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Abstract

This thesis essentially deals with two basic problems, one in Rieinannian, the
other in Conformal Geometry, described in Part | resp. Part IlIl. Part 11 can be
considered as an interlude serving as a sort of bridge between Riemannian and
Comformal Geometry.

The main result of the first part, formulated in Corollaries 1.1.1 and 1.1.2 of
Theorem 1.1, states that any graph 1/ C M x N of a map/ : M — N between
Riemannian manifolds, with parallel mean curvature, is minimal, provided M is
compact or non-compact with zero Cheeger constant. This result generalises the
case M — IRm, N = JR, independently treated by E. Heinz, S. S. Chern, and
H. F. Flanders. Moreover, Theorem 1.2 and Proposition 2.3 show that, for M the
m-hyperbolic space — thus with non-zero Cheeger constant — there exists a real-
valued function /, the graph of which is a submanifold of M x]R with parallel mean
curvature H satisfying ||?]] = e, where e can be any positive constant less than
or equal to the ratio of the Cheeger constant and the dimension m. Furthermore,
the behaviour of the mean curvature of a graph is studied in some special cases.

The second part deals with the problem of finding a criterion for an immer-
sion between Riemannian manifolds to be a conformal one. Sufficient conditions
on the mean curvature, tension field, and ratio of given and induced volume el-
ements in the immersed manifold are derived in Theorem 1. Thereto, a special,
“almost conformal” vector field is introduced, which also allows the obtainment of
a Liouville-type theorem for harmonic maps.

Part 111 is devoted to Conformal Geometry. In chapter 1, the conformal ge-
ometry of submanifolds of the Mobius space is extensively reviewed by using Elie
Cartan's method of moving frames. As the latter method is scarcely used in
the literature, it is treated in a quite detailed way, which might seem excessive
to those who are more familiar with it. In chapter 2, the generalised Willmore
m-submanifolds of the Mébius space 5” are investigated as critical points of a
functional integral, formulated in the framework of conformal geometry, which
was introduced by M. Rigoli, leading to an Euler-Lagrange equation. This equa-
tion generalises the one obtained by R. L. Bryant (for m = 2, n = 3) and later

by Rigoli (for 2 = m < n). Furthermore, a Bernstein-type theorem is formulated



for Willmore hypersurfaces of S", involving the hyperbolic conformal Gauss map,
which generalises the Bernstein theorem for surfaces of S* due to Rigoli. However,
in the general case a condition on the hypersurface has to be imposed, which nev-
ertheless is satisfied by Willmore submanifolds with conformal Gauss map being
a critical point of another, well-known functional. Finally, chapter 3 deals with
the explicit computation of the second-variation formula for a Willmore surface
immersed into a space form. The obtained formula reduces to the one of J. L.

Weiner in the special case of a minimal surface of the 3-sphere.
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Chapter 0

GENERAL REMARKS AND
NOTATIONS

Let (Nn,h) denote two smooth Riemanni&n manifolds of dimension m,
n , equipped with their respective Levi-Civita connections V and V\

If4: M —»N isa C’-rnap, then <frITN — M denotes the pull-back of TN by
4y, i.e. the C*-vector bundle with fibre at * G M given by T*a)N. The differential
df>of ~ is a GI- 1-form on M with values in <jrITN. 4>ITN has a Riemannian
metric induced by the metric h of TN. Let V* denote the induced connection
on 4>~*TN, i.e. V* is the unique linear connection on 4>~ITN such that for each

smooth section Z of TN and x 6 M, X 6 TaM

(o0.1)
The fir$t fundamental form of 0 is the semi-definite 2-covariant tensor field 4*k
The second fundamentalform of 4is the section Vd”~ of the vector bundle G* T*M ®
+~ITN -> M given by

vA(x,y)=vijr'cwn)- MV *r),

where X, Y are smooth vector fields on M.
The tension field of ~ is the section of 4~IT N given by

Tt = trryce, (V) .

4 is said to be harmonic, if it has vanishing tension field. The map ” is said to
be totally geodetic, if it has vanishing second fundamental form. If N = JR, then

T* = A 4&is the Laplacian of 4
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Let U C Af, 0 C Stm be open sets and x : U -* 0 be a map that defines
a co-ordinate system. Using the index range «,/,&,... € {l,...,m } and writing
locally the metric g on U as g(x) = g,,dx'dxJ (here we use the index-summation
convention), that is, ~ , and denoting by [f,J] the inverse matrix of
\&ij\i by P the determinant of [fjj], and by the Christoffel symbols of the

Levi-Cevita connection of A f, we have the standard expressions

If X = XKEf is a smooth vector field on Af and * = (*) e x € Af, we

have the following formulae

div(A-) = ~ X ‘+ X'*n (0.3)

(0.4)

If« : Af —=IRis a (™-function, then the fradienf of « on U is given by

= <°-5>
If Af is oriented and x is an orientation-preserving chart, then the volume element
of (Af,g) is given by dvt = \f\g\dxl A ... Adx*.

Let V C AT, O' ¢ IRn be open sets and g : V — O' be a co-ordinate system on
AT. Then, using the index range or,/?,... € (l,...,n), we have, on V, *(») =
hapdg°dyl Denoting by (&"*] the inverse matrix of |JA*Y], by *be Christoffel
symbols of the Levi-Oivita connection of AT, the first and second fundamental

forma of d : Af -* AT on U are given by (assuming that +(U) C V)
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and the tension field of ~ by

( *\(7 iwp» W Ly, ) (0.6)
Vd**o»> Jar* a* a*)

Thns harmonic maps are locally solutions of a system of second-order semi-linear
elliptic partial differential equations. From regularity theory of solutions of elliptic
equations we know that C7*harmonic maps of smooth Riemannian manifolds are
smooth (Mo/66). In particular, totally geodesic C'-maps are smooth. Such maps
carry geodesics of M to geodesics of N.

Note: if AT= MI, Eq. (0.6) takes the following form
A* = 0.7)

Now assume that -* (JV,h) is an isometric immersion, i.e. 9 —4*h.

Then the mean curvature H of 4is exactly

Let V —M denote the normal bundle of Then 4~ITN = dj>(TM) © V, where
the direct sum is an orthogonal one. The second fundamental form is a sec-
tion of Q*T*M ® V and if is a section of V.
If Z is a section of f~ ITN, we will denote by ZT and Z1 the orthogonal projec-
tions of Z on the vector bundles d~(TM) and V, respectively. V has an induced
Riemannian metric from the one of The induced connection onV is
given by

viz=(vi“z)1
for each C-section Z of V and X € TnM ,x G M.
4 is said to be a minima/ immersion, if H = 0. That is, 4 is minimal, if and only
if ~ is harmonic.
& is said to have convtant mean eurvo/ure , if the norm [|iff] of if in V (which is
equal to the norm in +~ITN) is constant.
If ~ is an isometric immersion of class (7*, then 4>is said to have parallel mean

curvature , if H is a parallel (/*-section of V, i.e.

VT =0.
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Since V¥ € M and X € T ,My d]JIfT||I(X) = 2 if ~ has parallel
mean curvature, then it also has constant mean curvature. For n = m + 1 the
converse is also true.

Given an isometric immersion into a Euclidean space tjt: (M m,4*h) — (IRn, h),
the corresponding Gauss map of 7 1 (M, 4>*h) = G'(n,m), where G(n,m) is
the Grassmannian manifold of m-spaces through the origin in JR", is given by
7+(x) —d4>*(TxM ). Considering (?(», m) with its usual Riemannian structure (see
e.g. Ref. (Ko-No0/69]), we have the following relation between the mean curvature
H of >and the tension field Tl4 of -y* due to Ruh and Vilms [Ru-Vi/70] (see also
Ref. [Ee-Le/83])

T4 = mVIH .

This equality means the following:

V*€ M TI4(x) € m) and, using the canonical identification of
Fi(WG(, m) = (=>(9)=* (I.(*))x= ®#,(r™))",
we have

r,(x)(d~(X)) = mViH h VXe T.M .
Hence, ~ has parallel mean curvature, iff 72 is a harmonic map.

On the vector bundles Q*T*M®V, i.e. on tensor prod-
ucts of Riemannian vector bundles, we will employ the usual induced Riemannian
metrics which at each fibre are the Hilbert-Schmidt inner products. In general, if
( :W — M is avector bundle over a manifold A/, then C*(W) denotes the vector
space of Ck-sections of W .

Note that we are using the following sign for the curvature tensor of (A/, g)
«"(X,Y)Z=-VXVyZ +VyVXZ+ V\XN\Z

and that, if P = |e(,«*] is a plane of TmM , where etl &is an orthonormal basis of

P, the sectional curvature of (M, g) of the plane P is given by

X (P) = oo

Two very well-known functionals in Riemannian Geometry are the functional
volume, applied to isometric immersions, and the functional energy, applied to

maps between two Riemannian manifolds.
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Let M m—* (N, k) be an immersion of an m-manifold M into a Riemannian
manifold (AT,/k). For each oriented compact domain D C M (and we will denote

by D the interior of ZJ, that is, Z? = D U OD) the volume of 4on D is given by
\ON=jDmam,
where dV~h is the volume element of (D,~*k).

Let (™)*e(—«) be a smooth variation of 4>such that the vector variation W =

~ ] |F0€ G°°(+~ITN) has compact support in D. Then it is well-known that
lvi>W .)L.= - iDm(Ht,W )kiVrl.,

where H+ is the mean curvature of 4
That is, the Euler-Lagrange equation of this variational problem reads H+ = 0,
i.e. the critical points of Vd are the minimal immersions.

If ~is a critical point of Vo, then (see Refs. [Si/68], [Sp/79]) the Hettian of Vo at

4 satisfies
= JEv,(*)]._t= fo (jt{W AW ~)kdV,.h. (0.8)
Here
/((ifl)= - 8 »rl-A (Wx)- (Bicci,(»'x))-L
with Ricci*(Wx), = E 6 D, where X ,...X

is an orthonormal basis of (7»Af,p*A), RN is the curvature tensor of (JV,h), ( )°*
denotes the orthogonal projection of ;(~ITN onto the normal bundle V of 0. A is

the elementofC~(®V® V) givenby A, (W f) = ]T (Vd*.(X,X/),tV,1)IVvd~(If, Xy),

and where denotes the Laplacian in the normal bundle:
=t V1 Wx(X,X,)="f - Vi xw;
11 11

(assuming that the X,- are extended as local sections of TM defined on a neigh-
bourhood of x, constituting a local frame of M ).

Note that we are using the opposite sign of the Laplacian of Eells and Lemaire
[Ee-Le/83] for sections of Riemannian vector bundles, and the sign of the Lapla-
cian of functions adopted by Chavel (Cha/84j.

4>is said to be (tirieilf) volume-»table in D, if Hess VD(4){W,W) > 0 (> 0), for
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allw e ITN)\{0) with compact support contained in D.

The differential operator J+ : G°°(V) — C°°(V) is the Jacobi operator and
is L’ -selfadjoint strongly elliptic [Si/68]. A section W in G°°(V) is said to be a
Jacobi field on D, if /¢((VF) = 0 on D. If Z is a Killing vector field on (N,h), that
is, Z is a vector field on N such that the Lie derivative Lzh of h along Z is zero,
then (“_1Z)X is a Jacobi field on D.

If 0 is an immersion of a hypersurface M minto (\Tm+l,fc), then Eq. (0.8) is
simpler. Let v denote a unit normal to ¢=on D. Then Wx = uu with tt€ C™(D),
that is, u is a smooth function on D with compact support contained in D. In

this case Eq. (0.8) reduces to
= Jd.(-A.- (B+ N HXrfv, ., (0.9)
= /D(i?.r-(*+iv*n.)*v .,

where Rs = Ricci*(i/, ux) = ~ (d~*(X,),17,)d~ (X ,), 1t is well-known
[Fi-Sch/80] (Lemma 1, Th. Ij*[Si/68] [Sm/65] that <tis strictly volume-stable on
D, iff there are no Jacobi fields defined in a subdomain D'¢c.D which are zero on
arr.

If we have a map 4>: -* (Nn,h) between two Riemannian manifolds,

for each compact oriented domain C ¢ M the energy of ~ on D is given by
a.w -I/,w rw ,

where dV, is the volume element of {D,qg).

If $ is an isometric immersion, then Ed{4>) —

It is well-known that tftis a critical point of ED, iff 0 is a harmonic map. If* isa
critical point of Ed, then, for avariation (*t)(€(_M) of such that W = "A0G

G°°(4>~iTN) has compact support contained in D,
= ( (-« - Rkci"(»),
B (0.10

where A isthe Laplaciau on € ITN and Ricci*(W), = "R % N{d+a(X t)tW)4+a(X{)

with X i,... ,X Han orthonormal basis of (T,M,g) [Ee-Le/83].
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A harmonic map «tis said to be energg-ttttble , if, for every oriented compact do-
mainzZ7c M andallW € C°°(4~ITN) with compact supportin D, Hes&ED(")(iy, W ) >
0.

From Eq. (0.10) it follows obviously that, if (TV,h) has non-positive sectional cur-
vatures, any harmonic map «ft: (M,g) —(TV, h) is energy-stable.

For a minimal isometric immersion «t: (Ai«ft*h) — (TV,h), the following relation

between HessVD(*) and Hess-Eoi*) holds, for W € 0?(V ) (see Ref. (Fe/85)):
= HessKd(M(iv,w ) + i jD](V* V) TlI« v ..

On a Riemannian manifold can be defined some very important constants,
viz. Gheeger, isoperimetric, and Sobolev constants. These constants may provide
estimates of eigenvalues and eigenfunctions for the Laplacian operator on domains
of M (relative to the Dirichlet problem). One can find an extensive study on these
constants in Refs. [Cha/84], [Be-Ga-Ma/71]. In this manuscript we are only going
to use the Gheeger constant, the definition of which we give here.

Let (Afm,g) be a non-compact oriented Riemannian manifold with dimension m >
2, and possibly having a boundary. The Gheeger comtantof M is the non-negative

number

where D ranges over all open submanifolds of M with compact closure in M and
smooth boundary, V(D) is the volume of D, and A(dD) is the areaof the boundary
of D.

Due to a result of Yau [Ya/75j (see also Ref. [Gha/84], Theorem 5, page 98),
in the definition of f)(M ) it suffices to let D range over open submanifolds of
M that are connected. We note that, if M were compact (without boundary),
the constant (A7) defined as above would be zero. In fact, there is a different
definition of the Gheeger constant for a compact manifold (see Ref. (Gha/84]), but
we are not going to need it.

The simplest example of complete non-compact Riemannian manifolds with
Gheeger constant equal to zero are the timple Riemannian manifolds, i.e. the Rie-
mannian manifolds (M m,g) such that there exists a diffeomorphism «ft: (TV/,f) —
(2Rm, <, >) onto JRm satisfying Ag <,>< pg for some positive constants A,p.

But there exist also complete Riemanniau manifolds diffeomorphic to (J2m,<, >)
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with positive Cheeger constant, as for example the m-hyperbolic space. In fact, if
{M m,g) is a complete simply connected Riemannian m-dimensional manifold with
sectional curvatures bounded from above by K, where K is a negative constant,
then (Ya/75)

(m-1Jv/Tjr. . (0.n)

This result was obtained by using Bishop's comparison theorem to arrive at Ar >
(m—1)y/—K, where r is the distance function to a fixed pointin (A/, g), integrating
Ar, and using Stokes' theorem.

Another way of estimating (AJ) is the following inequality due to Gheeger (see
e.g. Ref. [Cha/84], theorem 3, page 95)

HD) > i ~' (D), VE>c AMonuun,

where A(D) is the first eigenvalue for the Dirichlet problem in the domain D.
Using this fact and an estimate of the lowest Dirichlet eigenvalue of the geodesic
disk of radius 6 in the m-hyperbolic space Um of constant sectional curvature
K — —1, one can see that = m —1 (see Ref. [Cha/84], page 96), so
inequality (0.11) is sharp.
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Chapter 1

THE MEAN CURVATURE OF A
GRAPH

1.1 Introduction

In 1955 Heinz [He/55] proved that, if * = z(x,jr) is a surface of JR* defined for
z* + y* < R* with mean curvature satisfying \\\\ > a > 0, then R ~ J. Thus, in
particular, if x is defined in all JR*, then inf]JIf|] = O, which implies that, if z has
constant mean curvature, z must be a minimal surface of IR*. In 1965 Chern (see
Ref. [Ch/65], Cor. of Th. 1) and, independently, Flanders (Fla/60) obtained the
same result for hypersurfaces of 2RB+l defined by the equation z —z(xi,

One can formulate a generalisation of the above problem as follows:
Given two smooth Riemannian manifolds (A/,g), (N, h) and a smooth map /
M -* AT, the graph of /, 1/ = {(*,/(*)) : x € A/}, is a »»-submanifold of the
product M x N of co-dimension n. We take on Al x N the Riemannian metric

product g x h and on 1/ the induced one.

Question (Eells) Aitume that T/ hat parallel mean curvature. Duet thii imply

Tf to he a minimal tuhmanifold of A/ x N 9

The basic idea of Ghern and Flanders to tackle this question, in the particular
cases mentioned above, was to find a way of writing the mean curvature of I) as
a divergence of a bounded vector field on A/ which involves first derivatives of /.
This procedure suggests us, in the general case, to relate the mean curvature of
1/ to the second fundamental form of /. As we will see, the relation between the
mean curvature of 1/ and the tension field of / is more relevant in some special

cases, for example when / is an isometry or even a conformal map, a Riemannian
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submersion, a harmonic morphism, or when n = 1.

In the general case we are going to impose a condition on the Riemannian manifold
(Af, g) that positively answers the above question (see Cor. 1.1.2). Moreover, we
will also show that the absence of this condition conjures up counter-examples (see
Th. 1.2).

Let us consider 1/ as an embedding
I>:Af - (M xJV .jxk)
)
So we have two Riemannian metrics on Af, viz. g and the one induced by 1/,
rI(fx*) =f+ A,

which makes 1/ : (A/,g + f*h) —= (Af x N,g x h) an isometric immersion.

Let V and V* denote the Levi-Civita connections on (M,g) and (Af, g + /*/»),
respectively. Let V be the normal bundle of 1/ in TfIT(M x AT)= TAf x f~ITN
and V 'rfl) € C°°(0* T*M <pV) be the second fundamental form of the immersion

I/. The mean curvature of 1) is the section

of V. Let € OM(& TOM ® f*ITN) be the second fundamental form of
the map / and 7) its tension field, when Af is considered with the metric g. We
denote by and V ¢ the induced connections on f~ITN and iy~ TfAf x AT),
respectively, and V 1 denotes the connection on the normal bundle V. Let (,)x
and (,) T denote the orthogonal projections ol TM x/~ITN on V and on dT/(TAi),
respectively, relative to the metric g x h.

In general, there is no natural way to relate the Levi-Civita connections V and
V* of resp. (Af, g) and (Af, g+ f*h), but we have the following relation among the
connections V, V*  and Vr/ s

ifX € 0°°(TM), Ue 0°°(f ITN), then (X, U) given by (X,U). = (X.,U.), Vx€
Af, is an element of GOO(1j‘, T(Af X AT)) and we have

W1l'(x, u) = ( vfu), we . (i.i)

To prove Eq. (1.1) we only have to consider the property Eq. (0.1).
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1.2 The General Case

Next we are going to derive an expression for the mean curvature of 1) and its

covariant derivative in V.

Let be a local orthonormal frame of (A/, g). Defining
i; ~ + mX,),<MXj)t, Vi,j E{l....m} (1.2)
and denoting by the inverse of the matrix tee have
mB = f; "V 'OHXi.Xj) .

Let (7,)i€iEmbe alocal orthonormal frame of (Af, p+/*A). Then, (X,,df(X,))i<,<m
is a local orthonormal frame of dTt(TM). Next we define the following sections

wec“(/-*rjv),z e c~(rAf)

W = trace,,+/**,(Vc(f) (1.3)
(i.4)
ij-i
We note that Z is well defined over all M and that another way to write Z is

z = f;(ividf(y,))ix . (i.s)

Then we can formulate the following lemma:

Lemma 1.1 VX, Y GC7°°(rM)

() VdI>(X,y) = (0,V<tf{X,Y))X

(«) mff= (-Z2.VV-df(Z)) = (0.1V)1

(e==) ">Vx' ‘ff = (o,vi"V - vj/(x,z))- (Vxz.df(VxZ))

mVifff = (0, VjfV - V<V(Jf,2)x
Prtw/. Using Eq. (1.1) we have
VdTyfx.r) = V.T(dr/(y"))-dr/(V:y)

= v7(y,df(y))-(viy, " (Viy))
= (vxy v fw(Y))) - (viy,df(viy))
= (v*y - v;y, Vdf(X,y)+ df(Vxy - v;y))
= di>(Vxy- V » + (0, V«r(x,y)).
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Since V.d 1)(X,y) € C7°°(V), we get (i). Thus, we have
nmH = ",‘_3I;ﬁ*ﬁ"\/vr,()(,,)(l):(QI,_EI
[i™| ja
= (Otrree(+.I(ViV))i
= (0.W)-1= (0,tV) - (0»V)T.
since (O,WT = E", ((0, (V), (X,<tf(X,)) ~ (X ,*(X,)) = E" . (tV,~f(X1))4 -
(X, #(X)),
»e* = (0V)- (£ (WLEHX)). X, £ (w, <f(X))t4T(X,))
= (0,tkK)-(z'V(2)),
which gives (ii).
Finally, differentiating the latter expression and using Eq. (1.1) we obtain

mVT.tr = (O .ViV)- (VxZ,Vf\jf{zZ)))

= (QVvfV) - iz, K, 2) +.if(\WKz2))

= (0,V f'w - W(X,Z)) - (VXZA(VXD) . V
The following lemma will often be used.

Lemma 1.3 Letx6 M, X € TJV/, and *e TAMN. Then (X,0),(0,*) € T,M x
r/(,JvV and

(i) *=0 iff (0,*)x=0

(ti) (X,0)€ V. iff X = 0.

Proof. At the point x we have
©, = (07 - (0,OT= (o) - £ <0,.), (X, -(MX )N (X,, <tr.(X)
= (-E(«,«r.W)),T<.*-£<* <tr.(X,),4r.(X,)). (i.c>

If (0,*)x = 0, then the first component of the vector in Eq. (1.0) is also aero.
Therefore, since (X,)i£.£mis a basis of 7*.M, =0,Vi€ (I,..., m),

and the vector in Eq. (1.6) becomes

0= (0,5)x= (0,s) .
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That is, z = 0 and (i) is proved. Now we prove (ii):
If (X,0) € V,, then VF € T,M <(X,0),(Y,4f.(Y)))txk = 0, s0 (X.V), = 0. Hence
X =0.

In Ref. [Ee/79] it was pointed out that T/ is minimal, iff
id:(AlLg+ fh) - (Alg) f :(Al,g+ fvh)- (Sh) @.7)

are both harmonic maps.
In fact, since 1) = (id,/) : (AT,g+ f*h) -* (Afx N,g x h), tnH = (T.%, T/), where
are the tension fields of the maps id and / in Eq. (1.7).

The system (1.7) can be reduced to an equivalent equation.

Propoaition 1.1 The following itatementt art equivalent:
(i) I/ is minimal,
(#=) [/ :(Af,g+ f*h) -* (AT, h) it harmonic,
(i) W = (InK«)(f+/.,](V<tf) = 0.
Alto, Tf it a totally geodetie tubmanifold of M x AT , iff / : (M,g) = (N,h) it a
totally geodetic map.

Proof. From Lemma 1.1 (ii) — (-2 ,W —df{Z))%hanca —Z m and
IV —df(Z) = Tf. Therefore, if (i) holds, then (ii) and (iii) obviously hold.

If (ii) holds, that is Tf = 0, then mH = (7jj,0). So, as H € C°°(V) and from
Lemma 1.2 (ii), H = 0.

If (iii) holds, then mH = ~(Z,df(Z)) eV n dIf(TM). So H = 0.

The last statement follows immediately from Lemmas I.I(i) and 1.2(i). 9

To prove the main theorem of part one of this work we recall the following
formula (see Ref. (Ee-Le/78], page 9):

Given a map ~ : (P,,gi) —* (P,,gt) between Riemannian manifolds, we have
, (i.8)
where dj> mT+ is the vector field of TPt given by

(i* T,x)ft= (i+(X),T,)n,vxe o“ (rr.),
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and where (, ) is the induced Riem&nnian metric in the vector bundle ® T*PX®

*'T P, thatit, V¥e M, (i*,Vr\ ) (*) = En. where

«1,..., ep is an orthonormal basis of T*P\.

In particular, if 4>is an isometric immersion, then, since T+ is orthogonal to

d<t>(TPt), Eq. (1.8) becomes
(1.9)
This formula can easily be computed directly, too.

Theorem 1.1 Attume that 1/ hat parallel mean curvature. Lete = [[ff|[#A (c it

a eonitant). Then, for each oriented eompact domain D C M, toe hate

J_A(aD)
- m V{D)

where V(D) it the volume of D and A(dD) it the area of dD, relative to the metric
9-
Proof. From Lemma 1.1 (iii) we have VX € G°°(TM)
0= nmIxH=(0,VC'w - VdfiX.Zz))» ,
hence, from Lemma 1.2 (i),
vii"w=\jf(x,z).
From Lemma 1.1 (Ui)
™MVe/ h = ~{VxZ,4f(VxZ)). (uo)
From the latter equation we can prove now that
(un

Letxo GM and X j,...,Xm be a local orthonormal frame of defined in a
neighbourhood of x0 and satisfying VX,(x0) = 0, Vi= 1,...,m. Such frames can

be constructed using parallel transport in (A/,g).
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Then, Z = lyVv,df(Xi))hXj in a neighbourhood of *0-
Since VY ,(*o0) = 0, we have at the point x0

Yv.z = £ V* (i<W ,<V(A]),A,)

£ </(«* <W,<<r(A,)I(A)A, ,
hi (« r(A,))J(A))

S0 V»,j

{VX,Z,48(Vx,2)), (Aj.XKAY))A =

= £ r,Ai, <yv,Anx>))>)ixi),

and, therefore, from Eq. (1.10)

. rir,fl = E ™ IJT >, *>(*]
n (vrirfl>)(xo) il (y > ( ))#**
= if I—f“ <(V*z,<V(VX.Z)), (JO,<r(A,)>,
xR

= £ -M (iR «U K )
= :m,«-(»*-w AA»)), ). (AL,
Since EE.I1 0*' (W ,d/(X*))A= (Z,Xj)f , Vi= 1,...,m in a neighbourhood of x0,
m(V>_Adr/)(xl) = £ -<i(<ZX,)O)NA)=£ - (VXZ,A)((x)
= -div,(Z)(*))

and we have proved Eq. (1.11).
On the other hand, from Eq. (1.9) we have

(V''AxfT,)= -miliar = —me* .

So Eqg. (1.11) gives
m*c* = divf(Z) onM . (1.12)
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Let 5 C M be an oriented compact domain and d\,dAt denote the respective
volume elements of D and dD relative to the metric g. Applying Stokes’ theorem

we get

rnVV(B) = J™m'cdV, =~div,(Z)<<V",

where ft is the outward unit normal of dD.
From the Schwarz inequality |(Z,ft)f \< [IZILIIfIl,— 11ZI], and Lemma I.1(

obtain

m.=m|liflU = (- zw - anz)\u > |IZ]), .
Hence

m'cV(D) < |(Zf)f A <J modAt = meA{dD) ,

soc< i%‘;-D.) "
m V(D)

Corollary 1.1.1 If (M ,g) it an oriented non-compact Riemannian manifold and

f :M —eN it a smooth map such that 1/ hat parallel mean curtature H, then

priusil*’

Corollary 1.1.2 If (A/,g) it an oriented, compact (without boundary) manifold
or an oriented non-compact Riemannian manifold with Gheeger constant equal to
zero (tee Gh. O0for definition), then for any Riemannian manifold (N,h) and any
map/ :(M,g) - (AT,A), if the graph 1} : (M ,g + f*h) -» (M x N,g xh) it an im-

mersion with parallel mean curtature, itit infact a minimal submanifoldofM xN .

In Chapter 0 we recalled that, if (A/, g) is a simply connected Riemannian m-
dimensional manifold with sectional curvatures bounded from above by K, where
K is a negative constant, then P)(AT) £ (m - \)y/-K, and that, if M is the
m-hyperbolic space, P)(A/) = m- 1. Therefore, in such cases Cor. 1.1.2 cannot
be applied. Moreover, we will give next an explicit example which shows that the
condition on the Cheeger constant of (M ,g) is a fundamental criterion for a graph

with parallel mean curvature to be minimal.
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Theorem 1.2 Gontider the 2-dimeniional hyperbolic »pace (H*,g), where H* it
the unit open ditk of 1R1 with centre at the origin and g it the Riemannian metric
on H* giten by
t. W (1.13)
I (DS
The function f : H* — IR given by

Iy =3t ~ieo«k(r)- h*,

where r(x) = log (]4”]) »* the dittance function from the origin in H*, it tmooth

on allH*, and 1/C H* x IR hat conitant mean curvature |JiT]| =

Proof. It follows from Lemma (1.3), to be given and proved in the next section,
that we only have to verify if / satisfies the equation div, ( =
First we calculate the Christoffel symbols of the m-hyperbolic space (Hm,g), where

g is given by Eqg. (1.13). Defining the identity map x : Hm — IRm as a co-

ordinate system, we have ~ where ¢i,..., em is the canonic basis of 2Rm.
Let g,j = g(e,-~ej) = (LFIi and \g}] be the inverse matrix of [fftJ], that is,
gij _ Then, using Eq. (0.2), we obtain
2
rj= K 1.{6kjZ, + bikXj - 6,jXK) .

Now we prove that / is smooth.

V*6 ff*\{0}, « e T,H* = IR* we have dfs(u) = ~j(cosh(r(x)) —I)drMu). Note

that cosh(r(*)) = and that dr,(u) = jzy, [« So
2< X, « >
K (1.14)
<r-(")= (i - - -
Now we show that §£i(0) = 0 fori = 1,2.
lim V(% <.)-1(Q) 1 -N ettmak-Ulhl) /T ]
i*/. w( DA
Since lim,_ = 1 and tanh 1: (—1,1) —* (—o00,+00) is an increasing
function, we have V3 > 0,3c > 0 such that, VA:0 < < c, <1+

and, Vt€ [0,2tanh~I(]A])], y/l(cosht —1) < S. Hence,

N bnh_1(a) 13
(coshl - I)d< < TrT2tanh-‘(JA]) < 26{\ + 6) .
Ad V2 ik
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So we have proved that Eq. (1.14) also holds for * = 0, which proves the smooth-
ness of / on all H*.

Fnally.e «1d.«, div, (“rfoy).

lTﬂ'e—vee%fCc‘»i]eIds «'l*)\ = =T i —1,...,m form an orthonormal frame of
So
v/.=EZ,«.(W = *»d »VIK» =

Using formula (0.3) we get, for m = 2,

Remark 1.1 As a consequence of Cor. 1.1.2, Prop. 1.1, and Hopf's maximum
principle (see for example Ref. [Cha/84]), if M is an oriented compact manifold,

N = jR", and I) has parallel mean curvature, then / is a constant map.

Remark 1.3 In Sec. 1 we presented the result of Chem [Ch/65] on the mean
curvature of a graph as a starting point for the main theorem of this section. This
result was a corollary of a theorem in his paper quoted above, which we reproduce

here:

Theorem (Chern) Let P be a compact piece of an oriented hypenurface of
dimention m with imooth boundary dP which it immerted in a Euclidean tpace
of dimention m + 1. Suppote the mean curvature ox > ¢ > 0. Let a be a fixed
unit vector which maket an angle < f with all normal» of M. Then mcV. < L.,
where V, it the volume of the orthogonal projection of P and Lmthat of SP in the
hyperplane perpendicular to a. If M it defined by the equation z — F (*,,...,xm),

for ** + .. + < R, then cR < 1.

The above case seems, at first sight, much more general than a graph, but, in fact,
it is essentially the same, as we are going to explain in detail.

The condition .. Let a be a fixed unit vector which maket an angle < J with all
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normalt of P ...” means the following:

Let us assume that the angles are < Denote by $ : P"1—»2Rfn+l the immersion

of P into the m + 1- dimensional Euclidean space, and let 4: P — [a]x ~ JRm

denote the composition of $ with the orthogonal projection of JRm+l onto [a]x.

That is, = $(x) —($(x),a)a, Vxe P. Then 4is also an immersion of P, as

follows straightforwardly from our assumption concerning the angles.

Vmand Lain Chem's theorem are resp. the volume and area of P and OP relative

to the metric induced by the immersion ~ of P into [a]x £* IRm. Writing now

2Rm+l = J«JIX x («], then

*:P - Rm+l=WAXx [a] is given by

$(x) = (<E(X), < $(x),a > a) cs (M (x),< $(x),a >), since M (x)+ < $(x),a > a =

*(*)m

Thus $ can be written as $(x) = (0(x),/(x)), where / : Pm — 1R cs [a] is a

smooth map and 4 : Pm —* JRm c* [0]x is an immersion. We can consider $

as a parametritation of a graph, where the first component of $ is the isometric

immersion ¢: P m— IRminstead of the identity map, which is the case of a graph.
In the same spirit, we can also improve our main theorem (1.1) for the case of

a parametritation of a graph:

Let (N*,h) be smooth Riemannian manifolds and P m an m-dimensional

manifold. Let « = (®,/) : (P,4*g+ f*h) — (M x JV,g x h) be an isometric

immersion with components 4>and /, such that 4: (Pm4>*g) —* (Alm,g) is an

isometric immersion and / : P —* N is a map. Let H be the mean curvature of

the isometric immersion $. Then Th. 1.1 can be reformulated as follows:

Theorem 1.1* If $ hat parallel mean curvature, then, for each compact oriented

domain Tfc P, we have
1 A(OD)

e
“mvVv(D) 9
where ¢ — |[H]A (conttant), V(D) and A(dD) are retp. the volume of D and the

ana of OD relative to the metric

The proof of this theorem is analogous to the one of Th. 1.1, with some obvious

changes of notation.
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1.3 Co-Dimension One

If the graph 1/ is a hypersurface of Af X N, that is, N is of dimension one, we
can obtain an estimate for the infimum of the norm of the mean curvature of 1),
without needing to impose the assumption of 1/ having parallel mean curvature,
as in the general case.

Let us suppose that N is oriented and of dimension one. Let Y be a unit
vector field defined on all (\T,h). Define u := ~1 + |||l where |I]] is the norm
of df in Riemannian vector bundle & T*M ® f~ITN. Denote by V / the smooth
section of TM given by <V/, u)f = (4f,(u), Yak, V*€ M , « € TJIf. Thus,
IRV N E: i Y/ | v — V /,F) is a unit normal of I).

In this case it is easy to derive an expression for the matrix (here we use the

same notations as in Sec. 1.2). Denoting p, = (df(X,),Y)h, we have

= Ev\fl}(x,x,)- £ (¢ w V«>(x(X]j).
1=1 <J-iw

From Lemma 1.1 (i), we have

Varpix X) =<VdlxX) =i (X))

Hence,

For M —IRmand N — IR, this expression is equal to the one obtained by Flanders
(Fla/66].

Lsmma 1.3
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In particular, die, (-~ S £ _) = me (e eonctant/, iff [[if|].j = Ic]

Proof. Let xo € A/, and Xi,...,Xm be a local orthonormal frame of (A/,g) in a

neighbourhood of X0, such that VX,(x0) = 0. Then, at the point X0,

t(vr(™~m),r\

t (<SHE)(X.W(x,) + AVdf(x,X,),
= 4f(X)+ '-1,,yy

(-¢ £ <V*<r*>«ar(X)+ £r,, y

= (- E ¢<v*(x,x),tf(X)>.«ir(x)+ zT<m
«j-1 w

= (-4 £ <V<I(X,X,),y>. <jnx,),y >,df(xy) + ~T/,y
woij-1 w

I A

*m in < H,v >tk (»0) (from Eq. (1.16)).

Let |I\<y]| denote the norm of Wdf in Q*T*M ® f~ITN.

Proposition 1.2

(a) IfD C. M it an oriented eompaet domain of M , then

ninEIRRS = v (o)

where A(#D) and V(D) are retp. the area of dD and the volume of D, relative
to the metric g. In particular, if (M ,g) it a compact manifold or non-compact
with Gheeger constant equal to zero, then inf||IT||xA= 0.

(1) If (Al,g) it a connected, oriented, complete Riemannian manifold and
-JOa”i.intcraU . in (M,g), then there exist» ax € M, such that H, = 0.

Moreover, if < ff,i/ >,** it contained in [0,+00) or in (—00,0], then H = 0.
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Proof, (a) Lete = min]|If]} Clearly we may suppose e £ 0. Since D is connected,

1L = < ff, V*€D
or (i-i«)
1*1. = Vie d
Denoting by dVt and dA, the volume elements of D and otD, respectively, and by

Hthe outward unit normal of dD, and applying Lemma 1.3 and Stokes' theorem,
we obtain

'V(D) < iDII*lodvi= \\D<H v >Pdiv

(b). Suppose that H* ~ 0, V* € AT. Note that, in this case, Eq. (1.16) holds on
all A/.

Let 9= where ¢ :hIT*M — is the Hodge operator .

Then, dO = —divf{~f)dVI. Since we are supposing that ||*||f is inte-

bundles A\IT*M and Am_I T*M, |[0]l is integrable on (A/, g), i.e. 9is an integrable
(m—)-form of (A/,g). By applying the extended Stokes’ theorem of Gaffney-Yau
(see Ref. [Ya/76], lemma of Sec. 1) to 9, we may take a sequence of compact do-
mains D, of A/, such that B, C B,-+i, V», U#. = A/, and lim,_+00/fljd9 = 0,
that is,

Therefore, we can conclude from Eq. (1.16) and Lemma 1.3

eesooogi 1S1PPW, = 0.

Consequently, JB( |IR|f¢*dV# = 0, VS, i.e. H = 0, wliich is a contradiction. If we
suppose that < H,v >#* is contained in ] 0,+00) or in (-00,0], then, again, Eq.

(1.16) holds on all A/, which implies If = 0 as well. V
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Remark 1.S In Prop. 1.2(b)(i) we could only require the weaker condition

for some x0 € M, where 2?A(x0) is the geodesic ball of (M ,g) with centre x0 and
radius R. In fact, the Stokes' theorem of Yau still holds with this condition (see

Appendix of Ref. [Ya/76]).

1.4 Graphs of Isometric Immersions, Conformal
Maps, Riemannian Submersions, and Har-
monic Morphisms

In Sec. 2 we have seen that for amap / : (M,g) — (N ,h), 1/ to be minimal is in
general not equivalent to / : (M, g) —=* (N, h) be harmonic. However, we will treat

some cases where the equivalence does hold.

A map : (Putt) (A .is) between two Riemannian manifolds is said to
be (weakly) conformal, if — f?gi, where p : Pi —* IR is a smooth map. If
dimPi > dirnPj, then 4>is constant. If p is a non-zero constant, 4>is said to be a
homothetic map and, in particular, an isometric immersion, if p == 1.

Ifp(x) / 0 V*€ Pi, lLe. $is an immersion, then we have the following well-known
relation [Ho-Os/82] between 7*, the tension field of <> (Pi, gi) -* (Pt,gt) and H+,

the mean curvature of the isometric immersion 4: (Pu<t>*gj) —* (Pi, g*):
eJdr,= pTt+ , (1.17)

where m — dim(P,) and w — V#llogp. We recall that a Riemannian manifold
(M, g) is said to be (strongly) parabolic, if it admits no non-constant subharmonic

functions / (i.e. A/ > 0) that are bounded from above.

Proposition I.S Lei f : (M m,g) -» (AT",A) he a conformat map with f*h = A*g.

Let H be the mean cureature of Tf. Then tte hawe:
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mff= (0,(1+A)-,T/HL.

In particular, if x0€ M, H~ = 0, iff T/(x0) = 0. Therefore, 1/ it a minimal
tubmanifold of (M x N, g x h), ifff : (M,g) = (N,h) is aharmonic map (and
in thit cate, for m £ 2, f it a homothetic map).

(b) Ifm —2, orf it an itometric immertion or, more generally, f it a homothetic
map, then ly hat parallel mean eurtature, iff ly it minimal.

(c) Ifm ¢ 2 andly hat parallel mean curtature, then

with ¢ = |ETI (conttant). Coniequently,

(i) if (M ,g) it parabolic or if A hat a minimum on M\dM for tn > 3, then ly it
minimal.

(ii) if (M m,g) it complete, connected, and oriented, and m > 3, then for

tol(M,g) < +o0o0 ly it minimal, and for vol(M,g) = +o00 1+ A%-1 £
IS(M,g), VpG(l,+00).

Proof. Since f*h = A*g, Tf(g x h) = g+ f*h = (1 + A®fl = p*g, where p : M -*
|1,+00) is a smooth map. It follows from Eq. (1.17) that

muU = + (tn - 2)fi~" (w,df(w)) ,

with Tr; the tension field of ly : (M ,g) -* (Af x N,g x h) and with to = V, log/*.
Thus, Tr/ = (Tid,Ty) = (0,Ty). Hence,

mH = p-*0,Ty)+ (m - 2)p-, (to,4f(to)) = (1-1%)

SomH = (mH)1= (0,/*~*T/)J and (a) is proved by applying Lemma 1.2(i). If/
is harmonic, i.e. H = 0 (from (a)), and m £ 2, then Eq. (1*13) gives to = 0, that
is, / is a homothetic map (see also Ref. [Ee-Le/83]).

Next we prove (b). If m = 2 or/ is a homothetic map (i.e to = 0), we obtain from

Eq. (1.18) rrH :p>(Qr,) .

So, applying formula (1.1) we have, VX € C°°(TM),

MVfH = (0,Vjf ((.-=»») (1.19)
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mVAB = (0,VFf'(r~,T,)i . (1.20)
Hence, applying Lemma 1.2(i) to Eq. (1.20), we conclude that
Vx B = 0iff Vy (n~*Tj) = 0, which is equivalent to H = 0 due to Eq.
(1.19). Using Eq. (1.9) for b= 1/, we get V¥ H = 0iff H = 0,'and we have

proved (b). In order to obtain (c) we are first going to prove the following formula:

<> #(m))» = -, (1.21)

Let us fix x0€ M, and let X i,..., X m be a local orthonormal frame of (M ,g)
defined in a neighbourhood of x0 and satisfying VX,(*0) = 0, Vi=1,..., m.
At xo we have, V»,/,k € {1,..., m},

(Vjf(x,xi),4f(>»)),(*,) = (v C(<V(Xj)).inx>))k
4 < jnxi),dnxt)>k)m - (vm , v#(x,xt))k

= W (X D-{4nXi),VAHXL,Xt)K .

Performing a cyclic permutation on the indices *,/, kwe get

{MVAF(X, X)), 4F(XK)K = tIXAX,)-(4F(X 1), VAf(XI, XK}t
(Vanxkx,).4nxj))t m tjd\' (XK - (4f(X,),V<t{XkX 1))k
(VAF(XIXK),IFX<Dk = W (X i)-{4F(X R, VAFXIX )k,

and so, at the point x0,
(VIF(X,X,),dNxK)IKk= i {<IE*(x) _ t,ix\xR+e "~ X j)}.
Hence, fort= j
(Vif(XhX,),df(XK)k= 6KIX'(X.) - ii*'(X.),
and so
(T,.df(xk)k(Ik) = ; (ym x1xi),dnxk)k

= dX'(X,) - AAX(X) . e~ d X 1, (XK) .
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Supposing that 1/ has parallel mean curvature we have, from Eq. (1.12) in the
proof of Th. 1.1,

m*e* = div,(Z) ,
where Z is the vector field of A/, given in Eq. (1.4). Next we are going to prove
that
mV = —2~ A #" on M . (1-22)
Let zO€ A/ and Xit...,Xm be a local orthonormal frame of (Af,g) defined in a
neighbourhood of x0 and satisfying VX ,(*0) = 0, Wws 1,...,m . Then,

Z=£ *J<W,mx.)>. Xj and W = £
Jl ijml

in a neighbourhood of xo- Since g,j = we have
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Hence, if (M ,g) is parabolic, p must be constant, and, therefore, 0 = A(p-*) =
i.e. 1/ is minimal.

For m > 3, if A has a minimum on M\dM, then p~* has a maximum on M\dM.
As Ali-* > 0, it follows from Hopf's maximum principle, applied on a bounded
domain of A/ where that maximum is attained (see e.g. Ref. [Au/82], page 96),
that (c) (i) holds.

Now we prove (c)(ii). From Eq. (1.23) we have p~* A (p_>) > 0. So, from Th. 3
of Ref. (Yal/76), we have either /w = +00, Vp G (0,+00)\{l), or p is
constant. Thus, if the volume of (M ,g) is finite, we conclude from 0 < p~* < 1
that p~* G Lp(M,g), VpG (1,+00). Therefore, p is constant and 1/ is minimal.
Let us now suppose that the volume of (M,g) is infinite. If p~* G Lp(M,g) for
some p G (l,+00) were true, then p would be constant. Since p cannot be equal to
zero, this would imply that the volume of (M, g) is finite, which is a contradiction.

So, in this case, p-*£ I/(M,g), VpG (l,+00) .

Remark 1.4 Prop. 1.3(c) means that, if m > 3, vol(M,g) = +00, and 1/ has
non-zero parallel mean curvature, then, Vp G (1,-foo), (I + P cannot be

integrable, nor have a maximum.

Now we study the graphs of Riemamuan submersions and harmonic morphisms.
Henceforth, until the end of this section, we assume that (M,g) and (AT,A) are

boundaryless manifolds.

Let/ : (Aim,g) -* (AT",h) be a map. For each x G Af, we denote T"M := Kerdf,
and TjM := its orthogonal complement in (T,M, g). The elements of
T; M and TAM are called vertical resp. horizontal tangent vectors of M at the
point *. Let us denote by ( )v and ( )u the orthogonal projections of T,M on
T?M resp. TfM .

The map / is said to be horizontally conformal , if, Vx G A/ such that df, ~
0, df, : T*M -» Tf(,)N is a conformal, linear isomorphism. For such maps we

have (see Ref. | Ee-Le/83])
View, i,. €T "M, < «)(m)e<?(*)>»= """ <«,e>,

where </ = j114M1 is the energy density of /.
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A map/ :(M,g) —*(TV,A) is said to be a harmonic morphitm, if, for any harmonic
function 4>defined on an open set V of TV, the composition <to f is harmonic on
[-m (V).

The following proposition, which we will use later on, is due to Fuglede [Fu/78]

and Ishiara [Is/79] (see also Ref. [Ee-Le/83]). s

Proposition 1.4 A map f : (A/m,g) — (TV,A) i$ a harmonic morphitmt, iff
it it a harmonic and horizontally conformal map. If f it non-conitant, it it a
ttibmenion on an open dense tubict of M (and to m > n). If at a point x
rankdf, < n, then dfa= 0.

Let / : (Mm,g) -> (TV",A) be a submersion. Then, TVM — M and TuM — M
are smooth vector bundles. Hence, in the neighbourhood of each point of M we
may take an orthonormal frame Xi,... ,X* X, +i,.,.,X mof (M,g), such that
Xt,...,X He G°°(TUM) and Xm+u...,X m€ G°°(TVM).

For all jr€ /(A1), the fibre Ft = f~I(y) of / at the pointy is a submanifold of M
of dimension m —n with T»(Ff) = TjrM .

Let the inclusion map tr : Ft —* (M, g) be an isometric immersion. Its second

fundamental form satisfies
Vi.A(X.1n) = (Vxn)“, V X, ,recrXT"M), Vxer,,

where V is the Levi-Civita connection of (A/, g).
Thus, the tension field of tv is given by
V*>= £ 61fM = (r (F )" (1.24)
cm+l
and is equal tom -n times the mean curvature of the fibre Fr.
Since / oi, is constant on Fr, Vd(/ o if) = 0, we get [BarEe/81], using the

composition law,
v<tr,(x,r) = -j/,(Vd. (x,y)), vx,reT , (F,). (im )

The submersion / is said to be Riemannian , if, V* € Af, dfM:TfM —
is an isometry. Here we recall the following results about Riemannian submersions

and harmonic morphisms (see Ref. [Ee-Le/83] for further references).
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Proposition 1.5 Letf :(M,g) — {N,h) he a tuhmertion. Then:
fa) f hat totally geodetic fibre», iff 24f\TyMxTvM = 0.

If, moreover, f it Riemannian, then alto (b) and (e) hold:

(h) "d\NTHA/XT'M ~ 0*

(e) the following conditiont are equivalent:
(i) f hat minimal fibret;

(ii) f it harmonic;

(iii)  f it a harmonic morphitm.

If, on the other hand, f it a harmonic morphitm, then (d) and (e) hold:
(d) if n = 2, the fibret are minimal.
(e) if n > 3, the following conditiont are equivalent:
li) the fibret are minimal;
(ii) V«/ it vertical everywhere;
(iii)  the mean curvature of the horitontal distribution, which it the vertical vector

field given by Wx,X;)V, iS equal to

Let now / : (Alm,g) —* (N",h) be a Riemannian submersion. From now on

X»,...,Xn,Xmueee X mdenotes a local frame of (M ,g), such that Xi,...,X nG
G°°(TUM) and X,+i, ..., X mG C°°(TVM). Note that from Prop. 1.5 we have
T/= £:VAdi{X, XI)= £ VA4fXi,Xi). (1.26)
11 I-«+1
On (TuM ,g) we have an induced connection which is given by:
VifZ. = (VXZ)“, VZe xeTM.

Proposition 1.6 Letf : (Mm,g) -» (Nn,h) be a Riemannian tubmertion, and
denote by kTj the tection of TaM given by

*> - Urlr.J 'V /) =

Then we have:

(@)v, e I(A]), = L (x).
In particular, ”T/( )||a_ ”7jf(*)||# Thut, the fibret of f have conitant mean
curvature, iff the norm of the tension field of f it conitant in each fibre.
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(tyvee f(M), iff,, XeT,(F)=TM,

(v>'0" =

In particular, the fibre» of f have parallel mean curvature, iff MTf it a parallel
»cction of TUM along the vertical vector field».

f<)vxeo°°(T“M), <r(Vx(#r»)=v'-'r,.
Proof. Let jr€ /(A/). From Eq. (1.24) we have
r,M= £ (V*X)f, VIEF,,
i=n+|
and from Egs. (1.26),(1.25)
*>(*) - E v/ (xItx.) = -~ (Vd(.,),(x,,x,))
= HWV.

Since T (x) G TffM, from the definition of MIf we get —7Jf (x) = MT/(x). Now let
X € T.(F,). Then,

V>(r,f).=-V>'(,>w), = -V*(*r,),.

Since (7«(F])] m TffM, Vx € Ft, the connection V1 of (T (/f))A la exactly
equal to (V*1 )*. Thus, we have

X 1(T,).= (v>"(*,).)' =-V Iyn»,,

and we have proved (b).

Now we prove (c). For all X GG°°(TM),

= Vit (A (wor)- VAf(,MTt)

= VX'r,-V4H X, Mr,).
So, from Prop. 1.5(b) we get

<r(VxKr,)mV{fT, vxeO (T“M ). v
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Next we study the mean curvature H of the graph 1/ of /.

Note that the g,j (given in Eq. (1.2)) are in this case given by

(1.27)

Proposition 1.7 Letf : (Mm,g) —(N n,h) be a Rtemanman ttibmenion. Then
we have:

(a) mH = (0,»»A.
In particular, for any point x GM, 7)(x) = 0, iff Hx = 0, and $o the following
condition» are equivalent:
(i) 1) it a minimal submanifold of M x N.
(ii) f it harmonic.
(Hi) f it a harmonic morphism.
(is) the fibres of f are minimal.

(b) The following conditions are equivalent:
(i) Tj has constant mean curvature.
IV /1 is constant.
(Hi) the fibres of f have constant mean curvature, the norm of which is the
same for all fibres.
(c) ifTj has parallel mean curvature, then V* *7/ = 0, VX e C°°(THM).

Proof. From Lemma 1.1(ii),

mH = - (Z,df(2)) + (0,fV) = (0,1V)1,
where W and Z are given by Egs. (1.3) resp. (1.4). From Eq. (1.27),

Iv=Ejv,<f(X,,x3+ f; v<V(X,X,],
and from Prop. 1.5 and Eq. (1.26) we have

w=£ VrjX,x,)=T,.
Hence,
i-1*

Thus, we have mH — (0,T/)A, and (a) is proved by applying Lemma 1.2(i) and
Prop. 1.5(c).
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The above expression for Z gives = £"-ii < Ti4f(Xi) >* df(Xi). Since
dfa: T*ht —»T/(,)N is an isometry, dfs(Xi)i. e=,4f*(Xn) is an orthonormal basis

°f 2/()JV. Thus,
W)=\r, =\w,
that is,
z=(*U ,r’'<s
Therefore, mH ——(Z,df(Z)) + (0,2df(Z)) = (- Z,df(Z)), and so
1x10% = W+ 11°@1i=211Z11F
= tw m i = |irli:.
Consequently, 1/ has constant mean curvature, iff |[|[7]]*is constant, and (b) follows
from Prop. 1.6(a).
Finally, we prove (c). From Lemma I.I(iii) we have, VX G G°°(TM),

= (0, VjfVv - VdfZX))i .

If F/ has parallel mean curvature, then, from Lemma 1.2(i), = Vvd/(Z, X),
that is,
VTt =\il(IXT,X) .

Using Prop. 1.6(b) we obtain

V'V ,=0 Vie 0°°[T*M). 9

Let/ : (Alm,g) —* (iV",h) be a harmonic morphism. We are now going to
study the mean curvature H of T/.
LetU = (it€ M :ifaB ®* From Prop. 1.4, if / is not constant, If is an open

dense subset of M, and, V* G U, dfa is a submersion with

< </my(«). 4T*(>) > , = <«,n >, Veeer/Af.
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Proposition 1.8 Letf : (Afm,g) — (Nn,h) be a harmonic morpfutm. Then:
(a) Vxe M\U, H.=0.
(t)VxeU,

mos e W)Y,

n+ 2e/(x)
toherey = /(x) andt9 : Fw—* (M ,g) i$ the inelution map of the'fibre Ft of f
at y. In particular, Hx = 0, Vx G Ft, iff the fibre Ft i» a minimal (m —n)-
tubmanifold of (M ,g). So, I) it a minimal tubmanifold of M x N , iff the fibre»
«/llu are minimal.
Proof. Let x0 € M\t/, and X\,...,Xm be an orthonormal basis of {TXoM, g).
Then, g,Jx0) =< X{,Xj >, + < 4bmXi), efm(Xj) >*= bfJ. From Lemma
I.1(ii) we have mH”~ = (0,W ~)\ where W - = EJj-, #J(*0)V <™ (X ,X]) =
EELiV i/~ (X,,X]j) = T/(x0). Since / is harmonic (Prop. 1.4), HS = 0.
On U, f : U -» N is a submersion. Let Xly..., X nXB+1,... ,Xm be a local or-
thonormal frame of (M, g)tsuch that Xt,...,X m€ G°°(TUM ) and Xm+i, ..., XmG
G°°(TvM). As/ is a horizontally conformal map (Prop. 1.4),

%ii = <Xi,Xj>,+ <df(Xi),4nXj)>k

| £>«('+ %-) for i,j <n
\ bjj for »> n+ lorj >n+ 1.

From Lemma 1.1(B), mH = (0,1V)\ where W = EJj-, givdf(Xj,Xj) =

E"=i V # (X;,X,-) + EELn+i Vd/(X,, X,). On the other hand, since / is har-
monic,
0=T,= £Evdf(Xi,X.)+ £ Vitf(X,X,).
-1 o+l
Thus,
w = - £ -Av*(X.,x,+ £ Vdir(xltx.)
+in + *«/ -+

From Egs. (1.25),(1.24) we have, Vx € U,

E V<r.(Xrx() = -<tr,( £ (V~A-)") = -4f.(r,,w),
=+l

1-»+

where jr= f(x). Therefore,

» + 2c¢/(x)



Chapter J, Seetioa 4. Urapkmat hornetrk Imntersioat, Vomformml Napa, .. 35

Since Ttf (i) € Ta M, d/*(T»f(x)) = 0, iff Ttf(x) = 0. Using Lemma 1.2(i) we get
Hs=o, iff ’f(*)=0. V
Applying Prop. 1.5(d)(e) we obtain immediately:

Corollary 1.8.1 Ifn = 2,1} it a minimal tubmanifold of M x N. Ifn > 3,1/ it

minimal, iff V«/ reitricted to U it a vertical vector field for the tubmertion f\v .
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Chapter 2

STABILITY OF A MINIMAL GRAPH
AND A GENERALISED EQUATION
FOR NON-PARAMETRIC
HYPERSURFACES WITH
CONSTANT MEAN CURVATURE

2.1 Some Remarks on the Stability of a Minimal
Graph

Given amap / : (A/m,g) —* (N n,h) between Riexuannian manifolds, suck that the
graph of /, Tf: (Af,g+ f*H) — (A/ XN, g x A), is a minimal immersion, we may
wonder when it is volume-stable or energy-stable.

In Gh. 0 we have given a brief introduction on the stability of volume and energy
functionals, from which we may conclude at once that, if (M, g) and (N,h) have
non-positive sectional curvatures, then minimal graphs are energy-stable, but not
necessarily volume-stable, like e.g. in the case of Ex. 2.1 in this section. How-
ever, the latter does hold, when (M, g) has non-negative sectional curvatures and
dimJV = 1, as we will show to be an immediate consequence of a result obtained
by Barbosa [Bar/78]. He studied the Jacobi fields on a domain D of a minimal
hypersurface for the case R > 0 in the expression (0.9) for the Hessian of the
volume fuctional VD, obtaining the following result:

Theorem (Barbosa) Let $: M m—»(Afm+1,/) be an itometrie minimal immer-
tion, v a unit normal aettor field to M, D ¢ A/ a domain with compact cloture,
and X be a Killing rector field on M. Attume that M hat non-negatite tectional

curvaturei. Then we hate:
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fa) If < X,v >f > 0 on 2?, then <$it strictly volume-stable on D.
(b) If there eaitti a domain D' ¢ D, tueh that < X,v >j =0 on dU, then $it
not itrictlg volume-stable on D.

This theorem has an immediate application to graphs with co-dimension one.

Suppose that N is oriented and one-dimensional. Let Y be a unit section along all

N. In Gh. 1, Sec. 3, we remarked that v = ¢((—V/, F), where u = yj\. + ||V]|*

is a unit normal to the graph 7/ : M (M x N,g x h). Then, X = (0,F) G
X N)) is a parallel vector field and, therefore, also a Killing vector field.

Moreover, it satisfies < X,v >#ft = £ > 0.

Proposition 2.1 If (M,g) it a Rietnannian manifold with non-negative sectional
curvature», and if Tj it minimal, then, for each compact domain D ¢ M, 1" it

volume-stable on D.

Remark 2.1 Also Barbosa [Bar/78] mentioned this consequence for the case

M m—IRm, which was already a well-known result.

Example 2.1 Micallef [Mi/84] observed that the example given by Osserman
[0s/69] of the map f : IR} -* R Y%reading

I(*.*) = i(«" -3«-")(co.(]),-un(]))

has a graph T/ : IR1 — JR* which is minimal and, moreover, energy-stable, but not
volume-stable.

Besides, this example shows that there are minimal graphs of functions / : IR} —*
JR* which are not linear planes of IR*, i.e. the Bemitein Theorem does not hold
for graphs of co-dimension > 2. This was already to be expected from the work of
Lawson and Osserman [La-Os/77), which gave a negative answer to the uniqueness,
regularity, and even existence of solutions to the minimal surface system for co-

dimension > 2.

Remark 2.2 At this point we should recall the theorem of Bernstein, since it
concerns minimal graphs. It states that, if / : IRm — JR is a smooth function,
such that the graph Tf C JRm+l is a minimal hypersurface of JRm+l and m <, 7,
then / is a linear function. The case m = 2 was proved by Bernstein in 1927

[B/27J3 and reproved by Fleming in 1962 [F1/62], who used a new technique. This
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method constituted a basis for the proofs of the cases rn= 3 (de Giorgi [DG/66]),
m = 4 (Almegren [Al/66]), and m < 7 (Simons [Si/68]). For m > 8 the theorem
is no longer true, i.e. there exist complete analytic minimal graphs of sufficiently
high dimension (from m = 8 upwards) that are not hyperplanes (Bombieri, de
Giorgi, and Giusti [Bo-DG-Gi/69]).

A minimal graph of a map from IRmto JR is a solution of a differential equation,
viz. the minimal-hypersurface equation (see next section). In general, a Bernstein-
type problem amounts to determining when the domain of a solution of a certain
differential equation is sufficiently large (for a given metric) in order to conclude
that the solution is a trivial one. Given a minimal submanifold of a Riemannian
manifold (and minimal means being a solution of a certain differential equation),
a Bernstein-type problem would be to find out when that submanifold is a totally
geodesic one. This problem can be solved, if we require the minimal submanifold
to be volume-stable and/or impose a rigidity condition. For example, a condition
on the Gauss map of a surface or on the total scalar curvature of a hypersurface
may lead to the desired result. It seems surprising that the original Bernstein
Theorem only holds for m < 7. Stability is not sufficient to make the theorem
hold, since, for all m, a minimal graph of JRm+1 is stable. A reason why it fails
for m > 8 appears to originate in the way the total scalar curvature grows. This
conjecture was pointed out and justified by do Garmo and Peng [DC-Pe/80]. Their

result is the following:

Theorem (do Carmo,Peng) Let x : M —* R m+l be a complete $table minimal
hyperturface of IRm+I, K the »ealar curvature of M with the induced metric, and

Br(p) ageodetic ball of M with centre in a fixed point p and radiut R. Thus, if

then x(Af) it a hyperplane of JRm+i. In particular, if the total curvature of x, i.e.

fbi \K\dM, it finite, the conclusion holdt.

On the other hand, Miranda [Mir/67] proved that, for a minimal graph of J2m+l,

So, from Egs. (2.1,2.2), the Bernstein Theorem holds for m < 5. Moreover, the

authors [DC-Pe/80] conclude that counter-examples to it, for higher dimensions,
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should then have infinite total curvature, approaching infinity at least quadrati-
cally in the geodesic distance from a fixed point in M.

A similar Bernstein-type problem has been formulated by Schoen, Simon, and Yau
[Sch-Si-Ya/75] for a stable minimal hypersurface M mof a space N m+l with non-
negative constant sectional curvatures, imposing the condition lim/i__Hx, R~Ivolu{Bn(p))
0, for some q E (0,4 + where BR(p) denotes a geodesic ball of M or the in-
tersection of a ball of N with A/. This condition is satisfied for minimal graphs of
IRm+1, when m < 5, too.

If a map / : JR'n —* 2R" has minimal graph 1/ ¢ 2Rm+", we cannot expect 1/
to be linear, as shows Ex. 2.1. Nevertheless, we can find some conditions in or-
der to obtain a Bernstein-type problem for » > 2. As we recalled in Oh. 0,
1/ : (2Rm,g + fh ) — (ZRm+n,gxh) with g, h the resp. Euclidean metrics of iRmZR",
has parallel mean curvature, iff its Gauss map T/ : (JRm,g + f*h) -» <?(m + n, m)
is harmonic. Using this fact and studying the regular balls of the Grassmannian
manifolds, Hildebrandt, Jost, and Widman [Hi-Jo-Wi/80] (see also Ref. [Hi/85])

got the following Bernstein Theorem:

Theorem (Hildebrandt,Jost,Widman) Suppote that the Gi-funetioni z' =
I'(*), i = m+ + n, z E JRm define a non-paramctric m-dimemional
manifold X of IRm+n which hat parallel mean-curvature field. Suppote alto that

the tangent planet of X do not differ too much from the “horizontal plane” xm+l =

0 , zmH= 0. More precitelg, tuppote that there it a number So *ith
1./p=1
P (2.3)
*if P >*
tuch that
M Ij\ = <Mio+ < #(*.),#<«>) >1 < Si (2.4)

where eit...,em it the canonic batit of IRm. Then, f : JRm-» 2R" it a linear map.

Therefore, if JJdA\\ is bounded by a conveniently chosen positive constant, that
is, g+ f*h is a “small” deformation of the metric g, and if T/ has parallel mean
curvature, then / isin fact a linear map. Besides, Hildebrandt et al. observed that,
ifn= 1,thenp = k = 1, and so condition (2.3) does not impose any restriction on
So *nd condition (2.4) becomes |IV/]|# < constant, which results in Moser’s weak

Bernstein Theorem [Mos/61], reading: auy entire G' -solution /(*), x E JRm, of the



Chapter J, Section 1. Equation for NoaParametric Hyptnurface with Coaataat Meaa Curvature ... 40

minim«l-»orfact equation div, ( j = 0,with ™>||V/]|f < oo0,il neceMarily
a linear function. The above theorem of Hildebrandt et al. is a particular case of
their main result in Ref. [Hi-Jo-Wi/80], which is a Liouville-type theorem for
harmonic maps of simple or compact Riemannian manifolds with range contained

in a regular ball.

2.2 The Equation for a Non-Parametric Hyper-
surface of (v XJr, g Xh) with Constant Mean
Curvature: Some Remarks on Regularity of
Solutions

Let (Afm,g) be a m-dimensional Riemannian manifold and / : M —»IR be a
smooth function. Let h be the Euclidean metric of IR. From Eq. (1.15) and
Lemma 1.3 we know that the mean curvature H of the graph 1) C (M x IR,g x h)

is given by
= "Vo+ |V/]];Eer w **|Viy)"
=AP 7f(A_
(Mi+iivi i) * "
where v = 48 4 un”™ normal to 1/ and X | ,...,Xm s a local orthonor-
mal frame of (TM,g). So 1/ has constant mean curvature with [|R]] — | iff
<Uw< ) = m€- U,i «hqe®*s

N (eeS vl i) (con,, 1) (@S]

or, equivalently,
V4AT)- V' +1lim’ ()
is the equation for non-parametric hypersurfaces of M x IR — i.e. for graphs of
maps from M to IR — with constant mean curvature. For e = 0 it becomes the

equation for a minimal graph. More generally, if in Egs. (2.5,2.6) we replace e by a
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function mfT(x), we get the equation for non-p&r&metric hypersurfaces of M x JR
with prescribed mean curvature, given at each point x € M by H (x)v.

Letx:D CM —* 0O ¢ JRmbe a coordinate system of Hi and let jr,j, g'J, and \d\ be
as given in Gh. 0. Note: throughout this section we will use the index-summation

convention. Then, we have
Cew iW ) = A ),

where [¢,JJdenotes the inverse matrix of [fa] with

/ d d \ at df
dJ~ Na*'a*)ttrtm i+ 9% 9% 2,7)
We can easily verify that
=« - (2.8)
sme.we hv. V<f(E,*) =, £ - ¥*& vi = {Vf, ¢ )t =H,

and [IV/]]* = 9MS£f§{i, Eq. (2.6) is, in this coordinate system, given by

-_f~Jéd

Ly f -
v TTf/\sS)) 9

L - = * (29)
Jdx*l e[l +r dx*xdx') = (2-9"

This equation is of the form

d*u
Qm= aJ(x,«,Z?2«)A ™ + *(*«>Du), (2.10)
where u : il C IRm — IR is a (7*-function of the variable x e 2Rm, =
*oe> an”™ where the coefficients of Q are the functions <w , b : O x

2R x 2Rm -» IR defined for all values (x,*,p) e 0 x 2R x IR™.
Equation (2.10) is called a second-order quasi-linear differential equation. In our

case, these coefficients are given by

W< )=e<se - T+ASsr’ "= ...p)= *w

F(*o»*) R ..n
P+ »* (*Wi /
Note that

(=" (Weri) = W</G)+m | 1m (2.13)
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Denote by G(x) : jR"™ —* 2Rm the self-adjoint, positive-definite linear operator
given by < G(x)«,,e, >= y,>(x), and by B(p) the self-adjoint, semi-definite, non-
negative linear operator given by < B(p)ti>cj >—p,pr Then, [a'J(x,p)J represents
the matrix (in the canonic basis of ]JRm) of the self-adjoint positive definite operator
(G(x)+i?(p))-1. Hence, Eq. (2.9) is a second-order quasi-linear elliptic differential
equation in all 0 x IR x JR™ [Gil-TV/83]. However, it is not uniformly elliptic in
all fl x JR x JRmt as we will see in the following.

Let A(x,p) > 0 and A(x,p) > 0 denote the minimum resp. maximum eigenvalues of
[0,J(x,p)]. Then, A-1(x,p) and A-1(x,p), are the maximum resp. minimum eigen-
values of [*-y(x) + p,Pj}- Denote by dr(x) and d(x) the minimum resp. maximum

eigenvalues of [(7ij(X]. Then, we have the two inequalities

< min(d(x)+ < *,p >*) = d(x), (2.14)

because there exists a u with utp (we are supposing m > 2), and

SN (LM< T e )= a(*)+ W ' m (2.15)

Note that in Eqgs. (2.14,2.15) we have equalities, if g,j{x) = a(x)A,j for some positive
function a-(x) (= dr(x) = d(x)). Thus,

So, j is not bounded on all f) x IR x JRm, which proves that Q is non-uniformly
elliptic on all 0 x IR x JR"\ being only uniformly elliptic on an open subset U with
PI(U)Cc 0 and P\U) ¢ JRm both bounded.

Let us now write Eq. (2.10) in the form fl«(x) = F(x, u,Du, £5**) = 0, where

D'u [§Ef0ik> tin frs eeml iJ-"ir-)’ *nd where
F(*, ,P,r) = F(x,f,r) = «a>(*s,rfyy+ *(«,*,p)

isa C°°-function on 0 x Ml x JRmx JR"'1. If now «, € C*(n) is a solution of Qu = 0,
we conclude, since Q is elliptic on i) at m0 and [a';(x,«0i.D«0)] is a positive-definite

matrix for all x € 0, and using a well-known regularity theorem on second-order



Chapter i, Seetioa J. Equation for NomPa  Urk llyperaurface with Comataat Meaa Curvature ...

differential operators (see e.g. Ref. [Au/82], page 86, Th. 3.56), that u0is smooth

on n.

We can improve this regularity property, starting from Eq. (2.5). Let us suppose

that Af is oriented. In a local coordinate system x : D —»H C , assumed to be

orientation-preserving, we have

y/  _  gn a

Using Eq. (0.4) we get

aiv. ], vl k- _i a AL

Thus, Eq. (2.5) is, in this local coordinate system, given by

a**Is/n-r-Bh.)
This equation is of the divergence form
c* = ilw (V(*,.,d.))+b(x,.,c.)

= divj*) (Ak(x,u,Du)) + B(x,u,Du) ,

where
A =X (,,,)=V r_ L

= B(x) = —
A (I'-function u : H -» IR is said to be a weak solution of Eq. (2.17), if,

(i.e. $€ C°°(n) with compact supportin 0),

f1 Wrfo a

VW +f-*r& 57?

A*1A ... Aiiim= 0 .
Forf = uox:Dc.Af —» "2, Eqg. (2.21) is equivalent to

[ ( d+ dV, = 0, V*<=P(Z>),

(2.17)

(2.18)

(2.19)

(2.20)

e Z2(fl)

(2.21)

(222
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that is, to
R R (2.23)
- D¢ T wivm*'v*\ = "v*e PiD)m
We call a (/-function / : M — 2R a weak lolution of the equation for non-

parametric hypersurfaces of (A/ x ZR,g X h) with constant mean curvature, and

div.f, V (2.24)

if, VAg P(M),
-f < VES'dv,=0 +tr,. (2.25)

More generally, we obtain weak solutions of the equation for non-parametric hyper-
surfaces of (M X ZR, g X h) with prescribed mean curvature, replacing everywhere
the constant ¢ by the function tnH (x).

In order to be able to apply the regularity theory of Morrey (Mo/54j, we have to
write Eq. (2.24) as the Euler-Lagrange equation of avariational problem. Thereto
we use the method of Gulliver [Gu/83,Gu/74] of characterising submanifolds with
prescribed mean curvature as critical points of a sum of two functionals.

We consider the volume functional for graphs of (/-functions / : M — 2R on a

compact domain U, given by

m .E) = V.,(» = Duvw-m = Dvs + v | -
The function / is a critical point of if, for any variation /, = f + tW with
W :D —*IR aC"-map and t € (—e,e) with compact support in D, we have
1% (f.»)1,.,=0. (2.28)

We are going to calculate explicitly the L.h.s. of Eq. (2.26). Let x € M and

X u ... ,Xmbe an orthonormal basis of (TnM ,g). Then,

= feUl(QMMWs. 1, ~ s (mM*)),L,
avA+FTI! 5 + |MF*
n {(*VAX.) ' + 2iw .(xi)4r.m + l..

h v i +iiv /i



Chapter J, Section |. Equation for NouParametrk Hyperturfaee with Coaataal Neaa Curvature ... 45

<NVjX,W,(X,i
h  vithiic ’

which is a continuous map in the variable x. Hence,

Observe that, if f is Gland W has compact support in D,

at wadv, .

Now let us suppose that 25 is sufficiently small, say contractible. Then, 25 x JRis
also contractible. Therefore, all closed forms on D x IR are exact. In particular,
there exists aa € G°°("mT*(D x IR)), such that da = (- I)medVfxK, where h is
the Euclidean metric of IR and dVixh is the volume element of D x IR.

Consider the following functional defined for C~-functions f iTi =*JR
0(/,C) :/DI';«,
where I7ar is the continuous m-form of D, given by
i,eee )= ok/(.h((*|'4M i) ) . 4M «-))).

Let W :25 —*IR be a C'-function with WA\w =0. Next we calculate

, X mas

with <, > the Hilbert-Schmidt Riemannian metric on AmT*M. Fix X j

an orthonormal frame of (TAf, g), defined on all U, and with the same orientation

as ..., g-a- Since D is compact and 1/ is an embedding, we can define, for
each *€ {1,... ,m}, a 6"-vector field ZI on all 25 x IR, such that

(*Y) >\ke &
Also, let W € C'(r(25 x *?)), such that * (0,W,) Vx € 25. We remark

that, trivially,

Ve *(aL1L = (o,rfW ,(IT.() = (2.28)
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Denote by 6 : (—e,e) XD — D x JR the (7'-map given by 0(1,*) = (*,/(*) + tW¥*),
and by Z*‘ the C-section of 0~IT(D x JR) given by
Atfir) — A*I(%) € x 2R = X 2R), Vi€ (—c.e), x € D.

Then, we have

Vr*ru =°. (2-29)
where denotes the smooth section of T ((—e,e) x Z5), such that J”(i, *) = (1,0).
Now let us fix * € D. Then,

=rACO) (X H X, (%) =
(X, A (A=) +MV.(X))...... (Xmdf.(Xm + HW ,(X,))) -

Next we have to determine the following limit:

«3 3 {€i LW r=i((-X".<V (A")).«(0,<FFFI (X 1)) (X M,<VAX,)).i(0,d W AXm)))

AL {(XW VA X)) (X, <tf (X))} (2.30)
The first term in the limit can be evaluated as

e WM*wW.>((X,<r.(X.)) + 1(0,m/*".(*.))......(XmJIFAXm)) + t(0,iWAXM))] =
<M/,(*.)) e {X,,, ITAX M)
., (0. IW.1X,)) e (X, I/ AX,)))
iml
+ £ <FRE(X o

k>i

where $*(*,{) is a continuous function in t e (—£,«). Therefore,

(2.30) =
((X A X)) (X # (X M)
+Efc* *VAX)))..... (0, dWAX,))......(X,,,(f,(X,,)))
+ Elim (-5 (%, 0)
*>y
= ai weemi2./(»)i)) L

+£ (A5, AMX)).....{0,dWAX)))....... (x md/AXM)))
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= L ESWeS>
E "WEH{tfa/())» == (0, dWs(Xi)), ... , Z2/@) ,
where 0 *0€ G"(Ami _,(r(25 x JR))*) is the alternating m-tensor given by
eeete) = (o) (Free =W .

V(t,x) € (-c.e) x D and *, € TYX)(U x IR) = o-(r(D x *))(J]. Let V denote
the connection of the vector bundle AT O~I(T (D x ~2))*. Using Eqgs. (2.28,2.29)

we have
(2.30) =
= VA fa)O (N (M)>eee> )
+ E(® ‘0)(0")(¢/0, >eee*V * teee, ((X1))
FE -WWI(*(oi<,)e'" «(0,AM *)),..., JFIW )

= A (Ir)° (M (*(M)reeecr(M))

+ E ®<MI (0,<M ,(Xi)h =ee,
= vEQOIN( !, <))
1) o

+E OFIY)  [()>e==rYe' NW W )rmee\i/(*))

= rf@a™,,..., ZNEHANCN ()
™ . Vel
Q) Feem  Z(X/(})>===1
" / KixR
+ ECW (*))\%/(=))ie=e»YZ' "W (*»>eee>ZM M))

= e D W ~w w )
E a(/() - A0SO
= ORI (RErU(X))i ee=. Z(*/(*))) =
Using now the following formula for a fc-form 0 6 C7*(A\k T (M x JR)*),

(Vo0 = ERV(E)AFW,en?, 1)) (Y0



Chapter 1, Section J. Equalioa for NomPa :trie Hypenurfaee with Constant Mean Curvature ... 48

we get Ly,a = i*. o dot+ d{t~o0). Hence,

(2-30) =
= zw oot )
= % . Y+ <I(*O) < IW(Z e z")
= *SW<) [ (HW ()] *(VAL - om0 ZE [(%)>) + ceee
= (-irczV,3,(x,/)01t),(if, (N D) e Xm*,(*.,)))
+ (xm*.(Xm))
= [<FN<<> IV M X # L (F,)) (XM ™ (%))
+17((*)).(*W....x.M).
Hence,  (i/Joy <*(*)» F_O exists and gives a function continuous in the

v&raiable x g D. Thus,
§(/+MB,..=jng (INas WLk
= IB(-1)"czZvrd,(../(«))((0,H".),(Z'11™.(IfD)....... (X, .M (Xm))rv,
+/,r(z(v.)).

We cannot claim that = d(r~*(t"~a)), because 1/ is only O'1 and not
O1. So we cannot use Stokes' theorem directly. However, one may approximate
I uniformly up to first derivatives by smooth functions on D and then prove the
following, more general, Stokes' theorem (see e.g. Ref. [Ma/79]):
I (m(**»)) =1, rl].(%o0).
Since W (,j()) = (0,W,) =0, V*€ dD, we get
lo(/+<»,D)],.=

= IB(-1)7e ™ (*,/())((0, 1V ) (X, N A(X (X A (X))Niv, .

In order to compute t/V',,. (X, /(x))((0, W,), (X (,~.(X «)). (Xm, ™, (X m)))iv,
which does not depend on the choice of the orthormal basis X i(*),..., X m(x) of
(2VAI/,?), we may choose one, such that dfa(Xi) = 0, V*> 2. Then, we get

straightforwardly

GACNOA).( * (Xmigt.(xm)) = (-1)-W . .
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where | is the functional, acting on (/‘-functions « : TT —* JR, given by

with ¢ :0 x JR x IRm—*JR the smooth function
*(*,*,P) = +Hi* (XW o« + TA(*»*) + £ (-1)ym 'mA,~- ,(x,2)p,,

A (/*-fonction s : H -* JR il a critical point of I, if, for any (/‘-fonction W

17 —* IR with compact support in O, [jl(u + *"Wn)|]O= 0. So, « is a critical
point of /, iff / = «o* : D — IR is a critical point of V + G. Let us fix a
(/*-function u(x) and let g be a bounded domain of fl X IR x IRm of the form
Q= {(x,z,p) :*€ 0, \z- ux)| < h, [lp- pXIl < A}, where p(x) is some
continuous JRmrvalued function of x and A is a positive constant. Deriving the

function ‘if w.r.t. the variable p, we get

................. v

V* € 0, z € JR, p € JRm, where [a”(x,p)] is positive-definite matrix (see Egs.
(2.11,2.13)). Then, V(x,z,p) € Q, we have

gPig , A X' *e*)*« > 0"' v<e *"\{°) - (2.33)
The fulfilment of this inequality means that 'l' is strictly convex with respect to
the variable p, and is in accordance with Morrey’s condition on W(x, z,p) to be the
integrand of a regular variational problem near «(x). Moreover, it is equivalent to
what nowadays is called the ellipticity condition of the Euler-Lagrange operator
fl(u) = div()D ,¥(x, *,£>«) - D.*(x,u,Du) (cf. Ref. [GU-TV/MI, page 289).
Morrey (see Ref. [Mo/54], page 158) proved that, if« : JT—JRis a (/‘-function and
is a critical point of /(-,n), then, since 4»is smooth, « is smooth on 0. Moreover,
if «1” is smooth, then « is smooth on fi. Thus, we have the desired regularity
property:
Proposition 2.2 Let (M,q) he a tmooth Riemanntan manifold and f : M — JR
be a GI-function which it a weak solution of Eq. (i.ii). Then, f it tmooth on all

V /], it alto tmooth, then f it tmooth on allM .



Chapter i, Settioa S. Exhteaee of Graphaof enactioat 0a the m-Hyperbolic Spate ... 51

2.3 Existence of Graphs of Functions on the m-
Hyperbolic Space with Given Constant Mean
Curvature

In the previous section we have derived some regularity properties of graphs of
maps / : M m—*JR with constant mean curvature c. From Sec. 1.1 we also know
that, if A/ is non-compact and oriented, this constant cannot exceed the ratio of
the Cheeger constant J”(A/) and the dimension m, and that, if M is compact
(without boundary) and oriented, e can only be zero. Supposing that ~ (A/) ~ 0,

we may pose the following question:

Question Given a eonttant ¢' with 0 < ef < jk I"(A/), does there exist a map

f :M —JR, such that 1/ C A/ x JR has constant mean cursature equal to ef9

In Th. 1.2 we only gave a positive answer for the case of the two-dimensional
hyperbolic space with e* assuming its extreme value |. Here we consider the more
general case of the hyperbolic space of arbitrary dimension tn > 2, Hm= {Bm,g),
where B mis the unit open disk with centre O in JRm and where g is the complete

metric given by
We recall (see Oh. 0) that Hmhas constant curvature equal to —1 and that (Hm) =
m—1

Proposition 2.3 For eachcE | I-m ,m -1], the function f : Hm -* JR giwen bg

where

it smooth on all Hm, and 1) C Hm x JR has constant mean curvature given by

In particular, ifm —2 andc= 1, / can be written as
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Proof. According to Sec. 2.2, one only has to verify that/ satisfies the differential
equation (2.5). Of course, we are not going to execute such simple but tiresome
arithmetic. Instead, we will show how the above expression for / is obtained. The
procedure to be followed is to solve for / in Eq. (2.5) as a function of the intrinsic
distance r(r) in Hm from the origin, thereby considering ¢ as avarying parameter.
Using the expressions for the Christoffel symbols of (Hm,g) computed in the proof
of Th. 1.2, we see that the distance function r : Hm -* IR, r(x) = log (fzjjj) =
2tanh~I(]x]), has the following properties: Vx 0, Vr = *M*~j, where the
gradient of r is w.r.t. the metric g. Hence, |[M][¥ = 1and Ar = (m - I)cothr.
We observe that r* is smooth.

Let us write / = hor with h:Rf —R.

Then, V/ = A'orVr, and Eq. (2.5) applied to / becomes equivalent to (Vx ~ 0)

(V(Vor), Vr)f
y/1+ (h'or)*

V1 + (> 2 \ (1+ (A'or)*)1’ /= \]l + (Vor)*
h'or A r (Vor)*V'or| | Vr] |* ~Ator [ P*
y/l + IVor)» (I+ (Vor)1)* s/1+
Using the above properties of r we get
e(l + (Vor)*)* =
= (m- lcothr (Vor)(l + (Vor)*) - (Vor)*A"or + A"or(l + (A'or)*)
= (m —1)cothr (Vor)(l + (A'or)*) + htbr .
With the substitution u>(r) = V(r), the equation becomes
w'=e(l + W*f - (m —1)cothrw(l+ w*), Vr>20. (2.34)
The next step is to reduce this differential equation to a linear one through several

changes of variables. First we write Eq. (2.34) as
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Lety ——= i € (0,1j. Then, w= + ~‘y9 . Taking first w non-negative, we get
. Vi1 - 1- «*
Eq. (2.34) JJf = @~ (m - l)cothr- «y .
Thus,

-/ly=enl- if*—(m - 1)cothr (1 —jr*) .
Let &= y* G (0,1). Then,
Eq. (2.34 1c— — —
q. ( ) 2 yli—v :c—(m —1)coth r y/T
Finally, let « = y/I —v G [0,1). Hence,

Eq. (2.34) <=> u'=c—(m —l)cothr«, (2.35)

which equation is linear. Let us first suppose e = 1. Then, the general solution of
Eqg. (2.35) is given by

(r) = (£ 21— +

mlahr-lagriahro) (*i- Jtog.inht-10g Joh royny

o

(rinh ro)m
- (rixhr)-~ (("h7,>-/¢i% M -"* + ««)

fsl’nl!'%’%*\ m&f'"“"’”‘f"“ =° (sinhr)m~] -

Let us now put r= «0 = 0. Then, we have

*<r>= (dnhle}— /.'@inl* )" <" Vr>0- 12'36)
Next we prove that u G [0,1) with *(0) = 0, and, moreover, that u(r) =
R . r€(saijo)
lim ,~+00«(r) =
Obviously, « is positive and, with I'Hospital's rule, «(0) = limr_0u(r) =
= K — =™ .e/n=o.
If u(r) attains a local maximum at some r0G (0, +00), then u'(r0) = 0. From Eq.
(2.35) we have u(r0) = ~ri“- Thus, u(r0) < ~ < I. On the other hand, if there

are no local maxima, then, necessarily, ﬂ) tt(r) = limr_+seu(r). So we only
r€(\too)

(
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have to calculate this limit. With partial integration,
\] (sinhs)m~IdB =
= [cosh»(sinh —(m - 2) cosh* »(sinh »)m-*rf»
= coshr(sinhr)m_*—(m —2)J (1 + sinh*»)(sinh t)m~*de

= coshr(sinhrym_*- (m - 2) (sinh$)m~odt- (m - 2)J (sinht)m~Id» .

Thus,
Jq (sinh»)m_,<i» = —  ~cosh r(sinh r)ym_* - JQsinh t)m~*dt
and
1, (sinh»)": I/» 1 _ (m - 2)/," (sinh»)m~>*<f»
(sinhrym-1 (m —1)(8inhr)'n-1
_ m —2 Jo(sinh»)m-*d»
(m —1jsinh r g(sinh rym-9
Since Vp , is a bounded function on r € (0,+00), we have
i 1, (sinh »)m -,d» 1 " h 1
im =~ — = —-— lim cothr = -
f (sinhr)m 1 >n —1 f—+°° »l —1
Therefore,
eup «(r) = —i— 2.37
refOoo) 0= (Tt
which is not a maximum. So, 0 < u(r) < , Vr€ (0,+00) and u(r) satisfies

Eq. (2.35) for c = 1. Let now e be an arbitrary constant. Then, the function
u(r) = e«(r) is a solution of Eq. (2.35), but we have to impose u(r) € [0,1). From
Eqg. (2.37) we conclude that c must satisfy 0 ~ e < m—1. Thatis, VO~ t ~ m—1,

the function
i(r) ~ch>«*»»r-1*
(sinbr)-1

fulfils the condition specified in Eq. (2.35).
In terms of the original function /, we have
S rm jssfrAaT/o'("m * m >
iy =*rép=3," , "1 —wr,
V1 ([iSHfi=rlo'(,“ h,)"_,<9
which solves Eq. (2.5). If we had chosen w non-positive, we would have obtained

the same expression for /, but now with 1—m < e < 0. Obviously, / is smooth
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on fTm\{0}. Let us now investigate the behaviour of / close to the origin. Near
t = 0 we have the following Taylor expansions:
sinht=t+ £ + 0 (I») = f(1+ £ + 0(1«)),
(I+<)m= 1+ ml+ 0(1%),
Ter=i-i +e(i>) , * =1+<re(f),
where 0(i*) and 0 (lk) are analytic functions of the form
»(<*) = =
Then we have
=1“ T+ 0(<4 * rrjr=1+i*+ 0(t4) ,and
(sinhl)"-1= ("""(1 + C+ 0(1I"))""" = I"-*(1 + atl]*) + 0(1"+*).

Hence,
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Consequently,

Iw-r

Since r*(*) is smooth on all Hm, we conclude that /(*) is, too.

Remark 2.3 We could not find a non-trivial global solution / of Eq. (2.6) of the
type f(x) = hor(x) for e = 0. In fact, if in Eq. (2.35) we set e = 0, it has as
solution u(r) = ie(sinhr),-,n with k an arbitrary integration constant, which, for
* 1 0, tends to +00 near the origin. Hence, *(r) (0,1]. Thus, it seems that we
can formulate the following Bernstein-type conjecture:

Conjecture Let / : Hm — JR be a smooth map, such that1) C Hmx HZ is a
minimal graph. Then, / is a totally geodesic map.

We also remark that the function / given in Prop. 2.3 has non-bounded ||V/]|#.
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1 Introduction

Let / : M — N be an immersion where M and N are Riemannian manifolds
with metrics g resp. h. A natural problem is to study relations between g and
h* = f*h, the induced metric on M via /. For instance, we can try to find
out if, under some assumptions on / and the manifolds (M,g), (N,h), the two
metrics h* and g are conformally related, or, a fortiori , if h* —g, that is, if / is
an isometry. In the present work we give some sufficient conditions to positively
answer the former problem and show that a slight strengthening of these provides
a necessary and sufficient criterion to solve the latter. In both cases we assume
the existence of a special vector field on jV, at least in a neighbourhood of /(A/),
proving, anyhow, that this class of vector fields is large enough to justify their
use. As a side product, we present a Liouville-type result for / harmonic and with
finite energy (proposition 2). The core of this work is in Sec. 3, in the form of
theorems 1,2 and proposition 3. Some applications, in the more transparent case
M compact, are given at the end of the same section. In particular, proposition
4 should be compared with the main results of Chern and Hsiung [Ch-Hs/63] and
Hsiung and Rhodes [Hs-Rh/69].

2 Preliminaries and Formulae

Let (N,h) be a Riemannian manifold and U ¢ N an open set.

Definition A vector field X defined in U is said to be almott conformal, if there
exist smooth functions a, /2 : U —* 2R, such that the Lie derivative of h with respect
to X, Lxh, satisfies

2ah £ Lxh < 20h . 1)

X is said to be finite, ifinfa > —oo0 and sup0 < +o00, and to be ttrongly almott

conformal, if it is finite and a > 0.

Examples
1. Any conformal vector field A' on U is almost conformal.

2. Any homothetic vector field X on U for which Lxh is positive definite is strongly
almost conformal. For instance, in (2R",<, >) the position vector field X satis-
fiesLx <,>= 2<,>.
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3. A procedure to construct almost conformal vector fields is given by the follow-
ing:

Proposition 1 Let U C (N,h) be an open tet supporting a real function < Let

X = & be its gradient and V<ty its second fundamentalform. Then, ah < Sid><

Oh for tome smooth functions a,0 :U —JR, iff 2ah < Lxh < 20h. .

Proof. Recall that, given any vector fields X , Y, Z, Lxh(Y,Z) = (\7YX,Z"k+
(V,X,Y) . For X = V*. - have (VyX.Z)" = (Vy(V*),Z)4= V <V*2Z), -
(V*W Z), = F(Z*)- VrzZ(*) = Vd*(y, Z). Therefore, we obMin Zx*(V, Z) =
2vd*(y, Z). <

For instance, let (N,h) be a complete manifold and Br(p) a regular ballthat
is, Br(p) is a geodesic ball of radius R centred at p € N with the properties:
(i) =JkR < j,
@ G(rnB,(,) =t,
where k = max{0, ~sup*K) with K the sectional curvature of N, and where C(p)
is the cut locus of the centre p. Due to a result of Hildebrandt, Haul, and Widman
[Hi-Ka-Wi/77] (see also Ref. [Hi/85], page 66, Th. 5.2, the second fundamental
form of the function €= |p* with p{q) = dist(y,p) satisfies, in Br(p),

<*k(p)h < Vdrf» ,

where a*(f) = ty/kcot(~kt) for 0 < t < Furthermore, if Jif > w, w < 0 on
Br(p), then, in Br(p),
< aw(p)

with a, (i) = ty/—wcoth(v/—u>i) for 0 < t < o00. As a consequence, under the
above assumptions the vector field X = p?j- = |V (/>*) is strongly almost conformal
on Br(p). By the Cartan-Hadamard theorem, this is particularly significant, if
N is simply connected and with non-positive sectional curvatures. Indeed, in this
case any geodesic ball is regular.

The above discussion also justifies the terminology of the following.

Definition A vector field A' defined in If is said to be strongly convex, if there

exists a a : U -* 1R, such that infer > 0 and

Lxh > 2ah.



Again, if Br(p) is a regular ball in the complete manifold (N ,h), then X = pf-f is
strongly convex in the geodesic ball i?A(p).

Let (A/,g) be a second Riemannian manifold of dimension m and f : M —N

a smooth map. The tension field Tt of / is defined as ([Ee-Le/83])
7/ = trace,vd/ .

Given a strongly convex vector field X in the open set U ¢ N, we setu 7info >0
and suppose /(A/) C U. Now we denote by X j the vector field along / and by Y

V*, and V 7 the connections on TAf, TN, and f~IT N, respectively. Let Z ™

the vector field on Af defined by

<Z,Y >,=< XAM>*, vre TM,zg M .

Fixing x0G M and choosing X t,..., X mas an orthonormal frame of (M ,g) defined

in a neighbourhood of *0, such that VX,(alo) = 0, we have, at the point x0,

g>%,>. (%) = flil(v A(X.x,),x1) = i[}(lv S xdy
=£ {'ftW(X.).X,)t),,(*,)' (#(*,),VE‘X>)J-
EH < z,x,>),(*)-(vm ,vimx)j

= div, (2)(*,) - fE?I;Ixi.(/‘(X,),<V(X,))

< div,(Z)(x,) - £> W (X<),V(X.)k

= <UV@)(0 - « {M

So we have obtained the formula

< Th X, >*< div,(Z) - orJ4f][; < div,(Z) - UN\AY), )

where ||4f|Pis the square of the Hilbert-Schmidt norm ofthe section df G G°°(TAi*0
f~I1TN), M being supplied with the metric g.
Supposing next that M is compact, we get by integrating Eq. (2)

E()S -¢ /v <T,X,>,dv,, (@)
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where E (f) is the energy of /. Observe that, in case (N,h) = (1R",<,>), X is

the position vector field, and / is an isometry, Eq. (3) transforms into the equality
v(M)=-J"< a,f>dv,

with H the mean-curvature vector of the immersion / and V (Af) the volume of
M . Hence, Eq. (3) can be thought to generalise a classical formula of Minkowski
on convex bodies.

Furthermore, from Eq. (3) we deduce that, if / is harmonic, i.e. /= 0, then
mE£?(/) = 0 and / is constant. This result generalises to the non-compact case in

the following:

Proposition 2 Let (M,g) be a complete, non-compact, oriented Riemannian man-
ifold, and/ : M —*U C (N,h) be a harmonic map of finite energy, where U it
an open tet tupporting a strongly convex vector field X. Lety be some point in
M and t the distance function from y. //lim ,”+00 Ipf/IN\dVt = 0, then f

it conttant.

Proof. Let f be the 1-form dual to the vector field Z on M appearing in Eq.
(2), that is, f(F) =< Z,Y >,, and let * be the Hodge star operator. Then,
d*( = divt(Z)dVt with dVt the volume element of (M,g), and, since / is har-
monic, Eq. (2) gives

HVNE; £ = @
Let now |[f]] be the norm of the (m - I)-form *(. Then, |Pfll = 1Kl = 4K,
but, from the definition of Z and the Schwartz inequality, [IZJIf < [I&IE1IX]1*

Therefore, applying Holder's inequality, we have

\L, 5 [?2Ljx>

and, since the energy of / is finite,

iL, 5¢  {bu [

By the Gaffney-Yau extension of Stokes’ theorem (see the appendix of Ref. (Ya/76]),

there exists a sequence of compact domains K, in M, such that Ki C Ki+u



Sectioa {. Preliminaries Mad Formulae 67

\JKi = M, and JKfd*f.-~*Ji. Applying this to Eq. (4) we deduce E (f) = 0,

i.e. / is constant.

Remark After careful inspection of the proof of Prop. 2 we conclude that it is
sufficient to require U to support a itrictly convex vector field instead of a strongly

convex one. Such vector fields satisfy Lxh > 2ah with t*> 0.

Remark In case U = B,[p) and A" = pf~ as in Sec. 2, Ex. 3, Prop. 2 should be
compared with the results of Karp [Kar/82]. Indeed, if N is simply connected,
complete, and with non-positive sectional curvatures, p* is smooth on all of N,
Vd(p*) > 2A, and |IWI||* = 1 almost everywhere. Thus, it appears that our
assumptions E (f) < +oo0 and lim ,-+0. ft/*,, \\X,\iVt = lim,~+oe V/*,,(*> ©
f)*4V, = 0 play the roles of boundedness of /(A /) resp. of moderate volume

growth of M in Cor. 4.1.1 of Ref. [Kar/82].

Let now / : (M,g) — (N, A) be an immersion and M be oriented with dimM =
m. We set

A*=rh

for the pulled-back metric. Let u be the ratio of the volume elements of A* and g,

so that u is the positive function defined by
dWk = *dvt .
Then, |41 and u are related by the inequality
m«4 <m ; (&)
at any pointy € M, with equality holding, iff
A= AT )

for some non-zero A at y. In order to prove these statements, we choose at each

point * 6 M an orthonormal basis X i,...,X mon r*M which diagonalises A*,
ie. <X ,Xj >*=<dfMX,),df,(X]j) >,= As dv,. = dWh{Xt...... Xmdv,,
we have u = dVk»(X, ..., Xm) = yrdet< A, Xj>* = y/Xte Am. From the

well-known geometric-arithmetic-mean inequality (aj e=eam)* < H---- ham)
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for any non-negative real a,, with equality iff a, = aj V', and using |RM[ =

Ai H--eeee f- Am, we obtain Eqgs. (5) and (6).

As a final notation, we denote by H the mean-curvature vector of the isometric
immersion / : (M,h*) —» (AT,h). ,

3 Main Results

Given a strongly almost conformal vector field X on U, we define

where a and /? are as in Eq. (1).

Theorem 1 Let (M,g) be an tn-dimensional, with m ~ 2, oriented complete
Riemannian manifold, U C (N,h) be an open let supporting a strongly almost
conformal sector field X, and f : M —* U be an immesion satisfying
(A) E({f) < +oo0, is complete, and | X/|»t«]]irJU € L*'(M ,g).
If
(»  (Tf- muH ,KXf)hz o0 and
(it) u< for m> 3,
(lit) u>0 for m=1,

then f is conformal with h* =

Proof. With notations analogous to those used in Sec. 2, we get
= <Uw-(W) - £ ILxk(df(X,),dHX,) 2 div,.(W)- m», (7)

where {X,} is an orthonormal basis of (M ,h*) and W is the vector field on M
defined by < W,Y >*.= (if(Y),X,)k , VF€TM , x€ M.
Multiplying Eq. (7) by u and subtracting the result from Eq. (2), we obtain

(M- m*H , X,)k < div,(Z) - udiv*. (W) - o]l|(fI|J+ mOu . (8)

Let us consider the case m > 3. From u < i A < 1 (assumption (ii)) and since
9*-- is the solution of the equation 9t = t=, we have 9t < ts , Vt: 0 < t < 0«".

Hence, Eq. (6) and 9 > 1 give « < jui < Therefore, as
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f has finite energy, u G LI(M,g), but * < 1, thus u* < uand u G

Using the defi on of W and applying the Schwarz inequality we get [[MJX <

Nm]X/]]*. So, as we assumed |[|X]|]* G L*(M,g) (conditions (A)), we obtain
«I'H*. G L*(M,g) or, equivalently, [[W]]* G Furthermore, the first
part of Eq. (7) and the properties of Lx h yield

(mH ,X7/)k < div*.(JV) - am .
Combining this with Eq. (7) and multiplying by u we arrive at
u(mH Xf)h+ am* < udiv*.(iy) < u(mH,X/)h+ Omu .

Thus, since q]|Z7]] E L*(M ,p), we immediately deduce that udiv*»(iy) G L I(M,g)
or, equivalently, div*« (W) G L1(M, h*). Finally, as in the proofof Prop. 2, we have
1IN A~ Applying the Gaffney-Yau extension of Stokes’' theorem [Ga/54]

[Ya/76], we find a sequence of compact domains Kj telescoping to M, such that

[ *dsvk (W)dVt = f divk(W)dVke— b [ div*.(W)dV*. =0
JKt JK{ <-*+00 I\i

ljr div,(Z)<V<i-p Om
Using assumption (i), integrating Eq. (8) over K i%and letting i -» +00 we get
cal [ rfl]].%)iV,>0. )
Now, from Eq. (5) we obtain
mffu —aH”Hj < m(/2u —««») = ma(Ou — s

but assumption (ii) implies 0* - «= < 0. Hence, from Eq. (9) and the above
inequality we conclude o]|<y]|J = mpu, ie. [[49 = m0* < m*+. This gives
equality in Eq. (5). Consequently, Eq. (6) holds. Furthermore, since 0* = u>,
* = and thus

Vv = u (10)

The case m = 1is proved analogously.

Remarks If M is compact, conditions (A) are automatically satisfied and the
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condition sup/? < +o0o0 can be dropped. Moreover, from the proof of Th. 1,
«|Iff|1* € L*(M,g) is clearly satisfied, if ||f] is bounded. This guarantees the
convergence of the integral IMdiv*. (W)dVk». Finally, one may substitute this con-
dition by |V /i € L*(M,p) and work out a reasoning similar to the one presented,
using now <RMXZ)dVt. The same remarks apply to the next results.

In what follows, conditions (A), (i), (ii), (iii) always refer to the ones given in

Th. 1. As expected, the case m = 2 is special.

Proposition 3 Let (M,g) be an oriented complete surface, U C (N ,h) an open
tet supporting a strongly conformal (i.e. a = fi) sector field X, andf : M -* U
an immersion satisfying (A) with u € L*(Af,if). Then, f is conformal, iff (i) holds

with m = 2.

Proof. A simple modification of the previous proof gives the sufficient part. In
fact, in this case we immediately have from Eq. (5) 2« < ||d]|*obtaining Eq. (9)
as well. As 2fiu — = or(2u —Hd’'HJ) = 0, we conclude from Eq. (6) that/
is conformal with h* = ug.

Now we prove necessity. Given a conformal immersion / : (M ,g) —* (JV, h), the

following formula is well-known (Eo-Os/82]:
mB = if, + logy?) , (11)

where m = dimM, h*= ag, and V, is the gradient w.r.t. g. So, if M is a surface
and / is conformal, then u —a and, from Eq. (11), Tj—2uH = 7/ —7/ = 0, which

proves necessity of (i).

Theorem 1 and its proof, together with Prop. 3, give:

Theorem 2 Let (A/,g) be an m-dimensional, oriented, complete Riemannian man-
ifold, U C (N, h) be an open set supporting a strongly conformal seetor fields X,
and f : M -* U be an immersion satisfying (A) (with u € L*(A/,g), if m = 2).
Then, f is an isometry, iff

(») <7)- muH ,X,)k£ 0 and

(*=) u< 1, thatis, f is eolume decreasing for m > 3,
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(*) u> 1, thatit, f it tolume increatingfor tn = 1,

(*» *= 1, thatit, f it volume preterving for tn = 2.

Proof. Necessity is obvious. As for sufficiency, since Ar is conformal, 0 = 1 and,
for m > 3, formula (10) gives h* = g, i.e. / is an isometry. The other cases are

analogous.

Remark Theorem 2 was proved in Ref. [Ri/87] under the assumptions (N ,h) =

(IRn,<,>), X is the position vector field, and M is compact.

Consider now the case where a strongly almost conformal vector field X has the
additional property info = v > 0. Set /t = sup/? and $= £ > 1, whichis a
constant. Replacing 0 by 0, a by i/, and /? by p in Th. 1, thus obtaining thecor-
responding conditions (»"), (*»),(m), we can formulate the following strengthened

theorem:

Theorem 3 Let (M,g) be an tn-dimentional, with tn £ 2, oriented, complete
Riemannian manifold, U C (N,h) be an open tet supporting a itronglg almost
conformal vector field X with the property infa > 0, andf : M -* U be an immer-
sion satisfying condition (A). If (*) and (») or (Hi) hold, then f it an isometry
and X it homothetic.

Proof. The proof of Th. 1goes through till Eq. (10), which now becomes

A*- *rfe,, (12)
whence / is a homothety. So in this case u = i A . Computing the tension field
Tf, using Eq. (11), we obtain

<r,- m.H , X)), = *E?=r(I - #-m){mH X))k . (M)
Combined with Eq. (7) this gives
<. moH LX), = #rt(l_ #5){div,.(1V) - =}, (14)

where $ > mv > 0. Condition (i) and once more the Gaffney-Yau Stokes’ theorem
yield
0i -#r*s(l _ JAidv,.. SO, (16)
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as 0 > 1. Consequently, 0 = 1, that is, X is homothetic and, from Eq. (12), / is

an isometry.

Next we give an application of Theorem 2.

Proposition 4 Leti : (N',h') — (N ,h) 6« an isometric immersion of an oriented
manifold N'f with dimN* = m and i(N*) C U an open tet in N tupporting a
conformal vector field X and having the propertya > 0 on U. Let (M,g) be an m-
dimensional, compaet, oriented Riemannian manifold and F : (Af,g) — (N\h')
be an orientation-preserving harmonic diffeomorphitm with ratio of the volume
elements u. Let Vdi be the second fundamental tensor ofi : N* —* N and H its
mean-curvature vector field. Then, F is an isometry, iff

It) (Ilrat,V<IHdF,dF)- m,H , X,.,)k>0 and

(2) F is volume decreasing for m > 3,

(S) F is volume preserving for rn = 2,

(4) F is volume increasing for m = 1.

Proof. Let/ = ioF. Since i is an isometric immersion and dimJV' = dimAf, a
standard composition formula of Eells-Sampson [Ee-Sa/64] gives
T,= TF + trace, V<h(dF,JF) and U ,-H ,

where Hj is the mean-curvature vector with respect to /. Moreover, F is harmonic

and the ratio «/o f volume elements w.r.t. / satisfies «/ = «, which yields
(T/ - muHf, Xf)k = ~trace,Vdi(dF,dF) - muH , Xior)k =

Since / is an isometry, iff F is so, the result follows immediately from Th. 2. 9

Remark Proposition 4 generalises the main result of Hsiung and Rhodes (Hs-
Rh/08] (and, earlier, of Chern and Hsiung (Ch-Hs/63]), which in our formulation
can be stated in the form:

Let F : (M,g) -* (AT'fi') be a harmonic, volume-preserving diffeomorphism. Let
x : (M,g) — (N,h) and i : (AT',h’) -* (N,h) be isometric immersions of com-
pact submanifolds into the Riemannian manifold (N ,h) which admits a strongly
conformal vector field X. If (7>7m Hf , X/)k£ 0, with / = | o F, then F is an

isometry.
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Chapter 0
INTRODUCTION

Conformal Geometry is concerned with the properties of figures and objects of
Sn, invariant under the action of the Mdobius group, that is, invariant under an
arbitrary conformal transformation of the sphere Sn equipped with its usual Rie-
mannian structure of constant positive sectional curvature. This geometry was
first introduced by ¢lie Cartan [C/55J. Here, we review in Ch. 1the geometry of
the Mébius space 5" and the induced conformal structure of an immersed subman-
ifold, described by, among others, Schiemangk and Sulanke [Sch-Su/80], Sulanke
[Su/81], Bryant [Br/84], and Rigoli [Ri/87], which authors use Cartan's method
of moling frame$ . Faithful versions of this method can be found in Refs. [Je/77]
and [Su-Sv/80].

Some of the conformal invariants in Riemannian geometry can be interpreted
as invariants of conformal geometry. More precisely, we can compare the geome-
tries of submanifolds in the Euclidean space JR1and of those of the Mébius space
5", thinking of 5" as IRNwith a point at infinity through stereographic projection.
For example, the Willmore integrand for immersed surfaces F : M —* JR¥into the
3-dimensional Euclidean space, which is invariant under conformal transforma-
tions of JR* (plus the “point at infinity”), can be interpreted as the Riemannian
version of a conformally invariant 2-form flp on M endowed with the induced
conformal structure by the Mo6bius space S*. In this way, Bryant |Br/84] stud-
ied the Willmore functional and the associated variational problem, deriving its
Euler-Lagrange equation. The critical points are called Willmore immersed sur-
faces. This procedure allowed Rigoli |Ri/87] to generalise in a natural manner the
concept of Willmore immersed submanifolds / : A/m — 5" of the Mdbius space

SHas critical points of the variational problem associated with a functional W (/).
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However, he only derived the Euler-Lagr&nge equation for the case m = 2 and »
arbitrary. In this work, viz. in Gh. 2, we will solve for the Euler-Lagr&nge equa-
tion for any dimension tn < n. This variational problem is related to the one of
a different conformally invariant functional, involving the conformal Gauss map
7/ *M m Qn-m(JRn+i) for an immersion / : M m-» Sn. This relation was first
pointed out by Bryant [Br/84], in the m = 2, n = 3 case, and by Rigoli (Ri/87),
fortn= 2, n < 3.

Also, in Ch. 2, we wil solve a Bernstein-type problem for Willmore hyper-
surfaces of S", which generalises the one solved by Rigoli |Ri/86] for surfaces of
Sr.

Finally, in Oh. 3, we compute the second variation formula for Willmore sur-
faces immersed into a space form, in the context of Riemannian geometry. Earlier,
this was done by Weiner (We/78] in the particular case where M* is a minim»!
surface of S*.

Throughout this part we use the index-summation convention on repeated

indices.
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Chapter 1

THE CONFORMAL GEOMETRY OF
SUBMANIFOLDS OF Sn

1.1 The Geometry of the Mdébius Space

I.1.A The Infinitesimal Conformal Transformations of 12"
and Sn

Two Riem&nnian manifolds (Af,g) and (AT, h) are said to be conformally equiva-
lent, if there exists a diffeomorphism <$: Al -* N, such that 4*h = etfg, where
p is a function on A/. If (N,h) = (Af,g), such a diffeomorphism <tis called a
conformal transformation of (M,g). (A/,g) is said to be conformally flat, if it
is locally conformally equivalent to a flat Riemannian space. Conformal flatness
is well-known to be equivalent to the vanishing of the Weyl conformal curvature
tensor, if dirnA/ > 3. For example, all the Riemannian manifolds with constant
sectional curvature are conformally flat. A vector field X on M is called conformal
(or a conformal infinitesimal transformation), if the local one-parameter group of
transformations generated by X consists of local conformal diffeomorphisms. The
vector field X is conformal, iff Lxg — pg, for some function p on M. The con-
formal vector fields form a Lie algebra. Then, we have the following well-known
results (see e.g. Ref. | Ko-No/63], notes 11,9; Ref. | 1b/85), pages 88,89; Ref. [Ei/64],
page 285):

Proposition The group of oil conformal transformation» of a connected n-dimen-
sional Riemannian manifold N it a Lie group of dimention It»» than or equal to
(i

the complete conformal vector field» on N. The Lie algebra of the conformal vector

+i)~pro9ifa(i n > 3. It» Lie algebra it itomorphic to the one generated bg
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field* (not necessarily complete) of any Riemannian manifold of dimension n = 3,
or of any conformally flat Riemannian manifold of dimension n > 3, has dimen-

sion equal to iStlUa+2If anj on/y /n these eases.

Thus, for all n > 3, the dimension of the Lie algebra of the conformal vector
fields of Sn and of JR" attains the maximum value In’fact, we may
obtain the infinitesimal conformal transformations of the n-sphere from those of
the Euclidean space (JR", <, >,)) via stereographic projection, which is a conformal
diffeomorphism. We recall that a vector field X = (X 1,..., X") : JR" -» JR" of the

n-Euclidean space is conformal, iff it is of the form
J% wi= W - + D™ + ax'+ 0, (1.1)

where [JOy] is a given skew-symmetric matrix, a, and t* are given constants,
and where [PIPF= *** +

checking that such vector fields, which form a vector space of dimension t"+IK"+,Ji

+ *"* [1b/85] [He/75]. One can prove this by simply

satisfy Lx <, >»= p <, >», for some function p. A concise way of writing X given
in Eq. (1.1) is

X*= NMMIE - < >» X+ D(x)+ ax+ v, 1.2)

where £ = ((*,..., ("), v= (?1,...,»") € JR", D is a self-adjoint linear operator,
and a € JR. Under the usual identification JR" = TxJRn for each x € JR", which
identifies the canonic basis e, with the differential operators a standard basis

of the Lie algebra of these vector fields is given by
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The Lie algebra of CO(n) is given by

CO(n) = 0(n) X2R = {D + a/n: D is skew-symmetric, a € JR]
[-a 0 0
O DO :D e O(n), o€
0 O0a

The affine conformal group of IRn is the group of dimension **+Ji + j

r~1 0o o A€ O(n)
J?" x CO{n)9S j(Z.(A 1)) s r'z A 0 r>0 (1.4)
\r~"ZZ ZA r ZeJR"

where Z is a column vector and 'Z denotes its transposed, with composition law

(Z,(A,r))o(W,J?»)) = (Z + rAW,(AB,r$)), and with Lie algebra

-a 0 0
JRn xCO(n) £ v D O Deo(»), a€ JR, ve 2R"} .
0 fa a

The affine conformal group acts transitively on the left on JRnas (Z,M ,r))<«) =
Z + fi4(«0), Vto € IR", being the group of all conformal transformations of the
Euclidean space 2R". This group is also called the group of timilaritiet and consists
of translations, orthogonal maps, and multiplications by a non-zero constant. In
fact, the elements of St* x CO(n) constitute all the complete conformal vector
fields of 2R": the element (t>,D + al,,) is identified with the conformal vector field
X, = D(x) + ax + v. The Killing vector fields of JRn, i.e. the vector fields X, such
that Lx <, >»= 0, or, equivalently, the ones that generate local one-parameter
groups of isometries, are precisely the vector fields of the form X, = I>(*) + v
that constitute the elements of JRn xO (n). Note that the conformal vector fields
of the type Xm= jlI*||I*E— < £,*>,* are not complete. As we will see, these
ones generate conformal transformations defined only on 2Rn\{p), “mapping” the
missing point p to infinity and vice versa, which are also known as origin-preserving
inversions. By a theorem of Liouville (see e.g. Ref. [P0/81], page 172), a conformal
transformation of JRn maps a hypersphere or a hyperplane to a hypersphere or a
hyperplane, if n > 3.

On the other hand, the »-sphere 5" is an example where the group of confor-

mal transformations has the maximum dimension t"+IM'f*L and all the conformal
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vector fields are complete. Let us now choose the stereographic projection

o' Sn\{Al) — 5
where N = (1,0,...,0), with inverse
#% 12" — » S*\{N)
The coefficient of conformality of o is given by o*< ,>,= <,>5«. If X is

a vector field of 2R", then the vector field of S"\{IV}, a '-rclated with X, reading
X* = (E»(*)) » Vx € S", satisfies

AX*< >5-2dlog((1-x°),)(r) <,>*- +(L-xQ*1* <>, o(CO®A). (16)

Thus, X is a conformal vector field of IR", iff X' is a conformal vector of S"\{N).
Explicitly, we have
e («), ) k<o («), riy ) () 3, (1 [k (F)m 2
Ui+ I'WIR)* - O+ o (*)«*) )y (7)
If Z is a conformal vector field of IR", we can smoothly extend X' as to be also
defined at the point N. In fact, from Eq. (1.2) follows that d<7j'(Xw) -* (0,() as
IMI “* +00. Thus, letting x -* N, we have ||<@)|la— —*+00. Hence,

The group GO(n) acts on S" via stereographic projection as

CO(n)xS* —=* 5"
ip,) _ I <r-'(P(«(*))) torx”~N
(AT for* = Al.

Id the seme way Hi" x G'O(n) actaon S", whereby keepinf IV Sxed, in other worda,
keeping the point of IR" at infinity fixed.
1.1.B The Mobius Group

Now we are going to review the group of conformal transformations of 5", for
n > 2, also called the Mdébius group.

Let Q be the quadratic form given by

<OK) = (Re)r b (FR)Xh e 4 (RUal)R . for x = ( * %, Ax4])EIR"+*,
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that is, Q is the quadratic form associated with the Lorentz inner product < , >

of JRn+t with signature (—+,= == ,+). The Lorentz group of dimension

O(n + 1,1) = (P GG'L(n+ 2;IR) : P leaves Q invariant}

is the group of the linear automorphisms of JRn+l that preserve < , >. Let £

denote the light cone, C = <?-1(0), and £ + its connected component
£+ = {* = (*°, *"+») € 2RB+*: Q(x) = 0, *° > 0},

the positive light cone.
Henceforth, we agree on the index range 1< A,B,... < n,0< a,6,... < ti+ 1,
and we fix a righthanded basis {q0, fa* of IRn+*with q0,i%«+1 G £ +, and such

that < , > is represented in this basis by the matrix

0 0-1
S = [5;=< ».,2» >}= o/, O (18)
-10 O
We can always find such a basis, like for example tf0 = , DA = eA timH =

, where (ea)o<«<*+i denotes the canonic basis of J?Bfl. Note that in this
basis Q is given by Q (x) = -2*0*"+l + XAXA, for x =
IfP = [P»] G A/(n+li is a (n+ 2) X (n+ 2) matrix, we identify P with the element
of OL(n + 2, IR) given by P(q«) * Then, we have
Pe

‘PSP =S iff <P.,P*>=5;, where P.= G fR"** |
p<r+i

iff < P(u),P(v)>=<m,v>, Vgt>€ fR"+* .
Thus, we can identify (though not canonically) 0 (n + 1,1) with the group
{PgM(+). : *PSP=S}.

Observe that, if q. is another basis of satisfying the same conditions as
q,, the linear map P : fRB+* —»2RB+*, such that P(i],) = q', is an element of
0O(n + 1,1). Here we remark that some authors prefer to represent the inner
product < , > in the canonic basis i, resulting in the matrix

0

In+i
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Finally, we note that all elements of 0(n +1,1) have determinant equal to +1 and
that, VP € 0(»» + 1,1), P(£) C £.

It is well-known that 0(n + 1,1) has four connected components and that its

identity component can be identified with (cf. Ref. [Ko-No0/69], page 268)
G- {P€O(nN+11) : detP =1, P(E+) C £+) . * (1.9)

G acts on the left on £ + by matrix multiplication as

A: GxE+ — » £+
(P..) — P(x).
If*= is an element of £ + written in the basis ga, we get from the equation
Q) =0
, ife#0,
if «~ 0, and, in particular, (110
Life=0(*~0),
where c,=> 0, u; = € JR", and |lHlF= W . Thus, it is straightforward to
prove that G acts on transitively on the left.

Let 5" denote the unit sphere of the Euclidean space 2R"+1. We can identify 5"

with the projectivisation of the positive light cone £ + as follows: the map

F: £+ — » Snc 2R"Hl

> (Jtih)

is a smooth submersion onto S". Let ~ denote the relation of equivalence on

IR"+*\{0} given by x ~ jf, iff 3a~ 0: * = ay. Then, P n+l = IRn+\{0)/" is the
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Moreover, it is well-known that this action is effective and that G, the identity
component of 0(n + 1,1), is the group of orientation-preierting conformal trans-
formationt of the n-sphere, considered with a Riemannian structure of constant
positive sectional curvature (cf. Refs. [Sch-Su/80] [Ko-N0/69]). The group G is
called the (positive) Mobiut group.

L«tC.=<Pea: [PM], =[%])={(P6a: 3r>0:P(,)=r1".(
be the isotropic subgroup of G at the point xq. Then, Go is represented by

r-' 'XB irAJT B e SO(n)
rx : X £ JRn (112)

0 B
0 0 r J rGR

where X is acolumn vector. We have that Snis diffeomorphic to the homogeneous

space G/Go = {PGo : P € G} of the left-cosets module Go.

Remark 1.1 Following Ref. [Sch-Su/80], the Mobius group is in fact the group
O = 0(i* + 1,1)/{id,—id} that can be identified with the isotropic group of £+,
{P 6 0(n+ 1,1) : P(£+) ¢ £+}, which has two connected components: the
identity component G of 0(n + 1,1) and G\G. The group G still acts effectively
on 5" (and, of course, transitively). Furthermore, it is, asis 0(n + 1,1), the group
of all conformal orientation-preserving and -non-preserving transformations of the
sphere Sn equipped with a Riemannian structure of constant positive sectional

curvature. Thus, 5" can also be represented as the homogeneous space 6/0p,

where
rt 'XB B € O(n)
o b rxX : xenr
0 0 r rE]R +

is the isotropic group of the action G on Sn at the point x. As for the moment
we are only interested in oriented immersed submanifolds of 5", we only consider

the positive Mobius group G.

The Lie algebra £of the group G is identified with the tangent space of G at

the identity element, that is,

$ = ridC= (Pe : PS+ SP =0} (1.1»)
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and the Lie algebra of Go is given by

a * 0
0D t
0 0 -a

The canonic projection of G onto the quotient space G/G'o is given by

IH: G —» GYGoatSnat (1.14)
nP) = [PM)_er-*".
Go —2»G i Snis a principal fibre bundle with structure group Gaq.
Now we relate the action of the elements of G on to the conformal transfor-

mations of Sn, generated by its conformal vector fields. The identity component

IRn x CO(n)+ of the affine conformal group of Min acts on in the same way
as on Sn (see Sec. I.I.A), i.e. the following diagram is commutative:
2" x CO(«]
r'1 0o o0 e r-* 0 o0 c
T~'Z A 0 y Vv - r-'zZ A 0 \
ir"zz ‘'ZA r » J \r-“z2zZ 'ZA r 1= _
lid i* 1%
_ 1.-(1>(.(.))) itz*N
(P=(Z,A\1) . *_ (ifeiiifi). - ifx=N
J?" x GO(n) x 5" — - >
(1.15)
where a and K are the diffeomorphisms given in Eqgs. (1.5) resp. (1.11).
The Lie algebra of G can be decomposed as JLi®£0 ® & with
000
v oo cnr,
0V o0
-a 0 0
%> = 0D O D €3%(»)
o o0 a asS Bi
0 If o0
_ 00 cC (m*)\
00O

Note that 00© ft is the Lie algebra of GO and *Li©Qo is the one of JRnx CO(n)+.
Let p= Ko Il : G —*S* C IRn+l, where 1: Q —» C JPn+l is the projection
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given in Eq. (1.14). As G acts on the lefton £t , each X € defines avector field

X*on £}, given by
ii/n = sU (n(«»p(‘r)P)), vi>€g ,

where exp ££-» G, X —*/ + £«21 i* the exponential map of the Tie group G.

The vector field X* corresponds to a vector field X* on S" defined by
= ¢L .(i>(«p«*)e)) = dKWFt(zitl.,),

which is K-related to X*. Note that the 1l-parameter group of diffeomorphisms

c c
fa : Cj, -* generated by X* is given by fa | V - «P(iX) V
< J *J.

and the one generated by X*, t5 : S" —» 5", reads ~ = Ko <$to It-1. For several
typical X €°1 we wiU give the explicit expressions for the conformal transformation

exp(X): £/, 25" - £t =*5" of S\

-a 0 0 e— 0 O
1) If X = 0 00 EE 0, then exp(X) : 0 /, 0 , which gives the
0 Oa 0 0 e
transformation
exp(X): £/, — £/,
1
e“w
M
iMI1*
1Y w = e-*w
1 t* 1
0
0 =3
0 =
0

Using the diffeomorphisms K of Eq. (1.11) and the stereographic projection a of
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Eqg. (1.5), we have the transformations

exp(X) : s*c nt*+i _>S" c St*+l
*woo\
I°K»Dhe
tarh«+1’  jr°lanbo+ 1
N
xS,
and
exp(X) : IR"U{oo} 1R" U {oo}
e*u;
0 — 0.

This type of conformal transformation of S" is called homothetie with centres xo
and Xoo (i.e. S resp. N or O resp. 00). The integral curves of f * through S are
constant, because X belongs to the isotropic algebra J}of GO. The integral curve
passing through the point (0k>) g S", with u; a unit vector of 2R", is given by
%(s) = (tanh s,sechsw), and is a reparametrisation of the great circle in Snthrough

the points S, (0,w), and N (cf. Ref. (P0/81)). Besides, since exp(fX) : JRn — Stn

is given by exp(tZ)(w) = «*w, f* is <@-I-related to the conformal vector field
of St* E£*(w) = _g®xp(iX)uf = ow, which is a dilatation. Thus, from Eq.
(1.7), we have = («(1 - «**),-e#°(*1,....**)), and, from Eq. (1.6),
Exe(<t> 5 « = -2az° <,>s».
0 0 0 1 0 O
2)If X = 0 22 0 € Qowith D € 0(n), thenexp(Z)= 0 eD 0 with
0 0 0 0 0 1

- »
1 1
u =* «'w
(IMI* SMI”
Xoo =* Xgo,



and, using the diffeomorphisui K,

exp(X): 5-
fltt! Joisl\
{x0,N (*>,...,%»))
N N
S S,

which gives a rotation of Sn around the axis N-S. For (x°, x1,... ,x") € 5", we
have Jjl.0(*A«,0(*1,. «=,*")) = (O.Df*1,... ,x*)). Furthermore,

as exp(fX) are obviously isometries of Sn, t * is a Killing vector field of Sn, that

is, Lf, <,><?»= 0. Now, using the stereographic projection a, we obtain

exp(l): 2R"U{oo} — » JR*U {oo0}
w —= eD(w)
0o —* 00
0 - 0,

D (u) is a Killing vector field of IRn, <r-related to X*.
1 0 0'
gives the transform

0 0O
3)ifr = v 0 0 €~7-i, then exp(X) = v /I, 0
. 0 Vv o [\bV * iJ
mation
exp (r): v-
1 1
V+ w
SIMI* ill j;‘ S'\M'*
* H —_
= |||V\f Y =
1 m m 1
= 0, ifw = 0). Using the diffeomorphism K,

M1 0 N (put
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we have
«p(X): s
(Kil* irarti)

N

S (B ri’ipf+r) = m
Gartan called this kind of confonnal transformation an elation with centre at x«,,
i.e. at the north pole N. The integral curves of X* are a family of circles passing
through the point N and with tangent vector (N, (0,v)) (cf. Refs. [0/55], page

170; [Po/81]). With the stereographic projection o we have

exp(T): ttinU {oo} JRnU {oo}
V+ w

which gives a translation on 1R". Since exp(IX) : IRn — IRnis given by u; = <w+u>,
= ~],=0exp(IX)u» = v is a constant and, in particular, a Killing vector field
on JR" that is <r-related to the vector field = (1-sro)< v>,, —<af,v> *'+

(1—*°)t>) of Sn. From Eq. (1.6), we have (¢ .(<,> 5 t-eyi -

0 0 [1 < Slieil' I
4) Finally, if X = 0 0 ¢ G ~j, thenexp(l) — 0 /. « , giving the
000 00 1
transformation
Mcp(r):
JiM”* He + ell*
W+ i
1
wit #
0
M1 0 =x, itu=
INCH* i<k
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where w' =

exp(X) : 5" — > 5"
(»-IHI* w \ . /MjMjjj*  unjs\
Ni+HHI* " i+HiMi*/ >+TiP+eF/

5 5.

(Jartan called also this conformal transformation an elation, with centre Xo (i.e.

at S). With stereographic projection we get

exp! : JR"U{oo} — » JR" U {00}

00 IRIf
— 0

This is called an inversion on ]JRn that keeps the origin fixed. The vector field

= sli-o™*P(ir)" = ¢l.-.iig;./;.= jH 'f- <*“.<>. wm* conformal
vector field on 2Rn and is ~-related to X f a j1-far0) —| <**, E>,
**+ | (I+ *#)(). Moreover, X* satisfies L ;.(<, >«<,>85».

From the expressions for Lg.(<, >s~) in examples 3) and 4), we conclude that the
vector subspace of ft of dimension

0 -V 0
1 D -v : x?e0(n),ve I

generates all the Killing vector fields of S".

1.1.C The Structure Equations of the Mobius Group

First, we recall that assigning a conformal structure to a manifold Af means giving
a class of conformally equivalent Riemannian metrics. The conformal structure of
Sn will be defined by considering it as the homogeneous space G/G'o, using sections
of the bundle Il : G — 5", the Maurer-Cartan form of G\ and its structure
equations. Henceforth, S" stands for the projectivisation of the light cone £+,

except when we want to refer to the unit sphere of JR*+l, which will become clear
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from the context.
A basis of the Lie algebra of G is given by the feti||g+81 linearly independent

matrices

0
1 0 -0 0 000 0 = 0 -1 0 0 *-B
0 0
o R.I.B) 0 1.0 = 0 0 O© 0o —A
0 0
0 0 -0 -1 000 =« 0 0 0 0
00 0 = 0 0 0 o
A
| 1
o 1 0-C o o o 0 0 -0 1 o0
o o o 1 —A o o 0
0o o o o
0 0
() o o
o o o o 0 0
0o 0 o0--0 0 o 0 0 0 =0 0

with A > B. We denote by $ the Maurer-Cartan form of G, i.e. the {"-valued

left-invariant 1-form of G given by
*0(PS)=P , V «€0,P €],

where P is the left-invariant vector field of G, such that = P, thatis, Pq =

QoPeT¢G = Q§. Then,
* = ~A¥»)A ) + H P\AJi)tP(AB) + X) (P[0,A)P[0,A) + P(~0,.P "0, ,
A>B A

where »*« 1-forms dual to the frame of left-invariant
vector fields (P(0o)]P(i«,B)iP(0,4)»P(A,0))' Since $ assumes values on Q , we denote
by ftj, 0 < a,b < n+ 1, the components of ft. Thus, ft = [ftj] € Qis a matrix
of left-invariant 1-forms. From Eq. (1.13), we have ft'S/ + S'ftJ = 0, which gives

the following explicit relations among the components of ft:

*s = *i= *em. K = = FoHl= *ox =

(l.u)
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VA,Pe{l,

Moreover, we have *jj = P(l), = P{ab), for A > B, <b$ = P(Z«).« **d
= P(o,s),twhence $g, $£, 47, (A > B) form at each point P € G a basis

of JEG\

If we denote by (,] :C*xCJ—  the Lie bracketof Q given by (P,P) *PoP —PoP,

then $ satisfies the Maurer-C&rtan structure equations of the group G, reading
d$ = — AS$]= —9A9.

Explicitly,
d$* = -® : , VO< a,6< n+1 . (1.17)

Using the relations in Eq. (1.16), we can reduce these equations to the following

ones:
d$g = -9°aA*S
d*s = A A
d°A = -«Sar -~ a#? 118
d*i = -**aVb-**a*%h «pA .

A section of the bundle IT: C7—»G/G0= 5" given in Eq. (1.14) is a smooth map
«sS* —»G, defined on an open setof5", such that Ilot = id with id the identity
map of the domain of definition of s. One calls $ also a local G'-frame field of Sn.
It is well-known that such sections exist on a neighbourhood of any given point of

S™. The maps

$: 5"\ {xw — G (1.19)
1 0 0
U u In 0
IIM* CHI* ij
2: S-\{xo G (1.20y
il iMI* w |
to * w /, 0O
1 1 0 0
are two canonic sections of the bundle I'1: G —*S".

With each section t : S* — G of Il we associate a (~-valued (local) 1-form on
S", given by

*z e kx (1.21)

with components d! = s*$J , VO< a,b < n+ 1. Of course, these components

satisfy the same relations and structure equations as the ones of $ in Egs. (1.16)
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and (1.18).
Since $ satisfies $/> = P~IdP,i.e. $/p(Q) = P~10Q , VQ G TpG = P{£, we have,
V*G5" ,sGT.5-, *,(*)= #/(d.,(*)) = (=(*)) '<*»(*), that is,

4>=0~Id». (1.22)

If we regard, in the basis r/a, the column components », of » = [*0, */i, ”ll as

2R"+*-valued functions #, : 5" — mR"+a, then we have

Le» >=5;, (1.23)
where S' = [SjJ is the matrix given in Eq. (1.8), and, from Eq. (1.22), we get
de. = - (124)

Similarly to the Riemannian terminology, we call the 1-forms , which constitute
a matrix with values in ~ | the connection forme corresponding to the moving
frame ». Besides, differentiating Eqs. (1.23) and (1.24) would also lead to the
relations (1.16) resp. the structure equations (1.18), thereby replacing by
We also observe that, since Il ot = [#0]~, »o represents the “position” vector of ».

Let »,« : S" —*G be two sections of Il. In the intersection of their domains of
definition we have

iz »K (1.25)

with K :5" — Go a smooth map. Conversely, given such a map K and a section
<« of Il, the map * — $K is a section of Il. In order to obtain the transformation
laws under a change of frame, we compute the components of ~ = «*$ from those
of tft — s*ft, using Eq. (1.25). The map K has the explicit form

r-t XA \rXX

K - 0 A rx (1.2«)
0 0 r
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From Eqgs. (1.22),(1.25), we have
i<) vome(e) = (LK )d(K)) =K ‘. (d.t)K + idK(-))
K~="r'i'()K + K-"dKi)= K-"+(-)K + K-"dK () ,

that is,
= K~1+K + K'dK . (1.28)

With Eq. (1.16) we obtain, in matrix form,

|S +» 0

U .

0

r *2 o« 0 ret XA \r'xx
0 o s cfis] 9 0 A rx
0 0 r- o Vi] e 0 0 r

dr-1 d('XA) </(fr*XX)
0 dA d(rx)
0 0 dr
Working out the above matrix compositions, we obtain the final expression (which
is clearly not the entire matrix 7>
XA =X {*i}X* + rM A+
X1*0] ¢lojr) [_ 7/ xM JA +irxx'M JA + rd{"'x)A

£8 1=
Lii isJ I mPtYXA+K[tiJA+ \
(r-uwhn N\ ~'AXCItI]A + AdA 1
(1.29)
In particular, we have
i; =r-Us=*?, VXe6{1.. (1.30)
which leads to the transformations
/g':{”)'f"AEW)' (1.31)

ijA...Ai; =r.V5A...A . (1.32)
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Let as now reconsider for a moment example (1.19). In that case, we have, Vx €

5"\{Xoo0} and s € T,S",

00 0
o) = (=) = BO 0
o~o0
where v = d(<ro ic),(z) € 172" with < and K the diifeomorphisms given in Egs.
(1.5) resp. (1.11). So, ~ = (a o K.)*dvA, where dvA is the projection of 27?" onto
the coordinate A. This shows that (d»o)i<*<, linearly independent 1-forms on
£"\{Xo00). The same conclusion is obtained for the section $ defined in Eq. (1.20),

using now, instead of <, the stereographic projection

b:  s\(5) o« o (1.33)
(O8N o R (L)

with S = (—1,0,..., 0) the south pole of 5".

As the domains of these two particular sections cover all 5", we conclude from
relation (1.30), concerning any pair of sections of the fibre bundle Il, that, for any
section S: 5" -* G of Il : G — 5", the 1-forms ), <*<,, °* “* &*®**jy in-
dependent. Furthermore, from the transformations rules in Egs. (1.31) and (1.32)
follows that these I-forms determine a conformal »tructure resp. an orientation
on 5". As we see from the above examples of sections, the conformal structure
assigned to 5" is the same as the one generated by the Riemannian metric dt* of
5", induced by the Euclidean metric of 272*+1. Explicitly, using the section (1.19),

we jet W )* = = ipV d¥-

1.2 Submanifolds of sn

Let/ : Mm -» 5" be a smooth immersion of an oriented m-manifold M with
m > 2. We will assign to M a conformal structure induced by / from the conformal
structure of 5". In addition to the index ranges given in Sec. 1.1.B, we agree on

1t ~ m, m+ 1<a,0,...<n.
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1.2. A Zeroth-Order (»-Frame Fields Along /

Definition 1.2 A zeroth-order G-frame field along f it amapc: M -* G defined

on an open tet of M, tuck that the diagram

M -i-» G
/N 1n
5"
it eommutatite. In other wordt,
noe=f, (1.34)

where Il : G —*S* it the principal bundle of Eq. (1.14).

We can always define a zeroth-order frame e along / in a neighbourhood of each
point of M. In fact, if t : 5" —»G is a section of Il, thenc= tof iM —*G is
such a frame. Observe that e is an immersion, as is clear from Eq. (1.34).
With each zeroth-order frame e : M —* G along / we associate a ~-valued (local)
1-form on M defined by

A= e*t (= e~lde) (1.35)
with components

ft =«**;, 0<o0,5<n+1.

These components satisfy the same relations as the ones of ft in Eq. (1.16). Let

now i : M -* G be another zeroth-order frame along /. Then,
e= cK , (1.36)

where K : M —* Go is a map defined on an open set of M, and which is of the
form (1.26), withr :M — IR+, X :M —IR", and A :M — SO(n) smooth maps.
Conversely, given such a map K and a zeroth-order frame e : M —* G along /,
then e defined by Eq. (1.36) is so. Writing e = [«0.e*,«*+,) with em: M —*IR"+*
vector-valued functions, we obtain the same transformation laws as in Eqs. (1.27),
(1.28), (1.29), and (1.30) in Sec. |.I.G, thereby replacing the sections t,i : Sn —%G
of Il by the zeroth-order frames e,i : M —»G of Il along /. From Eq. (1.30), we
have that, for any two zeroth-order frame fields e,e : M -* G along /, the I-forms

(«),* «. span T*M (in the intersection of the domains ofe,e), iff (¢0 ~oes
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the same. If we take the sections s,i of Eqgs. (1.19) resp. (1.20), then e = to / :
I-1(5"\{x&}) -» G andi —ijof :/-,(5"\{x0)) — G are zeroth-order frames
along /, whose domains of definition cover M. Since — e*ftg = /*(s*49g)
and the 1-forms (e**£)i<a<h «pan T*S", the sPan T*JW. The same
conclusion holds for the 1-forms (0 = « Summarising, for any zeroth-order

G-frame e: M —*G along /, the 1-forms (~0)t"A<H span T*M.

1.2.B First-Order G-Frame Fields Along /

In order to be able to define a conformal structure on M, we have to perform a
first reduction of the zeroth-order G-frame field along / given in the previous sub-
section. There exist formal theories concerning the method of moving frames on
submanifolds immersed into homogeneous spaces, which describe in a general con-
text the concept of reduction of frames (see e.g. Refs. |Je/77] [Su-Sv/80] [Su/79]).
Here, we will construct explicitly the specialised frames that we will need to define
some geometric objects in conformal geometry, following closely the procedure of
Refs. [Sch-Su/80] | Br/84) (Ri/87).

Let x0€ M and t : M —* G be a zeroth-order G-frame field of Il : G —5* along

/I :M -* 5" defined in a neighbourhood of x> Let Z(,.. .,Zm be a local linear

frame of TM, defined near xo. For each x G U with U a suitable neighbourhood
of x0, we consider the JR" column vectors

«(*(=))

p<(¥) = W=1,...m,

«(«(*»
where is defined in Eq. (1.35). These define smooth maps from U to IR*. As
Ny>e">i0 span r;M, Vm= span{i7t(x),... ,vm(x)} is an m-dimensional subspace
of JR". Thus, V = {(x,1?9: xe U, v GV,} is a smooth vector subbundle of
U x JZ" and the »e= form a linear frame of V. Let be the orthogonal
linear frame of V (relative to the Euclidean metric of JR"), obtained by Gramm-
Schmidt orthogonalisation of and vm+tt...,v Hbe a local orthonormal
frame of the orthogonal complement of V in U x JR", which can be assumed to
be defined on all U. Now we define the map *A: U — O(n), such that, for x € U,
k(x) : JR" — JR" is the orthogonal linear map given by k(x)(t>4) = eA, VA €
{1,..., n), with eA the canonic basis of AZ". Then, !4(x)(V") = JRmx {0}"~m. Of
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course, we may assume that 4 takes values in SO(n). Hence,

‘P1

« .Pn.

where <pA are 1-forms on A/, such that A= OVA > m+ 1. Let /T : U Gq be

given by
1 0 0
K(x)= 0 A(x) O Vxeu
0 0 1
and e : M -» G by i —cK. Then, from the transformation laws in Eq. (1.29)

follows that ip>= ;*9 satisfies [(£] = A[4»0 ]> which implies

=0, Ver=m + n.

In particular, constitute a basis of T*M in a neighbourhood of x0.

Definition 1.3 A zeroth-order G -frame field e : M -* G of U. along f it laid to
he of fint order at a point xo € M, if4% = 0 atx0, Vo= m +1,...,n with <t
giten hy Eq. (1.85). The frame e it laid to he of fint order, if it it to at each

point of iti domain of definition.

The above construction proves the existence of first-order frames in a neighbour-

hood of any given point of M.

Remark 1.2 We note that also first-order frames of the type e = o f, where «
is a section of 11, can be constructed in a neighbourhood of any given point of M.
Assume that we start the above construction with a zeroth-order G-frame along
! of the form e = ao/, where =:5" -» G is a section of Il on a neighbourhood
of /(*«). Then, we define £.(/(«)) = df,(Zi(x)) € and extend £, on a
neighbourhood of f(x0) in 5", giving vector fields on S*. These are linearly inde-
pendent on a neighbourhood of f(x0) in 5". Letp :S" -* M be a map defined
near f(x0), satisfying po f = id*/. We define
*e* i (E(»))
M») = mVi-1, m.
w)
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Then, Vf = span{i5i(y),..., »m(jr)} is an m-dimensional subspace of JRm for y

in a neighbourhood U of /(x0) in S". Repeating the above construction, but

now replacing ¢, by o, and x by jr, we obtain a map ‘A: U —* SO(n). Defining

* -

15" -* G by j(jr) = «(y)A'(y), with K : U C S* — GO0 given by

1 0 0
“py= 0 AW 0
0 0 1

we obtain a section of Il. Thus, « = to/ is a zeroth-order frame of Il along /

which satisfies e(x) = e(x)K (f(x)). Moreover, if we denote K = Ho f : M —*Go,
we have that e = tK satisfies $J(x) = Af(/(x))”~(x) = 0. Hence, eis a first-order

frame of the type » o f with * a section of Il.

Consider the closed subgroup G ( of Go

rr-i sxa *YB Jr(XX + Vy) A € SO(m)
0o A 0 rXx B 6 50(n —m)
0 0 B ry : X € Y e 2R"m
o o] 0 r r 6 IR+

where X,Y are column vectors.

Lete,t : A/ — G be zeroth-order frame fields along / which are of first order at a
point x € M. Let

r~1 'ZC \r'zz

K = t~li = 0 G rz € Go -
0 0 r

Writing

we have, from Eq. (1.29), at the point x

[uUMiisn-
that is, A'[*] = 0. Therefore, A' = 0. Analogously, from the equality [ ¢ ] =

rc [ ] we obtain B* = 0. So, O = | g J at the point *, with (A,B) €
SO(m) x SO(n - m)UO~(m) X 0~(n - m). If we assume that — ,"o%)
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and (~,.

SO(n —m). Writing Z — (X,Y) € JR™ x JRn~m, then, at the point x, we have

, 4™) define the same orientation on TXM , then A € SO(m) and B E

'ZG = 'XA + Vi, 'ZZ = 'XX + YY, and so

r-1 XA YB Ir(XX +

0 A 0 rx
o o B ry (1.38)
o o0 o r

Conversely, if « : M -* G'is a given zeroth-order frame along / which is of first
order at a point x € M, and if K : M —*Go is * map, such that ff(«) € Gi, say
like in Eq. (1.38), then i : M —G given by

(1.39)

is a zeroth-order frame along /, satisfying, at the point x,

Thus, e is a first-order frame at 2 € M . For this reason, Gt is called the i$otropie
group of the first-order G-frame fields at a point x E M .

Next we give the transformation laws for a change of a first-order G-frame field
along /. Let«e:M -* G be two first-order frames. Then, i = eK with K : M —
Gi a map of the form (1.38). Writing e — [«0,«., e«,<i.+i], where e, : A/ —* JRH+*

are vector-valued functions, we obtain explicitly
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FAOA + r(*; - XXX X+> rd(y)B+ A
+ (W I-XM -V [tf])A + +r(*8-5f[*;])VB +

VvV  —4logr / R R
+irfXX + Vy)w A ]

(r-"w) | +i4fa]A + 'AdA )
0 (bM a-'by'M a) (=DItijB + 'Ddn)

(1.41)

In particular,
[*i] = >emf 1<) = (1.42)

Thus, we have
foi: (%) =eel £ (*) NI (1.43)

and

V= A.AN=r-"AA .. A" »r—dV. (1.44)

The equations (1.43) and (1.44) for first-order G-frame fields along / define a
conformal structure and an orientation on M, respectively.

Lete:M —» G be a first-order G-frame field along / and $= [~{] be defined
as in Eq. (1.35). The 1-forms 41 of M satisfy the same relations as in Eq.
(1.10), with the additional property 4% =0, Vo-= m + 1,...,». The structure

equations (1.18) also hold for the components of d> In particular, for each a
0=~ = .AvAN, (1.45)
At this point we recall Cartan’'s Lemma, because we are going to use it quite often.
Lemma (Cartan) Letp < tn and let . . ., bel-forme on an m-dimeneional
manifold M that are linearly independent pointmiee. Let fit,... ,0P be 1-forms on
M, tueh that
0,AW,=0.

Then, there esitt functions Gijt tueh that Oy = O# and 0, = OijUj.

Applying Cartan’'s Lemma to Eq. (1.45), we have

4= h%4>ii Vor=m+1,....,n , (1.40)
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where /»* are smooth functions defined on the domain of definition of t and with

the symmetry property
= hji, VI<ty<m. (1.47)

Hence, the structure equations (1.18) are, in the case of first-order frames, reduced

to
&l =
*x] =
&> = -<*ia a ** - a + Ay
d*" = A A Adi
<w; = a* -*ja*; e

Now we give the transformation law of the »*. Lete : M -» G be another
first-order frame and let A? denote the functions as defined in Eq. (1.46), but now

relative to the frame e. From Eq. (1.41), we have
* = H=r-"Atf.

Thus,

= = BiA' (k%S, - Y ,ei)

= b>(a;ii%- a?y,M =

That is, A* A* = rB*(A{h*k—A*Y(g). Multiplying both sides by Af and letting k

run over 1,..., m, we obtain from the orthogonality of A the equation
= rB'/I' (AIA" - Xfy,) . (1.«)

1.2.G Second-Order (7-Frame Fields Along /

Lete:M -+ G be a first-order (7-frame field of I1: G -* Snalong/ :M -* S*. If
e: M —»G is any other first-order (7-frame, with i —tK , where A* is of the form

(1.38), then, taking the trace in the indices »,/ in Eq. (1.49), we obtain

iIS='Bi(kU -mI»_ (1.60)
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For each m + 1< fi < n, let the function Yp : A/ —* IR, defined in the domain of

definition of e, be given by

(1.51)
10 y \*Y
o/, 0 0 5
0o 0 v ) (1-52)
00 o0 1

where Y = (le\Fl, Yn) : M —»IRmis as in Eq. (1.51). Then, from Eq. (1.50),
i satisfies

fi{= 0, Va= ffl+ 1,....M
Observe that in this case, due to Eq. (1.42), » = V* = 1,..., m, which implies
g—9anddV = dV in Eg*. (1.43), (1.44). Thus, we have just proved that one can
define a first-order G-frame field e : M —* G' along / in a neighbourhood of each
point x of M, with the property k° = 0. Moreover, such frames still define all the

Riemannian metrics of the conformal structure of A/.

Definition 1.4 A fint-order G-frame fielde :M — G alongf : M -» 5" it laid

to he of teeond order at apointx € M, ifit tatiifiet5“ = 0O atx, Vo= m+1,

with giten bg Eq. (1.f6). The frame e it laid to be of teeond order, ifitii to

at each point of iti domain of definition.

Consider the closed subgroup of Gt defined by

r~I 'XA 0 jr'xx A € SO(m)

0 A o] rx B e SO(nh—m)

o 0 B 0 I X € JRm (1.53)
[ O 0 0 r r € 2R+

Ife,t : M —*G are first-order frames that are of second order at a point x 6 M,
we get, writing ¢ = cK with K : M -> Gt of the form (1.38) and using Eq.
(1.50), BAYp = 0, i.e. Yp — 0 at x, V/?. Therefore, K(x) € G%. Conversely, if
e:M -* G is a first-order frame which is of second order at a point x £ M, and
if K : M -* <% is a map, such that, at*, K(x) € Gj, then from Eq. (1.50) follows
thati = tK : M —* G is a first-order frame satisfying h“ (ar) = 0. Hence, ¢ is also
of second order at x. Thus, G™ is the isotropic group of second-order frames at

any point x.
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Remark 1.3 The frames that we have just called to be of second order are, strictly
speaking, not of second order in the terminology of the general theory on reduction
of frames (see Refs. |Je/77] [Su-Sv/80]), as was already pointed out in Refs. [Sch-
Su/80] [Br/84] [Ri/87]. The construction of our “second-order” frames is more
correctly called a partial tecond-order reduction, resulting in more specialised first-
order frames, corresponding to the so-called Darboux frames in the Riemannian
geometry of submanifolds of the Euclidean space (see Sec. 1.3). Further reductions

can only be carried out by imposing some non-degeneracy conditions.

Now we are going to derive functions h%k, p*, p‘fc, k?-M, and jjjj, relative to a
second-order frame e, that, together with the 94 and A“, will be our essential tools
in constructing geometric objects (e.g. tensors) of the conformal geometry of A/.

Differentiating Eq. (1.46) and using the structure equations (1.48) for a first-order

frame, we get

«Ww = (m” + kY- kN iar

which gives
(M1j - KM - +47% +K*1+ M) AK=0m

Hence, by Cartan’'s Lemma, we have, for each t,a,

S FWi-* L Y2+ + Fr>s+m 0=ty (te*w)
where Affc= h°kj are smooth functions. From Eq. (1.47), we have
hjk= hjn,= h'%j, Vo= m + 1,...,» , »/, A= 1,..., m . (1.55)

Taking the trace of Eq. (1.54) in the indices I,/, and noting that AJ”® = 0, we

obtain

Defining
= (1.5¢)
we have

(167)
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Differentiation of this equation yields, with the structure equations (1.48),

Ui = lipia« +P;a = (dp° - pit)+ py °) a« (i.m)

= -p"*SA« +* A +pj« A . (1.89)
Combining Egs. (1.58) and (1.59) we obtain

Jp' - S X5« +P2% + 2"K)A« = 0.
Hence, from Cartan’s Lemma,

Jp"-p>;- *;,«+p>;+2p"K =pfcx, («1

where p‘k are smooth functions on the domain of definition of e with the symmetry

property

P»= Pli. Va,k,i. (1.61)
Using Eq. (1.54), we get

W i = 5% « +*5*«+*5* - *5*f/«+
*5*5¢- Yo« e

Since is symmetric in tJb and is anti-symmetric, hfjhijtf = 0. Analo-
gously, = hfjhijtf = 0. Moreover, as e is of second order,

= - E(*0)VS + -

3.0

Hence, using the vanishing of d(h°jdh°j) and the structure equations (1.48), we

obtain
«*B5*5») Ad>l = (- 6*5*2/»*l. £ (*5)« + *5*5 «)a«
Then, Gartan's Lemma yields
«*5*53) = -6*5*5 « - £ (*5)V i+ *5*5 « + . 11-62)
o>
where the Hkr are smooth functions with the symmetry property

Bk, — Brk. (1.63)
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Alternatively, we can express Hk, as follows. Differentiating Eq. (1.54) and apply-

ing Cartan’'s Lemma, we get

- “ “
okik = kjkiro Tkt Fonjrkti Tjrek = ooy oo kfjker T

(1.64)
+WA +kthtf+w a -ka-ka-ka.
where h°jU are smooth functions with the symmetry properties
A0« = AO<* ~ - (1.65)

Expanding the I.h.s. of Eq. (1.62) and using Eq. (1.64) plus definition (1.56), we

obtain

SFAVH - W7 - Sly*SEX AR e (16
Besides, from Eq. (1.35) we have de = e o <& If we regard, in the basis ty., the

column components ea of the matrix e = [eo,«., e«,e,, +i] as i?*+,-valued functions

e« : 5" — 2R"+*, then we get, with Eqgs. (1.16),(1.46),(1.57),

dco = (iie0 + "0«
de* = "o + ~*e, + ATjMoco+ MNoevt>
’ ' ] (1.67)
de<* = P2%jco -
de*+i = *%, + ~ No«-+i =

Finally, the first four structure equations (1.48), rewritten for second-order frames,
take the form
Aftf,
¢ = ~"o
[ IR —— 4A4-4A41-fT*M <A tf
A KA - A + KW * A
If we define, for each a,5, ilj — -<t>* A 0*, then the above structure equations can

be written as
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The t™+dL™td 1-forms <, and 2-forms 0°, 0{, 0?2, fIj are called the

connection form» resp. curvature form» corresponding to the second-order frame

Next we give the transformation laws of the c«, 0J, h", p", A?*, p“ , and H,j.
Lete,e : M —»G be second-order frames along/ with i —cK, where K : M —G%

is a map of the form

r 1 'XA 0 \rxx
0 A 0 rxX
0 0 B 0
0 0 0 r
Then,
i = J«0,C.tll = [«O, C.th7f
= Jr-'«o, M (Xjt, + *i),B 1", +rXjti+oret | (1.71)
Atin Eqg. (1.28),i = K-"+K + K~I1dK, which give.
B H <
*= AU a
o it it
T4s - 1" ("*)* + TW - 'XM)'XA+ )

\ ~4logr j \N+r(M]-X("]+ ] XX ,M])xI

(oK) WX HAPIA+ MY sy

0 “b [*\a) (B IrjB + BdB)
(1.72)

From Eq. (1.49), we have (with now Y = 0)
K, = rfijAfAjhi . (1.73)

From Eq. (1.57) and the transformation laws of ;{j, = r~IA*j% and = rB*(tf —

XiPp) given in Eq. (1.72), we obtain
ir = r*S'A?(rf + *iddfy) . 1.74)

In order to derive the transformation law of the we differentiate Eq. (1.73),

and use Eq. (1.54) and the transformation laws (1.72),(1.73), obtaining
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= rfif - A-A-A2X X+

- AJA'JAIX.KN - AATAZX K>+ (1.76)

+ b.jAIX.h", + tikA' X.k>, +

Egs. (1.73) and (1.76) yield the transformation

*rrm ozeUr(*, Y, - xwk >y j. (1.7¢)
Differentiating Eq. (1.74) and applying Eq. (1.60) to e, e, we obtain the transfor-
mation law of the p“ , reading

pT, = r'BAAfA'jpl, + AfA'IX'h'" - +
- d*d;x,X,i" - - 2A*A XX + (.77)
- 2A*APpf + 0LjX X ,kZ + 6fiX,pJ) .

Taking the trace of this equation in the indices $,/ leads to

+2(m - 2)X,pE + (m- 2)XrX,k™) , (1.78)

which, in the particular case m = 2, gives

P’ = r'B'pf, . (1.7%)

Differentiation of Eq. (1.76) and application of Eq. (1.62) and the transformation
law of the in Eq. (1.72) gives

H* = r" {A\A!H, - iA",AX k>.X.- 3AkA'h>y, X, 6 + (1.80)

+bk'X .rX, +3(Y.Wj))AIAtX.X,- k (D (h"))*.X,)
<ar 1 500 )

Combining this with Eq. (1.73), we get
W X AX,+H - (1*1)
Finally, we derive the transformation law of the (m —I)-form m := a
LLCASSFANHIALLLA where the missing index i is assumed to be summed
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over when appearing repeated in composite expressions. From Eq. (1.72), we have

40 = r~IAk<s** Denoting by E, and E, the linear frames dual to the co-frames §0

reap- we get

E, = rAKEk. (1.82)
Hence,

i
where AJ denotes the submatrix of the matrix [rA*] with row i and column

j removed. Since A is orthogonal and from the rule (—1),+Jdet (AJ™"V"")(rA") =

6K detjrA*] = Skjrm, we obtain (—1)'+fJdet (A ) = rm 1Aj. Thus, =
(—1 . Multiplying by (—),+*r'~mAJt and summing over », we
arrive at

(1.83)

1.2.0 The Generalised Weyl Tensor and Conformally Flat
Submanifolds

Given a second-order G'-frame t : M —»G along f : M —* SH, one can define the

quantities (see Ref. [Ri/87])
(1.84)

where the hfj are given by Eqgs. (1.46) and (1.47). The T'jk satisfy the symmetry
relations Tju — ~ t\n — “ Tjo, — Tuj- Also, from the structure equations (1.68),
(1.69) we have 13y = YIk<iTjkl4%A 70, i.e. the Tyw are the components of the
curvature form OVrelative to the co-frame jk. If i : M — G is another second-

order frame, then from Eq. (1.73) follows

fja = ~ = r'A-A MW Tray » (1.85)

where r and are as in Egs. (1.70),(1.39). Denote by E, the frame of M dual to
the co-frame Then, from the transformation law of these frames in Eq. (1.82)
we conclude that a global tensor T € C°°(Q*T*M ® TM ) can be defined on M,
locally given by

T =-r in4S®+ta+i<akl (1.86)



Okapttr J, Seetloa t.D. Tke Orarmimrd Weyl Truer aad Coafornmlly Flat SabmaaUol* 111

on a domain of a second-order frame e. Rigoli called T the yencredited Weyl tentor.

Taking the trace of Tkt in the indices =/, one obtains
(1.87)

which defines a global symmetric tensor M € C°°(O* T*M), locally given by

(1.88)

Note that Ajj —Eij>(AJ>)* and that» "*= 2, M= J® (0 + (0® 00)- For
any m, one has trivially (cf. Refs. [Sch-Su/80] [Ri/87)) at a point x € M

traced (x) = Afo(x) = 0, iff h? = 0, VI,/,0, iff JVx) = 0. (1.89)

In particular, the condition Mjj(x) = 0 is conformally invariant, as we can also see
directly from the transformation law » » = r*Ujj. A point x € M is said to be
umbilic, if Mjj(x) = 0, and the immersion / : M —»SHis said to be Mobiue-fiat,
if all the points of M are umbilic (see Refs. [Sch-Sn/80] [Br/84] [Ri/87]). If x
is umbilic, the curvature forms ft®, (!{,, il®, fl) vanish at x, for any second-order
frame. The use of these names becomes clear from the following proposition, first

formulated by Schiemangk and Sulanke [Sch-Su/80] (see also [Ri/87]):

Proposition (Schiemangk-Sulanke,Rigoli) Suppote that M it connected and
m > 2. Then, N = 0, iff there eaiiti a Smc Sn, tuch that f(M) C Sm. In thii

cate, if, moreover, M it compact, then f it a dijfeomorphitm of M onto Sm.

In particular, the map

l: E* - s'=r;. (1.90)

immerses JRr" as a Mobius-flat submanifold into the Mbbius space 5".
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1.3 Relation with Riemannian Geometry of Sub-
manifolds of the Euclidean Space

If one considers 5" as jRnwith a point at infinity, one can relate the Riemannian
geometry of a submanifold of JRn C S" and its conformal geometry induced by
the one of 5", which we will describe in the following.

Let us consider the diffeomorphisms

P"+1D D S*\{Xoo)

. HpH*.. (1.91)

(H m ' IHFfi)
¢ 2R+
where o and K are given in Eqgs. (1.5) resp. (1.11). Through the diffeomorphism
i = K~lou_lI, JR" is identified with 5"\{Xo00). In order to use the method of
moving frames in R ", we have to write IR" as a homogeneous space of a subgroup
of G.

The isotropic subgroup of G at Xoo is given by

f r'1 0 0 Ae SO(n)
r~1z A 0 Z€F
\r-1.ZzZz 'ZA r r>0

Let G* be the subgroup of G defined ty

1 0 o A€ SO(n)
G* = z AO ZeJR” (1.52)
\zz ZA 1

The group G* is isomorphic to the identity component E*(n) of the group of the

Euclidean motions of R ", i.e.
P +(n)= {(A,Z): A€ESO(n), ZelR")

with structure group defined by (A,Z)o (B,W) = (AB,AW + Z), (A, Z)~I =
(A~1,—A~1Z), and id = (/,,,0). This isomorphism is given by
£24(») — » G*
1 0o 0
(A,2) z A 0
\'zZz 'ZA 1

(1.93)
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Under this identification, the action of G* on S*\{xo<>}, which is the restriction
of the one of G on 5", is identical to the usual action of £2+(n) on £Rn. In other

words, the following diagram is commutative.

£7+(n) X nr
M.Z) . «) Au+ Z.
I 1< tr*
1 0o o 1 i
4 A0 ] a - Z+ Aw
1 \*ZZ XA 1 \N\\ar [illz+ AcHV
G x 5-\{x,) i

As the action of JB*#+(n) on JR" is transitive, the same holds for the action of G*
on 5"\ {x«,}.
The isotropic subgroup of G* at the origin x0 € 5*\{Xoo} is given by

Gt = A € SO(n) (1.94)

[SECIN
o> o
koo

and is isomorphic, via Eq. (1.93), to the isotropic subgroup SO(n) of 12+(n) at
the point *, (x0) —0. Thus, IRnas 5"\ {x®} is diffeomorphic to the homogeneous
space G*/GJ. Letj : G* -« G be the inclusion map. The canonic projection

If : G* “mG*/GJ et 2Rn is given by

H(P)=-([/> ()1, (i.m)
that is,
t 1 0 0 t 1 \
zZ A O L= z
| 12z za 1 J | \w J
Thus, TT= i~lollo where Il : G -> G/G0Oat5" is the projection in Eq. (1.14).

The Lie algebra of G*,£* at IRn x 0(»), has basis {P(a,0,P(a,b) : A > B] (see
Sec. I1.1.C). The Maurer-Cartan form of G* is given by

*= e #:TG* - ,
where 9 : G is the Maurer-Cartan form of G, and its components {&t)ofate»+i
satisfy the relations

0 A 1 AO *A Ar+l Al . . .
B R e Ty R I S TR - (109
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The structure equations of G* are supplied by the Maurer-Cartan equation =
—4 a4, that is, in components, A4j, through Bqg. (1.96) reducing to
«ty = ~&B
<&B = ~&0 -
Next we assign to JR" ~ G*/G*0a Riemannian structure, described inihe following.

(1.97)

For each (local) section p : IRn — G* of the bundle H : G* —*JR", i.e. p is a map

that satisfies Hop = id«», we take the ~‘-valued 1-form
A=p*$=p Idp. (1.98)

The components of  <Jj = p*4j, satisfy the same relations (1.96) and structure
equations (1.97) as the components of Since / opo«-1 : Sn—*G is a section of

the bundle Il :G —» 5", we know from Sec. I.1.C that the 1-forms
=eV*q= (/Opot:1H0» 1< A< n
are linearly independent. Therefore, {~0)liA<a constitute a (local) basis of T*2R".
On the domain of definition of p we take the Riemannian metric
<= £ («)'m (1-»»)
A-l

If p : JRn —* G* is another section of IT, then, in the intersection of the domains of
definition of p and p, we have

PopK, (1.100)

where if : JR" —GJ is a smooth map of the form

10 0
0 A DO (1.102)
00 1

with A : JR" —=S0O(n). Thus, we get the transformation laws of the components

of p= reading
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In particular,

whence

#=£(«)* =t («m=*m.
Thus, the Riemannian metric defined locally in Eq. (1.99) is a global one in IRn,
such that, for any section p of H, the linear frame field X t,.. .,X ndual to the co-
frame ...} given in Eqg. (1.98) is orthonormal. Moreover, due to Eq. (1.96)

and the structure equations (1.97), the 1-forms:5 satisfy
(1.103)

Consequently, the $5 are the Levi-Civita connection forms corresponding to the

co-frame $0)i<,A”n‘ Since ™ additionally has the property (from Eq. (1.97))
45 = -45 , (1.104)

the above Riemannian structure on IRn is flat. In fact, the metric dt* is the usual
Euclidean one, as we can see by taking the section p = sot with « : Sn\{x«>} —* G*

the map defined in Eq. (1.19). We observe also that, given a (local) right-handed

orthonormal frame X i,..., X n of 2R", there exists a section p : JRn — G'*, such
10 O

that 4? (An) = &b- This section can be chosen as p = p- 0 A 0 with
0 0 1

A2 =(..)e*2(X ).

Now let F : Alm —* IRn be an immersion of an oriented m-manifold Af with
m> 2.
A map E : M —* G* defined on an open set of A/ is called a G*-frame field of
IT IRn along F, if IToE = F. For example, if p : JRn —* G* is a section
of |T, then E = poF, defined on a conveniently chosen open set of A/, is a G*-
frame field of |Ta|0ng F. IfE :M -» G* is another G*-frame of |Ta|ong F, then
& = EK with K : M — GJ is a smooth map defined in the intersection of the
two domains. Conversely, given such a map K and a G*-frame E, then E = EK
is also a G*-frame.

Setf = ioF :Mm-— 5", which gives an immersion into the Mobius space Sn.
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If E : At -* G* is a G'-frame field of IT along F, then e = j 0E : At —=* G is
a zeroth-order G-frame field of Il : G —* S" along /. Summarising, we give the
relations among G ‘-frames of IT along F and the corresponding G-frames of Il

along / in the following commutative diagram:

(1.105)

Asin Sec. 1.2, we are now going to construct in a neighbourhood of each point
of At a more specialised G'-frame field. With each GMr&ine field E : At — G* of

ITalong F we associate the ~-valued 1-form

i>= E*$ = E IdE (1.106)
on At, with components = F'&J satisfying the same relations (1.96) and struc-
ture equations (1.97) as the ones of IfE : At -» G* is another frame of IT along
F, then

E=EK, (1.107)

where K : At — GJ is as in Eq. (1.101) with A: At — SO (n). Writing

o 0 o
b= w o
0 [*#] ©

we get the transformation

=E'dE = K~"+K + K-'dK

0 0 0
fcko] CAfrflA + 'AdA 0 . (1.108)
0 I~ 1A 0

Let E : At -* G* be any G*-frame of ITalong F. Take t = j o E : At -* G, which
is a zeroth-order frame of Il along/ = ioF: At — Sn, and consider the j*-valued

1-form on At given by 0 = «*#. Then,

bZ K = FC(e*%) = £De(%) = y. . (1.109)
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So 41 = >t and, in particular, (I*o “* 1-form* on M that span T*M.
Following the procedure of Sec. 1.2.B, we can find amap K : M -* GJ of the form
(1.101), defined on the domain of E, such that ft = E K satisfies

=0,Vm + I<a<». (1.110)

In particular, the (1*0)]<,<m span T*M. Moreover, for any two G*-frames E |E :

M -* G* of IT along F that satisfy Eq. (1.110), the map K : Af -* GJ defined by

E = EK, i.e. of the form (1.101), satisfies [*q] = J» 48 we can 8ee from the
transformation laws (1.108). Then, under the assumption that and
(1&Q.. .. define the same orientation on Af, A is of the form
Ai
A _ I o

where At € S'0(»i) and A4€ SO(n —m) (cf. Sec. 1.2.B). In other words, K takes

values in the closed subgroup of GJ given by

10 0 0
1 0A 00 A € S0(m)

00 B O B € SO(n —m)
i 00 0 1

Conversely, if E : M — G* is a G'-frame field of IT along F which satisfies
=0, Vo,and K : M -» G\ is a map, then & = EK : M -* G*is a C*-frame
that also satisfies Eq. (1.110).

Definition 1.6 A G*-frame field E : M —* G* of IT along F with the propertg
Vo= 0, Vm+ 1< o0 < », where 0 it given in Eq. (1.106), it called a Darboux

frame.

For a Darboux frame E : M -* G*, set = Then, from Eq. (1.96), we have

the relations

e = KK = , 0 «i«, (1.112)
and, from the Manrer-Cartan equation. (1.07) fort,
= <Al
A*}+ (111,

where

= Atr;. (1.114)
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Differentiating Vo = 0, we get from the above equations
0=4»; = A*L- +; A a
Applying Cartan’s Lemma we obtain
*7 (1.115)
with lifj smooth functions satisfying
A=A (1.115)
These functions are called the coefficients of the second fundamental form of the

immersion F : M —» IRn, relative to the frame E.

ItE = EK : M —»G* is another Darboux frame along F, with K : M —* G\ of
the form 1 0 0 0
K = 0OA 0O
= 500D o0 (1.117)
00 0 1
then the vector components of E transform as
E = [EO,E,,Ea,E*+i] = [£0,AJEj, B Ep, £,+i] (1.118)
and the components of = E*& as
* o= /8‘@7\]&0 =E-'iE = K-'"iK + K-'dK =
0vi) 00
0 0 0 0
31N AN A+ CAIA 0
0 ‘BI+f]A B[i,;]B+ 'BIB 0 (1.119)
0 0 0.

In particular, ¢j, = nnd = B'V*A*, giving the Iran«formation

1jj-AfA1jB fi.

Also, from Eqg. (1.119), we see that

(1.120)
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defines a global metric on A/, and, from Eq. (1.113), that the ty form the Lewi-
Ciwita connection forme on A/, relative to the orthonormal co-frame (~o)i<i<m

and with curwature forme Cly.

Remark 1.4 First we note that G*-frames E : M —*G* of IT along F of the type
E = poF, where p: IRn — G* is a section of H, are defined in a neighbourhood
of each point of M. Moreover, we can assume such a frame to be a Darboux one,
which can be shown in an analogous way as in Remark 1.2. in Sec. 1.2.B. For such

Darboux frames, we have = E*& = F*p*& = F*$. In particular,
=t () =t (%) ZE () =f(dt).

Thus, the metric dI* of M is the one induced by F from the metric dt* of JRm. If

we take X u === X mas the local orthonormal frame of (A/, dI*) dual to

then
hi= *UXj) = i"(*i3fy) )
and
0= «=*;(«-(.)).
Leti/i,..,,UmuUmn, be the orthonormal frame of (JR",<ft*) dual to

Since
¢-(0.CXJ)) = ¢.j, ii(w.(,1.))) =0, is(IK(x,)) =0, ,

we conclude that 17,(*m(*) = V* € Al, 1< »< mand that (*o0°”)m+,<aSw
is an orthonormal frame of the normal bundle to F. Then, since iiW c) =<
duB{Uc),Ua >*« and t/>j(Xk) =< >*«, the second fundamental form
off' :A/-* 2R" is given by

idy»
with A* = ~f(X]) = ¢?(dF(X]j)). We can easily verify that the r.h.s. of this
equation defines a global tensor on A/, by applying the transformation laws given

in Eq. (1.119) on another Darboux frame of the type E = poF, where p : tin —»G*

is a section of Il.
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Finally, we remark that, for such a Darboux frame E : M —* G*, its vector

components can be written as (Enti = 0)

1 0
EO(x) = F(z) L «(*) = E.(x) = A (I=(=Y
pW M F*()AI(M)
a;
where A :JRn-* SO (n) with vector components A, = is a smooth map.
a:

Identifying £2(*) € G* with the element (A(“(»]),F(*)) € E +(n) via the isomor-
phism (1.93) corresponds to identifying E0{x) with F(x), £?,(*) with A,(rw), and
Ea(x) with A<(/(*))» Then, one can show that £2m= A-oF = dF(Xj) £ dF(TM)
and Ea = AaoF = U aoF give rise to orthonormal frames of dF(TM) and its

normal bundle, respectively.

In order to simplify the relations that can be derived between the Riemannian
geometry of submanifolds of JRn and their conformal geometry, when considered
as submanifolds of 5", we are going to show how a second-order G-frame field of
I1:G —»5" alongf = ioF :M -* Sncan be constructed from a Darboux frame
of H:G' —2R" along F : M -* JRn.

Let E : M -* G* be a Darboux frame of IT along F and t be the zeroth-order
G-frame t = j oE : M —*G. Then, the vector components cu of t are identical to

the Em of E and, with the usual notation
Y= £7% | &= «e*,

Eq. (1.109) holds. In particular, = 0, that is, e is a first-order G-frame
field of Il along /. Note that the map / : (M, dI*) — Sn is conformal, i.e. dI* =
e’ (*)=e;., M) =e;., e ((>=£)*?) =e;., («i)*
is an element of the conformal class of metrics of M induced by the one of S*".

Since e is of first order, we have, as in Eqgs. (1.46),(1.47),

= KjH «
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we get, comparing with Eq. (1.116), AJ = i.e. k*: are the coefficient« of the
second fundamental form of F, relative to the frame E. The Gauss equation (see

e.g. Ref. [Ko-No0/63]) yields that has Riemannian curvature tensor
Rijkt — Kk*ji ~ heihjk . (1.121)
with scalar curvature
* = a«=2E W,KI-(*&)-}-
- <<J>
The mean curvature has coefficients

that is, if E is a Darboux frame like in Remark 1.4, then H = H°Ua. Let
« — :M — G with K as in Egs. (1.51),(1.52), which is a second-order G-
frame of Il along /, as shown in Sec. 1.2.0. Then, we get the transformation

laws

(1.123)
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We note that the coefficients relative to the second-order frame i are not the
ones of the second fundamental form of F, because t is in general not a frame of
the Riemanni&n structure (it may not take values in <?*). Nevertheless, from the
above transformation laws we obtain a relation between these coefficients and the

h*j of the second fundamental form for the Darboux frame E, reading

(1.124)

The Weyl tensor of (M m,dI*), which is invariant under conformal changes of the
metric dP, has components (for m > 2)

Ciju — Riju+ 2 ~6jiRik+6iiRjk+6jkRn)+ “m - I)R(m -2
where Rjk — R,j,k are the components of the Ricci tensor. From Eq. (1.124) we
deduce that the components f ju of the generalised Weyl tensor T given by Eq.
(1.84), in the second-order frame t along /, are related to the G,-ju through the

formula
CjM —f'ju

v “*)

If kfi m 0, Vi,/, then, by Eq. (1.124),
1 .
Vi,l.
Thus, the second fundamental form of F has components of the form

(VAF)°® = Aadi*

where A® = In other words, F : M — IRn is a so-called totally umbilie
immersion.
Supposing that E is a Darboux frame of the type E = po F with p :JRn -» G* a

section of IT, and denoting ~ = p*$, we have
*1=E-i; = fy t; =

Let Xi,..., Xm be the orthonormal frame of (M, dP) dual to the forms ees*\/Q'

and Um+u...,U mbe the orthonormal frame of the normal bundle to F dual to



Chapter 1, Section |. Relation wkk [ifm iU iii Geometry of Submanifold* of ike Euclidean Space 123

NGl (ef* Remark 1.4). Let V denote the Levi-Civita connection of (A/, dI*)
and V X the connection of the normal bundle V. These can be related to the
Riemannian connection forms and the corresponding conformal ones given

in Egs. (1.123), relative to the second-order frame e, as follows:

*<F»> = (V. Xy.JC )N
*nx ) K, = {VdFIX~Xjbu.)",
wotf.)*. "«'P -STE IE ~)*
(1.126)
H m
Kj
traced i -ivur-m urr-
Applying Eq. (1.54) to ¢, we obtain
= (Vv X .V d F ( X (1-12¢)

with V V df the covariant derivative in O* T*Af®V. Further, ® = p¥sv yields
ft = =4 1B,U.)d, )(X») - (if, (VEJI. V), = ( \% ,
that is,
(i.i27)
Using Eq. (1.60) we get
® = (vLa(x»x,)-{jr.ViF(x.,x",)iiff+fo] lii] |.ir+
+{x, Vif-fFx x,))*, wW<f’'(x,,X,) - il v<ii'(x1x.) , tf.A_
(1.128)
Taking the trace of this expression yields
P°=(aB - + A(E),U )" (1.125)
with A(B) m (M ,VdF (X,,X,))mlVJF(X,X,). Finely, from Eq. (1.82), w. hive
Bk, = (V= mIS[*X- (S, VIFFXhX )™ + P5]ISIT)
- m(VIn, Vikn)M- m(H,V'mx,,xK)iil
+ (VX.VIF, VX,VAF) + (VAF,V' VAF(X,XK) .  (1.130)
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Appendix |

We observe that the embedding K~I of S" into P H+l, which defines the Mobius
space given in Def. 1.1, is not the most standard way of embedding Sn into the
projective space. Here we followed Ref. [P0/ 81J, but e.g. in Ref. [Ko-No0/63], page
311, the authors chose the embedding

which is an isometry, S" being considered with the metric induced by R"+I and

2P"+1 with the metric 2d»* given by

= (Er.y *?)(sr-vV'*?) - (g.v *=n)
(Er-v*?)’
where p : IR"+*\{0} —* P "+I is the canonic projection. In this sense, our map
K~1is not an isometry, but a conformal map: K~I can be obtained from £ by the
formula K~1 = f o R~loo~lo ~id«. o», where R : Sn —* S* is the rotation
So we have <,>$»= Clearly, the
conformal structures on S" by choosing either of these two conformally equivalent

embeddings are equal. If, instead of the submersion F on page 83, we had chosen
« A
the map F v = (jif,~ ) we would have obtained

— » Sn
1
JHL
M e e
1
k~1 Sn —_ °
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K 1differs from £ by the rotation R and we have

vr u{oo}

Xoo 0o

We note that, if we had chosen the map K instead of K, then Eq. (1.15) would
by “P oid" with T(Z,A,r) =

not hold anymore, unless we had replaced “id"

We also remark that, if we had chosen the embedding K *, the Killing vector
fields of S" would be generated by
f 0 -V 0
I v D —v
([Ob 0
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Chapter 2

VARIATIONAL PROBLEMS IN
CONFORMAL GEOMETRY

2.1 Introduction: The Willmore Functional
2.1.A The Riemannian Case

Let M* be aclosed (i.e. compact and oriented) surface and f : M —* JR* be an
embedding into the Euclidean 3-space. In 1965 Willmore [Wi/65] introduced the
functional, since then called Willmore functional,

V{f) =1/, BdA , (2.1)
where H is the scalar mean curvature of / and dA is the volume element of M with
metric induced by /. Then, he posed the problem of finding infWtwhere / ranges
over all embeddings of M. Moreover, he also proved |Wi/68] that W {f) > 4*r,
with equality, iff M* is embedded as the standard sphere (see also Ref. [Wi/74]).
In 1973 White [Wh/73] pointed out that Blaschke [BI1/29] had observed that, for
any immersed surface M* of JR*, the quantity (if* —if),with K the Gaussian
curvature,is invariant under any conformal mapping of the Euclidean 3-space plus

the point atinfinity. Hence, the integral (also called Willmore functional)

» (1) = (2.2)
is a conformal invariant. Supposing again that M is closed, then, from the Gauss-
Bonnet theorem

KiA. = 2»x (M)

with X (A/) the, topologically invariant, Euler characteristic of M , one obtains

V (/) = V+2»X(M). (2.8)
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Thus, W (f) is also conformally invariant, only differing from W by a constant.

If Ci, i s an orthonormal basis of TXM, x € A/, and v is a unit normal to

dfx(TxM ), then, denoting h-j = (Vd/™e,, «), , we have Hm= | (hn 4-/»«).
From the Gauss equation, we get Ka— R™ (e,,e,, e,, e,) = —hj, = det[h,
So,

* 1K = i(*, - %)+ = Q|VAI*- H m (2.4)

Hence, H\ —Ka > 0, with equality, iff / is umbilic (see Sec. 1.3) at the point x.
Now, it is well-known that, if / is a totally umbilic surface, /(M) is either a part
of a plane or a sphere. Since M is closed, TV(f) > 0, with equality, iff M* = S2
and / is totally umbilic.
In order to find some possible minima of the functional (2.1) or (2.2) for M*
a fixed closed surface, one can work out the corresponding variational problem.
An immersion / : Ma —* IR* is said to be a critical point of W, if, for any
smooth variation of /0= / through immersions, J*W(/f)]f_0= 0. As a
consequence of a more general result of his, Chen [Ch/73a] concluded that/ is a
critical point of W, iff

AH+2H{H*-K) = 0. (2.5)
This equation is the Euler-Lagrange equation for the functional THand is invariant
under conformal mappings of the Euclidean 3-space. Obviously, the critical points
of yt are identical to the ones of W and they satisfy the same Euler-Lagrange
equation (2.5). The functional W has as absolute minimum the value zero, if
M = S* and f : S* — JR* is totally umbilic. In this case, W (f) = 4n. Willmore
also showed that, if M* is a torus, Eq. (2.5) is satisfied for an embedding of M
into JR* the image of which is an anchor ring generated by revolving a circle of

radius r about the line with distance y/2r from its centre, i.e. the torus
{«>/2r + rcosa)cost), (I/2r + rcos«)sinu,rsin«)

For such a torus, 7V(f) = W (f) = 2n*. However, it is not yet known whether such
an immersion is an absolute minimum among all immersions of the torus, only
that, if /(M ) is a smooth surface of revolution, then > 2x*twith equality, iff
/(M ) is the above anchor ring, as shown by Willmore in Ref. (Wi/72). It had been
conjectured by Willmore [Wi/65] and, a fortiori, by Shiohama-Takagi [Sh-Ta/70]
that the special anchor rings are the only unknotted tori in JR* that satisfy Eq.
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(2.5), bat this turned oat to be false due to the above remark of White concerning
the work of Blaschke. Since W (/) is a conformal invariant and the inversions
Inv : x G IR1 —»c%jpr are conformal transformations of IR* U {oo}, if /(M) is an
anchor ring, then Invo/ also satisfies Eq. (2.5), which gives rise to a special class of
tori, called cyclides of Dupin. Later, the above conjecture was modified, claiming
that the surfaces of IR* which differ from these special anchor rings by a conformal
transformation of IR* U {oo} minimise W among all immersions of the torus into
IR*. Weiner [We/78], using a result of Lawson, showed that there exist embeddings
of closed surfaces in IR* with arbitrary genus satisfying Eq. (2.5). In fact, these
are images of embedded minimal surfaces in S* under stereographic projection
onto IR*. Note that this contrasts with the fact that there are no closed minimal
surfaces in IR*. The functionals (2.1) and (2.2) can be defined in the same way for
immersions / : M * — IRn of a surface into the Euclidean n-space, where H* now
denotes the square of the norm of the vector mean curvature H. Chen [Ch/73b]
proved the conformal invariance of (J}Bllla—K)dA under conformal mappings of
IRn and, moreover, that in the case of M being a closed surface Eq. (2.3) still holds.
Then, the functional (2.1) is also conformally invariant. Later he proved [Ch/74]
that, for M a closed surface, /*/(]|if[F—K)dA > 2s(2 —x(Af)), with equality, iff
M is diffeomorphic to a 2-sphere and / : Af -* 2R" is totally umbilic. Furthermore,
if n = 4 and M has non-positive Gauss curvature, then fM ||ff|’<Ll4 > 2s*, and if
1I2T1I* is constant, then equality holds, iff M is the Clifford torus S1 x S 1. Finally,
Weiner generalised the definition of Willmore functional for immersions of surfaces
M * into a Riemanman n-dimensional manifold (JV“,h) in the following way:

Let/ :M* —(Nn,h) be an immersion of a surface with or without boundary and

let G : M —*IR be the map given by
G.- - (VACLL) VN (eL))) @
with <1,<] an orthonormal basis of (TaM ,f*h). Chen [Ch/74] called G the “ex-
trinsic scalar curvature” of M and proved that (J|£f]) —G)dA is invariant under
conformal changes of the metric h. By the Gauss equation,
K.= <,«,) =C. *e (L)), (27)

that is,
Ka= Gg+ Kj[g)
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with 1£f(a) the sectional curvature of the plane dfMTaM ) of T/~N. Then, the
functional integral

» (1) = IM(II-ffIll ~ K + K,)dA (2.8)
is conformally invariant. Since KdA + /¢~ k,da, with /cf the signed geodesic

curvature of cIM, is a topological invariant, the functional integral *
n
»(/) =Jdjm 1+K )dA +JK,d. (2.9)

is also invariant under conformal changes of the metric h.

In particular, if N = S", a : S"\{point} —*]Rn is a stereographic projection, and
/ M —*2R"is an immersion, then 1P(/) = IP(a-1 of) and the same holds for
the functional IP. If M is a closed surface, then, by the Gauss-Bonnet theorem,
we have W (/) = )P (/) + 2x\{M). Weiner showed that, if (N,h) has constant

sectional curvature and W (f) < oo, then / is a critical point of IP, iff

AH - 3|3T[aird-¢ (if) = 0 (2.10)

H -kv =0 on c«V/, (2.11)

where kv is the normal component of the principal curvature vector of dM in N

and A is the section of V, with V the normal bundle to /, given by

Al = £ , W €V, (2.12)
«J-1
with ei,eaan orthonormal basis of (r,M ,/*h,). Observe that, if M is a closed

surface and N — IR*, then Eq. (2.10) is equivalent to
AIT- 2H'+ | | ' =0,

where now H stands for scalar mean curvature. Furthermore, using Eq. (2.4), we

obtain that Eq. (2.10) is equivalent to Eq. (2.5).

2.1.B Conformal Interpretation with Further Generalisa-
tions

Bryant [Br/84] was the first to study the Willmore functional for immersed surfaces

in 1R* using the conformal invariance from the outset, by interpreting it as a
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functional acting on immersed surfaces of the Mobius space. More precisely, let
/ :M 2 -—»S2be a smooth immersion of an oriented surface and 0/ be the 2-form
on M given by

n,= itr««d/rfv= (2.13)
where fa and Ufj are given by Egs. (1.35) resp. (1.88) relative to a second-order O-
frame fielde:M —» G of IT: G —*S2along /. The 2-form 0~ is the corresponding

2-form (H2 —K)dA in the Riemannian geometry of surfaces in JR2. Expli

tly,
if / takes values in IR2 C S2 (in the sense of Sec. 1.3) and E : M —* G* is a
Darboux frame of IT : G* — IR2 along /, then, as follows from Eqgs. (1.121),
(1.122), (H2—K)dA is in this frame locally written as

b'-k = +*,)

where fi2 are the coefficients of the second fundamental form given in Egs. (1.115),
(1.116). From the Darboux frame E one constructs a second-order G-frame e :
M —»G of Il which is related with E in the same way as in Sec. 1.3, yielding,
through Egs. (1.124), (1.123),

b' -k = (*N, +(*:)

Thus, 0/ = JtraceXIdV = (H2- K)dA, when written in these frames. Given a

compact domain Z>c¢ M 2, consider the functional
2.VU)

acting on immersions / : M* —*S2. Such an immersion is said to be a Willmore
immersed surface of the Mobius space S, if, for any compact domain D and
smooth variation /, : M —*S2of / through immersions with compact support in

D, we have
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Bryant calculated the Euler-Lagrange equation for this variational problem, ob-
taining

(ph+p'n)w =0 (2.15)
which is conformally invariant, as we can see from the transformation laws (1.72)
and (1.79) for second-order G'-frames along /. Moreover, we see from relation
(1.129) that the above Euler-Lagrange equation represents, in the Riemannian
geometry of M as a surface of 1R*, the Euler-Lagrange equation (2.10).
This variational problem suggested to Rigoli [Ri/87] a natural way of extending
the concept of Willmore surfaces to submanifolds of the Mobius space Sn, as we
describe now. Let/ : M m—*5" be an immersion of an oriented m-dimensional

manifold. Then, one can define on M a global m-form
0/ = ~(traceM)~dV (2.16)

where N and dV are as in Egs. (1.88) resp. (1.44), as one can see from the trans-
formation laws for second-order frames. On a domain of a second-order G-frame

t:M —G along/, 0/ takes the expression
0/ =" (I>fy ) )TrtA ...A «\ (2.17)

where 40 and hfj are given in Eqgs. (1.35) resp. (1.46). If/ takesvalueson2R" C 5",
the m-form 0/ has the following interpretation: let E : Af —»G* be a Darboux
frame of IT : G* — JRn along f : Al — JRnand e : A/ — G be the corresponding

second-order frame given in Sec. 1.3. Then, using Eq. (1.124), we have

trace)} =
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- E <&HE <)%

| '<>> «yj.0
= ¢ {t E. (™)*+ E_(**- k'j)
ra g e B i)
-_— I n . 1
=i [i-"E(*r/+ E (*:-*E) }
I 1<t «j.®
where h? = A* are the coefficients of the second fundamental form of / relative to
the Darboux frame E. Since
£ <*»-*&)e E {(<)*-»i*1+ (**)e}
'<U®
-» B *iros+ B ((Mr>7 4 (Fs,>%)
'SR -~
-2 E +* E ((*s) + (*>))- E(*s)’
< >4« i>
A C\!
-2E*S*Jy+(m-1)E(*S)",
we get

traceV = i { E -2%**i+ <"e-») E(*S) + *™ E (*J)'}

= A f2E (- e (F))+ E (PR E e"(x*)%}
[ «A* i> J

= LE (-*i*li+ «(*&)e)
= (| e <>y-d*s*>- >»E (*:*;, - (*s)*)}
V*J> 1> J
= *@"-»)E (¢(E «)(iE *S ) - E (**£ - (*&)")
- i j .®
= m(m- 1II*1*- 2 E “(*&)*)
= m(m- DI,
where f? is the scalar curvature. Summarising,
trace* = m(m - DII*II*- * = ~ E {(*S - *2)*+ 2m(A&)*} .

Note that this expression obviously justifies the definition of umbilic point given

in Ch. 1. This was also observed by Sulanke [Su/857], who proved traced =
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1IVd]|* —m]ir]]s > 0. Besides, the latter equality follows straightforwardly from

the above. Moreover, Rigoli showed that the m-form

written relative to a first-order G-fr&me t : M —»G along/ :M —» JRnc 5" does
not depend on the choice of first-order frame and, therefore, defines a conformal
invariant in Riemannian geometry.

On each compact domain 25 C M we consider the functional
(2.18)

defined for immersions/ : A/m —*Sn. Such an immersion is said to be a Willmore
immerted tubmanifold of the Mobiut tpace Sn, if / is a critical point of the latter
functional. That is, for each compact domain 27 C M and smooth variation
v:Mmx (—,c) — S" of / through immersions ft = »(-,<)> with compact support

on 25, i.e. f,(x) = /(*), Vt, and * outside a compact set of 25, we have
1 "M,

In Ref. [Ri/87] Rigoli calculated the Euler-Lagrange equation for this variational

(2.19)

problem in the particular case m = 2 with n > 3 arbitrary, obtaining an equation

rather similar to the one of Bryant, reading
Bli+ P%S=°i Vo=3,...» (2.20)

with p* asin Eq. (1.60), relative to a second-order (7-frame. The transformation
law (1.79) shows that this equation is conformally invariant, i.e. it is independent
of the choice of second-order frame. Also, if / takes values in 2Rn, then the
Riemannian equivalent of Eq. (2.20) is Eq. (2.10), as we can see from relation
(1.129). We further observe from the proposition in Sec. 1.2.D that, if /(M) C
Smc 5", then W/>(/) = 0, that is, / is a trivial Willmore submanifold.

In the next section we are going to calculate the Euler-Lagrange equation of
the variational problem associated with Wd acting on immersions / : Mm — 5"

with 2 < m < n arbitrary.
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2.2 The Euler-Lagrange Equation for the Will-
more Functional w

Let/ : Mm — S" be an immersion of an oriented m-manifold (m > 2) into the

Mobius space S" and 27 C M be a compact domain. Then,
im /)=/tn(=i/l, (e (*;))% ;a..ak

with and A® as in Eqgs. (1.35) resp. (1.46), relative to a second-order G-frame
t:M —G of Il along /.

Let v : 27 X (—, ¢) — Sn be a smooth variation of / through immersions /» =
v (=,<), which we assume to have compact support C C. D, i.e. /, (x) = /(x), Vt€
(—€,<), x G 27\G. Thus, the variation vector IV G C°°(f~ITSn) given by Wu =

& /«(*)li=0’ fas compact support in <7. Now we are going to compute

To that end, we construct smooth mapse:M x (—6,e) —* G defined on U x (—if,e"),
where 17 C 27is a neighbourhood of a given point xq G 27 and 0 < c¢' < c, satisfying
the properties

(i) «(<,1) = «(*,0), VXGIf\O» tG (-cV) ,
(i) Vt G (-<',«') , e, = e(-,t) : Af —»G is a second-order (2.21)
G-frame along /, defined on U ,

where G' is a compact set, such that G C C C D. First we take a section
t:Sn—» G of Il : G — 5" defined on a neighbourhood of v(x0,0) in <S". Let
e= «ov:0 x (—c,e) —*G with # a convenient neighbourhood of x0. Then,
n oe,(x) = n o«(x,l) = v(x,l), that is, it is a zeroth-order frame along /, which
satisfies: for x G £7\C, e»(x) = *(t?(x,t)) = *(w(x,0)) = e0(x). Following the
construction of a first-order frame from a zeroth-order one given in Sec. 1.2.B, we
denote ~(t) = e*$, with components ~J(t), and take the JR" vector-valued smooth

functions on 0 x (—e,e)

, IEi<rn,
«(«)(E<*))
which we may assume to be linearly independent and orthonormal after Gramm-

Schmidt orthogonalisation. Then, v,(x,() = v,-(x,0), V(x,t) G 0\G X (—e,c).
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Observe that, as & = &0 on U\G, y(() = ~(0) on the same open set. Next we
choose JRnvectors um+i(x,t),... ,vn(x,t) that form an orthonormal frame orthog-
onal to the subbundle V of U X (- €,«) X 2R" with fibre span{vi(x,f),... ,om(x,i)}
at the point (x,£). We can also assume that ta(x,<) = va(x,0), Vx G 0\O*, re-
placing, if necessary, w«(x,t) by ua(x,0(x)t) with 0 : M -> [0,1] a smdoth function,
such that 0(x) = 1on G and 0(x) =0 on A/\&', where C is some compact set
such that CC& C C C D. Then, the map

1 0 o0
K (x,t)- 0 A(x,t) 0 ,
o o0 1

where A : 0 X (—e,e) — SO(n) is given by vI(x,I)(t;il(x,t)) = xAt satisfies
K (x,t) = K(x,0), Vx G U\G". Let1:U x (—€,«) —G by defined by e(r,() =
e(x,t)K (x,t). Foreach I, i, is a first-order frame along /,, identical to 20 on U\C.
Let ~(t) = with components and be asin Eq. (1.46) relative to the
frame Let K : U x (—£,c) —»G0 be a smooth map given by

u u
0 0 0 0
where Ya(x,t) = ~Kh,(xtO are the components of Y. Note that, on O\CP,
since it = Z0. Hence, for all 1, K(x,t) = K(x, 0) on O\G". Let
e:& x (—c,c) -» G be defined by e(x,t) = e(x,£)2v(x,£). Then, as in Sec. 1.2.0,

e, : U —»G is a second-order G-frame along /, and satisfies et = e0 on U\G'. If
we now set U= U and c*= &, then e : U x (—e\e*) — G satisfies the conditions
(2.21). We TW tMixg the lon"toM | #} 8 MC unayattame tW 1** 1 (I-th) M

For a mapt:U x (—,f) — G in the conditions (2.21), we define the (*-valued

1-form on U x (—€,«) given by
4= e*#s «‘'de (2.22)

with components 41 satisfying the relations in Eq. (1.16) and the structure equa-

tions (1.18). For each t G (—«,«), let 4(0 denote the ~-valued 1-form on U

HO = <t (2.23)
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on U. Then,

4%1 = *(0- + X(x,t)dt (2.24)
with the meaning ¢ (,,(«,5) = ¢(I),(u) + hX(x,I), V¥ € T,M, h € ZR, where
X : 1/ x (—€,«) — is a smooth function with components Xj. Thus, X(x,I) =
*e«(»)(&*(*>*))= From the first property in Eq. (2.21), we have §je(i,t) = 0, VIG
(—e,e), x G U\G", which implies

XI(*,«) = 0 and , VI€ (-«,c), * € U\I7 . (2.25)

As for each 1, e, is a second-order frame, ~J(f) = 0. Thus, if we set AE = Xq, we
have
«1«) = a;(*.«M<. (2.26)
with
a;(*,!)= o, vi€(-«,«), *eu\ecr. (2.27)

Sint. *?(<), = * , * ( * | with*;(*,() = 0,*;(*,<) = *;(»,(), «d

A(x,1) =*e(*,0), VIE (-«,<), i e U\O , (2.28)
we get
< W) = *I(M)*(<).+ *2<c)* (2.2»)
- FS () (e, - AL i)di)+ j-(«.0*

This expression can be written in the form
«V,, = + A2(c, ), (2.30)
where A® : U x (—¢, e) —* JR is a smooth map satisfying
Af(*,1) = 0, VI€ (-<,«), x € IF\NC#. (2.31)

Differentiating Eq. (2.26) and using the structure equations (1.18) and Egs. (2.30),
(2.26), we obtain

dx;*dt - -«A N -tf AN-~ANANS
- -AJA A% - A*i - Af*A*; - AW A
= <AM+AVI-A™)AdL
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By Cartan’s Lemma,
d\$ = A»*° + A?%1 - \Unp+ fodt . (2.32)
As A{JA® have support in C x (—e,c),
/i"(x,1) = 0, VL€ (-«,«), * € I\NC*. (2.33)

Analogously, by differentiating Eq. (2.30) and using the linear independence of

we obtain

- FF > 2+ + Kj+itm = ( 2.34)

(a? - a;*? - a;*? + A%« + Aj*5* A { = A >+ s (2.35)

where h*jk and A* are smooth functions on U X (—¢, ¢) with the symmetry prop-

erties kfjk= h?§ = Afj = A®B, (compare with Eqgs. (1.54), (1.56) for a fixed t),
and

*&»<* 0 = *»(*.») , A"(*,1) = 0, e (-¢,<), *e U\O'. (2.36)

Multiplying both sides of Eq. (2.34) by kfj and summing over *,/, we get

where Ktis a map on U C\U with values in <?,. Obviously, K : UC\U x (—c,e) —=*
Gi, (x,i) —* Jf](x), is smooth. From the equalities = e~lde and e(x,f) =
e(x,t)K(x,t), we obtain = e~Idi = K~I+K + K~IdK. Writing K as in Eq.
(1.70), with now r,X ,A,B maps of the variables (x,t), we derive from the latter

equation the transformation laws

W I=r-t7[*i] with C=[{J ° ]

Hence,
% = r-UJ#,
¢S = AJlI=r'BJA;J, (2:38)
which implies the transformations
Al = -, AMAI
(2-30)

Xt = r-'BJA; .
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Furthermore, comparing with Eq. (1.29), we obtain
W1=tWJ'zc + -bz‘'M\o+bdo,
where Z = | j. So, in partiealar,
1° H A IANA?
I° - xmo+ Ki*=Bit'XjA" + BIMA
= x>Bix,A\n + n;AHh%ri+ a u)
= BtW TA + (*J*W + \'BiAiXj)dt,

whence

=\'b;a:+\>b;a;xj. (j .«o0)

As a final remark on maps e with the property (2.21), we observe that, given a
point *o G A/, one can always find a variation (/r)te(—«) of / with compact support
G contained in a domain D, such that xO0 lies in the interior of G%and a map e
satisfying the conditions (2.21) with arbitrary AJ(-,0) as long as suppA£(-,0) C
G'n U. For example, assuming that, near the point *0, / is of the form f(x) =

, we take the variation ft(x) — p{x) + (A(x) , where A(x) is

IM *) + tAX) ] |*
an arbitrary (2"-valued function with support G. If we choose the~section >given

in Eq. (1.19), the map e as constructed above satisfies Aq(x,0) = 00(»,0)(!») —

Af(*,0)d(p«(*) + tAB(x))(@0)(~) = Af(x,0)AB(x), where A~(-,0) only depends
Co . ) iMwr

on /, which can take any arbitrary value. If / were of the form p(x)

we would arrive at the same conclusion by taking this time the section s of Eq.

(1.20).

Proposition 2.1 Letf : Mm —*Sn be an immersion of an oriented m -manifold
into the Mdbiu» tpaee. Then, toe have:
Form= 2, f is a Willtnore immerved turface, iff [Br/84] (Ri/87]

Pji=0, Vo=3,...,»
Form = 4,/ it a Willmore immened 4-tubmanifold, iff

9+ +2 +122:*1*: =0, vo=S,...,» .
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Ifm = 3 orm = 5 with the attumption that trace}/» ~ 0, V* £ A/, i.i. /| Aac
no timbilic pointi, or m > 5 without any non-degeneracy condition, then f it a

Willmore immerted in-submanifold, iff

- Dpjy+ AyAj*i»)+
+ (m - 2)(trac.M)" iMk?jH,J+ 2(m - l)yf

+ (m - 2)(m - 4)(Ira«,V) 1 k-jk~k"jk~k-,. =0, Vo=m+ X. n

where the quantities k?j, *5», p”, Py, B,J, and tract» = Ay or« a« defined re-
spectitely in Eqgs. (1.46,1.47), (1.54,1.55), (1.56), (1.60,1.61), (1.66,1.68), and
(1.87), relatite to a second-order G-frame field « : M —* G of TV: G —»S" along
f. Note that the abose equations are conformally insartant, that it, they do not

depend on the choice of tecond-order frame.

Proof. Letv:1Tx (—,e) —* Snbe asmooth variation of/ through immersions and
with compact support G C D. Letx0G D and e: UX(—¢/,e') —»G' be amap in the
conditions (2.21), with U a neighbourhood ofx0in TT. Then, Vt € (—i/,c/), x G U,

we have
A..ANS*(C)«.

Let O be the m-form on U x (—*,e') given by

Although Q is only defined on U x (—¢/,e# and depends on e, its restriction
= fi/,(x) is a well-defined global m-form on all 2?. Let ¢ be the in-

form on U X (—f*,”) defined as
A= 0-d<A(«~n) .

Then, = 0. Thus, ¢(,,,) = ¢*Q\NtM = 0/,(x). So, ~ is a well-defined global

m-form on M x (—t,e) and we have

Since L = tod+ do*, we get

LAYif = t~dtif + dtp'll = tad'll .
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Oon U x (—i*,),

L. &= .4(<*n+dtAg(./fn)) = 1*720 + d (.. n)(i)

= ~ im($3("0)%) ~ ABA.. A  +(SZ(N0)) HOA. A
\ ii>
Henceforth, we will use the notations
*T'm = i, A... Ai"
(2.41)
Using the structure equations (1.18) and Egs. (2.26),(2.30), we have
< CIF1-AS AN <A N SN A <) AdL)-"
= AiLm+ (-)VjA« A
= mMSA  +(-1)> (k5 + Atit) AAT* A
= mM*A e+ (-IH-"AH%4IAitA
= mi A4L" -
From Eq. (2.37), we obtain
(E(*.=))  FIAISIAIA*T"™ = - (E (A2) )i *SA<i, m+ ( E(A.")*)'i, *;AilA~-
ij,a ij>
Hence,
m = (E(*rj) )*fI*:A;*A*L
Thus,

>
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= P (EC*&)e) T*((N () + Ajic) A... A(«m(!) + A’ «))
= E <)) T-A{E S50 A... Ac*-* ()DAA} A* «(«) A... Acm
= ¢ (E(5)")T(-D’

Consequently,

AA°) L= I (E ()me(>)-av -*-)
and
m”~ U = (E(*y,) "flw -
ij>
where now (= (i=0)) and are forms on U only, as defined

in Eq. (2.41) with hj relative to the second-order G'-frame e0: U —* G of Il
along/ = /,,, and where A, and A* are considered as functions only of the variable

* 6 U, fixing 1= 0. Thus, we have obtained
(A = (E (*2>))mflAiA> - +
+ei (¢ (E ()T (-1)*- AT > ™j | (2.42)

Next we rewrite the relations given in Egs. (2.32,2.35,2.27,2.31) among the Aj,

A“, and A“ in terms of functions of the variable * € U only, thereby fixing t = 0,
which yields
X% = A*»+ A2rt-An; (2.43)
iXr = ASA+AJIAN-AFA-AAIANDT + A}, (2.44)

where A, A®, and A“ have support in GT\U C D, and with # , h'j relative to the

second-order G'-frame e0 along /. Now we evaluate the expression
(iI]E>(*ry)')*fI*iAi*1"" - (2.45)

For the sake of notational simplicity, we define
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From Eq. (1.54), we have, for positive integer r ~ 1 (unless |Al™ 0),
w = HiAir>Ai¢hi=r] | hir*(-iihnvg+Ai~) nsn
Using the structure equations (1.48), we obtain
m= (m - )2 A4h>— + (-1)*+VfA o (2.48)

Starting from Eq. (2.44), we get, for »,/ fixed,

K, ' = (-ir ArbhA*,

- Sa** 4+ a?j - a*? + A'AT AT Arm->--
So,
(2.46) = |*|->*5A5~A— =

= (-»)>_,ii*ii— **5Ar A
+ (<) I JAINLATA AA R g
+ (-Ir'iiAr-AjA " a
+ CD>TIAL- AGANA S -d~"
+i*r- *rPoAA>"

= (- »H-1**ir-*Ar*5n*-A.~)
+ (-iHa-a*<]a] -*)a *'-J-"
+ (-IH] Ar-A*WA*AIt,-J-
+ CDATIALM- A 2%~ LI~
+ (-IHI*|—, *5AINA*-J—

+ (->y_i*r - *5Af" a

% - *SAIAR .

Using Eqgs. (2.47), (1.64), (1.67), (2.48), and (1.60), and assuming m ~ 3 unless
mwn# 0, we get

(2.46) =
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+ (-iIH*5AT(m - JIPFIl—*(- M VS + *1*15<)Ah'-1"
+(-m in«*w +*Wi- <rf- k- tu,»;+Kj. i aem-
+ - DrtAx~i—

+ (-«),i*«"- AF*ri(-i) tv T a

+ (=), [Alr-**s AN An 1

+(-iy-M4— a*e*-

+ (-fviiAir 'Ajv,- - + 1,-*%i-p" *i)a

+(-iy-'(m - w r -'AjAvsa* - .x.
-(«.-2)1*¥1—**&*r*s'V "M
+(-»yi*r-v*wfan -

+ (-iyu*ir™r*r™; a

+ (-ir'iiAir’AfA'v; a **->-»
+<»>-iAir-,A7fy-g A

+ @ -hiryr—

- JTAr-*Af* v

+ (-iy<m- 1)|Ar *AAVIA
+<-ifm --,a%v; a

+ (Fiy«<Ar-, A;ANA*FLG-T
+(-iy-,n*ir AN a e
+(-iyiAr- AN-A#-T -

+ (-iy -, IJAir-*A;py ;A ~, 1=
+ j-iynK\r-"\;,i*; A

+ I *AG*r.oxi*/*—
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In the latter expression, we have several simple cancellations, by permuting indices
when necessary and using the symmetry properties of the coefficients and forms
involved. By applying also Eq. (1.56), we obtain
(2.48) =
- (m -

+(I-m)]AJ-1

-K -iypr-tAjijcr AN
+ ((IH2]JAr-, A ~AA > 232
+ #r—"a; N 1"

= (((-IrtiiAii— AfAj~I-")
“(m-2)I [AIr-XAfAIAI> - n
+(-m) A r-*A>~-"
+ WEHIIALI— a3, 5 =3— )
+ (-0 L ii*re*p3t A K L jom
+ (Y -SAA (LA =) A-)eee”
+(-iH -fjATIAT-A"J-)
+ (-iH-, JA[ADIAAR-J -
+ (-ICIIAH—"a; ® ja
+ CIF211Alp-"i*°a
+ LA A ;A 1=
i r AP AN
Using again Egs. (2.43), (2.47), and (2.48), we get
(2.«) = <i((-ir,iAr-,Af*;*1J-" +
- (m - QAL -CAA>TALA T

+ (I-m)JAr-*AJd,;/eee"
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+(-il'-W -'tfAM a

+ W —jw -

£ (-17m - A~ V“ASKSA ¢ -i—
+(mn- -

+ - DI at'l-"
+ (-i"—n*ir—As(-D">fa

+ (-1H—II*ir- AP N a*,J -"
+iir-"i.v;/*1"

+Hii*r-*rA»™*vVy"m

(2.46) = rf((-1)F , fi*}— — + (WA=

+(2-m)1*r->A »

+ (m - 2)I*ir* *~NA*1* 38, -m

(2.49)
This expression will also serve for later use.
second term of the r.h.s. as
A% — = (-1)—*Ar™4 A = (-1)-'A>; A (2.60)

and using Eq. (2.43), we derive
(2.46) = 4 ((-ir, Qi*r  A*> "i- " 4+ (- 1AIMI— *Af,A*-J—)
w en(m - DIAT-DAIAT (1A - AP+ A?*) AaU ~m
+ (2 -m)[IAlr A » ‘-
+ (M-2)Al|— ,7TA;AIAIN-"
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+wr-Ajp

+ (-inm - 2)«*r

+(-1)-(m - QIPFIEA* 1% 1A A
+ (-1)'(m - 211*1—**5,*1*1LA?™? A
+ (2-<) | *r-«A>*4*-"

+ (Mm-2)] A r'p“A;AiIAIN~"

+ | Air-*Aji>-V—

= 4«-i)> -, |AIr-iATA*4,-)-j" + ((ly iA T-"A ;[N --)
+4(C1)(m - DIIAIFAAT*IIA; A*m-*-
+ (—)i-lm- P—x a ;~*1*:) a
+(-1)-(m - 2]A|r-AJAIAIMA] A
+ - 2)a;aiaija*N(dal—--) a
+ - 2)] A r-*AAIALIARIN i
+ (-1j'-Im - 2] JAIr-A" AiIAIJA;» A
+ (-1)'(m - 2)|A]- AAALAL*; A
+ @m)]JAIFA » 17
+(m-2)| |A]r-V:AAIAI>LE"
+iAir-'Av a I—
+i%r- RIFHAAA-" .
From Egs. (1.62), (1.54), and (2.47), and assuming m ~ 5 (unless ||~ O every-
where), we obtain
(2.46) =
H(-»y-liiair-*Ar* ok (lYyPAT-TAAY Syt
+ (1) (m-2) AL r-" AjAIAIIA* - i— )
+(-1)'-, (M- JAH— AJA(- SAIAIN - [JAIMI+ +al, <) ANt~
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+(-1)"-|(m-2)|[*B"-*A;*I*J[*;y+f + *M} - * '« - fe™s- +

4 RQEEE) A mokt
A X (AW IF5( - (BIARS+ M)Al o
+(-1)"- (MAATPFAS, | P (MIWA* . +(-ir* A*1A-)
+(“ lymAm-T) J{Im_A;*IAIF**5A

—m=2)||A|r-, Ap"“A,"m
H(m-2)[|A[]--* JAAAL"
+1% ] — " AJp*/AL

+ilAIr-"A*r.ATAjJ* 1- .

(2.48) =

= 4 ((-ir,uAir-A-A:>,-J -+ (-ixiah— *an»j”" > --
+ (-1)'(m - 2)]IAI-ARIAIAIJAY -'-")
+ (-1)'a(m - 2)|A]—AJATAIA A5 A
+ (i)'(m - 2IAIPAYASS5 A
+ (=)= (m - ] NAI-A*ACAALN A
+ (m —2)IAIM-4AE AJAJIN L
+(-1)-(m - 2JAl—«AJAIANATA A
+ (1) (m - 2)] |A|r-*ATAIA3UAFAT A
+()'(m - QA" & ajaiaP>; a
+ ¢iym - 2)all—"*a; aiaBaj> j A meeen
-(m-2)|[A |- AAIAI*"
+(m - 2) IAJ|—ASAIAIJA -> 1"
+ (-1)(m —2)(m —«(KAIr"AJAIAIN; Ax" i
+(m- 2)(m - 4)]Al— ATAIALA-ANAA* I
+M )=V - )" - 2)|I¥l—"s; alaija;>S a +-i—
(M- 2)1ar-atalararstax--

4 (1) (m - 2 JAIF ADAGALIAT A A
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+(-)'(m - H]— A
+ (.n-2)ii*r-v/ :*i*j,v-"

+ |A|"',A<>W{Aj>m" .
This expression can be further simplified, by taking also into acount definition
(1.56), so as to yield
(2.45) =
= + <-imA|p-"A;RV"I~"
+(0'(m - 21—
+(-)(m - 0P A
+(m-2) ] | *ir-< AT 1"
smm-i)|A - AR >
+(m- 2)(m - - ek K e e e
+ (2-m)] | *r-1A » > -«
r M - a» "
+ A - *I>SASK{*{AL-“ . (2.51)
Now we compute separately the term (2 - m||h]Jm*p“A ~ L'm. Using Egs. (2.50),
(2.43), (1.60), (2.47), and (2.48), we have
I*l—VrA**1— = (-i)-—n*ir *P*(JAS- a;*»+ X>r,)*
= ()-"|Al= p*a;
+ (i), I*irv A ;*;*x
+H(-D)-*r-vrA{« *
= A((-1)-]IA]r-2AI*-3-)
tw iirA j+fA ~
+(-Da-4(lab—")ax -

+(-i),A;pre«*ir-"n ;-7
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+ )M I—VAIKA  —
D=V et a

+(-i), M0 r A A AT
+ a

fCL-AW- A

+(D-(m - JIFl— Aj>s A

+(-0), %W A {«A*id—

)T TALP->AATAARS 1"
- 1AL ASp-rr—e

- (m- a)l*|—*A; v >e—
Returning to Eq. (2.51) and substituting the latter expression, we get
(2.45) =
= <*((-»)>-miiAir-*Ar*5n",-J-— + (-iHiiAir-, A;Av -i -’

+ (-1)'(m - 211%11r*
£ (-i)(m - 2)ii*ir-vori(»,-'=")

+(1)'(m - 2)]|*r-*5%i+5A

+ (M-2)| Al [— AJA;a>#,~"

£ m(m- 21¥11— A~ A, -* T T

£ (M —2)(M - A)|*]'— A FIFAF FARARD

150
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+(-)(a - m)]I*r-*Ai*tc A*T—
+ < - 2)JWr— AM - "
+ (n,- S), [JA— A .VAIAI*1--

+ HAIr'A;~L"

+ (-i)'(m - 2)i*r-"*r>*i*" A v-1—

+ (-GN - 2IIAIF VA, i,
+> (- -DiTA ] -y >
+ (M- 2)JAy— ‘AllTg,
+2(m-N(.-2) L TAIT-VAIAL
+(m- 2)(m- 4|Al—=ATJAIANARN
+ AT ANEX JrEre o
Thus, on U,
= (D) HATRA v+
+ w (DI AL (A>* - Xirj)+'-3-m)
- 2)HAT-"A*AIAIA * - - >
+ (-1)'(m - AL *AFE)

+

+AJ((n-DIAL-V]
F(mo2) AL A
+2(m-1)(m-2)] A -V *i*l,

+ (M- *)om- 4)]A]r-*A"AI*iJALA;,
+IAIT-XAj.xi (252)

If tn = 2, this equation reduces to
ca*l,.. = -'(i(-ir iiAirAg * -") +

+ <((FIH IR SA*A- - a;,;) *t-d~-)

+ a s
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since in this case, for each a, hkjhjjhfk= 0 as a consequence of h*-=
If m = 4, Eq. (2.52) takes the form

H*L. = <'(™M(-9)'ii*ir>.v' ") +
+ +FV)AL)
+ a;(3|1*iiv,+ a*;*/+ + ihi'ka'O * 1"" =

Ifm = 3o0orm = 5 Eq. (2.52) only holds at the points where ||~ 0, that is,
outside of the set of umbilic points.

Using now the transformation laws (2.39) and (2.40) for the A& AJ, A? under a
changeofmapt : M x (—i,e) —* O in the conditions (2.21), and the transformation
laws for second-order G-frames along / given in Sec. 1.2.G, we can easily verify

that the local forms

Ai(<sm - i)I*r-V 8 + (>»- 2)<A]|--Ajjr,+

+2(m - (m - A (253)

+ 2)(-n- Al A AIAIJA;.AN) ,
CCA T ANAJATFLE" (254)
D*- HAIAY -, (2.66)
(-1)-1*H — *(a;a5 - a;,?)*m-'— , (2.58)
[-hm(=» - 2)d|A|r- A;ABAIAL + = A**)e*'— | (2-57)

i—vr.+ <om- 2)iiAir-vAi*i.>, "+

((;n - DARJAI—V + | 1Al r-*A-AAI> (2.58)

are well-defined global forms on all 27 (if m — 3 or m = 5, only away from the
umbilic points).

Hence, Eq. (2.52) is of the form

Lt*\— = d<+*

with (, and 0 a globally well-defined (m —1)- resp. m-form. Moreover, ¢ has com-

pact support in C*' C D, just as AJ, AJ, and A?. Therefore, integrating 1.0
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over D and applying Stokes' theorem, we obtain
E*» (/)L .=1/;( (rn- HUI—*>S+ (m - 2)]1*|p- *;fr,y

+ (>"-2)(>" -

Since Ag may be any smooth function with compact support C' C D, we conclude
that / is a critical point of iff Va
il

(»- DFENSH(M- ]+

+2(m-DGn-2) L -p**IlL+

+ (m- 2)(m - 4)]*H— = *;"I"IJ*"*",*—

HiRrAREREE] = pe
This Euler-Lagrange equation is conformally invariant, i.e. the vanishing of the

I.h.s. does not depend on the choice of second-order G-frame field along /.

2.3 The Conformal Gauss Map

In Riemannian geometry, there exist well-known relations between the mean cur-
vature of immersed submanifolds of the Euclidean space and the tension field of
their respective Gauss maps, as e.g. the result of Ruh and Vilms quoted in Gh.
0 of Part I, or the somewhat more elaborate result for immersed surfaces due to
Hoffman and Osserman [Ho-Os/82]. Something similar can be done for immersed
m-submanifolds / : M m-* Sn of the Mobius space. In Ref. |Br/84], Bryant de-
fined a (hyperbolic) conformal Gauss map for immersions / : M* —* S9 as a map

! :Al* = Q, with Q the hyperboloid of 2R’
Q= {xelRt : <* *> =1},

given by ‘tf(x) — e*(x), where e : M —* G is an arbitrary second-order G-frame
along /, defined on a neighbourhood of the point x. From the transformation
law (1.71), we see that -y is well-defined. In Ref. [Ri/87], Rigoli extended the
above definition to the case of an immersion / : A/m —* 5", for any m < n,
as follows. Let G*_m(JR"+*) denote the Grassmannian manifold of the n —m
planes of JR'+*. Fix <D= span{ifm+l,..., q,} as the origin of G,_m(2R"+*). Note
that <D= span{P(e,+i),...,P (s,)}, for some P € G, where sO,si,...,s.,s.+1i is

the canonic basis of jR"+*. Then, G acts on the left on Gn. m(JRm+i) by matrix
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multiplication. The conformal Gra$$mannian is the open orbit of

the origin, reading
= G(<D) = {span{P(W 1),...,P (™)} : P €G) ,

which is a submanifold of G,_m(JR"+*). The group G acts transitively on £*-'»(£2"**)

and the isotropic subgroup of G at d> is given by

a 'z 0 b

; Ao ?3 Yo €G: Ae SO(m), B €SO(n- m) (2.59)
a,b,c,d € JR

c W o0 d

Observe that X, Y, Z, W and a, b,c,d cannot be chosen arbitrarily, but must satisfy
the relations
(y=ovz=o0a(x=0vy=0)
-aW + 'AX- ¢Z =0
-dZ + 'AY -bW =0 (2.60)
dX-AW +cY =0
aY- AZ+ bX =0
which can be obtained from the closure of Ho w.r.t. matrix inversion.

Thus, Ow m(IR"+*) can be identified with the homogeneous space G/Ho with

canonic projection A : G -* given by ft(P) = span{P(iym+,P (« | «)}.
The conformal Grassmannian £,_,,(J?*+>) has dimension (n—m )(m + 2) and car-
ries a pseudo-metric with signature (—.. =—, + ... + ) given by
(m+1)(ii-m)

a'= -v*S ®c'*; - <e*;®t**; + ¢'V.® (2.61)
where ¢ : (2Rn+1) —* G is a local section of the principal bundle ft : G —»
G/Ho at £ B m(2R"+I) and are the components of the Maurer-Cartan form $
of G. Denoting 0°* = c*${>, ordering the pairs (0,0),

(a,»), (0,a), as
(}40) < (AO < (0,0) , Vo0,0,1,i
0P < ©a)<=>p>a
(Al) < (<) <=» @< aV(0=aAl <i
(/?,0) < (0,0) <=>/?< a,
and representing by the symbols A, B, ... the (m +2)(n—m) indices (or, 0), (0,0), (or,»"),

one can write dtl as
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with
Tt (/=)
0 I 0 }
¢ "3
mn—)  n—m
The Levi-Givita forms w| with respect to the non-orthonormé&l co-frame is
given by

= -wj A
(212

From these equations and the structure equations (1.18), one obtains the relations

;) = <e<*lel+ *¥2) | *fii<ee? =® (2631

The conformal Gauss map 7/ of an immersion / :M m—» S" is then given by

710 Alm —=* (2.64)
* — span{em+1(*),...,e,(*)},

where t —[eo,e,, «a, e-+i] : M —* G is dsecond-order G'-frame field of Il : G —»5"
along / defined in a neighbourhood of x. From the transformation law (1.71), we
see that this map is well-defined. When m —n —1, fli(IR"+*) can be identified
with the projectivisation of the 1-fold hyperboloid Q = {* € 2R"+*: < x,x >= 1}
supplied with the Lorentz inner product induced by the one of JRn+i, still to be
denoted by dt*. In this case it is more practical to use the hyperbolic conformal

Gauit map, still to be denoted as 7/, given by

71 M*~1 —* Q (2.65)

* — o«

which generalises the conformal Gauss map for immersed surfaces in 5* used by

Bryant. Rigoli [Ri/87) proved, in the general case, that
7/t = N (2.66)

with N defined in Eq. (1.88), obtaining the following proposition:
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Proposition (Bryant,Rigoli) Letf : M m—*Sn be an immertion of an m-man-
ifold M endowed with the induced conformal »tructure. Then, for x € M, d'tf(x)
it not injective, iff M(x) it a degenerate tgmmetric bilinear map. Let c('jy) be the
tet of point» x in thete condition». In the cate m = 2, M = |(traceJ4)g (tee Eqt.
(1.4S), (1-89) for notation»), whence c(7/) it the »et of umbilic point» of f. In
the general cate, outtide c(y/), 7/ induce» a positive definite metric on M that
belong» to the conformal clots of M\c(7/), iff M doe» »0. This is always the cate,

when m = 2.

Another variational problem, mentioned in Ref. [Ri/87], is the one associated
with the functional

(2.67)

with 25 a compact domain of Af, applied to maps p : 25 — with the

property (only for m odd) tracc(p*dt2) > 0, and where the trace and dV are taken

relative to any metric belonging to the conformal class of M . We remark that,

obviously, defi on (2.67) can be generalised to any map p : Tf —»fi»_m(2R"+>).
replacing (trace(p%ff*))* by |trace(p*df*)|*. Moreover, for m = 2, t}D(p) is the
energy functional. The functional T is well-defined: given two second-order en
frames along /, say e,e : Al —G, from the transformation laws (1.72) and (1.82)

we have

IV = (ple' & ,&))TdV

= (tnict(p"dl'))fdV ,

where E, and Et are the duals of the co-frames resp.
Thus, from Eq. (2.66), one has "W(/) = 9(7/). Rigoli calculated, in the case 2 =
m < n, the Eulei“Lagrange equation for the functional if(p) when p= 7/ (see also
Remark 2.1 below). Here we are going to discuss the case where / : M —»S* is an
immersion of a hypersurface into the Mobius space, i.e. m = n—1. For convenience,
we consider, in this case, the functional (2.67) to act on maps p : 25— Q satisfying
(only for m odd) trace(p*dtl) > 0, where now dt* denotes the induced Lorentz
inner product of jfi. One can easily derive the Euler-Lagrange equation of this

functional, obtaining (for m / 3) (see Appendix Il)

traceV ((tr*ct(p‘dt'))mXdp) = (2.68)
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trace (trace(dp*d£*))"Irld(trace(p*d£*)) ® dp+ (trace~d”*))*** Vdpj = 0,

where M is considered with one of the metrics out of its conformal class, £ with
the induced Lorentz inner product dtl, and both with the respective Levi-Civita
connections. Let us suppose now thatp = 7/ : M —* £ isthe hyperbolic conformal
Gauss map given in Eq. (2.65). Let xO€ hi and let e:M —*G be a second-order
frame field defined near x0. Then, H/{X) = «,(*) near x0. From Eq. (1.67), we
have
dlj = de, = p"~«0- kfj+t* =

Therefore, as the components of e satisfy Eq. (1.23) (with « replaced by e«), we

get, for «,v € T,M,

= < ru,(m)>*y,(e) >

= O«

that is,
iicu' =& ® a*t=M ,
which, ly the way, also proves Eq. (2.66). Hence, considering Al with the metric
9= 40® 40, we h«ve
tracf-,;~") = Ujj = >0, (2.69)
and, in particular,
». (T = ¢ I Bltrach;«'))f ik = ~ = wWD(/) .

Now we evaluate the Euler-Lagrange equation (2.68) for />=«>/. To that end we
compute traceVd”y, whereby considering Af to be supplied with the Levi-Civita
connection V corresponding to the Riemannian metric g = ® ¢J, and £ with
the induced Lorentz metric df*. One can immediately conclude from the structure

equations (1.68) that this connection on M is defined by the connections forms

o* = Fr 4+ ¥ - Me

where The Levi-Civita connection on £ satisfies ( = d(X)(«M(«)

— < d(X)(,,)(u),e, > e,, where X € C°°(TQ), u€ T~jfl, and, on the r.h.s., X
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is considered as a map from £ to 2R"+* Let E, denote the dual of the co-frame

#> Then, Vi?- = v$Ek. Let V fi denote the pull-back connection on yJITQ. We

have Wdyf(Ei,E i) = Vj**(;7/(22,)) —d~f(VEIE{). From Eq. (1.67), we get

de,(E,) = p“eo-hJe*
deO(E,) = p,«0+ «i
d*k(Ei) = tf>I(Ej)eo+ thk(Ei)ej +

Then, by Egs. (1.60), (1.54), and (1.56),
= diplc-kler"E*)
= (p:(35- )+ p?*»(4) - dhl,{E,)ek- KIdtk(E,)
= {PkMi ~ 2P?2K + Kitl + P2M (E.)*0 + p"(p.«o + «.) +
S (Kt + - BkPW\ + ATM )(6r)c» +
~h'M m "o +di(E,)cj+ hje, + ¢(*en+i)
= (-m + 2)p“e, - p,p*cQ+ pl+f(Ei)u + p"«o +
~ hkjM (Ei)ek+ /*,h,V* “ A* A*«n .
Hence,
Vsl (*#(*>)) - (->n+ '« - m S« +rt*t(Bi)u +
+ pjl«o — (22,)e* + p,h"kek
and
*r/(VEi5,) = j'.(v2(E,))Et) = «i(£,)(,;e. - a,«,
= (#F(E) +r.>1(E.) - sHA ()W E. - aj,q,)
= (+*(a) + (-«= + )f*»)(rfco - *mrg,)
= sWf(a)«o + (-m + 1W Je, - Y«i + (m - [}
So, we obtain
VIS(E,£,) = <= - 25 + (S55)o+ (' + (m- 2)inr)tt =
Therefore, for p = 7/, Eq. (2.68) becomes (with notation (2.40) and Eq. (2.47))

(jo«l =
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= N i wr TR(- 211F1DRRIH2% R R {) (%)) 0>-«0- *i«»)
- S 3)iiFr-*w A+ FFy)er+i*r-=*«+0»-m h
= (M- 2)(- 1T*1-V o+ I —ar* 5 ) (e - * )

= (« = 2)]1Fr-*0>; + < K)o + 1*1— *(|C+ <m —2)/i,p")e0

= (»-2)I*]-**»:«. - <m- 2)n*ir—a- R s

- (m=- 2I1Fl— ««.+ 11*1-V ,*. =

Consequently, since «w> «* are linearly independent, 7/ is a critical point of r/D, i.e.

the expression (2.68) vanishes for p = 7/, iff

(m —2)(trace>/)=*1hJ,h2,Ip" + (traced)“r 1p" = 0

and

(m —2)((traceA/)H+hJJh]|,h"t+ (traced)®!lpj) =0, VA= 1,...,m .
(2.70)
The vanishing of the latter system is independent of the choice of second-order
frame. Observe that, if m = 2 and n = 3, this system reduces to the equation

P* = 0, which is the Euler-Lagrange equation of

Remark 2.1 In a private communication (see also Ref. (Ri-Sa/88]), Rigoli demon-
strated that, in the most general case (rn < n), the conformal Gauss map -ty : M —*

Q ,-m(IRn+*) is a critical point of the functional (2.67), iff
(m —2)(traceA/) “r1A«A«,-p* + (traced)“r*p® = 0, Vo= m + 1,...,»

and

(m- 3)((tra«*)V * "*'** ¢+ (t«..Ai)f*rt) =0, y*=m'+i” .
(2.71)
which generalises Eq. (2.70). This result can be derived in an analogous way to
the special case m = 2 with n > 2 arbitrary, treated in Ref. [Ri/87]. Observe also

that, for m = 2, Eq. (2.71) is identical to the Euler-Lagrange equation of W.

Consequently, if tn = 2, then 7/ is a critical point of q, iff/ is a critical point of
V. Now we analyse the general case w < n arbitrary. Let/ : M m -* Sn be an

immersion, such that 7/ is a critical point of the functional 12 Then, following the
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computations in the proof of Prop. 2.1, we obtain for a variation /, of / equation
(2.49), yielding

> ((moy- +(-»-a)i*r:y y —

+ Ai((m - + 1*1-—VSf+

Taking into account that the expressions given in Egs. (2.53-2.58) define tensors,
that the A?1 AE have compact support, and that Eq. (2.71) holds, we obtain, by

using Stokes’ theorem,
I "M /)., =}Biwr-"AwW AX*1"
Observe that, for m = 2, one has h‘jhjkhki = 0, since h* = 0. Hence, / is also

a critical point of W#, as we knew already. For m > 3, we conclude that/ is a

critical point of W, iff h*jhjkhki = 0, Va. Note that the condition
K j Vo=m+ 1,...,» (2.72)

is conformally invariant, i.e. it does not depend on the second-order framee: M —»
G along/ we choose. Furthermore, we observe that, because of Eqgs. (1.64), (1.60),
condition (2.72) is equivalent to mpkk = h°kk, Vo. Naturally, one can wonder if
the converse is also true: if / is a Willmore submanifold satisfying (2.72), is then
Ty a critical point of if?. This does not seem to be the case, because in the above
expression for JfVn(/»)],=0 the AJ can be chosen arbitrarily, but not necessarily

the A* (see Eq. (2.43)). Thus, we conclude
Proposition 3.2 Letf : M m—Sn be an immertion of an oriented m-manifold
into the Mobiue »pace. Then,

Form = 2, f it a Willmore immersed turface, iff -ty is a critical point ofti /Ri/87];

form > 3, if7/it acr
condition (£.72) hold».

cal point of if, then f it a Willmore m-»ubmanifold, iff

Therefore, condition (2.72) looks quite natural. Moreover, it may have far-reaching
geometrical consequences, as we will see in the next section on a conformal Bernstein-

type theorem.
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2.4 A Conformal Bernstein-type Theorem

In this section we will formulate a Bernstein-type theorem for immersed Willmore
hypersurfaces of the Mobius space, which generalises the special case of immersed
surfaces in S* treated in Ref. [Ri/86].

Let F : M* — HI* be an oriented Willmore surface immersed into the Euclidean
3-space, i.e. F satisfies Eq. (2.6). Let vF : M -» IR* be the spherical Gauss map
given by uF(x) = i/, V* e M, where ** is the positive unit normal to F. Let

oF :hi —*2R* be the map defined by
aF{x) = iF(x) + HF (x) .
Then, the following theorem can be formulated [Ri/86]:

Theorem (RJgoli) LetF : M* — JR* be a complete, oriented immerted Willmore
eurfacc. If there cxieU an ae IR* withv =< aF,a >«=# 0 on M, then F(M) it

either a tphere or a plane.

This theorem is the analogue of the weak form of the parametric Bernstein theo-
rem, which states that a complete, oriented, minimal immersed surface F : M* —»
IR* with spherical Gauss map i# lying in a hemisphere of S*is a plane. Further-
more, it was reformulated in the conformal geometry of surfaces of S* by the same
author:

Consider the immersion / = *oF : M* — S* into the Mobius space, where
» © IR* — 5*\{Xoo} is the diffeomorphism as defined in diagram (1.91). Let
E —[Eo,Ei,Et,Et,EX\ : A/ —=* G* be a Darboux frame along F of the type de-
scribed in Remark 1.4. Then, using the identification (1.93), we can consider EQ
and Et as vectors of IR*, being EO = F and Et the positive unit normal to F.
Then, in the latter frame, we can write 4F(x) — (Et+ HEO)(x). Lete :M —=*G
be the second-order frame constructed from E as described in Sec. 1.3. Thus,
¢t = Et+ HEq That is, oF corresponds to the hyperbolic Gauss map 7/ of /.

The following theorem is the conformal version of the previous one:

Theorem (Rigoil) Letf : M — S* be a compact, connected, oriented Willmore
turface with hyperbolic conformal Gatin map 7/. If there exiett an a G JR*, inch

that < 7/,a>jt 0 on M, then/(M ) it a 2mphere.
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Now we derive a generalisation of this theorem. Let/ : A/"-1 — Sn be an immer-
sion of a hypersurface into the Mo6bius space, and let-y : M —* Q be the hyperbolic
conformal Gauss map of / defined in Eq. (2.65). Observe that, if M is the Mobius

space Sm1land / is the inclusion map given by / , then

/ is a trivial Willmore hypersurface and 7/ = g*. In particular, < ‘jj, if* 0
on all M. The following theorem shows that this property (with an additional
condition) characterises the hyperspheres of Sn.

Theorem 2.1 Suppose n 4 and » / 6. Letf : Mn~l — Sn be a compact,
oriented, connected Willmore hypersurface immerted into Sn with hyperbolic con-
formal Gauss map 7/. If there exists an a £ JRn+i, such that < T/,a 0 on all

M, and iff satisfies the condition (£.72), then f(M ) is an (n - 1)=sphere.

Proof. Set m = n —1. Obviously, without loss of generality, we may assume
(7/,a) > 0on all M. Lete : M —*G be a second-order G-frame along / and let
Il be as in Eq. (2.46), relative to this frame. Consider the local (m —I)-form on
M given by
= (-1)" ‘I*ir~"((m -1)p? <e,a>-*"»< c,a>
+ (-i)— (3" -]) <««,«> dQi*ir-"*y*ond Mj-m.
One can straightforwardly verify, using the transformation laws for second-order
frames given in Sec. 1.2.C, that u. is a well-defined global (m —I)-form on Af.
Using Egs. (1.«0), (1.62), (1.67), (2.47), and (2.48), we have
du. = (-1)'-*(m- 1),; <e«a>d|JAll—*)A4,J~m

+ (= 1) ‘(m =™ * < eo,a > dp" Ad 1" 1"*

+(-1)i-'(m - DPN-Vd(< «o«>)AdT

+ (->)-"(*» - DII*11™ < «.,.> pTddtd-"

DAL <ox>d (] *r)Ad,--

4+ (-1),U*]- <«»,.> d*r.Ad1’

1) T*I x5 A (< L > ) AdLr-

+(-1)'IM - <»,®> Had-;-”
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+ - 2)<«0,«> A*1J"”
+(-1)-"(m- 2IMF 2 <<« «>
(=) - AR -* < e« > A

+ (i)' TMe- J)iFr-EFrEeg(< « >>F

+ (-i)-'(m - QUI*1L* < «,,.> * ;. % ;% v-;

= (+*)'(" - Q* <««,«> (M- PP VS A
+(m- Dp" < e« > (M- 2 F]—"F it
+ DAL <> A
+ (DM - DF] <« > 2,V Adhr -
+(_|)'_’(m_ :Dlr‘“— <4,,,«> X *2A
+(m- DI < <» > (fre 2"
+(-1)- (M- MPI—V" <c.«> ¢Ja*k'—
Fme Iy =i, > e —
+(ED M- Y PH— <e,> A
+(Dx- M- DUFE <> g I ARER—
(1) <ex > (m- NP — A
S %< e»0> (M- 2)F]— Frx AL

+ <-i)' I H— <<»,«>*; Na

+ (-0)'1P -7 <«»,e>*TWa*'-
DI <« >Fied
+ II*II>< .,0 >py ~"

- HiRire <Ky > Fokxml”
+(-Dmil*«-"*» <«.,e> +:a

+ (-1)' R < Jt >+ A

ity < e > rw -

- il *<

+ (1)1 *l—" <« ,«> *t(m- )*IJA

+ ()Y - <« »> *n*a
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+ (F)m(e» - 2) <« «> - 9] |ApVSA

+ (M- 2) < «0,0>A"AAL(N - HAI"a,A;LL,>1" +

+ (-i)'(m - 2)]|AIr* < «0,0 > a"3a; a; *8A

+ (-I)'(m - QJAI"* < «, . > kiilad'-'—

+ - 2 1A]r-< eo« > AfoAJAN A

+ (» - AIFI—* < «©@ 0> A?»«**1""

+ (-»)" ("e- 2)JH < «0« > AlAIoAJNa 413~"

F(-i)T (M - 2) R ~* < «,0 > KRyt a

+ (1) (m - 1A < «0,0 > A;ALA-*8 a

- (m- 1A]]* < «, 0> AiAi.,**1a’

+ (M- )AIr-< 00> a; a;. (> "

+ (-1)'-"(m- ]AI"*AIVAAL < «,« > *BA

M- MAI—x* i <>

+ (-»)me("e - »)(*" - 2)HAr-' <«.,«> A-Ai*i"8 AP """

+ (-1p'Im - IAI* < «,,0 > AtAIA;*i A [ ]
Taking into account definition (1.54) and the vanishing of A‘, we obtain, after

several cancellations and obvious rearrangements, the expression
dv = 2(m- N)(m - JWIMVr < e« >
+ (* - 1)I1*11” "’ < Co.0 > p“>1-m
+ (M- 2)(M - 4)ilAIr-«< «»,0> *; *;a;.a;,a;.(*1-"
+ (m- 2|JAIl"«< «.,0 > A-fT,
-11%117 - %, 8,%L < « L, >
Since «, = 7/, we can rewrite the latter expression as
do = <<, 0>{(n-DITAL]" -+ 2(M-DM-2) [JA]]7 -« = * 1%+
+ (M- 2)(m- d|la]’-«a;,a; a;,al.alw
+ (MDA e
S IME <71 > 4H- .
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If / is a Willmore hypersurf&ce, then, using the Euler-Lagr&nge equation derived

in Prop. 2.1, we obtain

= (< R4 KL< T 6 > )+ (2.73)

which is a global m-form on Af. Now, since / satisfies, by assumption, condition

(2.72), application of Stokes' theorem yields

[ -_—
_/11 - L IH-< o> "rm
As, also by assumption, (7/,a) > 0 on all A/, necessarily |W| = =
0. Applying, finally, Eq. (1.89) and the proposition due to Schiemangk-Sulanke
quoted in Sec. 1.2.D, we conclude that /(A /) is an (n —I)-sphere. V

Taking into account Prop. 2.2, we obtain the following corollary:

Corollary 2.1.1 Suppose n A~ 4 andn ~ 6. Letf :A/"-1 —Sn be a compact,
oriented, connected Willmore hyperturface immersed in Sn. If 7/ it a critical point
of the functional q given in Eq. (£.67) and if there etists an a € !R"+* such that
< a 0 on allM, then f(M) it an (n —1)-sphere.

We remark that the conclusion of Cor. 2.1.1 can be obtained without the assump-
tion of / : A/"-1 —*5" being a Willmore hypersurface, by slightly modifying the
proofof Th. 2.1. Itis sufficient that 7/ be a critical point of the functional q given

in Eq. (2.67). More precisely, we have the following result:

Theorem 2.2 Suppose n qt 4. Let f : A/"-1 -» 5n be a compact, oriented,
connected immersed hyperturface into 5” with hyperbolic conformal Gauss map
7/ :M -* Q. If 7f it a critical point of the functional q given in Eq. (£.67) and
if there exists an a € JRn+i, such that < ~//a>£ 0 on all M, then f(M) it an
(» —1)-sphere.

Proof. Setm = n—1 Let«:M —*G be a second-order C-frame along / and |h||
be as in Eq. (2.46) relative to this frame. Consider the local (m —I)-form on A/

given by

= (-i)'"-] *y— Oi <«.,.> -a; <«.,.>
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We can easily verify, using the transformation laws for second-order frames, that
w is a well-defined, global (rn —I)-form on A/. Through straightforward compu-

tations, similar to the ones in the proof of Th. 2.1, we obtain
W= <« > ((«-2)i*rtV R or e pri— v )Y "
# <, (Bm)(AI-y +
- NFr <-»/«>+'-m.
Since 4y is a critical point of g, Eq. (2.70) holds, i.e.
duj = —JJAIr <T/ *>+"me

Now the conclusion follows as in the proof of Th. 2.1.

Thus, we have obtained two different Bernstein-type theorems with non-empty

intersection. This can be visualised diagrammatically as follows. Let

G = (Immersions/ :Mn 1-& S" satisfying A" = 0}
A = (Willmore hypersurfaces/ : M n~l — S"}
B = (Immersions/ :A/"-1 5" s.t. ~ :M -* Q is a critical point of q).

Then we have Br\G C. A and Bn A C C. Let
D=GnAand D1= B n A. Then, D' ¢ D.
On D and B we have the Bernstein-type theo-
rems (perhaps better called rigidity theorems)
2.1 resp. 2.2 with intersection of the domains
of validity given by D*. If D" happens to coin-
cide with D, then Th. 2.2 is more general than
2.1. In the case n = 3, where G is the set of all
immersed surfaces, we have D1= D = A = B.

Remark 2.2 We note, reviewing carefully the proof of Th. 2.1, that, by dropping
the condition (2.72) on /, one can still arrive at an interesting, though somewhat
vague, conclusion. From Eq. (2.73), which holds in any case, we obtain by applying

Stokes’ theorem
°= - PP (<«.e> +U*r < -v«>)*m-",
where U is the set of all umbilic points of /. Given a point x € A/, the sign or

vanishing of the expression

i*r-», «)(«)
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is independent of the choice of second-order frame on a neighbourhood of *, as
follow, from the tf.nrform.tion l.ws in Sec. 1.2.0. Thu., we c»n reformul.te the
above theorem in the following way:

Theorem 2.1' Let [ It atin Tk. t.i, eeceptZor condition /t.Tt). 1/there troll
one€ IR"", ruck that (** *J,*~e, + | 1] "™ ,e) > 0 on ell hi, then, neeeeeorilp,

tkic incqualitp impUce rfualilf to eero on oil M.
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Appendix 11

Let/ :Mm— 5" be an immersed hypersurface (m = » —1) into the Mobius space
and fix a Riemannian metric g = <o of the conformal class of Af. Let Z? be
a compact domain on A/. Now we calculate the Euler-Lagrange equation of the
functional gqD(p) = £ JD (trace(p*df,))~rfV for p : Z? —* Q a smooth map, where
12= {f€ 2RB+: < x,x > = 1} is endowed with the Lorentz inner product dt*
induced by the one of 2R"+*.

Letp : (—e,e) X Z) —»fi, p(t, ®) = p»(*), b« a variation of po = p with compact
support in D. Let W £ C°°(p-,Tfl) be defined by WM= Ap,(x)]C_Q Let V,
V' denote the Levi-Civita connections of (Mtg) resp. (E,</£*) and V*

be the connections of p~ITQ reap. p~ITQ. Let x0 € D and XIt... ,Xm be an
orthonormal frame of (M ,g) defined near x0 and satisfying VX,(x0) = 0. We
denote by (0,X,-) and ~ the vector fields on X M given by (0,Xj)(i*] =
(0,X,,) resp. A(f,x) = (1,0). Then,

VA (@0X,) = V,, (U.1)
Let Z be the vector field on A/ defined by
< Zr,v >t= dtw, m(trace(p\/£*)) * dpx(u)) , Vué T M .

At the point x0 we have, because of Eq. (I1.1) and the symmetry of the second

fundamental form of p,

= 2dt’ (~,(0,X,)), 0,X,))
=2<"(VE,,("(£E-)GALN BN (0,X)) =2dI'(vCw,,ipK(X))) .
Therefore,

G(trae(rfr))Iu = £(«ma*(*,), <*<X))ITL.

= dt'\vCwn ,dp,*X,))
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= dt'fy>c, dp™(X))
=i {«*(»' ,m(.,e,(pV/>)) (Xt)
-jt( {m(tnCt(Pdt')) f1dP{xI))J

=d(< z,x >)IX) - & (wn,V(m(u(p-dO)mid p)jx,x i)

= div((2),, - fndl’ *Wj,, trace(V (trace(p*d{*)) dp)io) ,

where V(trace(p*d/*)) * dpia the covenant derivative in the vector bundle AIT'M®
P~ITQ. Since Z has compact support, we obtain, by applying Stokes’ theorem,

QD(PEHY\M = —ID</IW, trace(Mtrace(p* W) MMI<ip))rfV .

Thus, the Euler-Lagrange equation is given by
trace (V(trace(p*</£¥)"™**dp) = 0,
or, equivalently,
0= tr.ce(V(tree(p*<«*))“fldp)id = V(trece(p'<tt,))’ fl</p~(If,X,)
= Vi {(tre (p-«*)*Fdp(X)}>
= d {(trmce(/d<,))"f1} (X,)dp~(Xt) + (trree(p'd<,))" f*Vdpi,(jr,,X,)

= trece |inMli(tr.ee(dp-d<,)) f 1d(trKe(p,d< )) ® dp+ (traee(p,d<))*fl Vdp}
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Chapter 3

THE SECOND VARIATION FOR
WILLMORE SURFACES OF A SPACE
FORM

Let (AT,h) be an n-dimensional Riemannian manifold of constant sectional curva-
ture 7T. Then, in this chapter, we will calculate, in the context of Riemannian
geometry, the second variation formula for Willmore immersed surfaces / : A/* —*
(AT,A). Weiner |We/78] computed this second variation in the particular case
where / is a minimal immersion. Our notations and calculations will be similar
to his, up to the step where he demands minimality of / to hold. We will pro-
ceed without any such assumption. Recall that the curvature tensor H of (AT, A)

satisfies
H(X,Y)Z = Jt(< Z,X >*y- <Z,Y >kX), VATY,Z € G°°(TN) .

If/ :A/* — (N, h) is an immersion, we denote by A the element of VE<g>Vr),
where V is the normal bundle to / given by Eq. (2.12).

Let D C M be a compact domain, | denote (-«,«), and v : Al x I -* N be
a variation of / through immersions /, = »(=,£) : M -» N with variation vector
W G G°°(f~ITN) given by Wm= ~w(af,<)|f=0, Var G A/, which we assume to be

compactly supported in D.

Proposition S.1 Iff : A/* — (AT,A) it a Willmore immerted turface, then the

tecond variation formula for the variation v = f, it given by

where
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IJW). = i(A+i)(A+2K +A)(IV),
- 2((A +i)(W).,.BOkH, - iir.ikK a +i)(w),

+2(m V2 («,«»)), V*«. («,,«»)+2(H,Vijl(e,e»)i 7V («,«,)

4N ,v..w )V, B, +2(w,Vun.jv../l,+22,V, V..

+27V, W, VA (e, e)™ V, H,
- 2(v, h, vv w.'j Vv,

+27v, v.tw,

+ 2(IV.,VIL(,.«,)), *1).».), »),

\B
with V. W € (7°°(®*r*M x K) fiven ¢y

v 'iv,pr,r,) =V*Vyw ,-vyxYw,,
and with «i,«s an arbitrary orthonormal baeii of (TXM, g0).

Corollary 3.1.1 If dimN = 3, then the operator J in the above theorem can be

simplified to
AW) = A +A)(A +27v + A)W, I3 (A +X)(1V)
+ 2AV<SV V' BAJW + > | ViV VjH
-2(vW }VBBEB +2(vB ,V B BW
£ 2AVir® Vv, Vdfj - 2AT[IIIVV + 2B»(HY) ,
mkm 6“ € C“(® V® V)=, ;n h
B"(W.) = (w, Vil.("i,.,))k(Vdf,(«,y),i.)tV<0,(y,.t),

2(vB®V W ,vdf'j i. ikorthand tor 2~V., H ,V~(.,.y)\ V, W, A<
iA« inner produets denoted by <,> are o/ the Hilbert-Schmidt type.

w.
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Proof. Let g = /*/*, and denote Mt — (A/, g,). We define the vector subbundles T
and V of v~ITN as T(Mt) = d(ft)a(TaM ) and V(»"j as its orthogonal complement in
(Tf,[MN k)t V(x,1) eM x I. Thus, = T'ad) ® . Then, for each t € /,
we have the vector subbundles T, and V, of f~ITN defined by Tt(») = and
V, ) = Vj,,,), the latter one defining the normal bundle to the isometric immersion
ft : Mt —* (AT, A). We denote by ( )T and ( )v the orthogonal projections of v~ITN
onto T resp. V, and by >: M x| —*A/the first projection (x, t) — x. The following
connections are going to be used: V of (AT,A), V of A/, \(} of AIOX /, V"
of (UTJV.A), V/,JoUf-"TN ,h), Vof (V],A) (and Vof (Vo,A)), and V' *of
(»-TW .fc).

If Z G C7°°(w_ITAr), Vi € /, then Z, given by Z((») = Z(»”"j is an element of
ce°(f,-ITN), and

=yi"z.(.), V.e T,M .

ify eC*“(K,),thenv.y, = (Viriy,)>L
For each t 6 /,

Wo(/.) = /D@, I+ IJTVa,. + )

where dA, is the volume element of (A/,j/,), if, is the mean curvature of /,
Alj — (AT,A), and ku is the signed geodesic curvature of HD. Observe that Kt,dst =
Ktod t0, because /, (x) = /(x) forx € dD. Since dA, (x) = y'detly,(e,,«j)](x)dAl0(x)
with t\,t\ an orthonormal basis of (7VA/,00, we can write

**e><l) = D (A1 + ir)/dV «[,(«i,. )i~ , +

=JD{ i1~ + (1t +JOIN/G, <., i} A,

Here and henceforth, we denote by H, either the section of v~ITN, « («i = «iw ,
or the mean curvature HOof/, which notation will become clear from the context.
Let us fix xO€ A/ and let t\, et be an orthonormal frame of A/0= (A/, go) around
x0 satisfying V e, = 0. Then, e<(x,0) := «<(*) € T,Al = can

be extended as a local section of n~IT\I on a neighbourhood of (x0,0) € M x /,
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resultingine, (x,f) G =T ,\{. Clearly, we may assume ;i(x,f),&)(x,f)
to be linearly independent and, through Cramm-Schmidt orthogonalisation, to be

orthonormal in (TsM,gt). Thus, we obtain sections ¢i,eaof n~IT M satisfying
Mo Mo

1) ¢.(x,0) = «,(*) andso V (¢=(=0))Jod=Ve,j~)= 0,

2) Vf, «, 1= «,(-,t) constitute an orthonormal frame of Mt= (M, g,).

Let ¢,(e,,0),(e,-,0) G x 1)) be the vector fields respectively given by

&(*.f) = (0,1), (¢i.0)(H) = («,(*,0,0), («,,0)(P) = («,(*),0), V(*,f) GM x I
Then, we have

Alox/ MoxI if

v, = V(#0 qH*a) =" - (1)
Henceforth, we denote by Vt/t> the second fundamental form of t; : AfOx / —= N
and by Vd(/,) the one of /, : M, = N, the latter taking values on Vt.

Using Eq. (3.1), we get, VX € M,

AWM .d (/). CiNt .= o< *wi(w,0),*w)(«j,«))4L .

= (v &'"(¢b(«.,%)),.a . <V*i)l + (sV-M. VFf. (*>(«>,0))IMI) (

= AV<H(,O (] (e.0)) | + (df,M |, vdut, (~ t, («>,0))~
— "4AMe)N + (NdfAY) T VG L, o, N
= (V,r V., M(<i))i+ V.f

Then, from the multilinear alternating property of the determinant, we obtain

Ndet (o o (o« del [(N().(«)),d ), ()]

= 2(v.rV ,AK))i=i(y, . .w,4f,),

where <,> is the Hilbert-Schmidt inner product of A*T"MO0® T fA*N . Hence,

JAVI<icte)L (*)« iy”

Still considering the Riemannian spaces MO = (A/,g0) and (f~IT N th), we have
the equality (cf. Ref. [Ee-Le/83))

dA, =< W éif >» dA, + HW A <V) ,
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where * is the Hodge operator in A1T*M0O<gf~ ITN. Thus,

em()- =y qaa1n11r, e (b 120 %) < WM >t
+{d (\H\L+ K )H W ** ). (3.2)
If X e Cr°(TM), and if §(*),* € C°°(T*M) are given by | (X)(r) X,Y >fo

reap. 9(Y) =< W, 4f[Y) >*, YY e C»(rA/), then
(NAFN)N(X) = <W LRV (X)>*=-<IVI§(X)AN(ele)>~*
SI(X)A < W,AF(-) >* (cict) = -§(X) A9(«,«,) = *9(X) .

Thus, W A *df = *0 with 0 having compact support in D. By applying Stokes’
theorem, we get

J, (||*||J+K)<HNA *df) =IDqump +n)d*t =jB|ifriiA«».
Furthermore,
WL * = j(niri*) - Qiirica #=4 ijriic«)- < 4 s
and
<4*112%>= 4%112(«) <WT,HM >»= 4 * K (*',(",r» .
A further application of Stokes’ theorem gives
JD(1*12 + *)m'(»' A *df) ——JDd\\H\\i(df'(Wr))dAK . (3.3)

Substituting this result in £q. (3.2) and using the Weitzenbock formula (see e.g.
Ref. [Ee-Le/83]) 6df ——2H, we obtain

§|WU>)L = fD{ 11*.112L,- Zﬂ*ﬂz+ K)<W ,a>, 'dm |(df'\Wr))}dA,, .
(3.4)
Next we calculate /, [|*]12].(.
VIED .IEI,
W ,aswi = jv<I(/),(«-,U.0.Mi.0)

= (VLT AU)()) - aUi( (<)) ]
= i ))ns)
= H{v(@Ii*([i<0)WI- (v (3,(4.(1,00)6.0) I
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Thu,
Bt,o0) =

= 2{VA o1 Gij.)
- (W oy VA, *(.,.)(«/,0;

S (v (N (o)) Ul (o) (o )N v At (* (i,0))(MI}

= 0 {(VIEV (i) (F(* o) (U )V

S V(Lo 00> > < (*>)), “(t/w(*> °)(»,01} » (3-5)

Note that, at the point x0, we have

(Vor(<V («¢>)),.<Vo(«.))I= ( («, , tj),<(m(e»))t=0. (3.0)
Hence,
(va =\ (va ‘v(Giiii(*(«.®)(,.1)K=
= 2 ('1I" (¢1.0))iJoui 4 ((¢1,0), (df(.01(¢;,,0)
= N (V(W>(V'M Ji'(*..#) + * ( (*>.5))) .0, + KITFI(COW W )<V W

~VIMIACT<)NCD =

Since, V(x,t) e M x /,

='SliM - <>
we obtain
(Vi te ) - + viiL«i(du( A0t 0))) ], .0

+ 2/fW,,, - - (3.8)



Chapter A The Seecmd Variation for Wilimore Surfaces aim Space Form 176

Observe that, V(x,t) € M x /, (<i,0)(™] = (Vijf iiM ,0) is an element of
7VA/ x {0}. Let us call z, the section of TM given by

() = e (# . (3.9)
Then,

v<E)(*( («m.»)))n, = VT (#(*.)).

A A (4.0)imi = -(*.(%),0) . (3.10)

Thus, Eq. (3.8) can be written as

= l(v.r'v.rv ,+vr(#w ). +«"Vv +vVv/-*«
= ~M(v.fv.rV .+2V<r, (««)+2XX.)1 . (3.11)
IftfeC “ (K), then

(Vfc.fo,.,).%), = (V.5 (A (D) th)i = - (A («jl.V . ft],A

(VAfA(tiM), V)t =< 1j(*0),e» >, ("Vdfn le, tt),u)k = (3.12)
From the equality
ij, =< <y(*,<),«.(*,0 >, = (W (f(*,1),0), e2 () (o (*, <),0)t
we get, using Eq. (3.7),
= A« («>,°).<ff(i*.°)>* 1(,,0]
= (Vi (e(«j.0)) .ol ¢»(,.0)(«t,0)™ + (ij,0) , VJ '(¢»(«*.0)),,,0])>

= A2, 1 ( (i>,0)) , 4F, (i)™ + (<(f, (VE 0j(,.0l) , <(f.())j
+ Nl (). VirG, o] (M, («0,00)™ + (¢/, (1)), (Vij! «k,,0]))4

= <v-r + W ,<0,),#,(..))n
+ (#, (<) VEV )i+ (#,(,),¢<,(0,)>.

= (V.i">, A (e0))i+<* (x.),e,5- + (A, (LJ). VAV )t+<.y,* («.)>,
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Hence,

(«,,«,>, 1NN =< »,«, >, =

= - < > <VAr, (@), v,fv )4
- v,fv ,)4
= « >, (v ™ (e, E)i+2(*,(*),y fv ,)4(4r,w v, ft/,

. (Vi fe«),i7di+i((v;;-V);,v,fw,)4

= (Ve (n,n) 1f)1-2 (7 - (VirV )> )i

Consequently,

Equation (3.11) thus becomes

(n'B"~"My =i (v, fv fv,-2v .f (v ;v )'+ 2h-wKf
= I {(v.r'(v.r>))~ - (vrwr'wyijf+ 2"}
= ‘jv.w .< + (vr(v.r®*rj-(v.r(v.rn . .y+ "<}

= 5{*»e £+ (v,r,(v.rv ')y Y Yv- (v/-(v.rvoi)'
S (7T F(V FV )Y+ 2X0EY (3.13)
where AW V is the Laplacian in the normal bundle Vo to /. We further have
(v.fV'T = (v.n-<f«r,(iv'))))v= v<H' 4f-"(WwT)). (3.14)

Denoting by W df the covariant derivative of V<(f in the Riemannian bundle

O* T*M0<Vo (A/ with the metric jfo), we obtain, as \"4e,~ = 0,
V., (Vif(ei,if-\W T)))% = V.V A (e, -*(W T))+
FVAr, (¢, N, (<r(>'r)).  (3.i6)
Using Codazzi's equation in a space form (N ,h) (cf. e.g. Ref. (Ko-N0/69]), we get
V.vA () = V,V<(,(«,¢,) = V..vAr L (L))

=V, (V«r(«,«,)),..
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Thus,
(G «¥)y= 2Vt~ . (3.16)
Since df : (TM,g0) —* (To, A) is an isometry of Riemannian bundles and (V~ )T

is the connection of (TO,h), we obtain, by applying Egs. (3.14), (3.15), and (3.16)
to Eq. (3.13),

(vfu~nr,y = "{AW-+2V,,,, ff, +Vd/ («,<T'((V,"VrE£ ))
=(vi"(vr2~)iY -(vri?2rw T)mY + a
@
If we aow replace WT by (V/ 'wT)Tin Eq. (2.11), wc get
(vr(V .f'n "qV, Vdf.(e,<jIf "((V'-'wT)T)) (3.18)
and, analogously,

(vrikK ""rn7 =Via4r, (*,<r,((v,rv ")r)) . 0.1»)

The latter equation can be evaluated as follows.

= VV,W,.») (3.20)
= ~<Vv<f.(c,»),WI), V~(«,e.).
Thus, in particular,
(vr(v.r~)y:f— U <). (3.21)

Substitution of Egs. (3.18) and (3.21) in Eq. (3.17) yields

= ‘{fa< +2V- (W'l "™ +i;n(K)+2KK} =« («o»)
So,
X 1*L (%)) =

= + 2 ff, +ci,«) +iKw*  fi,~
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Then, due to the equality ) k:

(3.4) becomes

= l,{<e*wV'B >*+<'lwid('<r,("»'T))+ < i(»,,).-ff >*+
+2K< wv,a >y 2(]if]]2+ Ir) < WV,h >» .\\H\\I(irltyvT))}d A,

= fB{< OWvV,B >» + < A(WV),B >» 2||*||2 < Wv,B > k) dAlo .
Since W has compact support in D, we have (see e.g. Ref. (Ee-Le/83])
fD< OWV,B >Adan = JD<WV,0.B >» dAn .

Furthermore, < A/W),H >*=< WV,A(H) >*. Therefore,

which depends only on the vertical part of W. Hence, / is a critical point of V,

for compactly supported variations on D, iff
AH + A(H) - 2\[H\\\H=0 on D .

If we replace in the above derivation i = 0 by ( arbitrary, we obtain in the same

way the equation

where At € C°°(®V{* 0 Vt) is the tensor defined by Eq. (2.12), relative to the
immersion ft : Mt — N, and where Affr is the Laplacian in the normal bundle Vj.

Now we suppose that/ = fO: MO -* N is a critical point of "WD and that W is
a vertical vector field, i.e. W € C*(V). Then, we calculate the second variation

formula for W at /, that is, we are going to evaluate the expression

(3.23)
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Let Xo € M and let ei.ej be an orthonormal basis of (T~A/,g,), which can be
extended to form sections <i,e* with some additional properties, to be given below,
in order to simplify the forthcoming calculations. Let Et = dfa0(«-) for i = 1,2.
Then, (Et,Ep) is an orthonormal basis of (I”*.0),A). On the subbundle T of
v *TNta covariant derivative Vis defined as znj = ( , VZ G
0°°(T), (x,t) G M x1, («,A) G x /). In particular, V(,,00 Z(&t) =rf, Z, (#.
Let7 :/ — M x / be given by 7(1) = (x0,<). Then, the vector bundle 7_,T
has base space / and induced covariant derivative V1 . We define the sections
Ei,E2 G C°°('y~IT) as to result from parallel-transporting E,,E9 on (T, h) along
7. Thus, for each | € /, 2?i(f),2?i(f) form an orthonormal basis of (7(*,1), A)
satisfying
V,1_£74=0, VW= 1,2.

Once more, for each t € J, we parallel-transport the vectors E, (i) of (2*)*, in (T,, A)
along geodesics of M, = (A/, g,) passing through x0. In this way, we obtain local
smooth sections 1&,(=,t) of T, that constitute, at each point x G A/, an orthonormal
basis £ | (z,t),£] (z,t) of (T~j,A). The £, define sections of the bundle T, smooth

in the variable (x,t), and satisfy the properties

VvV ,0£, =~ (E(*,())n =0, vee r,M, (e /
and
=Vy( LIl=V1 £ (0=0.
Since, Vt,x, d(f,)a: -* is an isometry, e,-(x,<) defined by
<K(lp(«= (*.0) = gives a smooth vector field e,, = e,(-,t) of A/,, which is,

in fact, the one obtained by parellel transport of ¢,(xe,t) along geodesics of M t.

Thus, for each t,x, et(x,f),e»(x,() is an orthonormal basis of (TaM tgt) satisfying

=0 e (V(K*(-00))6iDFr=0, V.6 T,M, le/ (3.24)

(Vi'(M .-, «))M )r=o0, el. (3.25)

We denote «,=(*) = €,(X,0), Vx GD and 2, as in Eq. (3.9). Then, we have

(<<«(i,00) (1= (V *" (45 (i,0))(Wit) V
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= ~Vdr(l0to)( (£,,0)) + £/.,(*)))
= (2(E.(*>(£)).«,-*K «( "VIME)) = (V f'wmV.(3M)
Observe that, as a consequence of Egs. (3.26) and (3.7), we have
<e/(*).«*>.. = WA*i) <V, M)k= Vi“»), (<))
= (Vt, "{*>&<»)),«.,, - VE»(,..(~,(iy,0)),

S (v""Vo L, («.)d~ (wmeVaf (Ly,.)>4, (327)

whence
Vdl,0 (*<i*>) = (% ,> VrfAo(«</»**))AVd/,0 (<i, *) . (3.28)
From Eq. (3.24), we get
AFff[(x0) =V j((V,. Ht(m = (V (jio)(V (o 2f) )
v * (*0.0)
Hence, by applying Eq. (3.10), we obtain

= (vrinsiivy» %, . *)4

= (VA V(i 0l(VG@OI£f) I,0] * ), >
= (y i,)(G.o + («.), ) (Vv,*3,B)~
-V fc (*>.0))1* '(i>,#) ) ta,1]'W)

= (M~ vir(viIL» »~ I-3r (., 7

ft& "ILi+~2T (vr»):
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S (v.r(v.r,*r.«r<«d))4v ,;-v ., "~

— Yoi  *Yo0V, [M, Plcdi@o™
+vr(v.r®)i.+(vf VN k)iv,;v,, Wk

= (Mi.0]MiL,QVA [T«0)+ V/ {Rni(dJit,),W)H)n + V(*oiy ji(..Hir(.ol
S VL[ (Ve Via, d@onic(CiL o)+ (Vv 1@ 0) (>, o)

+(v.Q.a,d«(i,a)~ V¢, ‘(X(>0)]"q

(V. NN +(v.r's, VA« QAL YV, w)(

= (vorver(vEiril)A+vorvr[<v-iU 41(.,))4<f(J]-
-xVvf( *«).,+v fvf
- v.f[(VAV]frL.+xaVM," )b +y§ .«,,i*L.. <& AT)
+ (v.ftf,ve,(d(i30)],.00itf(<,) + (v,fj, #(«>))jv " (* («>0)]1 0 G

+v f (v fir)* +(vyan)vd/n (', ) v fty, , tv)4

= (v.f\, (vfi],.D)> v.f[(v.f(VTIL.r4f(>))tH=>)].
+v f[(v v F*-.<*), ML
+v (v f*L-.v.f (dr«»)4<A)],
+V f [(VFFF] Lt N «y))iv. F (#(.,))]..-ITVF( <W,B >#(«,)),,
+VIVE -VF[(vTvffiL, («)sif)],
+ KV f[<W,B >»< if{cd,if(Cj) >A 4f(e,)),
-V f((vf
-VEI(vESVTE|O)L1-) t#(i)L
- VI[(vfir,<r< )tve'(* (i, oI, ], +v f (v frrE
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+(v.r c))tv. 1 i

= {vr V. (v -vr[((v™irl)v,vA(,. D)D),
+v.ri(va v.r (4C)))keM i,

+vori”iL ih)), virr(r(cy)lw+y fy f *«,
-v.n (vr N o«vrl)), N («/>],

-vri(v.r viiX(«o)u )4 <)

-v.f[ (y f Hdne))kv r  (~(?23,0)]..1. +y f*(y f
+ (v,r'ff,Qvd/0E, e)~y f w, ,

Since JV is vertical, we have, on jD,

(v.ri(v.r'ff,v f (*<!,,0))u )4 <«>)],, "f)t=

Using the equality (v/. * = - (if, Vdf{r,,e ,)f we get

= (v.,v, (v fiu X +vf I(v:f‘n..,<r( *#))4# W L

+v<r,i(vr jru# (*i))tv.rv<«i))L +V.fyfa,
-y f(y £*)°
(v ARV f (> (<0 0(* ), (¢, ¢,)

+yf] (i,v™(«,. M)y F'(*«, . «))UL+vVv I (v .f<

+ (v .f y fiv,,iv)~.

Since f , ey = 0, clearly

(vri(vr*L.,~N(™ ©) MN«>)L. V)j=0-



Hence,
<(*r
= (v.v, (VI N|,V,V, JT.+V.V, B,
+v.r[ yf\ WML *
- (Vi (Mey, 0L (1)) V<V, («,4))
+v/ [(B,vdI(t (<<2(«3,0)) 1,013
+(V.I’ ,rr) . (3.29)
Now, V* 6 £,
(VA *lwlhar(«i))4= - ~ Ty |, (Ws(*>10))w 1~
Moreover,
Vi @Qut,o)Gll = Vd.,.*?-, («0)+
= V.V, + < (y) (3.30)
.nd, from Eq. (3.2S), V.J'V, + df,(ry) =V,, Thug,

(¢m'[(y fiu #<*>),yT («o>)]>w ), =

- V¥A@Mo) ) (v.fvrdi@),»)i

= - VT, MV d/(«¢), W)
- (IWV,r VIV I+ A QA (6 ) , T4
- (N, v, (vrvrerw ,»,, A~

= - (v, ¢V, (vdf,J3°,'1),w)i

< (< NV ) AV ) w)k
- (*a, VAL(Gry))t (VT («,,. ), w)>

»eN(V.r'varvw LN
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=(*, V.V, wjj*+(h, vC (K ‘w)\ =
= («..¢ .8, wn)- (v'-i,,(V .fV .)n)j
= (n,,V.y., wj)" - (v.r

= (ft..v,v, - (*a W, k)4 VN«J,«))4,

and using Eq. (3.16), we have

= +<v(S, K-
= (v, V, «) +4T,(%%, .j),
(v, (VAR D)MW L (Vv («d)),

a(v, ft.,n '~ . (3.31)
Hence, from the latter two partial calculations and Eq. (3.27), we obtain

(*r [<vrn-.<n*i)\v.r<*<"»]~

= - (v., ft.V.,, WA~

- (ft,,v.v.,. <Vdr,h,.i),ir)t
+ <jt, <ir,v ™, (.y,..))4
- (ft., (W,

-2(ft., v, tv, (v, ft» N
= - (v, ft., v, >)'>,
- (ft, v,v., w, Y

-2 (ft, V, (v.yftyVA | (3.32)
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From Eq. (3.26), we have

(V€ U, vjr,<>o)E*)AVAM,*) = Hyv, wj dn(*,.).
(3.33)
Using again Eq. (3.26), combined with Eq. (3.31), we get

(von VE(*(iy,0))U ., w)k=
= (v, VAN (v, wAwA2(s,vjnj o (v, Wi
+Hx <« (v L (vi-, (%,(1,0))i,d7, iVt .
Equations (3.30), (3.10), (3.20), and (3.28) give
K (vi-,(*,ix0)il.)- )v=(V,I,(V,;-V+#W),)"=
=V, (v, f(vEWTr+

= V,VyH_- (VdC,(ey,.»)»")tVdT.K.aa)

+< («,%,), W)AVd/, («,,..)
VvV Vv
V.V, W ». (3.34)

Hence,
(v.n<2r,V4f(_...-))» (*(*1= °)) u =

= (v, 2T, VdA,(,a)" AV, ,)
8+ * ("

+ (B, Vdf.grm>*>)A W*0 »  >a (3.35)

Substituting now Egs. (3.22), (3.32), (3.33), iMid (3.35]1in Eq. (3.29), we obtain

((vf = =
AV L,V L, (AVV + 2ffW + A(W))n | v
).

/v v
+ (V. V. +

\

v
LV, S W (,!' tv)i <v<tr,,(«,.J),w)A

<<

/I VoV
1*A)4TW U («,.y)),-  if, V., w,
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- (v, *, V., (v<rl,(., iv)a+ 2(v, AV, WL iEvA

+2 V., (v., IV, iv™ + (i, AV, W ivA

vV Vv A"
Next we evaluate the term V,(V,. 117+ V,iV,i A,,. From Eq. (3.27), we have

V.V, if, =< ()0 >, V.V, G, = (W..,Vcr, (¢, «)4V,V, i, .
On the other hand,
\7.,\\?,, 2T, :\\?, [<*.e* >,0\\?.4H mim =
s i< «, 8>, ) («) V., if,+ < >, V,V, ir,
= QA(<* ¢ >, ), («) V. + (v, v, («, )NAV.v, if,.
Using Egs. (3.7), (3.9), (3.10), and (3.26), we have
J(< *x >y ), () = <<(< <te(w) >. ), («.) =
= (" (vr L) (o)),
= 1((ve",COCODIL , - V(] (i, )], 4TE") ).(«)
= (v (([,9)U - v.fV, )_()

+(v-(*, (o)L 1(«.),v/-(#(«D)),)i- (v.rV,v,r'(4rK)),)4

= (VIi"VEO]("(«.,0)),, 0l +ff,(,] (1V, <?,(«,m))* (€.m)
- MIEi(=<2(<,,°)) (.0, («*) 4
- (vr(v.rv)>,(<.)),

+ (v, IV, VA (e,«)™- (v,fV,

= (vr v(U*<i"9)(,,i- 3t - v.rifef{«.»,,
- (v.r'(v,, V1,,<r,(.D)i + (v., tv,v<r,(«,, »)"
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So(vart(verty )1 ()i + (v,

From Eq. (3.16), we have

(MTr(vr»)i,w)l=
= 4 (VIV)rdf(o)i)<)- ((v'-V)",yf«f(«.)).)4
= 4 (v.rv. (DA< = VN6, )i

= - (V, WLW M o)A - (ty,

(V. BV VA, (8¢ ) -2(tE Vi, 2 |

“ dfr" El- (3-24)>y;,.0] (<™(«',,0))l, e V,~h VIe /. Tim», using Eq. (3.2¢)
we get

h (9 («»°) ) (N0) > <*/to(«*))A=
= - (vl (i,0)W j T, VE" (*3(¢,0)),,0)4= - AVA (<), v,
= - 2AV.AVA.

Hence,

KL F o >0 (<)) =

= 270V W 2V, TV VN6 )N 2NN, D
Consequently,
N>+ VY, i, i) =
= -I(n, W (V.. i, VN +2(v, WNRV G 0) (V.. B, TV)
+2(tvv, AN 2 (\AVASY X o (VAVAR T o VA IR
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= (AW’ + 2ffW"' + A(H")J, WAl

- <(*. V., AV.. an,w” +i(v,, (v, n,wn

+2MV\V. (w, V., I, +2(IV,V<Uk.,«)>,(v,V..

S2h v, T, S(Irov,ve, 1V . (c,e)w)t
+ 2(]v, (v., + 2 (v.,W,, wn
<P,V A (LV))AAV,L VL WL WA (3.36)

Next we evaluate the term V» '(~,(1T,))—"ptV~ . On D, we have

Mir.) = (VVv,(¢.,,0..),7), Vd/, (i) =
= (VEI(*<*>.0)).*)4(~](*ft, 0] ))V
= (V(M,(«ie(ér,0)), VvV U (*(*it0))

“(M(I,0)(M 1J.0)).-ff)j (V ¢i0,(dv(€J,0)),<le(¢1,0)™ilo(ée,0) .

Hence,

(Ve (Air) bvt-

= (VA [(VWIC,(r.0)) <) Vii(ae(6/,0))14 0 "
R (=h(©,0)( P, 1V)4

= (TFVIE] (Fft«>W *), Wt

Y, (M i tif*n0)) %),

+(v,{i(*(@[iZ0)-i L/Mi(vi'y , 0)) (-,
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From Egs. (3.10) and (3.28), we have
={(V,Vijl,(.,..))kVA4f, («ye») ,

and using Egs. (3.34) and (3.22), we obtain

= (Vv v, +¢,Kn-, + (w, L Jrj

+ \ (VV.0(.,.J),AIV +2i-W ,, + i,(IV,))K(V tf»(«.,«3),W")j
+ (Wr,(«, (v, v, tv, + + (W, V<r.(.i t v<v.(«>«), »w

= {v<il,(e,il),w)k+ 2# < w.,,ir >,< a,,iv >,

+ A<A*(w-0), AH', + 2jnv, +i,pr..))k
+ <V<(/-,.(e.ey),ir)k(v, V, + 2JT< >,
+ «>). %), (Vtf, (<, q,), w4 (Yin), tV)K
= {v.,V, WA B”" (V(V,(e.ey),w)k+(V<tf,(e,ej),if) kK V., V.(

+ 2jr < >»< >, +2ff < >, (wg,,w),
+F3VA(«,,«)"), VALye) )t

+ i (-*,(A»V, +2KW, + A (W ,)), (HV)t . 3-37)
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Finally, from Eq. (3.22), we obtain

= (AH',, + iKWn + A, ((V.,), H)k< if,, W >.
+-HI (AW, + FI¥ + Adwn),w)k. - (3.38)
Combining Egs. (3.36), (3.37), and (3.38), we arrive at the final result
(vr< AB,+ MB.) - ,W)k={(AW))n,w )k,
where J : G°°{y) —=*G°°(V) is the fourth-order differential operator given by

A»). = i(A+A)(is+2K+A)(W),
< 2{(A +3T+A){W ), H ,)kH, - IENI(A +A)(1V).

+2(W,, Vtf.fc, V'iiAc,«) + 2(B,, Vdf, («,.»)), VV.(«,«.)
- 4(h, Vv, B,+2(w,V, Hjv, + vV, Jfj V,, IV.
+2(V, IV, Vrfl (e, )™ V., if.
- 2(V, if.,V, ,VA4f («, €)
+2WV,. if. VA (L«i)j V, W.
+a(w., DAV (W), ), V().
Thus, we have obtained the second-variation formula
JE*w /) fDv<yv)M >dAn

with the operator J given above.

The case dimJV = 3 follows straightforwardly.

Remark 3.1 We observe that, if N is the 3-sphere 5* and H = 0 — obviously
implying / to be a Willmore surface — then the above expression for J reduces to
HA + A)o (A + 2+ A), which is just the fourth-order, strongly elliptic operator
of Weiner (We/78).
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