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Abstract….                                                      

It is necessary for power laterally diffused MOSFETs (LDMOSFETs) to operate 

efficiently and reliably in high temperature (<300 ⁰C), hostile environments such as those 

found in downhole, space, automotive and aerospace applications. Currently, silicon-on-

insulator (SOI) technology is a dominant method to achieve this goal due to low leakage 

current and complete electrical isolation. However, the buried oxide (BOX) layer causes 

self-heating, which can impact device performance, cause thermal runaway and shorten 

device lifetime. To address this issue, one solution is to combine a silicon thin film with 

a semi-insulating (SI) SiC substrate, forming the Si/SiC architecture. LDMOSFETs built 

on this substrate are expected to deliver much better thermal performance, with electrical 

isolation comparable to the SOI case. However, the Si/SiC LDMOSFETs do not have a 

strong substrate assisted depletion effect, which can result in poorer electrical 

performance than those of the Reduced Surface Field (RESURF) bulk-Si and SOI 

LDMOSFETs. This thesis investigates the PN and SOI RESURF layouts and uses them 

to optimise 190 V and 600 V Si/SiC LDMOSFETs. DC and transient modelling will be 

conducted on the optimised Si/SiC and their SOI and bulk-Si equivalents. Based upon 

this, several comparative studies are conducted on their simulation results to see the 

effects of the Si/SiC architecture on the LDMOS designs. 

The comparative studies are made on the 600 V Si/SiC LDMOSFETs and their bulk 

Si and SOI equivalents. It is shown that the Si/SiC devices have the potential to operate 

with an off-state leakage current as low as the SOI device. However, the low-side 

resistance of the SOI LDMOSFET is smaller in value and less sensitive to temperature, 

outperforming both Si/SiC devices. Conversely, under high-side configurations, the 

Si/SiC transistors have resistances lower than that of the SOI at high substrate bias, and 

invariable with substrate potential up to −200 V, which behaves similar to the bulk-Si 

LDMOS at 300 K. A clamped-inductive switching circuit is simulated for the Philips SOI 

and the Si/SiC equivalent. It is shown that even though the SOI has a smaller chip area 

and suffered from strong substrate effects during the transient state, the two devices had 

similar currents and power dissipations at the gate, drain and source. The turn-on losses 

are higher than that of the turn-off losses due to the presence of parasitic capacitors. 

However, these similarities do not lead to similar thermal responses in both devices and 

the SOI is heated up at a much faster rate. By contrast, the SiC substrate in the Si/SiC 

behaves like an embedded heat sink regulating device temperature close to that of the 

ambient environment (423 K). In the high current condition, the peak temperature in the 

Si/SiC is 425 K, lower than 463 K in the SOI, thereby increasing reliability. 

The comparative studies are carried out on the 190 V LDMOSFETs in SOI, Si/SiC, 

Partial SOI (PSOI) and PSOSIC technology, based upon a capacitive and an inductive 

switching circuit. It is revealed that in spite of having a chip area 75% larger than the SOI 

structure, the Si/SiC solution undergoes negligible heating in any of the switching 

conditions simulated, exhibiting a very high energy capability. By contrast, the 22% area 

increase in the PSOSiC does not considerably change the way the energy is handled. This 

indicates that the Si/SiC is much more effective than PSOI and PSOSIC in dealing with 

the transient heating. 
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Chapter 1 Introduction 

Semiconductor devices are key elements in the development of compact, reliable and 

highly efficient power systems. Other than being used as passive components (e.g. 

resistors and capacitors), these fundamental devices can be deployed as switches that 

perform logic control or handle power flows, in the form of either diodes or transistors. 

Over past decades, the performance of power management modules has been improved 

significantly, due to the increase in system integration enabled by the advancement of 

semiconductor and packaging technologies. Examples of such integration are power 

supply in package (PSiP) and Power supply on chip (PSoC) [1], which feature smaller 

space, fewer components and reduced parasitic effect.  

High voltage (HV) lateral transistors, for instance LDMOSFETs and LIGBTs, can be 

found in many integrated power systems, such as AC/DC power conversion, HV gate 

drivers and HV half-bridge stages [2]. Different from their vertical counterparts, their 

electrical contacts are on a single side of a semiconductor wafer, with the backside 

potential the same as that of an IC chip. Therefore, they can either be part of an IC chip 

where the CMOS components are made, or be a discrete unit sharing the same lead frame 

with the chip in a package [3]. Bulk-Si wafer is widely used for HV power devices, due 

to the cost-effectiveness of this substrate. The Silicon-on-insulator (SOI) solution is 

selected if high temperatures and a high degree of isolation is required. Self-heating may 

cause some problems in this structure, depending on the device area and pulse duration 

[4]. Considerable effort has been put into substrate engineering to achieve a better trade-

off between electrical isolation and heat conduction, leading to structures like partial SOI 

(PSOI) [5], Silicon-on-sapphire (SOS) [6] and compound buried layers [7] [8]. 

Si-on-Diamond (SOD) and Silicon-on-semi-insulating SiC (Si/SiC) are the two latest 

substrates capable to offer outstanding cooling and electrical confinement comparable to 

the SOI case. However, they are unlikely to challenge the traditional substrates in 

domestic applications, due to the relatively high price of diamond and SiC. Space and 

military operations, by contrast, are less cost-sensitive and focus more on device 



2 

 

survivability in the long term. Exposure to cosmic radiation, high temperature (200 ⁰C+) 

and high humidity can cause device malfunctions, which needs to be counteracted by a 

degree of protection. This could mean a larger area, more circuit elements and higher cost 

for an integrated system. In this respect, the implementation of SOD and Si/SiC in harsh 

environments seems more promising, as diamond and SiC are chemically inactive and 

highly thermal conductive, forming very reliable heat sinks. They are also free from a 

buried oxide (BOX) layer, which is one source of radiation-induced problems in the SOI 

layout.   

Despite having higher heat transfer than SiC in theory, diamond used in practice is 

often synthesised and has electrical and thermal properties poorer than one in nature. High 

cost is one factor preventing diamond from being used in mass production currently, 

unless technological breakthroughs for this material emerge. Alternatively, semi-

insulating (SI) SiC wafers are commercially available and has been employed in next 

generation electronics, such as AlGaN/GaN-on-(SI) SiC transistors at 500 ⁰C [9], 3510 

V lateral SiC-on-(SI) SIC JFETs [10] and 50 kV (SI) SiC photoconductive switches [11]. 

It is worth noting that GaN and SiC-based devices can outperform their Si counterparts 

and revolutionise the integrated power systems. However, currently, SiC MOSFETs have 

a poor channel mobility, which prevents these devices being used in low voltage 

applications. In order to minimise the parasitic effects, GaN CMOS is being developed 

and was first reported in 2016 [12] as a stepping-stone for fully integrated GaN power 

systems. This can be a strong candidate in the harsh environment market, but requires a 

time period during which the associated technologies are developed, leading to the 

reduction of bulk/interfacial defects, cost and manufacturing difficulties. It takes time for 

the industry to manufacture these devices as well, for example, converting the 

conventional fabrication line to that suitable for such materials. As a result, the complete 

replacement of Si with wide band gap materials for electronics is a long-term process and 

more likely, both will co-exist and complement each other in some applications. 

When considering all these, it becomes apparent that the Si/ (SI) SiC architecture can 

be a viable option in the near future, for customers who are looking for integrated power 

modules operating in extreme conditions. The thermal conduction of this substrate is 

dominated by the (SI) SiC whereas the top Si film performs electrical actions. These 

features are illustrated in Fig. 1.1 for the Si/SiC structure, along with its SOI counterpart. 
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This nature determines that the Si/SiC devices are still bound by the Si limits, such as the 

critical breakdown field and maximum junction temperature (300 ˚C). However, this also 

indicates that these devices can be produced with the traditional Si technologies and 

manufacturing foundry, with the SiC being the only new aspect. Wafer bonding, which 

binds materials with atomic bonds, can treat this new aspect as a purely SOI case and 

minimise the problems encountered in the hetero-epitaxy growth [13]. In addition, it has 

been proven experimentally [14, 15] that the Si fabrication processes can engineer the Si 

layer of the Si/SiC structure, resulting in electrical characteristics similar to those 

extracted from the equivalent bulk-Si and SOI devices. 

 

Figure 1.1. The basic features of the SOI (left) and the Si/SiC substrate (right) 

 

1.1. Background  

This thesis summarises the initial development of Si/SiC power LDMOSFETs which 

comprises the theoretical study of the RESURF technologies, TCAD models verification 

and discussion, design of RESURF Si/SiC LDMOSFETs and numerical analysis of the 

Si/SiC LDMOSFETs by TCAD simulation. The effect of such architecture on the 

electrical and thermal characteristics was reported and evaluated, by using bulk-Si and 

SOI devices as references for comparison.  

An investigation into the Si/SiC substrate [13, 16] was carried out at the University of 

Warwick in 2007-2009, prior to this project. These studies were not limited to lateral 

devices and was a more general study. Apart from being used as a device layer, one idea 
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was that the top Si film could be fully oxidised to form a SiO2 layer on top of SiC. 

Alternatively, it was proposed as a low-resistance ohmic contact to p-type SiC [13]. Both 

have the potential to significantly improve the SiC-based devices, yet with some 

difficulties being introduced, such as the precise control of the thermal oxidation and the 

reduction of carrier scattering at the Si/SiC hetero-junction [13]. No subsequent work has 

been carried out to address these issues and therefore, this architecture has not been 

implemented for SiC products so far. Nevertheless, it is the success in establishing Si/SiC 

substrates with wafer bonding, as demonstrated in those studies [13, 16] that laid a 

foundation for the this project, where the Si/SiC hetero-structure is designed to behave 

like SOI with better thermal conductivity, thereby minimising self-heating effect.  

This Si/SiC concept was not without problems. One concern was the presence of 

disordered layers at the bonded Si/SiC interface, which can negatively affect the device 

performance. Secondly is whether the SiC can be treated as a dielectric material, by which 

the active region is confined and leakage current reduced. These were not answered until 

Shinohara et al. demonstrated experimentally the first functional Si/SiC MOSFETs, with 

the electrical characteristics comparable to a bulk-Si equivalent [14]. Soon after this, Lotfi 

et al. showed that even the poly-SiC was capable of offering decent electrical isolation, 

and that the resulting Si/SiC LDMOSFET performed in a way similar to their fabricated 

SOI devices [15]. Supported by this evidence, the Si/SiC structure appeared suitable for 

use in Si-based lateral power electronics.  

The targeted high breakdown voltage (200-600 V) is one aspect that differentiates the 

current work from prior Si/SiC designs [14, 15]. This feature is obtained via a relatively 

long drift region, placed laterally between the low and high voltage terminal. This region 

determines the blocking voltage of a device, and contributes the most to the on-resistance 

for the aforementioned voltage range. Reduced surface field (RESURF) technology is 

widely used to design the drift region for achieving a better trade-off between the on-

resistance and breakdown voltage. Even though this principle was not employed in the 

previous Si/SiC studies, Lotfi et al. pointed out that a p+ region could be created 

underneath the n well to enhance the depletion of the drift region in their Si/SiC 

LDMOSFETs [17], a layout reflecting the RESURF concept. In this thesis, the 

incorporation of RESURF into the Si/SiC LDMOS design are detailed and investigated, 

with the temperature effect being considered.  
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1.2. Thesis outlines 

The following chapter first introduces the applications of power electronics and the 

challenges of harsh environment operation. Next, the high temperature effects on the 

semiconductor devices are presented before moving on to the approaches to manage the 

junction temperature and the stress tests to qualify the device’s reliability at high 

temperature. Following this, the high temperature potential of different semiconductors 

are discussed based on their physical properties and technologies. Finally, two solutions 

to high temperature operation are discussed, namely semi-insulator and vacuum 

electronics. This chapter is aimed to offer a general view of how competitive Si-based 

RESURF LDMOSFETs are to be used for high temperature power ICs (<300 ⁰C), 

compared with power switches made from wide/ultra-wide bandgap materials. This 

device type will be incorporated into the Si/SiC architecture in the following chapters.   

  Chapter 3 presents some background knowledge required to understand the results 

chapters. The first to be introduced is the LDMOSFET I-V behaviour, followed by an 

introduction of different substrates for the LDMOSFET. After this, the LDMOS structure 

will be described prior to the investigation on the SOI and PN RESURF technologies. 

The last section talks about the on-state resistance and saturation current of the LDMOS, 

in terms of low and high-side configuration as well as their temperature dependencies. 

In Chapter 4, a 600 V and a 190 V SOI LDMOSFET were constructed in the simulator 

to verify the TCAD models against the references over the temperature range of 27-300 

⁰C. In Appendix C, the transferability of these models to the Si/SiC architecture are 

discussed with the literature. These two procedures are aimed to ensure the credibility of 

the simulation results. 

Chapter 5 starts with a preliminary TCAD study of non-RESURF PiN diodes on 

different substrates, in an attempt to build up the basic knowledge of the Si/SiC 

architecture. Based upon this study and the RESURF technologies introduced in Chapter 

3, three Si/SiC RESURF LDMOSFETs are conceived and described with their SOI, bulk 

Si and PSOI counterparts. The first embodiment is a 600 V Si/SiC LDMOSFET with a 

SOI RESURF layout. The second Si/SiC LDMOS structure is also rated at 600 V, but 

designed with a PN RESURF layout. The third is established with the same technology 

as the first, albeit the blocking voltage is reduced to 190 V. Following this, the simulation 
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setups are detailed, with emphasis on the four switching circuits for the aforementioned 

LDMOSFETs. They are a clamped-inductive circuit, a rectangular power pulse circuit, a 

capacitive and an inductive circuit with a Zener diode. The first two are for the 600 V 

devices and the other two for the 190 V transistors.  

Chapter 6 provides a TCAD study on the static and dynamic characteristics of the 600 

V Si/SiC LDMOSFETs. The DC analysis first compares the Si/SiC device in the SOI 

RESURF technology with its SOI equivalents. Secondly, the Si/SiC LDMOSFET in the 

PN RESURF technology is compared with its bulk-Si counterpart. The last part compares 

all the aforementioned 600 V transistors, in terms of the leakage current, low and high-

side resistance. The study on the transient characteristics are split into two parts and based 

upon the switching circuits described in Chapter 5. The first section compares the 

dynamic behaviour of the Philips SOI and its Si/SiC equivalent in the inductive switching 

circuit mentioned in Chapter 5. Next, comparison is made among the Philips SOI, bulk 

Si and the two Si/SiC LDMOSFETs, of the heating effects in the RPP circuit introduced 

in Chapter 5. 

Chapter 7 presents a TCAD study on the energy capability of 190 V LDMOSFETs in 

Si/SiC, SOI, PSOI and PSOSiC technology, using the capacitive and inductive switching 

circuit mentioned in Chapter 5. The first section of this chapter analyses the on/off I-V 

behaviour of the four transistors under isothermal condition at 300 K (27 ⁰C). Secondly, 

a comparison is made between the four transistors on their switching performances during 

the capacitive turn-on and inductive turn-off events. 

The last chapter provides the summary of the results and the conclusions. Suggestions 

are made for further research of the Si/SiC architecture. 
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Chapter 2 High temperature 

power electronics 

2.1. Introduction of power electronics 

Semiconductor devices have already penetrated every single aspect of human life, 

from food production, trading and transportation, to education, entertainment and medical 

treatment. All these activities depend on power generation and distribution systems, 

which employ a large number of electronics as well. Power electronics is a term to 

describe semiconductor devices that control or convert electrical power, instead of 

sensing or processing signals and data.  

With the advance of semiconductor technologies, many forms of Si power electronics 

have been invented for a specific function, to achieve a better compromise between cost, 

efficiency, complexity and robustness. As can be seen in Fig. 2.1, the capacity (VA) and 

operation frequency (Hz) is one trade-off that determines the selection of different Si 

power electronics. The thyristor family, namely Gate turn-off (GTO), bilateral triode 

thyristor (TRIAC) and normal thyristors, are capable of handling very high power, but 

perform poorly in medium-to-high frequency operations. Insulated gate bipolar 

transistors (IGBTs) exhibit a better switching behaviour than thyristors, at the expense of 

a lower power handling ability. Metal–oxide–semiconductor field-effect transistor 

(MOSFETs) modules are better options than IGBTs for applications where high 

frequencies are involved, though the capacity level is reduced even further. High voltage 

and power integrated circuits (HVICs & PICs) are compact solutions specific for very 

high frequency operations, albeit its power capability is the least among the power 

electronics illustrated in Fig. 2.1.  

. 
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Figure 2.1. Current applications of Si power electronics, taken from [18]   

It is expected that the trade-off between capacity and operating frequency can be 

improved with the continued development of Si power devices. Nevertheless, as silicon 

approaches its fundamental limit, the gains become more marginal, and significant 

attention has been paid to wide band gap materials due to their superior properties such 

as high critical field and saturation velocity. Over the last decade, the research on these 

materials has led to many commercial products, for instance GaN high electron mobility 

transistors (HEMTs) and SiC MOSFETs, though some challenges still exist that limit 

their impact on the Si dominated market. However, as the technology matures, wide-band 

gap materials are predicted to be the key players in the new frontier, where new higher 

limits are placed on the frequency-capacity trade-off (see Fig.2.2).   



9 

 

 

Figure 2.2. Current applications of Si power electronics, with the new frontiers 

enabled by SiC and GaN, taken from [18] 

Although several different power devices exist, at a fundamental level the electrical 

actions they perform are similar and can be understood via two basic diagrams shown in 

Fig. 2.3. A common feature to them is a voltage varying resistor and a current control unit 

which is either a low-voltage diode or switch. In the on-state, the power diode conducts 

current from anode (A) to cathode (C), as does the power MOSFET from drain (D) to 

source (S) with the switch closed. The off-state is actuated by reverse-biasing the anode 

and cathode in the diode, or opening the switch in the transistor. The series resistance 

becomes significantly higher in the off-state and sustains most of the applied voltage. 

However, this resistance will be lowered rapidly at the devices rated breakdown voltage. 

It has to be mentioned that the diagram for the power MOSFET can also be used for other 

transistors like IGBTs and bipolar junction transistors (BJTs), although the names for the 

terminals can be different. 
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Figure 2.3. Two simple diagrams for a power diode (left) and a power MOSFET 

(right) 

2.2. Harsh environment operations 

One challenge in power electronics is the exposure to harsh environment which 

includes but not limited to shock, high vibration, high radiation and high/low temperature. 

These extreme conditions can occur simultaneously or/and successively, depending on 

different applications. In automotive and aerospace, there is an increasing demand in the 

replacement of traditional mechanical, hydraulic and pneumatic units with electronics for 

higher reliability and lower life-cycle cost [19, 20]. In this case, semiconductor 

components will be placed close to the engine and experience vibration and high 

temperature (125~150 ⁰C) [20]. Electronics solutions in well-logging will suffer even 

more severe conditions, for example shock, extreme vibration and very high temperature 

(225 ⁰C), which surpass some military specifications [21]. Nuclear plant and waste 

storage is one area in need of radiation-hard power electronics, for achieving more 

reliable fuel usage and recycling [22].  

Driven by a need to reduce mass and volume, electronics components will be at the 

core of next generation equipment for space applications [23, 24]. To be used in space, 

power devices have to meet more stringent requirements than those for customary cases. 

Electric Power units designed for satellites are required to first survive the launching (high 

vibration & temperature), then the thermal cycling with the presence of cosmic radiation. 

Long term reliability is one concern for electric power systems targeted at outer-planetary 

missions, given that the spacecraft is showered with high-energy particles on the long 

journey and repair or replacement of broken parts most often impossible. Another 

problem of space exploration is cryogenic temperature (e.g. 80 K) which will cause carrier 

freeze-out in most of semiconductor devices [25].     
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2.2.1. High temperature environment 

Among all the extreme ambient conditions, high temperature is of paramount 

importance in power electronics as it appears in most harsh-environment applications and 

can induce various side effects, such as chemical reactions, dopant diffusion, performance 

degradation, electromigration and mechanical stress [22]. Some of these phenomena can 

cause irreversible damage to semiconductor devices, resulting in system breakdown and 

a short lifetime. Additionally, the solutions to these failure mechanisms can increase 

complexity and cost, perhaps with some parameters being compromised. One typical 

example is the mean time to failure (MTTF) due to electromigration, described by Black’s 

equation (see below) [22]: 

 𝑀𝑇𝑇𝐹 = 𝐴𝑗−𝑛𝑒
𝐸𝑎

𝑘𝑇⁄
 (2.1) 

Where A is a metal process specific coefficient, j is current density, n is a factor 

(typically 2 or 3 [22]) T is temperature and Ea is a thermal activation energy. It can be 

found in Equation 2.1 that MTTF is less sensitive to current density (j), than Ea and T 

which form the exponent with the Boltzmann constant (k). Even so, it is much easier to 

reduce the current density for a longer lifetime as this can be done by just adjusting the 

bias conditions, whereas the variation of Ea involves the change of recipe for contact 

metals [20, 22] and the reduction of temperature depends on the design of cooling 

equipment which is more challenging in a hot environment. 

2.2.2. Self-heating effects 

It should be noted that the temperature in equation 2.1 is not always equal to ambient 

temperature. The device will generate power losses in operation, which will mean the 

local junction temperature (Tj) is greater than the ambient temperature (Ta) by an amount 

dependent on the thermal properties of the system. This will contribute to a decrease of 

the MTTF according to Equation 2.1, while a variation of Tj within a device can also exist, 

causing mechanical stress in metal contacts. As temperature increases, the electrical and 

thermal behaviour of a device will degrade, producing more heat, which exacerbates the 

situation and can lead to thermal runaway. To alleviate self-heating effects, electronics 

must be equipped with thermal management units, which add mass, volume and 

complexity to a system.   
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One way to regulate temperatures of a power module is to improve heat transfer by 

using techniques such as air flow cooling, liquid cooling, microchannel cooling, and 

electrical-thermal cooling [26]. Common to those methods is the presence of a heat 

exchanger, which can be a heat sink, liquid-cooled cold plate or P/N type pellets [26]. A 

heat sink is made from metals with good thermal conductivity (e.g. Al & Cu), and can 

achieve enhanced heat conduction with fins and flip-chip layout [26]. The implementation 

of liquid-cooled cold plates and circulation of fluid flows in a package can lead to thermal 

convection, thereby reducing heating effects. By biasing P/N type pellets, the heat can be 

pumped from the device and directed to an external heat sink, yet with poor thermal 

efficiency [27].   

  

Figure 2.4. A simplified side view of a power module (left) and a 1-D thermal circuit 

consisting of multiple RC sections to represent the thermal properties of different 

materials (right). Thermal radiation and advection are not considered 

Fig. 2.4 depicts a simple layout for a power component where a heat sink is used for 

heat extraction from a die. Between the die and heat sink are a copper lead frame and 

thermal interface materials for adhesion. Also illustrated is a Cauer thermal network 

formed by a series of RC sections, each of which represents the unique thermal properties 

of different substances along the vertical heat transfer path. In this circuit, a source is 

employed to simplify the power dissipation of a device, and thermal radiation and 

convection are not taken into account. If the source outputs a DC power signal, all the 

thermal capacitors are open-circuited and the junction temperature can be obtained by 

Equation 2.2: 

 𝑇𝑗 = 𝑇𝑎 + 𝑃𝑖𝑛 × (𝑅𝑡ℎ1 + ⋯ + 𝑅𝑡ℎ𝑛) (2.2) 

This is an approximation of the junction temperature of a device, which is not true to 

any real application. On the one hand, a device will operate in a switching mode so that 

the junction temperature is reduced during the off-state. The thermal capacitors will delay 

the increase of temperature, by absorbing part of the thermal energy. Also, the device can 
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also be cooled down by lateral heat transfer and thermal radiation, neither of which are 

considered in the 1-D Cauer network. On the other hand, the switching mode will lead to 

dynamic losses, which can be significant if a device is driving inductive loads or working 

at high frequencies. Complicating matters further, thermal impedance is not constant and 

increases with increasing temperature. When all these issues are factored in, Equation 2.2 

appears to be unreliable and a much more detailed model of junction temperature must 

be derived from finite element methods (FEM). 

Another approach to avoid overheating is the application of sensors in a device. This 

enables the power electronics to be ‘self-aware’ of the danger that can happen, and 

respond to it by entering the off-mode. For instance, once the voltage, current or 

temperature exceed the maximum allowable value, the sensing units will take over the 

gate control of a transistor and shut it down forcibly [28]. During this idle state, power 

dissipation significantly drops and temperature is reduced to a safety level, after which 

device functionality is restored. For achieving an uninterrupted operation, it is necessary 

to add some redundancies into the system, such as a backup unit that delivers the same 

function as the device under thermal cut-off. Such protection will make the power module 

more reliable, but features a complex logic that gives rise to cost and longer development 

time. 

2.2.3. High junction temperature operation 

In a datasheet for a power device, a manufacturer usually provides the electrical 

behaviour of the component at junction temperatures up to 150 or 175 ⁰C [29] [30], which 

corresponds to operations in some automotive and aircraft applications. In such hot 

environment, the switching and conduction losses of the device are higher than those at 

room temperature as a result of activation of parasitic structures and degradations such as 

the increase in specific resistance. Furthermore, a greater thermal stress will be exerted 

on the device package, shortening the lifetime. Therefore, a larger chip area will be 

arranged for the component to counteract the temperature effects, at the expense of a 

higher cost. These are the issues encountered by power electronics in high junction 

temperature operations. 
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2.2.4. High temperature reliability tests  

Before being launched onto the market, semiconductor products will undergo a series 

of tests to define their lifetime, safe operation area, degradation and fail mechanisms. The 

tests often stress the products with high humidity, high temperature and high voltage, 

which makes them degenerate at a fast rate and eventually leads to device breakdown 

[31]. These tests can not only show the reliability and robustness of devices working in 

harsh environments but also indicate the period over which the electronics will operate 

under normal conditions prior to malfunctioning. There are many stressing tests for 

different applications [32] [31], among which high temperature reverse bias (HTRB) test, 

high temperature gate bias (HTGB) test and electrostatic discharge (ESD) test are 

essential to power transistors designed to work at high temperature.  

In the HTRB tests, a power IGBT/MOSFET will be configured in a static mode at 150 

⁰C with its collector/drain biased at the maximum-rated blocking voltage [31]. The same 

applies to the HTGB tests, except for the gate contact biased to its oxide breakdown limit 

instead of the collector/drain [31]. Under both conditions, a large number of carriers with 

high kinetic energy will be created and able to damage the gate/field oxide layers of the 

device. Trapped charges will therefore be produced at the oxide interface and lead to 

variations of parameters such as threshold voltage and on-state current [33]. These 

parameter shifts will be very large after a long working time and the device will be 

deemed to be unusable. This phenomenon is termed hot carrier injection (HCI) and the 

‘hot’ is referred to carrier temperature instead of device temperature [34]. Nevertheless, 

it is found that in those tests, the parameter shifts of devices in the main rise with 

increasing junction temperature [33]. ESD tests are designed to mimic the hazard events 

electronics usually encounter during operation, fabrication and assembly process. Three 

models are used in these stress tests, namely the human body model (HBM), charge 

device model (CDM) and machine model (MM). A poor ESD immunity of devices means 

that an appreciable temperature rise will occur in response to the ESD stress, damaging 

metal contacts or even causing localised silicon melting [35]. Therefore, power 

electronics with less self-heating effects is more likely to pass those tests and exhibit 

stable operation and long-term reliability in high-temperature environments.  
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2.3. Semiconductor materials and technologies 

From section 2.2.2, it can be inferred that the design of any thermal management unit 

is a huge part in the development of power systems, especially at elevated temperature. 

Every thermal control unit is tailored for power electronics based upon their losses, 

thermal behaviour and operating environment. Semiconductor materials have a strong 

influence on these parameters. They also determine the breakdown voltage and on-

resistance, which are two important factors to assess the power transistors. Unless being 

processed, pure semiconductors do not exhibit any useful electrical functions, such as 

rectifying and ohmic characteristics. Such materials are not controllable by applied 

voltages and described as being intrinsic. By contrast, processed semiconductors can 

transform into a conductor or insulator depending on the voltage bias, thereby realising 

the on/off-state behaviour. Doping is a very common way to precisely alter the electrical 

properties of semiconductor and the resulting materials are referred to as being extrinsic.  
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Table 2.1 lists several material parameters associated with power devices, for Si, GaAs 

and AlGaAs, wide band-gap 2H-GaN and 4H-SiC as well as ultra-wide band-gap Ga2O3, 

Diamond and 2H-AlN [36]. Every semiconductor has its unique band structure, which is 

responsible for their distinct characteristics. The differences in the band structure can be 

simply described by the band gap and whether the band is direct or indirect. As shown in 

Fig. 2.5 for an intrinsic semiconductor, the band gap is defined as the difference between 

the minimal energy state of the conduction band (EC) and the maximal energy state of the 

valance band (EV). If these two states occur at the same momentum, the band structure is 

direct, otherwise it is indirect (see Table 2.1). The band gap indicates the minimum energy 

required by an electron to move from the valance band, which is almost filled by 

electrons, to the conduction band, which is nearly empty. In the valance band, voids are 

created after the electron displacement and are termed holes. The generated electron-hole 

pairs will increase the conductivity of an intrinsic semiconductor, with the few electrons 

freely traveling in the conduction band, and the holes representing the massive movement 

of electrons in the valence band. Within the bandgap of an intrinsic semiconductor, there 

are no other electron states that contributes to the current conduction. The higher the 

lattice temperature is, the more electron-hole pairs that will be produced, as greater 

thermal energy is available for the electron transition. However, a wider bandgap leads to 

a lower intrinsic carrier density (ni) (see Table 2.1), thereby reducing the off-state current 

and enabling high temperature applications. 

  

Figure 2.5. Direct and indirect band structures for intrinsic semiconductors, with plus 

sign (+) and minus sign (-) indicating holes and electrons  
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It can also be found in Table 2.1 that a wider bandgap gives rise to a higher critical 

electric field (ECri). The critical electric field is the limit beyond which the semiconductor 

loses its intrinsic property and becomes a low resistance short, the result of avalanche 

breakdown [39]. Avalanche occurs when highly energised carriers collide with the lattice 

freeing more electrons which are then also energised, producing electron-hole pairs. 

However, the electrons cannot be set free from the lattice if the energy they possess is 

less than that of the bandgap. This is similar to the previous case where the electron-hole 

pairs are thermally produced, albeit the cause here is the electric potential energy.   

Within a bandgap, the position of the Fermi level (EF) with respect to the band edges 

(EC or Ev) determines the electrical conductivity of a material. In an intrinsic 

semiconductor, the Fermi level is close to neither EC nor Ev, resulting in the least amount 

of carriers for current conduction (see Fig. 2.6). By introducing dopants in the intrinsic 

semiconductor, the Fermi level will be shifted towards EC or Ev according to the dopant 

type and density. Assuming that all the dopants are ionised, the Fermi level near EV 

induces a great number of holes with very few electrons. This extrinsic semiconductor is 

referred to as P-type material with holes as majority carriers. The opposite case is N-type 

materials whose majority carriers are electrons. 

 

Figure 2.6. The simplified bandgap structure of an intrinsic, P-type and N-type 

semiconductor 

To control the electrical conductivity of extrinsic semiconductors with the applied 

voltage, the N and P-type materials can be connected together, forming a PN junction 

(see Fig. 2.7 left). The depletion region in the junction can enlarge or shrink in response 

to the applied voltage, which gives rise to rectifying behaviour [39]. The Fermi level in 

this region is positioned in a way similar to the case of intrinsic semiconductor, leading 

to a very high resistivity. At the junction (x = 0), the electric field reaches a maximum 
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(ƐM) which is proportional to the square roots of applied voltage and doping concentration 

[39]. This means that if the PN junction is reverse-biased and doping level is high, the ƐM 

can reach the avalanche breakdown limit of a material with a relatively low applied 

voltage. This relationship is of paramount importance in the design of power electronics. 

Another way to alter an extrinsic material is by using a metal-insulator-semiconductor 

(MIS) structure (see Fig. 2.7 right). By applying a positive voltage at the gate, the surface 

area of the semiconductor will be depleted and exhibit intrinsic property. However, if the 

bias is large enough, the Fermi level will approach EC and an inversion layer formed, 

which is responsible for the current conduction in n-channel enhancement mode 

MOSFETs [39]. 

 

 

Figure 2.7. The band diagrams of a PN junction (left) and Metal-insulator-

semiconductor (MIS) structure (right) 

In High Electron Mobility Transistors (HEMTs), the electrical conductivity depends 

more on the surface band bending than the doping level. This is explained in Fig. 2.8 

where a band diagram of AlGaN/GaN heterojunction is illustrated. The bandgap of GaN 

is smaller than that of AlGaN. Due to the discontinuity in the polarisation field at the 

junction [37], positive interfacial charges are generated and pull the band downwards at 

both sides. In this case, the Fermi level is above EC near the junction in the GaN, which 

traps a large number of electrons to balance the surface charges. The trapped carriers are 

confined in the vertical direction but can travel horizontally according to the drain-source 

bias. This is termed 2-D electron gas (2DEG). Even though the Fermi level is outsides 

the energy gap near the junction, akin to the case of degenerate semiconductor (very 

extrinsic) [39], the doping concentration is the same as that of the bulk GaN region, 
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thereby minimising the effect of impurity scattering on mobility [37]. GaAs is another 

III-V group material for HEMTs, albeit no polarisation effect is involved. This 

mechanism can also be implemented in the Al2O3/Diamond heterojunctions with the C-

H surface treatment, though the conduction relies on holes and the resulting devices are 

termed High Hole Mobility Transistors (HHMTs) [40]. 

 

 

Figure 2.8. The simplified AlGaN/GaN HEMT structure and the band diagram at the 

gate region 

 

2.3.1. Semiconductors of choice for high-temperature power 

applications 

At sufficiently high temperature, the intrinsic carrier density (ni) will dominate the 

electrical properties of semiconductors, instead of the manufacturing processes performed 

on them. When this occurs, the device is non-functional as there is little difference 

between the on and off-state current. Therefore, the intrinsic carrier density can be used 

to predict the maximum operating temperature for a semiconductor. Fig. 2.9 shows the 

relationship between the ni and temperature for different materials [41]. Ge and InN are 

not relevant here. Although 4H-SiC, Ga2O3 and Diamond are not shown in the plot, the 

behaviour of their intrinsic carrier density can be referred to the curves for 6H-SiC and 

AlN. For 𝑛𝑖 = 1 × 1015 𝑐𝑚−3, a value approaching the doping level in a power device, 

the critical temperatures of Si is about 300 ⁰C whereas this can be more than 1000 ⁰C for 

6H-SiC, GaN and AlN. Despite this, the theoretical limits have not been evidenced in the 
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power systems made from wide/ultra-wide-bandgap materials, due to the lack of 

packaging and cabling able to work reliably beyond 300 ⁰C [22]. Therefore, 300 ⁰C is the 

upper limit of the ‘high temperature’ described in this work. In the range of 27-300 ⁰C, 

other factors can be as important as temperature for the leakage current in wide/ultra-

wide-bandgap materials. For example, Lee et al. found that at room temperature, the 

leakage of their HV SiC LDMOSFETs was measured to be a value three order of 

magnitude higher than that obtained from the simulation [42]. This is because the 

modelling only considered the effect of intrinsic carrier density on the leakage but in 

reality, material defects can dominate the off-state characteristics [42]. 

 

Figure 2.9. Intrinsic carrier density vs Temperature for different materials, namely 

Ge, Si, GaAs, InN, 6H-SiC, GaN and AlN [41] 

2.3.1.1 Silicon 

Si is the most widely-used and commercialised material in the semiconductor 

industries due to its low cost, very high integration level and processing maturity [22]. In 

spite of having a mediocre thermal conductivity, the smallest bandgap and critical field 

in Table 2.1, Si is still a strong candidate for power electronics if the targeted voltage and 

temperature are less than 1200 V and 300 ⁰C. Furthermore, the native oxide layer (SiO2) 

thermally grown on Si has a low quantity of defects, which allows a high quality MOS 

and SOI layout to be formed. The MOS structure is crucial to the long-term reliable 

operation at high temperature while the SOI can provide full isolation for lateral devices, 
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thereby significantly reducing the leakage current. For assessing unipolar power 

transistors, the specific on-resistance is plotted against the breakdown voltage. These 

figure of merits for Si, SiC and GaN are presented in Fig. 2.10, regarding vertical power 

MOSFETs [43] [44]. It can be clearly seen that in theory, Si is inferior to SiC and GaN 

owing to the lower breakdown field. Nevertheless, RESURF technologies (super-junction) 

can rotate the Si limit curve clockwise (Fig. 2.10 right) and therefore improve the trade-

off between the breakdown voltage and on-resistance. This improvement can also be 

observed in RESURF LDMOSFETs at 25 ⁰C and 125 ⁰C (Fig. 2.11) [45], though the 

figure of merits are poorer than that of its vertical counterparts due to a less efficient use 

of the chip area. By using SOI and RESURF technologies together, Philips company 

developed a 600-700 V LDMOSFET for power ICs, featuring a leakage current of only 

1.5 nA/µm at 300 ⁰ C, and a specific on-resistance smaller (7.6 Ωmm2 at 300 K) and less 

sensitive to temperature compared with the bulk-Si reference [46]. However, heat 

dissipation can be an issue due to the presence of buried SiO2 layer [1]. 
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Figure 2.10. The specific on-resistance vs breakdown voltage in [43] (left) and [44] 

(right), for vertical power MOSFETs made from Si, SiC and GaN 

  

Figure 2.11. The specific on-resistance and breakdown voltage for LDMOSFETs at 

25 ⁰C (left) and 125 ⁰C (right), designed with different RESURF technologies [45] 

2.3.1.2 GaAs 

GaAs has a well-developed fabrication processes and specialises in RF, optoelectronic 

and lighting operation [36]. Due to the availability of semi-insulating (SI) GaAs 

substrates, this material can also be used for high frequency (200 MHz) power ICs, albeit 

the rated voltage is limited to 50 V [36]. As such, GaAs and Si do not compete for the 

same market in general. GaAs devices usually take the form of HEMTs to exploit its ultra-

high electron mobility (over 6000 cm2V-1S-1 [36]). However, its superior properties 

cannot be realised in the p-type devices as the hole mobility of GaAs is less than 400 

cm2V-1S-1 [47], which is undesirable for a CMOS logic circuit. At high temperature, the 

insulating property of the (SI) GaAs substrate will deteriorate, arising from its relatively 

narrow bandgap (1.42 ev) [22]. Junction isolation is required to address this problem [22]. 

Furthermore, the thermal conductivity of GaAs is only 0.55 Wcm-1K-1 at 300 K and falls 
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to about 0.15 Wcm-1K-1 at 573 K [47], which makes heat extraction more difficult than 

the Si in elevated temperature operation. 

2.3.1.3 GaN 

GaN is very similar to GaAs in some aspects, for example the fabrication steps and 

device layout (HEMTs). However, this semiconductor has a much wider bandgap and 

higher thermal conductivity, which are favourable to high temperature power applications. 

In addition, this material can be grown on (SI) SiC substrates for enhanced thermal 

performance [9], but a much higher cost will be incurred. Theoretical speaking, GaN is 

more advantageous than Si and SiC for HV power transistors, regardless of the 

implementation of RESURF concept (see Fig. 2.10 right) [44]. However, the research to 

approach the GaN limit is in progress and more investigations need to be done to ascertain 

the surface, bulk quality and defect density of this material [36]. Recently, functional GaN 

CMOS devices have been demonstrated, which lays a foundation for the GaN power ICs 

[12]. However, the electron mobility (300 cm2V-1S-1) was found to be much lower than 

that of the discrete GaN transistors (1000 cm2V-1S-1), and the hole mobility is only 20 

cm2V-1S-1 [12]. To sum up, more research needs to be done to achieve the full potential 

of GaN in power transistors. 

2.3.1.4 SiC 

SiC has three polytypes adequate for device fabrication, namely 3C, 6H and 4H. 

Currently, 4H-SiC is the most active in the power applications first due to its high 

breakdown field [47]. Secondly, the mobility of 4H-SiC is higher than that of 6H-SiC 

along the c-axis (0001), which is preferable to the vertical HV power MOSFETs [48] [49]. 

With the announcement of 200 mm 4H-SiC wafers and its high thermal conductivity [36], 

this material further consolidates its position in high-voltage (≥1200 V) power electronics 

market. 4H-SiC bidirectional IGBTs has been successfully fabricated for 27 kV 

applications, with good conductivity modulation observed in the on-state [50]. Super 

junction technology has also been experimentally implemented in 4H-SiC, and the 

resulting device is targeted for 1200 V operation and called the CoolSiC trench power 

MOSFETs [51]. High temperature gate reliability tests on such transistor showed that its 

extrinsic failure rate satisfied the industrial standards [51]. The RESURF layout used in 

4H/6H-SiC LDMOSFETs improves their figure-of-merits and boosts the breakdown 
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voltage up to 3000 V [52] [42]. It can be seen that none of the state-of-art SiC devices 

aforementioned is designed for low-medium (≤ 600 V) power applications. This is 

because SiC MOS channel has a very poor mobility, which substantially raises the on-

resistance if the rated voltage is not very high. As can be seen in Fig. 2.10 left, the 

theoretical SiC limit is only able to correctly describe the practical devices above 4000 V, 

with a substantial deviation below 1000 V. Furthermore, there are many traps at the 

SiO2/SiC interface and its quality has not yet matched the SiO2/Si in the Si MOS channel 

[36]. 

2.3.1.5 Ga2O3 

β-Ga2O3 is found to be the most stable form of this compound material for device 

fabrication and has a bandgap wider than those of GaN and SiC [36]. The availability of 

melt-growth techniques for this semiconductor enables large volume and low cost 

production, which is similar to the Si case [36]. It has been experimentally shown that to 

block 230 V, the Ga2O3 MOSFETs require a gate-to-drain spacing of only 0.6 µm, 

meaning that the average and breakdown field are up to 3 and 5.8 MV/cm respectively 

[36]. Wong et al. reported a 750 V Ga2O3 MOSFET, built into a (UID) Ga2O3 buffer layer 

on a (SI) Ga2O3 substrate [53]. This layout provides a very good electrical isolation at 

high temperature and stable performance is observed up to 300 ⁰C, without irreversible 

thermal damage [53]. Nonetheless, Ga2O3 is a very powerful thermal insulator (0.13-0.21 

W/cmK) and the electrical isolation achieved by this material alone will worsen the self-

heating effect. To address this problem, (SI) 4H-SiC can be used as a platform for cooling 

the Ga2O3 transistors, as proposed by Russell et al. [54]. Another issue facing Ga2O3 is 

the lack of p-type dopants. As a consequence, the reported Ga2O3 transistors are all 

depletion-mode N-channel devices and normally-on at zero gate-source voltage [36]. 

Furthermore, p-type conduction can be hindered by self-trapping of holes in the bulk 

Ga2O3, as predicted in [36] [55]. 

2.3.1.6 Diamond 

Diamond is considered to be the most promising semiconductor for high temperature 

and power application, due to its ultra-high bandgap, very high breakdown field and 

superior thermal conductivity. The electrical conductivity of this material can be realised 

with doping like Si and SiC or Al2O3/C-H diamond HEMT structures, which is analogous 
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to GaAs and GaN [36]. Diamond devices in both technologies exhibit very high 

breakdown fields in the range of 2 to 10 MV/cm, and high blocking voltages up to 2000 

V [36]. It is shown that at room temperature, the diamond HEMTs have a leakage current 

2-3 orders of magnitude lower than those of AlGaN/GaN HEMTs [40]. With the 

improved deposition process for the Al2O3 cap layer, the sheet resistivity and hole density 

of 2DHG were found to be almost constant at temperatures between 27 to 500 ⁰C, which 

is more desirable than boron-doped diamond FET for high temperature applications [56]. 

The formation of a partial C-O channel enables normally-off behaviour in the diamond 

HEMTs, a valuable feature for safe operation [40]. However, the absence of effective n-

type dopants restricts the device types that can be made from this material [36]. 

2.3.1.7 AlN 

AlN is a very good thermal conductor with a bandgap even wider than that of diamond. 

Therefore, this material can be used as a heat sink with a remarkable insulating property. 

Research on this nitride for HV electronics is still at early stage but the preliminary results 

by Fu et al. are encouraging [57]. Their lateral 1 kV Schottky diode has an n-type AlN 

layer as the active region, on an unintentional doped (UID) AlN for electrical isolation 

[57]. The breakdown mechanism is believed to be associated with the electric field 

crowding at the edge of Schottky contact, rather than the AlN layers [57]. A noticeable 

rectifying I-V relationship is demonstrated at room temperature, featuring a turn-on 

voltage of 1.2 V, an on/off current ratio of 105 and a reverse current below 1 nA [57]. All 

these indicate the potential of AlN to be used for high temperature and power IC 

applications.  

2.3.2. Conclusions 

In conclusion, wide/ultra-wide-bandgap semiconductors are challenging Si in high 

temperature and power applications. Once their processing is well-developed, wafer 

prices reduced and technological problems solved, the replacement of Si with those 

materials for high temperature power electronics is likely. However, Si is still very 

competitive on the market at the present time, especially for low-medium voltage (≤ 600 

V) power ICs working below 300 ⁰C. 
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2.4. Others technologies for high-temperature devices 

Having introduced different semiconductors and their technologies, presented here are 

another two solutions that can realise high-temperature power electronics, namely semi-

insulator and vacuum technologies. 

2.4.1. Semi-insulator technologies 

Semi-insulating (SI) semiconductors are gaining interest for use in the harsh 

environment, specifically given recent interest in photoconductive semiconductor 

switches (PCSS). SI semiconductors no longer rely on foreign elements to increase its 

electrical conductivity. Instead, in order to raise the resistivity of the material, it will either 

remain unintentionally doped, or will be electrically neutralised by implanting deep-level 

dopants. This intrinsic behaviour can be disrupted by exposing the material to laser pulses, 

which deliver significant optical energy. This allows the SI semiconductor to be 

populated with carriers, resulting in current conduction. This phenomenon is similar to 

the effect of temperature and electric field on the electron-hole pairs aforementioned, 

however this laser excitement is deliberate and controllable. The more laser energy the 

semiconductor absorbs, the lower the on-state resistivity will be. Devices exploiting this 

optical mechanism are termed photoconductive semiconductor switches (PCSS). Such 

devices can demonstrate a very high on/off ratio and its electric field distribution can be 

quite even, thereby increasing the breakdown voltage. Furthermore, the semiconductor is 

not heavily engineered—only metal contacts are compulsory—which can avoid the 

damage introduced during the fabrication in semiconductor technologies. 

Recently, (SI) 4H, 6H-SiC have been used for the PCSS due to their high resistivity 

and breakdown field [11, 58, 59]. The initial prototype was made from (SI) 6H-SiC and 

used a lateral layout to minimise the effect of micropipes [58]. The second and third 

generation displayed a reduced on-resistance due to the replacement of 6H-SiC with 4H-

SiC, with the latter device showing a breakdown voltage of 50 kV [11, 59]. In [11], the 

power switching tests showed that the 4H-SiC PCSS could deliver a peak current of 940 

A to a 30.8 Ω load, with a 30 kV DC supply. The peak power and current density were 
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measured to be 27 MW and 50 kA/cm2, respectively [11]. Even though no results have 

been reported on their high temperature operation, it can be expected that devices of this 

kind resemble the SiC-based electronics in semiconductor technologies to some degree, 

in terms of the electrical characteristics in hot environment. More specifically, in the off-

state where the optical source is turned off, the SiC PCSS can be regarded purely as a 

semiconductor device and the leakage will go up with increasing temperature like its 

traditional counterpart. In the on-state, the resistance is related to the device geometry and 

inversely proportional to the carrier mobility and density [11]. Therefore, the two device 

types share the same principle for current conduction, which can lead to a similar 

temperature dependency in the on-state if the optical carrier generation in the PCSS is not 

strongly sensitive to temperature. One can infer that carrier lifetime is one reason for the 

temperature sensitivity of the optical process but this is not formulated in the equations 

in [11], where the process is demonstrated to be temperature-independent. 

2.4.2. Vacuum technologies 

After being usurped by semiconductor devices and replaced in the majority of 

applications, vacuum electronics were not completely eliminated and are still used in a 

few areas. One example is the traveling-wave-tube amplifier used for satellite 

communication [60]. Over more than half a century, there has not been a semiconductor 

device that can challenge its position [60]. High temperature operation is another field 

where an intense competition between vacuum and semiconductor technologies can 

happen. Even though both device types suffer thermal degradation caused by chemical 

reaction, metal diffusion and packaging [22], the carrier transport in vacuum electronics 

is temperature-independent [22], which is different from the semiconductor counterparts. 

It has been demonstrated that miniature thermionic vacuum circuits can work with little 

or no loss of functionality in 13000 h test at 500 ⁰C [22]. 

Unlike the other two technologies, the electrons are not supplied by the material along 

the current path, but a hot filament (thermionic) or a cold cathode. It has to be mentioned 

that the definition of vacuum in this technology can be space void of matter, or a dielectric 

material (e.g. diamond & glass) [61]. With the advance of micromachining, the cold 

cathode is desirable due to the increase of reliability. Arrays of cone-shaped protrusions 

are formed on the cathode surface, to facilitate electron field emission. The released 
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carriers will be attracted by the anode and travel through the vacuum environment (or the 

dielectric). Recently, Evince company have mentioned a field emission triode (FET) 

currently being developed, using diamond as a filling material to create a pseudo-vacuum 

environment [61]. 
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Chapter 3 Theory 

In this Chapter, the principle of LDMOSFET and its figure-of-merits are first stated to 

offer background information for this work. Prior to the discussion of RESURF 

technologies, different types of substrates are introduced and compared, with their pros 

and cons detailed. The last section briefly talks about the on-state resistance and saturation 

current of the LDMOS, in terms of low and high-side configuration as well as their 

temperature dependencies. 

3.1. Introduction of LDMOSFET 

By convention, LDMOSFET is a unipolar device whose on-state current conduction 

relies on only one type of charge carrier, namely electrons or holes. The LDMOSFETs 

that employ these two carriers are termed nLDMOS and pLDMOS, respectively. They 

have the same operation but differ in the polarity of the doped regions and bias conditions 

for the terminals. Unless stated otherwise, the LDMOSFET described in this section is n-

channel, with electrons constituting the main current flow. 

Similar to a MOSFET, the operating modes of a LDMOSFET are determined by the 

voltages applied to its four electrodes, namely source, drain, gate and substrate. Normally 

speaking, the substrate is connected to ground and its potential can be equal to or lower 

than that of the source. To turn on the device, the gate-to-source potential (VGS) has to 

exceed the threshold voltage (Vth), with the drain more positively biased than the source. 

In this case, the transistor will be operated either in the linear region if the drain-to-source 

voltage (VDS) is small, or in the saturation region if VDS is large (see Fig. 3.1). The drain-

to-source current (IDS) is increased with higher VDS and VGS in the linear region, whereas 

in the saturation region it is only a function of VGS. If self-heating effects are considered, 

the saturation current will be reduced and negative resistance occurs (see the dashed lines 

in Fig. 3.1). This is due to the increased power dissipation as VDS goes up, raising the 

temperature and therefore lowering the carrier mobility. 

With VGS equal to zero, the device is in the off-state mode and only shows considerable 

current at the breakdown voltage (BVDSS) where the avalanche mechanism commences. 
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Increasing VGS leads to a reduction in BVDSS because the number of mobile charges is 

increased, which causes high electric field at the drain side [62]. This is called the Kirk 

effect and the resulting avalanche process will generate holes which drift to the source 

[63, 64]. If this hole current is large enough, the parasitic npn transistor will be triggered 

and the LDMOSFET loses control [63, 64]. This forward breakdown voltage at each VGS 

outlines the boundary of the electrical safe operation area (eSOA). Likewise, the thermal 

safe operation area (tSOA) defines the conditions under which the transistor starts to show 

thermal instability. The parasitic npn structure also plays an important role in this case 

but the device malfunction is initiated by junction temperature [64]. In practice, the safe 

zone of a device will be influenced by combined electro-thermal actions and changes with 

bias conditions and ambient environment. At high temperature, increasing the device area 

and choosing high thermally conductive materials can effectively enlarge the SOA, as the 

faulty operation is more easily activated by the thermal effects than the electrical. 

 

Figure 3.1. I-V characteristics of a n-type LDMOSFET 

The high BVDSS is one aspect that differentiates LDMOSFETs from its low-voltage 

counterparts. This is enabled by introducing a lightly-doped (drift) region between the 

gate (channel) and drain contact region. This voltage-sustaining region reduces the 

sensitivity of current to the gate bias at high VGS, creating a quasi-saturation region (see 

Fig. 3.1). The reason behind this is the high field mobility degradation and electric field 
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screening [66]. The drift region also requires a larger chip area (A) and will increase the 

on resistance (RDS). The product of RDS and A is termed specific on resistance (Rsp), and 

widely used to benchmark the on-state performance of various LDMOSFETs. Rsp and 

BVDSS are a pair of trade-off factors and have been studied for many years, which 

eventually led to the Reduced Surface Field (RESURF) principle, which will be discussed 

in depth later. Using this concept, a better compromise between BVDSS and Rsp can be 

realised in a power transistor, which translates into a smaller chip area and lower cost. In 

practice, the device area can be larger than that determined by the RESURF principle so 

that a better ruggedness and energy capability can be achieved in the LDMOSFET [63]. 

Therefore, the final product is more likely to be conceived by seeking the balance among 

BVDSS, Rsp and safe operation area (SOA) (see Fig. 3.2 [64]) 

 

Figure 3.2. A triangle relationship among BVDSS, Rsp and safe operation area (SOA) 

for LDMOS design, taken from  [64] 

 

3.2. The substrates of LDMOSFET/LIGBT  

Unlike their vertical counterpart, the lateral power device has low and high-voltage 

terminals on the same side of the wafer, and is designed to perform electrical functions 

only on the very top region (up to 20 μm thick [67]). Ideally speaking, the rest of the 

wafer should be completely electrical inactive, and serves only as a heat sink and 

mechanical support during device fabrication and operation. In reality, the wafer will be 

engineered in a way that the substrate’s electrical interference is minimised or can be 

manipulated under the specified working conditions. This can bring about a beneficial 
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change in one aspect but detrimental change in others. Over the last decade, many Si-

based platforms have been developed for power ICs, such as Bulk Si, SOI, Partial SOI 

(PSOI), Si on thick insulator (SOTI), membrane SOI and Membrane bulk Si (see Fig. 

3.3). Some of these structures are free from strong substrate effect, while some have to 

live with it owing to the presence of built-in PN junction or Silicon-SiO2-Silicon (SOS) 

layout. 

P-type Si

N-type Si 

 

Si

SiO2 or other dielectric materials

Si
 

P-type Si

SiO2 or Void

N-type Si 

  

Si

SiN passivation

 

Si
SiO2

Si SiN passivation

 

Si

Insulator

 

Figure 3.3. The Si-based substrates where lateral power devices are fabricated. From 

left to right, top to bottom, are Bulk Si, SOI, PSOI, Membrane Bulk Si, Membrane 

SOI and Si on thick insulator (SOTI). 

3.2.1. Structures with substrate effects 

Bulk Si, SOI and PSOI are equipped with either a horizontal PN junction or/and a SOS 

capacitor (see Fig. 3.3), both for electrical isolation. The PN junction allows heat to 

escape easily while the SOS capacitor does not, which makes Bulk Si the most thermally 

conductive among the three. However, the PN structure can react with a device’s n or p 

type regions and activate parasitic BJTs, which causes bipolar action and injects carriers 

into the substrate, thereby increasing turn-off losses. Furthermore, the PN junction is not 

a strong electrical barrier at high temperature, due to a large thermally produced drain-to-

substrate leakage current. By contrast, the dielectric isolation (DI) in SOI prevents the 

substrate’s bipolar effects and offers remarkable device confinement at high temperature. 

This significantly reduce the power losses in SOI devices in general, which can partially 

counteract the poor heat transfer ability. Other methods for thermal improvement of SOI 

includes the flip-chip design [26], replacement of SiO2 with other dielectric materials 

such as diamond, SiC or AlN [68, 69, 70], or the PSOI architecture [5]. PSOI permits a 

combination of the benefits of Bulk Si and SOI, achieving a better trade-off between 

electrical isolation and heat extraction. An opening is created in the buried layer within 
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the active area and can be placed under the drain or source side [71], which results in a 

substrate effect mainly controlled by a PN junction or SOS capacitor respectively. This 

partial isolation can suppress some undesirable behaviour but large leakage can still be 

produced at elevated temperature [72]. To tackle this problem, the opening can be placed 

out of the active area next to the drain, which increases the chip area but makes the device 

well-confined [73]. Alternatively, the leakage can be supressed by using p-type SiC as 

the substrate material instead of Si, which forms Silicon/oxide/Silicon carbide (SiOSiC) 

[72]. 

In LDMOSFETs/LIGBTs, the high voltage applied to the drain/collector has to be 

sustained laterally and vertically. This requires the built-in PN or SOS layout to withstand 

a drain-to-substrate potential up to the specified blocking voltage. The PN junction has 

an advantage in this case as the SOS structure supports the applied voltage with only the 

overlayer and buried oxide. The enhanced depletion in the top Si film can cause premature 

avalanche breakdown in LDMOSFETs, or punch-through breakdown in LIGBTs. The 

lack of substrate depletion enlarges the drain-substrate capacitance and lowers the 

switching speed [74]. Increasing the oxide thickness can raise the blocking voltage and 

alleviate the substrate effect, but worsen the heat transfer ability and induce wafer 

warpage [75, 76]. Silicon on double insulator (SODI) [77], PSOI structure and the 

trenched BOX layer [78] can address this dilemma but formation of such wafers is not as 

straightforward as that of SOI [79]. The same applies to another type of PSOI where the 

interrupted oxide is replaced with an air cavity (void), which forms a silicon on nothing 

(SON) structure and improves the breakdown voltage [80, 81]. However, if the SOI 

transistor has very a high blocking voltage and limited power rating, self-heating will not 

be a big issue. One example is the 2000 V SOI LDMOSFET having a 12.2 μm BOX 

layer, developed for HVIC applications [82]. The SOI structure was prepared by wafer 

bonding and no warpage problem being reported [82]. Although a thick buried oxide is 

present in this device, the large chip area required for 2000 V increases the thermal 

capacitance and cross section for vertical heat transfer. In summary, of the three substrates 

discussed, the SOI architecture suffers the least from the parasitic effects induced by the 

substrate at elevated temperatures, despite being weak at heat extraction. 
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3.2.2. Structures without strong substrate effects 

Si on thick insulator (SOTI), membrane bulk Si and SOI are constructed to achieve the 

same goal—the complete removal of substrate effects. The implementation of deep 

reactive ion etch (DRIE) detaches the Si under the drift and drain/anode region in the two 

membrane architectures, leaving only a pillar behind under the source for mechanical 

support [83, 84]. Forming SOTI wafers often involves epitaxial Si growth or a wafer 

bonding process performed on a bulk insulator, such as sapphire [85] and semi-insulating 

SiC [14]. As a result, the semi-insulating substrate suppresses any substrate effects on the 

device and the vertical breakdown limit eased. This allows fast HV LIGBTs to be built 

on the membrane bulk Si and be free from the back gate MOS effect, preventing the 

punch-through breakdown [86]. However, the RESURF effect facilitated by the substrate 

is lost, which lowers the doping allowance in the drift region of traditional LDMOS 

designs. However, this can be solved by using 3D RESURF technique which depletes the 

Si layer in the direction of the device width [87]. 

Compared with the membrane structures, one drawback of the SOTI substrate is the 

quality of the Si layer. For example, atomic migration can happen during high temperature 

treatment (e.g. annealing and oxidation) in Si/Diamond and Si/Al2O3, leading to an 

amorphous SiC layer sandwiched in-between [88] and a Si film contaminated by Al 

acceptors from Al2O3, respectively [89]. It has been experimentally proven that Si/(SI) 

SiC substrates are compatible with the conventional Si fabrication process [14, 15]. 

Nonetheless, the Si/SiC wafers have higher cost and less wafer yield at the present time, 

putting them in disadvantage compared with the membrane structures. 
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3.3. LDMOS topology  

 

Figure 3.4. The locations of PN junctions and/or silicon/metal-oxide-semiconductor 

layouts in a LDMOSFET 

Fig. 3.4 illustrates an n-type LDMOS layout employing a bulk-Si or SOI wafer. As 

such, the structure between the n-active layer and the substrate contact is either a thick P- 

region, or a buried oxide (BOX) layer on top of a Si substrate (n or p type) respectively. 

The n-type active layer comprises a body region, a channel region, a drift region and a 

drain region. The body region is defined by a p body doping profile and has a P+ and N+ 

zone shorted with the source metal. The channel region is laterally offset from the N+ 

region, embodying the P body width, a gate oxide and a polysilicon top layer. The channel 

and drain region (N+) is separated by the drift region, above which a field oxide (FOX) 

layer is formed. The polysilicon gate, acting as a field plate, is extended over the FOX 

layer without touching the drain metal, or connects to it via semi-insulating material [90] 

or a PiN diode [91]. 

Despite the complexity at first glance, this topology contains only two building blocks, 

namely PN junctions and Silicon/metal-oxide-Silicon (S/MOS) capacitors. Both layouts 

appear in the drift region and are used to create RESURF effects. PN junctions can be 

found in the body region and electrical isolation area. An S/MOS structure is placed as 

the field plate or in the channel region.  The next section will describe the RESURF effects 

induced by the two structures mainly. For more information on their other electrical 

behaviours (e.g. channel inversion), please refer to this book [39]. 
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3.4. RESURF technologies 

  

Figure 3.5. A simple demonstration of the RESURF concept by using three PiN 

diodes differing in the settings of the drift region 

The concept behind RESURF technologies is to reduce the on-resistance by sacrificing 

the least blocking capability.  This is realised by depleting the drift region fully in a 2D 

manner at low voltage using PN and/or M/SOS structures. A concise illustration of this 

RESURF effect is given in Fig. 3.5, using three PiN diodes consisting of a P+ anode, a 

drift region and a N+ cathode. They differ only in the setup of the drift region. Also drawn 

are their electric field distributions at the onset of the avalanche breakdown. With a 

highly-doped (extrinsic) n-type drift region, the top diode has a very low on-resistance 

but fails to deliver a high breakdown voltage. This is because the electric field peaks at 

the P+/n- and only a small portion of the drift region sustains the voltage. With an intrinsic 

drift region, the blocking voltage is maximised as a result of a uniform electric field 

distribution. However, this configuration increases the on-resistance substantially. As a 
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result, neither of the two diodes exhibits remarkable on and off characteristics at the same 

time. Using a p and n type pillar in parallel in the drift region, the bottom diode can 

combine the advantages of the first two structures, namely the low on-resistance and high 

blocking voltage. In the on-state, the conductivity of this diode is related to the doping 

and size of the n pillar. In the off-state, the two pillars are fully depleted in the x and y 

direction so that a pseudo-intrinsic behaviour is achieved. 

The RESURF principle has more impact on high voltage LDMOSFETs than other 

device types. The first reason is that in these transistors, the drift region contributes a 

large proportion of the total on-resistance, for example 96.5 % at 600 V. [44]. Secondly, 

the specific on-resistance (Rsp) is strongly associated with the drift region dose (Qd/q). 

This is different from the IGBTs where the drift region conducts current with minority 

carrier injection. However, some state-of-art LDMOS types can populate their drift 

regions with extra carriers in the on-state, which is enabled by bimodal [92], accumulation 

[93] or inversion mechanism [94]. In these cases, the relationship between Qd and Rsp is 

weakened but the effect of Qd on the BVDSS still applies as usual, owing to the 

disappearance of excessive carriers in the off-state.  Before jumping into the details of 

RESURF technologies, a 1-D PiN diode is provided to review the fundamental 

knowledge of depletion. 

3.4.1. 1-D model 

 

 

Figure 3.6. A reverse-biased PiN diode (left) and its corresponding electrical field 

distribution (right)  

As can be seen in Fig. 3.6, the 1-D PiN diode is reverse biased and consists of a P+ 

anode, N+ cathode and N- drift region with a doping density of Nd. According to 
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Poisson’s equation [39], the electric field peaks at the P+/N- junction and drops linearly 

in both regions at a rate of qN/ε [39]. The integration of electric field along the x direction 

approximates to the applied voltage. As this voltage increases, the area enclosed by the 

electric field enlarges and eventually, its vertex reaches the Si critical field level where 

the avalanche process begins (see Fig. 3.6). Assuming that the N- region is long enough 

to allow a large number of avalanche carriers to be generated, this critical field level 

marks the threshold beyond which the PiN diode breaks down, and the applied voltage at 

this moment is denoted as BVDSS. If one wants to increase the conductivity, more donors 

will be added into the drift region and the slope of electric field be raised accordingly (see 

Fig. 3.6). If the critical field level is doping-independent, the BVDSS will decrease and 

parts of the drift region will support insignificant amounts of voltage. This model has long 

been used for determining the Si limit for power MOSFETs, but fails to characterise the 

devices with 2-D depletion behaviour such as CoolMOS and MDMesh [44]. 

3.4.2. 2-D model 

There have been numerous research papers dedicated to RESURF effects in power 

LDMOS devices. Popescu et al. evaluated some RESURF models for SOI and Bulk-Si 

cases, and proposed an analytical method able to be used for not only the two traditional 

technologies but also partial SOI and 3-D devices [95]. Ludikhuize et al. discussed the 

doping boundaries of RESURF for Bulk Si LDMOSFETs, with the consideration of both 

low and high-side operation [96]. Boksteen et al. investigated various FP-assisted 

RESURF layouts suitable for SOI substrates and put forward a mathematical model to 

optimise them [97]. Zhang et al. studied 3-D RESURF effects on LDMOS and formulated 

a solution to obtain minimal on-resistance for a specific BVDSS [98]. It can be seen that 

RESURF analysis can start from different perspectives and be expanded in its own way. 

As such, the RESURF principle described here will not cover every single aspect, but 

only introduce the basic concept needed for understanding the structures simulated herein, 

such as Philips’ SOI [46] and Disney’s bulk Si LDMOS [99]. 



40 

 

As can be seen in Fig. 3.7, the stars mark the possible breakdown locations of a HV 

LDMOSFET. From the left to right they are underneath the P body, at the P body/N- 

junction, below the two points where FPs are terminated, at the corner of N+ drain and 

the bottom of the active region under the drain. Channel punchthrough and gate oxide 

breakdown are not considered here as they are related to channel parameters such as P 

body doping and gate oxide thickness. In a well-designed LDMOS structure, the gate and 

drain FPs serve as a method to induce depletion from the top of the drift region, which 

reduces the electric field crowding at the P body/N- junction and drain N+ region. For a 

LDMOS requiring high-side capability (operating with high voltages compared to the 

substrate), the doping level in the drift region has to be high enough to hinder the depletion 

arising from the potential difference between source and substrate, otherwise the punch-

through breakdown will happen [96]. For a LDMOS in RESURF technologies, the 

horizontal junction (PN or SOS) under the N+ drain is where the avalanche process 

commences. The horizontal field distribution between the remaining two points on cutline 

(AA’) is what makes the RESURF model different from the conventional 1-D case. For 

a better understanding of this RESURF effect, the vertical field at the midpoint of the drift 

region (BB’) and close to the N+ drain (CC’) are highlighted. 

 
Figure 3.7. A HV LDMOSFET with stars indicating possible breakdown locations. 

AA’, BB’ and CC’ are the cutlines for analysing the E field along the surface, at the 

midpoint of drift region and under the N+ drain in vertical direction, respectively   
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If the LDMOSFET has an optimal RESURF condition and FPs effect is ignored, the 

surface field (AA’) will feature two peaks located at P body/N- and N-/N+ junction (see 

Fig. 3.8). The full depletion of the drift region will occur at low voltage and the slope of 

E field far from the two peaks approaches to zero. This can be understood by viewing the 

onset of full depletion at the midpoint (BB’) (see Fig. 3.8). Because the horizontal PN or 

SOS structure is under reverse-bias, a vertical depletion is present and raises the vertical 

electric field, leading to voltage drop in the x direction. This can happen in most parts of 

the drift region if the optimal dose for each location is satisfied. Despite the drift region 

having a certain amount of donors, this positive charge is balanced by negative charge in 

the substrate, resulting in an effective dose of almost zero. Therefore, the gradient of the 

E field in this case is not in a close relationship with the qNd, but the difference of the 

space charges in the depletion zones of the drift region and that of the substrate q(Nd-

Nsub). 

The key to creating this effect is the arrangement of the impurity dose in the drift region. 

The dose value is the product of Nd and the thickness of drift region. It has been found 

that the optimal RESURF condition demands a drift region with an effective dose 

ascending from the source to the drain side [100, 101, 102, 103, 104]. Doing so also 

makes devices strong against the kirk effect as it is difficult for extra electrons to disturb 

the electric field distribution in the on-state [105]. In practice, a uniform-doped drift 

region is good enough to deliver a RESURF transistor using a bulk Si substrate. However, 

LDMOSFETs in traditional SOI technology usually require a drift region with a linearly 

  

Figure 3.8. The electric field distribution along AA’ (left) and BB’ (right), for the 1st 

order RESURF LDMOSFET 
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varying effective dose, for the formation of a rectangular E field distribution. The 

following is the RESURF analysis for the bulk Si (PN) and SOI case (M/SOS). 

3.4.2.1 Bulk Si  

In bulk Si, the RESURF effect is normally produced by PN Junctions (e.g. p- sub/n 

drift region) with a uniform doping profile. This doping value has to meet two 

requirements. First, the drift region should be fully depleted at low reverse bias prior to 

avalanche breakdown. Secondly, breakdown should occur at the bottom of the active 

region under the drain. Fig. 3.9 illustrates the ideal electric field along BB’ (from Figure 

3.7) and the one along AA’ at the onset of avalanche mechanism, under three different 

doping conditions. The overdose (dark blue) and underdose (cyan) in the drift region 

violates the charge condition at the source side and drain side respectively, lowering the 

blocking voltage. By contrast, the drift region with optimal dose (blue) supports the 

greatest drain-source potential, due to the presence of an even electric field distribution. 

The maximum value of this doping is approximated as follows [99]. Along the cutline 

BB’ the vertical field falls from 1.5×105 V/cm to zero at the surface, indicating the full 

depletion of the drift region. Any further increase in the applied voltage will make the 

maximum electric field under the drain exceed 3×105 V/cm, thereby causing avalanche 

breakdown. At this moment, the dose can be calculated: 

 

𝑑𝐸𝑦

𝑑𝑦
=

𝑞𝑁𝑑

𝜀𝑠𝑖
=

𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑡𝑠𝑖
  

 

 

𝑄𝑑/𝑞 = 𝑁𝑑 × 𝑡𝑠𝑖 ≤
𝜀𝑠𝑖× 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

𝑞
= 9.8 × 1011 𝑐𝑚−2 ≈ 1 × 1012 𝑐𝑚−2           (3.1) 

Where Esurface is the electric field at the surface of the drift region. tsi and Qd/q are the 

thickness of the drift region and the first order RESURF dose respectively. This dose can 

be provided by a thick or thin layer, with the corresponding doping density according to 

Equation 3.1. 
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Figure 3.9. The electric field distribution along cutline AA’ (left) and BB’ (right), 

when the avalanche breakdown point is tend to be reached. 

It is possible to increase Qd, and thereby further reducing on-state losses, by 

introducing a p type layer in the drift region. If such a layer is placed on the surface, above 

the drift region, the drift region will be depleted from the top and bottom and the limit of 

RESURF dose be doubled (2×1012 cm-2) [106] (see Fig. 3.10). It is worth noting that the 

parameters of the p top region also need to be configured based upon Equation 3.1. By 

burying the p type layer, the drift region is separated into two sections (see Fig. 3.11) [99]. 

The upper part is depleted from one side by the p buried layer whereas the depletion is 

induced from both sides in the lower part. In this case, if a uniform doping profile is 

assumed, the bottom region has to be two times wider than the top one [99]. As a result, 

the dose allowance in the drift region is tripled and equal to 3×1012 cm-2 [99]. This 

impurity level is compensated by the partially-depleted substrate, and the fully-depleted 

buried layer with a dose of 2×1012 cm-2. Therefore, the drift region exhibits a pseudo 

intrinsic behaviour despite being highly-doped. 
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Figure 3.10. Double RESURF Layout (left) and the corresponding electric field along 

BB’ when the drift region is fully depleted (right) 

 

  

Figure 3.11. Triple RESURF layout (left) and the corresponding electric field along 

BB’ when the drift region is fully depleted (right) 

The added P-type region elevates the current by increasing the dose in the N-type drift 

region. However, this region itself does not allow electrons to pass in the on-state and 

hence the effective area for current conduction is smaller than the cross section of the 

drift region. To address this issue, a second gate can be introduced [107] to control the p 

pillar in their 3D RESURF design, forming a PLDMOSFET in parallel with the original 

NLDMOSFET. When both gates are fully turned on, an extra hole current will flow 

through the new transistor, accompanied by minority carrier injection in the n/p pillar 
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[107]. In this case, the LDMOSFET uses two carriers for conduction and this is referred 

to as bimodal mode [107]. Zhang et al. have implemented this concept experimentally in 

their 2D RESURF LDMOSFETs [108]. The structure is conceived based upon the triple 

RESURF design, with a p top layer being part of the slave PLDMOSFET [108]. In this 

case, the dose of the n-type top channel will be doubled and the same as that of the bottom 

channel [108]. This technology is termed Quadruple RESURF p-n bimodal conduction, 

which results in more than 30% increase in the saturation current compared to the case 

without the bimodal operation [108]. Despite this, some components need to be added to 

synchronise the two gates, such as a resistor, a current source, and a HV NMOS [108]. 

The price of these gate control units are the extra chip area and cost [108]. To operate this 

device more efficiently and safely, it was recommended that the turn-on action was 

performed for the N-gate first then P-gate, and that both gates were required to be turned 

off at the same time to the blocking voltage [108]. 

3.4.2.2 SOI 

The RESURF conditions in traditional SOI are much stricter than that of bulk Si. This 

is because, in the off state, a large amount of negative charge gathers under the BOX layer 

at the drain side, descending towards the source [109]. This gives rise to a drastic 

difference in the RESURF dose requirement between the drain and source, which makes 

a uniform doping profile unfit for forming the optimal RESURF condition. One solution 

to this is to thicken the BOX layer so that the SOS capacitive effect is diminished [76]. 

Alternatively, the drift region can be engineered in such a way that the net doping 

increases linearly from the source to drain, for the purpose of charge balancing. As 

mentioned before, a PSOI structure could also be used, but this has mixed RESURF 

effects from the built-in PN and SOS structures. Here, only the LDMOSFET under the 

pure SOI (SOS) RESURF layout is described based upon [100] where an optimal linear 

doping profile is developed for a thin-film SOI architecture. 

Starting with a 2-D Poisson’s equation, one has: 

 ∇𝐸(𝑥, 𝑦) =  
𝑞𝑁(𝑥)

𝜀𝑠𝑖
  

 
𝜕𝐸𝑥(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝐸𝑦(𝑥, 𝑦)

𝜕𝑦
=

𝑞𝑁(𝑥)

𝜀𝑠𝑖
     

(3.2) 
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Where N(x) is the doping of the drift region as a function of lateral distance, εsi is the 

Si permittivity with Ex and Ey being the horizontal and vertical component of electric field. 

This relation holds true within the depletion region. Since a lateral field under optimal 

RESURF conditions has a gradient of zero (see Fig. 3.12), Equation (3.2) becomes: 

 
𝜕𝐸𝑦(𝑥, 𝑦)

𝜕𝑦
=

𝑞𝑁(𝑥)

𝜀𝑠𝑖
 (3.3) 

Assuming that the applied voltage and the resulting depletion length in x direction is 

V and W respectively (see Fig. 3.12), this also gives: 

 
𝑉 = 𝐸𝑥 × 𝑊      

 
 

 𝜑(𝑥, 0) =  
𝑉𝑥

𝑊
    (3.4) 

Where 𝜑(𝑥, 0) is the surface potential within the deletion region (0<x<W).This 

variable can also be obtained in the vertical direction (Fig. 3.12 (right)): 

 𝜑(𝑥, 0) = (
1

2
𝑡𝑠𝑖 +

𝜀𝑠𝑖

𝜀𝑜𝑥
× 𝑡𝑜𝑥) 𝐸𝑦(𝑥, 𝑡𝑠𝑖) (3.5) 

Combining Equation 3.4 and 3.5, the y component of electric field at the bottom of the 

Si layer is: 

 
𝐸𝑦(𝑥, 𝑡𝑠𝑖) =

𝑉𝑥

𝑊 (
1
2 𝑡𝑠𝑖 +

𝜀𝑠𝑖

𝜀𝑜𝑥
× 𝑡𝑜𝑥)

 
(3.6) 

Since this value drops linearly towards the surface of Si layer (Fig. 3.12 (right)), the 

vertical field at any location in the depletion region (0<x<W) can be formulated: 

 
𝐸𝑦(𝑥, 𝑦) =

𝑉𝑥𝑦

𝑊 (
1
2 𝑡𝑠𝑖 +

𝜀𝑠𝑖

𝜀𝑜𝑥
× 𝑡𝑜𝑥) 𝑡𝑠𝑖

 
(3.7) 

Substituting this to Equation 3.3, the optimal doping and its gradient at location x can 

be expressed: 

 
𝑁(𝑥) =

𝑉𝑥𝜀𝑠𝑖

𝑞𝑊 (
1
2 𝑡𝑠𝑖 +

𝜀𝑠𝑖

𝜀𝑜𝑥
× 𝑡𝑜𝑥) 𝑡𝑠𝑖

 
(3.8) 

 

𝑑𝑁(𝑥)

𝑑𝑥
=

𝑉𝜀𝑠𝑖

𝑞𝑊 (
1
2 𝑡𝑠𝑖 +

𝜀𝑠𝑖

𝜀𝑜𝑥
× 𝑡𝑜𝑥) 𝑡𝑠𝑖

 (3.9) 



47 

 

Note that, this equation can also be satisfied by keeping N(x) constant with other 

parameters being the variables as a function of x, such as tsi (x) and tox (x) [97]. In fact, the 

net effects of all these forms are the same—to create a linearly varying dose for charge 

balancing. Here, only the case described by Equation 3.8 is considered. For further 

information, please refer to [97]. 

   

Figure 3.12. A 2-D SOI diode with the optimal RESURF condition under a reverse 

voltage of V, having an electric field Ex in x direction throughout a lateral depletion 

distance of about W (left), and a electric field distribution at location x highlighted in 

the device (right) 

If the drift region is sufficiently long, the avalanche breakdown will take place in the 

Si layer under the drain. Assuming that a relatively thick layer (>10 μm) is present, the 

multiplication effect in SOI is similar to that in bulk Si and hence the critical field value 

will be equal to about 3× 105 V/cm. Nonetheless, this boundary condition will 

underestimate the blocking capability of SOI structures with a sub-micron (<1 μm) film. 

The reason is that the avalanche effect becomes insignificant in such thin vertical 

distances [110]. In this circumstance, the breakdown field is adjusted to about five times 

higher than the customary value, for initiating the avalanche process [110]. This unique 

feature in SOI gives rise to a parabolic dependency of blocking voltage on the thickness 

of the Si layer, as can be seen in Fig. 3.13 from [100]. If the Si layer is below 1μm and 

above 10 μm, the breakdown limit rises for a SOI structure with a 2 μm BOX. The 

increase on the left is more drastic than the one on the opposite side, regarding the Si layer 

thickness in logarithmic scale. For high temperature operation, it is desirable to use a SOI 

wafer with a sub-micron Si film due to the reduction of the leakage and ease of electrical 

isolation. However, dielectric breakdown can occur [100] and interfacial effects can be 

significant in a thin film, which limits the minimum Si layer thickness. 
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Figure 3.13. The relationship between the breakdown voltage and thicknesses of the 

Si and BOX layer in SOI devices, taken from [100] 

3.5. On-resistance & Saturation current 

The total on-state resistance of a LDMOSFET comes mainly from the channel and the 

drift regions. If high gate-source bias 𝑉𝐺𝑆 is applied to a high voltage (BVDSS ≥ 200 V) Si 

LDMOSFET, the drift region contributes the most in the on-state resistance. The 

conditions to measure this resistance depend on how the transistor is used. Fig. 3.14 shows 

one example where different standards can apply to the low and high-side LDMOSFETs 

for extraction of on-resistance. In both cases, the substrate is grounded and the 𝑉𝐺𝑆 biased 

to a certain level (e.g. +10 V in [111]) for minimising the channel resistance. However, 

they differ in the substrate-to-source voltage, which is zero in the low-side and a negative 

value in the high-side (e.g. -400 V in [111]), respectively. The 𝑉𝐷𝑆  bias for the on-

resistance in the high-side configuration can be a small value similar to the low-side case 

(e.g. 1 V in [112]), or up to 15 V where the LDMOSFET enters saturation mode [111] 

[113]. In this case, the device performance is judged manly by the saturation current 

whose magnitude is strongly related to the built-in JFET [114]. This parasitic structure 

reduces the effective area for current conduction, which can be counteracted by using a 

high-resistive substrate [96], increasing the thickness of the Si layer [114] or/and the 

RESURF dose [115]. 
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The on-resistance of a HV LDMOSFET usually exhibits a positive temperature 

coefficient, but the opposite can happen if the dose in the drift region is low and 

temperature sufficiently high [116]. In this work, a positive temperature coefficient is 

seen in the simulated structures due to the relatively high RESURF dose in the drift region. 

The main reason for the temperature dependency is that the Si atoms release more 

phonons at high temperature, which interacts with charged carriers and lowers their 

mobility [117]. One way to mitigate this effect is to add more dopants into the lattice. It 

is true that this method will decrease the mobility [117] and can also reduce the 

breakdown voltage. 

However, the conductivity in this scenario is influenced more from the quantity of 

carriers instead of the quality (mobility). If the doping is high enough, the thermally-

generated carriers will be insignificant and therefore the on-resistance is less sensitive to 

temperature. By implementing RESURF technologies as mentioned earlier, the 

degradation of the breakdown voltage will be minimised and a HV LDMOSFET that is 

robust against temperature is achieved. 

Depending on the 𝑉𝐺𝑆 bias, temperature can affect the saturation current differently. 

At low 𝑉𝐺𝑆 value (<4 V [116]), the saturation current goes up with higher temperature but 

an opposite relationship can occur at high 𝑉𝐺𝑆 (>4 V), resulting in a zero-temperature-

coefficient (ZTC) point [116]. In this thesis, the high 𝑉𝐺𝑆 bias (≥ 10 V) is used to reduce 

the channel resistance and highlight the effect of RESURF dose on device performance. 

 

Figure 3.14. A half bridge circuit consisting of a HV gate drive block, a low-side and 

high-side N channel LDMOSFET 
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Chapter 4 TCAD models 

verification and discussion   

4.1. Introduction 

The aim of this chapter is to apply the theory mentioned in Chapter 3 to Technology 

computer-aided design (TCAD) models, and validate them by using the experimental 

results of the Philips SOI LDMOSFETs. The first section introduces the SILVACO 

TCAD package, covering its software functions and methodology. Secondly, the 

references used for model benchmarking are evaluated, with the validation carried out by 

two SOI LDMOSFETs in Philips technology. In Appendix C, the transferability of the 

models to the Si/SiC architecture is analysed with the literature and our wafer bonded 

results. The thermal model for self-heating are discussed and arranged in Appendix A.  

4.2. TCAD software 

TCAD simulation is a powerful method to develop and optimise semiconductor 

devices for specific applications. SILVACO software package is one of those able to 

deliver such methodology. This simulator contains a variety of Si-based models that are 

verified by experiments, and can characterise the electrical, optical and thermal behaviour 

of different materials.  Also included are the DC, AC and transient modelling, which can 

examine and compare different designs. Process simulation in this software provides a 

reliable and convenient way for users to set up a draft for device fabrication. The built-in 

SPICE models can further examine the devices’ behaviour in a circuit under different 

conditions. The implementation of such multifunctional TCAD forms the initial step of 

device development and lays a theoretical foundation for the subsequent stages. 

Generally speaking, the input of the TCAD software is a structural file where the 

device parameters are stored, such as the 2D geometry and doping profile. To obtain the 
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solution, the structure will be discretised into a mesh and divided into a finite number of 

elements. Each element has a set of equations to mathematically describe the physical 

mechanisms within. If the boundary conditions and initial guess is given, those equations 

will be solved by direct or iterative methods until the convergence criteria are met. Finally, 

the results of all equations are assembled to represent the behaviour of the entire system. 

The procedures mentioned above are referred to as finite element method (FEM). 

FEM approximates real device behaviour and undoubtedly produces errors arising 

from mesh definition, model configuration, numerical methods and convergence criteria. 

Through use of the guide, and the many examples available in SILVACO, the user can 

acquire basic knowledge of how to design a mesh layout and configure the numerical 

solver correctly, for increasing the simulation accuracy and efficiency. The model 

selection and implementation, however, not only demands computing skills, but also a 

deep understanding of semiconductor physics. In order to deliver convincing results, the 

parameters of the models must be compared to those in related references and adjusted 

according to the available evidence. This sets up a benchmarked standard in the 

simulation, allowing the users to establish a structure with optimised settings and the 

minimum mesh/nodes so that the program can be run in a timely but accurate fashion, 

delivering usable data. If necessary, new models will be developed from such 

benchmarking, to achieve a better fit between the simulation and experimental outcomes. 

The next section will detail this procedure for the simulated SOI and Si/SiC structures. 

4.3. Model benchmarking 

SILVACO considers various physical mechanisms, and many of them can be 

described with different models. The selection of these models for one specific physical 

mechanism is subject to conditions, which can produce subtle but appreciable differences 

in the simulation. The designer first needs to have an appreciation of the expected physical 

behaviour of the targeted structure. This information can be obtained through the 

literature review and/or experimental prototypes. Secondly, the models for the same 

physical effect will be examined and compared via references, from which the most 

suitable one is chosen. Once this is done for all the physical effects, the simulation will 

have a higher chance to produce reliable outcomes, and be finished with fine-tuning 

against the references. In some circumstances, the selected models are not compatible 
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with each other and the program will end with numerical errors. The response to this is 

to search for the problematic models, redefining the mesh, and model settings. If the issue 

still exists, a less adequate model will be selected and the simulation program re-executed. 

This is an iterative process that is only complete once the simulation data suitably 

replicates that from references. 

It can be seen that reference data are of paramount importance in device modelling. 

Prior to a TCAD study on Si/SiC LDMOSFETs, it is necessary to engage in an exercise 

of reverse-engineering, to establish structures in SILVACO, carefully analyse the models 

and evaluate simulation results against the experimental data in the selected references. 

Among many articles on Si-based power LDMOSFETs, those by Philips Research group 

[46] [100] [110] [118] were utilised for benchmarking the simulated Si/SiC transistors. 

The first reason is that to the best of our knowledge, only those papers contain the 

information on the experimental behaviour of 600-700 V LDMOSFETs in DI and JI 

technology, over the temperature range of 27-300 ⁰C. These are what most of the related 

papers cannot offer as they mainly focused on power transistors working at room 

temperature. Therefore, the models in SILVACO can be verified and deliver cogent 

outcomes over a wide temperature range. Secondly, the Philips SOI LDMOSFETs feature 

a low on-resistance and a leakage current of only 1.5 nA/µm at 300 ⁰C [46], which are 

remarkable in terms of high temperature operation. Using this device as a comparison 

revealed several pros and cons of the Si/SiC architecture. Thirdly, the physical models 

for their devices are well-documented in the references [46] [110] and, more importantly, 

are available in SILVACO simulators, which significantly reduces the time spent on 

model selection. In addition, nearly all these models are developed by one developer, 

Klaassen [119], thereby reducing the risk of incompatibility during simulation. Fourthly, 

there is a unique feature in the Philips SOI transistor, which is the appearance of 

tunnelling leakage at about 450 V [110]. This can be one indicator of how close the 

simulated device and the one by Philips are. Fifth and finally, the Philips LDMOSFETs 

can be transformed into LIGBTs [111] [113] or lateral thyristors [120] with only small 

changes. These reasons make the Philips framework the ideal starting point for defining 

a robust model for the Si/SiC LDMOS, while they are also the ideal device to benchmark 

the Si/SiC technology against. 
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4.3.1. The first benchmark structures (600 V)   

 

Figure 4.1. One of the Philips SOI transistors [46] used in SILVACO for 

benchmarking, where the key parameters are indicated 

The 2-D schematic of the Philips 600 V LDMOSFET is shown in Fig. 4.1 and 

established in SILVACO based upon [46]. In practice, this embodiment is formed by 

Philips ‘EZ-HV’ fabrication process [121], which combines these high voltage devices 

with the control CMOS on the same chip. The LDMOS layout employs a SOI wafer 

consisting of a 1.5-μm Si layer, a 2-μm buried oxide (BOX) and a 300-μm Si substrate 

with n-type doping of 1× 1015 cm−3. The active area has 66 μm in length and an N drift 

region 0.2 μm thick and 42 μm long. This thinned-down region is created by local 

oxidation of Silicon (LOCOS) process [121], which also yields a 2 μm field oxide layer 

(FOX). On top of this dielectric layer is a gate contact terminated 1 μm away from the 

end of the thinned-down region. The gate electrode also covers a 60-nm gate oxide over 

a channel region, which has a p-type doping of 6.5 × 1016 cm−3 and 7.5 μm in length. A 

N+ region is placed 1.5 µm away from the right border of the p body, whereby the channel 

length is defined. The drain and source metal are deposited on highly-doped regions for 

ohmic contacts. 

A linear doping profile starts from the onset of the thinned-down region, extending 40 

μm towards the drain side (see Fig. 4.1 the dashed line). As mentioned in Chapter 3, this 

doping distribution can be obtained by using Equation 3.9 as long as all its variables are 
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known. However, it has to be pointed out that the Si layer thickness (𝑡𝑠𝑖
∗ ) used in Equation 

3.9 will be half of the physical value (𝑡𝑠𝑖) in the simulated structure. This is because the 

depletion from the BOX or FOX side just needs to occupy a 0.1-μm-thick Si layer. This 

effectively doubles the impurity dose in the Si layer. As indicated in Fig. 3.13, a 600 V 

SOI device with tox = 2 μm requires a Si layer thinner than 0.25 μm, which is met by the 

geometry of the simulated structure. As a result, the gradient of the linear doping profile 

is attained (see Fig. 4.2) with the following values: 

𝑉 = 600 𝑉, 𝑊 = 40 µ𝑚, 𝑡𝑠𝑖
∗ = 0.1 µ𝑚, 𝑡𝑜𝑥 = 2 µ𝑚, 𝑞 = 1.6 × 10−19 𝐶, 

𝜀𝑜𝑥 = 3.45 × 10−13 𝐹𝑐𝑚−1, 𝜀𝑠𝑖 = 1.04 × 10−12 𝐹𝑐𝑚−1              

𝑑𝑁(𝑥)

𝑑𝑥
=

𝑉𝜀𝑠𝑖

𝑞𝑊(
1

2
𝑡𝑠𝑖

∗ +
𝜀𝑠𝑖
𝜀𝑜𝑥

×𝑡𝑜𝑥)𝑡𝑠𝑖
∗

 = 1.6 × 1020
 𝑐𝑚−4                         (4.1) 

 

 

Figure 4.2. The linear doping profile of the simulated SOI LDMOSFET 

 

Apart from this linear profile, there exists a base doping value (Nb) in the drift region. 

As long as Nb is small relative to N(x), the total doping value (N(x) + Nb) still results in a 

blocking voltage of at least 600 V. The reason is that the spacing between the p body and 
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drain is longer than the thinned-down region, which provides some extra room for the 

blocking capability. In this structure, the base doping is set to 2x1016 cm-3 and the 

effective dose in the drift region is: 

 𝑄𝑒𝑓𝑓 = 𝑁𝑏𝑡𝑠𝑖 +
1

2

𝑑𝑁(𝑥)

𝑑𝑥
× 𝑊 × 𝑡𝑠𝑖 = 6.8 × 1012 𝑐𝑚−2 (4.2) 

In [46], Klaassen physical models are used to analyse the high temperature 

performance of the bulk Si and Philips SOI LDMOSFET. According to this, the models 

are applied in the simulation and comprise of Darwish CVT, KLASRH, KLAAUGER, 

BBT.KL and BGN2 [122]. The Darwish CVT integrates the Klaassen mobility models 

with a new expression for surface roughness [122]. The lattice scattering factors, 

THETAN. KLA and THETAP. KLA, are configured to 2.8 to match the temperature-

dependent mobility values in [46]. The generation and recombination mechanism is taken 

into account by the KLASRH and KLAAUGER models, with carrier lifetimes adjusted 

to 1.5 µs [46] [123]. The BBT.KL is activated to consider the band-to-band tunnelling in 

the Philips SOI devices [110]. The band gap narrowing effect is enabled by BGN2 with 

Klaassen default parameters. Supplementary to this Klaassen setup is FLDMOB for 

velocity saturation, FERMI for Fermi-Dirac statistics and SELB for avalanche breakdown 

[122]. For the full mathematical forms of the used models, please refer to [122]. 

Sandwiched by FOX and BOX, the 0.2 μm layer in the Philips SOI suggests an 

increase in leakage current due to the Si/SiO2 interfacial states. Nevertheless, the 

experimental measurement by Philips shows that the effect of Si/SiO2 interface charge on 

the device is insignificant, due to its value being just +4×1010 cm-2 [124]. This value is 

so low that the RESURF dose is hardly disturbed. In this simulation, the interface charges 

of Si/BOX and Si/FOX are set to +4×1010 cm-3 as in [124]. It is worth noting that some 

configurations may be different from those of the Philips device because not all 

parameters are mentioned in [46]. However, similar outcomes are found in the 

simulations, as shown below. 

4.3.1.1 Off-state characteristics 

Fig. 4.3 shows the potential distribution of the benchmark structure at the onset of 

avalanche breakdown (670 V). Although the linear doping profile of the Philips SOI [121] 

stops at a different location compared with the simulated transistor (See Fig. 4.3), their 
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potential contours have a very similar pattern. Fig. 4.4 demonstrates that the potential at 

the middle of the drift region increases linearly, and that the electric field is saturated at 

1.5×105 V/cm in most of the thinned-down region. These two indicate that a very good 

RESURF effect is created for the structure. It is worth noting that in this design, potential 

lines crowd in the field oxide at the end of the field plate. This will enhance hot carrier 

injection and therefore reduce the reliability. 

 

 

Figure 4.3. The potential contours of the benchmark LDMOS (top), and the Philips 

SOI (bottom) [121], on the verge of avalanche breakdown. (axes units: µm) 
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Figure 4.4. The potential and electric field at the middle of the N drift region, at the 

onset of avalanche breakdown 

As can be seen in Fig. 4.5, the simulation closely replicates the off-state behaviour of 

the practical Philips SOI at room temperature and 200 ⁰C. One can find that the curves 

produced by the simulation are more similar to those in [110] (See Fig. 4.5 bottom), where 

the tunnelling effect is thoroughly studied by Philips. Owing to band-to-band tunnelling 

[110], the leakage at 27 ⁰C goes up more rapidly after 450 V, and eventually avalanche 

breakdown happens at 670 V. However, this cannot be observed in the curve at 200 ⁰C, 

due to the tunnelling being overshadowed by the generation mechanism [46]. 

 



58 

 

 
 

 

Figure 4.5. Off-state characteristics of the simulation SOI (Left) and the Philips SOI 

(right) [46], at room temperature and 200 ⁰C. The bottom graph from [110] is more 

similar to the simulation result 

In [46], the relationship between the leakage current and temperature is analysed by 

using Equation 4.3: 

 𝐼𝑑𝑎𝑟𝑘 =  
𝑞𝒏𝒊𝑉𝑑𝑒𝑝

𝜏
+

𝑞𝐴𝒏𝒊
𝟐

𝑁𝐴
(

𝜇𝑘𝑇

𝑞𝜏
)

1
2

   (4.3) 

Where τ is the effective lifetime, 𝑉𝑑𝑒𝑝 the depleted volume, A the lateral area of the 

neutral region bordering the space-charge region, 𝑁𝐴the doping, μ the electron mobility 

in the neutral region, 𝑘 the Boltzmann constant and  𝑛𝑖 the intrinsic carrier density as a 

function of temperature 𝑇 [125]: 
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 𝑛𝑖 = 3.1 × 1016 𝑇3/2 exp (−
0.603𝑞

𝑘𝑇
)                                   (4.4) 

In the simulation, Equation 4.4 is approximated by implementing the following two 

formulas: 

 𝑛𝑖 = √𝑁𝐶𝑁𝑉 exp (
−𝐸𝑔(𝑇)

2𝑘𝑇
)              [122]    (4.5) 

   

 𝐸𝑔(𝑇) = 1.206 − 2.73 × 10−4 𝑇          (4.6) 

   

Where 𝑁𝐶 and 𝑁𝑉 are referred to as effective density of states for electrons and holes 

[122]. 

Equation 4.3 only takes into account the generation (first term) and diffusion leakage 

(second term), excluding the expression for band-to-band tunnelling [46]. Nonetheless, 

this is a very good approximation of the leakage as in practice, a 600 V device will be 

operated at 𝑉𝐷𝑆 = 300 𝑉, a bias condition where the tunnelling component is negligible. 

This bias also induces full depletion in the LDMOSFETs using SOI and bulk-Si substrate 

[46], which means that the generation components for both cases start to saturate. This 

allows a fair comparison between the Philips SOI and bulk Si technology, regarding their 

total leakage over a wide temperature range. Therefore, Arnold et al. measured the 

leakage current under this condition for their transistors, at temperature up to 300 ⁰C (see 

Fig. 4.6 right) [46]. They also analysed the bulk Si transistor and extracted its diffusion 

and generation component, highlighted by a dotted or dashed line in Fig. 4.6 right. 

Through comparison, it can be found that the rise of SOI leakage has little to do with the 

diffusion mechanism. 

In our simulation, the ∝ ni
2 and ∝ ni line are used to represent the diffusion and 

generation mechanism, respectively (see Fig. 4.6 left). The correlation between 𝑛𝑖 , 𝑛𝑖
2 and 

the leakage components can be observed in Equation 4.3, highlighted in boldface. The 

SOI leakage is raised following the ∝ ni line up to 200 ⁰C, above which the curve is bent 

upwards and its increased rate approaches that of the ∝ ni
2 line. This signifies strong 

carrier diffusion at high temperature, which is different from the experimental results in 

[46]. 
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This phenomenon is not uncommon in LDMOSFETs, as demonstrated in [126] [116] 

where the transition from generation to diffusion mechanism starts at about 150 ⁰C. There 

are two possible explanations for the divergence between the simulation and experimental 

results by Philips [46]. First, the Klaassen models were only calibrated up to 500 K [122], 

which creates uncertainty for the simulation results above that temperature. However, the 

implementation of these models up to 573 K is evident in [46]. Secondly, Arnold et al. 

mentioned that according to [127], the leakage current decreases faster-than-linearly with 

thickness, for the very thin SOI layer [124]. Based upon Equation 4.3, the finding implies 

that the layer thinning results in a drop in the intrinsic carrier density 𝑛𝑖 , as this act 

decreases 𝑉𝑑𝑒𝑝 linearly and does not have a strong influence on the generation lifetime 𝜏 

[123] (the recombination lifetime will be affected though). In [128], Nakagawa et al. 

reported that the experimental leakage current of their SOI devices was more than one 

order of magnitude smaller than the calculated value, and that SOI leakage shrunk 

effectively with the thickness of Si layer. It can be suggested that the bandgap and density 

of states become less sensitive to temperature in the thin SOI layer, which translates into 

a diffusion process less noticeable at high temperature. Unfortunately, there is no model 

available in SILVACO to describe this effect and hence the leakage current above 200 ⁰C 

can be overestimated. However, the model setting provides a good data fitting in general 

for the off-state characteristics, and this is less problematic than underrating the leakage 

as doing so can predict a maximum operating temperature unreachable by the practical 

devices. 
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Figure 4.6. The temperature dependency of leakage current at VDS = 300 V for the 

simulated structure (left), and the Philips SOI [46] (right). In the right figure, the 

dotted and dashed line indicate the diffusion and generation component, respectively  

4.3.1.2 On-state characteristics 

Fig. 4.7 and 4.8 show the influence of temperature on the threshold voltage and on-

resistance, for the benchmark device and the Philips SOI. It can be seen that there is little 

difference between them in both graphs. The specific resistance is modelled under the 

conditions of 𝑉𝑔𝑠 = 15 𝑉, 𝑉𝐷𝑆 = 1 𝑉 and 𝑉𝑠𝑢𝑏 = 𝑉𝑆 = 0 𝑉 , a setting for low-side 

operation. Then this value is converted to on-resistance by the equation below, over the 

temperature range of 27 – 300 ⁰C: 

 𝑅𝑜𝑛 =
𝑅𝑠𝑝

𝑊 × 𝐿
 (4.7) 

Where W and L are the width and length of the simulated device, respectively. As 

indicated in Fig. 4.1, the length is 66 μm and the width 8 mm as in [46]. It is worth noting 

that the drain and source contact area will affect the value of on-resistance. In conclusion, 

the Klaassen models used in SILVACO reproduce most experimental data from [46], 

which is essential to the comparative study on the SOI, bulk Si and Si/SiC. 
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Figure 4.7. The threshold voltage vs temperature for the simulated structure (left) and the 

Philips SOI (right) [46] 

 

 
 

Figure 4.8. The low-side resistance vs temperature for the simulated structure (left) 

and the Philips SOI (right) [46] 

4.3.2. The second benchmark structure (~200 V) 

This section studies another Philips LDMOS design with a blocking voltage of 190 V 

[129], a value that corresponds to the lower limit of the Si/SiC devices to be developed 

(~200 V). According to [129], the structure is created in SILVACO and is a more compact 

version of the aforementioned 600 V transistor (see Fig. 4.9). For achieving 190 V 

breakdown voltage (see Fig. 3.13) with a double RESURF effect [129], the 1.1 µm Si 
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layer is thinned down to 0.6 µm in the drift region. Both FOX and BOX are 1 µm thick. 

In additions, the lengths of the linear doping profile, gate extension and the spacing 

between the P body and N+ drain are set to 6.5, 9.8 and 12 µm, respectively. The doping 

of the drift region is arranged in a manner similar to the 600 V case by using Equation 

3.9. The gate oxide is 30 nm thick and the channel length is 1.5 µm. The p body region is 

8 μm wide and has a doping density of 8×1016 cm-3.  The chip area is 22.5 µm in total, 

with other settings (e.g. carrier lifetime) the same as previous. Again, some parameters 

are deduced from [129] and maybe different from those used by Philips. 

 

Figure 4.9. The second benchmark structure based upon [129], with a blocking 

voltage of 190 V 

Under these settings, the potential is evenly distributed in the drift region of the 

simulated device at 190 V (See Fig. 4.10). The gradient of leakage current is constant 

from 50 V to the onset of avalanche breakdown, with no tunnelling observed. This is 

because the electric field in the 0.6 µm layer is not high enough to trigger band-to-band 

tunnelling. Similar to the Philips device in [129], the threshold voltage is about 1.2 V at 

𝑉𝐷𝑆 = 0.1 𝑉  and the saturation current approximates to 250 𝑚𝐴/𝑚𝑚 at 𝑉𝑔𝑠 = 12 𝑉 (see 

Fig. 4.11). However, the extracted on-resistance ranges from 567 to 620 mΩmm2 at 𝑉𝐷𝑆 

biases up to 1 V, higher than that (510 mΩmm2) in [129]. This indicates that there still 

exist some differences between the simulated and Philips LDMOS layout. One cause of 

the disparity can be the sizes of the channel and drain region, which affect the calculation 
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of on resistance. Nevertheless, their other properties are near identical so this benchmark 

structure is deemed a good duplicate of the Philips 190 V design. 

 

 

Figure 4.10. The off-state I-V curve (left) and potential distribution (right) at the onset 

of avalanche breakdown and 300 K, for the simulated structure (axes unit: μm) 

 

  

Figure 4.11. The 𝑉𝐺𝑆 − 𝐼𝐷𝑆 curve at 𝑉𝐷𝑆 = 0.1 𝑉 (left) and the on-state characteristics 

at 𝑉𝑔𝑠 = 12 𝑉 (right), for the simulated structure 

4.3.3. Conclusion 

To sum up, the FEM model that will be used in Chapter 5 have been benchmarked 

with two SOI LDMOSFETs in Philips technology. The changes of the parameters in this 

model for the Si/SiC case can be found in Appendix A&C. By applying this 
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configurations, a like-for-like comparison can be performed between the Si/SiC and SOI 

transistor in Chapter 6 & 7. 
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Chapter 5 RESURF Si/SiC 

LDMOS designs and simulation 

setups 

5.1. Introduction 

This chapter is aimed to introduce the RESURF Si/SiC LDMOSFETs and modelling 

setups that will be used in the Chapter 6&7 where the simulation results are presented. 

Preceding the description of the RESURF Si/SiC transistors, a preliminary TCAD study 

is given on non-RESURF PiN diodes to build up the basic knowledge of the Si/SiC 

structure. The content of this study has been published in [132]. Having understood the 

fundamentals, the simulated Si/SiC LDMOS topologies are then presented, which are 

optimised based upon the RESURF theory mentioned in Chapter 3. Their bulk Si, PSOI 

and SOI equivalents will also be described. The first to be demonstrated is a 600 V Si/SiC 

LDMOSFET with a SOI RESURF layout. The second Si/SiC LDMOS structure is also 

rated at 600 V, but designed with a PN RESURF layout. The third is conceived with the 

same technology as the first, albeit the blocking voltage is reduced to 190 V.  The last 

section of this chapter is dedicated to the simulation setups for the LDMOSFETs. The 

application of the physical models discussed in Chapter 4 and Appendix C will first be 

described and followed by the introduction of the switching circuits used for transient 

simulation. 

5.2. Si/SiC non-RESURF PiN diodes 

The goal of this section is to investigate the Si/SiC architecture at a fundamental level, 

without considering the RESURF effect. This is achieved by simulating several PiN 

diodes which are simple, free from strong RESURF effects and only differ in the substrate. 

There are two parts in this study. The first simplifies the PiN diode down to a heat source 
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on multiple substrates of interest, namely Si/SiC, SOI, Si/SiO2/SiC, bulk Si and SiC. DC 

thermal simulation is performed on these substrates, by solving the lattice heat flow 

equation (details in Appendix A) and neglecting the effects of thermal radiation and hot 

carriers. The second simulation considers the detail layout of the PiN diodes in SOI and 

Si/SiC architectures, with the comparison of their results regarding forward and reverse 

I-V behaviour as well as the effect of device geometry on the breakdown voltage. 

5.2.1. Thermal simulation of the substrates 

In this simulation, the PiN diode is represented by a 100×100×1 µm3 cuboid with a 

power dissipation of 0.1 W [78]. This heat source is centred on a 500×500×100 µm3 

substrate with an Al back contact at a fixed temperature of 300 K. As such, no electrical 

action will be performed by the diode and only the self-heating model is activated. Fig. 

5.1 illustrates such thermal models for a SOI and Si/SiC substrate, where the different 

layers and their thicknesses are presented. From top to bottom, the SOI is structured with 

a 1 µm Si layer, a 1 µm BOX, a 98 µm bulk Si and 1 µm Al region. The same applies to 

the Si/SiC, except for the BOX and bulk Si being replaced with a 99 µm 6H-SiC. The 

thermal conductivity of each region is specified as in Appendix A. It can be seen that the 

temperature in the SOI structure reaches a maximum of 309 K, whereas the Si/SiC reaches 

just 301 K. This difference is explained by the presence of the BOX layer that acts as a 

thermal barrier impeding heat transfer. This causes self-heating in the Si as insufficient 

heat is passed vertically, increasing the temperature of the Si film. This effect is 

exacerbated by the temperature dependence of thermal conductivity, which drops as the 

temperature rises, worsening the situation. The bulk Si beneath the oxide has little 

influence on thermal performance. 

In the Si/SiC simulation, the 6H-SiC functions as a heat sink and extracts most of the 

heat down to the Al layer. It reduces not only the device temperature but also the lateral 

spread of heat that will affect neighbouring components (see Fig. 5.1). Therefore, this 

Si/SiC can offer a ‘thermal integration’ to power ICs and hence reduce their reliance on 

external cooling equipment.   
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Figure 5.1. The SOI (top) and Si/SiC (bottom) simulation models showing temperature 

distributions with a range of 300-309.61 K. Their maximum temperatures are 309 K 

(top) and 301 K (bottom) respectively. 

 

Fig. 5.2 displays the relationship between the power density and the maximum 

temperature for all the different substrates considered. Bulk SiC is shown to be the best 

solution for dissipating the heat and the Si/SiC can exhibit a similar thermal behaviour if 

the Si layer is very thin (1 µm). Increasing the Si layer to 10 µm reduces power capability, 

the curve tending to the bulk Si case with increasing Si thickness, a result indicative of a 
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weaker cooling effect. There are three SOI variants in Fig. 5.2 and common to them is 

the thickness of top Si film (1 µm). With a 1 µm BOX and Si substrate, the SOI has the 

poorest power capability at 300 ⁰C. By reducing the BOX layer from 1 to 0.5 µm only, 

the power capability is improved and again approaches that of bulk Si. By just replacing 

the Si substrate with SiC, the Si/SiO2/SiC structure is formed and the improvement 

observed, but not as effective as the previous solution. It is worth noting that in this 

structure, there is no window opened in the SiO2 layer to bring the Si and SiC region in 

contact, unlike the Si/oxide/SiC (SiOSiC) substrate proposed by Udrea et al. [72].It can 

be seen that the thin BOX layer has a dominant effect on the heat transfer ability of SOI 

substrate. This is due to the low thermal conductivity of SiO2 (0.014 W/Kcm). 

 

Figure 5.2. Simulated max temperatures (27-300°C) vs. power density for different 

structures 
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5.2.2. Electro-thermal modelling of PiN diodes 

5.2.2.1 Simulated structures 

  

Figure 5.3. The simulated SOI (left) and Si/SiC PiN diodes (right) 

 

As can be seen in Fig. 5.3, a SOI substrate is simulated with a Si device layer, a BOX 

layer, an n-type Si substrate and an Al back electrode. The thicknesses of these regions 

are 1, 1, 297 and 1 µm, respectively. A PiN diode is created in the top Si layer with a 

uniformly p-type doping density of 3×1015 cm-3. The anode and cathode of the diode have 

ohmic behaviour, which is achieved by defining an N+ and P+ region under the contacts. 

The doping profile of each region is characterised by a vertical and lateral spreading 

according to a Gaussian function and a peak doping value of 1.5×1019 cm-3 at the surface. 

As a result, the junction area is about 10×0.5 µm2 with a rounded corner. Between the 

two highly doped zones is a drift region having 30 µm in length. For fair comparison, a 

PiN diode is established with the same configuration into a Si/SiC substrate. This 

architecture comprises a Si layer, a (SI) 6H-SiC region and an Al back electrode, which 

are 1, 298 and 1µm in height respectively. 

In the two diodes, the doping of the drift region is decided without using the RESURF 

principle. Therefore, the simulation is not based upon optimised devices and does not 

reveal the maximum potential of the SOI and Si/SiC structures. However, a comparison 

is made between the same diodes only differing in the substrate, which can highlight the 

electrical and thermal effects of identical structures on the different substrates. 

Simulations on devices optimised for each substrate will be presented in Chapter 6 & 7. 
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5.2.2.2 Simulation setup 

To simplify the simulation, no parameter (e.g. fixed charges and traps) is configured 

along the Si/SiC and Si/Oxide interface. Furthermore, the simulation is run with carrier 

lifetimes of 100 ns and the band-to-band tunneling model being deactivated. The substrate 

contact and cathode are grounded unless stated otherwise. To see the dimensional effect 

on the breakdown, the length and thickness of drift region will be altered. 

For electro-thermal modelling, the anode, cathode and Al electrode are defined as 

thermal contacts to consider horizontal and vertical heat dissipation. Both isothermal and 

non-isothermal simulations are performed. The isothermal model considers the device at 

a fixed temperature (300 K) and is used herein for validation of the comparative electrical 

characteristics. Within the non-isothermal simulation self-heating is reintroduced, as 

temperature is iteratively updated due to the power dissipated, affecting the properties of 

the semiconductor including thermal conductivity. 

5.2.2.3 Simulation results  

  

Figure 5.4. Applied Voltage vs. Device temperature (left) and Anode current (right) 

for the Si/SiC and the SOI 

To operate the diodes in the on-state, positive voltages are applied to the anode. Fig. 

5.4 shows the on-state I-V curves of these two diodes and their device temperatures. The 

isothermal model shows that if temperature effects are ignored, both devices have a turn-

on voltage of 0.7 V and very similar resistance. However, this relationship only holds true 

within a small region of the non-isothermal simulations. Self-heating effects are observed 

in both diodes, but the Si/SiC one suffers less performance penalty. Its linear region is 
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longer and the heat transfer ability is much better. At 3 V, the higher current in the Si/SiC 

device means more power is being dissipated than in the SOI device. However, its 

temperature is approximately 75 °C, about two times lower than its counterpart (see Fig. 

5.4). It is worth noting that in practice, the temperature rise associated with conduction 

losses is less considerable than that in the simulation as the diodes are controlled by pulse 

signals instead of DC. 

 
Figure 5.5. Reverse I-V curves for Si/SiC and SOI structures 

By applying a negative bias to the anode, the diodes are operated in the off-state. Fig. 

5.5 demonstrates the I-V curves of the PiN diodes under reverse bias in the Si/SiC and 

SOI structures. Because the reverse current is very small, the diodes do not induce any 

temperature rise. The SOI diode breaks down at -87 V whereas its Si/SiC counterpart can 

support reverse voltages up to -175 V. Furthermore, the SOI leakage is much higher even 

with a better insulating layer. By increasing the BOX thickness to 298 µm, the difference 

in the I-V curves between the two diodes is less apparent. 

This indicates that the poorer off-state behaviour in the SOI is caused by the built-in 

Silicon-oxide-Silicon (SOS) capacitor. If the BOX is very thin (1 µm) and the diode is 

reverse-biased, a large number of holes will gather under the BOX at the anode side and 

decline towards the cathode. In response to this, the Si layer has to be depleted more at 

the anode side to balance such charge distribution. Therefore, vertical breakdown will 

occur at the P-/oxide junction under the anode in the SOI. With a very thick BOX layer 

or (SI) SiC, the SOS capacitive effect becomes so weak that the Si layer is depleted mainly 

by the P-/N+ junction at the cathode. This increases the blocking voltage by relaxing the 

electric field at the anode and lowers the generation leakage by shrinking the depletion 

volume. 
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Figure 5.6. Drift region length vs. Breakdown voltage 

Figure 5.6 displays the relationship between the drift region length and the breakdown 

voltage for both structures with different thickness of the top Si layer. Each curve has a 

value for drift region length below which the breakdown voltage scales up with the length, 

and above which the breakdown voltage is determined mainly by the thickness of silicon. 

By increasing the Si thickness from 1 to 2 µm, the SOI blocking voltage is raised from 

100 to 125 V with a long drift region. This proves that the avalanche breakdown takes 

place at the P-/BOX junction under the P+ anode, as the extra thickness allows a wider 

depletion region to support vertical potential. However, the opposite is true in the Si/SiC, 

with the 1 µm Si layer achieving the highest blocking capability. This behaviour reveals 

that the breakdown point of Si/SiC is not at the anode but the P-/N+ junction. 

  

Figure 5.7. The potential distributions of the Si/SiC with a 1 µm (left) and 5 µm thick 

Si layer (right), at an anode voltage of -40 V 
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Fig. 5.7 shows the potential distribution at an anode voltage of -40 V, for two Si/SiC 

structures with 1 µm and 5 µm Si layer. This thin-film Si/SiC diode has a higher 

breakdown voltage than its thick-film counterparts. It can be seen that the thick layer 

densifies the potential lines at the corner of P-/N+ junction, creating a strong electric field 

crowding effect. By contrast, the depletion regions of the P-/N+ junction are wider 

laterally in the thin Si layer because of a much sparser potential contour in the vertical 

direction. Therefore, the thin-film PiN diode can be simply described by the 1-D 

breakdown model whereas the thick-film case requires a 2-D analysis to consider the edge 

effects [39]. This explains the reduction of blocking voltage in the Si/SiC structures with 

a thick Si layer. Nonetheless, the breakdown will always take place at the P-/N+ junction 

in the Si/SiC and if one wants to improve the on-resistance by increasing the layer 

thickness and doping, the blocking voltage will correspondingly be reduced. To tackle 

this problem, the RESURF designs are indispensable. 

Such distinct features of the two substrates can also be analysed by the RESURF 

principle. As mentioned in Chapter 3, the optimal RESURF condition can be satisfied by 

having an effective dose profile higher at the drain side and descending towards the 

source. In the case of the PiN diodes, the anode and cathode can be viewed as the drain 

and source respectively. In the SOI where the breakdown point is at the p-/oxide, a thicker 

layer accommodates more impurities, thereby creating a better RESURF effect at the 

anode side; In the Si/SiC where the breakdown is at p-/N+ junction, a thinner layer 

provides lower doses, thereby improving the RESURF effect at the cathode. 

5.3. Si/SiC RESURF LDMOS designs 

As mentioned in the last section, the Si/SiC PiN diodes support reverse voltage by the 

unbalanced depletion in the drift region, with an electric field peak at the p-/N+ junction. 

This reduces the scalability of the drift region length to the blocking voltage and indirectly 

lowers the electrical conductivity. Such behaviour can also be seen in an n-type non-

RESURF LDMOSFET using the Si/SiC substrate, as the applied voltage is sustained by 

a built-in PiN diode consisting of a P body, N- drift region and N+ drain. If the P body is 

deep enough to meet the Si/SiC interface, the depletion is one-dimensional and only 

significant at the P body/N- junction in the transistor. To deplete the drift region evenly 

in the off-state, RESURF layouts have to be introduced. 



75 

 

As mentioned in Chapter 3, there are two fundamental RESURF structural types, 

namely SOI and PN junctions. They can be seen in power ICs in dielectric isolation (DI) 

and junction isolation (JI) technology, respectively. Their function is to develop a space 

charge region vertically so that a uniform electric field distribution is produced in the drift 

region. One example for the SOI RESURF is the Philips transistor [46] used in Chapter 

4 for the model verification. The instances for the PN RESURF are detailed in Chapter 3, 

namely the single, double, triple and quadruple case. Generally speaking, the RESURF 

effects in a transistor can be created with the SOI, PN structure or both of them (e.g. [82]), 

structured in either 2D or 3D domain. Furthermore, these two can be merged into a new 

RESURF type that features a thin dielectric layer between an N and P type region [91]. 

To simplify the TCAD study, 600/190 V Si/SiC LDMOSFETs are conceived in a 2-D 

plane with either the SOI or PN structures, based upon the Philips’ [46] and D. Disney’s 

designs [99]. This section first introduces a 600 V Si/SiC LDMOSFET with a SOI 

RESURF layout, followed by a 600 V Si/SiC in the PN RESURF technology and 

completed with a 190 V Si/SiC LDMOSFET designed with the SOI RESURF concept. 

In each part, their SOI, PSOI or bulk Si counterparts are also described, with emphasis 

on the similarities and differences between them. 
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5.3.1. 600 V Si/SiC LDMOS with SOI RESURF 

 

 

 

 

Figure 5.8. The 600 V Si/SiC LDMOS design with a SOI RESURF layout (top) and 

its SOI counterparts in the Philips technology (middle) [46] and by Paul et al. 

(bottom) [133] 



77 

 

Fig. 5.8 shows three 600 V LDMOSFETs using SOI RESURF, with their key 

parameters labelled. From top to bottom, they are the Si/SiC transistor, the Philips SOI 

design [46] described in detail in Chapter 3, and a second SOI LDMOS structure based 

upon [133]. This second SOI design is employed to study the RESURF and accumulation 

effect induced by the extension of the gate field plate. On the whole, they are very similar 

regarding the LDMOS structures in the Si layer. In Chapter 6, this Si/SiC design and the 

Philips SOI will be compared to understand the effect of the BOX layer on the electrical 

and thermal properties of the LDMOSFETs. In addition, the accumulation effect will be 

studied by the comparison between the Si/SiC transistor and the SOI without the field 

plate. 

Identical to the Philips SOI, the Si/SiC embodiment is 66 µm in length and has a 1.5 

µm thick Si layer where a 42×0.2 µm2 drift region is formed, separating a p body and 

drain region. A linear doping profile starts from the onset of the drift region and is 40 µm 

long. On top of the thinned-down region is a 2 µm thick field oxide, covered by a gate 

contact extended up to 41 µm with respect to the origin of the drift region. The p body 

region is 7.5 µm in width and has a doping density of 6.5 × 1016 cm−3. In this region, the 

gate oxide is 60 nm in height and the effective channel length is 1.5 µm, being defined 

by the lateral spacing between an N+ zone and the edge of p body. The drain and source 

metal are deposited on highly doped regions for ohmic contacts. 

Different from the Philips SOI, the Si/SiC design includes a 302-µm-thick (SI) 6H-

SiC substrate under the aforementioned LDMOS topology. This means that the drift 

region is only able to be depleted from an inverse SOI structure (IOS). This layout is 

made of the gate electrode, field oxide and Si layer, and enclosed by a dashed box (see 

Fig. 5.8). In this arrangement, the gate contact behaves like the substrate electrode in the 

SOI case as it almost entirely overlaps the field oxide and is zero-biased in the reverse 

blocking state [4]. Therefore, as long as the field oxide is thick enough to support the 

required potential, this IOS layout is equivalent to ordinary SOI. This idea originates in 

[134], where a step field oxide is used for a uniform-doped silicon-on-sapphire device. 

This design was then refined using linear doping to increase the breakdown voltage to 

600 V, with reduced resistance [6]. In this case, the Si layer thickness used in Equation 

3.9 is 0.2 µm and the gradient of the linear doping is calculated: 
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𝑉 = 600 𝑉, 𝑊 = 40 µ𝑚, 𝑡𝑠𝑖 = 0.2 µ𝑚, 𝑡𝑜𝑥 = 2 µ𝑚, 
   

 𝑞 = 1.6 × 10−19 𝐶,  

   

 𝜀𝑜𝑥 = 3.45 × 10−13 𝐹𝑐𝑚−1, 𝜀𝑠𝑖 = 1.04 × 10−12 𝐹𝑐𝑚−1   

   

 

𝑑𝑁(𝑥)

𝑑𝑥
=

𝑉𝜀𝑠𝑖

𝑞𝑊 (
1
2 𝑡𝑠𝑖 +

𝜀𝑠𝑖

𝜀𝑜𝑥
× 𝑡𝑜𝑥) 𝑡𝑠𝑖

  

 

                          = 7.95 × 1019 𝑐𝑚−4                           

(5.1) 

The base doping of the drift region 𝑁𝑏 is set to be 8×1015 cm-3 for a breakdown voltage 

of approximately 640 V. Based upon this, the doping profile in the drift region is obtained 

and shown in Fig. 5.9. Also plotted is the graded profile for the Philips SOI LDMOSFET. 

The profile for the SOI is much steeper and the maximum doping is two times higher. 

The reason for this is that a dual-plate structure is present in the SOI that generates a 

symmetric charge modulation in the Si layer [135]. 

 

Figure 5.9. The linear doping profiles in the drift regions of the Si/SiC and Philips 

SOI 

Integrating the doping profile over the drift region thickness, one attains the effective 

dose: 

 𝑄𝑒𝑓𝑓 = 𝑁𝑏𝑡𝑠𝑖 +
1

2

𝑑𝑁(𝑥)

𝑑𝑥
× 𝑊 × 𝑡𝑠𝑖 = 3.34 × 1012 𝑐𝑚−2 

At a low gate bias, this value indicates how many free electrons are available per unit 

area for on-state current conduction. As the gate bias is increased, the accumulation effect 

arising from the IOS layout becomes more significant and supplies extra carriers to lower 

the resistance [135]. To view this phenomenon, the SOI structure without the gate 
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extension [133] is used and compared with the Si/SiC. In this SOI, the gate contact covers 

a very small portion of the field oxide and is terminated at the origin of the drift region. 

Doing so minimises the accumulation effect and reduces the electric field peak at the body 

region. In addition, the depletion from the field oxide is eliminated so that the RESURF 

effect mirrors that of the Si/SiC. As such, the gradient of the doping profile for this SOI 

is the same as that for the Si/SiC. However, the base doping has to be reduced to 4×1015 

cm-2 for a breakdown voltage of above 600 V because such gate field plate creates an 

electric field peak at the onset of the drift region. When comparing with this SOI for the 

accumulation effect, the Si/SiC design will be configured to have a base doping of 4×1015 

cm-2 instead of 8×1015 cm-2. Apart from the gate extension and linear doping profile, this 

SOI design is exactly the same as the Philips SOI. 

The effect of this RESURF dose on the potential distribution for the three structures 

can be viewed in Fig. 5.10. All three devices are at the onset of avalanche breakdown. It 

can be seen that a nearly linear voltage drop is present along the x-direction of the drift 

region of the Si/SiC device, which results from the vertical depletion induced by the IOS 

layout. The SOI without the gate extension has a similar depletion effect, though the 

contours are inverted. The Philips SOI features a mirroring pattern for its potential 

outlines, indicating a double SOI RESURF effect. In the Si/SiC transistor, the electric 

field is kept at a constant value of about 1.5×105 V/cm in the drift region, with a peak at 

7.5 µm due to the presence of the P body/N- junction (see Fig. 5.11). 
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Figure 5.10. The potential contours at 300 K and onset of breakdown, for (top) the 

Si/SiC and (middle) the Philips SOI and (bottom) the SOI without the field plate 

extension (axes units: µm) 
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Figure 5.11. The potential distribution (left) and electric field (right) at the bottom of the Si 

layer in the Si/SiC transistor, at the onset of avalanche breakdown and 300 K (axes units: µm) 
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5.3.2. 600 V Si/SiC LDMOS with PN RESURF 

 

 

Figure 5.12. Two 600 V LDMOSFETs with a triple RESURF layout, using the Si/SiC 

(top) and the bulk-Si substrate (bottom) 

Fig.5.12 shows a 600 V Si/SiC LDMOSFET with a PN RESURF layout and its bulk-

Si counterpart. In Chapter 6, these devices will be compared in order to understand the 

effects of the (SI) SiC substrate on the leakage current and breakdown voltage at high 

temperature.The design of both transistors uses the LDMOS framework proposed by 

Disney et al. [99]. Therefore, they are similar to each other and characterised by a buried 

P layer in an N drift region. This setup creates a triple RESURF effect and results in a 

drift region dose of 3×1012 cm-2, a value similar to that of the 600 V Si/SiC device in SOI 

RESURF technology. Unlike the Philips structure, the LDMOS framework used here is 

specific to the bulk-Si substrate and not tailored for high temperature application. 
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However, the implementation of the Si/SiC substrate for this design can minimise the 

drain-to-substrate current and offer a better electrical isolation, which increases the upper 

limit of operating temperature. To house this design in the Si/SiC substrate, the Si layer 

has to be P- type and very thick (16 µm). Such Si/SiC wafers have been fabricated by 

direct wafer bonding and exhibit very good electrical behaviour [131]. Similar to the thick 

SOI case, this Si/SiC device can be insulated completely by using deep trench isolation 

technique [67] as the Si layer thickness is less than 20 µm. Therefore, this thick-film 

Si/SiC LDMOSFET can be another candidate for elevated temperature operation, just like 

its thin-film counterpart in the Philips technology. 

In the bulk-Si case, the LDMOS design is built into a p type substrate 86 µm thick 

with a doping density of 1×1014 cm-3, which enables a vertical blocking capability up to 

640 V at 300 K. This configuration can be compared to [136], where the LDMOSFETs 

were fabricated into high resistive p type substrates 150 µm thick (ρ=1.2 x 1014 cm-3), for 

a breakdown voltage of 1200 V. For having the same triple RESURF effect, the Si/SiC 

LDMOSFET uses a 16 µm thick p type layer with a doping density of 1x1015 cm-3, on a 

300 µm thick (SI) 6H-SiC substrate. For fair comparison between their cooling 

performances (Chapter 6), the thickness of bulk Si substrate will be increased to 300 µm. 

It can be found that the bottom channel is more than four times thicker than the top 

channel, which deviates from the triple RESURF setting stated in Chapter 3. This is 

because the theory is explained by assuming a uniform doping profile in PN pillars, which 

is rarely` the case in reality [8] [17]. In the drift regions of the two thick-film devices, a 

more realistic impurity distribution is used  and obtained from SILVACO process 

simulator, SSUPREM4 [18]. For the bulk Si case, the simulation began with a 

phosphorous implantation at energy of 380 eV, with a dose of 3.57×1012 cm-2. This was 

followed by an 1180 ⁰C anneal for 500 mins to enable donors’ diffusion and form the N 

well. After this, boron ions were implanted at 1150 eV, with a dose of 2.25×1012 cm-2 

and a subsequent rapid thermal anneal was carried out at 700 ⁰C for 0.5 mins to shape the 

p buried region. The same applies to the Si/SiC case, but with some small adjustments on 

the settings for implantation and annealing owing to different doping values of P sub in 

the two cases. Fig. 5.13 shows the resulting vertical doping profiles at the middle of the 

drift region, for the two thick-film transistors. Also illustrated is an impurity distribution 

in the ideal triple RESURF layout. The donor concentration drops with increasing Si layer 
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thickness. The acceptor density peaks at the middle of the buried layer and falls drastically 

in the vertical directions. As such, the p buried layer has to be positioned closer to the 

surface, to fully deplete the top channel which has a higher doping than the ideal case. A 

similar setup can be found in [8], where the bottom conduction path is 6 times wider than 

the top one. In the Si/SiC transistor using the Philips technology, the effect of dopant 

diffusion in the vertical direction is ignored due to the presence of a thin layer [19]. 

 

 

Figure 5.13. The doping profiles in the ideal triple RESURF case (left) and in the 

TCAD simulation (right), for the two thick-film transistors 

With this doping profile, the potential is distributed similarly in the thick-film Si/SiC 

and its bulk Si counterpart at the onset of avalanche breakdown (see Fig. 5.14). The P 

substrate and buried layer deplete the top and bottom channel vertically, allowing the 

majority parts of drift region to share equal amount of voltage. The field plate design 

makes the contours crowd in the field oxide at the end of the source and drain metal, 

reducing the electric field peaks at the p body/N- and N-/N+ junction. 
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Figure 5.14. The potential distributions at 300 K and onset of breakdown, for the 

thick-film Si/SiC (left) and its bulk Si counterpart (right) (axes units: µm) 

5.3.3. 190 V Si/SiC LDMOS with SOI RESURF 

 
Si/SiC 

 
SOI 

 
PSOSIC 

 
PSOI 

Figure 5.15. 190 V LDMOSFETs using different substrates, namely Si/SiC, SOI, 

PSOSIC and PSOI 



86 

 

Fig. 5.15 illustrates four 190 V LDMOSFETs which have the same geometry in the 

active region. The LDMOS topology is transferred from the 190 V Philips LDMOSFET 

described in Chapter 4. All the architectures accommodate the LDMOS design as well as 

a region 5 µm wide on the left hand side. In the Si/SiC and SOI, this region is filled with 

SiO2 and offers electrical isolation. In the other two architectures, the SiO2 is replaced 

with Al and the region borders an N-type substrate, interrupting the buried oxide. This is 

a Partial SOI (PSOI) layout as mentioned in Chapter 3. To distinguish them, ‘PSOI’ is 

used for the device featuring an N-type Si substrate, while PSOSIC is the Partial 

Si/SiO2/SiC featuring an N-type SiC substrate. It is worth noting that the potential of the 

Partial Si/SiO2/SiC to be applied in power applications has been studied by Udrea et al. 

[72], though the SiC substrate is P-type and will react with an N-type Si layer to form a 

PN RESURF effect. It is expected that this partial removal of the BOX layer in the PSOI 

and PSOSIC can suffer less heating compared with the SOI, but not as thermally efficient 

as the Si/SiC solution which features the complete removal of the BOX. In Chapter 7, 

these devices will be compared in order to understand the effectiveness of different 

thermal-aware designs in improving energy capability. 

In each structure, the LDMOSFET is 22.5 µm wide and has a Si layer 1.1 µm thick. In 

lateral sequence from left to right, presented in the Si layer are a body region, a drift 

region and a drain region. The body region is 8 µm in width and has a p-type doping 

density of 8x1016 cm-3. An N+ and P+ zone are added to form an ohmic contact with a 

source metal. The N+ is offset from the edge of p body by a lateral distance of 1.5 µm 

which is defined as the channel length. The channel and a gate metal are separated by a 

30 nm oxide layer. The drift region is 12 µm long, with a thinned-down region 0.6 µm 

thick. One top of this region is a 1 µm thick field oxide, covered by a gate extension. The 

gate is extended 9.8 µm and 6.5 µm, with respect to the border of p body and origin of 

drift region, respectively. 

In the Si/SiC layout, the device sits directly on a 300 µm thick (SI) 6H-SiC substrate 

whereas the other cases have a 1 µm BOX between the Si layer and a 300 µm thick 

conductive substrate. In this case, the three SOI devices and the Si/SiC have double and 

single RESURF effect respectively. To achieve the optimal electric field distribution, 

Equation 3.8 is utilised to calculate their linear doping profiles. Such procedures can be 

referred to the case of the 600 V Si/SiC LDMOSFET. Their potential distributions are not 
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shown here as they are very similar to those of the 600 V devices in the SOI RESURF 

technology. 

5.4. Simulation setups 

This section outlines the setups that will be used in Chapter 6 & 7 for device modeling. 

First introduced is the settings of the physical-based models that are verified and 

discussed in Chapter 4 and Appendix C. Secondly is the description of four different 

switching circuits that will be simulated for the aforementioned LDMOSFETs. 

5.4.1. Application of the physical-based models 

As mentioned in Chapter 4 and Appendix C, the SOI, bulk Si and Si/SiC devices share 

the same models, apart from the settings for the interfaces and the thermal properties of 

the substrates. More specifically, the SOI device is simulated with a positive charge of 

4×1010 cm-2 for both Si/SiO2 interfaces [124], while the Si/SiC uses the same value for 

its top interface but a negative charge of 2×1010 cm-2 for the bottom one [131]. According 

to [46], this charge value is also applicable to the bulk Si case where the Si/SiO2 interface 

value is specified to +4×1010 cm-2 as well. The thermal models for the simulated 

structures can be referred to Appendix A. Carrier lifetimes are set to 1.5 and 70 μs at room 

temperature for the thin and thick-film structures, to achieve generation lifetimes, which 

are similar to those in [46]. Unless stated otherwise, the substrate electrode of each device 

is grounded and defined as a thermal contact at a fixed temperature of 300 K. This setup 

will be used throughout the DC and transient simulation. 

5.4.2. Simulated switching circuits 

In SILVACO, the circuit-based modeling is performed by Mixed-Mode simulators 

[122] where electrical components can be described at multilevel of abstractions. For 

instance, the semiconductor device under investigation can be represented by a physical-

based model and other non-critical component by compact models. This methodology 

can achieve a better trade-off between simulation time and accuracy, but increases the 

complexity and difficulty of the modeling setup. Other than the semiconductor physics, 

the users need to familiarise themselves with the SPICE programming language [122] for 
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defining the circuit network. Numerical problems can arise due to the incompatibility 

between the physical and compact models and therefore lengthy debugging can be 

involved in the process. To increase the computing efficiency, the practical circuit is 

usually simplified in the simulation to some degree, but with its main functions retained. 

This means that some components will be ignored or replaced with a much simpler form. 

The operation will be limited to a few cycles as well and the heating effect restricted to 

the semiconductor devices only. 

In this section, four circuits are introduced that will be used in the transient simulation 

of the power MOSFETs mentioned earlier. Firstly, a diode-clamped inductive load 

switching circuit will be demonstrated, for the 600 V Philips SOI LDMOSFET and its 

Si/SiC equivalent. Secondly, presented is a Rectangular Power Pulse (RPP) circuit that is 

used to assess the thermal performance among the 600 V Si/SiC, SOI and bulk-Si devices. 

The results of these two circuits will be analysed in Chapter 6. The last two switching 

circuits feature a capacitive load and an inductive load with a Zener diode respectively, 

for the four 190 V LDMOSFETs using SOI, PSOI, Si/SiC and PSOSIC substrate. Their 

dynamic characteristics will be compared in Chapter 7. 

5.4.2.1 Clamped inductive switching (600 V) 

5.4.2.1.1    Introduction 

Before looking at the simulated circuit, some background information is given on the 

applications of the 600 V class power MOSFET. The 600 V MOSFET is the core 

component in an AC/DC flyback and a half bridge topology, as shown in Fig. 5.16 [5] [6] 

[7]. These circuit are widely used in applications where power conversion needs to be 

performed, such as TVs, phone chargers, motor drives and electric vehicle traction 

systems [5]. In the circuits, the role of the HV MOSFET is to deliver power to an inductive 

load through switching actions. Such operation is carried out at high frequencies (e.g. 200 

kHz), which reduces the size and weight of the inductive components [5]. By using a 

lateral layout for the MOSFET, the system can be made more compact and with less 

parasitic effects, as the LDMOSFET can be integrated with the control logic. It is even 

possible for the inductor to be integrated into the semiconductor process [8], enabling 

further integration. Fig. 5.17 illustrates some key integrated components in the JI 

technology optimised for HV AC/DC conversion [5]. It can be seen that a bulk Si 
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substrate accommodates not only CMOS devices but also a 700 V LDMOSFET with a 

double PN RESURF layout. 

 

 
 

Figure 5.16. A flyback topology for AC/DC conversion [137] (left) and a half bridge 

circuit with an inductive load (right) 

 

 

Figure 5.17. The lateral MOSFETs in the JI technology optimised for fully integrated 

AC/DC Power ICs [137] 

In Fig. 5.16, the flyback circuit contains a UHV transistor and an inductor, connected 

in series across a 375 V DC supply. Two inverse-series diodes are in parallel with the 

inductor and used for voltage clamping. When the transistor is on, the current will charge 

the inductor and create a voltage across it, with the two diodes inactive. When the 

transistor is off, the inductor will be discharged and the polarity of its voltage reversed. 

During the off-state, the diodes offer a low resistive path for the current and determine 

the voltage across the inductor. As such, the VDS is clamped to a rated value, which 

protects the transistor. Without the diodes, there is no way to dissipate the inductive 

energy in the off-state except for shorting the power MOSFET. The VDS will be fixed at 
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the device’s breakdown voltage until the energy is fully consumed. In this case, the 

transistor has a higher chance to be destroyed due to the presence of high current and 

voltage. In the half bridge circuit, the built-in PiN diode of the low-side transistor can be 

used for circulating the inductive current. When the high and low-side MOSFET is on 

and off, respectively, the DC bus is feeding the inductor. If the upper switch is turned off, 

the current flow will be maintained safely by the body diode of the lower switch. 

To activate the protection correctly, the added diodes must create an open and short 

circuit when the MOSFET is on and off. This requires the diode to be able to withstand 

the voltage used for driving the inductor. To reduce the reverse recovery losses, the diode 

should be able to remove the stored charges very quickly. It is found that the diode 

inherent in the Philips SOI LDMOSFET has a reverse recovery time comparable to an 

ultra-fast PiN diode at room temperature but smaller by a factor of two at 150 ⁰C [46]. 

This demonstrates the advantage of the SOI technology in high temperature power IC 

applications. To deplete the inductive energy more rapidly, a resistor or a Zener diode 

will be placed in series with the diode. This setup raises the voltage across the inductor 

and makes the current fall more quickly, resulting in a shorter turn-off transition for the 

power MOSFET. However, doing so will stress the transistor to a greater degree by 

creating a higher voltage at the drain and therefore the value of the resistor should be 

carefully selected. 
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5.4.2.1.2   Circuit topology 

 

Figure 5.18. A diode-clamped inductive switching circuit in the Mixed-Mode 

simulation 

Fig. 5.18 shows the clamped inductive circuit used in the Mixed-Mode simulation. 

Enclosed in the dashed box is a device under test (DUT) containing four electrical 

capacitors, namely CGS, CGD, CDS and CSUB [138]. Using this circuit in the simulation can 

show the effects of the parasitic capacitors on the device transient characteristics and the 

temperature rise under multiple cycles. The simulated DUT is either the Philips SOI 

LDMOSFET or its Si/SiC equivalent. Their device widths are 1 and 1.65 cm respectively 

to achieve the same electrical resistance and current, at the initial ambient temperature of 

150 °C. The gate is switched at 200 kHz via a pulse signal, through a 10 Ω gate resistor, 

with a 50% duty cycle. The peak voltage is 10 V and the time for rising and falling is 

equal to 1 ns. The drain contact is linked to a parallel network composed of a diode and 

an inductor. Attached to this network is a current-limiting resistor connected to a 360 V 

voltage source. The SOI or Si/SiC transistor is modelled in this circuit for two cases, one 

of which has a 2-mH inductor and 1800 Ω current-limiting resistor. The other uses 1 mH 

and 600 Ω for them, respectively. These setups are designed to mimic the inductive 

switching of low-side LDMOSFETs in a flyback topology under low and high-current 

conditions and to observe their temperature responses due to self-heating. To speed up 



92 

 

the numerical calculation, other electrical elements are represented by temperature 

independent compact models. The model for the diode is ideal and has a turn-on voltage 

of 0.65 V, with no series resistance considered. This means that there are no reverse 

recovery losses in the diode and that the inductor is hardly de-energised during the off-

state of the MOSFET. Nonetheless, such setup allows the current to reach its steady-state 

value in a few switching cycles. The series resistor (600 or 1800 Ω) is introduced to define 

the steady-state current and does not stand for any component in a practical circuit. 

Without this element, the transistor will be quickly biased in the saturation region and 

suffer thermal runaway. To sum up, this simplified circuit is used to study the dynamic 

behaviour of the DUT only during inductive switching and is not configured to deliver 

AC/DC conversion as in Fig. 5.16. The results of this circuit simulation will be 

demonstrated in Chapter 6. 

5.4.2.2 Rectangular Power Pulse (600 V) 

5.4.2.2.1    Introduction 

The Rectangular Power Pulse (RPP) circuit is one way to evaluate the energy 

capability and heating effects under the transient overload condition for power 

LDMOSFETs [118] [139] [140]. The DUT in this setup is stressed with a rectangular 

power pulse, which is different from the inductive switching circuit where the pulse is 

triangular in shape [140]. However, it has been proven that the RPP method is equivalent 

to the clamped inductive switching in terms of judging the device energy capability [140]. 

Furthermore, this RPP setup is much simpler and the outcomes are unique to the device 

and do not depend on the circuit elements (e.g. load inductance and capacitance) [17]. 

One example of using the RPP circuit in practice is shown in [118], where the 600 V 

Philips SOI LDMOSFET is compared with its bulk Si counterpart. The simulation work 

of this circuit is demonstrated in [5] which analyses the cooling effect of the 600 V PSOI 

device in contrast with a SOI in the Philips technology. 
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5.4.2.2.2    Circuit topology 

 

Figure 5.19. The rectangle power pulse circuit used in the Mixed-mode simulation for 

the 600 V LDMOSFETs 

Fig. 5.19 illustrates a simulated rectangle power pulse circuit consisting of the DUT, a 

15 V DC source for the gate and a pulse voltage source across the DUT. Involved in this 

Mixed-mode simulation are the 600 V LDMOSFETs, namely the Philips SOI, the bulk 

Si transistor and their Si/SiC counterparts. To perform this modelling, all the transistors 

are simulated as being 1-mm-wide and have a 300-μm thick substrate, under which a 

thermal contact is defined and fixed at 300 K. Self-heating models are applied to the 

transistors. The voltage pulse lasts 10 μs, with its value tailored for each device to achieve 

the same power pulse of 90 W/mm2. These parameters are intended to energise the DUT 

and does not represent normal power dissipations [118]. This circuit configuration is 

aimed to compare the 600 V devices in terms of the transient heating, under the same 

condition of power density. The results can be found in Chapter 6. 

5.4.2.3 Capacitive load switching and Zener-diode-clamped 

inductive switching (190 V) 

5.4.2.3.1    Introduction 

The 190 V class LDMOSFETs can be used in battery, In-Vehicle networking, plasma 

display and electro-luminescent display drivers [129]. In these applications, the 

transistors are exposed to brief short-circuit durations which are not only determined by 

their parasitic capacitors but also the external reactive loads. This requires the power 
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switches to be able to handle this energy smartly such that the resulting temperature rise 

is minimised. In order to do so, the LDMOS design has to offer a low thermal resistance 

in such a way that less power is converted to temperature. As shown in section 5.3.3, the 

PSOI and PSOSIC transistors have a heat conduction path outside the device region. This 

configuration is expected to deliver a better thermal performance than the SOI, despite 

the chip are is increased by 22 %. The Si/SiC features a complete removal of the BOX 

layer so that the heat transfer occurs within the device area. No extra space is needed for 

the thermal conduction path but the device has to be made 75 % wider, to compensate for 

the higher resistance compared with the other SOI solutions. In conclusion, the 

LDMOSFETs built in the Si/SiC, PSOI and PSOSiC substrate have thermal advantage 

over the SOI, but at the expense of a larger chip area. The effects of these trade-offs for 

these technologies are evaluated based upon the two switching events that can cause 

significant heating. 

The first case is the turn-on of the device when being connected with a capacitor in 

parallel. Upon the switching, the voltage across the transistor will drop gradually with the 

presence of a capacitive discharge current. The second is the turn-off of the device when 

being connected with an inductor in series. During this transient state, the transistor will 

still be on while supports a high drain-to-source voltage. These stress conditions can raise 

the temperature substantially and reduce the device reliability. The circuits to create such 

switching actions are described as follows. 
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5.4.2.3.2    Circuit topology  

Capacitive load switching 

 

 

Figure 5.20. The simulated capacitive discharge circuit based upon [62], for the 190 

V LDMOSFETs in Si/SiC, SOI, PSOI and PSOSiC technology 

Fig. 5.20 illustrates the capacitive switching circuit used in the simulation for the four 

190 V LDMOSFETs. This simulated circuit is based upon [62], consisting of a 1 kΩ gate 

resistor, a 12 V pulse signal, a 175 pF capacitor and a 100 kΩ resistor in series with the 

transistor and a 100 V voltage source. No protection component is added so all the 

capacitive energy will be dumped into the transistor. The purpose of this setup is to see 

how the DUT reacts to the discharge current from the load during the turn-on state. The 

LDMOSFETs will be simulated at an initial temperature of 27 ⁰C, with the widths of the 

Si/SiC and other SOI transistors set to 1.75 mm and 1 mm respectively to achieve the 

same resistance. Self-heating models are activated. 
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Zener-diode-clamped inductive switching 

 

Figure 5.21. The clamped inductive switching setup with a Zener diode, for the 190 V 

LDMOSFETs 

Fig. 5.21 shows the clamped inductive switching circuit based upon [141], used for 

the 190 V LDMOSFETs in the simulation. The DUT is controlled by a pulse signal of 12 

V and protected by two inverse-series diodes. The Zener diode has a breakdown voltage 

of 150 V whereas the other one is represented by an ideal diode model with a turn-on 

voltage of 0.65 V. A 5 mH inductor is connected between the transistor and a voltage 

source of 50 V. This inductor is charged for 10 µs and LDMOS turned off, which triggers 

the Zener diode conducing current to the ground via a 3 kΩ resistor (R1). Therefore, a 

voltage is dropped across this resistor, partially switching on the device throughout the 

inductor discharge period. During this transient period, the drain voltage will be clamped 

at about 150 V. This setup is designed to see the effectiveness of different device 

structures in handling the inductive energy during the turn-off period. The initial 

temperature of the simulation is 27 ⁰C and the self-heating model is activated. 
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Chapter 6 TCAD study on the 

600 V Si/SiC LDMOSFETs  

6.1. Introduction 

This chapter provides a TCAD study on the static and dynamic behaviour of the two 

600 V Si/SiC LDMOSFETs. The analysis of the DC behaviour is split into three parts. In 

the first and second part, the Si/SiC devices are compared with their own SOI and bulk-

Si counterparts regarding the I-V characteristics. The last part compares the two Si/SiC 

transistors and their equivalents all together, in terms of the temperature dependence of 

the leakage current, low and high-side resistance. The study on the transient 

characteristics are separated into two sections. The first section focuses on the dynamic 

behaviour of the Philips SOI and its Si/SiC equivalent in the inductive switching circuit 

mentioned in Chapter 5. Next, comparison is made among the Philips SOI, bulk Si and 

the two Si/SiC LDMOSFETs, of the heating effects in the RPP circuit introduced in 

Chapter 5. Much of this chapter has been published in [142] [143] [144] [145]. 

6.2. DC characteristics 

6.2.1. Si/SiC LDMOS in SOI RESURF technology VS SOI  

In this section, the first comparative study is made mainly between the Philips SOI and 

its Si/SiC counterpart to see the effects of the BOX layer and the (SI) SiC substrate on 

the electrical and thermal properties of the LDMOSFETs. The SOI without the gate field 

plate is involved in the comparison to observe the effects of the FOX and BOX layer on 

the leakage current. This structure is also used for analysing the accumulation effect 

induced by the FOX. 
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6.2.1.1 Off-state behaviour  

As shown in Equation 4.3, the total leakage current can be characterised as the sum of 

the diffusion component in the neutral region and the generation current in the depletion 

region [39]. Fig. 6.1 shows the off-state behavior for the Philips SOI and the Si/SiC, 

respectively. The diffusion current is insignificant in these two structures as the linear 

doping profile permits full depletion of the thin film. At room temperature, both devices 

can support more than 600 V and their leakage currents increase up to about 10−14 A/μm 

at 450 V. Beyond this voltage, the tunneling component becomes dominant, raising the 

total leakage current in both cases. This reveals that both structures have a depletion zone 

in the drift region, with field strength high enough to allow band-to-band tunneling. This 

occurs due to the highly doped Si film and inherent SOI layout that induces vertical 

depletion, causing a strong electric field in the space charge region. 

  

Figure 6.1. OFF-state I–V characteristics of the Philips SOI (left) and Si/SiC LDMOS 

(right) 

At 300 °C, the breakdown voltage increases in both structures to 680 V, a result 

indicative of an avalanche breakdown mechanism rather than tunneling [39]. However, 

this relation is not as strong as that of a 1-D junction shown in [39], meaning that the 

uniform electric field in the drift region compensates for some of the energy of travelling 

carriers lost at high temperature, thereby reducing the increment of the breakdown voltage. 

At 300 °C, the leakage current is also increased to around 3×10−9 A/μm. The contribution 

at high voltage from the tunneling component vanishes because of its weak relationship 

to temperature [46]. Besides, the current generated in the depletion region is a function 

of intrinsic carrier density and hence is exponentially related to temperature. As a result, 

the current is dominated by the generation component at high temperatures regardless of 
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bias condition and the contribution of the tunneling component can be disregarded [46]. 

This behaviour can also be found in the SOI LMDOSFET without the field plate 

extension (see Fig. 6.2). It can be concluded that the depletions from the BOX and FOX 

have equivalent effects on the leakage current at 300 and 573 K. 

 

Figure 6.2. Off-state characteristics of the Si/SiC (black) and the SOI without the field 

plate extension (blue) 

6.2.1.2 On-state behaviour 

6.2.1.2.1    Isothermal simulation 

  

Figure 6.3. On-state characteristics of the Philips SOI (left) and Si/SiC LDMOSFETs 

(right), under isothermal conditions at 300 K 

Fig. 6.3 demonstrates the ON-state behavior of the Philips SOI and the Si/SiC at 27 °C 

using an isothermal model, which ignores the effects of self-heating. Common to both 

transistors are threshold voltages of 2 V (shown in Fig. 4.7, Chapter 4) due to the identical 
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configuration of the channel regions. The gate-to-source voltage ranges from 3 to 20 V. 

It can be seen that neither device suffers a significant reduction in breakdown voltage at 

high gate bias because both designs have a high impurity dose at the drain-end of the drift 

region, thus reducing the Kirk effect [146] and enlarging the electrical safe operating area. 

 

Figure 6.4.    the ohmic regions of the I-V curves for the Philips SOI and Si/SiC at 

300 K 

In the ohmic region, the SOI device conducts more current due to its doping being two 

times higher than the Si/SiC equivalent (see Fig. 6.4). However, this configuration does 

not double the SOI current in the saturation region. Instead, both cases have a similar 

current level at large drain biases up to 100 V (see Fig. 6.3), meaning that a counter effect 

exists in the SOI and is enhanced with increasing drain voltage. Given that the same 

channel and geometry of the drift region are designed in the two devices, this phenomenon 

is likely caused by the BOX layer. At relatively high drain bias, the SOI drift region is 

depleted from above by the gate field plate and below by the charge-rich region under the 

BOX. These effectively squeeze the drift region from both sides, limiting carrier transport 

to the middle undepleted region. In the Si/SiC case, the removal of the BOX removes the 

bottom field plate effect, leaving the bottom of the drift region undepleted. Therefore, the 

SOI resistance increases faster against drain voltage and eventually reaches a value 

comparable to that of the Si/SiC. 
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6.2.1.2.2    Non-isothermal simulation 

  

 

Figure 6.5. The steady-state effect of self-heating on forward characteristics of SOI 

(left) and Si/SiC LDMOS (right), as well as their junction temperature (bottom) 

The steady-state effects of self-heating in both the Philips SOI and Si/SiC LDMOS 

transistors are seen in Fig. 6.5 (left) and (right), respectively. The isothermal sets for both 

devices are included for comparison and represented by solid lines. The dashed lines 

indicate the I–V characteristics produced from nonisothermal modeling. The isothermal 

and nonisothermal data are in good agreement in the linear region irrespective of gate 

voltages, as well as in the saturation regime at low gate bias (e.g., 3.5 V). However, they 

diverge as resistance and current increase. This gives rise to substantial power losses that 

increase the local temperature, thereby reducing carrier mobility. This situation is 

worsened at increasing gate and drain voltages and eventually significant deviation occurs, 

with the effect of negative resistance becoming evident in the nonisothermal cases. In the 

Si/SiC device, this is not obvious until the gate voltage is raised to 5 V as opposed to 

around 4 V in the SOI. Fig. 6.5 (bottom) is from the same simulation and shows the 
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corresponding temperature rise for each nonisothermal I–V simulation. Internal temperate 

rises sharply against drain voltage in the SOI, with the temperature at any given point 

over four times greater in this substrate than in the Si/SiC. Furthermore, temperature 

sensitivity to gate voltage is lower in the Si/SiC, which reduces the risk of thermal-

induced failures at high gate biases. 

  

Figure 6.6. Temperature contours of (left) SOI and (right) Si/SiC under VDS = 15 V, 

VGS = 10 V conditions (axes units: μm) 

It is reported in [5] [147] that the linear doping profile will cause a non-uniform heating 

in the SOI transistor and this phenomenon is demonstrated in Fig. 6.6 for the Philip SOI 

and Si/SiC transistors. In the two devices, the gate and drain contact are supplied by 10 

and 15 V DC voltage source, respectively. With the ambient at 423 K, the maximum 

temperature in the Si/SiC is 436 K, compared to 502 K in the SOI. Both devices have a 

hot spot located at the source side of the drift region, from which heat spreads toward 

other areas, forming a nonuniform temperature profile. However, thermal diffusion is 

hampered in the SOI due to the BOX, which elevates the temperature in the left part of 

the device and threatens the gate and source contact. In the Si/SiC transistor, the SiC 

substrate removes most of the heat from the Si, which reduces the temperature gradient 

in the drift region. As a result, the Si/SiC transistor can be operated with a higher power 

for a given junction temperature, at the same power for a much reduced junction 

temperature, or at a similar power level at an elevated ambient temperature. 
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6.2.1.2.3    Accumulation effect  

 

Figure 6.7. On-state characteristics of the Si/SiC (black) and SOI without the field 

plate extension (blue), under isothermal conditions. 

To observe the accumulation effect in the SOI, comparison is made between the on-

state I-V curves of the Si/SiC and SOI LDMOSFET without field plate extension. 

Removing the field plate removes the top-side RESURF effect from the SOI, so inducing 

a one-sided RESURF, similar to the Si/SiC. In order to do so, the base doping density in 

the Si/SiC has to be reduced from 8×1015 to 4×1015 cm-3, a value used in the SOI to 

achieve a breakdown voltage above 600 V. As such, the Si/SiC is more resistive than 

before but has a linear doping profile the same as the SOI without the field plate extension. 

Fig. 6.7 presents the isothermal simulation of the SOI and Si/SiC LDMOSFET with the 

gate biased from 3 V to 20 V at 300 K. It can be observed that the difference becomes 

larger between the on-state resistances of the two structures with higher gate voltage. 

Given that the same doping profile is employed in each case, this effect occurs mainly 

owing to the design of the gate contact. In the SOI, the gate setup affects the channel 

region mainly, leaving the drift region unmodulated. Conversely, an accumulation 

channel is formed in the top of the drift region by means of the gate extension in the 

Si/SiC. With larger applied voltage, more electrons are attracted in this layer, which 

greatly reduces the drift resistance. However, the high applied voltage will enhance hot 

carrier injection and therefore reduce the device’s reliability. 
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6.2.2. Si/SiC LDMOS in PN RESURF technology VS Bulk Si  

6.2.2.1.1    Off-state behaviour 

 

Figure 6.8. Off-state characteristics of the Si/SiC (dark blue) and the Bulk Si 

counterpart (green), at 300 and 573 K 

As can be seen in Fig. 6.8, the Si/SiC device has a slightly reduced breakdown voltage 

and a lower leakage current compared with the bulk Si at 300 K. At 573 K, the effects of 

the Si/SiC architecture are more noticeable, resulting in a blocking voltage 250 V higher 

and a leakage current two orders of magnitude lower than the Bulk-Si. This indicates that 

the Si/SiC structure breaks down with the avalanche mechanism [39] and has a much 

better electrical insulating property. Given than the LDMOS topology is common to the 

two devices, the degradation of the bulk Si is solely ascribed to the p-type Si substrate. 

This region acts as a conductor at high temperature and has a substrate contact 66 µm 

wide, which creates a very strong parasitic bipolar effect. It is believed that this effect 

causes the reduction of the breakdown voltage and increase of leakage current in the bulk-

Si. 
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6.2.2.1.2 On-state behaviour 

  

Figure 6.9. On-state characteristics of the thick-film Si/SiC (left) and bulk Si 

LDMOSFETs (right), under isothermal conditions (300 K) 

 

In the on-state, the two devices have a nearly identical behaviour under isothermal 

conditions (Fig. 6.9). Their specific on-resistances are calculated to be 90.6 Ωmm2 at VDS 

= 1 V and VGS = 15 V, which is similar to that in [99]. However, both transistors have a 

poorer forward breakdown capability compared to the 600 V devices in the Philips 

technology, meaning that they are more susceptible to the Kirk effect [62]. This is because 

their RESURF doses are uniformly arranged in the drift regions. With the presence of 

mobile charge in the on-state, the amount of net positive charge will be reduced and the 

RESURF condition disturbed at the drain side. By applying a higher VDS and VGS value, 

the charge unbalancing is more severe and therefore a lower breakdown voltage is 

induced. If there are more donors at the drain side, a higher current density and drain-

source voltage are needed to activate the Kirk effect. The linear doping profile in the 

Philips SOI is an embodiment of this very idea which minimises the electrical field at the 

p body/N- junction. 

6.2.3. Temperature effects on the Si/SiC, SOI and Bulk Si LDMOS 

In this section, the comparative study on the 600 V LDMOSFETs will be supported 

by their leakage current, low and high-side specific on-resistances. These parameters are 

extracted from the I-V curves produced by the DC simulation, over the temperature range 

of 27-300 ⁰C. The extraction conditions have been mentioned in Chapter 3 and will be 
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briefly stated in the paragraphs below for each parameter. For convenience purposes, the 

thin-film SOI device and its equivalent Si/SiC device are referred to as ‘SOI’ and ‘SOI 

Si/SiC’ respectively. Similarly, the acronyms for the bulk-Si and its Si/SiC equivalent are 

‘Bulk-Si’ and ‘Bulk-Si Si/SiC’. The goal of this section is to see the pros and cons of the 

Si/SiC architecture in contrast with other solutions for high temperature application. 

6.2.3.1.1    Leakage current 

 

Figure 6.10. Temperature dependence of leakage current for the SOI, Bulk-Si, SOI 

Si/SiC and Bulk-Si Si/SiC LDMOS at a drain voltage of 300 V, along with two lines 

(∝ni & ∝ni2) representing generation and diffusion component, respectively 

Fig. 6.10 presents the variation of reverse current with temperature for the two Si/SiC 

LDMOSFETs and their corresponding designs in SOI and Bulk-Si technology [46] [99]. 

Also shown are two dashed lines that indicate a (ni), or ni
2 relationship between 

temperature and intrinsic carrier concentration, which, respectively, indicates generation 

and diffusion leakage mechanisms. These two outweigh other leakage components 

arising from the interface, tunnelling and avalanche effects, because the devices are 

simulated here with low interface charge and a drain-source voltage of 300 V [46] [117]. 

Over the temperature range of 27-300 ⁰C, the SOI and its Si/SiC equivalent has very 

similar reverse current, slightly lower than that of the Bulk-Si Si/SiC which has a much 

thicker Si layer, thereby increasing the generation component despite higher carrier 

lifetime [46]. The gradients of their leakages against temperature are similar and can be 
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mostly described by the ∝ ni line (see Fig. 6.10). However, the Bulk-Si LDMOS 

distinguishes itself from the others by having a much larger leakage current, whose 

increased rate approaches the ∝ ni
2 line. The reason for this is that the generation leakage 

is raised when the depletion region expands into the P type substrate of the Bulk-Si 

transistor, and that a vertical diffusion current appears owing to the absence of electrical 

isolation. 

6.2.3.1.2    Low-side specific on-resistance 

 

Figure 6.11. Temperature dependence of low-side specific on-resistance for the SOI, 

Bulk-Si, Bulk-Si Si/SiC and two SOI Si/SiC transistors that have differing Si layer 

thickness, namely 0.2 and 0.1 µm. The dotted line is derived from halving the curve 

for the SOI Si/SiC LDMOS with a 0.1-µm-thick Si film 

The effect of temperature on the low-side specific on-resistance of different devices 

can be seen in Fig. 6.11. The bias conditions of Vds = 1 V and Vgs = 15 V are applied in 

the simulation to minimise the influence of channel resistance and “pinch-off”, thus the 

total resistance mainly depends on the quantity of donors in the drift region. All the 

transistors are designed with an effective dose [93] of around 3×1012 cm-2 [99] [144] in 

their drift regions for 600 V, except for the Philips’ LDMOS having about 6.8 ×1012 cm-

2 on account of the double RESURF effect [135]. It is worth noting that in the SOI and 

SOI-like Si/SiC device, a charge-rich region will be formed underneath the FOX because 

of the gate extension and applied gate bias [28]. However, the effect of such induced 

electrons on the resistance is limited and not as substantial as that shown in [93], where 
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one third of the drift region is flooded with accumulation carriers, accounting for 68% of 

the total current conduction [93]. 

Under this setting, very high charge density (cm-3) is present in the SOI group and their 

carrier transports are dominated by impurity scattering [46] [117]. By contrast, the thick-

film (16 µm) transistors accommodate far less impurity atoms per unit volume and hence 

lattice scattering prevails [46] [117]. This brings about the on-resistance of the SOI-like 

Si/SiC transistors less dependent on temperature compared with the thick-film Si/SiC 

counterpart, but in return a higher resistivity is observed, with the 0.1-µm-thick device 

having the least conductance due to the highest impurity density (see Fig. 6.11). No 

difference in the resistance is observed between the Bulk-Si and its equivalent Si/SiC 

device, because the p-substrate region in this Si/SiC plays the same role as the one in the 

Bulk-Si structure, facilitating a back RESURF for the drift region. However, the thin-film 

SOI exhibits a resistance slightly lower than those of the two thick-film LDMOSFETs at 

room temperature. Its degradation rate with temperature is also smaller than those of any 

other structures. This is because the transistor features a double SOI RESURF effect, and 

can be regarded as two SOI devices with a 0.1-µm Si layer working back-to-back [135], 

as can be demonstrated with the dotted line in Fig. 6.11, which is obtained from halving 

the results of the 0.1-µm Si/SiC, which operates with just a single SOI RESURF technique. 

Compared to the SOI, the thin and thick film Si/SiC transistors have 56% and 5% more 

low-side resistance at 300 K respectively, increasing to 79% and 71% at 573 K. Therefore, 

it is advantageous in high temperature operations that high doping density and high order 

RESURF are employed in the unipolar transistors. In the case of the Si/SiC architecture, 

a 3D super-junction layout [148] could be the answer to improving the on-resistance, as 

the SAD effect is weak in the Si-on-(SI) SiC structure such that the depletion of the of 

3D RESURF structure is mainly induced from the sides, in the direction of device width, 

leading to a double RESURF effect with relatively high doping. The Si/SiC LDMOSFET 

with this 3D RESURF layout can be found in Appendix B.  
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6.2.3.1.3    High-side specific on-resistance 

 

Figure 6.12.   Relationships between specific on-resistance and substrate bias for the 

simulated LDMOSFETs at 300 K and 573 K, excluding the one for the Bulk-Si at 573 

K 

Fig. 6.12 demonstrates the high-side specific on-resistance as a function of substrate 

voltage for the simulated transistors at ambient temperatures of 300 and 573 K. The gate 

and drain terminals are biased at 15 V and 1 V, with the substrate voltage varying from 0 

to -200 V. This simulation setup is equivalent to that of a practical high-side operation. 

For example, to drive a high-side LDMOSFET in the linear region, the bias settings are 

199 V, 214 V, 200 V and 0 V for the source, gate, drain and substrate contact. These are 

the same as applying 0 V, 15 V and 1 V for the source, gate and drain, with the substrate 

biased at -199 V. Doing so can reduce the time it takes in the simulation to ramp up the 

voltages. In order to reduce the effect of substrate bias on the backgate (P body), the N- 

well in the Bulk-Si structure is extended laterally to enclose the channel region [149]. 

Furthermore, this LDMOS is excluded from the simulation at 573 K, owing to the 

activation of the parasitic BJTs that distorts the device’s characteristics. 

It can be found in Fig. 6.12 that the Si/SiC devices have on-resistances insensitive to 

the substrate bias regardless of ambient temperature, so does the Bulk-Si at 300 K. The 

common reason is that they all have a high resistive substrate which sustains most of the 

applied voltage, thereby minimising the depletion in the Si active region [149]. In the 

Bulk-Si and its equivalent Si/SiC device, the thick Si layer (16 µm) and application of 

charge compensation (triple RESURF) [150] also alleviate the effect of substrate bias, by 

increasing the depletion limit and decreasing the depletion width respectively. However, 
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in the SOI device, potential is confined by the BOX so that the depletion in the top Si film 

is enhanced. This significantly lessens the effective area for current conduction in the 

already-thin Si layer, resulting in a rapid rise of on-resistance up to -100 V at 300 K (see 

Fig. 6.12). Beyond this value, the expansion of the depletion region with the substrate 

bias is hindered by the formation of an inversion layer [150], leading to a less drastic 

increase in on-resistance. Similar features are observed in the curve for the SOI at 573 K, 

but the impact of substrate bias seems to be weakened, yielding an even less abrupt 

change and eventually the resistance is lower than that at 300 K. This is because, with the 

presence of a large amount of thermally generated carriers, the depletion region does not 

function as strong a potential barrier as at 300 K. 

Despite reducing low-side resistance as shown in the previous section, the SAD effect 

in this case is disrupted by the substrate bias, thereby increasing the resistance. Compared 

with the SOI, the equivalent Si/SiC achieves 86% and 40% reduction in the high-side 

resistance at 300 K and 573 K respectively, under a substrate potential of -200 V. 

Likewise, the Bulk-Si Si/SiC has 91% and 36% lower high-side resistance at 300 K and 

573 K. By introducing a step Si film on a thicker BOX layer [151], this downside in the 

SOI can be partially resolved but the dependency on substrate bias still exists, which gives 

rise to a difference between low and high-side resistance. 

6.3. Dynamic characteristics 

6.3.1. Philips SOI vs Si/SiC on inductive switching 

This section demonstrates the simulation results of the diode-clamped inductive 

switching circuit, for the Philips SOI and its Si/SiC equivalent (see section 5.3.1, Chapter 

5). Firstly, device behaviour under multiple switching actions are presented and 

discussed. Secondly, the analysis will focus on their transient currents and power in one 

cycle, to study the origin of the high turn-on losses and the resulting transient heating. 
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6.3.1.1 Overview of switching characteristics 

 

 

Figure 6.13. Drain–source voltage and inductor current for the two transistors during 

VGS = 10 V, 200 kHz switching nonisothermal simulations. The inductor and current-

limiting resistor are 2 mH and 1800 Ω in Case 1 (Top) and 1 mH and 600 Ω in Case 2 

(Bottom) 

Fig. 6.13 shows the drain–source voltage and inductor current for the 600 V SOI and 

Si/SiC LDMOSFETs under inductive switching conditions. The simulation starts at an 

ambient temperature of 150 ⁰C and lasts 60 µs. Two cases are considered in which the 

transistors are simulated under high and low-current conditions, both within the linear 

region. It can be seen that the two LDMOSFETs have the same performance under low 

current conditions (Case 1). Under high-current conditions (Case 2), a small current 

mismatch exists due to increased self-heating effects. 
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Figure 6.14. Dynamic temperature response of the two transistors in the 

nonisothermal switching for Case 1 (top) and Case 2 (bottom) 

 

Fig 6.14 shows the differing self-heating effects, presenting the corresponding junction 

temperature of the transistors for both conditions. In both cases, the SOI heats up faster 

and reaches a higher steady-state temperature. The pulsed operation allows a period when 

the devices can be cooled down but introduces transient losses that can be substantial at 

high frequency. In Case 1, temperature spikes appear as the SOI or Si/SiC device is turned 

on, meaning that high power is dissipated in this dynamic state. However, these peaks are 

only very short in duration and the temperature drops briefly, before on-state losses 

dominate. After this, the conduction current raises the temperature for as long as the 

transistor is on.  
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In Case 2, the device delivers a current about three times that of Case 1, which accounts 

for the rapid temperature response in the SOI (see Fig. 6.14). The temperature spikes due 

to turn-on losses are hardly seen in this waveform and the majority of heating is due to 

the conduction losses. If this pulse action continues, the temperature will rise and 

eventually fluctuate around a steady-state value. The increase in temperature leads to a 

degradation in the device’s electrical and thermal properties, causing an increase in losses 

compared to those at the initial temperature. 

As can be seen in Fig. 6.13, there is a negligible difference between the electrical 

behaviours of the two technologies, a result indicative of very similar on-state power 

losses in the two MOSFETs. However, the thermal resistance and capacitance of the SiC 

substrate are much improved, allowing it to work like an embedded heat sink regulating 

device temperature close to that of the ambient environment (423 K). In Case 2, the peak 

temperature in the Si/SiC is 425 K, lower than 463 K in the SOI, thereby increasing 

reliability. The drawback is that this layout requires 65% more chip area than the SOI at 

423 K but smaller external heat sinks can be employed due to this thermally aware design, 

which can lower the total volume of the power module. 

6.3.1.2 Analysis of transient currents and power 

To reduce the inductor size further, the power transistor can be operated at megahertz 

frequencies [152]. In this case, the device will undergo more switching cycles per second 

and shorter time for cooling, thereby increasing the junction temperature at a faster rate. 

As can be seen in Fig. 6.14, the turn-on events contribute a great deal to the transient 

heating in the SOI and Si/SiC under the low current conditions.  In the high current case, 

the conduction heating is minimised in the Si/SiC but the temperature spikes during the 

turn-on are still significant. When the switching speed of the power device is elevated, 

the temperature rise will be related more to the turn-on losses.  

Therefore, a study on the origin of this dynamic behaviour is crucial to achieving 

reliable operation at very high frequencies. To analyse the transient losses, the currents 

and power dissipations of case 1 are given in Fig. 6.15, 6.16 & 6.17. 
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Figure 6.15. The current waveforms of the first switching cycle for the 600 V Philips 

SOI (top), 600 V Si/SiC (middle) and the 200 V SOI LDMOSFET in [152] (bottom) 
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Fig. 6.15 demonstrates the currents of four LDMOS terminals during the first 

switching cycle of Case 1, for the Philips SOI and Si/SiC structure. They are the drain, 

gate, source and substrate current. Also shown are the current waveforms taken from 

[152], where a 200 V SOI LDMOSFET was simulated and tested in a clamped 

inductive circuit at 1 MHz. These results are used to aid the analysis of the switching 

behaviour of the two transistors and are not involved in the detailed comparison of 

transient current and instant power.  The current is positive if it is flowing into the 

electrode, otherwise it is negative. Compared with the results in [152], the drain and 

source current of the Philips SOI are less linear in the on-state, owing to the presence 

of a series resistor (see Fig. 5.18). Other than that, they are very similar to each other 

and have surge currents at the gate, source and substrate during the turn-on (For better 

views for these of the 200 V SOI, please refer to [152] ). These inrush currents are 

caused by the parasitic capacitors and are many times larger than their steady-state 

values. After this transient period, the device is in the on-state where the source and 

drain current are the same except for their directions, with no current flowing through 

the gate and substrate. This situation continues until the device is turned off, resulting 

in a drop in the drain current. At this moment, instantaneous currents appear again at 

the gate, source and substrate, with their directions being reversed as opposed to the 

turn-on cases. Once all the currents are gone, the device is completely off and the drain 

potential is clamped to a value which is the sum of the DC supply and the voltage across 

the inductor. The on-state currents of the Si/SiC are exactly the same as those of the 

Philips SOI. However, the Si/SiC produces slightly higher transient currents at the gate 

and source, probably due to it being wider than the SOI for achieving the same rated 

current. Despite this, the substrate current of the Si/SiC is negligible throughout the 

whole cycle owing to the absence of the capacitive effect arising from the buried oxide. 

The details of the transient currents for the SOI and Si/SiC during turn-on and off of 

the fifth cycle can be seen in Fig. 6.16. In both devices, the turn-on event starts at 20 

µs and lasts for 10 ns. This delay results from the charging of the CGS and discharging 

of CGD, CDS and CSUB. The substrate capacitive current is insignificant in the Si/SiC 

whereas this is as significant as other dynamic currents in the SOI. There are more 

transient current flowing out of the source than into the drain because of the extraction 

of energy in the CGD and CDS [153]. Once the devices are switched off, the source 
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current is suddenly reversed and then falls to zero briefly whereas the drain current 

continues to flow for about 70 ns. This means that the charged carriers from the drain 

are used for energising the CGD and CDS rather than travelling to the source [153]. The 

negative substrate current in the SOI means that electrons are attracted to the positive 

drain bias and migrate to the bottom of the BOX layer. Throughout the switching cycle, 

the gate current of each transistor is related to other current components following the 

Kirchhoff's current law. 

  

 
 

Figure 6.16. The SOI and Si/SiC transient currents during the turn-on and off, in Case 1 
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Figure 6.17. Power disspations calculated by ID × VDS and IG × VGS (top), and by IS × 

VDS and ISUB × VDS (bottom) for the Philip SOI and Si/SiC in one cycle 

According to [152], the instantaneous power is calculated from the product of voltage 

and current for both drain and gate (see Fig. 6.17 top). Despite differences in the substrate 

and device width, the two LDMOSFETs generate a similar amount of power losses in one 

cycle. The Si/SiC dissipates less drain-to-source switching losses during the turn-off 

event but has higher gate charge losses. In each device, the power is constant throughout 

the steady state and has bell-shaped distributions during the transient. The turn-on power 

pulse is about 10 times shorter than the turn-off but they have the same peak value of 18 

W. The gate-drive losses are much lower than the switching losses. These results indicate 

that the devices are more likely to be heated up quickly during the turn-off than other 

states, but the temperature responses in Fig. 6.14 show otherwise.  

In [153], Shen et al. analysed the suitability of using the product of drain voltage and 

current for the calculation of the switching losses. It was found that this method 
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underestimated the turn-on losses by ignoring the additional current arising from the 

capacitive discharge, and overestimated the turn-off losses by disregarding the capacitor 

charging with the assumption that all the drain current flowing through the channel to 

cause the joule heating [153]. To consider those effects, the channel current was 

introduced to replace the drain current for the calculation of the power losses [153]. Based 

upon this, the instantaneous power is obtained by multiplying the drain voltage and the 

source current as this current behaves similarly to the channel current in [153]. The results 

are demonstrated in Fig. 6.17 bottom, along with the power calculated from the product 

of the drain voltage and substrate current. It can be seen in both transistors that the turn-

on results in the power losses are considerably larger than the turn-off, which can explain 

the temperature spikes in Fig. 6.14. In the SOI, this heating can depend more on the 

current at the source since the substrate current generates losses in the bulk region below 

the BOX layer rather than in the top Si [154]. Compared with the SOI, the Si/SiC has less 

turn-on losses and transient heating with insignificant substrate capacitive effect. These 

are very attractive features to power ICs operating at very high frequency (> 1 MHz). 
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6.3.2. Si/SiC, Philips SOI vs Bulk Si LDMOS on RPP circuit 

This section shows the temperature responses of different 600 V LDMOSFETs in the 

RPP circuit introduced in Chapter 5. The simulated power transistors are the Philips SOI, 

bulk Si and their Si/SiC equivalents. The aim of this simulation is to analyse the cooling 

effect of the Si/SiC devices under transient overload condition. 

6.3.2.1 Simulation results 

 

 

Figure 6.18. The power pulses (top) and temperature responses (bottom) for the 

simulated 600 V structures 

Due to strong self-heating, the power applied in the SOI drops from the initial value to 

about 67 W/mm2 at 10 μs, and the maximum temperature rises up to 550 K (see Fig. 6.18). 
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On the contrary, other devices have far less temperature increases and their power pulses 

are nearly the same. The disparity of junction temperature between the bulk-Si and its 

equivalent Si/SiC starts to appear at 2.5 μs, indicating the cooling effect of the SiC 

substrate. The thin-film Si/SiC also receives such thermal benefit, but a slightly rapider 

temperature rise is found when compared with the bulk-Si devices, mainly due to 

nonuniform heating [147] caused by the linear doping in the drift region. Nevertheless, 

the maximum junction temperature of this device is the same as that of the bulk-Si (green) 

at 10 μs, and thereafter decays faster than that of the thick-film Si/SiC counterpart. One 

can expect that more thermal improvement can be offered by the Si/SiC solutions under 

conditions where longer and larger power pulses are present. 
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Chapter 7 TCAD study on the 

190 V Si/SiC LDMOSFETs 

7.1. Introduction 

In this chapter, a TCAD study is made on the energy capability of 190 V LDMOSFETs 

in Si/SiC, SOI, PSOI and PSOSiC technology, using the capacitive and inductive 

switching circuit (Chapter 5, section 5.4.2.3). The purpose of this study is to find out how 

effective is the Si/SiC substrate in handling the energy surge during switching, compared 

with other solutions. The first section of this chapter demonstrates the on/off I-V curves 

of the four transistors under isothermal condition at 300 K. Secondly, comparison is made 

between the four transistors on their switching performances during the capacitive turn-

on and inductive turn-off event. This chapter has been published in [145]. 
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7.2. DC characteristics 

7.2.1. Off and on-state behaviour 

 

 

Figure 7.1. On (top) and off-state I-V curves (bottom) for the simulated 190 V 

devices under isothermal conditions at 300 K 

Fig. 7.1 shows the electrical behaviour of the four 190 V transistors in the on- and off-

state at 300 K. Self-heating models are deactivated in these simulations and the gate 

contacts are biased at 12 V for the on-state. The application of SOI RESURF enables 
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them to support a breakdown voltage of 190 V [129], but a higher on-resistance is found 

in the Si/SiC compared with the SOI group, owing to the absence of the BOX (single 

RESURF). Negligible difference in the I-V curves is observed among the SOI group 

members, indicating that the heat conduction path does not affect a device’s electrical 

functioning under isothermal conditions. Based upon these I-V relations, the device 

widths of the Si/SiC and other SOI transistors are 1.75 mm and 1 mm, respectively, in 

order to achieve the same resistance. 

7.3. Dynamic characteristics  

7.3.1. Capacitive load switching  

 

 

Figure 7.2. The I-V switching behaviour during the turn-on for the four LDMOSFETs 

(top) and their drain and source currents (bottom)  
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Fig. 7.2 demonstrates the transient I-V characteristics for the simulated 190 V 

transistor in the capacitive switching circuit described in Chapter 5. When the device is 

switched on, a large current (red) is visible initially as a result of capacitor discharge, and 

lasts for about 70 ns before the circuit reaches the steady state, with its current being 

limited to a very low value due to the 100 kΩ series resistor. This can be seen in all the 

transistors and a small disparity between the Si/SiC and other counterparts is perceptible, 

likely due to the differences in their device width and electrical capacitance. Unlike the 

inductive switching for the 600 V devices, the drain and source current are symmetric 

about the x axis (see Fig. 7.2 bottom), meaning that the instantaneous power values 

obtained from the two currents are the same. Fig. 7.3 presents the power and temperature 

curves during the transient state, for the simulated LDMOSFETs. It can be seen that the 

power pulses are similar in shape and the dissipated energy (0.87 µJ), as the I-V 

behaviours of the four devices are comparable. However, the thermal advantage is only 

found in the Si/SiC while the other solutions are identical regarding temperature rise. This 

indicates that the heat conduction paths in the PSOI and PSOSiC are much less sensitive 

to the transient heating than the Si/SiC case. 

 

Figure 7.3. The instantaneous power and temperature responses during the capacitive 

discharge for the simulated LDMOSFETs 
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7.3.2.   Zener-diode-clamped inductive switching 

 

Figure 7.4. The Vds and Id curves under the conditions of Vpulse = 12 V, Vdd = 50 V, L 

= 5 mH, BVZener = 150 V, R1 = 3 kΩ and a ramp-up time of 10 µs, for the four 

simulated structures 

 

 

Figure 7.5. The power and temperature curves of inductive switching, under (top) the 

conditions mentioned in Fig. 7.13, and (bottom) with the inductor value and ramp-up 

time changed to 500 mH and 100 µs 
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The inductive switching setup for this section can be found in Fig. 5.21. As can be 

seen in Fig. 7.4, there is no difference among the electrical behaviour of the devices. 

When the DUT is switched on, all the supply voltage is dropped across the inductor and 

the drain current rises linearly. At 10 µs, the device is switched off and the drain potential 

increased to the rated clamped value of 150 V. Following this is a 4.8-µs-long transition 

period when the drain voltage is fixed at 150 V and the current falls linearly to zero. This 

transient behaviour results in a power pulse 4.8-µs-long with 34 µJ energy for each 

transistor, as can be seen in Fig. 7.5 (top). Similar to the capacitive switching, the Si/SiC 

has the best thermal performance and the SOI group experiences a rapid temperature 

increase, but slight deviations among their curves are noticeable and indicative of the 

effects of the PSOI layout and SiC substrate. This thermal improvement becomes more 

obvious when the 34 µJ power pulses are reshaped to about 48 µs, by increasing the 

inductor value and charge time to 500 mH and 100 µs (see Fig. 7.5 bottom). The 

difference at the peak of the maximum junction temperature between the SOI and PSOSiC 

is about 9 K in this case, greater than 4 K in the previous with the shorter power pulse. 

7.3.3. Conclusion 

It has been found that in spite of having a chip area 75% larger than the SOI structure, 

the Si/SiC solution undergoes negligible heating in any of the switching conditions 

simulated, exhibiting a very high energy capability. By contrast, the 22% area increase in 

the PSOSiC does not considerably change the way the energy is handled. This is in part 

because the thin Si layer offers a weak lateral thermal path which is part of the thermal 

shunt network. Therefore, the initial thermal process is mainly heat storage rather than 

heat transfer, and the thin film again exacerbates the situation by its small heat capacity 

that induces rapid temperature rise. After a couple of microseconds, this thermal charging 

of the Si layer is almost complete and the following energy tends to be directed to other 

regions. The contribution of the added thermal path and the SiC substrate becomes 

apparent at longer pulse lengths, as can be seen in Fig. 7.5. This is similar to the results 

by L. Yan et al. [155], showing that the thermal impedance of their PSOI devices is the 

same as that of the SOI at high frequency (105~106 Hz), but with 30% reduction at low 

frequency (~102 Hz). In the Si/SiC LDMOS, the absence of a BOX minimises the thermal 

storage within the Si, while the presence of the thin Si film reduces the involvement of Si 

in thermal conduction. The influence of the SiC substrate is therefore maximised, 
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significantly enhancing heat transfer, while less energy is absorbed in the Si layer. As a 

result, a fast cooling is achieved even with very short power pulses, which is beneficial 

to high frequency and power operations. 
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Chapter 8 Conclusions and 

further work 

In this final chapter, the conclusions of the Si/SiC research conducted in this thesis are 

provided. After this, areas of future work on the Si/SiC architecture are outlined, namely 

experimental results, Physical-based TCAD models, RESURF design, switching circuits 

and LIGBTs. 

8.1. Conclusions 

The objective of the research presented in this thesis was to explore the potential of 

Si/SiC LDMOSFETs to be used for high-temperature power applications. This goal was 

fulfilled in three stages. First, the TCAD models were validated against the references 

over the temperature range of 27-300 ⁰C, to ensure the credibility of the simulation 

results. Secondly, the Si/SiC LDMOS designs were optimised by using SOI and PN 

RESURF technologies, to deliver electrical behaviour similar to their bulk Si and SOI 

equivalents. Thirdly, several comparative studies were made on the LDMOSFETs using 

the Si/SiC, bulk Si and SOI substrate based upon DC and transient simulation, to highlight 

the effects of the Si/SiC architecture on the electrical and thermal performance of the 

devices. From this study, it is expected that the availability of the Si/SiC LDMOSFETs 

will enable power ICs to work at very high frequency (> 1 MHz) and high temperature 

up to 300 ⁰C with increased reliability. However, it is also expected that for a given value 

of breakdown voltage (BVDSS), the SOI-like Si/SiC design will have a higher low-side 

specific Ron than its SOI counterpart. The bulk-Si-like Si/SiC can improve this Ron vs 

BVDSS relationship but suffer more degradation in Ron at high temperature. In order to 

achieve a competitive figure of merit for Si/SiC LDMOSFETs, implementation of 3D 

RESURF layouts in the Si/SiC substrate is one solution. 

In high-voltage power applications, the key parameters of the semiconductor switch 

are the on-resistance and breakdown voltage. They are a pair of trade-off factors and 

widely used to assess different power LDMOSFETs. To achieve a better compromise 
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between them, RESURF techniques are used in the LDMOS design. The fundamentals 

of these technologies were stated in Chapter 3, covering two basic RESURF layouts: the 

SOI and PN structure. Also included in this Chapter were the introduction of 

LDMOSFETs and their substrates. Using this knowledge, a 600 and a 190 V SOI 

LDMOSFET were constructed in the simulator to validate the TCAD models against the 

references [46] over the temperature range of 27-300 ⁰C. This was demonstrated in 

Chapter 4 and it was concluded that, in the main, the models correctly represented the 

physical behaviour of the Philips designs. In Appendix C, the transferability of these 

models to the Si/SiC architecture was discussed with the literature [14] [130] [131] and 

existing Si/SiC wafer bonding results [156]. It was concluded that it was possible to 

fabricate the Si/SiC substrate with a device-quality Si layer, high voltage capability and 

minimal interface effect, and that the fabricated Si/SiC MOSFET could behave like its 

SOI and bulk-Si counterparts. This meant that the Si/SiC and bulk Si and SOI could share 

the same model setups, with the interface charge values specified for each case according 

to the literature [124] [131]. To consider the heating effects, the thermal models are 

established and detailed in Appendix A.  

With the models being analysed and established, a preliminary Si/SiC study was first 

given in Chapter 5 on lateral PiN diodes as a simple device to compare outputs. These 

diodes were simple, free from strong RESURF effects, and only differing in the substrate 

materials. The modelling of these diodes consisted of two parts. The first simplified a PiN 

diode down to a 100×100×1 µm3 heat source on a 500×500×100 µm3 domain 

representing the substrates of interest, namely SOI, Si/SiO2/SiC, bulk Si, SiC and Si/SiC. 

Thermal simulation was performed on them and showed that the Si/SiC architecture, with 

its thin Si film intimately formed on SiC, displayed significant thermal advantages over 

any other Si solution, and was comparable to bulk SiC. The second simulation considered 

the detailed layout of a lateral PiN diode in SOI and Si/SiC architectures. This modelling 

revealed that compared with the SOI PiN diode, the Si/SiC had a higher breakdown 

voltage and were more robust against self-heating effect. However, the blocking 

capability of the Si/SiC was limited by an unbalanced depletion with an electric field peak 

at the p-/N+ junction. By using a thin Si layer on the SiC substrate, this effect was 

diminished but at the expense of a higher on-resistance. 
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To address this problem, the PN and SOI RESURF layouts were transferred from the 

bulk Si and SOI LDMOSFETs mentioned in Chapter 3, to thick and thin-film Si/SiC 

architectures respectively. These Si/SiC, SOI and bulk-Si LDMOS designs were 

categorised into three groups with detailed descriptions on their parameters. In each 

group, the Si/SiC transistor was constructed to be very similar to its SOI or bulk Si 

counterparts for the comparative studies later on. Firstly a thin-film 600 V Si/SiC 

transistor in the SOI RESURF technology was introduced, along with two SOI 

counterparts for benchmarking. Second was the description of two thick-film 600 V 

LDMOSFETs designed with the PN RESURF principle, employing a Si/SiC and bulk-Si 

structure. Third, the four thin-film 190 V LDMOSFETs in the same SOI RESURF 

technology were presented, using a Si/SiC, SOI, PSOI and PSOSIC substrate. The 

potential contours at the onset of avalanche breakdown for the 600 V class devices were 

illustrated and showed that the SOI and PN RESURF structures created a uniform electric 

field distribution in the drift region. This formed the second part of Chapter 5. 

In the last section of Chapter 5, the simulation setups for the aforementioned 

LDMOSFETs were detailed and split into two parts. First, the application of the physical 

models discussed in Chapter 4 was described. Second was the introduction of four 

different switching circuits used for the transient simulation. The first two circuits were 

designed for the 600 V class transistors, namely the diode-clamped inductive switching 

circuit for the Philips SOI and its Si/SiC counterparts and the rectangular power pulse 

circuit for the Philips SOI, bulk Si and their Si/SiC equivalents. The last two were the 

capacitive and the inductive switching circuit with a Zener diode, for the four 190 V 

power transistors. 

In Chapter 6, a TCAD study was conducted on the static and dynamic behaviour of 

the two 600 V Si/SiC LDMOSFETs. The analysis of the DC behaviour was split into 

three parts. The first part compared the Si/SiC transistor in the SOI RESURF technology 

with its two SOI counterparts, namely the Philips SOI and the SOI without the gate 

extension. It was shown that the 600 V Philips LDMOSFET and its Si/SiC equivalent had 

near identical off-state behaviour at 27 and 300 ⁰C, with a significant tunnelling leakage 

component emerging above 450 V at room temperature. This was also observed in the 

SOI LDMOSFET without the field plate extension. It was concluded that depletion from 

the BOX and FOX had equivalent effects on the leakage current at 300 and 573 K. In the 
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on-state, the Si/SiC device had higher electrical resistance but much lower thermal 

resistance, leading to less self-heating and higher reliability. The comparison between the 

Si/SiC and the SOI without the gate field plate showed that the accumulation effect on 

the drift region was stronger at high VDS and led to a lower on-resistance and higher 

saturation current.  

In the second part of the DC behaviour in Chapter 6, the bulk Si LDMOSFET in the 

PN RESURF technology was compared with its Si/SiC equivalent. It was concluded that 

the Si/SiC and bulk Si were very similar in the I-V characteristics at room temperature, 

namely the on-resistance and Kirk effects. Nonetheless, the Si/SiC delivered a leakage 

current two orders of magnitude lower and a breakdown voltage 250 V higher at 300 ⁰C, 

due to a much better electrical insulating property. 

The last part of the DC behaviour in Chapter 6 provided a comparative study among 

the two Si/SiC transistors and their equivalents, in terms of the leakage current, low and 

high-side resistance over the temperature range of 27-300 ⁰C. It was concluded that the 

two Si/SiC devices exhibited an off-state leakage current as low as the SOI device at a 

drain-source bias of 300 V, due to a small charge density of -2×1010 cm-2 [21] defined 

along the Si/SiC interface. In terms of the on-state, it was concluded that although the 

SOI delivered a low-side resistance smaller and less sensitive to temperature than those 

of the Si/SiC devices, the resistance of the SOI became larger when high substrate biases 

are applied, which represented a typical high-side operation. These relations held true 

over the temperature range of 27 to 300 ⁰C, and their differences in the resistance were 

as follows. In the on-state, the Si/SiC using SOI RESURF had a low-side resistance 56% 

and 79% higher than the SOI at 300 K and 573 K respectively, owing to a lack of SAD 

effect. The Si/SiC using PN triple RESURF had a low-side -resistance 5% and 71% higher 

than the SOI at 300 K and 573 K respectively, which was caused by lower doping density 

in the drift region. Under high-side conditions, the resistance of the SOI increased with 

the substrate potential, and eventually reached a value 86% and 91% greater than those 

of the SOI Si/SiC and Bulk-Si Si/SiC respectively at -200 V and 300 K. At 573 K, these 

differences were reduced to 40% and 36% correspondingly.  

After the analysis of the DC characteristics, a study on their transient behaviour was 

presented and separated into two sections. First, a diode-clamped inductive switching 

circuit was simulated for the 600 V Philips SOI LDMOSFET and its Si/SiC equivalent 
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under low and high current condition (Case 1 & 2). It was shown that even though the 

SOI had a smaller chip area and suffered from strong substrate effects during the transient 

state, the two devices had similar currents and power dissipations at the gate, drain and 

source. The turn-on losses was found to be higher than that of the turn-off due to the 

presence of the parasitic capacitors. However, this similarities did not lead to similar 

thermal responses in both devices and the SOI was heated up at a much faster rate. By 

contrast, the SiC substrate in the Si/SiC functioned like an embedded heat sink regulating 

device temperature close to that of the ambient environment (423 K). In Case 2, the peak 

temperature in the Si/SiC is 425 K, lower than 463 K in the SOI, thereby increasing 

reliability. 

In the second section, a comparison is made among the Philips SOI, bulk Si and the 

two Si/SiC LDMOSFETs, of the heating effects in the RPP circuit introduced in Chapter 

5. Simulation of this circuit was performed for the Philips SOI and bulk-Si LDMOSFET 

and their Si/SiC counterparts. Through comparison, it was evident that the Si/SiC 

structures had thermal performance comparable to the bulk-Si and much better than the 

SOI, with a 10 μs pulse of 90 W/mm2. It was concluded that more thermal improvement 

could be offered by the Si/SiC solutions under conditions where longer and larger power 

pulses were present. 

The final results Chapter presented a TCAD study on the energy capability of 190 V 

LDMOSFETs in Si/SiC, SOI, PSOI and PSOSiC technology, using the capacitive and 

inductive switching circuit. The comparison among their static I-V curves under 

isothermal conditions found that the application of SOI RESURF enabled the four devices 

to support a breakdown voltage of 190 V, and that the SOI group had the same on-state 

behaviour at 300 K, which was lower than that of the Si/SiC. The results of the capacitive 

and inductive switching circuits showed that in spite of having a chip area 75% larger 

than the SOI structure, the Si/SiC solution underwent negligible heating in any of the 

switching conditions simulated, exhibiting a very high energy capability. However, the 

22% area increase in the PSOSiC did not considerably change the way how energy was 

handled. This indicated that the Si/SiC was much more effective than PSOI and PSOSIC 

in dealing with the transient heating. 

 

 



133 

 

8.2. Future work  

The work presented in this thesis was an exploratory study on RESURF Si/SiC 

LDMOSFETs for high temperature operations and will lay a foundation for the 

succeeding Si/SiC research. The following are some areas that the future work can cover 

to provide a more in-depth understanding of the Si/SiC architecture. 

8.2.1. Experimental results 

In this project, the experimental results are limited to the TEM observations on the 

Si/SiC interface (see Fig. C.4 in Appendix C). Although the amorphous layer at the 

interface is very thin (up to 8 nm), its effects on carrier mobility and lifetime are still not 

clear. To further examine the quality of the Si film on the SiC substrate, experiments such 

as Hall effects measurements, X-ray diffraction (XRD) [85] and MOSFET fabrication 

should be performed. These are very important not only to the validation of the FEM 

models but also the advancement of the Si/SiC study from a conceptual level to a practical 

solution available for mass production. The works associated with this are currently 

conducted in the SaSha project, funded by the EU’s Horizon 2020 programme.  

8.2.2. Physical-based TCAD models   

In this thesis, all the LDMOS designs were simulated with the same physical-based 

TCAD models, with differences in the values of the interface charge and carrier lifetime. 

These settings were used based upon the literature that demonstrated that the fabricated 

Si/SiC devices had electrical behaviour very similar to the bulk Si and SOI counterparts, 

and that no adverse effects of the Si/SiC interface had been found on the LDMOS 

characteristics, for example the reduction of the blocking capability. From a standpoint 

of analysing the potential of the Si/SiC architecture, this model configuration is 

reasonable and sufficient enough to deliver credible results for the comparative study. 

However, it is likely that the wafer bonding and annealing process will degrade the quality 

of the Si layer and result in a large number of interface charges in the Si/SiC structure. 

To consider these effects and increase the accuracy, the models are required to be adjusted 

against the experimental outcomes before being used for device development.  
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8.2.3. RESURF design 

In this thesis, the Si/SiC LDMOSFETs were optimised based upon two classic 

templates—the first using SOI RESURF as in Arnold et al. [46], and the second using PN 

RESURF as in Disney et al. [99]. These two LDMOS topologies are widely-reported and 

well-understood, which is helpful to the study and verification of the physical TCAD 

models. Using these two structures also allows a like-for-like comparison to be made, 

whereby the effects of the Si/SiC architecture are highlighted. Furthermore, the 

fabrication techniques of the two LDMOSFETs are mature and can be readily 

implemented in the Si/SiC for the prototype development. Nevertheless, the Philips and 

Disney designs were developed and tailored for SOI and bulk wafers respectively, with 

the consideration of the substrate effects. This means that the electrical characteristics of 

the Si/SiC devices can be inferior to their SOI and bulk Si references. For instance, the 

600 V Si/SiC LDMOSFETs in the SOI technology exhibits a low-side resistance higher 

than that of the Philips SOI (Chapter 6). As such, it is necessary to apply a RESURF 

structure more suitable to the Si/SiC architecture for better performance. A 3D RESURF 

technique can be one option as in this concept, the ideal model features depletion only 

between alternate n and p-type stripes arranged in the direction of device width [148] 

[157]. The substrate should not be involved in the development of the space charge 

regions in the PN pillars. In the traditional SOI and bulk Si structures, substrate assisted 

depletion is unavoidable and has to be suppressed by some special layouts [101] [157] to 

achieve charge balancing. This can increase the complexity and cost of the LDMOSFETs. 

By contrast, the Si/SiC transistor in the 3D RESURF technology does not require those 

layouts as the (SI) SiC substrate is neutral. A simple example of such Si/SiC design is 

demonstrated in Appendix B.  However, it is worth noting that the Si/SiC interface charge 

can deplete the n drift region and upset the optimal 3-D field distribution. By using 

narrower PN stripes, this effect can be reduced due to a higher doping allowance which 

limits the depletion from the interface. In addition, the presence of a thin oxide layer at 

the Si/SiC interface can adversely affect the blocking capability. To execute this idea, an 

experimental work on the Si/SiC interface prior to the simulation is suggested. 
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8.2.4. Switching circuits 

In this thesis, the transient simulation was carried out with four different circuits to 

examine the heating and energy capability of the LDMOSFETs. A common feature of the 

simulated circuit is that the source of the device is grounded, a typical low-side condition. 

To deliver high power level, power conversion systems usually employ a half bridge 

topology where the source of the high-side device is floating [2]. Therefore, to gain a 

complete picture of the device performance, the high-side switching circuit needs to be 

simulated. In this case, the transistor can operate in the saturation region where an extreme 

stress condition is presented [151]. The fast cooling offered by the Si/SiC substrate can 

protect the device from overheating, thereby increasing the performance and reliability. 

Additionally, it was found in this work that the Si/SiC LDMOSFETs suffered no 

degradation in the on-resistance under the high-side configuration, which led to a smaller 

chip area in a power system.  

In a fully-integrated half bridge circuit, the body diode of the LDMOSFET is very 

important as it prevents the power switch from being energised from the inductive load. 

This diode will produce losses during the reverse recovery, where significant heating can 

occur. This effect can be worsened in a hot environment because the reverse recovery 

time has a positive temperature coefficient [46]. It is expected that the Si/SiC architecture 

can ensure the safe operation of the diode with the remarkable heat transfer ability. To 

better understand the diode reverse recovery in Si/SiC devices, TCAD simulation on this 

should be included in the future work.   

It was concluded in Chapter 6 that the Si/SiC architecture could make the 

LDMOSFETs work more reliably at high frequencies (>1 MHz) due to better heat transfer 

ability. This was based upon the simulation results of the 600 V Si/SiC and SOI transistor 

at 200 kHz, in the clamped inductive switching circuit. For a more conclusive study on 

this topic, it is necessary to simulate the Si/SiC devices at 1 MHz and beyond, under non-

isothermal condition 



136 

 

8.2.5. LIGBTs 

To achieve a higher current in a flyback and half bridge circuit, the low or high-side 

LDMOSFETs can be replaced with LIGBTs [111] [158]. The LIGBTs in the traditional 

bulk-Si and SOI technology face problems like slow turn-off [83] and premature punch-

through breakdown [158]. The current solutions to this are the membrane bulk-Si and 

SOI substrate where the substrate effects are eliminated, thereby increasing the speed and 

blocking capability [83] [158]. In theory, the Si/SiC architecture is well-suited for such 

bipolar devices as the substrate assisted depletion (SAD) effect is absent in this structure. 

The lack of this depletion will reduce the doping allowance in the Si/SiC LDMOSFETs, 

which increases the on-resistance. However, it is expected that less degradation is seen in 

the Si/SiC LIGBT in the on-state, due to the fact that the resistivity of such device type is 

determined by minority carrier injection. Furthermore, the (SI) SiC substrate can 

minimise the heating effect and provide mechanical support during device operation, 

which is beneficial to harsh environment applications. It is suggested that the research on 

the Si/SiC LIGBTs should be carried out once the Si/SiC LDMOSFETs are successfully 

fabricated and tested. 
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Appendix…  

A Thermal models 

A.1 Methodology 

In order to study the heating effect, self-heating model (LAT. TEMP) [122] is activated 

in the simulation. The lattice heat flow equation is given below [122]: 

 𝐶
𝜕𝑇𝐿

𝜕𝑡
= ∇(𝜅∇𝑇𝐿) + 𝐻    (A.1) 

Where 𝐶 is the heat capacitance per unit volume, 𝜅 the thermal conductivity, 𝑇𝐿 the 

local lattice temperature and 𝐻 the heat generation. 𝐶 is as the product of specific heat at 

constant pressure (𝐶𝑃) and density of the material (𝜌). This equation relates the thermal 

storage (𝐶
𝜕𝑇𝐿

𝜕𝑡
) to the thermal transfer (∇(𝜅∇𝑇𝐿)) and thermal generation (𝐻). A simplified 

expression for the thermal generation has the form [159]: 

 𝐻 =  𝐽�⃗⃗� + 𝑈𝐸𝑔          (A.2) 

Where 𝐽 is the current density, �⃗⃗� the electric field, 𝑈 the recombination rate and 𝐸𝑔 

the bandgap of the semiconductor. The first and second term represent Joule and 

recombination heating respectively. In unipolar devices, the heating mechanism is Joule 

heating due to the absence of conductivity modulation. 

In the steady-state simulation, 
𝜕𝑇𝐿

𝜕𝑡
 on the left hand side of Equation A.1 is reduced to 

zero so the lattice temperature is only associated with heat transfer and generation. In the 

transient simulation, the thermal storage will be significant if the heat capacitance (𝐶) of 

a material is very large. 

To solve the lattice heat flow equation, thermal boundary conditions need to be set in 

the simulation. In a transistor, all the metal contacts can exchange heat with the ambient 
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environment (e.g. package). The substrate contact, however, has the largest area and is 

connected with the external cooling equipment. This means that the heat escapes mainly 

via the substrate and hence defining the substrate electrode as the only thermal contact 

does not dramatically reduce the reliability of the simulation results. For the sake of 

simplicity, the temperature of the thermal contact is fixed at 300 K or even higher and no 

external heat sink is specified. 

Due to the self-heating effect, the simulated SOI transistors can experience a 

considerable increase or decrease in temperature. In this case, the temperature effect on 

the heat capacitance and thermal conductivity are considered to increase the accuracy of 

the models. This setup was applied by Lim et al. in [5], where the HV LDMOSFETs in 

PSOI and Philips technology were studied by SILVACO and the authors’ analytic model. 

A very good agreement was found between the results obtained from the two methods 

and the thermal advantage of the PSOI device was clearly shown. The following are the 

settings of the thermal properties for the materials that appear in the LDMOS structure. 

A.2 Thermal conductivity and heat capacitance 

Depending on materials, the lattice temperature can affect the thermal conductivity (𝜅) 

and heat capacitance (𝑐𝑠) in different ways. It is reported that SiO2 is insensitive to 

temperature and hence 𝜅 and 𝑐𝑠 are fixed at 0.014 W/cmK and 3.066 J/cm3K, respectively 

[5]. The thermal conductivities of Si and SiC, however, degrade with increasing 

temperature. In the case of Si, this relationship can be formulated by: 

 𝜅(𝑇) = 1/(𝑡𝐶𝐴 + 𝑡𝐶𝐵𝑇𝐿 + 𝑡𝐶𝐶𝑇𝐿
2) (A.3) 

The values of 𝑡𝐶𝐴, 𝑡𝐶𝐵 and 𝑡𝐶𝐶 for Si are obtained from [5] and shown in Table A.1. 

The unit of thermal conductivity is 𝑊/𝑐𝑚𝐾. 

According to [160], the thermal conductivity of 6H-SiC is as a reciprocal function of 

the lattice temperature: 

 𝜅(𝑇) = 611 (𝑇𝐿 − 115)⁄  (A.4) 

In the simulation, this is done by using a power function and its parameters are listed 

in Table A.1: 

 𝜅(𝑇) = 𝑡𝑐𝑐𝑜𝑛𝑠𝑡(𝑇𝐿 300⁄ )𝑡𝑐𝑝𝑜𝑤𝑒𝑟 (A.5) 
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Fig. A-1 plots the lattice temperature effect on the thermal conductivity of 6H-SiC, by 

using Equation A.4 [160] and A.5. The two curves are very similar from 300 to 600 K. 

The thermal conductivity of 6H-SiC described here is for the direction parallel to the c 

axis (𝜅||) [161]. To consider the anisotropic property of 6H-SiC, the 𝜅 normal to the c 

axis (𝜅⊥) can be specified as 𝜅|| 0.7⁄  in SILVACO [162]. Due to being a wide bandgap 

semiconductor, the (SI) SiC has a 𝜅 value higher than that of its conductive form and the 

related parameters can be adjusted according to [163]. In our simulation, the 𝜅 of 6H-SiC 

is simplified as an isotropic parameter described by the power function (Equation A.5), 

as in [161]. 

 

 

Figure A-1    Thermal conductivity of 6H-SiC as a reciprocal (black) and power 

function (red) of lattice temperature. The Nilsson’s model is detailed in [160]   

The heat capacitance of Si and 6H-SiC is related to lattice temperature by the equation 

below: 

 𝑐𝑠(𝑇) = ℎ𝑐. 𝑎 + ℎ𝑐. 𝑏 𝑇𝐿 + ℎ𝑐. 𝑐 𝑇𝐿
2 + ℎ𝑐. 𝑑 𝑇𝐿

2⁄  (A.6) 

 

Where the values of ℎ𝑐. 𝑎, ℎ𝑐. 𝑏, ℎ𝑐. 𝑐 and ℎ𝑐. 𝑑 for the two materials are obtained 

from [5] [164] and listed in Table A.1. The unit of heat capacitance is J/cm3K. 4H-SiC 

can be set up in a similar way for the thermal simulation, as the properties of the two 

polytypes (4H&6H) are alike [160]. 
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Thermal conductivity 𝜅 
 𝑡𝐶𝐴 𝑡𝐶𝐵 𝑡𝐶𝐶 

Si 0.03 1.56 × 10-3 1.65 ×10 -6 

 𝑡𝑐𝑐𝑜𝑛𝑠𝑡 𝑡𝑐𝑝𝑜𝑤𝑒𝑟  

6H-SiC 3.3027 1.42  

Heat capacitance 𝑐𝑠 

 ℎ𝑐. 𝑎 ℎ𝑐. 𝑏 ℎ𝑐. 𝑐 ℎ𝑐. 𝑑 

Si 1.97 3.6×10-4 0 -3.7×104 

6H-SiC 3.293 0.645×10-3 0 -11.75×104 

Table A.1 The thermal parameters for Si and 6H-SiC used in TCAD simulation 
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Appendix 

B 3D RESURF for Si/SiC 

Fig. B-1 demonstrates a Si/SiC LDMOSFET in 3D RESURF technology and its mesh 

layout. In the drift region, the n and p-type pillar are in orange and sky blue colour 

respectively. The green area represents a charge neutral region and its size depends on 

the mesh density. This setup can deplete the n-type region from both sides in the off-state, 

creating a double RESURF effect. Even though this layout is 3D, the development of the 

space charge region is a 2D action as the (SI) SiC substrate (grey) is not able to deplete 

the drift region.  

Fig. B-2 shows the potential and electric field distribution at the onset of avalanche 

breakdown (200 V). It can be seen that the equal potential lines spread deeply into the 

SiC substrate and the voltage across the drift region is dropped linearly from the drain to 

source. The electric field peaks at the corners of the n/p pillars where the avalanche 

mechanism commences. However, it is worth noting that the Si/SiC interface charge can 

disrupt the charge balancing effect and induce premature breakdown. 
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Figure B-1  A 3D view of the Si/SiC LDMOSFET in 3D RESURF technology   
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Figure B-2 3-D potential (top) and electric field distribution (bottom) of the Si/SiC 

LDMOSFET at the onset of avalanche breakdown (200 V) 
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Appendix 

 

C Experimental Si/SiC issues affecting 

TCAD simulation  

There are three points which can affect the TCAD models for the Si/SiC architecture, 

namely the quality of the top Si film, the properties of (SI) SiC and the Si/SiC interface 

states. This discussion will be supported by experimental wafer bonding results and 

related references. The purpose of this section is to ascertain the quality of the Si layer 

within the Si/SiC structure, to compare the insulating properties of the SiC wafer to the 

SOI wafer and to understand the effects of the SiC substrate on the Si device layer. This 

will inform the setup of the models in response to the traits of the Si/SiC substrate. 

C.1 The quality of Si on SiC  

It has been experimentally proven that forming a uniform Si layer on SiC via epitaxial 

techniques is difficult, due to the lattice mismatch between Si and SiC [38]. One 

molecular beam epitaxy experiment shows that the growth starts with many separated Si 

islands in different shapes and sizes, enlarging in three dimensions and merging into 

several bumpy continents (see Fig. C.1), if the epitaxy process is long enough [38]. This 

is ascribed to the weak affinity of Si with the SiC surface, and the atomic binding tends 

to occur between Si atoms mainly [38]. These Si-Si bonds only constitute a crystal lattice 

on a small scale and lack the homogeneity required for device fabrication. 
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Figure C.1. Atomic force microscopy for the Si/SiC heterojunction layer by molecular 

beam epitaxy (MBE), designed to be 100 nm thick (left) and 1 µm thick (right) [38] 

Wafer bonding, however, can transfer a monocrystalline Si layer onto a SiC substrate 

and the atomic interaction takes place exclusively between the two surfaces.  Fig. C.2 

demonstrates the pre and post-anneal directly-bonded Si/SiC samples, produced after a 3 

inch on-axis semi-insulating (SI) 4H-SiC handle wafer and a 4 inch bulk-Si seed wafer 

having undergone the Smart CutTM process [13]. This process creates a hydrogen-rich 

region in the seed wafer by implantation, which defines the thickness of the transferred 

Si film (1 µm, here). This layer is then split away from the bulk Si during annealing as 

the hydrogen expands. The first anneal lasted 1.5 hours in an Argon environment at 450 

⁰C in order to fracture the Si-Si bonds in the implanted region. This was followed by a 

1000 ⁰C rapid thermal annealing (RTA) in Argon to enhance the Si/SiC interfacial bonds. 

The Si is a dark grey whereas the (SI) SiC is colourless and transparent in nature. It can 

be seen in Fig. C.2 that the wafer cleavage is only partially successful, with voids present 

in most of the surface areas. 

  

Figure C.2. The 3 inch Si/SiC bonded samples before and after annealing (left & 

right). The Si seed wafer is treated with Smart CutTM process. 

Fig. C.3 are the images for the post-anneal Si/SiC wafers captured by scanning electron 

microscopy (SEM) in different perspectives. Viewed in high angle, the edge of the bonded 
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and unbonded region is visible and the Si area looks very rough. This is confirmed by the 

top view of the Si region and the surface morphology features flaking, which can be the 

trail of the H2 expansion. Though the layer transfer is functional only in some areas, the 

cross-sectional shot clearly shows that the bonded Si is 1 µm thick uniformly. This 

indicates that the H+-induced micro crack can exfoliate the layer, and that the adhering 

effect is achievable in the Si/SiC heterojunction. In [13], the yield of the Si/SiC bonded 

wafer by Smart CutTM is more than 80%, with the surface roughness of only 5.8 nm. 

Therefore, the poor Si coverage on SiC in our samples can be due to the presence of alien 

particles that disrupt the binding. From a device fabrication point of view, this approach 

is deemed to be inadequate due to the low-yield bonded areas. 
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Figure C.3. SEM images of the Si/SiC samples in high angle (top), of top view 

(middle) and side view (bottom) 
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Apart from the Smart CutTM process, the thin Si film can be defined by transferring 

the device layer of a SOI substrate [130]. After bonding the top surfaces of a SOI wafer 

and a SiC substrate, the Si handle wafer and the BOX can be removed by grinding and 

etching so that only the device layer remains on the SiC wafer. Si/SiC wafers were 

developed for this project using this method by IceMOS Technology Ltd, Northern 

Ireland. These are shown in Fig. C.4, where the yield is satisfactory regardless of the Si 

layer thickness (1, 2 and 5 µm) [156]. The annealing temperature for these wafers is 1200 

⁰C. The trenches are introduced prior to the wafer mating, as a solution to outgassing 

[156]. TEM images reveal that the Si/SiC heterojunction can be a sharp interface with 

and without an amorphous layer, or takes the form of an island-like defect. The 

dislocation region seems to exist mostly at the Si side and extends up to 8 nm. These 

results are in agreement with those by other research groups [14] [165]. Results qualifying 

these Si layers were not available at the beginning of this project and for the simulation, 

data was taken from other references with similar processing. 

  

Figure C.4. (a) 100mm Si/SiC bonded wafers with a (1) 1-μm, (2) 2-μm or (3) 5-μm-

thick Si film, as well as TEM views of the Si/SiC interfaces, showing (1) no 

interfacial layer, (2)&(3) presence of an amorphous layer and (4) an island-like 

defect, respectively [156] 

As such, it is expected that the dislocation of Si atoms close to the interface can degrade 

the device performance if a thin Si layer is used. However, Shinohara et al. proved that 

in their Si/SiC bonded wafers, with a 1 µm thick Si layer, the channel mobility of the 

fabricated MOSFETs is 575 cm2V-1S-1 at room temperature, higher than that of the bulk-

Si counterpart (489 cm2V-1S-1)[14]. This is probably due to the presence of tensile strain 

in the Si film, which increases the electron mobility [85].In addition, other device 
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characteristics are very similar between the Si/SiC and bulk-Si, meaning that the 

transferred Si retains the quality of the seed wafer and the physical damage after bonding 

is negligible. Lotfi et al. also found similarities in most of their results extracted from 

Si/poly-Si/poly-SiC and SOI LDMOSFETs with two main differences, namely the 

leakage current and breakdown voltage [130]. Specifically, the slightly higher leakage in 

the Si/SiC is likely to be caused by the use of the poly-Si interlayer and poly-SiC substrate. 

The lower breakdown voltage is attributed to the lack of RESURF effect in the Si/SiC 

architecture [130]. In summary, the Si layer in the Si/SiC wafer can be as good as those 

of the bulk-Si and SOI. This means that there is no need to change the parameters and 

physical behaviour of Si material in the TCAD models (e.g. carrier mobility), for 

modelling the Si/SiC devices. 

C.2 The (SI) SiC substrate 

The electrical conductivity of a semiconductor can be characterised by the position of 

Fermi level with respect to the conduction and valance band. If the Fermi level is not 

close to either band, the material has a minimal number of electrons and holes available 

for current conduction. When a large bandgap is present in the semiconductor (e.g. SiC), 

the fermi level can be so far away from the two band edges that the quantity of carriers is 

extremely low, leading to semi-insulating behaviour. In practice, one way to form (SI) 

SiC is to introduce deep-level dopants such as vanadium, which pins the fermi level near 

the middle of SiC bandgap [166]. 4H-SiC [166], 6H-SiC [58] and even poly SiC [130] 

can be engineered to become a semi-insulator. In spite of being less thermal conductive 

[167] and lower resistivity, (SI) poly SiC is more advantageous over other polytypes in 

terms of wafer size and price. It should be noted that the resistivity of (SI) 4H/6H-SiC 

will drop from 1010 Ωcm (room temperature) to 105~107 Ωcm at 300 ⁰C [168] [169]. 

Nevertheless, these values are still at least two order magnitude higher than that (103 Ωcm 

[39]) of the Si with n-type doping of 1013 cm-3 at room temperature. This indicates that 

the (SI) SiC substrate acts like an insulator in the Si/SiC device up to 300 ⁰C. Therefore, 

the TCAD models do not need to expand to consider the SiC physics in terms of current 

conduction (e.g. anisotropy carrier mobility). 

The intrinsic property of (SI) SiC significantly boosts the voltage capability of a lateral 

MOSFET, but at the expense of a weaker RESURF effect. Huang et al. have fabricated 
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and analysed different HV lateral SiC devices built on the (SI) SiC platform [170] [171] 

[42] (see Fig. C.5). The use of (SI) SiC as a substrate material instead of p type SiC eases 

the vertical breakdown limit, allowing high voltages beyond 2 kV to be achieved in lateral 

SiC transistors [42]. Nonetheless, all their devices have a buried p-type layer for charge 

balancing (see Fig. C.5), otherwise the n-type dose has to be lowered to maintain the same 

blocking voltage [170] [171] [42]. This indicates that the (SI) SiC is neutral and does not 

offer any significant substrate assisted depletion (SAD) effect [42]. Furthermore, it has 

been shown that the carrier lifetime of (SI) SiC is about 100 ps, meaning that conductivity 

modulation in bipolar devices will not be aided by such substrate [171]. To represent 

these intrinsic properties, no doping is specified for the (SI) SiC material in the simulation 

(default settings). Furthermore, the inclusion of SiC breakdown mechanism is 

unnecessary in the TCAD models as the maximum blocking voltage in the simulation is 

only 700 V, far lower than the 2 kV mentioned above. 

 

Figure C.5. A cross-sectional view of a 4H-SiC lateral JFET on a (SI) SiC substrate, 

able to block voltage up to 3500 V [170] 

The superior heat transfer ability of (SI) SiC has been proven experimental in [14], 

where the Si/6H-SiC MOSFET was exposed to hot air at 300 ⁰C and mounted on a cooling 

device at 15 ⁰C. The same setup applied to the equivalent bulk Si MOSFET [14]. 

Compared with the case at room temperature, the channel mobility of both transistors 

decreased but the Si/SiC only suffered a 10% drop whereas this is 82% in the bulk-Si, a 

result indicative of remarkable thermal properties. However, it has to be mentioned that 

this heat transfer ability will be weakened if the temperature difference between the front 

(MOSFETs) and back side (cooling equipment) is small. To simulate this cooling effect, 
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it is necessary to configure the thermal properties of different materials. This can be found 

in Appendix A and was used along with the TCAD models in the electro-thermal 

simulation. 

C.3 The Si/SiC interface 

In [131], the interface charges of Si/ (SI) 6H-SiC was obtained from a PN diode 

manufactured on a nearly intrinsic Si layer with different doping types ( 𝑁𝑑/𝑁𝑎 =

1013  𝑐𝑚−3). Comparison between this diode on the Si/SiC and bulk-Si wafer found that 

a significant leakage current was only produced in the n-type Si on SiC, with the p-type 

samples having a leakage one order magnitude lower than the bulk-SiC reference [131]. 

This indicates that their bonded wafers had a device-quality Si layer with good electrical 

insulation properties, and that the leakage is likely to be induced by the depletion or 

inversion of the very low-doped N-type region [131]. The Si/SiC interface charge density 

was extracted to be less than -2×1010 cm-2 [131], a value comparable to that of Si/SiO2 

(+4×1010 cm-2 [124]) and far lower than the first order RESURF dose (1×1012 cm-2). In 

their Si/SiC wafer, with a 16 µm thick Si layer, the impurity dose is calculated to be 1.6

×1010 cm-2, a value not high enough to counteract the interface charge and hence a back 

surface conductive channel can be induced. This is very similar to the Silicon on Sapphire 

(SOS) case [172], albeit their interface charge was positive charge, not negative. In [172], 

McGreivy reported that the leakage in n-type SOS MOSFETs was consistently lower than 

that in their p-type counterparts from wafer to wafer, due to the presence of donor-like 

defects at the Si/Al2O3 interface. This leakage difference was significantly reduced after 

the deep boron implantation was used for the p-type sample, as the extra acceptors 

obstructed the formation of space charge and an inversion region was induced by the 

positive interface charge [172]. Likewise, it is expected that the Si/SiC interfacial effect 

can be addressed by using a Si layer with a high dose, with the maximum value 

determined by the RESURF principle. 

Another problem related to the Si/SiC interface is its effect on the thermal conductivity 

and breakdown voltage. During the hydrophilic wafer bonding process, a very thin SiO2 

(e.g. ~3 nm) can be produced between the Si and SiC. Such dielectric layer can degrade 

the heat transfer ability and also create a capacitive effect that could lead to premature 
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breakdown, which is similar to the SOI case. However, it is questionable if this parasitic 

structure functions like a capacitor, as the SiC is semi-insulating and carriers can tunnel 

through the very thin SiO2. Loti et al. reported that their Si/SiC LDMOSFETs had a lower 

breakdown voltage than the SOI reference [130]. However, it was concluded that the 

poorer breakdown capability was caused by the lack of back depletion [130]. 

It is found that the SiO2 interlayer in the Si/SiC structure can be thinned down or 

completely removed by high temperature long time annealing (>1150 ⁰C, >2.5 h) [173]. 

These conditions permit the oxygen atoms at the interface to diffuse out of the bonded 

sample while recrystallising the interfacial Si lattice to some degree [173]. However, 

pyramidal defects can appear at the interface if the annealing temperature is above 1000 

⁰C [165]. This Si dislocation is similar to the island-like defect present in our Si/SiC 

wafers annealed at 1200 ⁰ C, as shown in Fig. C.4. To summarise, caution should be taken 

on how to conduct this oxide-free process as it can cause crystal defects at the Si/SiC 

interface. It is possible that the impact of the thin SiO2 on device performance is so small 

that this process is not necessary. Based upon these results, it is concluded that the TCAD 

models can represent the physics of the Si/SiC interface by simply setting the Si/SiC 

interface charge value to be -2×1010 cm-2. 
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