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Asymptotic models for transport in large aspect ratio
nanopores
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Abstract

Ion flow in charged nanopores is strongly influenced by the ratio of the Debye
length to the pore radius. We investigate the asymptotic behaviour of solutions to
the Poisson-Nernst-Planck (PNP) system in narrow pore like geometries and study
the influence of the pore geometry and surface charge on ion transport. The physical
properties of real pores motivate the investigation of distinguished asymptotic limits,
in which either the Debye length and pore radius are comparable or the pore length
is very much greater than its radius. This results in a Quasi-1D PNP model which
can be further simplified, in the physically relevant limit of strong pore wall surface
charge, to a fully one-dimensional model. Favourable comparison is made to the two-
dimensional PNP equations in typical pore geometries. It is also shown that, for
physically realistic parameters, the standard 1D Area Averaged PNP model for ion
flow through a pore is a very poor approximation to the (real) two-dimensional solution
to the PNP equations. This leads us to propose that the Quasi-1D PNP model derived
here, whose computational cost is significantly less than two-dimensional solution of
the PNP equations, should replace the use of the 1D Area Averaged PNP equations
as a tool to investigate ion and current flows in ion pores.
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1 Introduction

Solid-state nanopores are nanoscale holes in synthetic materials, such as silicon nitrite,
graphene or polyethylene terepthalate (PET). They can be produced in a variety of lengths
and shapes, with diameters ranging from a few nanometer to openings at the micrometer
scale. There has been a tremendous increase in research on nanopores over the last decades,
mostly initiated by their use as sensors for DNA or other biomolecules. In a typical ex-
periment, one or more nanopores are placed into a bath containing an ionic solution with
potentially different ionic concentrations on each side of the pore. Then, an additional ex-
ternal potential is applied and the current generated by the ions moving through the pore is
measured. When acting as sensor, the current fluctuation as an unknown molecule traverses
through the pore, allows the determination of its structural or chemical properties, [29].
Another interesting characteristic of many pores is their rectification behaviour, meaning
that the measured current for positive applied external voltage differs from that for nega-
tive voltage. This effect has been extensively studied and is believed to originate from the
combination of geometric and electrostatic effects. Hence, the pores are effectively acting as
diodes which make them useful as a building block for more complex circuits.
In terms of mathematical modelling, the Poisson-Nernst-Planck (PNP) equations have been
used successfully to describe the flow of ions through pores, [34, 33, 6]. They consist of a
set of drift–diffusion equations for the density of ions, self consistently coupled to a Poisson
equation to account for the electrostatic interactions due to the charge of the ions them-
selves and other charges present in the system. They were first introduced to describe
carrier transport in semiconductor devices where they are known as drift-diffusion equations
(DDE), [20, 19], but have also been applied to many other systems, e.g. batteries [22] and
ion channels [7, 15, 35, 36, 21]. The analysis of the DDE is well understood, see [17, 19] and
its asymptotic behaviour has been analysed in a variety of contexts, such as semiconductor
devices [18, 20], solar cells [8, 10, 11, 26, 28], cell membrane action potentials [12, 24] and
batteries [16, 25]. Perhaps more importantly, these asymptotic methods provide techniques
which allow to systematically derive simplified models from numerically challenging PDE
models of the underlying physics. For example equivalent circuit models of solar cells have
been derived from DDE models in [11, 10, 27], surface polarization models for both action
potentials in [24] and for perovskite solar cells in [8, 26, 28]. Also effective medium models
for lithium-ion batteries [16, 25] and organic photovoltaic devices [28] have been derived from
DDE models. In a similar vein one of the major aims of this work, is to systematically apply
asymptotic methods to a DDE model of an electrolyte in a nanopore to derive a simplified,
computationally tractable model of ion transport through the pore.

With increasing miniaturisation of semiconductor devices as well as the application to
nanoscale systems, the influence of finite size effects on the transport behaviour became more
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important. However the classical PNP equations treats particles as point charges, without
size, and omits particle-particle interactions such as volume exclusion effects. For this reason
several extensions were introduced, for example by including finite volume effects already
in a microscopic model [2] or by using density functional theory to account for quantum
mechanical effects [13]. Dreyer and co-workers proposed a thermodynamically consistent
coupling to the Navier-Stokes equations, which includes the velocity of the solvent in [9].

In this paper we study the classical PNP model and analyse the behaviour of its solutions
in the case of the nanopores with a very large aspect ratio, i.e the pore radius is much smaller
than the length of the pore. Our analysis is motivated by the geometry and structure of
typical polyethylene terepthalate (PET) nanopores, which are produced by irradiating a
12µm thick PET foil with heavy ions and subsequent chemical etching, [33]. The resulting
pores are radially symmetric and the etching creates carboxyl groups at the pore walls
at an estimated density of 1 electron per nm2. They have typical opening diameters of
4 − 200nm and 200 − 1000nm at their respective ends. Thus their aspect ratio is in the
range of 0.0003 − 0.08. While the PNP equations are in principle still valid in this regime,
from a computational point of view it is very expensive, if at all possible, to simulate such
a pore completely. Furthermore, the rectification behaviour, is experimentally determined
from so-called I-V-curves which are obtained by measuring the current over a certain range
of applied voltages. Hence, the PNP equations have to be solved several times, which makes
the problem of computational cost even more important.
To overcome these issues we use tools from asymptotic analysis to derive a one-dimensional
approximation of the full PNP system that is still able to capture the physical behaviour
of the pore and can also be used for numerical computations. In a similar context a one-
dimensional area averaged asymptotic model has previously been used to study ion flow
through biological ion channels [31, 32, 5]. However, as far as we are aware, there has been
no direct comparison between numerical solutions to the full PNP equations, in appropriate
geometries, and this 1d-model. Indeed there are good reasons to suppose, as has been pointed
out by Chen et al. [?], that even the full 3D-PNP is incapable of adequately describing the
behaviour of interactions between ions occurring on the atomic lengthscale in an ion channel.
Chen et al. [?] instead make use of an approach based on the Fokker-Planck equations which
allow them to capture the important effects of direct inter-ion interactions in the narrow neck
of the channel and can be shown to lead, via an asymptotic approximation, to a Markovian
transition rate model of a type which is often used to provide a phenomenological description
of ion-channel behaviour (see for example [?]). The present work, however, is concerned with
ion transport in nanopores which are considerably larger structures than ion channels and
for which PNP type models provide an appropriate description.

We start by discussing the PNP equations as well as respective physical parameter ranges
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in Section 2. In Section 3 we present an asymptotic solution to the model for pores with large
aspect ratio and a radius comparable to the Debye length of the electrolyte. This asymptotic
solution allows us to characterise the behaviour of the pore in terms of the solution to a one-
dimensional model. In Section 4 we compare results obtained from the one-dimensional
asymptotic model to numerical solutions of the full equations in axisymetric large aspect
ratio pores.

2 The PNP equations

We start by presenting the mathematical model and its scaling which serves as the basis
of our asymptotic analysis. For ease of presentation, and because this is a typical set-up
in practice, we restrict our attention to an ideal 1:1 electrolyte comprised of positive and
negative ions of valency one and with concentrations p∗ and n∗ respectively (measured in
moles per unit volume). Note that we use ∗ to indicate dimensional variables throughout
the manuscript.
The PNP equations for the concentrations n∗ = n∗(x∗, t∗), p∗ = p∗(x∗, t∗) and the electric
potential V ∗ = V ∗(x∗, t∗) read as

−∇∗ · (ε∇∗V ∗) = F (p∗ − n∗), (1a)
∂p∗

∂t∗
+∇∗ ·F∗p = 0,

∂n∗

∂t∗
+∇ ·F∗n = 0, (1b)

F∗n = −Dn

(
∇∗n∗ − 1

VT
n∗∇∗V ∗

)
, (1c)

F∗p = −Dp

(
∇∗p∗ +

1

VT
p∗∇∗V ∗

)
. (1d)

Here F∗p and F∗n are the flux of positive and negative ions, respectively, F is Faraday’s
constant, and VT the thermal voltage. The parameters Dp and Dn are the diffusion coeffi-
cients of the positive and negative ions, respectively, and the domain Ω is assumed axially
symmetric being given by

Ω = {(x∗, y∗, z∗) : 0 ≤ x∗ ≤ L∗, 0 ≤
√
y∗2 + z∗2 ≤ R∗(x∗)},

where R∗(x∗) is the radius of the pore as a function of x∗. The boundary of Ω is split into
three subdomains, the left and the right entrance of the nanopore

Ωl = {(x∗, y∗, z∗) ∈ ∂Ω, x∗ = 0} and Ωr = {(x∗, y∗, z∗) ∈ ∂Ω, x∗ = L},
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as well as the nanopore walls ΩN = {(x∗, y∗, z∗) ∈ ∂Ω,
√
y∗2 + z∗2 = R∗(x∗)}. The consid-

ered geometry of the pore is depicted in Figure 1. In the same Figure, we also present a more
realistic geometry, in which additional bath regions are attached at each end of the pore.

Figure 1: Sketches of the geometries considered for the nanopores.

System (1) is supplemented with the following boundary conditions:

V ∗|Ωl
= 0, V ∗|Ωr = Vappl, {n∗, p∗}|Ωl

= {nl, pl}, {n∗, p∗}|Ωr = {nr, pr}, (2)

F∗p ·N |ΩN
= F∗n ·N |ΩN

= 0,
∂V ∗

∂N∗

∣∣∣∣
ΩN

=
σ∗(x∗)

ε
. (3)

where ∂/∂N∗ denotes the normal derivative to the pore boundary with respect to its unit
outward normal N , defined by

N =

(
er −

dR∗

dx∗
ex

)(
1 +

(
dR∗

dx∗

)2
)−1/2

,

σ(x∗) is the surface charge density on the pore wall and ε the permittivity of the electrolyte.
The Dirichlet conditions (2) correspond to a prescribed applied voltage and prescribed ion
concentrations at each opening of the pore and in the bath regions, respectively. Here, for
computational convenience, these are imposed on a fixed external boundary whereas it could
be argued that these ought to be imposed as far-field conditions. However these two sets
of boundary conditions have almost identical solutions provided the pore is sufficiently wide
when it is terminated by the artificial boundaries Ωl and Ωr. Condition (3) ensures that there
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is no ion flux through the pore walls and prescribes the fixed surface charge at these walls.
We note that surface charge condition is asymptotically correct only if the permittivity ε of
the electrolyte is much greater than that of the pore walls (which is the case for aqueous
electrolytes); for more details see [5].

The current-voltage curve (IV curve in short) is commonly used to characterise the be-
haviour of ion channels and nanopores. The respective current flow I∗(x∗, t∗) can be com-
puted by calculating the current flow through a cross-section on the pore, at x∗ = X∗ say,
being given by

I∗(x∗, t∗) = F

∫
{y∗2+z∗2≤R∗2(X∗)}∩ {x∗=X∗}

ex · (F∗p −F∗n)|x∗=X∗dS∗. (4)

2.1 The 1D Area Averaged PNP equations

The 1D Area Averaged PNP equations are a common reduction of the full PNP system,
which is frequently used to calculate ion flux through radially symmetric nanopores because
of its much reduced computational cost, see for example [3, 4]. In this approach, at each
point of the x∗ axis, the average of the ionic concentrations and the electrostatic potential
on the disc 0 ≤

√
y∗2 + z∗2 ≤ R∗(x∗) is calculated. This yields

∂

∂x∗

(
εA(x∗)

∂V ∗

∂x∗

)
= − (FA(x∗)(p∗ − n∗) + ∂A(x∗)σ∗(x∗)) , (5a)

Dn
∂

∂x∗

(
A(x∗)

(
∂n∗

∂x∗
− 1

VT
n∗
∂V ∗

∂x∗

))
= 0, (5b)

Dp
∂

∂x∗

(
A(x∗)

(
∂p∗

∂x∗
+

1

VT
p∗
∂V ∗

∂x∗

))
= 0, (5c)

where

A(x∗) = R∗(x∗)2π (6)

denotes the area and ∂A(x∗) = 2R(x∗)π the circumference of the pore at point x∗. The
1D Area Averaged PNP equations are based on the assumption that the influence of the
surface charge on the ion concentration and the voltage can be averaged over the cross
section of the pore. This assumption is only valid if the Debye length of the electrolyte is
much greater than the pore width (e.g. for extremely dilute solutions) and does not hold
for typical experimental conditions. Indeed, we shall show that solutions to the 1D Area
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Averaged PNP equations do not provide a good approximation to the full 2D equations
for the geometries we consider except in exceptional circumstances (e.g for extremely dilute
electrolytes or very narrow pores) in which the Debye length of the electrolyte is very much
greater than the pore width. The main aim of this work is to derive a similar 1D model
that is capable of adequately approximating the 2D PNP equations. Comparison is made
between the resulting 1D models and the full 2D system in Section 4.

2.2 Scaling

We nondimensionalise system (1) by introducing a typical lateral lengthscale L, a typical
pore radius R0, a typical concentration c̄ (measured in ion number per unit volume), and a
typical surface charge σ̄. The great disparity in size between the lateral lengthscale L and
the pore radius R0 motivates us to rescale differently in the these two dimensions. This
results in different scalings for the fluxes in the radial and lateral directions. We introduce
the radial variables r∗ =

√
y∗2 + z∗2 and nondimensionalise as follows

x∗ = Lx, r∗ = R0r, p∗ = c̄p, n∗ = c̄n, σ∗ = σ̄σ, V ∗ = VTφ

F∗p · ex =
D̄c̄

L
up, F∗p · er =

D̄c̄R0

L2
wp, F∗n · ex =

D̄c̄

L
un,F∗n · er =

D̄c̄R0

L2
wn,
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where D̄ is a typical ionic diffusivity which we assume to be constant everywhere inside the
domain. This leads to the following dimensionless formulation of system (1)

∂p

∂t
+
∂up
∂x

+
1

r

∂

∂r
(rwp) = 0, (7a)

∂n

∂t
+
∂un
∂x

+
1

r

∂

∂r
(rwn) = 0, (7b)

δ2∂
2φ

∂x2
+

1

r

∂

∂r

(
r
∂φ

∂r

)
=

1

Λ2
(n− p), (7c)

up = −κp
(
∂p

∂x
+ p

∂φ

∂x

)
, wp = −κp

δ2

(
∂p

∂r
+ p

∂φ

∂r

)
, (7d)

un = −κn
(
∂n

∂x
− n∂φ

∂x

)
, wn = −κn

δ2

(
∂n

∂r
− n∂φ

∂r

)
, (7e)

wp −
dR

dx
up

∣∣∣∣
r=R(x)

= 0, wn −
dR

dx
un

∣∣∣∣
r=R(x)

= 0, (7f)

∂φ

∂r
− δ2dR

dx

∂φ

∂x

∣∣∣∣
r=R(x)

= Υ

(
1 + δ2

(
dR

dx

))1/2

σ(x), (7g)

and the scaled boundary conditions at the ends of the pore. (7h)

The dimensionless parameters in the problem are defined by

Υ =
R0σ̄

εVT
, δ =

R0

L
, Λ =

LD
R0

, κp =
Dp

D̄
, κn =

Dn

D̄
, (8)

and where LD, the Debye length, is given by

LD =

(
εVT
c̄F

)1/2

.

Note that δ is the aspect ratio of the pore (typically small), while Λ measures the ratio of
the Debye length of the electrolyte to the typical pore width. Thus where Λ is large the
pore radius is much smaller than the Debye length (which is the limit used to derive 1D
Area Averaged PNP equations). However given that LD for even a 0.01 Molar solution is
only around 4.5nm it is much more appropriate to consider Λ = O(1) (or possibly even
Λ� 1). The other particularly interesting parameter is Υ; if Υ� 1 then the surface charge
is insufficient to induce significant ion concentration changes across the pore whereas if
Υ = O(1), or greater, it induces concentration changes that are sufficiently large to alter the
pore’s macroscopic behaviour. Finally κp and κn are the dimensionless diffusivities, which
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assuming a sensible measure of typical diffusivity D̄ is chosen will be of O(1), unless the two
ion diffusivities differ significantly. The scaled current is given by I∗ = ((FD̄c̄R2

0)/L)I and
can be determined from

I(x, t) =

∫ R(x)

0

r(up − un)dr. (9)

2.3 Parameter estimates and asymptotic limits

Nanopore devices vary in terms of length and opening radius as much as in terms of chemical
composition. In this paper we focus on long and narrow pores, which have been studied in
many experimental setups covered in the literature, see for example [23, 33]. In these pores
the length is typically magnitudes of order bigger than the radius - for example Siwy et al.
[33] work with pores of 12µm length and a few nanometers radius. We assume that the
typical length is around L = 1µm. The usual ionic concentration inside the pore varies from
0.01 Molar up to 1 Molar. The variations in the concentration lead to parameter ranging
from LD = 0.3 − 3nm. The opening radius may vary in the range R0 = 1 − 100nm, hence
the aspect ratio is in the range δ = 10−3 − 10−1. All other parameter values are listed in
Table 1.

KB 1.3806504× 10−23 [J/K] σ̄ 1 [e/nm2] = 0.16[C/m2]
T 300 [K] VT 0.025 [V]
ε0 8.854187817× 10−12[C /(Vm)] c̄ 1 [M]
εr 78.4 D̄ 10−9 [m2/s]
ε ε0εr Dp 1.33
e 1.602176× 10−19 [C] Dn 0.79
Υ 3.4

Table 1: Physical constants and parameters.

The discussed parameter regimes motivate the following asymptotic limits. Let the di-
mensionless diffusivities κp and κn to be both O(1). We shall only consider Υ = O(1),
noting that the limit Υ � 1 is uninteresting (because it corresponds to a wall charge that
is too small to significantly affect the potential and concentrations inside the pore) and that
the behaviour for the limit Υ � 1 can be extracted directly from the distinguished limit
Υ = O(1). The size of the one remaining parameter Λ, measuring the ratio of the Debye
length to the pore radius, determines the asymptotic structure of the solution to the PNP
equations. In particular there are three different limits that one might wish to consider
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i) Λ� 1, corresponding to a Debye length that it much greater than the pore radius,

ii) Λ = O(1) corresponding to a Debye length that is comparable to the pore radius, and

iii) Λ� 1 corresponding to a Debye length much smaller than the pore radius.

The large Λ limit (I) has been considered in detail in a number of previous works (e.g. [5, 2])
and is only applicable to extremely dilute aqueous solutions and narrow pores because the
Debye length LD is very small even for fairly dilute solutions (e.g. 1.3nm for a 0.1M solution).
The small Λ limit (III) turns out to be physically rather dull because it corresponds to a
Debye length that is much smaller than the pore radius meaning the the surface charge on
the inside of the pore is effectively screened by the electrolyte and so does not significantly
alter ion transport through the pore. Note that a similar limit was considered by Markowich
in [17] in case of the semiconductor equations with no surface charge. The most interest-
ing limit, both from a mathematical and physical perspective is (II) for which Λ = O(1).
Furthermore we claim that this limit is a distinguished asymptotic limit so that the results
obtained by analysing this case also provides a good description of (III) the small Λ limits.

3 Asymptotic analysis in the limit Λ = O(1), Υ = O(1),

δ � 1 and derivation of the Quasi-1D PNP model

In this section we discuss large aspect ratio nanopores (δ � 1) with radii comparable to the
Debye length, (i.e. LD = O(R0) and hence Λ = O(1)). In this scenario the influence of the
surface charge cannot be averaged over the area of the domain, resulting in a leading order
problem that must be solved both in x and r. As discussed in Section 2.3, we shall also
consider significant surface charge by formally taking the distinguished limit Υ = O(1).

In order to find an asymptotic solution of system (7a)-(7h) in the limit δ → 0, and with
all other parameters of size O(1) we make the following ansatz:

n = n0(r, x, t) + δn1(r, x, t) + · · · , p = p0(r, x, t) + δp1(r, x, t) + · · · ,
φ = φ0(r, x, t) + δφ1(r, x, t) + · · · ,
un = un,0(r, x, t) + δun,1(r, x, t) + · · · , wn = δwn,1(r, x, t) + · · · ,
up = up,0(r, x, t) + δup,1(r, x, t) + · · · , wp = δwp,1(r, x, t) + · · · .

(10)

At leading order in δ in the flux equations (7d)-(7e) give the two equations

∂n0

∂r
− n0

∂φ0

∂r
= 0 and

∂p0

∂r
+ p0

∂φ0

∂r
= 0,
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which can be integrated to obtain

n0 = Q(x, t) exp(φ0(r, x, t)) and p0 = S(x, t) exp(−φ0(r, x, t)), (11)

where the functions Q(x, t) and S(x, t) are yet to be determined. Inserting these expressions
into the Poisson-Boltzmann equation and its boundary condition, (7c) and (7g) gives

1

r

∂

∂r

(
r
∂φ0

∂r

)
=

1

Λ2
(Q(x, t) exp(φ0(r, x, t))− S(x, t) exp(−φ0(r, x, t))) , (12a)

∂φ0

∂r

∣∣∣∣
r=R(x)

= Υσ(x). (12b)

3.1 Leading order solution for the potential

We seek solutions to (12a)-(12b) by introducing the new variables (e.g. see [1, Chapter 12])

φ0(r, x, t) =
1

2
log

S(x, t)

Q(x, t)
+ ψ(ξ, x, t) and r = R(x)ξ, (13)

which result in the following problem for ψ:

1

ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
=

1

λ2(x, t)
(eψ − e−ψ), (14a)

ψ bounded at ξ = 0, and
∂ψ

∂ξ

∣∣∣
ξ=1

= β(x). (14b)

where

β(x) = Υσ(x)R(x), and λ(x, t) =
Λ

R(x)(S(x, t)Q(x, t))1/4
. (15)

Here λ(x, t) gives the ratio of the Debye length, evaluated from the evolving ion concentra-
tions, to the local pore radius. Thus the solution to (14a)-(14b),

ψ = ψ (ξ;λ(x, t), β(x)) ,

depends parametrically on x and t through λ(x, t) and β(x).
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Approximate solution to (14a)-(14b) for β(x)� 1. We can make use of the fact that
β(x) is typically large (so that the gradient of ψ at the edge of the pore ξ = 1 is large) by
noting that this suggests that ψ(ξ;λ, β) is also large (an hypothesis we justify a posteriori
for sufficiently large λ). Making the large ψ ansatz means that (14a) can be approximated
by

1

ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
∼ 1

λ2(x, t)
eψ (16)

which, when solved together with (14b), has a solution of the form

ψ(ξ, x, t) ∼ 2 log

(
cosech

(
arcoth

(
β(x) + 2

2

)
− log ξ

))
− log

(
ξ2

2λ2(x, t)

)
. (17)

Notably this expression for ψ has a minimum (as a function of ξ) at the centre of the pore
given by

ψ|ξ=0 = 3 log 2 + 2 log λ− 2arcoth

(
β + 2

2

)
, (18)

which for β � 1 is well-approximated by ψ|ξ=0 = 3 log 2 + 2 log λ. The approximation in
going from (14a) to (16) can thus be justified if exp(−2ψ|ξ=0)� 1 which is true only if

λ(x, t)� 1

23/2
.

Figure 2: Comparison between numerical solution to (14) (stars) and its large-β asymptotic
approximation (17) (dashed line). Here in the left-hand panel β = 10 while in the right
β = 50. In both panels the values of λ taken are λ = [0.1, 0.5, 1, 3] and the arrows indicate
the direction of increasing λ.
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Figure 2 illustrates the quality of the asymptotic solution for different values of λ and
realistic values of β = 10, 50. Note that the approximation quality of the asymptotic solution
improves as λ increases.

Approximate solution to (14a)-(14b) for λ(x, t) � 1. In this regime narrow Debye
layers of width O(λ) exist close to surface ξ = 1. In order to investigate the solution further
we rescale, in the standard manner (see [18, 20]), about this surface by introducing the Debye
layer coordinate ζ defined by

ξ = 1− λζ. (19)

Rewriting (14a)-(14b) in terms of this new coordinate leads to the following equation and
boundary condition for ψ

∂2ψ

∂ζ2
+ λ

(
ζ
∂2ψ

∂ζ2
− ∂ψ

∂ζ

)
+O(λ2) = (eψ − e−ψ), (20)

∂ψ

∂ζ

∣∣∣∣
ζ=0

= −B where B = λβ, (21)

∂ψ

∂ζ
→ 0 as ζ → +∞. (22)

Here we consider the distinguished limit B = O(1), that is β = O(1/λ) noting that the
solution we obtain is still valid for other sizes of this parameter. Formally we look for a
solution in the Debye layer by expanding ψ in the form ψ = ψ

(d)
0 + λψ

(d)
1 + · · · , substituting

into (20)-(22) and taking the leading order terms. This results in the following problem for

ψ
(d)
0

∂2ψ
(d)
0

∂ζ2
= (eψ

(d)
0 − e−ψ

(d)
0 ), (23)

∂ψ
(d)
0

∂ζ

∣∣∣∣∣
ζ=0

= −B, and
∂ψ

(d)
0

∂ζ
→ 0 as ζ → +∞. (24)

This, as is well-known, has the solution

ψ
(d)
0 =


2 loge

(
coth

[
1√
2

(
ζ +

1√
2

arcsinh

(
2
√

2

B

))])
for B > 0,

2 loge

(
tanh

[
1√
2

(
ζ +

1√
2

arcsinh

(
−2
√

2

B

))])
for B < 0.

(25)
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Notably this solution has the property that

ψ
(d)
0 → 0 as ζ → +∞,

and so is uniformly valid for all values of ξ ∈ [0, 1) or equivalently for ζ ∈ [1/λ, 0). It follows
that we do not need to look for a solution for ψ in an outer region.

Figure 3: Comparison between numerical solution to (14) (stars) and its small-λ asymptotic
approximation (17) (dashed line). Here in the left-hand panel β = 10 while in the right
β = 50. In both panels the values of λ taken are λ = [0.05, 0.1, 0.2, 0.5] and the arrows
indicate the direction of increasing λ.

Figure 3 illustrates the asymptotic solution as well as the numerical solution of (14) for
different values of λ and realistic values of β = 10, 50. In this case the approximation quality,
as expected, increases as λ decreases.

3.2 Leading order flux conservation and the simplified 1D model

The purpose of this section is to derive flux conservation conditions in the x-direction that will
give rise to evolution equations for Q(x, t) and S(x, t). Together with the approximations of
the previous section, we are then in a position to numerically solve the approximated system.
We start by considering the leading order terms in the ion conservation equations (7a)-(7b),
namely

∂p0

∂t
+
∂up,0
∂x

+
1

r

∂

∂r
(rwp,1) = 0, (26)

∂n0

∂t
+
∂un,0
∂x

+
1

r

∂

∂r
(rwn,1) = 0. (27)
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where expressions for up,0 and un,0 are obtained from the leading order expansions of (7d)
and (7e) and are

up,0 = −κp
(
∂p0

∂x
+ p0

∂φ0

∂x

)
, and un,0 = −κn

(
∂n0

∂x
− n0

∂φ0

∂x

)
. (28)

The boundary conditions on wp,1 and wn,1 come from the leading order expansion of (7f) and
are

wp,1|r=R(x) =
dR

dx
up,0

∣∣∣∣
r=R(x)

, wn,1|r=R(x) =
dR

dx
un,0

∣∣∣∣
r=R(x)

. (29)

Multiplying both (26) and (27) by r and integrating between r = 0 and r = R(x) gives∫ R(x)

0

(
∂p0

∂t
+
∂up,0
∂x

)
rdr + [rwp,1]R(x)

r=0 = 0,

∫ R(x)

0

(
∂n0

∂t
+
∂un,0
∂x

)
rdr + [rwn,1]R(x)

r=0 = 0.

On applying the boundary conditions (29) it can be seen that these equations can be rewritten
in conservation form

∂

∂t

(∫ R(x)

0

rp0(r, x, t)dr

)
+

∂

∂x

(∫ R(x)

0

rup,0dr

)
= 0, (30)

∂

∂t

(∫ R(x)

0

rn0(r, x, t)dr

)
+

∂

∂x

(∫ R(x)

0

run,0dr

)
= 0. (31)

Substituting for p0(r, x, t) and n0(r, x, t) from (11) and up,0 and un,0 from (28) leads to an
alternative reformulation

∂

∂t
(S(x, t)Θ1(x, t)) = κp

∂

∂x

(
∂S

∂x
Θ1(x, t)

)
, (32)

∂

∂t
(Q(x, t)Θ2(x, t)) = κn

∂

∂x

(
∂Q

∂x
Θ2(x, t)

)
, (33)

where

Θ1(x, t) = π

∫ R(x)

r=0

r exp(−φ0(r, x, t))dr, and Θ2(x, t) = π

∫ R(x)

r=0

r exp(φ0(r, x, t))dr. (34)

On substituting for φ0 and r, in terms of ψ and ξ, from (13) we can rewrite these expressions
in the form

Θ1(x, t) = A(x)

(
Q(x, t)

S(x, t)

)1/2

G1(x, t), Θ2(x, t) = A(x)

(
S(x, t)

Q(x, t)

)1/2

G2(x, t), (35)
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where A(x) = πR2(x) is the cross-sectional area of the pore and the functions G1 and G2

are defined by

G1(x, t) =

∫ 1

ξ=0

ξ exp (−ψ (ξ;λ(x, t), β(x))) dξ, (36)

G2(x, t) =

∫ 1

ξ=0

ξ exp (ψ (ξ;λ(x, t), β(x))) dξ. (37)

Here λ(x, t) and β(x) are defined in (15). Notably since ψ(x, t) satisfies the problem (14a)-
(14b) we can show (by multiplying (14a) by ξλ2(x, t), integrating between ξ = 0 and 1 and
imposing the boundary conditions (14b)) that

G2(x, t)−G1(x, t) = λ2(x, t)β(x). (38)

The leading order current flowing through the pore can be calculated from (9), (11), (28)
and (34) and is

I ∼ −κp
∂S

∂x
Θ1 + κn

∂Q

∂x
Θ2. (39)

or equivalently, on referring to (35),

I ∼ A(x)(SQ)1/2

(
κnG2

∂

∂x
logeQ− κpG1

∂

∂x
loge S

)
. (40)

Remark 1 As mentioned in the introduction, the most commonly available data from nanopore
experiments are IV curves. Thus equation (39) (and (40)) allow us to compute the IV curves
very efficiently, without solving a non-linear Poisson equation (as it is the case in the classi-
cal Scharfetter–Gummel iteration for PNP, [14]). From the computational point of view this
is the main advantage of our approach.

Approximations of G1(x, t) and G2(x, t) for β � 1 and λ = O(1). In this instance
we can find asymptotic expressions for G1 and G2 simply by substituting (17), the large β
asymptotic expression for ψ, directly into (36)-(37) to obtain

G1(x, t) ∼ 1

48λ2(x, t)

β2(x) + 12β(x) + 48

β(x)(β(x) + 4)
, and G2(x, t) ∼ λ2(x, t)β(x). (41)

Note that these expressions still satisfy the identity (38) asymptotically in the limit β →∞
since G1 � G2. However the asymptotic expansion breaks down for λ � 1, as noted
previously, and so we need to obtain alternative expressions for G1 and G2 in this limit.

Remark 2 Note that the case β � −1 can be solved by setting u = −ψ in equation (16)
and following the calculations detailed above to obtain approximations for G1 and G2.
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Approximations of G1(x, t) and G2(x, t) for λ � 1. In order to approximate the inte-
grals in (36)-(37) based on the Debye layer solution for ψ in the small λ limit (25) we split
the integrals up as follows

G1(x, t) =

∫ 1

ξ=0

ξdξ −
∫ 1

ξ=0

ξ (1− exp (−ψ (ξ;λ, β))) dξ,

G2(x, t) =

∫ 1

ξ=0

ξdξ −
∫ 1

ξ=0

ξ (exp (ψ (ξ;λ, β))− 1) dξ

before substituting ξ = 1 − λζ and formally taking the limit λ → 0 to obtain the following
asymptotic expressions

G1 ∼
1

2
− λ

∫ ∞
ζ=0

(
1− exp

(
−ψ(d)

0

))
dζ and G2 ∼

1

2
+ λ

∫ ∞
ζ=0

(
exp

(
ψ

(d)
0

)
− 1
)
dζ.

Evaluating these expressions, in the distinguished limit that B = λβ = O(1), gives the
following relations for G1 and G2 in the small λ limit

G1 ∼
1

2
− λ 2

√
2B√

8 +B2 + 2
√

2 +B
and G2 ∼

1

2
+ λ

2
√

2B√
8 +B2 + 2

√
2−B

. (42)

In this instance it turns out that these asymptotic expressions for G1 and G2, which are
formally of the same order, satisfy the condition (38) identically. Figure 4 shows that by
choosing the right cut-off value of λ it is possible to obtain an adequate approximations to
G1 and G2 for all values of λ provided that β is large. This approximation can be much
improved by smoothing between the two asymptotic representations of the solutions, in the
limits β � 1 and λ � 1. The smoothed, uniformly valid asymptotic, representation of G1

is discussed further in Appendix A and the accuracy of the fit to the numerical solutions for
G1 can be appreciated by inspecting Figure 13. Note that once a good representation of G1

has been obtained G2 can be directly evaluated from the relation (38).

3.3 Summary of the Quasi-1D model

Since the resulting 1D model (comprised of equations (11), (13)-(15), (32)-(33), (35)-(36),
(38) and (42), (41) is quite intricate we summarise it in the following paragraph. The leading
order ion concentrations and potential are given in terms of the functions Q(x, t), S(x, t)
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Figure 4: Comparison of the numerical evaluation of the expressions G1 (right) and G2 (left)
as a function of λ for β = 5 (top row) and β = 50 (bottom row). Red stars correspond
to the values of G1 and G2 calculated from the full equations (36)–(37) The blue solid line
corresponds to the approximation (41) (β � 1) while the black dashed one stands for (42)
(λ� 1).
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and ψ(ξ, x, t) by the following:

n(r, x, t) = (Q(x, t)S(x, t))1/2 exp

(
ψ

(
r

R(x)
, x, t

))
, (43)

p(r, x, t) = (Q(x, t)S(x, t))1/2 exp

(
−ψ

(
r

R(x)
, x, t

))
, (44)

φ(r, x, t) =
1

2

S(x, t)

Q(x, t)
+ ψ

(
r

R(x)
, x, t

)
, (45)

where ψ(ξ, x, t) satisfies the following series of ODE problems in ξ

1

ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
=
R2(x)(Q(x, t)S(x, t))1/2

Λ2
(eψ − e−ψ), (46)

ψ bounded at ξ = 0, and
∂ψ

∂ξ

∣∣∣
ξ=1

= Υσ(x)R(x). (47)

In turn the functions Q(x, t) and S(x, t) satisfy the PDEs

∂

∂t

(
(Q(x, t)S(x, t))1/2G1(x, t)

)
=

κp
A(x)

∂

∂x

(
A(x)

(
Q(x, t)

S(x, t)

)1/2

G1(x, t)
∂S

∂x

)
, (48)

∂

∂t

(
(Q(x, t)S(x, t))1/2G2(x, t)

)
=

κn
A(x)

∂

∂x

(
A(x)

(
S(x, t)

Q(x, t)

)1/2

G2(x, t)
∂Q

∂x

)
, (49)

where G2(x, t) and G1(x, t) are given by the expressions

G2(x, t) = G1(x, t) +
Λ2Υσ(x)

R(x)(Q(x, t)S(x, t))1/2
, (50)

G1(x, t) =

∫ 1

0

ξ exp(−ψ(ξ, x, t))dξ. (51)

The main point of the method is that the integrals G1 and G2 are not calculated via in-
tegrating the ψ but using the polynomial approximations obtained in the equations (42)
and (41) for different values of the λ(x). Thus (48)–(49) are decoupled from (46)–(47). As
mentioned in Remark 1, this is a particular advantage since it allows to calculate the ion
current (via (40)) without having to solve a nonlinear equation. To ensure a smooth transi-
tion between the two regimes a smoothing procedure was implemented as described in detail
in the Appendix A, that is by writing

G1(x, t) ≈ G
(smooth)
1

(
Λ

R(x)(S(x, t)Q(x, t))1/4
,Υσ(x)R(x)

)
(52)
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where the function G
(smooth)
1 (λ, β) is defined in (74). This approximation of G1(x, t) taken

together with (48)-(50) allows us to solve a one-dimensional spatial problem for S(x, t) and
Q(x, t). If the purpose of the calculation is solely to determine the current I flowing through
the pore (for example when calculating I-V curves) this calculation is sufficient since I may
be calculated solely from S(x, t), Q(x, t), G1(x, t) and G2(x, t) via the formula (40), that is
by

I = A(x)(SQ)1/2

(
κnG2

∂

∂x
logeQ− κpG1

∂

∂x
loge S

)
. (53)

If in addition to determining the current flow through the pore we wish also to obtain the
spatial distributions of the carrier concentrations and the electric potential we need also to
solve for the function ψ(ξ, x, t) in order to use it in (43)-(45) in order to calculate n(r, x, t),
p(r, x, t) and φ(r, x, t). Although it is possible to obtain a reasonable approximation to the
function ψ(ξ, x, t) in the large β limit by using the appropriate asymptotic solution, (17) for
λ = O(1) or (25) for λ� 1, we instead choose to solve the full boundary value problem for
ψ(ξ, x, t) numerically, as specified in (14a)-(14b); that is we solve

1

ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
=
R2(x)(S(x, t)Q(x, t))1/2

Λ2
(eψ − e−ψ), (54)

ψ bounded at ξ = 0, and
∂ψ

∂ξ

∣∣∣∣
ξ=1

= Υσ(x)R(x), (55)

for each position x and time t. We adopt this numerically costly procedure here because it
provides more accurate asymptotic representations of n(r, x, t), p(r, x, t) and φ(r, x, t) with
which to compare to the full 2D numerical solutions (see figures 6, 7, 10 and 11). We do
however believe that it should be possible to obtain a uniformly valid asymptotic expansion
for ψ(ξ, x, t) in the large β limit that is capable of accurately capturing the solution for all
values of λ, much as we do for G1 in Appendix A.

3.4 An alternative formulation.

It is possible to reformulate the Quasi One-1D PNP Model derived in §3.1-3.2 and contained
in (32)-(37) in more physically appealing forms. We give one such reformulation below but
note that there are others.

We start by noting that the (dimensionless) electrochemical potentials of positive and
negative ions, µp and µn respectively, are

µp = loge p+ φ, and µn = loge n− φ. (56)
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The chemical potential of the electrolyte, defined by µe = 1
2
(µp + µn) = 1

2
loge(np), is

obtained at leading order by substituting the approximations to n and p found in (11) into
this expression; this gives

µe(x, t) = log
(

(Q(x, t)S(x, t))1/2
)
. (57)

In addition we define an effective electric potential Φ̃ by

Φ̃(x, t) = loge

((
S(x, t)

Q(x, t)

)1/2
)
. (58)

We now introduce two further quantities P̄ and N̄ , the cross-sectionally averaged ion densi-
ties, as defined by

P̄ (x, t) =
π

A(x)

∫ R(x)

0

rp0dr and N̄(x, t) =
π

A(x)

∫ R(x)

0

rn0dr. (59)

Substituting for n0 and p0 from (11), and making use of the definitions (34), allows us to
re-express these quantities in the form

P̄ (x, t) =
S(x, t)Θ1(x, t)

A(x)
, and N̄(x, t) =

Q(x, t)Θ2(x, t)

A(x)
. (60)

In turn substituting for Θ1 and Θ2 from (35), and using the formula (57) to eliminate Q and
S, allows us to rewrite P̄ and N̄ as follows:

P̄ (x, t) = exp(µe)G1(µe;x), N̄(x, t) = exp(µe)G2(µe;x). (61)

In the above we have written both G1 and G2 in a form that makes it explicit that these
quantities are independent of Φ̃ and depend only on Q and S through µe(x, t). On using
the definitions (57) and (58) to eliminate Q and S and (60) to eliminate Θ1 and Θ2 the
governing evolution equations (32)-(33) can be rewritten in the intuitively appealing form

∂

∂t

(
A(x)P̄

)
+

∂

∂x

(
A(x)J̄p

)
= 0, where J̄p = −κpP̄

∂

∂x

(
µe + Φ̃

)
, (62)

∂

∂t

(
A(x)N̄

)
+

∂

∂x

(
A(x)J̄n

)
= 0, where J̄n = −κnN̄

∂

∂x

(
µe − Φ̃

)
. (63)

Furthermore, λ can be expressed in terms of µe as follows

λ =
Λ

R
e−µe/4. (64)
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Thus the reformulation of the Quasi-1D PNP model consists of a straightforward method for
evaluating the two functional dependence of G1(µe;x) and G2(µe;x) on µe and x (contained
in (14a)-(15) and (36)-(37)) and the two coupled parabolic PDEs for µe and Φ̃, (61)-(63).
A further simplification can be obtained from (38), the relation between G1 and G2, from
which we can deduce the local charge neutrality condition

A(x)(P̄ − N̄) + Σl(x) = 0, Σl(x) = Λ2Υ(2πR(x)σ(x)). (65)

Here Σl(x) represents the fixed charge per unit length (in appropriate dimensionless form)
on the wall of the pore. In effect this relation means that we only need to calculate one of
the expressions G1(µe;x) or G2(µe;x), use this to determine either P̄ or N̄ from (61), and
evaluate the other from the relation (65).

Calculating the steady state solution In practice we are usually only interested in the
steady state solution to (61)-(63). Neglecting the time derivatives in (62)-(63), summing the
two equations and taking their difference yields to the following two equations

∂

∂x

(
A(x)

(
(N̄ + P̄ )

∂µe
∂x
− (N̄ − P̄ )

∂Φ̃

∂x

))
= 0,

∂

∂x

(
A(x)

(
(N̄ − P̄ )

∂µe
∂x
− (N̄ + P̄ )

∂Φ̃

∂x

))
= 0.

We now write

N̄ + P̄ = eµeΨ̂(µe;x), where Ψ̂(µe;x) = G1 +G2 =

∫ 1

0

ξ
(
eψ − e−ψ

)
dξ. (66)

and substitute for (N̄ − P̄ ) from (65) in order to obtain two coupled ODEs for µe and Φ̃

∂

∂x

(
A(x)eµeΨ̂(µe;x)

∂µe
∂x
− Σl(x)

∂Φ̃

∂x

)
= 0, (67)

∂

∂x

(
Σl(x)

∂µe
∂x
− A(x)eµeΨ̂(µe;x)

∂Φ̃

∂x

)
= 0. (68)

Note that the function Ψ̂(µe;x) = G1 + G2 can be obtained either by direct solution for
ψ(ξ; β, λ) from (14a)-(14b) in which λ = Λe−µe/4/R, or (in the large β limit) from the
uniformly valid asymptotic expression for G1 discussed in Appendix A equation (74) and
using the relation (38) to evaluate G2.
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4 Numerical methods and Results

In this section we will present numerical methods for both the full 2D PNP system, the 1D
Area Averaged PNP system as well as for the asymptotic Quasi-1D PNP model developed
in §3. They will be used to compare the results for two examples: (I) a trumpet shaped pore
(see figures 5 & 6) and (II) a conical pore geometry (see figures 9 & 10).

The Quasi-1D PNP solver. The numerical solver of the Quasi-1D PNP is based on the
uniformly-valid large β expression for G1 (74) and on the identity (38), relating G2 to G1.
This thus obviates the need to solve the Poisson equation (14a)-(14b) for ψ(ξ, λ(x, ), β(x))
at every value of x. Instead it only requires the solution of the 1D (stationary) continuity
equations (32)-(35) in x. This represents a very considerable reduction in computational
complexity and gives a very fast method, which is particularly suited for the calculation of
IV curves. Finally, for an applied voltage above a certain threshold, we introduce a relaxation
in the iteration. Once Q and S are known, we use (39) to calculate the total current I. The
full iterative procedure is detailed in Algorithm 1.

Set S(x) = p0(x)/ exp(−φ0(x)), for x ∈ {0, l̄} ;
Set Q(x) = n0(x)/ exp(φ0(x)), for x ∈ {0, l̄} ;
Initialise Q0(x), S0(x);
while err > ε and max iter > m do

Calculate λ(x) using (15);
Calculate Gm+1

1 (x) and Gm+1
2 (x) using interpolation between (41) and (42) ;

Using Gm+1
1 (x) and Gm+1

2 (x) and equations (32)-(33) calculate Qm+1/2, Sm+1/2 ;
if |Vappl| ≥ Vc then

Qm+1 = θQm+1/2 + (1− θ)Qm, Sm+1 = θSm+1/2 + (1− θ)Sm ;
else

Qm+1 = Qm+1/2, Sm+1 = Sm+1/2

end
err = ‖Qm+1 −Qm‖2 + ‖Sm+1 − Sm‖2 ;
m = m+ 1 ;

end
Calculate I using (40)

Algorithm 1: Fixed point scheme to calculate Q and S in the steady state.

The 2D PNP solver. The full 2D steady state PNP system, i.e. equations (7a)–(7h) is
solved using a standard P1 finite element discretisation and a Scharfetter Gummel iteration,
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[14]. For both geometries, we use a non-uniform mesh strongly refined at the charged pore
walls in order to properly resolve the Debye layers. The meshes are created using Netgen
[30], while we use MATLAB to assemble and solve the corresponding discrete systems. We
use a similar method to solve the 1D Area Averaged PNP system (5a)- (5c).

4.1 Trumpet shaped pores

We consider a trumpet shaped pore of length 1000nm and a radius varying form 1.5nm to
10nm. The corresponding radius is given by r(x) = 10−6(34x2 − 34x + 10), where both r
and x are measured in units of nanometers, hence the values of λ and β change continuously
with respect to x. We set the following parameters:

Vappl = 0.2V and nr = nl = pr = pl = 0.1moles/litre (69)

Surface charge profile σ =

{
1e/nm2 for 100nm < x < 900nm
0e/nm2 for |x− 500| > 400nm

. (70)

To obtain accurate and precise results for the 2D solver a mesh of 360000 triangular elements
was used. The results of the Quasi-1D and Area Averaged PNP were obtained using a
discretization of 1000 intervals. Figure 5 and 6 show the solutions to the 2D PNP model
and the Quasi-1D PNP model, respectively.

(a) Potential. (b) Positive ions conc. (c) Negative ions conc.

Figure 5: Heat maps of the potential and two ionic concentrations obtained using the 2D
PNP solver.
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(a) Potential. (b) Positive ions conc. (c) Negative ions conc.

Figure 6: Heat maps of the potential and two ionic concentrations obtained using the Quasi-
1D PNP solver.

In order to compare the results from the two different methods we plot the cross sectional
profiles of the potential and concentrations at x = 200, 500 and 800nm in Figure 7. We
observe that the solution to the Quasi-1D PNP model is a very good match to that of the
full 2D PNP equations. This is especially so for the potential (left column) and the negative
ions concentration (right column) for which both solutions have almost identical behaviour
within the Debye layers.
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Figure 7: Comparison of the potential (left column), positive ions concentrations (centre
column) and negative ions concentrations (right column) calculated over the cross-section
at x = 200nm (top row), x = 500nm (middle row) and x = 800nm (bottom row), obtained
using the 2D finite element solver (solid lines), the 1D Area Averaged PNP (dotted lines)
and the Quasi-1D PNP solver described in Algorithm 1 (dashed lines) for a trumpet shaped
shape pore of length 1000nm and radius varying from 1.5 to 10nm.

Next we compare the IV curves in the case of different surface charge densities σ = 1
e/nm2 and σ = 0.2 e/nm2 within the central region of the pore |x− 500| < 400nm (we take
σ = 0 outside this region) see Figure 8. We observe very good agreement between results
from the full 2D PNP model and the Quasi-1D PNP model for both values of the surface
charge density. Notably the agreement of the Area Averaged PNP to the full 2D PNP model
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is much worse than that of the Quasi-1D PNP model.

(a) σ = 1 e/nm2 (b) σ = 0.2 e/nm2

Figure 8: IV curves for surface charges σ = 0.2 e/nm2 (right plot) and σ = 1 e/nm2 (left
plot) obtained using the Quasi-1D PNP solver (dashed lines), the 2D PNP solver (straight
lines) and 1D Area Averaged PNP method (dotted lines).

4.2 Conical Shaped Pores

Here, motivated by experimental work on etched pores with conical shape [33], we consider
a conically shaped pore of length 10000nm with radius varying between 1.5nm and 10nm
(see figures 9 & 10). This very narrow pore tip is a good model for the tip of a polyethylene
terephthalate (PET) nanopore, as used by Siwyet al. [33]. It is well known that such narrow
tips strongly influences the ion transport through the pore [23]. We include two bath regions
of 5 µm length each. Here we consider a pore with uniform surface charge density inside the
pore which corresponds with 5000nm< x <15000nm and zero outside this section. Because
of the different length scales and the boundary layer scale we use a highly anisotropic mesh
of 7 × 105 triangular elements (calculated using Netgen [30]) refined at the boundary to
capture the boundary effects. Figures 9 and 10 show the results of the full 2D model and
those of the Quasi-1D PNP model, respectively. The corresponding cross sectional profiles
are depicted in Figure 11.
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(a) Potential. (b) Negative ions conc. (c) Positive ions conc.

Figure 9: Heat maps of the potential and two ionic concentrations obtained using the 2D
PNP solver for the conical pore.

(a) Potential. (b) Negative ions conc. (c) Positive ions conc.

Figure 10: Heat maps of the potential and two ionic concentrations obtained using Quasi-1D
PNP solver for the conical pore.
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Figure 11: The conical pore. Comparison of the potential φ (left column), negative ion
concentration n (centre column) and positive ion concentration p (right column) calculated
over the cross-section at x = 5800nm (top row), x = 7800nm (middle row) and x = 12800nm
(bottom row), obtained using the 2D finite element solver (solid lines) the 1D Area Averaged
PNP (dotted lines) and the Quasi-1D PNP solver described in Algorithm 1 (dashed lines)
for a linear pore of length 10000nm and radius varying from 1.5 to 10nm.

Again we observe very good agreement between the Quasi-1D PNP model solution and
the full 2D results close to the charged pore walls. While the discrepencies between the
potentials and the negative ions calculated using these two methods are negligible those for
the positive ion concentrations are more marked.

Finally Figure 12 shows the IV curves obtained from the 2D FEM code, the Quasi-1D
PNP solver and the Area Averaged PNP equations. There is much better agreement between
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the full 2D solver and the Quasi-1D PNP solver than between either of these and the 1D Area
Averaged PNP solver (this again overestimates the influence of the geometrical asymmetry
of the pore and surface charge influence on the current). Note that the Quasi-1D PNP solver
captures the nonlinear IV curve, and the corresponding rectification behaviour, much better
than the 1D Area Averaged PNP solver.

(a) σ = 1 e/nm2 (b) σ = 0.2 e/nm2

Figure 12: IV curves for the conical pore obtained using the surface charges σ = 0.2 e/nm2

(right plot) and σ = 1 e/nm2 (left plot), in the region 5000nm < x < 15000nm, obtained
using the Quasi-1D PNP (dashed lines), 2D PNP solver (solid lines) and 1D Area Averaged
PNP method (dotted lines).

5 Conclusion

In this work we applied asymptotic methods to a two dimensional Poisson-Nernst-Planck
(PNP) model, for the transport processes occurring within a long thin electrolyte filled
nanopore with charged walls, in order to systematically derive a reduced order model for
ion transport within the nanopore. We term this the Quasi-1D PNP model. In order to
investigate the validity of this novel model we conducted numerical experiments on two
different nanopore geometries in which we compared results from the Quasi-1D PNP model
to solutions of the full two dimensional PNP model, which we solved using a finite element
method. In the geometries we considered the comparison between the two approaches was
very favourable and furthermore the computational cost of solving the reduced order model
was many times less than that for solution of the full 2D model, which requires the use of a
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very large number of finite elements in order to obtain sufficient accuracy. In addition, we
also compared the solution of these two models to the solutions of the one-dimensional Area
Averaged PNP equations, which is a commonly used approximation of the PNP model in
nanopores, and showed that this model gives a poor representation of the full PNP equations.
In this context we also note that the Area Averaged PNP equations are also widely applied
to biological ion channels [31, 32, 5] but that no comparison has yet been made between
numerical solutions to the PNP equations in 3D and solutions to the 1D Area Averaged
equations in an ion channel geometry. Furthermore, given that the Debye length in intra-
and extra-cellular fluid (≈0.14 Molar) is around 1.3nm, and that the narrow neck of an
ion channel is around 0.4nm (comparable to the Debye length), one might expect that the
Quasi-1D PNP provides at least as good an approximation (if not better) to the full 3D PNP
as the Area Averaged PNP (which should only be valid if the dimensions of the channels are
much smaller than the Debye Length).

The numerical experiments presented here confirm the validity of the assumptions made
in the derivation of the Quasi-1D PNP equations. We observe that the method resolves the
behaviour of solutions inside the Debye layers correctly and gives substantially better results
then the commonly used 1D area averaged approximations. Since surface charge influences
the transportation and rectification behaviour of the pore significantly, the correct resolution
of the numerical simulations is of great importance. The proposed asymptotics serves as a
starting point for further developments in this direction, in particular

• the efficient implementation of a 1D solver to calculate IV curves for nanopores

• the extension of the asymptotic analysis for nonlinear PNP models

• and the comparison on the results with experimental data.

Acknowledgements

The work of JFP was supported by DFG via Grant 1073/1-2. MTW and BM acknowledges
financial support from the Austrian Academy of Sciences ÖAW via the New Frontiers Grant
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A Interpolating the function G1(λ, β)

In trying to obtain approximate expressions for G1 and G2 we made use of the fact that
β � 1 for most practical applications of interest. With this proviso we were able to obtain
the behaviour of these functions for both λ = O(1) and λ� 1, in (41) and (42), respectively.
In the case of G2 there is enough overlap between the λ = O(1) and λ� 1 limits to obtain
a good approximation of this function for all values of λ (provided β � 1). Furthermore if
we can obtain a good approximation to G1 we can use the exact expression (38) to evaluate
G2.

However this is not true of G1 for which there is rapid switching between the λ = O(1)
and λ � 1 behaviour. In order to obtain a very good approximation of G1 for all values
of λ we seek to interpolate between the two behaviours by formulating a uniformly valid
asymptotic solution. We start by denoting the O(1) and small λ behaviours of G1 (as given

in (41) and (42)) by G
(L)
1 and G

(S)
1 , noting that they are given by the following functions of

λ and β:

G
(L)
1 (λ, β) =

1

48λ2

β2 + 12β + 48

β(β + 4)
, G

(S)
1 (λ, β) =

1

2
− 2

√
2λ2β√

8 + λ2β2 + 2
√

2 + λβ
. (71)

We now introduce the switching function Sw(λ, β), which we design to switch smoothly
between the two behaviours around some optimal value λ denoted by λsw(β), this is defined
by

Sw(λ, β) =
1

2
(1 + tanh(12(λ− λsw(β)))) . (72)

By fitting to data we find that the optimal switching value is well-approximated by

λsw(β) = 0.276 + 0.9β−1. (73)

We take G
(smooth)
1 , the smoothed approximation of G1 (the uniformly asymptotic solution),

to be given by

G
(smooth)
1 (λ, β) = Sw(λ, β)

[
G

(L)
1 (λ, β)H(λ− 0.1) +G

(L)
1 (0.1, β)(1−H(λ− 0.1))

]
+(1− Sw(λ, β))G

(S)
1 (λ, β). (74)

Note that we have cutoff the singular behaviour of G
(L)
1 (λ, β) as λ → 0 with the use of the

Heaviside function H(λ− 0.1) within the square brackets. Plots of G
(smooth)
1 (λ, β) against λ

are made for various values of β and compared to the full numerical solution of G1 in figure
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13. It can be seen that this uniformly valid asymptotic approximation to G1 is extremely
accurate for large β.

(a) β = 5 (b) β = 50

Figure 13: Evaluation of G1 for λ � (black line), λ = O(1), interpolated with described
procedure(green line) and exact solution (red dots) for two different values of the parameter
β.
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