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A bstract
This thesis essentially deals with two basic problems, one in Rieinannian, the 
other in Conformal Geometry, described in Part I resp. Part III. Part 11 can be 
considered as an interlude serving as a sort o f bridge between Riemannian and 
Comformal Geometry.

The main result of the first part, formulated in Corollaries 1.1.1 and 1.1.2 of 
Theorem 1.1, states that any graph 1/ C M  x  N  o f a map /  : M  —* N  between 
Riemannian manifolds, with parallel mean curvature, is minimal, provided M  is 
compact or non-com pact with zero Cheeger constant. This result generalises the 
case M  — IRm, N  =  JR, independently treated by E . Heinz, S. S. Chern, and 
H. F. Flanders. Moreover, Theorem 1.2 and Proposition 2.3 show that, for M  the 
m-hyperbolic space —  thus with non-zero Cheeger constant —  there exists a real- 
valued function / ,  the graph o f which is a submanifold o f M x ]R  with parallel mean 
curvature H  satisfying ||1?|| =  e, where e  can be any positive constant less than 

or equal to  the ratio of the Cheeger constant and the dimension m . Furthermore, 
the behaviour o f  the mean curvature of a graph is studied in some special cases.

The second part deals with the problem o f finding a criterion for an immer­
sion between Riemannian manifolds to be a conformal one. Sufficient conditions 

on the mean curvature, tension field, and ratio o f  given and induced volume el­
ements in the immersed manifold are derived in Theorem  1. Thereto, a special, 
“almost conformal” vector field is introduced, which also allows the obtainment of 
a Liouville-type theorem for harmonic maps.

Part III is devoted to Conformal Geometry. In chapter 1, the conformal ge­
ometry o f submanifolds o f the Möbius space is extensively reviewed by using Elie 
Cartan's m ethod o f moving frames. As the latter method is scarcely used in 
the literature, it  is treated in a quite detailed way, which might seem excessive 
to those who are more familiar with it. In chapter 2, the generalised Willmore 
m-submanifolds o f  the Möbius space 5 ” are investigated as critical points o f a 
functional integral, formulated in the framework o f  conformal geometry, which 
was introduced by  M . Rigoli, leading to an Euler-Lagrange equation. This equa­
tion generalises the one obtained by R. L. Bryant (for m =  2, n =  3) and later 

by Rigoli (for 2 =  m  <  n). Furthermore, a Bernstein-type theorem is formulated



for Willmore hypersurfaces o f  S " ,  involving the hyperbolic conform al Gauss map, 
which generalises the Bernstein theorem for surfaces o f S* due to  Rigoli. However, 
in the general case a condition on the hypersurface has to be im posed, which nev­

ertheless is satisfied by Willmore submanifolds with conformal Gauss map being 
a critical point o f another, well-known functional. Finally, chapter 3 deals with 
the explicit computation o f the second-variation formula for a  W illmore surface 
immersed into a space form. T he obtained formula reduces to  the one of J. L. 
Weiner in the special case o f a minimal surface o f  the 3-sphere.



Foreword

It u  a pleasure to  thank Professor Jim Eells for his constant encouragement and 
his liberal attitude towards research. Moreover, he offered me several very valu­
able suggestions of problems to  study. I am also indebted to Dr. M arco Rigoli 
for introducing me to the somewhat misterious, old-new field of conformal geom ­
etry. Further, I should mention the helpful conversations with Drs. D . M . Due 
and R. Tribuzy. The Calouste Gulbenkian Foundation in Lisbon is thanked for its 
financial support during my stay abroad and the Faculty o f Sciences o f the Uni­
versity o f Lisbon for permitting my leave o f absence. Finally, I dearly thank my 
husband George Rupp, w ho lost two months o f his work in formatting my thesis 
with and supported me decisively in its realisation.

Lisboa, 9 December 1987



Contents

A b stra ct  ii

F orew ord  iv

C on ten t*  v

I GRAPHS W ITH PARALLEL M EAN CURVATURE 1

0 G E N E R A L  R E M A R K S  A N D  N O T A T IO N S  2

1 T H E  M E A N  C U R V A T U R E  O F  A  G R A P H  10
1.1 Introduction......................................................................................................... 10
1.2 The General C a se .............................................................................................. 12
1.3 Co-Dimension O n e ..........................................................................................  21
1.4 Graphs of Isometric Immersions, Conformal Maps, Riemannian Sub­

mersions, and Harmonic M o r p h ism s ........................................................  24

3  S T A B IL IT Y  O F  A  M I N IM A L  G R A P H  A N D  A  G E N E R A L IS E D  
E Q U A T IO N  F O R  N O N -P A R A M E T R I C  H Y P E R S U R F A C E S  W IT H  
C O N S T A N T  M E A N  C U R V A T U R E  36
2.1 Some Remarks on the Stability o f a Minimal G r a p h ..........................  36
2.2 The Equation for a  Non-Parametric Hypersurface o f (A f x  JR, g x  h)

with Constant Mean Curvature: Some Remarks on Regularity of 
S o lu t io n s ............................................................................................................ 40

2.3 Existence o f Graphs o f  Functions on the m-Hyperbolic Space with
Given Constant Mean C u rva tu re .............................................................  51

R E F E R E N C E S  57



II CONFORM AL AND ISOMETRIC IMMERSIONS
OF RIEM ANNIAN MANIFOLDS [Ri-Sa/87] 62

1 Introduction ........................................................................................................  63
2 Preliminaries and F o rm u la e .........................................................................  63
3 Main R e s u l t s ....................................................................................................  68

REFERENCES 73

III A VARIATIONAL PROBLEM  AND A RELATED
BERNSTEIN-TYPE THEOREM  IN CONFORM AL GE­
OM ETRY 75

0 INTRODUCTION 76

1 THE CONFORMAL GEOMETRY OF SUBMANIFOLDS OF 5 "  78
1.1 The Geom etry o f the Möbius S pa ce ...........................................................  78

1.1. A The Infinitesimal Conformal Transformations o f IRn and 5 "  78
1.1. B The Möbius G r o u p ....................................................................... 81
1.1.0 The Structure Equations o f the Möbius G r o u p .....................  91

1.2 Submanifolds o f  S " ..........................................................................................  96
1.2. A Zeroth-Order G'-Frame Fields Along / ................................. 97
1.2. B First-Order G'-Frame Fields A long / ....................................  98
1.2. C Second-Order G'-Frame Fields Along / .....................................103
1 .2D  The Generalised Weyl Tensor and Conformally F lat Sub­

manifolds ..................................................................................................110
1.3 Relation with Riemannian Geometry o f  Submanifolds o f the Eu­

clidean S p a c e ..................................................................................................... 112

Appendix I 125

2 VARIATIONAL PROBLEMS IN CONFORMAL GEOMETRY 127
2.1 Introduction: The Willmore Functional ................................................... 127

2.1. A The Riemannian C a s e ....................................................................127
2.1. B Conformal Interpretation with Further Generalisations . . . 130

vi



2.2 The Euler-Lagrange Equation for the Willmore Functional W . . . 135
2.3 The Conformal Gauss M a p .............................................................................153
2.4 A Conformal Bernstein-type T h e o r e m .........................................................161

Appendix II 168

3 THE SECOND VARIATION FOR WILLMORE SURFACES OF 
A SPACE FORM  170

REFERENCES 102



Part I

G RAPH S W IT H  PARALLEL  
M E A N  CURVATURE



Chapter 0. Ce aérai Remark, aad  Notai bas 2

Chapter 0

GENERAL REMARKS AND 
NOTATIONS

Let (N n,h ) denote two smooth Riemanni&n manifolds o f dimension m,
n , equipped with their respective Levi-Civita connections V  and V \

If 4> : M  —► N  is a C ’ -rnap, then <frlT N  —» M  denotes the pull-back o f T N  by 
4», i.e. the C*-vector bundle with fibre at *  G M  given by T^a)N . The differential 
d<f> o f  ^  is a G l-  1-form on M  with values in <jrlT N . 4>~lT N  has a  Riemannian 
metric induced by the metric h o f T N . Let V *  denote the induced connection 
on 4>~*TN, i.e. V *  is the unique linear connection on 4>~lT N  such that for each 
smooth section Z  o f T N  and x  6  M , X  6  TaM

(o .i )

The fir$t fundamental form  o f 0  is the semi-definite 2-covariant tensor field 4>*k. 
The second fundamental form  o f 4» is the section V d^ o f the vector bundle G * T *M ® 
+~ lT N  ->  M  given by

v ^ ( x , y )  =  v j r ' c w n )  -  M V * r ) ,

where X ,  Y  are smooth vector fields on M .
The tension field  o f ^  is the section o f  4>~lT N  given by

Tt  =  t r » c e , (V ^ )  .

4» is said to  be harmonic, if it has vanishing tension field. The map ^ is said to 

be totally geodetic, if it has vanishing second fundamental form. If N  =  JR, then 
T* =  A  4> is the Laplacian o f 4>-



Chapter a  Oemerml Remark* and N d i l b u 3

L e t  U C Af, 0  C  Stm be open sets and x  : U  -*  0  be a  map that defines 

a co-ordinate system. Using the index range • ,/ ,& ,. . .  €  { l , . . . , m }  and writing 
locally  the metric g on U  as g (x) =  g,,dx'dxJ (here we use the index-summation

\§ij\i b y  |̂ | the determinant of [f¡j], and by the Christoffel symbols of the 
Levi-Cevita connection o f  A f , we have the standard expressions

I f X  =  X k£ f  is a smooth vector field on A f and *  =  (* ) e  x  €  A f, we
have the following formulae

I f «  : A f  —* IR is a (^‘ -function, then the fradienf of «  on U is given by

=  <°-5> 

If A f is oriented and x  is an orientation-preserving chart, then the volume element 
of (A f , g) is given by dVt  =  \f\g\dxl A . . .  A dx*.

Let V  C AT, O' c  IRn be open sets and g : V  —* O' be a co-ordinate system on 
AT. T hen , using the index range or,/?,. . .  €  ( l , . . . , n ) ,  we have, on V , * (» )  =  
hapd g °d y l>. Denoting by (&"*] the inverse matrix o f |A* ]̂, by *be Christoff el 

sym bols of the Levi-Oivita connection o f AT, the first and second fundamental 
forma o f  d  : A f -*  AT on U are given by (assuming that +(U ) C V )

convention), that is,  ̂ , and denoting by [ f ,J] the inverse matrix of

div(A-) =  ~ X ‘  +  X ’* n (0.3)

(0.4)
1 d
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and the tension field o f  ^  by

(  * V 7 iwp» W  , / y ,
Vd**ô»> ,J a **  a *  a *  )  '

(0.6)

Thns harmonic maps are locally solutions of a system o f  second-order semi-linear 
elliptic partial differential equations. From regularity theory of solutions o f elliptic 
equations we know th a t C7*-harmonic maps of sm ooth Riemannian manifolds are 
smooth (M o/66). In particular, totally geodesic C ’ -m aps are smooth. Such maps 
carry geodesics o f M  t o  geodesics of N .

Note: if AT =  Ml, Eq. (0 .6) takes the following form

A *  = (0.7)

Now assume that -*  (J V ,h) is an isometric immersion, i.e. 9 — 4*h.

Then the mean curvature H of 4> is exactly

Let V  —► M  denote the normal bundle o f Then 4~ lT N  =  dj>(TM) ©  V , where 
the direct sum is an orthogonal one. The second fundamental form is a sec­
tion o f Q * T * M  ®  V  an d  i f  is a section o f V .

I f Z  is a section of f ~ l T N , we will denote by Z T and Z 1  the orthogonal projec­
tions o f Z  on the v ector  bundles d ^ (T M ) and V , respectively. V  has an induced 
Riemannian metric from  the one of The induced connection on V  is
given by

viz=(vi“z)1
for each C -section  Z  o f  V  and X  €  TmM , x  G M .

4  is said to be a m inim a/ immersion, if H  =  0. That is, 4  is minimal, if and only 
if ^  is harmonic.
4k is said to have convtant mean eurvo/ure , if the norm ||lfj| o f i f  in V  (which is 
equal to the norm in + ~ lT N )  is constant.

If ^  is an isometric immersion of class (7*, then 4> is said to have parallel mean 
curvature , if H  is a parallel (/"-section o f V , i.e.

V xfT =  0 .
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Since V* €  M  and X  €  T ,M y d||fT||J(X) =  2 if  ^  has parallel 
mean curvature, then it also has constant mean curvature. For n =  m  +  1 the 
converse is also true.

Given an isometric immersion in to a  Euclidean space tjt: (M m,4 *h )  —» (IRn, h), 
the corresponding Gauss map o f 7^ : (M,4>*h) —* G '(n ,m ), where G (n ,m ) is 
the Grassmannian manifold of m -spaces through the origin in JR", is given by 
7+(x) — d4>*(TxM ).  Considering ( ? ( » ,  m )  with its usual Riemannian structure (see 
e.g. Ref. (Ko-N o/69]), we have the following relation between the mean curvature 
H  o f  rj> and the tension field Tl4 o f -y* due to Ruh and Vilms [R u-V i/70] (see also 
Ref. [Ee-Le/83])

T14 =  m V 1  H  .

This equality means the following:
V* €  M  Tl 4(x ) €  m) and, using the canonical identification o f

ri(WG(», m) =* (->,(*))• *  (l,(*))x = ® ( # , ( r ^ ) ) ‘  ,
we have

r „ ( x ) ( d ^ ( X ) )  =  m V i H „ h  V X  e  T .M  .

Hence, ^  has parallel mean curvature, iff 7^ is a harmonic map.
On the vector bundles Q * T * M ® V ,  i.e. on  tensor prod­

ucts o f Riemannian vector bundles, w e will employ the usual induced Riemannian 
metrics which at each fibre are the Hilbert-Schmidt inner products. In general, if 
(  : W  —» M  is a vector bundle over a  manifold A /, then C *(W ) denotes the vector 
space o f C k-sections o f W .

Note that we are using the follow ing sign for the curvature tensor o f  (A /, g)

«" (X , Y )Z  = - V x V y Z  + V y V XZ  + V \X,y\Z

and that, if P  =  |e( , «*] is a plane o f  TmM , where etl e% is an orthonormal basis of 
P , the sectional curvature of (M , g) o f  the plane P  is given by

X , (P )  =  ... ........... . =  .

T w o very well-known functionals in  Riemannian Geometry are the functional 

volume, applied to isometric immersions, and the functional energy, applied to 
maps between two Riemannian manifolds.
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Let <j>: M m —* (N , k) be an immersion o f an m -manifold M  into a Riemannian 
manifold (AT,/k). For each oriented compact dom ain  D  C M  (and we will denote 
by D  the interior o f ZJ, that is, Z? =  D  U OD) the volume o f 4» on D  is given by

VoW = jD mvv»,
where dV^h is the volume element of (D ,^ *k ).

Let (^*)*e(—«,«) be a smooth variation of 4> such that the vector variation W  =
^ | |=0 €  G °°(+~lT N )  has compact support in D .  Then it is well-known that

| v i > W . ) L .=  - ¡ D m (H t , W ) k iV r l . ,

where H+ is the mean curvature of 4>-
That is, the Euler-Lagrange equation of this variational problem reads H+ =  0, 
i.e. the critical points of Vd are the minimal immersions.
I f  ^  is a critical point o f Vo, then (see Refs. [S i/68 ], [Sp/79]) the H ettian of Vo at 
4» satisfies

=  j£ v „ (* , )| ,_ t =  f o  ( j t { W ^ W ^ ) kd V ,.h. (0.8)

Here
/ ( ( i f 1)  =  - 8 ‘ » r l - A ( W x )  -  ( B i c c i , ( » ' x ) ) - L

with R icci^ (W x ) ,  =  E 6  D , where X , ........X „

is an orthonormal basis of (7»A f,p*A), R N is the curvature tensor o f (JV,h), ( ) ‘  
denotes the orthogonal projection of ¿ ~ lT N  onto the normal bundle V  of 0. A  is 
the element o f C ~ ( ® V ® V )  given by A ,( W f )  =  ] T  ( V d * . ( X „ X / ),tV,1) J V d ^ (J f , ,X y ) ,  

and where denotes the Laplacian in the norm al bundle:

= t  V 1,Wx(X„X,) = f  -  V i  x w ;
1-1 1-1

(assuming that the X,- are extended as local sections o f T M  defined on a neigh­

bourhood o f x, constituting a local frame o f M ).

Note that we are using the opposite sign o f the Laplacian of Eells and Lemaire 
[Ee-Le/83] for sections o f Riemannian vector bundles, and the sign o f  the Lapla­
cian o f functions adopted by Chavel (Cha/84j.
4> is said to be (tirie ilf) volume-»table in D , if Hess VD(4 ){W ,W )  >  0 (>  0), for
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all W  e  1T N )\ {0 )  with compact support contained in D .

The differential operator J+ : G °°(V ) —» C °°(V ) is the Jacobi operator and 
is L ’ -selfadjoint strongly elliptic [Si/68]. A section W  in G °°(V )  is  said to be a 
Jacobi field on D , if /¿(VF) =  0 on D . If Z  is a Killing vector field on  (N ,h ), that 
is, Z is a vector field on N  such that the Lie derivative L zh  o f  h  a long  Z  is zero, 
then (^ _IZ ) X is a Jacobi field on D.

If 0  is an immersion of a hypersurface M m into (j\Tm+l,fc), th e n  Eq. (0.8) is 
simpler. Let v  denote a unit normal to  <t> on D . Then W x =  uu  w ith  tt €  C™ (D), 
that is, u is a  smooth function on D  with compact support contained in D . In 
this case Eq. (0 .8) reduces to

=  Jd . (  -  A .  -  (B  +  || V ^ H X r f V , . ,  (0.9)

=  / D ( i ? . r - ( * + i v * n . ) * v . ,

where Rs =  R icci* ( i / „  ux) =  ^  ( d ^ * ( X , ) , l / , ) d ^ , ( X , ) , I t  is well-known

[Fi-Sch/80] (Lem m a 1, Th. lj  ̂[Si/68] [Sm/65] that <ft is strictly volum e-stable on
D ,  iff there are no Jacobi fields defined in a subdomain D ’c.D  w h ich  are zero on

*
arr.

If we have a map 4>: -*  (N n,h ) between two Riem annian manifolds,
for each com pact oriented domain C c M  the energy of ^  on D  is  given by

a . w - l / , w r w „

where dV, is the volume element o f {D ,g ).

If $  is an isom etric immersion, then E d {4>) —

It is well-known that tft is a critical point o f E D, iff 0  is a harmonic m ap. If ^  is a 
critical point o f  E d , then, for a variation (^t)(€(_M) o f such that W  =  ^ A|t=0 G 
G°°(4>~iT N )  has compact support contained in D ,

= ( ( - « - R k c i " ( » ' ) ,

=  (0.10)

where A  is the Laplaciau on <f> lT N  and R icc i* (W ), =  ^ R % M){d + a( X t ) tW )4+ a(X {) 

with X i , . . .  , X H an orthonormal basis o f (T ,M ,g )  [Ee-Le/83].
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A harmonic map «ft is said to  be energg-ttttble , if, for every oriented compact d o ­
main Z7 c  M  and all W  €  C °°(4 ~ lT N )  with compact support in D , Hes&ED(^ )(iy , W )  >  
0.
From Eq. (0.10) it follows obviously that, i f  (TV, h) has non-positive sectional cur­
vatures, any harmonic map «ft: (M ,g ) —► (TV, h) is energy-stable.
For a minimal isometric immersion «ft : (Ai,«ft*h) —» (TV, h), the following relation 

between HessVD(* )  and Hess-Eoi*) holds, for W  €  0 ? ( V )  (see Ref. (Fe/85)):

= HcssKd(^)(iv, w ) + i j D |(V*’ V ) T||’ « v . .

On a Riemannian manifold can be defined some very important constants, 
v iz. Gheeger, isoperimetric, and Sobolev constants. These constants may provide 
estimates of eigenvalues and eigenfunctions for the Laplacian operator on domains 
o f M  (relative to  the Dirichlet problem). One can find an extensive study on these 
constants in Refs. [Cha/84], [Be-Ga-M a/71]. In this manuscript we are only going 
to  use the Gheeger constant, the definition o f  which we give here.
Let (A fm,g) be a non-com pact oriented Riemannian manifold with dimension m  >  
2, and possibly having a boundary. The Gheeger comtant o f  M  is the non-negative 
number

where D  ranges over all open submanifolds o f M  with compact closure in M  and 
smooth boundary, V (D ) is the volume o f D , and A(dD ) is the area o f  the boundary 
o f D .

Due to  a result o f  Yau [Ya/75j (see also Ref. [Gha/84], Theorem 5, page 98), 
in the definition o f f ) ( M )  it suffices to let D  range over open submanifolds o f  
M  that are connected. We note that, if M  were compact (without boundary), 
the constant (A /) defined as above would be zero. In fact, there is a different 
definition o f the Gheeger constant for a com pact manifold (see Ref. (Gha/84]), but 
we are not going to  need it.

The simplest example o f complete non-compact Riemannian manifolds with 
Gheeger constant equal to  zero are the timple Riemannian manifolds, i.e. the Rie­

mannian manifolds (M m,g )  such that there exists a diffeomorphism «ft: (TV/,f) —* 
(2Rm, < ,  > )  onto JRm satisfying Ag < , > <  pg  for some positive constants A ,p . 
But there exist also com plete Riemanniau manifolds diffeomorphic to (J2m,< ,  > )
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with positive Cheeger constant, as for example the m-hyperbolic space. In fact, if 
{M m,g )  is a complete simply connected Riemannian m-dimensional manifold with 
sectional curvatures bounded from above by  K ,  where K  is a negative constant, 
then (Ya/75)

( m - l J v / T j r .  .  (O .n )

This result was obtained by using Bishop's comparison theorem to arrive at A r  > 
(m — 1 )y/—K ,  where r is the distance function to a fixed point in (A /, g), integrating 
A r , and using Stokes’ theorem.

Another way o f estimating (A /) is the following inequality due to Gheeger (see 
e.g. Ref. [Cha/84], theorem 3, page 95)

H D ) >  i  ^ ’ (D ), V£> c  AMonuun ,

where A(D) is the first eigenvalue for the Dirichlet problem in the domain D . 
Using this fact and an estimate o f the lowest Dirichlet eigenvalue o f the geodesic 
disk of radius 6 in the m-hyperbolic space U m o f constant sectional curvature 
K  — —1, one can see that =  m  — 1 (see Ref. [Cha/84], page 96), so
inequality (0.11) is sharp.
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Chapter 1

THE MEAN CURVATURE OF A 
GRAPH

1.1 Introduction
In 1955 Heinz [He/55] proved that, if * =  z(x,jr) is a  surface of JR* defined for 
z* +  y* <  R* with mean curvature satisfying \\H\\ >  a  >  0, then R  ^  J. Thus, in 

particular, if x is defined in all JR*, then inf||lf|| =  0, which implies that, if z has 
constant mean curvature, z must be a minimal surface o f  IR*. In 1965 Chern (see 
Ref. [Ch/65], Cor. o f Th. 1) and, independently, Flanders (Fla/60) obtained the 
same result for hypersurfaces o f 2RB+I defined by the equation z — z ( x i,

One can formulate a generalisation of the above problem  as follows:
Given two smooth Riemannian manifolds (A /, g ), (N , h ) and a smooth map /  : 

M  -*  AT, the graph o f / ,  1 / =  { ( * , / ( * ) )  : x  €  A / } ,  is a  »/»-submanifold o f the 
product M  x  N  o f co-dimension n. We take on AI  x  N  the Riemannian metric 
product g x  h and on 1/ the induced one.

Q u estion  (E e lls ) Aitum e that T/ hat parallel mean curvature. Duet thii imply 
Tf to  he a minimal tuhmanifold o f  A / x N  9

The basic idea o f  Ghern and Flanders to tackle this question, in the particular 
cases mentioned above, was to find a way o f writing the mean curvature o f I )  as 
a divergence o f a  bounded vector field on A / which involves first derivatives o f / .  
This procedure suggests us, in the general case, to  relate the mean curvature of 
1 / to the second fundamental form  o f / .  As we will see, the relation between the 
mean curvature o f 1/ and the tension field o f /  is more relevant in some special 
cases, for example when /  is an isometry or even a conform al map, a Riemannian
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submersion, a harmonic morphism, or when n =  1.
In the general case we are going to  impose a condition on the Riemannian manifold 
(A f, g) that positively answers the above question (see Cor. 1.1.2). Moreover, we 
will also show that the absence o f  this condition conjures up counter-examples (see 
T h . 1.2).

Let us consider 1/ as an embedding

I> :A f  -  ( M x J V . j x k )

X — (*,/(*)).
So we have two Riemannian metrics on A f, viz. g and the one induced by I / ,  

r /(fx* ) = f + A ,

which makes 1/ : (A /, g +  f*h) —* (A f x N ,g  x  h) an isometric immersion.
Let V  and V *  denote the Levi-Civita connections on (M ,g )  and (A f, g +  /*/»), 
respectively. Let V  be the normal bundle o f  1 / in T f lT (M  x  AT) =  T A f x  f ~ lT N  
and V ’ rfl) €  C °° (0 *  T * M <g> V )  be the second fundamental form  o f the immersion 
I / .  The mean curvature o f I )  is the section

o f  V . Let €  Om( & T 9M  ®  f ‘ lT N )  be the second fundamental form of
the map /  and 7) its tension field, when A f is considered with the metric g. We 
denote by and V r'  the induced connections on f ~ lT N  and iy ^ T fA f  x  AT), 
respectively, and V 1 denotes the connection on the normal bundle V . Let ( , ) x 
and ( , ) T denote the orthogonal projections o lT M  x / ~ lT N  on V  and on  dT/(TAi), 
respectively, relative to the metric g x h.

In general, there is no natural way to relate the Levi-Civita connections V  and 
V *  o f resp. (Af, g) and (A f, g +  f*h ), but we have the following relation among the 
connections V ,  V *  , and V r/ s

i f  X  €  0 °° (T M ), U e  0 ° ° ( f  lT N ),  then (X , U ) given by (X , U ).  =  (X . ,  U .), Vx €  
A f, is an element of G0D( I j ‘ , T (A f X AT)) and we have

Vy1' (x, u) = ( v f  u ) , w  e . (i.i)

T o prove Eq. (1.1) we only have to  consider the property Eq. (0.1).
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1.2 The General Case

Next we are going to derive an expression for the mean curvature o f  I )  and its 
covariant derivative in V .

Let be a local orthonormal frame of (A /, g). Defining

i ;  ~  +  m X , ) ,< M X j ) ) t , Vi, j  E {1 ........ m } (1.2)

and denoting by the inverse o f the matrix tee have

m B  =  f ;  ¡ ‘' V ’ O H X i .X j )  .

Let (7 ,')i£ i£m be a local orthonormal frame of (A f, p+ /*A ). Then, (X , , d f (X , ))i< ,<m 
is a local orthonormal frame o f dT t(TM ). Next we define the following sections
w  e  c “ ( / - * r j v ) , z  e  c ~ ( r A f )

W  =  trace,,+/**,(Vc(f) (1.3)

(i .4 )
i j - i

We note that Z  is well defined over all M  and that another way to  write Z  is

z  =  f ; ( i v 1d f ( y , ) ) i x .  ( i .s )

Then we can formulate the following lemma:

Lemma 1.1 VX, Y G C7°°(rM)
(.') V'dI>(X,y) = (0,V<tf{X,Y))X

( « )  m ff  =  ( - Z .V V - d f ( Z ) )  =  (O .IV)1

(•••) ">Vx' ‘ f f  =  ( o , v i " V  -  v j / (x , z ) )  -  (V x z .d f (V x Z ) )
mVjfff = (0, V jf V  -  V<V(Jf,Z))x

Prtw/. Using Eq. (1.1) we have

VdTyfx.r) = V.T(dr/ (y '))-dr / (V ;y )
= v 7 '(y ,d f (y ) ) - (v ;y ,^ (V ;y ) )
=  ( v x y , v f ‘ w ( Y ) ) )  -  ( v ; y , d f ( v ; y ) )

= (v*y  -  v ;y , Vdf (X, y ) + df( Vxy -  v ;y ) )
= di>(Vxy -  V »  + (o, V «r(x ,y )).
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Since V d I ) ( X , y )  €  C7°°(V), we get (i). Thus, we have

mH = £  #"vvr,(x„xi) = (o, £
l’li™l I ja l

= (0,tr*ce(,+/.,l(ViV))i 
=  (0 .W )-1- =  (0 ,tV ) -  (0 ,»V )T .

Since (0,WT =  E "  , ( (0 , (V ), (X „< t f(X ,)) )  ^  ( X „ * ( X , ) )  =  E” . (tV, ̂ f(X |))4 • 
( X „ # ( X , ) ) ,

»•* = (0,(V) -  ( £  (W'.tffX,)). X , £  (w, <f(X,))t 4T(X,))
=  ( 0 , t K ) - ( z 'V ( Z ) ) ,

which gives (ii).

Finally, differentiating the latter expression and using Eq. (1.1) we obtain 

m V T . t r  =  ( O . V i V )  -  (V x Z , V f \ j f { Z ) ) )

= (o, vf V) - <vxz, v<mx, z) +.if(Vxz))
= (o,V f ‘w -  W(X,Z)) -  (VXZ,^(VXZ)) . V 

The following lemma will often be used.

L em m a 1 .3  Let x  6  M , X  €  TJV/, and * e  T/{m)N . Then (X ,0 ), (0 ,* ) €  T ,M  x 
r /(,,JV and
(i) * =  0 iff (0 ,* )x = 0  

(ti) ( X ,0 ) €  V . iff X  =  0 .

Proof. A t the point x  we have

(0, = (o,») -  (0, C)T = (o,») -  £  <(0,.), (X„ -(MX,)))^ (X„ <tr.(X,))

= ( -E (« ,« r .W )) ,T < . * -£ < * ,  <tr.(x,)),4r.(x,)). (i.«>

If (0 ,* )x =  0, then the first component of the vector in Eq. (1.0) is also aero. 
Therefore, since (X ,)i£ .£ m is a basis of 7*.M, =  0, Vi €  ( l , . . . , m ) ,
and the vector in Eq. (1.6) becomes

0 =  (0,s)x =  (0, s) .
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That is, z =  0 and (i) is proved. Now we prove (ii):

If (X ,0 )  €  V „  then VF €  T ,M  < (X ,0 ),(Y ,4 f .(Y )) ) txk =  0, so (X .V ) ,  =  0. Hence 
X  =  0 .

In Ref. [Ee/79] it was pointed out that T/ is minimal, iff

id : (A /,g  +  f h )  -  (A /, g) f  : (A /, g +  fVh) -  (1ST, h) (1.7)

are both harmonic maps.
In fact, since I )  =  (id, / )  : (AT, g +  f*h) -*  (A f x  N ,g  x  h), tnH  =  (T.*j, T /) ,  where 

are the tension fields o f the maps id and /  in Eq. (1.7).
The system (1.7) can be reduced to  an equivalent equation.

Propoaition 1.1 The following itatem entt art equivalent:

(i) I/  is minimal,

(••) /  : (A f,g  +  f*h) -*  (AT, h ) i t  harmonic,
(ill) W  =  (lnK «)(f+/.,](V<tf) =  0.
Alto, Tf i t  a totally geode tie tub manifold o f M  x  AT , iff /  : (M ,g ) —* (N ,h ) it  a 
totally geodetic map.

Proof. From  Lemma 1.1 (ii) — ( - Z , W  — d f {Z ) )% hanca —Z  ■« and
IV — d f(Z )  =  Tf. Therefore, i f  (i) holds, then (ii) and (iii) obviously hold.

I f  (ii) holds, that is T f =  0, then m H  =  (7 j j ,0 ) .  S o, as H  €  C °°(V ) and from 
Lemma 1.2 (ii), H  =  0.
If (iii) holds, then m H  =  ~ (Z ,d f (Z ) )  e V n  dTf (T M ).  So H  =  0.
The last statement follows immediately from Lemmas l . l ( i )  and 1.2(i). 9

To prove the main theorem o f part one o f this work we recall the following 
formula (see Ref. (Ee-Le/78], page 9):
Given a map ^  : (P ,,g i) —* (P , , gt ) between Riemannian manifolds, we have

=  +  , (i.8 )

where dj> ■ T+ is the vector field o f T P t given by

(i* T „ x )ft = (i+(X),T,)n , v x e  o “ ( r r . ) ,
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and where ( , )  is the induced Riem&nnian metric in the vector bundle ®  T*PX ®

In particular, if 4> is an isometric immersion, then, since T+ is orthogonal to 
d<t>(TPt), Eq. (1.8) becomes

This formula can easily be computed directly, too.

T h e o re m  1.1  A ttum e that 1 / hat parallel mean curvature. Let e =  ||ff||#)<A (c it 
a eonitant). Then, fo r  each oriented eompact domain D  C M , toe hate

j_A(aD)
-  m V {D )  '

where V (D ) i t  the volume o f  D  and A(dD ) i t  the area o f  dD, relative to  the metric 

9-

Proof. From Lemma 1.1 (iii) we have V X  €  G °°(T M )

Let xo G M  and X j , . . . ,X m be a local orthonormal frame o f defined in a
neighbourhood o f x0 and satisfying V X ,(x 0) =  0, Vi =  1 , . . . ,  m . Such frames can 
be constructed using parallel transport in (A /, g).

* ' T P „  that it, V* e  M , ( i * ,  V r \ )  (* ) =  E n .  where
«1,. . . ,  ep is an orthonormal basis of T*P\.

(1.9)

0 =  m^Jx H  =  (0, V C ' w  -  V d fiX .Z ))^  ,

hence, from Lemma 1.2 (i),

v ¡ ¡"w = \ jf (x ,z ) .

From Lemma 1.1 (Ui)

™ V t/ ' h  =  ~ {V x Z ,4 f ( V x Z ) ) . (U O )

From the latter equation we can prove now that

(u n
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Then, Z  =  lyV ,d f(X i))hX j  in a  neighbourhood of *0-
Since V Y ,(*o ) =  0, we have at the point x 0

Y v .z  =  £  V * , ( i ‘ '<W ,<V (A 1) ) ,A , )
**= I

=  £  </(«*’  < W ,< < r(A ,,))J (A ,)A , ,
hj=l

so V», j

{ ( V x ,Z ,4 f (V x ,Z ) ) , (A j .X K A y ) ) )^  =

=  £  r , A i , ’ < y v ,4 n x > ))> )ix i) ,
**= i

and, therefore, from  Eq. (1.10)

. n ( v r'" i r , f l > ) ( x o )  =  E ^ ' ' ( y J T  * , * > ( * / ) )'  ' i>l '  '#**
=  £  - f “  < (V * z ,  <V(VX. Z ) ) , (J O ,< r(A ,))>ij-l ’

• •A*** 1

=  £  - M ( i ‘ ' R « U K )

=  £  - « '( » * ’  W ^ A » ) ) ,  ) „  ( A .) .• »*■1
Since E E .I 0*' (W ,d /(X * ))A =  (Z ,X j)f  , Vi =  1 , . . .  ,m  in a neighbourhood o f x 0,

m ( V > _‘ A ,d r / ) ( x ll) =  £  -< i( < Z ,X ,)(  )^ (A .)  =  £  -  (VX,Z, A ,) ( (x„)

=  -d iv , (Z ) ( * . )

and we have proved Eq. (1.11).
O n the other hand, from Eq. (1.9) we have

( V ' /  'A .r fT ,)  =  - m i l i a r  =  —me* .

So Eq. (1.11) gives

m*c* =  divf (Z ) on M  . (1.12)
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Let 5  C M  be an oriented compact domain and d,Vt ,d A t denote the respective 
volum e elements of D  and dD  relative to the metric g. Applying Stokes’ theorem 
we get

where ft is the outward unit normal of dD.

From  the Schwarz inequality | (Z ,ft)f \ <  ||Z||,||ff||, — ||Z||, and Lemma l . l ( i i ) ,  we

m'c'V(D) < | (Z, ft)f |dA, < J mcdAt = mcA{dD) ,
^  1 A(dD) nso c <  — 777- . . 

m V (D )

C o r o lla r y  1 .1 .1  I f  (M ,g ) i t  an oriented non-compact Riemannian manifold and 
f  : M  —♦ N  it a smooth map such that 1/ hat parallel mean curtature H , then

C o r o lla r y  1 .1 .2  I f  (A /, g) i t  an oriented, compact (without boundary) manifold 
or an oriented non-compact Riemannian manifold with Gheeger constant equal to 
zero (tee Gh. 0 fo r  definition), then for any Riemannian manifold (N ,h ) and any 
map /  : (M ,g ) -♦ (AT, A), i f  the graph 1} : (M ,g  +  f*h) - »  (M  x  N ,g  x h )  it an im ­
m ersion with parallel mean curtature, it it in fact a minimal submanifold o f M x N .

In Chapter 0 we recalled that, if (A /, g) is a  simply connected Riemannian m- 
dimensional manifold with sectional curvatures bounded from  above by K ,  where 
K  is a negative constant, then P) (AT) £  (m  -  \ )y / -K ,  and that, i f  M  is the 
m-hyperbolic space, P) (A /) =  m -  1. Therefore, in such cases Cor. 1.1.2 cannot 
be applied. Moreover, we will give next an explicit example which shows that the 

condition on the Cheeger constant o f (M ,g ) is a fundamental criterion for a graph 
with parallel mean curvature to be minimal.

r n V V (B )  =  J^ m 'c ’ dV, = ^ d iv ,(Z )< < V ',

obtain

m . =  m ||i f |U  =  ||( -  Z ,W  -  4n Z ))\ U  > ||Z ||, .
Hence

p r i U s i l * " ) -
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T h e o re m  1 .2  G ontider the 2-dimeniional hyperbolic »pace (H * ,g ), where H * it 
the unit open ditk o f  1R1 with centre at the origin and g it the Riemannian metric 
on H * giten by

t . _ W
'  (i -1*1’ )*

The function f  : H* —* IR given by

(1.13)

/(*) = Jt ^ i(c°«k (r)- 1) *  ,

where r (x ) =  log (|4^|) »* the dittance function from  the origin in H *, it  tm ooth  

on all H *, and 1 / C  H * x  IR hat conitant mean curvature ||iT|| =

Proof. It follows from  Lemma (1.3), to be given and proved in the next section, 
that we only have to verify i f  /  satisfies the equation div, (  =
First we calculate the Christoffel symbols o f the m-hyperbolic space (H m, g ), where 
g is given by Eq. (1.13). Defining the identity map x  : H m —* IRm as a  co ­
ordinate system, we have ^  where ¿ i , . . . , e m is the canonic basis o f  2Rm. 
Let g,j =  g(e,-,ej) =  (1_|*|i)i and \g,}] be the inverse matrix o f [flftJ], that is, 
gij _  Then , using Eq. (0.2), we obtain

2
r j  =  |x |, {6kjZ, +  bikXj -  6,jXk) .

Now we prove that /  is smooth.

V* 6  f f* \ {0 } , «  e  T „H *  =  IR*, we have dfs (u ) =  ^ j(c o s h (r (x ))  — l)drM(u). Note 
that cosh (r(* )) =  and that dr,(u ) =  jzy, [« So

2 <  x , «  >
<r- (“ ) =  ( i  -  i- i»)»/» •

Now we show that §£i(0) =  0 for i  =  1,2.

(1.14)

lim ! / ( * « . ) - / ( Q )  I N ettmak-Ulhl) / T  “ "  I
i * / .  v»( 1)A

Since lim ,_ =  1 and tanh 1 : ( —1 ,1 ) —* ( —o o ,+ o o )  is an increasing
function, we have V3 >  0 ,3c >  0 such that, VA : 0 <  |A| <  c , 
and, Vt €  [0 ,2tanh~l (|A|)], y/|(cosht — 1) <  S. Hence,

<  1 +  6

N /■! I»nh_1 (|A|) IJ

A Jo V 2 (coshl -  l)d< <  TrT2 ta n h -‘ (|A|) <  26{\ +  6) .
1*1
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So we have proved that Eq. (1.14) also holds for *  =  0, which proves the smooth­
ness o f /  on all H *.

The vector fields « ,(* ) =  — i — 1 ,. . . , m  form an orthonormal frame of

R em a rk  1.1  As a consequence o f  Cor. 1.1.2, Prop. 1.1, and H op f’s maximum 
principle (see for example R ef. [Cha/84]), i f  M  is an oriented com pact manifold, 
N  =  jR ", and I ) has parallel mean curvature, then /  is a constant map.

R em a rk  1.3  In Sec. 1 we presented the result o f Chem [C h /65 ] on the mean 
curvature of a graph as a starting point for the main theorem o f  th is section. This 
result was a corollary of a theorem  in his paper quoted above, w hich we reproduce 
here:

T h e o re m  (C h e rn ) Let P  be a compact piece of an oriented hypenurface of 

dimention m with imooth boundary dP  which i t  immerted in a Euclidean tpace 
o f dimention m  +  1. Suppote the mean curvature o x >  c >  0 . Let a be a fixed 
unit vector which maket an angle <  f  with all normal» o f M .  T hen mcV. <  L .,  
where V, it the volume o f the orthogonal projection o f  P  and L m that of SP in the 
hyperplane perpendicular to a . I f  M  it  defined by the equation z  — F ( * , , . . . ,x m), 
fo r  ** +  . . .  +  <  R , then c R  <  1.

The above case seems, at first sight, much more general than a graph, but, in fact, 
it is essentially the same, as we are going to explain in detail.

The condition . .  Let a be a fixed unit vector which maket an angle <  J with all

Finally .e  « I d .« ,  div, ( ^ r f o y ).
HT»L _____a__C _1 • l \ _ 1—1*1* _

So

v / .  = EZ, « . ( W  = *»d »V/K» =
Using formula (0.3) we get, fo r  m  =  2,
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normalt o f  P . . . ”  means the following:
Let us assume that the angles are <  D enote by $  : P "1 —► 2Rfn+I the immersion 
o f P  into the m +  1- dimensional Euclidean space, and let 4> : P  —» [a]x ^  JRm 
denote the composition o f $  with the orthogonal projection o f JRm+l onto [a]x . 
That is, =  $ (x ) — ($ (x ), a) a, Vx e  P .  Then 4> is also an immersion o f P , as 
follows straightforwardly from  our assumption concerning the angles.
V■ and L a in Chem’s theorem are resp. the volume and area o f P  and OP relative 
to the metric induced by the immersion ^  o f  P  into [a]x £* IRm. Writing now 
2Rm+I =  |«JX x  («], then 
*  : P  -  R m+l =  W A x  [a] is given by
$ (x ) =  (<£(x), <  $ (x ) ,a  >  a) cs (^ (x ),<  $ ( x ) ,a  > ) ,  since ^ (x )+  <  $ (x ) ,a  >  a =  

♦(*)■
Thus $  can be written as $ (x ) =  ( 0 ( x ) , / ( x ) ) ,  where /  : P m —» 1R cs [a] is a 
smooth map and 4» : P m —* JRm c* [o]x is  an immersion. We can consider $  
as a parametritation o f a graph, where the first component o f $  is the isometric 
immersion <f>: P m —» IRm instead o f the identity map, which is the case of a graph.

In the same spirit, we can also improve ou r  main theorem (1.1) for the case o f 
a parametritation o f a graph:

Let (N * ,h ) be smooth Riemannian manifolds and P m an m-dimensional
manifold. Let •  =  (^, / )  : (P, 4>*g +  f* h )  —• (M  x JV, g x  h) be an isometric 
immersion with components 4> and / ,  such that 4> : (P m,4>*g) —* (AIm,g )  is an 
isometric immersion and /  : P  —* N  is a m ap. Let H  be the mean curvature o f 
the isometric immersion $ . Then Th. 1.1 can be reformulated as follows:

Theorem 1.1* I f  $  hat parallel mean curvature, then, fo r  each compact oriented 
domain Tf c  P , we have

e <
1 A(OD )

' m V(D) 9
where c — ||£f||#xA (conttant), V (D ) and A (d D ) are retp. the volume o f  D  and the 
ana of OD relative to the metric

The proof o f  this theorem is analogous to  the one o f Th. 1.1, with some obvious 
changes o f notation.
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1.3 Co-Dimension One
I f the graph 1/ is a hypersurface o f  A f X N , that is, N  is o f  dimension one, we 

can obtain an estimate for the infimum of the norm of the mean curvature o f  I ) ,  
w ithout needing to impose the assumption o f 1 / having parallel mean curvature, 
as in the general case.

Let us suppose that N  is oriented and o f dimension one. Let Y  be a  unit 

vector field defined on all (j\T, h). Define u :=  ^ 1  +  ||<{f||*, where ||4f|| is the norm  
o f  df in Riemannian vector bundle &  T *M  ®  f ~ lT N . D enote by V /  the sm ooth 
section of T M  given by < V /„  u)f  =  (4 f,(u ), Ya) k , V* €  M  , «  €  T J lf . Thus, 
ll^ /ll#  =  ll<V|| v  — 'V / , F )  is a unit normal o f I ).
In this case it  is easy to derive an expression for the matrix (here we use the 
same notations as in Sec. 1.2). Denoting p, =  (d f (X ,) ,Y )h, we have

For M  — IRm and N  — IR, this expression is equal to the one obtained by Flanders 
(F la/66].

m B  =  £

<J-1
From  Lemma 1.1 (i), we have

=  £ v \ f l } ( x „ x , ) -  £  ¿ w V « > ( x (, X j ) .
1=1 i w

V<n>(x„ x,) = <(o, Vd/(x„ xj)) = i  ( Vrf/(x„ x,), y)^.
Hence,

Lsmma 1.3
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In particular, die, ( - ^ S £ _ )  =  me (e eonctant/, iff ||if||,j =  |c|.

Proof. Let xo €  A /,  and X i , . . . ,  X m be a  local orthonormal frame o f  (A /, g) in a 

neighbourhood o f x0, such that VX,(x0) =  0. Then, at the point x0,

= t ( v r ( ^ m ) ,  r \

= t  (<H±)(X.W(x,) +  ^Vdf(x„x , ) ,

= 4f(X) + '- I , , y y

= ( - ¿  £  <V*(<r,*>«r(X) + ± r,, y ^

=  ( -  E  ¿ < v * ( x , x ) , t f ( X ) > . « i r ( x ) + z T< ■
'  « j - l  w / A

= ( - 4  £  < V<r(x,x,),y >. < j h x , ) , y  >„ d f(X t )  + ~T/, y
'  w i j - l  w

*■ in <. H ,v  > tHk (»o ) (from  Eq. (1.16)).

Let ||V<y|| denote the norm o f Wdf in Q * T * M ®  f ~ lT N .

P ro p o s it io n  1.2
(a) I f  D  C. M  it  an oriented eompaet domain o f M , then

niin||£r||fX* <
V 11 ll#x* “  m V (D )  ’

where A (#D ) and V (D ) are retp. the area o f dD and the volume o f  D , relative 
to the metric g. In  particular, i f  (M ,g ) it  a compact manifold or non-com pact 
with Gheeger constant equal to zero, then inf||lT||,xA =  0.

(1) I f  (A /, g) i t  a connected, oriented, complete Riemannian m anifold and 
- J O a ^ i . i n t c r a U .  in (M ,g ), then there exist» a x  €  M , such that H „  =  0. 
Moreover, if  <  ff ,i/  >,** it contained in [0 ,+ o o ) or in  (—oo,0], then H  =  0.
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Proof, (a) Let e  =  min||lf ||. Clearly we may suppose e £  0. Since D  is connected,

Denoting by dVt and dA, the volume elements o f D  and otD, respectively, and by 
H the outward unit normal of dD , and applying Lemma 1.3 and Stokes’ theorem, 
we obtain

(b). Suppose that H* ^  0, V* €  AT. Note that, in this case, Eq. (1.16) holds on 
all A/.

Let 9 =  where ♦ : h l T *M  — is the Hodge operator .
Then, dO =  — divf {^ f)d V l . Since we are supposing that ||^||f is inte-

bundles f\l T *M  and Am_I T *M , ||0|| is integrable on (A /, g), i.e. 9 is an integrable 
(m —l)-form  o f (A /, g). By applying the extended Stokes’ theorem o f Gaffney-Yau 
(see Ref. [Ya/76], lemma o f Sec. 1) to 9, we may take a sequence o f compact do­
mains D, o f  A /, such that B, C B,-+i, V», U # . =  A /, and lim ,_+00/ flj d9 =  0, 
that is,

Consequently, JB( ||R'||#x*dV,# =  0, VS, i.e. H  =  0, wliich is a contradiction. If we 
suppose that <  H, v  > #x* is contained in |0,+oo) or in ( - o o ,0 ] ,  then, again, Eq. 
(1.16) holds on all A /, which implies I f  =  0 as well. V

||ff|L =  < f f „  V * € D
or ( i - i « )

1 * 1 .  =  Vi e d .

' V ( D )  <  ¡D ||*|„»«fV1 =  \jD < H , v  >fx4 iV,\

Therefore, we can conclude from Eq. (1.16) and Lemma 1.3

| S | r »W , =  0 .• -•+00 JBi
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R em a rk  l .S  In Prop. 1.2(b) (i) we could only require the weaker condition

for some x 0 €  M , where 2?A(x0) is the geodesic ball o f (M ,g )  with centre x 0 and 
radius R . In fact, the Stokes’ theorem of Yau still holds with this condition (see 
Appendix o f Ref. [Ya/76]).

1.4 Graphs o f Isometric Immersions, Conform al 
M aps, Riemannian Submersions, and Har­
monic Morphisms

In Sec. 2 we have seen that for a map /  : (M ,g )  —» (N ,h ), 1 / to be minimal is in 
general not equivalent to /  : (M , g) —* (N , h) be harmonic. However, we will treat 
some cases where the equivalence does hold.

A map : (P u tt )  ( A . i s )  between two Riemannian manifolds is said to 
be (weakly) conformal, if — f? g i, where p  : P i —* IR is a sm ooth map. If 
dimPi >  dirnPj, then 4> is constant. If p  is a non-zero constant, 4> is said to be a 
homothetic map and, in particular, an isometric immersion, if p  ■= 1.
If p(.x ) /  o V* €  P i, l.e. <f> is an immersion, then we have the following well-known 
relation [Ho-Os/82] between 7*, the tension field o f  <f>: (P i, gi) -*  (P t,g t)  and H+, 
the mean curvature of the isometric immersion 4» :  (Pu<t>*gj) —* (P i, g*):

where m — dim (P ,) and w — V#1 logp. We recall that a Riemannian manifold 
(M , g) is said to  be (strongly) parabolic, if it admits no non-constant subharmonic 
functions /  (i.e. A /  >  0) that are bounded from above.

P r o p o s it io n  l .S  Lei f  : (M m,g ) - »  (AT", A) he a conformât map with f* h  =  A*g. 
Let H  be the mean cureature ofT f. Then tte hawe:

•«Jr, =  p T t +  , (1.17)
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(•)

m ff  =  (0 , (1 +  A, ) - , T /) 'L .

In particular, if  x0 €  M , H ^  =  0, iff T/(x0) =  0. Therefore, 1 / it a minimal 
tubmanifold o f  (M  x N , g x  h), iff f  : (M ,g )  —* (N ,h ) is a harm onic map (and 
in thit cate, fo r  m  £  2 , f  it  a homothetic map).

(b) I f  m — 2, or f  it an itometric immertion or, more generally, f  i t  a homothetic 
map, then Iy hat parallel mean eurtature, iff Iy it  minimal.

(c )  I f  m ¿ 2  and Iy hat parallel mean curtature, then 

with c =  ||£T|| (conttant). Coniequently,

(i) if  (M ,g ) it  parabolic or i f  A hat a minimum on M \dM  fo r  tn >  3, then Iy it  
minimal.

(ii) i f  (M m,g ) it complete, connected, and oriented, and m  >  3, then for  
to l(M ,g )  <  + o o  Iy it minimal, and fo r  vol(M ,g ) =  + o o  (1 +  A*)-1  £  
lS (M ,g ) ,  V p G ( l ,+ o o ) .

Proof. Since f*h  =  A*g, T f(g  x  h) =  g +  f* h  =  (1 +  A*)fl =  p*g, where p  : M  -*  
| l,+ o o ) is a smooth map. It follows from Eq. (1.17) that

m U  =  +  (tn -  2)fi~‘ (w ,d f(w ))  ,

with Tr; the tension field o f Iy : (M ,g ) -*  (A f x  N ,g  x h) and with to =  V ,log /* . 
Thus, Tr/ =  (Tid ,Ty) =  (0,Ty). Hence,

m H  =  p - *(0,Ty) +  ( m -  2 )p - , (to ,4 f(to )) • (1-1*)

So m H  =  (m H )1- =  (0,/*~*T/ ) J- and (a) is proved by applying Lem m a 1.2(i). I f  /  

is harmonic, i.e. H  =  0 (from  (a )), and m £  2, then Eq. (1*13) gives to =  0, that 
is, /  is a homothetic map (see also Ref. [Ee-Le/83]).
Next we prove (b ). I f  m  =  2 or /  is a homothetic map (i.e to =  0 ), we obtain from 

Eq. (1.18) mH = p->(0,r,) .
So, applying formula (1.1) we have, VX €  C °°(T M ),

m V j f 'H  =  ( 0 , V j f ‘ ( ( . - • » » ) (1.19)
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and

m V ^B  =  ( 0 , V f ‘ (r~ ,T ,))i  . (1.20)
Hence, applying Lemma 1.2(i) to  Eq. (1.20), we conclude that 
V x  B  =  0 iff V y  (n~*Tj) =  0, which is equivalent to H  =  0 due to Eq.
(1.19). Using Eq. (1.9) for tf> =  I / ,  we get V 1* H =  0 iff H =  0 ,‘ and we have 
proved (b). In order to obtain (c) we are first going to prove the following formula:

<»>.#(■))» =  •»*. (1.21)

Let us fix x0 €  M ,  and let X i , . . . , X m be a local orthonormal frame of (M ,g )  
defined in a neighbourhood of x0 and satisfying V X , (*0) =  0, Vi =  1 , . . . ,  m .
A t  xo we have, V», / ,  k  €  { 1 , . . . ,  m },

(V jf(x„xi),4f(>:»)),(* ,) =  ( v C(<V(Xj)),inx>))k

=  4 <  j n x i ) , d n x t ) > k ) m  -  ( v m ,  v # ( x „ x t ) ) k 

=  W ( X l) -{ 4 n X i),V4HXl,Xt))k .

Performing a cyclic permutation on the indices * , / ,  k we get

{■V4f(X„Xj),4f(Xk))k =  tJt4X^X,)-(4f(Xl),Vdf(Xl,Xk)}t 
(V4nxk,x,).4nxj))t m t,jd\‘ (Xk) -  (4f(X,),V<t/{Xk,X1))k 
(Vdf(XJ,Xk),Jf{X<))k = W ( X i)-{4 f(X k),V4f(XJ,X l))k ,

and so, at the point x0,

(■VJf(x„x,),dnxk))k =  i  {<Jlr<tt*(x,) _ t„ix\xk) +  e ^ X j ) } .

Hence, for t =  j

(Vif(XhX,),df(Xk))k = 6,kdX'(X.) -  i i * ’ (X .) ,

(T ,.d f (x k) )k (Ik) =  Y . ( y m x 1. x i ) , d n x k) ) k
H

=  dX '(X „) -  ^ d X ‘ (X .)  .  - ~ d X l , ( X k) .

and so
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Supposing that 1 / has parallel mean curvature we have, from  Eq. (1.12) in the 
proof o f Th. 1.1,

m*e* =  div, (Z )  ,

where Z  is the vector field of A /, given in Eq. (1.4). Next we are going to  prove 
that

m V  =  ~~2 ~  A  (#*"*) on M  . (1-22)

Let z 0 €  A / and X i t . . . , X m be a local orthonormal frame of (A f,g ) defined in a 
neighbourhood o f x 0 and satisfying V X ,(* 0) =  0, V» s  l , . . . , m .  Then,

Z  =  £  * 'J <  W ,m x . )  > .  X j  and W  =  £
•J"l ijm 1

in a neighbourhood o f  xo- Since g,j =  we have
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Hence, i f  (M ,g )  is parabolic, p  must be constant, and, therefore, 0 =  A (p - *) =  
i.e. 1 / is minimal.

For m  >  3, i f  A has a minimum on M \ dM , then p~* has a maximum on M \dM . 
As A / i - * >  0, it follows from  H opf’s maximum principle, applied on a bounded 
domain of A / where that maximum is attained (see e.g. Ref. [Au/82], page 96), 
that (c ) (i) holds.

Now we prove (c)(ii). From Eq. (1.23) we have p~* A  (p_>) >  0. So, from Th. 3 
o f Ref. (Ya/76), we have either / w =  + o o , Vp G (0 ,+ o o )\ { l ) ,  or p  is 
constant. Thus, if the volume o f  (M ,g )  is finite, we conclude from 0 <  p~* <  1 
that p~* G Lp(M ,g ),  Vp G (1, + o o ). Therefore, p  is constant and 1 / is minimal. 
Let us now suppose that the volume o f  (M ,g )  is infinite. I f  p~* G Lp(M ,g )  for 
some p  G ( l ,+ o o )  were true, then p  would be constant. Since p  cannot be equal to 
zero, this would im ply that the volume o f (M , g) is finite, which is a contradiction. 
So, in this case, p - * £  l/ (M ,g ) ,  Vp G ( l ,+ o o )  .

R e m a rk  1.4  Prop. 1.3(c) means that, if m >  3, vol(M ,g )  =  + 00, and 1/ has 
non-zero parallel mean curvature, then, Vp G (1 ,-fo o ) , ( l  +  P cannot be
integrable, nor have a maximum.

Now we study the graphs o f Riemamúan submersions and harmonic morphisms. 
Henceforth, until the end o f this section, we assume that (M ,g )  and (AT, A) are 
boundaryless manifolds.

Let /  : (A im,g ) -*  (AT", h) be a map. For each x  G A f, we denote T ^ M  :=  Kerd f, 
and T j M  :=  its orthogonal complement in (T ,M , g ). The elements of
T ; M  and T ^ M  are called vertical resp. horizontal tangent vectors o f M  at the 
point * . Let us denote by ( )v and ( ) u the orthogonal projections o f T ,M  on 
T ? M  resp. T fM .

The m ap /  is said to  be horizontally conformal , if, Vx G A / such that df,  ^  
0, d f, : T * M  - »  Tf (,)N  is a conform al, linear isomorphism. For such maps we 
have (see Ref. |Ee-Le/83])

V i e w ,  i , . € T i" M ,  < « ’,(■ )•<?»(*) > » = ^ ^  < « , • > ,  .

where </ =  ¡114̂ 11’  is the energy density o f  / .
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A map /  : (M , g) —* (TV, A) is said to be a harmonic m orphitm , if, for any harmonic 

function 4> defined on an open set V  o f TV, the composition <ft o f  is harmonic on

/-■ (V ).
T h e following proposition, which we will use later on, is due to Fuglede [Fu/78] 
and Ishiara [Is/79] (see also Ref. [Ee-Le/83]). ,

P ro p o s it io n  1 .4  A map f  : (A /m, g) —» (TV, A) i$ a harmonic morphitmt, iff 
it it a harmonic and horizontally conformal map. I f  f  it non-conitant, it it a 
ttibm enion on an open  dense tubict o f M  (and to  m  >  n ). I f  at a point x  
rankdf, <  n, then dfa =  0.

L et /  : (M m,g )  ->  (TV", A) be a submersion. Then, T VM  — M  and T u M  — M  
are smooth vector bundles. Hence, in the neighbourhood of each point o f M  we 
m ay take an orthonormal frame X i , . . .  ,X * ,X ,,+i , .  , . , X m o f (M ,g ), such that 
X t , . . . , X H e  G °°(T UM )  and X m+u. . . , X m €  G °°(T VM ) .

F or all jr €  / ( A / ) ,  the fibre Ft  =  f ~ l(y) o f /  at the point y is a submanifold of M  
o f  dimension m — n  with T»(Ff ) =  T jrM .

L et the inclusion map tr : Ft —* (M , g) be an isometric immersion. Its second 
fundamental form  satisfies

V i .F( X . 1n )  =  (V x n ) “ , V X , r e c r >(T ''M ), Vx e  r , ,

where V  is the Levi-Civita connection o f (A /, g).

Thus, the tension field o f tv is given by

V * > =  £  6 ! f M = ( r , ( F , ) | ‘  (1.24)
¿«■+1

and is equal t o m - n  times the mean curvature o f the fibre Fr .

Since /  o i ,  is constant on Fr , V d ( /  o  if ) =  0, we get [BarEe/81], using the 
com position law,

v < t r , ( x , r )  =  - j / , ( V d . , ( x , y ) ) ,  v x , r e T , ( F , ) .  ( ¡ m )

T h e submersion /  is said to  be Riemannian , if, V* €  A f, dfM : T f M  —*

is an isometry. Here we recall the following results about Riemannian submersions
and harmonic morphisms (see Ref. [Ee-Le/83] for further references).
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P ro p o s it io n  1 .5  Let f  : (M ,g ) —» {N ,h ) he a tuhmertion. Then: 
fa ) f  hat totally geodetic fibre», iff ^4f\TyMxTvM =  0.

If, moreover, f  i t  Riemannian, then alto (b) and (e) hold:

(h) ^df\THA/xT"M ~  0*
(e ) the following conditiont are equivalent:

(i) f  hat minimal fibre t ;
(ii) f  it harm onic;

(iii) f  it a harmonic morphitm.

If, on the other hand, f  i t  a harmonic morphitm, then (d) and (e ) hold:

(d) if  n =  2, the fibret are minimal.

(e ) if  n >  3, the following conditiont are equivalent:

Ii)  the fibret are minimal;

(ii) V « /  it vertical everywhere;

(iii) the mean curvature o f  the horitontal distribution, which it the vertical vector 
field given by Wx,X;)V, is equal to

2ef

Let now /  : (AI m,g ) —* (N " ,h ) be a Riemannian submersion. From now on 

X » , . . . , X n ,X m+ u • • •, X m denotes a local frame o f (M ,g), such that X i ,  . . . , X n G 
G °°(T UM )  and X „+ i, . . . , X m G C °°(T VM ).  Note that from Prop. 1.5 we have

T/ =  f : V d f { X „ X l) =  £  V 4 f(X i,X i)  . (1.26)
1-1 l-«+l

On (T u M ,g ) we have an induced connection which is given by:

Vjf Z. =  (VXZ,)“ , VZ e  x  e  T,M .

P ro p o s it io n  1 .6  Let f  : (M m,g ) - »  (N n,h ) be a Riemannian tubm ertion, and 
denote by kTj the tection o f T a M  given by

* >  -  U r lr .  J ' V / )  ■

Then we have:

(a ) v ,  e  / ( A / ) ,  X e  F „  #T,(x) =  - r , ,  (x ).
In particular, ||T /(x) | |a =  ||7jf (*)||#- Thut, the fibret o f  f  have conitant mean 
curvature, iff the norm o f the tension field o f  f  it  conitant in each fibre.
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( t )  v »  e  f ( M ) ,  i f f , ,  X  e  T ,(F ,)  =  T ? M ,

( v > ' 0 "  = .
In particular, the fibre» o f f  have parallel mean curvature, iff MTf it  a parallel 
»cction o f T UM  along the vertical vector field».

f < ) v x e o ° ° ( T “ M ) ,  < r(V x ( # r » )  =  v ' - ' r , .

Proof. Let jr €  / ( A / ) .  From Eq. (1.24) we have

r , ,M =  £  (V *,X ,)f, V iE F ,,
i= n + l

and from  Eqs. (1.26),(1.25)

*>(*) -  E  v ^ , ( x ltx . )  =  - ^ ( V d ( . , ) , ( x , , x , ) )

= H W V .
Since T*f  (x) G T ffM , from the definition o f MTf  we get —7Jf  (x ) =  MT/(x). Now let 
X  €  T .(F ,) .  Then,

V > ( r , f ) .  =  -  V > ' ( , ,  >(*t» ) ,  =  - V * ( * r , ) , .

Since (7«(F|)| m T ffM , Vx €  Ft , the connection ^ V 1 o f  ( T ( / ,f ) ) A la exactly 
equal to  (V *1 ) * .  Thus, we have

X 1 (T ,,) .  =  ( v > " ‘ ( * , ) . ) '  =  - V / y n » , ,

and we have proved (b ).
Now we prove (c ). For all X  G G °°(T M ),

=  v i " ‘ ( ^ ( w » ) -  V d f(x ,M T t )

=  V x ‘ r , - V 4 H X ,  M r,).

So, from Prop. 1.5(b) we get

< r(V x K r , ) m V f ‘ T ,, v x e O ’° (T “ M ) . v
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Next we study the mean curvature H  o f the graph 1/ of / .  
Note that the g,j (given in Eq. (1.2)) are in this case given by

(1.27)

P ro p o s it io n  1 .7  Let f  : (M m,g ) —► (N n,h ) be a Rtemanman ttibm enion. Then 
we have:

(a ) mH  =  ( 0 , » » A.
In particular, fo r  any point x  G M ,  7 )(x ) =  0 , iff Hx =  0, and $o the following 
condition» are equivalent:

(i) I )  it  a minimal submanifold o f  M  x  N .
(ii) f  it harmonic.

(Hi) f  it  a harmonic morphism.
(is) the fibres o f f  are minimal.

(b ) The following conditions are equivalent:
(i) Tj has constant mean curvature.

(ii) ||7 /1|* is  constant.
(Hi) the fibres o f  f  have constant mean curvature, the norm o f  which is the 

same fo r  all fibres.
( c )  ifT j has parallel mean curvature, then V *  *7/ =  0, VX e  C °°(T HM ).

Proof. From Lemma 1.1 (ii),

Thus, we have m H  — (0 ,T /)A, and (a) is proved by  applying Lemma 1.2(i) and 
P rop . 1.5(c).

m H  =  - ( Z ,d f(Z ) )  +  (0 ,fV ) =  (0,1V)1 ,

where W  and Z  are given by Eqs. (1.3) resp. (1 .4 ). From Eq. (1.27),

lv = Ejv,<f(x„x1)+  f ;  v<v(x„x,j,

and from Prop. 1.5 and Eq. (1.26) we have

w  = £  Vrj(x„x,) = T , .

Hence,

i-1 *
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The above expression for Z  gives =  £ " - i  i  <  Tfi4 f (X i )  >* d f(X i). Since
dfa : T * h t  —► T/(,)N  is an isometry, dfs (X i ) i . • • ,4 f* (X n) is an orthonormal basis 
° f  2/(,)JV. Thus,

W )= \r ,  = \w ,
that is,

z = ( * U , r ’ <5

Therefore, m H  — — (Z ,d f (Z ) )  +  (0 ,2 d f(Z ) )  =  (  -  Z ,d f(Z )) ,  and so 

1 * * 1 0 *  =  l|Z||,> +  ||^(Z)||i=2||Z||f*

=  t w m i  =  | i r / i : .

Consequently, 1 / has constant mean curvature, iff ||7/||* is constant, and (b) follows 
from Prop. 1 .6(a).

Finally, we prove (c). From Lemma l.l( iii)  we have, VX G G °°(T M ),

=  ( 0 ,  V j f V  -  V d f(Z <X ) ) i  .

If F/ has parallel mean curvature, then, from Lemma 1.2(i), =  V d /(Z , X ) ,
that is,

V T t,  =  \ i l ( l- X T „ X )  .

Using P rop . 1 .6 (b ) we obtain

V ' V ,  =  0, V i e  0 °° [T “ M ) . <9

Let /  : (A I m,g )  —* (iV " ,h ) be a harmonic morphism. We are now going to 
study the m ean curvature H  o f  T/.

Let U =  ( i t  €  M  : i f a 5̂  ®}* From Prop. 1.4, i f  /  is not constant, If is an open 
dense subset o f  M , and, V* G U , dfa is a submersion with

<  </■»(«). 4T*(t>) > , =  <  « ,n  > „  V « ,e  e  r / A f .
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P ro p o s it io n  1 .8  Let f  : (A fm,g ) —» (N n,h ) be a harmonic morpfu tm. Then:

(a ) Vx e  M\U, 
( t ) V x e U ,

H . = 0 .

m U .  =  (O , - * / ( « )
n +  2 e /(x ) w)Y,

tohere y  =  / ( x )  and t9 : F w —* (M ,g) i$ the inelution map o f the'fibre Ft  o f  f  
at y. In particular, Hx =  0, Vx G Ft , iff the fibre Ft  i» a minimal (m — n )- 
tubmanifold o f  (M ,g ). S o, I )  it a minimal tubmanifold o f  M x N ,  iff the fibre» 
« // lu  are minimal.

Proof. Let x0 €  M \ t/, and X \ ,. .  . , X m be an orthonormal basis o f {TXoM , g). 
Then, g,Jx0) = <  X {, X j  > ,  +  <  4f»m(X i) ,  e(fm(X j)  > * =  bfJ. From Lemma 
l . l ( i i )  we have m H ^ =  ( 0 ,W ^ ) \  where W -  =  E J j- ,  #,J(*o) V < ^ ( X „ X j )  =  
EEL i V i /^ (X , , X j ) =  T/(x0) .  Since /  is harmonic (Prop. 1.4), H So =  0.

On U, f  : U  - »  N  is a submersion. Let X ly. . . , X n,X B+1, . . .  ,X m be a local or­
thonormal frame o f (M , g )t such  that X t , . . . , X m €  G°°(TUM ) and X m+i, . . . ,  X m G 
G °°(T vM ).  A s /  is a horizontally conformal m ap (Prop. 1.4),

9ii =  < X i, X j > ,  +  < d f ( X i) , 4 n X j ) > k 
_  /  £>•(! +  % -) for i , j  <  n

\ b,j for » >  n +  1 or j  >  n +  1 .

From Lemma 1.1(B), m H  =  (0 ,1 V )\  where W  =  E J j- ,  giJV d f (X j,X j )  =
E "= i V #  (X ;, X,-) +  EELn+i V d /(X ,, X ,) .  On the other hand, since /  is har­
monic,

0 =  T, =  £ v d f ( X i,X . )  +  £  V t f ( X „ X , ) .
•-I .-»+1

Thus,

w = -  £  - ^ v * ( x . , x , ) +  £  V4r(xltx.)
+ i n +  *« / ,- .+ i

From Eqs. (1.25),(1.24) we have, Vx €  U,

E  V < r .(X r ,x ()  =  -< tr ,(  £  (V ^ A - ,) “ )  =  - 4f . ( r , , w ) ,
i-»+l l=»+l

where jr =  f ( x ) .  Therefore,

VV,
»  +  2 c/(x )
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Since Ttf  (¡r) €  Ta M , d/*(T»f (x ))  =  0, iff Tt f (x )  =  0. Using Lemma 1.2(i) we get 
Hs = 0, iff Ttf (*) = 0 . V

Applying Prop. 1.5(d)(e) we obtain im m ediately:

C o ro lla ry  1 .8 .1  If n =  2 , 1} it  a minimal tub manifold of M  x  N . If n >  3 ,1 /  it 
minimal, if f  V « /  reitricted to U it  a vertical vector field fo r  the tubmertion f\ v .
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Chapter 2

STABILITY OF A MINIMAL GRAPH 
AND A GENERALISED EQUATION 
FOR NON-PARAMETRIC 
HYPERSURFACES WITH 
CONSTANT MEAN CURVATURE

2.1 Some Remarks on the Stability o f  a Minimal 
Graph

Given a map /  : (A /m, g) —* (N n,h ) between Riexuannian m anifolds, suck that the 
graph o f  / ,  Tf : (Af, g +  f* H ) —* (A / X N , g x  A), is a minimal immersion, we may 
wonder when it is volume-stable or energy-stable.
In Gh. 0 we have given a brief introduction on the stability o f  volume and energy 

functionals, from which we may conclude at once that, i f  (M , g) and (N , h) have 
non-positive sectional curvatures, then minimal graphs are energy-stable, but not 
necessarily volume-stable, like e.g. in the case of Ex. 2.1 in  th is section. How­

ever, the latter does hold, when (M , g) has non-negative sectional curvatures and 
dimJV =  1, as we will show to  be an immediate consequence o f  a  result obtained 
by Barbosa [Bar/78]. He studied the Jacobi fields on a dom ain  D  o f a minimal 
hypersurface for the case R  >  0 in the expression (0.9) fo r  the Hessian o f the 
volume fuctional VD, obtaining the following result:

T h e o re m  (B a r b o sa ) Let <j> : M m —► (A fm+1, / )  be an itom etrie  minimal immer- 
tion, v  a unit normal aettor field to M ,  D  c  A / a domain with compact cloture, 
and X  be a Killing rector field on M . A ttum e that M  hat non-negatite tectional 
curvaturei. Then we hate:
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fa) I f  <  X , v  > f  >  0 on 2?, then <f> it strictly volume-stable on D .

(b) I f  there eaitti a domain D ' c  D , tueh that <  X , v  > j  = 0  on d U , then <f> it  
not itrictlg volume-stable on D .

This theorem has an immediate application to graphs with co-dimension one. 
Suppose that N  is oriented and one-dimensional. Let Y  be a unit section along all 
N .  In Gh. 1, Sec. 3, we remarked that v  =  ¿ ( —V / ,  F ), where u  =  yj\. +  ||V/||* 
is a unit normal to  the graph T/ : M  (M  x  N ,g  x  h). Then, X  =  (0 ,F )  G 

X N ) )  is a parallel vector field and, therefore, also a Killing vector field. 
Moreover, it satisfies <  X , v  > #xfc =  £  >  0.

P ro p o s it io n  2 .1  I f  (M ,g ) it a Rietnannian manifold with non-negative sectional 
curvature», and if  Tj i t  minimal, then, fo r  each compact domain D  c  M , 1  ̂ it  
volume-stable on D .

R em a rk  2.1  Also Barbosa [Bar/78] mentioned this consequence for the case 
M m — IRm, which was already a well-known result.

E x a m p le  2 .1  M icallef [Mi/84] observed that the example given by Osserman 
[Os/69] of the map f  : IR} -*  R % reading

/ ( * . * )  =  i ( « '  - 3 « - ' ) ( c o . ( | ) , - u n ( | ) )

has a graph T/ : IR1 —* JR* which is minimal and, moreover, energy-stable, but not 
volume-stable.

Besides, this example shows that there are minimal graphs o f functions /  : IR} —* 
JR* which are not linear planes o f IR*, i.e. the B em itein  Theorem does n ot hold 
for graphs of co-dimension >  2. This was already to  be expected from  the work o f 
Lawson and Osserman [La-Os/77), which gave a negative answer to  the uniqueness, 
regularity, and even existence o f solutions to  the minimal surface system for co­
dimension >  2.

R em a rk  2 .2  A t this point we should recall the theorem o f Bernstein, since it 
concerns minimal graphs. It states that, if /  : IRm —* JR is a smooth function, 
such that the graph Tf  C JRm+l is a minimal hypersurface o f JRm+I and m  <, 7, 

then /  is a linear function. The case m =  2 was proved by Bernstein in  1927 
[B/27J and reproved by  Fleming in 1962 [Fl/62], who used a new technique. This
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method constituted a basis for the proofs o f  the cases rn =  3 (de Giorgi [DG/66]), 
m =  4 (Almegren [A l/66]), and m <  7 (Simons [Si/68]). For m >  8 the theorem 
is no longer true, i.e. there exist complete analytic minimal graphs o f sufficiently 
high dimension (from m =  8 upwards) that are not hyperplanes (Bombieri, de 
Giorgi, and Giusti [Bo-DG-Gi/69]).
A  minimal graph o f  a map from IRm to  JR is a solution of a differential equation, 

viz. the minimal-hypersurface equation (see next section). In general, a Bernstein- 
type problem amounts to  determining when the domain of a solution o f a certain 
differential equation is sufficiently large (for a given metric) in order to conclude 
that the solution is a trivial one. Given a minimal submanifold of a  Riemannian 
manifold (and minimal means being a solution o f  a certain differential equation), 
a Bernstein-type problem would be to find out when that submanifold is a totally 
geodesic one. This problem can be solved, if we require the minimal submanifold 
to  be volume-stable and /or impose a rigidity condition. For example, a condition 
on the Gauss map o f a surface or on the total scalar curvature o f a hypersurface 
may lead to  the desired result. It seems surprising that the original Bernstein 
Theorem only holds for m  <  7. Stability is not sufficient to make the theorem 
hold, since, for all m, a minimal graph o f ]Rm+1 is stable. A reason why it fails 
for m >  8 appears to originate in the way the total scalar curvature grows. This 
conjecture was pointed out and justified by do Garmo and Peng [DC-Pe/80]. Their 
result is the following:

T h e o re m  (d o  C a rm o ,P e n g ) Let x  : M  —* R m+1 be a complete $table minimal 
hyper turface o f IRm+l, K  the »ealar curvature o f  M  with the induced metric, and 
B r (p ) a geodetic ball o f M  with centre in a fixed point p and radiut R . Thus, if

then x (A f) i t  a hyperplane o f  JRm+i. In particular, if  the total curvature o f x , i.e. 
fbi \K\dM, it  finite, the conclusion holdt.

On the other hand, Miranda [Mir/67] proved that, for a minimal graph o f J2m+I,

So, from  Eqs. (2.1,2.2), the Bernstein Theorem holds for m <  5. Moreover, the 
authors [DC-Pe/80] conclude that counter-examples to it, for higher dimensions,
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should then have infinite total curvature, approaching infinity at least quadrati- 
cally in the geodesic distance from a fixed point in M .

A similar Bernstein-type problem has been formulated by Schoen, Simon, and Yau 
[Sch-Si-Ya/75] for a stable minimal hypersurface M m o f a space N m+l with non­
negative constant sectional curvatures, imposing the condition lim/i__Hx, R ~1v o lu {B n (p)) 
0, for some q E  (0, 4 +  where B R(p) denotes a geodesic ball of M  or the in­
tersection o f a ball o f N  with A /. This condition is satisfied for minimal graphs of 
lRm+1, when m <  5, too.
If a map /  : JR'n —* 2R" has minimal graph 1 / c  2Rm+", we cannot expect 1/ 
to  be linear, as shows Ex. 2.1. Nevertheless, we can find some conditions in or­
der to obtain a  Bernstein-type problem for »  >  2. As we recalled in Oh. 0,
1 / : (2Rm, g + f h )  —» (ZRm+n, g x h )  with g, h the resp. Euclidean metrics o f iRm,ZR", 
has parallel mean curvature, iff its Gauss map TT/ : (JRm,g  +  f* h ) -► <?(m +  n, m) 
is harmonic. Using this fact and studying the regular balls o f  the Grassmannian 
manifolds, Hildebrandt, Jost, and Widman [Hi-Jo-Wi/80] (see also Ref. [Hi/85]) 
got the following Bernstein Theorem:

T h e o re m  ( H ild e b ra n d t ,J o s t ,W id m a n ) Suppote that the Gi -funetioni z' =

/ ' ( * ) ,  i  =  m  +  +  n, z  E JRm define a non-paramctric m-dimemional

manifold X o f IRm+n which hat parallel mean-curvature field. Suppote alto that 
the tangent planet o f X  do not differ too much from the “horizontal plane" xm+l =

0 , zm+H =  0 . M ore precitelg, tuppote that there it a number So *ith

where e i t . . . , e m it  the canonic batit of IRm. Then, f  : JRm - »  2R" it a linear map. 

Therefore, i f  || df\\ is bounded by a conveniently chosen positive constant, that 
is, g +  f*h  is a ‘‘small” deformation o f the metric g, and i f  T/ has parallel mean 
curvature, then /  is in fact a linear map. Besides, Hildebrandt et al. observed that, 
i f  n =  1, then p  =  k  =  1, and so condition (2.3) does not impose any restriction on 

So *nd condition (2.4) becomes || V/||# <  constant, which results in M oser’s weak 
Bernstein Theorem [Mos/61], reading: auy entire G” -solution / ( * ) ,  x  E JRm, o f  the

1 . /  p  =  1
* i f  P > *

(2.3)

tuch that

M l j \  =  < M io +  <  # (* .) ,# < « > ) >1 <  Si (2.4)
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minim «l-»orfact equation div, (  j  =  0, with ™J>|| V/||f <  o o , i l  neceMarily
a linear function. The above theorem o f Hildebrandt et al. is a particular case of 
their main result in Ref. [H i-Jo-W i/80], which is a Liouville-type theorem for 
harmonic maps of simple or com pact Riemannian manifolds with range contained 
in a  regular ball.

2.2 The Equation fo r  a Non-Parametric Hyper­
surface o f  ( M  x J R ,  g  x h )  w ith Constant Mean 
Curvature: Some Remarks on Regularity o f 
Solutions

L et (A fm,g )  be a m-dimensional Riemannian manifold and /  : M  —► IR be a 
sm ooth function. L et h be the Euclidean metric o f  IR. From Eq. (1.15) and 
Lem m a 1.3 we know that the mean curvature H  o f the graph I ) C (M  x  IR,g x  h) 
is given by

'  =  " V » +  | v /| | ;(>r*” w **| V iy )‘ '

= ^ P 7 f ( A/_

( v/ i + iiv/ ii; ) * ' ’
where v  =  48 4  un^  normal to  1/ and X | , . . . , X m is a local orthonor-
mal frame of (T M ,g ). So 1/ has constant mean curvature with ||R|| — |e'|, iff

<Uv< )  =  m€‘ - u ,i  «««•**“

^  (ttS v/ i; ) (con,,*nt) (JS)
or, equivalently,

(V4T) -  V ‘  + l im ’ (*■•)
is the equation for non-parametric hypersurfaces o f M  x IR —  i.e. for graphs of 
maps from  M  to IR —  with constant mean curvature. For e =  0 it becomes the 
equation for a minimal graph. More generally, if in Eqs. (2.5,2.6) we replace e by a
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function m fT(x), we get the equation for non-p&r&metric hypersurfaces o f M  x  JR 
with prescribed mean curvature, given at each point x  €  M  by H (x )v .

Let x  : D  C M  —* O c  JRm be a  coordinate system o f H i and let jr,j, g'J, and \g\ be 
as given in Gh. 0. Note: throughout this section we will use the index-summation 
convention. Then, we have

« « w . i W )  =  A ) ,

where [¿,JJ denotes the inverse matrix o f [fa ] with

/ d  d  \ a t  d f
,iJ ~  \ a * ’ a * ) t t r t  m , ‘i  +  9 * 9 * '  (2,7)

We can easily verify that

t ‘ = « "  - (2.8)

S m c. we h .v .  V < f(£ , *) = ,£ , -  ***,&, Vf  = {Vf,  ¿ ) t = H ,
and ||V/||* =  9M§£f§{i, Eq. (2.6) is, in this coordinate system, given by

-  f ^ J é J L )  f - g L - =  * (2 9 )
V  T T f ^ s S )  ,Jd x * l  e [ l  +  r d x * d x ‘ )  • (2-9'

This equation is o f the form

d*u
Qm =  a,J( x , « , Z ? « ) ^ ^  +  * (* .«>  D u ) , ( 2.10)

where u : i l  C lR m —» IR is a (7*-function o f the variable x  e  2Rm, =  

* • • > an^ where the coefficients o f  Q are the functions <*'■* , b : O x
2R x  2Rm - »  IR defined for all values (x ,* ,p )  e  0  x 2R x  IR"'.
Equation (2.10) is called a second-order quasi-linear differential equation. In our 
case, these coefficients are given by

■"<«•*.')=•"<*.»>= -  T+ÄSsr ’ " = .....p") • ‘*u»

* (* .» .* )
i  +  » * ' ( * W i  /

n - ( 2.12)

Note that

(•“ (■•ri) =  !#</(») + m l  1 ■ (2.13)



Ckapler J , Seri torn >. Cquallom for Non-Pararne I rie Hypenurfmee with U o u l u l  Meaa C urvature . . . 42

Denote by G (x ) : jR"' —* 2Rm the self-adjoint, positive-definite linear operator 
given by  <  G (x )« ,,e , > =  y,>(x), and by B (p) the self-adjoint, semi-definite, non­
negative linear operator given by <  B (p )ti>cj  > — p,pr  Then, [a'J(x,p)J represents 
the m atrix (in the canonic basis o f ]Rm) o f  the self-adjoint positive definite operator 
(G (x ) +  i? (p )) -1 . Hence, Eq. (2.9) is a  second-order quasi-linear elliptic differential 
equation in all 0  x IR x  JR"' [Gil-TV/83]. However, it is not uniformly elliptic in 
all fl x  JR x  JRmt as we will see in the following.
Let A (x ,p ) >  0 and A (x ,p ) >  0 denote the minimum resp. maximum eigenvalues of 
[o,J(x ,p )]. Then, A-1 (x ,p ) and A - I (x ,p ) , are the maximum resp. minimum eigen­
values o f [^,-y(x) +  p,Pj}- Denote by dr(x) and d (x ) the minimum resp. maximum 
eigenvalues o f [(?ij(x) ] .  Then, we have the two inequalities

Note that in Eqs. (2.14,2.15) we have equalities, i f  g,j{x) =  a(x)A,j for some positive 
function a-(x) (=  dr(x) =  d (x ) ) .  Thus,

So, j  is not bounded on all f) x IR x  JRm, which proves that Q is non-uniformly 
elliptic on all 0  x  IR x  JR"\ being only uniformly elliptic on an open subset U with 
P l (U) C  0  and P \ U ) C  JRm both bounded.
Let us now write Eq. (2.10) in the form  f l « ( x )  =  F (x , u, D u, £>**) =  0, where

is a C °°-function on 0  x  Ml x  JRm x JR" '1. I f  now « „  €  C *(n ) is a solution o f Qu =  0, 

we conclude, since Q is elliptic on i) at m0 and [a‘-, (x ,«oi.D «o)] is a positive-definite 
matrix for all x €  0 ,  and using a well-known regularity theorem on second-order

<  min (d (x )+  <  * ,p  >* )  =  d (x )  , 

because there exists a u with u ± p  (we are supposing m >  2 ), and

(2.14)

-  ^ ( “ 1 * ) + <  * ’ <> > ’ ) =  » ( * )  + W ’  ■ (2.15)

D ' u [s£ fcr<  t i n f c ’ • • ■ I iJ - ' i r - ) ’  * nd where

F ( * , ‘ , P , r )  =  F ( x , f , r )  =  «■>(*, s,r)fyy+  *(«,*,p)

, i** 0il » r> •
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differential operators (see e.g. Ref. [Au/82], page 86, T h . 3.56), that u0 is smooth
on n.

We can improve this regularity property, starting from  Eq. (2.5). Let us suppose 
that A f  is oriented. In a local coordinate system x  : D  —► H  C  , assumed to  be
orientation-preserving, we have

y/ _ gun  a

Using Eq. (0.4) we get

div. i , i =  — | ^  j

Thus, Eq. (2.5) is, in this local coordinate system, given by

I v /  ] _  i a l  1

a* * l s/ n -r-B h .)
This equation is o f the divergence form

c *  =  ¿ ¡ I  w ( V ( * , . , d . ) )  +  b ( x , . , c . )

=  divj*) (A k(x , u, D u ))  +  B (x , u, D u) ,

(2.17)

( 2 .18)

where

and

A  =  X ( , , , ) = V r _ |_

=  B (x )  =  — .

(2.19)

(2.20)

A (/'-function  u : H - »  IR is said to be a weak solution o f  Eq. (2.17), if, e  Z?(fl) 
(i.e. <f> €  C °°(n ) with com pact support in 0 ) ,

f  I \/\r\r“fo a»
y“ W »  +  f - * r & 5 ?

A*1 A . . .  A i i im =  0 . ( 2.21)

For f  =  u o x : D c . A f  —» ^2, Eq. (2.21) is equivalent to

[  ( d+ dV, =  0 , V *<=P(Z>), ( 2.22)
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that is, to

-  SD { ¿ T r i m ’ v *\ = ’ v* e PiD) ■
(2.23)

H iv/H *

W e call a (/'-function  /  : M  —» 2R a weak lolution  o f the equation for non- 
parametric hypersurfaces o f (A / x ZR, g X h ) with constant mean curvature, and

if, V ^ g P (M ),

d i v . f ,  V

- f  <^ ’Vf>'dv,= i  +tr,.

(2.24)

(2.25)

M ore generally, we obtain weak solutions o f  the equation for non-parametric hyper­

surfaces of (M  X ZR, g X h) with prescribed mean curvature, replacing everywhere 
the constant c  by the function tnH (x).

In order to be able to  apply the regularity theory o f Morrey (M o/54 j, we have to 
write Eq. (2.24) as the Euler-Lagrange equation o f  a variational problem. Thereto 
we use the method o f Gulliver [G u/83,G u/74] o f  characterising submanifolds with 

prescribed mean curvature as critical points o f  a sum o f two functionals.
We consider the volume functional for graphs o f  (/'-functions /  : M  —» 2R on a 
com pact domain U , given by

m .E ) =  V „(I» = JD UVW-M =  JD v/» + l|V/||fW , •

The function /  is a  critical point o f if, for  any variation / ,  =  f  +  tW  with
W  : D  —* IR a C"-m ap and t €  ( —e ,e ) with com pact support in D , we have

! * ' ( / . . » )  I , . , = 0 .  (2.28)

W e are going to  calculate explicitly the l.h.s. o f  Eq. (2.26). Let x  €  M  and 
X u . . .  ,X m be an orthonormal basis o f (TmM ,g ) .  Then,

= fe<v/.(«).v/.W>. 1-, ^  ¿(¿(/■M*,)),L„ 
avA+FTl! ¿5 + ||v/||*

_  ^  { (• V A X .))' +  2iw . ( x i) 4 r . m  +  | „ .

h  v i + iiv /ii;
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<nvjx,w,(x,i 
h  v/i -t- liv/ii* ’

which is a continuous map in the variable x. Hence,

Observe that, if f  is G1 and W  has compact support in D,

at WdV, .

Now let us suppose that 25 is sufficiently small, say contractible. Then, 25 x  JR is 
also contractible. Therefore, all closed forms on D  x IR are exact. In particular, 
there exists a a  €  G °°(^ mT*(D  x IR )), such that da =  ( - l )m edVfxK, where h is 
the Euclidean metric o f IR and dVlxh is the volume element o f  D  x  IR.
Consider the following functional defined for C^-functions f  iT i —* JR:

i , • • • ,« -) =  o k / ( . h ( ( * | '4 M « i ) ) . 4 M « - ) ) ) . 

Let W  : 25 —* IR be a C '-function with W\w  = 0 .  Next we calculate

with < ,  >  the Hilbert-Schmidt Riemannian metric on Am T*M. F ix  X j , . .  . ,X m as 

an orthonormal frame o f  (TAf, g), defined on all U , and with the same orientation 
as . . . ,  g~a- Since D  is com pact and 1/ is an embedding, we can define, for 
each * €  { 1 , . . .  ,m } ,  a  6 '‘ -vector field Zl on all 25 x  IR, such that

(•*<(*))) > Vx e 25.
Also, let W  €  C '( r ( 2 5  x  * ? ) ) ,  such that *  (0 ,W ,) Vx €  25. We remark

o(/,C) = /Dr ;« ,

where I^ar is the continuous m -form  o f D, given by

that, trivially, IMXgt . .
V « . *(,.,1.11 =  (o ,r fW ,(J f.(* )) )  • (2.28)
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Denote by 6 : ( —e, e) X D  —» D  x  JR the (7'-m ap given by 0(1,*) =  ( * , / ( * )  +  tW *), 
and by Z ‘ the C -section  o f  0~lT (D  x  JR) given by

(̂tfir) — ^(*,/(*)) €  x 2R =  x  2R) , Vi €  (— c,e) , x  €  ~D .

Then, we have

V r * U = ° .  (2-29)

where denotes the sm ooth section o f  T ( (—e,e) x  Z5), such that J^(i, * ) =  (1 ,0). 
Now let us fix *  €  D . Then,

= r ^ « ( » ) ( x ,H ..... x„(*)) =
( ( X „ ^ ( A - , )  + M V .(X ,))......(Xm,df.(Xm) +  H W ,( X „ ) ) )  .

Next we have to determine the following limit:

« 3  J { « i . . / l.w »-i((-X '..< V .(A '.)).«(o ,< ffrI ( x 1))........ ( x m,< V A X „ ) ) . i ( o ,d W A x m)))

- ^ . . « . » { ( X w V A X , ) ) ........ ( X „ ,< t f , ( X „ ) ) ) } .  (2.30)

The first term in the limit can be evaluated as

•WM*w.>((X„<r.(X.)) + l(0,■/*'.(*.))......(Xm,JfAXm)) +  t(0,iW AXm))] =
= <*/,(*.))...... {x „ ,J fA X m)))

+  ........ (O .J W .IX ,))......... (X „ ,J / A X „ ) ) )
iml

+  £  <***(*, o .
k>i

where $ * (* , { )  is a continuous function in t e  (—£ ,«). Therefore,

(2.30) =

( ( X . ^ . I X , ) ) .........( X „ , # , ( X m) ) ) }

+ Efc* •VAX,))..... (o, dWAx,))...... (x„,(f,(x„)))

+  £ l i m  ( * - '* » (* ,  i )
*>»

=  a i  ■ • •»■z i2./(»)i) )  L

+ £ “ (../(.„((*.,4MX,))......{0,dWAX,))....... ( x m,d/AXm)))
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= ....*->w»>
E  °W(»H{tfa,/(,))»• • •. (o, dWs(Xi)), .. . , Z(2,/(a)))  ,

where 0 *o €  G "( Am i _ , (r (2 5  x  JR))*) is the alternating m-tensor given by

•••*•) =  «•<*,.) (*!»•• •,*■.) .

V (t ,x )  €  ( - c . e )  x D  and *, €  T9(tfX)(U  x  IR) =  o - ‘ ( r ( D  x * ) ) (|f>|. Let V  denote 
the connection o f the vector bundle AT 0~l (T (D  x ^2))*. Using Eqs. (2.28,2.29) 
we have

(2.30) =

=  V ^ (o  ‘ a ) (0>,, (^ (M )> ••• > )

+  E (®  ‘ o)(o^) ( ¿ / 0„  > • • • * V *  t • • •, ¿(Xr))

+  E  -W W I  (*('..,<„)• ’ "  • (0 , A M * ) ) , . . . ,  J ft /W , )

=  ^ » ( / r ) ° '( M  ( *(M) »• • •«^ (M ))

+  E  ®<*/Ml ........ (0 , < M ,(X i)h  • • •,

=  v #  <»(»,/(-)) ( ! , . / < * ) )™ .  U yR m
+ E  0 (*./(*)) /(*))> • • • * Ye' N W w )»• • •»̂ (i,/(*)))

=  r f(a (^ , , . . . , Z ' " ) ) (, >/(, ))( ^ (, )))
™ .  iWxfl

“  E  °(*./(*)) * • • •» Z(*,/(*)) > • • • 1<■1
"  /  KixR

+  E ° W ( * ) ) \ % / (• ) ) i • • •»Y z‘ " W ( * » >••• >ZM M ))

=  .........D W ^ w w )

E  a (*./(*)» • • • » ^ ]  (»,/(»))»• • •»

=  ¿I* <»(*./(*)) (2£rt/(*))i • • • . Z (*./(*))) •

Using now the following formula for a fc-form 0 6  C7*( f\k T (M  x JR)*),

‘» (y .......n .0  = Ef.V(-i)'-^(*(v,......?,.......n.,))(y()
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we get L y,a  =  i*. o  dot +  d {t^ o ). Hence,

(2-30) =

=  z w • • • t )

=  *# ........ * “ )  +  <I(»*°)<.JW|( Z ‘ ......... Z " )

=  *> W <»)| (llW (.)| i *(V/f«1l’ - • ■ ’ Z t” ./(*)>) +  • • • •
=  (-ir c Z V ,J,(x ,/(» ))((0 1t t '.) ,( j f„ ^ .(^ 1) ) ........(Xm, * , ( * „ ) ) )

+ ...... (xm,* .( X m)))
=  /<*))(<<>,I V .M X ,,# . ( * , ) ) .........(X m, * , ( * . , ) ) )

+I7('(*»“ )).(*.W.....x .M ).
Hence, (i/Joy <*(*)» |f_0 exists and gives a function continuous in the
v&raiable x  g  D . Thus,

§-°(/ + •W'. B) I,.. = jn§-t (Î a*»(*). W. <*)> I,.o'O'«
=  / B( - l ) ” cZVrJ,(.,/(«))((0 ,H '.),(Z 'I1̂ .(J f1)) ....... ( X ,„ ,^ ( X m)))rfV,

+  / „ r ; ( z ( v „ ) ) .

We cannot claim that =  d (r^ * (t^ a )), because 1/ is only O'1 and not
O1. So we cannot use Stokes’ theorem  directly. However, one may approximate 
/  uniformly up t o  first derivatives by smooth functions on D  and then prove the 
following, more general, Stokes’ theorem (see e.g. Ref. [Ma/79]):

/ / ; ( ■ ' ( * * » ) )  =  / „ r / | „ ( % o ) .

Since W ( , j (,)) =  (0 , W ,) =  0 , V* €  dD, we get

| o ( /  +  < » ' ,D ) | , . .=

=  / B( - l ) ” e ^ ( * , / ( . ) ) ( ( 0 , I V . ) , ( X „ ^ . ( X , ( X . , ^ , ( X . ) ) ) i V ,  .

In order to com pute t/V',,. (x, / ( x ) ) ( ( 0 ,  W ,), ( X ( , ^ . ( X « ) ) ........ (X m, ̂ , ( X m) ) ) i V „
which does not depend on the choice of the orthorm al basis X i ( * ) , . . . , X m(x) o f 

(2VA/,?), we m ay choose one, such that dfa(X i) =  0 , V* >  2. T hen, we get 
straightforwardly

(» ./( * ) )( (0 .*Vn). ( * . . ....... ( X m i J f . ( X m) ) )  =  ( - l ) - W .  .
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where I  is the functional, acting on ( / ‘ -functions «  : ÎÏ —* JR, given by

with ♦  : 0  x  JR x  IRm —* JR the smooth function

♦ (* , * ,P) =  + i * ‘ (xW « + l A(* »* ) +  £  ( - l ) m '■»A,,~ ,-  , (x ,z )p ,,

A ( / ‘ -fonction s  : H -*  JR i l  a cri tic al poin t o f  I ,  if, for any ( / ‘ -fonction W  : 
Î7 —* IR with compact support in O, |j l ( u  +  *W,n)||-0 =  0. So, «  is a cri tic al 
point o f / ,  iff /  =  «  o  *  : D  —» IR is a critical point of V  +  G . Let us fix a

Q =  { ( x ,z ,p )  : *  €  0  , \z -  u(x)| <  h , ||p -  p(x)|| <  A }, where p(x) is some 
continuous JRm-valued function of x  and A is a  positive constant. Deriving the 
function 'if w.r.t. the variable p, we get

V* €  0 ,  z €. JR, p  €  JRm, where [a^ (x ,p )] is positive-definite matrix (see Eqs. 
(2.11,2.13)). Then, V(x, z ,p ) €  Q, we have

The fulfilment o f this inequality means that 'I ' is strictly convex with respect to 
the variable p, and is in accordance with M orrey ’s condition on W(x, z ,p ) to be the 

integrand o f a regular variational problem near « (x ) . Moreover, it is equivalent to 
what nowadays is called the ellipticity condition of the Euler-Lagrange operator 
fl(u ) =  div(, )D ,¥ (x , *,£>«) -  D .* (x ,u ,D u )  (c f. Ref. [GU-TV/Ml, page 289). 
Morrey (see Ref. [M o/54], page 158) proved that, if «  : JT —♦ JR is a ( / ‘ -function and 
is a critical point o f / ( - ,n ) ,  then, since 4» is sm ooth, «  is sm ooth on 0 . Moreover, 
i f  «1 ^  is smooth, then «  is smooth on fi . Thus, we have the desired regularity 

property:

P ro p o s it io n  2 .2  Let (M ,q ) he a tmooth Riemanntan manifold and f  : M  — JR 
be a G l -function which it a weak solution o f  Eq. ( i . i i ) .  Then, f  i t  tmooth on all 

V / | „  it alto tmooth, then f  it  tm ooth  on all M .

( / ‘ -function u (x ) and let g  be a bounded dom ain of fl X IR x IRm o f  the form

----------------- v/l' l( '

gPig , ^ x ’  * • * ) * «  >  0 ' v <* e  * " \ { ° )  • (2.33)
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2.3 Existence o f  Graphs o f  Functions on the m -  

H yperbolic Space with Given Constant M ean 
Curvature

In the previous section we have derived some regularity properties of graphs of 
maps /  : M m —* JR with constant mean curvature c. From Sec. 1.1 we also know 
that, if A / is non-com pact and oriented, this constant cannot exceed the ratio o f 
the Cheeger constant J^(A/) and the dimension m, and that, if M  is com pact 
(without boundary) and oriented, e can only be zero. Supposing that ^  (A /) ^  0, 
we may pose the following question:

Q u estion  Given a eonttant c' with 0 <  ef <  ¡k l^ (A /), does there exist a map 
f  : M  —* JR, such that 1 / C A / x  JR has constant mean cursature equal to ef 9 

In Th. 1.2 we only gave a positive answer for the case o f  the two-dimensional 
hyperbolic space with e* assuming its extreme value |. Here we consider the more 
general case o f the hyperbolic space of arbitrary dimension tn >  2, H m =  {B m, g), 

where B m is the unit open disk with centre O  in JRm and w here g is the complete 
metric given by

We recall (see Oh. 0) that H m has constant curvature equal to  —1 and that (H m) =

P ro p o s it io n  2 .3  For each c E | l - m , m - l ] ,  the function f  : H m -*  JR giwen bg

i t  smooth on all H m, and I )  C H m x JR has constant mean curvature given by

m  — 1.

where

In particular, i fm  — 2 and c =  1, /  can be written as
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Proof. According to Sec. 2.2, one only has to verify that /  satisfies the differential 
equation (2.5). O f course, we are not going to execute such simple but tiresom e 
arithmetic. Instead, we will show how the above expression for /  is obtained. The 
procedure to be followed is to solve for /  in Eq. (2.5) as a function o f the intrinsic 
distance r ( r )  in H m from the origin, thereby considering c as a varying parameter. 
Using the expressions for the Christoffel symbols o f  (H m,g )  computed in the proof 
o f Th. 1.2, we see that the distance function r : H m -* IR, r(x) =  log ( f z j j j )  =  
2tanh~l(|x|), has the following properties: Vx 0, V r =  *~M* ^ j, where the 
gradient o f r is w.r.t. the metric g. Hence, ||Vr||# =  1 and A r  =  (m -  l ) c o t h r .  
We observe that r* is smooth.
Let us write /  =  h or  with h : R f  —» R .

Then, V /  =  A 'orV r, and Eq. (2.5) applied to /  becomes equivalent to  (Vx ^  0)

V 1 +  (* '“ >•)’  2 \ ( 1 +  (A 'or)* )1 ’ /• \]l +  (V or)*
h 'or  A  r (Vor)*V'or||Vr||* ^"o r ||Vr||*

y /l +  lV o r )»  ( l  +  (V o r )1) * s/1 +  '
Using the above properties o f r we get 

e ( l  +  (V or)* )*  =

=  (m -  1) coth  r (V o r ) ( l  +  (V or)* ) -  (V or)*A "or +  A "o r (l +  (A 'or)*) 

=  (m  — 1) coth  r (V o r ) ( l  +  (A 'or)*) +  hHo r  .

With the substitution u>(r) =  V (r ), the equation becomes

The next step is to  reduce this differential equation to a linear one through several 
changes o f variables. First we write Eq. (2.34) as

(V (V o r ) , V r )f 

y/l +  (h'or)*

w' =  e ( l  +  W*)f -  (m  — 1) c o th r w (l +  w*) , Vr >  0 . (2.34)
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Let y — — ■* i €  (0, lj. Then, w =  ± ^ ‘y 9 . Taking first w non-negative, we get

Eq. (2.34) . v/1 -  1 -  «*
-J f = e -------------- ( m -  l ) c o t h r - y  y  .

Thus,

- / y  =  e ^ l  -  if* — (m  -  1) coth r (1 — jr*) . 

Let t> =  y* G (0 ,1). Then,

Eq. (2.34) : c  — (m  — 1) coth r y/T~-2 y/i — v

Finally, let «  =  y/l — v G [0 ,1). Hence,

Eq. (2.34) <=> u' =  c  — (m  — l) c o t h r  «  , (2.35)

(rinh ro)m

which equation is linear. Let us first suppose e  =  1. Then, the general solution of 
Eq. (2.35) is given by

. ( r )  =  ( £  ,1— +

■lahr-lagriahro) c ( " i -1) (tog .¡nh t-log .loh r0)^ y _j_

-  ( r i » h r ) - ^  ( ( ^ h 7 „ > -  / ¿ “ M - " *  +  « « )

=  /  • I.1 vw _ !  f ( s in h  • )m _ ,<i» +  <o f  •(sinh r )m~l Jroy ’  (sinhr )m~l

Let us now put r<> =  «0 =  0. Then, we have

*<r> =  (d n h !•)— / . ' (8inl“ ) '" " ‘ ,<* ’ V r > 0 - I2'36)

Next we prove that u G [0 ,1) with * (0 ) =  0, and, moreover, that sup u (r ) =
. . . r€(0,+oo)

lim ,^ +00« (r )  =

Obviously, «  is positive and, with I’Hospital’s rule, « (0 ) =  limr_ 0 u(r) =

=  K“ —  =  **“ . -•  ^ n = o .
If u (r) attains a local maximum at some r0 G (0, + o o ), then u '(r0) =  0. From Eq. 
(2.35) we have u (r0) =  ^ r i “ - Thus, u (r0) <  ^  <  l .  On the other hand, if there 
are no local maxima, then, necessarily, sup tt(r) =  limr_ +<x> u (r). So we only

r€(0,+oo)



Chapter 1, Section ». Existence of Graphs o f  Functions on the m-Hyperbolic Space . . . 54

have to  calculate this limit. W ith partial integration,

J  (sinhs)m~ldB =

=  [ cosh »(sinh — (m  -  2) cosh* »(sinh » )m-*rf»

=  cosh r(sinh r )m_* — (m — 2) J  (1 +  sinh* »)(sinh t ) m~*d•

=  cosh r(sinh r)m_* -  (m  -  2) (sinh $)m~9d t -  (m  -  2) J  (sinh t ) m~ld» .

Thus,

Jq (sinh»)m _,<i» =  —  ̂ cosh r(sinh r )m_* -  jQ (sinh t ) m~*dt

and

/„'(s inh»)"1- 1«/» _  1 _  (m  -  2) /„ ' (sinh » )m~*<f»
(sinhr)m-1 m  — 1 C°  r (m  — l)(8 inhr)'n-1

1 m — 2 /o (s in h » )m -*d»=  --------- COth r — ---------  . . . a----- g-7-; {---- ----  .
m -  1 (m  — 1) sinh r  (sinh r )m~9

Since Vp , is a bounded function on r €  (0 ,+ o o ) , we have

/„'(sinh » )m -,d» 1 1
lim —  . —  = --------- lim coth r = --------- .f—+oo (sinh r )m 1 >n — 1 f—+°° »I — 1

Therefore,
•up « (r ) =  — i —  (2.37)

r€|0,+oo) m  — 1 V '
which is not a maximum. So, 0 <  u(r) <  , Vr €  (0 ,+ oo ) and u (r) satisfies
Eq. (2.35) for c  =  1. Let now e  be an arbitrary constant. Then, the function
u (r ) =  e « (r ) is a solution o f Eq. (2.35), but we have to  impose u (r) €  [0 ,1). From

Eq. (2.37) we conclude that c must satisfy 0 ^  e  <  m — 1. That is, VO ^  t  ^  m  — 1 ,
the function

i ( r )  ^ .c /» > « * »  » r - 1*
(s in b r)1" -1

fulfils the condition specified in Eq. (2.35).
In terms o f the original function / ,  we have

, , .  . . . . .  r M  ¡ s s f r ^T/ o ' (“ ■ * ■ > ,
/ ( * )  =  * (r (* ) )  =  J ,  , '  1 -----Wr,

V 1 “  ( [ ¡S l f i= r /o '( , “ h , ) '"_ ,<*<)

which solves Eq. (2.5). I f  we had chosen w non-positive, we would have obtained 
the same expression for / ,  but now with 1 — m <  e <  0. Obviously, /  is smooth
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on fTm\ {0 }. Let us now investigate the behaviour o f /  close to the origin. Near 
t =  0 we have the following Taylor expansions: 
sinh t =  t +  £  +  0  (I») =  f ( 1 +  £  +  0 (1«)),
( l + < ) m =  1 +  m l +  0 (1*),
7fe7 = i - i  + e(i>) , *  = ! + < + e(f),
where 0 ( i* )  and 0 ( l k)  are analytic functions o f the form  

» (< * ) =  =
Then we have

=  1 “  T  +  0 ( <4) * rrjr =  l  +  i* +  0 ( t 4) , and 
( s in h l ) " -1 =  ( " " ‘ ( I  +  Ç  +  0 ( l ‘ ) ) ” " '  =  l " - * ( l  +  a tl| *) +  0 (1 ” +*).
Hence,
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Consequently,

/ w - r
Since r*(*) is smooth on all H m, we conclude that / ( * )  is, too.

Remark 2.3 We could not find a non-trivial global solution /  o f Eq. (2.6) o f the 
type f ( x )  =  h o r(x ) for e  =  0. In fact, if in Eq. (2.35) we set e  =  0, it has as 
solution u (r ) =  ie(sinhr),-,n with k an arbitrary integration constant, which, for 
*  Ï  0, tends to + o o  near the origin. Hence, * (r ) (0 ,1|. Thus, it seems that we
can formulate the following Bernstein-type conjecture:

Conjecture Let /  : H m —» JR be a sm ooth map, such that I )  C H m x HZ is a 
minimal graph. Then, /  is a totally geodesic map.

We also remark that the function /  given in Prop. 2.3 has non-bounded ||V/||#.
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1 Introduction
Let /  : M  —» N  be an immersion where M  and N  are Riemannian manifolds 
with metrics g resp. h. A natural problem is to study relations between g and 
h* =  f* h , the induced metric on M  via / .  For instance, we can try  to find 
out if, under some assumptions on /  and the manifolds (M ,g ), (N ,h ) ,  the two 
metrics h* and g are conformally related, or, a fortiori , if h* — g, that is, if /  is 

an isometry. In the present work we give some sufficient conditions to  positively 
answer the former problem and show that a slight strengthening o f these provides 
a necessary and sufficient criterion to  solve the latter. In both cases we assume 
the existence o f a special vector field on jV, at least in a neighbourhood o f  / (A / ) ,  
proving, anyhow, that this class o f  vector fields is large enough to justify their 
use. As a side product, we present a Liouville-type result for /  harmonic and with 
finite energy (proposition 2). The core of this work is in Sec. 3, in the form of 
theorems 1,2 and proposition 3. Som e applications, in the more transparent case 
M  compact, are given at the end o f the same section. In particular, proposition 
4 should be compared with the main results o f Chern and Hsiung [Ch-Hs/63] and 
Hsiung and Rhodes [Hs-Rh/69].

2 Preliminaries and Formulae
Let (N ,h )  be a Riemannian m anifold and U  c  N  an open set.

Definition A vector field X  defined in U is said to  be almott conformal, if there 
exist smooth functions a , /? : U  —* 2R, such that the Lie derivative o f h w ith respect 
to  X , L xh , satisfies

2ah  £  L x h  <  20h  . (1)

X  is said to be finite, if in f a  >  — oo and sup 0  <  + o o , and to  be ttrongly almott 
conformal, if it is finite and a  >  0.

Examples
1. Any conformal vector field A ' on U  is almost conformal.
2. Any homothetic vector field X  on U  for which L xh  is positive definite is strongly 

almost conformal. For instance, in (2R ",< , > )  the position vector field X  satis­
fies L x  < ,> =  2 < ,> .
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3. A procedure to construct almost conform al vector fields is given by the follow­
ing:

Proposition 1 Let U C (N ,h ) be an open te t supporting a real function <f>. Let 
X  =  V<t> be its gradient and V<ty its second fundamental form . Then, ah  <  S7d<j> <  
0h fo r  tom e smooth functions a ,0  :U  —+ JR, iff 2ah <  L x h <  20h . .

Proof. Recall that, given any vector fields X , Y , Z , L x h (Y ,Z ) =  (\7YX ,Z ^ k +  
(V,X,Y) . For X  =  V * . -  have (V y X .Z )^  =  ( V y ( V * ) ,Z ) 4 =  V  < V * ,Z ) ,  -  

( V * , W Z ) ,  =  F (Z * )  -  V r Z (* )  =  V d * (y , Z ) .  Therefore, we obMin Z x * (V , Z )  =  
2 V d *(y , Z ). <7

For instance, let (N ,h ) be a complete manifold and B r (p ) a regular ball,that 
is, B r (p ) is a geodesic ball o f radius R  centred at p  €  N  with the properties:

(i) •JkR <  ¡ ,
(a) G(r)nB,(,) = t,
where k =  m ax{0, ^sup^K) with K  the sectional curvature o f N ,  and where C(p) 
is the cut locus o f the centre p. Due to  a  result o f Hildebrandt, Haul, and Widman 
[Hi-Ka-Wi/77] (see also Ref. [Hi/85], page 66, Th. 5.2, the second fundamental 
form of the function <f> =  |p* with p{q) =  d ist(y ,p ) satisfies, in B r (p),

<*k(p)h <  Vdrf» ,

where a*(f) =  ty/ kcot(^ k t) for 0 <  t <  Furthermore, if Jif >  w, w <  0 on 
B r (p ), then, in B r (p ),

<  a w(p)

with a „ ( i )  =  ty/—w coth (v /— u>i) for 0 <  t <  oo. As a consequence, under the 
above assumptions the vector field X  =  p^j- =  | V  (/>*) is strongly almost conformal 

on B r (p). By the Cartan-Hadamard theorem , this is particularly significant, if 
N  is simply connected and with non-positive sectional curvatures. Indeed, in this 
case any geodesic ball is regular.

The above discussion also justifies the term inology o f  the following. 

Definition A vector field A' defined in If is said to  be strongly convex, if there 
exists a a  : U  -*  1R, such that infer >  0 and

L xh  >  2 a h .



Again, if B r (p ) is a regular ball in the complete manifold (N ,h ) ,  then X  =  pf-f  is 
strongly convex in the geodesic ball i?A(p).

Let (A /, g) be a second Riemannian manifold o f dimension m and f  : M  —> N  
a smooth map. The tension field Tt  o f /  is defined as ([Ee-Le/83])

7 / =  trace, V d / .

Given a strongly convex vector field X  in the open set U c  N ,  we set u — in fo  >  0u
and suppose / ( A / )  C U. Now we denote by X j  the vector field along /  and by 
V*, and V 7 the connections on T A f, T N , and f ~ lT N , respectively. Let Z  
the vector field on A f defined by

<  Z „  Y  > ,= <  X /{M) >* , v r  e  T ,M , z g M  .

Fixing x 0 G M  and choosing X t , . . . ,  X m as an orthonormal frame o f (M ,g )  defined 
in a neighbourhood o f * 0, such that VX,(a!o) =  0, we have, at the point x0,

<j> ,* , > . ( * . )  =  f ; ( v ^ ( x „ x , ) , x / )  = f : ( v ' ; , ( ^ ( x , ) ) - . x / )
1=1 i=i '  '  *

= £  {-ft W(x.).x,)t )„(*,) -  (#(*,), V£‘x>)j 

-  Ê H <  z , x ,  > ,  ) „ ( * , ) -  ( v m , v i m x ) j

=  div, (Z )(* „) -  £  ‘ l x î. (^ (X ,) ,< V (X ,) )
f=l *

<  d iv ,(Z )(x „) -  £ >  W (X < ) ,V (X .) )k 

=  <Uv,(Z)(*0) -  « { M  .

So we have obtained the formula

<  Th X ,  > * <  d iv ,(Z ) -  or|4f||; <  d iv ,(Z ) -  u\\df\\) , (2)

where ||4f ||J is the square o f the Hilbert-Schmidt norm o f the section df G G °°(T A i*0  
f ~ lT N ), M  being supplied with the metric g.

Supposing next that M  is compact, we get by integrating Eq. (2)

E (I )  S  - ¿ / v  <  T „ X ,  > ,  dV, , (a)

>• 
2
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where E ( f )  is the energy o f / .  Observe that, in case (N ,h )  =  (1 R " ,< ,> ) ,  X  is 
the position vector field, and /  is an isometry, Eq. (3) transforms into the equality

v ( M )  =  - J ^ <  a ,  f > d v ,

with H  the mean-curvature vector o f the immersion /  and V  (A f) the volume of 
M . Hence, Eq. (3) can be thought to generalise a classical formula o f Minkowski 
on convex bodies.

Furthermore, from Eq. (3) we deduce that, i f  /  is harmonic, i.e. T/ =  0 , then 
■£?(/) =  0 and /  is constant. This result generalises to  the non-com pact case in 
the following:

P r o p o s it io n  2  Let (M ,g ) be a complete, non-compact, oriented Riemannian man­
ifold, and /  : M  —* U  C (N ,h ) be a harmonic map o f finite energy, where U it 
an open tet tupporting a strongly convex vector field X .  Let y  be some point in 
M  and t the distance function from  y . / / l im ,^ +00 |pf/||\dVt  =  0, then f
i t  conttant.

Proof. Let f  be the 1-form dual to the vector field Z  on M  appearing in Eq. 
(2 ), that is, f ( F )  = <  Z ,Y  > , ,  and let * be the Hodge star operator. Then, 
d * (  =  divt (Z)dVt with dVt the volume element o f (M , g), and, since /  is har­
m onic, Eq. (2) gives

HMN1* ;  £ • (4)
Let now ||*f|| be the norm o f the (m -  l)-form  * (. Then, ||*f|| =  ||f|| =  ||Z||#, 

but, from the definition of Z  and the Schwartz inequality, ||Z||f <  ||4f||#||X/||*. 
Therefore, applying Holder’s inequality, we have

\ L , 5 [ ? L j x>
and, since the energy o f /  is finite,

i L ,  5« { b u  ■
B y  the Gaffney-Yau extension o f Stokes’ theorem (see the appendix o f  Ref. (Ya/76]), 
there exists a sequence of com pact domains K , in M , such that K i  C  K i+ u
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\JKi =  M , and JKf d * f.-^ *J i. Applying this to Eq. (4) we deduce E ( f )  =  0, 
i.e. /  is constant.

R e m a rk  A fter careful inspection of the proof o f Prop. 2 we conclude that it is 
sufficient to  require U  to  support a itrictly convex vector field instead o f a strongly 
convex one. Such vector fields satisfy L xh  >  2ah  with t* >  0.

R em a rk  In case U  =  B ,[p )  and A' =  pf^  as in Sec. 2, Ex. 3, Prop. 2 should be 
compared with the results o f Karp [Kar/82]. Indeed, if N  is simply connected, 
complete, and with non-positive sectional curvatures, p* is smooth on all of N , 
Vd(p*) >  2A, and ||Vp||* =  1 almost everywhere. Thus, it  appears that our 
assumptions E ( f )  <  + o o  and l im ,-+0.  ft / * „ ,  \\X,l\iVt  =  lim ,^+oe ¡V /* „ ,(* >  © 
f)*4V , =  0 play the roles o f boundedness o f / ( A / )  resp. o f moderate volume 
growth o f M  in Cor. 4.1.1 o f Ref. [Kar/82].

Let now /  : (M , g) —» (N , A) be an immersion and M  be oriented with dim M  =  
m. We set

A* =  r h

for the pulled-back metric. Let u be the ratio o f the volume elements o f A* and g, 
so that u is the positive function defined by

dVk- =  *dVt .

Then, ||4f||’  and u are related by the inequality

m « 4  <  m ; (&)

at any point y  €  M ,  with equality holding, iff 

A* =  A*g («)

for some non-zero A at y . In order to  prove these statements, we choose at each 

point *  6  M  an orthonorm al basis X i , . . . , X m on r* M  which diagonalises A*,
i.e. < X „ X j  >*.=< dfM(X ,) ,d f ,(X j )  > „=  As dV„. = dVh.{X t......Xm)dV„
we have u =  dVk» ( X „ . . . , X m) =  y^det <  A , ,X j  > * . =  y/Xt • Am. From the 
well-known geometric-arithmetic-mean inequality (a j • • • am) *  <  H------- h am)
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for any non-negative real a,, with equality iff a, =  a j V«,;', and using ||<V||* =  
Ai H--------f- Am, we obtain Eqs. (5) and (6).

As a final notation, we denote by H  the mean-curvature vector o f the isometric 
immersion /  : (M ,h*) —» (AT,h). ,

3 Main Results

Given a strongly almost conformal vector field X  on U , we define

a

where a  and /? are as in Eq. (1).

T h e o re m  1 Let (M ,g ) be an tn-dimensional, with m  ^  2, oriented complete 
Riemannian manifold, U  C  (N , h) be an open let supporting a strongly almost 
conformal sector field X ,  and f  : M  —* U  be an immesion satisfying 

(A ) E { f )  <  + o o , is complete, and  | X /| »t«||ir|U €  L '(M ,g ).

I f
(») (Tf -  m uH  , X f )h Z  0 and 

(it) u <  for m >  3,
(lit) u >  0 for m  =  1 , 
then f  is conformal with h* =

Proof. With notations analogous to  those used in Sec. 2, we get

=  <Uv»-(W') -  £  l- L x k (d f(X ,) ,d H X ,) )  2  d iv ,.(W ) -  m »  , (7)

where {X ,}  is an orthonormal basis o f  (M ,h *) and W  is the vector field on M  
defined by <  W ,Y  > * .=  (,i f ( Y ) ,X , ) k , V F  €  T M  , x  €  M .

Multiplying Eq. (7) by u and subtracting the result from  Eq. (2), we obtain

(T) -  m *H  , X , ) k <  d iv ,(Z )  -  udiv*. (W ) -  o||((f||J +  m 0u  . (8)

Let us consider the case m >  3. From  u <  i  A  <  1 (assumption (ii)) and since 
9 * - -  is the solution o f the equation 9t =  t = , we have 9t <  t s  , Vt : 0 <  t <  0 « ^ .  
Hence, Eq. (6) and 9 >  1 give «  <  ¡ u i  <  Therefore, as
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f  has finite energy, u G L l(M ,g ), but *  <  1, thus u* <  u and u G 
Using the definition o f W  and applying the Schwarz inequality we get ||IV||A* < 
\/m||X/||*. So, as we assumed ||X/||* G L * (M ,g )  (conditions (A )), we obtain 
« I ll 'll* . G L '(M ,g )  or, equivalently, ||VV||*. G Furthermore, the first
part o f Eq. (7) and the properties o f L x h yield

(m H ,X / )k <  div*.(JV) -  am  .

Combining this with Eq. (7) and multiplying by u we arrive at

u (m H ,X f ) h +  am *  <  u d iv*.(iy ) <  u (m H ,X / )h +  0m u  .

Thus, since «||27|| E L * (M ,p ), we immediately deduce that udiv*»(iy) G L l(M ,g )  
or, equivalently, div*« (W )  G L 1(M , h*). Finally, as in the p roof o f Prop. 2, we have 

ll^ll# ^  Applying the Gaffney-Yau extension o f  Stokes’ theorem [Ga/54]
[Ya/76], we find a sequence of com pact domains K j  telescoping to  M , such that

/  *dsvk.(W )d V t =  f  div k.(W )d V k------ ► /  div*.(W )dV*. = 0
JKt J K{ <-*+oo J\i

and

/jr d iv ,(Z )< V <i- p  O ■

Using assumption (i), integrating Eq. (8) over K i% and letting i  - »  + o o  we get

-a||rf/|| ,*)iV ,>0. (9)

Now, from Eq. (5) we obtain

mffu — aH^Hj <  m(/?u — « « » )  =  m a(0u  — ,

but assumption (ii) implies 0*  -  « =  <  0. Hence, from  Eq. (9) and the above 
inequality we conclude o||<y||J =  m pu, i.e. ||4f||J =  m 0 * <  m * ± .  This gives 
equality in Eq. (5). Consequently, Eq. (6) holds. Furthermore, since 0*  =  u > , 
*  =  0 and thus

V  =  ■ (10)

The case m =  1 is proved analogously.

R em a rk s If M  is com pact, conditions (A ) are autom atically satisfied and the
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condition sup/? <  + oo  can be dropped. Moreover, from the p ro o f o f  Th. 1, 

«||ff||* €  L * (M ,g )  is clearly satisfied, i f  ||lf|| is bounded. This guarantees the 
convergence o f the integral JM div*. (W )dVk». Finally, one may substitute this con­
dition by ||7 /1|* €  L *(M ,p ) and work out a reasoning similar to  the one presented, 
using now <R-Vi>(Z)dVt . The same remarks apply to the next results.

In what follows, conditions (A ), (i), (ii), (iii) always refer to the ones given in 
Th. 1. As expected, the case m =  2 is special.

P ro p o s it io n  3  Let (M ,g ) be an oriented complete surface, U  C  (N ,h ) an open 
te t supporting a strongly conformal (i.e. a  =  fi) sector field X ,  and f  : M  -*  U 
an immersion satisfying (A ) with u €  L*(A f,if). Then, f  is conformal, iff (i) holds 
with m =  2.

Proof. A simple modification o f the previous proof gives the sufficient part. In 
fact, in this case we immediately have from  Eq. (5) 2 «  <  ||d/||*, obtain ing  Eq. (9) 
as well. As 2fiu — =  or(2u — Hd/’HJ) =  0, we conclude from  E q . (6 ) that /
is conformal with h* =  ug.

Now we prove necessity. Given a conformal immersion /  : (M ,g ) —* (JV, h), the 
following formula is well-known (Eo-Os/82]:

m B  =  i f ,  +  log y ? )  , (11)

where m =  d im M , h* =  ag , and V , is the gradient w.r.t. g. So, i f  M  is a  surface 
and /  is conformal, then u — a  and, from  Eq. (11), Tj — 2uH  =  7 / — 7 /  =  0, which 
proves necessity o f (i).

Theorem 1 and its proof, together with Prop. 3, give:

T h e o re m  2 Let (A /, g) be an m-dimensional, oriented, complete R iem annian man­

ifold, U C (N , h) be an open set supporting a strongly conformal seetor  fields X ,  
and f  : M  -*  U be an immersion satisfying (A ) ( with u €  L *(A /, g ) , i f  m  =  2). 
Then, f  is an isometry, iff 

(») <7) -  m u H  , X , ) k £  0 and 
(••) u <  1 , that is, f  is eolume decreasing for m  >  3 ,
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(»»*) u >  1 , that it, f  it tolume increating fo r  tn =  1,
(•"») *  =  1 , that it , f  it volume preterving for tn =  2.

Proof. Necessity is obvious. As for sufficiency, since Ar is conformal, 0 =  1 and, 
for m >  3, form ula (10) gives h* =  g, i.e. /  is an isometry. The other cases are 
analogous.

R e m a rk  Theorem  2 was proved in Ref. [Ri/87] under the assumptions (N ,h ) =  
(IRn, < , > ) ,  X  is the position vector field, and M  is compact.

Consider now the case where a strongly almost conformal vector field X  has the 
additional property in fo  =  v  >  0. Set /t =  sup/? and $ =  £ >  1, which is a
constant. Replacing 0 by 0, a  by i/, and /? by p  in Th. 1, thus obtaining the cor­
responding conditions (»'), (*'»'), (m ) ,  we can formulate the following strengthened 
theorem:

T h e o re m  3 L et (M , g) be an tn-dimentional, with tn £  2, oriented, complete 
Riemannian manifold, U  C (N ,h ) be an open tet supporting a itronglg almost 
conformal vector field X  with the property inf a  >  0, and f  : M  -*  U be an immer­
sion satisfying condition (A ). I f  (*) and (»») or (Hi) hold, then f  it an isometry 
and X  i t  hom othetic.

Proof. The p roof o f  Th. 1 goes through till Eq. (10), which now becomes

A* -  * r f e ,  , (12)

whence /  is a homothety. So in this case u =  i  A .  Computing the tension field 
Tf, using Eq. (11), we obtain

<r, -  m .H  , X ,) „  =  *E?=r(l -  #'-■) {m H ,X ,)k . (M )

Combined with E q . (7) this gives

<T> -  m .H  , X ,) „  =  # r t ( l  _  # -* ){d iv ,.(IV ) -  • }  , (14)

where $  >  m v  >  0. Condition (i) and once more the Gaffney-Yau Stokes’ theorem 
yield

0 i  -# r * s ( l  _  J^id V,.. S O , (16)
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as 0 >  1. Consequently, 0 =  1, that is, X  is homothetic and, from  Eq. (12), /  is 
an isometry.

Next we give an application o f  Theorem 2.

P ro p o s it io n  4 Let i  : (N ', h ') —♦ (N ,h ) 6« an isometric immersion o f  an oriented 
manifold N 'f with dimN' =  m  and i(N ')  C U an open tet in N  tupporting a 
conformal vector field X  and having the property a  >  0 on U . Let (M ,g )  be an m- 
dimensional, compaet, oriented Riemannian manifold and F  : (Af ,g )  —» (N \ h ' ) 
be an orientation-preserving harmonic diffeomorphitm with ratio o f  the volume 
elements u. Let Vdi be the second fundamental tensor o f i  : N ' —* N  and H  its 
mean-curvature vector field. Then, F  is an isometry, iff 
I t )  ( l r at,,V<IHdF,dF) -  m ,H  , X , . , ) k >  0 and 
(2 ) F  is volume decreasing for m  >  3,
(S) F  is volume preserving for rn =  2,

(4 ) F  is volume increasing for m  =  1.

Proof. Let /  =  i o  F .  Since i is an isometric immersion and dimJV' =  dimAf, a 
standard composition formula o f Eells-Sampson [Ee-Sa/64] gives 

T, =  TF +  trace, V«h (dF, JF) and U , - H  , 

where H j  is the mean-curvature vector with respect to / .  Moreover, F  is harmonic 
and the ratio « / o f  volume elements w .r.t. /  satisfies « /  =  « ,  which yields 

(T/ -  m uH f , X f ) k =  ^trace,Vdi(dF, dF) -  m uH  , X ior ) k •

Since /  is an isometry, iff F  is so, the result follows immediately from  Th. 2. 9

R e m a rk  Proposition 4 generalises the main result o f Hsiung and Rhodes (Hs- 
Rh/08] (and, earlier, o f Chern and Hsiung (Ch-Hs/63]), which in our formulation 
can be stated in the form:

Let F  : (M ,g ) -*  (AT'.fi') be a harmonic, volume-preserving diffeomorphism. Let 
x  : (M ,g ) —» (N ,h ) and i  : (AT',h') -*  (N ,h ) be isometric immersions of com­
pact submanifolds into the Riemannian manifold (N ,h ) which admits a strongly 
conformal vector field X .  I f  (7> — m H f  , X/)k £  0, with /  =  i o  F ,  then F  is an 
isometry.



Reference! P u l U 73

REFERENCES

|Ch-Hs/63] S. S. Uhern and G. G. Hsiung, On the Itom etry o f  Compact 
Submanifold$ in Euclidean Space, M ath. Annalen 140 , 278-285 
(1963).

[Be-Le/83] J. Eells and L. Lemaire, Selected Topict in Harmonic Adapt, 
G .B.M.S. Reg. Gonf. Series No. 60  A .M .S. (1983).

|Ga/S4| M . Gaffney, A Special S tokei’ Theorem fo r  Complete Riemannian 
Manifoldt, Ann. o f Math. 60  (1), 141-145 (1954).

[Hi-Ka-Wi/77| S. Hildebrandt, H. Kaul, and K . O . W idinan, An Eziitencc Theory

IHi/86)

fo r  Harmonic Mapping» o f Riemannian Manifold», A cta Math. 
168 , 1-16 (1977).

S. Hildebrandt, Harmonic Mapping» and Minimal Immertion», 
Lect. Notes in Math. 1161  (1985).

[H o-Os/82] D . Hoffman and R . Osserman, The Area o f  the Generalited Gaus­
sian Image and Stability o f Minimal Surface» in S " and 1RH, Math. 
Annalen 3 60 , 437-452 (1982).

(Hs-Rh/68] G. G. Hsiung and B. H. Rhodes, Itom etrie» o f Compact Subman­

ifold» of a Riemannian Manifold, J. Diff. Geom. 2 , 9 -24  (1968).

[Ka/82] L. Karp, Subharmonic Function» on Real and Complet Manifold», 
M ath. Z. 170 , 535-554 (1982).

(R i/87?) M . Rigoli, On Jmmerted Compact Submanifold» o f  Euclidean 
Space, to appear in P roc. Am. M ath. Soc. (1987?).

1



Refer earn Pari U 74

[Ri-Sa/87]

(Ya/76)

M . Rigoli aud I. M . C. Salavessa, Conformal and Itom etric Im- 
m ertion» of Riemanman Manifold», to appear in Math. Z . (1987).

S. T . Yau, Some Function-Theoretic Propertiei o f Complete Rie- 
mannian Manifold» and their Application» to Geometry, Indiana 
Univ. Math. J. 35, 659-670 (1976).



Part III

A  VARIATIO NAL PROBLEM  
A N D  A RELATED  

BER N STEIN -TYPE TH EOREM  
IN CO N FO RM AL G EO M ETRY



Chapter 0. Introduetloa 76

Chapter 0

INTRODUCTION

Conformal Geometry is concerned with the properties o f figures and objects of 
S n, invariant under the action o f the Möbius group, that is, invariant under an 
arbitrary conformal transformation o f the sphere S n equipped with its usual Rie- 
mannian structure o f constant positive sectional curvature. This geometry was 
first introduced by ¿ lie  Cartan [C/55J. Here, we review in Ch. 1 the geometry of 
the Möbius space 5 "  and the induced conformal structure o f  an immersed subman­
ifold, described by, among others, Schiemangk and Sulanke [Sch-Su/80], Sulanke 
[Su/81], Bryant [Br/84], and Rigoli [R i/87], which authors use Cartan’s method 
o f moling fram e$ . Faithful versions o f  this method can be found in Refs. [ Je/77] 
and [Su-Sv/80].

Some o f the conformal invariants in  Riemannian geometry can be interpreted 
as invariants o f  conformal geometry. More precisely, we can compare the geome­
tries of submanifolds in the Euclidean space JRn and o f  those o f the Möbius space 
5 " ,  thinking o f 5 "  as IRn with a point at infinity through stereographic projection. 
For example, the Willmore integrand for immersed surfaces F  : M  —* JR* into the 
3-dimensional Euclidean space, which is invariant under conformal transforma­
tions of JR* (plus the “point at infinity” ), can be interpreted as the Riemannian 
version of a conformally invariant 2-form flp  on M  endowed with the induced 
conformal structure by the Möbius space S*. In this way, Bryant |Br/84] stud­
ied the Willmore functional and the associated variational problem, deriving its 
Euler-Lagrange equation. The critical points are called Willmore immersed sur­
faces. This procedure allowed Rigoli |Ri/87] to generalise in a  natural manner the 
concept o f Willmore immersed submanifolds /  : A /m —» 5 "  o f the Möbius space 
S H as critical points of the variational problem associated with a functional W ( /) .
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However, he only derived the Euler-Lagr&nge equation for the case m  =  2 and »  
arbitrary. In  this work, viz. in  Gh. 2, we will solve for the Euler-Lagr&nge equa­
tion for any dimension tn < n. This variational problem is related to  the one of 
a different conformally invariant functional, involving the conformal Gauss map 
7/ •’ M m Qn-m(JRn+i) for an immersion /  : M m - »  S n. This relation was first 
pointed o u t  by  Bryant [Br/84], in the m  =  2, n =  3 case, and by Rigoli (Ri/87), 
for tn =  2 , n  <  3.

Also, in  Ch. 2, we wil solve a Bernstein-type problem for Willmore hyper- 
surfaces o f  S " ,  which generalises the one solved by Rigoli |Ri/86] for surfaces of
S ».

Finally, in  Oh. 3, we compute the second variation formula for Willmore sur­

faces im m ersed into a space form , in the context o f Riemannian geometry. Earlier, 
this was don e  by Weiner (W e/78] in the particular case where M * is a m in im » !  

surface o f  S *.

Throughout this part we use the index-summation convention on  repeated 
indices.
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Chapter 1

THE CONFORMAL GEOMETRY OF 
SUBMANIFOLDS OF Sn

1.1 The G eom etry o f  the Möbius Space
l . l . A  T h e  I n f i n i t e s i m a l  C o n f o r m a l  T r a n s f o r m a t i o n s  o f  I ? "  

a n d  S n

Two Riem&nnian manifolds (Af, g) and (AT, h) are said to  be conformally equiva­
lent, i f  there exists a  diffeomorphism <f> : A I -*  N , such that 4*h =  et f g, where 
p is a function on A /.  I f  (N ,h ) =  (Af ,g ) ,  such a diffeomorphism <ft is called a 
conformal transformation of (M ,g ). (A /, g) is said to  be conformally flat, if it 
is locally conformally equivalent to a flat Riemannian space. Conformal flatness 
is well-known to  be equivalent to the vanishing of the Weyl conformal curvature 
tensor, if dirnA/ >  3 . For example, all the Riemannian manifolds with constant 
sectional curvature are conformally flat. A  vector field X on M  is called conformal 
(or a conformal infinitesimal transformation), if the local one-parameter group of 
transformations generated by X  consists o f local conformal diffeomorphisms. The 
vector field X  is conform al, iff L xg  — pg , for some function p  on M . The con­
formal vector fields form  a Lie algebra. Then, we have the following well-known 
results (see e.g. Ref. |Ko-No/63], notes 11,9; Ref. |Ib/85), pages 88,89; Ref. [Ei/64], 
page 285):

P ro p o s it io n  The group o f oil conformal transformation» o f a connected n-dim en­

sional Riemannian m anifold N  it  a Lie group of dimention It»» than or equal to 
(ii+ i)̂ ii+i )  ̂ pro9ifa(i n >  3 . It» Lie algebra it itomorphic to  the one generated bg 

the complete conformal vector field» on N .  The Lie algebra o f  the conformal vector
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field* (not necessarily complete) o f  any Riemannian manifold o f dimension n =  3, 
or o f any conformally flat Riemannian manifold o f dimension n >  3, has dimen­
sion equal to iS±lUa±2lf anj  on/y ,'n these eases.

Thus, for all n >  3, the dimension o f  the Lie algebra o f  the conformal vector 
fields of S n and of JR" attains the m axim um  value In ’ fact, we may
obtain the infinitesimal conformal transformations o f the n-sphere from those of 

the Euclidean space (JR", < , > „ )  via  stereographic projection, which is a conformal 
diffeomorphism. We recall that a v ector field X  =  (X 1, . . . ,  X ") : JR" - »  JR" o f  the 
n-Euclidean space is conformal, iff it  is o f  the form

J % w i  =  W ’ * li -  +  •D'*’  +  ax' +  o ' , (1.1)

where [J0y] is a given skew-symmetric matrix, a, and t>* are given constants, 
and where ||*||* =  *** +  • • • +  *"* [Ib /85] [He/75]. One can prove this by simply 
checking that such vector fields, which form  a vector space o f  dimension t"+1K"+,Ji 

satisfy Lx  < ,  > » =  p  < ,  > » ,  for some function p. A concise way o f writing X  given 
in Eq. (1.1) is

X * =  ^IMI#£ -  <  > »  x  +  D (x ) +  a x  +  v , (1.2)

where £ =  ( ( * , . . . ,  ( " ) ,  v =  (t?1, . . . , » " )  €  JR", D  is a self-adjoint linear operator, 
and a €  JR. Under the usual identification JR" =  TxJRn fo r  each x  €  JR", which 
identifies the canonic basis e, with the differential operators a standard basis 
o f  the Lie algebra o f these vector fields is given by
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The Lie algebra o f C O (n ) is given by

CO(n) =  0 (n ) X 2R =  {D  +  a /n : D  is skew-symmetric, a €  JR] 
[  - a  0 0 '

O D O  
0 0 a

: D  e  O(n), o €  .

The affine conformal group o f lRn is the group o f dimension *^±Ji +  j

J?" x  CO {n)9S  j ( Z , ( A , r ) )  s
r~ l 0 0

r " 'Z  A  0 
\r~"ZZ  1Z A  r

A  €  O (n) 
r >  0
Z e J R "

(1.4)

where Z  is a column vector and 'Z denotes its transposed, with com position law 
(Z ,  (A ,r ) )  o  (W , (J ? ,» )) =  (Z  +  r A W ,(A B ,r$ )),  and with Lie algebra

JRn xCO (n) £
- a  0 0 
v D  0 
0 fa a

D  e  o ( » ) ,  a €  JR, v e  2R" } .

The affine conformal group acts transitively on the left on JRn as ( Z ,M ,r ) ) < « )  =  
Z  +  fi4(«o), Vto €  IR", being the group o f all conform al transformations o f  the 
Euclidean space 2R". This group is also called the group o f timilaritiet and consists 
o f  translations, orthogonal maps, and multiplications by a non-zero constant. In 
fact, the elements o f St" x  C 0(n) constitute all the complete conformal vector 
fields o f  2R": the element (t>, D  +  a l„)  is identified with the conformal vector field 
X , =  D (x ) +  ax +  v. The Killing vector fields o f  JRn, i.e. the vector fields X ,  such 
that L x  < ,  > » =  0, or, equivalently, the ones that generate local one-parameter 
groups o f isometries, are precisely the vector fields o f  the form  X ,  =  !> (* ) +  v 
that constitute the elements o f  JRn x O (n ) . Note that the conformal vector fields 
o f the type Xm =  j||*||*£— < £ , * > „ *  are not com plete. As we will see, these 
ones generate conformal transformations defined on ly  on 2Rn\ {p ) , “mapping” the 
missing point p to infinity and vice versa, which are also known as origin-preserving 
inversions. By a theorem o f  Liouville (see e.g. Ref. [P o /81 ], page 172), a conformal 
transformation o f JRn maps a hypersphere or a hyperplane to a hypersphere or a 
hyperplane, i f  n >  3.

On the other hand, the »-sphere 5 "  is an example where the group o f confor­
mal transformations has the maximum dimension t" + IM" f  *1 and all the conformal
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vector fields are complete. Let us now choose the stereographic projection

o '. Sn\ {AT) —  J2- (1.5)
—  ¡^ . ( x * ........

where N  =  (1 ,0 , . . .  ,0 ) , with inverse

# "*  : 1?" — ► S * \ {N )

"  -----  •
The coefficient o f conformality of o  is given by o * < , > „ =  < ,> 5 « .  If X  is
a vector field o f 2R", then the vector field o f  S "\ {IV }, a '-rclated with X,  reading 
x *  =  (£ »(* )) » Vx €  S " , satisfies

^ X * < , > 5 - = d l o g ( ( l - x ° ) , ) ( r ' )  < ,> * -  + ( 1 - x 0)* !*  < ,> „  o (do® do) . (1.6)
Thus, X  is a conformal vector field o f IR", iff X '  is a conformal vector o f S "\ {N ) .  
Explicitly, we have

_  / « (» ( « ) ,  r „ „ ) .  - « < » ( « ) ,  r , i „ ) . . ( . )  +  3 r „ „ ( i  +  | k ( * ) m  ^
*  U i  +  l l 'W I * )*  • (»  +  « » (* ) « * ) ' ) '  ( 7 )

I f  Z  is a conformal vector field o f IR", we can smoothly extend X ' as to be also 
defined at the point N . In fact, from  Eq. (1.2) follows that d<7j'(X w) -*  (0 , ( )  as 
IMI “ * +00. Thus, letting x  -*  N , we have ||<r(ae)||a — —* + 0 0 . Hence,

The group G O (n ) acts on S "  via  stereographic projection as 

C O (n ) x S *  — * 5 "
i p , )  _  I < r - '(P (« (* ) ) )  t o r x ^ N  

(A T  f o r *  =  A I.

I d the seme way Hi" x G'O(n) acta on S " , whereby keepinf IV Sxed, in other worda, 
keeping the point o f IR" at infinity fixed.

1 .1 . B  T h e  M ö b i u s  G r o u p

Now we are going to  review the group o f conformal transformations of 5 " ,  for 
n >  2, also called the M öbius group.
Let Q  be the quadratic form given by

<?(*) =  “ (*•)* +  (* * )* +  • + ( * “ + l)* , for x  =  ( * * , , * * +l ) € l R " +*,
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that is, Q  is the quadratic form associated with the Lorentz inner product <  , >  
of JRn+t with signature ( —,+ ,•  • • ,+ ). The Lorentz group o f dimension

0 (n  +  1 ,1) =  ( P  G G'L(n +  2; IR) : P  leaves Q  invariant}

is the group of the linear automorphisms o f  ]Rn+l that preserve <  , > . Let £  
denote the light cone, C =  <?- I (0 ), and £ + its connected component

£+ =  {*  =  (*°, *"+») €  2RB+* : Q (x) =  0, *° >  0 } ,

the positive light cone.

Henceforth, we agree on the index range 1 <  A ,B , . . .  <  n, 0 <  a, 6 , . . .  <  ti +  1, 
and we fix a righthanded basis {q0, fa* o f  lRn+* with q0,i?«+1 G £ +, and such 
that <  , >  is represented in this basis by the matrix

S  =  [5 ;  = <  »/.,?»  > } =
0 0 - 1
0 / „  0

- 1 0  0
( 1.8)

We can always find such a basis, like for example tf0 =  , t?A =  eA, tim+l =

, where (ea)o<«<*+i denotes the canonic basis of J?B fl. Note that in this 
basis Q  is given by Q (x )  =  - 2 * 0* " +I +  x Ax A, for x  =
If P  =  [P»"] G A /(n+1,i is a (n +  2) X (n +  2) matrix, we identify P  with the element 
o f O L (n  +  2, IR) given by P (q «) *  Then, we have

'P S P  =  S  iff <  P .,P * > =  5 ;  , where P . =
P*e '

p<»+i
G fR"** ,

iff <  P (u ) ,P (v )  > = < m , v >  , V«,t> €  fR"+* .

Thus, we can identify (though not canonically) 0 ( n +  1 ,1) with the group 

{P g M(,+>). : *PSP = S }.

Observe that, if q . is another basis o f satisfying the same conditions as
q ,, the linear map P  : fRB+* —► 2RB+*, such that P(i|,) =  q ',  is an element o f 

0 (n  +  1 ,1 ). Here we remark that some authors prefer to represent the inner 
product <  , >  in the canonic basis i „  resulting in the matrix

0
J»+i
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Finally, we note that all elements o f 0 (n  + 1 ,1 )  have determinant equal to  ± 1  and 
that, VP €  0 (»» +  1,1), P ( £ )  C £ .

It is well-known that 0 (n  +  1,1) has four connected components and that its 
identity component can be identified with (cf. Ref. [K o-N o/69], page 268)

G  -  { P  €  0 (n  +  1 ,1) : detP  =  1, P (£ + )  C  £ +) . * (1.9)

G  acts on the left on £ + by matrix multiplication as

If *  =  

Q (z )  =  0

A : G x £ + — ► £+
( P , , )  —  P (x ) .

is an element of £ + written in the basis qa, we get from the equation

, i f e # 0 ,

i f  • ^  0, and, in particular, 

, i f  e =  0 (* ^  0),

( 1. 10)

where c, • >  0, u; = €  JR", and ||u>||* =  W .  Thus, it is straightforward to

prove that G  acts on transitively on the left.
Let 5 "  denote the unit sphere o f the Euclidean space 2R"+1. We can identify 5 "  
with the projectivisation o f the positive light cone £ + as follows: the map

F  : £+  — ► S n c  2R"+1

---- ► ( J t i h )

is a smooth submersion onto S ". Let ~  denote the relation o f equivalence on 
/R"+*\{0} given by x  ~  jf, iff 3a ^  0 : *  =  ay. Then, P n+l =  !Rn+,\ {0 )/^  is the
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Moreover, it is well-known that this action is effective and that G , the identity 
component o f 0 ( n  +  1 ,1 ), is the group o f orientation-preierting conformal trans­

formationt o f the n-sphere, considered with a Riemannian structure o f constant 
positive sectional curvature (cf. Refs. [Sch-Su/80] [Ko-N o/69]). The group G  is 
called the (positive) M obiut group.

L«t C .  =  <P e  a  : [ P M ] ,  =  [% ,]_) =  { P  6  a  : 3r >  0 : P ( , „ )  =  r ' , . (  
be the isotropic subgroup o f G  at the point xq. Then, G’o is represented by

where X  is a column vector. We have that S n is diffeomorphic to the homogeneous 
space G /G o =  {P G o : P  €  G } o f the left-cosets module Go.

R em a rk  1.1 Following Ref. [Sch-Su/80], the M obius group is in fact the group 
Ô  =  0 (i*  +  1, l ) / { i d , — id } that can be identified with the isotropic group o f £ +, 
{ P  6  0 (n  +  1 ,1 ) : P ( £ +) c  £ + } ,  which has two connected components: the
identity component G  o f 0 (n  +  1,1) and G \G . The group G  still acts effectively 
on 5 "  (and, o f course, transitively). Furthermore, it is, as is 0 (n  + 1 ,1 ), the group 
o f all conformal orientation-preserving and -non-preserving transformations o f the 
sphere S n equipped with a Riemannian structure o f constant positive sectional 
curvature. Thus, 5 "  can also be represented as the homogeneous space ô/Ô p, 
where

is the isotropic group o f  the action G  on S n at the point x<>. As for the moment 
we are only interested in oriented immersed submanifolds o f 5 " ,  we only consider 
the positive Mobius group G.

The Lie algebra £ o f  the group G  is identified with the tangent space o f G  at 
the identity element, that is,

r - '  'X B  ir'AJT B  e  S O (n) 
0 B  r X  : X  €  JRn 
0 0 r J r G JR+

( 1.12)

r " '  'X B  B  €  O (n )
o b  r X  : x e n r
0 0 r  r £ ] R +

$  =  r idC  =  ( P  e  : 'P S  +  S P  =  0 } (1.1»)
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and the Lie algebra of Go is given by

a *  0
0 D  t  
0 0 - a

The canonic projection o f G  onto the quotient space G/G'o is given by

II : G  — » G'/G’o at S n at (1.14)
n(P) = [PM)_ e r - * ' .

Go —1► G  i  S n is a principal fibre bundle with structure group G q.

Now we relate the action o f the elements o f  G  on to the conformal transfor­
mations o f  S n, generated by its conformal vector fields. The identity component 
IRn x C O (n )+ o f  the affine conformal group of Min acts on in the same way 
as on S n (see Sec. l . l .A ) ,  i.e. the following diagram is commutative:

f ? "  x  CO («|

r ' 1 0 0 e r -*  0 0 c
T~'Z A  0 , V -* r - 'Z  A 0 V

¡ r " Z Z  'ZA  r » J \ r -“ Z Z  'ZA r 1 • _

l i d i * 1 *

( P = ( Z , A ,  r) , * -  ( i f e i ' i i f i ) . -
1 . - ( ! > ( . ( . ) ) ) it z * N  

if x  =  N
J?" x  G O (n ) x  5 " — • >

(1.15)
where a  and K are the diffeomorphisms given in Eqs. (1.5) resp. (1.11). 
The Lie algebra o f G  can be decomposed as JLi ® £ o  ®  &  with

0 0 0 
v 0  0 
0 V 0

c* n r ,

%> =
- a  0  0 
0 D 0
0 0 a

D  € $ ( » )
a S  Bi

0 If 0
— 0 0  C 

0 0 0
(m * ) \

Note that 0 o ©  f t  is the Lie algebra o f G0 and *L i© Q o is the one o f JRn x  C 0 (n )+. 
Let p =  K o  II : G  —* S* C IRn+l, where 11 : Q  —► C JPn+l is the projection
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given in Eq. (1.14). As G  acts on the left on £ t  , each X  €  defines a vector field 
X * on £ } „  given by

i i. /n  =  s U ( n ( « » p ( ‘ r ) P ) ) ,  v / > € g ,

where exp :££-» G, X  —* /  +  £ « 2 1  i* the exponential map o f the T ie  group G. 
The vector field X* corresponds to  a vector field X* on S" defined by

=  ¿ L . ( i > ( « p « * ) e ) )  =  dKWFt( z i tl. , ) ,

( c c
V = « P ( i  X ) V
• J * J.

which is K-related to  X*. Note that the 1-parameter group of diffeomorphisms 

fa : C j„  -*  generated by X* is given by fa |

and the one generated by X *, tf>, : S" —» 5 " ,  reads ^  =  K o <f>t o It-1 . For several 

typical X €^1 we wiU give the explicit expressions for the conformal transformation 
e x p (X ) : £ / „  2* 5 "  -  £ t  =* 5 "  o f  S \

- a  0 0 
0 0  0 
0 0 a  

transformation

1) If X = E £ 0, then exp(X ) :
e— 0 0
0 / „  0
0 0 e*

, which gives the

e x p (X ) :  £ / „  —  £ / „
1

j M I ’

ilM I*
tjJ
1

W
t*

0 ‘
0 =  3

0 =  
0

e“w

= e- *w
1

Using the diffeomorphisms K o f Eq. (1.11) and the stereographic projection a of
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Eq. (1.5), we have the transformations 

exp (X ) :

and

s * c  nt*+i _►S "  c  St*+l
*.-w \

(* ',* ■ ........**) (  l°K»Dh«
\ tanh «+1 ’ jr° lanb o+ 1
NN  =  ( 1 ,0 , . . . ,  0)

5  =  ( - 1 , 0 , . . . , 0 ) -* S  ,

exp (X ) : lR " U {o o } 1R" U  { 0 0 }  
e*u;

0 —  0 .
This type of conformal transformation of S "  is called homothetie w ith centres xo 
and Xoo (i.e. S  resp. N  or 0 resp. 00). The integral curves o f f  * through S  are 
constant, because X  belongs to the isotropic algebra J }o f G 0. The integral curve 
passing through the point (0,k>) g  S " , with u; a unit vector o f 2R", is given by 
•y(s) =  (tanh s,sechsw), and is a reparametrisation of the great circle in S n through 
the points S , (0,w), and N  (cf. Ref. (Po/81)). Besides, since e x p (fX ) : JRn —» Stn 
is given by ex p (tZ )(w ) =  «“ w, f *  is <r- l -related to  the conformal vector field 
o f  St* £*(w ) =  _g ®xp(iX )uf =  ow, which is a dilatation. Thus, from  Eq.
(1.7), we have =  (« (1  -  «* * ),- • # ° ( * 1, . . . . * * ) ) ,  and, from  Eq. (1.6),
£ * • ( < t > 5 « =  - 2 a z °  < , > s » .

2) If X  =
0 0 0 1 0 0
0 Z? 0 €  Qo with D  €  0 (n ) ,  then exp (Z ) = 0 eD 0
0 0 0 0 0 1

with

— ►
1 1
u — * « " w

¿IMI* SMI’
Xoo — * Xgo
x 0 X0



and, using the diffeomorphisui K,

e x p ( X ) : 5 -

N
S

f l t t !  Js?isL\

{ x 0, ^  ( * > , . . . , * » ) )
N  
S  ,

which gives a rotation of Sn around the axis N -S .  For (x°, x 1, . . .  ,x " )  €  5 " ,  we 

have =  J j| „0(* <\«,O(* 1, .  ••,*")) =  (O .D f* 1, . . .  ,x * ) ) .  Furthermore,
as ex p (fX ) are obviously isometries o f S n, t * is a Killing vector field of S n, that 
is, L f ,  < ,> < ?»=  0. Now, using the stereographic projection a, we obtain

e x p ( I ) :  2 R "U {o o } — ► JR* U {o o } 
w —* eD(w)
oo —* oo
0 —  0 ,

D (u )  is a Killing vector field of IRn, <r-related to  X*.

3) i f  r  =
0 0 0 
v 0  0 € ^ - i ,  then exp (X ) =

1 0 0 '  
v / ,  0

mation
0 V 0 [ \ b V  *  i J

gives the transform

e x p ( r ) :

1
v ~

1
V +  w

SIMI* ills'll* SIMI*U —* i||w||*»+w = w'
1 m m 1

11̂ 11» ¡ 1 0 ^  (put =  0, if w =  0). Using the diffeomorphism K,
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we have

« p ( X )  : S ’

(Kil* iraFfi)

( B r i ’ ip f+ r )  • ■
Gartan called this kind o f  confonnal transformation an elation with centre at x «,, 
i.e. at the north pole N . The integral curves o f X* are a family o f circles passing 
through the point N  and with tangent vector (N , (0 ,v ))  (cf. Refs. [0 /55 ], page 
170; [P o/81]). W ith the stereographic projection o  we have

N
S

e x p (T ) :  ttin U {o o } ]Rn U {o o } 
V +  w

which gives a translation on 1R". Since ex p (lX ) : IRn —» lRn is given by u; —* <w+u>, 
=  ^|,=0exp(lX)u» =  v is a  constant and, in particular, a Killing vector field 

on JR" that is <r-related to  the vector field =  ((1—sr°)< v > „ ,  —< af, v > , * '+

, giving the

(1—*°)t>) o f S n. From Eq. (1.6), we have ¿ ¿ . ( < , > 5» t-ey i -
0 0

G ^ j, then e x p ( I )  —
[ 1  -< Slieil’ l

4 ) Finally, if X  = 0 0  c 
0 0 0

0 / .  «  
0 0  1

transformation

Mcp(r):
JIM’

¡ M l ’

H« +  ell*
W +  i  

1

INCH*
(
i j

. IRF

0
0

¡¡<F

“ w i t  #  

=  X „  it U =
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where w' =

ex p (X ) : 5 "S "  — ► 5 "
( »-llHI* u> \ . /M jM j j j*  u n j s \
\i+}iHi* ’ i+iiMi* /  >+TiP+eF/

5 5  .

(Jartan called also this conformal transformation an elation, with centre Xo (i.e. 
at S ). With stereographic projection we get

This is called an inversion on ]Rn that keeps the origin fixed. The vector field 

=  s l i - o '* P ( i r ) "  =  ¿ l . - . i i g ; . / ;. =  j H ’ f -  < “ . < > .  w ■» *  conformal 
vector field on 2Rn and is ^-related to  X f a j(1-f-ar0) — | <**, £ > „
** +  | (l +  * #) ( ) .  Moreover, X * satisfies L ; . ( < ,  > « < ,> s » .
From the expressions for L g .(< ,  > s~ ) in examples 3) and 4), we conclude that the 
vector subspace o f  ft  o f dimension

generates all the Killing vector fields o f  S ".

1.1.C T he Structure Equations o f  the M obius G roup

First, we recall that assigning a conformal structure to  a manifold A f means giving 

a  class o f conformally equivalent Riemannian metrics. The conformal structure of 
S n will be defined by considering it as the homogeneous space G /G 'o, using sections 
o f  the bundle II : G  —» 5 " ,  the Maurer-Cartan form o f G\ and its structure 
equations. Henceforth, S "  stands for the projectivisation o f the light cone £ +, 
except when we want to refer to the unit sphere o f  JR*+l, which will become clear

e x p !  : J R "U {o o } — ► JR" U {oo}

00 IRlf 
— 0

0 - V  0
1 D - V  : x?e0(n ), v  e  JRn
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from the context.
A  basis o f  the Lie algebra of G  is given by  the fe±i||g±81 linearly independent 
matrices

0
0 0  •• 0 0 0 t . . 0

1 0 • 0 0 0 0 0  •• 0 - 1 0 0 * - B
0 0

0 Pu.B) 0 1 0  •• 0 0 0 0 — A
0 0
0  0 • 0 - 1 0 0 0  •• 0 0 0 0

o 0 0  •• 0 0 0 o

A
l 1

0 1 o-c 0 0 0 0 0 •0 1 0
0 0 0 1 — A 0 0 0
0 0 0 0

0 0
0 0 0 0

0 0 0 0 1 0 0
0 0 0 -  - 0 0 0 0 0 0 •0 0

with A  >  B .  We denote by $  the Maurer-Cartan form  o f G , i.e. the {^-valued 
left-invariant 1-form o f G  given by

* 0 (PS ) =  P  , V « € 0 , P € j ,

where P  is the left-invariant vector field o f  G , such that =  P ,  that is, Pq =  
Q o P e T ç G  =  Q § . Then,

*  =  ^ >( » ) A )  +  H  P\AJi)tP(A,B) +  X )  ( P [0,A),P[0,A) +  P ( ^ 0 , . P , ^ 0 , )  ,
A>B A

where »*« 1-forms dual to the frame o f  left-invariant

vector fields (P(o)|P(i«,B)iP(o,,4)»P(A,o))' Since $  assumes values on Q ,  we denote 
by ft j , 0 <  a, b <  n +  1, the components o f  ft. Thus, ft =  [ftj] €  Q is  a matrix 
o f left-invariant 1-forms. From  Eq. (1.13), we have f t 'S /  +  S 'ftJ  =  0, which gives 
the following explicit relations among the components of ft:

* s  =  * i  =  * ;♦ ■ .  K  =  =  * ; +1 =  * : * , = » ,
( l . u )
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V A , P e { l ,

Moreover, we have *jj =  P (I ) „  =  P{a,b) ,  for A  >  B , <b$ =  P(Z«).« *“ d
=  P(o,s),t whence $g, $ £ ,  4 ^ , (A  >  B )  form  at each point P  €  G  a basis

o f J£G\
If we denote by (,] :C^xCJ— the Lie bracket o f  Q  given by (P ,P )  ^ P o P —P o P ,  

then $  satisfies the Maurer-C&rtan structure equations o f the group G , reading

d $  =  —  A  $ ]  =  —9  A  9  .

Explicitly,

d$* =  - ® :  , V 0 <  a ,6 <  n + 1  . (1.17)

Using the relations in Eq. (1 .16 ), we can reduce these equations to  the following 
ones:

d$g =  - 9 ° a A * S
d * $  =  A  A
d*°A =  - « S a ^ - ^ a # ?  
d * i  =  - * * a Vb - * * a *%

(1.18)

_  _ _ -  * 0A A *oB .
A section o f the bundle IT : C7 —► G/G0 =  5 "  given in Eq. (1.14) is a  smooth map 
• s S* —► G, defined on an open  set o f 5 " ,  such that II o  t  =  id  with id the identity 
map o f the domain o f definition of s. One calls $ also a local G'-frame field o f S n. 
It is well-known that such sections exist on a  neighbourhood o f  any given point o f 
S’". The maps

(1.19)

( 1.20)

are two canonic sections o f  th e  bundle I I : G  —* S ".
With each section t : S "  —» G  of II we associate a  (^-valued (local) 1-form on 

S " , given by

* = • * * ,  (1.21)

$ : 5 " \ { x w
1 — G

1 0 0
U) u  In 0

ÎIMI* - ¿H I* ij

2 : S -\ {x o
ill" II*

G
ilM I* w l

to
1

-* w / „  0 
1 0 0

with components d! =  s*$J , VO <  a,b <  n +  1. O f course, these components 
satisfy the same relations and structure equations as the ones o f  $  in Eqs. (1.16)
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and (1.18).
Since $  satisfies $/> =  P ~ ld P , i.e. $/p(Q) =  P ~ l o Q  , VQ G TpG  =  P{£, we have, 
V* G 5 "  , s G T .5 - ,  * , ( * )  =  # ^ ( d . , ( * ) )  =  (• (*)) '<*»,(*), that is,

4 > = o ~ l d » .  (1.22)

If we regard, in the basis r/a, the colum n components » , o f  » = [*0, */i, *n+il as 
2R"+*-valued functions #, : 5 "  —» ■R"+a, then we have

< • . ,• »  > = 5 ; ,  (1.23)

where S' =  [SjJ is the matrix given in E q . (1.8), and, from  Eq. (1.22), we get

d•. =  • (1 2 4 )

Similarly to the Riemannian terminology, we call the 1-forms , which constitute 
a matrix with values in ^  , the connection  forme corresponding to the moving 
frame ». Besides, differentiating Eqs. (1 .23) and (1.24) would also lead to  the 
relations (1.16) resp. the structure equations (1.18), thereby replacing by 
W e also observe that, since II o t  =  [#0]~ , »o represents the “ position” vector o f ».

Let », « : S "  —* G  be two sections o f  II. In the intersection of their domains of 
definition we have

i  =  » K  (1.25)

with K  : 5 "  —» Go a smooth map. Conversely, given such a map K  and a section 
• o f  II, the map * — $K  is a section o f  II. In order to  obtain the transformation 
laws under a change of frame, we com pute the components o f  ^  =  •*$ from those 
o f  tft — s*ft, using Eq. (1.25). The m ap K  has the explicit form

r - ‘  X A \r*XX
K  - 0 A r X

0 0 r
( 1.2« )
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From Eqs. (1.22),(1.25), we have

i<) » -■ « (• )  =  ( . K ) ‘ d ( .K ) ( )  =  K ' . ‘ ( d . t ) K  +  id K (-))  

K ~ ' r ' i ' (  )K  +  K - 'd K i  )  =  K - ' + ( - ) K  +  K - 'd K (  )  ,

that is,

4> =  K ~ l+ K  +  K ' d K  .

With Eq. (1.16) we obtain, in matrix form,

iS +» o 
Ü  i i  ' [ « ]  
o ' [ i i ]  - i S

(1.28)

r —r X  \ rX X *2 «  0 r“ ‘  'XA  \r'XX
0 'A - A X  
0 0 r - ‘

O 4>b ‘ [iS ] 
. »  V i] - * !

o 0 A  r X  
0 0 r

dr~l d ('X A ) < /( f  r*XX)
0 dA d (r X )
0 0 dr

Working out the above matrix compositions, we obtain th e  final expression (which 
is clearly not the entire matrix >̂)

f ¿8 f t  1 =
L ii is J

(  ' X ^ - r - X { * i } ‘X *  +  r M } A +
X ]* o ]  ¿ l o j r )  [ _ / x M ] A + i r-x x 'M ]A  +  rd{ 'x )A

( r - Ü W l )
I m P t Y X A + k [ t i ] A +  \
\ ~ 'A x ' l t i ] A  +  'AdA I

In particular, we have

i ;  = r -U S*?, VX 6 {1 ...... » ) ,

which leads to  the transformations

¿ ( i i ) '  = '- ‘ E W )'
A = I Am I

and

i j  A ... A i ;  = r_V5 A ... A .

(1.29)

(1.30)

(1.31)

(1.32)
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Let as now reconsider for a moment example (1.19). In that case, we have, Vx €  

5"\{X oo} and s €  T ,S ",

¿ » (* )  =  (• (* )) '* » ( * )  =
0 0 0
t> 0 0 ,
0 ^ 0

where v =  d(<r o ic ),(z ) €  172" with <r and K the diifeomorphisms given in  Eqs. 
(1.5) resp. (1.11). So, ^  =  (a  o K.)*dvA, where dvA is the projection o f  27?" onto 
the coordinate A. This shows that (d»o)i<*<„ linearly independent 1-form s on
£"\{X oo). The same conclusion is obtained for the section $ defined in E q . (1.20), 
using now, instead o f <r, the stereographic projection

b : S " \ {5 }  — * 27?" (1.33)
( * ° , * \ . . . , * " )  -  r * » (* * ........* “ )

with S  =  ( —1 ,0 , . . . ,  0) the south pole o f 5 " .
As the domains o f  these two particular sections cover all 5 " ,  we conclude from 
relation (1.30), concerning any pair o f sections o f the fibre bundle II, that, fo r  any 

section s : 5 "  -*  G  o f II : G —  5 " ,  the 1-forms ),<*<„ °*  “ * &*®**iy in­
dependent. Furthermore, from the transformations rules in Eqs. (1.31) and (1.32) 
follows that these l-form s determine a conformal »tructure resp. an orienta tion  
on 5 " .  As we see from the above examples of sections, the conformal structure 
assigned to 5 "  is the same as the one generated by the Riemannian m etric dt*  of 
5 " ,  induced by the Euclidean metric o f  272"+ l. Explicitly, using the section (1.19), 

we je t  W ) *  =  =  i p V d*’ -

1.2 Submanifolds o f  S n

Let /  : M m - »  5 "  be a smooth immersion o f an oriented m-manifold M  with 

m  >  2. We will assign to M  a conformal structure induced by /  from the conform al 
structure of 5 " .  In addition to  the index ranges given in Sec. 1.1.B, we agree on
1 t ^  m  , m  +  1 <  a , 0 , . . .  <  n.
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1.2. A  Zeroth-O rder (»-Frame Fields A long /

D efin ition  1 .2  A zeroth-order G-frame field along f  it a map c : M  -*  G  defined 
on an open te t o f M , tuck that the diagram

M  - i -»  G  
/ \  1 n 

5 "

it eommutatite. In other wordt,

n  o e  =  f ,  (1.34)

where II : G  —* S* it  the principal bundle o f  Eq. (1.14).

We can always define a zeroth-order frame e along /  in a neighbourhood of each 
point o f  M . In fact, if t  : 5 "  —► G  is a section o f II, then c =  t o  f  i M  —* G  is 
such a frame. Observe that e is an immersion, as is clear from  Eq. (1.34).

With each zeroth-order frame e : M  —* G  along /  we associate a ^ -valued (local)
1-form on M  defined by

^ =  e*ft (=  e~lde) (1.35)

with components

f t  = « * * ; ,  0 < o , 5 < n + l .

These components satisfy the same relations as the ones o f ft in Eq. (1.16). Let 
now i  : M  -*  G  be another zeroth-order frame along / .  Then,

e =  c K  , (1.36)

where K  : M  —* Go is a map defined on an open set o f M ,  and which is of the 
form (1.26), with r  : M  —» IR+, X  : M  —» !R ", and A  : M  —» S O (n ) smooth maps. 
Conversely, given such a map K  and a zeroth-order frame e  : M  —* G  along / ,  
then e defined by Eq. (1.36) is so. Writing e =  [«o .e* ,«*+,) with em : M  —* IR" + * 
vector-valued functions, we obtain the same transformation laws as in Eqs. (1.27), 
(1.28), (1.29), and (1.30) in Sec. l.l.G, thereby replacing the sections t , i  : S n —* G  
o f II by the zeroth-order frames e, i  : M  —► G  o f II along / .  From Eq. (1.30), we 
have that, for any two zeroth-order frame fields e, e : M  -*  G  along / ,  the l-forms 

( « ) , * « .  span T *M  (in the intersection o f  the domains o f  e, e), iff (¿ o  ^oes
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the same. If we take the sections s, i  o f Eqs. (1.19) resp. (1.20), then e =  t o  /  : 
/ - l (5 ,"\ {x 0<, } )  —» G  and i  — ¡ o f  : / - , (5 " \ {x o ) )  —» G  are zeroth-order frames 
along / ,  whose domains o f definition cover M .  Since — e*ftg =  /* (s*4 g  ) 

and the 1-forms (•**£ ) i <a<h «pan T *S ", the sPan T*JW. The same
conclusion holds for the 1-forms ¿0 =  • Summarising, for any zeroth-order
G -fram e e : M  —* G  along / ,  the 1-forms (^ o )t^A<H span T *M .

1.2.B  First-Order G-Frame Fields A long /

In order to be able to define a conformal structure on M , we have to  perform a 
first reduction o f the zeroth-order G-frame field along /  given in the previous sub­
section. There exist formal theories concerning the method o f moving frames on 
submanifolds immersed into homogeneous spaces, which describe in a general con­
text the concept o f reduction o f frames (see e.g. Refs. |Je/77] [Su-Sv/80] [Su/79]). 

Here, we will construct explicitly the specialised frames that we will need to  define 
some geometric objects in conformal geometry, following closely the procedure of 
Refs. [Sch-Su/80] |Br/84) (Ri/87).
Let x 0 €  M  and t : M  —* G  be a zeroth-order G-frame field o f II : G  —* 5* along 
/  : M  -*  5 " ,  defined in a neighbourhood o f x<>. Let Z ( , . .  . , Z m be a local linear 
frame o f T M , defined near xo. For each x G U  with U a  suitable neighbourhood 
o f x 0, we consider the JR" column vectors

»<(*) =
« ( * ( • ) )

« ( « ( * »

V» = l,...,m  ,

where is defined in Eq. (1.35). These define smooth maps from U  to IR*. As 
^¿>•">¿0 span r ;M ,  Vm =  span{i7t( x ) , . . .  ,v m(x )}  is an m-dimensional subspace 
o f JR". Thus, V  =  {(x , I?) : x e  U, v G V ,} is a smooth vector subbundle of 
U x  JZ" and the »,• form  a linear frame o f V . Let be the orthogonal
linear frame o f V  (relative to  the Euclidean metric of JR"), obtained by Gramm- 

Schmidt orthogonalisation o f and vm+tt. . . , v H be a local orthonormal
frame of the orthogonal complement o f V  in U  x JR", which can be assumed to 
be defined on all U. Now we define the map *A : U  —» O (n ), such that, for x  €  U, 
k (x )  : JR" —» JR" is the orthogonal linear map given by k(x)(t>4) =  e A, VA €  
{ 1 , . . . ,  n ), with eA the canonic basis o f ÄZ". Then, !4(x)(V^) =  JRm x  {0 } ” ~m. O f
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course, we may assume that ¡4 takes values in S O (n ). Hence,

'P1
‘A -

« . P n .

where <pA are 1-forms on A /, such that <pA =  0 VA >  m +  1. Let /T  : U 
given by

K (x )  =
1 0 0 
0 A (x )  0 
0 0 1

V x e u

G q be

and e : M  - »  G  by i  — c K . Then, from the transformation laws in Eq. (1.29) 

follows that ij> =  ¿*9  satisfies [¿£] =  fA[4»o ]> which implies

=  0 , Ver =  m +  n .

In particular, . . . ,  constitute a basis o f T *M  in a neighbourhood o f x0.

D e fin ition  1 .3  A zeroth-order G -frame field e : M  -*  G  o f U. along f  it laid to 
he of f in t  order at a point xo €  M , i f  4% =  0 at x0 , Vo =  m + l , . . . , n  with <t>t 
giten  hy Eq. (1 .S 5 ). The frame e i t  laid to he o f fin t order, if  it it to  at each 
point o f  it i domain o f  definition.

The above construction proves the existence o f  first-order frames in a neighbour­
hood o f any given point of M .

R em a rk  1.2  We note that also first-order frames o f the type e  =  • o  f ,  where • 

is a section o f II, can be constructed in a neighbourhood o f any given point o f M . 
Assume that we start the above construction with a zeroth-order G’-frame along 
/  o f the form e  =  a o  / ,  where • : 5 "  - »  G  is a section of II on a neighbourhood 
of / ( * « ) .  Then, we define £ . ( / ( « ) )  =  d f,(Z i(x )) €  and extend £, on a
neighbourhood o f f ( x 0) in 5 " ,  giving vector fields on S*. These are linearly inde­
pendent on a neighbourhood of f ( x 0) in 5 " .  Let p : S" -*  M  be a map defined 

near f ( x 0), satisfying p o  f  =  id*/. We define

* • * « (£ (» ) )

W )
M » )  = ■ V i - 1 , rn .



Oka pier t, Seelioa I.B. Flrat-Order G-Frame Fie Ida Atoms / 1 0 0

Then, Vf  =  span{i5i(y),. . . ,  » m(jr)} is an m-dimensional subspace o f JRm for y 
in a neighbourhood U  o f / ( x 0) in  S " . Repeating the above construction, but 
now replacing c, by o, and x by jr, we obtain a map 'A : U  —* S O (n ). Defining 
* : 5 "  -*  G  by ¡(jr) =  « (y )A '(y ), w ith K  : U C S* — G0 given by

* ( » )  =
1 0 0 
0 A (y) 0 
0 0 1

we obtain a section o f II. Thus, «  =  t  o  /  is a zeroth-order frame o f II along /  
which satisfies e(x) =  e ( x )K ( f ( x ) ) .  Moreover, if we denote K  =  H o  f  : M  —* Go, 
we have that e =  t K  satisfies $J(x) =  A f  ( / ( x ) ) ^ ( x )  =  0. Hence, e is a first-order 

frame o f the type » o f  with * a section o f II.

Consider the closed subgroup G ( o f  Go

r r - i *XA *YB Jr(‘X X  +  V y ) A  €  S O (m )
0 A 0 r X B  6  5 ’0 (n  — m )
0 0 B  rY : X  €  Y  e  2R"_m
o 0 0 r r  6 IR+

where X , Y  are column vectors.
Let e, t  : A / —» G  be zeroth-order frame fields along /  which are o f first order at a 

point x  €  M .  Let

K  =  t~ li  =
r~ l 'ZC \r'ZZ 

0  G rZ  
0 0 r

€  Go •

Writing

we have, from Eq. (1.29), at the point x

[ u M i i s n -
that is, A '[^ ]  =  0. Therefore, A ' =  0. Analogously, from  the equality [ q° ]  =

rC  [  ]  we obtain B ' =  0. So, O  =  | q  ^  j at the point * ,  with (A , B )  €

S O (m ) x S O (n  -  m) U 0 ~ (m ) X 0 ~ (n  -  m ). If we assume that — , ^o*)
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and ( ^ , . . . ,  4™) define the same orientation on TXM ,  then A  €  S O (m ) and B  E 
S O (n  — m ). Writing Z  — (X ,Y )  €  JR™ x JRn~m, then, at the point x , we have 
'Z G  =  'X A  +  V f i ,  'ZZ  =  'X X  +  Y Y ,  and so

r - 1 ‘X A Y B I r ( ‘X X  +
0 A 0 rX
0 0 B rY
0 0 0 r

(1.38)

Conversely, if «  : M  -*  G' is a given zeroth-order frame along /  which is o f first 
order at a  point x  €  M , and if K  : M  —* Go is *  m ap, such that f f ( « )  €  G i, say 
like in Eq. (1.38), then i  : M  —* G  given by

(1.39)

is a zeroth-order frame along / ,  satisfying, at the point x,

Thus, e is a first-order frame at 2  €  M . For this reason, G t is called the i$otropie 
group o f the first-order G-frame fields at a point x  E M .

Next we give the transformation laws for a change o f a  first-order G-frame field 
along / .  L et «, e : M  -*  G  be two first-order frames. Then, i  =  e K  with K  : M  — 
G i a  map o f  the form (1.38). Writing e — [«o,«., e«,<i.+i], where e , : A /  —* JRH+* 
are vector-valued functions, we obtain explicitly
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V —41ogr /

r 4 (X )A  +  r ( * ;  -  'X [* i ] ) ,X X + ’>
+ ' ( W l - X M - V [ t f ] ) A +

+  i r f X X  +  V y ) ' W A  j

(  r d ( y )B +  A 
+ r ( * 8 - 5 f [ * ; ] ) V B +

( r - ' W ) ) l  +¡4 f a ]A  +  'A4A )

0 ( b M a - ' b y ' M a ) (• D ltijB  +  'D dn)

(1.41)

In particular,

[*i] =  >•■'¡‘ 1 « )  • (1.42)

Thus, we have

f - i :  ( * ) ’ =••-’ £ ( * ) ’ « r ’ r  (1.43)

and

¿V  =  A . . . A ^  =  r - " ^ A . . . A ^  » r — dV  . (1.44)

The equations (1.43) and (1.44) for first-order G-frame fields along /  define a 
conformal structure and an orientation on M ,  respectively.

Let e : M  —» G  be a first-order G-frame field along /  and <j> =  [^ ¡] be defined 
as in Eq. (1.35). The 1-forms 4>1 o f M  satisfy the same relations as in Eq. 
(1.10), with the additional property 4>% = 0 ,  Vo- =  m  +  1 , . . . , » .  The structure 
equations (1.18) also hold for the components o f d>. In particular, for each a

0 =  ^  =  - ^ “ A ^ .  (1.45)

A t this point we recall Cartan’s Lemma, because we are going to  use it quite often.

L e m m a  (C a r ta n ) Let p <  tn and let . . . , be l-form e on an m-dimeneional 
manifold M  that are linearly independent pointmiee. Let fit, . . .  ,0P be 1-form s on 
M , tueh that

0, A W; =  0 .

Then, there esitt functions Gijt tueh that Oy =  O# and 0, =  OijUj.

Applying Cartan’s Lemma to  Eq. (1.45), we have

4>? =  h?j4>i i Vor =  m +  l , . . . , n  , (1.40)
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where /»“  are smooth functions defined on the domain o f definition o f t  and with 
the symmetry property

Hence, the structure equations (1.18) are, in the case o f first-order frames, reduced

d<t>l =
**1 =

d*>i =  -<*i a  a  ** -  a  +  A y

d * ”  =  A  A  A  d i
<w; =  a * ; - * ; a * ;  •

Now we give the transformation law o f the /»“  . Let e : M  - »  G  be another 
first-order frame and let A? denote the functions as defined in E q. (1.46), but now 
relative to  the frame e. From Eq. (1.41), we have

* "  =  , H  =  r - ' A t f  .

=  =  B iA ‘ (k% S , -  Y ,e i )

=  b > (a ; i,% -  a ? y , M  ■

T hat is, A“  A* =  rB * ( A{h*k — A*Yg). M ultiplying both sides by A f  and letting k 

run over 1 , . . . ,  m , we obtain from the orthogonality o f A  the equation

1.2.G Second-O rder (7-Frame Fields A long /

Let e : M  -+ G  be a first-order (7-frame field o f  I I : G  -*  S n along /  : M  -*  S*. If 

e : M  —► G  is any other first-order (7-frame, with i  — t K , where A* is o f the form 
(1.38), then, taking the trace in the indices » , /  in  Eq. (1.49), we obtain

=  hji , VI <  t ,y  <  m . (1.47)

to

Thus,

=  r B '/ l ‘ (A !A ' -  X f y , )  . ( 1 . « )

iS = 'B i(k U -ml». (1.60)
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For each m +  1 <  fi <  n, let the function Yp : A / —* IR , defined in the domain of 
definition o f e, be given by

(1.51)

1 0 y \*YY
0 / „  0 
0 0

0
Y , (1-52)

0 0 0 1
where Y  =  (ym+1, . . . ,  Yn) : M  —► lRm is as in Eq. (1.51). Then, from Eq. (1.50), 
i  satisfies

fc*( =  0 , Va =  ffl +  1 , . . . ,M .

Observe that in this case, due to Eq. (1.42), ^  =  V* =  1 , . . . ,  m , which implies 
g — 9 and dV =  dV  in Eq*. (1.43), (1.44). Thus, we have just proved that one can 
define a first-order G -frame field e : M  —* G' along /  in a neighbourhood o f each 
point x  o f M , with the property k °  =  0. Moreover, such frames still define all the 
Riemannian metrics o f the conformal structure of A /.

D e fin ition  1 .4  A  fin t-order G -frame field  e : M  —» G  along f  : M  - »  5 "  it laid 
to he o f teeond order at a point x  €  M , i f  it ta tiifiet 5 “ =  0 at x , V o  =  m +1, 
with giten bg Eq. (I .f6 ).  The frame e it  laid to be o f teeond order, if  it ii  to  
at each point o f i t i  domain o f definition.

Consider the closed subgroup o f G t defined by

r~ l 'XA  0 ¡r 'X X A  €  SO (m )
0 A  0 r X B  e  S O (n  — m )
0 0 B  0 ! X  €  JRm

[  0 0 0 r r  €  2R+

(1.53)

I f e, t  : M  —* G  are first-order frames that are o f second order at a point x  6  M , 
we get, writing c =  c K  with K  : M  -> G t o f the form (1.38) and using Eq. 
(1.50), B^Yp =  0, i.e. Yp — 0 at x , V/?. Therefore, K (x )  €  G%. Conversely, if 
e : M  -*  G  is a first-order frame which is o f second order at a  point x  £  M , and 
i f  K  : M  -*  <?i is a  map, such that, at * , K (x ) €  G j, then from  Eq. (1.50) follows 
that i  =  tK  : M  —* G  is a first-order frame satisfying h“ (ar) =  0. Hence, è  is also 
o f second order at x . Thus, G'* is the isotropic group o f second-order frames at 
any point x.
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R e m a rk  1.3 T he frames that we have just called to  be o f second order are, strictly 
speaking, not o f  second order in the terminology o f the general theory on reduction 
o f  frames (see Refs. |Je/77] [Su-Sv/80]), as was already pointed out in Refs. [Sch- 
Su/80] [Br/84] [R i/87]. The construction o f our “second-order” frames is more 
correctly called a partial tecond-order reduction, resulting in more specialised first- 
order frames, corresponding to  the so-called D arboux frames in the Riemannian 
geometry o f submanifolds o f the Euclidean space (see Sec. 1.3). Further reductions 
can only be carried out by imposing some non-degeneracy conditions.

Now we are going to derive functions h°jk, p“ , p“fc, k?-M, and ¡¡ ¡j, relative to a 
second-order frame e, that, together with the <j>l and A“ , will be our essential tools 
in  constructing geometric objects (e.g. tensors) o f  the conformal geometry o f A /. 
Differentiating Eq. (1.46) and using the structure equations (1.48) for a first-order 
frame, we get

Taking the trace o f  Eq. (1.54) in the indices l ,  / ,  and noting that A J ^  =  0, we 
obtain

« w  =  (<m ”  +  k , * :  -  k ^ ; ì a  *¿

=  — A* S,

which gives

(MTj -  Kk*! -  + •‘fj*; + K,*l + M l) A <K = 0 ■
Hence, by Cartan’s Lemma, we have, for each t ,a ,

-  * w i  -  * ; , * ? + + * r > s + m i = *,v i . (!•*■*)

where A“jfc =  h°kj are smooth functions. From Eq. (1.47), we have

h“j k =  h jn , =  h “kj , V o  =  m  +  1 , . . . , »  , » , / ,  A =  l , . . . , m  . ( 1 . 5 5 )

Defining

rt =m (1.5«)

we have
( 1 .6 7 )



Chapter I, Seetioa J.O. SeeoadOrder Ü - Frame Fielda Aloag / 106

Differentiation o f  this equation yields, with the structure equations (1.48),

U i  =  ip i  a  « + P;  a  =  (dp°  -  p i t ) + py ° )  a  «  ( i .m )

=  - p ” *S A  «  +  * ” A +  p j «  A . (1.S9)

Combining Eqs. (1.58) and (1.59) we obtain

(Jp‘  -  -  * 5 «  +  P ? «  +  2p ,"K ) A «  =  0 .

Hence, from Cartan’s Lemma,

Jp” -  p > ;  -  * ; , « + p > ; + 2 p "K  =  p f c « , ( « I

w here p“k are sm ooth functions on the domain o f definition o f e  with the symmetry 

property

P?» =  P Ïi. V a ,k , i .  (1.61)

Using Eq. (1.54), we get

W !i = *5*5» « +*5*««+*5*r»«-*5*f/«+
-*5*5« -  *Sp. «  •

Since is symmetric in t,Jb and is anti-symmetric, h fjh ijt f  =  0. Analo­
gously, =  h fjh ijtf  =  0. Moreover, as e is o f second order,

=  -  £ ( * o ) V S  +  •
IJ.O

Hence, using the vanishing o f  d(h°jdh°j) and the structure equations (1.48), we 

obtain

« * 5 * 5 » )  A4>! =  ( -  6 *5 *? /»* ! -  • £  (* 5 ) ’ «  +  * 5 * 5 , « )  a  «  .

T hen, Gartan’s Lemma yields

« * 5 * 5 » )  =  - 6 * 5 * 5 . «  -  £  (* 5 ) v :  +  * 5 * 5 . «  +  . I1-62)
•l»>

where the Hkr are smooth functions with the symmetry property

Bk, — Brk . (1.63)
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Alternatively, we can  express Hk, as follows. Differentiating Eq. (1.54) and apply­
ing Cartan’s Lem m a, we get

¿ K j k  =  K jk l+ O  + K r k t j  +  h j r k t i  + K j r + k  ~  2 5 ,“ * ^ 0  “  k f j k t f  +
(1.64)

+ W A  + k th tf  + w a  -  k a  -  k a  -  k a  .
where h°jU are sm ooth  functions with the symmetry properties

^ 0 «  =  ^0<* ~  • (1.65)

Expanding the l.h .s . o f Eq. (1.62) and using Eq. (1.64) plus definition (1.56), we 
obtain

= *rAV + -  mrir7 -  »iy*S*X + *i*i*J*J • (i-66)
Besides, from  E q . (1.35) we have de =  e o </t. If we regard, in the basis ty., the 

column com ponents ea o f the matrix e  =  [eo,«., e«,,e,, + i] as i? * +,-valued functions 
e« : 5 "  —» 2R"+*, then  we get, with Eqs. (1.16),(1.46),(1.57),

dc0 =  ¿¡¡e0 +  ^0«»
de* =  ^*«o +  ^*e, +  ^îj^oco +  ^oe»+>
d«<* =  P?$ j«o  -

d«*+i =  *?«, +  ~  ^ o«-+ i •

(1.67)

Finally, the first fou r structure equations (1.48), rewritten for second-order frames, 
take the form

Atf,
d4> o =  ~^o
d t f --------4 A 4 - 4 A 4 / - f 7 * M < A t f

A - K A  </>* -  4>° A +  K W *  A .

If we define, for each a, 5, il j  — -<t>* A 0*, then the above structure equations can 
be written as
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The L™+«lL™t«l 1-forms <t>°, and 2-forms 0 ° ,  0 {„ 0 ? ,  f l j  are called the

connection form » resp. curvature form »  corresponding to  the second-order frame

Next we give the transformation laws of the c«, 0J, h " , p", A?*, p “  , and H ,j. 
Let e,e : M  —► G be second-order frames along /  w ith i  — cK , where K  : M  —* G% 
is a map of the form

r 1 'XA 0 \ r'X X
0 A 0 r X
0 0 B 0
0 0 0 r

Then,

i  =  | « 0 , C . t l l  =  [«0, C .tl]7f

=  |r - ' « o ,  M ( X j t ,  +  * i ) ,  B l ' „  +  r X j ' j  +  r e . + , |  .  ( 1 . 7 1 )

A t in Eq. (1.28), i  =  K - ' + K  +  K ~ ld K , which give.

¿8 + j <
*= Â Û 4L

o i t  i t

Î4S -  I  " » ( '* ) *  +  r W  -  ' X M ) ' X A +  )
\ ~41og r j  \ + r ( M ] - X ( ^ ] + | X X , M ] ) x l

(r-'^kil) (Ji(W]iJf-X‘[*i])+!4[^]A + !WA)
0 ^b [^ \ a )

From Eq. (1.49), we have (with now  Y  =  0)

(*W1*)
(‘B l r j B + ‘B dB ) 

(1.72)

K ,  =  r f i jA fA jh i  . (1.73)

From Eq. (1.57) and the transformation laws o f ¿j, =  r~ lA*j% and =  r B * ( t f  — 
XiPp) given in Eq. (1.72), we obtain

i r  =  r * S 'A ? ( r f  +  * iJJfy) .  (1.74)

In order to derive the transformation law o f the we differentiate E q. (1.73), 
and use Eq. (1.54) and the transformation laws (1.72),(1.73), obtaining



Chapter I, Seetba $.C. SeeoadOrder C Frame Fielda A bag  / 109

=  r ' f l f  -  A - A - A ? X X .  +

-  AJA'JAJX.k^ -  A ; A ’ AZ X „k>' +  (1.76)

+  b .jA lX .h ',  +  t ikA ’ X .k > „  +

Eqs. (1.73) and (1.76) yield the transformation

* " * ■ , = e U r ( * ; , * ; „  -  x wk > y j . (1.7«)

Differentiating Eq. (1.74) and applying Eq. (1 .60) to e, e, we obtain the transfor­
mation law o f the p“ , reading

pT, =  r 'B ^ A fA 'jp l, +  A fA 'iX 'h ’ "  -  +

-  d * d ; x , X , i '  -  -  2 A * A ;X ,X  +  (1.77)

-  2 A *A ;jf»p f +  i . jX ,X ,k Z  +  6fiX ,p J) .

Taking the trace of this equation in the indices $ , /  leads to

«  =  +  2(m  -  2 )X ,p £  +  (m -  2)Xr X ,k ^ )  , (1.78)

which, in the particular case m  =  2, gives

P,” =  r 'B 'p f ,  . (1.7»)

Differentiation of Eq. (1.76) and application o f  E q. (1.62) and the transformation 
law o f the in Eq. (1.72) gives

H *  =  r‘  {A \ A !H „  -  iA'„A’X , k > . , X .  -  3 A ’kA ’ h > y , „ X ,  +  (1.80)

+  b k ’ X . rX ,  +  3 ( Y .  W j) , ) A l A t X . X ,  -  k , (  D  (h” ) ‘ ) * , X ,  )  .
<Jr° 1 >0,0 )

Combining this with Eq. (1.73), we get

-  W . X ^ X ,  +  H  • (1 *1 )

Finally, we derive the transformation law o f  the (m — l)-form  m :=  a

... A $,“ * A ¡̂,+ l A ... A where the missing index i is assumed to  be summed



Chapter I, Seetioa I.D. The Generated Wry I Tea, or mai Goaf or malty Flat SabmaaUoUa 1 1 0

over when appearing repeated in composite expressions. From  Eq. (1.72), we have 
4>'0 =  r~lA ki <t>*. Denoting by E, and E, the linear frames dual to  the co-frames <j>‘0 

reap- we get

6kj  detjrA*] =  Skjrm, we obtain ( — 1)'+J det ( A )  =  rm 1 A j. Thus, =
( —1 . Multiplying by (—l ) ,+*r '~ mAJt and summing over », we

arrive at

1.2.D  T he Generalised W eyl Tensor and C onform ally  Flat 
Submanifolds

Given a second-order G'-frame t  : M  —► G  along f  : M  —* S H, one can define the 

quantities (see Ref. [Ri/87])

where the hfj are given by Eqs. (1.46) and (1.47). The T'jk, satisfy the symmetry 
relations T ju  — ~ t \m — “ T‘jo , — T uj-  Also, from the structure equations (1.68), 
(1.69) we have ÎJÿ =  Ylk<i T'jkl4>% A ^0, i.e. the Tÿw are the components o f the 
curvature form OV relative to the co-frame j>k. If i  : M  —» G  is another second- 
order frame, then from Eq. (1.73) follows

where r and are as in Eqs. (1.70),(1.39). Denote by E, the frame o f M  dual to  

the co-frame Then, from the transformation law of these frames in Eq. (1.82) 
we conclude that a global tensor T  €  C°°( Q * T * M  ®  T M )  can  be defined on M ,  

locally given by

É, =  rA kE k . (1.82)

Hence,

i
where AJ denotes the submatrix of the matrix [rA*] w ith  row i  and column 
j  removed. Since A  is orthogonal and from the rule ( —1),+J det (AJ’"V"^)(rA^) =

(1.83)

(1.84)

f j a  =  ~  =  r ' A - A ' A W r ; .lj A kA l T tav » (1.85)

T = - r ihl4,S®+‘t,a+i<aEl ( 1 . 8 6 )
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on a domain o f a second-order frame e. Rigoli called T  the yen credited Weyl ten t or. 
Taking the trace o f T']kt in the indices •, /, one obtains

which defines a global symmetric tensor M €  C °°(  O* T *M ) , locally given b y

Note that A!jj — Eij>(AJ>)* and that» ” * =  2, M =  J ®  ¿0 +  ¿0 ®  0 o )- For 
any m, one has trivially (cf. Refs. [Sch-Su/80] [Ri/87)) at a point x  €  M

tra ced  (x ) =  JAfo(x) =  0 , iff h? =  0 , V l , / , o  , iff JV(x) =  0 . (1.89)

In particular, the condition Mjj(x) =  0 is conformally invariant, as we can a lso see 
directly from  the transformation law » »  =  r*Ujj. A point x  €  M  is said t o  be 
umbilic, i f  M jj(x) =  0, and the immersion /  : M  —► S H is said to be M obi ue-fiat, 

if all the points of M  are umbilic (see Refs. [Sch-Sn/80] [Br/84] [R i/87 ]). I f  x 
is umbilic, the curvature forms ft®, (!{,, il®, fl) vanish at x, for any second-order 
frame. The use o f these names becomes clear from  the following proposition, first 
formulated by Schiemangk and Sulanke [Sch-Su/80] (see also [R i/87]): 

P ro p o s it io n  (S ch iem a n g k -S u lan k e ,R ig o li) Suppote that M  it connected  and 
m >  2. Then, N  =  0, iff there eaiiti a S m c  S n, tuch that f ( M )  C  S m. In  thii 
cate, if, m oreover, M  it  compact, then f  it a dijfeomorphitm o f  M  onto S m.

In particular, the map

(1.87)

( 1.88)

/ :  E * -  s '  =  r ; . (1.90)

»

immerses JRr" as a Mobius-flat submanifold into the Mbbius space 5 " .
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1.3 Relation with Riemannian Geometry o f  Sub­
manifolds o f  the Euclidean Space

I f one considers 5 "  as ¡Rn with a  point at infinity, one can relate the Riemannian 
geometry of a submanifold o f JRn C  S " and its conformal geometry induced by 
the one of 5 " ,  which we will describe in the following.
Let us consider the diffeomorphisms

P " +1 D D S '\ {Xoo)

. HpH*..

( H m ’ IH Ffi)
c  2R"+‘ ,

where o  and K are given in Eqs. (1.5) resp. (1.11). Through the diffeomorphism 
i  =  K~l o u_ l , JR" is identified with 5"\{X oo). In order to use the method of 
moving frames in R " ,  we have to  write IR" as a homogeneous space of a subgroup

(1.91)

o f G .

The isotropic subgroup o f G  at Xoo is given by

.  f r " 1 0 0
r~lZ  A  0 

\r~l,Z Z  'ZA r

A  e  SO (n) 
Z € F  
r >  0

Let G* be the subgroup o f G  defined ty

G* =
1 0 0 
Z  A O  

\'ZZ 'Z A  1

A  €  SO (n)
Z e J R ” (1.S2)

The group G* is isomorphic to the identity component E * (n )  o f the group of the 
Euclidean motions o f R " ,  i.e.

P +(n) =  { (A , Z ) : A  €  S O (n ), Z  e l R ")

with structure group defined by (A ,Z )  o  (B , W )  =  (A B ,A W  +  Z ), (A ,Z )~ l =  
(A ~ l , —A ~lZ ), and id =  ( / „ ,0 ) .  This isomorphism is given by 

£ ?+ (») — ► G*

(A ,Z )
1 0 0 
Z  A  0 

\'ZZ 'ZA  1

(1.93)
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Under this identification, the action o f G * on S*\{xo<>}, which is the restriction 
o f the one o f G  on 5 " ,  is identical to  the usual action o f  Æ?+(n) on £Rn. In other 
words, the following diagram is commutative.

£7+(n) x
( M .Z )  . « )

nr
A u  +  Z .

I 1< t r *

1 0 0 1 i
Z  A 0 , CJ - Z  +  Aw

l \*ZZ XZ A  1 \\\«r j [i|| z +  A «H V
G x  5 - \ { x „ ) — *

As the action o f JE?+(n) on JR" is transitive, the same holds for the action o f G* 
on 5 " \ {x « ,} .

The isotropic subgroup o f G* at the origin x 0 €  5*\{Xoo} is given by

Gt =
1 0 0 
0 A  0 
0 0 1

A  €  S O (n ) (1.94)

and is isomorphic, via  Eq. (1.93), to  the isotropic subgroup S O (n ) o f  12+(n ) at 
the point *’- , (xo ) — 0. Thus, IRn as 5 ," \ {x 0o } is diffeomorphic to the homogeneous 
space G*/G J. Let j  : G* -♦  G  be the inclusion map. The canonic projection 
If : G* -*■ G*/GJ eat 2Rn is given by

H (P )= . - ( [ / > ( „ ) ]  j ,  ( i .m )

that is,
t 1 0 0 \ t 1 \

Z A O = • - z
l I 'Z Z  ‘Z A  1 j l Ï\ W J

Thus, TT =  i~ l o  II o where II : G  ->  G /G 0 at 5 "  is the projection in Eq. (1.14). 
The Lie algebra o f G * ,£ *  at IRn x 0 ( » ) ,  has basis {P (a,o),P (a,b) : A  >  B ]  (see 
Sec. l . l .C ) .  The Maurer-Cartan form o f  G* is given by

* = / • # :  T G *  -  ,

where 9  : G  is the Maurer-Cartan form  o f G , and its components {& t)o£ate»+i
satisfy the relations

¿ 0  _  A n + I _  AO _ * A  _  A »+ I  _  Ao 
0 ^ « + 1  - * » + l  ” * 0  — Wi»+1 o , * i  = t ; + ‘ , 4 i  =  . (1.0«)
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The structure equations o f G* are supplied by the Maurer-Cartan equation = 
—4  a 4 ,  that is, in components, A 4 j, through Bq. (1.96) reducing to

« ty  =  ~&B
<&B =  ~&0 •

(1.97)

Next we assign to JR" ^  G* /G*0 a Riemannian structure, described in i  he following. 
For each (local) section p : IRn —» G * of the bundle H : G* —* JR", i.e. p  is a map 
that satisfies H o p  =  id « » ,  we take the ^ ‘ -valued 1-form

^ =  p*$ =  p ldp . (1.98)

The components o f <Jj =  p*4j, satisfy the same relations (1.96) and structure 
equations (1.97) as the components of Since /  o p o « -1  : S n —* G  is a section of 

the bundle II : G  —» 5 " ,  we know from Sec. l . l .C  that the 1-forms

= •~,V *q =  ( / o p o t-l )*#o » 1 <  -A <  n
are linearly independent. Therefore, {^ o )liA <a constitute a (local) basis o f T*2R". 
On the domain o f definition o f p we take the Riemannian metric

'< ’ = £ ( « ) ’ ■ (I -» » )
A -l

If p : JRn —* G* is another section o f IT, then, in the intersection o f the domains of 
definition o f p and p, we have

P - p K , (1.100)

where i f  : JR" —* GJ is a smooth map o f the form

1 0  0 
0 A  0 
0 0 1

( 1.101)

with A  : JR" —* S O (n ). Thus, we get the transformation laws o f the components 

o f p =  reading
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In particular,

whence

#=£(«)* = t  («)■=*■.
Thus, the Riemannian metric defined locally  in Eq. (1.99) is a global one in lRn, 
such that, for any section p o f H, the linear frame field X t, . .  . , X n dual to  the co­
frame . . .  , |̂} given in Eq. (1.98) is orthonormal. Moreover, due to  Eq. (1.96) 
and the structure equations (1.97), the 1-forms ¿ 5  satisfy

co-fram e $o)i<,A^n‘ Since ^  additionally has the property (from Eq. (1.97))

the above Riemannian structure on IRn is flat. In fact, the metric dt* is the usual 
Euclidean one, as we can see by taking the section p  =  sot with « : S n\{x«>} —* G* 
the m ap defined in Eq. (1.19). We observe also that, given a (local) right-handed 
orthonormal frame X i , . . . ,  X n o f 2R", there exists a section p  : JRn —» G’*, such

A ?  = ( . . . ' ) • * ?  ( X . ) .

Now let F  : AIm —* IRn be an immersion of an oriented m-manifold A f with
m > 2.
A map E  : M  —* G* defined on an open set o f A / is called a G*-frame field of 
IT lRn along F ,  if IT o  E  =  F . F or example, i f  p  : JRn —* G* is a section
o f IT, then E  =  p o F ,  defined on a  conveniently chosen open set o f A /, is a G*- 
frame field o f IT along F .  If E  : M  - »  G* is another G*-frame o f IT along F ,  then 
&  =  E K  with K  : M  —» GJ is a sm ooth map defined in the intersection o f the 
two domains. Conversely, given such a m ap K  and a G*-frame E , then E  =  E K  
is also a G*-frame.
Set f  =  i  o F  : M m —» 5 " ,  which gives an immersion into the Mobius space S n.

(1.103)

Consequently, the $5  are the Levi-Civita connection forms corresponding to  the

4 5  =  - 4 5  , (1.104)

that 4 ?  (A n ) =  &ab - This section can be chosen as p =  p -
1 0  0
0 A  0 with
0 0 1
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I f E  : A t -*  G* is a G ’ -frame field o f IT along F , then e  =  j  o E  : A t —* G  is 
a zeroth-order G-frame field of II : G  —* S " along / .  Summarising, we give the 
relations among G ‘ -frames of IT along F  and the corresponding G-frames o f II 
along /  in the following commutative diagram:

(1.105)

As in  Sec. 1.2, we are now going to  construct in a neighbourhood o f each point 
o f A t a more specialised G ’ -frame field. With each GMr&ine field E  : A t  —» G* o f 
IT along F  we associate the ^ -v a lu ed  1-form

i> =  E*$ =  E ldE (1.106)

on At, with com ponents =  F ’&J satisfying the same relations (1.96) and struc­
ture equations (1.97) as the ones o f If Ë  : A t  - »  G* is another frame o f IT along 
F , then

È  =  E K  , (1.107)

where K  : A t  — GJ is as in Eq. (1.101) with A :  A t — S O (n ).  Writing

i> =

we get the transformation

0 0 0 
W  0 , 

0 '[ * # ]  0

* È -i = È 'd Ë  = K~'+K  + K -'d K  
0 0 0

f c k o ]  'A fr flA  +  'AdA 0 .
0 J[ ^ ] A  0

(1.108)

Let E  : A t -*  G* be any G*-frame o f IT along F . Take t  =  j  o  E  : A t -*  G , which 
is a zeroth-order frame o f II along /  =  i o F :  A t —» Sn, and consider the j^-valued 
1-form on A t  given by 0  =  «*#. Then,

+  =  «** =  F ‘ (;•**) =  £?•(*) =  y. . (1.109)
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So 4>l =  i>t and, in particular, (l*o " *  1-form* on M  that span T *M .

Following the procedure o f  Sec. 1.2.B, we can find a map K  : M  -*  GJ o f the form 
(1.101), defined on the domain o f E , such that f t  =  E K  satisfies

1*“ = 0 , V m  +  l < a < » .  (1.110)

In particular, the (l^o)|<,<m span T *M . Moreover, for any two G*-frames E , E  : 
M  -*  G* o f IT along F  that satisfy Eq. (1.110), the map K  : A f -*  GJ defined by 

E  =  E K ,  i.e. of the form  (1.101), satisfies [^q ] =  ]» 48 we can 8ee from  the
transformation laws (1.108). Then, under the assumption that . . . ,  and 
(l&Q,. . .  define the same orientation on A f, A  is o f the form

A - l
A i
0

where A t €  S '0 (» i)  and A 4 €  S O (n  — m ) (cf. Sec. 1.2.B). In other words, K  takes 
values in  the closed subgroup o f  GJ given by

1
1 0  0 0 
0 A  0 0 A  €  S O (m )
0 0 B  0 B  €  S O (n  — m)

i 0 0 0 1

Conversely, if E  : M  —» G* is a  G ’ -frame field o f IT along F  which satisfies 
=  0, V o, and K  : M  - »  G\ is a map, then &  =  E K  : M  -*  G* is a C*-frame 

that also satisfies Eq. (1.110).

D e fin it io n  1 .6  A G* -frame field E  : M  —* G* o f  IT along F  with the propertg 
V’o =  0 , Vm +  1 <  o  <  » ,  where 0  it given in Eq. (1.106), i t  called a Darboux 
frame.

For a D arboux frame E  : M  -*  G*, set tj> =  Then, from Eq. (1.96), we have 
the relations

*•. = *?*'. *¡ = , * ;= o  «i«,
and, from  the Manrer-Cartan equation. (1.07) f o r t ,

=  - * ' j  A ¿ Í
A * }  +  .

( 1.112)

( 1- 11» )

where

=  A t » ; . (1.114)
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Differentiating V’o =  0, we get from the above equations

0 = 4»; = A *1 -  + ; A a .

Applying Cartan’s Lemma we obtain

*7

with lifj smooth functions satisfying

A*. = A* .

(1.115)

(1.115)

These functions are called the coefficients o f the second fundamental form  o f the 
immersion F  : M  —» IRn, relative to  the frame E.

It E  =  E K  : M  —► G* is another D arboux frame along F , with K  : M  —* G\ o f 
the form

K  =

1 0  0 0 
0 A 0 0 
0 0 D 0 
0 0 0 1

then the vector components o f E  transform as

E  =  [E0,E ,,E a ,E *+ i] =  [£o, A jE j, B^Ep, £ „+ i] 

and the components o f =  E*& as

*  =  T'  J .  = E - ' i E  =  K - ' i K  +  K - ‘d K  =

(1.117)

(1.118)

0 0 0 0
0̂ a & 0
0 *7 n 0
0 Vi) 0 0

0 0 0 0 
3*1^1] ' A ^ A  +  'AiA  0

0 'B l+ f]A  ‘B [ i , ; ] B +  'BJB  0 
0 0 0 .

In particular, ¿¡, =  nnd =  B 'V *  A*, giving the Iran «formation

I j j - A f A l j B f i .

Also, from  Eq. (1.119), we see that

(1.119)

( 1.120)
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defines a global metric on A /,  and, from Eq. (1.113), that the t y  form  the Lewi- 
Ci wit a connection form e on  A /, relative to  the orthonormal co-frame (^o)i<i<m 
and with curwature form e Clÿ.

R e m a rk  1 .4  First we note that G*-frames E  : M  —* G* o f  IT along F  o f  the type 
E  =  p o F ,  where p : IRn —» G* is a section o f  H, are defined in a neighbourhood 
o f each point o f M . M oreover, we can assume such a frame to  be a D arboux one, 
which can be shown in an analogous way as in  Remark 1.2. in  Sec. I.2.B . For such 
D arboux frames, we have =  E*& =  F*p*& =  F*$>. In particular,

*■ = t  (*;)’ = t  {*:)' = Ê (rtt)' = f(dt').
i= l  A = 1 A = 1

Thus, the metric dl* o f M  is the one induced by  F  from the metric dt* o f JRm. I f 
we take X u  • • •, X m as the local orthonormal frame of (A /, dl*) dual to  . . . ,
then

h i  =  * U X j)  =  i" ( * i ( J fy ) )  ))

and
o  =  « = * ; ( « - ( . ) ) .

Let i / i , . . , ,U m,Um.n ,  be the orthonormal frame o f (JR",<ft*) dual to
Since

¿.(o'.CXj)) = ¿,j, ii(w.(,|.,)) = 0, is(JK(x,)) = 0, ,

we conclude that 17,•(*■(*)) =  V* €  A /, 1 <  » <  m and that (^ o ° ^ )m+,<aSw
is an orthonormal frame o f  the normal bundle to F . Then, since i i W c )  = <  

dUB{U c),U a > * «  and t/>j(Xk) = <  > * « , the second fundamental form
o f f ’ : A / - *  2R" is given by

id,»

with A“  =  ^ f (X j)  =  ¿ ? (d F (X j ) ) .  We can easily verify that the r.h.s. o f  this 

equation defines a global tensor on A /, by applying the transformation laws given 

in Eq. (1.119) on another D arboux frame o f the type É  =  p o F ,  where p  : t i n —► G* 
is a section o f  II.
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Finally, we remark that, for such a D arboux frame E  : M  —* G*, its vector 
components can be written as (E m+i =  0)

E 0(x ) =
1 0

F (z ) , « ( * )  = A .fi'l»)) . E .( x )  =
p W M

a ;

0
A .  (/•(•!) 

F * ( , ) A i ( , M )

where A  : JRn -*  S O (n ) with vector components A, = is a smooth map.
a :

Identifying £?(*) €  G * with the element (A (^ (»| ),F (* )) €  E + (n) via the isomor­
phism (1.93) corresponds to  identifying E 0{x )  with F (x ), £?,(*) with A ,(r w ),  and 
E a (x ) with A  <,(/•(*))• Then, one can show that £?,■ =  A,- o  F  =  d F (X j) £  d F (T M )  
and E a =  A a o F = U a o F  give rise to orthonormal frames o f  d F (T M )  and its 

normal bundle, respectively.

In order to simplify the relations that can be derived between the Riemannian 
geometry of submanifolds o f JRn and their conformal geometry, when considered 
as submanifolds of 5 " ,  we are going to show how a second-order G-frame field of 
II : G  —» 5 "  along f  =  i o F  : M  -*  S n can be constructed from  a  Darboux frame 
o f  H  : G ’  — 2R" along F  : M  -*  JRn.

Let E  : M  -*  G* be a D arboux frame o f  IT along F  and t  be the zeroth-order 
G-frame t =  j  o E  : M  —* G. Then, the vector components cu o f t  are identical to 
the Em o f E  and, with the usual notation

y> =  £7*4 , 4> =  « • * ,

Eq. (1.109) holds. In particular, =  0, that is, e is a  first-order G-frame
field o f II along / .  N ote that the map /  : (M , dl*) —» S n is conformal, i.e. dl* =

e .” , (*;)' = e ; . ,  M ) ‘  = e ; . ,  = e ;_, ((>•£)'*?)’  = e ; . ,  («-»i )*
is an element o f the conformal class o f metrics o f M  induced by the one o f S " . 
Since e is of first order, we have, as in Eqs. (1.46),(1.47),

=  K j H  •

As

+7 = +7 = K M * -  K M .
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we get, comparing with Eq. (1.116), AJ =  i.e. k ‘:  are the coefficient« o f the 
second fundamental form o f F , relative to the frame E . The Gauss equation (see 
e .g . Ref. [K o-N o/63]) yields that has Riemannian curvature tensor

Rijkt — Kk^ji ~  h°ihjk ' (1.121)

w ith  scalar curvature

*  =  a «  = 2 E  W ,Ki -  (*&)■} •
•'<> <<J>

T h e mean curvature has coefficients

th a t is, if E  is a Darboux frame like in Remark 1.4, then H  =  H °Ua. Let 
«  — : M  —* G  with K  as in Eqs. (1.51),(1.52), which is a second-order G -

fram e of II along / ,  as shown in Sec. 1 .2 .0. Then, we get the transformation 
laws

(1.123)
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We note that th e  coefficients relative to the second-order frame i  are not the 
ones o f the second  fundamental form o f F ,  because t  is in general not a  frame o f 
the Riemanni&n structure (it may not take values in <?*). Nevertheless, from the 
above transform ation laws we obtain a relation between these coefficients and the 
h*j o f the second fundamental form for the D arboux frame E ,  reading

The Weyl tensor o f  (M m,dl*), which is invariant under conformal changes o f the 
metric dP, has components (for m >  2)

where Rjk — R ,j,k are the components o f the R icci tensor. From Eq. (1.124) we

(1.84), in the second-order frame t  along / ,  are related to  the G,-ju through the 
formula

Thus, the second fundamental form  o f  F  has components o f the form

(VdF)° =  Aadl* ,

where A® =  In other words, F  : M  —» IRn is a so-called totally umbilie

immersion.
Supposing that E  is a Darboux frame o f the type E  =  p o  F  with p : JRn - »  G* a 
section o f IT, an d  denoting ^ =  p*$, we have

Let X i , . . . ,  X m be the orthonormal frame of (M , dP ) dual to  the forms • • • * V'o'
and Um +u. . . , U m be the orthonormal frame o f the normal bundle to F  dual to

(1.124)

C i j u  —  R i j u +  2  ~ 6 j i R i k + 6 i iR jk + 6 jk R n  )  +  -(m -  l) (m  -  2)
R

deduce that th e  components f ju  o f  the generalised Weyl tensor T  given by Eq.

V"' _  “  *)

If kfj m 0, V i , / ,  then, by Eq. (1.124),

C.jM — f ' ju

V i , / .
1

*1 =  E - i ;  =  f y t ;  =  .
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^q*+1, . . .  (ef* Remark 1.4). L et V  denote the Levi-Civita connection o f (A /, dl*)
and V X the connection o f the normal bundle V . These can be related to the 
Riemannian connection form s and the corresponding conformal ones given 
in Eqs. (1.123), relative to  the second-order frame e, as follows:

*;<*»> =  (Vx.Xy.JC,)^
K ,  =  { V d F l X ^ X j b U . ) ' ,

' « ' P - s r E i E ^ ) *

(1.126)

i ^ - i v u r - m u r r -

Applying Eq. (1.54) to ¿, we obtain

=  ( V x . V d F ( X (1-12«)

with V V d f  the covariant derivative in O * T *A f «8» V . Further, ^  =  p%4>v yields

ft =  =  4  IB,U.)d„  ) (X»)  -  (if, (V £jJ .,V ,)„  =  ( V ,
that is,

. (i.i27)
Using Eq. (1.60) we get

#?, = ( v 1,a (x»,x,)-{jr,V jF(x.,x ',))iii,ff+ifo||ii||,ir+

+ {x, Vif-fx^x,))^, v<fi’(x„x,) -  i||x||,v<ii'(x1,x.) , tf.^_ .
(1.128)

* n x >)

w t f . ) * .

H m

K j
traced

Taking the trace of this expression yields

P° =  ( a B  -  +  A ( E ) ,U . ) ^  (1.12S)

with A (B ) m (M ,V d F (X , ,X , ) )ml V J F (X „ X ,) .  F inely, from  Eq. (1.82), w . hive

Bk, = (||V«’|* -  m||S|*)( -  (S , ViFfXhX,))^ + i*>,||S||’)
-  m (V In , V ikn )Ml -  m (H, V 'm x „x k))iil 
+ (Vx.VrfF, V x,VdF) + (VdF,V’ VdF(X„Xk)) , (1.130)
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A ppendix I

W e observe that the embedding K~l of S " into P H+l, which defines the Mobius 
space given in Def. 1.1, is not the most standard way o f em bedding S n into the 
projective space. Here we followed Ref. [P0/ 8IJ, but e.g. in Ref. [K o-N o/63], page 
311, the authors chose the embedding

which is an isometry, S" being considered with the metric in duced  by 2R"+I and 
2P" + I with the metric 2d»* given by

. . .  =  ( E r .y  * ? ) (  s r - V '* ? )  -  ( g . v  *.■*»■)’
( E r -v * ? ) ’

where p  : !R "+*\ {0} —* P " +l is the canonic projection. In th is  sense, our map 
K ~ l is not an isometry, but a conformal map: K~l can be ob tained  from £ by the 
form ula K~l =  f  o  R ~l o o ~ l o ^ i d « .  o  » ,  where R  : S n —* S *  is the rotation 

So we have < ,> $»•  Clearly, the
conformal structures on S" by choosing either o f these two conform ally  equivalent 
embeddings are equal. If, instead o f  the submersion F  on page 8 3 , we had chosen

« A
v =  ( j j f , ^  )  we would have obtainedthe map F

1
— ► S n

}IHI’ 
I Ml* _  *̂“11 ̂ tII v'iu*

1

k~ 1 : S n

(*°.

—  • 

*) -



Chapter I, Appeadix 1 126

K 1 differs from  £  by the rotation R  and we have

Xoo

v r  u { o o }  . 

oo

We note that, if we had chosen the map K instead o f K, then Eq. (1.15) w ould 
not hold anym ore, unless we had replaced “id" by “ P  o id" with T (Z ,A ,r )  =

We also remark that, if we had chosen the embedding K *, the Killing v ector  
fields of S " w ould be generated by

f 0 - V  0 
l v D  —v 
( [ O b  0
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Chapter 2

VARIATIONAL PROBLEMS IN 
CONFORMAL GEOMETRY

2.1 Introduction: T he W illmore Functional
2.1 .A  The Riem annian C ase

Let M *  be a closed (i.e. compact and oriented) surface and f  : M  —* JR* be an 
embedding into the Euclidean 3-space. In 1965 Willmore [W i/65] introduced the 
functional, since then called Willmore functional,

V { f )  =  / „  B 'd A  , (2 .1 )

where H  is the scalar mean curvature o f  /  and dA is the volume element of M  with 
metric induced by / .  Then, he posed the problem o f  finding infW t where /  ranges 
over all embeddings o f  M . M oreover, he also proved |Wi/68] that W { f )  >  4*r, 

with equality, iff M * is embedded as the standard sphere (see also Ref. [W i/74]). 
In 1973 White [W h/73] pointed out that Blaschke [Bl/29] had observed that, for 
any immersed surface M * o f JR*, the quantity (i f*  — if),w ith  K  the Gaussian 
curvature,is invariant under any conform al mapping o f  the Euclidean 3-space plus 
the point at infinity. Hence, the integral (also called Willmore functional)

» ( / )  =  (2.2) 

is a conformal invariant. Supposing again that M  is closed, then, from the Gauss- 
Bonnet theorem

K iA . =  2 »x  (M )

with X (A /) the, topologically invariant, Euler characteristic of M , one obtains

V ( / )  =  V + 2  »X (M ). (2.S)
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Thus, W (f)  is also conformally invariant, only differing from W by a  constant.
I f  Ci, i s  an orthonormal basis o f TXM , x  €  A /,  and v  is a unit normal to 
dfx(TxM ),  then, denoting h,-j =  ( V d /^ e ,, «¿), , we have Hm =  | (hn 4- /» « ) .
From  the Gauss equation, we get K a — R™ (e,, e ,, e ,, e ,) =  — h j ,  =  det[h,
So,

* 1 -  K  =  i ( * „  -  * „ ) ’  +  =  i|| V4f||* -  H ’  ■ (2.4)

Hence, H\ — K a >  0, with equality, iff /  is umbilic (see Sec. 1.3) at the point x. 
Now, it is well-known that, if /  is a totally umbilic surface, / ( M )  is either a part 
o f  a plane or a sphere. Since M  is closed, TV(f) >  0, with equality, iff M * =  S 2 
and /  is totally umbilic.

In order to find some possible minima o f  the functional (2.1) or (2.2) for M * 
a fixed closed surface, one can work out the corresponding variational problem. 
A n  immersion /  : M a —* IR* is said to be a critical point of W , if, for any 
sm ooth variation o f / 0 =  /  through immersions, J^W(/f)|f_0 =  0. As a
consequence o f  a more general result o f his, Chen [Ch/73a] concluded that /  is a 
critical point o f W , iff

A  H  +  2H {H * - K )  =  0 .  (2.5)

This equation is the Euler-Lagrange equation for the functional TH and is invariant 
under conformal mappings o f the Euclidean 3-space. Obviously, the critical points 
o f  y t  are identical to the ones o f W and they satisfy the same Euler-Lagrange 
equation (2.5). The functional W has as absolute minimum the value zero, if 
M  =  S* and f  : S* —* JR* is totally umbilic. In this case, W (f)  =  4n. Willmore 

also showed that, i f  M * is a torus, Eq. (2.5) is satisfied for an embedding o f M  
into JR* the image o f which is an anchor ring generated by revolving a circle of 
radius r about the line with distance y/2r from its centre, i.e. the torus

{ « > /2 r  +  r cos a) cost), ( l /2 r  +  r c o s « )s in u ,r s in « )  : . .

For such a torus, 7V(f) =  W ( f )  =  2n*. However, it  is not yet known whether such 
an immersion is an absolute minimum among all immersions of the torus, only 
that, if / ( M )  is a sm ooth surface o f revolution, then >  2x*t with equality, iff 

/ ( M )  is the above anchor ring, as shown by Willmore in Ref. (W i/72). It had been 
conjectured by Willmore [Wi/65] and, a fortiori, b y  Shiohama-Takagi [Sh-Ta/70] 
that the special anchor rings are the only unknotted tori in JR* that satisfy Eq.
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(2 .5), bat this turned oat to be false due to the above remark o f W hite concerning 
the work of Blaschke. Since W ( / )  is a conformal invariant and th e  inversions 
Inv : x  G IR1 —► c*¡¡̂ pr are conformal transformations o f IR* U {o o } ,  i f  / ( M )  is an 
anchor ring, then In v o /  also satisfies Eq. (2.5), which gives rise to  a special class of 
tori, called cyclides o f Dupin. Later, the above conjecture was m odified, claiming 
that the surfaces o f  IR* which differ from  these special anchor rings by a  conformal 
transformation o f IR* U {o o } minimise W among all immersions o f the torus into 
IR*. Weiner [W e/78], using a result o f Lawson, showed that there exist embeddings 
o f  closed surfaces in IR* with arbitrary genus satisfying Eq. (2 .5). In  fact, these 
are images of embedded minimal surfaces in S* under stereographic projection 
onto IR*. Note that this contrasts with the fact that there are no closed minimal 
surfaces in IR*. The functionals (2.1) and (2.2) can be defined in the sam e way for 
immersions /  : M * —* lRn o f a surface into the Euclidean n-space, where H* now 
denotes the square o f  the norm o f the vector mean curvature H . Chen [Ch/73b] 
proved the conformal invariance o f (||J5T||a — K )d A  under conformal mappings of 
IRn and, moreover, that in the case o f  M  being a closed surface Eq. (2 .3) still holds. 
T hen, the functional (2.1) is also conformally invariant. Later he proved [Ch/74] 
that, for M  a closed surface, /* / (||if ||* — K )d A  >  2 s(2  — x (A f)) ,  w ith equality, iff 
M  is diffeomorphic to  a 2-sphere and /  : A f -*  2R" is totally umbilic. Furthermore, 
i f  n  =  4 and M  has non-positive Gauss curvature, then fM ||ff ||*<L4 >  2 s*, and if 
||2T||* is constant, then equality holds, iff M  is the Clifford torus S l x  S l. Finally, 
Weiner generalised the definition o f  W illmore functional for immersions o f  surfaces 
M *  into a Rie man man n-dimensional manifold (JV", h ) in the following way:

Let /  : M * —* (N n,h ) be an immersion o f  a surface with or without boundary and 
let G  : M  —* IR be the map given by

G. -  -  ( V ^ ( . I, . . ) ,V ^ (e 1, . . ) ) j  (2.(1)

with <1,<| an orthonormal basis o f (TaM ,f* h ) .  Chen [Ch/74] called G  the “ex­
trinsic scalar curvature” o f M  and proved that (||£f ||J — G)dA  is invariant under 
conformal changes o f the metric h. B y  the Gauss equation,

K .  =  , « „ « , )  =  C .  * • ( . . ) )  , (2.7)

that is,

K a =  Gg +  Kj[g)
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with l£ f(a) the sectional curvature o f  the plane dfM(TaM )  o f T / ^ N . Then, the 
functional integral

» ( / )  =  / M (ll-fflll ~ K +  K ,)d A  (2.8)

is conformally invariant. Since K d A  +  /¿^  k, da, with /cf the signed geodesic
curvature of clM , is a topological invariant, the functional integral *

» ( / )  =  J j m l + K , ) d A  +  J"K ,d . (2.9)

is also invariant under conformal changes o f the metric h.

In particular, if N  =  S " ,  a : S "\ {po in t} —* ]Rn is a stereographic projection, and 
/  : M  —* 2R" is an immersion, then 1P(/) =  IP (a -1  o f )  and the same holds for 
the functional IP. I f M  is a closed surface, then, by  the Gauss-Bonnet theorem, 
we have W (/)  =  ) P ( / )  +  2 x \ {M ). Weiner showed that, if (N ,h ) has constant 
sectional curvature and W (f)  <  oo, then /  is a critical point o f IP, iff

A H -  3|JT|aJ r 4- ¿ ( i f )  =  0 (2.10)

and
H - kv  = 0  on c«V/, (2.11)

where kv is the norm al component o f the principal curvature vector o f dM  in N  
and A  is the section o f  V ,  with V  the normal bundle to / ,  given by

A , ( [ / )  =  £  , W  €  V. , (2.12)
•J- 1

with e i,e a an orthonorm al basis o f ( r ,M , /* h , ) .  Observe that, if M  is a closed 
surface and N  — IR*, then Eq. (2.10) is equivalent to

AiT -  2 H ' +  | | ' =  0 ,

where now H  stands for scalar mean curvature. Furthermore, using Eq. (2.4), we 
obtain that Eq. (2.10) is equivalent to  Eq. (2.5).

2 .1 .B  C onform al Interpretation w ith  Further Generalisa­
tions

Bryant [Br/84] was the first to study the Willmore functional for immersed surfaces 
in  1R* using the conform al invariance from the outset, by interpreting it as a
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functional acting on immersed surfaces o f the Mobius space. More precisely, let 
/  : M 2 —► S 2 be a sm ooth immersion o f  an oriented surface and 0 /  be the 2-form 
on M  given by

where fa  and Utj  are given by Eqs. (1.35) resp. (1.88) relative to  a second-order O- 
frame field e : M  —» G  o f  IT : G  —* S 2 along / .  The 2-form 0  ̂  is the corresponding
2-form (H 2 — K )d A  in  the Riemannian geometry of surfaces in JR2. Explicitly, 
i f  /  takes values in IR2 C S 2 (in the sense o f  Sec. 1.3) and E  : M  —* G* is a 
D arboux frame o f IT : G* —» IR2 along / ,  then, as follows from Eqs. (1.121), 
(1.122), (H 2 — K )d A  is in this frame locally  written as

(1.116). From the D arboux frame E  one constructs a second-order G-frame e  : 
M  —► G  o f II which is related with E  in the same way as in Sec. 1.3, yielding, 
through Eqs. (1.124), (1.123),

Thus, 0 /  =  |trace XIdV =  (H 2 -  K )d A , when written in these frames. Given a 
compact domain Z> c  M 2, consider the functional

acting on immersions /  : M * —* S 2. Such an immersion is said to be a Willmore

smooth variation / ,  : M  —* S 2 o f /  through immersions with compact support in 
D , we have

n , =  i t r « « J /r f V = (2.13)

b ' - k  =  + * : , ) ’

where fi2̂  are the coefficients of the second fundamental form given in Eqs. (1.115),

b ' - k  =  ¿ ( * ï ,  + ( * : . ) ’

and

(2.U)

immersed surface o f the Möbius space •S', if, for any com pact domain D  and
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Bryant calculated the Euler-Lagrange equation for this variational problem, ob­
taining

which is conformally invariant, as we can see from the transformation laws (1.72) 
and (1.79) for second-order G'-frames along / .  M oreover, we see from relation 
(1.129) that the above Euler-Lagrange equation represents, in the Riemannian 
geometry o f M  as a surface o f 1R*, the Euler-Lagrange equation (2.10).
This variational problem suggested to  Rigoli [Ri/87] a  natural way o f extending 
the concept of W illmore surfaces to  submanifolds o f the M obius space S n, as we 
describe now. Let /  : M m —* 5 "  be an immersion of an oriented m-dimensional 
manifold. Then, one can define on M  a  global m-form

where N  and dV  are as in Eqs. (1.88) resp. (1.44), as one can see from the trans­
formation laws for second-order frames. On a domain o f  a  second-order G-frame 
t  : M  —* G  along / ,  0 /  takes the expression

where 4>‘0 and hfj are given in Eqs. (1.35) resp. (1.46). If /  takes values on 2R" C  5 " ,  
the m -form  0 /  has the following interpretation: let E  : A f  —► G* be a Darboux 
frame o f  IT : G* —* JRn along f  : A I —» JRn and e  : A /  —> G  be the corresponding 
second-order frame given in Sec. 1.3. T hen, using Eq. (1.124), we have

(ph+p'n ) w  =  o (2.15)

0 /  =  ^ ( t r a c  eM )^ dV (2.16)

0 /  =  ^ ( l > f y ) ’ ) T r t A . . . A « \ (2.17)

trace)} =
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-  E <*&>'+jE  <*:-*;,)*}
l  '< > >  «yj.o J

=  ¿ { t a E  (**>)* +  E  (* “  -  k ‘j )’ }
{ ><j,o t< j*  J

= i  |i-"E(*r/+ E (*:-*£)’ } .
I  ■ <>.“  « j.®  J

where h? =  A“ are the coefficients of the second fundamental form o f /  relative to 
the Darboux frame E . Since

£  < * » -* & )• E  { ( « ) * - » : * ! + ( * * ) • }
'<J.®

- » E  * : * ;> +  E  ((* »> ’ + (*s,>*)
'<>1® • <>.•

- 2  E  + *  E  ( ( * s ) ’  +  (*;>)’ )  -  E ( * s ) ’
<<j>  >4« i>

-2E*S*Jy + (m-l)E(*S)',
we get

trace V =  i  {  E  -2*:**i +  < "• -») E (*S )’  +  *™ E  (*J)’  }

=  ^  f  2 E  ( -  +  « • (* ; ) ’ ) + E  - ( * « ) * + E  • "(* .*)*}
[  « A *  i >  J

=  ¿ E ( - * i * I i + « (* & )• )

=  ¿ | e < > » - d *s *;> -  >» E  ( * : * ; ,  -  ( * s ) * ) }
V*J> 1 J> J

=  *"(■" - » )  E  ( ¿ E « ) ( i E * S )  -  E  ( * : * £  -  (*& )’ )
• i j  'J.®

=  m (m  -  1)11*11* -  2 E  “  (*& )*)

=  m ( m -  1)||*||*- f l ,

where f? is the scalar curvature. Summarising,

tra ce *  =  m (m  -  1)||*||* -  *  =  ~  E  { (*S -  *2,)* +  2m(A&)*} .

Note that this expression obviously justifies the definition of umbilic point given 
in Ch. 1. This was also observed by Sulanke [Su/857], who proved tra ced  =
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||Vd/||* — m||ir||s >  0. Besides, the latter equality follows straightforwardly from 
the above. Moreover, Rigoli showed that the m-form

written relative to a first-order G-fr&me t : M  —► G  along /  : M  —» JRn c  5 "  does 

not depend on the choice of first-order frame and, therefore, defines a conformal 
invariant in Riemannian geometry.
O n each compact domain 25 C M  we consider the functional

defined for immersions /  : A /m —* S n. Such an immersion is said to  be a Willmore 
immerted tub manifold o f the M obiut tpace S n, i f  /  is a critical point o f the latter 
functional. That is, for each com pact domain 27 C M  and smooth variation 

v : M m x (—c,c ) —» S "  o f /  through immersions f t =  »(-,<)> with com pact support 
on 25, i.e. f , ( x )  =  / ( * ) ,  Vt, and *  outside a com pact set o f 25, we have

In Ref. [Ri/87] Rigoli calculated the Euler-Lagrange equation for this variational 
problem  in the particular case m  =  2 with n >  3 arbitrary, obtaining an equation 
rather similar to the one of Bryant, reading

with p“  as in Eq. (1.60), relative to  a second-order (7-frame. The transformation 
law (1.79) shows that this equation is conformally invariant, i.e. it  is independent 
o f the choice o f  second-order frame. Also, if /  takes values in 2Rn, then the 
Riemannian equivalent o f Eq. (2.20) is Eq. (2.10), as we can see from relation 
(1.129). We further observe from  the proposition in Sec. 1.2.D that, if / ( M )  C 

S m c  5 " ,  then W />(/) =  0, that is, /  is a trivial Willmore submanifold.
In the next section we are going to  calculate the Euler-Lagrange equation of 

the variational problem associated with Wd acting on immersions /  : M m —» 5 "  
with 2 <  m <  n arbitrary.

(2.18)

I ’M/.)!,. (2.19)

f»îi +  P?s =  ° i  Vo =  3 , . . . , » ( 2.20)



Chapter », Seetha ». The Euler Lagraage Eqaatha for the Willmore Fuaetiomal Hi 135

2.2 The Euler-Lagrange Equation for the W ill- 
more Functional W

Let /  : M m —» S " be an immersion o f an oriented m -manifold (m >  2) into the 
Möbius space S " and 27 C  M  be a com pact domain. Then,

with and A® as in Eqs. (1.35) resp. (1.46), relative to  a second-order G-frame 
t : M  —* G  of II along / .
Let v : 27 X ( —«, c) —» S n be a smooth variation o f /  through immersions /»  =  
v (•,<), which we assume to  have com pact support C  C. D ,  i.e. / ,  (x) =  / ( x ) ,  Vt €  
( —€,<), x  G 27\G. Thus, the variation vector IV G C ° ° ( f~ lT S n) given by Wu =  

& /« (* ) li=o’ *las com pact support in <7. Now we are going to compute

To that end, we construct smooth maps e : M x  (—6, e) —* G  defined on U x  ( —if, e'),

the properties

(i) « ( « , ! )  =  « (* ,  0) , Vx G lf\0», t G ( - c V )  ,
(ii) Vt G ( - < ' , « ')  , e, =  e(-,t) : A f —► G  is a second-order (2.21)

G’-frame along / ,  defined on U  ,

where G' is a com pact set, such that G  C C  C D . First we take a  section 

t  : S n —» G  o f II : G  —* 5 "  defined on a neighbourhood o f  v(xo,0) in <S". Let 
e  =  «  o v : 0  x (—c, e) —* G  with #  a convenient neighbourhood o f x0. Then, 
n  o e ,(x ) =  n  o « (x ,l )  =  v (x , l ) , that is, i t is a zeroth-order frame along / ,  which 
satisfies: for x  G £7\C, e»(x) =  *(t?(x, t)) =  *(w (x,0)) =  e0(x ). Following the
construction o f a first-order frame from a zeroth-order one given in Sec. 1.2.B, we 
denote ^ (t) =  e*$, with components ^J(t), and take the JR" vector-valued smooth 
functions on 0  x ( —e,e)

which we may assume to  be linearly independent and orthonormal after Gramm- 
Schmidt orthogonalisation. Then, v ,(x ,( )  =  v,-(x,0), V (x ,t) G 0\ G  X ( —e,c).

im / ) = / t n ( = i / „  (  e ( * ; ) ’ ) % ;  a  . . .  a  k

where 17 C 27 is a neighbourhood o f a given point xq G 27 and 0 <  c' <  c, satisfying

, l £ i < r n ,
« ( «  ) ( £ < * ) )
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O bserve that, as ê, =  ê0 on Û\G, ÿ ( ( )  =  ^(0) on the same open set. Next we

choose JRn vectors um+ i ( x , t ) , . . .  ,vn(x,t)  that form an orthonormal frame orthog­
onal t o  the subbundle V  o f  Ü  X ( — € ,« )  X 2R" with fibre s p a n {v i(x ,f) , . . .  , o m(x ,i) }  
at the point (x,£). We can also assume that t>a(x,<) =  va (x ,0 ) , Vx G 0\O*, re­

placing, if necessary, w «(x ,t) by ua(x ,0 (x )t ) with 0 : M  ->  [0,1] a smdoth function, 
such that 0(x) =  1 on G  and 0 (x) = 0  on  A/\&', where C  is some com pact set 
such that C  C &  C C  C  D . Then, the map

where A  : 0  X (—e ,e ) —» S O (n )  is given by v l(x ,l)(t ;il(x ,t ) )  =  xAt satisfies 
K ( x , t )  =  K ( x ,0), Vx G U\G'. Let 1 : U  x  (—€,«) —► G  by defined by  e (r ,( )  =  
e (x , t ) K (x , t). For each I, i ,  is a first-order frame along / „  identical to  20 on U \C . 
Let ^ (t )  =  with com ponents and be as in Eq. (1.46) relative to the

where Ya(x ,t )  =  ~K h,(x tO  are the components o f Y .  Note that, on 0\CP, 
since i t =  Z0. Hence, for all 1, K(x,t )  =  K(x,  0) on 0\G '. Let 

e : & x  ( —c,c ) - »  G  be defined by e (x ,t )  =  e(x,£)2v(x,£). Then, as in Sec. 1.2.0,

( 2 . 2 1 ) .  W e T W  tMi»«j the l o n ^ t o M I  #} 8 MIC unayattame t W  I** 1« (I-tl) M

For a  map t : U x  ( —«, f )  —» G  in the conditions (2.21), we define the (^-valued 
1-form on  U  x  (—€,«) given by

with com ponents 41 satisfying the relations in Eq. (1.16) and the structure equa­
tions (1 .18). For each t G ( —« ,« ), let 4 (0  denote the ^-valued 1-form on  U

1 0 0
K ( x , t ) -  0 A (x ,t ) 0 ,

0 0 1

frame Let K  : Û  x  ( —£ ,c) —► G0 be a smooth map given by

u u
0 0 0 0

e, : Û  —► G  is a second-order G-frame along / ,  and satisfies et =  e0 on Û\G'. If 
we now set U  =  Û and c* =  ê, then e : U  x  ( —e\ e*) —» G  satisfies the conditions

4  =  e*# s  « ‘ ‘ de ( 2.22)

HO  =  < # (2.23)



on U. Then,

4 * 1  =  * ( 0 -  +  X(x, t)dt (2.24)

with the meaning ¿ ( , „ ( « , 5 )  =  ¿ ( l ) , ( u )  +  hX (x ,l), V* €  T ,M , h €  ZR, where 
X : 1/ x (—€,«) —♦ is a smooth function with com ponents Xj. Thus, X (x ,l )  =

*•«(»)(&*(*>*))• From  the first property in Eq. (2.21), we have § ¡e (i , t )  =  0, Vl G 
( —e, e), x  G U\G', w hich implies

XI (* ,« ) =  0  and , VI €  ( - « ,  c), *  €  U\l7  . (2.25)

As for each I, e, is a  second-order frame, ^J(f) =  0. Thus, i f  we set A£ =  Xq , we 
have

« 1 « )  = a ;(* .«M < . (2.26)

with

a ;  (* , ! )  =  o , v i  € ( - « , « ) ,  * e u \ c r .  (2.27)

S in t. * ?(< ), =  * , * ( * , wi th * ; ( * , ( )  =  0 ,* ; ( * ,< )  =  * ; ( » , ( ) ,  « d

^ ( x , l )  = * • (* ,  0) , VI £  ( - « ,  <), i  e  U \ 0  , (2.28)

we get

< W ) =  * J ( M ) * ( < ) . +  * ? < « .« )*  (2.2»)

-  * :> (* .* )(■ « ,« , -  A i ( . , i ) d i ) + j - ( « . o * .

This expression can be written in the form

« V , ,  =  +  A ? ( « , l ) *  ,  (2.30)

where A® : U  x  (—c, e) —* JR is a sm ooth map satisfying

A f (* , l )  =  0 , VI €  ( - « , « ) ,  x  €  lf\ C # . (2.31)

Differentiating Eq. (2 .26) and using the structure equations (1.18) and Eqs. (2.30), 
(2.26), we obtain

d x ;* d t  -  - « A ^ - t f  A ^ - ^ A ^ S

-  -AJA A *¡¡ -  A *¿ -  Af* A *¿ -  A}#; A <u 

= <A;*! + A ,V i-A '* ;)A dl.
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B y Cartan’s Lemma,

d\$ =  A »*°  +  A?*!, -  \ U ap +  f ° d t  . (2.32)

As A{J,A® have support in C  x  (—e ,c),

/i " (x , l )  =  0  , Vt €  ( - « , « ) ,  *  €  lf\C* . (2.33)

Analogously, by differentiating E q . (2.30) and using the linear independence of 

we obtain

where h*jk and A*- are smooth functions on U  X ( —c, c) with the sym m etry prop­

erties kfjk =  h?kj  =  Afj =  A®, (compare with Eqs. (1.54), (1.56) for a  fixed t), 
and

*&»<*, 0  =  * ; » ( * . » )  , A " ( * , l )  =  0 , v< e  ( - « ,< ) ,  * e U \ 0 ‘  . (2.36)

Multiplying both sides o f Eq. (2 .34) by kfj and summing over * , / ,  we get

where K t is a map on U C\U with values in <?,. Obviously, K  : UC\U x  ( —c,e ) —* 
G i, (x ,i)  —* Jf|(x), is smooth. From  the equalities =  e~lde and e (x ,f )  =  
e (x ,t )K (x , t ) ,  we obtain <j> =  e~ ld i  =  K ~ l+ K  +  K ~ ld K . Writing K  as in Eq. 
(1.70), with now r ,X ,A ,B  maps o f  the variables (x ,t ) ,  we derive from  the latter 
equation the transformation laws

-  * * > ? + + K j + i + m : = ( 2.34) 

¿ a? -  a ; * ?  -  a; * ?  +  A ? « ;  +  A j*5 * ^ {  =  A , > ; +  , (2 .35)

W l = r - ‘ t 7 [* i]  with C = [ ¡ J  °  ]  .

Hence,
%  =  r - U J # ,
¿S =  A 'JI =  r 'B J A ;  J1 , (2.38)

which implies the transformations

AÍ  =  r- , A^Ai 
X ! =  r - 'B J A ; .

(2-30)
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Furthermore, comparing with Eq. (1.29), we ob ta in

where Z

whence

W ]  =  t 'W J 'z c  +  -  b z ‘ M \ o + b d o ,

=  | j .  So, in partie alar,

i° -  *,">o +  K i ‘ =  B it’ XjA’ +  B’.^ A ’
=  x > B ix ,A \ n  +  n ;A H h % r i  +  a’ u )

=  B t W Ï A  +  ( * J * W  +  \ ’ B iA iX j)d t ,

¡.• =  \’ b ; a : + \ > b ; a ; x j . (j .«o)

As a final remark on maps e with the property (2 .21), we observe that, given a 
point *o G A /, one can always find a variation (/r )te (—»,«) o f /  with com pact support 
G  contained in a domain D , such that x 0 lies in  th e  interior o f  G % and a map e 
satisfying the conditions (2.21) with arbitrary A J (-,0 ) as long as suppA£(-,0) C 
G' n  U. For example, assuming that, near the poin t *0, /  is o f the form  f ( x )  =

, we take the variation f t(x ) — p {x )  +  (A(x) 
l M * )  +  tA(x)||*

, where A(x) is

an arbitrary ¿2 "-valued function with support G . I f  we choose the~section > given 
in Eq. (1.19), the map e as constructed above satisfies Aq(x , 0) =  0o(»,o) ( !» )  — 
A f (* ,0 )d (p « ( * )  +  tAB(x ) ) (a0)( ^ )  =  A f (x ,0 )A B (x ) ,  where A ^ (-,0 ) on ly  depends

. . .  iMwr
on / ,  which can take any arbitrary value. I f  /  w ere o f the form  p(x)

1
we would arrive at the same conclusion by taking this time the section s o f Eq.
(1.20).

P ro p o s it io n  2 .1  Let f  : M m —* S n be an im m ersion o f an oriented m  -manifold 
into the Môbiu» tpaee. Then, toe have:

For m =  2, f  is a Willtnore immerved turf ace, iff [B r/84] (Ri/87]

Pjj =  0  , Vo =  3 , . . . , »  .

For m  =  4, /  i t  a Willmore im m ened 4-tubmanifold, iff

(3p*j + + 2 + 12?:*!*;, = o, V o = s,. . . ,» .
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I f m  =  3 or m =  5 with the attumption that trace}/» ^  0, V * £  A /, i .i . /  Aa« 
no timbilic pointi, or m  >  5 without any non-degeneracy condition, then f  it  a 
Willmore immerted in-submanifold, iff

-  l)p jy +  A;yA j* f» )+
+  (m  -  2 )(tra c .M )‘ i ^(k?j H,J +  2(m  -  l)y f
+  (m  -  2)(m  -  4 )( lr a « ,V ) 1 k -jk ^ k^ jk ^ k -,. =  0 ,  V o  =  m +  X........n

where the quantities k?j, * 5 » , p” , P?y, B,J, and tract»  =  AXyy or« a« defined re- 
spectitely in Eqs. (1.46,1.47), (1.54,1.55), (1.56), (1 .60,1.61), (1.66,1.68), and 
(1.87), relatite to a second-order G-frame field  « : M  —* G  o f  TV : G  —► S" along 
f .  N ote that the abose equations are conformally ins art ant, tha t it , they do not 
depend on the choice o f tecond-order frame.

Proof. Let v : ITx (—«, e) —* S n be a smooth variation o f /  through immersions and 

with com pact support G  C  D . Let x0 G D  and e : U X ( —c/, e') —► G' be a map in the 
conditions (2.21), with U  a neighbourhood o f x 0 in TT. Then, Vt €  ( —i/ ,c /), x G U, 
we have

Although Q is only defined on U x  (—e/,e#) and depends on  e, its restriction 
=  f i /, (x ) is a well-defined global m-form on all 2?. L et ♦  be the in­

form on U X (—f*,^ ) defined as

^  =  0 - d < A ( « ^ n )  .

Then, =  0. Thus, ♦ (,,,) =  ♦(*,«) \TtM =  0 /,(x ) .  So, ^  is a well-defined global 
m -form on M  x  (—t ,e )  and we have

A ...A ^ S * (C )« .

Let O be the m -form  on U  x  ( —«*, e') given by

Since L  =  t o  d +  d o  *, we get

L ^'if =  t^d'if +  dtp'll =  tad'll .
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On U x  ( —i*,«),

L .  ♦  =  .¿ (< * n  +  dt A ¿ ( . / f n ) )  =  1 * ^ 0  +  d ( . .  n ) ( i )

and

= ~  i m( $3(^0')*) ~ A 4>\ A ... A + ( $Z(^0')*) **(̂ o A . • • A
V i'j>

Henceforth, we will use the notations

*1" m = i'„ A. . .  A i "

(2.41)

Using the structure equations (1.18) and Eqs. (2.26),(2.30), we have

-  ( - lr 'I -A S  A ^ - « A ^ ‘ - ^ A  « )  A 4L-)- ”
= A ¿ Lm + ( - l )V j A «  A 
= m̂ S A + ( - l )> ‘ (k;t*5 + A*it) A A?* A 
= m*° A •- + (-lH -‘AH % 4l A it A

=  m i’  A 4 L"”  •

From Eq. (2.37), we obtain

(  £ (* .•  ) ’ ) ' f l A i<iA iA*1"""  =  - (  E  (A?,)’ )  i *SA<i, m+ (  E (A .” ) * ) ' i , * ;A ; . i l A ^ -
ij,a ij>

Hence,

<m = ( E ( * r j ) ’ ) * f l * : A ; * A * L-

Thus,

■j>
and
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=  i (  £(*&)•) T'* ( (^ ( ‘ ) + Aji«) A ... A («■(!) + A” ««))

=  E  <*.')’ ) T-A { E  «5(0 A ... A «*-‘ (1) A A}* A *‘ «(«) A... A «■

=  ¿ (  E ( * 5 ) * ) T ( - D ‘

Consequently,

J(‘ A° ) I « = J ( ¿ ( E  (*;)■) t(-»)‘ - ,a.v - * - )

and

■a ^ U  =  (  E ( * y , ) ' f l w  -
ij>

where now (=  (i =  0 )) and are forms on U  only, as defined

in Eq. (2.41) with h j  relative to the second-order G'-frame e0 : U  —* G  o f  II 
along /  =  / „ ,  and where A, and A* are considered as functions only o f the variable 
*  6  U , fixing 1 =  0. Thus, we have obtained

¿ A  =  ( E  (*?>)*)■f l A i A > ,-  +

+  -i ( ¿ (  E  (**>)’ )  Î ( - 1) * - ,A ^ 1" * ’"  j  . (2.42)

Next we rewrite the relations given in Eqs. (2.32,2.35,2.27,2.31) among the A j, 

A“ , and A,“  in terms o f functions o f the variable *  €  U only, thereby fixing t =  0, 
which yields

iX% =  A ;*»  +  A ? r t - A ^ ;  (2.43)

ix r  =  A S ^ + A J ^ - A f ^ - A 'A J A ^ J  +  A « ^ } ,  (2.44)

where AJ>, A®, and A,“ have support in GT\U  C D , and with # ,  h“j  relative to  the 
second-order G'-frame e0 along / .  Now we evaluate the expression

(  E (* r y ) ’ ) * f l * i Ai * 1" "  •ij>

For the sake o f notational simplicity, we define

(2.45)
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From Eq. (1.54), we have, for positive integer r  ^  1 (unless ||A|| ^  0),

w  =  H iA ir >A i </h i  =  r | | h i r * ( - i i h n v g + A i ^ )  n s n

Using the structure equations (1.48), we obtain

m =  (m  -  1)^2 A 4h > —  +  ( - 1 ) * +V f  A . '  (2.48)

Starting from  Eq. (2.44), we get, for » , /  fixed,

k , * ' -  =  ( - i r ,A r / » A * ,- i - -

-  -  a ;* *  +  a ? * j  - a ; * ?  +  A 'A " ,A '* ' )  A * ■ - > - - .

So,

(2.46) =  | * | -> * 5 A 5 ^ —  =

=  ( - » ) >_,ii*ii— **5«*Ar A
+  ( - i ) J||A|r, A” A ; ^ A * ' - J - ’"

+ ( - l r ' i i A r - A j A ^  a

+  (-i)>||A|r-, A ; A ; ^ A * ,-J ~ "

+ i* r - ,*r/*r»A{Ai>‘“"

=  »*( ( -  »H-1 * * ir -* A r * 5 ^ * -^ -~ )

+  ( - i Ha- a* < | a | - * ) a * ' - J - "

+ (-lH|Ar-A*WA*Alt,-J-  
+  (-i)A||A|r-, A ? * ; ^ L J~”

+ (-lHl*|—,*5Ai^A*‘-J—
+ ( - > y _ i * r - , * 5 A f ^  a

+ i * i - ,*5*r»AiA{>,"j" .

Using Eqs. (2.47), (1.64), (1.67), (2.48), and (1.60), and assuming m ^  3 unless 
11*11 #  0, we get

(2.46) =
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+  (- iH * 5 A r (m  -  2)||*||— *( -  M V S  +  * ! * ! » < )  A  h ' - 1- "

+( - m i n « * w +*wî -  <rf -  k-,+1 -  tu,»;+Kj.*íí a ♦■-j-
+ -  l)rt A * ‘~¡—

+ ( - « ) , i * « " - , Ai* * r i ( - i ) ‘ tv î  a

+ (-l), |A|r-**5Aí^f A^ 1

+(-iy-*i*i— a *«-*-
+ ( - í v i i A i r  'A j v , -  -  + 1 , - * ¡  -  p‘ * i )  a

+ (-iy-'(m  -  w r - ’AjAvs a * • -* -

-(«.-2)1*1— **&*r*s ‘ V ”"
+ ( -» y i* r - ,v * w f  a ^ -  

+ (-iyu *ir^ r*r^ ; a
+ ( - í r ' i i A i r ’ A f A 'v ;  a  * * -> -»

+ <-»>,- iA ir - ,A?*fy*8 A 
+ «A»’ -'‘h}r}*‘—
-  ||A |r-*A f*;v ‘ - ”

+ (-iy  <m -  l)|A r *A*A*V! A

+ <-i )*m - - ,a.*a;v ;  a
+  ( - i y « A | r - , A ; A ; ^ A * 1- i - ”

+(-iy-,n*ir-,*r>A?̂  a **->—
+ ( - iy iA r - ,A;^-A#‘- J -  

+  ( - i y - , l|Air-*A;p1v ; A ^ , ' î - ”

+  ¡ - i y n K \ r - ' \ ; , i * ;  A

+ 11* 11— * A ó*r .* í* ;/ * ‘ — .
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In the latter expression, we have several simple cancellations, b y  permuting indices 
when necessary and using the symmetry properties of the coefficients and forms 
involved. By applying also Eq. (1.56), we obtain

(2.4S) =

-  (m  -

+ (l-m)|A||— 1

- K - i y p r - ' A j i j ^ A ^

+  (- iH 2 | | A r -, A ; , ; ^ A * ,- J- ”

+ #*«—’ a; ^ 1- “

=  ¿ ( ( - l r ' i i A i i — A f A j ^ J - ” )

- ( m - 2 ) | | A | r - X A f A l A l > ,- n
+  ( l -m )| | A | r -* A > ^ '- ”

+  W((-1H||A||— a ; , ; * ‘-J— )

+  ( - ‘ r , i i * r '- * p J* " . " A * ,- j - 'm

+  ( - iy - ',;A ;« /(| | A | r -* )  A «>-')•••"

+ ( - i H - f j A i i A r - ^ ^ J - )

+ (-iH -,|A|r-*A;Jpf^A*‘-J -- 
+ (-ICIIAH—’ a; ^ j a 
+  ( - iF 2 | | A | p -^ ;,;* °  a  

+  IIA ir-’ A ; , ; ^ 1—

+ i*r-’*rj*r.Aj*iJ+‘-’ .
Using again Eqs. (2.43), (2.47), and (2.48), we get

( 2 . « )  =  < i ( ( - i r , i A r - , A f * ; * 1- J- “ +

-  (m  -  2)|A|” - ‘ A ;A > 1 A 1 j ^ ‘ - "

+  ( l -m )| A | r -* A J ,;/•••”
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+ ( - i l ' - W - ’ tfA M  a
+  W — jW ~ "

+  ( - l ^ m  -  2)||A||— V “ AS«kS A ¿ ' - i —

+ (rn -  —

+ -  1)11*11— a t ' l - "

+ ( - i ^ —n * i r —^ A s ( - D ^ > f  a

+ (-1H—ll*ir-’ AoP" î a *,J - "

+ i i r - ’i.v;/*1-"
+ ii*r-*rA»^*VLj" ■

(2.46) =  r f ( ( - l ) J- , fl*||— —  +  (_1)/||A||—

+  ( 2 - m ) | | * r - >A » ' " ”

+  (m  -  2 ) ll* ir “ * ^ A ;* l* 3 tf̂ , - m

(2.49)

This expression will also serve for later use. 
second term o f  the r.h.s. as

A ?* ‘ —  =  ( - 1 ) —*Ar^4 A =  ( - 1 ) - 'A > ;  A (2.60)

and using Eq. (2.43), we derive

(2.46) =  4 ( ( - i r , i i * r ‘ ’ A :* * > ," i - " + ( - 1^ 1*11— * A f,;^ * -J — )

+  ( - l ) ' ( m  -  2 )J A | r - ‘ l J A lA ’ , ( lA ;  -  A?*" +  A ? * ;)  A 4 U ~m 

+  ( 2 - m)||A|r-, A » ‘ -  

+  (m -2)«A||— , 7 A ;A i A i ^ ‘ - "
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+ w r - A j p  

+ ( - i n m  -  2 ) « * r

+ ( - l ) - (m  -  2)||*|r-*A“ * l* lJA ;^ A 
+ (-l)'(m  -  2)11*1— **5,*1*1,A?*? A 
+  ( 2 - « ) | | * r - « A > * 4 ‘ - ”

+  (m -2 )| | A | r ‘ p“ A ;A i A i^ '~ "

+ l|Air-*A;i>-V—

=  4 « - i ) > - , | A ir - i ArA*4,- )- j"  +  ( - l y i A r - ’ A ; , ; / ^ - - )

+ 4((-l)'(m -  2)||A|r̂ A- Ai*lJA; A *■-*-)
+ (—i)i-1(m -  2)||*|—x a ;^ * !* ; , )  a
+ ( - l ) - (m  -  2)|A|r-‘ AJAlAiJ4A:j A
+ -  2)a; aiaija*^(da||— -) a
+  -  2)||A|r-*A;AiAlJA?J^ 1~i--

+ ( - l j '- lm  -  2)||A|r-A" AiAlJA;«» A 
+ (-l)'(m  -  2)|A|-‘ A* AlA2tJA{*; A 
+  (2-m)||A|r'1A » 1- ”
+  (m -2 )| | A | r -V ;A ;A lA l> 1- "

+ iAir-’A w a 1—
+ i * r - ,*:i*r»A:A{A‘- "  •

From Eqs. (1 .62), (1.54), and (2.47), and assuming m  ^  5 (unless ||A|| ^  0 every­
where), we obtain

(2.46) =

<*( ( - » y - 1 ii a  ir -* A r  *  -  +  ( - l y i A r - ' A ^ v - ' » - "

+  ( - l ) ' ( m - 2 ) | A | r - ‘ Arj A lA lJA ;* ‘ - i— )

+ ( - l ) '- ,(m-2)||AH— AJA;( -  SAIAI^J -  ||A||VJ + + « / , « )  A ^ -'-~
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+ ( - l ) ' - | (m-2)||*B"-‘A ;* l* J /* ;y+f +  *M } -  * ' «  -  fc">s -  +
+  * 0 * * * )  A * ■ -* -"

+(-l)'*,(«-aW«*i*5( -  ("•-4)l|A|r-VS + (m-4)||A|r-»*̂ *̂ {) A 

+(-l)'-,(m-2)AJ*l*2u*;.||*r-*((m-lWA*I-i-  + (-ir*^A*1-A-) 
+(“ !)'■1 (m-Î)|A||m_,A;*lAlJ*J*5 A

—(m—2)||A |r-, A“p“^,'"m 
+ (m -2 )||A ||--* ,J A ;A l*^ ‘-"
+ l* | — ’ AJp*/*1- ”

+ i iA ir - ‘ A ,'*r.A îA jJ* 1- “ .

(2.4S) =

=  4 ( ( - i r , u A i r -A -A :> ,- J - + ( - i x ia h — *a : » j ^ > - -

+  ( - l ) ' ( m  -  2)||A|r-A*JA lA lJA0V - ' - " )

+  (-l)'a(m -  2)|A|— ‘ AJAfA lA ’ ^ »  A 

+  (-i)'(m  -  2)||A|r-*A"yAs>5 A 

+  ( - i ) ' - ( m  -  2)||A|r-'A* A ;A ;A l ,^  A 

+  (m  — 2)||AJ|m-4A(* AJÄ’ji^ 1- ' "

+  ( - l ) - ‘ (m  -  2)|A|— « A J A IA ^ A Î ^  A 

+  ( - I ) ' " ‘ (m  -  2)||A|r-*AÎAlA3uAr^î A

+  (-i)'(m  -  2)||A||"-‘a; ajai>a?j> ; a 
+  ( - i ) ' ( m  -  2)||a||—*a; aia5>aj> j A *■•••'-" 

- ( m - 2 ) | |A |r - ‘A;AlAiJp“*‘-"
+  (m -  2) IIA||— ‘ ASAlAlJA - > 1-”

+  ( - l ) ' ( m  — 2)(m  — « ( K A i r ^ A J A i A i ^ ;  A * ‘" î—

+  (m  -  2 )(m  -  4)|A|— A ÎA IA I .A -A ^ A ^ * 1—

+ M ) ' - V  -  !)("• -  2)||*||—*a; a1a ïja;>S a  +'~¡—  

+  ( —l)*- , (m -  2 )| A r -A Î A lA ^ A r > f  A * l~ ‘ -

+  ( - l ) ‘ - ‘ (m  -  2)||A|r"-‘ A0"A¿A¿JA“ ^  A
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+ (-l) '(m  -  2)H*||— A

+  ( . n - 2 ) i i * r - v ^ : * i * i , v - "

+  |A |" - , A<>W{Aj>‘“”  .
This expression can be further simplified, by taking also into acount definition 
(1.56), so as to  yield

(2.45) =

=  +  < - im A | p - ’ A ;PjV " J ~ "

+ (-l) '(m  -  2)|*|—
+ (-l) '(m  -  2)11*11“ -**“ A
+  (m -2 )| | * i r -<* " A ; i f J1> 1 ”

+  m(m -  i ) | A | - ‘A i* l* J „ > ,~"
+  (m  -  2 )(m  -  4)| * | " - , a ; * i * j j* ; / a; . a; - * 1- "

+  ( 2 - m ) | | * r - 1A » > - “ '

h- M - a » 1- "

+  l|A«” - , *r>ASK»{*{^L-“  . (2.51)

Now we compute separately the term ( 2 -  m)||h||m-* p “ A ^ L"m. Using Eqs. (2.50), 
(2 .43), (1.60), (2.47), and (2.48), we have

I*| — v r A * * 1 — =  ( - i ) - — n * ir  *P“ ( jA S -  a ; * » + x>r,) *

=  ( - i ) ‘- ‘|A |— p*4a;
+  ( - i ) , l ! * i r V A ; * ;  *

+ ( - i ) ' - ‘i * r - v r A { «  *
=  4 ( ( - l ) ‘ - | | A | r - ,? A i* ‘ - J- )

t w i i r A j + f A ^
+ ( - i ),a;,-4 (| a|— * )a * ' - ' -

+ ( - i ) ,A ; p r « * i r - '^ , - ;- ”
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+ (-l)'ll*ll— V'AJK A —
+ ( - i ) ‘-l*||— V a{*j a

+ ( - i ) ,ll'‘ i r ’A;rf^A«>-; -”
+ a

+ ( - 1 ) - ‘2||A||— A

+ ( - l ) '- (m  -  J)|*|— A ;,,> s A

+ ( - i ) ,' i * i r - W A { « A * i-J—

+  (- l) '| | A | r -> A ;A i,^ A * ‘“ !- "

-  ||A||— *ASp -^*-—•

-  (m  -  a )I*| — * A ; , - * i * !,>■— .

Returning to Eq. (2.51) and substituting the latter expression, we get

(2.45) =

=  <*((-»)> -■ iiA ir-*A r*5^ ,-J -— + ( - iH i iA ir - , A ;Pjv - i - ’

+ (-l)'(m  -  2)11*11"-**
+  ( - i ) ' ( m  -  2 ) i i * i r - v - » ; ( » , - ’~” )

+ (-l)'(m -  2)||*r-,*5*i+5 A
+  (m-2)||A| |”— A J A ;a > # ,~” ’

+  m (m  -  2)1*11”— A ^ l A i , . , - * 1" 1"

+  (m  — 2) (m -  4)|*|”— A ; * ! * ^ * ; * ^ * ^ * 1- -
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+  ( - l ) ' ( a  -  m )| | * r - * A i* t «  A * 1" ' —

+  < »  -  2)|Wr— A M « ' -  "

+  (n , -  S), ||Ar— A . V A l A l * 1- -

+  H A i r ' A ; ^ 1- "

+  ( - i ) ' ( m  -  2 ) i * r - ‘ * r > * i* ^ A ,v - î—

+  ( - l ) f(.n  -  2)||A|r V A „” »i,” i ' - " )

+ > : ( ( - » - i ) i i A | - y *

+  (m -  2)JAy— ‘AJIT«,

+  2 ( m - l ) ( „ , - 2 ) | | A | r - V A l A l ,

+  (m -  2)(m -  4)|A|— • A r jA lA ^ A ^

+  | A r ‘ , A ^ * X  ) * * " “ •

Thus, on U ,

=  • ' ( ¿ ( - i ) * - ' i i A i r A , v - * " " ) +

+  ■ '((- l)J“ , ||A|r', (A >* -  X;r j) + '- J -m)

+  -  2 )H A r- ‘ A *A lA lJA ;* ,- ,- ,>

+  (- l) '(m  -  2)|A||"-,, * A ;* 1-'’“” )

+  A j((n, - l) | A | r - V j

+  ( m - 2 ) | A | - ‘ * ; ^

+  2 ( m - l ) ( m - 2 ) | A | - V * i * l ,

+  (m -  *)(»■ -  4 )l| A | r-*A "A i* iJA ;„A ;„

+ i i A i r - X A j . * i

If tn =  2, this equation reduces to

¿ a *  I , . .  =  - ' ( i ( - i r , iiA irA0v * - " )  +

+  < '( ( - iH '1f l * i r  *(A*A- -  a; , ; ) * ‘-J~-)

+  a ,

(2.52)
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since in this case, for each a , hkjhjjhfk =  0 as a consequence o f h“- =  0.
If m =  4, Eq. (2.52) takes the form

H * L .  =  < ' ( ^ ( - ‘ ) ‘ i i * i r > . v ‘ " )  +

+ + ll*|V)*L-!— )
+ a ;(3||*i i v , + a * ; * / + +  i h i ' k a ' O * 1-" "  •

I f m =  3 or m =  5, Eq. (2.52) on ly  holds at the points where ||A|| ^  0, that is, 
outside o f the set o f umbilic points.

Using now the transformation law s (2.39) and (2.40) for the A&, AJ, A? under a 
change o f map t : M  x  (—i,e ) —* O  in  the conditions (2.21), and the transformation 
laws for second-order G’-frames along /  given in Sec. 1.2.G, we can easily verify 
that the local forms

A ;(< m  -  i ) I * r - V 8  +  ( > » -  2 )« A | | --A ;jr „ +
+  2(m -  l)(m  -  2)||A||—
+  2)(-n -  A)||A||— Ai  A lA iJA ;.A ^ ) ,

(2.53)

« « A r - ’ A^AjAf.*1- "  , (254)

( - l ) * - , ||A|rAsV - ‘ - "  , (2.66)

( -1 ) -| * H — *(a; a5 -  a; , ? )*■ -’— , (2.58)

[-!)■(•» -  2)d|A|r-‘ A ;A5AlAlj +  ||A||— A.*,*)♦*-’—  , (2-57)

a; ( i * i — vr. +  <»■ -  2 ) i i A i r - v A i * i .> , ’"+
-  (m -  2)Af(|A|— V  +  ||A |r-*A-AiAi> ‘" '" (2.58)

are well-defined global forms on all 27 (if m — 3 or m  =  5, only away from  the 
umbilic points).
Hence, Eq. (2.52) is o f the form

L t * \ — = d< + *

with (, and 0 a globally well-defined (m — 1)- resp. m-form . Moreover, c has com ­
pact support in C' C D , just as AJ, AJ,, and A ? . Therefore, integrating |,_0
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over D  and applying Stokes' theorem, we obtain

£ * » ( / . ) L .  =  / / ; (  (rn -  1)U*II— *I>S +  (m  -  2)||*|p-‘ * ; f r ,y

+  ( > " -  2)(>" -

Since Ag may be any smooth function with com pact support C' C D , we conclude 
that /  is a critical point o f iff Va

(.» -  1)«*1—VS + (rn -  2)||*||""*A;*,+
+  2(m - l ) ( , n -2)||*||-*p**l*l,+
+  (m  -  2)(m  -  4)|*H— • * ; * i * i J* ^ * ^ ,+
+ i * r - * * t * 5 * i  =  »•

This Euler-Lagrange equation is conformally invariant, i.e. the vanishing of the 
l.h.s. does not depend on the choice o f second-order G-frame field along / .  Ç?

2.3 The Conformal Gauss M ap
In Riemannian geometry, there exist well-known relations between the mean cur­

vature of immersed submanifolds o f the Euclidean space and the tension field of 
their respective Gauss maps, as e.g. the result o f  Ruh and Vilms quoted in Gh. 
0 o f Part I, or the somewhat more elaborate result for immersed surfaces due to 

Hoffman and Osserman [Ho-Os/82]. Something sim ilar can be done for immersed 
m-submanifolds /  : M m -* S n o f  the Mobius space. In Ref. |Br/84], Bryant de­
fined a (hyperbolic) conformal Gauss map for immersions /  : M * —* S 9 as a map 
7 / : A /*  —* Q, with Q the hyperboloid o f 2R‘

Q =  { x e l R t : < * , * > = 1 } ,

given by 'tf(x) — e*(x), where e : M  —* G  is an arbitrary second-order G-frame 
along / ,  defined on a neighbourhood o f the point x . From the transformation 
law (1.71), we see that -jy is well-defined. In Ref. [R i/87], Rigoli extended the 
above definition to the case o f an immersion /  : A /m —* 5 " ,  for any m  <  n, 
as follows. Let G *_m(JR"+*) denote the Grassmannian manifold o f  the n — m 
planes o f JR" +*. F ix <D =  span{ifm+l, . . . ,  q „ }  as the origin o f G ,_ m(2R"+*). Note 

that <D =  sp a n {P (e „+i), . . . , P ( s „ ) } ,  for some P  €  G , where s0, s i , . . . , s . , s . + i  is 
the canonic basis o f jR "+*. Then, G  acts on the left on Gn. m(JRm+i)  by matrix
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multiplication. The conformal Gra$$mannian is the open orbit of
the origin, reading

=  G(<D) =  {sp a n {P (W l ) , . . . , P ( ^ ) }  : P  €  G )  ,

which is a submanifold o f G „_ m(JR"+*). The group G  acts transitively on £ * - '» ( ‘£2"**) 
and the isotropic subgroup of G  at d> is given by

Observe that X , Y, Z , W  and a, b, c, d cannot be chosen arbitrarily, bu t must satisfy 

the relations

which can be obtained from  the closure of H o  w .r.t. matrix inversion.
Thus, O w_m(lR"+*) can be identified with the homogeneous space G /Ho with 
canonic projection A  : G  -*  given by f t (P )  =  span{P(iym+, P ( « | « ) } .
T h e conformal Grassmannian £ „_ ,„ (  J?*+>) has dimension (n —m )(m  +  2) and car­
ries a pseudo-metric with signature ( — . .  ■ —, +  . . .  +  ) given by

where c : (2Rn+1) —* G  is a local section o f the principal bundle ft : G  —»

G / H o at £ B_m(2R"+ l) and are the components o f the Maurer-Cartan form $  
o f  G . Denoting 0°’“  =  c*${>, ordering the pairs (o ,0 ) ,
(a , » ) ,  (0 ,a ), as

and representing by the symbols A, B , . . .  the (m + 2 )(n —m ) indices (or, 0), (0 ,o ), (or,»'), 

one can write dt1 as

0 0 B  0
c W  0 d

a 'Z 0 b
X  A  0 Y €  G  : A  e  S O (m ), B  €  S O (n  -  m ) (2.59)

a ,b ,c ,d  €  JR

-a W  +  'AX -  cZ  =  0 
-d Z  +  'AY - b W  =  0 
d X - A W +  cY  =  0 
aY -  A Z  +  b X  =  0

(jy =  o v z  =  o) a  (x  =  o v y  =  o)

(2.60)

(m + l)(ii-m )

a '  =  - v * S  ®  c’ * ;  -  <•*; ®  t * * ;  +  ç ' v .  ® (2.61)

(1 ,0 ) <  (A O  <  (0 ,o )  , Vo, 0 ,1 ,  i 
(0, P) < (o,a) <=> p >  a 
( A / )  <  (< ',') < =» (9 <  a  V (0  =  a  A /  <  i) 
(/?, 0) <  (o , 0) <=> /? <  a  ,
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with

0 0 ( / •  )1 )
0 I 0 }

( 0 0 1V - J
m(n— m) n—m

The Levi-Givi ta  form s w| 
given by

with respect to  the non-orthonorm&l co-fram e is

=  - w  j  A * *
( 212 )

From  these equations and the structure equations (1.18), one obtains the relations

« ; ;  =  <•<*?• ! + * ? )  . * # « « ; < • • ?  . “ i i = ®  (2 631

The conformal Gauss map 7 / o f an immersion /  : M m —» S "  is then given by

7 / :  A /m — * (2.64)
*  — span{em+1 ( * ) , . . . , e „ (* ) }  ,

where t  — [eo,e,, « a , e-+ i] : M  —* G  is sl second-order G'-frame field o f  II : G  —► 5 "  
along /  defined in a  neighbourhood o f x . From the transformation law (1.71), we 
see that this m ap is well-defined. W hen m — n — 1, fli( lR "+*) can be identified 
with the projectivisation of the 1-fold hyperboloid Q =  { *  €  2R"+* : <  x , x  > =  1} 

supplied with the Lorentz inner product induced by the one o f JRn+i, still to be 
denoted by dt*. In this case it is more practical to  use the hyperbolic conformal 
G auit map, still t o  be denoted as 7 /, given by

7 / :  M *~ l — * Q (2.65)
*  — «• ,

which generalises th e  conformal Gauss map for immersed surfaces in 5 *  used by 
Bryant. Rigoli [R i/87 ) proved, in the general case, that

7/¿t* =  N  (2.66)

with N  defined in E q . (1.88), obtaining the following proposition:
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P ro p o s it io n  ( B r y a n t ,R ig o l i )  Let f  : M m —* S n be an immertion o f an m-man- 
ifold M  endowed with the induced conformal »tructure. Then, for x  €  M , d'tf(x) 
i t  not injective, iff M (x) i t  a degenerate tgmmetric bilinear map. Let c('jy) be the 
te t o f  point» x  in thete condition». In the cate m =  2, M =  | (trace J4)g (tee Eqt. 
(1.4S), (1-89) fo r  notation»), whence c(7 /) i t  the »et o f umbilic point» o f f .  In 
the general cate, outtide c(y/), 7 / induce» a positive definite metric on M  that 

belong» to the conformal clots o f  M \ c(7 /), iff M doe» »0. This is always the cate, 
when m =  2.

Another variational problem , mentioned in Ref. [R i/87], is the one associated 
with the functional

with 25 a compact dom ain o f  A f, applied to maps p  : 25 —► with the
property (only for m o d d ) tracc(p*dt2) >  0, and where the trace and dV  are taken 
relative to any metric belonging to  the conformal class o f M . We remark that, 
obviously, definition (2.67) can be generalised to  any map p : Tf —► fi»_ m(2R"+>).

energy functional. T he functional 17 is well-defined: given two second-order en­
frames along / ,  say e ,e  : A I  —► G , from the transformation laws (1.72) and (1.82) 
we have

Thus, from  Eq. (2.66), one has "W( / )  =  9 ( 7 / ) .  Rigoli calculated, in the case 2 =  

m <  n, the Eulei^Lagrange equation for the functional if (p) when p  =  7 /  (see also 
Remark 2.1 below). Here we are going to discuss the case where /  : M  —► S* is an 
immersion o f  a hypersurface into the Mobius space, i.e. m =  n —1. For convenience, 
we consider, in this case, the functional (2.67) to  act on maps p  : 25 —* Q satisfying 

(only for m odd) trace (p*dtl ) >  0, where now dt* denotes the induced Lorentz 
inner product o f jfi. O ne can easily derive the Euler-Lagrange equation o f this 
functional, obtaining (for m  /  3) (see Appendix II)

(2.67)

replacing (trace(p% ff*))*  by |trace(p*df*)|*. Moreover, for m  =  2, t}D(p) is the

JV =  (p 'Je’ & , & ) ) T dV  

=  (tn ict(p"d l’ ) ) f dV  ,

where É, and E t are the duals o f the co-frames resp.

trace:V ((tr* c  t(p ‘ d t ' ) ) m' Xdp) = ( 2.68)
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trace (trace(dp*d£*))"lr ld(trace(p*d£*)) ®  dp +  (trace^ d ^ *))***  V d p j =  0 ,

where M  is considered with one o f the m etrics out of its conformal class, £  with 
the induced Lorentz inner product dt1, and both  with the respective Levi-Civita 
connections. Let us suppose now that p  =  7 / : M  —* £  is the hyperbolic conformal 
Gauss map given in Eq. (2.65). Let x 0 €  h i  and let e : M  —* G  be a second-order 
frame field defined near x 0. Then, H/{x) =  « „ ( * )  near x0. From  Eq. (1.67), we 
have

d lj  =  de, =  p " ^ « 0 -  k fj+ t*  •

Therefore, as the components o f e satisfy E q . (1.23) (with «« replaced by e«), we 
get, for « ,  v €  T ,M ,

=  <  * » , ( ■ ) > * » , ( • )  >

=  « ) « .  ,

that is,

ii< u ’ = &  ®  a * t = M ,

which, l y  the way, also proves Eq. (2.66). Hence, considering AI  with the metric 

9 =  4 0 ®  4>0, we h«ve

t r a c f - , ;^ ’ ) =  U jj =  >  0 , (2.69)

and, in particular,

» .  (T/) =  ¿ / B ( t r a « h ; « ’ ) ) f  ¿ K  =  ^ =  WD( / )  .

Now we evaluate the Euler-Lagrange equation (2.68) for />=•>/. To that end we 
compute trace Vd^y, whereby considering A f  to  be supplied with the Levi-Civita 
connection V  corresponding to  the Riemannian metric g =  ®  ¿J, and £  with
the induced Lorentz metric df*. One can im m ediately conclude from  the structure 

equations (1.68) that this connection on M  is defined by the connections forms

•* =  **  +  #»**o -  M e  .

where The Levi-Civita connection on  £  satisfies ( =  d (X )(«M)( « )
— <  d (X )( ,„) (u ),e „  >  e„, where X  €  C °° (T Q ), u €  T ^ j f l ,  and, on the r.h.s., X
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is considered as a map from  £  to 2R"+*. Let E, denote the dual o f the co-frame 
#>• Then, Vi?,- =  v$Ek. Let V fi denote the pull-back connection  on yJ lT Q . We 
have Wdyf(Ei,E i) =  Vj**(¿7/(22 ,)) — d^f(VEiE {) .  From Eq. (1 .67 ), we get

de„ (E ,) =  p "e o -h J ,e *  

de0(E ,) =  p ,«o  +  «i

d*k(E i)  =  tf>l(E j)eo +  tfr’k(E i) e j  +  .

Then, by Eqs. (1.60), (1.54), and (1.56),

=  d i p l c - k l e ^ E * )

=  ¿ p :(J5,-)«o +  p ? * » ( 4 )  -  dhl,{E ,)ek -  K ld t k(E ,)

=  {Pk^i ~  2P ?K  +  K i t l  +  P ? M (E .)* o  +  p " (p , « o  +  « . )  +

-  ( K t f  +  -  6ikPW \  +  A r M ) ( 6 r ) « »  +

~  h ' M m ' o  +  d i(E ,)c j  +  hj,e„ +  ¿*,en + i )

=  ( - m  +  2)p"e, -  p,p*cQ +  p l+ f (E i )u  +  p " « o  +

~  hkjM (E i)ek +  /*,h,V* “  A*, A*,«n .

Hence,

and

Vs! (*#(*>)) -  (->n + J)r"«. -  m >"«. + rt*t(Bi)u  + 
+  pjl« o — (2?,)e* +  p,h"kek

*r/(vE,i5,) = j ' . ( v ? (E , )E t )  =  «i(£ ,)(,;e. -  a;,«,)
=  (♦ * (£ ,) +  » .> ; ( £ . )  -  s » ^ ( « f ) ) W € .  -  a; , « , )  

=  (+ * (a )  +  ( - « •  +  i)f*»)(r f«o  -  *■»«,)

=  s W f (a ) « o  +  ( - m  +  1 W J e ,  -  )« i  +  (m  -  ■

So, we obtain

Vi-J(£,,£,) = -("• -  2)(j>; + (<,*,“»)«»+ (l>" + (m -  2)inr‘ )tt • 

Therefore, for p  =  7 /, Eq. (2.68) becomes (with notation (2 .40) and Eq. (2.47))

(¡• «I =
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=  ^ i w r '* (  -  211*11**!+2 * ; * ; , * { ) ( * ; , )  o>-«0 -  * : « » )

-  -  3 ) i i * r - * w + * * » ) « » + i * r ~ * « + 0 »  -  m h

=  (™ -  2 )( -  | * | - V  +  II*II”— a ; * ; , ) ( , ; « .  -  * ; , . . )  +

-  ( «  -  2)||*r-*0>; +  <.,*?»)«» +  1*1— *(|C +  <m — 2 )/i,p ")e0 

=  ( »  -  2 )| * | - * * » : « .  -  <m -  2 )n * ir —a- * “ ,.* !,«* +

-  (m -  2)||*|— « « . +  1 1 * 1 -V , * .  ■

Consequently, since «o> «* are linearly independent, 7 / is a critical point o f r/D, i.e. 
the expression (2.68) vanishes for p  =  7 /, iff

(m  — 2 )(trace> /)=*:1hJ,h2,lp" +  (tra ce d ) “r 1 p" =  0 

and

(m  — 2)((traceA /)Hr±hJJ,h]|„h"/t +  (traced )® !11 p j )  =  0 , VAr =  1 , . . .  ,m  .
(2.70)

The vanishing o f the latter system is independent of the choice o f second-order 

frame. Observe that, if m  =  2 and n =  3, this system reduces to the equation 
P* =  0 , which is the Euler-Lagrange equation o f  ~M>.

R e m a rk  2.1 In a private communication (see also Ref. (R i-Sa/88]), Rigoli dem on­

strated that, in the most general case (rn <  n ), the conformal Gauss map -ty : M  —* 
Q „ -m(lRn+*) is a critical point o f the functional (2.67), iff

(m  — 2 )(traceA/) “ r1 A« A«,-p* +  (tra ce d )“ r* p® =  0 , V o =  m  +  1 , . . . , »  

and

(m  -  3 )((tr  a « * )  V * ' * ', * * ,  +  ( t « . . A i ) f * r t )  =  0 , y *  =  m '+  i ” .

’  (2.71)
which generalises Eq. (2.70). This result can be derived in an analogous way to 
the special case m =  2 with n >  2 arbitrary, treated in Ref. [R i/87]. Observe also 
that, fo r  m =  2, Eq. (2.71) is identical to the Euler-Lagrange equation o f  W .

Consequently, if tn =  2, then 7/ is a critical point of q, iff /  is a critical poin t of 
V .  Now we analyse the general case w  <5 n arbitrary. Let /  : M m -*  S n be an 

immersion, such that 7/ is a critical point o f the functional 1?. Then, follow ing the
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computations in the proof o f Prop. 2.1, we obtain for a variation / ,  o f /  equation 
(2.49), yielding

- > : ( ( ■ » -  + ( - » -  a ) i * r : y  y —

+  A;((m -  + 1*!-—VSf +

Taking into account that the expressions given in  Eqs. (2.53-2.58) define tensors, 
that the A?1, A£ have com pact support, and that Eq. (2.71) holds, we obtain, by 
using Stokes’ theorem,

I ’ M / . )  I, . , = } B i w r - ’ A W A X * 1 '" .

Observe that, for m  =  2, one has h“jh jkhki =  0, since h“  =  0 . Hence, /  is also 

a critical point o f W#, as we knew already. For m >  3, we conclude that /  is a 
critical point of W , iff h*jhjkhki =  0, Va. Note that the condition

K j V o =  m +  1 , . . . , »  (2.72)

is conformally invariant, i.e. it does not depend on the second-order frame e : M  —► 
G  along /  we choose. Furthermore, we observe that, because o f  Eqs. (1.64), (1.60), 
condition (2.72) is equivalent to mpkk =  h °kk, Vo. Naturally, one can wonder if 

the converse is also true: if /  is a W illmore submanifold satisfying (2.72), is then 
Ty a critical point o f  if?. This does not seem to  be the case, because in the above 
expression for JfVn(/»)| ,=0 the AJ can be chosen arbitrarily, but not necessarily 
the A* (see Eq. (2.43)). Thus, we conclude

P ro p o s it io n  3 .2  Let f  : M m —► S n be an im m ertion o f an oriented m-manifold 
into the Mobiue »pace. Then,

F orm  =  2, f  it a Willmore immersed tu rf ace, iff -ty is a critical point ofti /Ri/87]; 
fo r  m  >  3, if  7/ it a critical point o f  if, then f  i t  a Willmore m-»ubmanifold, iff 
condition (£. 72) hold».

Therefore, condition (2.72) looks quite natural. Moreover, it m ay have far-reaching 

geometrical consequences, as we will see in the next section on a conformal Bernstein- 
type theorem.
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2.4 A  Conform al Bernstein-type Theorem
In this section we will formulate a Bernstein-type theorem for immersed Willmore 
hypersurfaces o f  the Mobius space, which generalises the special case o f immersed 
surfaces in S* treated in Ref. [R i/86].

Let F  : M *  —» HI* be an oriented Willmore surface immersed into the Euclidean
3-space, i.e. F  satisfies Eq. (2.6). Let vF : M  - »  IR* be the spherical Gauss map 
given by uF(x )  =  i / „  V* e  M , where */* is the positive unit normal to  F .  Let 
o F : h i  —* 2R* be the map defined by

aF{x) =  i/F (x ) +  H F (x ) .

Then, the following theorem can be formulated [Ri/86]:

T h e o re m  (R Jg o li) Let F  : M * —» JR* be a complete, oriented immerted Willmore 
eurfacc. I f  there cxieU an a e  IR* with v = <  aF ,a  > « • #  0 on M , then F (M ) it  
either a tphere or a plane.

This theorem is the analogue o f the weak form o f the parametric Bernstein theo­
rem, which states that a complete, oriented, minimal immersed surface F  : M *  —» 
IR* with spherical Gauss map i/F lying in a hemisphere o f S * is a plane. Further­
more, it was reformulated in the conformal geometry o f  surfaces o f S* by the same 
author:
Consider the immersion /  =  * o  F  : M * —» S* into the Mobius space, where 

» : IR* —» 5*\{Xoo} is the diffeomorphism as defined in diagram (1.91). Let 
E  — [E o ,E i,E t ,E t , E+\ : A / —* G* be a Darboux frame along F  of the type de­
scribed in Remark 1.4. Then, using the identification (1.93), we can consider E 0 

and E t as vectors o f  IR*, being E0 =  F  and E t  the positive unit normal to  F . 
Then, in the latter frame, we can write <rF(x )  — (E t +  H E 0)(x ) .  Let e : M  —* G  
be the second-order frame constructed from  E  as described in Sec. 1.3. Thus, 
¿t =  E t +  H E q. T hat is, o F corresponds to the hyperbolic Gauss map 7/ o f / .  
The following theorem  is the conformal version o f the previous one:

T h e o re m  (R ig o il )  Let f  : M  —* S* be a compact, connected, oriented Willmore 
turf ace with hyperbolic conformal G atin  map 7 /. I f there exiett an a G JR*, inch  
that <  7 /, a > jt  0 on  M , then / ( M )  i t  a 2 ■ tphere.
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Now we derive a generalisation o f this theorem. Let /  : A / " -1 —» S n be an immer­
sion o f  a hypersurface into the M öbius space, and let -y : M  —* Q be the hyperbolic 
conform al Gauss map o f /  defined in Eq. (2.65). Observe that, if M  is the Möbius

/  is a  trivial W illmore hypersurface and 7/ =  q*. In particular, <  'jj, if* 0 
on all M .  The following theorem shows that this property (with an additional 
condition) characterises the hyperspheres o f S n.

T h e o r e m  2 .1  Suppose n 4 and »  /  6. Let f  : M n~l —» S n be a compact, 

oriented, connected Willmore hypersurface immerted into S n with hyperbolic con­

form al Gauss map 7 /. I f  there exists an a £  JRn+i, such that <  T/,a 0 on all

M ,  and if  f  satisfies the condition (£ .72 ), then f ( M )  is an (n -  1 )• sphere.

Proof. Set m =  n — 1. Obviously, without loss o f generality, we may assume 

(7 /, a) >  0 on all M .  Let e : M  —* G  be a second-order G-frame along /  and let 
||h|| be as in Eq. (2.46), relative to  this frame. Consider the local (m — l)-form  on 
M  given by

“  =  ( - 1 ) '  ‘ ll* ir~ ’ ( ( m - l ) p ?  <  e ,,a  > - * , " » <  c , a >

One can straightforwardly verify, using the transformation laws for second-order 
frames given in Sec. 1.2.C, that u. is a  well-defined global (m — l)-form  on Af. 

Using Eqs. ( l .«0 ), (1.62), (1.67), (2 .47), and (2.48), we have

du. =  ( - l ) ' - ‘ (m  -  1 ) , ;  <  e « ,a  >  d(||A||— *) A 4 , J ~ m 

+  (~  1)' '(m  — l)||fh||"*“ * <  eo,a >  dp" A d 1" 1-"*

+ ( - l ) i-'(m -  1)|*N— V d(< «o,« >) Ad1“
+  ( - > ) - ' ( • »  -  1)11*11"-’  < « . , . >  pTddt J - "

+  ( - l ) 'A ’,  <  « » ,«  >  d ( | * r ' , ) A d ,- ; - “

+  ( - 1 ) , U * | - ’  < « » , . >  d*r. A d 1- '  ”

+  ( - l ) ' l l * l l ”- ’ *.,i^ (<  . . , « > )  A d 1 " - ' "

+ ( - l ) ' I M - ’ <«»,•> *radd‘- ;-”

space S m 1 and /  is the inclusion m ap given by / , then

+  ( - i ) — (>" - j )  < « « , « >  i i * i r - ‘ * y ; * ; » d ,"j - m .



Ckmpter J ,  Set lioa 4. A ComformmJ Be,m,le¡B l/Pe Theorem 163

+ -  2) < «o,« > A *lJ " ”
+ ( - l ) - ’ (m -  2)||*||” —* <<«,«>
+ (—»)" '("•  -  2)||*||” -* < e„, «  > A

+ ( - i ) ' - ‘ (m -  j ) i * r - ‘ *?»*:*;»<(< « >> *
+ ( - i ) - '( m  -  2)11*11-* < « „ . >  * ; . * ; * ; , v - ; "

=  (-* ) '( ’"  -  «)*" < « « ,«>  (m -  2)|1*||”  VS A 
+  (m -  l)p "  <  e , ,«  >  (m  -  2)|*|— ‘ * ; * ; i(* 1- "

+  -1)1*11"-’  < í», « > A
+ (-l ) '(m  -  1)|*|-’  < « . , .  > 2,,V; A 4 h * -~

+ (-l)'-’(m -  1)||*||—  <«„,«> *¡,*2 A
+ (m -  1)||*||"-’  < <,,» > (ft*1-"
+  ( - l ) - ‘ (m -  1)11*11— V ” < « . , « >  ♦Ja * 1- '—
+  ( m - i ) | * y — *i í <  « , , . > * ■ —

+ ( - l ) '- ’ (m -  1)’|*|—  < « „ ,.>  A
+ (-l)* - ’ (m -  1)1|*||-’  < « „ , .>  ¿ I f  A *1-*—
+  (-1 )'-'*"* < «* ,«>  (m -  2)||A||” — A
-  * i  <  e » ,o  >  (m -  2)|*|— * * ; * ^ * - “

+ <-i)'ll*H—  < < » ,«>  * ; , ^ a 
+  ( - i ) '11*11” - ’  < «» ,• >  * ’ W a * ’- í—
+ ( - i ) ' - ’ ||*||” - ’  < « „ .  > *j¿ j *
+  ||*||"-> <  . „ o  > p ,v ~ "

-  i i * i r - ’  < * » , « >  * :* * ■ -”

+ ( - ! ) ■  i l * « - ’ *:» < « . , • >  + :  a

+ ( - i ) '  1*11” ’ *:, < . Jt. > + í A

-  i * i " - ’ * ;»  <  « . , «  >  * w - “

-  «*ii” - ’ * :  <

+  (-1)'|*|— ’  < « » , « >  *;t (m -  1)*J A 
+  ( - i ) yl*||” - ’  < « » , » >  * ;» * /  a
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+ (-*)■(•» -  2) < «.,« > -  «)||Ap-VS A
+  (m -  2) <  «0 ,0  >  A ",A ;A ;t (.n  -  4)||A||'"̂ ” a :„A ;„ ,> 1 -’"  +

+  (-i)'(m -  2)||A|r* < «o, o > a.",3a; a; o*8 A 
+  (-l)'(m  -  2)|A||"-* < «„ .  > k:„il a 4 '- '—

+ -  2)||A|r- < eo,« > AfoAJA^i A
+  (»  -  2)||*||— * < «o, o > A?»«**1"”
+  (-»)'“ ("• -  2)||A||—  < «o,« > AlAloAJ,^ a 4lJ~ "
+  ( - i ) ' - ' ( m  -  2 ) | * | ~ *  <  « „ o  >  * ; * ; » * "  a  

+  ( - l ) ’ (m -  2)||A||"-‘  <  «o, o  >  A ;A :,A -,*8  a  

-  (m -  2)||A||-* < «., o > AiAi.,**1 ■”
+  (rn -  2)||A|r- < «0,0 > a; a; . a;(> ' "

+  ( - l ) '- ’ (m -  2)||A||"-*AJVA;A;t < «0,« > *8 A

+  (m -  2)||A|— x * ; * ; »  <  « . . «  >

+  (-»)'■•("• -  »)(*" -  2)HAr-‘  < « .,« >  A-,Ai*i^8 A P " ' " ”
+  ( - lp 'lm  -  2)||A||—* < «„o > ArtAiA;,*i A ■

Taking into account definition (1.S4) and the vanishing of A“ , we obtain, after 
several cancellations and obvious rearrangements, the expression

dw =  2(m -  l)(m -  2)||A||m-Vr < e0,« >
+  ( *  -  1)11*11” ” ’  <  Co.o >  p “ > 1- m

+  (m -  2)(m -  4)iiAir-« < «»,o > * ;,* ;a; . a: ,a:.(* l- "
+  (m -  2)||A||"-« < « .,o  >  A-.fT,

-11*11” - ’ *,8,*;. < « . , « >  .

Since «„ =  7 /, we can rewrite the latter expression as

do, = <«.,o>{(n.-l)||A||"-,r- ,+ 2(m-l)(m-2)||A||” -« ,• * !* ;,+

+  (m -  2 )(m -  4)||a|” - « a; ,a; a; , a: . a: w

+ (m-2)|A|"-**r.i,.} * • -”

-  ||*||”  <  7 /l .  >  4 H -  .
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If /  is a  Will more hypersurf&ce, then, using the Euler-Lagr&nge equation derived 
in Prop . 2.1, we obtain

«*" =  —( <  " * " »* ! ,  +  11*11" <  7 / , «  >  ) + ' - ~  , (2.73)

which is a global m-form on A f .  Now, since /  satisfies, by  assumption, condition 
(2.72), application o f Stokes' theorem yields

°=/„ =- L ||A|r < • > *‘"m ■
As, also by assumption, (7 /, a) >  0 on all A /, necessarily ||A|| =  =
0. Applying, finally, Eq. (1.89) and the proposition due t o  Schiemangk-Sulanke 
quoted in  Sec. 1.2.D, we conclude that / ( A / )  is an (n — l)-sphere. V

Taking into account Prop. 2.2, we obtain the following corollary:

C o r o lla r y  2.1.1 Suppose n ^  4 and n ^  6. Let f  : A /" -1  —* S n be a compact, 
oriented, connected Will mo re hyperturface immersed in S n. I f  7 / i t  a critical point 
o f  the functional q given in Eq. (£.67) and if  there etists an a  €  !R"+* such that 
<  a 0 on all M ,  then f ( M )  i t  an (n  — 1) -sphere.

We remark that the conclusion of Cor. 2.1.1 can be obtained without the assump­
tion o f /  : A /" -1 —* 5 "  being a W illmore hypersurface, by  slightly modifying the 

proof o f  T h . 2.1. It is sufficient that 7 / be a  critical point o f  the functional q given 
in  Eq. (2.67). More precisely, we have the following result:

T h e o r e m  2.2 Suppose n qt 4. Let f  : A /" -1  - »  5 n be a compact, oriented, 
connected immersed hyperturface into 5 ” with hyperbolic conformal Gauss map 

7 / : M  -*  Q. I f  7f it a critical point o f  the functional q given in Eq. (£.67) and 
i f  there exists an a €  JRn+i, such that <  ~//,a > £  0 on all M ,  then f ( M )  i t  an 
( »  — 1 )-sphere.

Proof. Set m =  n — 1. Let «  : M  —* G  be a  second-order C -fram e along /  and ||h|| 
be as in E q. (2.46) relative to this frame. Consider the local (m  — l)-form  on A / 
given by

=  ( - i ) ' - | * y — O i  < « . , . >  - a ;  < « . , . >  .
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We can easily verify, using the transformation laws for second-order frames, that 
w is a well-defined, global (rn — l)-form  on A /. Through straightforward com pu­
tations, similar to the ones in the proof o f Th. 2.1, we obtain

¿w =  < « . , . > ( ( « -  2 ) i * r “ V * : * - + h* i — v , ) * 1- "

+  < « ,,« >  (3-m )(||A ||— y  +
-  n*r <-»/,«> +'-m.

Since -jy is a  critical point o f q, Eq. (2.70) holds, i.e.

duj =  — ||A|r < T / ,* > + l“ m •

Now the conclusion follows as in the proof o f Th. 2.1.

Thus, we have obtained two different Bernstein-type theorem s with non-em pty 
intersection. This can be visualised diagrammatically as follow s. Let

G  =  (Immersions /  : M n 1 -♦ S " satisfying A," =  0 }

A  =  (W illm ore hypersurfaces /  : M n~l —» S " }

B  =  (Immersions /  : A /" -1 —» 5 "  s.t. ^  : M  -*  Q is a  critical point o f  q ) .

Then we have B r\ G  C. A  and B n  A  C  C . Let 
D  =  G  n  A  and D 1 =  B  n  A . Then, D ' c  D . 
On D  and B  we have the Bernstein-type theo­
rems (perhaps better called rigidity theorems) 
2.1 resp. 2.2 with intersection o f the domains 
o f validity given by D '. I f  D ' happens to  coin­
cide with D , then Th. 2 .2  is  more general than 
2.1. In the case n =  3, where G  is the set o f  all 
immersed surfaces, we have D 1 =  D  =  A  =  B .

R em a rk  2 .2  We note, reviewing carefully the proof o f T h . 2 .1 , that, by dropping 

the condition (2.72) on / ,  one can still arrive at an interesting, though somewhat 
vague, conclusion. From  Eq. (2.73), which holds in any case, we obtain by applying 
Stokes’ theorem

° = -  / „ x„ ll*r-’ ( <«..•> + u*r < -v,« > )*■-",
where U is the set o f all umbilic points o f / .  Given a point x  €  A /, the sign or 
vanishing of the expression

i * r - » ,  « ) ( « )
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is independent o f the choice o f second-order frame on a neighbourhood o f  * , as 
follow , from the tf.n rform .tion  l.w s  in Sec. 1 .2 .0. Thu., we c»n  reform ul.te the 
above theorem in the following way:

T h e o re m  2 .1 ' Let [  It at in  Tk. t . i ,  eecept /or condition /t.Tt). 1/ there t r o l l  
on e €  I R " ' ,  ruck that (* *  * J ,* ^ e , +  | 1 | '̂  , e )  >  0 on ell h i, then, neeeeeorilp, 
tkic incqualitp impUce r fu a lilf to eero on oil M .
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A ppendix 11

Let /  : M m —» 5 "  be an immersed hypersurface (m  =  »  — 1) into the M obius space 
and fix a Riemannian metric g =  <g> d>o o f the conformal class o f A f . Let Z? be
a compact domain on A /. Now we calculate the Euler-Lagrange equation of the 
functional qD(p) =  £  JD (trace(p*df, ))^ rfV  for p  : Z? —* Q a smooth m ap, where 
I2 =  { f €  2RB + * : <  x ,x  >  =  1} is endowed with the Lorentz inner product dt* 
induced by the one of 2R"+*.

Let p  : (—e,e) X Z) —► fi ,  p(t, •) =  p»(*), b« a variation of po =  p with compact 
support in D . Let W  £  C °°(p- , T f l )  be defined by  WM =  Ap,(x)|(_ Q. Let V, 

V ' denote the Levi-Civita connections o f (M tg) resp. (£,</£*) and V *  , 
be the connections of p~lT Q  reap. p~lT Q . Let x 0 €  D  and X l t . . .  ,X m be an 
orthonormal frame of (M ,g )  defined near x 0 and satisfying V X ,(x 0) =  0. We 

denote by (0,X,-) and ^  the vector fields on X M  given by (0,Xj)(i^| =
(0 ,X , , )  resp. A ( f ,x )  =  (1 ,0 ). Then,

V A (0 ,X ,) = v,„ (U .1)

Let Z  be the vector field on A / defined by

<  Zr , v  > t =  dt%[w ,  m (trace(p\/£*)) * dpx (u ) )  , Vu 6  T^M  .

A t the point x0 we have, because of Eq. (II. 1) and the symmetry o f  the second 
fundamental form  of p,

=  2dt' (  ̂ ,  (0 , X ,) ) ,  (0, X , ) )

=  2<", ( V £ , , ( ^ ( £ - ) ) („ ^ I, ^ I» ^ , ( 0 ,X , ) )  =  2 d l ' ( v C w „ , i p K (X ,) )  .

Therefore,

¿ ( t r « « ( r f ^ ) ) I U  =  £ ( « ■ « * ( * , ) ,  < * < X , ) ) J T L .
=  d t ' \ v C w n ,d p ,^ X , ) )
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= dt'{y>c, dp^(X))
=  i  { « * ( » ’,m (.„e,(pV />)) (Xt)

- j t ' (  { m(tnCt(P'dt‘ ) ) f l dP{x l) ) J

= d(< z , x  > )J X ) -  de’ (wn ,V(m(u^(p-dO)mfld p ) j x ,x i))
=  div( (2 )„ ,  -  fnd l’ ^ W j,, trace ( V (  trace (p*d{*)) d p )io )  ,

where V(trace(p*d/*)) * dpia the covenant derivative in the vector bundle A1 T'M® 
P ~l T Q .  Since Z has compact support, we obtain, by applying Stokes’ theorem,

Ql̂ D(pt)\M  = — JD </i*(w',trace(V(trace(p*<W*))M̂1<ip))rfV .

Thus, the Euler-Lagrange equation is given by

trace (V(trace(p* </£*)) "*"* dp) =  0 ,

or, equivalently,

0 =  tr.ce(V(tr«e(p*<«*))“f l dp)i>i = V(tr«ce(p'<tt,) ) ‘ f l </p^(Jf„X,)

= Vi,“  {(tr« ,(p -«* ))* f*d p (X )}>>

=  d {(trmce(/d<, ) ) " f1 }^  (X,)dp^(Xt) +  (tr»ee(p'd<,) ) " f *V ’dpi,(jr,,X,)

=  tr«ce |i^li(tr.ee(dp-d<, ) ) f 1d(trKe(p,d<’ )) ® dp +  (traee(p,d<’ ))*f l  Vdp} .
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Chapter 3

THE SECOND VARIATION FOR 
WILLMORE SURFACES OF A SPACE 
FORM

Let (AT, h) be an n-dimensional Riemannian manifold o f constant sectional curva­
ture 7T. Then, in this chapter, we will calculate, in the context o f Riemannian 

geometry, the second variation formula for Willmore immersed surfaces /  : A/* —* 
(AT, A). Weiner |We/78] computed this second variation in the particular case 
where /  is a minimal immersion. Our notations and calculations will be similar 
to  his, up to the step where he demands minimality o f /  to  hold. We will pro­
ceed without any such assumption. Recall that the curvature tensor H  o f (AT, A) 
satisfies

where V  is the normal bundle to /  given by  Eq. (2.12).

Let D  C M  be a com pact domain, I  denote ( - « , « ) ,  and v : AI x  I  -*  N  be 
a variation o f /  through immersions / ,  =  »(•,£) : M  - »  N  with variation vector 
W  G G °°(f~ lT N )  given by Wm =  ^w(aî,<)|f=0, Var G A /, which we assume to be 
com pactly supported in D .

P ro p o s it io n  S . l  I f  f  : A /*  —» (AT, A) i t  a Willmore immerted turf ace, then the 
tecond variation form ula fo r  the variation v =  f ,  it given by

H (X ,Y )Z  =  Jt( <  Z ,X  >* y -  <  Z ,Y  > k X )  , VAT, Y, Z  €  G °°(T N ) .

If /  : A /* —* (N , h) is an immersion, we denote by Â  the element o f V*<g>Vr),

where
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J W ) .  =  i ( A + i ) ( A + 2 K ’ + A ) ( I V ) ,

-  2 ( (  A  +  i)(W ).,B .)k H, -  i ir .iK  a  + i ) ( w ) ,

+  2 ( m , V ^ ( « „ « » ) ) ,  V *  « . ( « , , « » )  +  2 ( H „  V j / , ( e „ e» ) ) i  7 V , ( « „ « , )

- 4 ^ „ v . .  w . ) v „  B ,  +  2 ( w „ V u n . ' j V . .  / / ,  +  2 ^ , V „  V ..W .

+  2 ^ V „  W „  V ^ , ( e „  e, )^  V „  H ,

-  2 ( v „  h „  v v  w .'j  V «v ,

+ 2 ^ v „  v . t w ,

+  2 (IV ., V J /, ( , „ « , ) ) ,  * / ) . » . ) ,  , » ) ,

V ,
with V  W €  (7°°( ® *  r * M  x  K ) fiven ¿y

v ’ i v , p r „ r „ )  =  V * .V y  w , -  v y x  Y w , ,

and  with « i,«s  an arbitrary orth on orm al baeii o f  (TXM , g0) .

C o ro lla ry  3 .1 .1  I f dimN  =  3, then the operator J in the above theorem can be 
simplified to

AW) =  A  + A )(  A  +27v +  A)(W,J — 3||iT||’ ( A  +X)(1V)

+  2 ^ V < V ,V ’  B ^ jW  +  > | V i V V j  H  

- 2 ( v W } V B Sj B  +  2 ( v B , V B Sj W  

+  2 ^ V i r ®  V v v , V d f'j -  2A'||ii||IVV +  2 B »(H ') , 

m k m  6 “  €  C “ ( ® V ®  V )  ■> , , ; n  h

B " (W .)  =  ( w „  V i l . ( ' i , . „ ) ) k (V d f , (« „ .y ) ,  i . ) t V < 0 ,(.y ,.t )  , 

2 ( v B ® V W , V d f ' j  i .  ikorthand to r  2 ^ V., H ,V ^ ( . „ . y ) \  V ,  W , .A .r<
iA« inner produets denoted by < ,>  are o /  the Hilbert-Schmidt type.
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Proof. Let gt =  /*/*, and denote M t — ( A / ,  g, ). We define the vector subbundles T  
and V  o f v~lT N  as T (V|t) =  d(ft)a(TaM )  and V(»^j as its orthogonal complement in 
(Tf,[m)N ,k ) t V(x, I) e M  x I . Thus, =  T̂ a4) ®  . Then, for each t  €  / ,
we have the vector subbundles T, and V, o f f,~lT N  defined by Tt (») =  and 
V, (x) =  Vj,,,), the latter one defining the normal bundle to  the isometric immersion 
ft  : M t —* (AT, A). We denote by ( )T and ( ) v  the orthogonal projections o f v~lT N  

onto T  resp. V , and by >r : M x l  —* A / the first projection (x , t) —» x. The following
M W«x/

connections are going to be used: V  of (AT, A), V  o f A /,, V  o f A /0 x  / ,  V ” 

o f (u T J V .A ), V /, J o U f - 'T N ,h ) ,  V o f  (V|,A) (and V o f  (Vo,A)), and V '  * of 
( » - T W . f c ) .

I f  Z  G C7°°(w_ lTAr), Vi €  / ,  then Z, given by Z( (») =  Z(»^j is an element of 
C °° (f ,-lT N ),  and

=  y i " z . ( . ) , V . e  T ,M  . 

i f  y  e  C “ (K,), then v .  y ,  =  ( V / r ‘ y , ) 1'.
For each t 6  / ,

W o (/.)  =  / D (11« , II! +  JTVa ,. +  ,

where dA„  is the volume element o f (A /, j/,), i f ,  is the mean curvature o f / ,  : 
A/j —» (AT, A), and ku is the signed geodesic curvature o f  HD. Observe that Kt,dst =  
Ktodt0, because / ,  (x) =  / ( x )  for x  €  dD. Since d A „  (x ) =  y 'detly ,(e,, « j)](x )d A l0(x) 
with t\,t\ an orthonormal basis o f (7VA/,0O), we can write

**«></.) =  f D (11«,ll! +  ir ) /d V « [ „ ( « i , . J) i ^ „ + .

So,

= JD { |-ll«.ll,l,-. + (ll«ll! + JO!lV/d«[„(«„.J)i|,_„} dA„ .
Here and henceforth, we denote by H , either the section o f  v~lT N , « ( « i  =  « i w ,  
or the mean curvature H0 o f / ,  which notation will becom e clear from  the context. 
Let us fix x0 €  A / and let t\, et be an orthonormal frame o f A /0 =  (A /, go) around 

x0 satisfying V  e, =  0. Then, e<(x,0) :=  «<(*) €  T ,A / =  can
be extended as a local section o f n~lT \ I  on a neighbourhood o f (xo,0 ) €  M  x  / ,
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resulting in e, (x , f)  G = T „ \ { .  Clearly, we may assume ¿ i (x , f ) ,ê ) ( x , f )
to be linearly independent and, through Cramm-Schmidt orthogonalisation, to be 
orthonormal in (TsM ,g t). Thus, we obtain sections ¿ i ,e a o f n~lT M  satisfying

Mo M0
1) ¿,(x ,0 ) =  « ,( * )  and so V  («,•(•, 0 ) )JjoJ = V e ,  j^,) =  0,

2) Vf, «,, :=  « ,(-, t) constitute an orthonormal frame o f M t =  (M , g,).

Let ¿ , (e ,,0 ) ,(e ,- ,0 )  G x  / ) )  be the vector fields respectively given by
& (* ,f)  =  (0 ,1 ) , (¿i,0)(X>|) =  ( « , ( * ,0 ,0 ) ,  (« ,, 0 )(jr>t) =  (« , (* ) ,0 ), V (* ,f )  G M x  I. 

Then, we have
A /ox / Moxl if

V  / ,  =  V (t4,0) q H*a) = °  • (3 1 )

Henceforth, we denote by Vt/t> the second fundamental form o f t; : A f0 x /  —* N  
and by V d ( / , )  the one of / ,  : M , —* N , the latter taking values on  Vt.

Using Eq. (3 .1), we get, Vx €  M ,

^  W i ) . M . d ( / , ) , ( ' j ) ) t  I , . ,  =  ¿ < * w l ( w , o ) , * w ) ( « j , « ) ) 4 L .

=  ( v & ' ( ¿ b( « . ,° ) ) „ .oi . <V*(«i))l  +  ( < V - M . V f. (*> («> ,o ) ) IMI) (

=  ^V</»(.,O| (| '-,(e „0 )) , +  (df,M , Vdut, „ ( ^ t , ( « > ,0 ) )^

— ' 4Me>)^ + (̂ dfAn) ’ V(, „ „ , ^

= (v„r V.,^f.(<i))i + V .f  .

Then, from the multilinear alternating property o f the determinant, we obtain 

^ d « t  ( » . ( « , , del  [(^ (/,) . ( « , ) ,d {f , ),(«> ))»]

=  2 ( v . r V „ ^ K ) ) i  =  i ( y ,  , w „ 4 f , ) ,

where < ,>  is the Hilbert-Schmidt inner product o f A* T^M0 ®  T f ^ N .  Hence,

J ^ v / < i « t « > )] !, . ,(* )  «  i y '  .

Still considering the Riemannian spaces M 0 =  (A /, g0) and ( f ~ lT N th ), we have 
the equality (cf. Ref. [Ee-Le/83))

d A „  = <  W ,é i f  > »  d A „  +  H W  A .<V) ,
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where * is the Hodge operator in A 1 T*M0 <g> f ~ lTN . Thus,

!» « ■ ( /. ) ! , - .  =  J„ {1,11^11*1,.,+(1* 12+ * )  < w ,m  >t J

+  { d (\\H\\1 +  K ) H W * * « ) .  (3 .2 )

I f X  e  C r°(T M ), and if § ( * ) ,*  €  C °°(T *M ) are given by | (X ) ( r )  X ,Y  > fo 
reap. 9 (Y )  = <  W ,4 f[Y )  > * , Y Y  e  C » ( r A / ) ,  then 

( ^ A * ^ ) ( X )  =  < W ',* « V (X )> * = -< I V l § (X )A ^ (e I,e1)> *

=  -| (X )A  <  W,4f(-) >* («i,«t) =  - § (X )  A 9 ( « „ « , )  =  *9(X)  .

Thus, W  A  *df =  *0 with 0 having compact support in D. By applying Stokes’ 
theorem, we get

J„ (II * IIJ + K)<HW A  *df) = JD (||ff||J + n)d*t = jB Iifrii^«».
Furthermore,

iî iijj. * = j(nir ii:»* ) -  i i i r i :  a  . # = 4 ijti: * « ) -  <  4* 112,* >
and

<  4*112,* > =  4 * I I 2 (« )  <  w T, H M  > »=  4 * K ( * ' , ( " ,r » .
A further application of Stokes’ theorem gives

JD (1*12 +  * )■ '( » ’ A  * d f )  — — JD d\\H\\i(df'(Wr ))dAK . (3 .3 )

Substituting this result in £q. (3.2) and using the Weitzenbock formula (see e.g.
Ref. [Ee-Le/83]) 6 d f — —2H , we obtain

§iw U>)L. = fD { | | * .II2 L ,-  2(11*112 + K ) < w ,a > ,  -d m i(d f -\ w r ))}d A „  .
(3 .4 )

Next we calculate /, ||*,||2|,_( .
V l E D . I E l ,

• W , a S w  i =  ¡V < l(/,),(«-,U .O .M i .O )

=  i  ( v , ! i „ | ( 4 ( / , ) (* ,,) )  -  4 ( / i ) (  ( « . ,) )  j

=  i  « ) ) , „ , )

=  1 { v (2J i(* (i<'0)) (W| -  ( v (;,.;,(4 .(i„0 ))(„ ())  J
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T h u ,

B t„ o) =

=  2 { V A o | (i j .° )

-  ( W * » , . Vf, *(.,.)(«/, o;
-  ( v ^ . ; , ( ^ ( « . , o ) ) u l |, *> (,,»)(«/,o ) ^ v ^ " ( * ( i / , o ) ) (M I}

=  i  { ( V lr"‘ V ( i i ) ( * ( * . . ° ) ) ( u t ) V

-  < V ( i . , o | ( * ’ ( ' ” 0 ) ) |, ,o >  > < ' / ' ( * > ) ) ,  * (t/ w ( * > , ° ) ) (» , o l } • (3 - S )

Note that, at the point x0, we have

( V . r ( < V ( « > ) ) „ . < V » ( « . ) ) J =  ( ( « , , t j ) ,<(/■„( e » ) ) t  =  0 . (3 .0 )

Hence,

( v a  =  \ ( v a  ‘ v ( ; i i i i (* ( « . .® ) ) (. , . ] ) K =

=  2 ( 'l l ’  (¿1. o ) ) iJoui 4  ( (¿ 1 ,0 ) , ( d f  („,,01 ( ¿ , , 0)

=  \ ( V (W > (V ‘M  J i ' ( * . . #) )  +  * (  ( * > . » ) ) ) , . , ,  +  K / l * l ( « '» W .W '» ) < V » W

~vi<Vil.Al(*(*<.°))(,,l) •
Since, V(x, t) e  M  x  / ,

= ’ S l i M -  <">
we obtain

( v /i * c « )  =  2  +  v i i . . « i ( d u (  ^ " / i  ( ' " 0 ) ) ) | , , 0 |

+  2 /fW ,„  -  . (3.8)
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Observe that, V (x ,t) €  M  x  / ,  (<i,0)(^| =  (V jf i i M , o )  is an element o f
7VA/ x  {0 } .  Let us call z, the section of T M  given by

* .(* ) =  ‘ e, (.  #) . (3.9)

Then,

v < £ ) ( * (  ( « ■ . .» ) ) ) „ „ ,  =  v T  ( # ( * . ) ) .
and

^ ^ /,  (4 .0 ) im i  =  - ( * . ( * ) ,  o )  . (3.10)

Thus, Eq. (3.8) can be written as

=  l  ( v . r ' v . r v „ + v r ( # w ) . + « " v , + v / - * «

=  ^ ( v . f v . r V . + 2 V < r „ ( « „ « , ) + 2 X X . ) 1'  . (3.11)

I f t f e C “ (K ), then

( V f c . f o , . , ) . * ) ,  =  ( V . ; ‘ , ( ^ ( . J) ) . , t / ) i  =  -  ( ^ . ( « j l . V . f t / , ^

and

(V d f^ (t i ,Mj ) , V ) t  = <  ! j ( * 0),e »  > „  ('Vdfn le ,, t t ) , u ) k • (3.12)

From the equality

i j ,  = <  <y(*,< ) ,« .(* ,( )  > „ =  (<fc’ (W | («j(* ,i),0 ), ¿ » ( , ,,)(«»(* , < ),0 ))t ,

we get, using Eq. (3.7),

°  =  ^  <«'■’ («>,°).< ff(i* .°)> * l(„,0|

=  ( V i  (¿ » (« j .O ) )| „ io|, ¿ » ( „ .o ) ( « t ,0 )^  +  ( i j ,0 )  , V J  ' ( ¿ » ( « * .0 ) ) , „ ,o ] )>

=  ^ V 2»(„.,| ( (i>,0 ) )  , 4 f „ ( i . ) ^  +  (< (f„  ( V £  0 j(„,o| ) , < (f„ (« » ) ) j 

+  ^ ¿ / „ ( » l ) . V i » („ ,o | ( ^ , ( « o ,0 ) )^  +  ( ¿ / „ ( i j ) , (V j!  «k „ , o| ) ) 4

=  <v - r  +  W „< 0 ,) ,# „ ( . . ) ) „

+  ( # „ ( « , ) .  V(f V „ ) i  +  ( # „ ( . , ) , « „ ( » , ) > .

=  ( V . i " > „ , ^ „ ( e o ) ) i + < * , ( x . ) , e , > -  + ( ^ „ ( . j ) , V ^ V „ ) t + < . y, * , ( « . ) > „  .
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Hence,

(« ,,« ,> ,1 /)^  = <  » „ « ,  > „  =

= -  < > „  <V4r„(«,,«»), v , f  V ^ )4

-  v , f  V „ ) 4

=  «, > „  ( v ^ (e„  £; ) i  +  2 ( * „ ( * ) ,  y f V , ) 4 ( 4 r , w , v , f t / ,

=  -  < > „  ( V i , f e « l ) , i 7 } i + i ( ( v ; ; - V ) ; ,  v , f  w , ) 4

=  - ( V « , ( n , n ) , I f ) l - 2 ( 7 ' - , (V ir V ) > ) i  .

Consequently,

Equation (3.11) thus becomes

( n ' B ^ M y = i  ( v , f v , f v ,  -  2v . f  ( v , ; v ) ' + 2h-w K f

=  l  { ( v . r ' ( v . r > ) : ) ^  -  ( v r  w r ' w y j f + 2 ^ }

=  ‘  j v .v . < + ( v r ( v . r ^ r j  -  ( v . r ( v . r ^ . y + ^ < }

=  5 { * » • £ + ( v , r , ( v . r v ' ) ' ) v  -  ( v / -  ( v . r  v o i ) ' '

-  ( 7 f , ( V . f V ' ) ' ) ,' + 2 X » £ }  , (3.13)

where A W V is the Laplacian in the normal bundle Vo to  / .  We further have

( v . f V ’ T  =  ( v . n - < f « r , ( i v ' ) ) ) ) v  =  v < H ' . , 4 f - ' ( w T) ) . (3.14)

Denoting by W df the covariant derivative o f  V<(f in  the Riemannian bundle 

O * T*M0 <S> Vo (A / with the metric jfo), we obtain, as \^4 e, ^  =  0,

V., ( V i f ( e i , i f - \ W T) ) ) 9o =  V .<V ^ ( e „ ^ - * ( W T) )  +

+  V 4 r , ( « „ ^ „  ( < r ' ( » ' r ) ) ) .  (3 .i6 )

Using Codazzi’s equation in a space form (N ,h )  (cf. e.g. Ref. (K o-N o/69]), we get

V . . v ^ , „ ( . „ « . )  =  V ,.V < (/„  ( « , ,« , )  =  V . . v ^ ,  ( . „ . , )

= V,. (V«r(«„«,))„..
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Thus,

(«, ,«* ) =  2 V ,t ^  . (3.16)

Since d f : (T M ,g0) —* (To, A) is an isometry o f  Riemannian bundles and (V ^  )T 
is the connection o f  (T0,h ), we obtain, by applying Eqs. (3.14), (3.15), and (3.16) 
to  Eq. (3.13),

( v f u ^ , y  =  ‘  { AW - + 2V , , „ , , . f f „  +  Vd/„ ( « ,  < T '(  ( V „ ' 'V r£  )  )

-  ( v i " ( v r ^ ) i Y - ( v r i ? r w T) Tm Y + a

(3-
If we aow  replace W T by ( V /  ' w T) T in Eq. (2.11), wc get

( v r ( V . f ' n " q V „  V d f,.(e „< jlf  ' ( ( V ' - ‘ w T ) T) )  (3.18)

and, analogously,

( v r i K ' " r ) TJ  =  V 4 r „ ( * , < r , ( ( v , r V ' ) r ) )  . 0 .1 » )

The latter equation can be evaluated as follows.

=  V V , W , . » )  (3.20)

=  ~ <V<f..(c„.»), W1') ,  V ^ ( « „ e . )  .

Thus, in  particular,

( v r ( v . r ^ ) : f — , U < ) .  (3.21)

Substitution o f Eqs. (3.18) and (3.21) in Eq. (3.17) yields

(V1 =
=  ‘ { a <  +  2 V - ( W 'I  ^  +  ¿ n ( K )  +  2 K K }  • (« • » )

So,

* « * .1 * 1 , - . ( * . )  =

=  +  2 f f „  +  c i „ « )  +  ¡ K W *  , f i „ ^  .
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Then, due to the equality 

(3.4) becomes
) k =  &i-

=  l „ { < e *w V ' B  > * + < 'lw iJ ( '< r , ( '» 'T) ) + < i ( » , ', ) .-f f > * +  '

+ 2 K <  w v, a  > »  -2 (| | if| | 2  +  J r )  <  w v, h  > »  -¿\ \ H \ \ l(irl tyvT) ) } d A „  

=  f B { <  O W v , B  > »  +  <  A (W V) , B  > »  -2 | | * | | 2  <  W v , B > k) dAlo .

Since W  has com pact support in D , we have (see e.g. Ref. (Ee-Le/83])

which depends only on the vertical part o f W .  Hence, /  is a critical point o f V , 
for compactly supported variations on D , iff

If we replace in the above derivation i  =  0 by  ( arbitrary, we obtain in  the same 
way the equation

where At €  C °°(® V f,* 0  Vt) is the tensor defined by Eq. (2.12), relative to the 
immersion f t : M t —» N , and where A ffr is the Laplacian in the normal bundle Vj.

Now we suppose that /  =  f 0 : M 0 -*  N  is a critical point o f "WD and that W  is 
a vertical vector field, i.e. W  €  C * (V ) .  Then, we calculate the second variation 
formula for W at / ,  that is, we are going to evaluate the expression

fD <  OWv,B  > A dAn  =  jD< Wv,O.B > »  dAn  .

Furthermore, <  A{}/Vv ) ,H  > * = <  W V,A (H )  > * . Therefore,

A H  +  A (H ) -  2\[H\\\H = 0  on D  .

(3.23)
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Let Xo €  M  and let e i.e j be an orthonormal basis o f  (T ^ A /,g„), which can be 
extended to  fo rm  sections <i,e* with some additional properties, to  be given below, 
in order to  sim plify the forthcoming calculations. Let Et =  dfa0 («,-) for i =  1,2. 
Then, (E t ,E p )  is an orthonormal basis o f ( l^ .o ) ,  A). On the subbundle T  o f 

v *T N t a covariant derivative V i s  defined as Z ^ j  =  ( ,  VZ G

0 °° (T ) , (x ,t )  G  M x l ,  ( « ,  A) G x  / ) .  In particular, V („,0) Z (Xft) = rf„  Z, (#j.
Let 7  : /  —* M  x  /  be given by 7(1) =  (x0, <). Then, the vector bundle 7 _ ,T  
has base space /  and induced covariant derivative V 1 . We define the sections 
E i,E 2  G C °° ( ’y~ IT ) as to result from  parallel-transporting E , ,E 9 on (T, h) along 

7 . Thus, fo r each I €  / ,  2 ?i(f),2 ?i(f) form an orthonormal basis o f (7(^,1), A) 
satisfying

V,1_,£7,4 =  0 , V* =  1 ,2 .

Once more, fo r  each t €  J, we parallel-transport the vectors E, (i) o f  (2*)^, in (T,, A) 
along geodesics o f M , =  (A /, g ,) passing through x0. In this way, we obtain local 
smooth sections 1&,(•, t ) of T, that constitute, at each point x  G A /, an orthonormal 
basis £ | ( z ,t ) ,£ | (z ,t )  of ( T ^ j , A). The £ ,  define sections of the bundle T , smooth 
in the variable (x ,t ) ,  and satisfy the properties

V „,0| £ , = ^ .  (£ ,(• , ( ) ) „  =  o , v « e  r „ M ,  ( e  /

and

= V y  (,, |.„,|| =  V,1 £ ,  ( 0 = 0 .

Since, V t,x , d ( f , ) a : -*  is an isometry, e,-(x,<) defined by

<*(/«)»(«• ( * . 0 )  =  gives a sm ooth vector field e,, =  e ,(- ,t )  o f  A/,, which is,
in fact, the one obtained by parellel transport o f  ¿,(xe,t) along geodesics o f M t. 
Thus, for each t ,x ,  e t (x ,f ) ,e » (x ,( )  is an orthonormal basis o f (TaM tgt) satisfying

=  0 i.e. ( v (: - ;|( * ( . - „ 0 ) ) („ i,1) r  =  0 , V . 6  T „ M ,  I e  /  (3.24)

and

(v i '(M .-„ « ))M ) r = o, Vt el .
We denote «,•(*) =  e,(x,0), Vx GD  and 2, as in Eq. (3.9). Then, we have

, (< < « (i . ,0 ) ) („ i„| =  ( V * " ( 4 » ( i „ 0 ) ) (Wit)) V

(3.25)
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=  ^Vdr(l0to)( (£, ,0 ) )  +  £ /. , (* , ) )

=  ( ? ( £ , ( * > ( £ ) ) „ « , - * K « (  'V 'l'M  £ ) )  = ( V f ‘ w m) V. (3 M )

Observe that, as a consequence o f Eqs. (3.26) and (3.7), we have .

< • / ( * . ) . « * > . .  =  W ^ * i ) , < V „ M ) k =  V j “ » , ) ,  £ / „ ( « , ) )

=  ( V t ,  '{*> & <  » ) ) ,« . .„  -  V £ » ( „ . , ( ^ , ( i y , 0 ) )  ,

=  -  ( v ' " V » , £ / „ ( « . ) ) 4 ~ ( w m< V4f, ( . y,.. )> 4 , (3.27)

whence

Vd/,o (*<i *>) =  (% ,>  VrfAo ( « /» **))A Vd/,o (<i, «*) . (3.28)

From Eq. (3.24), we get

Aff|(x0) = V j (( V , .  Ht (jbq) =  ( V (iji0) ( V (jJj0,2 f )  )
v '  (*o.o)

Hence, by applying Eq. (3 .10 ), we obtain

= ( v r i ^ s i i v ; » % „ .  * ) 4

=  ( V A V (i;,0](V (i..O|-£f) l„,o| “  ) ( „ .« ,  >

=  ( y i , ) („.o,  +  ( « . ) ,^ ) ( V ,*  J ,B ) ^

- V fc .<»(*>.0 ) ) 1 * ’ ( i>,#) ) ta ,1|'W' )

=  ( ^ v r ( v lL; » ^ |- 3r ( ^ , ^

= f t & ' l L i + ^ T ( v r » ) :
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-  ( v . r ( v . r , * r . « r < « J) ) 4 v , ; - v . , ^

— y ..,uj * y.,,01 7̂/, [ (V(j.,|>|ir,¿tí(ij,0)̂
+vr(v.r*)i.+(v f  v̂ .k,«,))í v ,;v ,, w)k

=  (M ï,.0|MÏ.,«)V Â ÍT(«..0) +  V /  { R n i(dJ¡t, ) ,W )H)n  +  V(̂ oiy j i.(.„„|1ir(„.o|

-  v t;„i, [ (v ¿  ' v i;,; a , </<>(«>, o ̂ i« (c ¡,  o) + ( v f  , v ¿ 1 (*>(«>. o))^*>({>, o)

+ (v ,Q ,a ,d « ( i „ a )^  v¿ ‘(*>(í>,o))](̂ 0|
+ vf(v.f^)^ + (v.r's„,v^(«„«J))AV.' V„ , w)(

= ( v . r ,v . r ( v f i r i 1„ ) ^ + v . r v r [ < v ¿ - ‘ í U 4 f ( . , ) ) 4<f(«J)]-

- x v f ( *(«,))., + v f  v f
- v.f [(v^VjfjrL.+xáVM,")b + y’¿.«,,i*L.. <<«*>)),4T(«i)
+ ( v . f  t f ,v ¿ , (d»(íJ,o))|,.0)i tf(<,) +  ( v , f  j ,  #(«>))jv ¿ " ( * ( « >,o))|1. 0] (i>i01 

+ v f  ( v f  ir)* + ( v y a n ) Vd/n ( '„ ' , ) )^ v f  tv„ , tv) 4

= (v.f V„ (vfí|,.í)>  v.f [(v .f (Vf íL.r,4f(.>))t #(•>)].
+ v f  [ (v fv f  *!,-..<«*/)), ̂ (*j)L 
+ v f  I (v f  *1,-.. v.f (4r(«,»)4 <?(«,)]„
+ V f  [(vfff|„t, (̂«y))iv.f (#(.,))]..-JTVf ( <W,B >#(«,))„
+ V.f Vf - V f [ ( v f  v ffiL , («,))s if <«,)]„
+  K V f  [ < W , B  > »<  i f  {cd ,i f  (Cj) >A 4 f (e , ) ) „

-V f ((v f
- V f l(v f S, V f (*-(lj.O))|1-)t#(.i)L
- vf[(vfir,<r<.,))t v¿'(*(ij, 0))|t.,], + v f  (v f  rr£
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+ ( v . r  c ,)  ) t v . ' 1 , i

= { v r  V.. ( v r ^ l . j :  -  v r[((v^ 'irL .)v,v^(.„.J.))^(.i)],
+ v . r  i ( v a v . r  (4 (',)))k « M i ,

+ v r i ^ ' i L i h ) ) ,  v . r ' ( ^ ( « y) ) ]w  +  y f  y f  * « ,

-  v . n  ( v r ^  « v » « / ) ) ,  ^  ( « /> ] ,

- v.r i (v.r v//1 (*(«y, o)) u )4 ̂  <«>)].
-  v . f [  ( y f  H,dnej))k v r ‘ (^ ( ? J,0) ) | „ „ ] ,  +  y f * ( y f

+  ( v , r ' f f , Q, Vd/IO(e„ ej) ^  y f  w „  , .

Since JV is vertical, we have, on jD,

( v . r  i ( v . r ' f f ,  v f  ( * < ! , ,  o ) ) u ) 4 < «> )]„ , " f ) t =

Using the equality (v/. ‘ =  -  ( i f ,  Vdf{r,, e , ) f  we get

=  ( v . , v „  ( v f i u X  +  v f  l ( v ; f ‘ n . . , < r (  *# ))4# W L

+v <r, i ( v r j r u # ( * i ) ) t v . r v < « i ) ) L +v.f y f  a, 
- y f ( y f * ) '

- ( v f  i f . , ,  V f  (* > (« „0))|(-0 ( * . ) ) ,  («, , « , )

+ y f | ( i , v ^ ( « „ . y) )„  y f ' ( * « , . « ) ) U L + v r ( v . f <
+  ( v . f  y f  i v „ , i v ) ^ .

Since f , ey =  0, clearly

(v r i (v r * L . ,^ (^  «>)) ^(«>)L. ,v’)j =o-
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Hence,

<(*r
=  (v . ,v „  (V I  N | , V „ V „  JT„+ V .V., B „

+ v.r[ yfW M L '
-  ( V.i '(^(ey,0))||„ ( i . ) ) j  V<V„(«,,«j)

+ v /  [ (B,VdJ(t , (<<»(«J,0))|„0]J<1

+(v.r , nr) .
Now, V* 6 £>,

( V A * lw lh 4 r » (« i ))4 =  - ^ 1n y l , (W»(*>10 ) )w l ^  .

Moreover,

V i (Ju(tj,0))(il| =  V d ., .* ^ - ,  («>,0)) +

=  V .J " V ,  +  < f, ( ,y)

.nd, from Eq. (3.2S), V .J 'V , + df„(ry) =V„ Thu«,

( « ■ '  [ ( y f i  u  # < * > ) ,  y T  ( « • > ) ) ] >  w ) „  =

- v̂ “ (d.(iJ,o))l, i0))j (v.f v,r'(df(«y)),,»’)i
=  -  V T „ ^ ( V d / , ( « „ « , )  , W )4

-  (iw.v„r ‘v,fVJt + v^>(«„«J))4(v<v„(«„«/) , ir)4
-  ( n „ v „  ( v r v r w , » , , ^

=  -  ( v „  ¿f,„, V., (V d f,J '„'1) ,w ) i

-  ( « . ,  V,r ‘V.f V . ) 4 (V if„h ,.j),w )k
-  ( * „ ,  V ^ .(«,,»y ))t (V d f„(«„ .j ) ,w )>

»«^ (v .r 'v .rv w L ,^ .

(3.29)

(3.30)
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= (*,,V.,V., wjj^ + (h„,vC ( K ‘w~)T\  = 
=  ( « . . ♦ „ $ ,  w n )^  -  ( v ' - i „ , ( V . f V . ) r ) j  

=  ( n , . , V . y . ,  w j ) "  -  ( v . r

= (ft.. v ,v , -  (*„,Vv„ k ,«.))4 V (̂«J,«»))4 ,
and using Eq. (3.16), we have

=  +  < v ( $ „  , K -j

= (v., V., «,) + 4T,.( %%, .j) ,

= (v., (V4 ^ ,.j))^w ^  .  (V„v<v,(«.,«/),»’)„

-  a ( v ,  f t . , n ' ^ .  (3 .31)

Hence, from the latter two partial calculations and Eq. (3.27), we obtain

( * r  [< v rn - ..< n * i)\ v .r< * < ‘'» ]~
= -  (v., ft.,V., W^j^

-  ( f t „ , v . ; v.,. < V 4 r , h , . i ) , i r ) t

+  <jt, < ir, v ^ , ( . y, . . ) ) 4

-  ( f t . ,  (W ,

-2(ft., v,, tv„^ (v., f t » ,^

=  -  ( v „  f t . , V „  > ) . » ’ > ,

- (ft,, v„v., w„Y

-2 (ft , V., (v.y ft,»V^ . (3.32)
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From Eq. (3.26), we have

(v<f ‘u,,vjr,(*,<i>,o))tai*)4 V4M«,,*) = Hn,v„ w j Wdjn(*,.,).
(3.33)

Using again Eq. (3.26), combined with Eq. (3.31), we get

( v n  V f ' ( * ( i y, 0 ) ) U .  , w ) k =

= (v„ Vft,(«h%)^ (v, w .̂w^+2(s,v.j n j  (v„ wn,ŵj
+(*,v<r„(«,.,))t(v f,(vi-,(*,(i„o))i,J^, iv)t .

Equations (3.30), (3.10), (3.20), and (3.28) give

K ,(vi-,(*,i>,o))i1..)- )v=(v,r,(v,;-v+#W),)''=
= V„V., + (v,f (v f‘w)T")r +
= V„V.y H'_ -  (VdC„(ey,.»),» ')t VdT.K.aa)

+ < («„«,), W)A Vd/„ («„ ..)
V V

= v ..v . ,  w » . (3.34)

Hence,

( v . n < 2 r , V 4 f ( • "• ') )»  (* (* /•  ° ) ) u =

=  ( v „  2T„, V d A ,( .„  ay) ^  ^ V , ') 8 +  * ( ' ’

+  (B ,  Vdf,0 (*■ >*>))A W*o » >A - (3.35)

Substituting now Eqs. (3.22), (3.32), (3.33), iMid (3.35]1 in Eq. (3.29), we obtain

( ( v f  * =

^ V „ V . ,  ( A V V  +  2 ffW  +  A (W ))n , vv
) .

/ V  V
+  ( V . ,V .

v v  \
,+  V .,V „  , w j  - (*■ t v ) i < v< tr,„(«„.J) , w ) A

/  V V
l * ^ ) 4 f W U ( « „ . y ) ) , - i f ,  V ., w ,
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-  (v „  * „  V., (v<r/,(.„ iv )à + 2 (v „ ^v, w „iv^

+2 V., (v ., IV ,,iv^  + ( i ,  ^v.,v,, w „ i v ^  .

V V V V
Next we evaluate the term V ,( V,. 11^+  V ,iV ,i Ä „ , .  From  Eq. (3.27), we have

V.V., i f ,  = <  ».(*.),«» > „V „V „ ü ,  =  (w ..,V«r„(c,,«.)}4 V„V„ JÏ ,  .
On the other hand,

V V V . V .
V.,V„ 2T„ =V, [ < *„e* >,0V.4 H m  ] m  =

=  i ( <  « „ e* > ,  ),(« .) V., i f „ +  < > „ v „ v „  ir ,

=  <r( < *, «, > ,  )„ (« )  V.. +  (iv, v ^ ,( « „  «*))4 V.,v„ i f „ .

Using Eqs. (3 .7), (3.9), (3.10), and (3.26), we have

J( <  * . « *  > »  ) , ( « . )  =  <<(< <#•(«.) > .  ) , ( « . )  =

= i( (^ (vr ‘‘i.-)^(«»))l ),(*■)
= í ((v ¿ ',(*(»(,0))|l. , - V<te(|,(i,,0))|,_„,4T(e*)) ),(«.)
= (v * ‘ (*’(í„0))U -  v.f V, )_(,)

+ ( v ¿ - ( * , ( i i,o))|1. I( « .) ,v /- (# (« 1) ) , ) i -  ( v . r V ,v , r ‘ (4 rK ))„ )4

=  ( V ì " V £ ò | ( ‘' ' ( « . , 0 ) ) „ , o| + f f , ( , | ( I V „  < ? ,(« ,■ ))* ,(€ .■ )

-  M /r.i.l(< » ( « , ,° ) ) ( , , 0, , («* )) 4

-  -  ( v r ( v . r v ) > „ ( < . ) ) ,

+ ( v „  IV ,,V ^ „(e„«.)^  -  ( v , f  V ,

= (vr v(U(*<i"°))(„.i - 3írtv-  -  v.r‘(«<f («.»,,
-  (v.r‘ (v,, V)|,,<r,(.1))i + (v., tv„v<r,(«,,.»)^
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-  ( v . r ‘ ( v . r ' » ' ) l 1^ ( ' . ) ) i + ( v „  .

From  Eq. (3.16), we have

(Tr (v r » ,)’ i ,w ) 1=
= 4  ((v /V )r,4f(«»))i )„<«.) - ((v'-V)^,yf«f(«.)).)4 
= 4  (v.rv. ̂ ('*))4 )„<«,) = -<<( (tv, v̂ (e„ ,,))i )j *j
=  -  ( V „  W ' .W M « , , « » ) ^  -  (tv,

= -(v.,tV,VdA„(e„«,)̂ -2(tt',V,.i„  ̂,
“ d fr» “  E 1- (3-24)> y ;,.o| (< '"(« ',,0 ))l„ JI e  V , ^ h  VI e  / .  Tim », using Eq. (3.2«) 
we get

h  (<*» («.»° )  )  (j .̂0) > <*/to(«*))A =

=  -  < ( v , ' ; . ; l ( d » ( i „ o ) ) w j i' , v £ "  (*> («», o ) ) , „ i0, ) 4 = -  ^ v ^ ( « „ « , ) ,  v „

= - 2(̂ .V..tV,̂  .
Hence,

<*(< *.-.«» > ,.)« ,(< .)  =

= -2^,V.. tVŵ  + 2̂ V„ tV„,V (̂e„e»)^+2̂ tV,V„ ¿f„̂  .
Consequently,

/ v  v  v  v  \(V..V. *„+ v.,v„ ir„, iv) =
= -l(n, V.. (V.. ii..,iv)̂  + 2(v„ W',.,V<V„(«,,t»)^(v.. i„tv)

+ 2(tv,v„ j ^  + 2(tv,v,<M«.«»)>,(v.,V.. ir„tv,j .



Chapter t .  The See on d Variation for Willmore Surfaces of a Space Form 189

=  ( A W ’ +  2 ffW ' +  Â (H '))J(1, W^l

-  < ( * .  V ., ^ V .. a n , w ^  +  i ( v , ,  ( v „  n „ , w ^

+ 2̂ 1V,V.. (w, V., lf„^ + 2(lV,V<U«.,«)>,(v,V..

- 2 ^ v „ f f „ , v , ,  - ( / r , v „ v . ,  I V , («. , «>) , w ) t

+  2 (| v „  ( v . ,  + 2 ( v . , W„ , W^

+  < i , V ^ ( . „ V ) ) 4 ^ V „V .. W ..,W ^  . (3.36)

Next we evaluate the term V »  '(^ ,(1 T ,) )(—^ p tV ^  . On D , we have

M i r . )  =  ( v v , ( ¿ . , , i . . ) , ^ ) ,  V d /, ( ¿ „ , i „ )  =«

=  ( v £ Í ( * < * > . 0 ) ) . * ) 4 ( ^ ] ( * f t , 0 | ) ) V

=  (V (M ,(« íe (é r ,0 )) , V Ü ( * ( * i t O))

“  (^ '(ï.,o)(<M iJ .0)) .- f f ) j  ( V ¿ i0,(d v (é J,0)),<le(é1,0 )^ i lo (é e ,0 )  .

Hence,

(v¿,(Á.(ir,))^1,»v)t-
=  ( V Á’ , [ ( V (W l( ‘' ,’ (?r . o ) ) . « ) í V ¿ ; ; i (á e (é / , 0 ) ) ] ^ 0) ■

• ‘ (< l»(é»,0))(̂ p , 1 V )4

=  ( T F  V l £ | ( * f t . « > W * ) ,  , W ) t

) ,  ( M í . t i í * ^ 0) )  *•’ ’ ) ,

+(v,íi(*(i/,o)),-i,l,/r)í ( v í 'y , o ) ) (-„ ,
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■ ( V f , w \

From Eqs. (3.10) and (3.28), we have

=  { (V ,V j / , ( . „ . . ) )k V4f„(«y,e») ,

and using Eqs. (3.34) and (3.22), we obtain

= (  V., v., iv , + ¿,,Kn-„ + (w, , jrj .

+ \ (V<V.0( . „ .J) ,A lV „+ 2 i-W „ + i , ( J V „ ) )k(V tf»(« .,«>),W')j 

+  (W r„(« „  ( v „  v ,  tv„ +  +  (W, V <r.(.i t v<v. («>,«.), »v

= {v< i/„(e„ i / ),w ')k +  2 #  < w .„,ir > ,<  a , ,  iv > ,

+   ̂<^*(w-o), A H ', + 2 jnv„ +  i „ p r . . ) ) k 

+  <V<(/-,.(e„ey),ir )k ( v „  V,, +  2JT < > ,

+  « > ) . * ) , (  V t f ,  («,, « „) , w ) 4 ( ,y, „ ) ,  t v ) k

=  {v .,V „  W ^ ,B ^  (V (V ,(e„ey), w )k + (V <tf„(e„ej) , i f )k ^V.,V.(

+ 2jr < >»< > , + 2ff < > , (w,« ,,w ) ,
+ 3 (V^(«„ «.),»'), <V^(.y,«.),j)t
+ i  ( -* ,(  A  »V, + 2KW„ + A „ (W „ ) ) , (HV,))t . (3-37)
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Finally, from Eq. (3.22), we obtain

=  (A H ',, +  iKWn +  A „ ( (V .„ ) , H)k < i f „ ,  W > .

+  lll-H'l!’  ( A W ,  +  f i¥ , +  A ,J W n ) , w ) k . • (3.38)

Combining Eqs. (3.36), (3.37), and (3.38), we arrive at the final result

( v r <  A B , +  M B . )  -  , w ) k = { (A W ))n ,w „ ) k ,

where J : G °° {y )  —* G °°(V ) is the fourth-order differential operator given by

A » ') .  =  i ( A + A ) (  i s . + 2K + A ) ( W ) ,

-  2 {(  A +3T+ A ) { W ) „ H , ) k H ,  -  IIIf.II J( A +A)(IV).

+ 2 (W„ Vtf.fc, V ‘¡¡Ac,«,) + 2 (B„ Vdf, («„ .»)), V V .(«„«.)

-  4 ( h „  V „  B, +  2 (w „  V „  H.'j V „  +  V „ J f j  V,, IV.

+  2 ( V „  IV., V rf/,(e„..)^  V., i f .

-  2 ( V„ if., V., , V4f.(«„ €.)

+ 2^V,. if.,V^,(I,,«i)j V,, W.

+ a(w., ..))4 (V^.(.„«/), J .), V *„(.„..) .

Thus, we have obtained the second-variation formula

J £ * w / . ) l  f D v < y v ) M > d A n

with the operator J  given above.
The case dimJV =  3 follows straightforwardly.

R e m a rk  3.1  We observe that, i f  N  is the 3-sphere 5* and H  =  0 —  obviously 

implying /  to  be a Willmore surface —  then the above expression for J  reduces to 
} ( A  +  A ) o  (A  +  2 +  A ), which is just the fourth-order, strongly elliptic operator 
o f Weiner (We/78).
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