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Abstract

This thesis is primarily concerned with two topics: the trigger performance and

calibration of large-radius (large-R) jets at the ATLAS detector, and the presenta-

tion of a search for new high-mass particles that decay to vector bosons in the fully

hadronic decay channel.

The performance of the ATLAS large-R jet trigger during 2015 was evaluated and

found to be 100% efficient by 380 GeV for all large-R jets. The impact of jet

substructure on this trigger was studied, and we discovered that a newly proposed set

of variables, anti-subjettiness variables, could reduce trigger rates by approximately

30%, while still accepting 95% of large-R jets from heavy particles. Alongside this,

a new calibration method for large-R jets is presented. A neural-network is used

to perform a multivariate calibration for jet energy and mass using substructure

variables. While there were no gains observed in the jet energy calibration, a 26%

improvement in the jet mass resolution was found.

A search for X → V V → qqqq, using large-R jets tagged as boosted vector bosons,

was conducted using 37.6 fb−1 of data collected at
√
s = 13 TeV by ATLAS in

2015 and 2016. No significant deviation from the Standard Model was observed and

limits were placed on a variety of generic signal models. The Heavy Vector Triplet

model A (B) was excluded in the mass range 1.2(1.2) < mV < 3.1(3.5) TeV, the RS

graviton with k/Mplanck = 1 was excluded for 1.3 < mG < 1.6 TeV, and limits on

σ ×BR were placed on a generic scalar model.
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Chapter 1

Introduction

‘‘In the beginning the universe was created. This has made a lot of people very
angry and been widely regarded as a bad move,’’ or so claimed Douglas Adams
in his seminal physics text The Restaurant at the End of the Universe [1]. Despite
this, or, perhaps, in a concerted effort to prove him correct, scientists working on the
Large Hadron Collider (or LHC) study particle interactions at energy levels similar
to those from the first few seconds of the universe to try and gain ever greater
understanding of its fundamental rules.

For the last few decades our theoretical knowledge of fundamental physics has been
brought together in the so-called ‘‘Standard Model’’ of particle physics, whose pre-
dictions have driven much of the experimental work in this field. The Standard
Model has predicted the existence of the Z boson, discovered in 1983 at LEP, the
Large Electron Positron collider that was the original occupant of the tunnel now
containing the LHC, [2], the top quark, observed in 1995 at the Tevatron proton-
antiproton collider [3, 4] and most recently the Higgs boson, which was finally dis-
covered in 2012 at the LHC, 48 years after it was proposed [5, 6]. The Standard
Model has not just correctly predicted the existence of new particles; it has also pro-
vided accurate predictions for a huge variety of particle properties and interactions,
at energy scales orders of magnitude apart.

However, while the Standard Model has proven astonishingly successful in many
areas, it is obviously incomplete in others; for example, it does not yet include a
mechanism for neutrino masses, and the theory breaks down with the addition of
gravity. There are also parts of its structure that seem arbitrary, and many theorists
believe they could be explained by the existence of some deeper, underlying theory.
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In practice, there is no shortage of ideas on how to address these issues. Theories
including supersymmetry [7], composite particles [8], leptoquarks [9], and more have
been proposed to address the Standard Model’s shortcomings; the challenge now lies
not in theorising a way to fix the Standard Model, but in ascertaining which (if any)
of an infinite spectrum of theoretical possibilities is correct.

It is possible that new physics may first be detected in subtle ways, minor devia-
tions between the Standard Model predictions and measurements made at particle
accelerators such as the LHC.1 However, perhaps the most direct way would be to
observe one of the many new particles predicted by ‘‘Beyond the Standard Model’’
(BSM) theories. Often, these are predicted to be much heavier than those that exist
in the Standard Model and would decay almost instantaneously upon being created
in a particle collision, almost undetectable amongst the noise. Thankfully, by using
advanced detectors such as ATLAS, we may observe their remnants and attempt to
reconstruct such decays, seeking the telltale signatures of a new particle amongst
the noise.

The LHC provides a unique laboratory in which to search for new physics. When
running, it accelerates bunches of protons to 7 TeV (or lead ions to 1.38 TeV) in
two contra-rotating beams and continuously collides millions of protons each sec-
ond at four main interaction points situated around the ring. At each interaction
point there is a detector gathering collision data using highly complex calorimetry,
tracking, triggering and data acquisition systems. ATLAS and CMS are both gen-
eral purpose detectors with a near-hermetic cylindrical design, LHCb is a forward
detector designed to study b-quark decays, and ALICE is optimised for the lead ion
runs and studying the quark-gluon plasma produced in such collisions.

This thesis is primarily concerned with an analysis conducted on data collected by
the ATLAS detector in 2015 and 2016 [11]. Rather than searching for particles
associated with a specific theory we instead performed a search for a more generic
class of particles that could be produced by a variety of models. The analysis was
optimised to find particles that interact with the weak force and that decay, at least
some of the time, to a pair of electroweak bosons; focusing on the final state that
is produced by such a decay when both bosons then decay hadronically (analyses
using other decay channels were also conducted [12–14]). No observation of a new
particle was made, but the data collected allowed us to place constraints on the
existence of such particles.

1In fact, the first hints of something new may have already been detected in violation of lepton
universality through decays of B → K∗µµ [10], though it is not yet statistically significant.
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The hadronic decay of the bosons in this analysis presents an interesting challenge
when reconstructing a collision. The strong force confines the quarks, and when
one is produced by an interaction, many further quark-anti-quark pairs are created
alongside it. These create further pairs (and so on) until the remaining particles
finally form stable colour-neutral hadrons. Therefore, any quark produced through
a high-energy process at the LHC is observed not as a single particle but as a
spray of highly collimated hadrons called ‘‘jets’’. In a hadron collider, such as the
LHC, the pp → jets cross-section is an order of magnitude higher than any other
process and would easily drown out any possible signal. To make this final state even
more challenging, the two jets produced by high-energy boson decays are themselves
highly-collimated and often overlap.

To identify boson-like jets amongst the noise, large-radius jets and their substructure
are used. Such techniques are becoming common in exotic searches at ATLAS and
CMS [15–18] but are still undergoing rapid development. The secondary focus of
this thesis is on performance studies with large-radius jets.

Since the LHC generates far more data than could possibly be stored, there is a
‘‘trigger’’ system responsible for analysing events in (close-to) real-time and selecting
those containing interesting physics for storage. Which events are stored is a crucial
choice for physics analyses; if the correct data is not collected then no analysis can
be performed at all! As part of a larger study of the ATLAS trigger system [19], the
performance of the ATLAS large-radius jet trigger was evaluated in data, using a
bootstrap method from lower energy triggers, and its efficiency threshold was found.

However, increases in the luminosity delivered by the LHC have continually forced
the trigger threshold to increase to prevent a significant rise in the trigger acceptance
rate. The total rate of data-taking is fundamentally limited by the availability of
output bandwidth and long-term storage, and could not be increased sufficiently
to cope, requiring the trigger to throw away some data that would have previously
been stored. We demonstrate that this can be mitigated by using an ‘‘anti-QCD’’
substructure-based tagger in the trigger, delivering a 30% reduction in trigger rate
without significant impact on the collection of heavy particles such as the W or top
quark.

Finally, this thesis will present an examination of the use of jet substructure when
calibrating the large-radius jet mass and energy. This is not feasible with the meth-
ods currently used for ATLAS jet calibrations and required the development of a
neural-network based calibration procedure. A proof-of-concept of this method is
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presented alongside performance measurements. To select inputs from the large li-
brary of available substructure variables, two systematic methods for the selection
of input variables were developed. It was found that the energy calibration does not
benefit from this multivariate approach but when it was tested on the jet mass an
improvement of 26% was obtained in the jet mass resolution.

The structure of this thesis is as follows. §2-4 are primarily a reference to the reader:
§2 will describe the Large Hadron Collider, the CERN accelerator complex, and the
ATLAS detector, including its trigger and data acquisition (DAQ) systems. §3 will
give an overview of the Standard Model: its successes, problems, and the BSM
theories that will be referenced in later chapters. §4 covers jets, in both theory and
experiment, including generating hadrons in Monte-Carlo simulation, jet algorithms
and a short introduction to jet substructure. §5-6 are primarily my own work and
cover large-radius jet performance studies completed during my Ph.D., multivariate
calibration studies, and ATLAS jet trigger performance respectively. Finally §7
presents the primary analysis on which I worked during my Ph.D., a search for heavy
particles decaying to vector bosons in the fully hadronic channel. The chapter gives
an overview of the entire analysis with a focus on my contributions.
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Chapter 2

ATLAS and the LHC

Figure 2.1: ‘‘Look! Small rock come out of big rock! Small rock fundamental!’’
‘‘...small rock is maybe statistical artifact.’’ Saturday Morning Breakfast Cereal: To
The Collider! [20].

There is an essential element that separates the scientific from the philosophical -
the principle of empiricism. The success of a theory must be judged by observation,
not by appeals to a priori reasoning or nebulous concepts such as elegance or beauty
(though these can certainly be motivations in its development). In particle physics,
this poses a unique challenge as we are concerned not with macroscopic behaviours
or large ensembles of particles, but with the fundamental building blocks of nature
and the laws governing their interactions at the smallest scales. Unsurprisingly, the
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process of observation is somewhat tricky.

Directly probing a particle and its interactions requires our experiments to have a
resolution of the same order as the size of the particle. As technology and exper-
imental techniques have improved, we have been able to drill down into what we
believed to be fundamental and discover new structure inside, often alongside new
physical laws that explained previously unexplainable behaviour. The transition
from a model of many fundamental atoms to atoms made of nucleons and electrons
is one obvious example of this; the reduction of the ‘‘particle zoo’’ of hadrons to
a set of quark bound-states another. In fact, thanks to de-Broglie, we can even
quantify the limits of our observations and hence our knowledge. Given a particle
of momentum p, the length-scale we can probe is set by λ = h

p .

To observe ever-smaller (and potentially more fundamental) particles, we require a
corresponding increase in the energy of the particles with which we observe them.
This places a fundamental limit on what can be measured using microscopes and
light, set by the frequency range of the colour spectrum. To move beyond this
requires higher-energy photons or observations using accelerated massive particles
such as the electron or proton.1

This brings us, in a rather roundabout way, to the topic of this chapter, the proton-
accelerating Large Hadron Collider (LHC) and the ATLAS detector.

2.1 The Large Hadron Collider

The LHC is a 27km circumference proton-proton/heavy ion collider at the CERN
experimental complex. It was originally designed as a high-luminosity, low-energy
partner to the planned Superconducting Supercollider in the US but following the
cancellation of that project it has become the focal point of high-energy particle
physics research [21]. The design goal for the LHC was a 14 TeV centre-of-mass-
energy collider with a luminosity of 1034cm2s−1; while this luminosity target was
achieved (and exceeded) in 2016, the LHC has not yet reached design energy, and
is currently operating at 13 TeV.

1…and hopefully one day soon the muon.
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2.1.1 The Accelerator Complex

The LHC was designed to make use of the pre-existing complex of accelerators
at CERN, shown in figure 2.2, and was built in the existing LEP tunnel to min-
imise costs. When in operation, protons are acquired by stripping the electrons
from hydrogen atoms with a strong electric field once every 100µs. These protons
are generated in bunches and for the protons this is the start of a long journey
until they are finally injected into the LHC. After an initial acceleration by a high-
intensity radio-frequency cavity (RFG2) the protons are accelerated to 50 MeV by
the LINAC2 accelerator2, then fed into the proton synchotron booster (PSB), built
in 1972 to increase the maximum luminosity delivered by the proton synchotron,
and the proton synchotron, (PS) where they are circulated until reaching 1.4 GeV
and 25 GeV respectively. Once the protons have been accelerated by the PS, they
are fed into the significantly larger super proton synchotron (SPS) and accelerated
to 450 GeV, ready to be injected into the LHC.

Both the PS and SPS have a significant history prior to their use delivering protons
to the LHC; both were flagship accelerators in their own right. The SPS was the
site of the UA1 and UA2 experiments which discovered the W and Z bosons in 1983.
The PSB was built after the PS to raise the injection energy of protons, allowing a
100-fold increase in luminosity within the PS.

Once they reach the LHC, a maximum of 2808 proton bunches, each containing
1.15 × 1011 protons, are accelerated in contra-rotating beams until they reach the
collision energy. of 6.5 TeV per-beam.

2.1.2 Circulating Beams

Accelerating, maintaining, and colliding the beams within the LHC is a complex
process. The LHC beam ring is a single pipe containing two parallel beam lines
that share cooling and magnetic systems. This structure can be seen in the cross-
section from the dipole sections of the beam line in figure 2.3.

Once protons are injected into the main ring, acceleration is provided by 8 radio-
frequency (RF) cavities laid along a straight section of the LHC beam. Each RF
cavity provides 2 MeV of energy to a proton bunch on each pass through, for a total

2During the 2nd long shutdown period the LINAC2 accelerator will be replaced by the recently
completed LINAC4 in preparation for the HL-LHC. LINAC4 will accelerate H− ions (rather than
the H+ currently used) to 160 MeV and will allow a doubling of intensity for the LHC feeder beam
[22].

7



Figure 2.2: The accelerator complex at CERN. Protons for the LHC begin their life
at the LINAC 2 accelerator and pass through a series of progressively more powerful
accelerators until they reach their final destination. Reproduced from [23].
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Figure 2.3: Cross-section of an LHC dipole section from [24].

of 16 MeV energy per cycle. The radio frequency used sets the bunch structure of the
beams; to maintain acceleration, the phase of the electric field in the RF cavity must
be the same each time a proton bunch passes through. This requires that the field
frequency is an integer multiple of the revolution frequency of the bunches. In the
case of the LHC, the RF frequency is 400MHz which is 35640 times the revolution
frequency. This splits the LHC beam into 35640 possible ‘‘buckets’’ which may be
filled by proton bunches; the LHC design specifies 2808 filled buckets, but 2015 and
2016 operation used a maximum of 2220.

The LHC magnet system consists of 1232 8.3T superconducting dipole magnets that
bend the beams around the ring and 858 quadrupole magnets arranged in a FODO
structure for focusing the beam. There are also higher order multi-pole magnets
to correct for additional beam effects. These are NbTi superconducting magnets
and must be cooled to 2K by the liquid helium cryogenics system. The strength of
the dipole magnets was a significant parameter in the design of the LHC as for a
fixed accelerator radius, r, (such as the existing LEP tunnel radius), the maximum
possible energy is limited by the strength of the magnetic field, B,

E ∝ Br. (2.1)
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Therefore the LHC’s 14 TeV design energy is fixed by the 8.3T magnetic fields
generated by the dipole magnets. Sadly, the LHC magnets have not yet achieved
their design strength, and the collision energy is currently limited to 13 TeV (6.5
TeV per beam).

Magnets are also used for manipulating the beam within the ring. A dedicated
‘‘beam dump’’ rapidly removes the beam from the detector in the event of a fault
or end-of-run. This is required to be extremely fast in the case of a fault as the
beam could cause catastrophic damage if it intersected with a detector or other
sensitive piece of equipment. In the event of a dump, the beam is redirected by
15 ‘‘kicker’’ magnets into a carbon/steel absorber. There are also eight sets of
quadrupole magnets called the ‘‘inner triplets’’ are used to focus and defocus the
beams around each interaction point, reducing the beta function and ‘‘squeezing’’
the beams to increase the collision rate. For ATLAS and CMS, the beta function is
reduced from 11m to 0.4m at the interaction point.

There are eight beam cross-over points in the LHC ring where the beams could
collide. Four of these, at Points 1,2,5 and 8 are the homes of the four primary LHC
experiments, ATLAS, ALICE, CMS, and LHCb.

2.1.3 LHC Operation

In addition to collision energy, the LHC design goal was high luminosity. The event
rate for a process is given by

R = σL, (2.2)

where σ is the process cross-section and L is the detector luminosity, so maximising
L increases the probability of observing an interesting event and hence improves
the sensitivity of many measurements made at the LHC. The relationship between
many accelerator parameters and the (instantaneous) delivered luminosity is given
by

L =
1

4π
frevnBN

2
B

γ

β∗εN
R (2.3)

where frev is the revolution frequency, nB is the number of bunches, NB is the
number of particles in a bunch, β∗ is the beta function at the collision point, εN is
the normalised emittance at the collision point and R is a geometrical factor taking
into account the crossing angle and further effects. frev, R and γ are fixed by the
LHC design so the luminosity is manipulated at the LHC by changing the number
of protons available for collision, nBNB, and the focusing of the beams, β∗εN .
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Figure 2.4: The integrated luminosity delivered per-year by the LHC for 2011-2016.
Reproduced from [25].

Of course, (2.3) is only the instantaneous luminosity, as the beams circulate through
the ring they will lose protons to both collisions and unwanted interactions within
the beam pipe. The beam lifetime ζ is the expected time for the luminosity to fall
to 1/e of its initial value and is around 10 hours in the LHC. The total luminosity
delivered by the LHC is shown in figure 2.4.

2.2 The ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) detector is a 4π, general-purpose detector
located at Point 1 on the LHC ring and the largest general-purpose particle detector
ever constructed. When whole, the detector is 47m long, 25m wide and 25m high.
It is divided into three sections, a large central barrel structure built parallel to the
LHC beam pipe, and two fitted end-caps that provide coverage in the highly forward
(and backward) regions.

The detector possesses an onion-like structure, similar to the CMS detector and pre-
vious general-purpose detectors, where each layer (or group of layers) was designed
to fulfil a different purpose. The inner-most layers provide accurate tracking, the
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electromagnetic and hadronic calorimeters both measure energy deposition but are
tuned for the optimal measurement of electrons and photons, and hadronic particles
respectively, and finally a dedicated muon spectrometer surrounds the interior lay-
ers. Magnetic fields are generated within the detector to allow charge identification
and momentum measurement. A cryogenic system cools parts of the detector to
required operational temperatures.

The intense luminosity delivered by the LHC causes significant challenges for the
detector’s design and operation, even beyond the physical requirement of radiation
hardening. Reading out and storing the detector state for each of the 40 million
collisions per second would be an insurmountable task. The information read-out
from the detector during a typical collision is around 1.5Mb so the data collected
during a single 8-hour run would require approximately 36Pb of storage space! To
meet this challenge, the ATLAS detector has a complex data acquisition and trigger
system. A complete description of the detector’s design can be found in [26, 27].

2.2.1 Coordinate System

A standard coordinate system is used when discussing collisions within ATLAS. The
z-axis is defined as the beam direction, and the x-y axes form a plane perpendicular
to this with the x-axis pointing towards the centre of the LHC ring and the y-
axis pointing directly ‘‘up’’ towards the surface. However, this (x, y, z) coordinate
system is not ideal for describing locations within ATLAS’ cylindrical geometry.
When analysing collisions we (typically) care only about where the particle was
produced and its direction and location relative to the primary collision vertex.
These can be specified by two angles, θ, the polar angle from the beam axis, and φ,
the azimuthal angle around the beam axis. In order to make the coordinate system
invariant under boosts along the z-axis (and hence the collision’s location along the
beam-line) the pseudorapidity η = − ln tan θ

2 is used instead of θ. η is 0 when a
particle is exactly transverse to the beam-line and becomes asymptotically infinite
as it approaches the beam-line. In this pseudorapidity-azimuthal space, distance is
defined as ∆R =

√
∆η2 +∆φ2.

2.2.2 Magnetic Fields

ATLAS contains four separate superconducting magnetic systems, a central solenoid
surrounding the inner detector, an air-core toroid located within the muon spectrom-
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Figure 2.5: The ATLAS magnet systems. Figure from [28].

eter, and two further air-core toroids attached to the end-caps, which lie within the
barrel as shown in figure 2.5. The combined magnet system is 26m long and 20m
in diameter.

The central solenoid is a 5.3m long cylinder with an interior (exterior) diameter
of 2.44m (2.64m) and a typical magnetic field strength of 2.0T. Its design was
constrained by its location directly in front of the calorimeter system, which limited
how thick it could be made. Each toroid has a radially symmetric layout of eight
rings, and the end-cap toroids are rotationally offset from the barrel toroids to
provide radial overlap and provide a magnetic field of approximately 2T inside the
detector. The magnetic systems must be kept cool due to the superconducting
coils used for both the solenoid and toroid systems, the magnets are cooled by the
cryogenic system to an operation temperature of 4.5K.

2.2.3 Inner Detector

The inner detector is (predictably) the innermost segment of the ATLAS detector,
located closest to the beamline and sitting within the 2T magnetic field provided by
the central solenoid. It was designed to deliver high-precision tracking of charged
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Detector Component Length [m] Radius [m] |η| Coverage
Inner Detector Barrel 3.5 1.2 |η| < 2.5

EM Calorimeter Barrel 2.8 1.4 - 2.0 |η| < 2.5

End-cap 0.3 2.1 1.4 < |η| < 3.2

Tile Calorimeter Barrel 5.8 2.3 - 4.3 |η| < 1.7

Extended Barrel 2.6 2.3 - 4.3 |η| < 1.7

Hadronic End-cap - 1.8 2.0 1.5 < |η| < 3.2

Forward Calorimeter - 1.3 0.5 3.1 < |η| < 4.9

Table 2.1: A summary of the size and approximate η-coverage of the main detector
subsystems.

particles in a highly irradiated and noisy environment. As well as providing in-
creased momentum resolution, precision tracking is a key requirement of operation
at high-pileup as it aids discrimination between particles emitted from the primary
interaction vertex and pile-up. The full inner detector provides high-precision track-
ing within |η| < 2.5 and is 6.2m long with a diameter of 2.1m; like the main detector,
it is divided into barrel and end-cap segments to maximise coverage in pseudora-
pidity. The inner detector is split into three subsystems; moving outwards from
the beamline they are the pixel detector, the silicon strip tracker (SCT), and the
transition radiation tracker (TRT). During long-shutdown 1, a period from early
2013 to early 2015 when the LHC was shut down to perform significant upgrades to
both collider and detectors, the inner detector was upgraded by the insertion of an
additional pixel layer, called the insertable b-layer (IBL) [29], between the existing
pixel layers and the beam pipe. This improved tracking performance and provides
additional resilience to radiation damage.

The barrel pixel detector consists of 4 layers of semiconductor ‘‘pixels’’, sensors with
a thickness of 250µm (200-230µm) and area of 50 × 400µm2 (50 × 250µm2) in the
original layers (IBL), positioned 3.3-12.2cm from the beam pipe. In the end cap are
three discs with pixels similar to the outer barrel layers. There are a total of 92
million pixels, and the tracking resolution is 8× 40µm in the IBL and 15× 115µm

in the outer layers.

Outside the pixel detector lies the SCT, which provides four layers of silicon mi-
crostrip sensors in the barrel and nine further layers in each endcap. The 4088 SCT
strip detectors are laid out to provide close-to-hermetic coverage of the interaction
point and deliver a resolution of 17 × 580µm. To operate at design capabilities in
such an irradiated environment both SCT and pixel detector require active cooling
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(a)

(b)

Figure 2.6: The layout of the inner detector barrel including the new IBL (a) [29]
and end-cap (b) [27].
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Figure 2.7: Relative pT resolution of tracks constructed using hits from the ATLAS
inner detector as a function of |η|. [30]

to within [−5,−10]◦C.

The final subsystem in the inner detector is the TRT. The TRT uses 2mm-radius
drift-tubes rather than the semiconductor sensors in the SCT and pixel detector.
These tubes are substantially larger than the silicon strips, 0.5-1.1m long, and a
(comparatively) small number are needed to provide full coverage in the inner detec-
tor, just 350,000. The drift-tubes are bundled and arranged parallel to the beam-line
in the barrel and transverse in the end-cap such that an average charged particle
would leave ionisation energy in 36 tubes. The resolution of hits measured in the
TRT is around 130 µm. The TRT is also capable of identifying electrons and pions
based on the number of high-energy deposits left by the charged particles.

Particle hits from all parts of the inner detector are used when reconstructing tracks
for later analysis. The high granularity across all detector subsytems gives ac-
curate measurement of charged particle momentum, within the design target of
σpT /pT = 0.05pT ⊕ 1%. Measurements of the pT resolution are shown in figure 2.6
and measurements of the track impact parameter resolution in figure 2.8.
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Figure 2.8: Impact parameter resolution for tracks constructed using hits from the
ATLAS inner detector as a function of |η|. [30]

2.2.4 Calorimetry

The ATLAS detector contains 6 separate calorimetry systems to provide coverage
for both electromagnetic and hadronic particles for |η| < 4.9. Lead/liquid-Argon
calorimeters are used for both the barrel and end-cap EM calorimeters, but only the
end-cap hadronic calorimeters (HEC). Hadronic calorimetry in the barrel is provided
by the Tile calorimeter, made from steel absorbers and plastic scintillator tiles. A
dedicated copper-tungsten/liquid-Argon calorimeter called the Forward Calorimeter
(FCal) provides coverage in the forward region with |η| > 3.0. Finally, the EM
calorimeters are supported by a presampler in the region |η| < 1.8. A cross-section
of the calorimeter system is shown in figure 2.9 and the depth and pseudorapidity
coverage of each calorimeter is shown in figure 2.10.

The EM calorimeters in both the end-cap and barrel share the accordion geometry
shown in figure 2.11, which gives complete coverage in φ. The barrel geometry is
split into two 3.2m long half-barrels covering 0 < η < 1.475 and −1.475 < η < 0 and
these are further split into three layers. At η = 0, layer 1 is 2.6X0 (electromagnetic
radiation lengths) thick, layer 2 is 16X0 thick and the final layer is 2X0 thick.
Depending on the pseudorapidity, the total thickness of the module is between 22X0

and 33X0. The presampler is simply a liquid-Argon layer (with no corresponding
absorber) placed in front of the EM calorimeter. The two end-cap calorimeters are
wheels covering the region 1.375 < |η| < 3.2 and are constructed from eight wedge-
shape modules with an accordion geometry. The precision region 1.5 < |η| < 2.5 is
instrumented with three layers.

17



Figure 2.9: The ATLAS calorimeter system [27]. Note that beyond the components
labelled in the figure, the HEC1 and HEC2 separation is visible in each end-cap.

The hadronic end-cap calorimeter (HEC) also makes use of liquid-Argon as a scintil-
lator, but it switches to copper for the absorber; it also has a significantly different
mechanical structure. Each HEC consists of an inner and outer wheel (HEC1 and
HEC2 respectively) constructed of alternating copper plates and instrumented scin-
tillator. HEC1 uses 25mm thick copper plates whereas HEC2 uses 50mm plates.
The liquid Argon gap is 8.5mm for each.

Finally, there is the Tile calorimeter which surrounds both barrel and end-caps,
covering the region |η| < 1.7. Unlike the liquid Argon calorimeters, this does not re-
quire active cooling, which reduced the cost and complexity of the overall calorimeter
system compared to (for example) an all-LAr calorimeter. It uses 3mm thick scin-
tillator tiles separated by 14mm steel plates to provide a high sampling frequency
within a (relatively) compact space. Both the barrel and extended Tile calorimeters
are segmented into three longitudinal layers with a total depth of 7.4λ (hadronic
interaction lengths).

The energy resolution of a calorimeter is described by the equation:
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σE
E

=
a√
E

⊕ b

E
⊕ c (2.4)

where a is the ‘‘stochastic’’ or ‘‘sampling’’ term describing fluctuations in the de-
velopment of showers within the calorimeter, b is the contribution from electronic
noise in the readout chain, and c is the constant term containing any additional
behaviours which cause smearing of the measurement but do not depend on par-
ticle energy, e.g. detector non-uniformities or radiation damage. For ATLAS, the
sampling and constant terms dominate but the design target for each term differs
between detectors. The required resolution is σE/E = 10%/

√
E ⊕ 0.7% for the EM

calorimeter, σE/E = 50%/
√
E ⊕ 3% for the hadronic barrel and end-cap calorime-

ters, and σE/E = 100%/
√
E ⊕ 7% for the forward calorimeters.

2.2.5 Muon Spectrometer

The muons created in LHC collisions will typically pass straight through the calorime-
ter systems and are instead measured by a dedicated muon spectrometer built
around the air-core toroids that has a pT resolution of σpT /pT = 10% for muons
with pT = 1 TeV. The muon spectrometer (MS), shown in figure 2.12, provides
coverage up to |η| < 2.7 and uses four different types of detector to deliver both
precision measurements and online trigger capabilities (up to |η| < 2.4): thin gap
chambers (TGC), cathode strip chambers (CSC), resistive-plate chambers (RPC),
and monitored drift tubes (MDT). The MDT provide precision measurements of the
muon tracks in both the end-caps and barrel and the CSC are used in the central
region of the MS for accurate coordinate measurement at high rates.

High-speed tracking is also required to trigger on muons; this is provided by the
RPC and TGC. The RPC are arranged in three concentric cylinders within the
barrel, and the TGC are arranged as two large wheels in the end-caps. The RPC
and TGC also provide additional hits for offline track reconstruction.

2.2.6 The ATLAS Trigger System

Given the LHC’s typical collision rate of 40MHz and an average event data size
of 1.5Mb, it would be challenging to even read-out the detector systems for each
collision, let alone store them all. The ATLAS trigger system analyses the collisions
which take place in close-to-real-time and decides which events should be saved.
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Figure 2.12: The ATLAS muon spectrometer layout. Figure from [27].
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To operate within the experiment’s current technical and logistical constraints, the
total rate must be reduced to around 1kHz. The trigger has a two-stage architecture.
The L1 (Level 1) trigger uses dedicated hardware (primarily FPGAs and ASICs)
to execute simple filtering algorithms and reduce the rate from 40MHz to 100kHz.
Events which are accepted by the L1 trigger are then analysed by the software-based
High-Level Trigger (HLT) which further reduces the rate to 1kHz. Events which
pass the HLT are then stored for later reconstruction. A simplified schematic of
the trigger architecture is shown in figure 2.13. The original ATLAS trigger design
specified a three level trigger, where an additional software stage ran simplified
algorithms on restricted regions-of-interest before a final software stage performed
whole-event reconstruction. This was replaced with a single, more flexible, software
stage in which individual chains can decide at when (if ever) to access the full
detector readout or use more expensive reconstruction algorithms.

The L1 trigger decision is made by the central trigger processor (CTP), which
takes three inputs, the L1-Calo, L1-Muon, and L1Topo. The L1-Calo receives low-
granularity information from the EM and hadronic calorimeters and uses it to iden-
tify high-pT electrons, photons, taus, jets and Emiss

T candidates. The L1-Muon uses
the RPC and TGC to determine muon candidates. In addition to the CTP, these
candidates are also forwarded to the L1Topo processor. The L1Topo was introduced
for run-2 and performs simple topological selections on the L1 objects, e.g. finding
two electron candidates with a minimum separation in ∆R. All of this information
is passed to the CTP, and it makes a decision on each event based on a menu of L1
triggers. If an event is selected by any trigger from this menu then an L1-accept
bit is set, and the detector data is accessed, alongside identified Regions-of-Interest
(RoIs), for use in the HLT and (potentially) storage. The whole L1 decision takes
place within 2.5µs, of which 1.7µs is dedicated to reading out the data.

The HLT runs on a dedicated computer farm close to the ATLAS cavern. It receives
the RoIs and L1-accept bits from the L1 trigger and has access to the full detector
information, though for efficiency information is not read-out unless specifically
requested. The HLT is built around the concept of chains. Each chain is a sequence
of feature extraction (FEX) and hypothesis algorithms, where the FEX algorithms
retrieve/calculate additional information about the event and hypothesis algorithms
use that information to make a pass/fail decision. In the case of a failed hypothesis
algorithm, the chain will cease processing immediately. Otherwise, it will continue
until the final hypothesis algorithm is reached. The event is considered to have
passed the chain if this last hypothesis algorithm is passed. Chains are seeded by
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Figure 2.13: Architecture of the ATLAS trigger system during run-2. [19]

an L1 trigger and will only run when that trigger fired. The trigger menu is a set of
chains which are executed in parallel (with some caching of FEXs). The processing
continues until either all chains have failed or one passes. If a chain passes then the
event is accepted by the trigger, and the data is read-out to storage at tier-0. The
average time taken to process an event is 0.3s.

The trigger menu is chosen to maximise the possible physics studies on the data
while remaining within the 1kHz output limit and contains several hundred chains.
Chains can be designed to find specific physics objects, such as isolated electrons
with pT > 100 GeV, which may be useful for many physics analyses or a more
complex combination of objects targeting a particular final state. Triggers whose
rate would ordinarily be too high to store, such as low pT jet or lepton triggers, may
be prescaled. An otherwise passing chain with a prescale of 100 would be accepted
with a chance of 1

100 . Since the luminosity delivered by the LHC can vary (both
during and between runs), several menus are defined, containing different chains
and prescales, which can be switched between during data-taking.
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Chapter 3

The Standard Model and
Beyond

Figure 3.1: ‘‘Of these four forces, there’s one we don’t really understand.’’ ‘‘Is it the
weak force or the strong–’’, ‘‘It’s gravity.’’ xkcd: Fundamental Forces [31]

Even the most advanced physics experiment would be useless without some method
of interpreting its results. Mathematical models provide the lens through which
we can understand data, and conversely, data is the tool by which theories can
be validated or refuted. In this regard, the Standard Model of particle physics
is surely amongst the most successful theories in modern physics, as it provides
significant explanatory power for a (relatively) small number of parameters. As
shown in figures 3.2 and 3.3, the Standard Model’s predictions remain accurate
across many processes and orders of magnitude, and, with the exception of the
discovery of neutrino masses, searches for additional particles or interactions since
its completion in the 1980s have so far proven fruitless (despite significant effort).

This, however, is a thesis submitted on the topic of experimental particle physics
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oration at 7,8 and 13 TeV compared to theoretical predictions [37].

and as such the theoretical discussion will be brief. This chapter will summarise
the Standard Model: its particle content and interactions, electroweak symmetry
breaking, and its flaws, and present a small selection of proposed theories that
extend it. Unless otherwise referenced, the content in this chapter is derived from
[32–36].

3.1 Symmetries, Fields and Forces

The Standard Model is a relativistic quantum field theory that describes all currently
known particles, their properties and their interactions.1 These properties are en-
tirely encoded by the Standard Model Lagrangian, LSM , that contains kinematic
and interaction terms for each particle.

The construction of this Lagrangian has been guided by symmetry. Firstly as QFT is
1Except neutrinos, which are included but incorrectly taken to be massless. The Standard Model

can be trivially modified to include massive neutrinos, but as yet there is not enough experimental
evidence to decide which of several consistent modifications can be made.
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ADD GKK + g/q − ≥ 1 j Yes 3.2 n = 2 1604.077736.58 TeVMD

ADD non-resonant ℓℓ 2 e, µ − − 20.3 n = 3 HLZ 1407.24104.7 TeVMS

ADD QBH→ ℓq 1 e, µ 1 j − 20.3 n = 6 1311.20065.2 TeVMth

ADD QBH − 2 j − 15.7 n = 6 ATLAS-CONF-2016-0698.7 TeVMth

ADD BH high
∑
pT ≥ 1 e, µ ≥ 2 j − 3.2 n = 6, MD = 3 TeV, rot BH 1606.022658.2 TeVMth

ADD BH multijet − ≥ 3 j − 3.6 n = 6, MD = 3 TeV, rot BH 1512.025869.55 TeVMth

RS1 GKK → ℓℓ 2 e, µ − − 20.3 k/MPl = 0.1 1405.41232.68 TeVGKK mass

RS1 GKK → γγ 2 γ − − 3.2 k/MPl = 0.1 1606.038333.2 TeVGKK mass

Bulk RS GKK →WW → qqℓν 1 e, µ 1 J Yes 13.2 k/MPl = 1.0 ATLAS-CONF-2016-0621.24 TeVGKK mass

Bulk RS GKK → HH → bbbb − 4 b − 13.3 k/MPl = 1.0 ATLAS-CONF-2016-049360-860 GeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 20.3 BR = 0.925 1505.070182.2 TeVgKK mass
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SSM Z ′ → ℓℓ 2 e, µ − − 13.3 ATLAS-CONF-2016-0454.05 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 19.5 1502.071772.02 TeVZ′ mass
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HVT V ′ →WH/ZH model B multi-channel 3.2 gV = 3 1607.056212.31 TeVV′ mass
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LRSM W ′
R
→ tb 0 e, µ ≥ 1 b, 1 J − 20.3 1408.08861.76 TeVW′ mass

CI qqqq − 2 j − 15.7 ηLL = −1 ATLAS-CONF-2016-06919.9 TeVΛ

CI ℓℓqq 2 e, µ − − 3.2 ηLL = −1 1607.0366925.2 TeVΛ
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∗ mass
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Figure 3.3: A summary of the published ATLAS limits on a wide variety of BSM
(Beyond the Standard Model) processes as of August 2016 (excluding supersymme-
try) [38].
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relativistic, the Lagrangian must be invariant under Lorentz transformations. This
requirement forces fields in QFT to exist in representations of the Lorentz group
SO+(3, 1). The Lorentz representation of each field fixes the spin properties of its
associated particles, as shown in table 3.1. All particles in the Standard Model have
spin equal to 0, 1 or 1

2 but some extensions to the Standard Model also include
spin-2 particles such as the graviton.

Representation Transformation Spin Particles
Scalar Φ → Φ′ = Φ 0 H

Vector V µ → V ′µ = ΛµνV ν 1 W±, Z0, γ,G

Tensor Tµν → T ′µν = ΛµρΛνσT
ρσ 2 Graviton

Dirac Ψ → Ψ′ = exp
(
1
8θαβ

[
γα, γβ

])
Ψ 1

2 e, νe, u, d, . . .

Table 3.1: Commonly used representations of the Lorentz group and their corre-
sponding field transformations and spin. The θαβ parameter in the Dirac represen-
tation is simply a continuous parameter of the transformation such that the field is
left unchanged when all elements of θ are zero.

Particles with a spin of 1/2 are found in the Dirac representation and a unique
property of these fields is that they are actually a product of two representations,
which decouple if the field is massless. These representations correspond to the
chirality of the field (and hence the helicity in the case of a massless particle).

This Lorentz symmetry is a global symmetry of the Standard Model; its transfor-
mations do not depend on the space-time coordinates of any particle. However, it
was realised in the 1920s that requiring the Lagrangian to be invariant under a lo-
cal U(1) gauge symmetry generated a field equivalent to the photon field [39]. This
later became the basis for Feynman’s QED. Moving from U(1) to higher-dimensional
symmetries, a local SU(N) symmetry gives rise to a force propagated by N2 − 1

massless gauge bosons, as will be shown in §3.2.1.

The Standard Model of particle physics proposes that particle interactions are me-
diated by two forces, the strong force, which is obtained by imposing an SU(3)colour

symmetry, and the electro-weak force, which comes from an SU(2)L × U(1)Y sym-
metry broken by the Higgs mechanism to U(1)EM . The subscript L indicates that
that only left-handed chiral fermions transform non-trivially under the SU(2) group.
Hence the full local symmetry group of the Standard Model is:

SU(3)C × SU(2)L × U(1)Y →
Higgs

SU(3)C × U(1)EM (3.1)
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Fermion SO+(3, 1) U(1)Y SU(2)L SU(3)c

LL (12 , 0) −1 2 1

eR (0, 12) 2 1 1

QL (12 , 0)
1
3 2 3

uR (0, 12) −4
3 1 3̄

dR (0, 12)
2
3 1 3̄

Boson
B (12 ,

1
2) 1 1 1

W (12 ,
1
2) 0 3 1

G (12 ,
1
2) 0 1 8

h (0, 0) 0 2 1

Table 3.2: The particle content of the Standard Model and their group representa-
tions before spontaneous symmetry breaking. U(1)Y only possesses singlet repre-
sentations but as a particle’s coupling to its B boson may vary this is given instead.

The full particle content of the Standard Model can then be filled out as the vector
(gauge) bosons of the aforementioned symmetries and the scalar Higgs boson:

G,B,W, h (3.2)

plus 3 generations of chiral fermions:

LL =

νl,L
lL

 , lR, l = {e, µ, τ},

QL =

qdL
quL

 , qdR, q
u
R, qd = {d, s, b}, qu = {u, c, t}.

The left-handed fermions form a fundamental doublet representation under SU(2)L,
coupling the leptons and neutrinos, and the up and down quarks, whereas the right-
handed fermions exist in separate SU(2)L singlet states. Their representations under
each symmetry group are given in table 3.2. Note that the quarks also exist in a
colour triplet representation

q =


qr

qg

qb

 (3.3)
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3.2 Quantum Chromodynamics

3.2.1 The SU(3) Lagrangian

The strong force between quarks and gluons is described by Quantum Chromody-
namics (QCD), an SU(3) Yang-Mills theory. That SU(3) is the unique choice for de-
scribing QCD can be seen by considering several experimental results. Firstly, only
colour-singlet mesons and baryons are observed in nature, so there must be some
mechanism for disallowing the observation of coloured combinations of quarks. This
can be explained by the confinement property of SU(N) gauge theories as will be
discussed in §3.2.2 (in fact, only SU(N) theories possess this property2). Secondly,
some measurements depend strongly on the number of quark colours, for example,
ee → hadrons production should (at tree level) be proportional to ee → µµ with
additional multiplicative factors for the number of colours, NC , and flavours.

σ(ee→ hadrons)

σ(ee→ µµ)
≈ NC

∑
f

Q2
f (3.4)

where f are the quark flavours and Qf is the quark’s electric charge.

To match experimental data NC must be equal to 3 and the only SU(N) theories
with triplet representations are SU(2) and SU(3). The SU(2) triplet representation
is real so the quarks and anti-quarks would have an equal colour charge, however,
the observation of colourless qq̄ mesons but not qq or q̄q̄ ones suggests that this
cannot be the case. Quarks must exist in a complex representation. Hence, SU(3)

is the only possible Yang-Mills theory consistent with experiment.

While the mechanics of QCD calculations are beyond the scope of this thesis, it is
still instructive to derive its mathematical structure and some general properties of
Yang-Mills theories.

Consider the free Lagrangian of an SU(3) colour triplet

Ψ =


ψr

ψg

ψb

 (3.5)

2This includes the unbroken electroweak group SU(2)L but following symmetry breaking con-
finement no longer occurs. This can be seen intuitively by considering that QCD confinement can
be attributed to the existence of massless and self-interacting gluons. While the electroweak W
and Z bosons are self-interacting, their large masses prevent confining behaviour.
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where Ψ consists of three mass-degenerate quark fields each with a ‘‘colour’’ charge
labelled r, g, b (or r̄, ḡ, b̄). Lfree would be

Lfree = Ψ̄iγµ∂µΨ−mΨ̄Ψ. (3.6)

This is invariant under the global SU(3) transformation Ψ → Ψ′ = UΨ.

U = e−i
λa
2
θa (3.7)

where λa are the Gell-Mann matrices, the generators of SU(3), and θa are the
transformation parameters. If Ψ transforms under a local gauge transformation (ie.
θ = θ(x)) then Lfree is no longer invariant and the definition of ∂µΨ no longer has
a geometric interpretation

∂µΨ = lim
ε→0

1

ε
[Ψ(x+ εnµ)−Ψ(x)] (3.8)

→ [U(x+ εnµ)Ψ(x+ εnµ)− U(x)Ψ(x)] 6= U(x)∂µΨ.

Sensible behaviour of the derivative operator is preserved by replacing the derivative
∂µ with the covariant derivative

Dµ = ∂µ + igsλαG
α
µ (3.9)

where Gαµ are the gluon fields, and gs is the strong coupling constant. The gluon
fields couple the local symmetries at each point in space-time and restore SU(3)

symmetry under both local and global transformations. In fact, invariance of any
local SU(N) symmetry requires the existence of such a vector field for each of its
generators. The gluon fields make it possible to construct one final gauge invariant
term. First, define the field strength tensor F aµν

F aµν = ∂µG
a
ν − ∂νG

a
µ − gsf

a
bcG

b
µG

c
ν (3.10)

F aµν → F ′a
µν = U(x)FµνU

−1(x) (3.11)

and note that F a†µνFµνa is a singlet under SU(3). This is the only additional term
we can add to the Lagrangian which preserves the SU(3) symmetry, CP symmetry3

and is of dim ≤ 4. This term is added to give the full Yang-Mills Lagrangian for an
3There is one additional allowed term under SU(3) which is proportional to θεµνρσF a

µνF
b
ρσ and

violates CP symmetry, but θ has been found to be � 1. The ‘‘unnaturalness’’ of this is known as
the strong CP problem. There have been several proposed solutions, of which the most well known
is the axion.
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SU(3) symmetry

LSU(3) = Ψ̄iγµDµΨ−mΨ̄Ψ− 1

4g2s
F a†µνF

µν
a (3.12)

Nothing (aside from the labelling) in this derivation is unique to SU(3) and two
general properties of this Lagrangian should be stressed. Firstly, the expanded field
strength term includes 3 and 4-field self-couplings ((∂µGaν)†G

µ
bG

ν
c and (GaµG

b
ν)

†GµcGνd
respectively) so the gauge fields of any non-abelian4 symmetry are self-interacting.
Secondly, there is no possible mass term for these gauge fields.

Keeping these facts in mind, it is now possible to introduce the full QCD Lagrangian,
which includes all 6 flavours of quark.

LQCD = − 1

4g2s
F a†µνF

µν
a +

∑
f∈flavours

q̄f,α(iγµDµ)αβqf,β (3.13)

Where α, β ∈ {1, 2, 3} are the colour indices. Note that the mass terms have been
dropped; while these are perfectly valid under QCD, due to the chiral nature of the
fields they break electroweak symmetry as will be shown in §3.3.1.

3.2.2 Confinement and Asymptotic Freedom

It was highlighted in the introduction to this section that QCD possesses the pe-
culiar property of confinement, whereby the direct observation of colour-charged
particles is not possible. This is understood as the effective strength of the strong
force between two colour-charged particles growing with separation. Eventually, the
potential energy between them is so great that it is energetically favourable to cre-
ate a new particle pair. Unfortunately, this observation leaves further theoretical
predictions in a difficult situation. Since the coupling is large (αs ≈ O(1)), using
a perturbative approach is not viable. Some calculations can be made using the
lattice approach, but this is computationally expensive.

However, there is a second experimental observation that seemingly contradicts
this view. In the interaction of high-energy hadrons, quarks seem to behave as
free particles and their interactions can be predicted extremely accurately with a
perturbative parton model. In the 1970s theorists realised that not only could

4Defining Gµ = λaG
a
µ shines some light on this property. Under this definition Fµν becomes

Fµν = ∂µGν + ∂νGµ + igs[Gµ,Gν ]. Gauge field self-coupling requires the final term and this is
obviously zero for any abelian symmetry group (such as the U(1) of QED) and non-zero for any
non-abelian symmetry.
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q q

Figure 3.4: The 1-loop quark propagator.

perturbative calculations prove accurate at higher-energies, they also provided a
rationale for the change in coupling strength. It is now known that as the energy
of interaction increases (and the length scale becomes very short) the apparent
QCD coupling decreases and approaches a free theory, a property called Asymptotic
Freedom. The point at which the theory becomes accessible to perturbative methods,
i.e. g ∼ 1, is known as the scale of QCD, ΛQCD. Its exact value depends on the
renormalisation scheme in which one works, but in the modified minimal subtraction
scheme ΛMS

QCD = 217± 24 MeV.

In fact, the transition from asymptotic freedom to confinement follows directly from
the QCD Feynman rules calculated in the perturbative regime. Consider the NLO
contribution to the quark self-coupling, shown in figure 3.4; the momentum of the
gluon propagator is unconstrained by the incoming and outgoing quark momentum
leading to a logarithmic term ∫

d4k

k4
∝ log k (3.14)

that blows up as k become large. This is a ubiquitous occurrence in quantum field
theories, with a well-established method for its solution, renormalisation. First,
some method is used to regularise the integral, either by introducing a momentum
cutoff Λ or shifting the integral from 4 → 4 + ε dimensions where the divergent
component is controlled by ε. These methods introduce new terms proportional to

αs log

(
Λ

µ

)
(3.15)

(and higher powers thereof) where µ is an arbitrary mass scale. Provided there
are only a finite number of such integrals (a requirement fulfilled by SU(N) theories
whose Lagrangian has mass-dimension equal to 4) an equal number of counter-terms
can be added to the Lagrangian to remove these divergences. If this is not the case,
as will be seen for field theories of gravity in §3.4.1, then an infinite number of
counter-terms are required, and the theory is no longer predictive. In any physical
result, the dependence on Λ must cancel, but the dependence on µ remains, typically
as the ratio Q

µ where Q is the energy scale of the process. These terms are absorbed
into the bare coupling constant that becomes a scale-dependent physical coupling.
The equation describing this change is known as the β function.
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The scale-dependent behaviour of the QCD physical coupling is governed by the
QCD β function

β(αs) = µ2
∂αs
∂µ2

= −b0α2
s + b1α

3
s +O(α4

s), (3.16)

b0 =
33− 2nf

12π
, b1 =

153− 19nf
24π2

where nf is the number of flavours of quark. The negative sign in front of the α2
s term

gives rise to the confining behaviour at low energy. The removal of all infinities from
the theory also requires that the quark masses become similarly scale-dependent.

Evaluating (3.16) (to O(α2
s)) at the renormalisation scale and integrating gives

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)b0 log(Q2/µ2)
(3.17)

which clearly decreases as Q increases. In practice, µ is often chosen to be ΛQCD.
The predicted running behaviour of all three forces is shown in figure 3.5, the mea-
sured behaviour of αs is shown in figure 3.6.

One note of caution must be sounded about this argument for the existence of
asymptotic freedom and confinement from a perturbative approach. While per-
turbation theory does predict a region where αs becomes strong, the accuracy of
perturbative methods break down as this becomes the case, and as such, it is not
necessarily accurate to extrapolate the behaviour at large αs/low-energy from the
perturbative/high-energy region.

3.2.3 Deep Inelastic Scattering

Confinement is certainly an interesting phenomenological feature of the strong force,
but it is quite inconvenient for collider experiments. Obtaining lone quarks to collide
is somewhat challenging. In practice, the LHC accelerates and collides protons and
this introduces an additional level of complexity to theoretical predictions. It is not
enough to be able to calculate Feynman diagrams for quarks, the structure of the
two colliding protons must also be taken into account. Unfortunately, the binding
of quarks within protons is firmly within the non-perturbative realm of QCD, so a
first principles approach is impractical.

For a high-energy collision, we may assume the quarks and gluons within the col-
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log of the interaction scale µ at one loop level. The values given are in terms
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behaviour [41].
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liding protons would be asymptotically free. Therefore we can split the theoretical
predictions into two pieces, a universal proton structure function, describing the
distribution of quarks and gluons within the proton, and the perturbative inter-
action process.5The first can be measured independently and then assumed to be
valid for all protons. Deep inelastic scattering makes these measurements through
high-energy leptonic collisions with either moving or static hadronic targets.

In the language of deep inelastic scattering, quarks and gluons are referred to as
partons and each parton carries a fraction x of the proton’s total momentum. The
probability of interaction with a parton of momentum fraction x is specified for each
type of parton (g, u, d, s, c+antiparticles) by a parton distribution function (PDF)
f(x,Q2), where Q2 is the momentum scale of the interaction. The cross-section
of an interaction between two protons is then given in terms of the hard process
σ̂(x1, x2, Q

2) and these PDFs.

σ =

∫
x1

dx1f(x1, Q
2)

∫
x2

dx2f(x2, Q
2)σ̂(x1, x2, Q

2) (3.18)

Note that this equation is not necessarily IR-safe. The IR-complete equation fac-
torises out the low x contribution and introduces a dependence on the factorization
scale in a fashion similar to renormalisation but this is beyond the scope of this
discussion.

Within the proton (or similar bound state) the PDFs are bound by a set of relations
such that overall the bound state acts as having the expected flavour numbers, e.g.
for the proton:

∫ 1

0
u(x,Q2)− ū(x,Q2)dx = 2,

∫ 1

0
d(x,Q2)− d̄(x,Q2)dx = 1 (3.19)∫ 1

0
s(x,Q2)− s̄(x,Q2)dx = 0,

∫ 1

0
c(x,Q2)− c̄(x,Q2)dx = 0∫ 1

0
g(x,Q2)− ḡ(x,Q2)dx = 0.

Examples of the shape of these PDFs is given for the CTEQ14 PDF set in figure
3.7.

5A similar argument can be made to factorise the hard interaction producing a quark or gluon
and its subsequent fragmentation and hadronisation. This will be discussed in more detail in §4
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Figure 3.7: PDFs for the u, ū, d, d̄, s, s̄ quarks and gluon taken from the CT14 PDF
set. Left is at Q2 = 2 GeV and right at Q2 = 100 GeV [44].

3.3 Electroweak Theory

The second piece of the Standard Model is the electroweak theory, which brings
together the weak and electromagnetic forces. To motivate the following section,
it is worth (briefly) examining the history of its creation. The weak force was
first posited in some form in 1933 as the Fermi theory of beta decay, a simple
4-fermion contact interaction involving the previously unobserved neutrino, as an
explanation for the continuous energy spectrum observed in beta decay (see figure
3.10), though the neutrino itself was not observed until 1956 [45]. At a similar
time, QED was being developed and tested extensively, and it was found to give
accurate predictions for previously unexplained phenomena such as the correction
to the electron’s magnetic moment. This lead to a great effort to explain the weak
force as a similar quantum field theory and later to unify the two forces; a task
made more complex by the evidence emerging in the 1950s that indicated the weak
interaction had the strange property of violating parity symmetry.

There was an additional stumbling block in the development of a full quantum field
theory of the weak interaction. From the lack of observation of its gauge boson(s) the
interaction must be short-ranged. This required the gauge boson(s) to be massive,
but any suitable mass term would break the gauge symmetry. This impasse was
eventually resolved by the discovery that spontaneous symmetry breaking provided a
mechanism to give mass to the gauge bosons and led to the realisation of electroweak
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theory in 1969, swiftly followed by proof of its renormalisability in 1971.

3.3.1 Weak Interactions and Chirality

The electroweak Lagrangian is formulated as the product of two symmetries, SU(2)L

which acts solely on the left-handed fermions (and right-handed antifermions), and
the U(1)Y symmetry. Their charges are labelled weak isospin (T ) and hypercharge
(Y ) respectively. As the weak interaction is maximally parity violating, only left-
handed fermions are charged under it. However, parity is preserved under U(1)

interactions which affect both left and right-handed fermions equally.

With these two symmetries we can write down the SU(2)L × U(1)Y Lagrangian by
a similar method to §3.2.1.

LSU(2)×U(1) =
∑

ψf∈fermions
ψ̄f (∂µ −

ig

2
τ iW i

µPL − ig′

2
yfBµ)ψf (3.20)

− 1

4
BµνBνµ −

1

4
Wµν
i W i

νµ;

Bµν = ∂µBν − ∂νBµ, W i
µν = ∂µWν − ∂νWµ − igεijkW j

µW
k
ν

Here Bµ and W i
µ, i ∈ 1, 2, 3 are the vector fields associated with the U(1)Y and

SU(2)L symmetries respectively and τ i are the generators of the SU(2) group. There
are two other new terms in this equation, the PL = 1

2(1− γ5) operator projects the
left-chiral field from the full Dirac spinor. The yf term is the hypercharge for each
fermion. In non-abelian SU(N) theories, the coupling between the gauge and matter
fields is fixed by the chosen representation of the fermions under that symmetry. For
abelian symmetries this is not so; the coupling can be chosen freely for each field.

Aside from the gauge boson masses, the other obvious missing piece of this La-
grangian is a mass term for the fermions. While we were free to add this under
SU(3)c the chiral nature of SU(2)L symmetry prohibits such terms.

m(ψ̄LψR + ψ̄RψL)
SU(2)L−−−−→ m(U−1ψ̄LψR + Uψ̄RψL). (3.21)

Thankfully, the spontaneous symmetry breaking procedure will provide a solution
for this as well.
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(a) µ2 > 0 (b) µ2 < 0

Figure 3.8: The parabolic and ‘‘Mexican hat’’ potentials corresponding to V (φ) =
µ2φ†φ + λ

4 (φ
†φ)2. µ2 > 0 (a) has a unique minimum at v = 0 but for µ2 < 0 (b) a

continuum of degenerate minima lie along a ring at v = 2µ2

λ .

3.3.2 Spontaneous Symmetry Breaking

So far only explicit symmetries, where the ground state preserves the symmetry of
the Lagrangian, have been examined. However, it is possible to introduce a new
scalar field with a potential chosen such that the ground state does not preserve
this symmetry. For example, if a new complex scalar field φ has the potential
V = −µ2φ†φ + λ

4 (φ
†φ)2 then there is a degenerate spectrum of possible ground

states, as shown in figure 3.8.

By introducing symmetry breaking in this way, φ can be expanded around a chosen
minimum v as φ = (v + h(x)) exp [iθ(x)/2] where h(x) is the Higgs field associated
with radial perturbations away from the vacuum minima and θ(x) are the Gold-
stone bosons associated with angular perturbations between different minimas. By
choosing an appropriate gauge, the Goldstone bosons can be ‘‘eaten’’ by the existing
gauge bosons. This provides the gauge bosons with an additional degree of freedom
and allows them to acquire a mass without breaking the gauge symmetry of the
Lagrangian.

In full electroweak theory, we wish to break the SU(2)L × U(1)Y symmetry to
U(1)EM so we require a complex SU(2)L doublet of scalar fields. By choosing

φ =

φ+
φ0

 =
1√
2

 0

v +H(x)

 (3.22)
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(with v and H real) all 4 generators are broken but the linear combination Y
2 + τ3

is preserved. The labelling of the doublet fields as (0,+) is based on their future
charge under this combination. By setting φ0 = v+H(x) , H(x) is uncharged. The
ungauged Higgs Lagrangian is given by

LHiggs = (Dµφ)
†(Dµφ) + µ2φ†φ− λ

4
(φ†φ)2 (3.23)

Dµ =

(
∂µ − igτ i

2
Wµ
i − ig′

2
Bµ

)
.

Inserting (3.22) gives

Dµφ =
1√
2

∂µI− ig

2

W 3
µ + g′

g Bµ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ W 3
µ − g′

g Bµ

 0

v +H(x)


which makes explicit the observed mixing of the W i and B fields. Expanding (3.23)
and only keeping the kinetic and mass terms we find

LHiggs =
1

2
∂µH∂

µH − µ2

2
H2 (3.24)

+
g2v2

8
(W 1

µW
µ
1 +W 2

µW
µ
2 ) (3.25)

+
g2v2

8
(W 3

µ − g′

g
Bµ)(W

µ
3 − g′

g
Bµ) (3.26)

ie. we have a scalar boson with mass µ/
√
2 and the W 1,W 2 gauge bosons have

acquired a mass of gv/2
√
2. The W 3 and B fields have mixed, leaving what appears

to be a mass term for the combined field (W 3
µ − g′

g Bµ) but the combination (W 3
µ +

g′

g Bµ) remains massless. If we introduce the electroweak mixing angle, θW , then we
can define two new fields:

Zµ = cos θWW
µ
3 − sin θWB

µ (3.27)

Aµ = sin θWW
µ
3 + cos θWB

µ (3.28)

Here, the trigonometric relations can also be expressed in terms of the relative
strength of the electromagnetic and weak coupling constants:

cos θW =
g

(g2 + g′2)1/2
, sin θW =

g′

(g2 + g′2)1/2
(3.29)
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With this redefinition, the familiar electromagnetic force emerges, propagated by
the massless photon A alongside the now massive W+,W−, and Z0 bosons. A key
experimental test of spontaneous symmetry breaking is that it predicts a precise
relationship between the masses of the W and Z bosons

MZ =
MW

cos θW
, (3.30)

which can be verified against independent measurements of θW such as from neutrino
experiments [46].

3.3.3 Fermion Masses

Since (3.21) forbids traditional mass terms for chiral fermions under SU(2)L, it
falls to the Higgs mechanism to provide their masses. Consider replacing the mass
parameter in (3.21) by a Higgs doublet. The transformation of the doublet should
cancel that of the left-handed fermion and preserve SU(2)L symmetry. Assuming a
lepton l with (yukawa) coupling yl, then after we gauge the doublet as in (3.22) we
are left with a Higgs interaction term and a mass term for the bottom component
of the ψL doublet. For ψTL = ( νL lL )

yf (ψ̄LφlR + l̄Rφ
†ψL) →

ylv√
2
(l̄LlR + l̄RlL) +

ylH√
2
(l̄LlR + l̄RlL) (3.31)

By rewriting ml = ylv/
√
2 this becomes

ml(l̄LlR + l̄RlL) +
mlh

v
(l̄LlR + l̄RlL). (3.32)

The top component of the ψL doublet can also become massive by coupling with
the conjugate Higgs field

φC =

 φ0∗

−φ−

 =
1√
2

v +H

0

 . (3.33)

Thus, the Higgs field provides a mechanism for fermions to gain mass and couples
to them with a strength proportional to their mass. Unfortunately, when more than
one generation of fermion exists a further complication emerges. We are generally
required to allow any terms compatible with the symmetry requirements of our
Lagrangian, and it is possible to generalise these mass terms further. For 3 gener-
ations of chiral fermions (for now labelled ui, di, i ∈ {1, 2, 3}) the Yukawa sector of
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the Lagrangian is given by

LY ukawa =
3∑
i=1

3∑
j=1

[
ydijψ̄

i
Lφd

j
R + yuij ū

i
Rφ

†ψjL

]
+ h.c. (3.34)

Collecting the ydij , yuij parameters into two 3 × 3 matrices Mu,Md the mass terms
become

(
d̄1 d̄2 d̄3

)
R
Md


d1

d2

d3


L

+
(
ū1 ū2 ū3

)
R
Mu


u1

u2

u3


L

(3.35)

In the Standard Model, the quark (which this notation is obviously alluding to)
and lepton mass matrices can be diagonalised, rotating the ψ vectors into consistent
mass eigenstates

u1

u2

u3


L,R

= UL,R


u

c

t


L,R

,


d1

d2

d3


L,R

= DL,R


d

s

b


L,R

(3.36)

U−1
R MuUL =


mu 0 0

0 mc 0

0 0 mt

 , D−1
R MdDL =


md 0 0

0 ms 0

0 0 mb

 . (3.37)

For quarks, a consequence of this diagonalisation is that it mixes the weak eigenstates
and allows for flavour changing interactions within the electroweak sector with a
current proportional to

g

2

(
ū c̄ t̄

)
L
γµVCKMW

+
µ


d

s

b


R

+ h.c. (3.38)

where VCKM is the Cabibo-Kobayashi-Maskawa matrix which governs the strength
of the flavour changing interactions [47].

|VCKM | = |U †
LDL| =


|Vud| |Vcd| |Vtd|

|Vus| |Vcs| |Vts|

|Vub| |Vcb| |Vtb|

 =


0.974 0.225 0.004

0.225 0.973 0.041

0.009 0.041 0.999

 . (3.39)
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Figure 3.9: Current best measurements of W mass including the global electroweak
fit [48].

In the lepton sector of the Standard Model this rotation can be performed without
introducing weak mixing due to the lack of neutrino masses. If Dirac neutrino masses
are added, an identical procedure can be used to diagonalise the lepton masses at
the expense of introducing neutrino oscillations. However, if the neutrinos are in
fact Majorana fields, then a different procedure must be used. In either case, the
result is a second mixing matrix (called the Pontecorvo-Maki-Nakagawa-Sakata or
PMNS matrix) which shall not be explored further here.

3.3.4 The W and Z Bosons

Since a large part of this thesis will involve theW and Z bosons it is worth exploring
their properties in more depth. The W and Z are spin-1 (vector) gauge bosons with
masses of 80.4 GeV (see figure 3.9) and 91.2 GeV respectively [47]. Both W and
Z decay to the full spectrum of fermions, with the sole exception of the top quark.
Their branching ratios are given in table 3.3.

The W couples equally to all generations of leptons but for quarks BR(W → ij) ∝
(3|Vij |)2 (where i ∈ {u, c}, j ∈ {d, s, b}). As a result, decays to non-diagonal quark
combinations are highly suppressed, leaving W → ud, cs as the primary hadronic
decay modes. The Z decays primarily to fermion-antifermion pairs; unlike the W it
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W Decay Branching Ratio
eνe 0.1071± 0.0016

µνe 0.1063± 0.0015

τνe 0.1138± 0.0021

Hadrons 0.6741± 0.0025

(a)

Z Decay Branching Ratio
Invisible 0.2000± 0.0006

ēe 0.0363± 0.00004

µ̄µ 0.0366± 0.00007

τ̄ τ 0.0366± 0.00008

Up-type quarks 0.116± 0.006

Down-type quarks 0.156± 0.004

(b)

Table 3.3: Primary decay channels for the W (a) and Z (b) bosons [47].

preserves flavour quantum numbers. The largest decay mode is to hadrons with an
enhanced branching ratio to down-type rather than up-type quarks.

1
3 ×BR(Z → d̄d+ s̄s+ b̄b)

1
2 ×BR(Z → ūu+ c̄c)

=
15.6

11.6
= 1.34 (3.40)

Single and pair produced W/Z bosons have been observed at the LHC in run-2 and
measurements of σtot × BR have been made for inclusive W± and Z production
[49–52]. The cross-section measurements made so far have most commonly been in
the (relatively) less dominant lepton decay modes. Observing hadronic boson decay
is typically more challenging due to the large multijet background. However, it was
realised that hadronic decays were a useful tool in searches for high-mass particles
[53] as the distinctive decay topology of boostedW/Zs could be used to discriminate
against the multijet background. This has since become a common tool for exotic
searches within ATLAS and CMS [54–57].

One additional property of the W/Z bosons is that, as a result of absorbing the
extra degree-of-freedom from the Goldstone bosons, the W and Z bosons may have
both longitudinal and transverse polarisations. These states are primarily observed
in colliders as differences in the angular distributions of the boson’s decay products.
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As the LHC is a proton-proton collider, the produced W± bosons are typically left-
handed [58] leading to an asymmetry in the W± → l±ν energy distributions. Boson
polarisation is also a useful tool for discriminating between new models of physics
which include new couplings to the W and Z.

3.4 Beyond the Standard Model

Despite the rosy picture painted in the introduction to this chapter, we know that the
Standard Model is not perfect. As an effective theory of the strong and electroweak
forces, it has proven highly reliable, but even the obvious question of ‘‘can we include
gravity’’ leads one down a road full of un-renormalizable infinities. There are also
other outstanding issues in the theory including:

• What, if anything, cancels the large top contribution to the Higgs mass (the
hierarchy problem)?

• Are there enough CP violating interactions to generate the observed matter-
antimatter asymmetry?

• By what means do neutrino’s gain mass?

• Why are there exactly three generations of fermions?

One of the primary goals of the LHC is to try and answer these questions (and
others). In preparation for §7 we will give a brief overview of two ‘‘beyond the
Standard Model’’ (BSM) theories. The Randall-Sundrum (RS) graviton and the
Heavy Vector Triplet (HVT) models.

3.4.1 Extra Dimensions and the RS Graviton

A naive attempt to include gravity within the Standard Model leads to a non-
renormalizable theory, i.e. one in which there are an infinite number of infinities
which need to be cancelled. To (non-rigorously) see why this might be the case,
consider the classical Einstein-Hilbert action

SEH =
1

2κ

∫
d4xR

√
−g (3.41)

where κ is Einstein’s constant, g = det(gµν) and R is the Ricci scalar (or Curvature
scalar). In a full quantum theory of gravity, we would expect this to appear within
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Figure 3.10: Beta decay in Fermi theory where we ‘‘integrate out’’ theW propagator
from full electroweak theory into a (non-renormalisable) contact interaction when
q � mW .

the Lagrangian similarly to the Maxwell action in QED with κ2 playing the role of
the coupling constant. However, in contrast to the dimensionless Standard Model
couplings, [R] = [m2] and g is dimensionless so [κ] = [m2]. Recall the definition of
the Ricci scalar

R = 2gab
(
Γca[b,c] + Γda[bΓ

c
c]d

)
(3.42)

where Γabc =
1
2(∂bg

a
c + ∂agbc − ∂cg

a
b ) are the Christoffel symbols. If we expand eqn.

(3.41) in terms of gµν = ηµν + hµν , where hµν is a small deviation that becomes the
graviton field, then it has the index-suppressed form

S =
1

2κ2

∫
d4x(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . . ) (3.43)

Obviously, this means that pieces such as the triple graviton coupling h∂h∂h/κ2

do not have mass-dimension 4, leading to non-renormalisable terms [59]. Hence,
most quantum field theories of gravity are written as effective field theories, whose
divergences are suppressed at experimentally accessible scales and are treated as the
low-energy limit of some unknown theory. This approach is similar to the modern
understanding of the Fermi theory of the weak interaction in §3.3 (figure 3.10). This
method gives reasonable results provided that the energy scale of the interaction is
much smaller than the mass scale of the high-energy theory.

The Randall-Sundrum graviton model [60] approaches a theory of quantum gravity
in a less straight-forward fashion but in doing so they not only find an effective
theory of gravity but also solve the hierarchy problem. Building on the idea behind
the Kaluza-Klein model, they posit that the universe is in fact 5-dimensional, with
the 5th taking for the form of an S1/Z2 orbifold (where S1 is a circle). Further, they
assume that at each stationary point on this orbifold (x4 = 0, L = πR) there is a
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3+1-dimensional brane. The metric for such a setup is given by

ds2 = e−2k|x4|ηµνdx
µdxν + d(x4)

2 (3.44)

A notable feature of this metric is that if we confine the Standard Model particles
to the brane at x4 = L then there is a suppression of the Higgs vacuum expectation
value (v.e.v.) of ṽ = e−2kLv. For chosen values of the curvature factor k and brane
separation L this naturally solves the hierarchy problem (and equivalently, that of
the scale difference between gravity and the other forces). The suppression factor
leaves the x4 = 0 brane at the Planck scale but reduces the x4 = L brane to the
TeV scale. k and L are free parameters which can be chosen together such that
kL ≈ 1016. For convenience, k is usually written as k̃ = kMPlanck, where MPlanck

is the reduced Planck mass, or simply given as k/Mplanck.

The experimental signature of such a model is a single massless spin-2 graviton and
an infinite tower of massive excited gravitons beginning at the TeV scale. The mass
of the lowest excited mode is

mGr = 3.83k̃e−kLMPlanck ∼ TeV (3.45)

The best current limits on such a particle come from the search for G→ γγ decays
at CMS that exclude gravitons with a mass of 1.95 TeV (4.45 TeV) for k̃ = 0.01(0.2)

[61].

If the Standard Model particles are allowed to propagate away from the brane (in
the bulk), then these limits, alongside those from FCNC, can be avoided [62]. In
this ‘‘bulk RS’’ model, the fermions are localised between the branes based on their
observed masses, the 3rd generation close to the Planck brane and the 1st and 2nd
generation fermions close to the TeV brane. Because of this, the graviton’s decays
to the light fermions are highly suppressed and its couplings to the Higgs, W and Z
become large. This makes searches for exotic resonances decaying to vector bosons
ideal channels to place limits on this process. The current best limits on the bulk
RS model come from G → WW → qqlν decays at ATLAS, where mG > 1.75 GeV
is found (for k̃ = 1.0) [63].

As an aside, there is a second, related, model referred to as RS2 [64] (the former
being called RS1 in comparison), in which all particles, including the graviton, are
localised around the Planck brane and the other is taken to infinity. While this
loses the appealing feature of resolving the hierarchy problem, it is still an effective
low-energy effective theory of gravity (assumed to be embedded within a full string
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theory).

3.4.2 The Heavy Vector Triplet Effective Theory

Most experimental searches are primarily sensitive to the mass of a new resonance
and its decay modes, rather than their spin or polarisation. The Heavy Vector
Triplet (HVT) model [65] (and similar phenomenological models) exploits this by
providing a simplified parameter set which on which limits can be placed. These phe-
nomenological limits can then be reinterpreted in the context of more theoretically
motivated models. The HVT model assumes an additional SU(2)L triplet of vector
bosons, V +,−,0, with zero hypercharge. These mix with the existing (pre-EWSB)
W triplet and couple to the Standard Model particles in a similar fashion. Post
symmetry-breaking, we are left with the Standard Model and three additional mas-
sive bosons. The model contains the full set of CP-preserving dimension-4 operators
and has nine free parameters, summarised in table 3.4.

Parameter Name
gV Coupling strength
mV Bare mass of the boson triplet
cH Higgs coupling
cl Lepton coupling
cq Quark coupling (1st and 2nd generation only)
c3 3rd generation quark coupling

cV V V Trilinear self-coupling
cV V HH Quadrilinear coupling to Higgs
cV VW Trilinear coupling to (pre-EWSB) weak gauge fields

Table 3.4: Free parameters of the HVT model.

The coupling strength may vary between ∼ 1 − 4π and each individual coupling is
typically of order 1, except for cH , which may vary more strongly than the rest.
The case where cH ≈ 1 is known as the strong-coupling scenario and cH � 1 as the
weak-coupling scenario. cH is particularly important as it also controls the coupling
to the Goldstone bosons and hence the branching ratio to the W±, Z bosons post-
symmetry breaking (the cV VW /cV V HH terms contribute minimally to searches as
they require the creation of two of the new heavy bosons).

The masses of the new bosons are constrained by the gauge structure of the theory
and the experimental measurements of the W,Z masses. Taking M±,0 to be the
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masses of the new bosons post symmetry-breaking we have the two relations

mW,Z

mV
∼
mW,Z

M±,0
. 0.1,

M±
M0

= | cos θW |mZ

mW
= 1. (3.46)

As the given parameters enter the Lagrangian pre-symmetry-breaking it is not im-
mediately obvious how to relate these to experimentally measurable quantities, in
practice experimental searches have set limits on two explicit models referred to as
Model A and Model B that relate these parameters to measurable coupling strengths.

In Model A, an SU(2)1 × SU(2)2 × U(1)Y gauge group is broken to the Standard
Model SU(2)L×U(1)Y by an additional doublet of scalar fields, with representation
(2, 1)1/2 under the extended gauge group and v.e.v f . Working in a basis in which
this symmetry breaking has occurred, it is found that:

gV = g2, g2W =
1

g21
+

1

g22
, mV =

gV f√
g2V − g2

, (3.47)

cH =
−g2

gV

√
g2V − g2

, cF =
−gV√
g2V − g2

.

The vector boson in model A primarly decay to gluons with approximately 2%
coupling to each of the Standard Model vector bosons and fermions.

Model B describes the lightest vector resonances found in a minimal composite Higgs
model where the observed Higgs is a pseudo-Nambu-Goldstone boson emerging from
an unknown strong force. In this scenario, a single spin-1 field ρ is introduced,
alongside the free parameter f that controls its coupling to the light Higgs. Following
calculation of its Lagrangian the terms can be matched with the parameters of the
HVT model and in this case:

gV = g2, g2 =
1

g21
+

1

g22
, mV = mρ, (3.48)

cH =
gV√
g2V − g2

[
g2

g2V
−

m2
V

g2V f
2

]
, cF =

gV√
g2V − g2

.

The Model B heavy vector triplet mainly decays to the Standard Model Higgs and
vector bosons, as its decays to fermions are heavily suppressed.

Experimentally, limits are either set on these models directly or set on the generic
terms g2cF /gV and gV cH and then reinterpreted in terms of the models shown above.
Examples of both are shown in figure 3.11.
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Figure 3.11: Example limits set on the HVT model. (a) shows the limits on Model
A for a fixed gV by run-2 diboson searches at ATLAS [38] and (b) shows limits on
the g2cF /gV , gV cH parameter space derived from a run-1 search for WH → `νbb
resonances at CMS [15].
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Chapter 4

From Quarks to Jets

It was established in §3.2.2 that observing a bare quark is somewhat tricky. In
fact, this is only the beginning of a physicist’s problems, as shall be shown in §4.1.
Even in the weakly-bound UV regime, ambiguities in quark final states due to the
emission of soft or collinear gluons make the bare quark calculations problematic.
The solution to this is to define a new type of physical observable - jets - which
are both theoretically well-defined and experimentally accessible. This chapter will
(briefly) review some of the theoretical aspects of quark emissions, including parton
showers and hadronisation (based primarily on [66]), alongside jet construction and
substructure. As much as is possible, this chapter aims to present a view of jets
that is independent of the nature of their constituents. The algorithms and tools
presented are regularly applied to jets constructed from calorimeter deposits, tracks,
truth particles, and more. An in-depth discussion of jet construction in ATLAS
analyses is left for §5.

4.1 Observing a Parton

The principle of colour confinement was discussed briefly in §3.2.2, but the physical
consequences were not explored. In practice, confinement means that the only direct
observations of quarks or gluons we can make involve colour-singlet bound states
- hadrons. It is natural, therefore, to ask the question: what is the relationship
between a parton which appears in the outgoing leg of a Feynman diagram and the
hadrons observed?

The answer (as used in the simulation of this behaviour for LHC collisions) comes
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from a similar factorisation argument as was used in §3.2.3 and is to treat the pro-
duction, evolution and hadronisation of quark and gluon final states as independent
processes. In a general purpose event generator such as Pythia [67], Herwig [68] or
Sherpa [69] the generation process could be split into three main steps:

(1) Calculate (or retrieve) the matrix element for the desired hard interaction
process;

(2) Evolve each parton from the interaction scale down to the hadronisation scale,
typically ∼ 1GeV, emitting soft and collinear partons at each step, treat the
probability of each emission as a Markov process (the parton shower);

(3) Combine the remaining partons into hadrons according to a hadronisation
model. Since αs ∼ O(1) at this stage, the models are empirical rather than
derived from first principles.

Of course, this is not the complete simulation process. The effects of initial state
radiation and proton PDFs must be taken into account and the hadrons formed may
be unstable and decay further. The complete process for a typical event is shown in
figure 4.1. Additionally, the restriction to only soft and collinear emissions in step
(2) seems to leave some phase space unaccounted for. In practice, non-soft/collinear
emissions are treated as additional outgoing partons at the matrix element level and
carefully merged to prevent double-counting.

4.1.1 Parton Showers and DGLAP

In the collinear limit, where the splitting angle θ between the child partons is much
smaller than any separation in the hard process, the differential cross-section of any
QCD process with a parton splitting can be factorised into a form proportional to the
bare cross-section σ0 and the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
splitting kernel P (z, φ):

dσ = σ0
αs
2π

dθ2

θ2
dzP (z, φ)

dφ

2π
(4.1)

where φ is the azimuthal angle of splitting around the parent parton and z is the
energy fraction of the leading child parton. The spin-averaged DGLAP equations
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Figure 4.1: The structure of a typical (if low-multiplicity) MC event including initial
state radiation and a secondary hard scatter. Particles from the hard collision (red
blob) are showered and then hadronised, with unstable hadrons decayed to a stable
final state. The underlying event contributions are also taken into account during
the showering stage and contribute to the final event. Figure reproduced from [70].
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Figure 4.2: Feynman diagrams for the DGLAP splitting equations.

for massless quarks are

Pq→qg(z) = CF
1 + z2

1− z
, Pq→gq(z) = CF

1 + (1− z)2

z
,

Pg→gg(z) = CA
z4 + 1 + (1− z)4

z(1− z)
, Pg→qq̄(z) = TR(z

2 + (1− z)2).

for the splittings shown in figure 4.2. Observe that Pq→qg is divergent in the limit
z → 1 and Pq→qg diverges as z → 0, i.e. when the emitted gluon’s momentum
approaches zero. Pg→gg diverges in both of these cases. This can be resolved by
recognising that the particles must be ‘‘observed’’ at some arbitrary resolution. Two
partons with a separation below this limit would be unresolved and indistinguishable
from the non-split case. The total probability of not observing an emission can be
written as

P (unresolved|split) + P (not split) (4.2)

and is finite when one-loop corrections to P (not split) are included. This relation is
used to derive the Sudakov form factor which gives the probability of no observable
splitting occurring between the scales Q and q

∆(Q2, q2) = exp

[
−
∫ q2

Q2

dk2

k2
P (k2)

]
(4.3)

The consideration of whether partons can be physically resolved will be returned to
in §4.2 in the context of jets.

The Sudakov factor is a core component of parton shower algorithms. Each parton
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is evolved from the hard interaction scale downwards in a step-wise manner. For
each step, the probability of a parton’s non-emission is calculated independently of
any other particles in the event or that parton’s previous splitting history using the
Sudakov form factor. If an emission is made then the child parton is also evolved
similarly. Unfortunately, the ordering with which partons are evolved is non-trivial
and must be carefully considered.

This is due to the divergence in the DGLAP equations when z → 0, corresponding
to the emission of low energy gluons referred to as soft emissions. This has a rather
different form than the collinear splitting as the factorisation is only at the amplitude
rather than the cross-section level. There are two common approaches for handling
this. Angular-ordered showers (e.g. Herwig) begin from the DGLAP equations
above and modify the splitting process to account for soft radiation correctly. Soft
radiation emitted outside of a colour-connected cone formed from a parton splitting
sees only the overall colour charge of that cone, or equivalently, it sees the colour
charge of the parton before its splitting. By ordering the parton splittings by angle,
the soft radiation is correctly accounted for.

A second approach (used by Sherpa) is to use a virtuality-ordered colour dipole
model that, rather than using single 1 → 2 splittings, considers colour-anticolour
pairs. Gluons are treated as colour-anticolour dipoles and have a single emission,
quark-quark pairs emit a single gluon, and two quarks and a gluon are treated as two
dipoles. Each emission splits the system into two further colour-anticolour dipoles.
The emission of soft gluons from such a dipole is then given by

dσ ≈ σ0CA
as
2π

dk2

k2⊥
dy (4.4)

where y is the rapidity.

Both angular-ordered and colour dipole techniques are also used to generate ISR.
In the case of an angular-ordered shower, this is done by reversing the splitting
equations and solving to find an initial state that gave rise to the interaction process.
In the colour dipole model there is no explicit ISR but the remnants of the incoming
hadrons remain connected to the interacting quarks and radiate accordingly; this
turns out to correctly account for the effect.

The parton shower algorithms discussed are a leading logarithmic approximation,
but can include the all-orders resummation of loop-contributions to gluon emission
by evaluating αs as αs(kT ). Showers in Pythia and Herwig are performed in the
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limit Nc = ∞, errors due to which are approximately 1/N2
c ≈ 10%. Note that

electromagnetic contributions are not included (though they can be handled by
external algorithms such as PHOTOS [71]) but this is also an α

αs
∼ 10% effect.

4.1.2 Hadronisation

Of course, the parton showering only takes the simulation to an energy around 1GeV ,
where perturbation theory breaks down, and the partons form hadrons. Since a the-
oretical description of the process is beyond current techniques, a phenomenological
model, fit to experimental data, must be used. The precise model varies from gen-
erator to generator (and often there are multiple options within generators). Two
models commonly encountered are the Lund string model (Pythia) and the cluster-
ing model (Herwig), but many other models make different assumptions, such as
Dipsy’s rope model or the EPOS hydrodynamic model.

In addition to obtaining the correct description of jet-level variables such as the
angular or pT distributions, hadronisation models must also produce a broad range
of mesons and baryons at a rate which (hopefully) matches data. Typically many
parameters are used to tune each model to fit, but due to the universality of the
hadronisation stage, these can be obtained from a small number of measurements
and applied widely.

4.2 Jet Algorithms

Jet algorithms are used to cluster the hundreds of final state hadrons into a much
smaller number of jets, which more closely resemble the original particles. An ideal
algorithm would exactly invert the parton shower and hadronisation process, be
theoretically calculable, be unaffected by pileup and radiation from the underlying
event, and have low computational cost. Sadly, such an algorithm has not yet been
found and the ‘‘optimal’’ algorithm is strongly dependent on both the physics being
examined and the environment in which the collisions take place. Common jet
algorithms fall into two categories: sequential reclustering algorithms, which cluster
particles one-by-one based on some ranking criteria, and cone algorithms, which
cluster particles in geometrical regions around a set of axes (often using complex
methods to find the ideal axes with physically sensible, stable results).

To be used in perturbative QCD calculations, the algorithm must be protected
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against the collinear and soft singularities identified in §4.1.1. This requirement
gives two safety criteria:

• Collinear Safety: Splitting an input into two collinear inputs must not change
the output.

• Infrared (Soft) Safety: The addition of a soft (pT ≈ 0) input must not modify
the output.

Algorithms meeting these criteria are described as IRC-safe. It should be noted
that IRC-safety is not an absolute requirement; while lepton colliders typically use
IRC-safe sequential reclustering algorithms such as the Durham algorithm, hadron
collider experiments have historically used non-collinear-safe cone algorithms due to
their lower computational cost (a naive implementation of sequential reclustering
algorithms for n particles requires O(n3) operations). Iterative algorithms are also
guaranteed to make use of all particles in the event. For ee collisions, which have no
underlying event interactions like those of the spectator quarks in proton collisions,
this seems to be a useful property.

IRC-safety is required for exact comparisons between experiment and theoretical
calculations but the perturbative order at which this becomes a problem depends
on the process being studied. Soyez [72] introduced two new algorithms, the SISCone
(Seedless-Infrared-Safe-Cone) and the anti-kT algorithms as IRC-safe replacements
for previous cone algorithms that preserved many of their useful properties, such as
the well-defined, roughly conical, area. However, increases in computing power and
the introduction of FastJet [73] in 2008 have reduced the computational complexity
of sequential reclustering algorithms such that they are now practical even in high-
multiplicity environments.

The primary jet algorithms used in ATLAS belong to the kT family. These are IRC-
safe sequential reclustering algorithms controlled by two continuous parameters, α,
which controls the reclustering order and R, which controls the size of the jet. The
algorithm is as follows: first calculate a common distance metric between each pair
of inputs, known as pseudojets, and between each pseudojet and the beam (B)

dij = min(p2αT,i, p
2α
T,j)

∆i,j

R
, (4.5)

diB = p2αT,i (4.6)

where ∆i,j is the distance between the pseudojets in η-φ space. Then, pick the
‘‘closest’’ distance and if it is a pseudojet pair, merge them, otherwise, if it is diB,
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call i a jet and remove it from the clustering. The distances are then recalculated
for the remaining inputs. This process repeats until no pseudojets are left.

There are three commonly used versions of this algorithm, corresponding to the
choice of α = 1, 0,−1 and known as the kT , Cambridge-Aachen (C/A) and anti-kT
algorithms respectively, and they show substantial differences in their behaviour.
Since α is continuous it is possible to use non-integer values, but the resulting
behaviour is qualitatively similar to the three primary cases.

The kT (α = 1) variant preferentially clusters soft radiation before merging the
remaining hard constituents, which, in the absence of additional contributions from
pileup or the underlying event, mirrors the QCD radiative process. It is useful for
accurately finding the underlying (sub)structure of the jet. Unfortunately, it is also
highly susceptible to the addition of soft radiation and the jet area can fluctuate
greatly as further radiation is added. In ATLAS it is primarily used with a very
small R parameter (typically 0.2) to recluster already identified jet constituents into
resolved subjets.

The Cambridge-Aachen (α = 0) algorithm is purely spatially dependent, effectively
ordered by splitting angle, and has proven useful for resolving substructure within
the jet while being more stable than kT when pileup or underlying event (UE)
radiation (soft interactions between the constituents of the colliding protons not
involved with the interaction of interest) is added. It has been found that the
pseudojets found by sequentially undoing the clustering can be used to tag a jet
as multi-prong W/Z or Top decay or a one prong quark/gluon jet, such as in the
BDRS procedure [53].

The anti-kT (α = −1) algorithm is the primary jet algorithm used by ATLAS
analyses. It preferentially clusters hard radiation then picks up the soft radiation
around the resulting axis. This gives a conical shape but with the harder jet taking a
‘‘bite’’ out of the softer when two jets would otherwise overlap. Jets constructed by
the anti-kT algorithm are well-resolved and more resilient to pileup and underlying
event than kT or C/A jets but their clustering order does not give useful information
about the underlying QCD structure.

It is relatively easy to see why the clustering order of kT and C/A algorithms provide
kinematic and spatial information about the jet substructure respectively. Consider
only the final clustering step, for a kT jet the clustering depends onmin(pT,i, pT,j)∆ij

so the softest radiation will have been captured first and the final clustering is likely
to be between two pseudojets with the pT split reasonably evenly between them,
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Figure 4.3: The jets constructed with the SISCone, kT , C/A, and anti-kT algo-
rithms with R = 1 in a single parton-level event with additional low-energy partons
(‘‘ghosts’’). The catchment area for each jet is highlighted by colour. The area of
the kT and C/A jets would be substantially different with a different set of ghosts
whereas the anti-kT and SISCone algorithms produce more stable, conic, areas.
Figure reproduced from [74].
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closer to the original splitting of a hard parton or a W/Z decay. In contrast, for
a C/A jet the final step would typically combine a high-pT central pseudojet and
a (likely soft) pseudojet close to the jet radius but stepping back through earlier
clusterings can find similar, pT -balanced pseudojets in a two-prong decay.

The characteristic clustering behaviour of all of these algorithms (and SISCone) is
shown graphically in figure 4.3. While discussion of it has been avoided so far the
choice of ‘‘R’’ is significant for all jet algorithms and must find a balance between
capturing the decay products of the hard process being studied while minimising
contributions from pileup and the underlying event (UE), a term describing interac-
tions that take place during a collision which are not the primary hard interaction.
Jets with R = 0.4, 0.5 have better resolution when studying quark-initiated jets but
larger R = 0.8, 1.0, 1.2 jets are used for capturing the decay of boosted bosons, tops
and gluons [75]. The construction and calibration of jets within ATLAS will be
discussed in §5.

4.3 Jet Substructure

As has been alluded to in the previous section, there are advantages to thinking
of jets not just as singular objects but also making use of the distribution of their
constituents. First, consider particles such as the W/Z, Top and Higgs (or other
more exotic particles) that can decay to two or three quarks. If the originating
particle is sufficiently ‘‘boosted’’, then its decay products will be produced in a
narrow cone which could be identified as a single jet by the anti-kT algorithm. When
searching for these objects, we can use the internal (sub) structure to ‘‘tag’’ jets
with two or three prong-like structure and suppress the primarily one-prong QCD
background. Secondly, we know that there will be pileup and UE contributions to the
jet and that this can have a dramatic impact on physical observables. The jet mass,
in particular, is very sensitive to the effects of soft radiation at a significant angle
to the jet axis. ‘‘Grooming’’ algorithms have been designed to remove unwanted
particles from jets.

Both substructure and grooming are only usually applied to ‘‘large-R’’ jets where
R > 0.8, rather than the typical R = 0.4/0.5 (‘‘small-R’’) jets. Small-R jets are less
useful for boosted searches due to a greater loss of the decay products outside of the
jet cone, and their smaller size makes them inherently more resilient to pileup. This
section will briefly cover grooming techniques and substructure variables, focusing
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on the ones used later in this thesis.

4.3.1 Jet Grooming

Jet grooming algorithms take a jet constructed with one of the algorithms presented
in §4.2 and try to remove all constituents which did not originate from the hard
process. Doing so decreases the pileup’s effect on the jet’s reconstructed energy,
momentum and mass. Several grooming algorithms have been investigated by both
the CMS and ATLAS collaborations, but all use similar methods of reclustering a
jet’s constituents and keeping only those which pass some selection criteria. The
grooming procedures are shown graphically in figure 4.4.

Trimming
Jet trimming [76] reclusters an input jet into smaller kT subjets and tries to remove
the contributions of soft pileup and UE radiation by rejecting any subjets containing
less than a fixed threshold of pT . The algorithm parameters are the subjet radius
Rsub < R, the dimensionless pT fraction, fcut, and an associated hard scale λhard.
The algorithm is:

1. Given a jet, J , obtain a list of its constituents L.

2. Recluster L into subjets using the kT algorithm with a radius Rsub.

3. Reject any subjets with pT,subjet < fcutλhard.

4. Recluster the remaining subjet constituents using the original jet algorithm.

In ATLAS the λhard is usually set to the pT of the jet.

Pruning
Jet pruning [77] considers the behaviour of a jet algorithm and cuts (‘‘prunes’’) away
pseudojets using kinematic discriminants which prevent clusterings characteristic
of the jet algorithm or QCD jets rather then heavy particle decays, specifically
soft, wide-angled radiation. The algorithm has two parameters, Dcut and zcut, that
control how aggressively it cuts in ∆R, and pT space respectively. The algorithm is
as follows:

1. Given a jet, J , obtain a list of its constituents L.

2. Run either the kT or C/A algorithm on L and for each merging ij → p check
min(pT,i,pT,j)

pT,p
< zcut and ∆Rij > Dcut.
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3. If either cut is passed veto the merging and discard the softer constituent.
Continue with the jet finding procedure.

4. Stop once the resulting ‘‘pruned’’ jet passes the jet finding algorithm.

Mass-Drop Filtering
The jet mass-drop/filtering algorithm (sometimes known as split-filtering) was origi-
nally proposed in [53] as a combined grooming/tagging algorithm. It was formulated
specifically to identify C/A jets with a hard two-prong structure (originally H → bb)
and has two separate steps, the ‘‘mass-drop’’ to determine the jet’s structure, us-
ing the jet’s clustering history as mentioned briefly in §4.2, followed by ‘‘filtering’’,
which reclusters the jet constituents to remove pileup and UE contributions. There
are two parameters used for the algorithm, the mass drop, µfrac,1 and the energy
balance yfrac. The mass-drop algorithm is then as follows:

1. Given a C/A jet, J , undo the last step of the clustering to get the subjets
j1, j2 where mj1 > mj2 .

2. Require a significant difference in mass after the splitting, mj1
mJ

< µfrac, and
that the energy is evenly split between the subjets, min(pT,j1

,pT,j2
)

m2
J

× ∆R2
12 >

ycut.

3. If both cuts are passed then consider J to be the neighbourhood of the heavy
particle splitting and continue to filtering. Otherwise set J = j1 and repeat.
If j1 cannot be split further, reject the jet.

Once the candidate jet J has been identified, its constituents are reclustered using
C/A with R = min(0.3,∆R12/2). The three hardest subjets are kept and combined
into the final jet.

The first stage of this process has since been generalised, via the modified Mass
Drop (mMDT) algorithm [79], to the Soft Drop [80] algorithm which can act as
both a tagger and groomer.

4.3.2 Substructure Variables

The internal, or sub, structure of a jet will inevitably be impacted by the nature of
the particle(s) whose decay it contains. An obvious example is the jet mass, defined

1It is perhaps ironic that, despite giving the tagger its name, it has been found that the optimal
value for the mass-drop parameter is µfrac = 1, i.e. no mass-drop criteria should be applied [78].
As a result, modern generalisations such as mMDT and soft-drop do not implement this cut.
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(a)

(b)

(c)

Figure 4.4: Graphical examples of constituent removal by the presented jet grooming
algorithms (a) jet trimming, (b) jet pruning, and (c) the split-filtering algorithm.
Note that (c) is split between two phases, the mass-drop and the filtering. Typically
only the second stage is used. Figures reproduced from [78]
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in terms of the jet constituents, j, as

m2
J =

∑
j∈J

Ej

2

−

∑
j∈J

~pj

2

(4.7)

which is expected to be roughly mparticle for heavy particle decays and approx-
imately 0.2

√
pTR [81] for QCD jets, making it a useful discriminant. However,

additional non-associated radiation spoils this relationship by smearing the mass
distributions of both heavy particle and QCD jets. This effect is particularly harm-
ful for W/Z identification as the QCD mass peak shifts upwards into a similar mass
range. Thankfully, the grooming procedures remove a large amount of this radiation,
shifting the QCD mass range back down and sharpening heavy particle peaks.2

Beyond the jet mass, there is a significant amount of additional information stored
within a jet’s substructure. A gluon jet will contain more radiation than a quark
jet due to the gluon’s larger colour factor; Ws, Zs and Higgs will have a two-prong
structure, but only Zs and Higgs jets are likely to contain b-quarks, a top decay
will have a three-prong structure, and so on. There is now a substantial library of
substructure variables which provide discriminating power between different types
of jets. Here we will cover a few that feature in the rest of this thesis.

Track Multiplicity
The number of charged tracks, ntrk, within a jet can be used as a discriminant
between quark, gluon and heavy particle jets. The gluon’s enhanced colour factor
means that we expect a greater emission rate compared to quark jets. This would
be observed in the detector as additional charged tracks (uncharged emissions being
missed by the tracking systems). Further, the colour connection between the two
quarks in a W/Z/Higgs decay means that emission outside of the decay cone is
suppressed and the total particle emission is lower than for single quark decay.

In ATLAS, this is measured by counting each jet’s ghost-associated3 tracks. In
practice, nungroomedtrk is more useful than ngroomedtrk as cutting away the soft radiation
associated with pileup and the UE also removes radiation associated with the true
jet, smearing the ntrk distribution.

2It is not necessarily the case that the groomed jet substructure is more useful than that of the
ungroomed jet. Some phenomenological studies have suggested that the N-subjettiness (see §4.3.2)
ratio of τN,groomed/τN−1,ungroomed is more powerful than its groomed-only equivalent [82].

3Ghost-association, an alternative to clustering by ∆R, is performed by adding the tracks into
the clustering process with their pT set to 0. This clusters tracks within the jet without altering
the jets found.
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N-subjettiness
N-subjettiness [83] provides a measure to estimate the number of distinct subjets
in a jet, based on the event level observable N-jettiness [84]. The basic procedure
for calculating the set of N-subjettiness variables {τ1, . . . , τN} is as follows. First,
find a set of subjets 1, . . . , N with Rsub � R then calculate τN as

τN =
1∑

k∈J pT,kR

∑
k∈J

pT,kmin{∆R1,k,∆R2,k, . . . ,∆RN,k} (4.8)

where k runs over the original jet’s constituents and ∆Rn,k is the distance between
k and the axis of subjet n. τN will be small for any jet with ≤ N subjets but large
otherwise. As such, the ratio τN/τN−1 gives a measure of how ‘‘N -subjetty’’ a jet
is.

A key consideration for N-subjettiness is the procedure for finding candidate sub-
jets. An exhaustive search minimising τN would give ideal results, but this was
originally believed to be too computationally intensive. The initial paper suggests
the exclusive kT [85] algorithm forced to return N subjets, but it was later identified
that the broadening axes (the set of axes which minimise the scalar sum of the jet
momentum) [86] are the optimal axis choice. Further studies [87] have proposed the
‘‘winner-takes-all’’ (τX,wta) axis which approximates the broadening axis but is also
insensitive to recoil. The N-subjettiness variables was used by ATLAS for boosted
top tagging in run-2 data [88] and investigated in for the purpose of W-tagging [89]
as shown in figure 4.5.

Further theoretical research on these variables has also suggested that the so-called
‘‘dichroic’’ τ21 ratio, where τ2 is taken from the ungroomed jet and τ1 is taken from
the groomed jet, emphasising the colour radiation pattern and hard substructure
respectively, may provide additional discriminatory power [82].

Energy Correlation Functions
Energy correlation functions [90] can be used to quantify the n-prong substructure
in a similar way to N-subjettiness but without requiring the definition of subjet
axes. The N-point energy correlation function (ECF) is defined as

ECF (N, β) =
∑

i1<i2<···<iN∈J

(
N∏
a=1

pT,ia

)(
N−1∏
b=1

N∏
c=b+1

∆Ribic

)β
. (4.9)

If a jet J has a N + 1 prong structure then ECF (N + 1, β) should be substantially
smaller than ECF (N, β) as the ∆R terms will be small. Hence, the ratio ECF (N+
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Figure 4.5: Examples of the discrimination power provided by N-subjettiness be-
tween QCD, W and top jets with 500 < ptruthT < 1000. (a) shows the τ32 distribution
for top and QCD jets, from [88], and (b) the τwta21 distribution for W and QCD jets,
taken from [89].

1, β)/ECF (N, β) behaves very similarly to the τN variables. This suggests a similar
observable for tagging N -pronged jets:

CβN =

(
ECF (N + 1, β)

ECF (N, β)

)
×
(

ECF (N, β)

ECF (N − 1, β)

)−1

(4.10)

An additional ECF-based variable was proposed in [91] which provides optimised
discriminatory power between 1 and 2-prong jets.

Dβ
2 =

ECF (3, β)ECF (1, β)2

ECF (2, β)3
(4.11)

The distributions for C2 and D2 are shown in figure 4.6. For ATLAS searches using
the D2 variable, β = 1 has so far been found to be optimal [89, 92]. β = 1 is
used exclusively throughout this thesis so this superscript will be dropped for the
remainder of the text.

Jet Width

The jet width is a dimensionless substructure variable that is highly correlated with
the jet mass [93]. It is defined as

W =
Σi∆R

ipiT
ΣipiT

(4.12)
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(a) (b)

Figure 4.6: Examples of the discrimination power for trimmed, anti-kT , R = 1.0,
jets provided by the C2 (a) and D2 (b) variables for QCD and W jets with 500 <
ptruthT < 1000 [89]. The distributions are similar for other jet algorithms.

where ∆Ri is the radial distance between each jet constituent and the jet axis.

Angularity

Angularities [94] are a family of IR-safe (for a < 2) observables which describe
the degree of symmetry of a jet’s constituents. It is defined with a free parameter
−∞ < a < 2, as

Aa =
1

M

∑
i

Ei sin
a θi[1− cos θi]

1−a (4.13)

a controls whether quantity emphasises the constituents near the core (a > 0) or
edges (a < 0) of the jet.
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Chapter 5

Jet Reconstruction and
Calibration

Large-R jets are primarily used within ATLAS to study hadronically decaying heavy
particles, in particular, the W, Z, and Higgs bosons, and the top quark. Effectiveness
in this role has a few essential requirements. First, the jet radius must be large
enough to capture the decay products, and secondly, it must be possible to derive
effective taggers for the desired initial particle. In practice, this second requirement
demands good mass resolution and substructure information.

While the jet grooming algorithms discussed in §4.3.1 play an important role in
making jets usable in the high-density environment of the LHC, they are not the
whole story. Detector noise, pileup, the showering of different types of particle, and
other effects such as dead material, alter the behaviour of jets constructed from raw
calorimeter clusters. Some of this is corrected before reconstruction by combining
the calorimeter clusters into calibrated ‘‘topological clusters’’ and, after construc-
tion, the jet energy and mass can be calibrated based on known detector behaviour.
This chapter will briefly review jet reconstruction at ATLAS, but will primarily
focus on a new approach to the second topic, jet calibration using (multivariate)
neural networks.

5.1 Reconstruction

The standard large-R jet collections used within ATLAS are constructed from cal-
ibrated clusters of calorimeter cells called topoclusters [95]. A study in [92] found
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Figure 5.1: Figure (a) shows the measured calorimeter jet mass after trimming for
truth W, Z, and QCD jets in two different bins of pT before calibration is applied.
Figure (b) shows the mean jet mass of trimmed W and QCD jets as a function of
the number of reconstructed vertices in the event [92].

that R = 1.0, anti-kt jets groomed using the trimming algorithm with Rsub = 0.2

and ffrac = 0.05 was the best choice of jet algorithm and grooming procedure for
W/Z tagging under the pileup conditions expected during run-2. The performance
of the trimming algorithm is demonstrated in figure 5.1. Taggers for Higgs and
top jets were derived based on this optimised jet collection [88, 96]. Additionally,
so-called ‘‘track’’ jets are also used, which take the collection of tracks matched to
the primary vertex with pT > 400 MeV as inputs. These are constructed using the
same algorithms as the calorimeter jets.

5.1.1 Jet Calibration By ‘‘Numerical Inversion’’

Calibrating a jet requires some definition of the correct, or ‘‘true’’, value of the
quantity being calibrated. At ATLAS this is typically defined in MC as the value
when calculated using a jet constructed from particle-level constituents, prior to the
detector simulation and reconstruction. Since this cannot be measured directly in
data, the mapping between truth and reconstructed quantities is measured in MC
and then validated and applied in data.

In ATLAS analyses, a calibration is applied to correct the measured jet energy and
mass back to this ‘‘truth’’ scale and the mappings for both quantities are derived
using the numerical inversion technique [97–99] on a simulated jet sample as follows.

Given a variable’s responseRx = xreco/xtruth, the data is split into bins of ptruthT , |ηreco|,
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and xtruth then 〈Rx〉 is extracted as the mean of a gaussian fit in each bin. The
calibrated variable is defined as

xcalib =
xreco

〈Rx〉(f−1(xreco))
≡ cx(E

reco or precoT , ηreco, xreco) · xreco (5.1)

where f(x) = 〈Rx〉(x) · x, the average reconstructed quantity given the truth-level
quantity x, is the calibration function. cx is defined as the correction factor. This
correction factor is derived separately in each bin of |ηreco| by fitting the obtained
means as a function of pT and xreco using a 2d gaussian kernel, as demonstrated in
[100].

For the jet energy scale (JES), this is done directly on Ereco. For the jet mass scale
(JMS), an identical procedure is used except the jets are binned in (ptruthT , |ηreco|,mtruth)

and f ≡ f(precoT ,mreco) is fit to 〈Rm〉, 〈precoT 〉, and 〈mreco〉 in each bin of |ηreco|. These
calibrations are applied sequentially so the fully calibrated pT and mass are given
by:

precoT → cJES(Ereco, |ηreco|) · precoT , (5.2)

mreco → cJMS(precoT , |ηreco|,mreco) · cJES(Ereco, |ηreco|) ·mreco, (5.3)

The jet energy is recalculated after the calibrations have been applied.1 The sys-
tematic uncertainties on these calibrations, including on the extrapolation between
data and MC, are derived in-situ and applied as systematic effects in any analysis
using these calibrations. These are shown in figure 5.2.

5.1.2 Combined Mass

It was observed early in run-2 that the mass resolution of large-R jets deteriorated
dramatically at high pT , typically above 1.5 TeV. This effect is now understood to be
the result of the delta-R separation of jet constituents falling below the calorimeter
resolution. Since the mass measurement depends strongly on the angular sepa-
ration of the jet’s constituents, the merging of multiple constituents into a single
calorimeter cell can have a significant impact on the measured mass. The jet mass
response (defined as R = mreco/mtruth), used for calibrating the jet mass, has a dis-
tinct ‘‘double-peak’’ shape in the affected region and the calibration using numerical

1The JES correction is derived in terms of energy simply because the calorimeter responds to
energy rather than pT , despite this, pT is more commonly used by analyses so that is treated as
the primary variable during calibration.
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(a) (b)

Figure 5.2: The pT (a) and mass (b) uncertainties for the calibrated large-R jets
estimated in-situ using the track double ratio method as a function of the jet pT .
Uncertainties shown are for jets with pT > 150 and m/pT = 0.1 [101].

inversion is not well behaved as shown in figure 5.3.

Since the problem is fundamentally caused by the angular resolution of the calorime-
ter, it was realised that the performance could be improved by using the significantly
better angular resolution of tracks built using inner detector hits [98]. The ‘‘track
mass’’, mtrack of a jet is calculated using the four-vector sum of all charged tracks as-
sociated with a jet (with the mass of each track set tomπ), but this does not account
for neutral contributions to the jet. This is estimated from the ratio pcaloT,jet/

∑
ptrackT

and the ‘‘track-assisted mass’’ of the jet is defined as mTA = mtrack×pjetT /
∑
ptrackT .

As shown in figures 5.4 and 5.3, the track-assisted mass resolution is better than
that of the calorimeter mass at high pT , and it does not suffer from the non-closure
of the calibrated mass response. However, its resolution is worse at low pT .

Good mass resolution and closure is achieved over the entire jet pT range by com-
bining both calorimeter and track-assisted mass into the (imaginatively named)
‘‘combined’’ mass, defined as

mcomb = a×mcalo + b×mTA, (5.4)

a =
σ−2
calo

σ−2
calo + σ−2

TA

, b =
σ−2
TA

σ−2
calo + σ−2

TA

(5.5)

where σ−2
calo and σ

−2
TA are the calorimeter and track-assisted mass resolution functions

respectively. Since the inputs are calibrated, fixing a+ b = 1 ensures that the com-
bined mass is also calibrated, and the two constants smoothly interpolate between
the region where the calorimeter resolution is superior and where the track-assisted
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(a) (b)

Figure 5.3: The response for the calorimeter and track-associated jet mass for 1.0 <
pjetT < 1.2 TeV (a) and and 2.25 < pjetT < 2.5 TeV (b) before and after calibration,
reproduced from [98]. The high pT plot shows the clear non-closure of the jet
calorimeter mass calibration at high pT .

Figure 5.4: The fractional jet mass resolution for the calorimeter, track-assisted,
and combined mass after calibration. Reproduced from [98].
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resolution is better. The final resolution of the combined mass is shown in figure
5.4.

5.2 Multivariate Calibration

The current large-R jet calibration works well but it fails to take advantage of
the additional information provided by the substructure of each jet. The pattern
of energy deposits and hence calorimeter response may vary wildly between, for
example, a two-prong W-tagged jet or a more evenly distributed, single-pronged
QCD jet. Variables sensitive to the angular distribution of energy, mass being the
primary example, could potentially benefit from using tracking information with
superior angular resolution (as has already been seen with the combined mass).
The numerical inversion technique outlined in §5.1.1 does not generalise well to
more variables as each additional variable significantly increases the number of bins,
and hence the required number of MC events. This section presents a proof-of-
concept study into a different approach; rather than dividing the jets into many
bins and fitting a simple response function in each, a neural network trained on
substructure variables is used to approximate the true detector response function,
across all pT and η regions.

Neural networks have a history within particle physics going back to at least the
early 1990s [102–104], primarily as classifiers. However, until recently they had
fallen out of favour in comparison to boosted decision trees. Following the realisa-
tion that deep neural networks (DNNs) and convolutional neural networks (CNNs)
outperformed other forms of machine learning in many situations, they have begun
to make a resurgence in particle physics, particularly in the context of jet tagging
[105, 106] but also in less traditional ways, for example calculating parton shower
uncertainties [107], modelling NNLO corrections [108], and pileup mitigation [109].
Naively, the universal approximation theorem [110] suggests that any function can
be approximated by a single layer neural network but in practice, deep neural net-
works are often able to approximate more complex functions than a single-layer
network with the same total number of neurons.

The relative power of deep (defined as 3 or more layers) neural networks can be
understood through two concepts. Firstly, non-linearities are substantially easier to
approximate using a multilayered network than with a single layer network; in a
deep network, a small change in the initial layer can lead to a strong response in
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subsequent layers. Secondly, multilayer networks have a built-in concept of scale-
dependence where each layer examines the input at a different ‘‘scale’’.2 Since this
study considers substructure and 4-vector inputs rather than raw spatial data it is
the first of these properties that seems most useful.

For a single jet, the jet’s response is defined for a target variable, t, as

Rt =
treco
ttruth

. (5.6)

We make the (seemingly reasonable) assumption that the calorimeter’s response
to a jet has a strong dependency on the pattern and location of the jet’s energy
depositions within the calorimeter, and that this dependency would manifest as a
relationship between Rt and a jet’s 4-vector information and substructure variables.
There would undoubtedly be some variance that cannot be captured this way, either
due to detector noise or deterministic behaviour not captured by a jet’s substructure,
but this study assumes that given a vector of input variables ~v it is possible to find
an approximate function O(~v) such that

O(~v) ≈ 〈Rt〉(~v), (5.7)

which may be used to calibrate a variable

tcalib =
treco
O(~v)

≈ treco
〈Rt〉

. (5.8)

In essence this is simply a restatement of the general idea of calibration but I believe
it is a useful form when considering machine learning calibrations. For calibration
of a jet for target variable, t, and generic vector of input variables, ~v, try find the
function O(~v) by training a neural network on a MC dataset for which we already
know the correct jet response. Note that conceptually this procedure is much simpler
than the existing calibration.

This study will demonstrate several instances of this calibration procedure for jet
energy and mass. It will also address measures of calibration quality, network archi-
tecture, the systematic selection of variables, and the impact of the MC generator
on the final calibration. Since this is not intended for use in an actual analysis, the
procedure used is further simplified from that given in eqn. (5.2) as only single step
calibrations where energy and mass are calibrated separately are considered, though

2In fact, the scale dependence of DNNs can be understood as an application of renormalisation
groups [111, 112]. It would be interesting to examine whether this is a useful property for the study
of QCD more generally (for instance scale-dependent jet clustering algorithms).
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in practice a combined or sequential calibrations would be simple extensions of this
method.

5.2.1 Calibration Quality

When talking about ‘‘improving’’ a calibration, it is necessary to define the measure
of quality with which one is judging. Conceptually this is quite simple - we wish
for the calibrated jet properties to be as close to the truth values as is possible -
but there are several ways to define this. The current procedure in ATLAS is to
evaluate large-R jet calibrations on two measures derived from the distribution of
RE and Rm, the distributions of which are shown before and after calibration in
figure 5.5. The calibrated jet ‘‘scale’’, taken to be the difference between the peak
of a gaussian fitted to the core of the response distribution, and the calibrated jet
‘‘resolution’’, taken to be the standard deviation of the same fitted gaussian. This
is a reasonable measure for RE which is mostly symmetrical but Rm typically has
a large upper tail. As such I prefer to use the following measures:

• Scale, R̂: the median of the response distribution after calibration.

• Resolution, IQR(R): the interquartile range of the response distribution after
calibration divided by two.

• Spread, IDR(R): a new measure based on the interdecile range (similar to
the interquartile range but the difference between the first and ninth deciles
of the dataset) to give a more complete picture of the calibration resolution.
It is defined as half the interdecile range of the response.

For energy these measures line-up closely with the those used by the current calibra-
tion. For mass, the current definitions fail to capture the impact of the high-response
tail, meaning that any individual jet would have a mass scale around 3-4% higher
than the actual JMS (jet mass scale) would suggest. The spread is less commonly
seen and roughly corresponds to the 2σ value for a normally distributed dataset. It
is useful to examine how well the calibration is doing at reducing instances of badly
measured jets and can explain variance not captured by the scale or resolution.

The calibration scale and resolution are calculated for the uncalibrated jets, jets
calibrated using the standard procedure and jets calibrated using each trained net-
work. The response before calibration is calculated as in (5.6), the response after
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Figure 5.5: The jet (a) energy and (b) mass response before and after the standard
ATLAS large-R jet calibration is applied.

calibration is calculated as

Rcalib
t =

tcalib
ttruth

=
treco

Fcalib × ttruth
=

Rt

Fcalib
(5.9)

where Fcalib is the calibration function from (5.1) for the standard calibration and the
neural network output ONN (~v) for the neural network calibration. In the rest of this
text Runcalib

t , Rcalib
t and RNN

t will be use to refer to the response for uncalibrated,
ATLAS-calibrated and neural network calibrated jets respectively.

Extensive plots were also made to understand the behaviour of the neural networks
and their performance as a function of their inputs. Neural-networks have a rep-
utation for being black-boxes as it can be difficult to understand the relationship
between its inputs and output but we attempt to mitigate this through extensive
profiling of each network. The behaviour of each network was profiled with respect
to each input variable to find how both jet response and neural network output vary
as a function of the network’s input variables. In a ‘‘perfect’’ calibration these distri-
butions would be identical, but since much of the jet’s response is due to stochastic
factors, the network’s output is generally confined to a space close to the mean of
the response in each bin. By taking the ratio of the input response to the network
output, we obtain a distribution indicating the calibrated variables remaining de-
pendence of the input distribution. The final measure of performance we use is the
closure of the jet response distribution after calibration for each input variable.
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5.2.2 Datasets

Network training and initial performance measurements were based on a sample of
hadronic jets generated using Pythia8 with the A14 tune [113] and NNPDF23LO
PDF set [114] then run through a GEANT4 simulation of the ATLAS detector [115]
and the full ATLAS reconstruction software pipeline. The data was generated in
slices of truth jet pT , labelled ‘‘JZxW with x ∈ [2, 12] with leading truth jet pT
in the range 200 < pT < 4600 GeV. In each event jets were constructed using
the standard ATLAS large-R jet algorithm, anti-kT with R = 1.0, and trimmed
using R = 0.2, ffrac = 0.05. A copy of each jet was made with calibrated energy,
pT , and mass using the current ATLAS calibration, including the combined mass,
calculated as described earlier in this chapter. The training was performed on the
uncalibrated jets and these calibrated copies were solely for comparisons to the
current calibration. For clarity, any references to a variable that do not explicitly
refer to it as calibrated are referring to the uncalibrated variable. Truth and track
jets are constructed using the same algorithm, taking Monte-Carlo truth particles
and inner detector tracks, with pT > 400 MeV and matched to the primary vertex,
respectively as inputs. No calibration is applied to either the track or truth jets.

All events used were required to pass the following selection:

• > 1 truth, track and trimmed jet,

• No small-R jets labelled ‘‘LooseBad’’ by the ATLAS jet cleaning algorithm
[116]

Each jet within an event is considered separately during the training and validation
procedures, all trimmed jets within selected events passing the following criteria are
considered:

• pT > 200 GeV;

• m > 30 GeV;

• |η| < 2.0

• At least 1 truth and 1 track large-R jet with a separation of ∆R < 0.3 from
the jet and pT > 50 GeV;

The substructure variables calculated with the truth and track jets are associated
with the matched calorimeter jet. If multiple truth or track jets pass the ∆R

separation requirement, then the one with the highest pT is chosen as the associated
truth or track jet for that reconstructed jet.
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The final sample consisted of 4 million jets taken at random from the totality of
jets passing this selection and no sample weighting is performed (so the pT distri-
bution of jets is not a realistic smoothly falling curve). This was then split into
non-overlapping ‘‘training’’ and ‘‘validation’’ samples consisting of 3 million and ‘1
million jets respectively. The plots and performance figures shown in this study
were made entirely with the validation sample.

Alternative Generator and Topology Samples

A range of further MC samples were used when evaluating the performance of the
network in order to measure any generator or topology dependence of the trained
calibration network. The additional datasets used were:

Herwig QCD: QCD multijet sample produced using Herwig++ and EvtGen.
The samples were produced in identical slices to the Pythia QCD samples with
approximately 2 million events per sample.

WZ: W ′ →WZ samples produced using Pythia8 and EvtGen. Samples were
produced with mW ′ in the range 400 - 5000 GeV.

Top: Z ′ → tt̄→Wb samples produced using Pythia8 interfaced with EvtGen.
Samples were produced at mass points between 400-5000 GeV with around
100,000 events per sample.

Higgs: GRS → hh→ bbbb samples produced using MadGraph for the matrix
element calculations interfaced with Pythia8 and EvtGen. Samples were pro-
duced at mass points from 400-3000 GeV with approximately 100,000 events
per sample.

All samples used the A14 tune and NNPDF23LO PDF set, with the exception of the
Herwig QCD sample, which used the CTEQ6.1 PDF set [117]. GEANT4 was used
to perform the detector simulation for all samples. Jets from the Herwig dataset
were selected using the same procedure as the Pythia jet sample and all jets in each
event are considered. For the WZ, Top, and Higgs samples, the same selection is
applied but only the two leading jets are considered, this ensures a relatively pure
sample of bosonic/top jets.
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Data Validation Samples

Finally, a sample of jets was taken from
√
s = 13 TeV, pp data collected by ATLAS

in 2016 during runs 300600-303291. Events were only considered if collected during
normal running with nominal detector performance, corresponding to the Good
Runs List: data16_13TeV.periodAllYear_DetStatus-v88-pro20-21_DQDefects-00-
02-04_PHYS_StandardGRL_All_Good_25ns.xml. This gives a total luminosity
of 7.16fb−1, which was estimated by the methodology given in [118]. Any incomplete
events, or those with bad LAr or Tile quality, were removed [119].

The data validation sample used the same selection procedure as the MC samples
but to ensure good agreement with simulation only the leading jet in each event
was considered. In addition, we required events to pass the 420 GeV large-R jet
trigger. This trigger was not present in the MC samples and some shaping of the pT
distribution occurs due to the large-R jet trigger turn on so a cut of 500 GeV was
placed on the trimmed jet pT to reject any jets off the large-R jet trigger plateau. A
Pythia8 QCD sample with these additional leading jet and pT cut requirements was
generated to perform like-for-like comparisons between MC and data. Unlike the
training and validation samples, MC event weights were taken into account and each
jet pT slice was weighted to give the correct jet pT distribution. The MC sample
was then scaled to match the luminosity of the data.

5.2.3 Input Selection

The choice of inputs to the proposed calibration network has a strong impact on
both performance and the practicalities of training. We identified O(100) variables,
including kinematic, substructure and constituent variables, which could conceivably
contain information about the detector response for either the jet mass or energy.
Unfortunately, simply training a network on all of these would be highly impractical
for a number of reasons:

(1) The training time for a network greatly increases with the number of variables
due to the increase in the number of input weights and the increase in network
size necessary to handle additional inputs.

(2) Using a variable as input implies that we are confident it is simulated well by
the Monte-Carlo (or at least that we can quantify the related uncertainty).
Verifying that this is the case for such a large number of variables would be
impractical.
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(3) Many of the variables are highly correlated and adding an additional variable
may not give the network any further relevant information.

(4) Many of the variables may not contain significant information about the de-
tector response.

The existence of problems (3) and (4) makes (1) and (2) even worse. Including
highly-correlated or unsuitable variables degrades training time without any im-
provement of network performance. The ideal input would be a minimal set of
information-rich, independent variables. Previous jet substructure studies using
machine learning have not treated this problem in any systematic way, typically a
small set of candidate variables is chosen and the training is repeated using different
combinations of variables until a seemingly optimal solution is found [106]. Since
this would be impractical for a possible input space as large as the one examined,
this study suggests two systematic methods for selecting variables which could apply
to more general jet substructure studies.

Variable Ranking

Picking an optimal input set given these criteria is non-trivial. Avoiding (4) requires
some method of ranking the available variables based on how much information
they contain about the detector response. An obvious metric for this would be the
mutual information3 between the target distribution t and each variable distribution
v, defined as

I(t; v) =

∫
t

∫
v
p(t′, v′) log

(
p(t′, v′)

p(t′)p(v′)

)
dt′dv′, (5.10)

where p(t) is the probabilty density function (PDF) of t and p(t, v) is the joint PDF
of t and v. This can be calculated for the simulated data by approximating the
PDFs using histograms. The exact value of I was found to be sensitive to both
the number of jets with which it was calculated and the histogram binning used
in estimating the pdf. It was found that using a 200x200 bin histogram and more
than 1 million jets to calculate each joint PDF gave stable rankings of the variables.
The mutual information between each variable and the mass and energy response
was calculated and two sets of variables chosen for each; referred to as the MI5 and
MI10 input sets. These are the top five and ten ranked variables respectively after

3A dimensionless measure of the total shared information between two observables. It is sub-
stantially more general than correlation which captures only linear relations. To our knowledge
this has only previously been used in jet substructure in the context of quark/gluon discrimination
[120].
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removing any variable whose mutual information with an already chosen (i.e. higher
ranked) variable is greater than 1.5.

However, while this provides ranking criteria for our potential variables, it does not
address the problem of correlations between them. The mutual information between
each variable could be calculated, but there is no guarantee that this contains any
information relevant to the jet response. Another option would be the n-variable
generalisation of mutual information, but this would have required several orders of
magnitude more data to approximate the n-variable PDFs.

Iterative Principal Component Selection

One way to remove (linear) correlations from the dataset is to use principal com-
ponent analysis (PCA), which maps the existing variables to the set of orthogonal
variables with maximum variance. After mapping the new variables can be written
as a weighted linear sum of the originals:

ṽj =
∑
v∈V

wivv (5.11)

where wiv are the weights of a linear mapping from the old to the new variable sets.
Note that the number of principal components found is not necessarily the same as
the number of variables in the original input space.

Unfortunately, including the entire input space in the PCA procedure exacerbates
problem (2); we require knowledge of the entire input space to assess the uncertain-
ties of each new variable.

To address these problems we developed a method, referred to here as iterative
principle component selection (IPCS) to find the fixed size set of orthogonal vari-
ables which maximises the mutual information while using as few input variables
as possible. To do so, we define an informal measure of the theoretical maximum
performance of a set of N variables {v0, . . . , vN} for calibrating target t as

P (V ) =

N∑
i=0

I(t; vi) (5.12)

The procedure to find the optimal N orthogonal variables using at mostM variables
from the original normalised variable set V is as follows

1. Calculate I(t; v) for each v ∈ V and rank from highest to lowest v0, v1, . . . .
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2. Select {v0 . . . vM−1}, as the basis set VB.

3. Perform PCA on VB to find the orthogonal variable set Ṽ and once again rank
according to I(t; ṽ). We take the N top variables and call this the baseline
orthogonal variable set Ṽbaseline = {ṽ0, . . . , ṽN−1}.

4. Define the baseline performance Pbaseline = P (Ṽbaseline).

5. Iterate over VB and remove each variable in turn, then compute Ṽ and P (Ṽ )

for each resulting input set. Take the reduced input set with largest P (Ṽ ) as
the new candidate set.

6. If P (Ṽcandidate) < (1 − ε)Pbaseline, then stop and, if it has been defined, take
Vopt as the set of orthogonal input variables. Otherwise, use Ṽbaseline.

7. Define the new optimal variable Vopt = {ṽ0, . . . , ṽN−1}, ṽi ∈ Ṽcandidate and
return to step 5.

This will find the basis of orthogonal variables that best preserves the total con-
tained information while minimising the number of original variables used. The
error parameter ε controls the maximum allowed reduction in the mutual informa-
tion, which is always checked relative to the initial performance Pbaseline. Note that
we do not calculate P for the non-orthogonal dataset, this is because the linear
correlations between the variables, which is removed by PCA, make the comparison
between pre and post PCA values meaningless. Additionally, we allow the basis set
to be larger than the input set. This makes it possible to deal with problems (1)
and (2) separately, network training time can be controlled by fixing N , and Monte-
Carlo uncertainties can be controlled by fixing M . Another positive feature of this
procedure is that the information contained in many original input variables can
be concentrated into a smaller number of final ones, reducing training time and the
requirements on network size. For this study, M and N were chosen to be 30 and
ten respectively; this choice was made primarily on the computing power available.

Final Input Sets

The two selection procedures proposed thus far, mutual information (MI) and IPCS,
give us adequate scope for examining the potential of multivariate calibrations, but
it is also interesting to look at how neural networks perform as modelling methods
when given the same information used in the current calibration. In total, five input
variable sets were picked for testing:
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Input Set Energy Inputs Mass Inputs

Simple pT , |η|, E pT , |η|, m

TA - pT , |η|, m, mTA

MI5 pT , |η|, E, τ3,wta, C2 W track, τ track1,wta , τ track2,wta , τ track3,wta , Ctrack2

MI10
pT , |η|, e, τ3,wta, C2, τ2,wta, W track, τ track1,wta , τ track2,wta , τ track3,wta , Ctrack2 ,

pT /m, Nconst, W , τ1,wta Ntrack, D2, mTA/m, W , τ1,wta

PA
|η|, pT , e, C2, pT /m, W track, τ track1,wta , W , ntrack, Ctrack2 , W ,

Nconst, Ctrack2 , m, mTA pT /m, m, A, C2, ECF2

Table 5.1: Summary of the input sets used for training the energy and mass cali-
bration networks.

SIMPLE - The existing calibration inputs, pT , |η| and either E or m;

TA - The existing calibration inputs plus mTA (mass response only);

MI5 - The top 5 variables ranked by mutual information;

MI10 - The top 10 variables ranked by mutual information;

IPCS - Variables picked by iterative principal component selection with M =

30, N = 10 and ε = 0.02.

The full variable sets are given in table 5.1.

The IPCS process was validated by measuring the performance P (V ) for each itera-
tion, shown in figure 5.6. As expected, the performance of the ten selected principle
components increased as less useful variables were excluded from the training set
and the relevant information became concentrated into a smaller number of prin-
cipal components. For the energy IPCS, the P increased as the first ten variables
were removed then plateaued as the next ten variables were removed. Once the
number of remaining variables fell below the number of principal components, the
performance began to fall rapidly. A similar picture was seen with the mass IPCS,
though with a significantly shorter plateau.

The final principal component variables can be understood by examining the weights
relating each component to the basis variables as shown in figure 5.7. Since all
the basis variables were normalised to O(1), the weights for each variable should
approximately reflect the importance of each basis variable to each component.
A few principal component variables correspond almost exactly to basis variables,
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Figure 5.6: The performance, P , of the top 10 principle components during each
step of the IPCS procedure for both mass and energy.

pT /m and m for the mass response and |η| for the energy response, but most are
combinations of multiple basis variables.

5.2.4 Training

The calibration networks were implemented in python using Google’s Tensorflow
library [121]. Two loss functions were used during training; for energy the weighted-
mean-squared-error (MSE) was used:

L(~v,RE , w) =
[w · (Ot(~v)−RE)]

2∑
w2

(5.13)

and for mass the weighted absolute error was used:

L(~v,Rm, w) =
|w · (Ot(~v)−Rm)|∑

w
(5.14)

each for a jet with substructure variables ~v, network output Ot(~v), true jet response
Rt and a jet weight, w, which was set to 1. Different loss functions were chosen
because MSE does not result in a calibrated response with R̂t = 1.0 when the
target distribution is strongly asymmetrical, as is the case for the mass response.
This is due to the out-sized impact of the jets in the tail of the response which have
very large squared-errors. Hence the mass calibration was trained with a linear loss
function to reduce the impact of such jets.
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Figure 5.7: The weights used in eqn. (5.11) to relate each basis variable to each
principle component for (a) the energy response and (b) the mass response. Each
plot shows the total weight assigned to each basis variable colour-coded by principle
component.
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To prevent over-fitting, dropout regularisation [122] with a frequency of 50% was
used. This gives each neuron within a network a 50% chance of being turned off
during each training step, preventing the network from developing a strong depen-
dence on a small group of highly coupled neurons.4 Multiple weighting schemes were
investigated but using no weighting at all was found to give the smallest validation
dataset error.

A ‘‘flat’’ weighting scheme, in which the jets were weighted to provide a flat pT
spectrum, was tried but this was found to degrade the results significantly. The
cause was believed to be large weights assigned to jets in certain pT regions whose
substructure distributions were not reflective of the typical jet population. Other
experiments with different weighting schemes showed little difference in overall per-
formance, and as a result, no weights were applied during training or profiling of
the networks. No sample weights (which would be needed to give a realistic pT
spectrum) were applied, as these would overly bias the network towards the low pT

region.

Network Architecture and Hyperparameter Optimisation

In addition to the optimisation algorithm and error function, there are many tun-
able parameters involved in training a network: the network architecture, length
of training, learning rate, and optimisation algorithm parameters. Though it is
possible to optimise these parameters automatically, it requires substantially more
computing power than was available [123] and as such the training hyperparameters
were chosen through trial and error for each network.

The networks used for this study were all of the same basic design, consisting of an
input layers, 1-5 hidden layers of ReLU[124] 5 neurons and a single output neuron
which simply added its inputs. The networks were fully-connected, in that each
layer receives an input from every neuron in the previous layer and sends an output
to every neuron in the next layer. The network architecture was ‘‘optimised’’ by
testing individual networks with different numbers of layers and neurons, two sets
of 8 networks were tested, labelled the ‘‘small’’ and ‘‘large’’ networks sets. Each set
consisted of a limited number of networks of varying depth and width, and the most
complex network in the small set was around the same size as the smallest network

4In fact, rather than just avoiding overfitting, dropout has also been observed to increase network
performance. An intuitive explanation for this is that the network approximates taking the average
of an ensemble of smaller networks.

5A RectiLinear Unit, which use the activation function f(x) = max(0, x)
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Label Architecture

S-1-50 50
S-1-100 100
S-1-200 200
S-2-50 50-50
S-2-100 100-100
S-3-50 50-50-50
S-3-100 100-100-100
S-3-300 300-200-100

(a) Small Network Set

Label Architecture

L-1-50 500
L-2-100 100-100
L-3-100 100-100-100
L-3-300 300-200-100
L-4-100 100-100-100-100
L-4-300 300-300-200-100
L-5-100 100-100-100-100-50
L-5-300 300-300-200-100-50

(b) Large Network Set

Table 5.2: The sets of network architectures used for testing. Each architecture
is represented as the number of ReLU nodes in each hidden layer, with the input-
connected layer on the furthest left and the output-connected layer on the furthest
right. Each network set is subdivided by the number of layers in the network and
each network is labelled by the total number of layers and the largest layer in the
network.

in the large set. The full list of network architectures is given in table 5.2. The
small network set was used for the Simple and TA input sets. The large network
set was used for the MI5, MI10 and IPCS input sets.

Each network was trained on 3 million jets for a minimum of 1000 epochs, where an
epoch is one cycle of training on each jet, in batches of 100,000 jets. The network
was trained using a back-propagation style algorithm where the error in the network
output for each jet was fed back into the network and the neuron weights updated
based on this error, the speed of the training was controlled by the learning rate,
which was set to 0.01. The back-propagation was performed using the Adam op-
timisation algorithm [125], which takes into account the momentum of the change
in neuron weights alongside the current errors. The only Adam optimiser param-
eter tuned was the β2 parameter, which controls the sensitivity of the training to
the momentum of neuron weight changes, this was found to perform well for most
networks with a value of 0.9.

5.3 Network Performance

After training, the performance metrics R̂, IQR(R), and IDR(R) were calculated
on a validation dataset of 1 million jets, selected via the same procedure as the
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Input Network Architecture Valid. Error R̂ IQR(R) IDR(R)

Uncalib - - - 0.969 0.025 0.051
Calib - - - 1.002 0.024 0.049
Simple S-3-300 300-200-100 851.8 1.002 0.023 0.048
TA - - - - -
MI5 L-2-100 100-100 874.0 1.003 0.025 0.053
MI10 L-2-100 100-100 886.4 1.001 0.024 0.049
IPCS L-2-100 100-100 855.1 1.003 0.023 0.048

(a) Energy

Input Network Architecture Valid. Error R̂ IQR(R) IDR(R)

Uncalib - - - 1.061 0.229 0.593
Calib - - - 1.039 0.129 0.383
Simple S-3-100 100-100-100 3.32e6 0.996 0.126 0.386
TA S-2-100 100-100 3.14e6 1.002 0.117 0.361
MI5 L-3-300 300-200-100 3.12e6 0.989 0.116 0.338
MI10 L-3-300 300-200-100 2.77e6 0.995 0.098 0.284
IPCS L-3-300 300-200-100 2.66e6 0.997 0.095 0.274

(b) Mass

Table 5.3: The calibrated jet scale and resolution for the best network in each input
set for both (a) energy and (b) mass. The results for uncalibrated and standard
calibrated jets are given for comparison. The ‘‘best’’ overall network for each of
energy and mass is highlighted in bold.

training dataset. The ‘‘best’’ network was chosen as the one with smallest total
error on this dataset, using the respective MSE and absolute error functions for
energy and mass. Figure 5.21 shows an overview of the results for each network and
tables 5.3a and 5.3b show more detailed results for the best network in each input
set for the energy and mass calibrations respectively. In the interest of brevity, the
rest of this analysis will be confined solely to the best performing network for each
of energy and mass. More extensive results are presented in appendix A.

Energy Calibration Performance

For energy, it was found that performance was nearly identical both between each
network and between the calibration networks and the standard calibration. The
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Figure 5.8: Summary plots for the full range of energy (a) and mass (b) networks
coloured by the network input. The median response and IQR of each network’s
calibration is shown by each point and its error bar. The uncalibrated and standard
calibration results are shown on the left of each plot in black. Note that the energy
calibration performance appears highly similar between each input type but the mass
calibration shows a steady improvement in IQR as the number of inputs increases.
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Figure 5.9: The energy and mass calibration network’s performance on the validation
dataset. Figures (a) and (c) show the distribution of the jet energy and mass
response before calibration and the output distribution of the trained network on
the validation dataset. (b) and (d) show the uncalibrated response alongside the
original calibration and the neural-network calibrated response.
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network with lowest validation error was network S-3-300 using the Simple input
set. It can be seen in figure 5.9 that the response distribution is very close to the
standard calibration but has a slightly taller peak. The calibration was found to
have closure of < 1% in all bins of pT , E and |η|; with a resolution approximately
equal to that of the standard calibration in each bin as shown in figure 5.10.

The fact that no significant improvement was seen for the Simple input set as net-
work size increased suggests that the smallest network captured most of the informa-
tion contained within the input set. This can be seen in figure 5.11 which shows an
almost complete removal of any correlation with the mean jet response distribution
as a function of each input variable. The lack of any improvement in performance
from the addition of extra input variables indicates that the tested jet substructure
variables may not contain any further significant information about the jet energy
response.

One concern raised by figure 5.11 is the presence of structures in the mean response
when plotted against pT , and to a lesser extent E. These are caused by similar
structures in the input pT distribution, which would ordinarily be corrected by the
sample and event weighting of the Pythia QCD. The validation done in §5.3.1 and
§5.3.2 shows that it does not have a significant impact on performance in other
topologies but the data validation in 5.3.3 indicates more significant problems with
these structures.

Mass Calibration Performance

The story is very different for the mass calibration network. Here we see multiple
ways in which the network calibration is outperforming the standard calibration.
Notably, the Simple network performs nearly identically to the calibrated combined
mass despite having the disadvantage of not using mTA as an input. When mTA is
added as an input in the TA dataset, we see a small improvement of around 8% in
the resolution relative to the standard calibration. It seems reasonable to assume
that this reflects a genuine improvement in the calibration procedure, at least for
the proposed measures of quality.

The MI10 and IPCS datasets provide an even more substantial improvement. Both
the resolution and spread of the best performing IPCS network were 26% smaller
than the standard calibration, and the results were similar for all IPCS networks.
The best MI10 network came very close to this figure, showing a 24% improvement
in resolution. The mass network was profiled in the same fashion as the energy
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Figure 5.10: The closure of the energy calibration network and the original cali-
brations, in bins of each input variable. The blue and green solid lines show the
uncalibrated and original calibration’s R̂E . The IQR(RE) for each is indicated by
the corresponding shaded area. The black line and errors bars correspond to the
calibration network’s RE and IQR(RE) respectively. The dashed line indicates a
1% distance from unity.
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Figure 5.11: Response profiles for each input variable to the energy calibration
network. Each set of three figures shows, from right to left, the median of the jet
response distribution, the median of the neural network output, and the median of
the network calibrated jet response as a function of input variable, t. In a perfect
calibration, the left-most and centre plot would be identical, with the right-most
plot showing a flat line centred at 1.
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network, focusing on the response to individual inputs, but despite using the IPCS
input set, the network was profiled in terms of its raw inputs. Since there are a
considerable number of inputs to this network, only the closure plots are presented
in full. A complete overview of the results is presented in appendix A.2.

Figures 5.12-5.13 show the network closure as a function of its input variables, this
allows us to observe the calibration performance in specific regions of the input
space and identify any areas where the performance may be significantly improved
(or degraded). From figure 5.13a it is easy to see that the improvement in mass
resolution is across the whole range tested, but we can also find regions of phase
space where the performance improvements are much greater. The resolution is
notably improved at low values of ntrack, C2, ECF2, and W and the substantial
variations at large values of pT /m have been removed. Of the inputs, only the
angularity response seems to see no significant improvement.

A subset of the response profiles are shown in figure 5.14. It is obvious from the
post-calibration plots that the network is correctly learning the input distributions.

5.3.1 Generator Dependence

Since the networks were trained exclusively on a Pythia dataset, it is reasonable to
assume that there may be some unwanted dependence on quirks of Pythia’s shower
and hadronisation models, rather than the actual detector physics. To attempt to
quantify this effect, the network was tested on 1 million jets generated using the
Herwig generator that pass the same cuts as applied to the original training dataset.
Given the calibration should be most sensitive to the detector simulation rather than
the MC generation, a good calibration should show only minor differences between
generators. The performance of both energy and mass calibration networks on the
Herwig dataset is shown in table 5.4.

For energy, the network was found to have R̂NN
E = 1.002 and IQR(RNN

E ) = 0.023

exactly equal to that obtained using the pythia validation set and closure for the
Herwig dataset is shown in figure 5.15. Several small differences are observed but
any discrepancies in closure after calibration correspond to discrepancies in the
underlying uncalibrated dataset as would be expected.

The mass calibration network was also tested and while the difference in performance
was small there was clearly some impact. The resolution and spread measured in
the Herwig sample were IQR(RNN

m ) = 0.113 and IDR(RNN
m ) = 0.341, a 19% and
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Figure 5.12: The closure of the mass calibration network and standard calibration
in bins of each input variable. The dashed line indicates a 5% difference from unity.
Continued in figure 5.13.
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Figure 5.13: The closure of the mass calibration network and standard calibration
in bins of each input variable. The dashed line indicates a 5% difference from unity.
Continued from figure 5.12.
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Figure 5.14: Response profiles for a subset of the input variables to the mass calibra-
tion network. For each variable the plots show (from left to right) the mean response,
the mean calibration output, and the mean calibrated response as a function of that
variable. The significant flattening of each response function post-calibration indi-
cates much of the non-stochastic variation in the mass response has been removed.
The large error bars seen at the ends of the Ctrack2 and pT /m distribution is due to a
lack of statistics in those regions. Plots for the full input set are shown in appendix
A.

97



ER

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

# 
Je

ts

0

20

40

60

80

100

120

310×

E
uncalibR

E
calibR

E
NNR

 - HerwigE
NNR

Model: 300r200r100r
#Jets = 1000000
No weights

=0.969RTarget: 
=0.025Rσ

=1.002ROld Calib: 
=0.024Rσ

=1.002RNN Calib: 
=0.023Rσ

=1.002RHerwig NN Calib 
=0.023Rσ

(a)

T
p

0.5 1 1.5 2 2.5 3
]

N
N

/O
E

E
[R

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Pythia NN Calib
Herwig NN Calib
Pythia Uncalib.
Herwig Uncalib.

(b) pT

E

0.5 1 1.5 2 2.5 3 3.5 4

]
N

N
/O

E
E

[R

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Pythia NN Calib
Herwig NN Calib
Pythia Uncalib.
Herwig Uncalib.

(c) E

 |η| 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

]
N

N
/O

E
E

[R

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Pythia NN Calib
Herwig NN Calib
Pythia Uncalib.
Herwig Uncalib.

(d) |η|

Figure 5.15: A comparison of the energy calibration network performance when
tested on jets from the Herwig QCD dataset and jets from the Pythia QCD valida-
tion set. Figure (a) shows the response for each dataset and the (b)-(d) show the
closure in each input variable. Performance is found to be extremely similar in both
datasets.
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Figure 5.16: A comparison of the mass calibration network performance when tested
on jets from the Herwig QCD dataset and the Pythia QCD validation set. (a) shows
the response for each dataset and the other plots show the closure in each input
variable. Performance is found to be extremely similar between both datasets.

24% increase respectively. However, this must be taken in the context of the Herwig
sample, in which the uncalibrated resolution and spread are 29% and 24% worse
than that of the Pythia sample. The degradation in performance on Herwig samples
is approximately equal to that experienced by the standard mass calibration. This
suggests that any difference in performance is not due to the network learning quirks
of the Pythia generator. The closure plots in figure 5.16 and the appendix show that
the bin-by-bin differences between Herwig and Pythia are negligible.

5.3.2 Topology Dependence

Since we are considering jet substructure during this calibration procedure it is also
useful to consider non-QCD jets from boosted vector-boson, top and Higgs boson
decays. One of the theoretical advantages of a multi-variate calibration procedure is
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Figure 5.17: A comparison of the neural-network calibrated jet response for Pythia
QCD, WZ, tt̄ and hh jets for the energy (a) and mass (b) calibration networks. A
slight shift in the scale is observed for energy and the mass resolution is found to
be slightly better for jets from heavy objets decays.

Energy Calibration Mass Calibration
Dataset R̂ IQR(R) IDR(R) R̂ IQR(R) IDR(R)

Pythia 1.002 0.023 0.048 0.997 0.095 0.274
Herwig 1.002 0.021 0.043 1.001 0.113 0.341
WZ 1.010 0.025 0.052 1.002 0.062 0.129
tt̄ 1.011 0.031 0.064 0.995 0.056 0.123
hh 1.013 0.029 0.061 0.008 0.056 0.121

Table 5.4: The performance of the energy and mass calibration networks across all
datasets.

that the differences between these types of jets should be captured by the substruc-
ture information fed into the neural network. To test this, the response and closure
was calculated for jets from WZ, tt̄, and hh datasets that had passed the selection
detailed in §5.2.2. The results for both networks for all toplogies are shown in table
5.4.

For the chosen energy calibration, much of this supposed advantage is lost due to
not using additional inputs, and indeed this is reflected in the validation plots.
While figure 5.17 does not show a significant difference in the response, figures 5.18,
show that the jet energy scale is typically around 1% too high for these jets. This
discrepancy is also observed in the standard jet calibration shown in figure 5.19 and
hence is likely a difference in the underlying data.

The mass calibration fares substantially better and the mass scale remains within
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1% of unity. However the mass resolution is found to be topology-dependent. The
resolution for vector-boson, top and higgs jets is found to be ∼ 6%, 2/3rds that of
the QCD jets. For the top and higgs jets this is consistent or only slightly better than
the standard mass calibration, however, it is a 26% improvement in the resolution
of vector-boson jets. Figure 5.20 shows the behaviour of the mass calibration when
applied to these topologies.

5.3.3 Data Validation

The calibration networks’ reliance on simulated data for both training and validation
raises the possibility that it may be learning unrelated elements of the simulation
process rather than a correct calibration. Unfortunately, no ‘‘truth’’ variables are
available in data so we cannot make straightforward measurements of the calibra-
tion’s performance but it is still possible to validate the network performance in
data by ensuring that its behaviour is comparable to simulation.6

Neural networks learn multivariate correlations between their inputs and target
variable, which makes their behaviour difficult to understand. We attempt to asses
both the energy and mass networks by examining the mean output of each as a
function of their inputs, target variable, and pT and η (when these are not already
used as inputs). The logic behind this is as follows, if the mean network output,
as a function of a single input variable, is consistent between two data samples
then we can be confident that the correlations learnt by the network between all of
the network’s other inputs are, on average, consistent between the two samples in
each bin of that initial variable. By checking this for each network input it can be
proven that the correlations learnt by the network are also present in data, since
non-matching correlations would give systematic disagreements between data and
simulation. Note that this is not an assertion that the network output is correct, it is
entirely possibly for the correlations between inputs to be correct but the correlation
between those inputs and the network target (i.e. the actual correction factor back
to a truth variable) to differ between data and simulation.

This is not a reversible argument; disagreement between the average network output
in data and simulation is not, in-itself, proof of mismodelling in the network. Differ-
ences in the input data distributions can also lead to different outputs. To minimise
this we have tried to ensure that the data and Pythia QCD samples match as closely

6That is not to say more precise measurements of the true jet energy or mass is not possible,γ+
j events, multijet balancing, and semi-leptonic tt̄ have all be used to attempt to measure the
performance of MC-derived calibrations [126] but these are beyond the scope of this study.
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Figure 5.18: The closure of the energy response before and after the neural network
calibration is applied for vector-boson, top and higgs jet samples in comparison to
the Pythia QCD sample. The closure is shown as a function of pT in (a)-(c) and |η|
in (d)-(f).
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Figure 5.19: The closure of the neural-network and standard calibrations in bins of
pT for WZ, tt̄ and hh samples. A systematic over-correction of around 1% is seen
for each dataset in both the standard and neural network calibrations.
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Figure 5.20: The closure of the mass response before and after the neural network
calibration is applied for vector-boson, top and higgs jet samples in comparison to
the Pythia QCD sample. The closure is shown as a function of W track in (a)-(c)
and m in (d)-(f). The closure as a function of the other network inputs is shown in
appendix in figures A.7-A.12.
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as possible by weighting the Pythia QCD sample to a data-like pT distribution. Af-
ter reweighting there is excellent agreement in pT and mass between the data and
simulated samples but there are substantial differences in the the η and energy dis-
tributions. The increasing discrepancy at high energy is due to the cut pT < 3000,
which becomes angularly dependent in energy (note, this is the full energy, not ET )
as shown in figure 5.22. Hence the deficit of MC events at high |η| is reflected as a
similar deficit at high energy.

One additional observation about the reweighting process is that the reweighted
Pythia sample is itself a validation sample. Any bias due to the frequency of jet
behaviours within the training sample would be manifest in both the reweighted
Pythia QCD and the data sample.

Figure 5.23 compares the data and MC distributions of all energy inputs, and the
energy calibration network outputs as a function of each variable. The agreement
between data and simulation as a function of all inputs is excellent which indicates
the network correctly learnt physical correlations between its input variables. Un-
fortunately, examining the calibrated pT distribution raises some concerns. There
are pT -dependent structures in the network output, which appear in both simulation
and data, that cause similar structures to appear in the calibrated pT distribution.
These are also apparent in the network output as a function of the jet energy. The
structures appear to occur at the boundaries of the QCD jet slices which formed
the training and validation set, suggesting that the uneven nature of the training
sample has caused problems with the network.

It is likely the case that the network has become biased towards jet behaviours which
are overrepresented on the edges of the Pythia sample’s pT slices but suppressed in
data. When sample and MC event weights were applied to the Pythia validation
sample this caused the appearance of non-physical structures in the network output.
The matching impact on MC and data tells us that, despite the network having
correctly learnt the correlations between inputs variables, the energy calibration
network provides incorrect values for the energy correction factor.

This was not observed in the previous validation samples as both training and
validation samples would see these type of jets with the same frequency. Any future
work on calibrating energy using these networks would need to address how to
remove these structures without suffering the loss in network capability seen when
flattening the input pT distribution.

No such structures are seen in the mass calibration network, for which there are
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Figure 5.21: Network output and the pre and post-calibration mass distribution
in data and MC. Network output agreement as a function of the target variable
(the ratios shown in (c)-(d)) is excellent for both energy and mass networks but the
differences in the data and MC energy distribution causes the shape difference in
the total network output shown in plot (a). Structures have been created in the
energy distribution (c) post-calibration for both simulation and data but none are
observed in the mass calibration.
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Figure 5.22: The η dependence of jet energy in MC and data. Good agreement is
seen between samples.

several possible explanations. Firstly, the mass network has the same number of
neurons but a larger number of inputs, making overtraining more difficult. Addi-
tionally, jets on the edge of a pT slice (ie. reconstructed with a pT relatively far from
their true pT ) are the result of actual physical behaviour which can likely be at least
partially captured by their substructure. Since the mass network uses substructure
information this type of jet behaviour could be captured by the large input parame-
ter space, correctly accounting for this without impacting other types of jet. Finally,
the mass distribution is less affected by the pT slicing than the energy distribution.
All three of these factors are likely involved in the full answer but further study
would be needed to know more. At the very least, the lack of structures associated
with jet pT , shown in figure 5.24, gives confidence that the mass calibration network
does not exhibit evidence of overtraining on the weighting (or lack of) of the training
sample.

Figures 5.25 - 5.28 show the variable and network output distributions for the mass
network’s inputs. The agreement between variable distributions in data and MC is
typically excellent, with the exception of ntrack, which shows a small tendency to
lower values in data than in simulation (this is studied more extensively in §7.6.4
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Figure 5.23: The plots on the left show a comparison of each energy calibration
network input variable in the data and MC samples. The right plots show the
calibration network output as a function of these variables. Note that even when
the variable distributions differ significantly between data and MC the network
output is highly consistent, with differences in mean ONN smaller than 1% across
the whole range of all variables.
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Figure 5.24: The data/MC distributions and mass calibration network output as
a function of the jet pT and η. Note that neither of these variables are inputs to
the network so all effects of the calibration are due to their correlations with other
network inputs. Good agreement is observed in the pT distribution but the MC
is too central in η. Despite this, good agreement is achieved between the network
output in MC and data as a function of both variables.
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and found to be a difference of 1 track (±3%) between data and MC), and in low
values of C2, Ctrack2 , and pT /m, where discrepancies of up to 20% are observed.
Fortunately, these differences are away from the bulk of each distribution. Much
smaller differences are seen in the network output. Differences between data and
MC in the median network output as a function of each variable are typically smaller
than 1%, including in regions where much larger discrepancies are seen between the
input distributions. The largest differences seen are in low regions of Ctrack2 where
there is a difference of around 5% between the data and MC sample network output.

Pileup Depedendence

The jet trimming procedure aims to minimise the effect of pileup on jet variables and,
as shown by figure 5.4(b), is reasonably successful at this. However, it is possible
that some of the input variables used may still have some residual dependence on
pileup. This is particularly important for this study as the pileup distribution in data
was higher than the in the MC samples as shown in figure 5.29. The mean network
output as a function of average pileup was plotted in figure 5.30 and both energy
and mass calibration networks were found to have no significant pileup dependence.

5.4 Conclusions

The primary aims of this study were to provide an indication of whether a neural-
network-based large-R jet calibration is feasible, and to explore systematic methods
for deriving calibrations using jet substructure. To produce the final two networks,
a total of 72 networks were trained from 15 network architectures, and nine input
sets.

Two methods of selecting input variables were proposed as ways to systematise
variable selection from the extensive library of substructure variables: mutual infor-
mation ranking and the iterative principal component selection algorithm (IPCS).
For the mass calibration, both of these proved successful. Figure 5.31 gives an idea
of how much the network performance varied within each dataset and it is interest-
ing to note that the IPCS algorithm consistently out-performed the MI10 variables,
with only one non-IPCS network coming close, despite being trained on the same
network architectures and with the same number of inputs.

The performance of energy-calibrating-networks was at best equal to, and usually
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Figure 5.25: The plots on the left show a comparison of the Widthtrack, Width, and
ntrack mass calibration network input variables in the data and MC samples. The
right plots show the calibration network output as a function of these variables. The
data/MC distributions all show good agreement with the sole exception of ntrack.
Network output agrees to < 1% for all variables.
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Figure 5.26: The plots on the left show a comparison of the pT /m, m, and Ctrack2

mass calibration network input variables in the data and MC samples. The right
plots show the calibration network output as a function of these variables. The
data/MC distributions show generally good agreement except for at low values of
Ctrack2 and pT /m. Network output typically agrees between MC and simulation to
< 1% with the largest divergence of ∼ 5% for Ctrack2 < 0.02.
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Figure 5.27: The plots on the left show a comparison of the C2, ECF2, and τ track21,wta

mass calibration network input variables in data and MC. The right-hand-side plots
show the calibration network output as a function of these variables. The data/MC
distributions show generally good agreement except for at low values of C2. Network
output agrees between MC and simulation to < 1%
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Figure 5.28: The plot on the left shows a comparison of the angularity mass cali-
bration network input variable in data and MC. The right-hand-side plot shows the
calibration network output as a function of these variables. Both input and network
output distributions show good agreement.
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Figure 5.29: 〈µ〉 distribution in the Pythia QCD and 2016 data samples.
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Figure 5.30: Mean energy and mass calibration network output as function of 〈µ〉.
Behaviour is similar between data and simulation and no significant dependence on
〈µ〉 is observed.

inferior to, the current energy calibration. The lack of impact from additional
variables or using larger networks suggests that our current calibration captures
as much information about the jet energy response as is available using standard
substructure variables. In addition, structures encoding the pT slices of the samples
used for training are observed in the network output, causing non-physical structures
in the energy and pT distributions when applied to data. The leaves the energy
calibration network derived unsuitable for use in analysis. Both of these problems
could be fixed, however, and this does not indicate improvement could not be made.
For example, a convolutional approach using the jet constituents as inputs, similar
to what has been done for top-tagging [127] could feasibly provide a better result
provided sample-weighting errors were addressed.

Fortunately, the mass calibration proved more fruitful and showed that it is possible
to improve on the current calibration using neural network methods. Using the IPCS
algorithm a network was found which gave a 26% improvement to the resolution for
both QCD and vector-boson-initiated jets while preserving or slightly increasing
performance in all other datasets. Identifying the exact cause of this additional
calibration power would be an interesting exercise, if it is coming from a single
variable or small set of variables, then it should be feasible to train several networks
with one or two variables removed and measure the change in performance. If it
could be shown to be the result of information spread across multiple variables,
then that would be a strong incentive to pursue a multivariate approach for future
calibrations.

Both mass and energy networks were validated against data collected by ATLAS
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during 2016 and their output was found to be consistent between data and MC to
the 1% level in almost all regions studied. Despite the structures observed in the
energy calibration, the networks behaved similarly for both data and MC indicat-
ing that the cross-variable correlations used are well-modelled in MC. The largest
discrepancy observed was in the mass calibration network, where for low values of
Ctrack2 a difference in 〈ONN〉 of 5% was found, though this was confined to an edge
of the distribution. Combined with the validation performed on Herwig QCD sam-
ples, this strongly suggests that the mass network learnt general correlations rather
than Pythia specific jet fragmentation/hadronisation or subtleties of the GEANT4
simulation used to model the detector for both Pythia and Herwig samples. The
data/MC agreement for the energy network suggests that this is still true in the
case of the energy network, the structures were the result of the network becoming
biased towards classes of jet behaviour which occur on the edges of jet sample pT
slices and were suppressed when sample and MC event weighting was applied to the
Pythia sample.

It should be stressed that the data validation performed here was only sufficient to
establish the (non-)existence of structural biases within the network output and is
not a guarantee of a correct calibration on data. This study also did not consider
uncertainties on the calibration results in any form. The use of tracking variables
within the calibration makes the use of the double-ratio [89] method for measuring
the uncertainties in data impossible; and while the jet energy scale, jet energy
resolution and jet mass scale have been measured in-situ [128] this has not yet been
shown for the jet mass resolution uncertainties. Any further extension to this study
should focus on techniques for making these in-situ evaluations of the uncertainties.

On a final note, it would be interesting to apply the same techniques used in this
study to variables which are not currently calibrated in analyses. The variable
selection and network training procedure is extremely general and could easily be
applied to D2, τ21 or other similar jet substructure variables.
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Figure 5.31: A box plot showing the median and interquartile range of the trained
networks’ IQR(R) for each input set tried during the mass calibration. The green
line shows the IQR(R) of the existing calibration.
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Chapter 6

Triggering on Large-Radius Jets

Even a perfect jet calibration is of no use if interesting jet events are missed by the
trigger system. At the beginning of run-2, there were two approaches to triggering
on large-radius jets within ATLAS, distinguished by their inputs to the jet-finding
process. The first case was to use topoclusters, in a similar fashion to the offline
jet reconstruction; the second was to run the jet-finding on pre-clustered and cali-
brated small-radius jets. This second method was initially favoured, as it seemed to
provide many advantages such as providing calibrated jets without having to derive
a separate online large-R jet calibration, and a significantly lower computation load
due to the smaller number of inputs. This chapter begins with an evaluation of the
efficiency of each type of trigger during ATLAS’ 2015 run.

The increase in instantaneous luminosity provided by the LHC over the course of
run-2 is causing additional challenges for the large-R jet trigger. When ungroomed,
this type of jet is particularly sensitive to the effect of pileup due to its large area.
Hence the jet trigger rate for a fixed energy threshold has increased far faster than
the collaboration’s capacity to store these collisions, forcing the energy threshold
to increase. This was addressed in 2016 by the decision to focus the trigger on
capturing decays from heavy particles and add jet trimming and a mass cut to the
standard large-R jet trigger. Unfortunately, the further rate increases in 2017 and
2018 make even greater demands on the trigger. This chapter presents a feasibility
study for an online ‘‘anti-QCD’’ tagger using jet substructure, and the possibility
of using this to achieve a more sustainable trigger rate at current (or lower) energy
thresholds.
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Chain Part Description
a10 Constructed from topo clusters using the anti-kT , R = 1.0 algorithm.
a10r Constructed from R = 0.4 anti-kT jets using the anti-kT , R = 1.0

algorithm.
lcw ‘‘Local Cluster Weighted’’ - Topoclusters used for input are reweighted

from the EM to the hadronic energy scale.
sub An area-based pileup subtraction is applied to each jet.

Table 6.1: Some common parts of jet trigger chain names and their meanings.

6.0.1 Jet Trigger Chain Definitions

ATLAS trigger chain names are self-descriptive but somewhat unintelligible without
definition. Since these chains names will be used throught this chapter a short
introduction is in order. A standard jet trigger name can be broken down into four
components; take, for example, HLT_j420_a10_lcw_sub_L1J100:

• HLT : This is a high level trigger algorithm (the alternative would be L1).

• j420 : Jet trigger with energy threshold of 420 GeV.

• a10 : Jets are constructed with the anti-kT algorithm with R = 1.0. Small-R
anti-kT jets (R = 0.4) are the default and are used if this term is not present.

• lcw_sub : Any further jet properties; in this case, it lists applied calibrations.

• L1J100 : The L1 trigger which seeds a HLT chain.

All triggers considered by this chapter are HLT jet triggers seeded by an L1 jet
trigger. The additional chain name parts encountered are described in table 6.1.

6.1 Large-Radius Jet Trigger Performance in 2015

As part of a larger paper on the 2015 ATLAS trigger performance [19], a study was
made of the performance of the large-R jet trigger chains that were live during 2015.
These chains were:

• HLT_j360_a10_lcw_sub_L1J100,

• HLT_j360_a10_sub_L1J100,

• HLT_j360_a10r_L1J100.
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Figure 6.1: The efficiency of the trigger combination HLT_j110 +
HLT_j360_a10r_L1J100 with respect to requiring just HLT_j360_a10r_L1J100,
measured in QCD multijet MC.

The turn-on behaviour of each trigger was measured in data and evaluated as a func-
tion of various jet variables for QCD, W and top-like jet topologies. The behaviour
of L1_J100 as a seed for large-R jet triggers was also examined.

6.1.1 Baseline

During the 2015 run, there was no lower threshold but prescaled large-R jet trigger
available against which to measure the unprescaled large-R jet triggers. Instead, the
efficiency was measured with respect to a set of lower threshold small-R triggers.
The logical OR of the triggers HLT_j15, HLT_j25, HLT_j35, HLT_j55, HLT_j85,
and HLT_j110, was used, with HLT_j110 chosen as the upper limit to preserve
100% efficiency with respect to the 360 GeV large-R jet trigger. The OR of the
triggers is used to compensate for the loss of statistics due to trigger prescales.
Figure 6.1 shows that in MC, in which prescales were not applied, all events which
passed the HLT_j360_a10r_L1J100 trigger also passed the HLT_j110 trigger.

The full dataset collected during the 2015 pp run was used for the efficiency measure-
ment, events were considered if they met the following preselection requirements:

• Pass the good runs list selection. We only consider lumi-blocks from runs
where the detector state was classified as ‘‘All-Good’’, defined by the GRL:
data15_13TeV.periodAllYear_DetStatus-v73-pro19-08_DQDefects-00-01-02
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_PHYS_StandardGRL_All_Good.xml

• Pass event cleaning cuts, which remove events that were incomplete or with
bad LAr or Tile data quality [119].

• ≥ 1 large-R and ≥ 1 small-R offline jets with pT greater than 200 GeV and 20
GeV respectively.

• Pass jet cleaning cuts, removing events with a small-R jet with pT > 20 GeV
labelled ‘‘BadLoose’’ [116].

When measuring the L1 trigger efficiency, the baseline dataset was all 2015 data
passing this selection.

6.1.2 Efficiency Measurements

The trigger efficiency was measured as a function of the offline leading jet pT (figure
6.2) and it was found that the 99.95% efficiency plateaus were 380 GeV, 480 GeV,
and 500 GeV for HLT_j360_a10_lcw_sub_L1J100, HLT_j360_a10_sub_L1J100,
and HLT_j360_a10r_L1J100 respectively. However, full efficiency is not reached
due to losses in the level 1 trigger, which continue to around 700 GeV. The L1 jet
trigger is a sliding window algorithm applied to the sum of calorimeter tower energies
in η × φ-space that searches for energy maxima in 0.2 × 0.2 windows. Hence, it is
not unexpected that a small number of jets with evenly distributed energy would
fail this cut.

The poor performance of the reclustered trigger was unexpected however as previous
analysis specific measurements had placed its turn-on plateau much lower (see §7).

The impact of several other variables was investigated to see whether any were
strongly correlated with each trigger’s efficiency, the jet η, φ,mJ and D2 were con-
sidered. Figure 6.3 shows that a strong dependence on the jet mass and D2 variables
were observed for all large-R trigger algorithms.

Going further, the jet sample was divided into three regions, W/Z tagged, top
tagged, and no tag, by running the 2015 ATLAS W/Z and top tagging algorithms on
the offline jets matched to the trigger jets considered. The trigger efficiency was then
measured for each sample (figure 6.5). Here it was found that for data passing the
W/Z tag, the performance of the reclustered trigger significantly improved, no slow
plateau is observed, and its performance is equal to or better than the lcw-calibrated
non-reclustered trigger. This matches both the previously seen dependence on D2
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than the lcw-scale non-reclustered trigger but is much slower to reach the efficiency
plateau.
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Figure 6.3: The turn on of each large-R trigger as a function of the leading jet η
(a), φ (b), mass (c), and D2 (d), strong biases in the performance are seen in both
mass and D2 but the acceptance is relatively flat in φ and η for |η| < 2.0.
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Figure 6.4: The turn on of L1_J100 as a function of the leading jet η (a), φ (b),
mass (c), and D2 (d). Again, strong biases in the performance are seen in both mass
and D2 but the acceptance is relatively flat in φ and η for |η| < 2.0.
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Figure 6.5: The turn-on of the L1_J100 trigger and each large-R trigger as a function
of leading jet pT for untagged (a), W/Z-tagged (b) and top-tagged (c) data samples.

and the X → V V → JJ analysis’ trigger measurements. The large effect is likely
because a low pT QCD jet’s energy is typically diffuse around the jet’s area, and
the reclustering process is not likely to pick up all of the small-R jets containing
the offline large-R jets energy. However, low-pT hadronic W/Z decays will usually
be fully captured in two small-R jets which are combined during the reclustering
process.

6.1.3 Conclusion

The fully-calibrated topocluster-based trigger chain HLT_j360_a10_lcw_sub_L1J100
was clearly the best performing of the three high-level trigger chains examined,
obtaining 100% efficiency at pT,J ≈ 380 GeV, well ahead of the other two trig-
gers. For QCD-like jets the reclustered trigger clearly performed less well, despite
a similar initial turn-on, however it performed nearly identically to the topocluster
trigger for jets passing a W/Z boson selection. The EM-scale topocluster trigger,
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HLT_j360_a10_sub_L1J100 performed worse than the other two triggers for all
samples.

Some inefficiencies at high pT were observed in all high level triggers, these also
appear to be present in the L1 trigger so are likely the result of a failure to run the
chain at all when certain jet topologies occur. These inefficiencies are not seen for
W/Z or top tagged jets so are not likely to effect any analyses making use of the
triggers.

6.2 An ‘‘Anti-QCD’’ Jet Trigger

As the instantaneous luminosity received by ATLAS has increased, the requirements
placed on the trigger system have become substantially tighter. The rising data rate
means that trigger thresholds must increase to keep the trigger rate below 1kHz.
Unfortunately, this can have a direct impact on analyses which no longer have access
to events with jets below the increased trigger threshold. This has been a significant
problem for the large-R jet trigger, which, due to the large area of the jets, is
particularly susceptible to increases in pileup. The higher rate forced the minimum
trigger threshold from 360 GeV in 2015 to 420 GeV in 2016 and, unmodified, would
have forced the trigger substantially higher in 2017.

A saving grace is that the large-R jet trigger is primarily used for collecting hadronically-
decaying heavy objects, i.e. the W/Z/H/top, but quark and gluon jets dominate its
rate. Since identification of these objects has been well studied offline, it was possi-
ble to apply similar restrictions at trigger level to reduce the rate without affecting
analyses making use of the trigger [129].

The 2017 trigger has been designed to make use of two offline techniques, jet trim-
ming, reducing the pileup contributions to the jet energy and mass, and a minimum
requirement on the jet mass. Both of these are applied more loosely than their offline
equivalents, the trimming has a 4% threshold rather than 5%, and the mass cut is
placed at 30 GeV, but this still substantially reduced the rate. The single large-R
jet trigger threshold was reduced to 395 GeV, but the total rate was maintained.

Additionally, applying these selection criteria makes it useful to consider dijet trig-
gers. These were not especially helpful for the simple jet trigger, as most events
with a single hard jet will possess a second with a similar energy scale. In simu-
lation applying a 2nd jet requirement would typically reduce the rate by around
10%. However, the mass of the two jets should be relatively uncorrelated, and it
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Figure 6.6: A comparison of the ‘‘equal rate’’ turn-on curves for single jet (a) and
dijet (b) triggers. The red curve is the 2016 large-R jet trigger, the blue curve a large-
R trigger using trimmed jets, and the green curve is a trigger requiring trimmed jets
with a mass greater than 30 GeV. The threshold for each type of trigger is chosen
to give a total rate equal to that of the 2016 trigger. Figures are public plots from
[129].

was found that a significant fraction of events could be removed by requiring at least
two jets to pass the trigger requirements. For 2017 there is a specialised large-R
dijet trigger with a minimum threshold of 330 GeV.

Unfortunately, from a trigger perspective at least, the LHC and ATLAS do not
stand still and are planning on delivering further increases to the event rate in 2018,
which would again require significant increases to the trigger thresholds, even with
the new trimming and mass requirements. We performed a proof-of-concept study
into the possibility of applying further substructure selection in the jet trigger to
try and maintain (or even lower) the current thresholds.

6.2.1 Datasets

Three datasets were used in this study to measure the efficiency for QCD, vector
boson and top jets. Data passing the jet trigger represents a relatively pure sample
of QCD jets but MC was required for the W/Z and top jets. The samples used
were:

• Data: 1.6fb−1 of data collected during period J of the 2015 data-taking.

• Vector Boson: A Pythia8 W ′ →WZ → qqqq sample with mW ′ = 1 TeV.

• Top: A Pythia8 Z ′ → tt̄ sample with hadronically decaying tops. mZ′ = 1
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TeV.

Both MC samples used the NNPDF23LO PDF set [114] and A14 tune [113]. For
the data sample, events are required to pass a GRL requirement and data quality
cuts. For all samples, at least 1 offline large-R jet with pT > 300 GeV, m > 50 GeV
and |η| < 2.0 is required and 1 online jet with |η| < 2.8.

6.2.2 QCD-Tagging

The large-R jet trigger is used for a variety of physics objects with substantial
differences in their internal structure, e.g. a 2-prong W decay vs a 3-prong top
decay. As such, what is required for a trigger used for both is an ‘‘Anti-QCD’’
tagger, which is quite a different problem than those solved by the existing taggers.
The selection is further constrained due to being run at trigger level. Firstly, the
signal efficiency must remain as high as possible as any events missed by the trigger
are gone permanently. Secondly, it must be optimised for good background rejection
at a 95% signal efficiency rather than the 50% or even 25% efficiency of the offline
taggers. Finally, it must be simple enough to run on the trigger without substantially
slowing down the existing jet trigger algorithms.

The initial approach was to try and find an optimal 1D or 2D cut to discriminate
against QCD jets while maintaining a 95% signal efficiency for W, Z and top jets with
respect to the existing trigger selection. It is expected that the selection efficiency
for Higgs jets should be similar to that of Ws and Zs.

A wide range of variables, both existing and new, were investigated. The potential
of each variable was estimated by finding the cut which maximised QCD rejection
in data, at a fixed acceptance working-point for both the WZ and top MC samples.
Interestingly, the performance of variables already used for tagging varied wildly.
The D2 and τ21,wta variables showed reasonable discriminatory power while preserv-
ing both top and WZ samples, but the similar C2 and τ32,wta variables were only
useful for discriminating WZ and top jets separately, as shown in figures 6.76.8.

A set of new or less common variables combinations, designed explicitly for anti-
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Figure 6.7: Each subfigure shows on the left: the distributions of the D2, C2, and
Width variables for 2015 data, W ′ → WZ, and Z ′ → tt̄ MC samples, and on the
right: the percent of events in each sample which pass a cut corresponding to the
x-axis value. This cut is of the form vjet < vcut for all figures except (c) which
requires vjet > vcut. The dashed line marks the cut with maximal QCD rejection
while maintaining at least 95% signal efficiency for the WZ and tt̄ samples.
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Figure 6.8: Each subfigure shows on the left: the distributions of the τ21,wta and
τ32,wta variables for 2015 data, W ′ → WZ, and Z ′ → tt̄ MC samples, and on the
right: the percent of events in each sample which pass a cut corresponding to the
x-axis value. This cut is of the form vjet < vcut for all figures. The dashed line marks
the cut with maximal QCD rejection while maintaing at least 95% signal efficiency
for the WZ and tt̄ samples.
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Variable Cut Type Value QCD Rejection [%] εV [%] εt [%]
D2 < 2.1 12.6% 95.2% 94.3%
C2 < 3.6 2.0% 99.8% 95.6%

Width > 7.5 9.2% 94.9% 98.5%
τ21,wta < 0.62 12.0% 96.8% 95.4%
τ32,wta < 0.82 5.9% 95.2% 97.3%
τ31,wta < 0.39 16.3% 95.3% 96.3%

τ31,wtaτ21,wta < 0.22 16.6% 95.2% 95.4%
τ321,wta < 0.96 16.7% 95.1% 95.0%

Table 6.2: The cut which gives maximum QCD rejection while maintaining at least
95% signal efficiency for both WZ and tt̄ samples for each investigated variable.

QCD tagging were examined to try and gain further discriminatory power.

τ31,wta =
τ3,wta
τ1,wta

(6.1)

τ31,wtaτ21 =
τ3,wtaτ2,wta
τ21,wta

(6.2)

τ321,wta =
τ3,wta + τ2,wta

τ1,wta
(6.3)

The distributions of these variables are shown in figure 6.9. All three of these new
variables outperformed all currently used tagging variables investigated during this
study, rejecting around 16% of QCD jets while maintaining a 95% signal efficiency.
The optimal cuts for each variable are shown in table 6.2

2D Selections

Linear 2D cuts on the same variables were investigated optimised alongside the
simpler 1D cuts but were not found to give any significant improvement over the
single anti-QCD variables.

6.2.3 Rates

After variable optimisation, the expected trigger rates as a function of the trigger
threshold were calculated for each anti-QCD variable cut, with and without the 30
GeV mass cut. The estimated rates as a function of trigger threshold are shown in
figure 6.10 and table 6.3 shows the energy threshold for each cut that would give a
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Figure 6.9: The observed distributions and cut efficiencies for the three anti-QCD
tag variables, τ31,wta, τ31,wtaτ21,wta, and τ321,wta. All three significantly out-perform
the other variables considered with nearly indistinguishable rejection power.
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Figure 6.10: The estimated trigger rate as a function of the leading jet energy after
the mass and substructure cuts have been applied for a single (a) and dijet (b)
trigger.

total trigger rate equal to that of the 420 GeV trigger run in 2016 for both single
and dijet triggers.

The application of anti-QCD tagging at the trigger level gives a substantial reduction
in trigger rates beyond that provided by trimming and applying a mass cut. All else
being equal, it would allow the large-R trigger threshold to be reduced significantly,
to around 350 GeV in the case of the single jet trigger. Since the substructure
information is uncorrelated between jets in an event, the dijet trigger obtains an
even greater reduction in rate. However, the proposed thresholds should be taken
with a pinch of salt as they fall into the region where the level 1 jet trigger is not
fully efficient for large-R jets. They also assume that the operational jet trigger
rate is left unchanged. The emulated turn-on curve for these equal-rate single jet
triggers is shown in figure 6.11.

6.3 Conclusion

The two studies presented here represent a small part of the evolution in thinking
within ATLAS about triggering on large-R jets.

The performance of the three large-R jet chains run by the ATLAS trigger during
2015 was found to vary significantly both between chains and between jet topolo-
gies. The HLT_j360_a10_lcw_sub_L1J100 trigger which constructed online jets
from local-cluster weighted topoclusters clearly outperformed both the reclustered
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Figure 6.11: A comparison of the ‘‘equal rate’’ turn-on curves as a function of cali-
brated offline leading jet pT for emulated single jet triggers with the the thresholds
given in table 6.3. (a) shows the efficiency relative to events whose offline leading
jet has m > 50 GeV and therefore the substructure triggers will not reach 100%
efficiency, due to their rejection of jets failing the substructure cut. (b) shows the
trigger efficiency for events where the leading (online) jet also passes this substruc-
ture cut. Note that the τ31,wtaτ21,wta curve is shown but is generally covered by the
τ321,wta curve.
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Cut Single Jet Dijet
Threshold [GeV] Threshold [GeV]

Trimming only 395 395
m > 30 GeV 374 342
τ31,wta < 0.39 377 344

τ31,wtaτ21,wta < 0.22 374 337
τ321,wta < 0.96 374 336

m > 30 GeV + τ31,wta < 0.39 351 282
m > 30 GeV + τ31,wtaτ21,wta < 0.22 349 279
m > 30 GeV + τ321,wta < 0.96 349 279

Table 6.3: The ‘‘equal rate’’ thresholds for each trigger selection relative to the
untrimmed HLT_j420_a10_lcw_sub_L1J100 trigger. The reduction in rate is sim-
ilar for all anti-QCD tag variables and seems to be orthogonal with the reduction
obtained by applying a mass cut.

and the EM-scale topocluster jet triggers; achieving full efficiency at 380 GeV. The
reclustered trigger, HLT_j360_a10r_L1J100 saw the largest performance differ-
ences based on jet topology. For W/Z tagged jets its performance was similar to
that of the HLT_j360_a10_lcw_sub_L1J100 trigger, achieving full efficiency at
380 GeV, but it took until 450 for this to occur in untagged jets. The EM-scale trig-
ger, HLT_j360_a10_sub_L1J100 performed badly in all topologies, also achieving
full efficiency at around 450-500 GeV. The result formed a small part of a paper
covering the a broad range of ATLAS trigger performance topics in 2015 [19].

During 2016 and 2017, the type of triggers which were evaluated by this study have
become too accepting for use in the current high-pileup environment of the LHC
and thresholds would be pushed unacceptably high if the current trigger rate was
maintained. The currently operational solution to this is to apply jet trimming and
a loose mass cut to online jets, taking advantage of large-R jet’s primary use as
proxies for hadronic heavy object decays. This line of thinking was taken further in
the second study presented. Here we showed that combinations of the N-subjettiness
variables can be used online to suppress QCD jets in favour of both W/Z and top
decays. Using these, the trigger threshold could be reduced without any increase in
rate when compared to the current trimmed jet triggers. No advantage was observed
in combing any pair of these variables over the presented single variable cuts. Inter-
estingly, shortly before the submission of this thesis a paper was published showing
a very similar approach to anti-QCD tagging making use of the N-subjettiness vari-
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ables combined using a neural network [130]. The study was not strictly comparable
as it was entirely in simulation and restricted to offline, rather than online jets but
no additional QCD rejection appears to have been achieved by this approach when
requiring 95% signal acceptance.

Only a small amount of effort is needed to integrate the anti-QCD variables proposed
by this study into the current trigger algorithms and this is currently under-way
within the ATLAS collaboration.
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Chapter 7

Search for Heavy Resonances
with Bosonic Jets

There is a common belief that the problems in the Standard Model highlighted in
§3.4 will be solved by the introduction of new particles, forces, or interactions, at a
higher energy scale (or with smaller cross-section) than those currently known. It
is further hoped that we will be able to observe these processes at the LHC.

If there were just one, or a small number of, known model(s) that could address these
issues1 then it would greatly simplify the search for new physics, but, unfortunately,
there seems to be an infinite space of possible extensions to the Standard Model.
Therefore, it is useful to carry out model-independent searches and constrain the
parameter space of many such models at once.

The following chapter discusses a search for new TeV-scale particles decaying to the
electroweak bosons. This is a common component of BSM models and, aside from
the graviton [60, 62, 64, 131] and HVT models [65] discussed in §3.4, it is also a
signature of Grand Unified Theories (GUTs) [132–134], Higgs doublet models [135],
Technicolour [136, 137], and other generic composite Higgs models [138].

This analysis targets the fully-hadronic decay mode of this interaction, where both
vector bosons decay to pairs of quarks (the llqq, lνqq and ννqq decay modes have
also been studied at ATLAS and CMS [54, 139–142]). When a TeV scale particle
decays to vector bosons they will be produced with a large Lorentz boost and the
resulting final-state hadrons will be highly collimated in the detector, with a signif-

1Prior to the operation of the LHC, supersymmetry was widely believed to be such a model. So
far this belief has not been matched with any actual evidence.
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icant overlap in the showers from each quark pair. These are reconstructed as two
back-to-back large-R jets. The jet grooming and substructure techniques from §4.3
can be used to identify boson-initiated jets and suppress the QCD background. Af-
ter event selection has been applied, we conduct the search by looking for a resonant
structure on the smoothly falling dijet mass distribution.

This chapter presents a search for these diboson resonances using the full
√
s = 13

TeV dataset collected by the ATLAS detector in 2015 and 2016, corresponding to
a combined integrated luminosity of 36.7fb−1. Full details are given in an ATLAS
internal note [143], and a public paper summarising this search was published in
2018 [11].

7.1 Previous Searches

Searches using boosted bosons in the fully hadronic final state were performed for
the first time during the LHC’s first run, at both ATLAS [17] and CMS [144]. The
ATLAS analysis found a 2.5σ excess in the region of 2 TeV, which was not excluded
by the CMS analysis. This result (as is typical) led to some excitement in the
theory community and many papers were written detailing models that attempted
to explain the excess (see figure 7.1). Searches in the semi-leptonic [139–141] (where
only one vector boson decays hadronically) and fully-leptonic [142] channels were
also performed during run-1 and ATLAS released a further study combining the
limits from the hadronic, semi-leptonic and fully-leptonic channels, but the leptonic
searches observed no further excess and the overall significance was greatly reduced
[54]. The strongest limits set with run-1 data are from the ATLAS combined result,
which excludes mW ′ < 1.8 TeV and mGRS

< 0.8 TeV (for a bulk graviton with
k/M̄planck = 1) at a 95% confidence level. Figure 7.2 shows some of the limits set
by the hadronic and combined studies.

Following the restart, both ATLAS and CMS collaborations released searches using
the 2015 dataset, taking advantage of the increase in sensitivity due to the higher
centre of mass energy [13, 57]. The CMS search combined the lνqq and qqqq search
channels and the ATLAS search used the llqq, lνqq, ννqq and qqqq channels. De-
spite the much lower integrated luminosity (3.2 fb−1 and 2.6 fb−1 for ATLAS and
CMS respectively) than the run-1 analyses, these limits (shown in figure 7.3) were
comparable to, or better than, the previous limits. CMS placed a 95% exclusion
limit for mW ′ < 2.0 TeV for a HVT Model B W ′ and placed limits on the bulk
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Figure 7.1: The number of papers published to the ‘‘hep-ph’’ or ‘‘hep-th’’ sec-
tions of arxiv each month whose title matches the regular expression ‘‘(dibo-
son|WW|WZ|ZZ|VV).*excess’’. The grey line marks the publication of the ATLAS
fully-hadronic diboson search on the 11th November 2015.

RS-graviton cross-section for k/M̄planck = 0.5. ATLAS placed a limit of mW ′ > 2.6
(2.4) TeV on the HVT Model B (Model A) W ′ and mG > 1.1 TeV for a bulk RS
graviton with k/Mplanck = 1.0. A further limit of MX > 2.65 TeV was set on a
generic heavy scalar.

ATLAS has also released several conference notes using an incomplete 2015+2016
dataset, one for the fully hadronic channel [145] and two covering the semi-leptonic
channels [12, 14]. The limits set by these single channel searches are generally the
same or weaker than the 2015 combined analysis. The analysis performed for the
fully hadronic note was updated with the full 2016 dataset and serves as the basis
of the analysis presented here.

7.2 Software Framework

The primary software framework used for this analysis was the CxAOD (Calibrated
xAOD) framework [146], which has been co-developed by several analysis groups
within ATLAS. The CxAOD framework was used to perform data thinning, select
events, and apply calibrations and systematic variations. Once CxAODs had been
created, they were read using the PlotMaker histogramming tool.
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Figure 7.2: The limits on diboson excesses placed by ATLAS and CMS using run-1
data. (a) shows the limits placed on W ′ → WZ by the fully-hadronic ATLAS
search, excluding 1.3 < mW ′ < 1.5 GeV [17]. (b) shows the equivalent CMS search,
which excluded 1.0 < mW ′ < 1.7 TeV [144], and (c) shows the ATLAS combined
result, excluded mW ′ < 1.8 TeV [54].
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Figure 7.3: Limits on the HVT W ′ (a,c) and RS graviton, GRS , (b,d) by CMS and
ATLAS using data recorded by the LHC in 2015 [13, 57]. The limits shown are not
strictly comparable, the CMS search only used the W ′ →WZ decay mode to place
limits on a HVT model B W ′, whereas the ATLAS search placed limits on both
model A and B using the full set of W ′ → V V decay modes. The graviton limits
differ due to different choices in k̃ between the CMS and ATLAS analyses.
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Figure 7.4: The ATLAS run-2 analysis model. The CxAOD framework sits between
the common analysis format and the final-N-tuple (which in this context would be
the CxAOD file format). Figure reproduced from [147].

7.2.1 CxAOD

The CxAOD framework provides a pipeline from ATLAS’s standard reduced data
format, DxAOD (Derived xAOD) [147], to a further reduced format, CxAOD as
shown in figure 7.4. The framework applies calibration tools, generates systematic
variations for MC samples, and can apply arbitrary event and object level selections.
By sharing code between many analyses, the time needed to update and validate CP
tools can be spread between analyses and the common framework means that com-
mon object definitions are used, making future combinations simpler. The frame-
work was coded entirely in C++ and is built on top of EventLoop, a package for
implementing generic processes involving an event loop, and RootCore, a compact
build system which includes ROOT and many ATLAS tools.

Data reduction is achieved in three ways. First, events are only stored if they
pass a preliminary (analysis-defined) selection. Secondly, even if an event passes,
physics objects are only stored if they pass an object-level selection, these are shared
between analyses and are typically very loose. For instance, large-R jets are stored
only if they have pT > 200 GeV and |η| < 2.8. Finally, most variables attached to
each object are thrown away and only those relevant to each analysis are stored. A
typical CxAOD event is O(1kB) compared to O(150kB) for the DxAODs. The full
2015+2016 dataset and associated MC datasets for the VVJJ analysis are around
800Gb in size.
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Figure 7.5: A simplified data flow model for the CxAOD framework, focusing on
the event loop. The nominal (DxAOD) object data flow is shown in blue and the
systematic variations in green. Conditional actions are indicated by a dotted line.

The core of the CxAOD framework consists of 5 packages:

CxAODMaker: The primary code for running CxAOD framework on DxAODs,
including the event loop and code for applying CP tools and object level selections.
CxAODTools: Additional tools which can be used during both the reading and
writing of CxAODs, e.g., event-level selection classes, pileup reweighting and over-
lap removal.
CxAODReader: The standard package for reading CxAODs. It was not used for
the VVJJ analysis which had a dedicated reader package. See §7.2.2.
FrameworkExe: Contains the main executable and configuration settings. Re-
placed by FrameworkExe_VVJJ.
FrameworkSub: Utility code which does not fit elsewhere, including dataset defi-
nitions and bootstrap scripts.

and the analysis made use of three further derived or replacement packages:

CxAODMaker_VHbb: Object handlers derived from those in CxAODMaker
with additional analysis-related functionality. This is shared between all diboson
analyses and the exotic V H → X + bb searches (where X is ll, lν, qq).
CxAODTools_VHbb: The VH and VVJJ analysis event selection classes.
FrameworkExe_VVJJ: Package for the VVJJ implementation executable.

7.2.2 PlotMaker

Once the CxAODs have been produced they must be read to produce the final
analysis histograms. Unlike an n-tuple format, this is non-trivial as the files are
stored in the xAOD format rather than a simple ROOT TTree. The ‘‘PlotMaker’’
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package produces histograms2 and TTrees from input CxAOD or ROOT NTuple
files.

The PlotMaker package is designed to be extremely flexible with several powerful
capabilities:

• Output histograms and trees are defined in text files the output can be altered
freely without recompiling

• Arbitrary event selections can be applied, including selections defined in the
CxAOD framework.

• Per-histogram selections can be added and compiled at run-time.

• Standard ATLAS CP tools, such as pileup reweighting or taggers can be reap-
plied to the CxAOD.

The classes used by the PlotMaker package are:

Looper – Managers all other classes and runs the event loop.
VarSet – Creates and stores all variables and provides access to xAOD content. A
‘‘variable’’ in this context is a C++ std::function associated with a text string to
enable run-time selection of variables.
DataManager – Handles samples and provides sample information.
HistMaker – Each instance handles a histogram definition file and automates cre-
ation/filling/writing of these histograms.
TreeMaker – Same as HistMaker but for TTrees.
SelectionManager – Manages per-histogram selections and provides them to any
instances of HistMaker. Selections are mathematical expressions which are compiled
from strings at run-time.
EventSelector – Handles all non-histogram selections and tells the Looper whether
or not an event passed.
WeightingTool – Calculates weighting for each event including MC sample and
event weights, and the ATLAS pileup reweighting tool.

The actual structure of the program is rather complex as it was designed to process
events in a multithreaded fashion; it is shown in detail in figure 7.6.

2Which makes the title something of a misnomer.
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Figure 7.6: Data flow in the PlotMaker package. The work is divided into threads,
each of which processes a set of events. When a thread is created it loads the input
events and creates any output trees or histograms, it then iterates over the events
and queries global classes as necessary. Once all threads have finished processing,
their outputs are merged. Cross-class communication is managed in a functional
fashion, where the state of global classes is immutable after initialisation.

7.3 Data and Monte-Carlo

7.3.1 Data Collection

The data used for this search was collected during the 2015 and 2016 pp
√
s = 13

TeV runs of the LHC. Only runs with a 25ns bunch spacing were considered. For
2015 this corresponds to runs 276262-284484 and for 2016, runs 297730-311481.
Good runs lists were applied to exclude data where the detector subsystems were
not fully functional for physics collection. IBL-off runs were excluded for both 2015
and 2016, and toroid-off runs were excluded for 2015 only. The GRLs used that
enforce these requirements were:

2015 Data: data15_13TeV.periodAllYear_DetStatus-v79-repro20-02_DQDefects-
00-02-02_PHYS_StandardGRL_All_Good_25ns.xml

2016 Data: data16_13TeV.periodAllYear_DetStatus-v88-pro20-21_DQDefects-
00-02-04_PHYS_StandardGRL_All_Good_25ns_ignore_TOROID_STATUS.xml

The integrated luminosity corresponding to this dataset was estimated, using the
methodology described in [118], as 3.2fb−1 and 33.5fb−1 for 2015 and 2016 data
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respectively. Further to this selection, incomplete events, or those whose LAr or
Tile quality is flagged as bad, were removed [119]. Finally, only data passing the
lowest unprescaled large-R trigger in each run is considered, as will be described in
§7.4.1.

7.3.2 MC Samples

While simulated events are not directly used for the background fit or statistical
interpretation, the optimisation of the analysis strategy, estimation of sensitivity
to specific models, and model limits were evaluated using simulated datasets. The
events are simulated by a variety of generators using the processes described in §4.1.
GEANT4 [115] is then used to simulate the interaction of the final state particles
with the detector. Finally, the events are overlayed with additional minimum-bias
interactions to simulate pileup within the detector. Once the simulation is complete
the events are passed through the full ATLAS reconstruction software. Figure 7.7
compares the pileup distributions of the MC samples and collected data.

Background

QCD
The main expected background for this analysis is QCD multijet ‘‘faking’’ W and Z
decays. The QCD samples are used during the optimisation of the analysis selection
criteria but due to the very high rejection power of the boson tagging there are too
few events passing to model the smoothly falling background, data-driven methods
must be used instead. The samples were generated and showered with Pythia 8.186,
with the A14 tune, in bins of the leading pT truth-jet (clustered with the anti-kT
algorithm and R = 0.6). The sample bins are given in table 7.1. The PDF set used
was NNPDF23LO [114]. The samples are weighted to produce a smoothly falling
spectrum in pT .

V+jets
Hadronically-decaying W + jets and Z + jets (collectively referred to as V + jets)
samples were also generated for use in control region studies. V + jets samples were
produced with Herwig++ 2.7.1 [149], using the CTEQ6L1 PDF set [150], and were
produced in bins of vector boson pT , the samples produced are shown in table 7.2.
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Truth jet pT [GeV] σ Filter nevt Lint

Slice Low High [fb] Efficiency [k] [fb−1]
JZ3W 160 400 2.6454e+10 3.1953e-4 1767 2.10e−1

JZ4W 400 800 2.5464e+8 5.3009e-4 1997 1.48e1

JZ5W 800 1300 4.5536e+6 9.2325e-4 1995 4.75e2

JZ6W 1300 1800 2.5752e+5 9.4016e-4 1997 8.25e3

JZ7W 1800 2500 16214 3.9282e-4 1990 3.12e5

JZ8W 2500 3200 625.05 1.0162e-2 2000 3.15e5

JZ9W 3200 3900 19.639 1.2054e-2 2000 8.45e6

JZ10W 3900 4600 1.196 5.8935e-3 2000 2.84e8

JZ11W 4600 5300 0.042258 2.7015e-3 1999 1.75e10

JZ12W 5300 ∞ 0.0010367 4.2502e-4 1808 4.10e12

Table 7.1: The cross-section and integrated luminosity of the QCD multijet samples
[148]. Table taken from [143].

147



Truth V pT [GeV] σ ×BR Filter nevt Lint

Sample Low High [fb] Efficiency [fb−1]
W + jets 280 500 13525.0 1.0 148000 10.94
W + jets 500 700 920.71 1.0 29000 43.44
W + jets 700 1000 175.3 1.0 29000 165.43
W + jets 1000 1400 21.79 1.0 15000 1376.78
W + jets 1400 ∞ 2.274 1.0 15000 8795.07
Z + jets 280 500 5472.3 1.0 148000 13.71
Z + jets 500 700 370.3 1.0 29000 54.01
Z + jets 700 1000 70.598 1.0 29000 212.47
Z + jets 1000 1400 8.8535 1.0 15000 1694.25
Z + jets 1400 ∞ 8.8535 1.0 15000 1129.50

Table 7.2: The cross-section and integrated luminosity of the V +jets sample slices.
Taken from [143].

Signal

While the analysis is not targeted at a specific model, three benchmark models
were used to estimate the signal efficiency and place concrete limits. These are the
Heavy Vector Triplet (HVT) and bulk RS Graviton models, discussed in §3.4, and
an additional generic heavy scalar model.

Heavy Vector Triplet
Model A HVT samples are used as a benchmark for this search. Model A corresponds
to the addition of a new mass-degenerate multiplet, weakly coupled to the Standard
Model fields, that decays to Standard Model fermions and the W, Z and Higgs
boson. The branching ratios to WW , WZ, WH and ZH are all approximately 2%.
Benchmark samples for 1.0 TeV < mW ′ ,mZ′ < 5.0 TeV were generated with gV , the
coupling strength of the new multiplet, set to 1.0. With this assumption, the widths
of theW ′ and Z ′ are around 2.5%. The matrix element calculations were performed
using MadGraph 2.2.2 [151], integrated with Pythia 8.186, using NNPDF23LO PDF
sets and A14 tune, for showering and hadronisation. Table 7.3 lists the W ′ and Z ′

samples generated.

RS Graviton
The analysis also sets limits on a spin-2 bulk RS graviton as described in §3.4.1. For
the samples generated, the coupling constant k/Mplanck was set equal to 1.0, giving
a width of ∼ 6% and a branching fraction to WW and ZZ of between 16% and
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mZ′ σ ×BR nevt Lint

[TeV] [fb] [k] [fb−1]
1.3 32.28 29 8.98e2

1.4 22.78 25 1.10e3

1.5 16.36 30 1.83e3

1.6 11.92 30 2.52e3

1.7 8.79 20 2.28e3

1.8 6.56 30 4.57e3

1.9 4.94 30 6.07e3

2.0 3.76 20 5.32e3

2.2 2.22 20 9.01e3

2.4 1.35 15 1.11e4

2.6 0.831 30 3.61e4

2.8 0.521 30 5.76e4

3.0 0.332 29 8.73e4

3.5 0.111 30 2.70e5

4.0 0.037 5 1.35e5

4.5 0.014 29 2.07e6

5.0 0.0050 15 3.00e6

(a) Z ′ →WW → qqqq

mW ′ σ ×BR nevt Lint

[TeV] [fb] [k] [fb−1]
1.3 69.79 20 2.87e2

1.4 49.47 15 3.03e2

1.5 35.79 30 8.39e2

1.6 26.08 30 1.15e3

1.7 19.33 25 1.29e3

1.8 14.46 30 2.07e3

1.9 10.93 28 2.56e3

2.0 8.34 30 3.60e3

2.2 4.95 30 6.06e3

2.4 3.01 29 9.63e3

2.6 1.87 20 1.07e4

2.8 1.17 30 2.56e4

3.0 0.747 25 3.35e4

3.5 0.251 15 5.98e4

4.0 0.087 30 3.45e5

4.5 0.031 30 9.68e5

5.0 0.011 25 2.27e6

(b) W ′ →WZ → qqqq

Table 7.3: HVT W ′ and Z ′ simulation sample slices. Tables from [143].
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18.5% depending on mGRS
. The samples generated were for 1.0 TeV < mGRS

< 5.0

TeV and are described in detail in table 7.4. The graviton samples were produced
using MadGraph 2.2.2 interfaced to Pythia 8.186 using the NNPDF23LO PDFs and
A14 tune.

mGRS
σ ×BR nevt Lint

[TeV] [fb] [k] [fb−1]
1.3 15.08 29 1.92e3

1.4 9.03 30 3.32e3

1.5 5.76 28 4.86e3

1.6 3.90 30 7.69e3

1.7 2.64 30 1.14e4

1.8 1.79 30 1.68e4

1.9 1.25 30 2.40e4

2.0 0.87 30 3.45e4

2.2 0.46 30 6.52e4

2.4 0.24 30 1.25e5

2.6 0.133 30 2.26e5

2.8 0.073 30 4.11e5

3.0 0.041 30 7.32e5

3.5 0.0107 29 2.71e6

4.0 0.0030 21 7.00e6

4.5 0.00082 30 3.66e7

5.0 0.00023 30 1.30e8

(a) GRS →WW → qqqq

mGRS
σ ×BR nevt Lint

[TeV] [fb] [k] [fb−1]
1.3 8.16 28 3.42e3

1.4 5.03 29 5.77e3

1.5 3.10 30 9.68e3

1.6 2.10 30 1.43e4

1.7 1.42 30 2.14e5

1.8 0.96 30 3.13e4

1.9 0.67 29 4.33e4

2.0 0.47 30 6.38e4

2.2 0.25 29 1.16e5

2.4 0.132 30 2.27e5

2.6 0.068 28 4.12e5

2.8 0.039 28 7.18e5

3.0 0.024 30 1.25e6

3.5 0.0057 28 4.91e6

4.0 0.0016 30 1.88e7

4.5 0.00044 30 6.82e7

5.0 0.00015 30 2.00e10

(b) GRS → ZZ → qqqq

Table 7.4: GRS simulation sample slices. Tables from [143].

7.3.3 Heavy Scalar Model

Limits are also placed on a generic heavy spin-0 (scalar) boson produced via gluon-
gluon fusion and subsequently decaying to either a WW or ZZ final state. ggH →
ZZ → qqqq and ggH →WW → qqqq samples were produced using POWHEG [152–
154] in a mass range of 1200 < mH < 3000 GeV. These were used for estimating the
efficiency of the event selection for a scalar signal but were not used in the analysis
optimisation. The analysis assumes that the decay width is negligible compared to
the detector resolution, giving a mass resolution of 2.5% for WW and 3.5% for ZZ
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states.

7.4 Preselection

A set of selections are applied to ensure that events considered by the analysis
do not suffer from data quality defects and are on the trigger efficiency plateau.
Additionally, events which pass the basic selection cuts for V V → llqq, lνqq, ννqq

analyses are rejected to maintain orthogonality.

7.4.1 Trigger

Events are initially selected by the two-level ATLAS trigger system. For each year of
data-taking, the lowest unprescaled large-R jet trigger was used. This corresponds to
the triggers HLT_j420_a10_lcw_L1J100 in 2016 and HLT_j360_a10r_L1J100 in
2015. These are high level jet trigger chains with energy thresholds of 420 GeV and
360 GeV respectively. The 2016 trigger uses anti-kT , R=1.0 jets (a10) reconstructed
from calorimeter clusters with a local cluster weighting (lcw) calibration scheme
applied, the 2015 trigger uses the same trigger algorithm with calibrated R = 0.4

anti-kT jets as inputs (a10r) and no further calibration is applied. Both triggers are
seeded by a 100 GeV L1 jet trigger (LJ100).

The efficiency of the 2016 trigger was measured relative to a prescaled trigger using
the same algorithm but with a 260 GeV energy threshold, HLT_j260_a10_lcw_L1J75.
This lower threshold trigger can be regarded as 100% efficient for our signal in the
region of interest (jets with pT > 350 GeV). Due to the absence of such a trigger
during 2015 running, the 2015 trigger efficiency was measured with respect to a 200
GeV small-R trigger, HLT_j200, whose efficiency plateau was checked in simulation
to be well below the region of interest, as shown in figure 7.8.

The relative efficiency of our trigger for events passing the signal preselection is
shown as a function of pT and mJJ (mJ1J2 =

√
(E1 + E2)2 − (~pT,1 + ~pT,2)2) in

figure 7.9. By applying a cut on the leading jet pT at 450 GeV and restricting the
search range to mJJ > 1.1TeV, the analysis (including sidebands) is restricted to
the region where both triggers are ≈ 100% efficient.

Figure 7.9 shows that there are a few bins above the jet threshold of 450 GeV to
have minor inefficiencies (< 1%) for values of pT . These are caused by inefficiencies
in the level 1 small-R jet trigger that seeds the chosen HLT chain. However, these

151



T
Lead Jet p

250 300 350 400 450 500 550 600

310×

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

HLT_j200 efficiency
DAQ Cuts + Vetoes
Pythia8 QCD Multijet, JZ2W-JZ12W

Figure 7.8: The efficiency of the HLT_j200 trigger, as a function of leading large-R
jet pT , measured in the QCD background samples. The trigger is fully efficient
by 360 GeV and can be used for measuring the HLT_j360_a10r_L1J100 efficiency
plateau.

inefficiencies are negligible and are removed altogether by applying boson tagging
(see figure 7.10).

7.4.2 Derivation

To reduce the ATLAS dataset to a manageable size it is filtered through the ATLAS
derivation framework [147] before the analysis takes place. The data is reduced
through the rejection of events, removal of objects within the events and removal
of attributes attached to objects. This is very similar in principle to the CxAOD
data-reduction, but the cuts chosen are significantly looser to ensure that no relevant
information is lost. When passing through the framework, an event is saved if it
meets any of the following criteria:

• V V : >= 2 anti-kT , R = 1.0 jets with pT > 100 GeV, |η| < 2.8 and mJ > 30

GeV and passes a selected jet trigger.

• High pT V V : >= 2 anti-kT , R = 1.0 jets with pT > 1000 GeV and |η| < 2.8

and passes a selected jet trigger.

• V + γ: >= 1 anti-kT , R = 1.0 jets with pT > 100 GeV, |η| < 2.8 and mJ > 30

GeV, >= 1 photon or electron with pT > 100 GeV and passes a selected photon
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Figure 7.9: The efficiency of the HLT_j360_a10r_L1J100 (a,b) and
HLT_j420_a10_lcw_L1J100 (c,d) triggers measured in data in 2015 and 2016 re-
spectively. The trigger efficiency for data passing a partial preselection and the
topological selection presented in §7.5.1 (each with the trigger, lead jet pT , and
mJJ cut removed) is shown as a function of lead jet pT and mJJ . The 2015 trig-
ger efficiency is measured with respect to data passing the HLT_j200 small-R jet
trigger and the 2016 trigger efficiency is measured with respect to data passing the
HLT_j260_a10_lcw_L1J75 trigger.

trigger3.

The primary 2015/2016 jet triggers used by the derivation are:

• HLT_j360_a10r_L1J100

• HLT_j360_a10_lcw_sub_L1J100

• HLT_j400_a10_lcw_sub_L1J100

• HLT_j420_a10_lcw_sub_L1J100

• HLT_j460_a10_lcw_sub_L1J100

There were additional trigger chains included in the derivation but many were re-
3The derivation is shared with the V + γ search, hence the additional allowance for a jet +

photon event.
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Figure 7.10: The efficiency of L1_J100 measured in 2015 data relative to an ‘‘or’’ of
jet triggers including small-R and HT chains with lower pT level 1 seeds. The plots
show the efficiency of this trigger with respect to pT for leading jets which fail (a)
pass (b) a boson tag.

dundant, as they were not run during data collection, or targeted at V + γ events.
A large spread of allowed triggers was picked to ensure that the derivation would
not lose data if the trigger menu were changed. The small-R jet and HT triggers
are used for studies into alternative methods of triggering on large-R dijet events.

In addition to the event selection, individual tracks and calorimeter clusters are
removed if they do not meet certain criteria. Tracks are kept if they have pT > 400

MeV, d0 < 1.5, z0 sin θ ≤ 1.5 and are matched to one of

• an electron with pT > 10 GeV and |η| < 2.8,

• a photon with pT > 10 GeV and |η| < 2.8,

• a muon with pT > 10 GeV, and |η| < 2.8,

• a small-R anti-kT jet with pT > 15 GeV and |η| < 2.8,

• a large-R anti-kT jet with pT > 150 GeV and |η| < 2.8.

Calorimeter clusters are kept only if they are associated with an large-R anti-kT jet
with pT > 150 GeV and |η| < 2.8.

A further reduction is achieved by removing variables from objects where only a
small amount of information is required (typically only the variables needed to
calibrate them). This reduction is applied to the electron, muon, MET, track particle
and vertex containers. Finally, any trigger data not associated with jet, electron or
photon triggers is removed. The effect of the derivation on data and MC samples is
shown in table 7.5.
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MC Sample DSID xAOD Events DxAOD Events Efficiency
JZ3W 361023 7,884,500 3,564,938 45%

W ′(2TeV ) 301267 50,000 47,624 95%

Data Period xAOD Events DxAOD Events Efficiency
Run 280423 G 26,065,895 462,344 1.8%

Table 7.5: The number of events passing the EXOT3 derivation for data and MC
samples, and the reduction in file size. Table taken from [143].

7.4.3 Jet Cleaning

Events are not used in the analysis if they fail a jet cleaning cut designed to remove
badly reconstructed jets. These can be caused by, for example, calorimeter noise,
beam-induced background and cosmic rays. Events are rejected if any of the event’s
small-R anti-kT jets with pT > 20 GeV are categorised as ‘‘BadLoose’’ [116], which
identifies fake jets based on calorimeter cell pulse shape and the pattern of energy
deposition within the detector. This selection is > 99.5% efficient for real jets.

7.4.4 Lepton and MET Vetoes

In order to preserve orthogonality with diboson searches in other channels (i.e.
decays to llqq, lνqq and ννqq), vetoes are made on electrons, muons and missing
ET that would pass the selection in their respective channels. ‘‘Veto’’ electrons and
muons are required to have pT > 25 GeV, |η| < 2.5 (2.47 for muons), and pass their
respective ‘‘medium’’ identification and track isolation requirements [155, 156].

Veto electrons (muons) are also required to pass cuts on the transverse impact
parameter, |d0| < 5.0 (3.0) mm, the longitudinal impact parameter |z0 sin θ| < 0.5

(0.5) mm and on the significance of the transverse impact parameter, |d0|/σd0 < 5

(5).

Any event with one or more leptons passing these cuts is vetoed, as in any event
containing EmissT > 250 GeV.
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7.5 Event Selection

7.5.1 Topological Selection

Once the data has passed the described trigger and data quality selection, cuts are
applied on the event topology to enhance the sensitivity of the search. The event
selection cuts were optimised using the W ′ →WZ signal samples.

Jet Selection

A stronger version of the jet selection applied during the derivation is used. In
addition to the trigger efficiency cuts, we require that the two leading trimmed
R = 1.0 anti-kT jets have pT > 400 GeV, |η| < 2.0 and mJ > 50 GeV after the
energy and combined mass calibrations are applied. The trimming is applied as in
§4.3.1 with Rsub = 0.2 and fcut = 0.05 .

The η cut ensures that the jets are contained within the tracking volume of the
detector so that the tracking information so can be used for boson tagging and the
mass calibration. The restriction to mJ > 50 GeV keeps the jets in the region where
the mass calibration is well-defined.

∆Y

A cut is made on the rapidity difference between the two leading jets. For both
W ′ and graviton signals the main production mode is expected to be s-channel,
giving a ∆Y distribution centered around 0. For the QCD background the primary
production mode is t-channel exchange, which gives a ∆Y distribution peaked at a
higher value, as shown in figure 7.11. The significance gained by this cut is shown
in figure 7.12. Note that the cut is on rapidity rather than pseudorapidity, this is
for historical reasons and in practice the cut is equivalent to |∆η| < 1.2 for jets
able to pass the analysis selection, which will have pT > 450 GeV and mJ < 110

GeV, corresponding to pT /m > 4.09. The exact relationship between ∆Y and ∆η

is shown in figure 7.13.
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Figure 7.11: The ∆Y distribution for QCD multijet and W ′ signal samples used for
optimisation.

pT Asymmetry

A heavy new particle should be produced at close to rest in the transverse direction,
therefore the decay products, i.e. the two leading jets in the event, must be roughly
balanced in pT . To account for this, a cut is placed on the pT asymmetry of the
leading jets defined as,

ApT =
pT,1 − pT,2
pT,1 + pT,2

< 0.15 (7.1)

ApT should be small for any well measured dijet event including both W ′ → WZ

decay and QCD dijets, hence the main purpose of this cut is not to suppress the dijet
background but to remove events with a mis-modelled or mis-measured jet. Figures
7.14 and 7.15 show that, as expected, the signal and background distributions are
similar and any discriminating power provided by this cut is removed by the previous
cut on ∆Y .
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(c) mW ′ = 2.0 TeV
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Figure 7.12: Plots show the proportion of background and signal samples passing
preselection that also pass a cut on ∆Y corresponding to the x-axis value. Also
shown is the ratio of passing signal events to the square root of passing background
events. A cut of 1.2 was chosen based on the signal to background ratio and signal
efficiency.
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Figure 7.14: The pT asymmetry distribution for the QCD multijet and W ′ signal
samples before (a) and after (b) the ∆Y cut is applied. After the ∆Y cut the
discrimination power of the cut is minimal.
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(a) mW ′ = 1.1 TeV
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(b) mW ′ = 1.5 TeV
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(c) mW ′ = 2.0 TeV
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(d) mW ′ = 3.0 TeV

Figure 7.15: The percentage of background and signal samples passing the preselec-
tion and ∆Y cuts which also pass a cut on ApT corresponding to the x-axis value.
Also shown is the ratio of the fraction of passing signal events to the square root of
the fraction of passing background events.
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7.5.2 Boson Tagging

The jet substructure information explored in §4.3 can be used to provide discrimi-
natory power between QCD and boson-initiated jets. These techniques have been
used by both ATLAS [89, 92, 157] and CMS [158] and this analysis builds on the
recommendations in [92]. After trimming, a jet can be tagged as a W or Z jet based
on jet mass, substructure, and track multiplicity requirements. The mass and sub-
structure tagging parameters were optimsed simultaneously for maximum QCD jet
rejection at 50% signal acceptance using W ′ → WZ signal samples. The ntrk cut
was then optimised on the same samples using the s/

√
b plots shown in figure 7.18.

The W and Z tag requirements are overlapping and a jet may be tagged as both
a W and a Z jet. During the limit setting procedure the single signal channels
(WW,WZ,ZZ) are treated as independent and populated based on these tags so,
for instance, an event whose jets pass both the W and Z tag would appear in each
channel. The combined channels, WW+ZZ and WW+WZ, are also considered as
separate selections requiring, e.g., 2 W tags and/or 2 Z tags, and are not built by
combining the single channel results. For the signal and mass sideband selections
defined in §7.6 the two leading jets are sorted by mass. Jets sorted in this fashion
are here-on referred to as the ‘‘first’’ and ‘‘second’’ jet rather than ‘‘leading’’ and
‘‘subleading’’.

Jet Mass

After trimming, the mass of a boson-initiated jet is likely to be close to that of the
boson peak, especially when the combined mass is used, whereas a QCD jet will
typically have a much lower mass. A jet passes the mass selection if its combined
mass is within a pT dependent window in the region of the boson mass. The upper
and lower mass boundaries, mlow

cut (pT ), m
high
cut (pT ) are defined by a 4D function fit to

W ′ MC samples. This fit uses the physically-motivated function√
a20

(pT − a1)2
+ a22(pT − a3)2 (7.2)

Here the first term is a first-order approximation of the uncertainty in mass due to
the jet energy resolution, which is dominant for low pT jet and scales as ∼ 1/pT ,
and the second term characterises the uncertainty in angular resolution at high pT .
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Figure 7.16: Boson tagger cut functions for the 50% and 80% signal acceptance
working points. The mass and D2 cuts were optimised simultaneously to achieve
the maximum background rejection at each fixed working point. Plots (a) and (b)
show the single-sided D2 cut for W and Z jets, plots (c) and (d) show the double
sided cut on combined mass for W and Z jets. Each cut function is replaced with a
constant value for jets with pT > 2.5 TeV.

Jet Substructure

Since a boson jet will have a characteristic two-prong structure we use the Dβ=1
2

variable, motivated in §4.3.2, to reject one-pronged background. Jets are rejected
if they have D2 > fcut(pT ) where fcut(pT ) is a pT -dependent, 4D polynomial, fit to
W ′ MC samples. The fitted mass and substructure cut functions are shown in figure
7.16.

Track Multiplicity

We use the number of tracks ghost-associated [159] with the ungroomed jet to further
discriminate between bosons and other jets. The tracks are required to have pT >
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Figure 7.17: The ntrk distribution for the first (a) and second (b) jet in QCD multijet
and WZ signal samples after the topological selection has been applied.

500 MeV, |η| < 2.5, and be matched to the primary vertex. In addition to the
colour factor effects described in §4.3.2, the emission rate of a jet increases with
energy scale. For W/Z jets this scale is set by the mass of the boson, significantly
lower than the QCD jet scale, which is set by the energy of the hard interaction
that produced it. The ntrk distributions for both QCD jets and W/Z are shown in
figure 7.17 and the cut optimisation plots in figure 7.18 were used to set ntrk < 30

to maximise S/
√
B for a variety of signal masses. The uncertainties on this cut were

measured directly in data as will be described in §7.6.4

The first two steps of the W and Z taggers, the mass and substructure, correspond
to the ATLAS recommended boson tagger and were optimised simultaneously to
obtain constant 50% signal efficiency, independent of the jet pT . The taggers reject
approximately 98.5% of background jets, but this number varies with pT . Since the
tagger is applied twice, we accept 25% of simulated signal events while rejecting
99.98% of background events. The full topological selection and the jet mass and
substructure cuts have a combined signal acceptance of ∼ 18% and background
rejection of ∼ 99.998%, depending on the signal type and mass. After applying
the track multiplicity criteria to both jets these become ∼ 12% and ∼ 99.9995%

respectively.

Pileup Dependence

The boson tagging recommendations were developed based on signal samples with
a pileup distribution that differs from that of the data collected (as shown in figure
7.7). The impact of pileup on the mass and D2 was found to be extremely small but
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Figure 7.18: S/
√
B plots for the ntrk cuts for the first (a) and second (b) jet. Note

that since this is from aW ′ →WZ decay the first (second) jet signal sample contains
is a nearly pure sample of Z(W)s. The S/

√
B is maximised for values lower than

the chosen 30 track cut but a higher value was chosen to account for the increase in
ntrk with pileup.

increasing pileup was seen to increase each jet’s ntrk. Figure 7.19 shows the impact
of pileup on the boson tagging variables in data and simulation.

Boson Polarisation

The boson tagging procedure and topology cuts are sensitive to the angular dis-
tribution of energy in each jet and the angular correlations between the jets re-
spectively, as a result, the signal acceptance can vary strongly depending on the
production mode and boson polarisation. The signal selection efficiency for a gluon
(quark)-produced 2 TeV graviton was 12.3% (5.4%) if it decayed to longitudinally
polarised Ws and 1.8% (5.2%) if it decayed to transversely polarised Ws. The large
difference observed for the gluon-produced gravitons is primarily due to the 2nd jet
falling outside the of the ∆Y cut. On a per-jet level, there is an approximately 20%
difference in acceptance depending on the boson polarisation.

7.5.3 Selection Efficiencies

The dijet mass distribution for the QCD multijet samples is shown for each step
of the event selection in figure 7.20. The selection efficiency of each cut on the
background and signal datasets are shown in figure 7.21.
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Figure 7.19: The mean value of mJ (a), D2 (b) and ntrk (c) as a function of 〈µ〉
for 2015+2016 data, QCD multijet and W’ samples after the topological selection is
applied. Only ntrk exhibits any dependence on the pileup. The behaviour of these
variables in the QCD multijet samples is entirely consistent with the behaviour
observed in data.
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from [11].
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Figure 7.22: The dijet-mass (a), ∆Y (b), and ApT (c) distributions observed in
the 2015 and 2016 data compared to those in QCD multijet simulation after the
topological selection is applied. The Monte-Carlo distributions are scaled to match
the number of observed data events.

7.6 Control Regions

A set of control regions are used to validate the analysis strategy and MC simulation,
in particular, the event selection, boson tagging and background fitting procedure,
and estimate uncertainties. The regions used are presented in the following section.

7.6.1 Untagged

An untagged region, where only the topological selections are applied, is used to val-
idate the MC modelling of the background before tagging is applied. The measured
distributions are shown in figures 7.22 and 7.23.
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Figure 7.23: The jet mass (a), D2 (b), and ntrk (c) distributions observed in the 2015
and 2016 data compared to those in QCD multijet simulation after the topological
selection is applied. The monto-carlo distributions are scaled to match the number
of observed data events. Good agreement is seen between all distributions, with the
exception of ntrk.
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7.6.2 Mass Sidebands

Mass sidebands with a modified boson tag selection are used to validate the back-
ground fit in §7.7 without unblinding the signal region. To get as close as possible
to the signal region, the sideband selection applies the topological selection, D2 and
ntrk cuts. To maximise the statistics, the D2 cut is set at a looser, 80% signal effi-
ciency, working point. Jets are categorised by exclusive low-mass or high mass tags,
defined as

• Low Mass: 50 GeV < mJ < mlow
cut (pT ), pass the 80%D2 W-jet working point,

and ntrk < 30

• High Mass: mhigh
cut (pT ) < mJ < 140 GeV, pass the 80% D2 Z-jet working

point, ntrk < 30, and no R = 0.2 sub-jets tagged as b-jets.

The b-jet veto applied to high-mass jets is to avoid the possibility of unblinding
the signal region of X → V H → qqbb analysis. As with the main selection, the
two leading jets are sorted by mass. Three mass sidebands are formed from these
definitions, LowLow, LowHigh, and HighHigh. The dijet mass distribution for each
is shown in figure 7.24.

7.6.3 Partial Tag

Control regions are defined where the boson tag procedure is only partially applied.
Two new signal regions are defined, theDloose

2 region where an 80% efficiency working
point is chosen, and the nloosetrk region where no ntrk cut is applied.

7.6.4 V + Jets

A V+jets control region is used to estimate the uncertainty on the number of tracks
ghost-associated with boson and quark-initiated jets. The basic procedure is as fol-
lows: first fit a signal rate model, as a function of ntrk and mass, to a truth-tagged
sample of V+jets generated using Herwig as described in 7.3.2. A signal+back-
ground fit is then made to a V+jets enriched data sample in 8 bins of ntrk, with 42
free parameters, 8× 5 parameters for the background fit, an overall V+jets rate pa-
rameter and a Data/MC ntrk scaling parameter. The closure of this procedure was
estimated in MC and found to give an ntrk scaling of 1.00± 0.03. The uncertainty
here is estimated by varying the mass peaks and ratio of W/Z in the signal fit.
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Figure 7.24: The observed dijet mass distribution in the HighHigh, HighLow and
LowLow mass sidebands. The distributions show that the fit function performs well
in data. Reproduced from [11].

The V+jets enriched sample is obtained by requiring at least two large-R jets with
|η| < 2.0. The leading jet is required to have pT > 600 GeV and pass the W or Z
D2 cut. The fit is restricted to the region 50 < mJ < 150 GeV and ntrk < 40.

This procedure measured a scaling in the number of tracks between MC and data
of 1.03± 0.03(stat)⊕ 0.03(sys)⊕ 0.03(closure) = 1.03± 0.05 which corresponds to
a scaling in the efficiency of the ntrk cut of 0.97± 0.05, consistent with unity. The
systematic error is obtained by varying the position and width of the vector boson
mass peaks and the ratio of W to Z bosons.
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Figure 7.25: The leading jet mass distributions obtained by fitting a 4th order
polynomial to all jets with ntrk < 30 (a) and ntrk ≥ 31 (b) in the V+jets control
region. The error band on the fit corresponds to the uncertainty on the mass scale.
Similar fits are made in more granular bins of ntrk and the V + jet signal rate is
extracted. Figure taken from [11].

7.7 Background Fit

As was briefly covered in the introduction, the analysis searches for a resonant peak
on top of the smoothly falling background. Due to the low number of simulated
background events with a large dijet mass passing the analysis selection, the back-
ground shape must be extracted from data. This process also allows the shape to
account for minor contributions from V +jets and tt̄ events. The background shape
is found to be well described by the parametric function:

dn

dx
= p1(1− x)p2−ζp3x−p3 (7.3)

where x =
√
mJJ/

√
s and the function is fit to the number of events observed in

each bin in mJJ . Here p1 is an overall normalisation factor and p2 and p3 are
dimensionless shape parameters. ζ is fit simultaneously to minimise the correlations
between p2 and p3. The fit is performed in the range 1.1 < mJJ < 6.0 TeV in bins
of 100 GeV using a binned maximum-likelihood fit with likelihood function

L =
∏
i

λni
i e

−λi

ni!
(7.4)

where ni is the number of events in the ith bin and λi is the expected number of
background events in that bin. p1, p2 and p3 are floated in the fit and the preferred
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Sample χ2/nDOF Probability p2 p3 ζ

LowLow Sideband 13.4/21 0.894 55.70± 0.65 5.68± 0.52 7.427

HighLow Sideband 19.23/18 0.379 58.11± 0.62 6.71± 0.49 7.433

HighHigh Sideband 7.0/15 0.958 58.77± 1.16 6.63± 0.92 7.473

Table 7.6: Background fit parameters for the mass sidebands.

value of ζ is derived iteratively.

This fit was tested in each of the mass and partial tag sidebands; the fitted param-
eters are given in table 7.6 and the distributions shown in figure 7.26.

7.8 Systematic Uncertainties

Systematic uncertainties on the analysis inputs are treated as nuisance parameters
in the statistical analysis of the results. The dominant uncertainties on the signal
yield and mJJ distribution shape are the uncertainty in the measurement of the
large-R jet energy, mass, and D2. The correlations between the scale uncertainties
of these variables were considered, and the total uncertainty on the signal yield was
calculated for three different cases: all three variables fully correlated, jet mass and
energy correlated but D2 uncorrelated, and all three variable uncorrelated. The par-
tially correlated case was found to give the largest uncertainty, so this configuration
was used.

The primary means for evaluating the jet uncertainties was by the so-called ‘‘double-
ratio method’’ [78]. Take the ratio

rXtrk =
Xcalo

Xtrk
, (7.5)

the mean value of this quantity is expected agree between simulation and data
provided that the detector simulation is correct. Any errors or omissions in the
simulation of the jet production should cancel between the calorimeter and track
terms when averaged over many jets, provided they affect both track and calorimeter
jets equally. We take any deviation from 1 in the double ratio

RXtrk =
rX,datatrk

rX,MC
trk

(7.6)
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Figure 7.26: The mJJ distributions for the (a) LowLow, (b) HighLow, and (c)
HighHigh mass sidebands and their respective fits. The shaded bands show the
uncertainty in the fit and the lower panels show the significance of the number of
observed events in each bin with respect to the fit. Plots taken from [11].
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as an estimate of the uncertainty of the simulation. This technique is used to
evaluate the uncertainty on the Jet Energy Scale (JES), Jet Mass Scale (JMS) and
the D2 scale, which are found to be 5%, 6% and 5% respectively. The value for JES
also includes contributions from tracking uncertainties and MC simulation taken
from the Herwig/Pythia double-ratio on top of the base double-ratio measurement.
Uncertainties in the JES shift the location of a signal peak over the background
and hence they impact the significance of any measurement. The JMS and D2 scale
uncertainties affect the efficiency of signal selection and dijet mass shape.

The resolution (and uncertainty on this resolution) of energy, mass and D2 measure-
ments would have similar effects on the signal location and selection efficiency. The
energy resolution was taken to be a fixed 2% as suggested by the ATLAS JetEtMiss
working group, the mass and D2 resolutions were taken as the width of gaussians
fitted to each of their respective response functions in two fixed eta bins. The impact
of energy, mass and D2 resolution uncertainties on signal acceptance and measured
signal width was then evaluated by applying the uncertainties as gaussian smear to
the jet observables and rerunning the analysis.

The uncertainty on the ntrk cut was evaluated as discussed in §7.6.4, giving an
additional 3 ± 6% tracks per jet in data compared to simulation. This gives an
overall uncertainty of 12% at the event-level.

Several further measurement and simulation uncertainties are considered. The PDF
uncertainties can have a large effect on the expected signal production weight, and
this uncertainty is evaluated using the method proposed by the PDF4LHC group,
reweighting events to the CT14, MMHT2014, NNPDF3.0 and ATLAS-epWZ12 PDF
sets then finding the central value and deviation of the mJJ distribution for the
additional PDF sets. This is considered as an uncertainty on the signal acceptance
rather than cross-section and is found to be 1% for graviton signals and to vary
between 1-12% for HVT signals, depending on the signal mass. Uncertainties in the
impact of ISR and FSR due to Monte-Carlo tune are evaluated by reweighting to
five sets of systematic variations and found to contribute a 3% (5%) uncertainty to
signal acceptance for the HVT (graviton) models.

The uncertainty on the luminosity measurement was evaluated using a methodology
similar to that given in [160] and found to be 3.6% on the combined 2015+2016
dataset. The uncertainty on the trigger efficiency is considered to be negligible.

A summary of all uncertainties considered is given in table 7.7. It was found that
the jet energy scale and jet mass scale had the largest impact on the analysis.
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Uncertainty Value Primary Source
Jet Energy Scale 5% rtrk ratio
Jet Energy Resolution 2% (absolute) Cross-sample checks
Jet Mass Scale 6% rtrk ratio
Jet Mass Resolution 20% Cross-sample checks
D2 Scale 5% rtrk ratio
D2 Resolution 15% Cross-sample checks
ntrk Cut Efficiency 12% §7.6.4
PDF (Graviton) 1% Reweighting method
PDF (HVT) 1-12% Reweighting method
MC Tune (Graviton) 5% Reweighting method
MC Tune (HVT) 3% Reweighting method
Luminosity 3.6% [160]
Trigger Efficiency - §7.4

Table 7.7: A summary of the evaluated uncertainties on analysis inputs.

Parameter WZ WW ZZ
Observed Events 904 497 618

ζ 7.5 7.3 7.5
p2 56.1± 1.8 50.9± 2.1 57.0± 2.1

p3 4.9± 1.5 6.0± 1.5 5.9± 1.7

χ2/NDF 9.8/12 8.0/12 13.5/11

Table 7.8: The fit parameters and number of observed events for each signal region.

7.9 Results

7.9.1 Background Fit

Background fits were made using events passing WW, WZ and ZZ selections as
described in §7.7. The observed dijet mass spectra and fits are shown in figure 7.27.
The fit parameters for each signal region are shown in table 7.8.

7.9.2 Statistical Analysis

A frequentist statistical analysis is performed in each signal region for a range of
signal mass points to evaluate the significance of any excesses and place limits on
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(d) WZ+WW Signal Region
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(e) WW+ZZ Signal Region

Figure 7.27: The fitted mJJ distributions for the WW (a), WZ (b), and ZZ (c)
signal regions. The combined WW+WZ (d) and WW+ZZ (e) signal regions are
also shown. The background fit is shown by the red line and the shaded band
corresponds to the uncertainty on this fit. The expected signal peaks are shown
for HVT model B (gV = 3) and Graviton models where appropriate. The graviton
predictions are scaled by a factor of 10 for legibility.
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Model Signal Region Excluded mass range [GeV]
WW 1200 – 2200

HVT model A, gV = 1 WZ 1200 – 3000
WW +WZ 1200 – 3100

WW 1200 – 2800
HVT model B, gV = 3 WZ 1200 – 3300

WW +WZ 1200 – 3500
WW 1300 – 1450

Bulk RS, k/M̄planck = 1 ZZ –
WW + ZZ 1300 – 1600

Table 7.9: The mass regions for the HVT and RS graviton models that can be
excluded at 95% confidence level by each individual and combined signal region.
Table taken from [11].

the σ × BR. For each mass point, the parameter of interest measured is the signal
strength µ; µ = 0 is the corresponds to the background-only hypothesis and µ = 1

is the signal+background hypothesis. Information about µ is extracted using a test
statistic λ(µ) based on a profile-likelihood ratio [161] where the likelihood is defined
as

L =
∏
i

Ppois(n
i
obs|niexp(µ, p1, p2, p3, ζ))×G(α)×N (θ) (7.7)

Here Ppois(niobs|niexp) is the poissonian probability of observing niobs events in the ith

bin of mJJ given the expectation of niexp events in that bin (evaluated using eqn.
(7.3) and signal expectation multiplied by µ). G(α) is the set of gaussian PDFs
corresponding to signal shape uncertainties and N (θ) is the set of log-normal PDFs
for nuisance parameters θ which model the uncertainty in the signal normalisation.

The local p0 value, defined as the probability of the background-only model produc-
ing an excess at least as large as that observed, is used to quantify any excess found.
This is translated into the global p0 value of finding a similar excess across the whole
search region using pseudo-experiments. The largest p0 occurs in the WW channel
for an HVT Z ′ with a mass of 2 TeV and is approximately 6%.

Since no significant excess is observed, exclusion limits are set using the CLs method
[162] at 95% confidence level, the regions excluded are given in table 7.9.

177



m(V') [TeV]
2 3 4 5

W
W

+
W

Z
) 

[fb
]

→
 B

(V
'

×
V

'+
X

) 
→

(p
p

σ

1

10

210

310
ATLAS  

-1 = 13 TeV, 36.7 fbs
 qqqq→VV Observed 95% CL limit

Expected 95% CL limit
σ 1±Expected limit 
σ 2±Expected limit 

 = 1
v

HVT model A, g
 = 3

v
HVT model B, g

(a) V ′ →WW +WZ

) [TeV]
KK

m(G
2 3 4 5

W
W

+
Z

Z
) 

[fb
]

→
K

K
 B

(G
×

+
X

) 
K

K
G

→
(p

p
σ

1

10

210

310
ATLAS  

-1 = 13 TeV, 36.7 fbs
 qqqq→VV Observed 95% CL limit

Expected 95% CL limit
σ 1±Expected limit 
σ 2±Expected limit 

 = 1PlMBulk RS, k/

(b) G→WW + ZZ

m(Scalar) [TeV]
1.5 2 2.5 3

W
W

+
Z

Z
) 

[fb
]

→
 B

(S
ca

la
r

×
S

ca
la

r+
X

) 
→

(p
p

σ

1

10

210

310
ATLAS  

-1 = 13 TeV, 36.7 fbs
 qqqq→VV Observed 95% CL limit

Expected 95% CL limit
σ 1±Expected limit 
σ 2±Expected limit 

(c) X →WW + ZZ

Figure 7.28: Upper-limits at the 95% CL on the HVT (a) and (b) Bulk RS Graviton
and heavy (c) scalar cross-section using the WW+WZ and WW+ZZ signal regions.
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7.10 Conclusion

The analysis presented has updated the results given in [145] to include the complete
36.7fb−1 dataset collected by the ATLAS detector during 2015 and 2016 and made
several significant improvements in methodology, including the use of the combined
jet mass, re-derived boson tagging cuts and a reinterpretation in terms of a generic
heavy scalar.

The results were consistent with the Standard Model-only hypothesis in all signal
regions and limits were placed on HVT models A and B, the bulk RS graviton model
and heavy scalar decays. A HVT model A (B) vector triplet is excluded with gV = 1

(3) between 1.2 and 3.1 TeV (1.2 and 3.5 TeV), the RS graviton with k/Mplanck = 1

is excluded between 1.3 and 1.6 TeV and upper limits on σ ×BR were placed on a
heavy scalar, X, of 11 fb for mX = 2 TeV and 3.9 fb for mX = 3 TeV.
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Chapter 8

Conclusion

Within the pages of this thesis I have attempted to give an overview of the varied
work one must undertake when completing a Ph.D. as part of a particle physics
experiment collaboration, and to provide enough background that a well-informed,
or particularly dedicated, reader may engage with the remainder of the text.

The studies presented, multivariate calibration, ATLAS trigger performance, and a
search for new particles, are obviously different in theme but are drawn together by
a single thread linking all parts of this thesis - leveraging the substructure of large-R
jets as a tool in the study of particle collisions.

§5 shows that jet substructure can deliver substantial improvements to the calibra-
tion of the large-R jet mass to the particle level by predicting the jet mass response
using a neural network. A calibration of the jet energy was also attempted but was
found to be less successful. Automatic variable selection methods were developed to
prune the substantial library of jet substructure variables to a smaller neural network
input set. Mutual information ranking and iterative principal component selection
(IPCS) were proposed, and both were shown to select variables that contained useful
information about the jet response. Deep and shallow neural networks were trained
on MC QCD samples using these variable sets and a basic scan of the network ar-
chitecture parameter space was undertaken to identify the best-performing energy
and mass calibration networks.

After training, we identified the best-performing mass/energy calibration networks
and input variable collections. For mass, this was a three layer 300-200-100 neu-
ron structure trained using 10 variables selected using IPCS; for energy, the same
network was used but only the energy, pT and |η| were taken as inputs. The mass
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calibration was found to give a 26% improvement in calibrated jet mass resolution
compared to the current ATLAS ‘‘combined mass’’ calibration. The energy cali-
bration was found to give no improvement. Further validation was performed on
alternative generators, jet topologies, and on actual data, and the mass network
was found to perform well in all cases. The data validation flagged up structures in
the energy calibration network output caused by similar structures in the training
sample. Further work is needed to identify how to remove these structures and to
measure the mass calibration performance and uncertainties in data.

The following chapter, §6, contained two related studies on the ATLAS large-R jet
trigger. The first used low energy small-R jet triggers to measure the efficiency of
the large-R jet triggers used by ATLAS in 2015. It was shown that the standard
online large-R jet reconstruction coupled with pileup subtraction and local cluster
weighting of the jet constituents gave the best performance. The 360 GeV trigger
was found to reach 100% efficiency by pT > 380 GeV.

The second trigger study presented was more speculative, and showed that jet sub-
structure could be used to create an online ‘‘anti-QCD’’ tagger that could be used to
reject hadronic jets in favour of those from a variety of heavy object decays, which
are the primary use-case of these jets in analyses. By combining the n-subjettiness
variables several useful 1 vs 2 or 3 prong jet discriminants were created. Rough
calculations indicate this could lower the jet trigger energy threshold to 349 GeV
while maintaining the same rate as the current 395 GeV trigger. This tagger now
needs to be implemented and tested within the ATLAS trigger software.

Finally, the primary physics analysis on which I worked during my PhD was pre-
sented in §7 [11]. This used large-R jets to search for heavy exotic particles decaying
to vector bosons. These are expected from a variety of theoretical models, but the
search was conducted in a relatively model-independent way, using the phenomeno-
logical framework of the Heavy Vector Triplet model as the primary analysis target.
Both large-R jet calibrations and triggers were obviously important to this analysis,
and the results shown in earlier chapters were either used in this analysis (in the
case of the 2015 trigger studies) or would bring improvements to the analysis in a
future iteration (in the case of the substructure trigger and calibration studies). Jet
substructure also plays a significant role in this analysis as the basis of the boson-
tagging techniques which make such a study possible. An important, though less
glamorous, part of my work on this analysis was the development of the software
for a large part of the analysis chain, so further details on this were provided.
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The analysis identified collision events that had a topology consistent with a heavy
object decaying to two highly boosted, hadronically-decaying, bosons. In the ab-
sence of new physics, selected events would primarily be caused by mis-tagged
hadronic jets and would form a steeply falling background as a function of the
mass of the dijet system. Any resonance would appear as a ‘‘bump’’ on this back-
ground. A smooth curve was fit to the mass spectrum observed, and a statistical
analysis conducted to quantify any deviations from this fit at specific mass points.
No significant deviations from the background were observed, and limits were placed
on the HVT model A (B) and Graviton models of 1.2-3.1 TeV (1.2-3.5 TeV) and
1.3-1.6 TeV respectively.

I hope that the preceding thesis has left the reader with a deeper understanding of
the intricacies of jets and the many ways that their substructure can contribute to
physics at the LHC. Sadly, advances in analysis and reconstruction techniques such
as these, and others used in the search presented, have not yet led to the discovery
of new physics at the LHC. For now, whatever lies beyond the standard model is
not yet obvious, but its many flaws seem to prove that something new must be out
there.
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Appendix A

Neural Network Calibration
Results

A.1 Training Results

This appendix contains the primary results for each calibration network generated as
part of the study in §5. The tables are divided into the energy and mass calibration
results and each shows the training and validation errors for each network, alongside
the response and interquartile range measures for all of the datasets considered.
Each table contains the training error, validation error, response, interquartile range
and interdecile range for each network/input combination evaluated on each of the
Pythia, Herwig, WZ, tt̄ and hh datasets. The best network in for each input set
is highlighted in bold. Note that the energy IPCS networks were validated on a
dataset that was missing the final 1/3 of jets, hence its validation error needs to be
scaled by 3/2 to when compared to the other input sets.
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Energy - Simple Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 0.969 0.025 0.051 0.972 0.022 0.046
Calib - - 1.002 0.024 0.049 1.002 0.021 0.044
S-1-50 2748.5 915.4 1.002 0.025 0.051 1.002 0.022 0.046
S-1-100 2721.4 907.5 1.002 0.024 0.05 1.001 0.022 0.045
S-1-200 2700.6 899.8 1.002 0.024 0.05 1.002 0.022 0.045
S-2-50 2652.1 881.3 1.002 0.024 0.049 1.002 0.021 0.044
S-2-100 2567.3 857.4 1.003 0.023 0.048 1.004 0.021 0.044
S-3-50 2604.3 867.2 1.002 0.024 0.049 1.003 0.021 0.044
S-3-100 2588.2 864.5 1.002 0.024 0.049 1.002 0.021 0.044
S-3-300 2544.7 851.8 1.002 0.023 0.048 1.002 0.021 0.043

Energy - Simple Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 0.974 0.026 0.053 0.969 0.032 0.065 0.975 0.03 0.061
Calib 1.009 0.025 0.051 1.009 0.031 0.065 1.011 0.029 0.06
S-1-50 1.009 0.026 0.053 1.008 0.032 0.065 1.011 0.03 0.062
S-1-100 1.01 0.025 0.052 1.009 0.031 0.064 1.012 0.029 0.061
S-1-200 1.01 0.025 0.052 1.01 0.031 0.064 1.013 0.029 0.06
S-2-50 1.01 0.025 0.052 1.01 0.031 0.064 1.013 0.029 0.061
S-2-100 1.011 0.025 0.051 1.011 0.031 0.064 1.013 0.029 0.061
S-3-50 1.01 0.025 0.051 1.01 0.031 0.064 1.013 0.029 0.061
S-3-100 1.01 0.025 0.051 1.01 0.031 0.064 1.013 0.029 0.06
S-3-300 1.01 0.025 0.052 1.011 0.031 0.064 1.013 0.029 0.061

Table A.1: Energy calibration network results for the Simple input set.
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Energy - MI5 Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 0.969 0.025 0.051 0.972 0.022 0.046
Calib - - 1.002 0.024 0.049 1.002 0.021 0.044
L-1-500 2649.7 887.2 1.005 0.024 0.05 1.005 0.022 0.045
L-2-100 2611.4 874.0 1.002 0.024 0.049 1.002 0.021 0.044
L-3-100 2629.5 875.2 1.002 0.024 0.049 1.004 0.022 0.045
L-3-300 2601.5 874.2 1.003 0.024 0.049 1.004 0.021 0.044
L-4-100 2652.6 882.9 0.999 0.024 0.049 1.001 0.021 0.044
L-4-300 2640.4 877.5 1.003 0.024 0.049 1.004 0.022 0.045
L-5-100 2655.4 884.5 1.001 0.024 0.05 1.002 0.022 0.045
L-5-300 2677.4 894.1 1.001 0.024 0.05 1.002 0.022 0.045

Energy - MI5 Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 0.974 0.026 0.053 0.969 0.032 0.065 0.975 0.03 0.061
Calib 1.009 0.025 0.051 1.009 0.031 0.065 1.011 0.029 0.06
L-1-500 1.014 0.025 0.052 1.013 0.031 0.065 1.016 0.029 0.061
L-2-100 1.01 0.025 0.051 1.01 0.031 0.064 1.013 0.029 0.06
L-3-100 1.008 0.025 0.051 1.008 0.031 0.064 1.011 0.029 0.06
L-3-300 1.011 0.025 0.051 1.01 0.031 0.064 1.013 0.029 0.06
L-4-100 1.006 0.025 0.051 1.006 0.031 0.064 1.009 0.029 0.06
L-4-300 1.011 0.025 0.052 1.011 0.031 0.064 1.012 0.029 0.06
L-5-100 1.008 0.025 0.052 1.006 0.031 0.064 1.009 0.029 0.06
L-5-300 1.007 0.025 0.052 1.006 0.031 0.064 1.008 0.029 0.061

Table A.2: Energy calibration network results for the MI5 input set.
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Energy - MI10 Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 0.969 0.025 0.051 0.972 0.022 0.046
Calib - - 1.002 0.024 0.049 1.002 0.021 0.044
L-2-100 2667.1 886.4 1.001 0.024 0.049 1.003 0.022 0.045
L-3-100 2668.3 886.9 1.001 0.024 0.05 1.002 0.022 0.045
L-3-300 2668.8 895.3 1.004 0.026 0.053 1.006 0.023 0.048
L-4-100 2989.0 992.4 1.007 0.024 0.05 1.009 0.022 0.045
L-4-300 2766.5 929.6 1.002 0.024 0.049 1.002 0.021 0.045
L-5-100 2663.2 892.0 1.0 0.025 0.051 1.001 0.022 0.046
L-5-300 2760.7 923.2 1.004 0.024 0.051 1.005 0.022 0.046

Energy - MI10 Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 0.974 0.026 0.053 0.969 0.032 0.065 0.975 0.03 0.061
Calib 1.009 0.025 0.051 1.009 0.031 0.065 1.011 0.029 0.06
L-2-100 1.008 0.025 0.052 1.008 0.031 0.064 1.01 0.029 0.06
L-3-100 1.007 0.025 0.052 1.005 0.031 0.064 1.008 0.029 0.061
L-3-300 1.008 0.027 0.056 1.004 0.033 0.067 1.01 0.031 0.064
L-4-100 1.014 0.025 0.053 1.012 0.031 0.065 1.016 0.03 0.061
L-4-300 1.01 0.025 0.052 1.011 0.031 0.065 1.012 0.029 0.06
L-5-100 1.006 0.025 0.053 1.004 0.031 0.065 1.008 0.03 0.061
L-5-300 1.01 0.025 0.053 1.008 0.032 0.065 1.011 0.03 0.062

Table A.3: Energy calibration network results for the MI10 input set.
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Energy - IPCS Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 0.969 0.025 0.051 0.972 0.022 0.046
Calib - - 1.002 0.024 0.049 1.002 0.021 0.044
L-1-500 1925.1 643.4 1.0 0.024 0.049 1.006 0.022 0.045
L-2-100 1871.7 627.1 1.003 0.023 0.048 1.01 0.021 0.044
L-3-100 1890.0 628.1 1.0 0.023 0.048 1.003 0.021 0.045
L-3-300 1951.0 648.8 1.001 0.024 0.049 1.005 0.022 0.045
L-4-100 1886.3 629.1 1.002 0.023 0.048 1.006 0.021 0.044
L-4-300 1997.1 666.4 1.003 0.024 0.05 1.004 0.022 0.045
L-5-100 1995.4 663.5 1.002 0.024 0.05 1.006 0.022 0.045
L-5-300 2744.7 918.3 1.003 0.024 0.051 1.009 0.023 0.047

Energy - IPCS Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 0.974 0.026 0.053 0.969 0.032 0.065 0.975 0.03 0.061
Calib 1.009 0.025 0.051 1.009 0.031 0.065 1.011 0.029 0.06
L-1-500 1.012 0.025 0.052 1.005 0.031 0.064 1.008 0.029 0.06
L-2-100 1.016 0.025 0.052 1.013 0.031 0.065 1.017 0.03 0.061
L-3-100 1.006 0.025 0.052 1.0 0.031 0.064 1.004 0.029 0.061
L-3-300 1.01 0.025 0.052 1.006 0.031 0.063 1.009 0.029 0.06
L-4-100 1.014 0.025 0.052 1.012 0.031 0.064 1.014 0.029 0.06
L-4-300 1.01 0.025 0.052 1.009 0.031 0.064 1.012 0.029 0.06
L-5-100 1.013 0.026 0.053 1.011 0.032 0.065 1.014 0.03 0.061
L-5-300 1.019 0.027 0.056 1.02 0.034 0.068 1.026 0.032 0.065

Table A.4: Energy calibration network results for the IPCS input set.
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Mass - Simple Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 1.061 0.229 0.593 1.113 0.295 0.732
Calib - - 1.039 0.129 0.383 1.039 0.155 0.474
S-1-50 1008210.0 336137.0 0.998 0.129 0.399 0.998 0.156 0.489
S-1-100 1003890.0 333795.0 1.0 0.128 0.395 0.999 0.155 0.484
S-1-200 1001760.0 334168.0 0.998 0.128 0.396 0.997 0.155 0.482
S-2-50 1000890.0 333454.0 0.999 0.128 0.395 1.0 0.155 0.484
S-2-100 996481.0 331884.0 0.999 0.127 0.392 0.998 0.154 0.482
S-3-50 1002200.0 333963.0 0.999 0.128 0.396 1.001 0.156 0.486
S-3-100 996762.0 331554.0 0.996 0.126 0.386 0.994 0.151 0.474
S-3-300 992154.0 332449.0 1.0 0.126 0.39 0.998 0.153 0.476

Mass - Simple Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 1.006 0.083 0.18 0.965 0.059 0.13 0.975 0.062 0.13
Calib 1.024 0.072 0.153 1.021 0.064 0.141 1.035 0.064 0.14
S-1-50 0.976 0.096 0.194 1.003 0.064 0.141 1.013 0.064 0.14
S-1-100 0.98 0.097 0.198 1.005 0.063 0.14 1.015 0.064 0.14
S-1-200 0.979 0.098 0.199 1.004 0.063 0.139 1.015 0.064 0.139
S-2-50 0.978 0.09 0.196 0.99 0.06 0.131 1.0 0.063 0.135
S-2-100 0.977 0.093 0.199 0.996 0.06 0.134 1.005 0.063 0.136
S-3-50 0.972 0.089 0.193 0.988 0.061 0.133 0.996 0.063 0.135
S-3-100 0.972 0.092 0.199 0.996 0.06 0.135 1.004 0.064 0.137
S-3-300 0.98 0.094 0.201 1.001 0.061 0.135 1.011 0.064 0.138

Table A.5: Mass calibration network results for the Simple input set.
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Mass - TA Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 1.061 0.229 0.593 1.113 0.295 0.732
Calib - - 1.039 0.129 0.383 1.039 0.155 0.474
S-1-50 964408.0 321651.0 0.997 0.122 0.37 0.998 0.147 0.456
S-1-100 958722.0 319244.0 0.997 0.12 0.364 0.997 0.144 0.45
S-1-200 956873.0 317696.0 1.001 0.119 0.364 1.001 0.144 0.448
S-2-50 951727.0 316067.0 1.001 0.118 0.363 1.006 0.143 0.448
S-2-100 948190.0 314346.0 1.002 0.117 0.361 1.003 0.142 0.446
S-3-50 951250.0 316434.0 1.004 0.118 0.367 1.008 0.145 0.454
S-3-100 945607.0 316420.0 0.999 0.117 0.362 1.001 0.142 0.445
S-3-300 941353.0 314820.0 1.0 0.116 0.357 1.0 0.14 0.44

Mass - TA Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 1.006 0.083 0.18 0.965 0.059 0.13 0.975 0.062 0.13
Calib 1.024 0.072 0.153 1.021 0.064 0.141 1.035 0.064 0.14
S-1-50 0.982 0.086 0.178 1.0 0.062 0.138 1.011 0.063 0.137
S-1-100 0.982 0.087 0.179 1.003 0.062 0.138 1.013 0.062 0.137
S-1-200 0.987 0.087 0.18 1.006 0.062 0.138 1.017 0.062 0.136
S-2-50 0.98 0.081 0.176 0.991 0.059 0.128 1.003 0.061 0.132
S-2-100 0.982 0.08 0.172 0.996 0.058 0.13 1.007 0.06 0.131
S-3-50 0.974 0.081 0.171 0.991 0.06 0.129 1.0 0.062 0.132
S-3-100 0.974 0.081 0.17 0.995 0.059 0.129 1.004 0.061 0.131
S-3-300 0.981 0.081 0.173 1.001 0.059 0.132 1.011 0.06 0.132

Table A.6: Mass calibration network results for the TA input set.
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Mass - MI5 Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 1.061 0.229 0.593 1.113 0.295 0.732
Calib - - 1.039 0.129 0.383 1.039 0.155 0.474
L-1-500 940772.0 313313.0 0.995 0.118 0.341 1.003 0.14 0.418
L-2-100 942094.0 313377.0 1.001 0.121 0.352 1.012 0.145 0.432
L-3-100 942253.0 315500.0 0.999 0.119 0.351 1.011 0.143 0.433
L-3-300 936060.0 311917.0 0.989 0.116 0.338 0.998 0.139 0.415
L-4-100 953687.0 317323.0 0.979 0.118 0.348 0.989 0.143 0.43
L-4-300 954849.0 317538.0 0.985 0.121 0.354 0.995 0.146 0.434
L-5-100 971058.0 324414.0 0.955 0.117 0.336 0.964 0.137 0.42
L-5-300 1182980.0 394045.0 0.874 0.127 0.315 0.876 0.143 0.399

Mass - MI5 Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 1.006 0.083 0.18 0.965 0.059 0.13 0.975 0.062 0.13
Calib 1.024 0.072 0.153 1.021 0.064 0.141 1.035 0.064 0.14
L-1-500 0.986 0.078 0.171 0.995 0.06 0.135 1.0 0.064 0.14
L-2-100 0.992 0.079 0.169 0.988 0.061 0.133 0.995 0.063 0.139
L-3-100 0.99 0.078 0.168 0.992 0.061 0.135 0.999 0.064 0.14
L-3-300 0.98 0.076 0.167 0.989 0.061 0.134 0.994 0.063 0.139
L-4-100 0.965 0.081 0.17 0.98 0.062 0.137 0.985 0.064 0.14
L-4-300 0.968 0.079 0.168 0.98 0.063 0.137 0.985 0.065 0.141
L-5-100 0.943 0.081 0.169 0.972 0.062 0.139 0.974 0.064 0.142
L-5-300 0.858 0.091 0.18 0.932 0.073 0.154 0.925 0.075 0.159

Table A.7: Mass calibration network results for the MI5 input set.
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Mass - MI10 Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 1.061 0.229 0.593 1.113 0.295 0.732
Calib - - 1.039 0.129 0.383 1.039 0.155 0.474
L-1-500 861465.0 287262.0 0.993 0.105 0.297 1.004 0.125 0.365
L-2-100 848600.0 282569.0 1.001 0.103 0.299 1.02 0.126 0.373
L-3-100 853982.0 285776.0 0.995 0.099 0.296 1.012 0.121 0.368
L-3-300 830209.0 277439.0 0.995 0.098 0.284 1.013 0.118 0.353
L-4-100 860248.0 286416.0 1.001 0.103 0.305 1.017 0.127 0.382
L-4-300 845213.0 281928.0 0.974 0.099 0.279 0.988 0.117 0.351
L-5-100 853976.0 284656.0 0.995 0.101 0.297 1.013 0.123 0.373
L-5-300 855001.0 284000.0 0.99 0.101 0.295 1.007 0.122 0.37

Mass - MI10 Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 1.006 0.083 0.18 0.965 0.059 0.13 0.975 0.062 0.13
Calib 1.024 0.072 0.153 1.021 0.064 0.141 1.035 0.064 0.14
L-1-500 0.997 0.068 0.142 0.995 0.059 0.129 1.003 0.059 0.128
L-2-100 1.005 0.066 0.136 0.993 0.057 0.124 1.001 0.057 0.123
L-3-100 0.995 0.065 0.134 0.99 0.058 0.122 0.998 0.057 0.123
L-3-300 0.998 0.063 0.13 0.993 0.057 0.122 0.999 0.056 0.121
L-4-100 0.991 0.064 0.134 0.993 0.058 0.123 0.999 0.057 0.124
L-4-300 0.974 0.063 0.13 0.978 0.058 0.124 0.983 0.058 0.12
L-5-100 0.997 0.067 0.14 0.992 0.059 0.125 1.0 0.059 0.126
L-5-300 0.986 0.065 0.136 0.988 0.059 0.124 0.994 0.058 0.124

Table A.8: Mass calibration network results for the MI10 input set.
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Mass - IPCS Inputs
Pythia Herwig

Name Train. Error Valid. Error R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib - - 1.061 0.229 0.593 1.113 0.295 0.732
Calib - - 1.039 0.129 0.383 1.039 0.155 0.474
L-1-500 801752.0 267260.0 0.989 0.096 0.264 0.991 0.112 0.321
L-2-100 801316.0 266759.0 1.008 0.097 0.272 1.011 0.114 0.337
L-3-100 811907.0 269774.0 1.004 0.098 0.279 1.008 0.116 0.347
L-3-300 799090.0 265911.0 0.997 0.095 0.274 1.001 0.113 0.341
L-4-100 816304.0 272259.0 0.992 0.096 0.28 0.998 0.116 0.351
L-4-300 806307.0 267844.0 0.994 0.095 0.271 0.999 0.112 0.337
L-5-100 836070.0 277648.0 1.0 0.098 0.286 1.005 0.117 0.358
L-5-300 825438.0 274746.0 0.985 0.098 0.282 0.989 0.116 0.357

Mass - IPCS Inputs
WZ tt̄ hh

Name R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R) R̂ IQR(R) IDQ(R)

Uncalib 1.006 0.083 0.18 0.965 0.059 0.13 0.975 0.062 0.13
Calib 1.024 0.072 0.153 1.021 0.064 0.141 1.035 0.064 0.14
L-1-500 1.001 0.064 0.132 0.999 0.058 0.13 1.01 0.056 0.123
L-2-100 1.016 0.065 0.135 1.01 0.057 0.128 1.021 0.058 0.121
L-3-100 1.01 0.065 0.134 1.004 0.057 0.127 1.014 0.057 0.122
L-3-300 1.002 0.062 0.129 0.995 0.056 0.123 1.008 0.056 0.121
L-4-100 0.992 0.064 0.131 0.989 0.058 0.123 1.002 0.057 0.123
L-4-300 0.999 0.064 0.131 0.993 0.056 0.122 1.003 0.056 0.121
L-5-100 1.002 0.069 0.141 0.993 0.059 0.126 1.006 0.06 0.129
L-5-300 0.989 0.067 0.141 0.987 0.059 0.125 1.0 0.059 0.126

Table A.9: Mass calibration network results for the IPCS input set.
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A.2 Mass Network Profiling

The following section contains the full set of profiling plots for the mass calibration
network studied in §5.2.4.
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Figure A.1: Input response profiles for a subset of the input variables of the mass
calibration network profiled in §5 [1/4].
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Figure A.2: Input response profiles for a subset of the input variables of the mass
calibration network profiled in §5 [2/4]
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Figure A.3: Input response profiles for a subset of the input variables of the mass
calibration network profiled in §5 [3/4].
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Figure A.4: Input response profiles for a subset of the input variables of the mass
calibration network profiled in §5 [4/4].
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Figure A.5: A comparison of the closure for the mass calibration network when
tested on jets from the Herwig QCD dataset and the Pythia QCD validation set
[1/2].
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Figure A.6: A comparison of the closure for the mass calibration network when
tested on jets from the Herwig QCD dataset and the Pythia QCD validation set
[2/2].
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Figure A.7: A comparison of the closure for the mass calibration network when
tested on jets from the W ′ →WZ dataset and the Pythia QCD validation set [1/2].
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Figure A.8: A comparison of the closure for the mass calibration network when
tested on jets from the W ′ →WZ dataset and the Pythia QCD validation set [2/2].
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Figure A.9: A comparison of the closure for the mass calibration network when
tested on jets from the Z ′ → tt̄ dataset and the Pythia QCD validation set [1/2].
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Figure A.10: A comparison of the closure for the mass calibration network when
tested on jets from the Z ′ → tt̄ dataset and the Pythia QCD validation set [2/2].
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Figure A.11: A comparison of the closure for the mass calibration network when
tested on jets from the GRS− > hh dataset and the Pythia QCD validation set
[1/2].
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Figure A.12: A comparison of the closure for the mass calibration network when
tested on jets from the GRS− > hh dataset and the Pythia QCD validation set
[2/2].
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Figure A.13: The mean jet energy as a function of some of the energy calibration
network’s inputs, pT , |η|, and E, before and after the calibration is applied. The
ratios of the calibrated to uncalibrated distributions is shown below each plot for
both data and MC samples. No unexpected shaping of the mass distribution is seen
and no significant difference in behaviour is observed between data and MC.

A.3 Calibrated Target Resolutions in Data

The following show the pre and post-calibration distributions of energy and mass
generated by applying the training networks as a function of the network inputs.
They use the data and monte-carlo samples prepared for the in-situ data validation
of the network detailed in §5.2.2.
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Figure A.14: The mean jet mass as a function of some of the mass calibration
network’s inputs, Widthtrk, Width, ntrk, pT /m, m, and Ctrk2 , before and after the
calibration is applied. The ratios of the calibrated to uncalibrated distributions is
shown below each plot for both data and MC samples. No unexpected shaping of
the mass distribution is seen and no significant difference in behaviour is observed
between data and MC. The remaining input variables are shown in figure A.15.

207



0

50

100

150

200

250

300

350

400

450

500
310×〉 

N
N

 c
al

ib
 m〈

2016 Data
Pythia QCD
Calbrated Data
Calibrated Pythia

 = 13 TeVs, -1 L = 7.2 pb∫Data: 
| < 2.0η < 3000 GeV, |

T
500 GeV < p
40 GeV < m < 400 GeV
Mass Calibration

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2
Leading Jet C

0.6
0.7
0.8
0.9

1
1.1
1.2

1.3
1.4

C
al

ib
/U

nc
al

ib

(a) C2

0

0.005

0.01

0.015

0.02

0.025

E
ve

nt
s

Pythia QCD
2016 Data

 = 13 TeVs, -1 L = 7.2 pb∫Data: 
| < 2.0η < 3000 GeV, |

T
500 GeV < p
40 GeV < m < 400 GeV
Mass Calibration

0 20 40 60 80 100 120 140 160 180 200

910×

Leading Jet ECF2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

D
at

a/
M

C

(b) ECF2

0

50

100

150

200

250

300

350

400

450

500
310×〉 

N
N

 c
al

ib
 m〈

2016 Data
Pythia QCD
Calbrated Data
Calibrated Pythia

 = 13 TeVs, -1 L = 7.2 pb∫Data: 
| < 2.0η < 3000 GeV, |

T
500 GeV < p
40 GeV < m < 400 GeV
Mass Calibration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1,wta,track

τLeading Jet 

0.6
0.7
0.8
0.9

1
1.1
1.2

1.3
1.4

C
al

ib
/U

nc
al

ib

(c) τ21,wta

0

50

100

150

200

250

300

350

400

450

500
310×〉 

N
N

 c
al

ib
 m〈

2016 Data
Pythia QCD
Calbrated Data
Calibrated Pythia

 = 13 TeVs, -1 L = 7.2 pb∫Data: 
| < 2.0η < 3000 GeV, |

T
500 GeV < p
40 GeV < m < 400 GeV
Mass Calibration

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Leading Jet Angularity

0.6
0.7
0.8
0.9

1
1.1
1.2

1.3
1.4

C
al

ib
/U

nc
al

ib

(d) A

Figure A.15: The mean jet mass as a function of some of the mass calibration
network’s inputs, C2, ECF2, τ trk21,wta, and A, before and after the calibration is
applied. The ratios of the calibrated to uncalibrated distributions is shown below
each plot for both data and MC samples. No unexpected shaping of the mass
distribution is seen and no significant difference in behaviour is observed between
data and MC. The remaining variables are shown in figure A.14.
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