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Abstract

Automated computer-aided systems and approaches are widely required to inves-

tigate and analyze histology images for improving the accuracy of cancer diagnosis

and effective treatment decision making. Quantitative analysis has immense po-

tential to investigate and analyze the tissue and cellular characteristics of histology

images in cancer research. It is based on accurate cellular, morphological, and tissue

features. Automated approaches not only make the feature extraction and analysis

more objective and more reproducible, but they can also help pathologists look for

useful potential clues from a vast amount of hidden information in cancer tissues,

whose clinical value may not be fully realized and visualized. This entails the au-

tomated computer algorithms with a key role of quantitative analysis of histology

images for different cancers.

In this thesis, I concentrate on bone marrow cancers and develop automated

computer algorithms to extract and realize cellular and texture characteristics of

bone marrow biopsies for efficiently characterizing different types of bone marrow

cancers in further investigation and analysis. We focus on the development of au-

tomated algorithms for identifying various types of cells in bone marrow trephine

biopsies, which are tiny cores of bone marrow tissues. All the algorithms are specifi-

cally designed for histological sections stained by a standard hematoxylin and eosin

(H&E) stain. Firstly, we propose an automated framework with a novel segmen-

tation model for delineating and segmenting megakaryocytes. Secondly, we create

a novel deep learning network that processes the nuclear detection with irregular

shape for various types of bone marrow stem cells. Then we construct another syn-
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chronized deep learning approach to simultaneously do detection and classification.

We demonstrate the effectiveness of the network of detection and classification at

same time and the training time consumed in this synchronized network.
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Chapter 1

Introduction

Cancer is a group of diseases wherein the cancerous tissue exhibits out-of-control

growth and many invade or spread to other parts of the body. It is one of the

most serious and threatening diseases in the world and there are over 100 different

types of cancers affecting humans [16]. Cancer causes altered cells to uncontrollably

divide and grow to form masses of tissue, which are called tumor. According to

the properties of tumors, the progress and attributes of cancer can be identified

by expert pathologists and then the oncology specialists aim to give the patients

efficient and precise treatments. In addition, there are some cancers that don’t form

solid tumors and can be diagnosed by analyzing the cellularity and morphology in

the tissue, such as blood or bone marrow cancers.

Bone marrow (BM) cancer is a form of cancer that occurs in the spongy

material inside the bones. The major functions of BM are to make new blood cells

every day, including red blood cells, white blood cells, and platelets. These blood

cells are differentiated from hematopoietic stem cells. When a person has bone mar-

row cancer, this process does not work properly and seriously affects hematopoietic

function, coagulation, and immune function of the body. For instance, in leukemia,

the bone marrow makes abnormal white blood cells to invade or destroy normal

cells. In order to efficiently and precisely diagnose BM cancers, there are several
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Figure 1.1: The process of capturing the BM aspiration and trephine biopsy. The
doctor often chooses the back of hip bone and then places the bone marrow needle
through the skin into bone. For BM aspiration, the doctor uses a syringe on the
back of needle to draw out the liquid portion of BM. For BM biopsy, the doctor
presses the needle further down into the bone with a twisting motion and a small
BM sample is taken up into the needle [2, 3].

clinical examinations in the diagnostic procedure. In general, a BM aspiration and

a BM trephine biopsy are usually used to obtain cellular and morphological infor-

mation to make accurate identification of BM cancers. Fig. 1.1 shows the clinical

procedure of obtaining the BM aspirate and trephine specimen.

A BM aspiration is to suck some bone marrow cells up into a syringe, and a

BM trephine biopsy is to remove a 1 or 2 cm core of bone marrow in one piece [13]. In

other words, BM aspiration takes a liquid marrow sample and BM trephine biopsy

takes a solid one. Both tests are usually performed at the same time. Fig. 1.2

and 1.3 show the sample images of BM aspiration and trephine biopsies under the

microscope, respectively. These two tests provide information about the health of

the bone marrow and its capability for blood cell production. Both tests not only

give the overlapping BM information but also provide complementary pathological

features. The BM trephine biopsy allows a complete assessment of marrow archi-

tecture and of the pattern of distribution of any abnormal infiltrate, whereas the

2



(a) (b)

Figure 1.2: Visual examples of BM aspiration biopsies. Aspiration is primarily uti-
lized for cytological assessment and consists of population of hemopoietic cells, such
as erythroid, myeloid and lymphoid cells at various stages. In left aspiration image,
there are many different types of BM cells: erythroblasts (with blue cytoplasm), red
blood cells (without nuclei), myelocytes, monocytes, band neutrophils, eosinophil
(with pink cytoplasm), megakaryocyte(right slide of the image); there are five ery-
throblasts with various stages, one myelocyte, two lymphocytes and one neutrophil
in right image [4–6].

BM aspiration allows just the morphological and cytometric characteristics of bone

marrow cells [13, 17]. These two advanced examinations can be used to investigate

and indicate the stages of BM cancers for further treatment plans and progress.

In this thesis, I concentrate on BM trephine biopsies for one type of BM cancers

and develop image analysis methods to ultimately help pathologists make accurate

diagnosis in early stage of cancer.

1.1 Myeloproliferative Neoplasms

Myeloproliferative neoplasms (MPNs) are a closely related group of progressive

blood cancers and comprise a group of neoplastic disorders of BM hematopoietic

stem cells, in which the hematopoietic cells proliferate abnormally [6]. MPNs
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(a) (b)

Figure 1.3: Visual examples of BM trephine biopsies (10×). Trephine biopsy allows
the evaluation of the bone marrow’s overall cellularity. In above sample images,
there are three main components: bone trabeculae with pink texture, adipocytes
with white circle areas, and other type of cells including megakaryocytes, erythroid
cells and myeloid cells.

were originally labeled as myeloproliferative disorders by Dr. William Dameshek

in 1951. In 2008, World Health Organization (WHO) guidelines classified MPNs

based on shared molecular and genetic abnormalities and similar clinical and BM

histologic findings. Classic MPNs consist of four main different subtypes: chronic

myelogeneous leukemia (CML), polycythemia vera (PV), essential thrombocythemia

(ET) and primary myelofibrosis (PMF) [1, 6, 13, 18]. CML comes from an acquired

translocation known as the BCR-ABL gene fusion, also called Philadelphia chromo-

some, and can be efficiently diagnosed by detecting this hybrid oncogene. The rest

of subtypes of MPNs are also called BCR-ABL-negative MPNs or Philadelphia-

chromosome-negative (Ph-negative) MPNs. Here I use the term MPNs to mean

Ph-negative MPNs in the thesis.
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1.1.1 Subtypes of MPNs

MPNs arise from precursors of the myeloid lineages in the BM and have similar

clinical symptoms and physiological responses [6]. Here I briefly describe three

main subtypes of MPNs (Ph-negative MPNs) as follows [13]:

1. PV is characterized by neoplastic proliferation and overproduction of red

blood cells, white blood cells and platelets. It commonly occurs over the age of 60.

The annual incidence rates of PV range from 0.01 to 2.61 per 100,000 population [19].

PV patients are prone to the development of blood clots and then commonly have

pruritus, itching or peptic ulcer.

2. ET is a blood malignancy that is characterized by the overproduction of

platelets by megakaryocytes in the bone marrow. It usually occurs over the age

of 50, but up to 20% of patients are diagnosed at less than 40 years of age [13].

The range of incidence rate is approximately 0.21 to 2.27 cases per 100,000 persons

per year [19]. The common symptoms in ET patients are bleeding, blood clots,

headache, and so on.

3. PMF is a chronic blood cancer in which the proliferation of an abnormal

clone of hematopoietic stem cells in the BM and other sites results in fibrosis, or

the replacement of the marrow with scar tissue. The term primary means that the

disease is of spontaneous origin. PMF commonly occurs over the age of 60 with an

annual rate of 0.22 to 0.99 per 100,000 persons per year [19]. In patients with PMF,

the hematopoietic tissue is replaced by the fibrosis to impair the patient’s ability to

generate new blood cells and the spleen mainly bears hematopoietic function of BM

to become abnormal massive enlargement.

These three main subtypes of MPNs usually have similar clinical responses,

such as enlarged spleen or anemia, and might develop into other subtypes of MPNs or

other BM cancers, like acute myeloid leukemia (AML). For efficiently and precisely

differentiating between these subtypes of MPNs, the WHO established criteria of

5



disease classification for MPNs derived from clinical investigation and symptoms to

help pathologists make correct diagnosis and treatment.

1.1.2 WHO criteria of MPNs

The above list of MPNs exhibits a varied but partially overlapping set of clinical and

cytomorphological features. This inevitably makes the task of objectively classifying

a bone marrow trephine biopsy sample into one of the above MPN diseases quite

challenging in some cases [1, 6, 13, 18, 20, 21]. In order to create a standard set of

pathological measurements that aid in distinguishing the three subtypes of MPNs in

routine clinical diagnosis, the WHO has established a set of diagnostic guidelines to

associate clinical diagnostic data with observed histological and cytological features

and molecular-genetic findings [1, 13, 20, 21]. In 2001, WHO classification proposed

the definition and diagnostic guideline of MPNs, and it reviewed and modified this

MPN diagnosis document according to recent clinical and scientific investigations

in 2008. Table 1.1 gives the current improved criteria of distinguishing among the

three MPNs [1].

Based on this table of revised WHO criteria of MPNs, these criteria show

that several genetic and histologic features of the marrow can be ascertained with

reasonable reproducibility, specifically those associated with marrow topography,

cellularity, and degree of fibrosis for diagnosing these subtypes of MPNs [22–25]. For

instance, the fluorescence in situ hybridization is used to perform BCR-ABL gene

fusion for diagnosing the CML, which is a type of Ph-positive MPN, but can not pro-

vide significant information to distinguish subtypes of Ph-negative MPNs [26, 27].

The mutation Janus kinase (JAK2) V617F, which is cytoplasmic tyrosine kinase

signal transducer in controlling production of blood cells from hematopoietic stem

cells, is the most important feature to efficiently and precisely help the pathologists

distinguish PV from MPNs. Moreover, the reticulin, also called reticular fibers, is

another clear significant features to identify PMF and it often appears in the late

6
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stages of PMF. Although JAK2 examination and reticulin are used to efficiently

discriminate PV and PMF, for accurate diagnosis, the general routine diagnosis of

these diseases needs to follow the WHO diagnostic criteria of MPNs. Patients are

diagnosed with PV if they present with both major criteria and 1 minor criterion

or the first major criterion and 2 minor criteria. ET patients are diagnosed by

meeting all 4 major criteria, and the clinical symptoms of PMF patients need to

match all 3 major criteria and 2 minor criteria. Although it seems like these di-

agnostic criteria are crucial to identify the corresponding subtypes of MPNs, most

of these criteria cannot provide concrete and precise diagnosis of MPNs. For in-

stance, ET has heterogeneous properties that overlap with PMF that could make

diagnosis somewhat difficult [13, 20]. In order to resolve this problem, computer

techniques can be introduced to develop an automatic system applied on pathol-

ogy images. Comparing with manual routine assessment that is labor intensive and

time consuming, automated approaches provide fast and reproducible measurement

and analysis and efficiently reduce the inter-observer variations due to the complex

nature of pathology images.

1.2 Digital Pathology

The investigation of diseases, especially cancers, is the major topic in pathologi-

cal science. In recent years, the discipline of pathology has gradually shifted from

understanding single parts of larger pathological images to understanding complex

systems at the cellular and molecular levels. Understanding complexity of patholog-

ical images is a difficult task because it requires acquisition, analysis and sharing of

large and high-dimensional image datasets. Manually processing and analyzing large

amounts of pathological images is usually infeasible. Moreover, manual work due

to subjective assessment is prone to human error. For solving these problems, digi-

tal pathology (DP) is rapidly gaining momentum due to the advanced development
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Figure 1.4: The workflow of digital pathology for disease diagnosis. Clinical slides
are scanned and digitized to get high-revolution whole slide images. These digital
images are easily stored into and accessed from any storage device, such as cloud
storage. The pathologists can immediately share and discuss digital slides even if
they do not sit together. Moreover, digital slides can be investigated and analyzed
by computer-aided techniques for helping disease diagnosis [7–11].

of computer techniques and algorithms in hardware and software. The automated

computer-aided diagnosis (CAD) system can play an important role in DP and

gradually takes the place of conventional manual process and analysis for patholog-

ical images on a large scale [28, 29]. CAD systems can efficiently reduce laboratory

expenses, improve operational efficiency, and enhance productivity, reproducibility

and objectivity in the diagnostic process. Fig. 1.4 shows general processing steps

from digitizing histology slides to clinical applications and CAD implementations.

In CAD systems, image processing and analysis become a key component for

discriminating the types of diseases and are widely used to study cancer gene ex-

pression, genetic progression and cellular morphology for strengthening the ability of

cancer diagnosis and treatment. Also, they provide an opportunity for investigating

morphological and cellular characteristics in different stages of diseases, especially

early stage of diseases or cancers. In general, if a certain disease or cancer, such as
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breast cancer or colorectal cancer, can be diagnosed in early stage, the patients will

live longer or benefit from getting efficient and precise treatments. However, it is

difficult to differentiate some types of diseases/cancers in early stage that have sim-

ilar pathological and morphological symptoms and it is necessary to have efficient

and robust criteria for the diagnosis of those diseases. For instance, for the subtypes

of MPNs in bone marrow, which is the main types of cancers studied in this thesis,

there does not exist a standard and approved criteria of diagnosis. By develop-

ing advanced computer techniques and algorithms, we may find potential clues to

construct and improve current diagnostic criteria to assist pathologists making an

accurate diagnosis for efficient therapies.

1.3 Motivation

According to the WHO diagnosis criteria, JAK2 mutation and reticulin can effi-

ciently identify PV and PMF from MPNs. The examination of JAK2 mutation is

the routine step of diagnosing subtypes of MPNs, and reticulin is only observed in

BM trephine biopsy. However, in general, the reticulin clearly appears when PMF

is in late stage. In early stage of PMF, the reticulin is unclear or does not exist. It

means that PMF without reticulin, called prefibrotic PMF, cannot efficiently help

pathologists precisely distinguish PMF. In [13], it was found that approximately

40%-50% of patients with ET in fact have PMF. Fig. 1.5 shows that it is diffi-

cult to differentiate the histology images in ET and prefibrotic PMF. It is because

prefibrotic PMF and ET have overlapping clinical symptoms and morphological

features. In addition, according to WHO disease category, including the distinc-

tion between prefibrotic PMF and true ET, the assessment of cytological features

is much less reliable and it is difficult to have good reproducibility of distinguish-

ing these subtypes of MPNs in routine diagnostic practice for hematopathologists,

even experienced ones. In other words, the current WHO histologic criteria are not
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Figure 1.5: Examples of ET and prefibrotic PMF [12]. The left case belongs to ET,
and the other one is prefibrotic PMF. There are no obvious morphological character-
istics or cytological architecture to distinguish between them and pathologists have
low agreement of identifying these two bone marrow diseases. In the study [13],
it also mentions that many patients with prefibrotic PMF are diagnosed with ET
because of unclear and ambiguous diagnostic features.

sufficiently robust to define ET and prefibrotic PMF. There is poor inter-observer

agreement on what is represented by the terms prefibrotic PMF and true ET, and

there are striking differences in the emphasis each of the hematopathologists placed

on different morphologic criteria when arriving at a diagnosis. It causes there is no

standard or obvious priority of diagnostic criteria and pathologists use their own

experience of diagnosing these two types of disorders resulting in subjective iden-

tification [13]. In order to collect more potential histology information for finding

efficient diagnostic features of these two subtypes of MPNs, I adopt trephine biopsy
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examination that is one of the bone marrow examinations and allows a complete

assessment of bone marrow structure and of the pattern of distribution of any ab-

normal infiltrate [6, 13, 18]. Here the staining protocol used in trephine histology,

namely Hematoxylin and Eosin (H&E) staining, is fairly standard protocol that is

used worldwide. Although a BM core biopsy may not be required in every case,

an adequate biopsy does provide the most accurate assessment of the marrow cel-

lularity, topography, stromal changes, and maturation pattern of the hematopoietic

lineages, and it can be invaluable in detecting residual disease following therapy. If

marrow aspirate smears are poorly cellular, the trephine biopsy provides material

for detecting, diagnosing and monitoring a number of diseases and conditions that

can affect the bone marrow and blood cell production [1,6,13,18]. Moreover, ET and

PMF have the risk of mutation and convert to other types of bone marrow cancer,

like AML. For patient survival and health, early diagnosis of these two diseases is

necessary, and trephine biopsy processing and analysis have attracted our attention

for improving the WHO diagnosis guidelines and looking for potential clues that

have never been discovered.

In order to objectively and efficiently obtain cellular morphological and his-

tologic information for advanced investigation of ET and prefibrotic PMF, I pro-

pose automated advanced computer techniques to ultimately help the pathologists

establish a suitable and robust model to potentially extract more cellular and mor-

phological features. I can then provide these features to pathologists looking for

or improving current diagnostic criteria for more efficient and precise diagnosis and

treatment. Moreover, computer-aided approaches are much more useful to facilitate

quantitative analysis of hematopathological images and the discovery of unidenti-

fied prognostic morphological features. The characteristic outcomes of quantitative

analysis through these automated methods are more reliable and objective in disease

progression evaluation and diagnostic decision.

In this thesis, I concentrate on developing specific algorithms for extract-
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Figure 1.6: The diagram of research objectives. According to the aims of thesis, the
final framework will automatically do quantitative analysis of BM trephine biopsies
and provide the statistical information to help the pathologists improve the accuracy
of distinguishing ET and prefibrotic PMF. There three major sections (in blue-dash
rectangle) to construct the proposed final framework: megakaryocyte delineation,
non-MK cell detection, and classification of erythroid and myeloid cells.

ing cytological morphological features and geographic distribution of all types of

hematopoietic stem cells in BM trephine biopsy for further investigation and anal-

ysis. As shown in Table 1.1, quantitative measurements of megakaryocyte (MK)

cellularity, the ratio between types of BM cells, and the distribution of MK are con-

sidered to improve the current criteria and help the pathologists make more precise

decision of diagnosis and therapies of ET and prefibrotic PMF [30–33].

1.4 Aims and Objectives of the Thesis

This thesis seeks to ultimately assist the pathologists to look for efficient histopatho-

logical characteristics to distinguish between the subtypes of MPNs, especially ET

and prefibrotic PMF, by extracting and analyzing cellular morphological features

and geographic distribution from BM trephine biopsies. Fig. 1.6 shows the research
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objectives of this thesis. In order to achieve the aims, I will construct the proposed

framework to take into account BM trephine whole slide images (WSIs) and do

quantitative analysis of BM trephine data. There are several important research

objectives:

1. For automatically delineating MK, I will adopt unsupervised methods and

active contour models to construct a proposed framework.

2. In order to detect all non-MK hematopoietic stem cells, I would like to

use deep learning approaches and various shape models to efficiently identify the

center of any types of BM cell.

3. For classifying erythroid and myeloid cells, machine learning and deep

learning methods will be used.

I will compare these proposed approaches with current and state-of-art correspond-

ing approaches by evaluating the performance of the results to make sure that the

proposed methods are accomplished. After building above three major components,

I integrate all of them to construct a framework working on BM trephine WSIs

and collect more image data and their ground truth images for further quantitative

analysis. These three proposed methods will take at least 1 year to be designed and

accomplished, and then I will spend 1 to 2 months to build the final framework for

further quantitative analysis.

1.5 Main Contributions

According to research objectives, the accomplished major contributions are de-

scribed as below:

1. I propose an automated framework with a novel dual-channel active contour

model for delineating MK cells with weak shape feature (Chapter 3).

2. I propose a novel hybrid deep learning network to reconstruct the topological

features for nuclear detection. I use a curve-support Gaussian-based model to rep-
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resent the location of nuclear/cell centers and emphasize the ability of detecting

irregular shapes of nuclei/cells (Chapter 4).

3. I design a synchronized asymmetric deep learning network to take into account

detection and classification strategies at the same time. The proposed network can

efficiently reduce time required for training and maintain the accuracy of detection

and classification performance (Chapter 5).

1.6 Thesis Organization

Chapter 2: Literature Review. It contains a brief review of current studies on

histology image challenges and corresponding solutions. It also describes the con-

cepts and principles of popular image processing approaches and application in

histopathology images.

Chapter 3: A dual-channel active contour model. This chapter proposes an image-

processing framework with a novel segmentation approach for delineating a very

specific type of cell from a heterogeneous histopathology image microenvironment

with poor morphological characteristics.

Chapter 4: A hybrid deep learning approach for cell/nuclei detection. I propose a

novel deep learning neural network with a Gaussian-based topological model to effi-

ciently detect all types of cells, including irregular-shape nuclei/cells, in BM trephine

images.

Chapter 5: A synchronized asymmetric hybrid deep learning network for detection

and classification. I propose a novel parallel structure of deep learning network by

using the concepts of asymmetric learning method to process detection and clas-

sification stages simultaneously and efficiently reduce the training time of learning

network.

Chapter 6: Conclusions and future directions. Finally, in this chapter, I conclude

the thesis, discuss possible application of the work and future research directions.
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Chapter 2

Literature Review

Histopathology is an important area of clinical medicine that studies the cell anatomy

and tissues of human at a microscopic level. In the current practice of medicine,

histology specimens are analyzed to identify normal and abnormal biological struc-

tures, morphological and architectural characteristics of cytology or tissue, and they

play one of the most significant roles in therapeutic decision making for routine clin-

ical disease diagnosis like cancer. They are also used to analyze anatomy of cells and

tissues, which could be identified by pathologists depending on their experience. But

some structures are quite small with respect to tissue region, and relevant patterns

generally have high visual appearance variability. In addition, manually identifying

and interpreting the tumor or abnormal tissue in histology slides is tedious, time-

consuming, and in some cases, an error-prone procedure, and requires a lot of skill

and experience. Recently, according to the development of computer techniques and

approaches, CAD can play an important role in biomedical and clinical diagnosis,

analysis and investigation. In general, the automated techniques of CAD also have

the capacity to not only significantly reduce the laborious and tedious nature of

providing accurate quantification but to act as a reviewer helping to reduce large

inter-observer variability among pathologists [34]. Moreover, automated computer

approaches can greatly reduce the subjective bias and provide efficient and accurate
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characterization of diseases [35]. Many computational algorithms or methods exist

and take advantage of the increasing assortment of biomedical images [28, 29, 36].

However, histology image analysis is a specific research field in digital image process-

ing and there are many challenges and limitations to customize traditional image

processing methods for different types of histology images. In order to resolve these

problems, there are many recent automated computer approaches developed for

efficiently and precisely extracting quantitative data from images.

In this chapter, I would like to describe the challenges in various aspects

of histology image processing steps and briefly review current researches for ad-

dressing these challenges in histology images in Section 2.1. Also, I introduce the

concepts and advanced applications of popular and state-of-the-art image processing

approaches on histology images in Section 2.2.

2.1 Problems in Histology Image Analysis

According to the development of computer technique, the investigation and analy-

sis of histology become more important and employ a key role in cancer research

and diagnosis. Also, digital high-resolution histology images are easily obtained and

provide an opportunity of observing and capturing cellular information in histology

microenvironment. However, there are various factors influencing the automated

image processing approaches and the accuracy of outcomes in quantitative analysis.

For example, histological samples contain large numbers of cells and other struc-

tures that are widely and unevenly distributed and surrounded by many different

types of tissue and make complicated features, such as color, light, texture or in-

ner structures [37, 38]. In Fig. 2.1, we can observe these sample cases and found

the complicated and various architecture of tissue and cells. Moreover, the different

conditions of histology image acquisition process, including sampling, cutting, stain-

ing, and digitalizing, cause high visual variability of nuclear or cell representation.
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(a) (b)

(c) (d)

Figure 2.1: Examples of histology images in different cancer tissue: (a) Breast (b)
Prostate (c) Lung and (d) Bone marrow. We observe the various types of cells with
complicated morphological features in each case. These massive variations show that
computer-aided methods face difficulty in obtaining accurate and specific histology
and cellularity information.
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These factors increase the difficulty of histology image processing and analysis for

automated approaches or models.

In H&E histology images, color variation has become more of an issue. Typ-

ically, two or three different colored stains are used to highlight cellular and subcel-

lular target components. If the stain color in each histology sample become stable

and is normalized, the ability and performance of automated methods will efficiently

improve and increase the robustness of outcomes. In order to reduce the influence

of these various factors, color or stain normalization in pre-processing step is nec-

essary. There are several stain normalization approaches that are usually used. For

instance, Reinhard et al. [39] proposed a color normalization method where the

mean and standard deviation of each channel of the image are matched to that of

the target image by means of a set of linear transforms in Lab color space. More-

over, Magee et al. [40] and Macenko et al. [41] proposed stain normalization methods

based on a color deconvolution (CD)-derived representation. CD method uses the

given stain matrix to obtain stain concentration values and describes how the color

is affected by the stain concentration. The difference is that Magee et al. [40] used

a supervised pixel classification-based approach to estimate stain colors, whereas

Macenko et al. [41] used an singular value decomposition (SVD)-based approach to

directly estimate the stain matrices. Recently, Khan et al. [42] proposed a nonlin-

ear mapping with stain color descriptor (SCD) to efficiently take into account stain

normalization for reducing the influence of color variation.

After introducing above pre-processing approaches, I would like to focus on

the major procedure of digital image analysis: detection, segmentation and classifi-

cation. These strategies are main steps and widely used to extract and identify the

features and types of cells [29]. However, these strategies have difficult and different

computer vision problems due to high variability in histopathology images. I would

like to describe the limitations and challenges and provide recent research methods

to tackle these problems by designing for specific tasks in histology images.
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2.1.1 Segmentation

Nuclei or cell segmentation is necessary and one of the main functional components

in a fully automated histology image investigation and analysis [43, 44]. It aims to

separate individual nuclei and cells with delineating their boundaries and to obtain

extracted histology information and features for various quantitative analysis, which

includes to calculate cellular morphology, such as size, shape, texture, and other in-

tensity information of segmented nuclei or cells. The simplest way to segment nuclei

or cells in histopathological images is based on thresholding and morphological op-

erations [45–47]. This methodology actually suffers from its simplicity by including

little object knowledge. In addition, it lacks robustness on size and shape variations,

as well as on texture variations, which are very frequent in histopathological images.

Watershed transform is one of the popular region accumulation methods, which

floods the landscape with water from regional minima, such as seed points, with the

intensity representing the elevation to create labeled regions [29, 48, 49]. Wahlby et

al. [50] used this method to segment clustered nuclei and proposed a methodology

that combined the intensity and gradient information along with shape parameters

for improved segmentation. However, it requires the prior detection of seed points.

The edge map and distance transform are used for seed detection [50, 51]. The

reported results are suboptimal for ring-shaped nuclei having clear homogeneous re-

gions. Furthermore, the watershed transform does not include any prior knowledge

to improve its robustness. In addition, since a regional minimum corresponds to an

object, the watershed transform usually leads to oversegmentation.

In addition, clustering is to group a collection of objects into subsets or clus-

ters, such that those within each cluster are closely related to one another than

objects assigned to different clusters [52]. For instance, Arif et al. [53] have formu-

lated nuclei segmentation as manifold learning-based shape classification on prostate

histology images, which segment nuclei or nucleus clumps with K-means cluster-
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ing. Expectation-maximization (EM) algorithm [54], which is originally designed

for maximum likelihood estimation, can be used to conduct cluster analysis with

soft assignment. Jung et al. [55] have presented an EM-based automated nucleus

segmentation approach in mammary invasive ductal carcinomas and cervical im-

ages. Moreover, supervised classification techniques have also been used for nucleus

or cell segmentation. Janssens et al. [56] have applied a multi-class support vec-

tor machine (SVM) classifier to cell segmentation on H&E stained skeletal muscle

images. Besides, Dalle et al. [57] proposed gradient in polar space (GiPS), a novel

nuclei segmentation method. Initially, nuclei are detected using thresholding and

morphological operations. Then, transformation into polar coordinate system is

performed for every patch with the center of mass of the nucleus as the origin. Fi-

nally, a biquadratic filtering is used to produce a gradient image from which nuclei

boundaries are delineated.

Active contour (AC) models can combine both shape characteristics, which

consist of smoothness and shape model, with image features, such as image gradient

and intensity distribution. However, the resulting segmentation is strongly depen-

dent upon the initial seed points. Cosatto et al. [58] described an automated method

for accurately and robustly measuring the size of neoplastic nuclei and providing an

objective basis for pleomorphic grading. First, a difference of Gaussian (DoG) filter

is used to detect nuclei. Then, the Hough transform is used to pick up radially sym-

metric shapes. Finally, an AC model with shape, texture, and fitness parameters

is used to extract nuclei boundaries. Huang and Lai [24] proposed watershed and

AC-based framework for nuclei segmentation in hepatocellular carcinoma biopsy im-

ages. Initially, a dual morphological gray-scale reconstruction method is employed

to remove noise and accentuate the shapes of nuclei. Then, a marker-controlled

watershed transform is performed to find the edges of nuclei. Finally, AC model

is applied to generate smooth and accurate contours for nuclei. This framework

achieves poor segmentation in case of low contrast, noisy background, and irregular
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nuclei.

However, in histopathology imagery, it is difficult to achieve robust and ac-

curate nuclei and cell segmentation because there are a number of various factors,

such as nuclei type and malignancy of the disease, heterogeneous chromatin distri-

bution and irregular boundaries. In addition, nuclei and cells are often clustered

into clumps so that they might partially overlap with one another. These variations

seriously affect the ability of computer algorithms to separate overlapped or clumped

nuclei and cells and to cause segmentation problems. The results of segmentation

also make serious influence of detection and classification in further analysis and

investigation. In order to address these problems, there are many advanced seg-

mentation methods derived from above approaches to improve the performance of

nuclei or cell segmentation. In general, an advanced segmentation approach may

combine some of these algorithms as well as other methods. As compared with nu-

clei segmentation methods, these methods are more tolerant to variations in shape

of nuclei, partial occlusion, and differences of the staining. For instance, a variety

of approaches using curvature information have been investigated to separate the

overlapped nuclei [59–61]. However, most of these methods are highly dependent on

the concavity, and thus it is difficult to obtain robust segmentation results when the

concave points are not detected correctly [59,60]. The watershed algorithm usually

collaborates with detection methods and extends to form the marker-controlled wa-

tershed technique. Cloppet and Boucher [62] presented a scheme for segmentation

of overlapping nuclei in immunofluorescence images by providing a specific set of

markers to the watershed algorithm. Other marker-controlled watershed segmenta-

tion methods use gradient information, such as nuclei segmentation in H&E stained

histopathology images [63] and H&E stained cytology images [64].

AC models are also used to take into account overlapping problems by col-

laborating with other methods or adding more morphological or texture informa-

tion. For instance, Fatakdawala et al. [65] proposed EM-driven Geodesic AC model
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with overlap resolution for segmentation of lymphocyte nuclei in breast cancer

histopathology. EM-based AC model initialization allows the model to focus on

relevant objects of interest. Mouelhi et al. [66] proposed a modified GAC with

the Chan-Vese (CV) energy model with concavity points and watershed transform

to segment clustered nuclei in breast cancer histopathology. Moreover, Kulikova et

al. [67] proposed a method based on marked point processes (MPPs), which is a type

of high-order AC model, to segment overlapping nuclei as several individual objects.

There is no need to initialize the process with seed points giving the location of the

nuclei to be segmented. A shape prior term is used for handling overlapping nuclei.

Some classifiers are also used to take into account nuclei and cell segmentation

with overlapping problem. For instance, EM- and Gaussian mixture model (GMM)-

based unsupervised Bayesian classification scheme was used for segmentation of

overlapping nuclei in IHC images [68]. This approach primarily involves applying the

distance transform to generate topographic surface, which is viewed as a mixture of

Gaussian. Then, a parametric EM algorithm is employed to learn the distribution of

topographic surface (GMM) for separating overlapping nuclei. In addition, machine

learning (ML) approaches are also widely used and applied in segmentation. For

instance, Jung et al. [68] used Baysian model and estimate cell topographic surface

to take into overlapped and clumped nuclei in segmenation strategy. Recently, deep

learning (DL) approaches make significant progress in learning image representations

and there are some DL models proposed for nuclei or cell segmentation. Ronneberger

et al. proposed U-net [69], which is based on full convolution network (FCN), to

segment glioblastoma-astrocytoma U373 cells. In addition, Song et al. [70] proposed

a multi-scale convolutional network to segment cervical nuclei and cytoplasm.

2.1.2 Detection

Nuclei or cell detection is viewed as obtaining the object location without accurately

delineating the boundaries, and it is usually referred to as a marker or a seed seeking
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near the object centroids. The marker can be a single point or a small region inside

the object and provide support for nucleus/cell counting, tracking, and segmenta-

tion. In general, automatic detection in histopathology images is a very challenging

task for several reasons. It is because there are amount of different types or subtypes

of cells characterized by a large variety of shape configurations, which are related to

the high variation of biological structures, such as mitosis cells in breast cancer diag-

nosis. In addition, clustering cells usually appear touching or overlapping cells and

have similar morphological appearance, resulting in lots of false negatives in the de-

tection process. In order to address these challenges, many automatic cell detection

algorithms are proposed and based on nuclear or cellular hand-crafted features, such

as color intensity and texture information. Sometimes the procedure of a marker

detection method might combine several algorithms or segmentation methods for

specific nuclei or cell detection. These detection approaches are widely applied in

routine H&E histological images to identify nuclei and perform high degrees of de-

tection accuracy under certain circumstances. For instance, binary morphological

filtering is a technique processing the images with a certain structure element, such

as circular disk, square, cross, and so on [71]. It performs image filtering by exam-

ining the geometrical and topological structures of objects with a predefined shape.

Yang et al. [72] have presented a conditional erosion method to detect nucleus mark-

ers in fluorescence microscopy images. Distance transform is another sample method

to assign each pixel with the distance to the nearest feature point [73]. In nucleus

and cell detection, the feature points are usually selected as the edge pixels in a

binary image and Euclidean distance is chosen as the metric. Therefore, ideally the

local maxima in the generated distance map correspond to the centroids of nuclei or

cells. Adiga et al. [74] have exploited a distance transform to detect nucleus centers

in breast cancer histopathological images. However, Euclidean distance transform is

only effective on regular shapes in a binary image, and small variations on the edge

pixels will result in false local maxima. Therefore, it might fail to detect overlapping
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nuclei or cells. The maximally stable extremal region (MSER) detector [75] is also

used to locate blob objects. Similar to the procedure that applying an increasing in-

tensity threshold to a gray-level image, it generates a set of nested extremal regions

based on the level sets in the intensity landscape and considers one region to be sta-

ble using a local intensity minimum based criterion. Lu et al. [76] have applied this

strategy to nucleus detection in Pap smear microscopy images. Metas et al. used a

MSER detector to detect each isolated nucleus [77]. In [78], the algorithm heavily

depends on the quality of MSER detector that does not take advantage the prior

cell shape information and the performance will deteriorate when the cells overlap

with one another.

Moreover, the Laplacian of Gaussian (LoG) filter is one of most popular

methods to identify small blob objects, which usually correspond to the central re-

gions of nuclei or cells in histology images. Byun et al. [79] have successfully applied

a LoG filter with a specified scale to nucleus locating on retinal images, but this

method assumes that the object size is known a priori. Later, the scale-normalized

LoG filter [80] is used to detect cells on phase-contrast microscopy images [81, 82];

nevertheless, it might fail in touching or overlapping objects which exhibit weak

boundaries. To tackle this issue, Al-Kofahi et al. [83] have introduced a multi-scale

LoG filter constrained by a Euclidean distance map to detect nuclei in histopathol-

ogy images. Parvin et al. [84] proposed an iterative voting algorithm based on

oriented kernels to localize cell centers, in which the voting direction and areas were

dynamically updated within each iteration. However, in general, the above detec-

tion approaches have some limitations. For example, both [84] and [85] are sensitive

to the selection of proper cell diameter parameters. However, finding an appropri-

ate parameter that works under all conditions is extremely difficult when the cells

exhibit large size variations.

Since nuclei usually exhibit circular or elliptical shapes in pathological im-

ages, Hough transform [86, 87] based nucleus detection and radial symmetry trans-
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form [88, 89] have attracted many research interests of centroids of nuclei or cells.

Ramesh et al. [89] have first thresholded the hematopoietic cell regions in bone mar-

row images, and then applied the circular Hough transform to hematopoietic cell

detection. Cossatto et al. proposed the method which uses difference of Gaussian

(DoG) and Hough transform to find symmetrical shapes to detect cells [90]. How-

ever, the Hough transform might generate false peaks due to image noise, incorrect

edge extraction, or touching objects. Meanwhile, radial symmetry based voting in

practical applications is limited by the high computational complexity. In order to

resolve these problems, Loy and Zelinsky [91] have proposed a fast radial symmetry

transform (FRST) to significantly decrease the time cost. Veta et al. [63] have ap-

plied the FRST to nucleus detection in H&E stained breast cancer images. However,

the FRST might produce false peaks in the transformed image due to clustered nu-

clei, and the radius range needs careful selection to handle nucleus scale variations.

In addition, many nuclei or cells exhibit elliptical but not circular shapes. These

irregular shape nuclei or cells present significant challenges for the FRST. Addition-

ally, there are several approaches proposed to detect the seed points. For instance,

Qi et al. proposed a single-pass voting to vote the centers of nuclei by applying the

mean-shift clustering [92].

In recent years, DL methods also used successfully for nuclei and cell detec-

tion. For instance, Cireşan et al. [93] used convolutional neural network (CNN) to

detect mitosis in breast cancer histology images. Xie et al. [94] proposed structural

regression CNN capable of learning a proximity map of nuclei for providing more

accurate detection results. Sirinukunwattana et al. [95] used CNNs with local spa-

tial features for identifying the position of nuclear center but the performance of

this method was found to be limited when detecting long-tailed or irregular-shape

nuclei.
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2.1.3 Classification

Basically, classification depends on the ability of detection or segmentation. For nu-

clei or cell classification, extracting useful and accurate features is much important.

If the results of detection or segmentation are worse, the outcomes of classification

become more terrible. In early period of time, classifying a specific cell is based

on the manual conditions setting. The users need to have some prior information

of target images to identify the thresholding values or build the conditions from

specific morphological or texture features of objects. For instance, Ballaro et al. [96]

proposed a framework to identify the nuclei of megakaryocytes (MKs) by manually

setting the thresholding value of nuclear size. In recent years, ML algorithms become

the mainstream of classification and can improve useful computer tools to make the

classification more efficient, such as principal component analysis (PCA), which can

find significant correlative features to reduce the dimensionality of a dataset. For

instance, Huang et al. [97] used SVM as a classifier with intensity, morphological

and texture features to identify cancer nuclei in liver images. Vink et al. [98] iden-

tified nuclei by using Adaboost classifier with intensity and texture information in

IHC breast images. Malon et al. [99] classified mitosis nuclei by using SVM with

intensity features. In addition, Zhou et al. [100] used Markov model to classify

phase identification of dynamic cell cycle behaviors of a large population of cells.

However, the above classification approaches always need precise and robust fea-

ture extraction, which depends on the ability of segmentation approaches. In other

words, segmentation (or detection) seriously affects the results of classification.

Recently, DL methods not only have been shown to be more efficient and

robust than the classical ML approaches but can also extract the features without

segmentation or detection. DL is a hierarchical learning approach that learns high-

level features from pixel intensities that are useful for differentiating objects by a

classifier. DL methods avoid the traditional design and computation of features

27



and directly exploit large numbers of unlabeled image data to capture high-level

features; they are full feed-forward in terms of feature extraction [101–103]. For

instance, in [104], the authors employs a convolutional neural network (CNN) with

autoencoder for histopathological image representation learning. Then a softmax

classification is employed for classifying regions of cancer and non-cancer. In [101],

Xu et al. proposed a stacked sparse autoencoder (SSAE) with a softmax classifier

(SMC) to classify the centers of nuclei. Sirinukunwattana et al. [95] used CNNs with

local spatial features for identifying the position of nuclear center and classifying

multiple cells in breast cancer images.

2.2 Approaches for Histology Image Analysis

After realizing the challenges of image processing strategies in histology images

and related advanced computer algorithms and methods of efficiently overcoming

these problems, I would like to select several important and useful approaches and

introduce them. These methods will be further developed in this thesis.

2.2.1 Active Contour

Image segmentation approaches based on deformable models have been widely used

to successfully delineate various structures in pathology images [29, 58, 105–107]

and widely applied for tissue and nucleus segmentation for cancer diagnosis, such

as breast cancer [58, 65, 105, 106, 108, 109] and prostate cancer [110, 111]. In case

of nuclei or cell segmentation, the active contour (AC) model is one of the most

popular nucleus or cell segmentation algorithms, since they exhibit a great trade-

off between efficiency and flexibility [112]. AC model starts from a certain initial

position, which is manually specified by a user or automatically detected by another

algorithm, and evolves an active contour towards the object boundary by minimizing

an energy functional. The AC model achieves desirable segmentation results when
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the evolving contour matches the object boundary. Basically, the energy of the

active contour model is formulated as a linear combination of three terms [113] and

is defined using the energy function E over the contour points c as:

E =

∮
c

(
αEInt

(
c
)

+ βEImg
(
c
)

+ γEExt
(
c
))
dc, (2.1)

where EInt controls the contour and length of the contour (internal energy), EImg

influences the contour to move towards features of interest (image energy) and EExt

is user defined force or prior knowledge of object to control the contour (external

energy), respectively. α, β and γ are empirically derived constants.

The two major implementations of deformable models for nuclei or cell seg-

mentation are geodesic and parametric AC models, which are with implicit and ex-

plicit contour representations, respectively. The parametric model represents curves

and surfaces explicitly in their parametric forms during deformation. The geomet-

ric model is based on the theory of curve evolution in time, according to intrinsic

geometric measures of the image, and is numerically implemented via level set al-

gorithms [112]. For instance, Li et al. [114,115] have combined a region energy and

an edge energy into a level set model to segment and track cells in phase-contrast

microscopy images. Recently, Xing et al. [116,117] have introduced a contour-based

repulsive term into the balloon snake model, which belongs to the parametric model,

for nucleus segmentation in pancreatic neuroendocrine tumor images.

As image segmentation methods, there are two types of AC models based

on the force that evolves the contours: edge-based and region-based. In a more

general context, region-based level set methods [14,118–121] have been particularly

successful by incorporating region-based statistical information into an energy func-

tional (see Fig. 2.2). Unlike edge-based level set methods, which are based on the

image gradient and use edge detector output to deform the contour toward the ob-

ject boundary, region-based methods use the statistical information of global region
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Figure 2.2: The all possible cases of region-based active contour [14,15]. F1 energy
force is generated from inside region of the contour, and F2 energy force is from
outside region of the contour. If one of these two energy forces is larger than the
other, the fitting energy moves the contour toward the lower energy region. If fitting
energy is equal to zero, the movement of the contour will stop and fix.

to stabilize their responses to local variations. These methods have been shown to

achieve higher segmentation accuracy than edge-based level set methods on images

with weak boundaries. Among the state-of-the-art level set methods, the Chan-Vese

(CV) model [14, 118, 122, 123] is one of the most representative and efficient ones.

This particular model assumes that the image statistics in two regions remain rela-

tively constant; these two regions are the inside and outside of the evolving contour.

The CV model, therefore, performs very well on images where these two regions

are relatively smooth. However, this model often leads to poor segmentation re-

sults for non-smooth images, i.e., with intensity inhomogeneities, due to the fact

that the deformation movement of the evolving curve is guided by global region

information [123–128].
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Many improvements have been proposed to address some of the limitations of

the CV model [118,122–132]. In [128], Li et al. propose an efficient region-based level

set method by introducing a local binary fitting (LBF) energy term, which enables

the extraction of local information with a Gaussian kernel and can be used on images

with intensity inhomogeneities. Wang et al. [129] introduce the Local Chan-Vese

(LCV) model, which employs both global image information and local statistics for

efficiently segmenting images with intensity inhomogeneities. In [130], Zhou et al.

combine a local active contour model and an adaptive diffusion flow active contour

model to improve medical image segmentation in inhomogeneous regions with weak

edges. In order to control the movement of the evolving contour towards the object’s

boundary in images with intensity inhomogeneities, Ji et al. [131] propose an energy

functional that minimizes a local likelihood energy term derived from the image

intensity within each pixel’s neighborhood. Brown et al. [133] propose a multi-

phase active contour model for global multiple region segmentation. Although all

these methods improve segmentation accuracy of the CV model on images with

weak edges and intensity inhomogeneities, they are all sensitive to the position of

the initial contour and the value of parameters [129,132,134,135]. Based on the CV

model, Zhang et al. [136] have proposed a coupled geodesic active contour model for

cell segmentation and tracking in fluorescence microscopy images, which minimizes

the overlaps between contours corresponding to touching or overlapping cells to

prevent them from merging.

Within the context of cell segmentation in histology images, most of the

recently proposed methods focus on nuclei segmentation as cytoplasm segmentation

remains a challenging task in many types of histology images [29,106,107,137]. For

instance, Ali et al. propose an adaptive active contour model with shape prior for

nuclear segmentation in prostate cancer tissue [138]. Among the very few methods

that are capable of segmenting nuclear and cytoplasmic regions, the one proposed

by Nosrati et al. [139] uses color features of manually labeled regions to generate a
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prior feature response map. This map is used along with containment and exclusion

energy terms to simultaneously segment multiple regions.

2.2.2 Classical Machine Learning Approaches

Machine learning is the sub-field of computer science enables the computers to

learn without being explicitly programmed [140]. In pattern recognition and com-

putational learning theory in artificial intelligence, machine learning explores the

study and construction of algorithms that can learn from and make predictions on

data [141, 142]. It is also employed in a range of computing tasks where design-

ing and programming explicit algorithms is infeasible. Nowadays, several machine

learning approaches are widely applied to many different types of medical images.

To deal with complex histology images, supervised machine learning based methods

have attracted much attention. Supervised classification technique is one of machine

learning techniques aiming to infer a mapping function or model from training la-

beled data [47]. The nuclei and cell detection is usually formulated as a pixel or

region classification problem, and a specific model is learned to assign new data

examples into discrete labels. Many classifiers with various feature representations

have been presented in the literature, and here I mainly focus on traditional ML

methods and their applications on histology images. The deep neural networks will

be introduced in the next section.

Traditionally, Support Vector Machine (SVM) is a non-probabilistic binary

classifier, aiming to find a hyperplane with a maximal margin to separate high-

dimensional data points [143]. Su et al. [144, 145] have applied a binary SVM

classifier to automatic nuclear detection in isolated single muscle fiber fluorescence

images. Khan et al. [146] have presented a learning approach for mitotic cell de-

tection in breast cancer histopathology images, which models image intensities with

a Gamma-Gaussian mixture model and performs pixel-wise classification in testing

images, and then generates a set of candidate regions. Finally they distinguish mi-

32



totic from non-mitotic cells using a SVM classifier with a set of texture features.

In addition, Janssens et al. [56] have applied a multi-class SVM classifier to cell

segmentation on H&E stained skeletal muscle images.

Random forest (RF) [147], which is derived from random decision forests

and stochastic discrimination approach, is another popular ML method due to fast

training and testing, and fair error tolerance in training data. For instance, Som-

mer et al. [148] constructed a hierarchical learning workflow with RF classifier for

automated mitosis detection in breast cancer. In addition, other machine learning

methods are also applied into different medical images. For instance, a mitotic cell

detection method presented in [149] learns a discriminative dictionary with sparse

representation and conducts mitosis classification based on the sparse reconstruc-

tion errors [150]; Dong et al. [151] have proposed a Bayesian classification based

leukocyte detection algorithm on intravital microscopy images. A mitotic cell de-

tection method presented in [149] learns a discriminative dictionary with sparse rep-

resentation and conducts mitosis classification based on the sparse reconstruction

errors [150]. Vink et al. [98] constructed a large feature set and modified Adaboost

with intensity and texture information to propose an efficient nucleus detector.

2.2.3 Deep Learning Approaches

Deep learning (DL) is the major research trending of artificial intelligence and widely

applied to many different fields in recent years. Different from SVM and RF that

rely on hand-crafted features for object classification, deep learning (DL) exploits

this idea of hierarchical explanatory factors that are higher level, more abstract

concepts learned from the lower level ones. DL methods avoid traditional designing

features or detectors by hands. A deep neural network hierarchically stacks multiple

layers of neurons to form a hierarchical feature representation. This special structure

causes DL approaches result in more efficiency and robustness to make intelligent

predictions in different target databases. There are various types of deep learning
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Figure 2.3: The diagram of structure of a layer of neural network. The input data are
multiplied by the weights to extract the feature elements, and then feature elements
are added together. The sum of feature elements is processed by an activation
function to output the result.

algorithms used in research. Here I would like to introduce the theoretical concepts

from simple neural network to popular state-of-the-art deep learning approaches.

Also, I will mention the current applications of deep learning methods in image

processing and analysis of histopathology.

2.2.3.1 Neural Networks

DL method is derived from artificial neural network (NN), which is inspired by

biological nervous systems of human brain processing system. A standard artificial

neural network (NN) consists of many simple, connected processors called neurons,

each producing a sequence of real-valued activations. In a simple case, there may

be two sets of neurons: ones that receive an input signal and ones that send an

output signal (Fig. 2.3) [103, 152]. We can observe that each input signal will

be processing by weights, combination operator and transfer function (also called

activation function) and then produce the output. The formulation of a simple

neural network is given by:

Y = f
( N∑
i=1

Wixi + b
)
, (2.2)
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where X = xi, i = 1, 2, . . . , n represent the inputs to the neuron and Y represents

the output. Each weight Wi times the associated input. Their sum is added by a

bias b and then processed by an activation function f . According to Eq. 2.2 and

Fig. 2.3, if we select a suitable transfer function and the connection of neurons,

various neural networks will be constructed and trained for producing the specified

outputs. Based on this concept, DL architectures are constructed with a greedy

layer-by-layer NN method to form a hierarchical representation. It means that DL

approaches helps to disentangle these abstractions and pick out which features are

useful for learning [103,152–155].

In general, the learning paradigms for DL methods in histology image pro-

cessing generally include supervised learning and unsupervised learning. In super-

vised learning, a network is trained using a set of inputs and outputs (targets). For

each training case, there will be a set of input values and one or more associated

output values, and the goal is to minimize the network’s overall output error for all

training cases by iteratively adjusting the neuron connection weights and bias values

using a specific training algorithm. On the other hand, in unsupervised learning,

the training data set does not include any target information. Instead a function

is defined that measures the suitability or accuracy of the network. This kind of

unsupervised learning network normally uses both input values and output value(s)

to produce a cost energy for the current network configuration. Normally the aim

of unsupervised learning is to minimize or minimize the cost for all input vectors in

the training set [103,152,153,156].

Here I would like to introduce two popular deep learning approaches in recent

years: autoencoder (AE) and convolutional neural network (CNN). Autoencoder is

an unsupervised learning approach while convolutional neural network is a super-

vised learning strategy. Both are widely and successfully used in nucleus and cell

detection, segmentation and classification of histology images.
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Figure 2.4: The basic structure of autoencoder. Blue and red dash boxes represents
the encoding and decoding sections, respectively. Autoencoder learns compressed
feature vector of input images by comparing with reconstructed images.

2.2.3.2 Autoencoder

An autoencoder is a specific form of an artificial neural network [157]. Autoencoders

were first introduced in the 1980s by Hinton and the PDP research group [103] to

address the problem of ”backpropagation without a teacher”, by using the input

data as the teacher to train the layers. The purpose of an autoencoder is to learn

another representation of the input data in compressed or sparse representation.

More specifically, an autoencoder is an unsupervised learning method that sets the

target values to the input values. Together with Hebbian learning rules [103, 152],

autoencoders provide one of the fundamental paradigms for unsupervised learning

and for beginning to address the mystery of how synaptic changes induced by local

biochemical events can be coordinated in a self-organized manner to produce global

learning and intelligent behavior.

Functionally, an autoencoder contains two components in the training pro-

cess, an encoder and a decoder, as shown in Fig. 2.4. The encoder is used to encode

the input data xi to the desired compressed (or sparse) representation by apply-

ing transformations, while the decoder decodes this compressed representation to
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an approximation of the reconstructed inputs x̂i, with x̂i as close to xi as possi-

ble. Usually, the non-linear transformation h is a sigmoid function, i.e., the logistic

function

h
(
z
)

=
1

1 + exp
(
− z
) , (2.3)

where z = Wx+b and W is a weight matrix, b is a bias vector. In the training phase

of an autoencoder, the parameters W and b are optimized such that the average

reconstruction error is minimized. The reconstruction error is used to measure the

similarity of x̂i and xi, which can be measured in many ways. In general, the

traditional squared error is usually used, that is, for any input xi

L
(
xi
)

=
(
xi − x̂i

)2
, (2.4)

where I assume xi is a d-dimensional vector.

More recently, autoencoders have taken center stage again in the [103] ”deep

architecture” approach where autoencoders, particularly in the form of Restricted

Boltzmann Machines (RBMS), are stacked and trained bottom up in unsupervised

fashion, followed by a supervised learning phase to train the top layer and fine-

tune the entire architecture. The bottom up phase is agnostic with respect to the

final task and thus can obviously be used in transfer learning approaches. These

deep architectures have been shown to lead to state-of-the-art results on a number

of challenging classification and regression problems. There are other techniques

to prevent autoencoders from learning the identity function and to improve their

ability to capture important information and learn richer representations, such as

denoising autoencoder (DAE) and sparse autoencoder (SAE). For instance, Su et

al. [158] use a denoising autoencoder to reconstruct the shape information for cell

segmentation. Xu et al. [101] use the stacked sparse autoencoder with a softmax

classifier to learn a high-level representation of nuclear and non-nuclear objects for

detecting and classifying the nuclear region.
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Figure 2.5: The general architecture of CNN. CNN uses convolutional and pooling
layers to extract the feature maps from input data and reduce the size of feature
maps for accelerating processing speed. Then fully connection layers and softmax
layer are used to capture high-level global features and combine them to obtain the
proposed task, like classification.

2.2.3.3 Convolutional Neural Network

Recently, CNN has attracted particular attention [152,159,160]. CNN can automat-

ically learn multi-level hierarchies of features which are invariant to irrelevant vari-

ations of samples while preserving relevant information [161,162], and has achieved

great success on image classification and scene labeling [163, 164]. Also, CNN is

used on histology image processing. A CNN usually consists of successive pairs

of convolutional and pooling layers, followed by several fully connected layers. A

convolutional layer learns a set of convolutional filters, which are used to calculate

output feature maps, with each convolutional filter corresponding to one output

feature map. The pooling layer summarizes the activities and picks the max values

over a neighborhood region in each feature map. The pooling layer is also called

subsampling layer and is often chosen as max-pooling, which uses a max filter. The

fully-connected layer learns more higher level feature representation and the last is

often a softmax layer (fully-connected) which outputs the probability that the input

patch belongs to a certain category [165]. Fig. 2.5 shows a general CNN struc-
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ture. Here the convolution layer is more focused on extracting local features more

than global features. This can increase the accuracy dramatically. Also this can

reduce the number of excess connections this can also help on algorithms accuracy.

Also, the convolution operation can consider the inter relationship between input

parameters.

In recent studies, CNN has been successful applied in histology images for

detection, segmentation and classification. Cireşan et al. [93] have applied a deep

CNN to automatic mitotic cell detection in breast cancer histology images. With

raw intensities of the testing image, the CNN provides a probability map, in which

each pixel value is the probability of the centroid of a mitotic cell. Next, the prob-

ability map is smoothed with a disk kernel and final centroid detection is obtained

with non-maxima suppression. Similarly, a nine-layer CNN [166] followed by non-

maxima suppression is applied to cell detection in wide-field microscopy zebrafish

images, which are converted into the YUV color space, and a seven layer CNN [167]

is used to locate circular tumor cells in both fluorescence and phase-contrast mi-

croscopy images. In [168], Xing et al. have learned three different CNN models

corresponding to brain tumor, pancreatic neuroendocrine tumor, and breast cancer

pathology images, respectively, which are applied to automated nucleus detection.

Instead of using a simple non-maxima suppression for detection refinement, Liu and

Yang [169] have formulated pancreatic neuroendocrine and lung cancer nucleus de-

tection into an optimization problem. Furthermore, Xie et al. [94] have extended

the conventional CNN based classification to structure regression for nucleus and

cell detection, which generates proximity patches with the fast scanning technique.

Moreover, there are other advanced deep learning architectures such as fully

convolution network (FCN), which adopts the concept of AE and only uses con-

volutional layer and pooling. For instance, BenTaieb et al. [170] proposed FCN to

process gland segmentation. It can be expected to get more state-of-the-art results

to improve the current techniques in the future.
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2.3 Materials and Related Methods

In this thesis, I concentrate on H&E stained BM trephine images, which are scanned

at 40× magnification objective, which is approximately equal to 0.275 µm per pixel,

by using the Omnyx VL120 digital slides scanner from the University Hospital

Coventry and Warwickshire (UHCW). Moreover, I use the machine that has 3.1GHz

Intel Core i7 with 16 GB memory to implement all the experiments. According to

Section 1.4, there are three main approaches to achieve in this thesis. In Chapter 3, I

adopt the similar concept from region-based active contour to develop a novel active

contour model for delineating megakaryocytes (MKs). In Chapter 4 and 5, I use the

autoencoder structure to design a hybrid deep learning approach and a synchronized

deep learning approach for BM cell detection and classification. I also compare the

performance of the proposed approaches with the performance of conventional and

other state-of-the-art methods that I mentioned in this chapter.

2.4 Summary

This chapter briefly described the challenges of histopathology image processing and

the current approaches developed for detection, segmentation and classification in

histology images. Moreover, I introduced the concepts and advanced applications

of image processing and deep learning approaches that I will use to redesign the

proposed methods for identifying and obtaining the targets of interest in bone mar-

row trephine images. For delineating MKs, I consider and improve the region-based

active contour, such as Chan-Vese model, because of weak boundary feature of

MK cytoplasm. Also, because deep learning approaches provide better performance

than other conventional detection methods [95, 101], I adopt the idea of autoen-

coder model to design novel deep learning methods for detecting and classifying

non-MK bone marrow hematopoietic cells in BM trephine images. The details of

40



the proposed methods will be described in next three chapters.
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Chapter 3

Megakaryocyte Delineation

using a Traditional Approach

3.1 Introduction

As I mentioned in Section 1.3, these MPNs exhibit a varied but partially overlapping

set of clinical and cytomorphological features. This inevitably makes the task of

objectively classifying a bone marrow trephine biopsy sample into one of MPNs quite

challenging in some cases [1,6,13,18,20,21]. According to WHO classification criteria

of MPNs, the present guidelines clearly show that morphological features play a key

role in diagnosis and classification. This, however, may cause low reproducibility

of diagnostic results and inter-observer variability among the hematopathologists

because of ambiguous diagnostic criteria and histological features [13, 20]. In an

attempt to resolve these challenges, CAD techniques can be introduced to assist

pathologists in classifying the different subtypes of MPNs efficiently and objectively

by using digital pathology images [37,171]. Here, trephine histology is used to help

in the identification of these bone marrow diseases with CAD techniques.

Within the context of CAD using bone marrow trephine biopsy images, a

reliable measurement in the diagnosis of bone marrow diseases is the morphology of

42



(a) (b)

(c) (d)

Figure 3.1: Representative examples of bone marrow trephine histology images. The
MKs are contained within the yellow dotted rectangles. Note that MK cytoplasm is
often partially occluded by nearby cells, other cytoplasmic and non-smooth regions,
and their boundaries usually comprise weak edges.

43



megakaryocytes (MKs), which constitute a population of bone marrow resident cells

that are responsible for the production of blood platelets [1,13,20,21]. Compared to

other bone marrow cells, MKs usually have distinctive morphological features, like

large-sized nuclei and more well-defined cytoplasmic region (see Fig. 3.1). It is thus

of particular interest to perform a quantitative analysis of the morphological features

of MKs through the detection of the corresponding nucleus and delineation of the

cytoplasmic boundary. However, unlike the nucleus, the cytoplasm of MKs is often

partially occluded by nearby cells, other cytoplasm and other types of tissue, as

shown in Fig. 3.1. Moreover, the corresponding cytoplasmic boundary usually com-

prises weak edges (see Fig. 3.1 (c)). All these aspects make the task of delineating

MKs quite challenging.

There are many approaches applied into BM images [172,173]. For instance,

Huang et al. use fuzzy c-means clustering method and SVM classifier to detect

immature precursors for predicting the early stage of acute myelocytic leukemia

[173]. However, in BM trephine biopsy images, a very limited number of approaches

have been proposed for the specific cases of MKs. The method proposed by Ballaro et

al. [96,174] is a representative approach of obtaining MKs from BM trephine images.

They propose an unsupervised image analysis framework to detect and delineate the

nuclear and cytoplasmic regions of MKs by using morphological operations, pyramid

functions and shape detection [96, 174]. Their framework, however, requires that a

single MK be located in the center of the image and be surrounded by a smooth

region. In the majority of bone marrow trephine biopsy images we have collected,

however, MKs are usually surrounded by non-smooth regions depicting other types

of cells and non-MK cytoplasmic regions.

In this chapter, I propose a framework for delineation of MK nuclear and cy-

toplasmic boundaries based on a novel region-based level set model. The proposed

framework first employs color and texture features of different stain color channels

of the image in a supervised machine learning setting to delineate MK nuclei. It
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then employs a novel region-based active contour model, formulated as a level set

function, to delineate the corresponding cytoplasmic boundaries. According to the

assumption that the MK nuclei are usually surrounded by cytoplasm, the proposed

model incorporates the difference in intensity between internal and external regions

of the evolving contour across two deconvolved stain channels into an energy func-

tional to delineate the cytoplasmic boundary. I refer to this novel model as a dual-

channel active contour (DCAC) model. Extensive experiments with a large dataset

objectively compare the performance of the proposed model with other state-of-the-

art methods. I compare the proposed framework using a two-fold approach. First

I evaluate the delineation accuracy of my method against other supervised and un-

supervised methods. Second, I evaluate the accuracy of the proposed DCAC model

in segmenting the corresponding cytoplasmic regions against the Chen-Vese (CV)

model, the local binary filter (LBF) model, my basic circumscribing active contour

(CAC) model [175], and the multi-region active contour model in [139]. I show that

the proposed framework is capable of delineating MKs more accurately than other

methods. I particularly show that the DCAC model can identify the MK cytoplas-

mic boundaries with good segmentation accuracy (around 85%) even in challenging

cases where the MK cytoplasm has weak edges and is surrounded by non-smooth

regions.

The rest of the chapter is organized as follows. First, I describe the basic

framework with CAC model for MK delineation in Section 3.2. Then, in Section

3.3, I introduce the proposed framework for nuclear and cytoplasmic boundary de-

lineation and describe the proposed DCAC model in detail. In Section 3.4, I present

and discuss the experimental results and comparison with other methods. Finally,

I draw conclusions about the work presented in this chapter in Section 3.5.

45



3.2 The Basic Framework

In order to automatically delineate MK nuclei and cytoplasm region, I construct a

basic framework with an improved CV-based model. Fig. 3.2 illustrates each step

involved in the basic framework. The steps within the purple dashed box correspond

to pre-processing and MK nuclei delineation. The delineation of cytoplasmic bound-

aries is performed by the steps within the black dotted box. The initial contour used

by the basic CAC model is the boundary of the corresponding MK nucleus. All these

steps are described in detail in the remainder of this section.

3.2.1 Stain Normalization and Deconvolution

Bone marrow trephine biopsy slides are commonly dyed using the standard Hema-

toxylin and Eosin (H&E) stains. Color constancy in these images might be affected

by variations on the microscopy light levels, chemical coloring reactivity and staining

procedures. These factors may influence the image processing methods used to iden-

tify cellular structures. In order to minimize any negative effects on the delineation

of MKs, input images are first processed by stain normalization and stain deconvo-

lution. Stain normalization standardizes the stain color while stain deconvolution

separates the image into a number of channels that correspond to the stain used.

The latter allows analyzing each stain, or channel, separately. I employ a non-linear

mapping approach, which estimates stable stain matrices by using an image-specific

color descriptor and a robust color classification framework for a particular stain,

with channel statistics for stain normalization by using a source image, as proposed

in [42]. For stain deconvolution, I employ the stain color descriptor method also

proposed in [42] to separate the H&E stained images into two color channel images.

The H-channel image provides information about the position of MK nuclei, while

the E-channel image emphasizes other tissue constituents including the MK cyto-

plasm. An example of the output generated by the stain normalization and color
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Figure 3.2: The workflow of the framework with the basic CAC model.

Figure 3.3: Example results of stain normalization and color deconvolution process.
Input images are on the left, while output stain channel images are on the right.
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deconvolution process is shown in Fig. 3.3. I can observe that indeed, the H- and

E-channel images provide clear information about the regions depicting nuclei and

cytoplasm, respectively.

3.2.2 Megakaryocytic selection

After stain normalization and color deconvolution, I extract color features from the

image data to create the mask of nuclei. Here I consider two color features: gray-

scale channel and blue-red ratio of color hematoxylin channel obtained from stain

color descriptor method [42], which is the ratio of blue and red color channels and

provides a unique way to characterize nuclear pixels. A näıve Bayesian classifier,

which is based on applied Bayes theorem with strong independence assumptions,

is adopted to generate the nucleus mask by using these color features computed in

the H-channel image. The training data for the näıve Bayesian classifier are small

patches (10×10 pixels) depicting nuclei in the H-channel images. There are no

overlap between adjacent patches as no sliding window is used. These training data

is used to estimate the maximum likelihood value for predicting pixels belonging to

nuclei [176]. It is important to note that MK nuclei are similar in color and texture

to other nuclei, thus the obtained mask depicts all possible nuclei in the image. In

order to distinguish MK nuclei from other nuclei in the nuclei mask, I also generate

a binary mask depicting MK cytoplasm.

I observe that in the Eosin channel of bone marrow images, the color of

MK cytoplasm regions is very similar to other regions; however, the corresponding

texture is smoother than that of other regions. In order to compute the cytoplasm

mask, I employ an Adaboost classifier, which uses a number of weak classifiers and

combines them to form a strong and robust classifier. I use color and texture features

of the Eosin channel. Color features are simplified to the intensity level of the gray-

scale Eosin channel, which aid in distinguishing and emphasizing the background

regions. Texture features are computed using a log-Gabor filter with 6 scales and 10
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Figure 3.4: Intermediate samples of the process followed to identify MK nuclei in
the basic framework. Overlapping the masks of all nuclei and MK cytoplasm and
thresholding the size of nuclei are used to select potential MK nuclei.

orientations and a Gaussian pyramid function with an six-level pyramid [177]. Log-

Gabor filters are similar to the Gabor filter, which uses a Gaussian kernel function to

analyze any specific frequency content in specific direction in the image for texture

extraction and analysis, and can be constructed with arbitrary bandwidth for texture

measurement. In a Gaussian pyramid, each element of the pyramid represents a local

average obtained at a particular scales by Gaussian blurring and downsampling for

texture extraction and target localization. The Adaboost classifier is trained with

the obtained color and texture features from the image data. Here, in order to

avoid encountering an overfitting problem, I use a five-fold cross validation to train

the Adaboost classifier. The Adaboost classifier results on a probability map that

features high probability values in the smooth regions depicting cytoplasm in the

Eosin channel. I use a suitable thresholding value, which is evaluated and optimized

by cytoplasm training data, to localize the cytoplasm region in this map and to

generate the cytoplasm mask. Fig. 3.4 shows the intermediate process of selecting

MK nuclei.
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After I obtain the masks of nuclei and cytoplasm, I use these two masks to

identify the location of potential MKs. I overlap these two masks and calculate

the percentage of the region that each nucleus overlaps with the cytoplasmic area.

Here, I eliminate those nuclei that only have an overlap of less than 50 percent.

Those with an overlap equal or greater than 50% have a higher probability of being

the potential nuclei of MKs. I then keep only those nuclei that are larger than a

certain size, which is obtained by measuring the average size of the nuclei of MKs

in nuclear training data, since megakaryocytes tend to be larger than other bone

marrow cellular structures. Then I delineate the boundaries of the detected nuclei

from the binary mask of MK nuclei and further refine them using a simple region-

based active contour model. Specifically, I use the CV model, since MK nuclei are

usually smooth dark regions surrounded by another relatively smooth region, i.e. the

cytoplasm. The CV model includes four energy terms: length, area, internal region

intensity and external region intensity. The energy functional is then as follows:

F
(
c1, c2, C

)
= µLength

(
C
)

+ νArea
(
inside

(
C
))

+ λ1

∫
inside

(
C
) |I(x, y)− c1|2dxdy

+ λ2

∫
outside

(
C
) |I(x, y)− c2|2dxdy,

(3.1)

where C denotes the evolving contour, c1 and c2 are, respectively, the average in-

tensity of the regions inside and outside of C; I
(
x, y
)

denotes the pixel intensity

in the image at position (x, y), and µ, ν, λ1 and λ2 are constant parameters. The

last two energy terms in (3.1) are the internal and external region intensity terms,

respectively. These two terms are usually called as the external energy because they

generate an energy force from the image and not the contour itself. These terms con-

trol the contour’s movement externally. The evolving contour C can be represented

by the level-set function φ
(
x, y
)

[14,118], where φ
(
x, y
)
> 0 if the position

(
x, y
)

is

inside of C and φ
(
x, y
)
< 0 if the position

(
x, y
)

is outside of C. If position
(
x, y
)
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lies on C, φ
(
x, y
)

= 0. Let us define the evolving curve C in the image domain Ω.

The energy functional F
(
c1, c2, C

)
can then be formulated in terms of the level-set

function φ
(
x, y
)

as follows:

F
(
c1, c2, φ

)
= µ

∫
Ω
δ
(
φ
(
x, y
))
| 5 φ

(
x, y
)
|dxdy

+ ν

∫
Ω
H
(
φ
(
x, y
))
dxdy

+ λ1

∫
Ω
|I
(
x, y
)
− c1|2H

(
φ
(
x, y
))
dxdy

+ λ2

∫
Ω
|I
(
x, y
)
− c2|2H

(
1− φ

(
x, y
))
dxdy,

(3.2)

where the Heaviside function H
(
z
)
, Dirac delta function δ

(
z
)
, c1 and c2 are:

H
(
z
)

=


1, if z ≥ 0

0, if z < 0

(3.3)

δ
(
z
)

=
d

dz
H
(
z
)

(3.4)

c1 =

∫
Ω I
(
x, y
)
H
(
φ
(
x, y
))
dxdy∫

ΩH
(
φ
(
x, y
))
dxdy

(3.5)

c2 =

∫
Ω I
(
x, y
)
H
(
1− φ

(
x, y
))
dxdy∫

ΩH
(
1− φ

(
x, y
))
dxdy

. (3.6)

3.2.3 Circumscribing Active Contour Model

After segmenting and refining the boundary of nuclei, I detect the boundary of

cytoplasm as well. I use the detected nuclear boundary to be the initial contour

for the cytoplasm detection process in order to reduce the probability of incorrect

segmentation. Note that in the case of cytoplasm detection using CV model, the

region outside the contour may be highly heterogeneous, as it may depict other
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cellular structures. Since the energy term related to the external region can neg-

atively influence the detection process in cases where this external region is not

homogeneous, I restrict the outside region to a n-pixel thick ring area surrounding

the current evolving contour C. The optimal value n of ring area is set to 5 because

this width value of ring area can get enough neighboring color and texture features

and provides better performance of MK delineation. Fig. 3.5 illustrates the original

outside region Ω̃
(
C
)

used in CV model and the modified outside region Ω̃′
(
C
)

in

the CAC model.

In addition, I use the texture features provided by the probability map gen-

erated by the Adaboost classifier to assist the region-based active contour model

in detecting the boundary of cytoplasm. Specifically, apart from the regularizing

terms related to the length and area of contour C, and the external forces related

to the difference in intensities inside and outside contour C, I add two energy terms

related to the difference in cytoplasmic probabilities inside and outside C as two

extra external forces. Since the outside region in the proposed model is a ring sur-

rounding the desired object and the initial contour is the one obtained previously for

the corresponding nucleus, I call this model circumscribing active contour (CAC)

model. The energy functional is then defined as follows:

F
(
c1, c̄2, p1, p̄2, C

)
=µLength

(
C
)

+ νArea
(
C
)

+

∫
Ω
(
C
) ∣∣u0

(
x, y
)
− c1

∣∣2
+

∫
Ω̃′
(
C
) ∣∣u0

(
x, y
)
− c̄2

∣∣2 +

∫
Ωp
(
C
) ∣∣p0

(
x, y
)
− p1

∣∣2
+

∫
Ω̃p
′(
C
) ∣∣p0

(
x, y
)
− p̄2

∣∣2 ,
(3.7)

where Ω̃′
(
C
)

is new outside region that replaces the original outside region Ω̃
(
C
)
;

c̄2 is the mean intensity value of the new restricted outside region Ω̃′; Ωp is the

probability map of MK cytoplasmic texture; Ωp

(
C
)

and Ω̃p
′(
C
)

are the inside and

outside regions of contour C on the probability map, respectively; p1 and p̄2 are the
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Figure 3.5: The region outside of the current evolving contour C in CV model and
in the CAC model

mean cytoplasmic probability values of the inside and outside regions of contour C,

respectively; and p0(x, y) represents the cytoplasmic probability value at location

(x, y).

The detail energy functional of the proposed CAC model is derived from CV

model. I modify the outside region of the contour C to be restricted to a ring around

C. I also add texture features in the form of two extra energy terms based on the

probability map of cytoplasm:

F
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c1, c̄2, p1, p̄2, φ, φ

′) = µ

∫
Ω
δ
(
φ
(
x, y
)) ∣∣5φ(x, y)∣∣ dxdy + ν

∫
Ω
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(
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(
x, y
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dxdy
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∫
Ω

∣∣u0

(
x, y
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∣∣2H(φ(x, y))dxdy
+ λ2

∫
Ω

∣∣u0

(
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)
− c̄2

∣∣2(1−H(φ(x, y)))H(φ′(x, y))dxdy
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∫
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(
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∣∣2H(φ(x, y))dxdy
+ λ4

∫
Ωp

∣∣p0

(
x, y
)
− p̄2

∣∣2(1−H(φ(x, y)))H(φ′(x, y))dxdy,
(3.8)

∂φ
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µdiv
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u0 − c1

)2
+ λ2

(
u0 − c̄2

)2 − λ3
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p0 − p̄2

)2]
,

(3.9)
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where Ωp is the probability map, and λ1, λ2, λ3 and λ4 are the parameters controlling

the energy force of inside and outside regions in intensity and probability maps. c̄2

and p̄2 are the mean values of two new restricted outside regions in the intensity

and probability map images, respectively. These constants and φ′, which denotes

the boundary of the new restricted outside region, are calculated as follows:

c̄2 =

∫
Ω u0

(
x, y
)(

1−H
(
φ
(
x, y
)))

H
(
φ′
(
x, y
))
dxdy∫

Ω

(
1−H

(
φ
(
x, y
)))

H
(
φ′
(
x, y
))
dxdy

, (3.10)

p̄2 =

∫
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u0

(
x, y
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1−H
(
φ
(
x, y
)))

H
(
φ′
(
x, y
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dxdy∫

Ωt

(
1−H

(
φ
(
x, y
)))

H
(
φ′
(
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, (3.11)

φ′
(
x, y
)

= φ
(
x+ γ ~ηx, y + γ ~ηy

)
, (3.12)

~η
(
x, y
)

=
5φ
(
x, y
)∣∣5φ(x, y)∣∣ , (3.13)

where ~η
(
x, y
)

denotes the normal vector to the contour C and γ is a parameter

for setting the width of the new restricted outside region φ′. It is important to

emphasize that, by using a smaller outside region to define the external forces,

I avoid creating forces based on a highly heterogeneous external region depicting

different cellular structures, which may hinder the evolution of the contour to the

cytoplasm boundary.

However, this basic framework with CAC model still has the drawbacks in

MK delineation. For instance, the Adaboost classifier needs much time to be trained

and cannot efficiently identify the MK cytoplasm region because log-Gabor filter

may blur the difference between the nuclear region and cytoplasm region in Eosin

channel. In addition, CAC model are affected by this texture feature energy force,

which uses the cytoplasm probability map from the Adaboost classifier, and does

not efficiently and easily minimize the convergence energy. The results of MK cy-
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toplasmic boundaries have serious jitter shape because of the influence of texture

feature energy. In order to resolve these problems, I redesign an advanced frame-

work to efficiently and precisely delineate MKs. In order to resolve the problems of

the basic framework with CAC model, I propose another novel framework with a

novel AC model to delineate MKs.

3.3 The Proposed Framework

Fig. 3.6 graphically illustrates the steps involved in the proposed framework to

delineate MK nuclei and cytoplasm. The different sections between the basic and

proposed framework are MK nuclei delineation and the delineation of cytoplasmic

boundaries. The proposed AC model is performed by the steps within the red dotted

box. As same as the basic framework, the initial contour used by the proposed

DCAC model is the boundary of the corresponding MK nucleus. The details of

these two different parts in the proposed framework are described in this section.

3.3.1 Delineation of MK Nuclei

In proposed framework, I use the same approach [42] to do stain normalization and

color deconvolution for obtaining H- and E-stain channels. As same as the basic

framework, I first manually crop several small patches (10×10 pixels) from different

training H-channel images. These training patches depict MK nuclear regions, MK

cytoplasmic regions, other cytoplasmic regions and the background region, e.g., fat

tissue. I then use the näıve Bayesian classifier with color features extracted from

these H-channel training patches to generate a binary mask of all nuclei. Also,

in order to identify MK nuclei from other nuclei in the nuclei mask, I need to

generate a binary mask depicting MK cytoplasm. It is important to note that I apply

the scattering transform [178], which construct invariant, stable and informative

signal representations by scattering the signal information with a cascade of wavelet
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Figure 3.6: The workflow of the framework with the proposed DCAC model.

Figure 3.7: Example intermediate results of the process followed to identify MK
nuclei in the proposed framework. The masks of all nuclei and MK cytoplasm are
used to identify MK nuclei.
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Figure 3.8: An example initial contour and the corresponding inside region and the
nuclear boundary, Cn. The initial contour (in green) is obtained by dilating Cn (in
yellow).

modulus operators, on E-channel training images to extract texture features of MK

cytoplasm instead of log-Gabor filter and Gaussian pyramid. Scattering transform

extracts texture features of MK cytoplasmic region more efficiently than log-Gabor

filter and Gaussian pyramid do. After that, these features are used in another näıve

Bayesian classifier, which takes the place of Adaboost classifier, along with E-channel

color features to generate the cytoplasm mask. It is because Adaboost classifier takes

much time on training and has worse performance than näıve Bayesian classifier.

Since the MKs have larger cytoplasmic regions than other cells, I overlap these two

masks and measure the area surrounding each nucleus that overlaps a cytoplasmic

region in order to identify MK nuclei. In other words, I am interested in identifying

those nuclei surrounded by a large cytoplasm. Fig. 3.7 shows example intermediate

results of the process followed to identify MK nuclei. Then I also use the CV model

to refine the boundaries of the detected nuclei. To this end, the refined nuclear

boundary generated by employing the model in (3.2) serves as the initial contour

for the proposed DCAC model, which I use to delineate the corresponding MK

cytoplasm boundary.
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3.3.2 The Proposed Dual-Channel Active Contour Model

3.3.2.1 The External Energy Force

As I mentioned before, MK cytoplasm are usually relatively smooth regions partially

occluded by other tissues and surrounded by non-smooth regions, as shown in Fig-

ure 3.8. Based on this observation, my proposed DCAC model considers intensity

information of both the H- and E-channel images to delineate the boundary of MK

cytoplasm. Similar to the CV model, the proposed DCAC model also employs four

energy terms: length, area, internal region intensity and external region intensity.

It employs the corresponding previously delineated nuclear boundary as the initial

contour. The DCAC model, however, uses as the inside region of the evolving con-

tour C, the region inside of C excluding the nucleus. Therefore, the initial contour

is dilated by a small amount in order to define the initial region inside of C. I

denote the previously delineated nuclear boundary in terms of a level-set function

as Cn =
{(
x, y
)
| φn

(
x, y
)

= 0
}

. The proposed inside region intensity term, Fin, in

the DCAC model is then given by:

Fin
(
c′1, φ

)
=

∫
inside

(
C
)
−inside

(
Cn
) |I(x, y)− c′1|2dxdy

=

∫
Ω
|I
(
x, y
)
− c′1|2

(
Ĥ
(
φ
(
x, y
)
, φn
(
x, y
)))

dxdy,

(3.14)

where the function Ĥ(a, b) is defined as the difference of two Heaviside functions:

Ĥ
(
a, b
)

= H
(
a
)
−H

(
b
)
, (3.15)

and the inside mean value c′1 is defined as:

c′1 =

∫
Ω I
(
x, y
)
Ĥ
(
φ
(
x, y
)
, φn
(
x, y
))
dxdy∫

Ω Ĥ
(
φ
(
x, y
)
, φn
(
x, y
))
dxdy

. (3.16)

58



The energy function in (3.14) assumes a relatively smooth region, which is true

as long as the inside region of C represents exclusively the cytoplasm. Under this

assumption, the energy term in (3.14) is then minimized when the inside region of

C exclusively comprises the MK cytoplasm. An example initial contour and the

corresponding inside region and Cn are depicted in Fig. 3.8.

It is worth recalling that the outside region intensity term of the CV model

in (3.2) is expected to be minimized when the pixels intensities in the outside region

are similar to the value c2 (see (3.1)). In the DCAC model, I assume that the

outside region is non-smooth and, therefore, several pixels in this outside region are

likely to be dissimilar to the value of c2. However, I expect that when the contour is

located in the cytoplasmic boundary, the pixels in the outside region are sufficiently

different from the mean of the inside region, i.e. c′1 in (3.16). In other words, I

expect that the integral
∫
outside

(
C
) (I(x, y)− c′1)2 results in a large value when the

contour is located at the cytoplasmic boundary. Based on this observation, I use

this large difference between pixels in the inside region of C (i.e., those depicting

the MK cytoplasm) and those in the outside region of C to be the outside region

intensity term. To this end, I introduce a maximum intensity difference value, MD,

in the outside region intensity term to help the contour to expand and accurately

detect the cytoplasmic boundary:

MD = max
{
|I
(
x, y
)
− c′1|

}
. (3.17)

The proposed outside region intensity term in the proposed DCAC model is then

given as follows:

Fout
(
c′1, φ,MD

)
=

∫
Ω
|MD − |I

(
x, y
)
− c′1||2×(

1−H
(
φ
(
x, y
)))

dxdy.

(3.18)

According to (3.18), Fout is expected to be minimized when the difference
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between pixels in the region outside of C and c′1 is sufficiently large and close to

MD. Therefore, MD represents the maximum difference between a pixel in the

region outside of C and c′1, under the assumption that the outside region of the

evolving contour is non-smooth, which is the case when detecting MK cytoplasm in

bone marrow trephine biopsies. The proposed external energy force in the DCAC

model is then defined as follows:

Fex
(
c′1, φ,MD

)
= λ1

∫
Ω
|I
(
x, y
)
− c′1|2×(

Ĥ
(
φ
(
x, y
)
, φn
(
x, y
)))

dxdy

+ λ2

∫
Ω
|MD − |I

(
x, y
)
− c′1||2×(

1−H
(
φ
(
x, y
)))

dxdy.

(3.19)

3.3.2.2 The External Energy Force on Stain Channel Images

In order to improve the delineation accuracy of the cytoplasmic boundary using the

external energy force in (3.19), I employ intensity information from the two stain

channel images. As discussed earlier, the H-channel image usually shows the position

of nuclei very clearly while the E-channel image is usually useful to discriminate

between cytoplasm and other tissues. I take advantage of this and define the external

force in (3.19) for each of these two channel images:

Fex H

(
c′H , φ,MD

)
= λ1

∫
Ω
|IH
(
x, y
)
− c′H |2×(

Ĥ
(
φ
(
x, y
)
, φn
(
x, y
)))

dxdy

+ λ2

∫
Ω
|MDH − |IH

(
x, y
)
− c′H ||2×(

1−H
(
φ
(
x, y
)))

dxdy,

(3.20)
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Fex E

(
c′E , φ,MD

)
= λ1

∫
Ω
|IE
(
x, y
)
− c′E |2×(

Ĥ
(
φ
(
x, y
)
, φn
(
x, y
)))

dxdy

+ λ2

∫
Ω
|MDE − |IE

(
x, y
)
− c′E ||2×(

1−H
(
φ
(
x, y
)))

dxdy,

(3.21)

where c′H and c′E are the average intensity values of the inside regions of C in the

H-channel image, denoted by IH
(
x, y
)
, and E-channel image, denoted by IE

(
x, y
)
,

respectively. MDH and MDE denote the MD values for the H- and E-channel

images, respectively. Fig. 3.9 illustrates how the H- and E-channel images can help

the evolving contour to detect the extent of the MK cytoplasmic region. In order

to accurately differentiate MK cytoplasmic regions from other non-MK cytoplasmic

regions, I use either the external energy force in (3.20) or in (3.21) based on the

channel that provides the most discriminative information. To this end, I define a

binary weight W as follows:

W
(
c′H , c

′
E

)
=


1, if |IH

(
x, y
)
− c′H | ≥ |IE

(
x, y
)
− c′E |

0, otherwise

. (3.22)

The binary weight W considers the difference between pixels and the mean

intensity of the region inside of C in each stain channel image. I use this binary

weight to select the stain channel image that provides the largest difference. This is

based on the observation that the H- and E-channel images provide distinct bound-

ary information. The H-channel image emphasizes the nuclear boundaries more

strongly than the E-channel image. On the other hand, the E-channel image em-

phasizes the cytoplasmic boundaries more strongly than H-channel image. This

allows us to accurately control the contour’s expansion towards the MK cytoplas-

mic boundary and accurately minimize the external energy term. It is important to

note that if W is defined as a weight that can take any value in the range [0, 1], the
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Figure 3.9: The upper row shows how the difference between pixel values and cH is
larger on the H-channel image than on the E-channel image. This helps to stop the
evolving contour when encountering other nuclei outside the cytoplasmic regions.
The bottom row shows how the E-channel image can be used to efficiently distinguish
between the MK cytoplasmic region and other non-MK cytoplasm region different
from nuclei. In other words, if the energy force of H-channel image is larger than
that of E-channel image, the evolving contour will be stopped on the boundary
of the nucleus by the energy force of H-channel image (upper row). If the energy
force of E-channel image is larger than that of H-channel image, the energy force of
E-channel image will control the evolving contour stopping on the boundary of non-
MK cytoplasm region, like background (button row). When the difference between
the energy force of H-channel image and the energy force of E-channel image is quite
small, the evolving contour will stop moving.
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result would again mix the information provided by the H- and E-channel images,

thus defeating the purpose of channel deconvolution. Combining the external energy

forces as defined for the two stain channel images with binary weight W
(
c′H , c

′
E

)
,

the external energy force is then given as follows:

Fex total = W
(
c′H , c

′
E

)
Fex H +

(
1−W

(
c′H , c

′
E

))
Fex E . (3.23)

In order to prevent over-segmentation of non-MK cytoplasmic regions in the

outside region of C, I restrain the contour’s expansion to those pixels located in a

ring-like region surrounding C. The boundary of this ring-like region is given by:

φγ
(
x, y
)

= φ
(
x+ γ−→ηx, y + γ−→ηy

)
, (3.24)

−→η
(
x, y
)

=
5φ
(
x, y
)

| 5 φ
(
x, y
)
|
, (3.25)

where the parameter γ controls the width of the ring-like region and −→η
(
x, y
)

denotes

the normal vector of the expanding contour. An example of this ring-like region is

shown in Fig. 3.10. The complete set of forces in the DCAC model is then as follows:

Ftotal = µ

∫
Ω
δ
(
φ
(
x, y
))
| 5 φ

(
x, y
)
|dxdy

+ ν

∫
Ω
H
(
φ
(
x, y
))
dxdy

+ Fex totalĤ
(
φγ
(
x, y
)
, φ
(
x, y
))
.

(3.26)

It is important to note that the ring-like expansion, φγ , in conjunction with Fex total

play key roles to help the contour to efficiently and accurately conform to the cy-

toplasmic boundary. It is also important to note that if the contour encapsulates

smooth cytoplasm from neighboring cells, and not only the smooth cytoplasm from

the MK to be delineated, Fout in (3.18) may still be a valid force making the contour

evolve. In this case, the internal energy terms in (3.26) help to prevent these types

of leakages.
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The energy functional in (3.26) can be minimized with respect to φ by de-

ducing the associated Euler-Lagrange equation for φ as follows:

∂φ

∂t
= δ
(
φ
){
µdiv

(
5φ
| 5 φ|

)
− ν −

(
δ
(
φγ
)
− δ
(
φ
))
×[

W
(
c′H , c

′
E

)(
λ1

(
IH − c′H

)2
− λ2

(
MDH − |IH − c′H |

)2)
+
(
1−W

(
c′H , c

′
E

))(
λ1

(
IE − c′E

)2
− λ2

(
MDE − |IE − c′E |

)2)]}
(3.27)

where div
(
·
)

is the divergence operator. The contour’s expansion is terminated if

the following criterion is met:

1∫
1
(
F jtotal

(
x, y
)
> T

)
dxdy

×(
|
∫
φj>0

F jtotal1
(
F jtotal

(
x, y
)
> T

)
dxdy

−
∫
φj−1>0

F j−1
total1

(
F jtotal

(
x, y
)
> T

)
dxdy|

)
< τ

(
α

√
γ

5

)2
,

(3.28)

where τ is the time step, φj denotes the jth iteration of the evolving curve, F jtotal

is the total energy in the jth iteration, Ftotal
(
x, y
)

is the total energy at the pixel(
x, y
)
, 1
(
x
)

is the indicator function and T is a threshold value to discard those

pixels that feature very low energy values. In this work, I set the stop parameter

α to 0.06 and the threshold value T to 0.5 based on several experiments. These

values guarantee that the total energy difference between two consecutive iterations

is minimal. Finally, after the cytoplasmic boundary is delineated using the DCAC

model, I use the cubic spline interpolation with Gaussian smoothing as the refine-

ment kernel [179] to smooth its shape.
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Figure 3.10: An example evolving contour and the corresponding ring-like region.
The green contour denotes the evolving contour C; the blue dashed contour denotes
the cytoplasmic boundary; the yellow contour denotes the nuclear boundary, Cn;
and the red dashed contour denotes the ring-like region boundary.

3.4 Experimental Results

Three sets of experiments were performed. The first one evaluates the accuracy of

MK nuclei detection as described in Section 3.3.1. The second experience evaluates

the performance of the DCAC model to delineate MK cytoplasmic boundaries as

compared to other region-based level-set methods. And the third one evaluates my

complete framework against the multi-region active contour in [139], which allows

delineating the nuclear and cytoplasmic boundaries simultaneously. All results are

obtained using 50 images of bone marrow trephine biopsies digitized at 40× mag-

nification objective using the Omnyx VL120 digital slides scanner installed at the

University Hospital Coventry and Warwickshire (UHCW), UK.

3.4.1 Evaluation of MK nuclei detection

I compare my MK nuclei detection method with an automatic unsupervised MK

detection framework [96, 174], which I implemented in Matlab, and my supervised
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Table 3.1: MK nuclei detection accuracy of three evaluated methods

Framework Precision Recall F1-score

Ballaro’s method [96,174] 0.84 0.5 0.6269

Supervised framework of CAC [175] 0.7 0.875 0.7758

Proposed MK nuclei detection method 0.86 0.833 0.8518

MK nuclei detection method previously proposed in [175], which uses an Adaboost

classifier to generate the cytoplasm mask. I use 50 bone marrow trephine images,

including 73 megakaryocytes, of early-stage ET and PMF diseases in this evaluation;

50% of the images are used for training and 50% for testing. Table 3.1 tabulates

results in terms of precision, recall and accuracy for the three methods. Precision is

the percentage of selected MK nuclei that are correct and Recall gives the percentage

of selected correct MK nuclei in all ground truth of MK nuclei. The F1-score is

the harmonic mean of Precision and Recall and is computed as 2 × Precision ×

Recall/
(
Precision + Recall

)
. Results in Table 3.1 are computed using manually

annotated ground truth provided by a pathology trainee and a senior pathologist

(Dr. H. EIDaly) from the Addenbrookes Hospital, UK.

The proposed MK delineation method provides an accuracy of 85%, attaining

the best performance. It is important to emphasize that the automatic unsupervised

framework (Ballaro’s method) in [96, 174] is limited to identify the MKs that are

closest to the center of the input image. Therefore, that method can only identify

one MK nucleus per image. If the MK is located far from the image center with

several other large overlapping structures, that framework is likely to obtain an

incorrect result. My MK nuclei detection method, on the other hand, is capable of

identifying several MK nuclei regardless of their position in the image. Although my

previous supervised framework can provide good accuracy in identifying MK nuclei,

the Adaboost classifier requires long times to process the texture of cytoplasm. The

proposed method in this work can identify MK nuclei more efficiently with shorter

computational times.
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Table 3.2: Parameters of the evaluated models

AC models
Paramters

µ ν λ1 λ2 λ3 λ4 σ d γ

CV [14] 0.2 0 1 1 — — — — —

LBF [128] 0.2 0 1 1 — — 3 — —

CAC [175] 0.2 0 1.5 1 1.5 1 — — —

Multi-region model [139] — — 2/0.25 1.05/0.6 — — — 10/10 —

Proposed DCAC model 0.2 0 1 1 — — — — 5

3.4.2 Evaluation of the Proposed DCAC Model

¡return¿

As explained in Section 3.2, I expand the delineated nuclear boundary and

use this as the initial contour for the proposed DCAC model. The delineated nu-

clear boundary is dilated by 3 pixels. This guarantees that the inside region of

initial contour includes cytoplasm. For this evaluation, I use 40 MK cases in 30

images. Manually annotated ground truth data depicting MK nuclear and cyto-

plasmic boundaries are provided by a junior trainee and a senior pathologist. Fig.

3.11 shows four sample visual results obtained by the DCAC model. Note that

the identified cytoplasmic boundaries cover most of the ground truth cytoplasmic

region.

I compare the proposed DCAC model with Ballaro’s method [96, 174], and

the CV, the LBF, and the CAC models. These last three models are all region-based

level-set methods. For all evaluated models, I use the same initial contour and post-

processing to delineate and refine the shape of the MK cytoplasmic boundaries.

In order to provide a fair comparison, the parameters of the region-based level-

set methods are set to those values that provide the best performance on the MK

dataset (see Table 3.2). For the CAC model, λ3 and λ4 denote the parameters

of internal and external texture energy forces, respectively. The local region in the

LBF model is generated using the Gaussian kernel with σ = 3. In the DCAC model,

I set the width of the ring-like region to γ = 5 pixels. The ring-like region should be
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(a) (b)

(c) (d)

Figure 3.11: Visual results of the proposed DCAC model for identification of MK
cytoplasmic boundaries. Yellow contours denote the segmented nuclear boundaries
by the CV model. This boundary is used as the initial contour in the proposed model
after dilating them. Green contours denote the identified cytoplasmic boundaries.
Blue dashed contours denote the ground truth as manually annotated.
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CV [14]

DICE=0.4036 DICE=0.3733 DICE=0.3514
JC=0.2528 JC=0.2295 JC=0.2131

LBF [128]

DICE=0.4031 DICE=0.3733 DICE=0.3503
JC=0.2517 JC=0.2295 JC=0.2126

CAC
[175]

DICE=0.7836 DICE=0.6299 DICE=0.7092
JC=0.6751 JC=0.4714 JC=0.5706

DCAC

DICE=0.8868 DICE=0.9168 DICE=0.8566
JC=0.7965 JC=0.824 JC=0.7492

Figure 3.12: Visual results of CV model (first row), LBF model (second row), CAC
model (third row) and DCAC model (fourth row). The yellow line denotes the initial
contour; the green line denotes the final result and the blue dashed line denotes the
ground truth.
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wide enough to provide enough information to compute the external energy force.

Empirical evaluations on the test images show that a width of γ = 5 pixels provides

a high delineation accuracy.

The time step τ is set to 0.99 for all evaluated models. I use up to five

hundred iterations. It is important to mention that all evaluated models, except

for the LBF model, have a criterion to stop the evolution process [14, 128]. Fig.

3.12 shows visual results of the four models for four MKs in different images, as

compared to the ground truth. Note that the proposed DCAC model visually attains

a better performance than the other three models, particularly when the MK is

surrounded by a non-smooth region. According to Fig. 3.12, the CV and LBF

models fail to detect the cytoplasmic boundary as the evolving contour does not

achieve convergence and shrinks back to the original contour. Let us recall that the

CV model attempts to minimize the difference between the energy associated with

the internal and external regions of the evolving contour. However, if the external

region is non-smooth, the corresponding force may cause the contour to shrink

back to the initial contour. The LBF model considers the local region surrounding

the evolving contour to reduce any negative effects associated with non-smooth

regions. However, the results show that the evolving contour of the LBF model

also shrinks back to the initial contour (see Fig. 3.12). This is mainly due to

the fact that the inside region of the evolving contour includes the highly smooth

nuclear region, and therefore, the energy term associated with the outside region is

overwhelmed by the inside region force, forcing the contour to shrink back. Note

that although the CAC model is capable of expanding the evolving contour towards

the cytoplasmic boundary, it results in over-segmentation due to the difficulty of

converging within the non-smooth region surrounding the MK cytoplasm and the

similarity in intensities between the MK cytoplasm and other tissues surrounding

it.

To quantitatively evaluate the performance of these four models, I use the
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Dice similarity coefficient (DICE) and the Jaccard coefficient (JC), which measure

the similarity between the ground truth and the delineated areas. DICE and JC

values are zero for the worst delineation results and one for perfect delineation.

These two coefficients can estimate the similarity between the ground truth and the

segmented images. The formulation of Dice similarity coefficient is given as:

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y | (3.29)

and Jaccard coefficient (JC) can be written as:

JC(X,Y ) =
|X ∩ Y |
|X ∪ Y |

, (3.30)

where X and Y represent the cytoplasmic regions of the ground truth and the seg-

mented results respectively. Table 3.3 lists the average, minimum and maximum

DICE and JC values for all test images. Note that the proposed DCAC model

provides better performance than that attained by Ballaro’s method, mainly be-

cause their method uses morphological processing steps that may not be suitable

for segmenting inhomogeneous or non-smooth regions. Table 3.3 also gives the av-

erage number of iterations and average computational time at which each model

achieves convergence according to their stop criterion. I can see that the proposed

DCAC model attains better performance than the other three evaluated models,

with average DICE and JC values of 0.8509 and 0.73, respectively. As expected,

the CV and LBF models obtain similarly low average DICE and JC values (0.3599

and 0.2328, respectively) because their evolving contours tend to shrink back to the

initial contour when the outside region surrounding the cytoplasm is non-smooth,

as previously discussed. This table also shows that the average number of iterations

and computational time required by the DCAC model is lower than that required

by the other evaluated models. This shows that the forces employed by the pro-

posed model can help the evolving contour to quickly reach the desired boundary
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Table 3.3: Average of accuracy, number of iterations and run times of Ballaro’s
method and four evaluated active contour models for delineating MKs

AC models Avg Std Min Max Iteration Time(sec)

Ballaro’s method [96,174]
DICE 0.5266 0.1383 0.3355 0.7679

— —
JC 0.369 0.1337 0.2015 0.6232

CV [14]
DICE 0.3599 0.1354 0.0394 0.7237

452.1 54.5
JC 0.2328 0.1625 0.0201 0.5671

LBF [128]
DICE 0.3583 0.1348 0.0394 0.7218

500 61.2
JC 0.2312 0.1618 0.0201 0.5658

CAC [175]
DICE 0.6482 0.1178 0.5215 0.8215

383.6 48.7
JC 0.5215 0.1481 0.3862 0.6972

Proposed DCAC model
DICE 0.8509 0.0715 0.6712 0.9437

187.3 24.4
JC 0.73 0.0938 0.557 0.8947

and achieve convergence.

It is important to recall that the proposed DCAC model employs the ring-

like region to reduce any negative effects of the non-smooth regions surrounding the

MK cytoplasm on the contour’s expansion. This idea is similar to the narrow-band

active contour model in [180,181], with the main difference being that I only consider

the outside ring-like region to restrict the external energy force. Although this ring-

like region efficiently prevents over-segmentation, there may still be leakages as the

proposed model uses global features obtained from the deconvolved stain channels,

which may still depict cytoplasmic regions with weak edges. Local information,

such as gradient value or orientation, will be introduced to improve the DCAC

model [182]. This part will be considered to add in further work.

3.4.3 Comparison with Multi-Region Active Contour Model

I also compare the entire proposed framework with the multi-region active contour

model in [139] using the images and ground truth used in the second experiment.

The multi-region active contour model allows delineating the nuclear and cytoplas-

mic boundaries simultaneously. Since the parameters in this model should be man-

ually set for each image, I use a set of optimal parameters that provide the best

performance for all the test images. The values of these parameters are given in
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Table 3.4: Segmentation accuracy of the proposed framework and the multi-region
active contour model for MK cell, nuclear and cytoplasmic regions

Active contour models Cell Nuclei Cytoplasm

Multi-region model [139]
DICE 0.8706±0.0339 0.7103±0.1902 0.7485±0.0822

JC 0.7542±0.0821 0.5676±0.1776 0.586±0.1017

Proposed DCAC model
DICE 0.8829±0.03 0.9599±0.0452 0.8557±0.0448

JC 0.7836±0.0569 0.9262±0.0799 0.7417±0.0681

Table 3.2. I use the same post-processing to smooth the shape of detected MK

cytoplasmic boundary in both evaluated methods. Fig. 3.13 shows visual results of

the two methods for five MKs in different images.

I also employ DICE and JC to quantify the accuracy of my entire framework

and the multi-region active contour model in delineating MKs, including nuclear and

cytoplasmic regions individually. These quantitative results are listed in Table 3.4.

According to Table 3.4 and Fig. 3.13, both models can obtain very similar results

for cell delineation, but the proposed framework provides better performance for the

case of individual nucleus and cytoplasm delineation. The accuracy level attained

by the multi-region model for nucleus delineation may be due to the fact that this

model simultaneously segments two regions by calculating the geometrical constraint

energy terms for each region, which result in one contour’s movement affecting to

the other’s. In other words, this model favors similar shapes for both contours. It is

important to mention that in [139], the authors also propose a model that does not

favor similar shapes (i.e., it is oblivious to the shapes). This model may improve the

accuracy of nucleus and cytoplasm delineation, especially if these regions are delin-

eated by strong edges. The proposed framework delineates nuclear and cytoplasmic

boundaries as two separate but consecutive steps. Moreover, the proposed DCAC

model collects information from the H- and E-channel images to efficiently control

the contour’s movement towards the cytoplasmic boundary. The two channel im-

ages provide information to compute the external energy force required to efficiently

differentiate MK cytoplasmic regions from other tissue constituents. This helps to
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Proposed Model MRAC [139]

DICE(Cell)=0.9227 DICE(Cell)=0.8766
DICE(Cyto)=0.9031 DICE(Cyto)=0.7532

DICE(Cell)=0.9004 DICE(Cell)=0.9161
DICE(Cyto)=0.888 DICE(Cyto)=0.8532

DICE(Cell)=0.9295 DICE(Cell)=0.9265
DICE(Cyto)=0.9152 DICE(Cyto)=0.8347

DICE(Cell)=0.8354 DICE(Cell)=0.8105
DICE(Cyto)=0.8121 DICE(Cyto)=0.7352

DICE(Cell)=0.894 DICE(Cell)=0.8722
DICE(Cyto)=0.8771 DICE(Cyto)=0.7757

Figure 3.13: Visual results of my entire proposed framework (left column) and the
multi-region active contour model (right column) for delineation of MK nuclear and
cytoplasmic boundaries. Yellow contours denote the identified nuclear boundaries;
green contours denote the identified cytoplasmic boundaries; red and blue dashed
contours denote the ground truth of nuclear and cytoplasmic boundaries, respec-
tively.
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control the contour’s expansion and prevent oversegmentation.

3.5 Summary

In this chapter, I presented a framework to delineate megakaryocytes (MKs) in

bone marrow trephine histology images. The framework first delineates MK nuclei

by using color and texture features in a supervised machine learning approach. To

delineate MK cytoplasm, the framework uses a novel dual-channel active contour

(DCAC) model that employs the previously delineated nuclear boundary as the ini-

tial contour, as well as intensity features of the constituent stain channel images.

Specifically, the proposed DCAC model employs the Hematoxylin and Eosin chan-

nel images to efficiently determine the extent of MK cytoplasm under the observa-

tion that the cytoplasm is usually surrounded by non-smooth regions. The DCAC

model also uses a ring-like region to restrict the contour’s evolution and prevent

over-segmentation. Experimental results show that the proposed framework can ac-

curately delineate both MK nuclei and cytoplasm, providing more accurate results

with low variability and computational time than those obtained by recent methods.

I showed that the proposed DCAC model is particularly successful in delineating MK

cytoplasmic boundaries delimited by weak edges and partially occluded by nearby

cells or other non-MK cytoplasmic regions. After efficiently delineating MKs by the

proposed framework with DCAC model, the various types of non-MK stem cells

attract my attention. I would like to identify and realize these non-MK cells to

look for potential clues or specific features for helping pathologists find important

criteria of distinguishing ET and prefibrotic PMF.
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Chapter 4

Cell Detection via Hybrid Deep

Autoencoder

4.1 Introduction

In bone marrow diseases, the hematopoietic cells proliferate abnormally and quan-

titative measurement of cells is an essential diagnostic tool for pathological mea-

surements that help distinguish different types of bone marrow diseases in routine

clinical diagnosis. As I mentioned before, inter-observer variability exists among

histopathologists for MPNs diagnosis [13]. Moreover, this study [13] points out the

low individual inter-observer agreement not only on MK cellularity criteria but on

other types of bone marrow cells, such as erythroid and myeloid cells. However,

quantitative estimation of these non-MK bone marrow is largely subjective and

manual quantification is laborious and hugely time-consuming [101, 183]. In order

to address and overcome these challenges, automated cell detection is an important

step in the quantification of cell based-experiments but is a difficult task, especially

due to the complicated cellular characteristics of histopathological images. Most

current nuclear or cell detection methods are based on exploiting low-level hand-

crafted features [29], such as color, edge, contextual information, and texture; they
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Figure 4.1: Many examples of bone marrow hematopoietic stem cells (40×). We
observe that there are different types of cells densely mixing and randomly dis-
tributed in bone marrow tissue. Green and yellow arrows point out erythroid cells
and myeloid cells, respectively. Some specific shaped myeloid cells are shown in
yellow circles.

rely on the shape of nuclei and stability of features. However, in bone marrow

trephine specimens, as can be seen in Fig. 4.1, there are a large number of different

types of cells mixing, which have variable sizes, shapes and textures. Hence, I need

to develop algorithms for automated detection of bone marrow cells that take into

account this variability.

In this chapter, I present a novel hybrid deep learning approach to detect

these various cells in bone marrow biopsy images based on a novel deep autoencoder

(AE). The proposed hybrid deep learning approach is based on two premises: (a)

an object (nucleus or cell) with irregular shape can be represented as a Gaussian-

like model to identify the center point in probability response map of the object,

and (b) the original object can efficiently convert to its corresponding Gaussian-like

labeled map and the center of the object can be predicted according to the prop-

erties of a specialized Gaussian model. The proposed deep learning network first

estimates the properties of training data to generate the corresponding probability

response map by using curve-support Gaussian model, which can help us to cater
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for irregular-shaped cell or nuclear detection. Then I construct a hybrid AE-based

network, named hybrid deep AE (HDAE), trained by using the input images and

the corresponding probability responses to directly convert an input image to its

predicted probability response map, which represents the center location based on

a Gaussian-like model. Finally, I use a post-processing step to find the high proba-

bility values as local maximal points to obtain the centroids of the cells. I compare

the proposed method with other common and state-of-the-art approaches of nu-

clei detection, and the proposed method provides better performance of detection

than others. The proposed approach uses a small patch instead of the whole image

to train the networks because a small patch efficiently provides the local essential

characteristics of a single object to link to the corresponding curve-support Gaussian

shape for spatially locating the center of the object.

The organization of this chapter is as follows. The Section 4.2 describes the

proposed approach in detail, and experimental results and discussion are presented

in Section 4.3. The conclusion is in Section 4.4.

4.2 The Proposed Method

The proposed approach utilizes a curve-support Gaussian model [184] to generate

the probability label dataset corresponding to the input images. Then I design

an unsupervised HDAE network to obtain the probability response map, which

emphasizes the centroid response of each cell. I then use a post-processing step to

identify the local maximal probability response as the center point of a cell.

4.2.1 Curve-Support Gaussian Model

Gaussian model is widely applied to nucleus and cell detection because the repre-

sentation and properties of Gaussian are quite similar to that of round nucleus and

cell. For irregularly shaped cells, the Gaussian model cannot efficiently reflect their
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morphological properties. For resolving this issue, I employ the curve-support Gaus-

sian model [184] to generate the probability response map. Curve-support Gaussian

method has been used to detect the irregular shapes or ridges of biological structures,

such as dendritic trees and corneal nerve fibers [184]. This model simultaneously

takes into account rotation, scale and curvature to relax shape assumptions for ac-

curately representing target structures. Here, for generating corresponding training

label data, I use this model to represent the probability response map of different

shapes of cells under the observation that the peak of a curve-support Gaussian

corresponds to the centroid of cell, similar to the case of a Gaussian. From each

input training patch, I can estimate the morphological properties to reconstruct

the curve-support Gaussian probability response map. The formulation of a curve-

support Gaussian model is as below:

CG
(
x̂, ŷ;σ, θ, k

)
=

1√
2πσ2

x

e
− x̂2

2σ2x
1√

2πσ2
y

e
−

(
ŷ+kx̂2

)2
2σ2y , (4.1)

x̂ = xcosθ − ysinθ, ŷ = xsinθ + ycosθ, (4.2)

where k controls the level of curve of the Gaussian. The first term of Eq. 4.2 controls

the longitudinal Gaussian profile of the model, while the second term controls the

cross-sectional Gaussian profile. When the parameter k increases, the curve of the

Gaussian becomes steeper. Fig. 4.2 shows the sample process that input training

patches convert to their corresponding probability maps via curve-support Gaussian

model with different levels of curve and orientation. In Fig. 4.2, there are two

steps to generate a hand-crafted curve-support Gaussian label map according to

its input images. First, I manually capture the shape of individual nucleus or cell

and obtain the binary map. Then I estimate the parameters that curve-support

Gaussian model uses from these binary maps to reconstruct them to curve Gaussian

responses as the training probability maps.
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Figure 4.2: Some examples of input images and corresponding probability maps
by using the curve-support Gaussian model. The parameter k controls the level of
curvature. When k increases, the level of curvature becomes bigger. In addition,
the parameter θ manages the orientation of curve-support Gaussian model. In the
bottom right, there are some probability maps generated by combining different k
and θ.
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4.2.2 Training of Encoder and Decoder networks

The proposed network is inspired by the coupled network [185], which is based on

the transformation of low-resolution images into high-resolution images. Similar to

the concept of the coupled network, the proposed HDAE network converts the input

image to the probability response map for identifying the centroids of cells. At first,

I am going to generate the high-level features of input images and probability maps.

As I mentioned in Section 2.2.3.2, AE is a kind of unsupervised learning method and

is usually used to extract a high-level compressed representation by encoding input

data. Here I build two different AE networks for obtaining the high-level features

of input images and probability maps, respectively. According to the properties of

AE, encoding section extracts high-level features from the original input data and

decoding section reconstructs these features back to original input data. Formally,

given a set of samples X = [x1, x2, ..., xN ] and a set of probability response maps

Y = [y1, y2, ..., yN ], the formulations of encoding and decoding sections in these two

AE networks are shown as: 
hIi = f

(
WlIxi + blI

)
x̂i = f

(
W ′
lI
hIi + b′

lI

) (4.3)


hPi = f

(
WlP yi + blP

)
ŷi = f

(
W ′
lP
hPi + b′

lP

)
,

(4.4)

where the two AEs generate the hidden representations hI and hP , which are in-

trinsic representations of input AE NI and probability label AE NP , f
(
•
)

is the

activation function, which is set as a sigmoid function, lI and lP represent the num-

ber of layers in NI and NP , respectively, W and b are the weight matrix and bias

terms in the encoding section, respectively, while W ′ and b′ denote the same in the

decoding section.
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4.2.3 The Connecting Layer

After obtaining the high-level representation of both AE networks for input data

and corresponding probability maps, I need a layer to connect the two networks.

Here I notice that the input hidden representation hI and the probability hidden

representation hP are similar because input images and corresponding probability

response maps essentially represent the same objects. In order to connect these high-

level features, according to the properties of AE, another network is constructed to

extract and emphasize more important and related high-level features between these

two feature representations. This network is built by AE and end-to-end neural

networks and called the connect network NC . The formulation of the end-to-end

connect network in NC is as follows:


hci = f

(
Wch

I
i + bc

)
ĥPi = f

(
W ′ch

c
i + b′c

)
,

(4.5)

and the AE in NC is shown as:


hl
C

i = f
(
WlCh

c
i + blC

)
ĥl
C

i = f
(
W ′
lC
hl
C

i + b′
lC

)
,

(4.6)

where hc is the hidden representation of the end-to-end NN in NC network and

ĥP is the reconstructed hidden representation of the probability response map. hl
C

represents the hidden features of AE in NC and lC is the number of layer in the AE

of NC network. The AE structure in NC network is used to strongly connect similar

feature responses between hc and hP and to reduce the influence of unnecessary and

non-significant features. The loss function of the connect network is as follows:

Lossc =
∑
i

‖hPi − ĥPi ‖
2. (4.7)
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The purpose of the connect network NC is to encode the hidden representa-

tion of input images and then convert them to the hidden representation of prob-

ability response maps. Here I note that the AE in connect network NC maintains

decoding section to the entire connect network. The AE layer in the NC network is

useful to capture much similar high-level features from the two high-level features

layers and strengthen the processing of converting from input images to probability

map. Fig. 4.3 shows each network component in the proposed network.

4.3 Hybrid Deep Autoencoder

Currently, I have obtained three AE networks NI , NP , and NC . For the purpose

of constructing the AE-based transformation model, I capture the encoder from

the AE NI and the decoder from the AE NP , and then I introduce the AE NC

connect network to link the encoder and the decoder sections from the previous two

AE networks (shown in Fig. 4.3). In the experiments, I found that the number

of encoding hidden representation, hI , should be equal to the number of decoding

hidden representation, hP . It means that the encoding and decoding hidden layers

provide same kind of morphological and texture feature representations because each

neuron of hidden layer represents a characteristic of given data. Then I would like

to correlate the encoding feature representation with the decoding one to efficiently

convert input images to probability responses.

In order to achieve this purpose, I use another network, which combines

an AE network and an AE-based end-to-end network, to connect these two parts,

namely the connect layer network NC . The NI and NP networks obtain the high-

level features from the input images and the probability response maps, respectively.

In essence these two high-level features should be similar because the input images

and the corresponding probability response maps represent the same objects. In

order to connect these high-level features, according to the properties of AE, the
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Figure 4.3: An overview of the proposed HDAE network. The top part of the Figure
shows the whole structure of HDAE and the bottom part presents three sections to
form final structure: (1) input AE network, (2) probability label AE network and
(3) connect layer network.
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NC network extracts and emphasizes more important and related high-level features

between these two feature layers.

After the pre-training of each single AE network, I collect the resulting pa-

rameters and rebuild the HDAE network. Individual training for each set of param-

eters may result in high reconstruction error when they are combined. Therefore, I

need a fine-tuning step to refine and optimize the resulting parameters by backprop-

agation. HDAE adopts the given parameters Θ =
{
WlI ,Wc,W

′
c,W

′
lP

}
to convert

the input sample images to corresponding probability response maps. The complete

setup of the proposed HDAE network can be described as follows:



hIi = f
(
WlIxi + blI

)
hci = f

(
Wch

I
i + bc

)
ĥPi = f

(
W ′ch

c
i + b′c

)
ŷi
HDAE = f

(
W ′
lP
ĥPi + b′

lP

)
,

(4.8)

and the fine-tuning objective function is as follow:

Loss =
∑
i

‖yi − ŷiHDAE‖2. (4.9)

Here I notice that the high-level feature representation hci is reconstructed by en-

hancing higher level correlative features in the connect network (4.6). Moreover,

this loss function of HDAE is similar to probability label network, but ŷi
HDAE is

reconstructed via a complete hybrid network. The feature representation hIi , h
c
i and

hPi follow (4.3), (4.5), and (4.4), respectively.

Finally, in order to detect the centers of nuclei from a large image, I use the

sliding window strategy with overlapping window. After obtaining the probability

response map of cell centroids, I find the local maxima from the probability map. In

order to avoid over-detection, a fixed threshold is introduced, which is empirically
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determined from the training data set in the experiments. All local maxima whose

probability values are less than the threshold are not considered in the detection.

4.4 Experimental Results

I compare the proposed HDAE with other recent approaches of detection and show

that the proposed algorithm attains the best performance among the compared

methods for bone marrow trephine images.

4.4.1 The Dataset

The dataset involves a set of digitized images of 52 H&E stained biopsy samples that

are obtained from 5 ET and 5 prefibrotic PMF cases at UHCW. The size of each

image is about 700×1000 pixels and all images were cropped from non-overlapping

regions of these 10 cases. The H&E stained bone marrow trephine biopsy glass

slides were scanned into a computer using an Omyx VL120 scanner at a resolution

0.275 µm/pixel (equivalent to 40× optical magnification). I selected the cropped

areas that represent a variety of cell appearance and distribution from both different

cases. These images were randomly split into two groups for training and testing

sets. For preventing over-fitting problem, I randomly split these images into two

groups (2-fold cross validation, i.e. 26 images for each fold) for training and testing

sets.

4.4.2 Network Architectures Setting

The architecture of HDAE network consists of input layer, input AE encoding lay-

ers, connect network layers, and probability AE decoding layers. The patch size is

defined as 29×29 pixels which is big enough to contain a whole nucleus within the

patch under 40× optical magnification resolution images. Each patch size has RGB

color channels and one stain channel, which is the Hematoxylin channel. The Hema-
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Table 4.1: Architectures and parameter setting of HDAE network. The network
consists of input network NI , connect network NC , and probability network NP .

Layer Type Input/Output Dimensions

0 Input layer 292 × 4

1
NI

1 1200
2 2 400

3
NC

1 625
4 2 324
5 3 625

6 NP 400

Output layer 292

toxylin channel can efficiently stain the nuclei to obtain nuclear local information

due to nucleus acid and also represents morphological and texture information of nu-

clei with color channels. I use a recently proposed color deconvolution approach [42]

to obtain the Hematoxylin channel intensity.

In input layer of HDAE network, the input is the vector of pixel intensities

corresponding to a square patch with channels I use. This vector is represented as

a column vector of pixel intensities with size
(
292 × 4

)
. Moreover, the input AE

encoding layers NI has two hidden layers and then there is a encoding-decoding

AE structure, including three hidden layers, in the connect network NC . In the

probability AE decoding layers NP , there is one hidden layer and the size of output

is
(
292× 1

)
, which is the probability response map. The details of each layer in the

HDAE network are shown in Table 4.1.

It is worth noting that if I set the number of hidden units become to be much

smaller, such as quarter of the number of input units, the results of testing data

deteriorate because of the compression property of the AEs. In addition, in order

to avoid over-fitting, dropout is implemented in the HDAE network with a dropout

rate of 0.2.

Here the weights are initialized for each layer by using a scaled uniform
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distribution in the range between [186,187]:

−0.5× 2× 4

√
6

Innum +Outnum
≤W ≤ 0.5× 2× 4

√
6

Innum +Outnum
, (4.10)

where Innum and Outnum represent the number of input units and the number

of output units, respectively. This normalized initialization is used for sigmoid

activation function. Besides, all biases are set to 1. The network was trained by

using adaptive moment estimation (Adam) [188], which is an optimization algorithm

of stochastic gradient descent, with the momentum 0.9 and weight decay 5 × 10−4

for 300 epochs. The initial learning rate is set to 10−3 and adaptively adjusted by

Adam method. The proposed network was implemented in Matlab R2015b.

4.4.3 Generation of Training and Testing Sets

Manual annotation of nuclei in whole image data was conducted by a junior trainee

and verified by an experienced pathologist. Each nuclear patch is generated from

a 29×29 square image window, employing the annotated dot as the center of the

window. The size of each patch was chosen to be big enough to contain a nucleus

within the patch and to contain various types of nuclei in the patch. The input

dataset comprised of 11,623 nuclear patches from 52 images. I manually mark the

shape of each nucleus from these input patch dataset and curve-support Gaussian

model is used to generate the dataset of corresponding probability maps. The in-

put patches and probability maps were employed for training and evaluating the

proposed model.

4.4.4 Training the HDAE

I employ the greedy layer-wise approach for training the HDAE as shown in Fig.

4.3 by training each layer in a sequential manner. Here the training dataset of each

fold is divided into 80% for training and 20% for validation. The training procedure
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includes the following three steps: Firstly, an input AE network NI is trained to ex-

tract high-level feature representations hIi of image patches from training patch data

and obtain the pre-trained weights WlI of encoding section. Then, the probability

maps are used to train the probability AE network NP to generate the high-level

features hPi of probability map and the pre-trained weights W ′
lP

of decoding section

are obtained. Following this, the input high-level feature representations hIi are

applied to train the connect network NC and the probability-level representation

hPi are used to do the backpropagation of NC for updating the weights Wc and

W
′
c . Finally, the hyper-parameters {WlI ,Wc,W

′
c ,W

′
lP
} from these three pre-trained

networks are assigned and optimized by fine-tuning to form the proposed HDAE

network. After fine-tuning step, in order to choose the best set of hyper-parameters

for evaluating the detection model, the convergence of loss function on the valida-

tion images is used and the minimum loss energy is chosen for the final set of model

parameters. Local maxima and a fixed threshold value are used to efficiently remove

low probability responses and identify the centroid of all types of cells.

Fig. 4.4 shows an example of visual result of the proposed HDAE network.

Visual results for the probability map are shown in Fig. 4.4(b) and reveal that the

pixels with high probability values are mostly located in the vicinity of the centers of

nuclei. Fig. 4.4(c) shows the predicted detection result comparing with the ground

truth. It demonstrates that the HDAE network can efficiently detect different types

of bone marrow hematopoietic stem cells because curve-support Gaussian model

represents geometric structure of individual nucleus and utilizes the properties of

Gaussian model, i.e. the highest probability value is located at the center of the

model. These results show that the proposed HDAE network with curve-support

Gaussian model has a strong ability of detecting various nuclei shapes and pre-

cisely reflect the locations of centroids of various cells via related high-level feature

correspondence between two different feature extraction networks.
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(a) (b)

(c)

Figure 4.4: Visual results for nuclear detection via the HDAE network. (a) An
example image (b) Probability map generated by the HDAE network. Detecting
the center of an individual nucleus is based on the location of local maxima found
in the probability map. (c) Detection results of HDAE. Here the detected centers
of the nuclei are shown as red dots and ground truth areas are green shaded circles.
Detection results of the proposed method and other approaches are shown in Figure
4.5 and 4.6.
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4.4.5 Comparison of the proposed network with other deep learn-

ing methods

In order to assess the effectiveness of the HDAE model, I compare the performance

of the proposed network with some conventional and some state-of-the-art nuclei

detection algorithms. Firstly, Blue Ratio (BR) [189], which converts RGB color

space to blue ratio response with Laplacian of Gaussian (LoG) filter for detection.

The second method is Expectation-Maximization (EM) method [190] with geodesic

active contour model which takes into account cell overlapping segmentation to

detect each individual cell. Thirdly, local isotropic phase symmetry measure (LIP-

SyM) [191] which yields high response values near the centers of symmetric nuclei

which can be used for detection. Fourthly, stacked sparse autoencoder (SSAE) [101]

which consists of two sparse AE layers with a softmax classifier which is trained

to distinguish between nuclear and non-nuclear patches. If a patch is classified as

a nucleus, all pixels inside of the output patch are assigned the value of 1, or 0

otherwise. Lastly, spatially constrained CNN (SC-CNN) uses spatial regression to

predict the probability of a pixel being at the center of a nucleus. Here the imple-

mentations of BR, EM and SSAE algorithms for nuclei detection are based on the

papers [189], [190], [101], respectively. The implementations of LIPSyM and SC-

CNN methods are provided by the authors of those methods. For a fair comparison,

I use the same input procedure of detecting the centers of nuclei, such as channel

feature and patch size, in the SSAE and SC-CNN algorithms as that in the HDAE

network.

For quantitative analysis of the detection performance among these compar-

ing algorithms, Precision, Recall and F1-score were used to access the detection
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Table 4.2: Comparative results for detection

Method Precision Recall F1-Score

BR [189] 0.5877 0.4779 0.5271
EM [190] 0.6388 0.5106 0.5676

LIPSyM [191] 0.6135 0.5266 0.5667
SSAE [101] 0.8733 0.719 0.7887

SC-CNN [95] 0.9517 0.9274 0.9394
HDAE 0.9273 0.9702 0.9483

performance. These measurements are calculated as follows:


Precision = TP

TP+FP

Recall = TP
TP+FN

F1− score = 2× Precision×Recall
Precision+Recall .

(4.11)

Here I define the region within a radius of 12 pixels, which can approximately

contain the core area of a single bone marrow cell, from the annotated center of

each nucleus as its ground truth. If there are multiple detected points within the

same ground truth region, only the one closest to the annotated center in considered

as a true positive (TP). FP and FN refer to false positive and false negative errors,

respectively.

Table 4.2 shows the comparative quantitative detection performance of HDAE

network and other methods. Also, Fig. 4.5 and 4.6 show the parts of sample visual

results of these approaches. Overall, the comparison results indicate that the pro-

posed approach provides F1-score over 94%, attaining the best performance among

these algorithms and indicating that learning spatial and cellular context, such as

SC-CNN and HDAE methods, efficiently help to predict the center of a nucleus

by the probability response. The BR method requires intensity information to de-

tect nuclei. If there are many nuclei in the dataset having weak staining, the BR

method is likely to fail in those cases. The EM algorithm, which requires intensity

clustering and segmentation, could not efficiently detect touching or weak stained
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nuclei because weak stained nuclei could not provide stronger boundary or gradient

information. In addition, LIPSyM heavily relies on bilateral symmetry of nuclei

for detection. Due to this reason, it could not precisely detect touching and other

irregular-shaped nuclei. The SSAE method works well on dark stained nuclei but

fails on weak stained ones because it only considers pixel intensities and may identify

some weak stained nuclear patches as cytoplasm regions. SC-CNN and HDAE both

learn morphological and topological context to generate the probability response

for detecting the center of nuclei and have better performance than other detection

approaches. SC-CNN learns the spatial structure from the training output data,

whereas HDAE learns the morphological and spatial structures from the training

input images and probability maps, respectively, and combines them together for

nuclei detection. I observe that SC-CNN provides a higher precision value because it

extracts more local feature patches around the centroids of cells to precisely identify

the location of centroids. SC-CNN can also detect some touching nuclei. However,

it could not efficiently take into account some types of nuclear shapes, such as U-

shaped nuclei or the nuclear size larger than patch size. Moreover, SC-CNN does

not have good performance on the nuclei with weak intensity because convolutional

layer reduces the impact of intensity feature and it causes that the probability value

of center of a weak-intensity nucleus becomes too low to be identified (see Fig. 4.6).

On the other hand, the proposed HDAE network can detect these cases because

of the properties of curve-support Gaussian. HDAE can provide more advantages

of efficiently reflecting the morphological and topological Gaussian-based structures

of nuclei to detect these types of nuclei. To summarize, SC-CNN and HDAE can

provide better ability of processing most of the cases to precisely predict the centers

of nuclei in bone marrow trephine biopsy images.

Fig. 4.6 shows another sample result of the comparison among these ap-

proaches. It shows that SC-CNN is likely to fail for this case because the weak

stained nuclei and various sizes of nuclei affect local geometric information extrac-
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(a) P=0.4966 R=0.8532 F1=0.6278 (b) P=0.3741 R=0.6568 F1=0.4767

(c) P=0.7634 R=0.8511 F1=0.8049 (d) P=0.7762 R=0.8609 F1=0.8164

(e) P=0.9673 R=0.9139 F1=0.9398 (f) P=0.9216 R=0.9463 F1=0.9338

Figure 4.5: Comparative result for the proposed method and other approaches for
nuclei detection on the sample image shown in Fig. 4.4(a): (a) BR, (b) EM, (c) LIP-
SyM, (d) SSAE, (e) SC-CNN, (f) HDAE. The ground truth areas are represented by
green shaded circle and red dots represent detected centers of nuclei. The Precision
(P), Recall (R) and F1-Score (F1) are listed below each sample.
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(a) P=0.1381 R=0.619 F1=0.2261 (b) P=0.5375 R=0.7544 F1=0.6277

(c) P=0.3867 R=0.6741 F1=0.4915 (d) P=0.6329 R=0.8475 F1=0.7246

(e) P=0.4743 R=0.9024 F1=0.6218 (f) P=0.9102 R=0.8875 F1=0.8987

Figure 4.6: Another comparative result for the proposed method and other ap-
proaches for nuclei detection: (a) BR, (b) EM, (c) LIPSyM, (d) SSAE, (e) SC-CNN,
(f) HDAE. Also, the Precision (P), Recall (R) and F1-Score (F1) are shown below
each sample case. It shows that the proposed method provides better performance
of nuclei detection than other conventional and learning approaches.
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tion to identify the location of nuclear centers. In contrast, the HDAE network

involves morphological context from the input network and topological context from

the probability network to compensate the loss of local information due to the weak

staining. These results show that the proposed HDAE network with curve-support

Gaussian model has stronger ability of detecting various shapes and staining of nu-

clei and efficiently reflect the locations of centroids of nuclei via related high-level

morphological and topological feature correspondences between two different feature

extraction networks.

4.5 Summary

In this chapter, I have proposed a novel unsupervised AE-based network with curve-

support Gaussian function designed for efficiently and precisely detecting various

shapes of cells in bone marrow trephine images. A curve-support Gaussian model

reconstructs the probability response label map of various morphological and topo-

logical features of cells and the proposed HDAE network efficiently combines two AE

networks, both of which intrinsically represent the same targets to directly produce

the probability response map from input multi-dimensional channel images through

high-level feature extraction and similarity. Compared with other unsupervised and

supervised deep learning approaches, the proposed HDAE network provides the best

cell detection performance in bone marrow trephine biopsy images. Then I want to

classify these detected centers for further investigation and quantitative analysis.
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Chapter 5

A Synchronized Asymmetric

Deep Learning Model for Cell

Classification

5.1 Introduction

After obtaining the detected nuclear centers, the next step is to recognize the de-

tected cells for statistical measurement and further quantitative investigation and

analysis. Nuclei or cell classification is an important and routine processing step

of many automated histopathological image processing techniques and analysis al-

gorithms [29, 192]. Nuclei or cell classification can help obtain information about

different cell types to help pathologists find clinical assessment rules or models for

quickly producing correct diagnosis and giving efficient treatment strategies to pa-

tients. According to the WHO diagnosis criteria of MPNs [1,183], there is no stan-

dard and efficient quantitative clinical assessment or grading system using these

different bone marrow hematopoietic stem cells to help the pathologists realize cel-

lular distribution and quantity to precisely distinguish different subtypes of MPNs.

It is because the hematopoietic stem cells have various stain intensity, shape and
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Figure 5.1: Examples of different types of bone marrow hematopoietic stem cells by
H&E staining. There are two major cell types: erythroid cells and myeloid cells.
The myeloid cells include several subtypes of cells but are difficult to be observed
and identified by experts. Moreover, some of erythroid and myeloid samples have
similar and rather fuzzy shape or intensity features (last two columns).

texture features and are massively distributed over heterogeneous structure of bone

marrow trephine histopathology images. Fig. 5.1 shows examples of the two major

cell types of bone marrow hematopoietic stem cells. It can be seen that some of the

two types of cells exhibit similar morphological features. These factors increase the

difficulty of not only manually identifying different types of bone marrow cells but

segmenting and extracting cellular and tissue characteristics by using the current

image processing approaches.

In order to efficiently recognize the two types of cells, I propose a novel deep

learning based approach. In the previous chapter, I develop a hybrid deep AE-based

network with hand-crafted features for detecting bone marrow cells with various

shapes. In general, cell detection and classification are separated and assigned into

two different networks, resulting in increased computational complexity for training

the deep network. Here, in this chapter, a classification network is introduced and

combined with the HDAE network to target detection and classification simultane-

ously. The proposed network can not only reduce much time of the training network
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but also maintain the ability to efficiently detect and classify different types of bone

marrow cells.

The organization of this chapter is as follow. A brief literature review is

given in Section 5.2. The formulation and algorithm of proposed asymmetric model

for detection and classification is described in Section 5.3. Finally, a comparison

of the quantitative performance between the proposed model and a conventional

framework in detection and classification is presented and discussed in Section 5.4

and 5.5.

5.2 Related Work

Cell classification has been applied to diverse histopathology related applications of

disease diagnosis. In addition, a classification step, such as manual condition setting,

clustering methods or linear classifier, is often used with segmentation or detection

approaches which indicate the region or object of interest to extract specific mor-

phological or texture features, to distinguish different types of cells. For example,

Huang et al. [193] used multilevel thresholding based segmentation and PCA and

k-mean clustering to recognize leukocytes from blood smear images. Also, during

the last decade, machine learning approaches are widely applied as the classifiers

based on cell or nuclear intensity, morphological, and texture features in histopatho-

logical image analysis. Theera-Umpon et al. [194] used fuzzy-C mean clustering and

neural network to segment and classify the different series of myelocytes in bone

marrow images. In [195], Ali et al. proposed a shape prior based AC model to

segment nuclei and use morphological features with SVM for nuclei classification in

prostate and breast histological images. Recently, Sharma et al. [196] proposed a

framework including nuclei segmentation and multiple cell classification using Ad-

aBoost classifier based on intensity, morphological and texture features in gastric

cancer. These approaches point out that the classification often requires other pre-
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processing strategies to extract hand-crafted (morphological and intensity) features

to achieve classification purposes [197].

In fact, there is relatively little work on cell classification for histopathology

images because it depends on efficient preprocessing outcomes, such as nuclei seg-

mentation, to obtain reliable feature information. The complex and heterogeneous

architecture of tumor regions seriously affect accurate cellular feature extraction and

then limit the evaluation on nuclei classification performance. In recent years, deep

learning based approaches have been shown to be successful and powerful for the

analysis of histopathological images [95,103,152]. There are two key concepts of DL

methods: first, unlike conventional machine learning techniques, deep neural net-

works, such as an AE model, automatically extract and learn features by using the

training data. Second, DL methods directly extract multiple high-level features be-

cause of the feed-forward hierarchical structures with multiple layers [101–103,198].

These layers compute features from the previous layer/feature representations, and

it is not widely accepted that DL networks gradually learn from low-level features

to high-level features. This ability enables the DL networks to handle very complex

functions and high dimensional data. For instance, Xu et al. [101] use the stacked

sparse AE with a softmax classifier to learn a high-level representation of nuclear

and non-nuclear objects for detecting and classifying the nuclear regions. In ad-

dition, Malon and Cosatto [99] trained CNN classifier for mitotic and non-mitotic

cells using color, texture and shape information. Sirinukunwattana et al. [95] used

convolutional neural networks (CNNs) to take into account nuclei detection and

classification. However, detection and classification purposes in these methods are

usually processed by independent DL approach and separately generate the results.

In previous chapter, the HDAE network has been efficiently used in nu-

clei/cell detection. In this chapter, based on the concepts and structure of HDAE

network, I will rebuild HDAE model and design a synchronized DL structure to

solve the detection and classification problems simultaneously.
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Figure 5.2: The representation of conventional progress for detection and classifi-
cation via deep learning approaches. In general, there are two networks to process
detection (upper dash-rectangle) and classification (bottom dash-rectangle) sequen-
tially.

5.3 Methodology

Simultaneous detection and classification approaches deal with the location and

types of nuclei for histology image analysis at the same time. Generally, these two

problems are solved independently and requiring more training time. For reducing

the time required for training and keeping the same performance as separated net-

works, the proposed approach combines the two networks to synchronize detection

and classification processing steps.

5.3.1 Conventional Deep AE Structure of Classification

In general, after obtaining the detection results, classifying different types of objects

is the next step of the analysis. Fig. 5.2 shows a conventional framework for
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nuclear or cell detection and classification. The conventional structure includes

one model for detection and one for classification. If deep learning approaches are

used in both sections, it means that I need to train these two networks separately

and it might takes much time on training networks because the purposes of these

two networks are different. For instance, we can use HDAE network and CNN

method to detect and classify different nuclei. The classification part can be replaced

by other learning approaches, such as softmax classifier or bag-of-words dictionary

learning [199]. Specifically, I note that if a conventional stacked AE network with

softmax classifier is used in the classification part, the first several layers of the

stacked AE network and the first several layers of the HDAE network could learn

similar color and morphological features from same image dataset. Moreover, the

architectures of these two networks are similar. Therefore, I can use the HDAE for

detection and a stacked AE network for classification and put them into a single

parallel network to efficiently detect and classify BM hematopoietic stem cells.

5.3.2 Synchronized Hybrid Deep AE

Based on the concept of an integrated model, I would like to build a model to process

the detection and classification strategies simultaneously. At first, I consider to use

the same deep learning structure in both detection and classification sections. It is

because if the number of hidden layers and the neurons in the encoding sections of

HDAE network and a stacked AE network of classification are the same, it can be

integrated as a whole encoding section to reduce processing time. In addition, ac-

cording to the idea of HDAE network, the connection network can obtain correlated

high-level feature representation from input and probability image data, which is

similar to the high-level feature representation from input dataset in classification

network. It means that the encoding section of the connection network can work

with the input network and softmax classifier to be the classification learning net-

work. In the fine-tuning, the loss energy of classification network is used to help
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Figure 5.3: The architecture of synchronized HDAE network for detection and clas-
sification. The middle layer of connection network works with softmax classifier is
used to identify different types of cells.

the encoding section of the whole synchronized network to optimize the parameters.

Fig. 5.3 represents the structure of a parallel integrated model for cell detection and

classification.

However, the synchronized HDAE network cannot efficiently obtain correct

detection and classification results because detection and classification strategies

affected each other. The probability network only learns the features from detection

probability maps and doesn’t include the information of classification. When the

loss energy of classification is introduced in backpropagation step, it acts like noise

and negatively influences the parameters’ optimization for detection. In other words,

for the classification section, the loss energy of detection also affects to optimize the

parameters of classification to obtain incorrect outcomes. In order to efficiently avoid

and reduce the influence between detection and classification strategies, I designed

a new connection structure based on the HDAE network.
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5.4 Synchronized Asymmetric Deep Hybrid AE (Syn-

ADHA)

Due to the aforementioned reasons, I adopt a network architecture idea from Lee

et al. [200], who proposed a concatenated asymmetric deep learning structure for

capturing the distorted feature and noise estimation. According to the properties of

AE-based model, input data are used to compare the reconstructed data to train the

parameters of network via backpropagation, and this makes the network symmetric.

If an AE-based learning model has one input and outputs two different results,

it needs to combine with other networks by using specific network structure or

components. In [200], the authors built an asymmetric deep denoising network

to estimate the noise and reconstruct clear features from input distortion features.

Inspired by this idea, I constructed a novel asymmetric learning network with HDAE

model to process detection and classification at the same time.

For developing an asymmetric network, using similar learning network struc-

tures of both detection and classification is necessary to reduce the difficulty and

complexity of the proposed network construction and mathematical functions. In

previous work (Chapter 4), the HDAE network focuses on cell detection by connect-

ing two AE-based networks. Moreover, as I mentioned before, a normal stacked AE

network for classification has similar hierarchical structure to the input network of

HDAE. I adopt this parts of HDAE and redesign the connect network, which is the

key role of integrating input network, detection probability network and classifica-

tion network, to achieve the abilities of detection and classification in parallel.

Fig. 5.4 shows the network structure of the improved asymmetric HDAE,

also called Syn-AHDA. There are four sections in Syn-AHDA network: the input

network NI , the improved probability network NPC , the asymmetric connect net-

work NAC , and the classification network NClass. The input network NI in this

proposed network is constructed and trained in the same way as that in HDAE
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Figure 5.4: The structure representation of Syn-AHDA network. Here I construct
an asymmetric learning network to detect the position of cell centers and classify
different types of cells. The details of the key components: (1) asymmetric connect
network and (2) probability network are shown in Fig. 5.5.

Figure 5.5: The structure of asymmetric connect network and probability network.
There are two different processing sections to HDAE network in the training stage.
The asymmetric connect network integrates one input vector and reconstructs two
output vectors: the input vector for classification and probability label vector for
detection. Moreover, the decoder of probability network is trained by the probability
maps associated with corresponding class labels.
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network (shown in Section 4.3). Finally, the classification network NClass is an

AE-based structure with a softmax classifier and trained by using the high-level

features from the input network NI . Given a set of class maps C = c1, c2, . . . , cn,

the formulation of input network with softmax classifier is shown as:
hIi = f

(
WlIxi + blI

)
ĉi = f

(
WSMCh

I
i

)
,

(5.1)

where WSMC is the weight matrix of softmax classifier. I use the predicted class

map ĉi and the labeled class map ci to calculate the loss function for obtaining the

weight WSMC . For the probability network, as mentioned in the previous section,

the detection probability maps do not include classification information to influence

the classification section. In order to improve this situation, I combine probability

maps with corresponding class labels instead of original probability maps. Here I set

zi = yi × ci and the formulation of improved probability network NPC is as follows:


hPCi = f

(
WlPCzi + blPC

)
ẑi = f

(
W ′
lPC

hPCi + b′
lPC

)
.

(5.2)

After above networks are obtained, I would like to rebuild the asymmetric

connect network for integrating these networks. According to (4.3) and (5.2), I

obtain the high-level feature representation hI from input images and hPC from the

class-probability maps. Here I need to create another two different sub-networks

to set the initial parameters of NAC . The first AE network is used to obtain the

weight matrix WAC1 and W
′
AC1

and bias term bAC1 by using hI being input vectors

for classification, while hI and hPC are used to train the second network to get the

weight matrix WAC2 and W
′
AC2

and bias term bAC2 . The second network is a simple

end-to-end structure and derived from the connect network of the HDAE model.

From the above two sub-networks, these pre-training parameters for detection and

classification are integrated to initialize the proposed asymmetric connect network
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NAC . Here I initialize weight matrix WAC3 and bias terms bAC3 of first hidden layer

and weight matrix W
′
AC3

of last hidden layer of NAC as:

WAC3 =

WAC1 0

0 WAC2

 ,W ′
AC3

=

W ′
AC1

0

0 W
′
AC2

 , (5.3)

bAC3 =

[
bAC1 bAC2

]T
, (5.4)

and pre-train the asymmetric connect network NAC to optimize these parameters:



hAC3 in
i = f

(
WAC3h

I
i + bAC3

)
hACi = f

(
WACh

AC3 in
i + bAC

)
ˆhACi = f

(
W
′
ACh

AC
i + b

′
AC

)
hAC3 out
i = f

(
W
′
AC3

ˆhACi + b
′
AC

)
,

(5.5)

where WAC and bAC are the rest of weight matrix and bias terms of the asymmetric

connect network. hAC3 out
i is the reconstructed feature representation of hAC3 in

i .

The structures of the asymmetric connect network and class-probability network

are shown in Fig. 5.5. Then the loss function is calculated between hAC3 out
i and[

hIi hPCi

]
to optimize the parameters of NAC . The training of the Syn-AHDA

algorithm is described below.

I use the above parameters I obtained from input networkNI , class-probability

network NPC , and asymmetric connect network NAC to construct the whole pro-

posed network and then do the fine-tuning stage. The formulation of the loss func-

tion of proposed Syn-AHDA network is shown as:

LossSyn−AHDA =
∑
i

‖zi − ẑi‖2 +
∑
i

H
(
ci, ĉi

)
, (5.6)

where H
(
ci, ĉi

)
is the cross-entropy cost function to estimate the classification loss
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Algorithm 1 The training of Syn-AHDA network

Input: X: Input data; Y : Probability maps; C: Class labels;NI : an input AE
network; NPC : a class-probability label AE network; NClass: a classification
network; NAC : an asymmetric connect network; WSMC : a softmax weight vec-
tor; WAC3 , bAC3 and W

′
AC3

: the weight and bias term of first hidden layer and
the weight matrix of last hidden layer in NAC .

Output: The pre-trained Synchronized Hybrid Deep AE network: NSyn−AHDA;
1: Using input data X to train NI and extracting the encoding part of NI ,
NIencoding ;

2: Using probability maps Y and the class labels C to train NPC and extracting
the decoding part of NPC , NPCdecoding ;

3: Using input data X and class labels C in the network Nclass to obtain WSMC ;
4: Using sub-AE networks to construct the initial weight WAC3 and bias bAC3 terms

in first hidden layer and the reconstructed weight W
′
AC3

in the last layer of NAC ;
5: Training NAC by using the output feature representation of NIencoding and in-

tegrated vector which combines the out feature representation of NIencoding and
the input feature representation of NPCdecoding ;

6: Integrating NIencoding , NPCdecoding , NAC and WSMC into NSyn−AHDA and then
fine-tune this proposed network to optimize the parameters;

7: return NS−AHDA
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energy and defined by:

H
(
ci, ĉi

)
= −

[
cilog

(
ĉi
)
−
(
1− ci

)
log
(
1− ĉi

)]
. (5.7)

5.4.1 Neighboring Class Selector

After the processing of the proposed Syn-AHDA network, I obtain probability maps

and class maps and need to look for the local maximum points as the centers of

cells and the corresponding class for each of them. For detecting the position of

cell centroids, same as the post-processing in HDAE network, a thresholding value,

which is obtained and optimized by evaluating training images, is introduced to

remove the elements with low probability values and to capture the local maximum

point in the probability to be the predicted center of each cell. In addition, I also

consider the neighboring elements of class map around each predicted center point

to identify which class this center point belongs to. For each predicted center x

(
i
)

c ,

I define a set of class considering range as:

R
(
x

(
i
)

c

)
=
{
x

(
i
)

c ∈ ℘I : ‖z
(
x

(
i
)

c

)
− z
(
x
)
‖2 ≤ dρ

}
, (5.8)

where xc denotes the predicted centers of cells; dρ is the radius of class considering

range. z
(
x
)

represent the location of a point x; ℘I denotes the class response of

image I. Predicted class of each detected center is given by:

C
(
x

(
i
)

c

)
= argmax

k

∑(
R
(
x

(
i
)

c

)
= k

)
|R
(
x

(
i
)

c

)
|

, (5.9)

where k is the class label and |R
(
x

(
i
)

c

)
| denotes the number of elements within range.

In other words, the class selector measures that which class has high probability

value and assigns this class label to the detected center. This class selector is
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necessary because the classification section could be affected by the detection section

in the proposed network. For reducing the influence of detection section, I consider

the neighboring region of class map around each detected point. For accurately

identifying the position and class of center points, I need to strictly define the size

of range in detection and classification sections. In our experiments, I set the radius

= 12 pixels for detection and dρ = 2 pixels for classification so as to allow considering

range to cover the major area of a nucleus to be detected and classified.

5.5 Experimental Results

5.5.1 Data collection

The experiment dataset is same as in Chapter 4, including a set of 52 40× mag-

nification H&E stained histopathological images of 5 ET and 5 prefibrotic PMF

cases collected from UHCW by using an Omyx VL120 scanner. The annotation

of 11,623 nuclear patches in our image dataset consists of 6856 erythroid cells and

4,767 myeloid cells, which are marked by a junior trainee and verified by an experi-

enced pathologist. I only consider two major types of bone marrow cells to measure

the ability of the Syn-AHDA model in our experiments because unclear, complex,

and heterogeneous cellular features cause the experts not to precisely give the iden-

tification of different types of BM cells. Moreover, I keep using 2-fold validation to

prevent over-fitting problem and use them as training and testing image datasets in

all experiments.

5.5.2 Network Setting and Training

Here the patch size is also set 29×29 pixels, which can efficiently capture a whole

non-MK nucleus in 40× magnification resolution. Each patch still includes four

color channels (RGB and the Hematoxylin channel). For the input network NI in

the proposed scheme, I set the input vector with size (292× 4)× 1, which is same as
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the one in HDAE network, and two hidden layers. The first and second hidden layers

of input network have 1600 and 400 hidden units, respectively. I also introduce one

softmax classifier with NI for initializing the classification section. Moreover, the

probability label network NPC has
(
292 × 1

)
input units, which are generated by

using curve-support Gaussian model and combining corresponding class labels, and

one hidden layer with 400 hidden units. For constructing the asymmetric connect

network NAC , I set the architecture to have 400 input units from the output of

NI , 800 hidden units, and 800 output units corresponding to the high-level feature

representations of NI and NPC . As I mentioned in Section 5.3, the number of

neurons of NAC is conducted by integrating the number of neurons in high-level

representation of pre-trained sub-networks of hybrid detection network and hybrid

classification network. In order to optimize the parameters of the entire Syn-AHDA

network, I use these parameters to pre-train the asymmetric connect network and

then fine-tune the whole proposed network with dropout. In the post-processing,

local maxima and a thresholding value are used to remove low probability responses

and identify the centroid of all types of cells. Then I use neighboring class selector

to consider the neighboring points surrounding a detected center to identify final

class of this center.

5.5.3 Evaluation and Comparison of Syn-AHDA network

Fig. 5.6 shows the examples of the results of the proposed Syn-AHDA network. It

demonstrates that the Syn-AHDA network can efficiently detect and classify two

different types of bone marrow hematopoietic stem cells. Here I define that a pre-

dicted point is true positive when the detection and classification outcomes of this

point are as same as ground truth. However, there are a few incorrect detection

or classification results. These incorrect outcomes in detection or classification oc-

cur because (1) the cell has faded stain color or the size of cell is larger than the

size of the training patch; (2) the thresholding value is affected by class labels and
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not efficient to remove the noise points in whole dataset or; (3) some myeloid cells

have similar shape and intensity features to erythroid cells, and this affects that the

proposed network is uncertain of these two types of cells in classification.

For evaluating the detection ability of Syn-HADA network, I compare the

quantitative performance of the proposed network with other current conventional

and DL approaches. At first, I need to confirm that the proposed Syn-AHDA

network has similar ability of nuclei detection to other detection models, such as

LIPSyM [191], SSAE [101] and SC-CNN [95], and our HDAE network, which the

proposed method is derived from. Table 5.1 shows comparative results in terms

of precision, recall and accuracy between the proposed model and other detection

approaches. It shows that our proposed approach achieves similar performance

to original HDAE network and has better performance than other state-of-the-art

models for detection purpose. It also means the proposed network in detection

section efficiently reduces the influence from the classification section in asymmetric

structure and maintains the ability of detecting various nuclear shapes and precisely

reflecting the locations of centroids of various cells.

In classification section, for fair comparison, I use the same method to de-

tect the center points and different DL methods for classification. Here I adopt

sparse AE, SSAE and CNN for comparing the classification performance with the

proposed method. The number of hidden layers in SSAE network is set to 6, which

is the same number of layers in the proposed method. CNN network includes 3

convolutional layers, 3 max-pooling layers, one fully connected layer and one soft-

max layer. Here I note that the predicted center points that match with the ground

truth of detection are used in quantitative measurement of classification. Table 5.2

shows that our proposed network provides better performance than other DL frame-

works. The proposed network also provides similar ability of classification to other

DL approaches but has less performance than CNN in precision and than SSAE in

recall. This situation exists in both detection and classification sections because,
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(a)

(b)

Figure 5.6: Sample results of detection and classification via Syn-AHDA network.
Green and yellow dots represent the erythroid and myeloid cells, respectively. Red
dots denote the incorrect cases of detection and cyan dots are incorrect cases of
classification.
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Table 5.1: Comparison of results of detection between the proposed model and other
methods

Methods Precision Recall F1-score

LIPSyM [191] 0.7267 0.6514 0.687
SSAE [101] 0.8733 0.719 0.7887

SC-CNN [95] 0.9517 0.9118 0.9313
HDAE [201] 0.9273 0.9702 0.9483
Syn-AHDA 0.9129 0.9641 0.9378

Table 5.2: Comparison of classification results between the proposed model and
other combined approaches

Methods Precision Recall F1-score

HDAE+SAE 0.8267 0.8108 0.8187
HDAE+SSAE 0.8461 0.9037 0.874
HDAE+CNN 0.8605 0.8922 0.8761
Syn-AHDA 0.859 0.896 0.877

although I have designed several components in the proposed network for avoiding

and reducing this loss energy influence, the detection and classification sections in

proposed network are affected by each other, and that affects the accuracy of de-

tection and classification. Moreover, this influence propagation between detection

and classification sections makes the optimized parameters not to suit both the

strategies but finds a balance point between them to maintain sufficient functionali-

ties of detection and classification purposes as individual ones by using pre-training

stage and reconstructing initial parameters of NAC . Overall, although the proposed

Syn-AHDA network can obtain better performance of detection and classification

than some conventional deep learning frameworks, there is room for improvement

in our proposed network in future research. For instance, because the detection and

classification sections affect each other, the high-level features of the detection or

classification might be lost or occur some errors in training stage. I will use some

low-level features and add them into high-level features to compensate those lost or

error feature information for improving the performance of the Syn-AHDA network.
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Table 5.3: Comparison of the training time between conventional frameworks and
the proposed method

Methods Training Time

HDAE+SAE 5-6 hours
HDAE+SSAE 7-8 hours
HDAE+CNN 6-7 hours
Syn-AHDA 4-5 hours

5.5.4 Computational Run Times

In addition, I compare the time of training among these frameworks of detection and

classification. Table 5.3 shows our proposed network takes fewer time for training

than other framework. It means the proposed network provides lower computational

complexity and need to train less number of parameters than other conventional

frameworks. It is because the Syn-AHDA network uses the parallel architecture

to implement simultaneous detection and classification. Removing the redundant

learning layers and using the asymmetric connect network are key roles in the pro-

posed network to reduce the number of full connection layers that need to be trained.

5.6 Summary

In this chapter, I presented a novel synchronized hybrid deep AE network to perform

nuclei detection and classification simultaneously. The proposed network consists of

the HDAE network [201], an asymmetric connection network and a softmax classi-

fier. The experimental results show that the proposed Syn-AHDA method provides

better abilities of detection and classification than most of conventional DL frame-

works and efficiently takes less training time than other approaches.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

According to the WHO diagnosis criteria of distinguishing ET and prefibrotic PMF,

it is difficult to differentiate the trephine histology images in these two subtypes of

MPNs that suffer from low inter-observer agreement among the experienced pathol-

ogists. For more reproducible and reliable diagnostic analysis of ET and prefibrotic

PMF, computer techniques and algorithms are introduced in this thesis to help

pathologists realize current diagnostic features and discover potential clues to im-

prove current diagnostic criteria of ET and prefibrotic PMF.

This thesis makes three main contributions, which produce robust image

processing outcomes of segmentation, detection and classification on various types

of cells in BM trephine images. This chapter summarizes the contributions of this

thesis and proposes future work.

In chapter 3, I presented an automated framework that delineates MKs from

non-homogeneous BM trephine images. The proposed framework considers Hema-

toxylin and Eosin stain channels to describe nuclear, cytoplasmic and background

regions and then uses näıve Bayesian classifier with scattering transform to obtain

MK cytoplasmic regions to identify potential MK nuclei. After that, a region-based
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AC model and the proposed DCAC model are used to segment MK nuclear re-

gion and cytoplasmic region. The proposed DCAC model utilizes energy forces of

both stain channels and circumscribing regions to automatically control the evolving

contour to gradually converge to the desirable cytoplasmic boundary even in areas

where weak edges exit. The proposed framework and DCAC model provide bet-

ter performance of delineating MKs than other approaches in BM trephine biopsy

images.

Chapter 4 proposes a novel hybrid deep autoencoder network for detecting

all hematopoietic stem cells with irregular shapes in BM trephine images. The

proposed network employs a curve-support Gaussian model to represent topographic

features of irregular cell shapes. Then it uses three different networks to learn high-

level features of the input image and these topographic features and connect them

to generate probability response of center points. The proposed HDAE network

provides better performance of detection than other state-of-the-art conventional

and deep learning approaches.

Chapter 5 proposes a novel parallel deep learning approach that can simul-

taneously detect and classify hematopoietic stem cells in BM trephine images. The

proposed network is derived from the HDAE network but is an asymmetric structure

that makes the network has two functions at the same time. The asymmetric struc-

ture of the proposed network is developed from an asymmetric connect component

to integrate input, detection and classification networks. Due to the key asymmetric

connect component, the proposed Syn-AHDA network can learn high-level features

from input images and use these features to simultaneously generate probability

maps of detection and class maps of classification. The proposed Syn-AHDA net-

work maintains as good abilities of detection and classification as other conventional

deep learning frameworks and takes less training time than others.

According to Section 1.4, the above three main research objectives are ac-

complished. The framework with DCAC model can efficiently delineate the nuclei
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and cytoplasm regions of MKs with weak boundary features. HDAE network can

easily identify the center of irregular-shape BM cells because curve-support Gaus-

sian model can efficiently reconstruct approximate Gaussian shape for each BM cell.

Syn-AHDA network can simultaneously work on BM cell detection and classifica-

tion by using an asymmetric connect component. However, these proposed methods

have some limitations. For instance, if the size of MK nucleus is as small as the size

of non-MK nucleus, the framework might miss this MK. Moreover, if the size of BM

cell is much larger than the size of sliding window, HDAE network might find more

than one center point in a large cell. In addition, as I mentioned in Chapter 5, the

intra-influence between two different functions still exists in Syn-AHDA network be-

cause of backpropagation, and it makes the performance become worse. Otherwise,

according to research objectives, integrating these three proposed methods into a

whole framework is not accomplished yet. This unaccomplished research objective

and these drawbacks of proposed methods will be implemented and improved in the

future research.

6.2 Future Directions

For helping hematopathologists efficiently identify ET and prefibrotic PMF, algo-

rithms proposed in this thesis can be used to build a CAD system for further inves-

tigation and analysis. More works need to be done in order to obtain more robust

and accurate outcomes for diagnosis improvement. There are several future research

direction listed as follows:

• One can modify the DCAC model with repulsive shape prior information to

avoid overlapping or touching problems.

• The Syn-ADAC network can be modified by weighting probability and class

maps and using other approaches to improve the accuracy of nuclei detection
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and classification. Then it can be extended to do multi-classes identification

via the Syn-ADAC network to look for potential cytological and geographic

features for further investigation.

• The framework of delineating MKs can be combined with Syn-ADAC network

to form an automated integrated system for extracting diagnostic features

from all types of BM cells.

• Finally, quantitative analysis is the key for investigating and identifying spe-

cific features of diseases to help pathologists make precise diagnosis. An in-

tegrated CAD system will take into account BM trephine whole slide biop-

sies and quantify cellular and texture characteristics to assist pathologists to

analyze and find potential clues for improving the current WHO criteria of

distinguishing ET and prefibrotic PMF in further investigation. Extensive

validation of techniques developed in this thesis is required before they can be

deployed in a clinical setting.
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Florena, and V. Franco, “Megakaryocytic features useful for the diagnosis of

myeloproliferative disorders can be obtained by a novel unsupervised software

analysis,” Histology and Histopathology, vol. 21, no. 8, pp. 813–821, 2006.

[175] T.-H. Song, V. Sanchez, H. EIDaly, and N. Rajpoot, “A circumscribing active

contour model for delineation of nuclei and membranes of megakaryocytes in

bone marrow trephine biopsy images,” in Proc. SPIE, Medical Imaging 2015:

Digital Pathology, vol. 9420, 2015.

141



[176] J. J. Michiels, H. De Raeve, K. Hebeda, K. H. Lam, Z. Berneman,

W. Schroyens, and J. Schwarz, “Who bone marrow features and european

clinical, molecular, and pathological (ecmp) criteria for the diagnosis of myelo-

proliferative disorders,” Leukemia research, vol. 31, no. 8, pp. 1031–1038, 2007.

[177] K. Murtaza, S. Khan, and N. Rajpoot, “Villagefinder: Segmentation of nu-

cleated villages in satellite imagery,” in Proceedings of the British Machine

Vision Conference, ser. BMVA Press, A. Cavallaro, S. Prince, and D. Alexan-

der, Eds., 2009, pp. 83.1–83.11.

[178] J. Bruna and S. Mallat, “Invariant scattering convolution network,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp.

1872–1886, 2013.

[179] C. D. Boor, A practical guide to splines. New York: Springer-Verlag, 1978.

[180] J. Mille, “Narrow band region-based active contours and surfaces for 2D and

3D segmentation,” Computer Vision and Image Understanding, vol. 113, no. 9,

pp. 946–965, 2009.

[181] Q. Zheng and E. Q. Dong, “Narrow band active contour model for local seg-

mentation of medical and texture images,” Acta Automatica Sinica, vol. 39,

no. 1, pp. 21–30, 2013.

[182] A. Khadidos et al., “Weighted level set evolution based on local edge fea-

tures for medical image segmentation,” IEEE Transection on Image Process-

ing, 2017.

[183] J. Thiele, M. Imbert, R. Pierre, J. W. Vardiman, R. D. Brunning, and G. Flan-

drin, “Chronic idiopathic myelofibrosis. who classification of tumours: tu-

mours of haematopoietic and lymphoid tissues,” IARC Press. Lyon, pp. 35–38,

2001.

142



[184] R. Annunziata, A. Kheirkhah, P. Hamrah, and E. Trucco, “Scale and curva-

ture invariant ridge detector for tortuous and fragmented structures,” Medical

Image Computing and Computer Assisted Inerventions (MICCAI), pp. 588–

595, October 2015.

[185] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, “Coupled deep autoencoder for

single image super-resolution,” IEEE Transactions on Cybernetics, no. 99, pp.

1–11, November 2015.

[186] Y. lan Boureau, Y. L. Cun et al., “Sparse feature learning for deep belief

networks,” in Advances in Neural Information Processing Systems 20 (NIPS

2007), Vancouver, Canada, December 2008, pp. 1185–1192.

[187] N. Jiang, W. Rong, B. Peng, Y. Nie, and Z. Xiong, “An empirical analysis of

different sparse penalties for autoencoder in unsupervised feature learning,” in

Neural Networks (IJCNN), 2015 International Joint Conference on. IEEE,

2015, pp. 1–8.

[188] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[189] H. Chang, J. Han, A. Borowsky, L. Loss, J. W. Gray, P. T. Spellman, and

B. Parvin, “Invariant delineation of nuclear architecture in glioblastoma mul-

tiforme for clinical and molecular association,” IEEE Transactions on Medical

Imaging, vol. 32, no. 4, pp. 670–682, 2013.

[190] H. Fatakdawala, J. Xu, A. Basavanhally, G. Bhanot, S. Ganesan, M. Feldman,

J. E. Tomaszewski, and A. Madabhushi, “Expectation–maximization-driven

geodesic active contour with overlap resolution (emagacor): Application to

lymphocyte segmentation on breast cancer histopathology,” IEEE Transac-

tions on Biomedical Engineering, vol. 57, no. 7, pp. 1676–1689, 2010.

143



[191] M. Kuse, M. Khan, N. Rajpoot, V. Kalasannavar, and Y. F. Wang, “Local

isotropic phase symmetry measure for detection of beta cells and lympho-

cytes,” J. Pathol. Inform., vol. 2, no. 2, p. 2, 2011.

[192] M. T. McCann, J. A. Ozolek, C. A. Castro, B. Parvin, and J. Kovacevic,

“Automated histology analysis: Opportunities for signal processing,” IEEE

Signal Processing Magazine, vol. 32, no. 1, pp. 78–87, 2015.

[193] D.-C. Huang, K.-D. Hung, and Y.-K. Chan, “A computer assisted method

for leukocyte nucleus segmentation and recognition in blood smear images,”

Journal of Systems and Software, vol. 85, no. 9, pp. 2104–2118, 2012.

[194] N. Theera-Umpon, “White blood cell segmentation and classification in mi-

croscopic bone marrow images,” Fuzzy systems and knowledge discovery, pp.

485–485, 2005.

[195] S. Ali and A. Madabhushi, “An integrated region-, boundary-, shape-based

active contour for multiple object overlap resolution in histological imagery,”

IEEE Transactions on Medical Imaging, vol. 31, no. 7, pp. 1448–1460, 2012.

[196] H. Sharma, N. Zerbe, D. Heim, S. Wienert, H.-M. Behrens, O. Hellwich, and

P. Hufnagl, “A multi-resolution approach for combining visual information

using nuclei segmentation and classification in histopathological images.” in

VISAPP (3), 2015, pp. 37–46.

[197] K. Nguyen, J. Bredno, and D. A. Knowles, “Using contextual information to

classify nuclei in histology images,” in Biomedical Imaging (ISBI), 2015 IEEE

12th International Symposium on. IEEE, 2015, pp. 995–998.
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