbb{R}^{n}$ and their conformal geometry, when considered as aubmanifolds of $S^{n}$, we are going to show how a second-order $G$-frame field of II : $G \rightarrow S^{n}$ along $f=i \circ F: M \rightarrow S^{n}$ can be constructed from a Darboux frame of $\Pi: G^{*} \rightarrow \mathbb{I R}^{n}$ along $F: M \rightarrow \mathbb{R E}^{n}$.
Let $E: M \rightarrow G^{*}$ be a Darboux frame of $\Pi$ along $F$ and $e$ be the zeroth-order $G$-frame $e=j \circ E: M \rightarrow G$. Then, the vector componenta $e_{a}$ of e are identical to the $E_{a}$ of $E$ and, with the usual notation

$$
\phi=E^{*} \bullet, \phi=e^{*} \Phi,
$$

Eq. ( 1.109 ) holds. In particular, $\phi_{0}=\psi_{0}^{0}=0$, that is, $\varepsilon$ is a first-order $G$-frame field of $I I$ along $f$. Note that the map $f:\left(M, d l^{2}\right) \rightarrow S^{\text {m }}$ is conformal, i.e. $d l^{3}=$
 is an element of the conformal clana of metrica of $M$ induced by the one of $S^{n}$.
Since $e$ is of Brat order, we bave, as in Equ. (1.46),(1.47),

$$
\phi \frac{0}{0}=h_{i j}^{\sigma} \phi_{0}
$$

A.

$$
\phi_{i}^{\circ}=\phi_{i}^{a}=h_{i j}^{a} \phi_{0}=h_{i j}^{\sigma} \phi_{\phi}^{j},
$$

we get, comparing with Eq. (1.115), $h_{i j}^{o}=h_{i j}$, i.e. $h_{i j}^{e}$ are the coeficients of the second fundamental form of $F$, relative to the frame $E$. The Gaume equation (see e.g. Ref. [ $\mathrm{Ko}-\mathrm{No} / \mathrm{G3}$ ]) yields that ( $M, \mathrm{dl}^{2}$ ) has Riemannian curvatare tensor

$$
\begin{equation*}
R_{i j H 1}=h_{i k}^{o} h_{j,}^{o}-h_{i j}^{\alpha} h_{j \hbar}^{\alpha} \tag{1.121}
\end{equation*}
$$

with acalar curvature

$$
R=2 \sum_{i<j} R_{i j i j}=2 \sum_{i<j, \alpha}\left\{h_{i i}^{\mathrm{o}} h_{j j}^{\alpha}-\left(h_{i j}^{q}\right)^{2}\right\} .
$$

The mean curvature has coefficients

$$
\begin{equation*}
H^{\alpha}=\frac{1}{m} h_{k k}^{\alpha} \tag{1.122}
\end{equation*}
$$

that is, if $E$ is a Darboax frame like in Remark 1.4, then $H=H^{\circ} U_{a}$. Let $\bar{e}=e K: M \rightarrow G$ with $K$ as in Eqs. (1.51),(1.52), which is a second-order $G$ frame of II along $f$, as shown in Sec. 1.2.C. Then, we get the transformation lawn

$$
\tilde{e}=\left[\tilde{e}_{0}, \tilde{e}_{i}, \tilde{e}_{\alpha}, \tilde{e}_{n+1}\right]=\left[E_{0}, E_{i}, E_{\alpha}+H^{\alpha} E_{0}, \frac{1}{2} H^{\alpha} H^{\alpha} E_{0}+H^{\alpha} E_{\alpha}+E_{n+1}\right]
$$

and

$$
\begin{aligned}
& \tilde{\phi}=\tilde{c}^{\circ} \phi=\left[\begin{array}{ccc}
\tilde{\phi}_{0}^{0} & \tilde{\phi}_{j}^{0} & \tilde{\phi}_{a}^{0} \\
\tilde{\phi}_{0}^{j} & \dot{\phi}_{j}^{j} & \tilde{\phi}_{a}^{i} \\
0 & \tilde{\phi}_{j}^{\sigma} & \tilde{\phi}_{\beta}^{a}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -Y\left[\psi_{i}^{a}\right]+\frac{1}{2} Y Y^{\prime}\left[\psi_{0}^{i}\right] & d(Y)-Y\left[\psi^{\prime}\right] \\
\psi_{0}^{i} & {\left[\psi_{j}^{i}\right]} \\
0 & {\left[\psi_{j}^{a}\right]-\boldsymbol{\psi}^{i}\left[\psi_{0}^{i}\right]} & \left.\psi_{p}^{i}\right] Y+\left[\psi_{\alpha}^{i}\right]
\end{array}\right] .
\end{aligned}
$$

In components, we have

$$
\begin{align*}
& \tilde{\phi}_{0}^{0}=0 \\
& =\psi_{0}^{i} \\
& =\frac{1}{m} h_{k h}^{\boldsymbol{o}}\left(\frac{1}{2 m} h_{i 1} \delta_{i j}-h_{i j}^{q}\right) \psi_{0}^{j} \\
& =\frac{{ }_{d}}{d}\left(\frac{1}{m} h_{k k}^{a}\right)-\frac{1}{m} h_{k k}^{\theta} \psi_{a}^{\beta}  \tag{1.123}\\
& =\psi_{0}^{a}=0 \\
& =\psi_{j}^{i} \\
& =\left(h_{i j}^{\alpha}-\frac{1}{m} h_{k k}^{\alpha} \delta_{i j}\right) \psi_{0}^{j} \\
& \tilde{\phi}_{\beta}^{\alpha}=\psi_{\hat{\beta}} \text {. }
\end{align*}
$$

We note that the coeflicienti hi, $_{\text {i }}$ relative to the necond-order frame are aot the ones of the aecond fundamental form of $\bar{F}$, becane $\bar{e}$ ia in general not a frame of the Riemannian stracture (it may not take valuea in $G^{*}$ ). Neverthelean, from the above traneformation lawa we obtain a relation between these caefficiente and the $A_{i j}$ of the mecond fundanental form for the Darboux frame $E$, readiag

$$
\begin{equation*}
\tilde{h}_{i j}^{\alpha}=-\frac{1}{m} h_{k k}^{\alpha} \delta_{i j}+h_{i j}^{\alpha}=-\delta_{i j} H^{a}+h_{i j}^{\alpha} \tag{1.124}
\end{equation*}
$$

The Weyl tenaor of ( $M^{m}, d^{1}$ ), which is invariant under conformel changes of the metrie $d^{\prime \prime}$, han components (for $m>2$ )
$O_{i j m}=R_{i j m}+\frac{1}{m-2}\left(-\delta_{i k} R_{j i}-\delta_{j i} R_{i k}+\delta_{i j} R_{j k}+\delta_{j k} R_{i 1}\right)+\frac{R}{(m-1)(m-2)}\left(\delta_{i k} \delta_{j i}-\delta_{i 1} \delta_{j k}\right)$,
where $R_{j t}=R_{i j i t}$ are the components of the Ricci tensor. From Eq. (1.124) we deduce that the componente $\bar{\tau}_{j}^{i}$ of the generalised Weyl tencor $T$ given by Eq. (1.84), in the aecond-order frame ẽ along $f$, are related to the $C_{i j w}$ through the formula

$$
\begin{aligned}
C_{i j N}=\mathcal{F}_{j k d}^{\prime} & +\frac{1}{m-2}\left(-\delta_{i l} \tilde{h}_{t j}^{a} \tilde{h}_{i k}^{a}+\delta_{j l} \tilde{h}_{t i}^{a} \tilde{h}_{i k}^{\alpha}-\delta_{j k} \tilde{h}_{t i}^{a} \tilde{h}_{i l}^{a}+\delta_{i k} \tilde{h}_{t j}^{\alpha} \tilde{h}_{i l}^{\alpha}\right)+ \\
& +\frac{1}{(m-1)(m-2)}\left(\delta_{k j} \delta_{i l}-\delta_{i k} \delta_{j l}\right) \tilde{h}_{t r}^{a} \tilde{h}_{i r}^{a}
\end{aligned}
$$

If $H_{f}=0, V_{i}, j$, then, by Eq. (1.124),

$$
h_{i j}^{\theta}=\frac{1}{m} h_{h i}^{*} \delta_{i j}, \quad \forall i, j
$$

Thas, the second fundamental form of $F$ has components of the form

$$
(\nabla d F)^{\bullet}=\lambda^{\bullet} d^{2}
$$

where $\lambda^{\circ}=\frac{1}{m} h_{\text {gh }}$. In other worda, $F: N \rightarrow \mathbb{R}^{\mathbf{E}}$ is a co-ealled totally manilic immerian.
Supposing that $E$ is a Darboux frame of the type $E=\rho \circ F$ with $\rho: \mathbb{R}^{n} \rightarrow G^{m}$ a ection of $\Pi$, and denoting ${ }^{\boldsymbol{\phi}}=\rho \boldsymbol{\rho}$, we have

Let $X_{1}, \ldots, X_{m}$ be the orthonormal frame of $\left(M, d^{3}\right)$ dual so the forme $\phi_{0}^{1}, \ldots, \phi^{\prime \prime}$ and $U_{m+1}, \ldots, U_{a}$ be the orthonormal frame of the normal bundle to $F$ dual to
$\$_{0}^{a+1}, \ldots, \phi_{0}^{n}$ (cf. Remark 1.4). Let $\nabla$ denote the Levi-Oivita connection of ( $M, d^{1}$ ) and $\nabla^{\perp}$ the connection of the normal bundle $V$. These can be related to the Riemannian connection forma $\phi_{f}$ and the correaponding conformal onee ${ }^{\boldsymbol{\phi}} \boldsymbol{f}$ given in Eqg. (1.123), relative to the aecond-order frame ê, ufollowa:

$$
\begin{align*}
& \phi_{j}^{i}\left(X_{k}\right)=\left\langle\nabla_{X_{k}} X_{j}, X_{i}\right\rangle_{\alpha^{\prime \prime}} \\
& \psi_{j}^{\alpha}\left(X_{k}\right)=h_{k j}^{\alpha}=\left\langle\nabla d F\left(X_{k}, X_{j}\right), V_{a}\right\rangle_{\alpha^{2}} \\
& \left\langle H, U_{\alpha}\right\rangle_{\alpha^{\prime}}=\frac{1}{m} h_{k=}^{q},\|E\|^{2}=\frac{1}{m^{2}} \sum_{a}\left(\sum_{k} h_{k t}^{q}\right)^{,} \\
& \psi_{0}^{\prime}\left(X_{\Delta}\right)=\left\langle\nabla_{x_{\dot{*}}}^{1} U_{\alpha}, U_{\beta}\right\rangle_{\mu^{2}}  \tag{1.125}\\
& \dot{\phi}_{i}^{\prime}\left(X_{i}\right)=-\left\langle H, \nabla d F\left(X_{i}, X_{k}\right)\right\rangle_{\boldsymbol{k},}+\frac{1}{2} \delta_{i k}\|H\|^{*} \\
& \hat{h}_{i j}^{*}=\left\langle-\delta_{i j} H+\nabla_{d F}\left(X_{i}, X_{j}\right), V_{\infty}\right\rangle_{d^{0}} \\
& \text { trace } \tilde{\mathcal{N}}=\tilde{h}_{i j}^{\mathrm{e}} \tilde{h}_{i j}^{e}=\left\|\nabla_{d} F^{\prime}\right\|^{2}-m\|I T\|^{\mathbf{2}} .
\end{align*}
$$

Applying Eq. (1.54) to $\hat{e}$, we obtain

$$
\begin{equation*}
\tilde{h}_{j j k}^{e}=\left\langle\nabla_{x_{b}} \nabla d F\left(X_{i}, X_{j}\right), U_{0}\right\rangle_{d^{2}} \tag{1.126}
\end{equation*}
$$


 that is,

$$
\begin{equation*}
\nabla^{1} H=\hat{p}_{k}^{*} \psi_{0}^{*} \otimes U_{\alpha} . \tag{1.127}
\end{equation*}
$$

Using Eq. (1.60) we get

$$
\begin{align*}
& \tilde{p}_{i z}^{i}=\left\langle\nabla^{18} H\left(X_{k}, X_{1}\right)-\left\langle H, \nabla d F\left(X_{k}, X_{i}\right)\right\rangle_{d a^{2}} H+\frac{1}{2} \delta_{i k}\|H\|^{2} H+\right. \\
& \left.+\left\langle H, \nabla d F\left(X_{k}, X_{r}\right)\right\rangle_{\omega^{2}} \nabla d F\left(X_{1}, X_{1}\right)-\frac{1}{2}\|E\|^{2} \nabla d F\left(X_{i}, X_{k}\right), U_{\omega^{*}}\right\rangle_{\omega^{\prime}} . \tag{1.128}
\end{align*}
$$

Taking the trace of this expression yields

$$
\begin{equation*}
\tilde{p}_{i}^{a}=\left\langle\Delta H-m\|H\|^{2} H+\tilde{A}(H), U_{\mu}\right\rangle_{\alpha^{0}} \tag{1.129}
\end{equation*}
$$

with $\bar{A}(H)=\left\langle H, \nabla d F\left(X_{i}, X_{r}\right)\right\rangle_{\boldsymbol{H}}, \nabla d F\left(X_{i}, X_{r}\right)$. Finally, from Eq. (1.62), we have

$$
\begin{align*}
& \tilde{H}_{\mathrm{kr}}=\left(\left\|\nabla_{d F}\right\|^{2}-m\|B\|^{2}\right)\left(-\left\langle H, \nabla_{d} F\left(X_{k}, X_{r}\right)\right\rangle_{\alpha^{\prime}}+\frac{1}{2} \delta_{r-}\|B\|^{2}\right) \\
& -m\left\langle\nabla_{X_{t}}^{1} H, \nabla_{X_{4}}^{1} H\right\rangle_{m^{2}}-m\left\langle H, \nabla^{3} H\left(X_{1}, X_{4}\right)\right\rangle_{\alpha^{1}} \\
& +\left\langle\nabla_{X_{r}} \nabla_{d F}, \nabla_{X_{\mathrm{t}}} \nabla d F\right\rangle+\left\langle\nabla d F, \nabla^{\prime} \nabla \mathrm{d} F\left(X_{r}, X_{k}\right)\right\rangle, \tag{1.130}
\end{align*}
$$

where $\nabla^{\mathbf{2}}(W)(X, Y)=\nabla_{X} \nabla_{Y} W-\nabla_{\nabla_{X} Y} W$, in a generic sense.

## Appendix I

We observe that the embedding $\kappa^{-1}$ of $S^{n}$ into $P^{n+1}$, which definea the Mobina space given in Def. 1.1, is not the most atandard way of embedding $S^{n}$ inta the projective apace. Here we followed Ref. [Po/81], but e.g. in Ref. [Ko-No/63], page 311, the authora chose the embedding

$$
\begin{aligned}
& \varepsilon: \quad S^{n} \rightarrow\left[\begin{array}{c}
\mathcal{L} \dagger_{\sim} \subset \mathbb{P}^{n+1} \\
\left(y, y^{n+1}\right)
\end{array}\right. \\
& \rightarrow\left[\begin{array}{c}
\frac{1-y^{n+1}}{\sqrt{2}} \\
y \\
\frac{1+y^{n+1}}{\sqrt{2}}
\end{array}\right]_{\sim},
\end{aligned}
$$

which is an isometry, $S^{n}$ being considered with the metric induced by $\mathbb{R}^{n+1}$ and $\mathbf{P}^{++1}$ with the metric $2 \mathbf{2 d a}^{\mathbf{2}}$ given by

$$
p^{*} d v^{\prime}=\frac{\left(\sum_{i=0}^{n+1} x_{i}^{2}\right)\left(\sum_{i=0}^{n+1} d x_{i}^{2}\right)-\left(\sum_{i=1}^{n+1} x_{i} d x_{i}\right)^{2}}{\left(\sum_{i=0}^{n+1} x_{i}^{?}\right)^{3}},
$$

where $p: R^{n+1} \backslash\{0\} \rightarrow P^{n+1}$ is the canonic projection. In this sense, our map $\kappa^{-1}$ is mot an inometry, but a conformal map: $\kappa^{-1}$ can be abtained from $\mathcal{E}$ by the formula $\kappa^{-1}=\varepsilon \circ R^{-1} \circ \sigma^{-1} \circ \frac{1}{\sqrt{3}}$ id $\boldsymbol{R}^{n} \circ \sigma$, where $R: S^{n} \rightarrow S^{n}$ in the rotation
 conformal atructuren on $S^{n}$ by chooing either of thene two conformally equivalent embeddinga are equal. If, instead of the submersion $F$ on page 83, we had chosen

with inverse

$$
\begin{array}{rlll}
\tilde{\kappa}^{-1}: & S^{n} & \rightarrow & \begin{array}{c}
c \mid \\
\\
\\
\left(z^{0}, x\right)
\end{array} \\
\rightarrow\left|\begin{array}{c}
\frac{1-\rho}{\sqrt{2}} \\
x \\
\frac{1+5}{\sqrt{3}}
\end{array}\right|
\end{array}
$$

$\overline{\boldsymbol{K}}^{-1}$ difiers from $\boldsymbol{E}$ by the rotation $R$ and we have


We note that, if we had chosen the map $\bar{K}$ instead of $\kappa$, then Eq. (1.15) would not hold anymore, unless we had replaced "id" by "T oid" with $T(Z, A, r)=$ ( $\frac{\pi}{\sqrt{2}}, A, r$ ).

We also remark that, if we had chosen the embedding $\boldsymbol{K}^{-1}$, the Killing vector fields of $S^{\boldsymbol{\bullet}}$ would be generated by

$$
\left\{\left|\begin{array}{ccc}
0 & -v & 0 \\
v & D & -v \\
0 & v & 0
\end{array}\right|: D \in D(n), v \in \mathbb{R}^{n}\right\}
$$

## Chapter 2

## VARIATIONAL PROBLEMS IN CONFORMAL GEOMETRY

### 2.1 Introduction: The Willmore Functional

### 2.1.A The Riemannian Case

Let $M^{\mathbf{1}}$ be a closed (i.e. compact and oriented) aurface and $f: M \rightarrow \mathbb{R}^{\mathbf{1}}$ be an embedding into the Euclidean 3-apace. In 1905 Willmore [Wi/65] introdaced the fanctional, since then called Willmore functioned,

$$
\begin{equation*}
W(f)=\int_{N} H^{2} d A \tag{2.1}
\end{equation*}
$$

where $H$ in the acalar mean carvature of $f$ and $d A$ is the volume element of $M$ with metric induced by $f$. Then, he posed the problem of inding inf W, where $f$ rangea over all embeddinge of $M$. Moreover, he alao proved $|W i / 68|$ that $W(f) \geq 4 \pi$, with equality, iff $M^{1}$ is embedded as the standard aphere (ace aleo Ref. |Wi/74)). In 1979 White [Wh/78] pointed ont that Blaschike [B1/29] had observed that, for any immerred aurface $M^{\mathbf{2}}$ of $\boldsymbol{R}^{\mathbf{1}}$, the quantity ( $\boldsymbol{R}^{\mathbf{1}}-K$ ), with $K$ the Gausina curvature, in invariant under amy conformal mapping of the Euclidean 3-apace plan the point at infinity. Hence, the integral (alno called Willmore functional)

$$
\begin{equation*}
W(f)=\int_{M}\left(H^{2}-K\right) d A \tag{2.2}
\end{equation*}
$$

is a conformal invariant. Suppaning agein that $M$ is closed, then, from the GansBonnet theorem

$$
\int_{M} K d A=2 \pi x(M)
$$

with $\boldsymbol{x}(\mathbb{M})$ the, topologically imvariant, Euler characterimit of $\boldsymbol{M}$, one obtainz

$$
\begin{equation*}
W(f)=W+2 \pi x(M) \tag{2.s}
\end{equation*}
$$

Thus, $\bar{W}(f)$ is also conlormally invariant, only differing from $W$ by a coartant. If $\epsilon_{1}, e_{3}$ in an orthonormal basia of $T_{z} M_{1} x \in M$, and $\nu$ ia a anit normal to $\mathcal{d}_{s}\left(T_{s} M\right)$, then, denoting $h_{i j}=\left\langle\nabla_{d}\left(e_{1}, e_{j}\right), \nu\right\rangle_{m^{*}}$, we beve $H_{*}=\frac{1}{9}\left(h_{11}+h_{z 3}\right)$. From the Gaun equation, we get $K_{z}=R_{3}^{N}\left(e_{1}, e_{3}, e_{1}, e_{3}\right)=h_{11} h_{32}-h_{13}^{3}=\operatorname{det}\left|\mathrm{B}_{1 j}\right|$. So,

$$
\begin{equation*}
H^{\prime}-K=\frac{1}{4}\left(h_{11}-h_{12}\right)^{3}+h_{13}^{3}=\frac{1}{2}\|\nabla d\|^{\prime}-B^{2} . \tag{2.4}
\end{equation*}
$$

Hence, $H_{s}^{\mathbf{2}}-K_{z} \geq 0$, with equality, iff $f$ is umbilic (see Sec. 1.3) at the point $x$. Now, it is well-known that, if $f$ is a totally umbilic aurface, $f(M)$ is either a part of a plane or a aphere. Since $M$ in cloved, $w(f) \geq 0$, with equality, if $N^{2}=S^{1}$ and $f$ is rotally ambilic.
In order to find some posible minima of the functional (2.1) or (2.2) for $M^{2}$ a Axed closed aurface, one can work out the corresponding variational problem. An immeraion $f: M^{\mathbf{1}} \rightarrow \mathbb{R}^{\mathbf{a}}$ is sad to be a critical point of $\mathbb{W}$, if, for any
 consequence of a more general resulı of hia, Chen [ $\mathrm{Oh} / 73 \mathrm{a}$ | concluded that $f$ is a critical point of $W$, if

$$
\begin{equation*}
\Delta H+2 H\left(H^{3}-K\right)=0 . \tag{2.5}
\end{equation*}
$$

Thin equation in the Enler-Lagrange equation for the functional ${ }^{W}$ and in inveriant under conformal mappinga of the Eaclidean 3-ipace. Obviourly, the critical pointa of $W$ are Identical to the onet of $W$ and they antisfy the tame Euler-Lagrange equation (2.5). The functional ${ }^{W}$ has as absolate uinimum the value gero, if $M=S^{1}$ and $f: S^{\mathbf{1}} \rightarrow \mathbb{R}^{\mathbf{1}}$ in totally anibilic. In this cane, $\boldsymbol{W}(f)=4 \pi$. Willmore alao thowed that, if $M^{1}$ is a toran, Eq. (2.5) in satiafied for an embedding of $M$ into $\mathbb{R}^{\mathbf{4}}$ the image of which is an anchor ring generated by revolving a circle of radius $r$ about the line with dirtance $\sqrt{2}$ from its centre, i.e. the torua

$$
\{((\sqrt{2} r+r \cos v) \cos \theta,(\sqrt{2} r+r \cos v) \sin v, r \sin v): v, v \in \mathbb{R}\} .
$$

For aueb a tarma, $W(f)=\mathbb{W}(f)=\mathbf{2 r} \mathbf{r}^{\mathbf{2}}$. However, it in ant yet known whether auch an immersion ia an aboolate minimam among all immerriona of the torm, only that, if $f(M)$ in a smooth surface of revolution, then $W(f) \geq 2 x^{\mathbf{2}}$, with equality, iff $f(\boldsymbol{M})$ is the above anchor ring, as shown by Willmore in Ref. |Wi/72]. It had been conjectured by Willmore [Wi/45] and, a fortiori, by Shiohama-Talagi [Sb-Ty/70| that the apecial anchor ringa are the only uaknotied tori in $\mathbb{R}^{\boldsymbol{A}}$ that astidy Eq.
(2.5), bat thin ingned out to be false due to the above remark of White concerning the work of Blaschke. Siace $W(f)$ ia a conformal invariant and the inversions
 anchor ring, then Invof also satiafiea Eq. (2.5), which givea riae to a mpecial elans of tori, called cyclidea of Dupin. Later, the above conjecture wan modified, claiming that the aufaces of $\mathbb{R}^{\mathbf{1}}$ which differ from these apecial anchor ringa by a conformal tranaformation of $\mathbb{P}^{\mathbf{2}} \cup\{\infty\}$ minimise $W$ among all immersions of the torum into $\mathbb{R}^{\mathbf{i}}$. Weiner [We/78], usiag a reault of Lawaon, showed that there exist embeddings of closed murfacea in $\mathbb{R}^{\mathbf{a}}$ with arbitrary genus aatiafying Eq. (2.5). In fact, these are images of embedded minimal anfacea in $S^{\mathbf{1}}$ under atereographic projection onto R‥ Note that thin contrasts with the fact that there are no closed minimal surfaces in $\mathbb{R}^{\mathbf{4}}$. The functionaly (2.1) and (2.2) can be defined in the asme way for immersions $f: M^{1} \rightarrow \boldsymbol{R}^{*}$ of asorface into the Euclidean m-space, where $\boldsymbol{H}^{\mathbf{1}}$ now denotes the aquare of the norm of the vector mean curvatare $F$. Chen [Ch/73b] proved the conformal invariance of $\left(\|H\|^{2}-K\right) d A$ under conformal mappinga of $\mathbb{I R}^{n}$ and, moreover, that in the case of $M$ being a closed aurface Eq. (2.3) still holds. Then, the functional (2.1) is also conformally irvariant. Later he proved [Oh/74] that, for $M$ a closed aurface, $\int_{M}\left(\|H\|^{2}-K\right) d A \geq 2 \pi(2-x(M))$, with equality, if $\boldsymbol{M}$ is diffeomorphic to a 2 -sphere and $f: M \rightarrow \mathbb{R}^{\boldsymbol{n}}$ if totally umbilic. Farthermore, if $n=4$ and $M$ hat non-pasitive Ganas cnrvature, then $f_{M}\|H\|^{2} d A \geq 2 x^{2}$, and if $\|H\|^{\mathbf{1}}$ is conatant, then equality holds, if $M$ in the Clifiord tarns $S^{\mathbf{1}} \times S^{\mathbf{1}}$. Finally, Weiner generalised the definition of Willmore functional forimmernions of aurfaces $M^{2}$ inta a Riemannian $n$-dimensional manifold ( $N^{*}, k$ ) in the following way: Let $f: M^{2} \rightarrow\left(N^{*}, h\right)$ be an immersion of a surface with or without boundary and let $G: M \rightarrow \mathbb{R}$ be the map given by

$$
\begin{equation*}
G_{a}=\left\langle\nabla d f_{x}\left(e_{1}, e_{1}\right), \nabla d f_{x}\left(e_{2}, e_{2}\right)\right\rangle_{A}-\left\langle\nabla d f_{x}\left(e_{2}, e_{3}\right), \nabla d f_{s}\left(e_{1}, e_{3}\right)\right\rangle_{4} \tag{2.6}
\end{equation*}
$$

with $\epsilon_{1}, e_{2}$ an orthonormal batia of ( $T_{ \pm} M, f^{\circ} h$ ). Ghen [Oh/74] called $G$ the "extrimaic acalar curvature ${ }^{n}$ of $M$ and proved that $\left(\|E\|_{A}^{2}-G\right)<A$ ia imvariant ander conformal changes of the metric $\boldsymbol{H}$. By the Gans equation,

$$
\begin{equation*}
K_{x}=R_{z}^{N}\left(e_{1}, e_{2}, \epsilon_{1}, e_{2}\right)=G_{x}+R_{f(x)}^{N}\left(d f_{x}\left(\epsilon_{1}\right), d f_{x}\left(e_{2}\right), d f_{2}\left(\epsilon_{1}\right), d f_{n}\left(\epsilon_{3}\right)\right), \tag{2.7}
\end{equation*}
$$

that in,

$$
K_{s}=\boldsymbol{G}_{\boldsymbol{s}}+\boldsymbol{K}_{f(\boldsymbol{s})}
$$

with $K_{f(s)}$ the sectional curvature of the plane $\mathcal{d}_{\boldsymbol{z}}\left(T_{s} M\right)$ of $T_{f(\varepsilon)} N$. Then, the functional integral

$$
\begin{equation*}
w(f)=\int_{M}\left(\|H\|_{A}^{3}-K+K_{J}\right) d A \tag{2.8}
\end{equation*}
$$

is conformally invariant. Since $\int_{M} K d A+\int_{\text {an }} \kappa$, dt, with $\kappa$, the signed geodesic curvature of $\partial M_{\text {, is a topological invariant, the fanctional integral - }}$

$$
\begin{equation*}
\bar{W}(f)=\int_{M}\left(\|H\|_{A}^{1}+R_{f}\right) d A+\int_{\infty} \kappa, d \theta \tag{2.9}
\end{equation*}
$$

ia also invariant ander conformal changes of the metric $h$.
In particular, if $N=S^{n}, 0: S^{n} \backslash\{$ point $\} \rightarrow \mathbb{R}^{n}$ is a stereographic projection, and $f: M \rightarrow \mathbb{R}^{\bullet}$ is an immersion, then $W(f)=W\left(\sigma^{-1} a f\right)$ and the anme holda for the functional $W$. If $M$ is a closed surface, then, by the Gassa-Bonnet theorem, we have $W(f)=W(f)+2 \pi x(M)$. Weiner showed that, if $(N, h)$ han constant sectional curvature and $W(f)<\infty$, then $f$ is a critical point of $\mathbb{W}$, iff

$$
\begin{equation*}
\Delta H-2\|A\|^{2} H+\tilde{A}(H)=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
H-\kappa^{2}=0 \text { on } a M, \tag{2.11}
\end{equation*}
$$

where $\kappa^{V}$ is the normal component of the principal curvature veetor of $a M$ in $N$ and $\bar{A}$ ta the section of $\otimes V^{*} \otimes V$, with $V$ the narmal bundle to $f$, given by

$$
\begin{equation*}
\bar{A}_{s}(U)=\sum_{i, v=1}^{2}\left\langle\nabla d f_{x}\left(e_{i}, e_{j}\right), U_{s}\right\rangle_{\Delta} \nabla d f_{x}\left(e_{i}, e_{j}\right), \quad \forall U \in V_{z}, \tag{2.12}
\end{equation*}
$$

with $e_{1}, e_{3}$ an orthonormal hasis of ( $T_{s} M, f^{*} h_{s}$ ). Observe that, if $M$ is a closed surface and $N=\mathbb{R}^{\mathbf{1}}$, then Eq. (2.10) is equivalent to

$$
\Delta H-2 H^{2}+\|\nabla d /\|^{2} H=0
$$

where now $H$ stenda for acalar meau curvature. Furthermore, using Eq. (2.4), we obtain that Eq. (2.10) is equivalent to Eq. (2.5).

### 2.1.B Conformal Interpretation with Further Generalientions

Bryant $[\mathrm{Br} / 84]$ wan the first to otudy the Willmore fanctional for immersed aurfaces in $\boldsymbol{R}^{\mathbf{n}}$ using the conformal invariance from the outset, by interpreting it as a
functional acting on immersed surfaces of the Möbius apace. More precisely, let $f: M^{1} \rightarrow S^{\mathbf{1}}$ be a smooth immeraion of an oriented anface and $\cap_{f}$ be the 2 -form on $M$ given by

$$
\begin{equation*}
\Omega_{f}=\frac{1}{2} \text { trace } N d V=\frac{1}{2} N_{j j} \phi_{0}^{1} \wedge \phi_{0}^{z}, \tag{2.13}
\end{equation*}
$$

where $\phi_{a}^{\prime}$ and $\mathcal{N}_{i j}$ are given by Eqa. (1.35) resp. (1.88) relative to a aecond-order $G$ frame field $e: M \rightarrow G$ of $\Pi: G \rightarrow S^{4}$ along $f$. The 2 -form $\cap_{f}$ in the correaponding 2-form ( $H^{\mathbf{1}}-K$ )dA in the Riemanaian geometry of surfaces in $\mathbb{R}^{\mathbf{R}}$. Explicity, if $f$ tates values in $R^{2} \subset S^{\mathbf{2}}$ (in the sense of $\operatorname{Sec}$. 1.3) and $E: M \rightarrow G^{0}$ is a Darboux frame of $\Pi: G^{*} \rightarrow \mathbb{R}^{\mathbf{1}}$ along $f$, then, as followe from Egr. (1.121), (1.122), ( $\left.H^{1}-K\right) d A$ is in this frame locally written as

$$
\begin{aligned}
& H^{2}-K=\frac{1}{4}\left(f_{11}+\boldsymbol{K}_{33}\right)^{2}-R_{131} \\
& =\frac{1}{4}\left(k_{11}^{2}+\kappa_{3}^{2}\right)^{2}-\left(\hbar_{1}^{1} k_{3}-\left(\hbar_{13}\right)^{2}\right) \\
& =\frac{1}{4}\left(h_{11}^{l_{1}}-\boldsymbol{h}_{23}^{2}\right)^{2}+\left(\boldsymbol{f}_{13}\right)^{2} \text {, }
\end{aligned}
$$

where $\boldsymbol{h}_{i j}$ are the coefficients of the second fundamental form given in Equ. (1.115), (1.116). From the Darbonx frane $E$ one constructa a second-order $G$-frame é : $M \rightarrow G$ of $\Pi$ which is related with $E$ in the same way at in Sec. 1.3, yielding, throagh Eqs. (1.124), (1.123),

$$
\begin{aligned}
H^{2}-K & =\frac{1}{4}\left(\tilde{h}_{11}^{\prime}-\tilde{h}_{33}^{0}\right)^{2}+\left(\tilde{h}_{13}^{4}\right)^{2}=\left(\tilde{h}_{11}^{0}\right)^{2}+\left(\tilde{h}_{13}^{\prime}\right)^{2} \\
& =\frac{1}{2}\left(\left(\tilde{h}_{11}^{\prime}\right)^{2}+\left(\tilde{h}_{23}^{\prime}\right)^{2}+2\left(\tilde{h}_{33}\right)^{2}\right)=\frac{1}{2} \text { trace } \hat{N}
\end{aligned}
$$

and

$$
d A=\hat{\phi}_{0}^{1} \wedge \psi_{0}^{2}=\hat{\phi}_{0}^{\prime} \wedge \bar{\phi}_{0}^{3}=d \hat{V} .
$$

Thu, $\cap_{f}=\frac{1}{1}$ trace $\hat{N} d \hat{V}=\left(E^{1}-K\right) d A$, when writen in thene framen. Given a compact domain $D \subset M^{1}$, consider the functional

$$
\begin{equation*}
w_{D}(f)=\int_{D} \Omega_{f} \tag{2.14}
\end{equation*}
$$

aeting on immersions $f: M^{1} \rightarrow S^{\mathbf{1}}$. Sach an immernion is asid to be a Willmore immersed surface of the Möbius apace $S^{\mathbf{1}}$, if, for any compact damain $D$ and amooth variation $f:: M \rightarrow S^{1}$ of $f$ through immernions with compact eupport in $D$, we have

$$
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t=0}=0 .
$$

Bryant calculated the Euler-Lagrange equation for this variational problem, obtrining

$$
\begin{equation*}
\left(p_{11}^{1}+p_{n 1}^{\mathbf{n}}\right) d V=0, \tag{2.15}
\end{equation*}
$$

which is conformally invariam, as we can see from the transformation laws (1.72) and (1.79) for second-onder $G$-frames along $f$. Moreover, we see from relation (1.129) that the above Euler-Lagrauge equation repreaents, in the Riemannian geometry of $M$ as a surface of $\boldsymbol{R}^{\mathbf{a}}$, the Eulen-Lagrange equation (2.10).
Thia variational problem suggested to Rigoli [Ri/87] a natural way of extending the concept of Willmore surfaces to submanifolds of the Möbius apace $S^{n}$, as we describe now. Let $f: M^{m} \rightarrow S^{m}$ be an immersion of an oriented $m$-dimensional manifold. Then, one can define on $M$ a global m-form

$$
\begin{equation*}
\Omega_{f}=\frac{1}{m}(\operatorname{trace} N)^{\mathbf{p}} d V, \tag{2.16}
\end{equation*}
$$

where $N$ and $d V$ are $2 s$ in Eqs. (1.88) resp. (1.44), as one can see from the transformation lawa for second-order frames. On a domain of a second-order G-frame $e: M \rightarrow G$ along $f, n$, takes the expression

$$
\begin{equation*}
\Omega_{f}=\frac{1}{m}\left(\sum_{i, j, j}\left(h_{i j}^{\infty}\right)^{2}\right)^{\frac{e_{2}}{} \phi_{0}^{\prime}} \wedge \ldots \wedge \phi_{0}^{m}, \tag{2.17}
\end{equation*}
$$

Where $\phi_{j}^{\prime}$ and $h_{i j}^{\prime}$ are given in Equ. (1.35) resp. (1.40). If $f$ takea values on $\mathbb{R}^{n} \subset S^{n}$, the $m$-form $\mathrm{n}_{\mathrm{f}}$ has the following interpretation: let $E: M \rightarrow G^{*}$ be a Darbour frame of $\Pi: G^{*} \rightarrow \mathbb{R}^{n}$ along $f: M \rightarrow \mathbb{R}^{n}$ and $\bar{e}: M \rightarrow G$ be the corresponding second-order frame given in Sec. 1.3. Then, using Eq. (1.124), we have

$$
\begin{aligned}
\operatorname{trace} \tilde{\mathcal{N}} & =\tilde{N}_{j j}=\sum_{i, j, \alpha}\left(\tilde{h}_{i j}^{\alpha}\right)^{2}=\frac{1}{m}\left\{m \sum_{i \neq j, \alpha}\left(\tilde{h}_{i j}^{\alpha}\right)^{2}+m \sum_{i, \alpha}\left(\tilde{h}_{i i}^{\alpha}\right)^{2}\right\} \\
& =\frac{1}{m}\left\{m \sum_{i \neq j, \alpha}\left(\tilde{h}_{i j}^{\alpha}\right)^{2}+(m-1) \sum_{i, \alpha}\left(\tilde{h}_{i i}^{\alpha}\right)^{2}+\sum_{j, \alpha}\left(\tilde{h}_{j j}^{\alpha}\right)^{2}\right\} \\
& =\frac{1}{m}\left\{m \sum_{i \neq j, \alpha}\left(\tilde{h}_{i j}^{\alpha}\right)^{2}+(m-1) \sum_{i, \alpha}\left(\tilde{h}_{i i}^{\alpha}\right)^{2}-\sum_{j, \alpha}\left(\sum_{i \neq j} \tilde{h}_{i i}^{\alpha} \tilde{h}_{j j}^{\alpha}\right\}\right. \\
& =\frac{1}{m}\left\{2 m \sum_{i<j, \alpha}\left(\tilde{h}_{i j}^{\alpha}\right)^{2}+\frac{1}{2}(m-1) \sum_{i, \alpha}\left(\tilde{h}_{i i}^{\alpha}\right)^{2}-\sum_{i \neq j, \alpha} \tilde{h}_{i i}^{a} \tilde{h}_{j j}^{\alpha}+\frac{m-1}{2} \sum_{j, \alpha}\left(\tilde{h}_{j j}^{\alpha}\right)^{2}\right\} \\
& =\frac{1}{m}\left\{2 m \sum_{i<j, \alpha}\left(\tilde{h}_{i j}^{\alpha}\right)^{2}+\frac{1}{2} \sum_{i \neq j, \alpha}\left(\left(\tilde{h}_{i i}^{\alpha}\right)^{2}-2 \tilde{h}_{i \alpha}^{\alpha} \tilde{h}_{j j}^{\alpha}+\left(\tilde{h}_{j j}^{\alpha}\right)^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m}\left\{2 m \sum_{i<j, a}\left(\bar{h}_{i j}^{e}\right)^{1}+\sum_{i<j, \alpha}\left(\bar{h}_{i,}^{a}-\bar{h}_{i j}^{a}\right)^{2}\right\} \\
& =\frac{1}{m}\left\{2 m \sum_{i<j, \alpha}\left(h_{i j}^{\infty}\right)^{2}+\sum_{i<\lambda_{\alpha}^{\infty}}\left(h_{i i}^{e}-h_{j j}^{\phi}\right)^{2}\right\},
\end{aligned}
$$

Where $h_{j}^{\circ}=h_{i j}^{e}$ are the coefficients of the aecond fundamental form of $f$ relative to the Darboux frame $E$. Since

$$
\begin{aligned}
& =-2 \sum_{i<j, a} h_{i i}^{\mathrm{o}} h_{j j}^{e}+\sum_{i<j, a}\left(\left(h_{i \mathrm{i}}^{\mathrm{e}}\right)^{2}+\left(h_{j j}^{\mathrm{o}}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2 \sum_{i<j, \phi} h_{i i k}^{*} h_{j j}^{\phi}+(m-1) \sum_{i, 0}\left(h_{i j}^{\phi}\right)^{2} \text {, }
\end{aligned}
$$

we get

$$
\begin{aligned}
& \text { trace } \overline{\bar{X}}=\frac{1}{m}\left\{\sum_{i<j, \sigma}-2 h_{i i}^{\alpha} h_{j j}^{\alpha}+(m-1) \sum_{i, \alpha}\left(h_{i j}^{\alpha}\right)^{2}+2 m \sum_{i<j \omega}\left(h_{i j}^{\alpha}\right)^{2}\right\} \\
& =\frac{1}{m}\left\{2 \sum_{i<j, 0}\left(-h_{i,}^{o} h_{j j}^{\theta}+m\left(h_{i j}^{\circ}\right)^{2}\right)+\sum_{i, 0}-\left(h_{i i}^{i}\right)^{2}+\sum_{i, \infty} m\left(h_{i i}^{e}\right)^{2}\right\} \\
& =\frac{1}{m} \sum_{i, j, 0}\left(-h_{i j}^{o} h_{j, j}^{e}+m\left(h_{i j}^{o}\right)^{2}\right) \\
& =\frac{1}{m}\left\{\sum_{i, j, m}(m-1) h_{i j}^{\alpha} h_{j j}^{\alpha}-m \sum_{i, j, \omega}\left(h_{i j}^{\alpha} h_{j,}^{\alpha}-\left(h_{i j}^{\alpha}\right)^{2}\right)\right\} \\
& =m(m-1) \sum_{a}\left(\frac{1}{m} \sum_{i} h_{i j}^{o}\right)\left(\frac{1}{m} \sum_{j} h_{j j}^{e}\right)-\sum_{i, i, o}\left(h_{i j}^{e} h_{j j}^{e j}-\left(h_{i j}^{e}\right)^{2}\right) \\
& =m(m-1)\|H\|^{2}-2 \sum_{i<j, a}\left(h_{i j}^{9} h_{j j}^{i}-\left(h_{i j}^{\mathrm{o}}\right)^{2}\right) \\
& =m(m-1)\|H\|^{2}-R \text {, }
\end{aligned}
$$

where $R$ is the scalar curvature. Summariming,

$$
\operatorname{trace} \bar{M}=m(m-1)\|H\|^{p}-R=\frac{1}{m} \sum_{i<j}\left\{\left(h_{i i}^{e}-h_{j j}^{*}\right)^{\ell}+2 m\left(h_{i j}^{*}\right)^{2}\right\} .
$$

Note that thin expresaion obviounly juatifies the definition of umbilic point given in Oh. 1. This was alno observed by Sulanke [Sn/85?], who proved traceff =
$\|\nabla d f\|^{2}-m\|E I\|^{2} \geq 0$. Besides, the latter equality followa strightforwardly from the above. Moreover, Rigoli showed that the m-form

$$
\left(\sum_{i<j}\left(\left(h_{i i}^{a}-h_{j j}^{\alpha}\right)^{2}+2 m\left(h_{i j}^{\alpha}\right)^{2}\right)\right)^{\frac{\tilde{2}}{\frac{2}{2}}} \phi_{0}^{1} \wedge \ldots \wedge \phi_{0}^{m},
$$

writen relative to $a$ first-order $G$-frame $\mathrm{e}: M \rightarrow G$ along $f: M \rightarrow \mathbb{R}^{n} \subset S^{n}$ doea not depend on the choice of firat-order frame and, therefore, defines a conformal invariant in Riemannian geometry.
On each compact dumein $\bar{D} \subset M$ we consider the functional

$$
\begin{equation*}
w_{D}(f)=\int_{D} \Omega_{f} \tag{2.18}
\end{equation*}
$$

defined for immersions $\boldsymbol{f}: \boldsymbol{M}^{m} \rightarrow S^{m}$. Such an immersion is asid to be a Willmore immersed anbmanifold of the Möjius apace $S^{n}$, if $f$ is a critical point of the latter functional. That is, for each compact domain $\bar{D} \subset M$ and amooth variation $\bullet: M^{m} \times(-\epsilon, \varepsilon) \rightarrow S^{n}$ of $f$ throngh immersions $f_{i}=\emptyset(\cdot, 1)$, with compact support on $D$, i.e. $f_{t}(x)=f(x), V t$, and $x$ ouride a compact set of $D_{1}$ we have

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t-0}=0 . \tag{2.19}
\end{equation*}
$$

In Ref. [Ri/87] Rigoli calculated the Euler-Lagrange equation for this veriational problem in the particular case $m=2$ with $n \geq 3$ arbitrary, obtaining an equation rather similar to the one of Eryant, reading

$$
\begin{equation*}
p_{11}^{i}+p_{31}^{\circ}=0, \quad \forall \alpha=3, \ldots, n \tag{2.20}
\end{equation*}
$$

with $\mathrm{m}_{\mathrm{j}}^{\mathrm{j}} \mathrm{m}$ in Eq. (1.00), relative to a second-order $G$-frame. The tranaformation law (1.79) shown that this equation is conformally invariant, i.e. it in independent of the choice of second-order frame. Also, if $/$ takes viluea in $\mathbb{R}^{\boldsymbol{n}}$, then the Riemannian equivalent of Eq. (2.20) is Eq. (2.10), at we can see from relation (1.129). We further observe from the propoition in Sec. 1.2.D that, if $f(M) \subset$ $S^{m} \subset S^{\text {a }}$, then $W_{D}(f)=0$, that in, $f$ in a trivial Willmare anbmanifold.

In the next section we are going to calculate the Euler-Lagrange equation of the variational problem amociated with $W_{D}$ acting on immerions $f: \boldsymbol{N}^{m} \rightarrow S^{\boldsymbol{a}}$ with $2 \leq m \leq n$ arbitrary.

### 2.2 The Euler-Lagrange Equation for the Willmore Functional $W$

Let $f: M^{m} \rightarrow S^{m}$ be an immersion of an oriented $m$-manifold ( $m \geq 2$ ) into the Möbius apace $S^{n}$ and $\bar{D} \subset M$ be a compact domain. Then,

$$
w_{D}(f)=\int_{D} \Omega_{f}=\frac{1}{m} \int_{D}\left(\sum_{i, j, 0}\left(h_{i j}^{*}\right)^{j}\right)^{\frac{p}{\top}} \phi_{0}^{1} \wedge \ldots \wedge \phi_{0}^{m}
$$

with $\phi_{0}$ and $h_{i j}^{\text {as }}$ an Eqs. (1.35) resp. (1.46), relative to a second-order G-frame $\boldsymbol{e}: \boldsymbol{M} \rightarrow \boldsymbol{G}$ of $\Pi$ along $\boldsymbol{f}$.
Let $v: \bar{D} \times(-\epsilon, \epsilon) \rightarrow S^{n}$ be a smooth variation of $f$ through immersions $f_{1}=$ $v(\cdot, t)$, which we assume to have compact aupport $G \subset D$, i.e. $f(x)=f(x), \forall \ell \in$ $(-\epsilon, \varepsilon), x \in \bar{D} \backslash C$. Thus, the variation vector $W \in C^{\infty}\left(f^{-1} T S^{n}\right)$ given by $W_{z}=$ $\left.\frac{\partial}{\partial t} f_{t}(x)\right|_{1=0}$, has compact support in $C$. Now we are going to compute

$$
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t=0}=\left.\frac{\partial}{\partial t}\left(\int_{D} \Omega_{h t}\right)\right|_{t=0}
$$

To that end, we construct sinooth maps e : $M \times(-c, \epsilon) \rightarrow G$ defined on $U \times\left(-c^{\prime}, \epsilon^{\prime}\right)$, where $U \subset D$ is a neighbourbood of a given point $x_{0} \in \bar{D}$ and $0<e^{\prime} \leq e$, astisfying the properties
(i) $e(x, t)=e(x, 0), \forall x \in U \backslash O^{*}, t \in\left(-\epsilon, e^{\prime}\right)$,
(ii) $V i \in\left(-\epsilon^{\prime}, \epsilon^{\prime}\right), e_{t}=e(\cdot, t): M \rightarrow G$ is a second-order
$G$-frame along $f_{1}$ defined on $U$,
where $C^{\prime}$ is a compact set, such that $C \subset C^{\prime \prime} \subset D$. First we take a section - : $S^{n} \rightarrow G$ of $\Pi: G \rightarrow S^{n}$ defined on a neighbourhood of $v\left(x_{0}, 0\right)$ in $S^{n}$. Let $\grave{c}=000: \hat{D} \times(-\hat{\varepsilon}, \bar{c}) \rightarrow \boldsymbol{G}$ with $\hat{U}$ a convenient neighbourhood of $x_{0}$. Then, $\Pi \circ \hat{e}_{t}(x)=\Pi \circ \hat{e}(x, t)=v(x, t)$, that is, $\hat{e}_{t}$ is a zeroth-onder frame along $f i$ which aatisfies: for $x \in U \backslash C, \dot{c}_{1}(x)=a(v(x, t))=\Delta(v(x, 0))=\hat{e}_{0}(x)$. Following the constraction of a first-order frame from a zeroth-order one given in Sec. 1.2.B, we denote $\phi(t)=\tilde{e} ; \bar{\theta}$, with components $\phi_{i}^{\prime}(t)$, and take the $\mathbb{R}^{n}$ vector-valued amooth functions on $\boldsymbol{O} \times(-\hat{\varepsilon}, \bar{c})$

$$
v_{i}(x, t)=\left|\begin{array}{c}
\phi_{0}^{\prime}(t)\left(Z_{i}(x)\right) \\
\vdots \\
\phi_{0}^{n}(\ell)\left(Z_{i}(x)\right)
\end{array}\right|, 1 \leq i \leq m
$$

which we may asanme to be linearly independent and orthonormal after GrammSchmidt orthogonaliantion. Then, $v_{i}(x, t)=v_{i}(x, 0), \forall(x, t) \in O \backslash O \times(-\varepsilon, c)$.

Obaerve that, an $\hat{\mathrm{a}}_{1}=\hat{e}_{0}$ on $\hat{U} \backslash C, \phi(t)=\phi(0)$ on the same open ret. Next we choase $\mathbb{R}^{n}$ vectors $v_{m+1}(x, t), \ldots, v_{a}(x, t)$ that form an orthonormal frame orthogonal to the subbunde $V$ of $\hat{U} \times(-\hat{\epsilon}, \hat{i}) \times \mathbb{R}^{n}$ with fibre $\operatorname{span}\left\{v_{1}(x, t), \ldots, v_{m}(x, t)\right\}$ at the point $(x, t)$. We can also assume that $v_{a}(x, t)=v_{a}(x, 0), \forall x \in \hat{U} \backslash C^{\text {, }}$, replacing, if necessary, $v_{a}(x, \ell)$ by $v_{a}(x, \theta(x) \ell)$ with $\theta: M \rightarrow[0,1]$ a amdoth function, auch that $\theta(x)=1$ on $C$ and $\theta(x)=0$ on $M \mathcal{Z}^{\prime \prime}$, where $C^{\prime}$ is some compact set such that $C \subset \mathcal{C}^{\prime} \subset C^{\prime} \subset D$. Then, the map

$$
K(x, t)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & A(x, t) & 0 \\
0 & 0 & 1
\end{array}\right|,
$$

where $A: \hat{\boldsymbol{V}} \times(-\hat{\epsilon}, \hat{e}) \rightarrow S O(n)$ ia given by $\boldsymbol{A}(x, t)\left(v_{A}(x, t)\right)=\sigma_{A}$, astianies $K(x, t)=K(x, 0), \forall x \in U \backslash C^{\prime}$. Let $\bar{\epsilon}: \tilde{U} \times(-\hat{e}, \hat{c}) \rightarrow G$ by defined by $e(x, \imath)=$

 frame $\hat{a}_{1}$. Let $\bar{K}: \hat{\boldsymbol{V}} \times(-\hat{\boldsymbol{i}}, \hat{\epsilon}) \rightarrow G_{0}$ be a amonth map given by

$$
K^{\prime}(x, t)=\left|\begin{array}{cccc}
1 & 0 & Y(x, t) & \frac{1}{2} Y(x, t) Y(x, t) \\
0 & I_{m} & 0 & 0 \\
\hat{0} & \hat{\mathrm{u}} & I_{n-m} & Y(x, t) \\
0 & 0 & 0 & 0
\end{array}\right|,
$$

where $Y_{a}(x, t)=\frac{1}{m} F_{k+1}^{*}(x, t)$ are the componenta of $Y$. Note thet, on $O \backslash \sigma^{\prime}$, $\bar{K}_{i j}^{*}(x, t)=h_{i j}^{*}(x, 0)$, since $\tau_{i}=z_{0}$. Hence, for all $t, \boldsymbol{K}(x, t)=\boldsymbol{K}(x, 0)$ on $\tilde{\theta} \backslash O^{\prime \prime}$. Let $e: \hat{U} \times(-\hat{i}, \hat{\varepsilon}) \rightarrow G$ be defned by $e(x, t)=e(x, t) K(x, t)$. Then, as in Sec. 1.2.O, $e_{i}: \hat{U} \rightarrow G$ is a second-order $G$-frame along $f_{i}$ and antiufiet $e_{i}=e_{0}$ on $\hat{U} \backslash O^{\prime}$. If we now set $U=\hat{U}$ and $\epsilon^{\prime}=\hat{\epsilon}$, then $e: U \times\left(-\epsilon^{\prime}, \epsilon^{\prime}\right) \rightarrow G$ satisfien the conditiona


For a map e: $U \times(-\epsilon, \epsilon) \rightarrow G$ in the conditions (2.21), we define the $g$-valued 1 -form on $U \times(-\epsilon, \epsilon)$ given by

$$
\begin{equation*}
\phi=e^{*} \Phi=e^{-1} d e \tag{2.22}
\end{equation*}
$$

with components $\phi ;$ satisfying the relationa in Eq. (1.16) and the atructure equationa (1.18). For each $t \in(-\varepsilon, t)$, let $\phi(t)$ denote the $G$-valued 1 -form on $U$

$$
\begin{equation*}
\phi(t)=\varepsilon_{i} \Phi \Phi \tag{2.23}
\end{equation*}
$$

on U. Then,

$$
\begin{equation*}
\phi(x, A)=\phi(t)_{2}+\bar{\lambda}(x, t) d t \tag{2.24}
\end{equation*}
$$

with the meaning $\phi_{(\mu, \Omega)}(v, h)=\phi(i)_{s}(x)+h \lambda(x, t), \forall u \in T_{s} M, A \in \mathbb{R}$, where $\boldsymbol{\lambda}: U \times(-\epsilon, \ell) \rightarrow G$ ia a mooth function with component: $\boldsymbol{\lambda}_{\mathrm{i}}$. Thua, $\boldsymbol{\lambda}(x, t)=$ $\Phi_{u l(x)}\left(\frac{\theta}{\partial r} e(x, t)\right)$. From the firat property in Eq. (2.21), we have $\frac{\theta}{\partial i} e(t, t)=0$, $\forall \ell \in$ $(-c, c), z \in U \backslash C^{*}$, which implies

$$
\begin{equation*}
X_{i}^{*}(x, t)=0 \text { and } \phi_{(x, i)}^{\theta}=\phi_{(x, 0)}^{\theta}, \quad \forall i \in(-c, c), x \in U \backslash O^{\prime} . \tag{2.25}
\end{equation*}
$$

Aa for each $t_{1} e_{t}$ in a second-order frame, $\phi_{0}^{g}(t)=0$. Thus, if we set $\lambda_{0}^{A}=\lambda_{0}^{A}$, we have

$$
\begin{equation*}
\phi_{0(x, t)}^{\circ}=\lambda_{0}^{c}(x, t) d t, \tag{2.20}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{0}(x, t)=0, \quad \forall t \in(-t, t), x \in U \backslash C^{\prime} \tag{2.27}
\end{equation*}
$$

Since $\phi_{i}^{\theta}(t)_{s}=h_{g}^{\phi}(x, t) \phi_{j}^{j}(t)_{z i}$ with $h_{i i}^{\theta}(x, t)=0, h_{i j}^{\ominus}(x, t)=h_{j i}^{\ominus}(x, t)$, and

$$
\begin{equation*}
h_{i j}^{\varphi}(x, t)=h_{j}^{\epsilon}(x, 0), \forall i \in(-\epsilon, \epsilon), x \in U \backslash C^{\prime} \tag{2.28}
\end{equation*}
$$

we get

$$
\begin{align*}
\phi_{i(x, d)}^{e} & =h_{i j}^{e}(x, t) \phi_{0}(t)_{x}+\lambda_{i}^{*}(x, t) d t  \tag{2.29}\\
& =h_{i j}^{e}(x, t)\left(\phi_{i(x,)}-\lambda_{0}^{j}(x, t) d t\right)+\lambda_{i}^{*}(x, t) d t
\end{align*}
$$

This expreasion cen be writen in the form

$$
\begin{equation*}
\phi_{i}^{0}(x, d)=h_{i j}^{g}(x, i) \phi_{(x, i)}+\lambda_{i}^{\prime}(x, t) d t, \tag{2.30}
\end{equation*}
$$

where $\lambda_{i}^{*}: U \times(-\epsilon, \varepsilon) \rightarrow R$ is a amooth map antifying

$$
\begin{equation*}
\lambda_{i}^{*}(x, t)=0, \forall i \in(-t, c), x \in U \backslash C^{\prime} \tag{2.31}
\end{equation*}
$$

Differentiating Eq. (2.26) and uaing the atructure equationg (1.18) and Eqg. (2.30), (2.26), we obtein

$$
\begin{aligned}
& d \lambda_{0}^{*} \wedge d t=-\phi_{0}^{n} \wedge \phi_{\theta}^{\theta}-\phi_{i}^{*} \wedge \phi_{0}^{0}-\phi_{\theta}^{\prime} \wedge \phi_{0}^{\circ} \\
& =-\lambda_{0}^{i} d \ell \wedge \phi_{0}^{0}-h_{i j}^{\theta} \phi_{0} \wedge \phi_{0}^{i}-\lambda_{i}^{\phi} d t \wedge \phi_{0}^{i}-\lambda_{i}^{\theta} \phi_{0}^{\theta} \wedge d t \\
& =\left(\lambda_{0}^{\infty} \phi_{0}^{0}+\lambda_{i}^{i} \phi_{0}^{i}-\lambda_{0}^{\phi} \phi_{j}^{0}\right) \wedge d t \text {. }
\end{aligned}
$$

By Cartan'a Lemma,

$$
\begin{equation*}
d \lambda_{0}^{g}=\lambda_{0}^{g} \phi_{0}^{0}+\lambda_{i}^{\sigma} \phi_{0}^{\prime}-\lambda_{0}^{f} \phi_{f}^{\mu}+\mu^{\alpha} d t . \tag{2.32}
\end{equation*}
$$

As $\lambda_{0}^{\circ}, \lambda_{i}^{\prime \prime}$ have support in $C^{\prime \prime} \times(-\epsilon, \epsilon)$,

$$
\begin{equation*}
\mu^{*}(x, t)=0, \quad \forall i \in(-\epsilon, \ell), x \in U \backslash C^{\prime} \tag{2.33}
\end{equation*}
$$

Analogously, by differentiating Eq. (2.30) and using the linear independence of ( $\phi_{0}^{1}, \ldots, \phi_{0}^{\prime \prime}, d t$ ), we oblain

$$
\begin{align*}
& d h_{i j}^{\theta}-h_{i \alpha}^{\theta} \phi_{j}^{t}-h_{j h}^{\alpha} \phi_{i}^{h}+h_{i j}^{\theta} \phi_{j}^{\alpha}+h_{i j}^{\alpha} \phi_{0}^{0}+\delta_{i j} \phi_{a}^{0}=h_{i j k}^{\theta} \phi_{0}^{t}+\lambda_{i j}^{o} d t  \tag{2.34}\\
& d \lambda_{i}^{a}-\lambda_{0}^{\sigma} \phi_{i}^{0}-\lambda_{j}^{\sigma} \psi_{i}+\lambda_{i}^{\beta} \phi_{j}^{\sigma}+\lambda_{0}^{\theta} h_{i j}^{\sigma} h_{j k}^{\beta} \phi_{0}^{k}=\lambda_{i k}^{0} \phi_{0}^{h}+\mu_{i}^{\theta} d t, \tag{2.35}
\end{align*}
$$

where $h_{\text {ejn }}^{\mu}$ and $\lambda_{i j}^{\rho}$ are smooth functions on $U \times(-\epsilon, \epsilon)$ with the symmetry prop-
 and

$$
\begin{equation*}
h_{i j k}^{\rho}(x, t)=h_{i j k}^{e}(x, 0), \lambda_{j}^{*}(x, t)=0, \forall t \in(-\epsilon, \epsilon), x \in U \backslash C^{\prime} . \tag{2.36}
\end{equation*}
$$

Multiplying both sides of Eq. (2.34) by $h_{i j}^{\text {q }}$ and summing over $i, j$, we get

$$
\begin{equation*}
h_{i j}^{\alpha} d h_{i j}^{\alpha}=-h_{i j}^{\alpha} h_{i j}^{\alpha} \phi_{0}^{0}+h_{i j}^{\alpha} h_{i j k}^{\alpha} \phi_{0}^{\alpha}+h_{i j}^{\alpha} \lambda_{i j}^{\alpha} d t . \tag{2.37}
\end{equation*}
$$

If $\tilde{\varepsilon}: \tilde{\boldsymbol{U}} \times(-\epsilon, \epsilon) \rightarrow G$ is another map in the conditions (2.21), then $\tilde{e}_{t}=e_{t} K_{t}$, where $K_{1}$ is a map on $U \cap \tilde{U}$ with values in $G_{3}$. Obviously, $K: U \cap \bar{U} \times(-\epsilon, \epsilon) \rightarrow$ $G_{1},(x, t) \rightarrow K_{i}(x)$, is amooth. From the equalitiea $\phi=e^{-1} d e$ and $\bar{e}(x, t)=$ $e(x, t) K(x, t)$, we obtsin $\bar{\phi}=\tilde{e}^{-1} d \tilde{e}=K^{-1} \phi K+K^{-1} d K$. Writing $K$ as in Eq. (1.70), with now $r, X, A, B$ maps of the variables ( $x, t$ ), we derive from the letter equation the trangformation laws

$$
\left[\tilde{\phi}_{0}^{A}\right]=\mathrm{r}^{-1} G\left[\phi_{0}^{A}\right] \text { with } C=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] .
$$

Hence,

$$
\begin{align*}
& \dot{\psi}_{0}=r^{-1} A_{j}^{\prime} \phi_{0}^{\prime} \\
& \dot{\phi}_{0}^{\prime}=\bar{\lambda}_{0} d t=r^{-1} B_{g}^{g} \lambda_{0}^{a} d t, \tag{2.38}
\end{align*}
$$

which implies the tranaformations

$$
\begin{align*}
& \bar{\lambda}=r^{-1} A_{j}^{j} \lambda_{j}^{j}  \tag{2.39}\\
& \tilde{\lambda}_{0}=r^{-1} B_{j}^{j} \lambda_{0}^{s} .
\end{align*}
$$

Farthermore, comparing with Eq. (1.29), we obtain

$$
\left.\left[\phi_{B}^{A}\right]=b\left[\phi_{0}^{A}\right]^{\ell} Z O+b \mid \phi_{B}^{A}\right] O-C Z^{2}\left[\phi_{0}^{A}\right] O+C d C
$$

where $Z=\left[\begin{array}{c}X \\ 0\end{array}\right]$. So, in particular,

$$
\begin{aligned}
& =\lambda_{j}^{\prime} B_{0}^{p} X_{j} A_{i}^{\prime} d t+B_{0}^{j} A_{i}^{\prime}\left(h_{j k}^{p} \phi_{0}^{k}+\lambda_{j}^{j} d t\right) \\
& =B_{e}^{j} A_{i}^{j} h_{j h}^{j} \phi_{\phi}^{k}+\left(\lambda_{j}^{j} B_{e}^{j} A_{j}^{j}+\lambda_{0}^{f} B_{e}^{j} A_{i}^{j} X_{j}\right) d,
\end{aligned}
$$

whence

$$
\begin{equation*}
\tilde{\mathcal{A}}_{i}^{0}=\lambda_{j}^{\beta} B_{0}^{\prime} A_{i}^{3}+\lambda_{j}^{\}} B_{0}^{\beta} A_{i}^{\}} X_{s} \tag{2.40}
\end{equation*}
$$

A! a final remark on mapa $e$ with the property (2.21), we oberve that, given a point $x_{\mathrm{a}} \in M_{\text {, one can }}$ alwaya find a variation $\left(f_{1}\right)_{i \in(-\tau, 0)}$ of $f$ with compact anpport $C$ contained in a domain $D$, such that $x_{0}$ lies in the interior of $O_{1}$ and amape astinfying the condition: (2.21) with arbitrary $\lambda_{8}(\cdot, 0)$ an long an appig $(\cdot, 0) \subset$ $C^{\prime} \cap U$. For example, asuming that, near the point $x_{0}, f$ in of the form $f(x)=$ $\left|\begin{array}{c}1 \\ \rho(x) \\ \frac{1}{3}\|\rho(x)\|^{2}\end{array}\right|$, we take the varietion $f(x)=\left|\begin{array}{c}1 \\ \rho(x)+\ell \Delta(x) \\ \frac{1}{3}\|\rho(x)+i \Delta(x)\|^{2}\end{array}\right|$, where $\Delta(x)$ is an arbitrary $\mathbb{R}^{-}$-valued function with aupport $C$. If we choose the section egiven in Eq. ( 1.19 ), the map e as conatucted above atiafies $\lambda_{0}^{\prime}(x, 0)=\phi_{(0,0)}\left(\frac{t}{8 t}\right)=$ $A_{B}^{B}(x, 0) d\left(\rho_{B}(x)+t A_{B}(x)\right)_{1,0,0}\left(\frac{D}{B A}\right)=A_{B}^{B}(x, 0) A_{A}(x)$, where $A_{A}^{B}(\cdot, 0)$ only dependa on $f$, which can take any arbitrary vilue. If $f$ were of the form $\left.\begin{gathered}i\|\rho(x)\|^{2} \\ \rho(s) \\ 1\end{gathered} \right\rvert\,$, we would arrive at the ame concluaion by taling thia time the gection $\overline{\mathbf{a}}$ of Eq(1.20).

Propoiltion 2.1 Let $f: M^{m} \rightarrow S^{n}$ be an immeraion of an oriemied m-manifold into the Mobive apace. Then, we hase:
For $m=2, f$ is a Willmort immersed aurfees, ifl [Br/84] [Ri/87]

$$
P_{1 i}^{z}=0, \quad \forall a=3, \ldots, n .
$$

For m $=4, f$ is a Willmore immeresd 4 -aubmanifold, iff

$$
\text { trace } N\left(s_{P_{1 j}^{\epsilon}}+h_{k j}^{e} h_{j i}^{\theta} h_{i}^{\prime}\right)+2 h_{j}^{\theta} H_{i j}+12 P_{i}^{0} h_{\geq=1}^{\top} h_{\omega,}^{\top}=0, \forall o=s, \ldots, n .
$$

If $m=3$ or $m=5$ with the arrumption that trace $N_{z} \neq 0, \forall x \in M$, i.c. $f$ has no umbilic pointa, or $m>5$ שithout any non-degeneracy condition, then $f$ is a Willmore immersed m-submanifold, iff

$$
\begin{aligned}
& \text { (trace } N)^{m-1}\left((m-1) p_{j j}^{q}+h_{i,}^{q}, h_{j i}^{f} h_{i k}^{f}\right)+ \\
& +(m-2)(\text { race } N)^{\frac{\text { ma }}{2}}\left(h_{i j}^{\sigma} H_{i j}+2(m-1) p_{i}^{q} h_{j i} h_{m}^{\lambda}\right)+
\end{aligned}
$$

where the quantities $h_{i j}^{i}, h_{i j b}^{a}, p_{i}^{a}, p_{i j}^{i}, H_{i j}$, and trace $N=N_{j j}$ are as defined reopectively in Eqg. (1.48,1.47), (1.54,1.55), (1.58), (1.60,1.61), (1.62,1.69), and (1.87), relative to a second-order $G$-frame field e : $M \rightarrow G$ of $\Pi: G \rightarrow S^{n}$ along $f$. Note that the above equations are conformally invariant, that is, they do not depend on the choice of eceond-order frame.

Proof. Let v: $\bar{D} \times(-c, e) \rightarrow S^{\text {e }}$ be a smonth varistion of $f$ through immerions and with compact support $C \subset D$. Let $x_{0} \in D$ and $e: U \times\left(-\epsilon^{\prime}, \epsilon^{\prime}\right) \rightarrow G$ be a map in the conditiona (2.21), with $U$ a neighboarhood of $x_{0}$ in $D$. Then, $\forall \in \in\left(-C^{\prime}, \epsilon^{\prime}\right), x \in U$, we have

$$
\Omega_{f}(x)=\frac{1}{m}\left(\sum_{i, j, \alpha}\left(h_{i j}^{\alpha}(x, t)\right)^{2}\right)^{\frac{m}{2}} \phi_{0}^{1}(t)_{s} \wedge \ldots \wedge \phi_{0}^{n_{2}}(t)_{x}
$$

Let $\Omega$ be the $\boldsymbol{m}$-form on $U \times\left(-\epsilon^{\prime}, \epsilon^{\prime}\right)$ given by

$$
\Omega_{(x, t)}=\frac{1}{m}\left(\sum_{i, j, \alpha}\left(h_{i j}^{a}(x, t)\right)^{2}\right)^{\frac{m}{2}} \phi_{0(x, t)}^{1} \wedge \ldots \wedge \phi_{0}^{m}(x, t)
$$

Although $\Omega$ ia only defined on $U \times\left(-\epsilon^{\prime}, \epsilon^{\prime}\right)$ and depends on $e$, ite restriction $\left.\mathrm{O}_{(\pi, a)}\right|_{T, N}=\mathrm{n}_{f}(x)$ is a well-defined global $m$-form on all $\bar{D}$. Let $\Psi$ be the $m$ form on $U \times\left(-\epsilon^{\prime}, C^{\prime}\right)$ defined as

$$
\Psi=\mathbf{n}-d t \wedge(\cdot, \mathbf{n}) .
$$

 $m$-form on $M \times(-c, c)$ and we have

$$
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t=0}=\left.\frac{\partial}{\partial t}\left(\left.\int_{D} \Psi_{(x, s)}\right|_{T, N}\right)\right|_{t=0}=\left.\int_{D} L_{t} \Psi\right|_{\substack{t=0 \\ T=N}}
$$

Since $L=\mathrm{g} \circ \mathrm{d}+d \circ \mathrm{~s}$, we get

$$
L_{h} \Psi=\mathbf{i}_{\boldsymbol{h}}{ }^{d \Psi+d_{h}} \boldsymbol{h} \Psi=\mathbf{i}_{\boldsymbol{h}}{ }^{d \Psi} .
$$

On $U \times\left(-\epsilon^{\prime}, \epsilon\right)$,

$$
L_{i} \Psi=i_{i n}\left(d \cap+d i \wedge d\left(i_{n} \cap\right)\right)=i_{i n} d \Omega+d\left(i_{n} \Omega\right)(t)
$$

and

$$
\begin{aligned}
& d \Omega=\frac{1}{m} d\left(\left(\sum_{\left\{j_{0} 0\right.}\left(h_{j}^{g}\right)^{2}\right)^{\mathrm{T}^{\prime}} \phi_{0}^{\prime} \wedge \ldots \wedge \phi_{0}^{m^{\prime \prime}}\right)
\end{aligned}
$$

Henceforth, we will use the notations

$$
\begin{align*}
\phi^{1!\cdots m} & =\phi_{0}^{1} \wedge \ldots \wedge \phi_{0}^{m} \\
\phi^{1 \ldots j m m} & =\phi_{0}^{1} \wedge \ldots \wedge \phi_{0}^{i-1} \wedge \phi_{0}^{i+1} \wedge \ldots \wedge \phi_{0}^{m} . \tag{2.41}
\end{align*}
$$

Using the stractare equations (1.18) and Eqs. (2.26),(2.30), we have

$$
\begin{aligned}
& d \phi^{L-m}=(-1)^{j-1} d \phi \mid \wedge \phi^{\text {L- } j \ldots m}
\end{aligned}
$$

$$
\begin{aligned}
& =m \phi_{0}^{0} \wedge \phi^{\mathrm{L} m}+(-1)^{\mathcal{L}} \phi_{\mathrm{a}}^{j} \wedge \phi_{0}^{\mathrm{a}} \wedge \phi^{\mathrm{L} \cdot \mathrm{j}^{2}} \boldsymbol{m} \\
& =m \phi_{0}^{0} \wedge \phi^{L-m}+(-1)^{j-1}\left(h_{j}^{j} \phi_{0}^{k}+\lambda_{j}^{-} d t\right) \wedge \lambda_{0}^{g} d \iota \wedge \phi^{2-j \ldots m} \\
& =m \phi_{0}^{0} \wedge \phi^{\mathrm{L} \cdot m}+(-1)^{j-1} \lambda_{0}^{o} h_{j j}^{*} \phi_{0}^{j} \wedge d t \wedge \phi^{\mathrm{L}-\mathrm{J}^{j} m m} \\
& =\boldsymbol{m} \boldsymbol{\phi}_{0}^{0} \wedge \phi^{\mathrm{L} . . \boldsymbol{m}} \text {. }
\end{aligned}
$$

From Eq. (2.37), we obtain

Hence,

Thus,
and

$$
\begin{aligned}
& =\frac{1}{m}\left(\sum_{i, j, m}\left(h_{i j}^{e}\right)^{2}\right)^{\frac{p}{\top}}{ }_{\frac{\theta_{0}}{0}}\left(\left(\phi_{0}^{l}(l)+\lambda_{0}^{l} d t\right) \wedge \ldots \wedge\left(\phi_{0}^{n \prime}(t)+\lambda_{0}^{m} d l\right)\right) \\
& =\frac{1}{m}\left(\sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}\right)^{\frac{9}{2}}, \sum_{i}\left\{\phi_{0}^{1}(t) \wedge \ldots \wedge \phi_{0}^{b-1}(t) \wedge \lambda_{0}^{k} d t \wedge \phi_{j}^{k+1}(t) \wedge \ldots \wedge \phi_{0}^{n}(t)\right\} \\
& =\frac{1}{m}\left(\sum_{i d, \alpha}\left(h_{i j}^{*}\right)^{2}\right)^{\frac{m}{3}}(-1)^{k-1} \lambda_{0}^{t} \phi^{1-k \ldots m}(t) \text {. }
\end{aligned}
$$

Consequently,
and
 in Eq. (2.41) with $\phi_{0,}^{\prime} h_{a}^{\text {a }}$ relative to the second-order $G$-frame $e_{a}: U \rightarrow G$ of $\Pi$ along $f=f_{0}$, and where $\lambda_{0}^{t}$ and $\lambda_{2}$ are condidered an functions only of the variable $x \in U$, firing $t=0$. Thus, we have obtained

$$
\begin{align*}
& +d\left(\frac{1}{m}\left(\sum_{i j \omega}\left(h_{i j}^{e}\right)^{2}\right)^{\frac{p}{8}}(-1)^{k-1} \lambda_{e}^{k} \phi^{1 . .} k_{-m}\right) \text {. } \tag{2.42}
\end{align*}
$$

Next we rewrite the relations given in Eqgs. ( $2.32,2.35,2.27,2.31$ ) among the $\lambda_{0}$, $\lambda_{i}^{*}$, and $\lambda_{i j}^{a}$ in terms of functions of the variable $x \in U$ only, thereby fixing $t=0$, which yields

$$
\begin{align*}
& d \lambda_{0}^{a}=\lambda_{0}^{\alpha} \phi_{0}^{0}+\lambda_{i}^{\alpha} \phi_{0}^{0}-\lambda_{0}^{j} \phi_{0}^{\sigma}  \tag{2.43}\\
& d \lambda_{i}^{\rho}=\lambda_{0}^{\sigma} \phi_{i}^{0}+\lambda_{j}^{\sigma} \phi_{i}^{\prime}-\lambda_{i}^{\beta} \phi_{j}^{G}-\lambda_{\sigma}^{\xi} h_{j}^{a} h_{j L}^{\beta} \phi_{0}^{b}+\lambda_{j}^{\phi} \phi_{0}^{t}, \tag{2.46}
\end{align*}
$$

where $\lambda_{0}^{\prime \prime}, \lambda_{i}^{e}$, and $\lambda_{i j}^{e}$ have aupport in $C^{\prime} \cap U \subset D$, and with $\phi_{j}^{f}, h_{j}^{e}$ relative to the second-order $G$-frame $\varepsilon_{0}$ along $f$. Now we evaluate the expremsion

$$
\begin{equation*}
\left(\sum_{i j, \infty}\left(h_{i j}^{\epsilon}\right)^{2}\right)^{m_{i}^{-z}} h_{e}^{*} \lambda_{e k}^{*} \phi^{1 \cdots m} \tag{2.45}
\end{equation*}
$$

For the sake of notational simplicity, we define

$$
\begin{equation*}
\|A\|=\sqrt{\sum_{i, j e}\left(A_{i j}^{e}\right)^{2}}=\sqrt{\text { trace } N} \tag{2.46}
\end{equation*}
$$

From Eq. (1.54), we have, for positive integer $r \neq 1$ (unless $\|h\| \neq 0$ ),

$$
\begin{align*}
& d\|h\|^{r}=r\|h\|^{r-3} h^{\boldsymbol{J}} d h_{\alpha}^{\boldsymbol{\lambda}}=r\|h\|^{r-2}\left(-\|h\|^{2} \phi_{0}^{0}+h_{\alpha}^{\top} h_{\text {w }}^{\top} \phi_{0}^{k}\right) \\
& =-r\|h\|^{r} \phi_{0}^{0}+r\|h\|^{r-2} h_{a}^{2} h_{a t}^{\top} \phi_{0}^{t} . \tag{2.47}
\end{align*}
$$

Using the structure equations (1.48), we obtain

$$
\begin{equation*}
d \phi^{1 \ldots j^{1 . m}}=(m-1) \phi_{0}^{0} \wedge \phi^{1 . \ldots \ldots m}+(-1)^{k+1} \phi_{i}^{k} \wedge \phi^{1 . \ldots k m} . \tag{2.48}
\end{equation*}
$$

Starting from Eq. (2.44), we get, for $i, j$ fixed,

$$
\begin{aligned}
& \lambda_{i,}^{e} \phi^{1-m}=(-1)^{-1} \lambda_{i j}^{0} \phi_{0}^{\top} \wedge \phi^{1 \cdots \hat{j} \ldots m} \\
& =(-1)^{j-1}\left(\lambda_{i}^{\omega} \phi_{0}^{k}\right) \wedge \phi^{1-j \ldots m}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \text { (2.45) }=\|h\|^{m-3} h_{i j}^{\omega} \lambda_{i j}^{\omega} \phi^{1 \ldots . m}= \\
& =(-1)^{j-1}\|h\|^{m-2} h_{i j}^{a} d \lambda_{i}^{a} \wedge \phi^{1-j-m} \\
& +(-1)^{j}\|h\|^{m-2} h_{j}^{g} \lambda_{i}^{\theta} \phi_{i}^{h} \wedge \phi^{1 . .3_{m m}} \\
& +(-1)^{\rho-1}\|h\|^{m-2} h_{i j}^{\infty} \lambda_{i}^{p} \phi_{j}^{\sigma} \wedge \phi^{1-j+\cdots m} \\
& +(-1)^{j}\|h\|^{m-2} h_{i j}^{e} \lambda_{0}^{*} \phi_{i}^{0} \wedge \phi^{1-. j \ldots m} \\
& +\|h\|^{m-1} h_{i j}^{c} h_{i k}^{q} \lambda_{0}^{p} h_{k j}^{m} \phi^{1 . . . m} \\
& =d\left((-1)^{j-1}\|A\|^{m-2} \lambda_{i}^{e} h_{i j}^{e} \phi^{1 m-\hat{j} n-m}\right) \\
& +(-1)^{j} h_{j}^{e} \lambda_{i}^{e} d\left(\|h\|^{m-2}\right) \wedge \phi^{1 . . j . . . m} \\
& +(-1)^{j}\|h\|^{m-1} \lambda_{i}^{*} d h_{i j}^{\alpha} \wedge \phi^{1 . .\}^{3}}{ }^{m m} \\
& +(-1)^{J}\|h\|^{m-3} \lambda_{i}^{-} h_{i j}^{e} d \phi^{L \cdot j} \cdot m \\
& +(-1)^{j}\|h\|^{m-2} h_{i j}^{e} \lambda_{i}^{i} \phi_{i}^{h} \wedge \phi^{1-)^{j} \ldots m} \\
& +(-1)^{j-1}\|h\|^{m-2} h_{i j}^{a} \lambda_{i}^{d} \phi_{i}^{a} \wedge \phi^{1-. . j_{m}-m} \\
& +(-1)^{j}\|h\|^{m-2} h_{i j}^{e} \lambda_{0}^{0} \phi_{i}^{0} \wedge \phi^{2 m j \ldots m} \\
& +\|h\|^{m-s} h_{i j}^{a} h_{i h^{a}}^{a} \lambda_{0}^{g} h_{b j}^{g} \phi^{l . \cdots m} .
\end{aligned}
$$

Using Eqs. (2.47), (1.54), (1.57), (2.48), and (1.60), and asuming $m \neq 3$ unleas $\|h\| \neq 0$, we get

$$
(2.45)=
$$

```
=d((-1)
    +(-1)}\mp@subsup{h}{i}{~}\mp@subsup{\lambda}{i}{\alpha}(m-2)|h||m-4 (-|h|'\mp@code{m}
```



```
    +(-1)
    +(-1\mp@subsup{)}{}{j}|h\mp@subsup{|}{}{m-3}\mp@subsup{\lambda}{i}{e}\mp@subsup{h}{ij}{e}(-1)\mp@subsup{)}{}{k+j}\mp@subsup{|}{j}{k}}\wedge\mp@subsup{\phi}{}{l-k.cm
    +(-1)}||h\mp@subsup{|}{}{m-1}\mp@subsup{h}{ij}{e}\mp@subsup{\lambda}{i}{e}\mp@subsup{\phi}{i}{k}\wedge\mp@subsup{\phi}{}{1-j-m
```




```
    +|h||
= d((-1) j-1 |h |}\mp@subsup{|}{}{m-2}\lambda\mp@subsup{\lambda}{j}{0}\mp@subsup{h}{j}{0}\mp@subsup{\phi}{}{[-j-m}
    +(-1)\mp@subsup{)}{}{j-1}(m-2)|h\mp@subsup{|}{}{m-2}\mp@subsup{h}{i,}{0}\mp@subsup{\lambda}{i}{0}\mp@subsup{\phi}{0}{0}\wedge}\wedge\mp@subsup{\phi}{}{1......m
```



```
    +(-1\mp@subsup{)}{}{j}|h\mp@subsup{|}{}{m-2}\mp@subsup{\lambda}{i}{o}\mp@subsup{h}{k,j}{\sigma}\mp@subsup{\phi}{i}{k}}\cap\mp@subsup{\phi}{}{1......m
    +(-1)}||h\mp@subsup{|}{}{m-2}\mp@subsup{\lambda}{i}{e}\mp@subsup{h}{i&}{0}\mp@subsup{\phi}{j}{k}\wedge\mp@subsup{\phi}{}{l-3-m
```



```
    +(-1)}\mp@subsup{)}{}{-1}||||\mp@subsup{|}{}{m-3}\mp@subsup{\lambda}{i}{*}\mp@subsup{h}{ij}{*}\mp@subsup{\phi}{0}{0}\wedge\mp@subsup{\phi}{}{1-j)
```






```
    +(-1)}||h\mp@subsup{|}{}{m-2}\mp@subsup{h}{i,j}{\varepsilon}\mp@subsup{\lambda}{i}{q}\mp@subsup{\phi}{i}{k}\wedge\mp@subsup{|}{}{1-j-m
    +(-1)
    +(-1)}||A\mp@subsup{|}{}{m-9}\mp@subsup{\lambda}{0}{\sigma}d\mp@subsup{p}{j}{\sigma}\wedge\mp@subsup{|}{}{1..j_mm
    +(-1)
```



```
    +(-1)2|AA|m-1 }\mp@subsup{\lambda}{0}{j}\mp@subsup{p}{j}{i}\mp@subsup{\phi}{0}{0}\wedge\mp@subsup{\phi}{}{1-jmm
    +|h||
    +|h||
```

In the latter expression, we have several simple cancellations, by permoting indicea when necessary and using the symmetry properties of the coefficienta and forms involved. By applying also Eq. (1.56), we obrain

$$
\left.\begin{array}{rl}
(2.45)= & d\left((-1)^{j-1}\|h\|^{m-2} \lambda_{i}^{a} h_{j}^{a} \phi^{1-3} j^{2} m\right.
\end{array}\right)
$$

Uaing again Eqs. (2.43), (2.47), and (2.48), we get

$$
\begin{aligned}
& \text { (2.45) }=d\left((-1)^{j-1}\|h\|^{m-2} \lambda_{i}^{e} h_{i j}^{\alpha} \phi^{1 \omega j \ldots m}+(-1)^{j}\|h\|^{m-3} \lambda_{0}^{0} P_{j}^{e} \phi^{b-j \ldots m}\right) \\
& -(m-2)\|h\|^{m-4} h_{i j}^{0} \lambda_{i}^{0} h_{d}^{\gamma} h_{d j}^{\gamma} \phi^{1-m} \\
& +(1-m)\|h\|^{m-2} \lambda_{j}^{*} f_{j}^{0} \phi^{1 \ldots m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{j-1}\|h\|^{m-1} r_{j}^{o} \lambda_{0}^{\alpha} \phi_{0}^{0} \wedge \phi^{1-j \omega m} \\
& +\|h\|^{m-2} p_{j}^{q} \lambda_{j}^{q} \phi^{1-\ldots m} \\
& +(-1)^{\prime}\|h\|^{m-3} p_{j}^{g} \lambda_{0}^{g} \phi_{g}^{g} \wedge \phi^{1-\mathrm{j}} \mathrm{j}-\mathrm{m} \\
& +(-1)^{j}(m-2)\|h\|^{m-2} p_{j}^{\sigma} \lambda_{\mathrm{D}}^{a} \phi_{0}^{0} \wedge \phi^{\text {L......m }}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{j-1}(m-1)\|h\|^{m-2} p_{j}^{0} \lambda_{0}^{0} \phi_{0}^{0} \wedge \phi^{1-j-m} \\
& +(-1)^{-1}\|h\|^{m-z} p_{j}^{s} \lambda_{0}^{g}(-1)^{h+j} \phi_{j}^{k} \wedge \phi^{\text {li.k. }} . \\
& +(-1)^{j-1}\|h\|^{m-2} \lambda_{0}^{*} p_{i}^{\theta} \phi_{j}^{i} \wedge \phi^{1 . . .)^{j} \ldots m} \\
& +(-1)^{j}\|h\|^{m-2} \lambda{ }_{6}^{6} p_{j}^{l} \phi_{i} \wedge \phi^{1-j \cdots m} \\
& +(-1)^{\prime} 2\|A\|^{m-3} \lambda_{0}^{0} p_{j}^{0} \phi_{0}^{0} \wedge \phi^{\text {lij }}= \\
& +\|h\|^{m-9} \lambda_{0}^{a} p_{j j}^{\alpha} \phi^{1 . . . m} \\
& +\|h\|^{m-3} h_{i j}^{q} h_{i k}^{\ell} \lambda_{0}^{f} h_{k j}^{f} \phi^{1 \cdot \cdot m},
\end{aligned}
$$

which gives, after some oivious canceüazions and rearrangemenzs,

$$
\begin{align*}
& -(m-2)\|h\|^{m-4} h_{i j}^{o} \lambda_{i}^{o} h_{2}^{2} h_{j}^{2} \phi^{1-m} \\
& +(2-m)\|h\|^{m-2} \lambda_{j}^{f} p_{j}^{j} \phi^{l \ldots m} \\
& +(m-2)\|h\|^{m-4} p_{j}^{*} A_{0}^{*} h_{d}^{\gamma} h_{n j}^{\gamma} \phi^{1-m^{\prime}} \\
& +\|A\|^{m-2} \lambda_{0}^{i} P_{j j}^{i} \phi^{\text {L. }}=\mathrm{m} \\
& +\|h\|^{m-z} h_{i j}^{o} h_{i k}^{o} \lambda_{0}^{f} h_{k j}^{f} \phi^{\text {L-m }} . \tag{2.49}
\end{align*}
$$

This exprearion will also aerve for later use. Substituting the factor $\lambda_{i}^{\boldsymbol{q}} \boldsymbol{\phi}^{1+m}$ in the recond term of the r.h.s. as
and asing Eq. (2.43), we derive

$$
\begin{aligned}
& +(2-m)\|h\|^{m-3} \lambda_{j}^{a} p_{j}^{q} \phi^{1 . . . m} \\
& +(m-2)\|h\|^{m-4} p_{j}^{\omega} \lambda_{0}^{\sigma} h_{m}^{J} h_{m j}^{\gamma} \phi^{1 \cdots m}
\end{aligned}
$$

$$
\begin{aligned}
& +\|A\|^{m-\frac{1}{2} \lambda_{0}^{*} p_{j j}^{j} \phi^{\text {L }} m} \\
& +\|h\|^{m-2} h_{i j}^{\theta} h_{i k}^{\theta} \lambda_{0}^{t} h_{k \phi}^{g} \phi^{1-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\prime}(m-2)\|A\|^{m-4} h_{i j}^{0} h_{d i} h_{d j} d \lambda_{0}^{g} \wedge \phi^{1.2 . m} \\
& +(-1)^{i-1}(m-2)\|h\|^{m-4} h_{0}^{\alpha} h_{\alpha}^{\gamma} h_{\alpha,}^{\gamma} \lambda_{0}^{\sigma} \phi_{0}^{0} \wedge \phi^{L . . . . m} \\
& +(-1)^{\prime}(m-2)\|h\|^{m-4} h_{i j}^{o} h_{d}^{2} h_{\alpha,}^{\top}, \lambda_{0}^{g} \phi_{j}^{g} \wedge \phi^{L . . . . m} \\
& +(2-m)\|h\|^{m-2} \lambda_{j}^{\mu} p_{j}^{0} \phi^{1 . . . m} \\
& +(m-2)\|h\|^{m-4} p_{j}^{\sigma} \lambda_{0}^{\sigma} h_{k}^{\gamma} h_{m, j}^{\gamma} \phi^{1-m} \\
& +\|h\|^{m-3} \lambda_{0}^{*} p_{j,}^{0} \phi^{1 . \ldots n} \\
& +\|h\|^{m-1} h_{i j}^{o} h_{i k}^{i} \lambda_{9}^{d} h_{k j}^{f} \phi^{L-m} \\
& =d\left((-1)^{j-1}\|h\|^{m-2} \lambda_{i}^{q} h_{i}^{i} \phi^{1 . . j^{-m}}+(-i)^{j}\|h\|^{m-2} \lambda_{0}^{\sigma} p_{j}^{\sigma} \phi^{1-j-m}\right) \\
& +d\left((-1)^{\prime}(m-2)\|h\|^{m-4} h_{j}^{o} h_{\alpha}^{\top} h_{\alpha_{j}}^{j} \lambda_{0}^{\alpha} \wedge \phi^{1-i^{i}-m}\right) \\
& +(-1)^{i-1}(m-2)\|h\|^{m-4} h_{i j}^{0} \lambda_{0}^{0} d\left(h_{a}^{\gamma} h_{\alpha}^{\top}\right) \wedge \phi^{1.2 . m} \\
& +(-1)^{i-1}(m-2)\|h\|^{m-4} \lambda_{0}^{o} h_{2}^{2} h_{2}^{2}, d h_{i}^{0} \wedge \phi^{1 . i^{2} m} \\
& +(-1)^{i-1}(m-2) \lambda_{0}^{a} h_{-}^{\top} h_{m,}^{\top} h_{j}^{\alpha} d\left(\|h\|^{m-4}\right) \wedge \phi^{1-2 u m} \\
& +(-1)^{i-1}(m-2)\|h\|^{m-4} \lambda_{0}^{a} h_{d}^{j} h_{\square}^{\gamma}, h_{i,}^{i} d \phi^{1 . \cdots \cdots} \\
& +(-1)^{i-1}(m-2)\|h\|^{m-4} h_{j}^{9} h_{2}^{2} h_{\alpha}^{\gamma}, \lambda_{0}^{g} \phi_{0}^{0} \wedge \phi^{L .2} m \\
& +(-1)^{i}(m-2)\|h\|^{m-4} h_{j}^{i} h_{m}^{\top} h_{m}^{\gamma} \lambda_{0}^{\theta} \phi_{j}^{g} \wedge \phi^{L . \lambda . \ldots m} \\
& +(2-m)\|h\|^{m-9} \lambda_{j}^{e} p_{j}^{m} \phi^{1 . . . m} \\
& +(m-2)\|h\|^{m-4} p_{j}^{0} \lambda_{0}^{a} h_{y}^{\eta} h_{m j}^{\eta} \phi^{1}=m \\
& +\|h\|^{m-3} \lambda_{0}^{f} p_{j j}^{j} \phi^{1-m} \\
& +\|h\|^{m-2} h_{i j}^{c} h_{i j}^{q} \lambda_{0}^{f} h_{k j}^{f} \phi^{1 . m} .
\end{aligned}
$$

From Eqs. (1.62), (1.54), and (2.47), and asaming $m \neq 5$ (unleta $\|h\| \neq 0$ everywhere), we obtain
(2.45) $=$

$$
\begin{aligned}
& d\left((-1)^{-1}\|A\|^{m-1} \lambda_{i}^{0} h_{j} \phi^{1 \cdots j \ldots m}+(-1)^{j}\|A\|^{m-2} \lambda_{0}^{d} p_{j}^{d} \phi^{1 . . j \ldots m}\right. \\
& \left.+(-1)^{\prime}(m-2)\|A\|^{m-4} h_{i j}^{0} A_{1}^{T} A_{\alpha j}^{7} \lambda_{0}^{0} \phi^{1 . . . . . . . m}\right)
\end{aligned}
$$



```
                                    +hij, 的)}\wedge\mp@code{|}\mp@subsup{\phi}{}{1-3...m
```




```
+(-1)}\mp@subsup{)}{}{i-1}(m-2)|h||\mp@subsup{|}{}{m-4}\mp@subsup{\lambda}{0}{0}\mp@subsup{h}{m}{\tau}\mp@subsup{h}{c}{\top},\mp@subsup{h}{ij}{*}\mp@subsup{\phi}{0}{0}\wedge\mp@subsup{\phi}{}{1-2,mm
```



```
-(m-2)|A||m-2 就jo
+(m-2)|h||m-4}\mp@subsup{|}{j}{m}\mp@subsup{\lambda}{0}{0}\mp@subsup{h}{~}{\eta}\mp@subsup{h}{m,j}{j}\mp@subsup{\phi}{}{1-m
+|h||}\mp@subsup{}{}{m-2}\mp@subsup{\lambda}{0}{f}\mp@subsup{p}{jj}{|}\mp@subsup{\phi}{}{\prime\cdots
+|h|}\mp@subsup{|}{}{m-z}\mp@subsup{h}{ij}{\alpha}\mp@subsup{h}{iz}{c}\mp@subsup{\lambda}{0}{f}\mp@subsup{h}{kj}{f}\mp@subsup{\phi}{}{1-m}
```

$$
\begin{aligned}
& \text { (2.45) }=
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\prime} 3(m-2)\|h\|^{m-4} h_{i j}^{o} \lambda_{0}^{0} h_{\alpha}^{\gamma} h_{j}^{\gamma} \phi_{j}^{0} \Lambda \phi^{2.2-m} \\
& +(-1)^{f}(m-2)\|h\|^{m-1} h_{j}^{c} \lambda_{0}^{0} \phi_{j}^{0} \wedge \phi^{1.2 . . . m} \\
& +(-1)^{\prime-1}(m-2)\|A\|^{m-1} h_{j}^{*} \lambda_{0}^{*} h_{m}^{\top} h_{k,}^{\top} \phi_{j}^{p} \wedge \phi^{L i . m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\prime-1}(m-2)\|h\|^{m-4} \lambda_{0}^{q} h_{i}^{\tau} h_{\alpha_{j}}^{T} h_{i j}^{o} \phi_{i}^{k} \wedge \phi^{L .2} m \\
& +(-1)^{i-1}(m-2)\|h\|^{m-1} \lambda_{0}^{*} h_{M}^{\top} h_{\mu j}^{\nu} h_{i k}^{i} \phi_{j}^{k} \wedge \phi^{1.2 . . . m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i}(m-2)\|h\|^{m-4} \lambda_{0}^{o} h_{i}^{\tau} h_{j}^{\top} h_{i j}^{*} \phi_{0}^{0} \wedge \phi^{\ldots . . . . . m} \\
& -(m-2)\|h\|^{m-4} \lambda_{0}^{\sigma} h_{d}^{\gamma} h_{d,}^{\top} p_{j}^{0} \phi^{1-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(m-2)(m-4)\|A\|^{m-d} \lambda_{0} A_{2}^{2} h_{j}^{j} h_{j}^{0} h_{p o}^{\nu} h_{p, n}^{\nu} \phi^{1 \cdots m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i-1}(m-2)\|A\|^{m-1} \lambda_{0}^{0} h_{e}^{\gamma} h_{0}^{\top} h_{1,}^{0} \phi_{0}^{0} \wedge \phi^{L i+m}
\end{aligned}
$$

$$
\begin{aligned}
& +(2-m)\|h\|^{m-2} \lambda_{j}^{f} p_{j}^{0} \phi^{1-m} \\
& +(m-2)\|h\|^{m-4} p_{j}^{q} \lambda_{0}^{*} h_{\dot{\alpha}}^{\top} h_{d j}^{\gamma} \phi^{2-m} \\
& +\|h\|^{m-2} \lambda_{0}^{0} p_{j i}^{o} \phi^{2} m \\
& +\|h\|^{m-1} h_{i j}^{o} h_{i+}^{q} \lambda_{0}^{p} h_{h j}^{h} \phi^{1 ., m} \text {. }
\end{aligned}
$$

This expression ean be further simplified, by taking also into aconnt definition (1.56), so as to yield

$$
\begin{aligned}
& (2.45)=
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i}(m-2)\|h\|^{m-2} h_{i j}^{0} \lambda_{0}^{0} \phi_{j}^{0} \wedge \phi^{1.2}{ }^{2} m \\
& +(m-2)\|h\|^{m-4} h_{i}^{e} \lambda_{0}^{a} H_{j} i^{i=m} \\
& +m(m-2)\|h\|^{m-1} \lambda_{0}^{g} h_{m}^{\top} A_{d j}^{\gamma} P_{j}^{\rho} \phi^{1-m}
\end{aligned}
$$

$$
\begin{align*}
& +(2-m)\|h\|^{m-3} \lambda_{j}^{f} p_{j}^{j} \phi^{1 . . m} \\
& +\|h\|^{m-2} \lambda_{0}^{a} p_{j j}^{\alpha} \phi^{1 . m} \tag{2.51}
\end{align*}
$$

Now we compute separately the term ( $2-m)\|h\|^{m-2} p_{i}^{a} \lambda_{i}^{e} \phi^{L \cdot m}$. Uaing Eqg. (2.50), (2.43), (1.60), (2.47), and (2.48), we have

$$
\begin{aligned}
& =(-1)^{i-1}\|h\|^{m-2} p_{i}^{\theta} d \lambda_{0}^{\theta} \wedge \phi^{1.2 . . . m} \\
& +(-1)^{\prime}\|A\|^{m-9} p_{i}^{m} \lambda_{0}^{a} \phi_{0}^{0} \wedge \phi^{1 . z^{2}}-m
\end{aligned}
$$

$$
\begin{aligned}
& =d\left((-1)^{i-1}\|h\|^{m-3} p_{i}^{0} \lambda_{0}^{0} \phi^{1 . . . . . . . m}\right) \\
& +(-1)^{i}\|A\|^{m-2} \lambda_{0}^{\alpha} d p_{i}^{\alpha} \wedge \phi^{1 \cdots \omega^{\prime} . . . m} \\
& +(-1)^{\prime} \lambda_{0} p^{p} d\left(\|h\|^{m-3}\right) \wedge \phi^{1-x^{i} .-m} \\
& +(-1)^{\prime} \lambda_{0}^{a} P_{i}^{a}\|h\|^{m-1} d \phi^{1 \cdots i \cdots m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\prime}\|h\|^{m-1} p_{i}^{0} \lambda_{0}^{a} \phi_{0}^{0} \wedge \phi^{1.2 . . . m} \\
& +(-1)^{i-1}\|h\|^{m-3} p_{i}^{\alpha} \lambda_{0}^{f} \phi_{\theta}^{\sigma} \wedge \phi^{L-2}-m \\
& =d\left((-1)^{i-1}\|h\|^{m-3} p_{i} \lambda_{0}^{0} \phi^{1-2-m}\right) \\
& +(-1)^{\prime}\|h\|^{m-2} \lambda_{0}^{i} p_{i}^{i} \phi_{i}^{*} \wedge \phi^{1 \omega^{2}}{ }^{2} m \\
& +(-1)^{i-1}\|h\|^{m-2} \lambda_{0}^{0} p_{i}^{d} \phi_{j}^{g} \wedge \phi^{L-2 . m} \\
& +(-1)^{-1} 2\|h\|^{m-3} \lambda{ }_{0} p_{i}^{0} \phi_{0}^{0} \wedge \phi^{\text {L. }} . \\
& +(-1)^{i}\|h\|^{m-2} \lambda_{0}^{0} h_{\text {in }}^{0} \phi_{i}^{0} \wedge \phi^{-2-m} \\
& -\|A\|^{m-2} \lambda_{0}^{a} p_{i}^{z} \phi^{\text {b-m }} \\
& +(-1)^{-1}(m-2)\|\Lambda\|^{m-8} \lambda_{0}^{a} p_{i}^{a} \phi_{0}^{0} \wedge \phi^{1.2 \ldots m} \\
& -(m-2)\|h\|^{m-4} \lambda{ }_{0}^{2} p_{i}^{0} h_{d}^{2} h_{d i}^{2} \phi^{2-m} \\
& +(-1)^{i}(m-1)\|h\|^{m-2} \lambda_{0}^{9} p_{i}^{0} \phi_{0}^{0} \wedge \phi^{1 .-2 . . m} \\
& +(-1)^{k}\|A\|^{m-3} \lambda_{0}^{d} p_{i}^{0} \phi_{i}^{k} \wedge \phi^{1-k-m} \\
& +(-1)^{f}\|h\|^{m-3} p_{i}^{0} \lambda_{0}^{0} \phi_{a}^{0} \wedge \phi^{1.2}=\mathbf{m}
\end{aligned}
$$

$$
\begin{aligned}
& =d\left((-1)^{i-1}\|h\|^{m-3} p_{i}^{i} \lambda_{0}^{g} \phi^{2-m}\right) \\
& +(-1)^{\prime}\|A\|^{m-2} \lambda_{0}^{\sigma} h_{m_{1}^{\prime}}^{\alpha} \phi_{\Sigma}^{0} \wedge \phi^{L \omega^{2} . . . m} \\
& -\|A\|^{m-1} \lambda_{0} p_{i} \phi^{1}{ }^{1}-m
\end{aligned}
$$

Returning to Eq. (2.51) and substituting the latter expreasion, we get

$$
\begin{aligned}
& \text { (2.45) }= \\
& =d\left((-1)^{j-1}\|h\|^{m-3} \lambda_{i}^{e} h_{i j}^{e} \phi^{1 \cdots j \ldots m}+(-1)^{\prime}\|h\|^{m-2} \lambda_{0}^{*} p_{j}^{\epsilon} \phi^{1 \ldots j \ldots m}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+(-1)^{\prime}(m-2)\|\&\|^{m-2} p_{i}^{0} \lambda_{0}^{g} \phi^{1-\mathcal{B}^{-m}}\right) \\
& +(-1)^{i}(m-2)\|h\|^{m-2} h_{i j}^{i} \lambda_{0}^{0} \phi_{j}^{0} \wedge \phi^{1-2} \\
& +(m-2)\|h\|^{m-4} h_{i j}^{e} \lambda_{0}^{\sigma} H_{j i} \phi^{2}-m \\
& +m(m-2)\|A\|^{m-4} \lambda_{0}^{\sigma} A_{2}^{\tau} A_{\alpha, j}^{\tau} p_{j}^{\phi} \phi^{1 . . . m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i}(2-m)\|h\|^{m-2} \lambda_{0}^{\alpha} h_{k i}^{a} \phi_{k}^{0} \wedge \phi^{1 . \cdots m} \\
& +(m-2)\|h\|^{m-2} \lambda_{0} p_{i, i}^{n} \phi^{\text {L-m }} \\
& +(m-2)^{2} \| h^{m-1} \lambda_{0}^{a} p_{i}^{q} h_{d}^{\eta} h_{m}^{\eta} \phi^{1 . . . m} \\
& +\|A\|^{m-2} \lambda_{0}^{a} p_{j j}^{\omega} \phi^{1-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\prime}(m-2)\|h\|^{m-4} h_{i j}^{e} h_{j}^{\gamma} h_{\mu} \lambda_{0} \lambda_{0}^{i} \phi^{1 . . . . . . . . m} \\
& \left.+(-1)^{i}(m-2)\|h\|^{m-2} p_{i}^{q} \lambda_{0}^{a} \phi^{1 .-i-m}\right) \\
& +\lambda_{0}^{a}\left((m-1)\|A\|^{m-2} p_{i i}^{a}\right. \\
& +(m-2)\|h\|^{m-4} h_{i j} H_{i j} \\
& +2(m-1)(m-2)\|k\|^{m-4} p_{i}^{\alpha} h_{\infty}^{\top} h_{m}^{\top}, \\
& +(m-2)(m-4)\|h\|^{m-\theta^{0}} h_{i j}^{0} h_{d}^{\nu} h_{d j}^{\gamma} h_{p 0}^{\nu} h_{p,}^{\nu} \\
& \left.+\|h\|^{m-z} h_{k j}^{o} h_{j i}^{p} h_{i t}^{\theta}\right) \phi^{1 . . . m} .
\end{aligned}
$$

Thus, on $U$,

$$
\begin{aligned}
& \left.L_{n} \Psi\right|_{t=0}=d\left(\frac{1}{m}(-1)^{n-1}\|h\|^{m} \lambda_{0}^{h} \phi^{1 . . . . . . m}\right)+ \\
& +d\left((-1)^{-1}\|A\|^{m-2}\left(\lambda_{i}^{e} h_{j}^{g}-\lambda_{0}^{0} p_{j}^{g}\right) \phi^{L . . j^{j}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.+(-1)^{\prime}(m-2)\|h\|^{m-2} p_{1}^{\alpha} \lambda_{0}^{\alpha} \phi^{L \cdot \cdots, \ldots m}\right) \\
& +\lambda_{0}^{g}\left((m-1)\|A\|^{m-1} p_{i i}^{q}\right. \\
& +(m-2)\|h\|^{m-4} h_{i j}^{\alpha} H_{i j} \\
& +2(m-1)(m-2)\|h\|^{m-4} p_{i}^{\alpha} h_{2}^{2} h_{\alpha}^{2}, \\
& +(m-2)(m-4)\|h\|^{m-6} h_{j}^{\gamma} h_{j}^{\gamma} h_{m}^{\gamma}, h_{p o}^{\nu} h_{p m}^{\nu} \\
& \left.+\|h\|^{m-2} h_{h j}^{\alpha} h_{j i}^{f} h_{i k}^{f}\right) \phi^{\text {lum }} . \tag{2.52}
\end{align*}
$$

If $\boldsymbol{m}=\mathbf{2}$, this equation reduces to

$$
\begin{aligned}
L_{h} \Psi \|_{-0}= & d\left(\frac{1}{m}(-1)^{h-1}\|h\|^{m} \lambda_{0}^{k} \phi^{L \cdot h} h^{\ldots-m}\right)+ \\
& +d\left((-1)^{j-1}\|h\|^{m-2}\left(\lambda_{i}^{c} h_{i j}^{a}-\lambda_{0}^{a} p_{j}^{j}\right) \phi^{1 \ldots j \ldots m}\right) \\
& +\lambda_{0}^{A} p_{i}^{A} \phi^{L-m},
\end{aligned}
$$

 If $m=4$, Eq. (2.52) taken the form

$$
\begin{aligned}
& \left.L_{h^{*}} \boldsymbol{v}\right|_{1-0}=d\left(\frac{1}{m}(-1)^{k}\|h\|^{m} \lambda_{0}^{t} \phi^{L i m m}\right)+ \\
& +d\left((-1)^{j-1}\|h\|^{m-3}\left(\lambda_{i}^{e} h_{i j}^{q}-\lambda_{i}^{f} p_{j}^{\theta}\right) \phi^{1 .-j^{3}-m}\right)
\end{aligned}
$$

If $m=3$ or $m=5$, Eq. (2.52) only hulds at the pointa where $\|A\| \neq 0$, that in, outside of the set of umbilic pointa.
Uaing now the tranaformation lawn (2.39) and (2.40) for the $\lambda_{0}^{f}, \lambda_{j}^{f}, \lambda_{i}^{\varphi}$ mader a change of map $\subset: M \times(-c, c) \rightarrow G$ in the conditions (2.21), and the tranaformation lawa for aecond-order G-frames along $/$ given in Sec. 1.2.0, we can easily verify that the local forms

$$
\begin{align*}
& \lambda ;\left((m-1)\|h\|^{m-2} P_{i}^{a}+(m-2)\|h\|_{i}^{m-4} h_{i j} H_{1},+\right. \\
& +2(m-1)(m-2)\|h\|^{m-t} p_{i}^{?} h_{2}^{3} h_{d i}+ \tag{2.53}
\end{align*}
$$

$$
\begin{align*}
& \lambda_{0}^{E}\|h\|^{m-3} h_{i j}^{\alpha} h_{j i}^{f} h_{j i}^{f} \phi^{L \ldots m},  \tag{254}\\
& (-1)^{t-2}\|A\|^{m} \lambda_{\theta}^{t} \phi^{1-h-m} \text {. }  \tag{2.65}\\
& (-1)^{t^{-1}}\|A\|^{m-1}\left(\lambda_{j}^{e} A_{i j}^{e}-\lambda_{\phi}^{e} p_{i}^{*}\right) \phi^{1-\omega^{2}} \text {, } \tag{2.56}
\end{align*}
$$

and

$$
\begin{align*}
& -(m-2) \lambda_{i}^{( }\left(\|h\|^{m-3} P_{i}^{m}+\|A\|^{m-4} h_{j}^{0} H_{j}^{\top} h_{i j}^{\top}\right) \phi^{L \ldots m} \tag{2.58}
\end{align*}
$$

are well-defined global forms on all $D$ (if $m=3$ or $m=5$, only awny from the umbilie paints).

Hence, Eq. (2.52) is of the form

$$
L_{\frac{1}{n}} \boldsymbol{v}_{1-0}=d_{6}+
$$

with \& and a globally well-defined ( $m-1$ )- reap. m-form. Moreover, $\varsigma$ hat com-

over $\boldsymbol{D}$ and applying Stokes' theorem, we obtain

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} w_{D}\left(f_{i}\right)\right|_{t-0}=\int_{D} \lambda_{0}^{g}\left((m-1)\|h\|^{m-2} p_{i i}^{\alpha}+(m-2)\|h\|^{m-4} h_{i,}^{\alpha} H_{i j}+\right. \\
& +2(m-1)(m-2)\|h\|^{m-t} p_{i}^{\rho} h_{\alpha}^{2} h_{d i}+ \\
& +(m-2)(m-4)\|h\|^{m-s} h_{i j}^{c} h_{d} h_{d j}^{z} h_{p v}^{\nu} h_{p w}^{v}+ \\
& \left.+\|h\|^{m-z} h_{i j}^{o} h_{j}^{g} h_{i k}^{d}\right) \phi^{t-m} \text {. }
\end{aligned}
$$

Since $\lambda_{\text {a }}^{*}$ may be any smooth function with compact support $C^{\prime} \subset D$, we conclude that $f$ is a critical point of $W_{D}$, iff $\forall \boldsymbol{o}$

$$
\begin{aligned}
& (m-1)\|h\|^{m-2} p_{i j}^{\alpha}+(m-2)\|h\|^{m-4} h_{i j}^{\alpha} H_{i},+ \\
& +2(m-1)(m-2)\|h\|^{m-4} p_{i}^{*} h_{m}^{\gamma} h_{m_{1}}^{\gamma}+ \\
& +(m-2)(m-4)\|h\|^{m-0} h_{i j}^{0} h_{e}^{2} h_{\alpha_{j}}^{\chi} h_{m}^{\nu} h_{p=1}^{\nu}+ \\
& +\|h\|^{m-2} h_{i j}^{o} h_{i j}^{f} h_{i k}^{b}=0 \text {. }
\end{aligned}
$$

This Euler-Lagrange equation is conformally invariant, i.e. the vanishing of the 1.h.s. does nat depend on the choice of second-order $G$-frame beld along $f$. $\circ$

### 2.3 The Conformal Gauss Map

In Riemannian geometry, there exist well-known relations between the mean curvature of immersed submanifolds of the Euclidean space and the tension field of their respective Gansa maps, as esg. the result of Rah and Vilms quoted in Ch. 0 of Part $I$, or the somewhat more elaborate result for immersed surfaces due to Hofiman and Osserman $\left|\mathrm{Ho}_{\mathrm{o}} \mathrm{O}_{8} / 82\right|$. Something similar can be done for immersed $m$-submanifolds $f: M^{m} \rightarrow S^{n}$ of the Möbius space. In Ref. [ $\left.\mathrm{Br} / 84\right]$, Bryant defined a (hyperbolic) conformal Gauss map for immersions $f: M^{2} \rightarrow S^{1}$ a a map $\gamma_{f}: M^{\boldsymbol{s}} \rightarrow \boldsymbol{Q}$, with $Q$ the hyperbolaid of $\mathbb{R}^{\mathbf{4}}$

$$
Q=\left\{x \in \mathbb{R}^{b}:\langle x, x\rangle=1\right\},
$$

given by $\boldsymbol{\gamma}(x)=e_{\mathbf{a}}(x)$, where $e: M \rightarrow G$ is an arbitrary second-order $G$-frame along $f$, defined on a neighbourhood of the point $x$. From the tranformation law (1.71), we see that $\gamma f$ in well-defined. In Ref. [Ri/a7], Rigoli extended the above definition to the case of an immersion $f: M^{m} \rightarrow S^{n}$, for any $m \leq n$, as follows. Let $G_{n-m}\left(\mathbb{R}^{n+3}\right)$ denote the Grasmannian manifold of the $n-m$ planes of $\mathbb{R}^{\boldsymbol{R}^{+1}}$. Fix $\mathbb{O}=\operatorname{span}\left\{\boldsymbol{\eta}_{m+1}, \ldots, \eta_{n}\right\}$ as the origin of $G_{n-m}\left(\mathbb{R}^{n+2}\right)$. Note that $\mathbb{O}=\operatorname{apan}\left\{P\left(s_{m+1}\right), \ldots, P\left(s_{-}\right)\right\}$, for some $P \in G$, where $\varepsilon_{0}, \sigma_{1}, \ldots, \epsilon_{n}, \sigma_{n+1}$ is the canonic basis of $\mathbb{R}^{n+1}$. Then, $G$ acta on the left on $G_{n-m}\left(\mathbb{R}^{+1}\right)$ by matrix
multiplication. The conformal Grasomannian is the open orbit $\boldsymbol{\Omega}_{n-m}\left(\mathbb{R}^{\omega+2}\right)$ of the origin, reading

$$
Q_{n-m}\left(\mathbb{R}^{n+2}\right)=G(0)=\left\{\operatorname{span}\left\{P\left(\eta_{m+1}\right), \ldots, P\left(\eta_{n}\right)\right\}: P \in G\right\},
$$

which is a submanifold of $G_{n-m}\left(\mathbb{R}^{+\boldsymbol{2}}\right)$. The group $G$ acta tranaitively on $\boldsymbol{Q}_{n-m}\left(\mathbb{R}^{n+1}\right)$ and the isotropic subgroup of $G$ at $\mathbb{D}$ is given by

$$
\boldsymbol{H}_{\bullet}=\left\{\left[\left.\begin{array}{llll}
a & Z & 0 & b  \tag{2.59}\\
X & A & 0 & Y \\
0 & 0 & B & 0 \\
c & W & 0 & d
\end{array} \right\rvert\, \in G: \begin{array}{l}
X, Y, Z, W \in \mathbb{R}^{m} \\
A \in S O(m), B \in S O(n-m) \\
a, b, c, d \in \mathbb{R}
\end{array}\right\}\right.
$$

Obaerve that $X, Y, Z, W$ and $a, b, c, d$ cannot be chosen arbitrarily, but must satisfy the relations

$$
\left\{\begin{array}{l}
(W=0 \vee Z=0) \wedge(X=0 \vee Y=0)  \tag{2.60}\\
-a W+A X-c Z=0 \\
-d Z+A Y-b W=0 \\
d X-A W+c Y=0 \\
d Y-A Z+b X=0
\end{array} \quad, \quad\left\{\begin{array}{l}
{ }^{t} X X=2 c a \\
{ }^{t} Y Y=2 b d \\
{ }^{t} Z Z=2 b a \\
\\
W W W=2 d c \\
d a+b c=1
\end{array}\right.\right.
$$

which can be obtained from the closnce of $\boldsymbol{H}_{\boldsymbol{\theta}}$ w.r.t. matrix inversion.
 canonic projection $\boldsymbol{\Pi}: G \rightarrow \boldsymbol{Q}_{n-m}\left(\mathbb{R}^{n+2}\right)$ given by $\hat{\Pi}(P)=\operatorname{span}\left\{P\left(\eta_{m+1}\right), \ldots, P\left(\eta_{n}\right)\right\}$. The conformal Grassmannian $\underline{Q}_{n-m}\left(\boldsymbol{R}^{n+1}\right)$ has dimension $(n-m)(m+2)$ and carriea a pseado-metric with signature $(\underset{n-m}{(\ldots, \ldots}, \underbrace{+\ldots+}_{[m+1)(n-m)})$ given by

$$
\begin{equation*}
d l^{s}=-\varsigma^{\bullet} \Phi_{a}^{0} \otimes \varsigma^{\bullet} \Phi_{0}^{\sigma}-\varsigma^{\bullet} \Phi_{0}^{0} \otimes \varsigma^{\bullet} \Phi_{a}^{0}+\varsigma^{\bullet} \Phi_{o}^{\prime} \otimes \varsigma^{\bullet} \Phi_{\sigma}^{i}, \tag{2.61}
\end{equation*}
$$

where $c: Q_{n-m}\left(I R^{n+1}\right) \rightarrow G$ is local section of the principal bundle $\hat{\boldsymbol{I}}: \boldsymbol{G} \rightarrow$ $G / H_{*} \simeq \boldsymbol{Q}_{n-m}\left(\mathbb{R}^{n+2}\right)$ and $\Phi_{i}^{i}$ are the components of the Marer-Cartan form $\Phi$
 $(\alpha, i),(0, \alpha)$,,$A$

$$
\begin{aligned}
& (\gamma, 0)<(\beta, i)<(0, \alpha), \forall \alpha, \beta, \gamma, i \\
& (0, \beta)<(0, \alpha) \Longleftrightarrow \beta>\alpha \\
& (\beta, j)<(a, i) \Longleftrightarrow \beta<a \vee(\beta=a \wedge j<i) \\
& (\beta, 0)<(a, 0) \Longleftrightarrow \beta<a,
\end{aligned}
$$

and representing by the aymboln $\hat{A}, \vec{B}, \ldots$ the $(m+2)(n-m)$ indicel $(a, 0),(0, a),(a, i)$, one can write $d l^{4}$ as

$$
d t^{3}=g_{A A} \theta^{\dot{A}} \otimes \theta^{B}
$$

with

The Levi-Givita forms with reapect to the non-orthonormal co-frame $\boldsymbol{\theta}^{\hat{j}}$ is given by

From theae equations and the atructare equations (1.18), one obtaina the relationa

The conformal Gamas map $\boldsymbol{\gamma}_{\boldsymbol{j}}$ of an immersion $f: M^{m} \rightarrow S^{n}$ is then given by

$$
\begin{equation*}
\boldsymbol{\gamma}_{g}: M^{M^{m}} \rightarrow \underset{\operatorname{pan}\left\{\varepsilon_{m+1}(x), \ldots, \epsilon_{n}(x)\right\},}{ } \quad \underset{Q_{n-m}\left(\mathbb{R}^{n+2}\right)}{ } \tag{2.64}
\end{equation*}
$$

where $e=\left[e_{a}, e_{1}, e_{a}, e_{m+1} \mid: M \rightarrow G\right.$ in a second-order $G$-frame field of $\Pi: G \rightarrow S^{n}$ along $f$ defined in a neighbourhood of $x$. From the tranoformation law (1.71), we see that thin map in well-defined. When $n=n-1, Q_{1}\left(R^{n+2}\right)$ can be identifled with the projectivisation of the 1 -fold hyperboloid $Q=\left\{x \in \boldsymbol{R}^{+1}:\langle x, x\rangle=1\right\}$ aupplied with the Lorentz inner product induced ly the one of $\boldsymbol{R}^{n+2}$, still to be denoted by $d^{\prime}$. In this case it is more practical to uae the hypertolic conformal Gaues map, still to be denoted as $\boldsymbol{v}$, given by

$$
\begin{align*}
w: M_{x}^{+-1} & \rightarrow Q_{e_{2}}, \tag{2.65}
\end{align*}
$$

which generalisea the conformal Ganas map for inmeraed aurfacen in $S^{a}$ uned by Bryant. Rigoli [Rj/87] proved, in the general case, that

$$
\begin{equation*}
i^{i d l^{2}=N} \tag{2.86}
\end{equation*}
$$

with $N$ defined in Eq. (1.88), obteining the following proponition:

Propoaltion (Bryant, Rigoli) Let $f: M^{m} \rightarrow S^{-n}$ be an immersion of on m-manifold $M$ endowed with the indweed conformal atructure. Then, for $x \in M, d \gamma_{f}(x)$ is not injective, iff $N(x)$ is a degenerate symmetric bilinear map. Let $\mathrm{c}\left(y_{J}\right)$ be the eet of points $x$ in these conditione. In the case $m=2, N=\frac{1}{2}(t r a c e N) g$ foee Eqa. (1.49), (1.80) for notationa), whence $e(\gamma)$ ) is the set of umbilic pointe of f. In the general ease, outside e( $\gamma_{j}$ ), $\gamma_{j}$ induces a positive definite metric on $M$ that belongs to the conformal class of $M \backslash(y)$, if $N$ does so. This is always the case, when $m=2$.

Another variational problem, mentioned in Ref. [Ri/87], in the one associated with the functional

$$
\begin{equation*}
\eta_{D}(\rho)=\frac{1}{m} \int_{D}\left(\operatorname{trace}\left(\rho^{\bullet} d l^{2}\right)\right)^{\frac{m}{2}} d V \tag{2.67}
\end{equation*}
$$

with $\bar{D}$ a compact domain of $M$, applied to maps $\rho: \bar{D} \rightarrow \Omega_{a-m}\left(\mathbb{R}^{\infty+\boldsymbol{x}}\right)$ with the property (only for $m$ odd) trace ( $\rho^{*} d l^{2}$ ) $\geq 0$, and where the trace and $d V$ are taken relative to any metric belonging to the conformal clasa of $M$. We remart that, obviously, definition (2.67) can be generalised to any map $\rho: \boldsymbol{D} \rightarrow \boldsymbol{Q}_{\text {a-m }}\left(\mathbb{R}^{+\boldsymbol{+ 1}}\right)$, replacing (trace $\left.\left(\rho^{*} d l^{2}\right)\right)^{\mathbf{P}}$ by $\mid$ trace $\left.\left(\rho^{*} d l^{2}\right)\right|^{\text {T }}$. Moreover, for $m=2$, $\boldsymbol{\eta}_{0}(\rho)$ in the energy functional. The functional $\eta$ is well-defined: given two second-order $G$ framen along $f$, say $c$, ē : $M \rightarrow G$, from the transformation laws (1.72) and (1.82) we have

$$
\begin{aligned}
& \left(\operatorname{trace}\left(p^{*} d l^{2}\right)\right)^{\bar{\gamma}} d \dot{V}=\left(p^{*} d l^{2}\left(\hat{E}_{i}, \hat{E}_{i}\right)\right)^{\boldsymbol{T}} d \tilde{V} \\
& =\left(\text { trace }\left(\rho^{\bullet} d t^{2}\right)\right)^{\frac{\beta}{3}} d V,
\end{aligned}
$$

where $\tilde{E}_{1}$ and $E_{i}$ are the duala of the co-framea $\dot{\phi}_{0}$ reap. $\psi_{0}$.
Thas, from Eq. (2.66), one has $W(f)=\eta(\gamma)$. Rigoli calculated, in the case $2=$ $m \leq n$, the Euler-Lagrange equation for the functional $\boldsymbol{z}(\rho)$ when $\rho=\boldsymbol{\gamma}$ (see also Remarl 2.1 below). Here we are going to diacuss the case where $f: M \rightarrow S^{n}$ in an immersion of a hypersurface into the Möbius space, i.e. $\boldsymbol{m}=\boldsymbol{n} \boldsymbol{- 1}$. For corvenience, we consider, in this ease, the functional (2.67) to act on mapa $\rho: \bar{D} \rightarrow 0$ antirfying (only for $m$ odd) trace ( $\rho^{\circ} d \ell^{2}$ ) $\geq 0$, where now $d \ell^{2}$ denoten the induced Lorentr inner prodnct of $Q$. One can eanily derive the Eujer-Lagrange equation of thia fanctional, obtaining (for $m \neq 3$ ) (see Appendix II) trace $\nabla\left(\left(\operatorname{trace}\left(\rho^{0} d t^{2}\right)\right)^{-1} d \rho\right)=$
$\operatorname{trace}\left\{\frac{m-2}{2}\left(\operatorname{trace}\left(d \rho^{-} d l^{2}\right)\right)^{-1} d\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right) \otimes d \rho+\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right)^{-2^{2}} \nabla d \rho\right\}=0$, where $M$ is considered with one of the metrics out of its conformal class, $Q$ with the induced Lorentz inner product $d t^{\prime}$, and both with the respective Levi-Civita connections. Let us suppose now that $\rho=\gamma_{f}: M \rightarrow Q$ is the hyperbolic conformal Gausa map given in Eq. (2.65). Let $x_{0} \in M$ and let $e: M \rightarrow G$ be a second-order frame field defined near $x_{0}$. Then, $\boldsymbol{y}_{y}(x)=e_{n}(x)$ near $x_{0}$. From Eq. (1.07), we have

$$
d v_{u}=d e_{n}=p_{j}^{n} \phi_{0}^{j} e_{0}-h_{i j}^{n} \phi_{0} e_{i} .
$$

Therefore, as the components of e satisfy Eq. (1.23) (with $\boldsymbol{o}_{4}$ replaced by $e_{4}$ ), we get, for $u, v \in T_{B} M$,

$$
\begin{aligned}
\boldsymbol{\gamma}_{j}^{*} d \ell^{3}(u, v) & =\left\langle d \gamma_{s}(u), d \gamma_{s}(v)\right\rangle \\
& =\left\langle p_{j}^{*} \phi_{0}^{\prime}(u) e_{0}-h_{i j}^{*} \phi_{0}^{j}(u) e_{1}, p_{i}^{n} \phi_{0}^{t}(v) e_{0}-h_{i, ~}^{*} \phi_{0}^{k}(v) e_{i}\right\rangle \\
& =h_{i j}^{*} h_{i, ~}^{n} \phi_{0}^{( }(u) \phi_{0}^{k}(v),
\end{aligned}
$$

that is,

$$
\mathcal{j}_{j}^{\cdot} d \ell^{2}=\phi_{n}^{\prime} \otimes \phi_{n}^{\prime}=h_{i j}^{*} h_{i \phi}^{*} \phi_{0}^{\prime} \otimes \phi_{0}^{*}=N_{j} \alpha \phi_{0}^{\prime} \otimes \phi_{0}^{k}=N,
$$

which, by the way, also proves Eq. (2.66). Hence, considering $M$ with the metric $\theta=\phi_{0} \otimes \phi \phi_{0}$, we have

$$
\begin{equation*}
\operatorname{trace}\left(\mathcal{T}_{j}^{*} d l^{2}\right)=N_{j j}=h_{i j}^{*} h_{i j}^{*} \geq 0, \tag{2.69}
\end{equation*}
$$

and, in particular,

$$
\eta_{D}\left(\gamma_{j}\right)=\frac{1}{m} \int_{D}\left(\operatorname{trace}\left(\gamma_{j}^{*} d t^{2}\right)\right)^{\frac{1}{2}} d V=\frac{1}{m} \int_{D}\left(N_{j j}\right)^{\boldsymbol{F}} d V=w_{D}(f) .
$$

Now we evaluate the Euler-Lagrange equation (2.08) for $\rho=\boldsymbol{y}$. To that end we compute trace $\nabla d \gamma_{f}$, whereby considering $M$ to be supplied with the Levi-Civita connection $\boldsymbol{\nabla}$ corresponding to the Riemennian metric $g=\phi_{0}^{\prime} \otimes \phi_{0}^{\prime}$ and $\Omega$ with the induced Lorentz metric $d t^{1}$. One can immediately conclude from the stracture equations (1.68) that this connection on $M$ is defined by the connections forma

$$
v_{k}^{\prime}=\phi_{k}^{\prime}+\mu_{k} \phi_{0}^{\prime}-\mu_{i} \phi_{0}^{t},
$$

 $-<d(X)_{(-\infty)}(\Omega), e_{n}>e_{n}$, where $X \in C^{\infty}(T \Omega), \varepsilon \in T_{\left(0_{-}\right)} Q$, and, on the r.h.s., $X$
in comidered an a map from $Q$ to $\mathbb{R}^{n+1}$. Let $E$, denote the dual of the co-frame $\phi_{1}$. Then, $\nabla E_{i}=v_{i}^{t} E_{i}$. Let $\nabla^{\boldsymbol{a}^{\prime}}$ denote the pull-back connection on $\boldsymbol{\gamma}^{-1} \boldsymbol{T} \boldsymbol{Q}$. We bave $\nabla_{d} \gamma_{j}\left(E_{i}, E_{i}\right)=\nabla_{E_{i}}^{\boldsymbol{\theta}^{\prime}}\left(d \gamma_{j}\left(E_{i}\right)\right)-d \gamma_{j}\left(\nabla_{E_{i}} E_{i}\right)$. From Eq. (1.e7), we get

$$
\begin{aligned}
& d e_{n}\left(E_{1}\right)=p_{i}^{n} e_{0}-h_{h_{n}}^{n} e_{t} \\
& d e_{0}\left(E_{1}\right)=\mu_{i} e_{0}+e_{i} \\
& d e_{k}\left(E_{i}\right)=\phi_{k}^{0}\left(E_{i}\right) e_{1}+\phi_{k}\left(E_{i}\right) e_{j}+h_{k e_{n}}^{k} e_{n}+\delta_{k j} e_{n+1}
\end{aligned}
$$

Then, by Eqa. (1.00), (1.54), and (1.56),

$$
\begin{aligned}
& d\left(d \gamma_{\psi}\left(E_{i}\right)\right)\left(E_{i}\right)=d\left(p_{i}^{m} e_{0}-h_{k i}^{\omega} e_{k}\right)\left(E_{i}\right) \\
& =d p_{i}^{n}\left(E_{i}\right) e_{0}+p_{i}^{n} d e_{0}\left(E_{i}\right)-d h_{b}^{n}\left(E_{1}\right) e_{k}-h_{i j}^{n} d e_{ \pm}\left(E_{i}\right) \\
& =\left(p_{b}^{n} \phi_{i}^{t}-2 p_{i}^{n} \phi_{0}^{0}+h_{k i}^{n} \phi_{i}^{0}+p_{i \Delta}^{n} \phi_{0}^{k}\right)\left(E_{1}\right) c_{0}+p_{i}^{n}\left(\mu_{1} e_{0}+\epsilon_{4}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& -h_{n}^{n}\left(\phi_{k}^{0}\left(E_{i}\right) \varepsilon_{4}+\phi_{i}^{N}\left(E_{1}\right) e_{j}+h_{n}^{N} a_{n}+\delta_{m} c_{n+1}\right) \\
& =(-m+2) p_{i}^{n} e_{1}-\mu_{0} p_{i}^{n} e_{0}+p_{k}^{h} \phi_{i}^{k}\left(E_{i}\right) e_{0}+p_{i}^{n} e_{0}+ \\
& -h_{k_{j}} \phi_{i}\left(E_{i}\right) e_{k}+\mu_{i} h_{i \nu}^{n} e_{k}-h_{k}^{n} h_{k 1}^{n} e_{n} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\nabla_{E_{1}}^{g^{\prime}}\left(d_{U}\left(E_{i}\right)\right)= & (-m+2) p_{i}^{i} \epsilon_{4}-\mu_{i} p_{i}^{*} e_{0}+p_{i}^{n} \phi_{i}^{k}\left(E_{i}\right) e_{0}+ \\
& +p_{i 1}^{n} \epsilon_{0}-h_{k j}^{n} \phi_{i}^{\prime}\left(E_{1}\right) e_{i}+m_{1} h_{i k}^{n} e_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
& =\left(\phi_{\phi}^{*}\left(E_{i}\right)+\mu_{i} \phi_{0}^{k}\left(E_{1}\right)-\mu_{k} \phi_{0}^{i}\left(E_{i}\right)\right)\left(p_{i}^{i} e_{0}-h_{j z}^{j} e_{1}\right) \\
& =\left(\phi_{\phi}^{*}\left(E_{1}\right)+(-m+1) \mu_{k}\right)\left(p_{i}^{k} e_{0}-k_{j \mu}^{j_{j}} e_{j}\right) \\
& =p_{i}^{i} \phi_{i}^{*}\left(E_{i}\right) e_{0}+(-m+1) \mu_{k} p_{k}^{i} e_{0}-h_{j,}^{n} \phi_{i}^{k}\left(E_{i}\right) e_{j}+(m-1) \mu_{k} h_{k j}^{n} e_{j} .
\end{aligned}
$$

So, we obtain

$$
\nabla d v\left(E_{1}, E_{1}\right)=-(m-2)\left(\rho_{k}^{n}+\mu_{1} h_{1}^{n}\right) e_{b}+\left(p_{i}^{n}+(m-2) \mu_{i} P^{n}\right) c_{0} .
$$

Therefore, for $p=\boldsymbol{T}$, Eq. (2.68) becomea (with motation (2.46) and Eq. (2.47))

$$
(2.68)=\frac{m-2}{2}\|h\|^{m-4} d\|h\|^{3} \otimes d e_{n}\left(E_{i}, E_{i}\right)+\|h\|^{m-3} \nabla d \gamma_{f}\left(E_{i}, E_{i}\right)
$$

$$
\begin{aligned}
& =\frac{m-2}{2}\|h\|^{m-4}\left(-2\|h\|^{3} \phi_{0}^{0}+2 h_{\epsilon}^{n} h_{A-}^{n} \phi_{0}^{k}\right)\left(E_{1}\right)\left(p_{i}^{n} c_{0}-h_{h}^{n} c_{k}\right) \\
& -(m-2)\|h\|^{m-1}\left(p_{i}^{n}+\mu_{i} h_{i n}^{n}\right) e_{k}+\left\|h_{\|}\right\|^{m-2}\left(p_{i i}^{k}+(1 n-2) \mu_{i} p_{i}^{n}\right) c_{0} \\
& =(m-2)\left(-\|h\|^{m-3} \mu_{i}+\|h\|^{m-1} h_{e_{i}^{e}}^{n} h_{i n}^{n}\right)\left(p_{i}^{i} e_{0}-h_{h_{n}}^{n} e_{h}\right)+ \\
& -(m-2)\left\|h^{m-2}\left(\|_{k}^{n}+\mu_{i} h_{i}^{n}\right) e_{k}+\right\| A \|^{m-2}\left(p_{i}^{n}+(m-2) \mu_{0} P^{n}\right) e_{0} \\
& =(m-2)\|h\|^{m-4} h_{d i}^{n} h_{d i}^{n} P_{i}^{n} e_{0}-(m-2)\|h\|^{m-4} h_{e r}^{n} h_{\text {aid }}^{n} h_{k_{1}}^{n} e_{\mu}+ \\
& -(m-2)\|h\|^{m-3} p_{k}^{n} c_{t}+\|h\|^{m-3} p_{i i}^{n} e_{0} .
\end{aligned}
$$

Consequently, aince $e_{0} \varepsilon_{t}$ are lineariy independent, $\gamma_{f}$ is a critical point of $\eta_{n}$, i.e. the expression (2.68) venishes for $\rho=7 /$, iff

The vanishing of the latter system is independent of the choice of aecond-order frame. Observe that, if $m=2$ and $n=3$, this system reduces to the equation $p_{i}^{:}=0$, which is the Euler-Lagrange equation of $w$.

Ramark 2.1 In a private commanication (see almo Ref. [Ri-Sa/88|), Rigoli demonatrated that, in the most general case ( $m \leq m$ ), the conformal Gausemap $\boldsymbol{y}: \boldsymbol{M} \rightarrow$ $\mathbf{Q}_{\mathrm{a}-\mathrm{m}}\left(\boldsymbol{R}^{\mathrm{a}+1}\right)$ in a critical puint of the functional (2.67), it
which gencralisea Eq. (2.70). This reault can be derived in an analogow way to the apecial case $m=2$ with $m \geq 2$ arbitrary, treated in Ref. [Ri/87]. Oheerve also that, for $m=2$, Eq. (2.71) ia identical to the Euler-Lagrange equation of $W$.

Gonequently, if $m=2$, then $y$ in a critical point of $m_{1}$ if $f$ in a eritical point of W. Now we analym the general case $m \leq n$ arbitrary. Let $f: M^{m} \rightarrow S^{m}$ be an immersion, auch that $y$ in a critical point of the functional \%. Then, following the
comprations in the proof of Prop. 2.1, we obtein fur a variation $f$, of / equation (2.49), yielding

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t=0}=\int_{D}\left\{d\left(\frac{1}{m}\|A\|^{m}(-1)^{k-1} \lambda_{0}^{t} \phi^{t-k . m}\right)\right. \\
& +d\left((-1)^{j-1}\|A\|^{m-2} \lambda_{i}^{0} h_{j j}^{o} \phi^{1-j-m}+(-1)^{j}\|A\|^{m-2} \lambda_{j}^{j} p_{j}^{0} \phi^{1-j-m}\right) \\
& -\lambda_{i}\left((m-2)\|h\|^{m-t} h_{i j}^{0} h_{k}^{\chi} h_{k j}^{2}+(m-2)\|h\|^{m-3} p_{i}^{0}\right) \phi^{h-m} \\
& +\lambda_{0}^{g}\left((m-2)\|A\|^{m-t} p_{j}^{e} h_{d i}^{2} h_{d j}+\|A\|^{m-2} p_{j j}^{*}+\right. \\
& \left.\left.+\|h\|^{m-3} h_{j}^{3} h_{i k}^{t} h_{k j}^{e}\right) \phi^{1-m}\right\} \text {. }
\end{aligned}
$$

Taking into account that the expressions given in Eqg. (2.53-2.58) define tensors, that the $\lambda_{i}^{f}, \lambda_{\hat{1}}^{A}$ have compact apport, and that Eq. (2.71) holds, we obtain, by using Stokea' theorem,

$$
\left.\frac{\partial}{\partial t} w_{D}\left(f_{i}\right)\right|_{t=0}=\int_{D}\|h\|^{m-3} \lambda_{0}^{*} h_{i j}^{\alpha} k_{i k}^{\ell} h_{i j}^{l} \phi^{t-m} .
$$

 a critical point of $w_{D}$, as we knew already. For $m>3$, we conclude that $f$ in a critical point of $W$, ifl $h_{i j}^{*} h_{j i}^{\prime} h_{t i}^{\boldsymbol{t}}=\mathbf{0}$, Ya. Note that the condition

$$
\begin{equation*}
h_{i,} h_{j a}^{t} h_{k i}^{t}=0, \quad \forall \alpha=m+1, \ldots, n \tag{2.72}
\end{equation*}
$$

in conformally invarant, i.e. it does not depend on the second-order frame e: $\boldsymbol{N} \rightarrow$ Calong $f$ we choose. Furthermore, we observe that, becaume of Equ. (1.04), (1.00),
 the converse in also true: if $f$ is a Willmore aubmanifold natinfying (2.72), is then $\boldsymbol{T}_{\boldsymbol{y}}$ a critical point of $\boldsymbol{\eta}$ ? This does not seem to be the case, becance in the above expresion for $\frac{d}{d i} W_{D}\left(f_{f}\right) \|_{-a}$ the $\lambda_{0}^{*}$ can be chosen arbitrarily, but not neceanarily the $\lambda_{1}^{*}$ (see Eq. (2.43)). Thas, we conclude

Proposition 2.2 Let f: $M^{m} \rightarrow S^{n}$ be an immersion of an oriented m-manifold into the Mötiw space. Then,
 for $m>3$, if $\boldsymbol{y}_{j}$ is a critical point of $n$, then $f$ is a Willmore $m$-aubmanifold, if condition ( $\mathbf{( . 7 2 \text { ) halde. }}$

Therefore, condition (2.72) looky quite natural. Moreover, it may have far-reaching geometrical consequences, as we will aee in the next section on a conformal Bernsteintype theorem.

### 2.4 A Conformal Bernstein-type Theorem

In this aection we will formulate a Bernstein-type theorem for immeraed Willmore hypernurfacen of the Möbius apace, which generalises the special case of immersed aurfacea in $S^{\mathbf{D}}$ treated in Ref. [Ri/88].
Let $\boldsymbol{F}: \boldsymbol{M}^{\mathbf{2}} \rightarrow \boldsymbol{R}^{\mathbf{1}}$ be an oriented Willmore aurface immerned into the Euclidean 3-space, i.e. $F$ antiafies Eq. (2.5). Let $\nu_{F}: M \rightarrow \mathbb{I}^{\mathbf{t}}$ be the apherical Gauna map given by $\nu_{F}(x)=\nu_{s}, \forall_{x} \in M_{1}$ where $\nu_{s}$ is the positive unit normal to $F$. Let $\sigma_{F}: M \rightarrow R^{2}$ be the map defined by

$$
\sigma_{F}(x)=\nu_{F}(x)+H F(x)
$$

Then, the following theorem can be formalated [Ri/86]:
Theoram (Rigoll) Let $F: M^{3} \rightarrow \boldsymbol{R}^{\mathbf{n}}$ he a complete, orianted immersed Willmore anflece. U there esists an $a \in \mathbb{R}^{2}$ with $v=<\sigma f, e>_{R^{+}} \neq 0$ on $M$, then $F(M)$ is either a aphen or a plane.

Thim theorem in the analogue of the weak form of the parametric Bernatein theorem, which atates that a complete, oriented, minimal immeraed anface $\boldsymbol{F}: \boldsymbol{M}^{\mathbf{n}} \rightarrow$ $\boldsymbol{R}^{\mathbf{1}}$ with apherical Gatued map $\nu_{\boldsymbol{r}}$ bying in a hemiophere of $S^{\mathbf{3}}$ in a plane. Furthermore, it wan reformulated in the conformal geometry of aurfaces of $S^{4}$ by the aame anthor:
Consider the immersion $f=s$ oF: $M^{2} \rightarrow S^{2}$ into the Mobiut apace, where i : $\mathbb{R}^{\mathbb{A}} \rightarrow S^{a} \backslash\left\{x_{\infty}\right\}$ is the diffeomorphiam an defined in dingram (1.91). Let $E=\left|E_{0}, E_{1}, E_{1}, E_{1}, E_{4}\right|: M \rightarrow G^{0}$ be a Darboux frame along $F$ of the type deacribed in Remarit 1.4. Then, uing the identification (1.93), we can consider $E_{0}$ and $E_{1}$ an vectors of $\boldsymbol{R}^{1}$, being $E_{0}=F$ and $E_{1}$ the peritive unit normal to $F$. Then, in the latter frame, we can write $\sigma_{P}(x)=\left(E_{s}+H E_{\mathrm{a}}\right)(x)$. Let i: $\boldsymbol{M} \rightarrow G$ be the aecond-order frame congtructed from $E$ a deacribed in Sec. 1.3. Thna, $\boldsymbol{i}_{\mathbf{1}}=E_{1}+\boldsymbol{H} E_{0}$. That in, of corresponds to the hyperbolic Gauns map $\boldsymbol{f}$ of $f$. The following theorem in the conformal vertion of the previous one:

Theoram (RIsoll) Let $f: M \rightarrow S^{\text {t }}$ Le compact, connseted, oriented Willmore surfacs with hypertolie conformal Gauss map 7 . U/ there ceiste an a $\in \mathbb{R}^{\mathbf{i}}$, sueh thed $<\mathcal{U}_{1} \in>\neq 0$ on $M$, then $f(M)$ is 2 -aphare.

Now we derive a generaliation of this theorem. Let $f: \boldsymbol{M}^{n^{-1}} \rightarrow S^{\text {n }}$ be an immersion of a hyperaurface into the Möbius space, and let $\boldsymbol{v}: \boldsymbol{M} \rightarrow \mathbf{Q}$ be the hyperbolic conformal Ganas map of $f$ defined in Eq. (2.65). Obnerve that, if $M$ in the Mäbiua apace $S^{-1}$ and $f$ it the inclasion map given by $\left.f\left(\left[\begin{array}{c}c \\ \omega \\ 0\end{array}\right]\right)=\left[\begin{array}{c}c \\ \omega \\ 0 \\ 0\end{array}\right] \right\rvert\,$, then $f$ ia a trivial Wilmore hypersurface and $\boldsymbol{\gamma}=\eta_{\mathbf{2}}$. In particalar, $<\boldsymbol{y}_{1} \eta_{\mathbf{n}}>\neq 0$ on all $M$. The following theorem thow that this property (with an additional condition) charecterises the hyperspheres of $S^{n}$.

Theoram 2.1 Suppoee $n \neq 4$ and $n \neq 6$. Let $f: M^{-1} \rightarrow S^{n}$ be a compaet, oriented, connected Willmore hyperaufface immereed into $S^{n}$ with hyparsolic conformal Gamas map $\boldsymbol{\psi}$. If there esiota an $\in \in \boldsymbol{R}^{++1}$, owh that $\langle\psi, \in\rangle \neq 0$ on all $M$, and if $f$ oatiofies the condition ( $\ell .7 \ell$ ), then $f(M)$ in an ( $n-1)$-aphere.

Proof. Set $m=n-1$. Obviously, without loss of generality, we may asume ( $f, a$, $>0$ on all $M$. Let $e: M \rightarrow G$ be a second-order $G$-frame along $/$ and let $\|A\|$ be an in Eq. (2.46), relative to thia frame. Gonsider the local ( $m-1$ )-form on $M$ given by

$$
\begin{aligned}
& \left.\omega=(-1)^{p-1}\|h\|^{m \sim 2}\left((m-1) p_{i}^{n}<e_{0}, a\right\rangle-h_{i k}^{n}<e_{n}, a>\right) \phi^{\text {L. } . . . m}
\end{aligned}
$$

Oae can straightforwardly verify, using the transformation lawa for second-order frames given in Sec. 1.2.0, that $w$ is a well-defined global ( $m-1$ )-form on $M$. Uring Eqs. (1.60), (1.62), (1.67), (2.47), and (2.48), we have

$$
\begin{aligned}
& d \omega=(-1)^{r^{-1}}(m-1) p_{1}^{n}<\varepsilon_{0}, a>d\left(\|A\|^{m-2}\right) \wedge \phi^{2 m^{2} . . . m} \\
& +(-1)^{r-1}(m-1)\|h\|^{m-1}<e_{0}, \varepsilon>d p_{i}^{\circ} \wedge \phi^{1-A^{*}} \\
& +(-1)^{i-1}(m-1)\|A\|^{m-1} p_{1}^{n} d\left(<e_{0}, \varepsilon>\right) \wedge \phi^{\text {L. } l}-m \\
& +(-1)^{-1}(m-1)\|A\|^{m-1}<e_{0}, a>p_{i}^{n} d \phi^{2, \ldots j} \ldots \\
& +(-1)^{\prime} h_{\text {in }}^{n}<e_{k}, a>d\left(\|h\|^{m-2}\right) \wedge \|^{1-\lambda . . u m} \\
& +(-1)^{\prime}\|A\|^{m-9}<e_{k}, a>d h_{14}^{n} \wedge \phi^{1 \times j^{m} m} \\
& +(-1)^{\prime}\|A\|^{m-1} k_{i k}^{i} d\left(<e_{k}, a>\right) \wedge \phi^{L} A^{\prime}-m \\
& +(-1)^{i}\|A\|^{m-3}<e_{t, 1} a>A_{0.1}^{n} d \phi^{b-i-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{c-1}(m-2)<\varepsilon_{0}, a>h_{i k}^{0} h_{\alpha k}^{*} h_{\alpha k}^{*} d\left(\|h\|^{m-4}\right) \wedge \phi^{1 \ldots . . . . m} \\
& +(-1)^{t-1}(m-2)\|h\|^{m-4}<e_{0}, a>h_{i,}^{0} d\left(h_{s i n}^{n} h_{\text {sth }}^{n}\right) \wedge \phi^{1-i-m} \\
& +(-1)^{0^{-1}}(m-2)\|h\|^{m-4}<c_{0}, a>h_{\alpha}^{0} h_{m d}^{n} d h_{i k}^{n} \wedge \phi^{L-2} \\
& +(-1)^{i-1}(m-2)\|A\|^{m-4} h_{i 4}^{n} h_{i, 1}^{n} h_{e, 1}^{\bullet} d\left(<e_{0}, a>\right) \wedge \phi^{b^{2}+m}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{\prime}(m-1) p_{i}^{n}<e_{0}, \leqslant>(m-2)\|A\|^{m-2} \phi_{0} \wedge \phi^{L 2}=m
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{t-1}(m-1)\|A\|^{m-2}<e_{0,} \in>p_{i}^{n} \phi_{i}^{\dagger} \wedge \phi^{L-i-m} \\
& +(-1)^{i}(m-1)\|A\|^{-2}<e_{0}, \leqslant>2 p_{i}^{i} \phi_{i}^{0} \wedge \phi^{1-\lambda m} \\
& +(-1)^{i-1}(m-1)\|h\|^{m-3}<e_{0}, a>h_{n}^{i} \phi_{\eta}^{0} \wedge \phi^{1.2-m} \\
& +(m-1)\|A\|^{m-2}<\epsilon_{0}, a>\text { Pin }^{n} \phi^{i-m} \\
& +(-1)^{n^{-1}}(m-1)\|A\|^{m-3} p_{1}^{n}<e_{0}, \varepsilon>\phi_{i}^{i} \wedge \phi^{1-i-\infty} \\
& +(m-1)\|A\|^{m-1} P_{i}^{n}<\varepsilon_{i}, a>\phi^{1} \\
& +(-1)^{-1}(m-1)^{2}\|h\|^{m-2}<\varepsilon_{e}, a>p_{i}^{0} \phi_{0}^{d} \wedge \phi^{1.2-m} \\
& +(-1)^{k-1}(m-1)\|A\|^{m-3}<e_{0},<p_{i}^{i} \phi_{i}^{k} \wedge \phi^{1}+\ldots \\
& +(-1)^{\prime-1} h_{i n}^{n}<e_{n},<>(m-2)\|h\|^{m-2} \phi_{0}^{0} \wedge \phi^{1-2}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i}\|h\|^{m-1}<e_{k}, a>h_{j h}^{j} \psi_{i} \wedge \phi^{1.2 .-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i-1}\|A\|^{m-2}<e_{n},<A_{i,}^{i} \phi_{\theta}^{0} \wedge \phi^{1.2} . \\
& +\|A\|^{m-3}<e_{i,}<>p_{i}^{1} \phi^{1-m} \\
& -\|A\|^{m-1}<\varepsilon_{A}, C>h_{i=1}^{n} \phi^{2-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{\prime}\|A\|^{m-2} h_{i,}^{n}<\varepsilon_{j},<>\psi_{i} \wedge \phi^{L i .2} \\
& -\|\Delta\|^{m-3} h_{i t}^{*}<e_{n}, \varepsilon>A_{W_{1}^{n}}^{n} \phi^{1+m} \\
& -\|A\|^{m-2} h_{i n}^{n}<e_{n+1}, a>\phi^{\text {L-m }} \\
& +(-1)^{i}\|h\|^{m-1}<e_{m, \alpha}>h_{i k}^{\theta}(m-1) \phi_{0}^{0} \wedge \phi^{1.2 . . . m} \\
& +(-1)^{j}\|A\|^{m-1}<\varepsilon_{b}, \in>A_{d a}^{*} \psi_{j}^{j} \wedge \phi^{\text {b-j }}-m
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{n}(m-2)\|A\|^{m-4}<\epsilon_{0}, \varepsilon>h_{1,2}^{n} 3 h_{m}^{n} h_{\mu n}^{n} \phi_{0}^{0} \wedge \phi^{L-2 . m} \\
& +(-1)^{i}(m-2)\|h\|^{m-3}<\epsilon_{0}, a>h_{i, \phi}^{n} \phi_{i}^{0} \wedge \phi^{1 \cdots \cdots m} \\
& +(-1)^{i-1}(m-2) \| h^{m-4}<\epsilon_{0}, a>h_{i z}^{n} h_{j m}^{n} h_{\alpha j}^{n} \phi h^{\prime} \wedge \phi^{1 .-i-m} \\
& +(m-2)\|h\|^{m-4}<\omega_{0}, a>h_{i k}^{n} H_{m} \phi^{2} \cdots m
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{i-1}(m-2)\|h\|^{m-4}<e_{0}, a>h_{\equiv}^{0} h_{\alpha h}^{n} h_{j}^{R} \phi_{i}^{\prime} \wedge \phi^{i-2 . . . m} \\
& +(-1)^{\prime}(m-2)\|h\|^{m-4}<e_{0}, a>h_{d}^{n} h_{0}^{n} h_{i=1}^{n} \phi_{0}^{0} \wedge \phi^{L . L-m}
\end{aligned}
$$

$$
\begin{aligned}
& +(m-2) \| h| |^{m-4}<\epsilon_{0}, a>h_{\alpha}^{E} h_{a \in t}^{n} h_{i, i}^{n} \phi^{1-m} \\
& +(-1)^{i-1}(m-2)\left\|h_{i}\right\|^{m-4} h_{i k}^{n} h_{i \alpha}^{n} h_{\alpha k}^{n}<i_{0}, a>\phi_{0}^{0} \wedge \phi^{L i-m} \\
& +(m-2)\|h\|^{m-4} h_{i k}^{*} h_{i k}^{*} h_{i z}^{n}<e_{i}, a>\phi^{\text {b }} \\
& +(-1)^{i-1}(m-1)(m-2)\|h\|^{m-4}<e_{0}, a>h_{i k}^{n} h_{\alpha}^{n} h_{\alpha k}^{n} \phi_{0}^{0} \wedge \phi^{L \ldots i m} \\
& +(-1)^{i-1}(m-2)\|A\|^{m-1}<e_{0}, a>h_{i k}^{n} h_{k}^{n} h_{k k}^{n} \phi_{i} \wedge \phi^{-i+m} .
\end{aligned}
$$

Taking into account definition (1.56) and the vanishing of $h_{\text {in }}^{\text {n }}$ we obtain, after several cancellation and obvious rearrangementa, the expreasion

$$
\begin{aligned}
& d \omega=2(m-1)(m-2)\|A\|^{m-4} p_{i}^{n}<e_{0}, \varepsilon>h_{\mu m}^{n} h^{n} \phi^{1-m} \\
& +(m-1)\|h\|^{m-1}<e_{0}, a>p_{i}^{n} \phi^{l-m}
\end{aligned}
$$

$$
\begin{aligned}
& -\|A\|^{m-1} h_{i+}^{M} h_{i \pi}^{n}<e_{n}, a>\phi^{1-m} \text {. }
\end{aligned}
$$

Since $\varepsilon_{0}=\boldsymbol{v}$, we can rewrite the latter expreasion as

$$
\begin{aligned}
& +(m-2)(m-4)\|h\|^{m-\theta} h_{i}^{n} h_{m}^{n} h_{m k}^{n} h_{i=}^{n} h_{i=1}^{n} \\
& \left.+(m-2)\|A\|^{m-4} A_{i k}^{n} H_{i n}\right\} \psi^{\mathrm{lum}} \\
& -\|h\|^{m}<\boldsymbol{\gamma}, a>\phi^{\text {Lm }} \text {. }
\end{aligned}
$$

If $f$ ia a Willmore hyperanface, then, uaing the Euler-Lagrange equation derived in Prop. 2.1, we abtein

$$
\begin{equation*}
\left.\left.d \omega=-\left(<e_{0,} a\right\rangle\|h\|^{m-2} h_{j}^{n} h_{j,}^{n} h_{h_{1}}^{n}+\| \|^{m}<\gamma_{f}, a\right\rangle\right) \phi^{1-m}, \tag{2.73}
\end{equation*}
$$

which ia a global m-form on $M$. Now, since $f$ gntiafies, by ansumption, condition (2.72), application of Stokes' theorem yielda

$$
0=\int_{M} d \omega=-\int_{M}\|h\|^{m}<\psi, a>\phi^{1-m}
$$

 0. Applying, finally, Eq. (1.89) and the proposition due to Schienangk-Sulanke quoted in Sec. 1.2.D, we conclude that $f(M)$ is an ( $n-1$ )-aphere. $O$

Tating into account Prop. 2.2, we obtain the following corollary:
Corollary 2.1.1 Suppose $n \neq 4$ and $n \neq 6$. Let $f: M^{n-1} \rightarrow S^{\bullet}$ be a campact, orionted, connected Willmore hyperaurface immerted in $S^{n}$. $\| \gamma_{f}$ is a eritied poind of the functional piven in Eq. (2.07) and if there esiots an $a \in \boldsymbol{R}^{n+1}$ auch that $<\gamma_{f},>\neq 0$ on all $M$, then $f(M)$ is an $(n-1)$-aphere.

We remark that the concluaion of Cor. 2.1 .1 can be obtained without the asumptlon of $f: M^{-1} \rightarrow S^{n}$ being a Willmore hyperaurfece, by milighly modifying the proof of Th. 2.1. It ja sufficient that $y$ be a critical point of the functional $\boldsymbol{y}$ given in Eq. (2.67). More preciacly, we have the following renult:

Theoram $2.2 S_{\text {uppore }} \pi \neq 4$. Let $f: M^{1-1} \rightarrow S^{n}$ be compaet, oriented, connected immersed hyperaurface into $S^{*}$ with hyperiolic conformal Gaues map

 ( $n-1$ )-aphers.

Proof. Set $m=n-1$. Let e: $M \rightarrow G$ be a mecond-order $G$-frame aloge $f$ and \|A\| be as in Eq. (2.46) relative to this frame. Consider the local ( $m-1$ )-form on $M$ given by

$$
\omega=(-1)^{i-1}\|h\|^{m-1}\left(p_{i}^{n}<c_{0}, \varepsilon>-h_{k}^{n}<\mathbb{A}_{m}, a>\right) \phi^{1 .-h .-m} .
$$

We can easily verify, asing the tranaformation lawa for aecond-order framea, than $\omega$ is a well-defined, global ( $m-1$ )-farm on $\boldsymbol{M}$. Through straightorward computation, similar to the ones in the proof of Th. 2.1, we obtain

$$
\begin{aligned}
& d \omega=\left\langle e_{0}, a\right\rangle\left((m-2)\|A\|^{m-4} p_{i}^{n} h_{i}^{n} h_{i i}^{*}+\|h\|^{m-3} p_{i i}^{n}\right) \phi^{1 \cdots m} \\
& +\left\langle\varepsilon_{1}, a\right\rangle(2-s n)\left(\|A\|^{m-1} p_{i}^{n}+\|A\|^{m-4} h_{i \alpha}^{n} h_{\alpha}^{n} h_{\alpha k}^{n}\right) \phi^{\dot{l}-m} \\
& -\|A\|^{m}\langle\boldsymbol{\gamma}, a\rangle \phi^{L \times m} .
\end{aligned}
$$

Since $\boldsymbol{\gamma}$ in a critical point of $\boldsymbol{\eta}$, Eq. (2.70) holds, i.e.

$$
d w=-\|A\|^{m}\langle\gamma, \Delta\rangle \phi^{L-m} .
$$

Now the concluaion follows as in the proof of Th. 2.1.
Thas, we have obsained two different Bernatein-type theorems with non-empty intersection. Thim can be visualised diagrammatically as followe. Let

$$
\begin{aligned}
& C=\left\{\text { Immersiona } f: M^{n-1} \rightarrow S^{n} \text { atkistying } h_{i j}^{n} h_{j,}^{*} h_{i=1}^{n}=0\right\} \\
& A=\left\{\text { Willmore hyperanficces } f: M^{n^{-1}} \rightarrow S^{-}\right\}
\end{aligned}
$$



Then we have $B \cap G \subset A$ and $B \cap A \subset C$. Let $D=C \cap A$ and $D^{\prime}=B \cap A$. Then, $D^{\prime} \subset D$. On $D$ and $B$ we have the Berastein-type theorem (perhapa better called rigidity theorems) 2.1 resp. 2.2 with interacetion of the domains of validity given by $D^{\prime}$, If $D^{\prime}$ happena to coincide with $D$, then Th. 2.2 is more general than 2.1. In the case $n=3$, where $O$ ia the aet of all immeraed anfaces, we have $D^{\prime}=D=A=B$.

Remark 2.2 We note, reviewing carefully the proof of Th. 2.1, that, by dropping the condition (2.72) on $f$, one can atill arrive at an interesting, though somewhat vague, conclasion. From Eq. (2.73), which holds in any cane, we obtain by applying Stokes' theorem

$$
0=\int_{M} d w=-\int_{M, U}\|h\|^{m-2}\left(<e_{0}, a>h_{j}^{n} h_{j h}^{n} h_{h}^{\hbar}+\|h\|^{2}<\gamma_{1} a>\right) \phi^{1-m},
$$

where $U$ is the set of all umbilie points of $f$. Given a point $x \in M$, the aign or vanishing of the expremion

$$
\left\langle\omega_{j}^{0} h_{j} h_{L_{k}, c_{0}}+\|A\|^{1} \gamma, \rho\right\rangle(x)
$$

in independent of the choice of necond-order frame on a neighbourhood of an at followi from the transformation lawi in Sec. 1.2.C. Thes, we can reformalate the above theorem in the following wey:

Thaorem 2.1' Leif be as in Th. 4.1, ezcept for condition (2.74). If there esiate
 this isequality implies equality to sero on all $M$.

## Appendix II

Let $f: M^{m} \rightarrow S^{n}$ be an immersed hypersurface ( $m=n-1$ ) into the Mäbius apace and fix a Riemannian metric $g=\phi_{0} \otimes \phi_{0}$ of the conformal clasa of $M$. Let $\bar{D}$ be a compact domain on $M$. Now we calculate the Euler-Lagrange equation of the functional $\eta_{D}(\rho)=\frac{1}{m} f_{D}\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right)^{T} d V$ for $\rho: \bar{D} \rightarrow Q$ a amooth map, where $\underline{Q}=\left\{x \in \mathbb{R}^{n+2}:\langle x, x\rangle=1\right\}$ is endowed with the Lorentz inner product $d \ell^{1}$ induced by the one of $\mathbb{R}^{n+1}$.

Let $\hat{\rho}:(-\epsilon, c) \times \bar{b} \rightarrow \underline{Q}, \bar{\rho}(\ell, \cdot)=\rho(\cdot)$, be a variation of $\hat{\rho}_{0}=\rho$ with campact uupport in $D$. Let $W \in C^{\infty 0}\left(\rho^{-1} T Q\right)$ be defined by $W_{s}=\left.\frac{\theta}{\theta} \rho_{1}(x)\right|_{t=0}$. Let $\nabla$, $\nabla^{\prime}$ denote the Levi-Civita connections of $(M, g)$ resp. $\left(Q, d \ell^{2}\right)$ and $\nabla^{\boldsymbol{N}^{-1}}, \nabla^{\nabla^{-1}}$ be the connections of $\rho^{-1} T Q$ resp. $\hat{\rho}^{-1} T \mathcal{Q}$. Let $x_{0} \in D$ and $X_{1}, \ldots, X_{m}$ be an orthonormal frame of $(M, \theta)$ defined near $x_{0}$ and atatiatying $\nabla X_{1}\left(x_{0}\right)=0$. We denote by $\left(0, X_{i}\right)$ and $\frac{g}{d r}$ the vector fields on $(-\epsilon, \epsilon) \times M$ given by $\left(0, X_{i}\right)_{(t, r)}=$ $\left(0, X_{1}\right)$ resp. $\frac{t}{\boldsymbol{\theta}}(t, x)=(1,0)$. Then

$$
\begin{equation*}
\nabla_{H_{j}}^{(-t, t) \times M}\left(0, X_{i}\right)=\stackrel{(-t a \mid \times N}{\left.\nabla_{\left(a, X_{t}\right)}\right)} \frac{\partial}{\partial t}=0 \tag{II.1}
\end{equation*}
$$

Let $Z$ be the vector field on $M$ defined by

$$
<Z_{s}, \equiv>_{1}=d C^{2}\left(W_{1} m\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right)^{*-3} d \rho_{5}(凶)\right), \quad \forall v \in T_{r} M
$$

At the point $x_{0}$ we have, because of Eq. (II.1) and the symmetry of the aecond fondamental form of $\hat{\rho}_{1}$

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} d \ell^{2}\left(d \rho_{t}\left(X_{i}\right), d \rho_{t}\left(X_{i}\right)\right)_{20}\right|_{t=0}=\frac{\partial}{\partial t} d \ell^{2}\left(d \tilde{\rho}\left(0, X_{i}\right), d \tilde{\rho}\left(0, X_{i}\right)\right)_{(0, m)} \\
& =2 d l^{3}\left(\nabla \vec{i}_{i}^{-1}\left(d \vec{p}\left(0, X_{i}\right)\right)_{\left(0, x_{0}\right)}, d \hat{p}_{(0, \infty)}\left(0, X_{i}\right)\right) \\
& =2 d l^{2}\left(\nabla d \tilde{\rho}_{(0,+0)}\left(\frac{\partial}{\partial t},\left(0, X_{i}\right)\right), d \tilde{\rho}_{(0,+\infty)}\left(0, X_{t}\right)\right) \\
& =2 d \ell^{3}\left(\nabla_{\left(0, X_{j}\right)}^{F^{-1}}\left(d \hat{\rho}\left(\frac{B}{\partial t}\right)\right)_{\left(0, s_{0}\right)}, d \hat{\rho}_{\left(0, m_{0}\right)}\left(0, X_{d}\right)\right)=2 d \ell^{2}\left(\nabla_{X_{4}}^{-1} W_{m_{0},} d \rho_{m_{0}}\left(X_{0}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& =m\left(\operatorname{trace}\left(p^{*} d l^{2}\right)\right)_{x_{0}}^{m_{1}^{-2}} d l^{2}\left(\nabla_{X_{i}}^{-1} W_{s_{0}} d \rho_{r_{0}}\left(X_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d \ell^{3}\left(\nabla_{X_{1}}^{-4} W_{s_{0}}, m\left(\operatorname{trace}\left(\rho^{*} d \ell^{\nu}\right)\right)_{s_{0}}^{m_{0}^{-1}} d \rho_{s_{0}}\left(X_{i}\right)\right) \\
& =d\left\{d l^{2}\left(W, m\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right)^{m-2} d \rho\left(X_{i}\right)\right)\right\}_{\infty}\left(X_{i}\right) \\
& -d \ell^{2}\left(W_{m 0}, \nabla_{X_{i}}^{--1}\left(m\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right)^{\frac{\mathrm{min}}{1}} d \rho\left(X_{i}\right)\right)_{* \infty}\right) \\
& \left.=d\left(<Z, X_{i}\right\rangle\right)_{s_{0}}\left(X_{i}\right)-d t^{2}\left(W_{s_{0}}, \nabla\left(m\left(\operatorname{trace}\left(\rho^{*} d t^{2}\right)\right)^{-1 / 2} d \rho\right)_{s_{0}}\left(X_{i}, X_{i}\right)\right) \\
& =\operatorname{div}_{f}(Z)_{\infty}-m d l^{2}\left(W_{s 0}, \text { trace }\left(\nabla\left(\text { trace }\left(\rho^{\nu} d l^{2}\right)\right)^{\eta^{2}} d \rho\right)_{-0}\right) \text {, }
\end{aligned}
$$

where $\nabla\left(\operatorname{trace}\left(\rho^{\bullet} d l^{\rho}\right)\right)^{m-1} d \rho$ ia the covariant derivative in the vector bandle $\Lambda^{\prime} T^{*} M \otimes$ $\rho^{-1} T Q$. Since $Z$ has compact support, we obtain, by applying Stoken' theorem,

Thas, the Ealer-Lagrange equation is given by

$$
\operatorname{trace}\left(\nabla\left(\operatorname{trace}\left(\rho^{*} d \ell^{2}\right)\right)^{\boldsymbol{m}_{1}^{1}} d \rho\right)=0
$$

or, equivalently,

$$
\begin{aligned}
& 0=\operatorname{trace}\left(\nabla\left(\operatorname{trace}\left(\rho^{\bullet} d t^{\nu}\right)\right)^{\min _{1}^{-1}} d \rho\right)_{s_{0}}=\nabla\left(\operatorname{trace}\left(\rho^{\bullet} d l^{\nu}\right)\right)^{m-1} d \rho_{x_{0}}\left(X_{1}, X_{1}\right) \\
& =\nabla_{\dot{x}_{1}}^{\boldsymbol{p}_{1}^{-1}}\left\{\left(\text { trace }\left(\rho^{0} d c^{2}\right)\right)^{-\tau^{-1}} d \rho\left(X_{i}\right)\right\}_{\infty} \\
& =d\left\{\left(\operatorname{trace}\left(\rho^{\bullet} d l^{2}\right)\right)^{+-1}\right\}_{\infty}\left(X_{i}\right) d \rho_{\omega_{0}}\left(X_{i}\right)+\left(\operatorname{trace}\left(\rho^{\bullet} d l^{2}\right)\right)^{n=x} \nabla d \rho_{x_{0}}\left(X_{i}, X_{i}\right) \\
& =\operatorname{trace}\left\{\frac{m-\hat{2}}{2}\left(\operatorname{trace}\left(d \rho^{*} d l^{2}\right)\right)^{\min ^{-4}} d\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right) \otimes d \rho+\left(\operatorname{trace}\left(\rho^{*} d l^{2}\right)\right)^{\frac{2-1}{2}} \nabla_{d \rho}\right\}_{\infty} .
\end{aligned}
$$

## Chapter 3

## THE SECOND VARIATION FOR WILLMORE SURFACES OF A SPACE FORM

Let ( $N, h$ ) be an n-dimensional Riemannian manifold of constant sectional curvature $K$. Then, in this chapter, we will calculate, in the contert of Riemannian geometry, the second variation formula for Willmore immersed surfacea $f: M^{2} \rightarrow$ ( $N, h$ ). Weiner [We/78] compoted this second variation in the particular case where $f$ is a minimal immersion. Our notationa and calculations will be nimilar to his, up to the step where be demands minimality of $f$ to hold. We will proceed without any auch assumption. Recall that the curvature tensor $\mathcal{R}$ of ( $N, h$ ) satisfies

$$
\bar{R}(X, Y) Z=\bar{R}\left(<Z, X>_{A} Y-<Z, Y>_{\wedge} X\right), \forall X, Y, Z \in C^{\infty}(T N)
$$

If $f: M^{\mathbf{1}} \rightarrow(N, h)$ in an immersion, we denote by $\hat{A}$ the element of $G^{\infty e}\left(\otimes V^{*} \otimes V\right)$, where $V$ in the normal bundle to $f$ given by Eq. (2.12).

Let $D \subset M$ be a compact domain, $I$ denote $(-\epsilon, \epsilon)$, and $v: M \times I \rightarrow N$ be a variation of $f$ through immeraions $f_{i}=0(\cdot, t): M \rightarrow N$ with variation vector $W \in C^{\infty}\left(f^{-t} T N\right)$ given by $W_{s}=\left.\frac{0}{\| i} v(x, t)\right|_{A=0}, \forall x \in M$, which we asaume to be compactly aupported in $D$.

Propoaltion 3.1 If $f: M^{3} \rightarrow(N, h)$ is a Willmare immersed surfaee, then the second variation formula for the ariation $\theta=f_{i}$ is givan by

$$
\left.\frac{\partial^{2}}{\partial t^{2}} w_{D}\left(f_{t}\right)\right|_{t=0}=\int_{D}\langle J(W), W\rangle_{A} d A_{\rho_{0}},
$$

where

$$
\begin{aligned}
& J(W)=\frac{1}{2}(\Delta+\dot{A})(\Delta+2 \bar{K}+\tilde{A})(W)_{z} \\
& -2\left\langle(\Delta+\tilde{K}+\tilde{A})(W)_{x}, H_{s}\right\rangle_{\mu} H_{s}-\left\|H_{s}\right\|_{\hat{A}}^{?}(\Delta+\tilde{A})(W)_{s} \\
& +2\left\langle W_{s}, \nabla d / s\left(e_{1}, e_{k}\right)\right\rangle_{A} \stackrel{V}{\nabla}^{2} H_{s}\left(e_{1}, e_{k}\right)+2\left\langle H_{3}, \nabla d \delta_{3}\left(e_{1}, e_{k}\right)\right\rangle_{A}{ }^{V}{ }^{2} W_{s}\left(e_{1}, e_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2\left\langle\nabla_{\theta_{4}}^{V} W_{s}, \nabla_{d f_{s}\left(e_{1}, e_{k}\right)}\right)_{\Delta}{\stackrel{V}{\nabla_{0}}}^{\nabla_{s}} H_{z} \\
& -2\left\langle\bar{\nabla}_{\sigma_{1}}^{V} H_{s}, \nabla_{\theta_{j}} W_{z}\right\rangle_{A} \nabla_{d} d_{s}\left(e_{i}, e_{j}\right) \\
& +2\left\langle\psi_{\nabla_{4}}^{V} H_{s}, \nabla_{d f}\left(e_{i}, e_{j}\right)\right\rangle_{\Delta} \stackrel{V}{v}_{\nabla_{d}}, W_{s} \\
& +2\left\langle W_{r}, \nabla_{d j_{s}\left(e_{1}, e_{k}\right)}\right\rangle_{A}\left\langle\nabla d f_{s}\left(e_{i}, e_{j}\right), H_{s}\right\rangle_{A} \nabla d f_{s}\left(e_{j}, e_{k}\right),
\end{aligned}
$$

wilh $\stackrel{\gamma}{\nabla}^{\prime} W \in C^{\infty}\left(\otimes^{2} T^{*} M \times V\right)$ given $b_{y}$

$$
\stackrel{V}{\nabla}^{2} W_{s}\left(X_{x}, Y_{z}\right)=\stackrel{Y}{\nabla_{X_{0}}}, \frac{V}{\nabla_{Y}} W_{s}-\stackrel{V}{\nabla^{N_{y}}}{ }_{X} Y_{t} W_{s},
$$

and with $e_{1}, e_{2}$ an arlitrary orthonormal dacie of ( $T_{3} M_{1} g_{0}$ ).
Corollary 3.1.1 $\mathrm{f} \operatorname{dimN}=3$, than the operatar $J$ in the above theorom can be eimplified to

$$
\begin{aligned}
& J(W)=\frac{1}{2}(\Delta+\bar{A})(\Delta+2 \tilde{K}+\tilde{A})(W)-3\|H\| \mathbb{A}(\Delta+\tilde{A})(W) \\
& +2\left\langle\nabla_{d}, \stackrel{V}{\nabla}^{2} H\right\rangle W+2\left\langle\nabla d, V_{V}^{\nabla^{2}} W\right\rangle H \\
& -2\left\langle\boldsymbol{V} W, V_{H}^{V}\right\rangle H+2\left\langle\stackrel{V}{\nabla}{ }_{H}, \stackrel{V}{\nabla} H\right\rangle W \\
& +2\left\langle\frac{Y}{\nabla} H \otimes \nabla W, \nabla d\right\rangle-2 \bar{K}\|H\|_{A}^{V} W+2 \tilde{B}^{B}(W),
\end{aligned}
$$

-here $\tilde{B}^{H} \in C^{\infty}\left(\otimes V^{\bullet} \otimes V\right)$ is given by

$$
\dot{B}_{s}^{N}\left(W_{s}\right)=\left\langle W_{s}, \nabla d f_{x}\left(e_{i}, e_{k}\right)\right\rangle_{A}\left\langle\nabla d f_{z}\left(e_{i}, e_{j}\right), B_{s}\right\rangle_{A} \nabla d f_{s}\left(e_{j}, e_{s}\right),
$$

 the inner producto denoted $b y<,>$ are of the Hilbert-Sehmid ippe.

Proof. Let $g_{1}=f_{1}^{*} h$, and denote $M_{i}=\left(M_{1} g_{1}\right)$. We define the vector aubbundles $T$ and $V$ of $v^{-1} T N$ as $T_{(s, n)}=d\left(f_{1}\right),\left(T_{s} M\right)$ and $V_{(s, n)}$ as its orthogonal complement in $\left(T_{f(s)} N, h\right), \forall(x, t) \in M \times I$. Thus, $T_{v(x, t)} N=T_{(z, t)} \oplus V_{(m, d)}$. Then, for each $i \in I$, we have the vector subbundies $T_{1}$ and $V_{i}$ of $f_{1}^{-1} T N$ defined by $T_{1}(\Omega)=T_{(a, j)}$ and $V_{1(s)}=V_{(s, d)}$, the latter one defining the normal bundle to the isometric immersion $f_{1}: M_{i} \rightarrow(N, h)$. We denote by ( $)^{T}$ and ( $)^{V}$ the orthogonal projections of $v^{-1} T N$ onto $T$ resp. $V$, and by $\pi$ : $M \times I \rightarrow M$ the first projection $(x, t) \rightarrow x$. The following
 of $\left(v^{-1} T N, h\right), \nabla^{f^{-2}}$ of $\left(f_{1}^{-1} T N, h\right), \hat{V}_{\text {of }}\left(V_{t}, h\right)$ (and $\nabla^{\nu}$ of $\left(V_{0}, h\right)$ ), and $\nabla^{\nabla^{-t}}$ of ( $\pi^{-1} T M, \rho_{0}$ ).
If $Z \in C^{\infty}\left(v^{-1} T N\right), \forall \in I$, then $Z_{t}$ given by $Z_{(s)}=Z_{(x, 1)}$ in an element of $C^{\infty}\left(f_{1}^{-1} T N\right)$, and

$$
\nabla_{(s, 0)}^{v^{-1}} z_{(x, s)}=\nabla_{v}^{f_{0}^{-1}} z_{t(s)}, \forall v \in T_{x} M
$$

If $Y \in C^{\infty}\left(V_{i}\right)$, then $\boldsymbol{V}_{i} Y_{x}=\left(\nabla_{0}^{f^{-1}} Y_{x}\right)^{V}$.
For each $\in \in I$,

$$
W_{D}\left(f_{\mathrm{t}}\right)=\int_{D}\left(\left\|H_{t}\right\|_{A}^{*}+\bar{K}\right) d A_{p_{0}}+\int_{a D} \kappa_{p} d s_{t},
$$

where $d A_{\mu}$ is the volume element of $\left(M, g_{1}\right), H_{1}$ in the mean curvature of $f_{1}:$ $M_{t} \rightarrow(N, h)$, and $\kappa_{n}$ is the signed geodesic curvature of $\dot{d} D$. Obaerve that $\kappa_{f}, \delta_{\rho_{t}}=$ $\kappa_{10} d A_{0}$, becange $f_{1}(x)=f(x)$ for $x \in \partial D$. Since $d A_{m}(x)=\sqrt{\left.\operatorname{det} \mid g_{1}\left(e_{1}, e_{1}\right)\right]}(x) d A_{90}(x)$ with $e_{1}, e_{2}$ an orthonormal basis of ( $T_{-} M, g_{a}$ ), we can write

$$
w_{D}\left(f_{t}\right)=\int_{D}\left(\left\|H_{i}\right\|_{h}^{2}+K\right) \sqrt{\operatorname{det}\left|g_{i}\left(e_{i}, e_{j}\right)\right|} d A_{\infty}+\int_{a D} \kappa_{p \infty} d e_{a}
$$

So,

$$
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t=0}=\int_{D}\left\{\left.\frac{\partial}{\partial t}\left\|H_{i}\right\|^{2}\right|_{t=0}+\left.\left(\|H\|_{i}^{2}+K\right) \frac{\partial}{\partial t} \sqrt{\operatorname{det}\left[\left(\varepsilon_{t}\left(e_{t}, e_{j}\right)\right]\right.}\right|_{t=0}\right\} d A_{r c}
$$

 or the mean curvature $H_{0}$ of $f$, which notation will become clear from the context. Let us fix $x_{0} \in M$ and let $e_{1}, c_{1}$ be an orthonormal frame of $\mathcal{M}_{0}=\left(M, g_{0}\right)$ around $x_{0}$ satinfying $\boldsymbol{M a}_{\theta_{1}\left(n_{0}\right)}=0$. Then, $\Delta_{i}(x, 0):=\sigma_{i}(\varepsilon) \in T_{3} M=\left(\pi^{-1} T M\right)_{(\pi, 0)}$ can be extended as a local section of $\pi^{-1} T M$ on a neighbourhood of $\left(x_{0}, 0\right) \in M \times I$,
reaulting in $\tilde{e}_{1}(x, t) \in\left(x^{-1} T M\right)_{(x, t)}=T_{s} M$. Clearly, we may assume $\tilde{e}_{1}(x, t), \tilde{e}_{3}(x, t)$ to be linearly independent and, through Gramm-Schmidt orthogonalisation, to be orthonormal in $\left(T_{r} M, g_{2}\right)$. Thus, we obtnin sections $\hat{e}_{1}, \hat{e}_{1}$ of $\pi^{-1} T M$ aatisfying

1) $\bar{e}_{1}(x, 0)=e_{1}(x)$ and so $\stackrel{N_{0}}{\nabla}\left(\bar{e}_{i}(\cdot, 0)\right)_{(x a l}={ }^{M_{0}} e_{1}\left(x_{0}\right) \equiv 0$,
2) $\forall i, \hat{e}_{i}:=\dot{e}_{1}(\cdot, t)$ constitute an orthonormal frame of $M_{i}=\left(M, g_{i}\right)$.

Let $\frac{g}{i t},\left(e_{i}, 0\right),\left(e_{0}, 0\right) \in C^{\infty}(T(M \times I))$ be the vector fields respectively given by $\frac{\theta}{d i}(x, t)=(0,1),\left(e_{i,}, 0\right)_{(x, t)}=\left(e_{1}(x, t), 0\right),\left(e_{1}, 0\right)_{(x, t]}=(e,(x), 0), \forall(x, t) \in M \times I$. Then, we have

Henceforth, we denote by $\nabla d v$ the aecond fundamental furm of $v: M_{0} \times I \rightarrow N$ and by $\nabla d\left(f_{4}\right)$ the one of $f_{1}: M_{4} \rightarrow N$, the latter taking values on $V_{1}$.
Using Eq. (3.1), we get, $\forall x \in M$,

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\left\langle d\left(f_{i}\right)_{s}\left(e_{i}\right), d\left(f_{i}\right)_{s}\left(e_{j}\right)\right\rangle_{h}\right|_{i=0}=\left.\frac{\partial}{\partial \ell}\left\langle d v_{(s, t)}\left(e_{i}, 0\right), d v_{(s, l)}\left(e_{j}, 0\right)\right\rangle_{H}\right|_{t=0} \\
& =\left\langle\nabla_{P_{i}^{j}}^{-1}\left(d v\left(e_{1}, 0\right)\right)_{(x, 0]}, d_{x}\left(e_{1}\right)\right\rangle_{A}+\left\langle d f_{x}\left(e_{i}\right), \nabla_{H_{i}}^{-1}\left(d v\left(e_{j}, 0\right)\right)_{(x, 0)}\right\rangle_{k} \\
& =\left\langle\nabla d v_{(s, 0)}\left(\frac{\partial}{\partial i},\left(e_{i}, 0\right)\right), d f_{s}\left(e_{j}\right)\right\rangle_{h}+\left\langle d f_{s}\left(e_{i}\right), \nabla d v_{(s, 0)}\left(\frac{\partial}{\partial t},\left(e_{j}, 0\right)\right)\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\nabla_{e_{i}^{\prime-1}} W_{s,} d f_{s}\left(e_{j}\right)\right\rangle_{h}+\left\langle d f_{x}\left(e_{i}\right), \nabla_{i j}^{f^{-1}} W_{z}\right\rangle_{h} .
\end{aligned}
$$

Then, from the multilinear alternating property of the determinant, we obtain

$$
\begin{aligned}
\left.\frac{\partial}{\partial t} \operatorname{det}\left[g_{t}\left(e_{i}, e_{j}\right)\right]\right|_{t=0}(x) & \left.\left.=\frac{\partial}{\partial t} \operatorname{det} \right\rvert\,\left(d\left(f_{i}\right)_{s}\left(e_{i}\right), d\left(f_{i}\right)_{x}\left(e_{j}\right)\right\rangle_{\Delta}\right]\left.\right|_{t=0} \\
& =2\left\langle\nabla_{i_{i}}^{f^{-1}} W_{s,} d f_{x}\left(e_{i}\right)\right\rangle_{*}=2\left\langle\nabla^{f^{-1}} W_{s}, d f_{x}\right\rangle,
\end{aligned}
$$

where <, > is the Hilbert-Schmidt inner product of $\Lambda^{1} T_{x}^{+} M_{0} \otimes T_{f(\Omega)} N$. Hence,

$$
\left.\frac{\partial}{\partial t} \sqrt{\operatorname{det}\left[g_{1}\left(e_{i}, e_{j}\right)\right]}\right|_{t=0}(x)=\left\langle\nabla^{f^{-3}} W_{t}, d f_{x}\right\rangle
$$

Still considering the Riemanniau apaces $M_{0}=\left(M, g_{0}\right)$ and $\left(f^{-1} T N, h\right)$, we have the equality (cf. Ref. |Ee-Le/83])

$$
\left\langle\nabla^{f^{-1}} W_{\infty}, d f_{*}\right\rangle d A_{\infty}=<W, \delta d f>_{\star} d A_{\rho_{0}}+d(W \wedge * d)
$$

where is the Hodge operator in $\Lambda^{1} T^{*} M_{0} \otimes f^{-1} T N$. Thas,

$$
\begin{align*}
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t-0}= & \int_{D}\left\{\left.\frac{\partial}{\partial t}\left\|H_{t}\right\|^{2}\right|_{t=0}+\left(\|H\|_{L}^{2}+K\right)<W, \delta d>_{A}\right\} d A_{h} \\
& +\int_{D}\left(\|H\|_{A}^{2}+K\right) d(W \wedge * d) \tag{3.2}
\end{align*}
$$

If $X \in C^{\infty}(T M)$, and if $f(X), \theta \in C^{\infty}\left(T^{-} M\right)$ are given by $\oint(X)(Y)=<X, Y>\infty$ reap. $U(Y)=<W, \mathbb{U}(Y)>_{\wedge}, V Y \in C^{\infty}(T M)$, then

$$
\begin{aligned}
(W \wedge * d)(X) & =<W_{1} * d f(X)>_{A}=-<W_{1} \S(X) \wedge d\left(e_{1}, e_{1}\right)>_{A} \\
& =-\S(X) \wedge<W, d(\cdot)>_{\hbar}\left(e_{1}, \epsilon_{3}\right)=-f(X) \wedge \theta\left(e_{1}, c_{1}\right)=* \theta(X)
\end{aligned}
$$

Thos, $W \wedge \bullet d=\#$ with having compact anpport in $D$. By applying Stokes' theorem, we get

$$
\int_{D}\left(\|E\|_{A}^{2}+K\right) d(W \wedge * d)=\int_{D}\left(\|B\|_{A}^{B}+\bar{K}\right) d *\left\|=\int_{D}\right\| H \|_{i}^{3} d * \theta
$$

Furthermore,

$$
\|B\|_{A}^{3} d * \theta=d\left(\|H\|_{A}^{2}+\theta\right)-d\|B\|_{A}^{2} \wedge * \theta=d\left(\|E I\|_{A}^{2}+\theta\right)-<d\|H\|_{A}^{2}, \theta>d A_{50}
$$

and

$$
<d\|H\|_{h}^{2}, \theta>=d\|H\|_{h}^{2}\left(e_{i}\right)<W^{T}, d f\left(e_{i}\right)>_{A}=d\|H\|_{A}^{2}\left(d f^{-1}\left(W^{T}\right)\right)
$$

A further application of Stokes' theorem givea

$$
\begin{equation*}
\int_{D}\left(\|H\|_{h}^{k}+K\right) d(W \wedge * d)=-\int_{D} d\|H\|_{M}^{P}\left(d^{-1}\left(W^{T}\right)\right) d A_{9} \tag{3.3}
\end{equation*}
$$

Substitating thin reault in Eq. (3.2) and using the Weituenböck formala (see e.g. Ref. [Ee-Le/83]) $6 d=-2 H$, we obtain

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} W\left(f_{t}\right)\right|_{t \rightarrow 0}=\int_{D}\left\{\left.\frac{\partial}{\partial t}\left\|H_{t}\right\|_{A}^{2}\right|_{t=0}-2\left(\|H\|_{A}^{2}+\bar{K}\right)<W, H>_{4}-d\|B\|_{A}^{P}\left(d^{-1}\left(W^{T}\right)\right)\right\} d A_{\rho_{0}} \tag{3.4}
\end{equation*}
$$

Nert we calenlate $\frac{g}{d i}\left\|H_{i}\right\|_{i}^{l} \|_{f=0}$.

$$
\begin{aligned}
& V x \in D, t \in I, \\
& \boldsymbol{V}_{(x, d)} \ni \boldsymbol{H}_{(\pi, \lambda)}=\nabla_{l}\left(f_{i}\right)_{s}\left(\tilde{e}_{1}(x, t), \tilde{e}_{j}(x, t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5}\left(\nabla_{\left(\delta_{i}, \theta\right)}^{v^{-i}}\left(d v\left(\tilde{\delta}_{i}, 0\right)\right)_{(\varepsilon, \Omega)}\right)^{v}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left\{\nabla_{\left(\delta_{i}, \theta\right)}^{v^{-1}}\left(d v\left(\tilde{\varepsilon}_{i}, 0\right)\right)_{(x, A)}-\left\langle\nabla_{\left(\delta_{i}, 0\right)}^{v^{-1}}\left(d v\left(\tilde{\varepsilon}_{i}, 0\right)\right)_{(x, \lambda)}, d v_{(x, t)}\left(\tilde{\varepsilon}_{j}, 0\right)\right\rangle_{\Delta} d v_{(x, i)}\left(\tilde{\varepsilon}_{j}, 0\right)\right\} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \nabla_{\theta_{i n}}^{-1} \boldsymbol{B}_{(x, 0)}=
\end{aligned}
$$

$$
\begin{align*}
& -\left\langle\nabla_{\left(\tilde{e}_{i, 0)}^{0-2}\right)}^{\left.\left(d v\left(\tilde{e}_{i}, 0\right)\right)_{(z, 0)}, \nabla_{f_{i}^{-1}}^{-1}\left(d v\left(\tilde{e}_{j}, 0\right)\right)_{(x, 0)}\right\rangle_{t} d v_{(x, 0)}\left(\tilde{e}_{j}, 0\right)}\right. \\
& \left.-\left\langle\nabla_{\left\{\tilde{\sigma}_{1}, 0\right)}^{v^{-1}}\left(d v\left(\tilde{e}_{1}, 0\right)\right)_{\{x, 0)}, d v_{(x, 0)}\left(\tilde{e}_{j}, 0\right)\right\rangle_{A} \nabla_{j_{i}}^{-1}\left(d v\left(\tilde{e}_{j}, 0\right)\right)_{(x, 0)}\right\} \\
& =\frac{1}{2}\left\{\left(\nabla_{h}^{\mathbf{p}_{n}^{-1}} \nabla_{(\bar{\sigma}, 0)}^{v^{-1}}\left(d v\left(\tilde{\epsilon}_{,}, 0\right)\right)_{(s, 0)}\right)^{V}\right. \\
& -\left\langle\nabla_{\left.i \hat{c}_{i}, 0\right)}^{*-1}\left(d v\left(\tilde{e}_{i}, 0\right)\right)_{(x, 0)}, \nabla_{i_{i}^{\prime}}^{v_{i}^{-1}}\left(d v\left(\tilde{e}_{j}, 0\right)\right)_{(x, 0)}\right\rangle_{A} d f_{s}\left(e_{j}\right) \tag{3.5}
\end{align*}
$$

Note that, at the point $x_{0}$, we have

$$
\begin{equation*}
\left\langle\nabla_{e_{1}^{\prime}}^{\prime-1}\left(d f\left(e_{j}\right)\right)_{x_{0}}, d d_{x_{0}}\left(e_{k}\right)\right\rangle_{A}=\left\langle\nabla d v_{x_{0}}\left(e_{1}, e_{j}\right), d_{x_{0}}\left(e_{k}\right)\right\rangle_{4}=0 . \tag{3.0}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \left(\nabla_{f_{r}}^{-1} H_{\left(\sigma_{0}, 0\right)}\right)^{v}=\frac{1}{2}\left(\nabla_{f_{T}}^{v-1} \nabla_{\left(\bar{c}_{i}, 0\right)}^{v-1}\left(d v\left(\bar{\epsilon}_{1}, 0\right)\right)_{\left(m_{0}, 0\right)}\right)^{v}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\nabla_{\mid(t, 0,0|=|}^{v-1}\left(d v\left(\varepsilon_{i}, 0\right)\right)_{(20,0)}\right)^{v}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\nabla_{\mid\left(d_{1}, 0\right), H_{1}}^{N-1}\left(d v\left(\tilde{c}_{i}, 0\right)\right)_{(s, 0)}\right)^{v} .
\end{aligned}
$$

Since, $Y(x, t) \in M \times I$,
we obtain
 $T_{5} M \times\{0\}$. Let as call 2 , the section of $T M$ given by

$$
\begin{equation*}
z_{1}(x)=\nabla_{\frac{z_{i}}{-1}}^{c_{1}(0,0)} \tag{3.9}
\end{equation*}
$$

Then,

$$
\nabla_{\left(i_{1}, 0\right)}^{u^{-1}}\left(d v\left(\stackrel{N}{0}_{\nabla_{k i}^{z I}}^{e_{1}}\left(\tilde{e}_{1}, 0\right)\right)\right)_{(x, 0)}=\nabla_{a_{1}}^{f^{-1}}\left(d f\left(x_{1}\right)\right)_{z}
$$

and

Thas, Eq. (3.8) can be written as

$$
\begin{align*}
& \left(\nabla_{i}^{v^{-1}} H_{\left(n_{0}, 0\right)}\right)^{V}= \\
& =\frac{1}{2}\left(\nabla_{\Delta}^{f^{-1}} \nabla_{s_{i}}^{f^{-1}} W_{s_{0}}+\nabla_{t_{i}^{\prime-1}}^{f^{-1}}\left(d f\left(z_{i}\right)\right)_{s_{0}}+2 \bar{K} W_{s_{0}}+\nabla_{s_{i}}^{f^{-1}}\left(d f\left(e_{i}\right)\right)_{s_{0}}\right)^{V} \\
& =\frac{1}{2}\left(\nabla_{c_{1}}^{f^{-1}} \nabla_{c_{1}}^{f^{-1}} W_{s_{0}}+2 \nabla d f_{s_{0}}\left(\epsilon_{1}, z_{1}\right)+2 K W_{s_{0}}\right)^{V} \text {. } \tag{3.11}
\end{align*}
$$

If $U \in C^{\infty}(V)$, then

$$
\left\langle\nabla_{d} d f_{s_{0}}\left(e_{i}, z_{j}\right), U\right\rangle_{A}=\left\langle\nabla_{e_{d}}^{\mathrm{b}^{-1}}\left(d f\left(x_{j}\right)\right)_{s_{0}}, U\right\rangle_{A}=-\left\langle d f_{x_{0}}\left(x_{j}\right), \nabla_{u_{i}}^{0^{-1}} U_{x_{0}}\right\rangle_{A}
$$

and

$$
\begin{equation*}
\left.\left\langle\nabla d f_{s_{0}}\left(\epsilon_{i}, z_{j}\right), U\right\rangle_{k}=<z_{j}\left(x_{0}\right), \epsilon_{k}\right\rangle_{i_{0}}\left\langle\nabla d f_{s_{0}}\left(c_{i}, c_{k}\right), U\right\rangle_{k} \tag{3.12}
\end{equation*}
$$

From the equality

$$
\delta_{j k}=\left\langle\bar{c}_{j}(x, t), \bar{e}_{k}(x, t)\right\rangle_{n}=\left\langle d v_{(x, f)}\left(\tilde{c}_{j}(x, t), 0\right), d v_{(x,)}\left(\varepsilon_{k}(x, t), 0\right)\right\rangle_{\Delta},
$$

we get, using Eus. (3.7),

$$
\begin{aligned}
& 0=\left.\frac{\partial}{\partial t}\left\langle d v\left(\tilde{e}_{j}, 0\right), d v\left(\tilde{c}_{k}, 0\right)\right)_{A}\right|_{(=0,0)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\nabla_{e_{1}}^{f^{-1}} W_{x_{0}}, d f_{x_{0}}\left(e_{\Delta}\right)\right\rangle_{\Delta}+\left\langle d_{x_{0}}\left(x_{1}\right), d_{s_{0}}\left(e_{A}\right)\right)_{A} \\
& +\left\langle d \psi_{v_{0}}\left(e_{j}\right), \nabla_{t_{t}}^{J^{-1}} W_{s_{0}}\right\rangle_{A}+\left\langle d s_{s_{0}}\left(e_{j}\right)_{,} d f_{s_{0}}\left(s_{k}\right)\right\rangle_{A} \\
& =\left\langle\nabla_{t_{j}^{\prime}}^{f^{-1}} W_{s_{n}}, d_{s_{0}}\left(e_{k}\right)\right\rangle_{k}+\left\langle x_{1}\left(x_{0}\right), e_{k}\right\rangle_{\infty_{0}}+\left\langle d_{m_{0}}\left(\epsilon_{j}\right), \nabla_{c_{k}}^{f^{-1}} W_{x_{0}}\right\rangle_{k}+\left\langle e_{j}, x_{k}\left(x_{0}\right)\right\rangle_{\infty_{0}}-
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\langle\nabla d f_{m}\left(e_{1}, x_{1}\right), U\right\rangle_{\Delta}=\left\langle x_{i}, e_{k}\right\rangle_{\infty}\left\langle\nabla d f_{s_{0}}\left(e_{i}, e_{k}\right), U\right\rangle_{A}=
\end{aligned}
$$

$$
\begin{aligned}
& -\left\langle d f_{\omega_{0}}\left(e_{k}\right), \nabla_{\pi_{i}^{\prime}}^{\prime-1} W_{\omega_{0}}\right\rangle_{k}\left\langle\nabla d f_{\omega_{0}}\left(e_{i}, e_{k}\right), V\right\rangle_{A} \\
& =-\left\langle z_{k}, e_{1}\right\rangle_{N_{0}}\left\langle\nabla d f_{x_{i}}\left(e_{0}, e_{k}\right), U\right\rangle_{\Delta}+2\left\langle d f_{x_{0}}\left(e_{i}\right), \nabla_{i_{t}}^{\prime-1} W_{s_{i}}\right\rangle_{\Delta}\left\langle d f_{x_{0}}\left(e_{i}\right), \nabla_{\theta_{i}}^{\prime-1} U_{x_{0}}\right\rangle_{A}
\end{aligned}
$$

Consequently,

$$
\nabla d / s_{0}\left(e_{i}, z_{i}\right)=-\left(\nabla_{\epsilon_{4}}^{f^{-4}}\left(\nabla_{t_{4}}^{I^{-1}} W\right)_{z_{0}}^{T}\right)^{V}
$$

Equation (3.11) thus becomes

$$
\begin{aligned}
& =\frac{1}{2}\left\{\left(\nabla_{t_{4}^{\prime-1}}^{J^{-1}}\left(\nabla_{t_{1}^{\prime-1}} W\right)_{s_{0}}^{V}\right)^{V}-\left(\nabla_{t_{i}^{\prime-1}}^{J_{0}}\left(\nabla_{t_{i}^{\prime-1}} W\right)_{s_{0}}^{T}\right)^{V}+2 K W_{s_{0}}^{V}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2}\left\{\Delta W_{\Delta}^{V}+\left(\nabla_{a t}^{f^{-1}}\left(\nabla_{a_{1}^{\prime-1}}^{f^{-1}} W^{T}\right)_{\omega_{0}}^{V}\right)^{V}-\left(\nabla_{\iota_{i}^{\prime}}^{-1}\left(\nabla_{t_{0}^{\prime}}^{f^{-1}} W^{V}\right)_{-\infty}^{T}\right)^{V}\right. \\
& \left.-\left(\nabla_{0}^{f^{-1}}\left(\nabla_{0}^{f^{-1}} W^{T}\right)_{\tau_{0}}^{T}\right)^{V}+2 R W_{t_{0}}^{V}\right\} \text {, } \tag{3.13}
\end{align*}
$$

where $\Delta W^{V}$ ia the Laplacian in the normal bundle $V_{0}$ to $f$. We further have

$$
\begin{equation*}
\left(\nabla_{4}^{\prime-1} W^{T}\right)^{V}=\left(\nabla_{t_{1}}^{\rho^{-1}}\left(d\left(d f^{-1}\left(W^{T}\right)\right)\right)\right)^{V}=\nabla d\left(e_{1}, d^{-1}\left(W^{T}\right)\right) \tag{3.14}
\end{equation*}
$$

Denoting by $\nabla \nabla \mathbb{d}$ the covariant derivative of $\nabla \mathbf{d f}$ in the Riemanian bundle


$$
\begin{align*}
\nabla_{a_{1}}\left(\nabla d\left(s_{i}, d^{-1}\left(W^{T}\right)\right)\right)_{x_{0}}= & \nabla_{c_{1}} \nabla_{d d_{0}}\left(\varepsilon_{1}, d^{-1}\left(W^{T}\right)\right)+ \\
& +\nabla_{d d_{0}}\left(e_{1}, \mathcal{V}_{\theta_{1}}\left(d^{-1}\left(W^{T}\right)\right)\right) \tag{3.18}
\end{align*}
$$

Using Codarsi' equation in a space form ( $N, h$ ) (cf. egg. Ref. [Ko-No/69]), we get

$$
\begin{aligned}
\nabla_{t} \nabla \nabla_{r_{0}}\left(e_{1}, e_{t}\right) & =\nabla_{0_{1}} \nabla d d_{s_{0}}\left(e_{k}, e_{1}\right)=\nabla_{e_{4}} \nabla d d_{s}\left(e_{1}, e_{1}\right) \\
& =\nabla_{e_{t}}\left(\nabla d\left(e_{1}, e_{1}\right)\right)_{m_{0}} .
\end{aligned}
$$

Than,

$$
\begin{equation*}
\nabla_{s_{i}} \nabla_{i} f_{x_{0}}\left(\varepsilon_{1}, \varepsilon_{k}\right)=2{\stackrel{V}{v_{i}}}_{V}^{\nabla_{s_{0}}} \tag{3.16}
\end{equation*}
$$

Since $d:\left(T M, \sigma_{0}\right) \rightarrow\left(T_{0}, h\right)$ is an isometry of Riemannian bandles and $\left(\nabla^{f^{-1}}\right)^{T}$ it the connection of $\left(T_{0}, h\right)$, we obtain, by epplying Eqie. (3.14), (3.15), and (3.16) to Eq. (3.13),

$$
\begin{align*}
& \left.-\left(\nabla_{e_{i}}^{f^{-1}}\left(\nabla_{i_{i}}^{f^{-1}} W^{V}\right)_{m_{0}}^{T}\right)^{V}-\left(\nabla_{i_{i}}^{f^{-1}}\left(\nabla_{e_{i}}^{f^{-1}} W^{T}\right)_{s i}^{T}\right)^{V}+2 K W_{c_{0}}^{V}\right\} . \tag{3.17}
\end{align*}
$$

If we now replace $W^{T}$ by $\left(\nabla_{s}^{\prime} W^{T}\right)^{T}$ in Eq. (2.14), we get

$$
\begin{equation*}
\left(\nabla_{e_{4}^{\prime}}^{\prime^{-1}}\left(\nabla_{\omega_{4}}^{f^{-1}} W^{T}\right)_{30}^{T}\right)^{V}=\nabla_{S_{0}}\left(e_{1}, d f^{-1}\left(\left(\nabla_{4}^{f^{-1}} W^{T}\right)^{T}\right)\right) \tag{3.18}
\end{equation*}
$$

and, analogonaly,

$$
\begin{equation*}
\left(\nabla_{i_{1}}^{f^{-1}}\left(\nabla_{t_{j}}^{f^{-1}} W^{V}\right)_{x_{0}}^{T}\right)^{V}=\nabla_{d} f_{s_{0}}\left(a_{i}, d^{-1}\left(\left(\nabla_{0_{j}}^{f^{-1}} W^{V}\right)^{T}\right)\right) \tag{3.19}
\end{equation*}
$$

The latter equation can be evalaated as follows.

$$
\begin{aligned}
& =\left\langle d f_{x_{0}}\left(e_{k}\right), \nabla_{c_{j}}^{f-1} W_{s_{0}}^{V}\right\rangle_{A} \nabla d x_{x_{0}}\left(e_{i}, e_{k}\right) \text { (3.20) } \\
& =-\left\langle\nabla U_{m_{5}}\left(c_{j}, c_{t}\right), W^{V}\right\rangle_{A} \nabla d_{m}\left(\varepsilon_{1}, c_{2}\right) \text {. }
\end{aligned}
$$

Thm, in perticuler.

$$
\begin{equation*}
\left(\nabla_{t_{i}}^{\prime-1}\left(\nabla_{e_{i}^{\prime}}^{T^{-1}} W^{V}\right)_{s_{0}}^{T}\right)^{V}=-\bar{A}_{\omega_{0}}\left(W_{s_{0}}^{V}\right) \tag{3.21}
\end{equation*}
$$

Subatitation of Eqs. (3.18) and (3.21) in Eq. (3.17) yield

$$
\begin{align*}
& \left(\nabla_{i_{H}^{\prime-i}}^{H_{\left(0_{0}, 9\right)}}\right)^{V}= \tag{3.22}
\end{align*}
$$

So,

$$
\begin{aligned}
& =\left\langle\Delta W_{\infty}^{V}+2 \stackrel{V}{\nabla}_{\psi-1}(W r) H_{m}+\tilde{A}_{s_{0}}\left(W_{w_{0}}^{V}\right)+2 R W_{*_{0}}^{V}, H_{s_{0}}\right\rangle_{\Delta} .
\end{aligned}
$$

 (3.4) becomes

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} W_{D}\left(f_{t}\right)\right|_{t=0}= \\
& =\int_{D}\left\{<\Delta W^{V}, H>_{h}+d\|H\|_{A}^{2}\left(d d^{-1}\left(W^{T}\right)\right)+<\dot{A}\left(W^{V}\right), H>_{A}+\right. \\
& \left.\quad+2 K<W^{V}, H>_{A}-2\left(\|H\|_{A}^{2}+\bar{K}\right)<W^{V}, H>_{A}-d\|H\|_{A}^{2}\left(d d^{-1}\left(W^{T}\right)\right)\right\} d A_{10} \\
& =\int_{D}\left\{<\Delta W^{V}, H>_{A}+<\bar{A}\left(W^{V}\right), H>_{A}-2\|B\|_{A}^{2}<W^{V}, H>_{A}\right\} d A_{\infty 0} .
\end{aligned}
$$

Since $W$ has compact support in $D$, we have (see e.g. Ref. [Ee-Le/83])

$$
\int_{D}<\Delta W^{V}, H>_{\star} d A_{70}=\int_{D}\left\langle W^{V}, \Delta B>_{\star} d A_{90} .\right.
$$

Farthermore, $<\bar{A}\left(W^{v}\right), H>_{A}=<W^{V}, \tilde{A}(H)>_{A}$. Therefore,

$$
\left.\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)\right|_{t=0}=\int_{D}\left\langle\Delta H+\tilde{A}(H)-2\|H\|_{\Lambda}^{2} H, W^{V}\right\rangle_{h} d A_{90},
$$

which depends only on the vertical part of $W$. Hence, $f$ is a critical point of $w$, for compactly supported veriations on $D$, iff

$$
\Delta H+\tilde{A}(H)-2\|H\|_{h}^{2} H=0 \text { on } D
$$

If wa replace in the above derivation $t=0$ by arbitrary, we obtaly in the aame way the equation

$$
\frac{\partial}{\partial t} w_{D}\left(f_{t}\right)=\int_{D}\left\langle\Delta H_{t}+\tilde{A}_{t}\left(H_{t}\right)-2\left\|H_{t}\right\|_{h}^{2} H_{t}, \frac{\partial v}{\partial t}(\cdot, t)\right\rangle_{A} d A_{f t}
$$

where $\bar{\lambda}_{4} \in C^{\infty 0}\left(\otimes V_{i}^{*} \otimes V_{t}\right)$ is the tenaor defined by Eq. (2.12), relative to the immersion $f_{1}: M_{1} \rightarrow N$, and where $\Delta H_{i}$ is the Laplacian in the normal bundie $V_{i}$.

Now we suppose that $f=f_{0}: M_{0} \rightarrow N$ is a critical point of $W_{D}$ and that $W$ in a vertical vector field, i.e. $W \in C_{*}^{\infty}(V)$. Then, we calculate the second veristion formola for $W$ at $f$, that in , we are going to evaluate the expression

$$
\begin{align*}
\left.\frac{\partial^{2}}{\partial t^{2}} w_{D}\left(f_{t}\right)\right|_{t=0} & =\left.\int_{D} \frac{\partial}{\partial t}\left\{\left\langle\Delta H_{t}+\tilde{A}_{t}\left(H_{t}\right)-2\left\|H_{t}\right\|_{h}^{2} H_{t}, \frac{\partial v}{\partial t}(\cdot, t)\right\rangle_{h} d A_{g t}\right\}\right|_{t=0} \\
& =\int_{D}\left\langle\left.\nabla_{:}^{v^{-1}}\left(\Delta H_{t}+\tilde{A}_{t}\left(H_{t}\right)-2\left\|H_{t}\right\|_{h}^{2} H_{t}\right)\right|_{t=0}, W\right\rangle_{h} d A_{g 0} \tag{3.23}
\end{align*}
$$

Let $x_{0} \in M$ and let $e_{1}, c_{3}$ be an orthonormal basis of ( $T_{x_{0}} M, g_{0}$ ), which can be extended to form sectiona $\vec{e}_{1}, \vec{e}_{2}$ with some additional properties, to be given below, in order to simplify the forthcoming calculations. Let $E_{i}=d f_{s}\left(e_{i}\right)$ for $i=1,2$. Then, $\left(\dot{E}_{1}, \tilde{E}_{3}\right)$ is an orthonormal banis of ( $\left.T_{(s, 0)}, h\right)$. On the subbundle $T$ of $v^{-1} T N$, a covariant derivative ${ }_{\nabla}^{\boldsymbol{\nabla}}$ is defined as $\stackrel{T}{\nabla}_{(v, k)} Z_{(x, k)}=\left(\nabla_{(*, k)}^{v-1} Z_{(x, k)}\right)_{\bar{T}}^{T}, \forall Z \in$
 Let $\boldsymbol{\gamma}: I \rightarrow M \times I$ be given by $\gamma(t)=\left(x_{a}, t\right)$. Then, the vector bundle $\gamma^{-1} T$ has base apace $I$ and indaced covariant derivative $\nabla^{\boldsymbol{r}^{-1}}$. We define the sections $E_{1}, E 2 \in C^{\infty}\left(\gamma^{-1} T\right)$ as to result from parallel-transporting $E_{1}, E_{1}$ on $(T, h)$ along $\gamma$. Thus, for each $t \in I, E_{1}(t), E_{1}(t)$ form an orthonormal basis of ( $\left.T_{\left(m_{0}, r\right)}, h\right)$ satisfying

$$
\nabla_{1}^{3^{-1}} E_{14}=0, \quad \forall 2=1,2
$$

Once more, for each $t \in I_{1}$, we parallel-transport the vectora $E,(t)$ of $\left(T_{1}\right)_{s_{0}}$ in $\left(T_{1}, h\right)$ along geodesics of $M_{1}=\left(M, g_{1}\right)$ passing through $x_{a}$. In this way, we obtain local amooth aections $\tilde{E}_{1}(\cdot, i)$ of $T_{1}$ that constitote, at each point $x \in M$, an orthonormal basia $\bar{E}_{1}(x, \ell), \bar{E}_{1}(x, t)$ of $\left(T_{(x, t)}, h\right)$. The $\bar{E}_{1}$ defime sections of the bnadle $T$, mooth in the variable $(x, t)$, and satiafy the properties

$$
\bar{\nabla}_{(0,0)} \tilde{E}_{1(\infty, \lambda)}=\bar{T}_{\nabla_{1}}\left(\tilde{E}_{1}(\cdot, t)\right)_{s_{0}}=0, \forall \varepsilon \in T_{s_{0}} M, t \in I
$$

and

$$
\stackrel{T}{\nabla}_{\mathrm{H}_{n}} \dot{E}_{i\left(x_{0}, t\right)}=\stackrel{T}{\nabla}_{\gamma^{\prime}(t)} \tilde{E}_{i\left(x_{0}, t\right)}=\nabla_{1}^{\gamma^{-t}} E_{i(0)}=0 .
$$

Since, $\forall i, x, \quad d(f)_{z}:\left(T_{2} M, g_{h}\right) \rightarrow\left(T_{(\infty, A)}, h\right)$ is an isometry, $\tilde{e}_{i}(x, t)$ defined by $d\left(f_{t}\right)_{x}\left(\tilde{e}_{1}(x, t)\right)=\tilde{E}_{i}(x, t)$ gives a smooth vector field $\tilde{e}_{11}=\tilde{e}_{1}(\cdot, t)$ of $M_{i}$ which is, in fact, the one obtained by parellel transport of $\tilde{\varepsilon}_{1}\left(x_{a}, t\right)$ along geodenics of $\mathcal{M}_{i}$. Thas, for each $t, x, \bar{e}_{1}(x, t), \bar{e}_{2}(x, t)$ is an orthonormal basis of ( $T_{s} M, g_{1}$ ) antistying

$$
\stackrel{M_{1}}{\nabla_{0}}\left(\tilde{\varepsilon}_{i}(\cdot, t)\right)_{x_{0}}=0 \text { i.e. } \quad\left(\nabla_{(t, 0)}^{v-i}\left(d v\left(\tilde{c}_{1}, 0\right)\right)_{\left(x_{0}, A\right)}\right)^{T}=0, \forall \varepsilon \in T_{m 0} M, t \in I \text { (3.24) }
$$

and

$$
\begin{equation*}
\left(\nabla_{i_{H}^{-1}}^{-1}\left(d v\left(\tilde{c}_{i}, 0\right)\right)_{(i=, 0)}\right)^{T}=0, \forall t \in I \tag{3.25}
\end{equation*}
$$

We denote $c_{i}(x)=\tilde{e}_{1}(x, 0), \forall x \in D$ and $a_{1}$ as in Eq. (3.9). Then, we have

$$
\nabla_{i_{i}}^{v^{-1}}\left(d v\left(\tilde{c}_{i}, 0\right)\right)_{\left(e_{0}, 0\right)}=\left(\nabla_{v^{\prime}}^{v^{-1}}\left(d v\left(\dot{c}_{i}, 0\right)\right)_{\left(\omega_{0}, 0\right)}\right)^{v}
$$

$$
\begin{align*}
& =\left(\nabla_{d v_{\left(x_{0}, 0\right)}}\left(\frac{\partial}{\partial t},\left(\tilde{e}_{1}, 0\right)\right)+d f_{x_{0}}\left(x_{1}\right)\right)^{V} \tag{3.26}
\end{align*}
$$

Observe that, as a consequence of Eqs. (3.20) and (3.7), we have

$$
\begin{align*}
& \left\langle z_{j}\left(x_{0}\right), e_{t}\right\rangle_{\omega}=\left\langle d_{x_{0}}\left(z_{j}\right), d f_{x 0}\left(e_{k}\right)\right\rangle_{\phi}=\left\langle d f_{x_{0}}\left(\nabla_{i=1}^{-1} \tilde{c}_{j}\right), d f_{s 0}\left(e_{k}\right)\right\rangle_{\alpha} \\
& =\left\langle\nabla_{i}^{p^{-4}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)_{\left(\varepsilon_{s}, 0\right)}-\nabla_{d v_{(-0,0)}}\left(\frac{\partial}{\partial t},\left(\tilde{c}_{j}, 0\right)\right), d v_{\omega}\left(e_{b}\right)\right\rangle_{A} \tag{3.27}
\end{align*}
$$

whence

$$
\begin{equation*}
\nabla d f_{x_{0}}\left(e_{i}, z_{j}\right)=\left\langle W_{s_{1}}, \nabla d f_{x_{0}}\left(e_{j}, e_{k}\right)\right\rangle_{k} \nabla d x_{x_{0}}\left(e_{i}, e_{k}\right) \tag{3.28}
\end{equation*}
$$

From Eq. (3.24), we get

Hence, by applying Eq. (3.10), we obtain

$$
\begin{aligned}
& \left\langle\left(\nabla_{\frac{v_{n}}{-1}} \Delta H\right)_{\left(0_{0}, 0\right)}, W\right\rangle_{\mathrm{A}}= \\
& =\left\langle\nabla_{V^{-1}}^{-1}\left(\nabla_{\left(L_{1,0}\right)}^{-1}\left(\nabla_{\left(\delta_{t}, 0\right)}^{-1} \boldsymbol{H}\right)^{V}\right)_{\left(\theta_{0}, \Omega\right)}^{V}, W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& +\nabla_{(B, i(t, 0) \mid}^{*-4}\left(\nabla_{\left(\psi_{i}, 0\right)}^{v^{-1}} H\right)_{\left(x_{0}, 0\right)}^{V} \\
& \left.-\nabla_{\eta^{\psi^{-1}}}\left(\left\langle\nabla_{\left(\tilde{\omega}_{i}, 0\right)}^{v^{-1}}\left(\nabla_{\left(\tilde{e}_{i, 0)}\right.}^{v^{-i}} H\right)^{v}, d v\left(\tilde{e}_{j}, 0\right)\right\rangle_{A} d v\left(\tilde{e}_{j}, 0\right)\right)_{(-0,0)}, W\right)_{A}
\end{aligned}
$$

$$
\begin{aligned}
& +\nabla_{\left(w_{1}\left(x_{0}\right), 0\right)}^{v-1}\left(\nabla_{\left(\delta_{i s i}\right)}^{v^{-1}} H\right)_{\left(x_{0}, 0\right)}^{V} \\
& \left.-\left\langle\nabla_{\left(\hbar_{0}, 0\right)}^{v-1}\left(\nabla_{\left(\delta_{i}, 0\right)}^{v^{-1}} H\right)^{v}, d v\left(\tilde{\varepsilon}_{j}, 0\right)\right\rangle_{A} \nabla_{h}^{V^{-1}}\left(d v\left(\tilde{\varepsilon}_{j}, 0\right)\right)_{\left(m_{0}, 0\right)}, W\right\rangle_{A} \\
& =\left\langle\nabla_{(0,0)}^{v^{-1}} \nabla_{h}^{j_{i}^{-1}}\left(\nabla_{(d, 0)}^{p^{-1}} \boldsymbol{H}\right)_{(\rightarrow,, 0)}^{V}+\nabla_{i b^{\prime}}^{\prime-1}\left(\nabla_{d i}^{\prime-1} \boldsymbol{H}\right)_{m}^{V}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left\langle\nabla_{e_{i}}^{f^{-1}}\left(\nabla_{e_{i}}^{f^{-1}} \boldsymbol{H}\right)^{V}, d f\left(e_{j}\right)\right\rangle_{k} \nabla_{e_{j}}^{f^{-1}} W_{m}, W\right\rangle_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\langle\nabla_{\left(z_{i}, 0\right)}^{r^{-1}} H, d v\left(\tilde{c}_{j}, 0\right)\right\rangle_{k} \nabla_{H_{H}^{-1}}^{p^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)\right]_{\left(x_{0}, 0\right)} \\
& \left.+\nabla_{i_{i}}^{f^{-1}}\left(\nabla_{\epsilon_{i}}^{f^{-1}} H\right)_{x_{0}}^{V}+\left\langle\nabla_{t_{1}}^{f^{-1}} G_{x_{0}}, \nabla d f_{x_{0}}\left(e_{i}, e_{j}\right)\right\rangle_{k} \nabla_{\varepsilon_{i}}^{f^{-1}} W_{x_{0}}, W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\nabla_{r_{i}}^{f^{-1}}\left(\nabla_{t_{i}}^{f^{-1}} H\right)_{x_{0}}^{V}+\left\langle\nabla_{t_{i}}^{f^{-1}} H_{x_{0}}, \nabla d f_{x_{0}}\left(e_{i}, e_{j}\right)\right\rangle_{A} \nabla_{i_{j}}^{f^{-1}} W_{x_{0}}, W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& +\nabla_{c_{i}}^{f^{-1}}\left[\left\langle\left.\nabla_{c_{i}^{\prime-1}}^{\nabla_{j}^{v-2}} H\right|_{t=0}, d\left(e_{j}\right)\right\rangle_{A} d\left(e_{j}\right)\right]_{s_{0}} \\
& +\nabla_{0}^{f_{i}^{-1}}\left\{\left\langle\left.\nabla_{i f}^{p^{-1}} \boldsymbol{H}\right|_{i=0}, \nabla_{\epsilon_{i}}^{f^{-1}}\left(d f\left(\epsilon_{j}\right)\right)\right\rangle_{h} d\left(e_{j}\right)\right]_{\sigma_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\bar{K} \nabla_{a_{i}}^{J^{-1}} \mid<W, B>_{A}<d\left(e_{i}\right), d f\left(e_{j}\right)>_{A} d f\left(e_{j}\right)\right]_{\Sigma_{0}} \\
& -\nabla_{e_{i}}^{f^{-1}}\left[\left\langle\nabla_{i_{i}^{\prime}}^{f^{-1}} H, d f\left(e_{j}\right)\right\rangle_{h} d f\left(e_{j}\right)\right]_{m_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& -\nabla_{t i}^{f^{-1}}\left[\left.\left\langle\nabla_{0}^{f_{i}^{-1}} H, d f\left(e_{j}\right)\right\rangle_{\hbar} \nabla_{H}^{j^{-1}}\left(d v\left(\epsilon_{j}, 0\right)\right)\right|_{t=0}\right]_{t_{0}}+\nabla_{\pi}^{f^{-1}}\left(\nabla_{t}^{f^{-1}} H\right)_{m_{0}}^{V}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\langle\nabla_{c_{i}}^{f^{-1}} H_{x_{0}}, \nabla d f_{s_{0}}\left(e_{i}, c_{j}\right)\right\rangle_{A} \nabla_{e_{j}}^{f^{-1}} W_{x_{0}}, W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\nabla_{4_{i}^{\prime-1}}^{f^{-1}} \mid\left\langle\left.\nabla_{\nabla_{i}^{\prime-1}} H\right|_{t=0}, \nabla_{\varepsilon_{i}}^{f^{-1}}\left(d f\left(e_{j}\right)\right)\right\rangle_{n} d\left(e_{j}\right)\right]_{s_{0}} \\
& +\nabla_{u_{i}}^{f^{-1}}\left[\left\langle\left.\nabla_{H_{i}}^{j^{-1}} H\right|_{1=0} d f\left(e_{j}\right)\right\rangle_{h} \nabla_{e_{i}}^{f^{-1}}\left(d f\left(e_{j}\right)\right)\right]_{s_{0}}+\nabla_{e_{i}}^{f^{-1}} \nabla_{u_{i}}^{f^{-1}} H_{\varepsilon_{0}} \\
& -\nabla_{r_{i}}^{\prime^{-3}}\left[\left\langle\nabla_{r_{i}}^{f^{-1}} H, d f\left(e_{j}\right)\right\rangle_{i} d\left(e_{j}\right)\right]_{s_{0}} \\
& \left.-\nabla_{\varepsilon_{1}}^{f^{-1}} \mid\left\langle\nabla_{e_{d}^{\prime-1}}^{f^{-1}} H,\left.\nabla_{H_{T}^{\prime}}^{-1}\left(d v\left(\hat{\epsilon}_{j}, 0\right)\right)\right|_{t=0}\right\rangle_{A} d f\left(e_{j}\right)\right]_{\theta_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\langle\nabla_{e_{i}}^{f^{-1}} H_{x_{0}}, \nabla d f_{x_{0}}\left(e_{1}, e_{j}\right)\right\rangle_{A} \nabla_{e_{j}}^{f^{-1}} W_{x_{0}}, W\right\rangle_{A} .
\end{aligned}
$$

Since $\boldsymbol{W}$ ie vertical, we have, on $D$.

$$
\begin{aligned}
& \left\langle\nabla_{e_{1}^{\prime-1}}^{f^{-1}}\left[\left\langle\nabla_{c_{1}^{\prime-1}}^{f^{-1}},\left.\nabla_{j}^{p_{j}^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)\right|_{t=0}\right\rangle_{h} d f\left(\epsilon_{j}\right)\right]_{z_{0}}, W\right\rangle_{h}= \\
& =\left\langle\nabla_{\epsilon}^{f^{-1}} H,\left.\nabla_{h}^{p_{h}^{-1}}\left(d v\left(\varepsilon_{j}, 0\right)\right)\right|_{t=0}\right\rangle_{h}\left\langle\nabla d \int\left(e_{i}, e_{j}\right), W\right\rangle_{h} \text {. }
\end{aligned}
$$

Using the equality $\left\langle\nabla_{e^{-1}}^{f^{-1}} H, d f(\epsilon,)\right\rangle_{h}=-\left\langle H, \nabla d f\left(e_{i}, e_{j}\right)\right\rangle_{h}$, we get

$$
\begin{aligned}
& \left\langle\left(\nabla_{H}^{V_{h}^{-1}} \Delta \boldsymbol{H}\right)_{\left(m_{0,0}\right)}, W\right\rangle_{A}=
\end{aligned}
$$

$$
\begin{aligned}
& +\nabla_{c_{i}}^{f^{-1}}\left[\left\langle\left.\nabla_{f_{H}^{\prime-1}}^{\prime^{-1}} H\right|_{t=0}, d f\left(e_{j}\right)\right\rangle_{A} \nabla_{c_{i}}^{f^{-1}}\left(d f\left(e_{j}\right)\right)\right]_{s_{0}}+\nabla_{i_{i}^{\prime}}^{f_{i}^{-1}} \nabla_{u_{6}}^{f^{-1}} H_{s_{0}} \\
& -\nabla_{i_{i}^{\prime}}^{\prime-1}\left(\nabla_{t_{1}^{\prime}}^{f^{-1}} \boldsymbol{H}\right)_{x_{0}}^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\langle\nabla_{e_{i}}^{f^{-1}} H_{x_{0}}, \nabla d f_{x_{0}}\left(e_{i}, e_{j}\right)\right\rangle_{A} \nabla_{i_{j}}^{f^{-1}} W_{x_{0}}, W\right\rangle_{A} .
\end{aligned}
$$

Since $\stackrel{i \pi}{\nabla}_{\nabla_{0,}} \epsilon_{j\left(x_{0}\right)}=0$, clearly

$$
\left\langle\nabla_{e_{1}^{\prime}}^{f^{-1}}\left[\left\langle\left.\nabla_{f_{j}^{-1}}^{H}\right|_{t=0} d f\left(\nabla_{e_{1}}^{M_{j}} \epsilon_{j}\right)\right\rangle_{h} d\left(e_{j}\right)\right]_{s e}, W\right\rangle_{a}=0
$$

## Hence,

$$
\begin{aligned}
& \left\langle\left(\nabla_{t}^{y^{-1}} \Delta H\right)_{\left(m_{0, j)}, W\right.}, W\right\rangle_{A}=
\end{aligned}
$$

$$
\begin{align*}
& \left.+\nabla_{e_{i}}^{f^{-1}} \mid\left\langle\left.\nabla_{\theta_{i}^{-1}}^{p^{-1}} H\right|_{t=0}, d f\left(e_{j}\right)\right\rangle_{\mathrm{A}} \nabla_{t}^{f_{i}^{-1}}\left(d f\left(\epsilon_{j}\right)\right)\right]_{s_{0}} . \\
& =\left\langle\nabla_{c_{t}}^{\delta^{-1}} H_{x_{0}}, \nabla_{\frac{V_{h}}{-1}}\left(d v\left(\varepsilon_{3}, 0\right)\right)_{t=0}\left(x_{0}\right)\right\rangle_{h} \nabla d f_{x_{0}}\left(e_{1}, c_{3}\right) \\
& +\nabla_{e_{i}}^{f^{-1}}\left\{\left.\left\langle H, \nabla_{d f}\left(e_{i}, e_{j}\right)\right\rangle_{h} \nabla_{i}^{v_{i}^{-1}}\left(d v\left(\bar{e}_{3}, 0\right)\right)\right|_{t=0}\right]_{\varepsilon_{0}} \\
& \left.+\left\langle\nabla_{c_{i}^{\prime-1}}^{f_{s o}} H_{d s_{s}}\left(\varepsilon_{i}, \epsilon_{j}\right)\right\rangle_{h} \nabla_{\varepsilon_{j}}^{f^{-1}} W_{\infty}, W\right\rangle_{h} \text {. } \tag{3.29}
\end{align*}
$$

Now, $\forall x \in D$,

$$
\left\langle\nabla_{\eta}^{\eta_{M}^{-1}} H_{[x, 0)}, d f_{s}\left(e_{j}\right)\right\rangle_{h}=-\left\langle H_{s}, \nabla_{H_{H}}^{v^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)_{(x, 0)}\right\rangle_{h}
$$

Moreover,

$$
\begin{align*}
\nabla_{i_{i}}^{j^{-1}}\left(d v\left(\bar{c}_{j}, 0\right)\right)_{(x, 0)} & =\nabla d v_{(x, 0)}\left(\frac{\partial}{\partial \ell^{\prime}},\left(c_{j}, 0\right)\right)+d f_{z}\left(z_{j}\right) \\
& =\nabla_{i j}^{\prime^{-1}} W_{z}+d f_{s}\left(z_{j}\right) \tag{3.30}
\end{align*}
$$

and, from Eq. (3.25), $\nabla_{\Delta_{j}}^{f-1} W_{s_{0}}+d_{x_{0}}\left(z_{j}\right)=\stackrel{V}{\nabla_{\theta f}} W_{s p o_{0}}$. Thus,

$$
\begin{aligned}
& =\left\langle-d\left(\left\langle H, \nabla_{W}^{v^{-1}}\left(d v\left(\varepsilon_{j}, 0\right)\right)\right\rangle_{A}\right)_{s_{0}}\left(\epsilon_{i}\right) \nabla d f_{s_{0}}\left(\epsilon_{i}, \epsilon_{j}\right), W\right\rangle_{A} \\
& -\left\langle H_{x_{0}}, \nabla_{H^{-1}}^{y^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)_{\left(x_{0}, 0\right)}\right\rangle_{h}\left\langle\nabla_{c_{1}^{\prime-1}}^{\left.\nabla_{c_{1}}^{f^{-1}}\left(d f\left(\epsilon_{j}\right)\right)_{s_{0}}, W\right\rangle_{A}}\right. \\
& =-\left\langle\nabla_{\varepsilon_{i}}^{I^{-1}} H_{x_{0}}, V_{\boldsymbol{\nabla}_{i j}} W_{x_{0}}\right\rangle_{\mathrm{A}}\left\langle\nabla d f_{m}\left(e_{i}, e_{j}\right), W\right\rangle_{\mathrm{A}} \\
& -\left\langle H_{x_{0}}, \nabla_{0_{1}}^{f^{-1}} \nabla_{0_{j}^{\prime-1}}^{\delta^{-1}} W_{x_{0}}+\nabla d f_{x_{0}}\left(e_{1}, x,\right)\right\rangle_{A}\left\langle\nabla d f_{r_{0}}\left(e_{1}, e_{j}\right), W\right\rangle_{h}
\end{aligned}
$$

$$
\begin{aligned}
& -\left\langle H_{s_{0}}, \nabla_{\theta_{i}}^{f^{-1}} \nabla_{\theta_{j}}^{\delta^{-1}} W_{s_{0}}\right\rangle_{A}\left\langle\nabla d_{s_{0}}\left(\varepsilon_{i}, \sigma_{j}\right), W\right\rangle_{A} \\
& -\left\langle H_{s_{0}}, \nabla d f_{s_{0}}\left(e_{i}, a_{j}\right)\right\rangle_{\Delta}\left\langle\nabla d f_{s_{0}}\left(\epsilon_{i}, c_{j}\right), W\right\rangle_{\hbar} \\
& -\left\langle H_{s_{0}}, \nabla_{\varepsilon_{i}} W_{s_{0}}\right\rangle_{A}\left\langle\nabla_{e_{i}^{\prime-1}}^{\nabla_{e_{i}}^{\prime-1}}\left(d f\left(c_{j}\right)\right)_{m_{0}}, W\right\rangle_{A} .
\end{aligned}
$$

As
and using Eq. (3.16), we have

$$
\begin{aligned}
& \left\langle\nabla_{\epsilon}^{\prime-1} \nabla_{\epsilon}^{r-1}\left(d /\left(e_{j}\right)\right)_{x_{0}}, W_{v_{0}}\right\rangle_{s}= \\
& =\left\langle\nabla_{\epsilon i}^{\prime-1}\left(\nabla_{d f}\left(\epsilon_{i}, e_{j}\right)+d f\left(\nabla_{\theta_{i}}, e_{j}\right)\right)_{\nabla_{0}}, W\right\rangle_{\star}
\end{aligned}
$$

$$
\begin{align*}
& =\left\langle\nabla_{0_{1}}^{V}\left(\nabla_{d f}\left(e_{i}, e_{j}\right)\right)_{s_{0}, W}\right\rangle_{A}=\left\langle\nabla_{4} \nabla d d_{s_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{A} \\
& =2\left\langle V_{a s} \boldsymbol{H}_{\mathbf{a n}_{0}}, W\right\rangle_{k} . \tag{3.31}
\end{align*}
$$

Hence, from the latter two partial calculations and Eq. (3.27), we obtain

$$
\begin{aligned}
& =-\left\langle\stackrel{V}{\nabla_{c}} H_{s_{0}}, \stackrel{V}{\nabla_{t}}, W_{s_{0}}\right\rangle_{i}\left\langle\nabla d / f_{s_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{h}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\langle H, \nabla d f_{s_{0}}\left(e_{i}, e_{k}\right)\right\rangle_{A}\left\langle W, \nabla d f_{50}\left(e_{j}, e_{k}\right)\right\rangle_{A}\left\langle\nabla d f_{s_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{A} \\
& -\left\langle H_{s 0}, \nabla d f_{s 0}\left(e_{i}, e_{k}\right)\right\rangle_{A}\left\langle W, \nabla d f_{s_{0}}\left(e_{k}, e_{j}\right)\right\rangle_{A}\left\langle\nabla d f_{s 0}\left(e_{i}, e_{j}\right), W\right\rangle_{A} \\
& -2\left\langle B_{r_{0}}, V_{0,} W_{s_{0}}\right\rangle_{\Delta}\left\langle V_{0} H_{-\infty}, W\right\rangle_{\Delta}
\end{aligned}
$$

$$
\begin{align*}
& -2\left\langle H_{50}, V_{\Delta,}, W_{20}\right\rangle_{\Delta}\left\langle V_{4}^{V}, H_{50}, W\right\rangle_{4} . \tag{3.32}
\end{align*}
$$

From Eq. (3.20), we have

Using again Eq. (3.26), combined with Eq. (3.31), we get

$$
\begin{aligned}
& \left\langle\nabla_{\omega}^{f-1}\left\{\left.\left\langle H, \nabla d r\left(e_{i}, e_{j}\right)\right\rangle_{A} \nabla_{f_{i}}^{p_{i}^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)\right|_{e=0}\right]_{m_{0}}, W\right\rangle_{A}=
\end{aligned}
$$

Equations (3.30), (3.19), (3.20), and (3.28) give

$$
\begin{aligned}
& ={\stackrel{V}{\nabla_{i}}}_{\nabla_{i}}^{\nabla_{j}} W_{x_{0}}+\left(\nabla_{e_{i}}^{\prime-1}\left(\nabla_{e_{j}}^{f-1} W\right)_{z}^{T}\right)^{V}+\nabla_{d f_{0}}\left(e_{i, ~}, z_{j}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left\langle\nabla d f_{m_{0}}\left(e_{j}, e_{k}\right), W\right\rangle_{k} \nabla d f_{m 0}\left(e_{i}, e_{k}\right) \\
& =\stackrel{\boldsymbol{v}}{\boldsymbol{\nabla}_{e_{i}}} \boldsymbol{V}_{\boldsymbol{\theta}_{t}} \boldsymbol{W}_{\boldsymbol{s}_{0}} \text {. } \tag{3.34}
\end{align*}
$$

Hence,

$$
\begin{align*}
& +\left\langle H_{1} \nabla_{d f} f_{s}\left(e_{i}, e_{j}\right)\right\rangle_{A}\left\langle\stackrel{V}{\nabla_{i c}}{\stackrel{V}{\nabla_{i j}}}^{V_{s e}}, W\right\rangle_{A}^{\prime} . \tag{8.35}
\end{align*}
$$

Subatituting now Eqs. (3.22), (3.32), (3.33), and (3.35) in Eq. (3.29), we obtain

$$
\begin{aligned}
& \left\langle\left(\nabla_{i_{H}}^{v^{-1}} \Delta H\right)_{\left(\sim_{0}, 9\right)}, W\right\rangle_{\Delta}= \\
& \frac{1}{2}\left\langle\stackrel{V}{\nabla_{e}}{\stackrel{V}{\nabla_{0}}}^{v}(\Delta W+2 K W+\hat{A}(W))_{s_{0}}, W\right\rangle_{0}
\end{aligned}
$$



On the other hand,

$$
\begin{aligned}
& =d\left(\left\langle z_{1}, e_{k}\right\rangle_{\infty}\right)_{m_{0}}\left(e_{i}\right) \stackrel{V}{\nabla_{0,}} H_{x_{0}}+\left\langle z_{i}, e_{k}\right\rangle_{i_{0}} \stackrel{V}{\nabla_{i d}} \stackrel{V}{\nabla_{0, ~}} H_{s_{0}}
\end{aligned}
$$

Using Eqa. (3.7), (3.9), (3.10), and (3.26), we have

$$
\begin{aligned}
& d\left(<z_{1}, e_{k}>_{\infty}\right)_{x_{0}}\left(e_{1}\right)=d\left(<d f\left(x_{i}\right), d\left(e_{k}\right)>_{k}\right)_{x_{0}}\left(e_{1}\right)= \\
& =d\left(\left\langle d f\left(\left.\nabla_{h}^{-1} \varepsilon_{i}\right|_{t=0}\right), d f\left(e_{k}\right)\right\rangle_{h}\right)_{H_{0}}\left(e_{i}\right) \\
& =d\left(\left\langle\left.\nabla_{f_{H}}^{-1}\left(d v\left(\tilde{e}_{i}, 0\right)\right)\right|_{t=0}-\left.\nabla d v\left(\frac{\partial}{\partial t},\left(\tilde{e}_{i}, 0\right)\right)\right|_{t=0}, d\left(e_{k}\right)\right\rangle_{\Delta}\right)_{s_{0}}\left(e_{i}\right) \\
& =d\left(\left\langle\left.\nabla_{h}^{-H_{h}^{-1}}\left(d v\left(\tilde{e}_{i}, 0\right)\right)\right|_{t=0}-\nabla_{a_{i}}^{f-1} W, d\left(\epsilon_{k}\right)\right\rangle_{A}\right)_{m_{0}}\left(\epsilon_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left\langle\nabla_{a t} W_{s 0}, \nabla_{d f_{50}\left(e_{1}, e_{k}\right)}\right\rangle_{\Delta}-\left\langle\nabla_{0}^{\prime-1} W, \nabla_{d d_{s 0}}\left(e_{i}, e_{k}\right)\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\nabla_{h}^{-1} \nabla_{\left(\tilde{\epsilon}^{v}, 0\right)}^{v-1}\left(d v\left(\tilde{e}_{i}, 0\right)\right)_{\left(\boldsymbol{m}_{0}, 0\right)}, d \psi_{x_{0}}\left(e_{k}\right)\right\rangle_{k}
\end{aligned}
$$

From Eq. (3.16), we have

$$
\begin{aligned}
& \left\langle\nabla_{\theta_{1}^{\prime}}^{f^{-1}}\left(\nabla_{\theta_{1}}^{\prime-1} W\right)_{s_{0}}^{T}, d f_{s_{0}}\left(e_{k}\right)\right\rangle_{h}=
\end{aligned}
$$

$$
\begin{aligned}
& =-\left\langle\nabla_{\epsilon_{4}} W, \nabla d f_{r_{0}}\left(e_{i}, e_{k}\right)\right\rangle_{A}-\left\langle W, \nabla_{e_{i}} \nabla d f_{\pi_{0}}\left(e_{i}, e_{k}\right)\right\rangle_{A}
\end{aligned}
$$

 we get

$$
\begin{aligned}
& =-2\left\langle H_{1}{\left.\stackrel{V}{\nabla_{s}}, W_{m}\right\rangle_{4} .}\right.
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& d\left(\left\langle x_{i}, e_{k}\right\rangle_{\infty}\right)_{m}\left(e_{i}\right)=
\end{aligned}
$$

Consequently,

So,

$$
\begin{aligned}
& \left\langle\left(\nabla_{h}^{v^{-4}} \Delta H\right)_{\left(x_{0}, \Delta\right)}, W\right\rangle_{\mathrm{A}}= \\
& =\frac{1}{2}\left\langle\stackrel{V}{\nabla_{\epsilon}}{\stackrel{V}{\nabla_{\epsilon}}}(\Delta W+2 \overline{K W}+\tilde{A}(W))_{m_{0}}, W\right\rangle_{\Delta}
\end{aligned}
$$

$$
\begin{align*}
& +\left\langle\boldsymbol{H}, \nabla d f_{r 0}\left(e_{1}, e_{j}\right)\right\rangle_{h}\left\langle\boldsymbol{V}_{\sigma_{1}}{\left.\stackrel{V}{\boldsymbol{\theta}_{i}}, W_{د 0}, W\right\rangle_{h} .} .\right. \tag{3.36}
\end{align*}
$$

Next we evaluate the term $\left\langle\nabla_{i}^{i^{-1}}\left(\tilde{A}_{4}\left(B_{t}\right)\right)_{(2,0)}, W\right\rangle_{t}$. On $D$, we have

$$
\begin{aligned}
& =\left\langle\nabla_{\left(a_{k}, 0\right)}^{v^{-1}}\left(d v\left(\bar{c}_{j}, 0\right)\right), \boldsymbol{F}\right\rangle_{A}\left(\nabla_{\left(\bar{d}_{j}, 0\right)}^{\sigma^{-1}}\left(d \cup\left(\bar{c}_{j}, 0\right)\right)\right)^{V} \\
& =\left\langle\nabla_{\left(\tilde{u}_{i}, 0\right)}^{v^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right), H\right\rangle_{\mathrm{A}} \nabla_{\left(\tilde{L}_{i}, 0\right)}^{v^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right) \\
& -\left\langle\nabla_{\left(\tilde{c}_{t}, 0\right)}^{\nabla^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)_{,} H\right\rangle_{A}\left\langle\nabla_{\left(d_{i}, 0\right)}^{v^{-1}}\left(d v\left(\tilde{e}_{J}, 0\right)\right), d v\left(\tilde{e}_{t}, 0\right)\right\rangle_{A} d v\left(\tilde{e}_{k}, 0\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left.\cdot\left\langle\nabla_{\left(d_{i}, 0\right)}^{v^{-1}}\left(d v\left(\tilde{c}_{j}, 0\right)\right)_{\left(x_{0}, 0\right)}, d v_{\left(m_{0}, 0\right)}\left(\tilde{c}_{b}, 0\right)\right\rangle_{A} \nabla_{\sum_{n}}^{\eta^{-1}}\left(d v\left(\tilde{c}_{k}, 0\right)\right)_{\left(x_{0}, 0\right)}, W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\nabla_{k}^{\nabla_{k}^{-1}}\left(d v\left(\tilde{\epsilon}_{k}, 0\right)\right)_{(v, 0)}, W\right\rangle_{k}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\langle\nabla d f_{m_{0}}\left(e_{i}, e_{j}\right),\left(\nabla_{i n}^{v^{-1}} H_{\left(s_{0}, 0\right)}\right)^{v}\right\rangle_{s}\left\langle\nabla d f_{s_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{A} \\
& +\left\langle\nabla d \delta_{s_{0}}\left(e_{i}, e_{j}\right), H\right\rangle_{\Delta}\left\langle\nabla_{(6,0)}^{v-1} \nabla_{\frac{1}{n}}^{r^{-1}}\left(d v\left(\tilde{e}_{j}, 0\right)\right)_{\left(v_{0}, 0\right)}\right.
\end{aligned}
$$

From Eqa. (3.10) and (3.28), we have

$$
\nabla_{i \hbar}^{\prime \prime-} d k_{0,011}^{-t}\left(d v\left(\tilde{e}_{j}, 0\right)\right)_{\left(x_{0}, 0\right)}=\nabla d f_{m}\left(z_{i}, e_{j}\right)=\left\langle W, \nabla d f_{0}\left(e_{0}, c_{k}\right)\right\rangle_{k} \nabla d f_{s_{0}}\left(e_{j}, c_{k}\right),
$$

and uaiag Eqa. (3.34) and (3.22), we obtain

$$
\begin{aligned}
& \left\langle\nabla_{i}^{r_{i}^{-1}}\left(\dot{A}_{t}\left(H_{t}\right)\right)_{(\infty, 0)}, W\right\rangle_{A}=
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\nabla d f_{s_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{\Delta} \\
& +\frac{1}{2}\left\langle\nabla d d_{s_{0}}\left(e_{0}, e_{j}\right), \Delta W_{s_{0}}+2 K W_{s_{0}}+\tilde{A}_{s}\left(W_{s_{0}}\right)\right\rangle_{A}\left\langle\nabla d f_{s}\left(e_{1}, \varepsilon_{j}\right), W\right\rangle_{h} \\
& +\left\langle\nabla d f_{s}\left(e_{i}, e_{j}\right), B\right\rangle_{A}\left\langle\frac{V}{\nabla_{4}} V_{i j} W_{s 0}+\delta_{j} \pi W_{s 0}+\left\langle W, \nabla d_{s o}\left(e_{i}, e_{k}\right)\right\rangle_{A} \nabla d d_{s}\left(e_{j}, e_{k}\right), W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\langle\nabla d v_{s_{0}}\left(e_{i}, e_{k}\right), W\right\rangle_{\Delta}\left\langle\nabla d f_{s_{0}}\left(e_{j}, e_{k}\right), H\right\rangle_{A}\left\langle\nabla d f_{s_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{A} \\
& +\frac{1}{2}\left\langle\tilde{A}_{s 0}\left(W_{s 0}\right), \Delta W_{s 0}+2 R W_{s 0}+\tilde{A}_{s 0}\left(W_{s 0}\right)\right\rangle_{n} \\
& \left.+\left\langle\nabla d_{s_{0}}\left(e_{1}, e_{j}\right), H\right\rangle_{4}\left\langle\nabla_{t_{4}}^{V} V_{0_{j}} W_{s_{0}}, W\right\rangle_{A}+2 K<H_{s 5}, H\right\rangle_{4}\left\langle W_{s_{0}}, W\right)_{A} \\
& +\left\langle\nabla d d_{50}\left(e_{i}, e_{j}\right), H\right\rangle_{A}\left\langle\nabla \psi_{\infty}\left(e_{i}, e_{k}\right), W\right\rangle_{A}\left\langle\nabla d \|_{s_{0}}\left(e_{j}, e_{b}\right), W\right\rangle_{A}
\end{aligned}
$$

$$
\begin{align*}
& +2 K<W_{A_{n}}, H>_{\Delta}<H_{s_{0}}, W>_{A}+2 K<H_{n_{0}}, H>_{A}\left(W_{\boldsymbol{s}}, W\right)_{A} \\
& +2\left\langle\nabla d f_{s_{0}}\left(e_{1}, e_{k}\right), W\right\rangle_{\Delta}\left\langle\nabla d_{s}\left(e_{j}, e_{A}\right), E\right\rangle_{A}\left\langle\nabla d f_{t_{0}}\left(e_{i}, e_{j}\right), W\right\rangle_{A} \\
& +\frac{1}{2}\left\langle\tilde{\Lambda}_{\infty}\left(\Delta W_{\infty}+2 K W_{\rightarrow}+\tilde{\Lambda}_{\infty}\left(W_{m}\right)\right),\left(W_{s_{0}}\right)\right\rangle_{\Delta} . \tag{3.37}
\end{align*}
$$

Finally, from Eq. (3.22), we obtain

$$
\begin{align*}
& \left\langle\nabla_{i_{i}^{v^{-1}}}\left(\|H\|_{h}^{3} H\right)_{\left(\varepsilon_{0}, a\right)}, W\right\rangle_{\mathrm{A}}= \\
& =\left\langle\Delta W_{x_{0}}+2 \widetilde{K} W_{x_{0}}+\vec{A}_{x_{0}}\left(W_{x_{0}}\right), H\right\rangle_{\mathrm{m}}<H_{x_{0}}, W>_{A} \\
& +\frac{1}{2}\|H\|^{3}\left\langle\Delta W_{s_{0}}+2 \bar{K} W_{s_{0}}+\vec{A}_{s_{0}}\left(W_{s_{0}}\right), W\right\rangle_{A} . \tag{3.38}
\end{align*}
$$

Combining Eqs. (3.36), (3.37), and (3.38), we arrive at the final result

$$
\left\langle\nabla_{H_{0}^{-1}}^{-1}\left(\Delta H_{i}+A_{4}^{*}\left(H_{t}\right)-2\left\|H_{i}\right\|_{A}^{2} H_{i}\right)_{\left(x_{0}, 0\right)}, W\right\rangle_{n}=\left\langle(J(W))_{s_{0}}, W_{s_{0}}\right\rangle_{A},
$$

where $J: C^{\infty 0}(V) \rightarrow C^{\infty}(V)$ is the fourth-order differential operator given by

$$
\begin{aligned}
& J(W)_{s}=\frac{1}{2}(\Delta+\bar{A})(\Delta+2 K+\bar{A})(W)_{x} \\
& -2\left\langle(\Delta+\bar{K}+\bar{A})(W)_{s}, H_{s}\right\rangle_{s} H_{s}-\left\|H_{s}\right\|_{\hat{A}}(\Delta+\bar{A})(W)_{s} \\
& +2\left\langle W_{s}, \nabla d f_{x}\left(e_{i}, e_{k}\right)\right\rangle_{A} \nabla^{V}{ }^{2} H_{x}\left(e_{i}, e_{k}\right)+2\left\langle H_{s}, \nabla d f_{s}\left(e_{i}, e_{k}\right)\right\rangle_{A} \nabla^{V}{ }^{2} W_{s}\left(e_{i}, e_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -2\left\langle\boldsymbol{V}_{e,}, H_{f}, V_{c}, W_{*}\right\rangle_{A}, \nabla d_{z}\left(\varepsilon_{i}, \epsilon_{j}\right) \\
& +2\left\langle\boldsymbol{\nabla}_{e_{4}} H_{s}, \nabla_{d} d_{s}\left(e_{i}, e_{j}\right)\right\rangle_{a} \nabla_{r}, W_{z} \\
& +2\left\langle W_{s}, \nabla d f_{s}\left(e_{i}, \epsilon_{k}\right)\right\rangle_{h}\left\langle\nabla d_{i}\left(\epsilon_{i}, e_{j}\right), B_{s}\right\rangle_{h} \nabla_{d} f_{i}\left(e_{j}, e_{k}\right) .
\end{aligned}
$$

Thon, we have obtained the second-variation formula

$$
\left.\frac{\partial^{2}}{\partial t^{2}} w_{D}\left(f_{t}\right)\right|_{t=0}=\int_{D}(J(W), W\rangle_{t} d A_{t e}
$$

with the operator $J$ given above.
The case $\operatorname{dim} N=3$ followa straightforwardly.

Remarl 3.1 We observe that, if $N$ is the 3-aphere $S^{\text {a }}$ and $\boldsymbol{H} \equiv 0$ - obvioualy implying $f$ to be a Willmore surface - then the above expresaion for $J$ redures to $\frac{1}{3}(\Delta+\bar{A}) \bullet(\Delta+2+\bar{A})$, which is just the fourth-order, strongly elliptic operator of Weiner [We/78].

## REFERENCES

| [B1/29] | W. Blagehke, Voriesungen über Differentialgeometrie III, Sprigge Berlin (1929). |
| :---: | :---: |
| \|Br/84] | R. L. Bryant, A Duality Theorem for Willmore Surfaces, J. Dif. Geom. 20, 23-53 (1984). |
| [C/55] | E. Cartan, Les Eapaces d Connesion Conforme, Evres Complitea Partie Ill Vol. 1, 747-797 (1955). |
| [Cb/73a\| | B. Y. Chen, On a Variational Problem on Hyperourfaces, J. London Math. Sac. 6 (2), 321-325 (1973). |
| [Ch/73b] | B. Y. Ghen, An Invariant of Conformal Mappingt, Proc. of Am. Math. Soc. 40 (2), 363-564 (1973). |
| [Cb/73e] | B. Y. Chen, On the Total Cursature of Immersed Manifold, III. Surfaces in Exelidean 4.Space, Am. J. Math. 95, 036-042 (1973). |
| [ $\mathrm{Ch} / 74$ ] | B. Y. Chen, Some Conformal Invariante of Submanifolde and their Applicatione, Bol. Un. Mat. Ital. 10 (4), 380-385 (1974). |
| [Ee-Le/83] | J. Eellia and L. Lemaire, Selected Topico in Harmonic Mapa, C.B.M.S. Reg. Conf. Seriea No. 50 A.M.S. (1983). |
| [Ei/04] | L. P. Eisenhart, Riamannian Geomatry, Princeton Univ. Preas (1964). |
| [ $\mathrm{He} / 78$ ] | R. Hermann, Gamg Fiolde and Cartan-Ehresmean Connactions, Part A, Interdiec. Math. Vol. X, Math-Sci Preas (1975). |


| [Ib/85] | N. H. Ibragimov, Traneformation Groupe Applied to Methematical Physies, Math. and ita Appl. Soviet Serien, D. Reidel Pub. Comp. (1985). |
| :---: | :---: |
| [ $\mathrm{Je} / 77$ ] | G. R. Jensen, Highar-Onder Contact of Submanifolda of Hamogeneoua Spaces, Lect. Notea in Math. ©10, Springer Verlag Berlin (1977). |
| [Ko-No/03/09] | S. Kobayahh and K. Nomisn, Foundations of Differsatial GeomeIry, Vol. I (1903), Vol. II (1909), Iuteric. Pub. New York, London. |
| [O8/69] | R. Oaserman, A Sursey of Minimal Surfaces, Van Noatrand Mnth. Stadiea 25 (1969). |
| [Po/81] | W. Poor, Differemiel Geometric Struefures, Mc.Graw-Hill Book Company New York (1981). |
| \|Ri/86] | M. Rigoli, On a Conformal Bernatein-type Theorem, Rend. Sen. Mat. Univ. Politec. Torino 14 (3) (1986). |
| [Ri/87] | M. Rigoli, The Gonformal Gauss Map of Summanifolde of the Mäbime Space, Ann. Global Anal. Geom. 5 (1987). |
| [Ri-Sa/88] | M. Rigoli and I. M. C. Salaversa, Submanifolde of the Mäbiue Spact and a Bernatcin-type Theorem, in preparation. |
| [Sch-Sa/80a] | Ch. Sehiemangk and R. Sulanke, Submanjolde of the Möbiua Space, Math. Nachr. D6, 165-183 (1980). |
| [Sb-Ta/70] | K. Shiohama and A. Takagi, A Charactericalion of a Standard Torme in $E^{\mathbf{2}}$, J. Diff. Geom. 4, 477-485 (1970). |
| [Sa/79] | R. Sulanke, On E. Cartan's Methad of Mouing Framea, Coll. Math. Soc. Jinoa Bolyai S1, Diff. Geom. Dadapent (1979). |
| [Su/81] | R. Sulanke, Submanifold of the Möbiua Spect, $\boldsymbol{H}_{\text {; }}$ Frenct Formulee and Curies of Conotant Curvasures, Math. Nachr. 100, 235-247 (1981). |

[Su/85?] R. Sulante, Submanifolds of the Mobius Space, IV: Conformal Ineariants of Immertions into Spacs of Conatant Cureature, preprint Humboldt Univ. Berlin (1985?).
[Su-Sv/80] R. Sulanke and A. Svec, Zur Differentialgeometrie der Uutermannigfaltigkeiten cinea Kleinechen Raumet, Beitr. Alg. Geam. 10, 63-85 (1980).
[We/78] J. L. Weiner, On a ProWem of Chen, Willmore, et al., Indiana Univ. Math. J. 27 (1), 19-35 (1978).
[Wh/73] J. H. White, A Globel Inesriant of Conformel Mappinga in Space, Proc. Am. Math. Soc. 38, 162-164 (1973).
[Wi/a5] T. 1. Willmore, Note on Embedded Surfaces, An. St. Univ. Iagi, a.I.a. Mat. 11B, 493-496 (1905).
[Wi/68] T. J. Willmore, Mean Cureafure of Immersed Surfece, An. St. Univ. Jasi, aJ.a. Mat. 14, 99-103 (1948).
[Wi/74] T. J. Willmore, Minimal Conformal Immarsions, Leet. Notea in Math. 392 (1974), Geomerie Diférentielle, Coll. Santiago de Comportala 1972.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE
TITLE
GRAPHS WITH PARALLEL MEAN
CURVATURE AND A VARIATIONAL
PROBLEM IN CONFORMAL GEOMETRY
$\qquad$

AUTHOR Isabel Maria da Costa Salavessa $\qquad$

INSTITUTION and DATE

University of Warwick $\qquad$

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

| 1 <br> cms | 12 | 13 | 14 | 18 | 16 |
| :---: | ---: | ---: | ---: | ---: | ---: | Boston Spa. Wetherty Wat Yorkshire Unked Kingdom



