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Introduction

This introduction is, in the main, unnecessary, as each chapter contains its own compre­
hensive introduction, which include explanations about connections between chapters. So, this 
section contains a brief summary of related research areas, and then moves on to consider some 
of the intuitive ideas which motivated this work.

The thesis is split into two distinct parts. Part I deals with a stochastic control problem 
and its application to weak comparison results for solutions to stochastic differential equations, 
and in part II we look at properties of boundary hitting times for diffusion processes, and in 
particular, asymptotic approximations for their distribution functions. Each part has a number 
of work chapters which are, as far as possible, self-contained and each chapter contains its own 
introduction and reference section. Thus in this form, the thesis is designed to portray the 
development of the thesis with time, and it is hoped that this will make understanding easier.

Part I is split into two chapters which carry different emphasis. The main theme is to 
obtain stochastic inequalities for diffusion processes where the drift coefficient o f one process 
dominates that of the other. Here, we concentrate on the case where at least one of the 
diffusions is symmetric about the origin and the stochastic inequalities obtained are therefore 
on the modulus of the two processes. In chapter 1, the main result is proved in simple cases 
where interesting explicit results can be obtained, and in chapter 2 the result is generalized 
using similar techniques, which connect the result to weak uniqueness theorems such as that 
o f Stroock and Varadhan (1969).

The area of calculating boundary hitting times for diffusion processes, and in particular, 
Brownian motion, has a long history. Early papers by Darling and Siegert (1953), Breiman 
(1967), and Shepp (1971) focused on the simplest case of a square-root boundary, where the 
stationary behaviour exhibited by an appropriate transformation o f the Brownian motion, 
under which the square root boundary is transformed to a constant boundary, enables explicit 
solutions to be obtained.

The other well known explicit solution is that for a linear boundary. Here, it is easy to use an 
elementary reflection principle idea to obtain the density of the hitting time o f the boundary 
/ ( t )  =  at +  b starting at 0:

where 4>(y) =  (2 f^ « ‘ V .  This is the Bachelier-Levy formula (see for example Levy (1965)).
However, apart from these special cases, we have to be content with approximating solutions. 

It is not that exact solutions for the distribution o f hitting times are unobtainable, but that they 
are generally o f little use in their own right. For example, Durbin (1985) obtains an explicit
expression for the density o f hitting times. However the formula derived involves evaluation of



a complicated limit, which ia usually analytically intractable. However, Durbin’s solution also 
leads to a valuable approximation for the density, which is asymptotically correct.

Recent literature has been dominated by applications in sequential analysis. Siegmund 
(1986) and Lerche (1986) provide good surveys of this area. For this reason, some authors 
(for example Siegmund (1985), Lai and Siegmund (1977) and Woodroofe (1982)) have prefered 
to work initially in dicrete time, thus avoiding the need to make invariance principle-type 
approximations which can be notoriously slow to converge. The main problem with such an 
approach is that it is analytically less tractable, especially when dealing with the problem 
of calculating the overshoot at the boundary. Woodroofe (1982) proves a renewal theorem 
for estimating the overshoot. The discrete time approach is also used in the area of optimal 
Bayesian sequential analysis (for example Wald and Wolfowits (1948) and Chernoff (1972)).

Most of the time however, we are able to obtain better approximations in continuous time. 
Standard analytic techniques for calculating hitting time distributions include the so called 
method of images (see for example Lerche (1986)), and the method of weighted likelihood 
functions (Robbins and Siegmund (1973)) where exact solutions for the density are found for an 
implicitly defined boundary. These methods are very similar, and in fact Lerche (1986) shows 
that they are equivalent up to time inversion, and that they lead to the tangent approximation 
which was first proved by Strassen.

The tangent approximation comes from the intuitive idea that the density of the hitting 
time at time t, should be approximately that for the straight line boundary which is tangent to 
the curve at that point, and in fact this approximation is asymptotically correct along certain 
sequences of boundaries that tend to infinity, and moreover this approximation is uniform for 
t on compact intervals, thus allowing similar statements for the distribution function to hold. 
This approximation has been extensively used and refined (for example, Jennen and Lerche 
(1981), Dinges (1982), Jennen (1985) and Klein (1986)).

However, tangent approximation techniques cannot, in general, give good approximations 
which are valid over the whole real line. Unlike most of the works mentioned above, we 
intend to look at fixed boundaries, and study the tail behaviour of the distribution of their 
corresponding hitting times. Also the emphasis has been on obtaining distribution function 
results as opposed to density estimates, since for any application the local properties o f the 
density function are irrelevant. Whereas, the tangent approximation is locally more accurate 
than the methods used here, picking up most of the fine structure in the boundary, and is 
therefore preferable if we are merely interested in the density of the hitting time, the ‘ global’ 
behaviour o f the hitting time is best approximated using our results, which take into account 
the long term effects on the distribution o f the hitting time, of a particular stretch of the 
boundary function, rather than its immediate effects on the density.

2



Our approach will follow on more naturally from that of the old school of Breiman and 
Shepp than those o f the more modern approximation methodologists, in that we will focus on 
the square-root boundary and its stationary behaviour and examine what goes wrong when 
boundaries are not square-root. We consider boundaries in three main classes depending on 
whether /(<)*“  * tends to 0, a finite non-zero limit, or oo. The behaviour o f the hitting time in 
the finite non-zero limit case is, as you would expect, similar to that o f the exact square-root 
boundary, but in the other two cases, as we shall see, the stationary behaviour breaks down, 
in different ways. However the stationary behaviour o f the square-root boundary still provides 
the key to the approximation. The strength of the techniques used comes from the fact that 
the initial approximations are estimates on the distribution o f the process at time t conditioned 
not to have hit the boundary until t, and not approximations on the boundary function itself.

A  note about the numbering system is in order. The chapters contain their own internal 
numbering system for both equations and proved results. So for example, the third proved 
result o f section 2 might be called lemma 2.3. References to results proved in other chapters 
are prefixed by the number of that chapter, so suppose the above reference above appeared in 
chapter 2, then it would be refered to as lemma 2.2.3.

3
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P A R T  I

1.1 Some stochastic control problems 
and their application to inequalities for diffusions

1.1 Introduction

Benes, Shepp, and Witsenhausen (1980) considered control problems o f the type:- 
Let { X “ }  be a stochastic integral given by:-

dX, =  dB< dt, (I t)

where 23, is a 1-dimensional Brownian motion, and u €  a U =  {T% — adapted controls}
( * « # { * . ,  . * 1» .

Let
C -  {a ; - 6, <  *  < 6,  Vt}. (»•*)

Choose u e C n ' t i  so as to minimize E [/0°° e~atX? dt\.
Stochastic control problems similar to this are notoriously difficult to solve, and only the 

simplest can be solved explicitly. In this chapter we generalize some of the results of Benes et 
al. (1980), in the symmetric case (i.e. bx =  63), to even functions / ,  in other words control 
problems such as the minimization o f E (/0°° f{X * )e~ atdt\.

The main result is the following.

THEOREM 1.1.
Let C  be defined as above with 61 =  63 =  6.
Define

S, ={|X?|; X,“  ia a solution o f (1.1) with u € C ) .  (1J)

Consider the control G given by:-

{ - 6, x >  0
6, z < 0

0, x =  0

Then |X*| attains the stochastic infimum o f  S, Vt €  (0,oo). In other words:-

P ll * ? l < * )> P ( l * r i  < « ] ,  V « € C ,c € R + , t e R + . (1.5)

Many results follow directly from this theorem including the solution o f the above exponen­
tially weighted control problem which follows by Fubini’s theorem.6



Tba proof of theorem 1.1 involves looking at the associated control problem:- 
Choose u so as to minimize E[/(X*)|X(0) =  *) for even and well behaved functions /  such 

that /  is non-decreasing for x > 0, and non-negative.
It turns out that ‘ /  bounded and in C7’ together with the above conditions is sufficient for 

our purposes.
Define:-

Now +(T -  t ,X t) is an /.-martingale for t <  T, and so by a simple application of Ito’s 
formula, for well-behaved />

is the infinitesimal generator of X * .
To solve the above control problem, it turns out that we need to prove > 0 for x >  0, 

and |± < 0 for x < 0.

In order to solve a parabolic P.D.E. such as (1.7) uniquely, it is necessary to consider the 
problem on a bounded domain with sufficient boundary and initial conditions. With this in 
mind, we consider a modified diffusion, which lives on the bounded domain [0,T] x [0,a], and 
which resembles |X,*| for large a ,t  < T .  The symmetry of /  allows us to consider X* and |.X?| 
interchangeably, and this is useful in avoiding technical problems due to the discontinuity of 
C(x) at x  =  0.

Chapter 3 deals with the control problem and proves theorem 1.1 and various connected 
results. In chapter 4, explicit solutions for # (t ,z ) and E[ / "  •— tf{X * )d t]  are given using the 
results o f Karatxas and Shreve (1984). A simpler expression for E[/0°° e~mt f{X*)dt\ is then 
found by solving Bellman’s equation for the associated control problem.

1.3 The Partial Differential Equation

The idea is to construct ^ from its derivative with respect to x, §£ , which, under certain 
conditions on / ,  satisfies the same P.D.E. We need to consider a domain D on which (1.7) has 
a unique solution under appropriate boundary conditions which are chosen to ensure that we 
are indeed producing J* •

* l ,x )  «  E[/(*T)|.X? «  x] (1.6)

d±
dt

(1.7)

(1.8)

Section 2 is mainly devoted to a proof of this result. We choose to work directly with 
since this avoids technical problems with the P.D.E., and since also satisfies (1.7) for well 
behaved / .
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Thke:-
D  »  (O.T) x (0 ,«). ( 2. 1)

It would be natural to consider a solution 8 o f  (1.7) subject to the initial conditions:-

For a unique solution to (1.7) on D, we also need 8(t, a) to be specified Vt €  (0,T ). Its value 
is not obvious for such generalised / .  To avoid this problem, we consider a set of modified 
diffusions { 4X ,}  which behave like {|-X«|} for large a, but which all have boundary conditions 
at *  =  a which are immediately apparent.

Define mX t by:-

where { I f }  is the local time process at x of the diffusion |„Xt| (»«« A lim a  and Yor (1978)). 
Note

(1) This amounts to placing an reflecting boundary at *  =  0 and x =  a, (for a discussion 
of local times and reflecting boundaries, see El Karoui and Chaleyat - Maurel (1978)). 
The two boundaries are different in the sense that, at x =  0, the effect of changing 
the sign of X * is that the driving Brownian motion is now -  Bt , whereas at x =  a, no 
such switch occurs. However, the two boundaries act identically in law. The reason for 
defining aX t in this way is so that the following holds:-

(2) X, has the same infinitesimal generator as |Xf | for (t,x) €  D.
(3) The notation aX t will be abbreviated to X , most o f the time where only fixed a is being 

considered.

Define

Note: the notation with the a omitted will be used where no confusion is possible, as with X t- 
So we will look for a solution to the equations :-

with the idea of integrating the resulting solution with respect to x and showing this to be 
#(t,x). We will need the following results from the theory of P.D.E.’s.

#(0, . )  =  r ( * ) ,  * €  |0,a), (2.2)

and the boundary condition:-
#(t,0) =  0, t €  (0,T). <*•»>

d .X , =  dB, +  -  d lt l.X .) (3.4)

a —• oo, .X .  » (35)

.# (« ,* ) =  ♦(>,*) =  E« ' [ / ( . X , ) !  -  E [ /( .* ,)| .X „  =  *] (3.6)

subject to 6(0, x ) =  /*(*)

end #(t,0) =  #(l,o) =  0; ( 3 .7 )



THEOREM 2 .1 . Let D be a domain (as defined above), on which a uniformly parabolic 
operator M is defined such that its coefficients are all uniformly Holder continuous. Then the 
equations:-

Mu =  0 on D  

u =  g(t, x ) on dD  n  {< < T ) ( 2 .8)

where g is continuous and bounded, have a unique solution.

This is a simplified version of Theorem 3.6, Chapter 4, Friedman (1975).

THEOREM 2.2 . Under these conditions, assuming also that 9(0,x) is continuously differen­
tiable with respect to  z for all z  €  (0,a ), and that this derivative is bounded, then exists 
and is continuous on D.

This result follows directly from the corollary to Theorem 10.2, Friedman (1969).

THEOREM 2.3 . Under the conditions o f  theorem (2.1), the following result holds:- 
Let S be the region dD O {t  < 7'},then,

This follows immediately from the weak maximum principle for parabolic operators: theorem 
S.l, Chapter 6, Friedman (1975).

From these results, we know that 0 is well-defined by (2.7), and has a well behaved derivative 
with respect to x, so long as we stipulate / '( a )  =  0 and /  €  C3(R).

Now set:-

Note: since 0 and are continuous on D , which is compact, the integral in (2.10) is well 
defined.

LEMMA 2 .4.

(2.9)

(2.10)

for some arbitrary but fixed x0 €  [0,o], where Y (t) is given by:-

y ( . )  =  - « ( < , * , ) +

V(0) =  / ( * , )

(212)

9



By theorem (2.2), f*  is bounded and hence has a bounded integral for fixed t €  (0, *].

M dt l d 2t  .d t  n  / ,
Now' S  =  i a ^ - ‘ a i ° “ D ’ ( , u )

to 0 has a bounded derivative with respect to  t, and by the bounded convergence theorem,^

dp
a t = n o §£(«.»)<'«

a3»
2 d*3

= £*#*, as required.

LEMMA 2 .5.
M, =  û(t — a, X ,)  is an 7,-martingale, where

r. = »{X., «»<•}, o < t -  * < r.
PROOF: By the generalized Ito formula:-

But,
dXt =  dl} -  dZ  +  dBt -  bdt, 

where B, is the Brownian motion given by>

dBt =  sgn(X“ )dB,.

Now local times have zero quadratic variation (being non-decreasing), and so:-

¿ u .  =  a  ( r *  ,  -  5 f )  +  ( «  -  < ) £  +  * I f

But by Lemma 2.4, the dt term in (2.18) is zero in D. Also,

dt°(X ) =  0, X t *  0,

( * )  -  0, X, *  «,

and § * (t ,0) =  |*(t,a) =  0, since g? =  #.

So, dM. =  dB. =  l(e,|7C.|)dfl,.

But 1 is bounded ou D, end so u(t -  is an 7,-martmgal.

(IM)

(215) 

(2 1« )  

(2.17) 

(2.1«)

(219)

10



C orollary  2 .6 .

PROOF: Since Af is an 7.-martingale,

=  E ^ ),X ,)1  =  E [/(X .)I  =  # ( « , * ) ,«  required.

( 2.20)

LEMMA 2 .7.
>  0 ,V (I,r) €  D.

PROOF: / '( * )  > 0, so by theorem 2.3,

inf * (« ,* )£  0. 
|i,i|6 J D n { i < r )

Thus by theorem 2.3, f (t ,s )  > 0 V(t,x) €  D i.e.

a o ioD.

( 2.21)

( 2.22)

THEOREM 2.8. Let f  be a function satisfying the shove conditions (i.e. f  is even, f  €  C7(R), 
and / '( x )  >  0,Vx > 0). Suppose also that f  is bounded and has arbitrarily large points o f  zero 
derivative.

Then

| f a 0 , V * i 0 .  (2 23)

PROOF: Suppose |/(x)| < K.

x ;  =  +  b ,

so

B t - b t < X ; < B t + h t ,

thus
P[sup |*?| >  e] <  P[sup\Bt\ > e -  6*1 

•SI *SI
whilst by Doob’s inequality,

E[sup B*} <  4E[B,a]
• Si

so, by Chebyshev’s inequality,

P[sup|B.| > c -  ht\ <  ^ - ^ j E [ s u p B ? )

11
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and u° is our optimAl Msrkov control, i.e. it minimizes Ju(t,x).
This result is theorem 10.2 o f  Oksendsl Applied to +(T -  t,z ) for some Bxed but Arbitrsrily 

lArge T.

THEOREM 3.2. The OptimAl Msrkov control is optimsJ Among the iarger set o f 7%-adapted 
controls, where in this esse 7, =  o {X ,;  t > s ).

This result is theorem 10.3 o f  Oksendsl.

LEMMA 3.3 . Q minimizes E [f (X ?)} for sll7,-adapted Admissible controls u.

PROOF:
By theorems 3.1 and 3.2, all we need to show is that (3.2) holds. But,

i.a. (u -  f i ) £  < 0 ,V (t,z) €  (0,T) x R
Now by theorem 3.1, Q is optimal among Markov controls and by theorem 3.2, 0 is optimal 

among /'-adapted controls.

THEOREM 3.4 .
|X,*| Achieves the stochsstic inBmum o f  {|X“ |; u €  C ).

PROOF: Let,

the conditions of lemma 3.3 and /  \ft -  I\dx —* 0 aa * —♦ oo. By Karatzas and Shreve (1984), 
X f  has a continuous bounded density, and so since E [/")] > E(/<(Af)] V controls u,

where u is a Markov control. But, -6  < u(z) <  b, so

(u -  fi)(x) < 0, x > 0, 

(«» -  « )(* ) >  0, x < 0,

/ = / ( ! * ! >  «]• (3.5)

We can approximate /  by a sequence of increasing functions {/< }, such that the /¡s  satisfy

P[|*?| > e] -  E| lun /,(* ? )!  < lim inf E[/.(A^)] < P[|JCTI > «1 (»•«)

The final inequality follows from:-

f i (X )<  / (X ) ,V € R .  

P (W !  > c\ <  P(|jr?| > e], V controls «.

13



THEOREM 3 .5 . Define the policy u by:-

! b, *  >  0
0, *  *  0 (*•*)

*  < 0

Tien \Xf | achieves the stochastic supremum o f  St .

PROOP:
As for |X̂ |.

COROLLARY 3 .6 . The control problem:- 
Choose u €  C  so as to minimise

W  (1, *) = E[ J~  = <|, (»«)

has u as its solution.

PROOF:
El/(*r>l > E[/(AT.*)].

So:-
J~ «— E(/(jtr)|j* > jT  E(/(x:)]i— j.

i.e.
« " (< .« )  > » ” (« .* ). C  (3 °)

THEOREM 3 .7 . If B ,(n) is n-dimensional B.M. and uX t is given by,

< /«* .(« ) =  dBt(n) +  n  dt, (310)

and

♦ .(« .* ) =  E [/(I .* .(»)I)I. (311)

where f  is a function satisfying the conditions o f  Lemma 3.3. Then 

<f>a{t,x) <  4>u(t,z ) V controls u  ».t. |u| < b. (3U )

• « - { ? ■
PROOF: The proof is essentially the same as that of theorem 3.4 with & few modificatiooe.

Define:-
M«,*) =  inf{^- (« .* ); M < * > (313)

14



Now clearly by symmetry, h(t,x) depends only on t and |z|, and so V 1̂ “  parallel to x, where

r ah \ 
v  "  \dzl dx* d*n) '

The Bellman equation for the system is:-

m in{u. v M  +  ^ V a* +  / ( * )  =  0. (*•**)

Thus our candidate optimal policy is also parallel to x. Now if uYt =  |uX«|, our problem 
reduces to the l-dimensional problem:- 

minimize E [/(.V i)] subject to

3.Y, = < i B ; + +  » > » ,  (515)

where flj is the l-dimensional Wiener process given by:-

_ ,X (n ) .d ,B .(n )
* ,Y ,

Proceeding as in chapter 2, 0 =  satisfies:-

. . 1 3  ( a -  1 . \ 3
C  - 2 3 *  +  { —

(S.1T) 

(2 1»)

with the convention sgn 0 =  0.
This is now in a form where we can apply the weak maximum principle, (theorem 3.1, 

chapter 6, Friedman (1975)), as in lemma 2.7, to a suitably modified diffusion, since ^  > 0. 
The proof now proceeds in an identical fashion to that of theorem 3.4.

THEOREM 3 .8 . Let f
J - ( t .* )  =  jT Jl|Jrrl >  c\ds\X^ =  x. (S1»)

Then T *(t,x ) achieves the stochastic inûmum o f  {T “ (t,x ); u €  C }.

PROOF: Let f
« (« ,* ,» )  -  ei» ( jT  n x : ) i ,  -  *)i (s  » I

where /  is a function satisfying the conditions o f lemma 3.3, and g is a non-decreasing, positive, 
C 2 function such that g{x) =  1, V* > 0. It is apparent that:-

n(T- t .XT.  Y - j ‘ H K ) 3*) = E[f( £  nx: )d.  -  Y)\T,\ (2-21)
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and so is a martingale. An I to expansion therefore gives:-

( * . « )

Assuming the relevant derivatives exist, 9 =  f * , satisfies:-

(S.2S)

(the justification of this statement follows almost completely the arguments used in Chapter 
2 and therefore will not be given here).

Le. P9 — / '( * )  f^ , where P is a weakly parabolic operator. Now / ' ( * )  >  0 on *  > 0, and 
I*  < 0 because if yx <  ya, then:-

Following the proof of theorem 2.8, we now truncate the diffusion by imposing a reflecting 
boundary at x =  a. If we also impose the condition Y  > T  then:-

So using the weak maximum principle, 0 >  0 on Q. Now all that remains is to use the same 
limiting arguments as those used in theorem 2.8 and then an appeal to theorems 3.1 and
3.2 to show that u does minimise (E[y(/,J f (X ? )d s  -  y)]}. The result now follows by a C 2 
approximation scheme such as that used in the proof of theorem 3.4.

1.4 Explicit solutions for + (t,x )  and H (t,x )

Karatzas and Shreve (1984) calculated the transition density of X ? ,  to be:-

« ( jT  / p ? ) *  -  v .)  >  » < £  / « ) *  -  » ) (S.34)

for all uj €  7X, and so

/ w ) *  - * . > ] >  E w j f  n x : ) d .  -  » » (S.2S)

Therefore,
PO <  0, x  >  0. (3.26)

#(t, z, y) — 0, oa d0Q

where Q =  (0 ,T) X (0 ,« ) X (0 ,Y ),

end doQ =  3 Q -  { (T ,x ,y )  : (* ,» )  €  (0,o) X (0 ,V)> (3.27)

/[x,• , . . . . ] ( ' )  “  '■•(*■*)

U



x  >  0,# >  0

_ 1 [“ p [“ • -  + **” * "P[=^=i!l1] «'•’] ■ *ao.*i°.
with /> , ( - * , » ) “  « ( * , - * ) ■  («•>)

We can use this result to find an explicit expression for +(t, z ), namely:-

0( < , . ) = y ” « ( , , . ) / ( « ) < ( «  (4.2)

B *(t,x ) can also be expressed in this way. However, a simpler expression can be found by 
appealing directly to the Bellman equation.

P roposition 4 .1 .
B * (t,x ) =  *— *B *(0,x ) =  •— •*(») (4S)

for some function h.

PROOF: Since u is independent o f t, =  x] and — *] nre identically dis­
tributed. So:-

=  t — *E[ j ~  t ......... " ! ( x ^ )d ,\ x ;  =  «]

= jH  'E[/(J7)|JCJ = «14.

«= « —  f ~  . - - ' — IlE[/(Jfr_.)|JtJ -  « ¡4 .

=  e~“ ' H* (0, x) =  e~mth(x).

The Bellman equation for H *(t,x ), thus reduces to an O.D.E. in h(x)>

i * " ( « )  +  « * '(« )  +  / ( « ) - ah(*) =  o (-* •*)

Due to the simplicity of u, this equation can be easily solved:-

* (« ) =  - » ( / * ( / ■  / ( h ) « - |‘ * ‘ ,’ 4h ).i‘ - 4 . ] . - ' ‘ - » ' -

+  Aeik+l)a +  Be_ “ _M*, x > 0

and h (-x )  =  h(x) (4-5 )

.  ^ i f > - ’v ( , ) 4 ,  / ( „ 4 ,

+44e,k+‘ H*1 +  B e“ “ - * " '1. (4.6)

In the above, 5 =  v/fr2 +  2a. (4-̂ )

17



Now the heuristic principles of smooth fit, end growth no fester then / ( * )  leed to en evel- 
uetion o f the cons tents. The smooth fit condition wes used by Benes et. el. (1980), end 
Lehocsky end Shreve (1986) provide en insight into this. We get:-

(4.8)

* + , y j T '(’ d" (4.9)

To prove (4.8), it is necessery to show thet R.H.S. of (4.8) setisfies the conditions of theorem

Denote R.H.S. o f (4.8) by f(z), Le.:-

i( . ) .  r
b J\m\

L emma 4 .2 .
C(s) >  0 for * >  0

PROOF:
For i  >  0, denote the first two terms of ¿ ( z )  by g i(z ),  ga(z). So, 

but / ( z )  ti end is positive, so

!*(«) > [jH /M dn]

2  +  ,-<»♦»«•— > -  « - “ '•**'j dr,

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

So /*(*) >  0 for z >  0.

18



L emma 4 .3 . Let
M* =  '' l (X f )  +  j f  «— ‘ / (J C )  *  (41S)

Then M* it an / .  -martingale.

PROOF:
«'w =/(* )+|'"(* )+«',w . (4i7>

and by Ito’s formula:-

K = K +  f  e— [-*H X ,)d , + t'(X,)(dB. + u dr)

+ i| "(X .)J r+ /(X ,)Jr] (418>

Taking conditional expectations with respect to 7, and using (4.17), shows that M* is an 
7,-martingale, since / '(x ) is bounded on compact intervals.

THEOREM 4.4 . h(x) is given by (4.8.)

PROOF:
M*) = e.[aC ] = e.[a<7]=/(*)
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1.2 A  Weak Com parison Theorem  for S .D .E .s

2.1 Introduction

In this chapter we shall develop the ideas of chapter 1 to obtain more general stochastic 
inequalities. Whereas in chapter 1 the emphasis was on deriving explicit solutions for certain 
special cases, here we concern ourselves with obtaining inequalities in as general a framework 
as possible.

Let {O , 7, P } be a probability space on which are defined random variables X , and Y . By 
a strong comparison result for X  and Y, we mean an inequality such as,

X  < Y, P a.«.

By a weak comparison result to hold we mean:

P [X  < * ] >  P [Y  <  x), Vx €  R.

Here we concern ourselves with comparison results for processes where the inequalities apply 
for all time.

The connection between the existence o f a unique strong solution for an S.D.E- and strong 
comparison results where at least one of the S.D.E.s has a strong solution, is well understood 
(see for example Deeds and Watanabe (1980) and Le Gall (1982)). Similar techniques can be 
used in the proofs o f theses strong results.

However in the more general case where only the weak uniqueness o f solution is guaranteed, 
such techniques cannot be used. This chapter develops the ideas used in chapter 1, where a 
stochastic control theory framework is used to give simple proofs of some weak comparison 
results. The main result that we shall prove is the following:*

Let X  be the unique solution to the S.D.E.

dXt =  o ( t ,X t) dB, +  Q(t,Xt ) dt,

where <r(t,x) is a symmetric function of x for each t, and Q(t, z )  =  - f i ( i , - x )  Vi, x. Also, 
suppose Y  is a solution of:

dYt = a (t ,Y t ) dBt +  Utdt,

where u, is a progressively measurable process with respect to 7%, such that,

« <  « ( t ,X t), X , < 0 , 
and u > u (t ,X t ), X , > 0.

Then, |yt| dominates |2f,| for all t >  0.
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The mein extension to the methods of chapter 1 comes in the proof o f the main lemma 
(Lemma 2.2), where here we have used probabilistic methods: the analytic approach of the 
earlier chapter being inapplicable in the more general setting. We also make extensive use of 
the celebrated work of Stroock and Varadhan (1969), and in [»articular the weak uniqueness 
conditions this paper gives, together with the equivalence o f weak uniqueness with the existence 
o f a unique solution to a related P.D.E..

The use o f control theory methods to prove inequalities for processes is not new, for example, 
Barlow and Jacka (1986) used control theory techniques with application to weak solutions for 
S.D.E.s. Here, these methods are no more powerful than those in a probabilistic or analytic 
approach (the Bellman equation being merely a restatement of standard martingale arguments 
in an Ito calculus context), but it is hoped that the different light they cast on the problem 
will make the proofs clearer.

2.2 The Main Result
Let { ? ,  Tt, t >  0 } be a filtration carrying a Brownian motion { R ,  t > 0 }. Let {X f ,  t > 0} 

be a controlled diffusion process given by,

dX* = * ( t ,X ? )d B ,+  u, dt,

where a is a continuous function o f z and t which is bounded away from zero on compact sets, 
and u €  C  where,

C  =  {7 t -  measurable controls u such that U i(t,X *) <  «  < «a(*,■*?)}•

Here, and Uj are measurable functions of z and t, and are (uniformly in z ) Holder-continuous 
functions of t, such that,

«t («.*) =  - « a ( t , - * ) .

We will also need to stipulate growth conditions on a, u, and uj:- 
3A > 0 such that Vt, z,

«^(t.x j +  u jit .z )-» -«£(*.*) <  A ( 1 +  z3).

Define the control fi as follows

f « ,( « ,* • ) ,  X ? > 0 ,
\ U iit.X *), X * < 0 .

We will show that X f  stochastically minimizes {|Xf |, u €  C }.
As in chapter 1, we must truncate the diffusion {|X^|, t >  0 ). However, here we find it 

more suitable to kill the process at ±a. We prove that 0 is optimal for this problem, and then 
consider the limit as a —* oo.
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So we define aX t by,

» (» , .* .)  dB, +  <H.X,) dì, |.X,| < o,
( 2.1)

LAI =
We will need the following results.

Lemma 2 .1 . Deiine

symmetric functions /  €  C*(R) such thet / '( * )  > 0 , *  >  0, 
end 3 constants B, k such that / (x )  <  Bzk, x > 0 'I

The growth condition, together with those imposed on the parameters o f  X * , merely ensure 
that E[/(JCf)] is finite Vu €  C . Let

for some /  €  5 . Then for each a > 0, j  is the unique solution o f  the parabolic P.D.E.:

is the infinitesimal generator o f  mX t .

PROOF: For each r €  S, equation (2.2) has a unique solution, 9 under the given boundary 
conditions. This is equivalent to the existence of a unique weak solution of the S.D.E. (2.1), 
and this is guaranteed (see for example Stroock and Varadhan (1969)). It remains to show 
that $ =  6. However it is clear by a application of Ito’s formula that 9{T — t ,aX t) is also a 
martingale by similar argument to those o f chapter 1. So,

««,*) = E(/(.A)LA = *I

(22)

with the initial condition,
* (0, *) =  / (* ) ,

and boundary conditions,

where,

#(t,z) =  E[*(0,.X,)|.*o =  *] = E [/(.* ,)]  = # t ,z )

LEMMA 2.2.

—  > 0, for z  > 0,
o x
d ì <  0, for x <  0. 
o x
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PROOF: By the Stroock-Varadhan characterization of a diffusion, aX, is a diffusion since it 
satisfies (2.2) for all /  6 5 . We therefore have the following standard coupling argument.

Let { $ ,$ , ,  t > 0 } be a filtration generated by two independent copies of aX, : X 1 and X 2 
started at *» and z3 respectively, with 0 < x x <  x3. Define,

r =  inf{s > 0; |X.l | *  |X?|}.

Then, clearly r is a { £ , }-«topping time, and

« » . * . )  -  f f c « . )  =  P i'  <  l]< E (/W )| r <  t| - E[/(X?)|r < l|)

+ P[r a «!<E|/(*,‘ )|r ><]- E(/(JC?)|r > (]>.

But, conditional on r > t, \X?\ > IX,11 a.s. Also, since aX t is a diffusion satisfying the strong 
Markov property,

E[/(X/)k < «] -  E(/(X?)|r < t) -  0,

THEOREM 2.3 . Suppose f  €  5 , then

E [ / ( .^ f ) ] =  w { E ( / ( . ^ n i ) .

PROOF: The Bellman equation for the problem implies that ti is the optimal control if and 
only if:

C ' i  - ^ > 0 , Y « £ C ,  V ( l , i )  e  [0,1] X [ - « , « ] ,  (3.3)
Ot

since we know we have equality in (2.3) for u =  Q.
However this follows easily from lemma 2.2, because

by the definition of fi.

C O R O L L A R Y  2 .4 .

E |/W )|- taJ(E[/(S?)], . 6C>.

PROOF: We look at the limit as a —* oo of theorem 3. It remains to prove that,

j im  [ / ( . * ? ) ]  =  / W ) ,
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at least for u =  fl. However in this case we have s  unique solution in lew for both aX t end Xt , 
which ere identicel on the event,

E . =  {|X.| <  « , 0 <  « < I}.

So, denoting the distribution o f aX , by A end thet of X f  by ft:

« « , * )  =  f t  / ( * )  M * )  +  j s  / ( * )  M * ) ,

- J  + jE /(*) dM‘),
end,

j '  / ( * ) * .

However, we know by the growth conditions imposed on /  end the per»meters of X *, thet 
/  / (x )  d/i is finite end so since P[£?] i  0,

/ ( x )  dft l  0,

thus completing the proof.
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P A R T  II

n . l  L im it Laws For Conditioned Diffusions W ith  Application  
To Boundary Hitting Tim es

1.1 Introduction

The existence o f power moments for Brownian motion hitting times o f exact square root 
boundaries was first considered by Breiman (1965), and Shepp (1971). They established sep­
arately the following result. Let

r  =  in f{l >  1 ;|R| > e ( l  +  t ) i } ,  (M )

then
E[r*] <  oo < = >  e < e(p), (1-2)

where c(p) is the smallest positive root of the pth confluent hypergeometric function

r , M  =  ±  (> y - m + 1 > - <*■*>

In this chapter we aim to solve the approximate square root boundary problem near c(p). 
A partial solution was given by Taksar (1982) who looked at boundaries o f the type

r =  inf{< > l;|fl,| > o(t)(l +  *)*>. (14)

where o(t) T c(p) as t —» oo. He showed that E[r*] <  oo if

j ~  < a ,, (i s)

where m (.) is the inverse of c(.).
Here, we will prove the following partial converse of Taksar’s result.

THEOREM 1.1 . Let r be a stopping time o f  the form given in (1-4), then ifE[rp] <  oo, we 
have / “  t*- 1 h(t)dt <  oo where

*(<) =  . xp (1.5)

The methods used in this chapter are mainly probabilistic. This has the advantage that it 
provides intuition into the problem which cannot be provided by the analytic methods used 
on such problems before.
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In the second section, we obtain some general results on constant boundary hitting times for 
symmetric diffusions. In particular we establish the existence of a limit distribution Sm given 
by

¿00 =  lim law[X,\r >  t] (1*7)

As a result of this we can express the tail behaviour o f r1, the boundary hitting time as

P[r' > ! ) « • —''(* +  0(1)) (!•«)

for some constant k depending on X 0. The constant a  can be expressed as a moment of . 
Now since square root boundaries for Brownian Motion are equivalent, under scale and time 
changes, to constant boundaries for an Ornstein-Uhlenbeck process, we can therefore deduce 
the tail behaviour o f r (the square root stopping time for the Brownian Motion).

P [ r > t ) «  « - ' ( *  + o(l)) (19)

where * ' is a function of Bo, and (i is a function o f the corresponding i «  of the Ornstein- 
Uhlenbeck process. The fundamental result for the approximations in chapter 3 is lemma 2.2 
where inequalities are obtained for processes conditioned not to hit two different boundaries. 
This result is proved by coupling arguments which can be applied to a much more general 
setting, i.e. any process X  which preserves order in the sense that for s <  I, if X 1 and X 2 are 
independent copies of X:

X}  < X 2 = >  X ,* < x 2.

In Section 3, this leads us to identify (i as m (c). Now the approximate square root boundary 
problem has a corresponding approximate constant boundary hitting problem for an Ornstein- 
Uhlenbeck process. It is this correspondence along with some stochastic order relations which 
allow us to prove theorem 1.1 .

In chapter 3, we shall complete this work on approximate square-root boundaries by showing 
that the integrability conditions given here are in fact necessary and sufficient under certain 
extra conditions imposed on the function a(.).

1.2 Notation and Preliminaries

Let Bt be a standard Brownian Motion, and let X t be the associated Ornstein-Uhlenbeck 
process defined by

X , =

then X t satisfies
dX, =  dB"t -  ± X tdt (2-2)
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where S ' is a Brownian motion. Define,

,r m i n f { t  £  i ;| B i|  £  (*•*)

and r„ =  inf{t > 0; |X«| >  e }, (2.4)

then r, =  log* r.
More generally, suppose / ( . )  is a positive function, then

ft  m inf{t >  1; |B|| > / ( * ) }  (*•»)

r, -  inf{< £  0; \X,| > /(• , ) « - / *>, (*  •)

and we will write f( t )  — a(t)ti for the approximate square root case. So in particular, r .(fl) 
will denote the hitting time of the exact square-root boundary, f( t )  =  a (ti)t> .

Suppose /i is a distribution with support contained in ( —e,e ), then we define

M«(*) =  P[X, < z\r, >  t, X 0 has law p] (2.7)

and/* (* ) =  J  dnt(y). (2 8)

Also denote by /i the modulus law of /¿,

H * ) ~  I ' m * )-  (m »

We will make extensive use of stochastic order relations, and write,

Mi < Ms »f and only if Mi(z) ^  Ma(*)i V* €  R-

The correspondence between Brownian Motion and the Ornstein-Uhlenbeck process is fun­
damental to the main results of this papier proved in section three. However, the preliminary 
results in this section are true in greater generality than just for the Ornstein-Uhlenbeck pro­
cess. So for the rest of this section, we will assume X  is a time-homogeneous symmetric 
diffusion process,

dXt =  *(X ,)dB , +  b(X t)dt,

where o(z ) =  o ( - x ) ,  and b(z) =  - b ( - z ) .  Here b and o  are such that the scale function of 
X  is bounded on bounded intervals, and a is bounded above and below by positive constants 
(at least on bounded intervals). The symmetry of the problem allows us to look at |X| and X  
interchangeably and most of the following results are stochastic inequalities for |X|.

The results that follow have been rigorously proved, as the results proved are fundamental 
to  the main results o f later chapters. The proofs are long, and (by my own admission) difficult
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to follow. This is partly due to the fact that the author has attempted to prove the results in 
a fairly general setting to make the results interesting in their own right. However a further 
justification for them lies in the fact that not only are the results proved here intuitively clear 
results, but also it is hoped that the corresponding proofs will give further intuition to the 
reader, as they did to the author. So although it might be tempting for the reader to skip 
through the proofs, he is urged to devote some time to them, at least on a second reading. 

LEMMA 2 .1 . Let p x, p7 be distributions on (—/(0 ) , / ( 0 ) )  for some positive function 
f  : R+ —* R+ U {o o } . Suppose Pi < p i , then p t, < P2,

PROOF:
Let =  P[|X,| < ,|r, >  «, X0 =  *|. (2 10)

Then since pi has support [0 ,/(0 )),

Mt, ~  ton f  pw.t (s)dpi(z) (2.11)•1/ ( 0) j 0

for i  =  1,2. Now pi < P i, so 

Mi(*) “  A*z(*) >  0

i t .( » )  - « , ( » ) =  lin> [p,..(e)(ii W  -  «  W ) +  /  ( « ( * ) -. t / » l  J, (2.12)

and the first term on the right hand side is clearly zero.
So it remains to show that pw.,(r) is a decreasing function of z. To prove this we need to 

show that the conditioned process Y, , defined by

y. -  \X.\r, > n,

satisfies the strong Markov property, and has almost surely continuous sample paths. Then we 
can use a pathwise argument on the process started at two different points to give the result. 

The strong Markov property follows easily from that o f the parent process as follows:
Let rl t ...,r„ be stopping times for Y  such that, rx <  rt  <  ... <  rn a.s.

< * i n . ......r * ( F k .~ .*l
- P I * - .  < y ) * '> T ,X n ......X „ ,r » ....,fw ]

- P ( * . „ .  < * !• * .., r > T .  r.|

=  p ( n . . .  < * in . ] .

to



Similarly, the almost sure continuity of the sample paths of Y  follows from that of X , since

P[y is discontinuous on [0, t]]

=  P [X  is discontinuous on [0,t]|f/ >  t]
P [X  is discontinuous on [0,t]) / j

-  P[r, >  T\ '

Now P[r/ >  T] > 0 for all t since /  is strictly non-zero. So Y, is an a.s. continuous function of

Now consider two processes Y , Y M* started at * i , z2 respectively, with 0 < *» < *a < / (0 ) .  
and let

r* *  inf{t; \Yf' | «  |Yt"  |>. (218)

Then
Ply,** I >  Iy ,-  ||r* >  t] -  0 (2.1.0)

(by a.s. continuity of the sample paths), and so,

P(|y," | < x|r* > t ] >  P(|y,M| < *| f > t). (2-17)

Also

P,A**) -  P(|V,'M < <  i)P[r* < t]
+  P[|y," | <  t|r* >  t]P(r* > *1, « =  1 , 2. (2.18)

Now
P(|V."I <  y|r* < 1, Y .., r ' l  =  P[|y,"| < ir|r‘  <  «, Y ,. ,  r'| (2.19)

by the strong Markov property, since r > t*. So conditioning on the values of r*, Y ,. ,

P(|y,-1 <  y|r* < t] =  P[|y," | < y|r* < t]. (2-20)

Therefore, p9,»(*1) >  py,f (z2) and hence

Mi, <  Ma,- (2.21)

LEMMA 2.2 . Suppose f , g  are positive functions: R+ - R U  { 00}  such that / (t )  <  g(t) Vt. 
IT

p(t, f )  =  distribution o f  [|JC. 11ry > t, X0 =  *], (2.22)

then
p { t ,f )< j i( t ,g ) .  (2 M)
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PROOF: The idea of the proof is as follows:
We will consider two processes run ‘on the events’ [rf  >  t, rf  >  t] and [rg > t, rt  <  t] 

simultaneously, and will prove a coupling inequality for sample paths where the two processes 
coincide at some time after the latter hits /  for the last time before t. This will follow from 
the Markov property for X. The remaining sample paths satisfy an a.a. inequality due to the 
a.a. continuity of the two processes.

Denoting by the distribution function corresponding to m(<»/)>

Z*, Z* and X 1, where Z l & [X\rt  > t, r, <  *], Z 3 & [X\r,  >  t\, Z * L  [X\r> > t),1 and X 1 
is an independent copy of X . We also denote by ($ . ,a  >  0 }, the filtration generated by Z*, 
and let V be the tr-algebra generated by { Z } , Z j , X}\ 0 <  a < t). Also, the stopping times, 
Tf{Xl ), Tt (X l )  and r*(Xl ) will denote the hitting times: rJt rg, and Th as defined earlier, for 
the specific process, X 1.

We want to prove |Z,l | > |Z?|. Z s and X 1 are only used for comparison. Define for any 
Q x M  adapted Y,Ylt and Y2:

Now r1 and r" are not stopping times and so we must take care about the preservation of 
the strong Markov property.

Clearly for r" (Z l tZa) =  t, |Z,l | > \Z?\ a. s. due to the almost sure continuity of Zx and 
Z2, so we concentrate on the case r " (Z 1 ,Z 3) <  t.

‘ Lot 2 bo a proem go no ratine a filtration {0 ., • > 0>. Formally wo dofino a probability »pact
{O, B..I > 0, P'> for tho conditionod procooo {[0.|A), 0 £ • < t>, whoro A 6 8«, and P(A) > 0. aa foUowa:
Suppoao B €  8,  than.

M(*,F)(y) =  ap(f./)(y) +  (1 -  C0PIIX.I < ylr» > t ,  r,  <  t] (2.24)

where a  =  P[r/ >  £]/P[r, > t] because r, <  rt . Define a function h by

M<) =  /(< ) on («.<1

=  »(■) on [0,u], (225)

and let (7), a >  0 } be a filtration rich enough to  carry mutually independent procesaee, Z l ,

r'OO -  aup{. <  «; |V.| > / ( . ) } , (2.2« )

, " t Y ' ,Y 1) =  inf{r >  |r,‘ | =  |r,, |) A t. (2.27)
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P(Z’  < «1 z ;  =  x. A], o <  «■

=  P|Z» < vlz ;  =  x], VA €  s. * *• (2 28)

Consider the events, defined for any $  x H adapted Y :

A ,(K ) -  [IK I < /(« ), .  <  v; IK I < |Z,'|, « < • < « ;  |Zil -  / ( « ) ;

|Z.‘ | =  IKI; |Z,‘ | < /(• ), » < • < « ] , « < » ,  (2-29)

M Y )  =  OKI < / ( « ) ,  « < • < » ;  IK  I =  / ( « ) ;  |ZJ| -  IKI;

|KI > |Z?|, « < •< » , IKI = |zjll « < «• (2 3°)

Clearly A X(Z *), Aa(Z s) €  x M, moreover, we can rewrite A i and A3 as:

A ,(y ) =  [r'(Z‘ ) = « .  r” (Z \ K )= .| .

M Y )  =  [••'(K) -  « ,  r"(Y ,Z ’ ) =  vj.

Not* that,

Also by definition,

P (Z ’  <  y\z; =  x, A,(Z*)| =  P|X‘ .  < y|Xl .  =  x, r » (X ‘ ) >  I, A , ( X ‘ )1.

and clearly,

M X ‘ ) >  I] 3  A ,(X ‘ )

So, by the Markov property for X 1,

P[X*. <  y|X‘ .  =  x, r , (X ‘ ) >  I, A ,(X ‘ )1 =  P [X ‘ . <  y|X*. =  x, r , (X ‘ )  >  «, A ,(X ')]

=  P [X ‘ , <  y|X‘ .  =  i ,  r , ( X ‘ )  >  1, A ,(X ‘ )|

-P[-*I <y|r,(Z‘ ) . « ,  r-(J‘ ,Z’ ) = ., Z? =x|. ( > » > » > « ,  (2.31)

by the definition o f Z a.
Similarly we can show that,

P|z; <  y|Z* =  i ,  A ,(Z ‘ )1 =  P (X ‘ .  <  y|X‘ .  -  x, n. >  «. A ,(X ‘ )|,

=  P|Zi < y|r'(Z‘ ) =  « , r " (Z ‘ ,Z * ) =  Z.1 =  x], !> • > • ■
(2.32)

33



So (2.28) gives us,

P[Zj <  V\% =  * , f ( Z l ) =  « ,  r " (Z l ,Z i ) =  «  <  t\

=  P [Z.1 <  y|Z.1 =  * , r 'fZ 1) =  u, r" (Z l , Z2) =  v < t] » ^ « $ ( ,  (2.33)

and by the continuity of X  and hence Z l , Z 2,

r " (Z l ,Z *) =  t =*■ \Zf\ >  |2?| o.s.

So,

P(2? < =  *, r" (Z l ,Z 3) =  t] > P[Z* < y|Zl =  *, r " (Z \ Z a) =  t] (2.34)

P(W I < *1 -  P(|«*?| < vj
= P(r-(Z‘ ,Z») =  *1(P(|J»1| < y\r"(Zl,Zi ) -  t) -  P[|J?| < y|r"(Z\Za) =  tj)
+ P [r"(Z1,Z a) < tl(P|Z,a| < jf|r*(Z1,Z a) < t) -  P[|Za| < y|r"(Z\Za) < *))

(2.S5)
-  -P (r " (Z \ Z a) =  t)P[|Z?| < y|r"(Z‘ ,Z a) =  t), for y < f(t) (2.36)
< 0.

So, for some a  €  (0,1]:

M (t,f)(v) <  a p (t,/ )(y )  +  (1 -  a )p (t ,f )(y )

=  M(*,/)(W). (2*7)

that is

* < « ./)  S  *(<.«)• (2-3«)

LEMMA 2 .3 . Suppose Z  is the process obtained by piecing a reflecting boundary at ± a  for 
the process X , then if  ( ,  is the law o f  Zt, end the function f  is identicelly e constant a:

Pt <  I t  (2.39)

PROOF: Let V, =  [Z,|r. > T], then V, =  [Xt \r. > T] a.s. since P(K, hiU ±  a] =  0.
So we can apply lemma 2.2 to [Zi|r— > T] and [Zt\rm >  T) to give the result.

THEOREM 2.4.

(i) The distribution o f[X t\rt  >  t] has a limit , independent o f  po, and tbis convergence 
is uniform for ell pc ■

(ii) ¿oo satisfies the quesi-stetionery relation:

J  Pv t (*)<&„o (*) = fm  (y), Vt, y.
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Furthermore fw satisfies.

If fx <  6 „o , then Mt < i  ■, 

and if  ft > ¿oo , then ¡x, > .

(2.40)

(2.41)

PROOF:

(i) L«1 i f  — distribution of X t at time t given |X0| =  * and r. >  t. Then for 0 < x x <  *a 

if*  (y) >  # ;• (») by lemma 2.1 . (2.42)

We need to show that,

S“ 1 (f) ~  * (f) —1* 0 as t —* oo Vy. (2.43)

If we conaider two proceaaea X*1, X “ '  started at xx, x3 respectively, and define

r' = i n f { t  >  0 ; X ,* ' =  0 } ,  (2 .4 4 )

we can apply lemma 2.3 to the process W, defined by 

Wt =  X t , t < r '

=  0, t £  r*. (2.45)

Now,

P[X. hits 0 before t] =  P(|W‘ * | < 0)

> P(|r,-1 <  0] by lemma 2.3 , (2.46)

where Y, is W, with reflecting boundaries at ±a, and defining Z  as in lemma 2.3,

Pflrf- 1 < 0) =  P[Z;> hits 0 before t]

<  P [Z : hits 0 before t], (2.47)

and P [Z ; hits 0 before tj —» 1 as t —* oo since Z, has a bounded scale function and is 
confined to a compact interval.

*."* (f) -  is- * (f) =  P \r' < t\rm >  t](P(|Xt- ‘ | < y\r' > t , r m> t \ -  P(|Xt" 1  < yW  < t, r . >  t\)

+  P [r' >  t\rm >  i](P(|X;* | < y|r. >  t, r* >  t] -  P[XT* <  y|r' > t, r. >  ij),
(2.48)
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(2 .« )

and,

P P T I < f|r* -  • < t, r . > t, |*;*| = *]
=  P[|X"_, <  y|r' =  * <  t, r . >  t] by time homogeneity,

<  P ^ . ,  <  y\r' =  * < t ,  r . >  t] by lemma 2.1,

= P(|X?* < »Ir* > t, r* -  « < *), (*•«>)

and so conditioning on the values of r ' and X,>

Pl|Jf,“ ‘  I < yW  <  t, r. >  t) -  P[\Xr \<y\r> < t, u  >  *) <  0. (2.51)

So,

<r‘ ( v ) - i i * ( v ) < p [ ' '> * ]
—* 0 uniformly for * i , *3 €  [ - 0, o] as t —► 00. (2-52)

Now all that remains is to prove that the distributional limit exists for some initial 
distribution Ji. We look at {6 ° }  and show that it is a stochastically increasing function 
of t, i.e. that i j ,  <  for <  t3. 5?(y) is a continuous function of t (for t #  0), 
because,

! & . . ( » )  -  <?(»>! <  P||X,| > V. |X,t „| <  y|r. >  ( +  « ,  X, =  0|

=  /  P(|jr,.„| <y||X,| =  » +  •!, r. > l  +  « M * .( * + l )

But
P[l^..,.| <  y||X.| =  y +  1)1 -  0 »  it 0 Vr, >  0,

(2.53)

(2.54)



Clearly, the inductive hypothesis is true for n  =  1, so {¿® .(y), n €  N> is a stochastically 
increasing sequence. However by letting s -*  0, and using the t- continuity of $ ?(y ), it 
follows that {5 ° , t > 0}  is a stochastically ordered set such that,

fo r O ^ « !  < t » .  (2 M)

Since i f  is stochastically bounded above by a point mass at o, 6? therefore has a limit 
if,, which is also the limit for all initial distributions. Moreover this convergence is 
uniform by theorem 2.4.

(■*)
/  p .,,(* )< « :( i )  =  < „ , ( » )  v«,, (2.59)

So, taking the limit as * —* oo (formally the left hand aide is integrated by parts, and 
then we apply dominated convergence before integrating by parts back again), we get,

J  P,., ( * ) « »  (* ) =  « -  (» ). « ,  V (2 60)

thus proving the first part. Furthermore,

i . ( v )  =  J  p . . ( * M i(* )

>  J  P , . t =  *»(»)•  I2-61)

The inequality above follows from the first part of the proof o f lemma 2.1.
The second stochastic inequality follows similarly.

COROLLARY 2 .5 .
6%, <  6 £ * .  (2 62)

PROOF: This result follows from lemma 2.2 by taking the limit on both sides of the inequality,

M* 2  i T *  (*•«>

(where M?(y) =  P(|*.| < *|r. >  *)).

LEMMA 2 .6 .
P(r <  tl/ij] < P(r <  t|Mal if  Mi < Ma. 

where r is a symmetric boundary bitting stopping time.

PROOF: Suppose IxJ < |*3| then P(r < *|X0 ~  * i) <  P(r <  i|X0 -  *a] by a similar argument 
to that in lemma 2.1.

Define p,(x) =  P[r > t|X0 =  x] Now p ,(x ) is an increasing for x > 0 function and 
P[r < tip ,) =  /p , ( i )d p , ( « )  <  -  P it <  < M - T h . inequality fo lio « , from
the stochastic ordering of p\, p ?.
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1.3 The A pproxim ate S quare-root Boundary

In order to prove the main result it is necessary to look at a geometric partition for the Brow­
nian motion time (corresponding to a uniform partition for the Ornstein-Uhlenbeck process). 
This allows us to make approximations for the approximate square-root case in terms of the 
exact square-root results obtained by Breiman (1967). So in this section X, is the Ornstein- 
Uhlenbeck process corresponding to B, , and we shall use the two processes interchangeably. 

Firstly we need the following lemma.

LEMMA 3 .1 . Suppose m(.)is the ¡averse function o f  c(.). Then

P(r »  *  H I - I — “ », (*1)

where r =  in f{t >  1; |B,| =  cy/t).

PROOF: Fix r <  1, and let t =  r~n for some integer n. Now we will assume we are conditioning 
on the event [r > 1 ,  Bx ~  H ]  lD that follows:

P[r > <1 -  n  P[r >  r~*\r  >
i - i

-  f [P | r  > r - ‘ |r » r - ' * - 11. B . . ......  - C . I

- w o r
=  «•'•', .ay. (3-2)

W. will .how that g is a constant function and that P[f > t] =  I*1'* for all t >  1. By a similar 
argument we can show that,

P ( r > « l » P ‘r *>,

so for m €  N, g(r) =  g(r~  ), over all r < 1, m €  N. So we have, 

g(r) =  y (r“ ), for integers m,n.

Now fix arbitrary t. We can pick sequences { « , } ,  {t*}, such that for each * > 1, *t and t, 
can be written in the form r *  for some integers, m ,n, and *  f  * and t, i  t.

P(r > ti) < P(r >  t] < P(r > * ], (3.3)

and
tf(r) < P(r > t ] <  s ? r), Vi =  1,2.....

38



So taking limits as i T oo,
P[r >  t] =  f lr), Vt >  I. 

But by Breiman (1967), g(r) — m(e).

PROOF OF THEOREM 1.1: Assume firstly that Bx =  X0 ~  5 » ° ’ , then 

Suppose
,r  =  inf{t >  1, |B,| > eta },

and

(5.4)

(5.5)

(5 .6), r  =  in f { i>  1 , |B,| > / ( « ) } .  

and denote by eHt, the law of [Xt \,r >  t] and />*, the law of [Xt\jT >  t], in the usual way. 
Then it is clear from lemmas 2.2 and theorem 2.4(ii) that,

/ i . s . ,  (»•*>

for all t >  1. It is this powerful distributional inequality that allows us to prove the theorem. 
Now let t — r~m for some r <  1. Then,

p[,r  > «] =  J | P [,r > r - ‘ l,r > (S .S )

P[,T > r - ‘ \,r >

=Pl,r>r-‘\,r >  j l .

> P [ ,,  >  r - ‘ \,r >  r - '— l. ~  t í “ * * ' - * '] .

from S.7, and by lemma 2.6. Now define the function a(t) as follows:

a(t). l < « < r - ( * - » )
( ) ~  l  a (r -« -* » ) ,

So S(t) <  o(t), 1 <  t <  r-*, and if / ( « )  =

P [/f  >  r-< |,r >  X lt_ l) lo ti  ~  S¡ ¡ {t" l ) *** r )

> P [,r  >  , - ‘ \,r >  r - '— », J C , ~  t í “ —» —

(»■»)

(3.10)

(3.11)
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for arbitrary Mo ■

E,.,.,(r»]« |  E.[rf]di;l0’ (*>
-  y  i,(a) d£,(0, (a), say. (S.18)

Now, I|(s) decreases with a for I  >  0. Also if E„, (r»| < oo, then 3a <  e such that 

E.[r*] <  oo,

However,

E,[r*] >  E . [s'| X  hits 0 before /(* ) | P [X hits 0 before / ( t )  ],

and,
P[X  hits 0 before /(*)] >  0.

Moreover it is clear that, since X  is strongly Markov,

Ea[r*\X hits 0 before /(*)! >  E o M . 

so E . [r*] must be finite implying that the result must also follow for /¿o- 

C orollary 3 .2 . Suppose

| J  log t dm(a(t)) dt\ <  oo (3.19)

then the necessary conditions in Theorem 1 and the sufficient condition given by Taksar are 
equivalent and we have a necessary and sufficient conditions for the finiteness o f E[rp].

PROOF: t
m(a(*)) ¿g =  _  i0g t m(a(t)) +  J  log s dm(a(e))ds.

So,
exp { -  J' =WiHds} =s |-w(eii)i „ p 1 J '  |0|,  dm( s ( . ) ) | . (3.20)

and clearly if the integral J* log s dm(o(«)) is finite, then this expression is bounded by multiples 
o f $-•»(•(*)) which is Taksar’s approximation.
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I I .2 C o n d it io n a l D iffu s io n s : T h e ir  In fin itesim al 
G e n e ra to rs  A n d  L im it L aw s

2.1 In trod u ction

In this chapter we consider the effect on Ito diffusions o f the form

X , =  I  +  J ‘ o {X .)d B . +  £

of conditioning on the event E  =  (r  =  oo), where

( 1. 1)

r =  inf{t > 0; X, $ ( a » } .

More precisely, since under the conditions imposed on a and r in this chapter, E  is a null 
event, we consider the weak limit X  o f the process ( X f ) where X 7 is the solution to ( 1.1) 
conditioned on Er =  (r >  T).

In order to identify the (X ? )  (and hence X ),  we make use of two techniques: the first is some 
simple functional analysis—the relevant results are covered in section 2.2, and the appendix, 
and the second is that of enlargement of filtrations—an area covered in great depth in Jeulin 
and Yor (1985)—the relevant result is introduced in section 2.3.

Some o f the results of this chapter were first proved in Pinsky (1985), although the techniques 
used in Pinsky’s paper are quite different, using results from large deviation theory. Our 
approach here has been to try to preserve probabilistic intuition, whilst still providing a rigorous 
treatment.

The main results of the chapter are as follows:
(i) A  is a diffusion with generator G =  G + a 3 £  £ ,  where G is the infinitesimal generator of 

X , a is as in (1.1), and ex is the eigenfunction corresponding to Ax,the largest eigenvalue 
o f G, on the interval (a, 6].

(ii) lim P ,[X t < y\Et\ =  ¿oo (v) exists, is independent of z, and is given by,
¿oo (dy) «  «i (y)m'(y)dy, where m is the speed measure o f X ;

(iii) lim P , [AT, < y] =  va  (y) exists, is independent of z, and is given by 
'T .(d y )o c e ? (y )m '(y )d y .l

To prove (i) we first establish that

4Um e " Al*P ,[ft] = «■(*>___ ( 1.2)

(a result implicit in Itô and McKean,1974) and then use results on enlargement of filtrations 
and on convergence of solutions o f  SDE’s.



To pro*« (U) w . Mtoblish • genrr«li»«uoo of (l.J) «lid (iii) then folio.™ bp «  «imple coodi- 
tioning argument.

In section 5, we focus on two important examples. The first is that o f the Ornstein-Uhlenbeck 
process, an example which will be used extensively in subsequent chapters. The other example 
is that of Brownian motion. Here we are able to use a limiting argument to prove the existence 
of a Brownian taboo process first proved by Knight (1969).

2.2 Preliminaries

where a and £ are locally Lipshits functions and a is bounded away from 0, at least on any 
compact interval.

We wish to study the asymptotic behaviour of the stopping time

here s and m are respectively the scale and speed measures o f X .
Most of the elementary function analytic results given below can be found in Curtain and 

Pritchard (1977).
Denote by V  the vector space,

then V admits a natural inner-product which makes G a self-adjoint linear operator:

2.2.1

We consider diffusions o f the form

dX, =  * (X t )dBt +  ((X .)d t ( 2 .1)

r *  inf{t >  0 ;X , =  a or X , =  6} , (2.2)

a < 4; we fix a and 6 for the rest of the paper.
We denote by G  the infinitesimal generator of X:

(2.3)

V  =  {functions /  €  C a(a,6] ; / ( o )  =  f(b ) =  0 } (2.4)

(2.5)
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so that G  is clearly self-adjoint.
The spectral theorem now implies that the eigenvalues of G are all real, and the (suitably 

scaled) eigenfunctions of G form an orthonormal basis for the pre-Hilbert space H =  (V, 
the finiteness of the domain o f G implying that the spectrum is purely discrete, and so consists 
of only the eigenvalues of G. Moreover, the eigenvalues of G are all simple; this is implied by 
the uniqueness of solution of the elliptic equation Gy =  Ay for given y(a) and y'(a).

Now let 7(x, t) be defined by

Tf(*,0 -P .l* . €(«,») Vs < t\
=  P  . [ r > i ]  (2 .6 )

Standard arguments will establish that 7  is the unique solution o f the PDE, 

o n  ( 0 , 6 )  X  (0 ,o o ) ,

7 (0 ,* ) =  1 * € (a ,5 ) ,  (2.7)

7 (0, t) =  7(b ,t) =  0 t €  (0,oo).

More generally, letting /  : [0, 6] —» R be a bounded, piecewise continuous function then under 
the conditions imposed on a  and £,

7 /(* »0  =  E .[ / (X , ) / ( r  >  01 

is the unique solution of the PDE

G if  =  ^  on 

7(*,0 ) =  / ( x) on 

7 ( « ,0  =  7 (M ) =  0 

Now 7 € V  Vt > 0 and so we may write:

<-1

where the {«¿(t) : i > 1} are the orthonormal eigenfunctions o f G  with corresponding eigen­
values {A< : » >  1}, and the {<!<(.),t >  1) are C l —functions.

(a, b) x (0,oo),

(« ,* ). (2 «) 
t €  [0, 00).
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On applying (2.8), it is clear that o<(t) =  M *'*  whilst, since -y(ar,0) s  / ( * )  is in the closure 
o f V, we see that = (e*, / )  (see for example Curtain and Pritchard(1977), for more details).

To complete our preliminary remarks, notice that all the eigenvalues of G must be strictly 
negative, since if A was a non-negative eigenvalue of G with corresponding normalised eigen­
function e, then we would have

(2.9)

and applying the strong maximum principle to e and - e  (see Friedman, 1975), we would deduce 
that e was identically xero, contradicting ||e|| =  1. Note that the supremum of the spectrum is 
certainly attained, see for example Krein and Rutman (1948). Recall also that without loss of 
generality, we may choose e i(x ), the eigenfunction corresponding to Ai (the largest eigenvalue) 
to be strictly positive on (a,b). A  simple proof o f these results in enough generality for use in 
this chapter is also given in the appendix.

Our plan of campaign is as follows: we propose to show first that defining

/*(*.*) =  «■A**7 /(*,0 ;

(0
-* k/ei(x) uniformly in x, ( 2 . 10)

(Ü)
j4/a —► kfdx(x) uniformly in x,

for a suitable constant kf  ; and then using arguments based on the theory of enlargement of 
filtrations, we can show that,

« X .  : . < l | r > r ) T= . " ( X , ; . < « ) .

where AT is a diffusion on [a, 6] with generator:

G
d_

dx

2.3 The C onditioned D iffusion

( 2. 11)

We are now in a position to establish the main results o f the chapter. We first establish the 
following results about given by (2.8) and (2.10).
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THEOREM S. I . €  V  for each t > 0, and is given by:

/ « « . o  - f y * - » * »  </.«.>«.(•>• ( * i )

Moreover (i) / + (x ,t),=-5  ( / ,  c1)« l (z) uniformly in x, 

and (*t)f  +m(s ,t ) ( f , e l )e>l (x)uniformly in x.

PROOF: ,* ( . ,* )  =  e " A»*7/(.,t) •«> “  clearly in V  Vi > 0.
=  *~Xl*(ml/,ti)ex,t, and substituting in (2.8) we see that,

»  <7,( .0 ) ,«*>**-'

establishing (S.l).
Now G f+  is continuous and zero at a and 6 (for all t > 0), so is clearly in V . Thus,

G/+ = e~XxtG-if = £ « ‘ A,' ( G l / , « i ) « i .
o

but (G^/.Ci) =  (mi/,Gei) (since G  is self-adjoint) and so,

{G if ,* i )  »  A<(7/,«<),

(Z ,* ) * . , .

Thu.,
=  — G i,

where 0  =  ( / , e  i) . Rewriting G ae t p ¡9 continuous on [n,h] and bounded
away from 0; also let ||/||, =  ( ( / , / ) ) * ,

then |*.(«,t) -  d .(v ,t )  -  (d .(e) -  d .(v))l

=  2| t ‘  pG(*-/>)dz\
Jv

<  2||Gd(.,0  -  c,9(.)||,( f  nOOdx)*,
JV

since p and (V ) ' 1 are bounded on [a,i] under the conditions on o  and (. 
Thus, + ,(x ,t )  — ¿ ,(a ,t )  t=^* 0 ,{x ) -  /9, (a) uniformly in x, and is uniformly (for t >  0)
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=  f \ * . - f i . ) ' $ M ‘ )

siV ! ( $ ) » - « • ■ * » - » •

Therefore 0, ,  and we may conclude that d . —* 0, uniformly in z. So 4 , — 0 , uniformly
(in z ) and $ —• 0  uniformly (in z).

Lemma 3 .2 .
*.(*■0 m « )
H *,t)  /»(«)

uniformly in * on any interval / ,  =  [« +  c ,t  -  «] (for t  > 0).

PROOF: The result is an immediate corollary o f Theorem 3.1, recalling that ^ ,^ > 0 o n  (a , 6).
We now require a result from the theory of enlargement of filtrations:

THEOREM 3.3. (Jeulin and Meyer, 1985). Suppoee (7t ;t  > 0) is a given function, end 
A €  7^ ; denote by (7 A;t  >  0 ) the filtration obtained by an initial enlargement o f  ( / ¡ )  with 
the event A; that is,

JS* - r ( 7 „ A ) .

Then denoting by M A, the 7t - martingale:

M A =p[A \rt],

continuous in z. Now it is clear that 4> 0, and

if  M  is an martingale:

is an 7 A- martingale.

COROLLARY 3 .4 . Conditional on [r >  t], the diffusion X , satisfies the SDE

¿AT. =  » (* .> ¿ 8 . +  (((AT.) +  *) )  (0 < • < 1)

where B is a Brownian motion (conditional on r >  t).

PROOF: If we apply Theorem 3.3 with A =  £ , =  (r >  t), and Af =  B, we see that

AC* =  y ( ^ . , * - « ) / z . ,  and 
dA f/ =  < T p f.b .(* .,t  -  s)dB , , at least on A,
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PROOF: Define {J. end as follows:

«■(*.•> -  j  « * )  +  . *  <  • + «

r « * ) + ^ .
«■-(*.*)-1 « < « + «  

i  { ( « )  +  f ■ * > » - « •
Fix € >  0, and let,

x f  = *  +  j \ ( x r.)d B . +  £  ej. ( i f ,  r - . )< ( .  (5.4)

JC = * + jf »(3c )4B. + jf «. (3cr )*, (5.5)
for some fixed Brownian motion B ,. Then it is clear that and a are uniformly Lipshits,
and f j .  —* ( i ,  uniformly on (0,t), and applying Theorem 3.5, ■up0<.<i|ATT -  X m\ *—• 0 and 
so, since it is clear that, in this case r,(X T) - *  rt (X °°), (see Barlow and Jacka, 1986 for a 
proof o f this statement) we see that, Xj^Tt X ,Af, .

LEMMA 3 .8. The stopping times r, m r ,(X ) T oo a.s. as e | 0.

PROOF: Clearly the (r.) increase as e | 0. To prove that r, *4' oo we show that r, oo and 
use the fact that they increase.

From lemma 3.7 we know that (in the notation of Corollary 3.4),

r f  ■  , . ( X T ) / f _  r . ( X - )  =  r .(5 0 ,

so to  show that r, oo, it is sufficient to show that,

Um Q jm  P (rf <  *]) =  0, Vt >  0. (3.6)

Now, P[r,T (5tT ) < t] =  P(r€(X ) < t|r < T] where X  is the unconditioned process given in 2.1, 
and denoting by R, and S( , the stopping times;

R, =  inf{e >  0; X ,  ( * ) < «  +  « }

5« =  inf{# > 0; X .(x )  > » - « } ,
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P[r,(X ) <  t\r >  T\ <

we see that,

P.[fl« < t A 5 <lP,^.<[r > r -t | - l -P « [5 «  < t A  H.]P».«[r > T  -  t\ 
P.[r > T )

eXlt{+ (a +  e ,T  -  t) +  ¿(5  — t,T  — Q}
H*.T)

and letting T  —* oo, we see that

^lim P[rt (X T)  <  t] < «* »« {£ (»+  c) +  J ( » -Q >
K * )

so that, lim,i0(lim r—oo P[rt (X T) <  tj) =  0 for each t as required, since Ai <  0 and /3(a) =
m = o.

PROOF OF THEOREM 3.6 : If we apply lemma 3.8 to 5f°° we see that,

5rsr **xr• «10

whilst,

X L ..  ¿ X T .  o „ [ 0, r ]

(since r,(Afr ) —♦ r (X T)) and thus the result follows by taking the relevant limits in (3.3).

3.4 Identifying The Exit A n d  Entrance Laws 
O f The Conditional Diffusion

Given the results o f Cox and Rossler (1984) and others, it is tempting to directly identify 
the limit law of X  via the dual diffusion X *, however, the conditions in Cox and Rossler do 
not apply so we instead first identify , where,

«oo (y) =  P ,(X« < y|r > t] (4.1)

THEOREM 4 .1 . Let ¿oo(v) be aa given in (4.1), then ¿oo is given by,

=  * i  (v )  *x p  {  2 /  €(*)<**} dv  ( 4 -2)

PROOF: Applying theorem 3.1 to the functions fi  =  1 and / a =  I[x <  y], we see that
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and taking the limit u  I -> oo we see that,

_  /-* ' «i(«)m'(«)<fa!
“  ( ! . « . )

We now define vf and i/m aa follows:

»/,'• (dx) =  P [X, €  dx|5r0 =  so].
vm (dx) =  'lim P ,0 [Xt €  dxj,

(we shall see that i/m is independent of Xo).

THEOREM 4.2. Define fi(x), f f  and 5, . as followt:

/>(.*) ~  ( i .  ••)•»(«).

=  P[X, € 4z|r > « , * , =  *o|,

«,■; (drt) =  P[AT, S 4z|r > t +  « ,X , = *,|.

Then 5”* satisfies,

(4.3)

(4.4)

i/00(d x )=  lim i/“ *(dx) =  0(x)Sao(dx), (4.5)

PROOF: Consider first,

I, -  P[X, S * t n r > «  +  .  +  T|Xo -  .

Now

/. -  P(r >  f +  s|JCo =  Xo]e-A»<l+*>P(Jf. €  dx|r > t +  s ,* «  =  *o] 

x P [ r > l  +  i  +  T| X , €  dx, r >  t +  s]e“ A,T 

=  *(xo, t +  #)fi£ (d x)m r, (4.6)

52



where
mr = j  P\r > « + » + rnJt,», e 4y|X, = »,r > « + «]<~*‘T, (4-7)

by conditioning on the value o f X t+ ,. Now we see that 

my =  J  P[r > l +  a +  r|Jf«+# €  dy,Xt =  * , r  >  t +  s]P[.X,+ . €  dy\r > t +  t ,X ,  =  x]e~*'T 

= J  M T ,y)6;{dy).

Conversely,

It =  PIAT, € dx\r > t +  .  +  7\X„ = *o]P|r > 1 +  « +  r|X0 =  (4.8)

Now letting T  —♦ oo we obtain from (4.6) and (4.7):

l̂irn̂  lT =  ¿(*o , * +  •)*«“ :  (dx) l̂irn̂  J  +(T, y)S‘  (dy)

/  « » > « :(* » ) . (4.9)

whilst from (4.8) we obtain
^lim /r  =  *'«*• (d*)/?(xo), (4.10)

so that equating (4.9) and (4.10)

. . .  fj.\ (4.11)

Similarly, we see that setting

hr =  P\X, €  dx, r >  t +  T\ X „  =  Xo|«‘ *‘ IT' " 1
kr =  P[t >  t\Xa =  xo]«-A ,*P(X, €  d*\r >  i, X a =  xa)

X P[r >  « +  T|X, =  * , r  >

and
hr =  P[X, e  cfa|i- > 1 +  T, X 0 =  *o|P[r > < +  r ] « - * ,,,+ T ).

Letting T  —» oo we obtain,

establishing (4.4). Substituting (4.4) in (4.11), we see that
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establishing (4.3).
Finally letting t - »  oo in (4.4) we establish (4.5).

We see therefore that X  converges in distribution to Xm ~  i/m, and that the transition 
density p for X  is given by,

=  A p [X ,  <  y\X. =  <|

-  ¿ < . w

-  « » ) **•* ~ * ) *g - ( , )

-  1 ( * 1! )

(for *, y €  (a, 3), 0 <  s <  t <  oo) from (4.3) and theorem 4.1.

3.5 Som e Applications

3.5.1 The Ornstein-Uhlenbeck Process

We call a diffusion process an Ornstein-Unlenbeck (0, a) process if 

<r(z) £  0 and £(x) =  -a * .

We will look at the Ornstein-Uhlenbeck (1, J) process and its conditioning with respect to r. 
Applying Theorems (4.1) and (4.2) we get

i - (d * )  = • i(« )e— */adz (51)

p _ (

Furthermore, we see that G is given by,

2 dz3 [ c i (x )  2J dx 

It remains to identify et (.). Solutions of

/ I d 3 x d \  „  . _
( i d s ’  *  2 J x ) * ~ X* ’

(5 .2 )

(55)

(5.4)
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are parabolic cylinder functions. We look for an appropriate A which makes 0  equal to 0 at a 
and b and positive on (o,6). In the case - a  — b, we can exhibit fi as a Kummer function (see, 
for example, Abramowitz and Stegun, 1972), as follows. Clearly the symmetry of the problem 
now dictates that we search for an even solution and the general even solution o f (5.4) is

where Af(A,A,.) is a Kummer function. So if we define a function C (.) by C(p) =  smallest 
solution of M (—p, A ,**/2) =  0, and let m(.) be the inverse function of C (.) (as in Breiman 

(1967) and Taksar (1982)), then it is clear that \x must be -m (b ), and

. , ( * ) .  tA i(-m (* ). (55)

where k is a normalising constant.
This evaluation o f Ai as -m (6 ) agrees with the work o f Breiman (1967) and Shepp (1971).

2 .5.2 Brownian M otion  W ith  Constant Drift

Here a =  1 and £ =  a, and we find that, 

ex(*) =  kt~ mm co

and

*— (s
From these, we can deduce from Theorems 4.1 and 4.2,

(5.6)

(5.1)

(56)

M * ) - ‘ - ' [ i h ( - £T i ) ] -
(5.0)

(5.10)

We can thus exhibit G: by Theorem 3.6,

It is interesting to look at the limiting case in (5.10) where a =  0 and b —» +oo. Suppose (“ X«) 
is a Brownian motion with drift a , and let “ (.Xf) be the conditional process where a  =  0, 
b m k.
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We can apply Theorem 3.5 on the interval [n- l ,n] and note that,

1

It it d m  th u  ( - i f )  S E S ,(1) when (B E S ,(l)) ii • Wimetuionel Bessel process (with
infinitesimal generator * ¿ r  +  A jL .

In the case a  <  0, this implies that

■ i f "  -  (B E S,), (5.11)

where is the process conditional not to hit zero. This is clear since,

P f x  hits k before 0] 0,

and so the 'k conditioning’ becomes negligible. However for a  > 0,

P(*JT hits *  before 0) 0,

so we cannot deduce (5.11) in this case. These results can be compared with the similar results 
obtained by Iglehart (1974a,b) for a random walk.

2. A ppend ix
We present here a simple proof of the existence of the largest eigenvalue and positivity of the 

corresponding eigenfunction. We hope that this will be of use to probablists not familiar with 
functional analysis.

Define a function z(.) : R~ —* R U {o o } by;

*(A) =  in f{x  > a such that y(x) =  0 } (A .l)

where,
G y  =  A*, (A.2)

and y(o) =  0 ,y#(a) =  k > 0,where k is fixed VA < 0.
We will need the following lemmas about z.

LEMMA A . l .  m(.) is non-decreasing.

PROOF: Let Ax < A3, and suppose z(A2) < x(Ax) < oo. Also let y* be the solution o f (A.2). 
In this case we can write y*,(x) =  y(x)yx, (x), for some function g such that,

C '#  =  (A, -  Ai)g  on (a,x(Aa))
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for some elliptic operator G '. Also y(x(Aa))  =  0, and define g(a) =  1 to make g C7 on 
[a,z(A3)]. Furthermore, by the maximum principle for elliptic operators (see Friedman, 1975) 
we know that g attains its bounds on the boundary of (a,z(A3)], and 0  < y(x) <  1 in this 
region.

However,
G (va, -  y*,) =  Ai(y*i -  y*,) +  (Ai -  Aa)y*t

and

So in a small neighbourhood of a, (a,a +  «), (y*, -  yx,) <  0, since (Ax -  A3)yAj <  0. But this 
implies that g(x) >  1 for x  €  (a,a +  e), giving a contradiction and proving the lemma. 

LEMMA A .2. x(.) is continuous.

PROOF: y*(x) is a continuous function o f A Vx < oo. (This is easily seen by looking at the 
Green function expansion for (yA+< — yA).)

Also y*x (*(A)) <  0, since under the conditions imposed on a  and if y  ̂(*(A)) =  yA (*(A)) =  0 
then y =  0.

Now fix A such that z(A) < oo. Then for some arbitrarily small 6 >  0,

* » ( » ( • * ) + * ) - - « .

for some c > 0. By the continuity of y, we can choose e small enough so that,

|y,*.(«(A) +  « ) - » ,  («(A) +  «)l <c, ( AS)

and so, y*+«(x(A) +  6) < 0 and,
z(A +  e) <  z(A) +  6

by the intermediate value theorem. But 6 is arbitrary, so x(.) is right-continuous.
Suppose z(.) is left discontinuous at A, and let,

lim z(/) =  a.

Note this limit certainly exists since z is non-decreasing. Let

R =  (A -e ,A ),

and
A  =  €  R such that z(/9) <  o } .

Now since ys[x ) is a continuous function o f  both (i and x, A  is closed in R. However, 
A  =  [A -  f , A) which is not closed in R giving a contradiction, and thus completing the proof.
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LEMMA A .3. The image o f  z is (a,oo|.

PROOF: By lemma A.3, all we need to show is that we can find A, such that z(At) =  oo and 
Aa such that z(Aa) is arbitrarily small.

Clearly, z(0) =  oo by the maximum principle. Also for arbitrary 6, eigenvalues of G on (a, 4] 
span V . Let A be an eigenvalue on [a, 4], then z(A) < 4. But 4 is arbitrary, completing the 
proof.

We are now in a position to prove the main result o f this appendix.

THEOREM A .4. Let A =  the aupremum o f  the spectrum o fG  on [o,4]. Then,

(i) A is an eigenvalue o f  G on [a,4], and
(ii) if  e(.) is the eigenfunction corresponding to A, then e has no zero on (a, 4), and e is the 

only eigenfunction o f  G on [a, 4] with this property.

PROOF: Lemma A.3 implies that an eigenfunction which has no zero on [a, 4] exists. It remains 
to show that any non-maximal eigenvalue cannot be non-zero on (a ,4).

Suppose 7 < A is an eigenvalue with eigenfunction e, which is non-zero on (a, 4). Choose 
p (>  7) to be another eigenvalue with eigenfunction eM.

Now, z(p) >  4, so e„ is also non-zero on (a, 4) by lemma A .l. So we can choose eM and e, 
to be positive on (a, 4), contradicting their orthogonality which is implied by Spectral theory, 
and thus completing the proof.
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I I .3  A s y m p to t ic  P ro p e rt ie s  o f  B o u n d a r y  H itt in g  T im es 
fo r  B r o w n ia n  M o t io n

3.1 In troduction

The calculation of the distribution of boundary hitting times for Brownian motion has been 
found to be intractable, the simplest of problems leading to complex P. D. equations, and 
solutions at best being given in terms of implicit eigenfunctions. However, very often we are 
merely interested in studying the asymptotic behaviour of such hitting times.

In this chapter, we attempt to describe the asymptotic properties o f certain classes of these 
boundary hitting times. The approach is to consider these different types of boundary: ap­
proximate square-root; lower case, (that is boundaries /  o f the form /  =  o(t)t* where a(t) i  0 
as t —» oo) and upper case, (that is boundaries /  of the form /  =  where a(t) t oo) as
t —* oo. For each o f these cases we prove results which are much stronger than any previously 
derived.

The main results are summarised as follows.

(1) Under certain regularity conditions on the boundary, the exact asymptotic behaviour 
o f approximate square-root boundaries is exhibited.

(2) For lower case boundaries, bounds are given on the asymptotic behaviour of the hitting 
time.

(3) In the upper case boundary case, the exact behaviour is given.
(4) Necessary and sufficient conditions for a boundary hitting time to be almost surely finite 

are given. This is a generalisation of the law of the iterated logarithm.

The first result completes the work of chapter 1, where a lower bound for P[r >  f] is 
found. Here we show that a multiple of this expression is also an upper bound. This result 
improves on the result of Taksar (1982). The methods used here are typical of the whole 
chapter, and involve mainly intuitive probabilistic arguments. Stochastic inequalities on the 
distribution at time t conditional on the event [r >  t] are used to give bounds on the distribution 
function of r . This differs greatly from the approach of Taksar (1982) and from Breiman 
(1967) and Shepp (1971), who were the first to consider the exact square-root hitting time. 
Breiman calculated the Laplace transform for such hitting times and derived results about the 
distribution function of the hitting time from this. Taksar used this result for giving a bound 
on the distribution function of certain types o f approximate square-root boundaries. We find 
here that approximating the conditional distribution o f B, given the event [r > t] gives much 
stronger results as well as providing more insight into the nature of the problem. This problem 
is considered in section three.
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Is section four, we look at the lower case boundary case. The main result, theorem 4.1 is an 
improvement on the results obtained by Lai (1977). Again the methods used depend crucially 
on the techniques developed in chapter 1.

The fifth section deals with the interesting area of boundaries ‘between’ t> and J i t  log log t. 
The stationary behaviour of the distribution o f B, conditioned on [r >  t] breaks down here, but 
we still find that the same approximation techniques provide results on the exact asymptotic 
behaviour of the hitting time, although under slightly more restrictive conditions (theorem 
5.2). An interesting consequence of this is a simple new proof of the well known Kolmogorov- 
Petrawski theorem which is a generalisation o f the law o f the iterated logarithm. This is proved 
in corollary 5.3. We also give an example to show how theorem 2.2 can be adapted when the 
regularity conditions are not satisfied.

3.2 Notation and Preliminaries

We recall the following distributions from chapter 2.
Let A , be a time-homogenous diffusion process, and let r be the stopping time for X , 

r =  inf{t >  0 : X t =  - b  or a},

and define the distributions

6oo =  l̂itn law[A,|r > tj,

Vgo =  lim lim law[ |r > *].

Specifically we will write ¿oo(a,a) for the limit law 6«, when A  is an Ornstein-Uhlenbeck 
process with parameters ( l ,a )  on the interval (-o ,o ) , where the Ornstein-Uhlenbeck (a ,0 ) 
process satisfies the S. D. E.,

dA, =  adB, -  fiXtdt.

Also, we write m (a , a) for the exponential decay rate o f r, ie.,

p[r x | x .  ~  «> (»,»)] =

That is, — m (a ,a) is the largest eigenvalue o f the infinitesimal generator of A , in this case m 
is related to the confluent hyper geo me trie function, see section 2.5.2.

We will use the following convention from chapter 1: suppose a random variable Y , has a 
distribution /*, then we also denote the measure induced by the distribution by /i, and we use 
A, to denote the modulus law, i.e.

A(*) = dfi{y) = J  d/i(y)-

We must establish the following results about the behaviour of m.
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Lemma 2 .1 .
=  2i m ( ì , i ( 2<)*)

PROOF: Suppose X  il u  O. U. (1,<) process, and

r  »  inf{t >  0 : |X,| £  6).

Let
Y, =  (2«) *•*./!.

Then Y  is an O. U. (1, J) process, and if

r ' -  int{t >  0; |2C,| > i(2«)*> .

then

K  =  - 1'  =  <]•

Also it is clear that $ «.(£ ,i(2«)fr) =  (2<)i £ ..(« , f )  by this transformstion, so

P(r >  i| =  P(r' >  2««] =
-  -̂«"»(«.1 ) _

So m(e,S) =  2«m (J,i(2«)fr).

Recall from chapter 2 the following definitions.

(1) V (a) =  {C 7 functions constrained to be 0  at ± a )
(2) (•,•), =  natural inner product on V (o) chosen to make an operator G self-adjoint.

In the case G =

(/.*> . -  f  f * - ' » * .

Now fix a and consider points a+< for small positive e. We will denote by p* the eigenfunction 
corresponding to the largest negative eigenvalue, -m (J ,k ).

G *  =  -m ( ^ ,6)pk(* ) for *  €  ( - M l -

LEMMA 2 .2 .
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PROOF: Now p.  £  V(a +  «), and taking >U analytic continuation to the interval
[—(«  +  « ) ,«  +  «), and using the inner-product on [—(o  +  <),a +  ej,

where « is the natural scale for G, / .+ , ( * )  is the derivative with respect to s. The second line

Now Pk(z) =  k(b )M (—m (£,b), *~) where M  is a confluent hypergeometric function and
k(b) is an L* normalising constant. So we need the following lemma about M.

Lemma 2 .3 .

(ii) b), S, *£•) is bounded for (b ,z ) €  [a, a +  JF] X [—A, A) for some constant
IP > 0.

(i) A  power series expansion for the confluent hypergeometric function (see for example 
Abramowits and Stegun, 1972) is Hummer’s expansion,

where (/?), =  0 (0  +  l ) (0  +  2)...(0 +  i  -  1).
This series is absolutely convergent for all y and a. Also the series is eventually 

monotone, since all the terms in the expansion for which i  >  max{|a| +  1, |i| +  1 }  have 
the same sign.

Now fix I f  >  0. We choose I  >  m(6, b) +  1 for all b €  (o, a +  Ü*]. We can certainly do 
this since m(S, b) is non-increasing as a function of b, so it suffices to take I  > m(S, a) +  l.

We would like to show that,

=  (Op—  -  P— .( •  +  <)p.(o +  «)

follows from two integrations by parts, and the third uses the even nature of pa> P,+.- So,

[m (i«  +  « ) - m ( | ,o ) ] ( p .,p — .) —  =  -p U < («  +  «)P-(° +  t) (2 1)

(i) M (a, 6, is a continuous function o f  a  for non-integer valued 6 > 0 end this conti­
nuity is uniform for z  €  [ -A , A] for some fixed but arbitrarily large A > 0.

PROOF:

\M(a, y) -  M (a  -  t, 6, y)| -*  0 ss e -» 0 ( 2 .2)
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PROOF: ^

M‘ ) =  l ,  ^ )* » (* ) ]

where m (x) denotes the speed measure for the O .U .(l, J) process. Define,

7(6, A) =  y ‘  ^ ( - A ,  A, £ )*»(*)•

Now m(x) is absolutely continuous with respect to Lebesgue measure, so lemma 2.3 implies 
that 7 (4, A) is continuous for (6, A) €  [a,a +  f?) x [m (|,a +  IF), m (£,a)]. So 7 is bounded in 
this region and also clearly cannot be xero anywhere (this would imply M (-\ ,  %-) =  0),
and must therefore be bounded away from 0. Hence the existence of klt *3, since m (.) is 
non-increasing.
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D efinition.
We call a function f  locally Lipshits in D  i f  for each point x €  D, 3 an open region N (x) 3  x 

and a constant e >  0 such that,

l/ (* ) -/ ( » ) l < c | * -v l  v »e iV (* ).

Lemm a  2 .5 . m (|, a) is locally Lipehits for a €  (0,oo).

PROOF:

0i(*) =  -2 *  *(») " * ( i .  » )A i ( -m ( l ,  »> +  ». ! .£ )•

So letting 6 =  | in lemma 2.3, we see that p'h(x) is bounded for (b,x) €  [o, a +  fP] x [a, a +  /l']. 
Also, />«(•) is clearly locally Lipehitz since it is continuously differentiable. So 3/cs > 0 such 
that

and

/>;(<* +  «) <

+  <)i < *s<

for small enough c. Also, as e [  0,

ton I (*«.*»+«)•+«!*10

> ^ t f  Af(m(J,o), J, ^)A /(U m ,10m(J,o +  <), ¿-)dm(x),
*3 J —

>  0.

So for small enough c,

!(>.. * ...> ...1  2 »»y-

Finally, from lemma 2.2 we see that,

|m(J, a +  e) -  m (J , a)| < jjpe as required.

This proves the right hand local Lipehitz property. The left hand property follows similarly.

3.3 Approximate Square-Root Boundaries

Armed with lemmas 2.1 and 2.2, we are able to completely describe the asymptotic behaviour 
of approximate square root boundaries under certain conditions on the boundary.
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DEFINITION. We call f  a simple approximate square root boundary if  f ( t ) — where,

(A l) a(t) is asymptotically non-decreasing to a limit a(oo).
(A2) a(-) is differentiable and aa(t) +  ta '(f)a(t) is asymptotically non-decreasing.

THEOREM 3 .1 . Suppose f  is a simple approximate square root boundary, Bt is a Brownian 
motion, and r the hitting time,

r m in f{t >  I , I fit  I £  /(*)}•

Then,

as t -*  oo as t -*  oo, where a(t) =  f{t)t~  i .

PROOF:
n , > o * « * p  { - / • = & * » * }

has already been proved in chapter 1. We concentrate here on the other inequality.
Define the following deterministic space and time change,

y  _  **•(«>
* “  # (« (0 )

where y(l) =  and a(-) is the solution of,

a '( 0 = #*(® (0 ). (** )

such that a ( l)  =  0. X, satisfies the SDE

dx% = dfij -  XtiWO^WO)*.

where B" is another Brownian motion.
Write r(<) =  g(a(t))g' (a (t) ) .
Since /  is a simple approximate square root boundary, r(t) is asymptotically non-decreasing. 

We may assume that r is always non-decreasing without loss of generality since we’re only 
interested in the asymptotic behaviour of it.

As usual, we denote by pt the distribution of X t given a(r) >  t, and let 0  be the inverse 
function of a. The idea of the proof is to approximate pt by £« (r(t), o(oo)).

Firstly, assume p* =  3«, (r(0),a(oo)), then r(e) <  r(t) Vs < t. The idea is to approximate 
with the Ornstein Uhlenbeck (l ,r (t )) process, so:
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where a, =  distribution o f [Jf, |a(r') >  t],

iX\ m i f f ,  -  r(t) is  X [,

and r' is the corresponding stopping time for X ' .
Also,

«-(»(«). «(oo)) < i - ( r ( 0 ) ,  •(<»)),

since r(t) increases by a transformation similar to that given in the proof of corollary 1.2.5 , 
and so by lemma 1 .2.2 ,

o% > ¿ - M O .  «(«>)).

and so

M* > ¿ -M O . (8.2)
Now,

P[a(r) > t|X0 ~  ¿oo (r(0), o(oo)), a(r) > < - « ] ,
< P[a(r) > t|a(r) > t -  e, X t- t — ¿oo (»"(* -  «)» °(°°)))» ^ om (s-2)

< P(a(r) > t|a(r) > t — «, X - .  ~  I - M O .  «(oo))]

< exp-{m (r(t), «(<»))«}.

since r(s) <  r(t) for s €  [t -  e,t].

P[a(r) > t] -  P (a (r) >  t -  c] 1 -  ex p -{m (r(Q , «(oo ))«}
P[a(r) >  t — «]« _  «

so in the limit as e l  0, P[a(r) >  t) <  M (t), where M (t) satisfies

=  £  « x p -{m (r (l ) ,  « (o o )),)| ..o  =  ->n(r(l), o(oo)),

with Af(0) =  1. So
/ *<«>

m (r(s), a(oo))ds.

But m (r(s), a(oo)) =  2r(#)m(*, a(oo)(2r(s) *) by lemma 2.1 so,

P(r >  1] S |«xp - f  o(oo)(2r(*))t ).!* J ,

f r  « (oo )(2r (* ) ) . )2r(*) , 1
= “ p - { y ------------1- = ! w ----------------iui

This last step follows from the change of variable, u =  a (s). Now r(e) =  ff (« ) i '(« ) “ d 

'  1 '  211 a(oo) «(oo)
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/■• m (i, «(u)) -  *’* £ > !
-  l««P|r > i \ i f  * .

and V im m local Lipchitz constant for ths function m( J ,-) around o(oo). 
But / '  " . " j l ~ 1du coo verges, so

- lofP [r >  <| i  constant +  f
Here we have used that a' is non-negative. Therefore,

P | r > f l < * . , p { - / = i i ^ » d . } ,

for some constant k.
Now it remains to show that the result holds for all initial distributions, but this is clear 

from the arguments in the complementary result, theorem 1 .1 .1, which show that all starting 
points yield the same asymptotic behaviour for the hitting time, thus completing the proof.

Remark

Condition (A2) is never satisfied for functions a o f the form 

•'(«) <  » ( ¿ ) .

and so it might seem rather restrictive. However, the result for the case /  log ta'(t)dt <  oo 
is covered by corollary 1.S.4 . In the case /  a'(t) log t dt — oo, (A2) is satisfied in almost all 
cases o f interest. For example, in the case where o(-) is twice differentiable it is sufficient that 
o " ( ) is asymptotically increasing. Also, cases where o"(-) exhibits some sort of oscillation can 
often be tackled by bounding above by a function satisfying (A2).
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3.4 Lower Case Boundaries

An obvious way to proceed in this case, since the rate of increase of the boundary function is 
‘relatively small’ is to look at the approximations obtained by approximating the distribution 
of the conditioned Brownian motion itself. This has the added advantage that no normalizing 
time change is necessary. However we can obtain marginally better results by the natural 
scaling and its appropriate normalizing time change, which converts the problem to a constant 
boundary hitting problem.

DEFINITION. /  is a simple lower case boundary i f f ( t ) f ( t )  is asymptotically non-increasing 
to 0.

THEOREM 4 .1 . Suppose f  is a simple lower case boundary and a is the solution o f

where B1 is another Brownian motion.
The general idea is to approximate 41«, the distribution of [Xt \r >  t), by the stationary 

distribution for the O.U. (1, r(t)) process with boundaries -a ,  a: $oo(r (0>a)>

a '(t) -  / ’ (*(*)) (4.1)

such that a ( l )  =  0. Let,
r  =  inf{C; |fl,| > a /( t ) }

then

where, /?(•) is the inverse function o f  a(-), and,

kt J' r(e)ds| < A(t) < kae, 

where r(t) =  / (a ( t ) ) / '(a ( t ) )  and klt k7, p are positive constants.

PROOF: Consider the first inequality first. Let

(4.2)

dXt =  dB[ — Xtr(t)dt,

p|/>(') > «I = P(/»(r)>I|/>(r)>l-«|,P[0(r) > I -  «I
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and assuming X0 ~  i„ (r (0 ) ,a ) ,

P[H(r) >  t| «r) >  I -  Xo ~  (r(0),a)|

=  P[0(r) > m r )  >  t -  €, X , - . ~  P .-.1

>  Pl/9(r) >  <|0(r) >  1 -  X , - ,  ~  i « ( r ( i  -  « ),« )],

since i_ (r (t  -  <{,a) > by theorem 1.2.4. Now * ¡ ¡ 1 1  process satisfying

=  e S I - i ;
dX\ -  dfl. - r(t)x;de, t -  «  <  s <  t.

Then X ( > X ., 0 <  • < «, (see lemms 1.2.2 ) end so,

P[jS(r) > <|«r) > t -  e, X,.. ~  i _ ( r ( t  -  <),«)]
> P[/J(r') >  t|/*(r') >  1 -  e, X ‘,_ ,  ~  « „  (r(t -  c),o)],

where r' is the corresponding stopping time for X'
Now let i4 =  distribution of [X't |r* >  t], then pf < 6 M (r(t), a) since

i _ ( r ( i - e ) , a ) <  i„ ( r ( t ) ,a ) .

So,

P|d(r') >  r|^(r*) >  (  -  e, X ,_ , ~  i . ( r ( l  -  e),o)l

> P (£ (r ')  >  t| i ( r ' )  >  l - e ,  X ;_ , ~  i_ (r (t ) ,o ) l  

=  e x p {-tm (r(t) ,n )},

p m ^ L > . , , < - , m ( , ( t ) , o ) } .

So P[0(r) >  i) >  M (t), where

nd M{0) =  1. Taking limits as c 1 0,

M (t) =  ex p {— J  m (r(s),a)ds}.
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However for small r(s),

»»(•■(»).•) <>(>■(•)).

see Abramowitz and Stegun (1971). So

m (‘ ) ' ( •) * } ■

Then if /it =  distribution o f [Xt \r >  e‘ ],

M* > *oo(J, o (t))

and so we can use a similar argument to that for the previous inequality to show that,

P[r >  «•] <  A /(t), where

and a(t) =  atl /3/ ( t )

M (l)  =  e * p { - jT  m (l ,  a(e*))d«},

and for small a(s), from Abramawitz and Stegun (1971),

P [ r > « | < . , p | - |  “ ( s ^ + ° < l > ) } .

=  b * . x p { - ^ i ( ( ) } .

We can now apply identical arguments to those of theorem 1.1.1 to show that these distribu­
tional inequalities hold for all initial distributions.

3.5 Upper Case Boundaries
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LEMMA 5.1.
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(B2) I fa ( .)  is til« solution of,
a '(t ) =  / 3(a(t)),

with a (l)  =  0, and,

'(• ) =  /(«(• ))/'(<*(• )) =  ;1 <*"(*)
2 <*-(•) '

then r(a) is asymptotically non-decreasing to oo.
(B3) Let

p («) =  . ( « ) !  +
2uo'(u) 1 ‘
•(«) J

then p(.) is asymptotically increasing.
(B4)

: ( ______________ A  .

THEOREM 5.2. Suppoee J is a simple upper-case boundary, and {B ,, t £  1} is a Brownian 
motion with hitting time,

r ,( f l )  =  inf<t >  I; |«| > /( ! ) }•

P [r,(B ) > t | - 0  (exp  Jf  mW *M < e } )  .

as t  —* oo.

PROOF: The reeult is identical in form to that for the simple approximate square-root bound­
ary, and we proceed in a similar fashion.

Let X t — e~^B,t. As usual, we assume to begin with that Xo ~  $oo(®(0))* o(.) is
non-decreasing Vt > 0. Under these assumptions,

P. <  l«w [i,|r,(*J >  l|.

where y(s) =  o(t), s < t, and

lx «  (X ,|r,(X) >  <| < lew[Xt|rf (X ) > 1, X 0 ~  «_(»(<))] 

These results follow from lemma 1.2.2 and corollary 1.2.5 . But,

lxw(X,|r.(X) >  t, Xo ~  «_(«(<))! =  « -(• (< ))

so, fit < Sm (o(t)), and

P [ '. (X )  >  I] >  exp m(a(*)) j 3
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For the other inequality, let Yt =  where a  is defined as in definition 3.1. We also let
(3 =  a -1 . Y  satisfies,

where B* is an associated Brownian motion. We assume in the usual way that r is actually 
non-decreasing everywhere. Denoting by /x, the law of (Vi |ry (V ) >  t), we can follow the proof 
of theorem 3.1 to obtain,

Using the transformation o(w) =  p(u), (note that this is certainly always possible by restric­
tion (B3)), we obtain,

for some constant k, by (B4) and lemma 5.1.
The final result for general po follows in the usual way . Note that the two inequalities have 

been proved here using the same initial distribution. This simplifies the argument for general

The result is most interesting in the case when the boundary is attained with probability 1, 
i.e. boundaries a such that,

For such boundaries, (B3) will be satisfied unless a exhibits some oscillatory behaviour. Any 
attempt to give more explicit expressions for (B1)-(B4) would only lead to a weakening o f the 
result. However, almost all cases of interest can be either solved directly or by means of an 
approximation scheme.

dY, =dB-t -  r(t)dt,

ï ,  =  ~S-(r(t), 1)),

Pl'/(Y) > *) < e*P- (  f  "»(»■(•). !)<**

-lo | P (r , > ‘ \ i  J
■ ( « ) ) « ' ( » )  .  

r ‘ ( * w y ( * w )  ’

since the integrand is positive, and (o- l p)(t) >  t. Also, p- l o(v) < v Vv, so,

Remarks
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Example

Consider the boundary,
»(<) =  v/2M 0

where !,(■) E l o , / . _ , ( ) .  /.(•) E lo f ( ) .  It u  to ch.ck th .t (B l), (BI) and (BS) are 
satisfied. For (B4), we must consider

r  y a r n  (  « -(« i , n H
Ja « ! . ( . )  V i p - W « ) )  /

After much algebra we obtain,

« »  ^  - W . ) ) « . ( ■ ) ) ( « . ( » ) ) *
P'&>'1 («(«)) «(!(«))((, W )(fc(»))*

where

r ‘ (•(*))) 
d

And so,

✓ ( p -  (• (• )»
So (B4) is clearly satisfied, and

Now consider a similar curve,

a(t) =  y / 2 ii(t ){l  +  aint).

In this case (B l), (B2), and (B3) are all contravened while (B4) holds (this follows from the 
calculation for y/2/s (t). However, if we define the function,

o,(t) = v/2/s(0 ( l  + «-•*(! +  «n 0 .

then a, satisfies (B l), (B2), and (B4), and we can therefore consider o(-) as lira,|0 «#(*) “ d it 
is not too difficult to prove

P(r. > t ]  =  ttmP[r«, >  t].

A  simple consequence of theorem 5.1 is the following well known result, a generalisation of 
the law of the iterated logarithm:

COROLLARY 5.3 (KOLMOGOROV-ERDiiS-FELLER-PETROWSKl).

f ° °  o(#)e-  j
r, < oo a.», o  /  ---------- d» =  oo

Jo *
PROOF: This follows immediately from lemma 5.1 and theorem 5.2..
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II.4 One Sided Boundary hitting problems

4.1 Introduction
In this chapter, we look at the behaviour of stopping times r, such as,

r -  inf (t  >  0; X , > /(* ) } .

where X  is a diffusion process. We attempt to extend the ideas o f previous chapters to 1-sided 
boundaries. The main results, giving the asymptotic behaviour of one-sided boundaries for 
Brownian motion are stated in section three. We give first order expansions for the distribution 
function o f the hitting times by considering the four distinct cases determined by the behaviour

(i) Approximate square root boundaries, that is boundaries such that o(t) —* a(oo), a finite 
non-zero limit.

(ii) Lower case boundaries, that is a(t) —» 0.
(hi) Positive upper case boundaries, o(t) —* oo.
(iv) Negative upper case boundaries, o(t) —• -o o .

In section 2 we consider the time homogeneous problem, that is we look at hitting times of 
the form:

r »  inf{< > 0 :  X, > *),

where X  is time homogeneous. For the applications in section 3 we are only interested in the 
case where X  is an Ornstein-Uhlenbeck process. In this particular case, we are able to prove 
analogous results to those of chapter 2. In fact we can carry out a self-adjoint analysis of the 
the infinitesimal generator C o f X ,  but in general this is not possible.

In chapter 2, the finiteness o f the domain o f C. simplifies the problem for three main reasons:

(1) Firstly the stationary behaviour exhibited by X  with respect to the hitting time 
r =  inf{t >  0; X, =  a or b}  in the finite interval case does not necessarily follow 
in the semi-infinite case. More precisely, if

l*t =  l*w (X«|r > t),

then in the finite case it is always true that fit has a limit which we call 5«,, but this is 
not always the case when a =  oo.

(2) Secondly, in the finite interval case, at least for well-behaved C, the spectrum of C is 
purely discrete on the space S, where,

5  =  {C a functions /  on (a,b) such that / ( o )  =  /(b) =  0 }.
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This allows us to take eigenfunction expansions in terms of an infinite sum, and fur­
thermore the eigenfunctions are always in S.

(3) Thirdly, suppose we form the following subepaces of 5  by imposing the integrability 
conditions on function in S:

^ - { / € S ;  f* (x )m '(s) €  L(a,8)},

where m' is the speed measure o f X . The nature of the problem compels us to work in 
the space Lx since the inherent probabilistic restriction on 8«  is that it integrates to 
unity, whereas in L2 we are able to define an inner-product to make C self-adjoint, and 
the eigenfunction expansions are easier to handle as well as having been more widely 
studied. O f course in the finite interval case, trivially we have S =  Sx =  S2, and so 
we can work with whatever structure we choose. However in the semi-infinite case, 
Lx ^  La, and so in general it is not possible to adopt the self-adjoint approach.

In section 3, we look at the problem of 1-sided boundary hitting problems for Brownian 
motion. Some o f the proofs are similar to those o f the previous chapters and so to avoid 
repetition, parts o f these proofs are merely sketched. Also, the theorems of section 3 are by no 
means a definitive collection of results that can be proved by the methods which are developed 
in section 2 and previous chapters. Extensions to higher dimensions and to other diffusions 
are obvious examples of areas where the methods can be applied, but also the consideration of 
different classes o f boundaries can yield similar inequalities. An example o f this is theorem 3.1, 
where we consider a class of functions of the form / ( t )  =  a(t)t> where a(t) is asymptotically 
increasing to a finite limit a(oo). An analagous theorem for the case a(t) asymptotically 
decreasing to a(oo) is easily derived with all the inequalities running the other way. So in a 
sense, the results o f this section should be viewed as illustrative o f the power of the techniques 
used.

4.2 The Time-homogeneous Problem

4.2.1
Let X t(a) be an Ornstein-Uhlenbeck (l,ot) process, i.e.

dXt(a) =  dBt -  a  X, dt,

and define the stopping time:

r = inf{t > 0 : A, (a) > 3),

and its distribution function:

+ {t,z) =  P[r >  t| X 0(a) =  *).
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Then the backward equation for ^ is,

where C is the infintesimal generator of X (a ) .
The method of solution which naturally suggests itself, analagous to the approach of chapter 

2, is taking an appropriate eigenfunction expansion in a space where C is a self adjoint operator. 
Proceeding in this fashion, we define the pre-Hilbert space 
H -  {¿ s (» ,a ) ,  (.,.)> as follows:

-  . _  f C3-functions /  such that 1
\  / » ( , ) « — ■ iz  < oo, uid / ( » )  =  0  /  ’

and,

</.»> =  / * _ / ( * ) » ( * ) « — '•'*

It is clear that ^ €  ¿3 since |̂ | < 1 and it is easily checked that £ (a )  is self-adjoint on H. 
We will need the following results about the spectrum of £(a ).

LEMMA 2 .1 . The spectrum o f  C{a) in H is purely discrete.

PROOF: Define the pre-Hilbert space Hm =  {L\, “  follows:

_  ( C9 -  functions /  on ( - 00, 6) such that 1 
^  \ f * m / » ( x )  dx < 00 and / ( » )  =  0 J ’

and,

</.»). -  /*_ /# ^
Molchanov (1953) showed that the spectrum o f an operator G =  \ — « ( * ) £  “  Pur*̂ Sr
discrete if and only if:

lim I o(x) dx =  00, x —°°
for arbitrary positive e, and where a(x) is bounded below. Consider the operator,

Clearly G  satisfies Molchanov’s conditions and so has a purely discrete spectrum.
Now /  is an eigenfunction o f G on H * with corresponding eigenvalue A if and only if / (* )«  * 

is an eigenfunction o f L in H  with eigenvalue A. That is the spectra o f  G  on H‘  and £(<*) on 
H  coincide, and therefore the spectrum of £ (a )  on H is discrete.
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LEMMA 2 .2. The eigenvalues o f C on H are negative.

PROOF: From the proof of lemma 2.1, the spectrum of £ (a )  in H coincides with the spectrum 
o f G  in H’ . However, suppose A is a non-negative eigenvalue of G  on H '. By succesive 
applications of the maximum principle on intervals [—Jl,h) as R —► oo, we see that /  is either 
non-increasing or non-decreasing. But f(b ) =  0 and /  €  L *(-oo ,b ), so /  s  0 giving a 
contradiction, and completing the proof.

Now by the Spectral Theorem, the eigenfunctions of £ (a )  form an orthonormal basis for 
H. These results allow us to carry out a self-adjoint analysis in the manner of that of chapter 
2. We will denote by —n (a ,i)  the largest eigenvalue of £ (a )  on H, and let e~ V « l (*) be its 
corresponding normalised eigenfunction, i.e. *i is the corresponding eigenfunction on H‘  The 
existence o f -n (a ,  6) is dear from lemmas 2.1 and 2.2. In this context we can apply the results 
o f sections 2 and 3 o f  chapter 2 to obtain the following analagous results which are summarised 
below:

THEOREM A . A  process X  =  lim r-oo [X| r > T] exists as a weak limit and satisfies the
S.D.E.

for a suitable Brownian motion B.

THEOREM B. The process X  has a distributional limit given by: 

vm(dx) =  flim law X , =  e~mm’  e\(x)dz.

THEOREM C . Let pt denote the distribution o f  [X ,| r > t], then the following limit exists:

THEOREM D . I f denotes the limit distribution corresponding to the bitting time o f  b, 
then:

and has the following properties:

(0

< S * '  for c >  0.

In our particular problem, solutions of

£(< ,)* =  \4 (2 1)
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are parabolic cylinder functions, and we shall see that the only ¿3 solution of (2.1) can be 
expressed in terms o f a Whittaker function D*(.). Firstly though, for notational simplicity, we 
reduce the problem to the case a  — 1/ 2.

LEMMA 2.3.
n (o , » )  =  » ( ! « ) * )

PROOF: Define the process,
Y. -  (2o)

Then Y  is an O.U. (1 ,J) process, and a time change of r corresponds to the following hitting 
time for Y :

r’  =  in f{t  SO ; Y, > 6 (20)*},

and satisfies the following identity:

[*■' =  2ot] =  (r =  !].

Alao it is clear th .t i _ ( J ,» (2 o ) t )  »  ( 2 o ) * i _ ( 0,4) b ,  this trsnsformstion, so sssumin, so 
initial distribution o f 5,*, (a , 6) for X,

Pjr > 1] =  P[e’  >  2at] =  ,->•■-(*•«*•1*1 
— «»(•.*)

So n (a ,6) =  2an (£ , 6(2a)» ).

4.2.2
For the rest of this section, we shall assume that a =  1/2, and we abbreviate n (£ ,6) by n(6). 

LEMMA 2 .5 . n(6) is a decreasing function ofb .

PROOF: The proof o f this result revolves around the intuitive idea that since n(6) is the 
exponential decay rate of the hitting time of 6, then it must be greater for smaller b.

Consider < 1], and denote by 4 (t,x ; 6<), i  =  1,2 the distribution function of r(6<), i =  1,2 
the respective hitting times of bi and 63. Furthermore, denote by the limit distribution 
corresponding to r(t<)( i  =  1,2. Clearly,

and by theorem D,
< I * .
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Using this, together with the fact that 4  is a non-increasing function of *, we tee that:

,-<».>• =  J  dttUz)

s J  «(.«¡micw
< J H t .r - . l , )  i i S (« ) =  « - " ...... (2.2)

So,
n(*i) >  n (4 ,) ,  V6, < *a-

Furthermore, since dS£ is absolutely continuous with respect to  Lebesgue measure, equality 
in 2.2 is only possible when + (t,x ;* j) =  ¿ ( t ,  x; ha) for almost all x for each t > 0. But

* « ,* ;* » )  -  > 0.

This implies that n(h») > n(6a) completing the proof.
To continue our investigation of n we need to study the corresponding eigenfunctions and 

thereby find an implicit characterization o f n.
Eigenfunctions of G on H" are solutions of,

where k is a L,-normalising constant, and A* is such that ( i )  =  0.
Since Si(x) is positive for z 6 (-oo .fc), this leads to the following characterization o f n. 
Let z(A) be the smallest zero of the equation;

Then - n  is the inverse function of *. See Abramowitz and Stegun (1971) for a summary of 
the properties of the Whittaker function that we have used.

We now extend our notation for the dominating eigenfunction and write e» for the eigen­
function corresponding to the eigenvalue —n (6), on the interval ( -o o , 4]. We shall also denote 
by ¿a (6) the relevant ¿a space, and by ( . , .)» ,  the corresponding inner-product.

LEMMA 2 .6.

such that e, (6) =  0. So,

«•(*) =  W W - * ) ,

DaJk( - z ) = 0 .

[n(h +  «) -  n(h))(«fc,efc+«)M-, =  - (h +  «)e*(h +  c),
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where d denotes the derivative with respect to a, the natural scale o f

PROOF: Now eb ^ L3(b +  e), and taking ita analytic continuation to the interval ( —oo,6 +  e], 
and using the inner-product on ( —00, b +  <],

=  (L eu .,,«* )* ., -  +  «)«•(*+  «)•

1 line follows from two integrations by parts. So,

(n(6 +  e) -  n(6) ] (* ,  «»+«)*+, =  -  +  «)«*(* +  «)•

We wish to establish continuity results about D „(x) as a  function of p  in order to take the 
limit as e | 0 in lemma 2.5. Now D^(x) can be written,

where M  is the Kummer function and A  and B are given by:

1 w + j ) ____ g ,
y/i J - t

Now since n(.) is decreasing by lemma 2.4, and clearly A(A) and B(A) are C°° functions of A, 
we can directly apply lemma 3.2.3 to give the necessary continuity properties. Furthermore, 
since the derivative o f the Whittaker function is given by,

« I W

we can derive similar results for D^(x) also. We summarize these results in the following 
lemma, which then enables us to state the main result o f this subsection.

LEMMA 2.7.

(i) £)„(*) is a continuous function o f  p  and this continuity is uniform in x  for x  on compact

(ii) D -3n(b)(x) is a bounded function for b and x on compact sets.
(iii) D^(x) is a continuous function o f  p and this continuity is uniform in x for x  on compact 

sets.
(iv) DL3n<b,(x ) is a bounded function for b and x on compact sets.
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THEOREM 2.8 . n(6) is a continuously differentiable function such that,

» '(» )  = - j W W ) ’
1 ( g - , -<.,(-»))•

PROOF: Lemma 2.5 can be rewritten:

We wish to consider the limit as t | oo in 2.3. Firstly we look at the denominator.
We know that n+(6 +  e) =  lim«l00 n(6 +  e) exists since n(6) is decreasing. It is also clear that 

£ -»»♦ (* )(“ *) >  0 for * €  ( - o o ,6), and is not identically zero (since no parabolic cylinder 
function is). So ¿?_2„ ♦ ,* )(-* ) is a non-negative eigenfunction of £ on ( - c o , 6). This implies 
that n(6) =  n+ (6) since if not then and £ - 3»+(S) »re orthogonal eigenfunctions on H,
and this is contradicted by taking their inner-product since D -  3n<6) i* a positive eigenfunction 
on ( -o o , 6). Thus we have proved that n is a right continuous function. Now lemma 2.6 ensures 
that the integrals converge to the expected limits,

(¿ ? -3»(»)> ^ - 3i»(s+«))s+« —* ||^-3»(*)l|3 >0» as « i  0.

Now we can strengthen lemma 2.6 to say that D- 3„ ( « ) ( - * )  “  »  continuous function of both 
6 and z, and we can thus take limits in 2.3 to obtain the required result.

4.3 T im e-dependent boundaries for Brownian m otion

THEOREM 3.1 . Let {f i, 7, T,,t >  1, P } be a filtered probability space on which is defined 
a Brownian motion {B »,t >  1}. Let f ( t )  be a 1-sided boundary o f the form:

where b(t) -  ot~ * is asymptotically non-increasing to a limit 6(oo), and f( t)/ '( t)  is asymptot­

ically non-increasing to  £6(oo)3. Let

/(*) =  o -  6(t)t* , < > ! , « -  *(1) >  0,

r =  inf(t £  1; B, >  /(*)>,

then,

PROOF: Let

85



41 ï

Than, {r  -  1} -  {o ' n  lo f« ) , wharo,

«■»inf)« > 0 ;  X, >  O."* -*(«■))•

U t t («) -  oa" f  -» («■ ), and Sx T, auch that «(«) ia non-dacraaa,n( for « ï  T. Adopting tha 
Dotation introduced io chapter 2, we let tH =l*w{JC*| r* > «}, and we aaaume,

Then the results of chapter 1 show us that;

But this is true for arbitrarily smell t, so by taking the limit as t — 0, as in chapters 1 and 2:

all starting distributions have the same asymptotic behaviour for the hitting time, we can

Ht <  i l “ *, t > T,

(where, Zx < implies that P[Zi <  *] >  P(^a < *]» e  R)-
Now we define the stopping time r* as follows:

r- =  inf {a > 0; B. >  /• (•)).

where,

for some fixed t > T .  Then,

P(r* > t +  *|r' >  I, Mr ~  « ¿ r , l >  * +  «K  > *• »  ~
>P(r* > t +  «|r* > t ,  lit 
—e- «»(•(*)) t > T .

So,

P[r' >  t|r' > T, Ht ~  5S,, r , l >  exp - e  ^  n(g(T  +  *«)) .

using the standard argument using the recurrence of Brownian motion and thus showing

P(r* > i| r' > T ] >  exp j * i  -  n (j(s ))d sJ , t >  T,
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for tome constant it,, and so:

P W  > t\ > k 7 exp

Now by the transformation s =  log u:

and,

We have now given a lower bound for the distribution function of r. The proof of the upper 
bound follows in a similar way to that of Theorem 3.3.1 . Define the following transformation:

for some constant fcs. Note that this uses crucially the existence of a local Lipechits constant

thus completing the proof.

For our result on lower case boundaries we need to define a well behaved class of functions. 

DEFINITION. A  /unction /  =  tl/aa(t) €  C * i f  it satisfies:

(i) a(t) —* 0 as t —» oo.
(ii) /(t )/* (t ) is asymptotically decreasing to 0.

where a  is a time change given by:

a'{t) =  / a(a(t)).

As in chapter 3, we obtain the inequality,

of » (.).
It remains to show that / '  "l*** is asymptotically equivalent to f*  2l—ilall j W-

However, again by the local Lipechitx property of n(.) around 6(oo), noting that n(.) is de­
creasing:

n(—3(ti)) — fc«ou  ̂ < n(au~ l  — b(u)) < n(-6(u)),

for some constant fc4. But, u~ $ €  Ll ( l ,o o ), and so,
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THEOREM 3 .2 . Suppose f e e * ,  then for a{t) =  / ( « )« " l / *, 

PROOF: In the usual way we derive the inequalities:

P[r > < ] < * ,  exp

and

p|f > 1] > t ,  .xp  | -  ^  fi(r(.),l)< i. J ,

where (}(t) =  f*  jr f t j ,  <* “  the inverse of /?, and r(s) =  / (a (s ) ) / '(a (* ) ) ,  *1 *2 are positive
constants. Also,

/■*(«) rH*)
I  n (x ( . ) , l )d .=  /  2. ( . ) » ( ( 2r ( .) ) ‘ />) d.,

•»#<»> xx[i|

-  f t » « • ’ (•) +  2 ~ ( . ) . ' ( » ) ) ‘ '* )  ( ;  +  (»•«)

s j 4 » ( (« » ( .)  +  2~ ( . ) . - ( . ) ) ‘ '» )

<  y  " ( « ( » » + * • « « ( » ) « ’ («) A i

<*.+ /‘ sfeiilU.
A  *

Here the equality 3.1 follows from lemma 2.3 and the subsequent inequalities follow from the 
facts that n is a decreasing function and is continuously differentiable, and this leads to the 
existence o f positive constants Jk3 and fc4. So,

for some constant fcs , completing the proof.

DEFINITION, /  is a simple positive upper esse function if  /(* ) / '(* )  “  ssymptoticslly non­
decreasing to 00.

THEOREM 3 .3 . Suppose f ( t )  =  a(t)tl/a is a simple positive upper case function, then

» x - h -j:*?m )
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PROOP: Since /  ia a simple positive upper case function, we derive the usual inequalities:

p [' >  «1 > *i ~ p  ^  ,

where r(e) =  /(a (e )) / '(o (e ) ) ,  a '(e ) =  / 3(a (s )), and P is the inverse o f a. Again kx and k3 
are positive constants. But,

and n'(b) is bounded for large b. This can be seen, for example from theorem 2.8 and the fact 
that n maps [6,oo) onto a subset o f the compact region [0,n(6)J and eb(x) =  kaD -an(b) for 
some positive constant k3. So, let the lower bound on n '(6) be - k 4:

for some constant k6 as required.

Unfortunately, for the negative upper-case boundary, the hitting time becomes ‘too fast’ and 
conditional distributions change too quickly to allow our methods to give such good estimates. 
We can, however, derive the following theorem which will be stated without proof since the 
methodology does not involve any new ideas.

THEOREM 3.4. Suppose f  is a simple negative upper case boundary, that is a negative upper 
case boundary such that a(t)a'(t) is asymptotically increasing to oo. Then its bitting time r 
satisfies:

f "  »(«M  + ■»■(«)) u  a j ‘ " (» (« ))
e

So clearly,
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